
BEA
 WebLogic
Server™

Programming WebLogic
J2EE Connectors
Release 7.0
Document Revised: April 2004

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic J2EE Connectors

Part Number Document Revised Software Version

N/A August 20, 2002 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience..x
e-docs Web Site...x
How to Print the Document...x
Related Information... xi
Contact Us!.. xi
Documentation Conventions .. xii

1. Overview of WebLogic J2EE Connectors
J2EE Connector Architecture Terminology .. 1-1
Overview of the BEA WebLogic J2EE Connector Architecture Implementation..

1-5
J2EE Connector Architecture Components... 1-6

System-level Contracts... 1-7
Common Client Interface (CCI)... 1-8
Packaging and Deployment.. 1-9

Enhancements in This Release .. 1-10
Additional Classloading Support ... 1-10
Secure Password Credential Storage.. 1-11
Flexible Connection Leak Detection.. 1-11
Security Policy Processing of an ra.xml Specification 1-12

Black Box Example... 1-12

2. Security
Container-Managed and Application-Managed Sign-on................................... 2-2

Application-Managed Sign-on ... 2-2
Container-Managed Sign-on .. 2-3
Programming WebLogic J2EE Connectors -iii

Password Credential Mapping Mechanism ... 2-3
Authentication Mechanisms ... 2-4
Upgrading Security Principle Mappings .. 2-5
Defining Users and Groups .. 2-6

Users.. 2-6
Groups ... 2-7

Deprecated Security Principal Map Mechanism ... 2-7
Using Container-Managed Sign-On... 2-8
Default Resource Principal... 2-9

Deprecated Password Converter Tool ... 2-10
Security Policy Processing .. 2-10

3. Transaction Management
Supported Transaction Levels ... 3-2
Specifying the Transaction Levels in the RAR Configuration.......................... 3-3
Transaction Management Contract.. 3-3

4. Connection Management
Configuring Connection Properties ... 4-2
BEA WebLogic Server Extended Connection Management Features 4-2

Minimizing the Run-Time Performance Cost Associated with Creating
ManagedConnections .. 4-3

Controlling Connection Pool Growth... 4-4
Controlling System Resource Usage .. 4-4
Detecting Connection Leaks... 4-5

Garbage Collector Method .. 4-5
Idle Timer Method .. 4-6
Deprecation of Previously Used Elements.. 4-6

Monitoring Connections Using the Console ... 4-6
Getting Started.. 4-7
Viewing Leaked Connections... 4-8
Viewing Idle Connections .. 4-9
Deleting Connections ... 4-10

Error Logging and Tracing Facility... 4-11
-iv Programming WebLogic J2EE Connectors

5. Configuration
Resource Adapter Developer Tools... 5-2

ANT Tasks to Create Skeleton Deployment Descriptors........................... 5-2
Resource Adapter Deployment Descriptor Editor 5-2
XML Editor .. 5-2

Configuring Resource Adapters .. 5-3
Resource Adapter Overview .. 5-3
Creating and Modifying Resource Adapters: Main Steps.......................... 5-3

Creating a New Resource Adapter Archive (RAR) 5-4
Modifying an Existing Resource Adapter Archive (RAR)................. 5-5

Configuring the ra.xml File ... 5-7
Configuring the weblogic-ra.xml File ... 5-7

Automatic Generation of the weblogic-ra.xml File 5-9
Configuring the ra-link-ref Element... 5-10

Configuring the Deprecated Security Principal Map Mechanism................... 5-11
Using the Deprecated Password Converter Tool... 5-13

How to Execute .. 5-13
Security Hint .. 5-14

Configuring the Transaction Level Type .. 5-14

6. Writing J2EE Connector Architecture-Compliant Resource
Adapters

Connection Management... 6-2
Security Management.. 6-3
Transaction Management .. 6-3

7. Packaging and Deploying Resource Adapters
Packaging Resource Adapters ... 7-1

Packaging Directory Structure ... 7-2
Packaging Considerations .. 7-3
Packaging Limitations.. 7-4
Packaging Resource Adapters Archives (RARs) 7-4

Deploying Resource Adapters... 7-5
Deployment Options .. 7-5
Deployment Descriptor .. 7-6
Programming WebLogic J2EE Connectors -v

Resource Adapter Deployment Names .. 7-6
Using the weblogic.Deployer Utility.. 7-7
Using the Administration Console ... 7-7
Including a Resource Adapter in an Enterprise Application Archive (EAR) .

7-8

8. Client Considerations
Common Client Interface (CCI) .. 8-2
ConnectionFactory and Connection .. 8-2
Obtaining the ConnectionFactory (Client-JNDI Interaction) 8-3

Obtaining a Connection in a Managed Application 8-3
Obtaining a Connection in a Non-Managed Application 8-5

A. weblogic-ra.xml Deployment Descriptor Elements
Manually Editing XML Deployment Files... A-2

Basic Conventions ... A-2
DOCTYPE Header Information .. A-2
Document Type Definitions (DTDs) for Validation A-3

Using the Console Deployment Descriptor Editor to Edit Files A-4
Using WebLogic Builder to Edit Deployment Descriptors.............................. A-6
weblogic-ra.xml DTD... A-7
weblogic-ra. xml Element Hierarchy Diagram... A-15
weblogic-ra.xml Element Descriptions .. A-17

weblogic-connection-factory-dd (required)... A-17
connection-factory-name (required)... A-17
description (optional) ... A-17
jndi-name (required)... A-17
ra-link-ref (optional)... A-18
native-libdir (required if native libraries present) A-18
pool-params (optional) ... A-18
logging-enabled (optional) ... A-21
log-filename (optional)... A-21
map-config-property (optional, zero or more) A-21
security-principal-map (optional)... A-22
-vi Programming WebLogic J2EE Connectors

A. Troubleshooting
Cannot Map a ManagedConnectionFactory..B-1
Causes and Workarounds ..B-1

Remote JVM ...B-2
Improper Implementation of ManagedConnectionFactory.................B-2
Programming WebLogic J2EE Connectors -vii

-viii Programming WebLogic J2EE Connectors

About This Document

This document introduces the WebLogic J2EE Connector Architecture and describes
how to configure and deploy resource adapters to WebLogic Server. The document is
organized as follows:

Chapter 1, “Overview of WebLogic J2EE Connectors,” provides an overview of
the WebLogic J2EE Connector Architecture.

Chapter 2, “Security,” discusses WebLogic J2EE Connector Architecture
security considerations.

Chapter 3, “Transaction Management,” introduces the various types of
transaction levels supported by the WebLogic J2EE Connector Architecture and
explains how to specify the transaction levels in the resource adapter .rar
archive.

Chapter 4, “Connection Management,” introduces you to various connection
management tasks.

Chapter 5, “Configuration,” outlines the configuration tasks that you perform to
deploy resource adapters to WebLogic Server.

Chapter 6, “Writing J2EE Connector Architecture-Compliant Resource
Adapters,” provides requirements for writing a resource adapter (.rar).

Chapter 7, “Packaging and Deploying Resource Adapters,” provides an overview
of resource adapters and explains how to package and deploy them to WebLogic
Server.

Chapter 8, “Client Considerations,” discusses WebLogic J2EE Connector
Architecture client considerations.

Appendix A, “weblogic-ra.xml Deployment Descriptor Elements,” provides the
weblogic-ra.xml DTD and deployment descriptor elements.
Programming WebLogic J2EE Connectors ix

Appendix A, “Troubleshooting,” provides a solution for a common exception.

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
x Programming WebLogic J2EE Connectors

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. In
particular, refer to the following:

Javadoc for the BEA WebLogic J2EE Connector Architecture (See the product
distribution CD.)

Weblogic-specific Resource Adapter Document Type Definition (See
Appendix A, “weblogic-ra.xml Deployment Descriptor Elements.”)

BEA WebLogic Application Integration (See
http://edocs.bea.com/wlintegration/v2_0/applicationintegration/devel/index.htm.)
This document describes how to build a resource adapter.

Also refer to the following documentation from Sun Microsystems:

J2EE Connector Architecture—http://java.sun.com/j2ee/connector/index.html

J2EE Connector Specification, Version 1.0 Final Release—
http://java.sun.com/j2ee/download.html#connectorspec

J2EE Platform Specification, Version 1.3 Final Release—
http://java.sun.com/j2ee

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
Programming WebLogic J2EE Connectors xi

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee
mailto:docsupport@bea.com

WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float
xii Programming WebLogic J2EE Connectors

http://www.bea.com

monospace
italic
text

Variables in code.
Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic J2EE Connectors xiii

xiv Programming WebLogic J2EE Connectors

CHAPTER
1 Overview of WebLogic
J2EE Connectors

The following sections provide an overview of BEA WebLogic J2EE Connectors:

“J2EE Connector Architecture Terminology” on page 1-1

“Overview of the BEA WebLogic J2EE Connector Architecture
Implementation” on page 1-5

“J2EE Connector Architecture Components” on page 1-6

“Enhancements in This Release” on page 1-10

“Black Box Example” on page 1-12

J2EE Connector Architecture Terminology

Key terms and concepts that you will encounter throughout the WebLogic J2EE
Connector Architecture documentation include the following:

Application Component—can be a server-side component, such as an EJB, JSP,
or servlet, that is deployed, managed, and executed on an application server. It
can also be a component executed on the Web-client tier but made available to
the Web-client by an application server. Examples of the latter type of
application component include a Java applet and a DHTML page.

Caller Principal—a principal that is associated with an application component
instance during a method invocation. For example, an EJB instance can call the
Programming WebLogic J2EE Connectors 1-1

1 Overview of WebLogic J2EE Connectors
getCallerPrincipal method to get the principal associated with the current
security context.

Common Client Interface (CCI)—defines a standard client API for application
components and enables application components and Enterprise Application
Integration (EAI) frameworks to drive interactions across heterogeneous EISes
using a common client API. The J2EE Connector Architecture defines a CCI for
EIS access.

Connection—provides connectivity to a resource manager and enables an
application client to connect to a resource manager, perform transactions, and
access services provided by that resource manager. A connection can be either
transactional or non-transactional. Examples include a database connection and
an SAP R/3 connection.

Container—part of an application server—such as WebLogic Server—that
provides deployment and run-time support for application components. A
container allows you to monitor and manage supported components as well as
the service(s) that monitor and manage the components. Containers can be one
of the following:

Connector containers that host resource adapters

Web containers that host JSP, servlets, and static HTML pages

EJB containers that host EJB components

Application client containers that host standalone application clients

For more details on different types of standard containers, refer to Enterprise
JavaBeans (EJBs), Java Server Pages (JSPs), and Servlets specifications.

Credential—contains or references security information that can authenticate a
principal to additional services. A principal acquires a credential upon
authentication or from another principal that allows its credential to be used: the
latter is termed principal delegation.

Enterprise Information System (EIS)—provides the information infrastructure
for an enterprise. An EIS offers a set of services to its clients. These services are
exposed to clients as local and/or remote interfaces. Examples of an EIS include:

ERP system

Mainframe transaction processing system

Legacy database system
1-2 Programming WebLogic J2EE Connectors

J2EE Connector Architecture Terminology
Enterprise Information System (EIS) resource—provides EIS-specific
functionality to its clients. Examples of an EIS resource include:

Record or set of records in a database system

Business object in an Enterprise Resource Planning (ERP) system

Transaction program in a transaction processing system

Initiating Principal—the security principal representing the end-user that
interacts directly with the application. An end-user can authenticate using either
a Web client or an application client.

J2EE Connector—See Resource Adapter.

J2EE Connector Architecture—an architecture for integration of J2EE-compliant
application servers with enterprise information systems (EISes). There are two
parts to this architecture: an EIS vendor-provided resource adapter and an
application server—such as WebLogic Server— to which the resource adapter
plugs in. This architecture defines a set of contracts—such as transactions,
security, and connection management—that a resource adapter has to support to
plug in to an application server. The J2EE Connector Architecture also defines a
Common Client Interface (CCI) for EIS access. The CCI defines a client API for
interacting with heterogeneous EISes.

Managed Environment—defines an operational environment for a J2EE-based,
multi-tier, Web-enabled application that accesses EISes. The application consists
of one or more application components—EJBs, JSPs, servlets—which are
deployed on containers. These containers can be one of the following:

Web containers that host JSP, servlets, and static HTML pages

EJB containers that host EJB components

Application client containers that host standalone application clients

Non-managed Environment—defines an operational environment for a two-tier
application. An application client directly uses a resource adapter to access the
EIS; the EIS defines the second tier for a two-tier application.

Principal—an entity that can be authenticated by an authentication mechanism
deployed in an enterprise. A principal is identified using a principal name and
authenticated using authentication data. The content and format of the principal
name and the authentication data depend upon the authentication mechanism.
Programming WebLogic J2EE Connectors 1-3

1 Overview of WebLogic J2EE Connectors
RAR—resource adapter archive. A compressed (.zip) file used to load classes
and other files required to run a resource adapter.

ra.xml—describes the resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.

Resource Adapter—a system-level software driver used by an application server
such as WebLogic Server to connect to an EIS. A resource adapter serves as the
“J2EE connector.” The WebLogic J2EE Connector Architecture supports
resource adapters developed by Enterprise Information Systems (EISes) vendors
and third-party application developers that can be deployed in any application
server supporting the Sun Microsystems J2EE Platform Specification, Version
1.3. Resource adapters contain the Java, and if necessary, the native components
required to interact with the EIS.

Resource Manager—part of an EIS that manages a set of shared EIS resources.
Examples of resource managers are a database system, a mainframe TP system,
and an ERP system. A client requests access to a resource manager to use its
managed resources. A transactional resource manager can participate in
transactions that are externally controlled and coordinated by a transaction
manager. In the context of the J2EE Connector Architecture, clients of a
resource manager can include middle-tier application servers and client-tier
applications. A resource manager is typically a different address space or on a
different machine from the client that accesses it.

Resource Principal—a security principal under whose security context a
connection to an EIS instance is established.

Security Attributes—a principal has a set of security attributes associated with it.
These are related to the authentication and authorization mechanisms. Examples
are security permissions and credentials for a principal.

Service Provider Interface (SPI)—contains the objects that provide and manage
connectivity to the EIS, establish transaction demarcation, and provide a
framework for event listening and request transmission. All J2EE Connector
Architecture-compliant resource adapters must provide an implementation for
these interfaces in the javax.resource.spi package.

System Contract—a mechanism by which connection requests are passed
between entities. To achieve a standard system-level pluggability between
application servers such as WebLogic Server and EISes, the Connector
Architecture defines a standard set of system-level contracts between an
1-4 Programming WebLogic J2EE Connectors

Overview of the BEA WebLogic J2EE Connector Architecture Implementation
application server and an EIS. The EIS side of these system-level contracts is
implemented in a resource adapter.

weblogic-ra.xml—adds additional WebLogic Server-specific deployment
information to the ra.xml file.

Overview of the BEA WebLogic J2EE
Connector Architecture Implementation

BEA WebLogic Server continues to build upon the implementation of the Sun
Microsystems J2EE Platform Specification, Version 1.3. The J2EE Connector
Architecture adds simplified Enterprise Information System (EIS) integration to the
J2EE platform. The goal is to leverage the strengths of the J2EE platform—including
component models, transaction and security infrastructures—to address the challenges
of EIS integration.

The J2EE Connector Architecture provides a Java solution to the problem of
connectivity between the multitude of application servers and EISes. By using the
Connector Architecture, it is no longer necessary for EIS vendors to customize their
product for each application server. By conforming to the J2EE Connector
Architecture, BEA WebLogic Server does not require added custom code in order to
extend its support connectivity to a new EIS.

The Connector Architecture enables an EIS vendor to provide a standard resource
adapter for its EIS. This resource adapter plugs into WebLogic Server and provides the
underlying infrastructure for the integration between an EIS and WebLogic Server.

By supporting the Connector Architecture, BEA WebLogic Server is assured of
connectivity to multiple EISes. In turn, EIS vendors must provide only one standard
Connector Architecture-compliant resource adapter that has the capability to plug into
BEA WebLogic Server.

Note: BEA WebLogic Server 7.0 is completely compliant with J2EE 1.3. Also, since
J2EE is backward compatible, you can still run J2EE 1.2 on WebLogic Server
7.0.
Programming WebLogic J2EE Connectors 1-5

1 Overview of WebLogic J2EE Connectors
J2EE Connector Architecture Components

The J2EE Connector Architecture is implemented in an application server such as
WebLogic Server and an EIS-specific resource adapter. A resource adapter is a system
library specific to an EIS and provides connectivity to the EIS. A resource adapter is
analogous to a JDBC driver. The interface between a resource adapter and the EIS is
specific to the underlying EIS; it can be a native interface.

The J2EE Connector Architecture has three main components:

System-level Contracts—between the resource adapter and the application server
(WebLogic Server)

Common Client Interface (CCI)—provides a client API for Java applications and
development tools to access the resource adapter

Packaging and Deployment Interfaces—provides ability for various resource
adapters to plug into J2EE applications in a modular manner

The following diagram illustrates the J2EE Connector Architecture:
1-6 Programming WebLogic J2EE Connectors

J2EE Connector Architecture Components
Figure 1-1 J2EE Connector Architecture

A resource adapter serves as the “J2EE connector.” The WebLogic J2EE Connector
Architecture supports resource adapters developed by Enterprise Information Systems
(EISes) vendors and third-party application developers that can be deployed in any
application server supporting the Sun Microsystems J2EE Platform Specification,
Version 1.3. Resource adapters contain the Java, and if necessary, the native
components required to interact with the EIS.

System-level Contracts

The J2EE Connector Architecture specification defines a set of system-level contracts
between the J2EE-compliant application server (WebLogic Server) and an
EIS-specific resource adapter. WebLogic Server, in compliance with this
specification, has implemented a set of defined standard contracts for:
Programming WebLogic J2EE Connectors 1-7

1 Overview of WebLogic J2EE Connectors
Connection management—a contract that gives an application server pool
connections to underlying EISes. It also allows application components to
connect to an EIS. This results in a scalable application environment that
supports a large number of clients requiring access to EISes.

Note: For more information on connection management, refer to Chapter 4,
“Connection Management.”

Transaction management—a contract between the transaction manager and an
EIS supporting transaction access to EIS resource managers. This contract
allows an application server to use a transaction manager to manage transactions
across multiple resource managers.

Note: For more information on transaction management, refer to Chapter 3,
“Transaction Management.”

Security management—a contract that provides secure access to an EIS and
provides support for a secure application environment. This reduces threats to
the EIS and protects information resources that the EIS manages.

Note: For more information on security management, refer to Chapter 2, “Security.”

Common Client Interface (CCI)

The Common Client Interface (CCI) defines a standard client API for application
components. The CCI enables application components and Enterprise Application
Integration (EAI) frameworks to drive interactions across heterogeneous EISes using
a common client API.

The target users of the CCI are enterprise tool vendors and EAI vendors. Application
components themselves may also write to the API, but the CCI is a low-level API. The
specification recommends that the CCI be the basis for richer functionality provided
by the tool vendors, rather than being an application-level programming interface used
by most application developers.

Further, the CCI defines a remote function-call interface that focuses on executing
functions on an EIS and retrieving the results. The CCI is independent of a specific
EIS; for example: data types specific to an EIS. However, the CCI is capable of being
driven by EIS-specific metadata from a repository.
1-8 Programming WebLogic J2EE Connectors

J2EE Connector Architecture Components
The CCI enables WebLogic Server applications to create and manage connections to
an EIS, execute an interaction, and manage data records as input, output or return
values. The CCI is designed to leverage the JavaBeans architecture and Java Collection
framework.

The 1.0 version of the J2EE Connector Architecture recommends that a resource
adapter support CCI as its client API, while it requires that the resource adapter
implement the system contracts. A resource adapter may choose to have a client API
different from CCI, such as the client API based on the Java Database Connectivity
(JDBC) API.

Note: For more information relating to the Common Client Interface, refer to
Chapter 8, “Client Considerations.”

Packaging and Deployment

The J2EE Connector Architecture provides packaging and deployment interfaces, so
that various resources adapters can easily plug into compliant J2EE application servers
such as WebLogic Server in a modular manner.

Figure 1-2 Packaging and Deployment
Programming WebLogic J2EE Connectors 1-9

1 Overview of WebLogic J2EE Connectors
A resource adapter provider develops a set of Java interfaces and classes as part of its
implementation of a resource adapter. These Java classes implement J2EE Connector
Architecture-specified contracts and EIS-specific functionality provided by the
resource adapter. The development of a resource adapter can also require use of native
libraries specific to the underlying EIS.

The Java interfaces and classes are packaged together (with required native libraries,
help files, documentation, and other resources) with a deployment descriptor to create
a Resource Adapter Module. A deployment descriptor defines the contract between a
resource adapter provider and a deployer for the deployment of a resource adapter.

You can deploy resource adapter module as a shared, stand-alone module or packaged
as part of an application. During deployment, you install a resource adapter module on
an application server such as WebLogic Server and then configure it into the target
operational environment. The configuration of a resource adapter is based on the
properties defined in the deployment descriptor as part of the resource adapter module.

Note: For more information on packaging and deployment, refer to Chapter 7,
“Packaging and Deploying Resource Adapters.”

Enhancements in This Release

The following J2EE Connector Architecture enhancements are new to this release of
WebLogic Server.

Additional Classloading Support

WebLogic Server now supports the loading of properties or classes that are specified
in ClassPath entry of the resource adapter’s Manifest.mf file. The following is a
description of how you configure properties and classes that are in and used by a
resource adapter.

The resource adapter (RAR) archive file and the application component using it (for
example, an EJB JAR) are contained in an Enterprise Application (EAR) archive. The
RAR requires resources such as Java properties that are stored in a JAR file, and that
JAR file is contained within the EAR file (not in the RAR itself).
1-10 Programming WebLogic J2EE Connectors

Enhancements in This Release
You specify a reference to the RAR Java classes by adding a ClassPath= entry in the
RAR Manifest.mf file. You can also store the EJB Java classes in the same JAR file
that is contained within the EAR. This scenario provides a “support” JAR file that
contains Java classes for the components in the EAR that require them.

Secure Password Credential Storage

This release provides a standard method for resource adapter deployers to plug in their
specified authorization/authentication mechanism through secure password credential
storage. This WebLogic Server storage mechanism has replaced the Security Principal
Mapping mechanism provided with the weblogic-ra.xml deployment descriptor
within the resource adapter archive.

As a result, the weblogic-ra.xml <security-principal-map> element has
been deprecated. The Password Converter Tool provided with the previous release of
WebLogic Server has also been deprecated.

This new storage mechanism is used to map initiating principals (such as WebLogic
Server username and password combinations) to resource principals (EIS user name
and password combinations).

Flexible Connection Leak Detection

In the past release, the connection leak detection mechanism was based upon a timer
that started when a connection was created and triggered when the connection
exceeded its usage duration. WebLogic Server now provides two mechanisms for
preventing this scenario:

Leveraging a garbage collector

Providing an idle timer for tracking the usage of connection objects

The <connection-cleanup-frequency> and <connection-duration-time>
elements in the weblogic-ra.xml deployment descriptor have been deprecated.
Programming WebLogic J2EE Connectors 1-11

1 Overview of WebLogic J2EE Connectors
Security Policy Processing of an ra.xml Specification

BEA WebLogic Server J2EE Connector Architecture provides a set of security
permissions for execution of a resource adapter in a managed runtime environment.
WebLogic Server also grants a resource adapter explicit permissions to access system
resources.

Black Box Example

A simple code example for a resource adapter is provided with this release. This code
example uses a Black Box resource adapter that mimics JDBC calls. An EJB is used
to model the data in the Black Box, and a Java client is used to query the Black Box
resource adapter and display the output. The example uses the all-Java PointBase
DBMS, which is provided in an evaluation version with WebLogic Server. For more
information, refer to the WebLogic J2EE Connector Architecture Example Javadoc
provided with the product download.
1-12 Programming WebLogic J2EE Connectors

CHAPTER
2 Security

The following sections discuss WebLogic J2EE Connector Architecture security:

“Container-Managed and Application-Managed Sign-on” on page 2-2

“Password Credential Mapping Mechanism” on page 2-3

“Deprecated Security Principal Map Mechanism” on page 2-7

“Deprecated Password Converter Tool” on page 2-10

“Security Policy Processing” on page 2-10
Programming WebLogic J2EE Connectors 2-1

2 Security
Container-Managed and
Application-Managed Sign-on

As specified in the J2EE Connector Specification, Version 1.0 Final Release, the
WebLogic J2EE Connector Architecture implementation supports both
container-managed and application-managed sign-on.

At runtime, the Weblogic J2EE Connector Architecture implementation determines—
based upon the specified information in the invoking client component’s deployment
descriptor—the chosen sign-on mechanism. If the Weblogic Server J2EE Connector
Architecture implementation is unable to determine what sign-on mechanism is being
requested by the client component—typically due to an improper JNDI lookup of the
resource adapter Connection Factory—the Connector Architecture attempts
container-managed sign-on.

Note: Note that even in this case, if the client component has specified explicit
security information, this information is also presented on the call to obtain the
connection.

For related information, see “Obtaining the ConnectionFactory (Client-JNDI
Interaction)” in Chapter 8, “Client Considerations.”

Application-Managed Sign-on

With application-managed sign-on, the client component provides the necessary
security information (typically a username and password) when making the call to
obtain a connection to an Enterprise Information System (EIS). In this scenario, the
application server provides no additional security processing other than to pass this
information along on the request for the connection. The provided resource adapter
uses the client component provided security information to perform the EIS sign-on in
a resource adapter implementation specific manner.
2-2 Programming WebLogic J2EE Connectors

Password Credential Mapping Mechanism
Container-Managed Sign-on

With container-managed sign-on, the client component does not present any security
information, and the container must determine the necessary sign-on information and
provide this information to the resource adapter when making a call to request a
connection. In all container-managed sign-on scenarios, the container must determine
an appropriate Resource Principal and provide this Resource Principal information to
the resource adapter in the form of a Java Authentication and Authorization Service
(JAAS) Subject.

Password Credential Mapping Mechanism

The J2EE Connector Specification, Version 1.0 Final Release defines two types of
credentials that resource adapters can support: password credentials and generic
credentials. In the previous release of WebLogic Server, you specified your password
credentials in the security-principal-map element in the weblogic-ra.xml
deployment descriptor file. The security-principal-map element was provided
to map between the initiating principal and resource principal. BEA also provided a
Password Converter Tool for encrypting the password stored in the
security-principal-map element.

The storage of user names and passwords for principal maps in weblogic-ra.xml is
not the most elegant nor secure storage mechanism. As a result, the
security-principal-map element and Password Converter Tool have been
deprecated in this release of WebLogic Server. The principal map has been moved
from the security-principal-map to an internal WebLogic Server storage
mechanism (a directory server).

The J2EE Connector specification, Version 1.0 Final Release requires storage of
credentials in a javax.security.auth.Subject; the credentials are passed to
either the createManagedConnection() or matchManagedConnection()
methods of the ManagedConnectionFactory object.

To comply with this, the WebLogic Server J2EE Connector Architecture builds the
Subject and stores the credentials by performing the following steps:

1. Instantiate a weblogic.security.Service.EISResource object as follows:
Programming WebLogic J2EE Connectors 2-3

2 Security
EISResource(java.lang.String applicationName, java.lang.String moduleName,
java.lang.String eisName)

2. Obtain the Initiating Principal for the connection request.

3. Obtain the Credentials for that Initiating Principal as follows:

weblogic.security.Service.PrincipalAuthenticator(String initiatingPrincipal,
weblogic.security.Service.Resource eisResource)

4. Instantiate a javax.security.auth.Subject.

5. Add the Credentials to the private set in the Subject as follows:

Subject.getPrivateCredentials().add(Credential)

Authentication Mechanisms

WebLogic Server users must be authenticated whenever they request access to a
protected WebLogic Server resource. For this reason, each user is required to provide
a credential (a username/password pair or a digital certificate) to WebLogic Server.
The following types of authentication mechanisms are supported by WebLogic Server:

Password authentication—a user ID and password are requested from the user
and sent to WebLogic Server in clear text. WebLogic Server checks the
information and if it is trustworthy, grants access to the protected resource.

The SSL (or HTTPS) protocol can be used to provide an additional level of
security to password authentication. Because the SSL protocol encrypts the data
transferred between the client and WebLogic Server, the user ID and password
of the user do not flow in the clear. Therefore, WebLogic Server can authenticate
the user without compromising the confidentiality of the user’s ID and password.

Certificate authentication—when an SSL or HTTPS client request is initiated,
WebLogic Server responds by presenting its digital certificate to the client. The
client then verifies the digital certificate and an SSL connection is established.
The CertAuthenticator class then extracts data from the client’s digital certificate
to determine which WebLogic Server User owns the certificate and then
retrieves the authenticated User from the WebLogic Server security realm.

You can also use mutual authentication. In this case, WebLogic Server not only
authenticates itself, it also requires authentication from the requesting client.
Clients are required to submit digital certificates issued by a trusted certificate
2-4 Programming WebLogic J2EE Connectors

Password Credential Mapping Mechanism
authority. Mutual authentication is useful when you must restrict access to
trusted clients only. For example, you might restrict access by accepting only
clients with digital certificates provided by you.

For more information, see the following sections in Managing WebLogic Security:

“Configuring the SSL Protocol”

“Configuring Mutual Authentication”

Upgrading Security Principle Mappings

If you deploy a resource adapter that has a weblogic-ra.xml deployment descriptor
file containing a defined security-principal-map element, the data of this file is
imported into the WebLogic Server Embedded LDAP Server as if it had been
configured through the Admin Console. (The Embedded LDAP Server is where
credentials and mappings are stored persistently.)

However, the original resource adapter remains unchanged. Therefore, if you redeploy
the original resource adapter, the data must once again be imported from the
weblogic-ra.xml file.

It is therefore important to bear in mind that if you deploy a resource adapter
containing the deprecated security-principal-map element and then use the
Admin Console credential mapping interface to add or modify entries, these changes
are erased if the resource adapter is deployed again with the security-principal-map
element still in place.

To work around this, you should deploy the resource adapter, then modify its
weblogic-ra.xml file to remove the security-principal-map element. This
way, all security-principal-map information that was stored in the
weblogic-ra.xml file before is now in the Embedded LDAP Server. When the
resource adapter is redeployed without the security-principal-map element, the
information will not be erased.

For instructions on editing elements in the weblogic-ra.xml file, see Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements.”
Programming WebLogic J2EE Connectors 2-5

http://e-docs.bea.com/wls/docs70/secmanage/index.html

2 Security
Defining Users and Groups

The following sections discuss the definition of users and groups. For more
information on how to create users and groups, see Managing WebLogic Security at
http://e-docs.bea.com/wls/docs70/secmanage/index.html.

Users

Users are entities that can be authenticated in a WebLogic Server security realm. A
User can be a person or a software entity, such as a Java client. Each User is given a
unique identity within a WebLogic Server security realm. As a system administrator
you must guarantee that no two Users in the same security realm are identical.

Defining Users in a security realm involves specifying a unique name and password
for each User that will access resources in the WebLogic Server security realm in the
Users window of the Administration Console.

Three special users are provided for use by resource adapters. They are as follows:

wls_ra_initial—If you define a mapping for this user, the specified
credentials are used for the initial connections created when starting the
connection pool for this resource adapter. The InitialCapacity parameter on
the pool specifies the number of initial connections. If you do not define a
mapping for this user the default mapping wls_ra_default (if provided) is
used. Otherwise, no credentials are provided for the initial connections.

wls_ra_anonymous—If you define a mapping for this user, the specified
credentials are used when no user is authenticated for the connection request on
the resource adapter.

wls_ra_default—If you define a mapping for this user, the specified
credentials are used when no other mapping applies for the current user or when
no anonymous mapping is provided in the case where there is no authenticated
user.
2-6 Programming WebLogic J2EE Connectors

http://e-docs.bea.com/wls/docs70/secmanage/index.html

Deprecated Security Principal Map Mechanism
Groups

A Group represents a set of Users who usually have something in common, such as
working in the same department in a company. Groups are a means of managing a
number of Users in an efficient manner. When a Group is granted a permission in an
ACL, all members of the Group effectively receive that permission. BEA recommends
assigning permissions to Groups rather than to individual Users.

Deprecated Security Principal Map
Mechanism

This release provides a standard method for resource adapter deployers to plug in their
specified authorization/authentication mechanism through secure password credential
storage. This WebLogic Server storage mechanism has replaced the Security Principal
Mapping mechanism provided with the weblogic-ra.xml deployment descriptor
within the resource adapter archive.

As a result, the weblogic-ra.xml <security-principal-map> element has
been deprecated. However, instructions for using the Security Principal Mapping
mechanism are still in place.

The “EIS Sign-on” section of the J2EE Connector Specification, Version 1.0 Final
Release (http://java.sun.com/j2ee/download.html#connectorspec) identifies a number
of possible options for defining a Resource Principal on whose behalf the sign-on is
being performed. The previous Weblogic Server implementation implemented the
Security Principal Map option identified in the specification.

Under this option, a resource principal is determined by mapping from the identity of
the initiating/caller principal for the invoking component. The resultant resource
principal does not inherit the identity or security attributes of the principal that it is
mapped from, but instead gets its identity and security attributes (password) based
upon the defined mapping.

Therefore, in order to enable and use container-managed sign-on, Weblogic Server
must provide a mechanism to specify the initiating-principal to resource-
principal association. WebLogic Server does this through a Security Principal Map
that can be defined for each deployed resource adapter.
Programming WebLogic J2EE Connectors 2-7

http://java.sun.com/j2ee/download.html#connectorspec

2 Security
If container-managed sign-on is requested by the client component and no Security
Principal Map is configured for the deployed resource adapter, an attempt is made to
obtain the connection, but the provided JAAS Subject will be NULL. Support for this
scenario will be based upon the resource adapter implementation.

A scenario in which omitting configuration of a Security Principal Map might be
considered valid is the case in which a resource adapter internally obtains all of its EIS
connections with a hard-coded and pre-configured set of security information, and
therefore does not depend on the security information passed to it on requests for new
connections. (In a sense, this is a third scenario, outside of application-managed
sign-on and container-managed sign-on.)

While the defined connection management system contracts define how security
information is exchanged between WebLogic Server and the provided resource
adapter, the determination of whether to use container-managed sign-on or
application-managed sign-on is based on deployment information defined for the
client application that is requesting a connection. For more information on how a
connection management system contract is specified, see Chapter 8, “Client
Considerations.”

For more information on how client components specify the sign-on mechanism, see
the “Application Programming Model” section of the “Connection Management”
chapter in the J2EE Connector Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

For more information on the J2EE Connector Architecture application security model,
see the “Application Security Model” of the same document.

Using Container-Managed Sign-On

To use container-managed sign-on, WebLogic Server must identify a resource
principal and then request the connection on behalf of the resource principal. In order
to make this identification, WebLogic Server looks for a Security Principal Mapping
specified with the security-principal-map element in the weblogic-ra.xml
deployment descriptor file.

A security-principal-map element defines the relationship of
initiating-principal to a resource-principal.
2-8 Programming WebLogic J2EE Connectors

http://java.sun.com/j2ee/download.html#connectorspec

Deprecated Security Principal Map Mechanism
Each security-principal-map element provides a mechanism to define
appropriate resource principal values for resource adapter and EIS sign-on processing.
The security-principal-map elements allow you to specify a defined set of
initiating principals and the corresponding resource principal's username and password
to be used when allocating managed connections and connection handles.

Default Resource Principal

A default resource principal can be defined for the connection factory in the
security-principal-map element. If you specify an initiating-principal
value of '*' and a corresponding resource-principal value, the defined
resource-principal is utilized whenever the current identity is not matched
elsewhere in the map.

This is an optional element, however. You must specify it in some form if
container-managed sign-on is supported by the resource adapter and used by any
client.

In addition, the deployment-time population of the Connection Pool with Managed
Connections is attempted using the defined 'default' resource principal if one is
specified.

For instructions on configuring the J2EE Connector Architecture
security-principal-map and associating it with the deployed RAR (resource
adapter), refer to “Configuring the Deprecated Security Principal Map Mechanism” in
Chapter 5, “Configuration.”
Programming WebLogic J2EE Connectors 2-9

2 Security
Deprecated Password Converter Tool

The Password Converter Tool is a deprecated tool due to the fact that the new
WebLogic Server storage mechanism has replaced the Security Principal Mapping
mechanism provided with the weblogic-ra.xml deployment descriptor within the
resource adapter archive.

However, instructions for using the Password Converter Tool are still in place. For
more information, refer to “Configuring the Deprecated Security Principal Map
Mechanism,” in Chapter 5, “Configuration.”

Security Policy Processing

The J2EE Connector Specification, Version 1.0 Final Release defines default security
policies for any resource adapters running in an application server. It also defines a
way for a resource adapter to provide its own specific security policies overriding the
default.

In compliance with this specification, WebLogic Server dynamically modifies the
runtime environment for resource adapters. If the resource adapter has not defined
specific security policies, WebLogic Server overrides the runtime environment for the
resource adapter with the default security policies specified in the J2EE Connector
Architecture Specification. If the resource adapter has defined specific security
policies, WebLogic Server first overrides the runtime environment for the resource
adapter first with a combination of the default security policies for resource adapters
and the specific policies defined for the resource adapter. Resource adapters define
specific security policies using the security-permission-spec element in the
ra.xml deployment descriptor file.

For more information on security policy processing requirements, see the “Security
Permissions” section of the “Runtime Environment” chapter in the J2EE Connector
Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).
2-10 Programming WebLogic J2EE Connectors

http://java.sun.com/j2ee/download.html#connectorspec

CHAPTER
3 Transaction
Management

The following sections describe the various types of transaction levels supported by
the WebLogic J2EE Connector Architecture and explain how to specify the transaction
levels in the resource adapter RAR archive.

“Supported Transaction Levels” on page 3-2

“Specifying the Transaction Levels in the RAR Configuration” on page 3-3

“Transaction Management Contract” on page 3-3
Programming WebLogic J2EE Connectors 3-1

3 Transaction Management
Supported Transaction Levels

Transactional access to EISes is an important requirement for business applications.
The J2EE Connector Architecture supports the concept of transactions—a number of
operations that must be committed together or not at all for the data to remain
consistent and to maintain data integrity.

The BEA WebLogic Server J2EE Connector Architecture implementation utilizes
WebLogic Server’s robust Transaction Manager implementation and supports
resource adapters having the following transaction support levels (as described in the
J2EE Connector Specification, Version 1.0 Final Release):

XA Transaction support—allows a transaction to be managed by a transaction
manager external to a resource adapter (and therefore external to an EIS). A
resource adapter defines the type of transaction support by specifying the
transaction-support element in the ra.xml file; a resource adapter can only
support one type. When an application component demarcates an EIS connection
request as part of a transaction, the application server is responsible for enlisting
the XA resource with the transaction manager. When the application component
closes that connection, the application server de-lists the XA resource from the
transaction manager and cleans up the EIS connection once the transaction has
completed.

Local Transaction support—allows an application server to manage resources,
which are local to the resource adapter. Unlike XA transaction, it cannot
participate in a two-phase commit protocol (2PC). A resource adapter defines the
type of transaction support by specifying the transaction-support element in the
resource adapter ra.xml file; a resource adapter can only support one type.
When an application component requests for an EIS connection, the application
server starts a local transaction based on the current transaction context. When
the application component closes that connection, the application server does a
commit on the local transaction and also cleans up the EIS connection once the
transaction has completed.

Note: Refer to the following Sun Microsystems documentation for information
on the ra.xml document type definition:
http://java.sun.com/dtd/connector_1_0.dtd

No Transaction support—in general, if a resource adapter does not support XA
or Local Transaction support (and therefore “supports” No Transaction), it
3-2 Programming WebLogic J2EE Connectors

http://java.sun.com/dtd/connector_1_0.dtd

Specifying the Transaction Levels in the RAR Configuration
means that if an application component needs to use that resource adapter, the
application component must not involve any connections to the EIS, represented
by that resource adapter, in a transaction. However, if an application component
needs to involve EIS connections in a transaction, the application component
must interact with a resource adapter that supports XA or Local Transactions.

For more information on supported transaction levels, see the “Transaction
Management” chapter in the J2EE Connector Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

Specifying the Transaction Levels in the RAR
Configuration

The resource adapter specifies which kind of transaction it supports in the ra.xml
deployment descriptor file provided by Sun Microsystems. For instructions on
specifying the transaction level type in the RAR, refer to “Configuring the Transaction
Level Type” in Chapter 5, “Configuration.”

Note: Refer to the following Sun Microsystems documentation for information on
the ra.xml document type definition:
http://java.sun.com/dtd/connector_1_0.dtd

Transaction Management Contract

In many cases, a transaction (termed local transaction) is limited in scope to a single
EIS system, and the EIS resource manager itself manages such a transaction. While an
XA transaction (or global transaction) can span multiple resource managers. This form
of transaction requires transaction coordination by an external transaction manager,
typically bundled with an application server. A transaction manager uses a two-phase
commit protocol (2PC) to manage a transaction that spans multiple resource managers
(EISes). It uses one-phase commit optimization if only one resource manager is
participating in an XA transaction.
Programming WebLogic J2EE Connectors 3-3

http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/dtd/connector_1_0.dtd

3 Transaction Management
The J2EE Connector Architecture defines a transaction management contract between
an application server and a resource adapter (and its underlying resource manager).
The transaction management contract extends the connection management contract
and provides support for management of both local and XA transactions. The
transaction management contract has two parts, depending on the type of transaction.

JTA XAResource based contract between a transaction manager and an EIS
resource manager

Local transaction management contract

These contracts enable an application server such as WebLogic Server to provide the
infrastructure and runtime environment for transaction management. Application
components rely on this transaction infrastructure to support the component-level
transaction model.

Because EIS implementations are so varied, the transactional support must be very
flexible. The J2EE Connector Architecture imposes no requirements on the EIS for
transaction management. Depending on the implementation of transactions within the
EIS, a resource adapter may provide:

No transaction support at all—this is typical of legacy applications and many
back-end systems.

Support for only local transactions

Support for both local and XA transactions

WebLogic Server supports all three levels of transactions, ensuring its support of EISes
at different transaction levels.
3-4 Programming WebLogic J2EE Connectors

CHAPTER
4 Connection
Management

The following sections introduce you to the various connection management tasks
relating to the BEA WebLogic J2EE Connection Management Architecture.

“Configuring Connection Properties” on page 4-2

“BEA WebLogic Server Extended Connection Management Features” on page
4-2

“Monitoring Connections Using the Console” on page 4-6

“Error Logging and Tracing Facility” on page 4-11
Programming WebLogic J2EE Connectors 4-1

4 Connection Management
Configuring Connection Properties

The ra.xml deployment descriptor file contains a config-property element to
declare a single configuration setting for a ManagedConnectionFactory instance.
The resource adapter provider typically sets these configuration properties. However,
if a configuration property is not set, the person deploying the resource adapter is
responsible for providing a value for the property.

WebLogic Server allows you to set configuration properties through the use of the
map-config-property element in the weblogic-ra.xml deployment descriptor
file. To configure a set of configuration properties for a resource adapter, you specify
a map-config-property-name and map-config-property-value pair for each
configuration property to declare.

You can also use the map-config-property element to override the values
specified in the ra.xml deployment descriptor file. At startup, WebLogic Server
compares the values of map-config-property against the values of
config-property in the ra.xml file. If the configuration property names match,
WebLogic Server uses the map-config-property-value for the corresponding
configuration property name.

BEA WebLogic Server Extended Connection
Management Features

In addition to the connection management requirements stated in the J2EE Connector
Specification, Version 1.0 Final Release, BEA WebLogic Server provides optional
settings and services to configure and automatically maintain the size of the connection
pool.
4-2 Programming WebLogic J2EE Connectors

BEA WebLogic Server Extended Connection Management Features
Minimizing the Run-Time Performance Cost Associated
with Creating ManagedConnections

Creating ManagedConnections can be expensive depending on the complexity of the
Enterprise Information System (EIS) that the ManagedConnection is representing. As
a result, you may decide to populate the connection pool with an initial number of
ManagedConnections upon startup of WebLogic Server and therefore avoid creating
them at run time. You can configure this setting using the initial-capacity
element in the weblogic-ra.xml descriptor file. The default value for this element
is 1 ManagedConnection.

As stated in the J2EE Connector Specification, Version 1.0 Final Release, when an
application component requests a connection to an EIS through the resource adapter,
WebLogic Server first tries to match the type of connection being requested with any
existing and available ManagedConnection in the connection pool. However, if a
match is not found, a new ManagedConnection may be created to satisfy the
connection request.

WebLogic Server provides a setting to allow a number of additional
ManagedConnections to be created automatically when a match is not found. This
feature provides you with the flexibility to control connection pool growth over time
and the performance hit on the server each time this growth occurs. You can configure
this setting using the capacity-increment element in the weblogic-ra.xml
descriptor file. The default value is 1 ManagedConnection.

Since no initiating security principal or request context information is known at
WebLogic Server startup, the initial ManagedConnections, configured with
initial-capacity, are created with a default security context containing a default
subject and a client request information of null. When additional
ManagedConnections—configured with capacity-increment—are created, the
first ManagedConnection is created with the known initiating principal and client
request information of the connection request. The remaining ManagedConnections—
up to the capacity-increment limit—are created using the same default security
context used when creating the initial ManagedConnections.

For more information about configuring the default resource principal, refer to
Chapter 2, “Security.”
Programming WebLogic J2EE Connectors 4-3

4 Connection Management
Controlling Connection Pool Growth

As more ManagedConnections are created over time, the amount of system
resources—such as memory and disk space—that each ManagedConnection consumes
increases. Depending on the Enterprise Information System (EIS), this amount may
affect the performance of the overall system. To control the effects of
ManagedConnections on system resources, WebLogic Server allows you to configure
a setting for the allowed maximum number of allocated ManagedConnections.

You configure this setting using the maximum-capacity element in the
weblogic-ra.xml descriptor file. If a new ManagedConnection (or more than one
ManagedConnection in the case of capacity-increment being greater than one)
needs to be created during a connection request, WebLogic Server ensures that no
more than the maximum number of allowed ManagedConnections are created. If the
maximum number is reached, WebLogic Server attempts to recycle a
ManagedConnection from the connection pool. However, if there are no connections
to recycle, a warning is logged indicating that the attempt to recycle failed and that the
connection request can only be granted for the amount of connections up to the allowed
maximum amount. The default value for maximum-capacity is 10
ManagedConnections.

Controlling System Resource Usage

Although setting the maximum number of ManagedConnections prevents the server
from becoming overloaded by more allocated ManagedConnections than it can handle,
it does not control the efficient amount of system resources needed at any given time.
WebLogic Server provides a service that monitors the activity of
ManagedConnections in the connection pool during the deployment of a resource
adapter. If the usage decreases and remains at this level over a period of time, the size
of the connection pool is reduced to an efficient amount necessary to adequately satisfy
ongoing connection requests.

This system resource usage service is turned on by default. However, to turn off this
service, you can set the shrinking-enabled element in the weblogic-ra.xml
descriptor file to false. Use the shrink-period-minutes element in the
weblogic-ra.xml descriptor file to set the frequency with which WebLogic Server
4-4 Programming WebLogic J2EE Connectors

BEA WebLogic Server Extended Connection Management Features
calculates the need for connection pool size reduction, and if reduction is needed,
selectively removes unused ManagedConnections from the pool. The default value of
this element is 15 minutes.

Detecting Connection Leaks

Connection leaks result from faulty application components, such as an Enterprise
Javabean (EJB), not doing their job to close a connection after using them. As stated
in the J2EE Connector Specification, Version 1.0 Final Release, once the application
component has completed its use of the EIS connection, it sends a close connection
request. At this point, WebLogic Server is responsible for any necessary cleanup and
making the connection available for a future connection request. However, if the
application component fails to close the connection, the connection pool can be
exhausted of its available connections, and future connection requests can therefore
fail.

WebLogic Server provides two mechanisms for preventing this scenario:

Leveraging a garbage collector

Providing an idle timer for tracking the usage of connection objects

Garbage Collector Method

WebLogic Server automatically detects connection leaks by leveraging its Java Virtual
Machine (JVM) garbage collector mechanism. When an application component
terminates and the connections it uses become dereferenced, the garbage collector calls
the connection object’s finalize() method.

When the garbage collector calls the finalize() method, if WebLogic Server
determines the application component has not closed the connection, the server
automatically closes the connection by calling the resource adapter’s
ManagedConnection.cleanup() method; WebLogic Server behaves as it would
had it received a CONNECTION_CLOSED event upon proper closure of the application
component connection.
Programming WebLogic J2EE Connectors 4-5

4 Connection Management
Idle Timer Method

Because the garbage collector does not behave in a predictable manner and may in fact
never be called, WebLogic Server provides a second connection leak detection
method, the idle timer. The idle timer allows WebLogic Server to track the last time
each connection was used. You can configure the idle timer for each connection to an
EIS using the WebLogic Server Deployment Descriptor Editor. Refer to “Using the
Console Deployment Descriptor Editor to Edit Files” in Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements.”

When an application component obtains a connection for usage but is not actively
using it, the idle timer starts ticking. As a precaution against closing a connection that
is actually active, when a connection has reached its configured maximum limit,
WebLogic Server does not automatically close the connection. Instead, WebLogic
Server waits to close the connection that has exceeded its idle time until it is abso-
lutely necessary to do so.

If the connection pool for a resource adapter has exceeded its maximum number of
allocated connections and there are no allocated connections in the free pool, a
connection request fails. At times, connections exist that have been leaked and not
been put back on the free pool, even though they are inactive. In this scenario,
WebLogic Server closes connections that have exceeded their maximum idle time at
the time of a connection request so that the request succeeds.

Deprecation of Previously Used Elements

The connection-duration-time and connection-cleanup-frequency
elements are now deprecated elements. If you currently have these parameters in your
configuration, you will still be able use deployment functions. However, these
elements will have no effect on the configuration. Refer to “weblogic-ra.xml DTD” in
Appendix A, “weblogic-ra.xml Deployment Descriptor Elements.”

Monitoring Connections Using the Console

The BEA J2EE Connector Architecture provides you with monitoring capabilities in
the WebLogic Server Console that show detected leaks and provides a method for
looking up stacks to determine which application(s) is causing the leak. Delete buttons
4-6 Programming WebLogic J2EE Connectors

Monitoring Connections Using the Console
in the Console allow you to dynamically close leaked connections that are identified;
the option to delete connections is only available for connections that have exceeded
their specified idle time and are safe to delete (in other words, the connection is not
involved in a transaction).

The connection-profiling-enabled element of the weblogic-ra.xml file
indicates whether or not the connection pool should store the call stacks of where each
connection is allocated. If you set this element value to true, you can view this
information on active connections through the Console. Also, you can view the stacks
for leaked and idle connections, and you can debug components that fail to close
connections.

Getting Started

There are two methods for accessing monitoring tools using the Console.

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list
of connectors.

2. Right-click a connector, and select Monitor all Connector Connection Pool
Runtimes from the pop-up menu.

Connection pool run-time information is provided in the right pane for the
selected connector.

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.

A connector table is displayed.

2. Under the Name column, click the connector to monitor.

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information is provided in the right pane for the
selected connector.
Programming WebLogic J2EE Connectors 4-7

4 Connection Management
Viewing Leaked Connections

A Connection Leak Profiles column in the Console allows you to view profile
information pertaining to leaked connections. This column is not to be confused with
the Leaked Connections Detected column, which simply displays the number of leaked
connections.

A key difference between these two columns is the Connection Leak Profiles column
is controlled by use of the connection-profiling-enabled setting in the
weblogic-ra.xml file. By default, this setting is false, so normally the Connection
Leak Profiles column will be zero (disabled). However, the Leaked Connections
Detected column is always enabled and will always display the number of leaked
connections.

There are two methods for viewing leaked connections using the Console.

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list
of connectors.

2. Right-click a connector, and select View Leaked Connections from the pop-up
menu.

Connection pool run-time information for the selected connector is provided in
the right pane.

3. Under the Connection Leak Profiles column, click the number of leaked
connections pertaining to the selected connector.

Leaked connection information is displayed in the right pane.

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.

A connector table is displayed.

2. Under the Name column, click the name of the connector to monitor.

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.
4-8 Programming WebLogic J2EE Connectors

Monitoring Connections Using the Console
Connection pool run-time information for the selected connector is provided in
the right pane.

4. Under the Connection Leak Profiles column, click the number of leaked
connections pertaining to the selected connector.

Leaked connection information is displayed in the right pane.

Viewing Idle Connections

A Connection Idle Profiles column in the Console allows you to view profile
information pertaining to idle connections. This column is not to be confused with the
Idle Connections Detected column, which simply displays the number of idle
connections.

A key difference between these two columns is the Connection Idle Profiles column is
controlled by use of the connection-profiling-enabled setting in the
weblogic-ra.xml file. By default, this setting is false, so normally the Connection
Idle Profiles column will be zero (disabled). However, the Idle Connections Detected
column is always enabled and will always display the number of idle connections.

There are two methods for idle connections using the Console.

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list
of connectors.

2. Right-click a connector, and select View Idle Connections from the pop-up menu.

Connection pool run-time information for the selected connector is provided in
the right pane.

3. Under the Connection Idle Profiles column, click the number of idle connections
pertaining to the selected connector.

Idle connection information is displayed in the right pane.

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.
Programming WebLogic J2EE Connectors 4-9

4 Connection Management
A connector table is displayed.

2. Under the Name column, click the name of the connector to monitor.

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information for the selected connector is provided in
the right pane.

4. Under the Connection Idle Profiles column, click the number of idle connections
pertaining to the selected connector.

Idle connection information is displayed in the right pane.

Deleting Connections

To delete leaked or idle connections using the Console:

1. In the right pane of the Console, under Deployments, select Connectors.

A connector table is displayed.

2. Under the Name column, click the name of the connector to monitor.

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information for the selected connector is provided in
the right pane.

4. Under the Connections column, click the number of connections pertaining to the
selected connector.

Connection information is displayed in a table format, each row representing a
single connection.

5. Click the Delete button to the right of a connection to delete it.
4-10 Programming WebLogic J2EE Connectors

Error Logging and Tracing Facility
Error Logging and Tracing Facility

As stated in the J2EE Connector Specification, Version 1.0 Final Release, one of the
requirements for application servers is use of
ManagedConnectionFactory.set/getLogWriter to provide an error logging
and tracing facility for the resource adapter.

The weblogic-ra.xml file descriptor file supports two elements that allow
configuration of logging and tracing for resource adapters deployed in WebLogic
Server. These elements are as follows:

The logging-enabled element indicates whether logging is enabled or
disabled for a specific ManagedConnectionFactory at deployment time. The
default value for this element is false.

The log-filename element specifies the filename in which to write the logging
information that the ManagedConnectionFactory produces.

For more information, see Appendix A, “weblogic-ra.xml Deployment Descriptor
Elements.”
Programming WebLogic J2EE Connectors 4-11

4 Connection Management
4-12 Programming WebLogic J2EE Connectors

CHAPTER
5 Configuration

The following sections outline configuration requirements for the WebLogic J2EE
Connector Architecture implementation:

“Resource Adapter Developer Tools” on page 5-2

“Configuring Resource Adapters” on page 5-3

“Configuring the ra.xml File” on page 5-7

“Configuring the weblogic-ra.xml File” on page 5-7

“Configuring the Deprecated Security Principal Map Mechanism” on page 5-11

“Using the Deprecated Password Converter Tool” on page 5-13

“Configuring the Transaction Level Type” on page 5-14
Programming WebLogic J2EE Connectors 5-1

5 Configuration
Resource Adapter Developer Tools

BEA provides several tools you can use to help you create and configure resource
adapters. These tools are described in this section.

ANT Tasks to Create Skeleton Deployment Descriptors

You can use the WebLogic ANT utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
ANT task looks at a directory containing a resource adapter creates deployment
descriptors based on the files it finds in the resource adapter. Because the ANT utility
does not have information about all of the desired configurations and mappings for
your resource adapter, the skeleton deployment descriptors the utility creates are
incomplete. After the utility creates the skeleton deployment descriptors, you can use
a text editor, an XML editor, or the Administration Console to edit the deployment
descriptors and complete the configuration of your resource adapter.

For more information on using ANT utilities to create deployment descriptors, see
Packaging Resource Adapters.

Resource Adapter Deployment Descriptor Editor

The WebLogic Server Administration Console has an integrated deployment
descriptor editor. You must create at least a skeleton ra.xml deployment descriptor
before using this integrated editor. For more information, see Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements.”

XML Editor

BEA now provides a simple, user-friendly tool from Ensemble for creating and editing
XML files. It can validate XML code according to a specified DTD or XML Schema.
The XML editor can be used on Windows or Solaris machines and is downloadable
from the BEA Developer Center.
5-2 Programming WebLogic J2EE Connectors

http://e-docs.bea.com/wls/docs70/programming/packaging.html#1054540
http://dev2dev.bea.com/index.jsp

Configuring Resource Adapters
Configuring Resource Adapters

This section introduces and discusses how to configure the resource adapter for
deployment to WebLogic Server.

Resource Adapter Overview

The J2EE Connector Architecture enables both Enterprise Information System (EIS)
vendors and third-party application developers to develop resource adapters that can
be deployed in any application server supporting the Sun Microsystems J2EE Platform
Specification, Version 1.3.

The resource adapter is the central piece of the WebLogic J2EE Connector
Architecture; it serves as the J2EE connector between the client component and the
EIS. When a resource adapter is deployed in the WebLogic Server environment, it
enables the development of robust J2EE Platform applications that can access remote
EIS systems. Resource adapters contain the Java components, and if necessary, the
native components required to interact with the EIS.

For more information on creating resource adapters, see the Sun Microsystems J2EE
Connector Architecture page and the J2EE Connector Specification, Version 1.0 Final
Release. These can be found on the Sun Microsystems Web site at the following
respective URLs:

http://java.sun.com/j2ee/connector/

http://java.sun.com/j2ee/download.html#connectorspec

Creating and Modifying Resource Adapters: Main Steps

Creating a resource adapter requires creating the classes for the particular resource
adapter (ConnectionFactory, Connection, and so on) and the connector-specific
deployment descriptors, and then packaging everything up into an jar file to be
deployed to WebLogic Server.
Programming WebLogic J2EE Connectors 5-3

http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/download.html#connectorspec

5 Configuration
Creating a New Resource Adapter Archive (RAR)

The following are the main steps for creating a resource adapter archive (RAR):

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2EE
Connector Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

When implementing a resource adapter, you must specify classes in the ra.xml
file. For example:

<managedconnectionfactory-class>com.sun.connector.blackbox.LocalTxManag
edConnectionFactory</managedconnectionfactory-class>

<connectionfactory-interface>javax.sql.DataSource</connectionfactory-interfac
e>

<connectionfactory-impl-class>com.sun.connector.blackbox.JdbcDataSource</c
onnectionfactory-impl-class>

<connection-interface>java.sql.Connection</connection-interface>

<connection-impl-class>com.sun.connector.blackbox.JdbcConnection</connect
ion-impl-class>

2. Compile the Java code for the interfaces and implementation into class files.

For detailed information about compiling, refer to “Preparing to Compile” in
“Developing WebLogic Server Applications.”

3. Package the Java classes into a Java archive (JAR). For more information on
packaging, see Chapter 7, “Packaging and Deploying Resource Adapters.”

4. Create the resource adapter-specific deployment descriptors:

ra.xml describes the resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.

weblogic-ra.xml adds additional WebLogic Server-specific deployment
information.

For more information, refer to “Configuring the ra.xml File” and “Configuring
the weblogic-ra.xml File” on page 5-7.
5-4 Programming WebLogic J2EE Connectors

http://java.sun.com/j2ee/download.html#connectorspec
http://e-docs.bea.com/wls/docs70/programming/environment.html
http://e-docs.bea.com/wls/docs70/programming/environment.html

Configuring Resource Adapters
Note: If your resource adapter RAR does not contain a weblogic-ra.xml file,
WebLogic Server automatically generates this file for you. For more
information, see “Configuring the ra.xml File.”

5. Create a resource adapter archive (RAR).

a. The first step is to create an empty staging directory.

b. Place the RAR containing the resource adapter Java classes in the staging
directory.

c. Then, place the deployment descriptors in a subdirectory called META-INF.

d. Next, create the resource adapter archive by executing a jar command like the
following in the staging directory:

jar cvf myRAR.rar *

For detailed information about creating the resource adapter archive file,
refer to “Packaging Resource Adapters Archives (RARs)” on page 7-4.

6. Deploy the RAR on WebLogic Server or include it in an enterprise archive
(EAR) to be deployed as part of an enterprise application.

For more information on deploying resource adapters, see Chapter 7, “Packaging
and Deploying Resource Adapters.”

Modifying an Existing Resource Adapter Archive (RAR)

The following is an example of how to take an existing resource adapter archive and
modify it for deployment to WebLogic Server. This involves adding the
weblogic-ra.xml deployment descriptor and repacking.

1. Create a temporary directory to stage the resource adapter:

mkdir c:/stagedir

2. Copy the resource adapter that you will deploy into the temporary directory:

cp blackbox-notx.rar c:/stagedir

3. Extract the contents of the resource adapter archive:

cd c:/stagedir

jar xf blackbox-notx.rar
Programming WebLogic J2EE Connectors 5-5

5 Configuration
The staging directory should now contain the following:

A jar file containing Java classes that implement the resource adapter

A META-INF directory containing the files: MANIFEST.MF and ra.xml

Execute these commands to see these files:

c:/stagedir> ls

blackbox-notx.jar

META-INF

c:/stagedir> ls META-INF

MANIFEST.MF

ra.xml

4. Create the weblogic-ra.xml file. This file is the WebLogic-specific
deployment descriptor for resource adapters. In this file, you specify parameters
for connection factories, connection pools, and security mappings.

Note: If your RAR does not contain a weblogic-ra.xml file, WebLogic Server
automatically generates this file for you. For more information, see
“Configuring the ra.xml File.”

Refer to “Configuring the weblogic-ra.xml File” on page 5-7 and Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements,” for more information on
the weblogic-ra.xml file.

5. Copy the weblogic-ra.xml file into the temporary directory's META-INF
subdirectory. The META-INF directory is located in the temporary directory
where you extracted the RAR or in the directory containing a resource adapter in
exploded directory format. Use the following command:

cp weblogic-ra.xml c:/stagedir/META-INF

c:/stagedir> ls META-INF

MANIFEST.MF

ra.xml

weblogic-ra.xml

6. Create the resource adapter archive:

jar cvf blackbox-notx.jar -C c:/stagedir
5-6 Programming WebLogic J2EE Connectors

Configuring the ra.xml File
7. Deploy the resource adapter in WebLogic Server. For more information on
deploying a resource adapter in WebLogic Server, see Chapter 7, “Packaging and
Deploying Resource Adapters.”

Configuring the ra.xml File

If you do not have an ra.xml file, you must manually create or edit an existing one
to set the necessary deployment properties for the resource adapter. You can use a text
editor to edit the properties. For information on creating an ra.xml file, refer to the
J2EE Connector Specification, Version 1.0 Final Release:
http://java.sun.com/j2ee/download.html#connectorspec

Configuring the weblogic-ra.xml File

In addition to supporting features of the standard resource adapter configuration
ra.xml file, BEA WebLogic Server defines an additional deployment descriptor file,
the weblogic-ra.xml file. This file contains parameters that are specific to
configuring and deploying resource adapters in WebLogic Server. This functionality
is consistent with the equivalent .xml extensions for EJBs and Web applications in
WebLogic Server, which also add WebLogic-specific deployment descriptors to the
deployable archive. As is, the basic RAR or deployment directory cannot be deployed
to WebLogic Server. You must first create and configure WebLogic Server-specific
deployment properties in the weblogic-ra.xml file and add that file to the
deployment.

In the weblogic-ra.xml file, you specify the following attributes:

Name of the connection factory.

Descriptive text about the connection factory.

JNDI name bound to a connection factory.

Reference to a separately deployed connection factory that contains resource
adapter components that can be shared with the current resource adapter.
Programming WebLogic J2EE Connectors 5-7

http://java.sun.com/j2ee/download.html#connectorspec

5 Configuration
Directory where all shared libraries should be copied.

Connection pool parameters that set the following behavior:

Initial number of managed connections WebLogic Server attempts to allocate
at deployment time.

Maximum number of managed connections WebLogic Server allows to be
allocated at any one time.

Number of managed connections WebLogic Server attempts to allocate when
filling a request for a new connection.

Whether WebLogic Server attempts to reclaim unused managed connections
to save system resources.

The time WebLogic Server waits between attempts to reclaim unused
managed connections.

Values for configuration properties defined in a <config-entry> element of
the J2EE resource adapter deployment descriptor, ra.xml.

Flag to indicate whether logging is required for the ManagedConnectionFactory
or ManagedConnection.

File to store logging information for the ManagedConnectionFactory or
ManagedConnection.

The amount of time a connection can remain idle.

Whether to store call stacks of where each connection is allocated.

Note: Refer to the weblogic-ra.xml DTD in Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements,” for more information on setting the
parameters in weblogic-ra.xml. You can also look at the
weblogic-ra.xml file in the included Simple Black Box resource adapter
example provided with the product download.

Note: For information on configuring connection properties in a resource adapter,
refer to Chapter 4, “Connection Management.”
5-8 Programming WebLogic J2EE Connectors

Configuring the weblogic-ra.xml File
Automatic Generation of the weblogic-ra.xml File

In WebLogic Server, a resource adapter archive (RAR) must include a
weblogic-ra.xml deployment descriptor file in addition to the ra.xml deployment
descriptor file specified in the J2EE Connector 1.0 specification. However, if a
resource adapter is deployed in WebLogic Server without a weblogic-ra.xml file,
a template weblogic-ra.xml file populated with default element values is
automatically added to the resource adapter archive. This automatic resource file
generation simplifies the process of establishing the parameters necessary to deploy
the resource adapter in WebLogic Server.

If your RAR does not contain a weblogic-ra.xml file, WebLogic Server
automatically generates this file for you. This feature enables you to deploy third-party
resource adapters to WebLogic Server without worrying about modifying them for
WebLogic Server. You need only modify two default attribute values that WebLogic
Server generates in the weblogic-ra.xml file: <connection-factory-name>
and <jndi-name>.

WebLogic Server prepends <connection-factory-name> with the default
value of __TMP_CFNAME_.

It prepends <jndi-name> with the default value of __TMP_JNDINAME_.

For instructions on how to change these default values, see “Using the Console
Deployment Descriptor Editor to Edit Files” in Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements.”

The following is what the generated weblogic-ra.xml file looks like before you
change the default values:

Listing 5-1 weblogic-ra.xml Default Values

<weblogic-connection-factory-dd>

<connection-factory-name>__TMP_CFNAME_.\config\mydomain\applicati
ons\whitebox-notx.rar</connection-factory-name>

<jndi-name>__TMP_JNDINAME_.\config\mydomain\applications\whitebox
-notx.rar</jndi-name>

<pool-params>

<initial-capacity>0</initial-capacity>
Programming WebLogic J2EE Connectors 5-9

5 Configuration
<max-capacity>1</max-capacity>

<capacity-increment>1</capacity-increment>

<shrinking-enabled>false</shrinking-enabled>

<shrink-period-minutes>200</shrink-period-minutes>

</pool-params>

<security-principal-map>

</security-principal-map>

</weblogic-connection-factory-dd>

Configuring the ra-link-ref Element

The optional <ra-link-ref> element allows you to associate multiple deployed
resource adapters with a single deployed resource adapter. In other words, it allows
you to link (reuse) resources already configured in a base resource adapter to another
resource adapter, modifying only a subset of attributes. The <ra-link-ref> element
enables you to avoid—where possible—duplicating resources (such as classes, JARs,
image files, and so on). Any values defined in the base resource adapter deployment
are inherited by the linked resource adapter, unless otherwise specified in the
<ra-link-ref> element.

If you use the optional <ra-link-ref> element, you must provide either all or none
of the values in the <pool-params> element. The <pool-params> element values
are not partially inherited by the linked resource adapter from the base resource
adapter.

Do one of the following:

Assign the <max-capacity> element the value of 0 (zero) using the Console
Deployment Descriptor Editor. This allows the linked resource adapter to inherit
its <pool-params> element values from the base resource adapter.

Assign the <max-capacity> element any value other than 0 (zero). The linked
resource adapter will inherit no values from the base resource adapter. If you
choose this option, you must specify all of the <pool-params> element values
for the linked resource adapter.
5-10 Programming WebLogic J2EE Connectors

Configuring the Deprecated Security Principal Map Mechanism
For instructions on editing the weblogic-ra.xml file, see “Using the Console
Deployment Descriptor Editor to Edit Files” in Appendix A, “weblogic-ra.xml
Deployment Descriptor Elements.”

Configuring the Deprecated Security
Principal Map Mechanism

The default JAAS Login module has replaced the Security Principal Mapping
mechanism provided with the weblogic-ra.xml deployment descriptor within the
resource adapter archive. As a result, the weblogic-ra.xml
<security-principal-map> element has been deprecated. However, instructions
for using the Security Principal Mapping mechanism are still in place.

To use container-managed sign-on, WebLogic Server must identify a resource
principal and then request the connection to the EIS on behalf of the resource principal.
In order to make this identification, WebLogic Server looks for a security principal
map that you have specified with the <security-principal-map> element in the
weblogic-ra.xml deployment descriptor file.

This map builds associations between WebLogic Server initiating principals
(WebLogic Server users with identities defined in the WebLogic Security Realm) and
resource principals (users known to the resource adapter / EIS system).

In addition, the <security-principal-map> enables you to define a default
initiating principal that you can map to an appropriate resource principal when the
initiating principal identified at run time is not found in the mapping. You establish the
default initiating principal in the <security-principal-map> element with an
<initiating-principal> element that has a value of *, for example:

<initiating-principal>*</initiating-principal>

You must also include a corresponding <resource-principal> entry in the
<security-principal-map> element that specifies a username and password.

The following example shows an association between a WebLogic Server initiating
principal and a resource principal.
Programming WebLogic J2EE Connectors 5-11

5 Configuration
Listing 5-2 Example <initiating-principal> and <resource-principal> Entry

<security-principal-map>

 <map-entry>

<initiating-principal>*</initiating-principal>

 <resource-principal>

 <resource-username>default</resource-username>

<resource-password>try</resource-password>

 </resource-principal>

 </map-entry>

</security-principal-map>

This default initiating principal mapping is also used at deployment time if the
connection pool parameters indicate that WebLogic Server should initialize
connections. The absence of a default initiating principal entry or the absence of a
<security-principal-map> element may prevent WebLogic Server from creating
connections using container-managed security.
5-12 Programming WebLogic J2EE Connectors

Using the Deprecated Password Converter Tool
Using the Deprecated Password Converter
Tool

The Password Converter Tool is a deprecated tool due to the fact that the default JAAS
Login module has replaced the Security Principal Mapping mechanism provided with
the weblogic-ra.xml deployment descriptor within the resource adapter archive.
However, instructions for using the Password Converter Tool are still in place for this
release.

Because previous configuration and packaging requirements for resource adapters in
WebLogic Server required manual editing of the weblogic-ra.xml file, any new
passwords specified in the security-principal-map entries were done in clear-text.

BEA provides a Password Converter Tool that allows for the encryption of all
passwords present in the weblogic-ra.xml file. The converter tool is shipped in the
standard weblogic.jar file. The Password Converter Tool parses an existing
weblogic-ra.xml file containing clear-text passwords and creates a new
weblogic-ra.xml file that contains encrypted passwords. This is the new file that
you package in the RAR for deployment to WebLogic Server.

How to Execute

To run the converter tool, execute the following syntax in a DOS command shell:

Listing 5-3 Converter Tool Syntax

java weblogic.Connector.ConnectorXMLEncrypt
<input-weblogic-ra.xml> <output-weblogic-ra.xml>
<domain-config-directory-location>
Programming WebLogic J2EE Connectors 5-13

5 Configuration
Security Hint

A security hint that is specific to the domain used in the encryption / decryption process
requires inclusion of the <domain config directory location>; the converter
tool must be directed to use the specific hint for this domain. The resultant encrypted
passwords are specific to this domain. Therefore, the resultant RAR with encrypted
password values are deployable only on the specified domain.

Configuring the Transaction Level Type

You must specify the transaction level type supported by the resource adapter in the
ra.xml deployment descriptor file. To specify the transaction support level:

For No Transaction, add the following entry to the ra.xml deployment
descriptor file:
<transaction-support>NoTransaction</transaction-support>

For XA Transaction, add the following entry to the ra.xml deployment
descriptor file:
<transaction-support>XATransaction</transaction-support>

For Local Transaction, add the following entry to the ra.xml deployment
descriptor file:
<transaction-support>LocalTransaction</transaction-support>

For instructions on editing an .xml file, see Manually Editing XML Deployment Files
and Using the Console Deployment Descriptor Editor to Edit Files in Appendix A,
“weblogic-ra.xml Deployment Descriptor Elements.”

For more information on specifying the transaction level in the RAR configuration, see
“Resource Adapter XML DTD” under “Packaging and Deployment” in the J2EE
Connector Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).
5-14 Programming WebLogic J2EE Connectors

http://java.sun.com/j2ee/download.html#connectorspec

CHAPTER
6 Writing J2EE Connector
Architecture-Compliant
Resource Adapters

The following sections identify the requirements for developing a compliant Resource
Adapter, as identified in the J2EE Platform Specification, Version 1.3 Final Release—
http://java.sun.com/j2ee. The following sections correspond to the System Contract
requirements identified in this specification:

“Connection Management” on page 6-2

“Security Management” on page 6-3

“Transaction Management” on page 6-3

Note: For instructions on building a resource adapter, see the BEA WebLogic
Application Integration documentation at:

http://edocs.bea.com/wli/docs70/devadapt/index.htm
Programming WebLogic J2EE Connectors 6-1

http://java.sun.com/j2ee
http://edocs.bea.com/wli/docs70/devadapt/index.htm

6 Writing J2EE Connector Architecture-Compliant Resource Adapters
Connection Management

The connection management contract requirements for a resource adapter are as
follows:

A resource adapter must provide implementations of the following interfaces:

javax.resource.spi.ManagedConnectionFactory

javax.resource.spi.ManagedConnection

javax.resource.spi.ManagedConnectionMetaData

The ManagedConnection implementation provided by a resource adapter must
use the following interface and classes to provide support to an application
server for connection management (and transaction management, as explained
later):

javax.resource.spi.ConnectionEvent

javax.resource.spi.ConnectionEventListener

To support non-managed environments, a resource adapter is not required to use
the above two interfaces to drive its internal object interactions.

A resource adapter is required to provide support for basic error logging and
tracing by implementing the following methods:

ManagedConnectionFactory.set/getLogWriter

ManagedConnnection.set/getLogWriter

A resource adapter is required to provide a default implementation of the
javax.resource.spi.ConnectionManager interface. The implementation
class comes into play when a resource adapter is used in a non-managed two-tier
application scenario. In an application server-managed environment, the resource
adapter should not use the default ConnectionManager implementation class.

A default implementation of ConnectionManager enables the resource adapter
to provide services specific to itself. These services can include connection
pooling, error logging and tracing, and security management. The default
ConnectionManager delegates to the ManagedConnectionFactory the
creation of physical connections to the underlying EIS.
6-2 Programming WebLogic J2EE Connectors

Security Management
In a managed environment, a resource adapter is not allowed to support its own
internal connection pooling. In this case, the application server is responsible for
connection pooling. However, a resource adapter may multiplex connections
(one or more ConnectionManager instances per physical connection) over a
single physical pipe transparent to the application server and components.

In a non-managed two-tier application scenario, a resource adapter is allowed to
support connection pooling internal to the resource adapter.

Security Management

The security management contract requirements for a resource adapter are as follows:

The resource adapter is required to support the security contract by
implementing the method
ManagedConnectionFactory.createManagedConnection.

The resource adapter is not required to support re-authentication as part of its
ManagedConnection.getConnection method implementation.

The resource adapter is required to specify its support for the security contract as
part of its deployment descriptor. The relevant deployment descriptor elements
are: authentication-mechanism, authentication-mechanism-type,
reauthentication-support and credential-interface. Refer to
section 10.6, “Resource Adapter XML DTD,” of the J2EE Connector
Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

Transaction Management

This section outlines the transaction management contract requirements for a resource
adapter. A resource adapter can be classified based on the level of transaction support,
as follows:
Programming WebLogic J2EE Connectors 6-3

http://java.sun.com/j2ee/download.html#connectorspec

6 Writing J2EE Connector Architecture-Compliant Resource Adapters
Level NoTransaction—The resource adapter supports neither resource
manager local nor JTA transactions. It implements neither XAResource nor
LocalTransaction interfaces.

Level LocalTransaction—The resource adapter supports resource manager
local transactions by implementing the LocalTransaction interface. The local
transaction management contract is specified in section 6.7 of the J2EE
Connector Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

Level XATransaction—The resource adapter supports both resource manager
local and JTA transactions by implementing LocalTransaction and
XAResource interfaces respectively. The requirements for support
XAResource-based contract are specified in section 6.6 of the J2EE Connector
Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).

Note: Other levels of support (includes any transaction optimizations supported by
an underlying resource manager) are outside the scope of the Connector
Architecture.

The above levels reflect the major steps of transaction support that a resource adapter
needs to make to allow external transaction coordination. Depending on its transaction
capabilities and requirements of its underlying EIS, a resource adapter can choose to
support any one of the above transaction support levels.
6-4 Programming WebLogic J2EE Connectors

http://java.sun.com/j2ee/download.html#connectorspec

CHAPTER
7 Packaging and
Deploying Resource
Adapters

This chapter discusses packaging and deploying requirements for resource adapters
and provides instructions for performing these tasks.

“Packaging Resource Adapters” on page 7-1

“Deploying Resource Adapters” on page 7-5

Packaging Resource Adapters

The file format for a packaged resource adapter module defines the contract between
a resource adapter provider and deployer. A packaged resource adapter includes the
following elements:

Java classes and interfaces that are required for the implementation of both the
Connector Architecture contracts and the functionality of the resource adapter

Utility Java classes for the resource adapter

Platform-dependent native libraries required by the resource adapter

Help files and documentation

Descriptive meta information that ties the above elements together
Programming WebLogic J2EE Connectors 7-1

7 Packaging and Deploying Resource Adapters
This section discusses resource adapter packaging guidelines, requirements and
limitations, and provides instructions for packaging resource adapters.

Packaging Directory Structure

A resource adapter is a WebLogic Server component contained in a resource adapter
archive (RAR) within the applications/ directory. The deployment process begins
with the RAR or a deployment directory, both of which contain the compiled resource
adapter interfaces and implementation classes created by the resource adapter
provider. Regardless of whether the compiled classes are stored in a RAR or a
deployment directory, they must reside in subdirectories that match their Java package
structures.

Resource adapters use a common directory format. This same format is used when a
resource adapter is packaged in an exploded directory format as a RAR. A resource
adapter is structured as in the following example:

Listing 7-1 Resource Adapter Directory Structure

/META-INF/ra.xml

/META-INF/weblogic-ra.xml

/META-INF/MANIFEST.MF (optional)

/images/ra.jpg

/readme.html

/eis.jar

/utilities.jar

/windows.dll

/unix.so
7-2 Programming WebLogic J2EE Connectors

Packaging Resource Adapters
Packaging Considerations

The following are packaging requirements for resource adapters:

Deployment descriptors (ra.xml and weblogic-ra.xml) must be in a
subdirectory called META-INF.

An optional MANIFEST.MF also resides in META-INF. A manifest file is
automatically generated by the JAR tool and is always the first entry in the JAR
file. By default, it is named META-INF/MANIFEST.MF. The manifest file is the
place where any meta-information about the archive is stored. For more
information, see
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/jar.html.

The resource adapter can contain multiple JARs that contain the Java classes and
interfaces used by the resource adapter. (For example, eis.jar and
utilities.jar)

The resource adapter can contain native libraries required by the resource
adapter for interacting with the EIS. (For example, windows.dll and unix.so)

The resource adapter can include documentation and related files not directly
used by the resource adapter. (For example, readme.html and
/images/ra.jpg)

Ensure that any dependencies of a resource adapter on platform-specific native
libraries are resolved.

When a standalone resource adapter RAR is deployed, the resource adapter must
be made available to all J2EE applications in the application server.

When a resource adapter RAR packaged within a J2EE application EAR is
deployed, the resource adapter must be made available only to the J2EE
application with which it is packaged.

A resource adapter deployed in WebLogic Server supports the CLASSPATH entry
in MANIFEST.MF to reference a class or resource such as a property.

For more information on packaging requirements, refer to chapter 10 of the J2EE
Connector Specification, Version 1.0 Final Release
(http://java.sun.com/j2ee/download.html#connectorspec).
Programming WebLogic J2EE Connectors 7-3

http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/jar.html
http://java.sun.com/j2ee/download.html#connectorspec

7 Packaging and Deploying Resource Adapters
Packaging Limitations

The following are WebLogic Server packaging limitations on resource adapters:

The WebLogic J2EE Connector Architecture does not support the
javax.resource.spi.security.GenericCredential credential-interface
or the Kerbv5 authentication-mechanism-type. Specification of either of
these values for the <authentication-mechanism> in the ra.xml file for the
resource adapter being deployed will result in a failed deployment.

The WebLogic J2EE Connector Architecture does not allow you to reload a
standalone resource adapter without reloading the client that is using it. (This
limitation is due to the J2EE Connector Specification, Version 1.0 limitation of
not providing a remotable interface.)

The ConnectionPoolManager’s
getConnection(ManagedConnectionFactory mcf,
ConnectionRequestInfo cxInfo) method throws an exception internal to
WebLogic Server when it is unable to find a ConnectionPool associated with a
given ManagedConnectionFactory. For more information, see Appendix A,
“Troubleshooting.”

Packaging Resource Adapters Archives (RARs)

After you stage one or more resource adapters in a directory, you package them in a
Java Archive (JAR). Before you package your resource adapters, be sure you read and
understand the chapter entitled “WebLogic Server Application Classloading” in
Developing WebLogic Server J2EE Applications, which describes how WebLogic
Server loads classes.

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top
level of the staging directory.

4. Create a META-INF subdirectory in the staging directory.
7-4 Programming WebLogic J2EE Connectors

http://e-docs.bea.com/wls/docs70/programming/classloading.html
http://e-docs.bea.com/wls/docs70/programming/index.html

Deploying Resource Adapters
5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note: Refer to the following Sun Microsystems documentation for information
on the ra.xml document type definition at:
http://java.sun.com/dtd/connector_1_0.dtd

6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory
and add entries for the resource adapter.

Note: Refer to Appendix A, “weblogic-ra.xml Deployment Descriptor
Elements,” for information on the weblogic-ra.xml document type
definition.

7. When the resource adapter classes and deployment descriptors are set up in the
staging directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebLogic Server or
package in an enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the
staging-dir directory so that the directory paths recorded in the JAR are
relative to the directory where you staged the resource adapters.

For more information on this topic, see “Creating and Modifying Resource Adapters:
Main Steps” on page 5-3.

Deploying Resource Adapters

Deployment of a resource adapter is similar to deployment of Web Applications, EJBs,
and Enterprise Applications. Like these deployment units, you can deploy a resource
adapter in an exploded directory format or as an archive file.

Deployment Options

You can deploy a resource adapter:
Programming WebLogic J2EE Connectors 7-5

http://java.sun.com/dtd/connector_1_0.dtd

7 Packaging and Deploying Resource Adapters
Using the command line weblogic.Deployer tool. (This method replaces the
earlier weblogic.deploy utility, which has been deprecated.).

Using the graphical user interface of the WebLogic Server Administration
Console.

As part of an Enterprise Application (EAR) file.

Deployment Descriptor

Also similar to Web Applications, EJBs, and Enterprise Applications, resource
adapters use two deployment descriptors to define their operational parameters. The
deployment descriptor ra.xml is defined by Sun Microsystems in the J2EE Connector
Specification, Version 1.0 Final Release. The weblogic-ra.xml deployment
descriptor is specific to WebLogic Server and defines operational parameters unique
to WebLogic Server. For more information about the weblogic-ra.xml deployment
descriptor, refer to Appendix A, “weblogic-ra.xml Deployment Descriptor Elements.”

Resource Adapter Deployment Names

When you deploy a resource adapter archive (RAR) or deployment directory, you must
specify a name for the deployment unit, for example, myResourceAdapter. This
name provides a shorthand reference to the resource adapter deployment that you can
later use to undeploy or update the resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a
deployment name that matches the path and filename of the RAR or deployment
directory. You can use this assigned name to undeploy or update the resource adapter
after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the
server is rebooted. Undeploying a resource adapter does not remove the associated
deployment name; you can use the same deployment name to redeploy the resource
adapter at a later time.
7-6 Programming WebLogic J2EE Connectors

Deploying Resource Adapters
Using the weblogic.Deployer Utility

The weblogic.Deployer utility is new in WebLogic Server 7.0 and replaces the earlier
weblogic.deploy utility, which has been deprecated. This section describes how to use
the weblogic.Deployer utility to perform the following tasks:

Deploy a Connector or its components

Redeploy parts of a Connector or its components

Deactivate or unprepare a Connector or its components

Remove a Connector

Cancel a pending deployment task

List all deployment tasks

For information and instructions on deploying a Connector using the
weblogic.Deployer utility, see “WebLogic Deployment” in Developing WebLogic
Server J2EE Applications.

Using the Administration Console

This section discusses resource adapter deployment tasks using the Administration
Console. Using the Administration Console, you can perform the following
deployment tasks:

Configure Resource Adapters (Connectors) for Deployment

Deploy Resource Adapters (Connectors)

View Deployed Resource Adapters (Connectors)

Undeploy Resource Adapters (Connectors)

Update Deployed Resource Adapters (Connectors)

For information and instructions on deploying a Connector using the WebLogic Server
Administration Console, see “WebLogic Deployment” in Developing WebLogic
Server J2EE Applications.
Programming WebLogic J2EE Connectors 7-7

http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html

7 Packaging and Deploying Resource Adapters
Including a Resource Adapter in an Enterprise
Application Archive (EAR)

As part of the J2EE Platform Specification, Version 1.3 Final Release, it is possible to
include a resource adapter archive (RAR) inside an enterprise application archive
(EAR) and then deploy the application in WebLogic Server.

To deploy an enterprise application that contains a resource adapter archive:

1. Place the RAR inside the EAR just as you would a Web Application Archive
(WAR) or JAR.

2. Create a valid application.xml and place it in the META-INF directory of the
EAR.

Note the following when creating an application.xml:

The application deployment descriptor must contain the new <connector>
element to identify the resource adapter archive within the EAR. For
example:

<connector>RevisedBlackBoxNoTx.rar</connector>

Because the <connector> element is a new addition to the J2EE Platform
Specification, Version 1.3, the application.xml file must contain the
following DOCTYPE entry to identify it as a J2EE Platform Specification,
Version 1.3 deployment descriptor.

Listing 7-2 DOCTYPE Entry

<!DOCTYPE application PUBLIC ‘-//Sun Microsystems, Inc.//DTD

J2EE Application 1.3//EN’

‘http://java.sun.com/dtd/application_1_3.dtd’>

If you do not use this DOCTYPE entry, the resource adapter will not be
deployed.

The following listing is an example of an application.xml file.
7-8 Programming WebLogic J2EE Connectors

Deploying Resource Adapters
Listing 7-3 application.xml File

<application>

<display-name> ConnectorSampleearApp </display-name>

<module>

<connector>RevisedBlackBoxNoTx.rar</connector>

</module>

<module>

<ejb>ejb_basic_beanManaged.jar</ejb>

</module>

</application>

3. Deploy the Enterprise Application in WebLogic Server.

For general information about deployment of Enterprise Applications, see
“Enterprise Applications” in “Understanding WebLogic Server Applications.”
Programming WebLogic J2EE Connectors 7-9

http://e-docs.bea.com/wls/docs70/programming/concepts.html

7 Packaging and Deploying Resource Adapters
7-10 Programming WebLogic J2EE Connectors

CHAPTER
8 Client Considerations

The following sections discuss WebLogic J2EE Connector Architecture client
considerations:

“Common Client Interface (CCI)” on page 8-2

“ConnectionFactory and Connection” on page 8-2

“Obtaining the ConnectionFactory (Client-JNDI Interaction)” on page 8-3
Programming WebLogic J2EE Connectors 8-1

8 Client Considerations
Common Client Interface (CCI)

The client API used by application components for EIS access can be defined as
follows:

The standard common client interface (CCI) discussed in chapter 9, “Common
Client Interface,” of the J2EE Connector Specification, Version 1.0 Final Release
at: http://java.sun.com/j2ee/download.html#connectorspec.

A client API specific to the type of a resource adapter and its underlying EIS.
An example of such EIS-specific client APIs is JDBC for relational databases.

The CCI is a common client API for accessing EISes. The CCI is targeted towards
Enterprise Application Integration (EAI) and enterprise tool vendors.

The J2EE Connector Architecture defines a Common Client Interface (CCI) for EIS
access. The CCI defines a standard client API for application components that enables
application components and EAI frameworks to drive interactions across
heterogeneous EISes.

ConnectionFactory and Connection

A connection factory is a public interface that enables connection to an EIS instance;
a ConnectionFactory interface is provided by a resource adapter. An application looks
up a ConnectionFactory instance in the JNDI namespace and uses it to obtain EIS
connections.

One goal of the J2EE Connector Architecture is to support a consistent application
programming model across both CCI and EIS-specific client APIs. This model is
achieved through use of a design pattern—specified as an interface template—for both
the ConnectionFactory and Connection interfaces.

For more information on this design pattern, see section 5.5.1, “ConnectionFactory
and Connection” of the J2EE Connector Specification, Version 1.0 Final Release at:
http://java.sun.com/j2ee/download.html#connectorspec
8-2 Programming WebLogic J2EE Connectors

http://java.sun.com/j2ee/download.html#connectorspec
http://java.sun.com/j2ee/download.html#connectorspec

Obtaining the ConnectionFactory (Client-JNDI Interaction)
Obtaining the ConnectionFactory
(Client-JNDI Interaction)

This section discusses how a connection to an EIS instance is obtained from a
ConnectionFactory. For further information, refer to section 5.4.1, “Managed
Application Scenario,” of the J2EE Connector Specification, Version 1.0 Final Release
at: http://java.sun.com/j2ee/download.html#connectorspec

Obtaining a Connection in a Managed Application

The following tasks are performed when a managed application obtains a connection
to an EIS instance from a ConnectionFactory, as specified in the res-type variable:

1. The application assembler or component provider specifies the connection factory
requirements for an application component by using a deployment descriptor
mechanism. For example:

res-ref-name: eis/myEIS

res-type: javax.resource.cci.ConnectionFactory

res-auth: Application or Container

2. The person deploying the resource adapter sets the configuration information for
the resource adapter.

3. The application server uses a configured resource adapter to create physical
connections to the underlying EIS. Refer to Chapter 10 of the J2EE Connector
Specification, Version 1.0 Final Release for more information on packaging and
deployment of resource adapters at:
http://java.sun.com/j2ee/download.html#connectorspec

4. The application component looks up a connection factory instance in the
component’s environment by using the JNDI interface.
Programming WebLogic J2EE Connectors 8-3

http://java.sun.com/j2ee/download.html#connectorspec

8 Client Considerations
Listing 8-1 JNDI Lookup

//obtain the initial JNDI Naming context

Context initctc = new InitialContext();

// perform JNDI lookup to obtain the connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)

initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as
that specified in the res-ref-name element of the deployment descriptor. The
JNDI lookup results in a connection factory instance of type
java.resource.cci.ConnectionFactory as specified in the res-type
element.

5. The application component invokes the getConnection method on the
connection factory to obtain an EIS connection. The returned connection instance
represents an application level handle to an underlying physical connection. An
application component obtains multiple connections by calling the method
getConnection on the connection factory multiple times.

javax.resource.cci.Connection cx = cxf.getConnection();

6. The application component uses the returned connection to access the underlying
EIS.

7. After the component finishes with the connection, it closes the connection using
the close method on the Connection interface.

cx.close();

8. If an application component fails to close an allocated connection after its use,
that connection is considered an unused connection. The application server
manages the cleanup of unused connections. When a container terminates a
component instance, the container cleans up all connections used by that
component instance.
8-4 Programming WebLogic J2EE Connectors

Obtaining the ConnectionFactory (Client-JNDI Interaction)
Obtaining a Connection in a Non-Managed Application

In a non-managed application scenario, the application developer must follow a similar
programming model to that of a managed application. Non-management involves
lookup of a connection factory instance, obtaining an EIS connection, using the
connection for EIS access, and finally closing the connection.

The following tasks are performed when a non-managed application obtains a
connection to an EIS instance from a ConnectionFactory:

1. The application client calls a method on the
javax.resource.cci.ConnectionFactory instance (returned from the JNDI
lookup) to get a connection to the underlying EIS instance.

2. The ConnectionFactory instance delegates the connection request from the
application to the default ConnectionManager instance. The resource adapter
provides the default ConnectionManager implementation.

3. The ConnectionManager instance creates a new physical connection to the
underlying EIS instance by calling the
ManagedConnectionFactory.createManagedConnection method.

4. The ManagedConnectionFactory instance handles the
createManagedConnection method by creating a new physical connection to the
underlying EIS, represented by a ManagedConnection instance. The
ManagedConnectionFactory uses the security information (passed as a Subject
instance), any ConnectionRequestInfo, and its configured set of properties
(such as port number, server name) to create a new ManagedConnection
instance.

5. The ConnectionManager instance calls the
ManagedConnection.getConnection method to get an application-level
connection handle. Calling the getConnection method does not necessarily
create a new physical connection to the EIS instance. Calling getConnection
produces a temporary handle that is used by an application to access the
underlying physical connection. The actual underlying physical connection is
represented by a ManagedConnection instance.

6. The ConnectionManager instance returns the connection handle to the
ConnectionFactory instance, which then returns the connection to the
application that initiated the connection request.
Programming WebLogic J2EE Connectors 8-5

8 Client Considerations
8-6 Programming WebLogic J2EE Connectors

APPENDIX
A weblogic-ra.xml
Deployment Descriptor
Elements

The following sections provide a complete reference for the WebLogic Server-specific
XML deployment descriptor properties used in the WebLogic Server resource adapter
archive and an explanation of how to edit the XML deployment descriptor. Use these
sections if you need to refer to the deployment descriptor used for resource adapters.

If your resource adapter archive (RAR) does not contain a weblogic-ra.xml file,
WebLogic Server automatically generates this file for you.

“Manually Editing XML Deployment Files” on page A-2

“Using the Console Deployment Descriptor Editor to Edit Files” on page A-4

“Using WebLogic Builder to Edit Deployment Descriptors” on page A-6

“weblogic-ra.xml DTD” on page A-7

“weblogic-ra. xml Element Hierarchy Diagram” on page A-15

“weblogic-ra.xml Element Descriptions” on page A-17
Programming WebLogic J2EE Connectors A-1

A weblogic-ra.xml Deployment Descriptor Elements
Manually Editing XML Deployment Files

To define or make changes to the XML deployment descriptors used in the WebLogic
Server resource adapter archive, you must manually define or edit the XML elements
in the weblogic-ra.xml file.

Basic Conventions

To manually edit XML elements:

Make sure that you use an ASCII text editor that does not reformat the XML or
insert additional characters that could invalidate the file.

Use the correct case for file and directory names, even if your operating system
ignores the case.

To use the default value for an optional element, you can either omit the entire
element definition or specify a blank value. For example:

<max-config-property></max-config-property>

DOCTYPE Header Information

When editing or creating XML deployment files, it is critical to include the correct
DOCTYPE header for each deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose.

The header refers to the location and version of the Document Type Definition (DTD)
file for the deployment descriptor. Although this header references an external URL at
java.sun.com, WebLogic Server contains its own copy of the DTD file, so your host
server need not have access to the Internet. However, you must still include this
<!DOCTYPE...> element in your ra.xml file, and have it reference the external URL
because the version of the DTD contained in this element is used to identify the version
of this deployment descriptor.
A-2 Programming WebLogic J2EE Connectors

Manually Editing XML Deployment Files
The entire DOCTYPE headers for the ra.xml and weblogic-ra.xml files are as
follows:

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier
‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. ProductName utilities ignore
the DTDs embedded within the DOCTYPE header of XML deployment files, and instead
use the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid
parser errors.

The following links provide the public DTD locations for XML deployment files used
with ProductName:

connector_1_0.dtd contains the DTD for the standard ra.xml deployment
file, required for all resource adapters. This DTD is maintained as part of the
J2EE Connector Specification, Version 1.0; refer to this specification for
information about the elements used in the connector_1_0.dtd
(http://java.sun.com/j2ee/download.html#connectorspec).

XML File DOCTYPE header

ra.xml <!DOCTYPE connector PUBLIC
 '-//Sun Microsystems, Inc.//DTD Connector 1.0//EN'
 'http://java.sun.com/dtd/connector_1_0.dtd'>

weblogic-ra.xml <!DOCTYPE weblogic-connection-factory-dd PUBLIC

"-//BEA Systems, Inc.//DTD WebLogic 7.0.0
Connector//EN"
"http://www.bea.com/servers/wls700/dtd/weblogic700-ra.dtd">
Programming WebLogic J2EE Connectors A-3

http://java.sun.com/dtd/connector_1_0.dtd
http://java.sun.com/dtd/connector_1_0.dtd
http://www.bea.com/servers/wls700/dtd/weblogic700-ra.dtd
http://java.sun.com/j2ee/download.html#connectorspec

A weblogic-ra.xml Deployment Descriptor Elements
weblogic-ra.dtd contains the DTD used for creating weblogic-ra.xml,
which defines resource adapter properties used for deployment to ProductName.
This file is located at http://www.bea.com/servers/wls700/dtd/weblogic700-ra.dtd

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

Using the Console Deployment Descriptor
Editor to Edit Files

This section describes the procedure for editing the following resource adapter
deployment descriptors using the Administration Console Deployment Descriptor
Editor:

ra.xml

weblogic-ra.xml

For detailed information about the elements in the resource adapter deployment
descriptors, refer to Programming the WebLogic J2EE Connector Architecture.

To edit the resource adapter deployment descriptors, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Connectors node under the Deployments node.

4. Right-click the name of the resource adapter whose deployment descriptors you
want to edit and choose Edit Connector Descriptor from the drop-down menu.

The Administration Console window appears in a new browser. The left pane
contains a tree structure that lists all the elements in the two resource adapter
A-4 Programming WebLogic J2EE Connectors

http://www.bea.com/servers/wls700/dtd/weblogic700-ra.dtd
http://e-docs.bea.com/wls/docs70/jconnector/index.html

Using the Console Deployment Descriptor Editor to Edit Files
deployment descriptors and the right pane contains a form for the descriptive
elements of the ra.xml file.

5. To edit, delete, or add elements in the resource adapter deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit, as described in the following list:

The RA node contains the elements of the ra.xml deployment descriptor.

The WebLogic RA node contains the elements of the weblogic-ra.xml
deployment descriptor.

6. To edit an existing element in one of the resource adapter deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the resource adapter deployment descriptors,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the resource adapter deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.
Programming WebLogic J2EE Connectors A-5

A weblogic-ra.xml Deployment Descriptor Elements
9. Once you have made all your changes to the resource adapter deployment
descriptors, click the root element of the tree in the left pane. The root element is
the either the name of the resource adapter *.rar archive file or the display
name of the resource adapter.

10. Click Validate if you want to ensure that the entries in the resource adapter
deployment descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server's memory.

Using WebLogic Builder to Edit Deployment
Descriptors

WebLogic Builder provides a visual environment for editing an application’s
deployment descriptor XML files. You can view these XML files as you visually edit
them in WebLogic Builder, but you won’t need to make textual edits to the XML files.

Use WebLogic Builder for the following development tasks:

Generate deployment descriptor files for a J2EE module

Edit a module’s deployment descriptor files

View deployment descriptor files

Compile and validate deployment descriptor files

Deploy a module to a server

For instructions on using WebLogic Builder, refer to the WebLogic Builder
doocumentation.
A-6 Programming WebLogic J2EE Connectors

http://e-docs.bea.com/wls/docs70/wlbuilder/index.html

weblogic-ra.xml DTD
weblogic-ra.xml DTD

Listing 8-2 weblogic-ra.xml DTD

<!--

XML DTD for WebLogic Server v7.0 specific Resource Adapter
deployment descriptor.

This DTD is intended to be accompanied with the J2EE Connector
Architecture v1.0 Resource Adapter deployment descriptor (ra.xml).

Overview of changes since weblogic600-ra.dtd:

 * Deprecated connection-cleanup-frequency and
connection-duration-time. Replaced these elements with
connection-maxidle-time.

 * Added connection-profiling-enabled.

 * Deprecated security-principal-map. The Password Credential
information originally stored in this element will now be stored in
internal WebLogic Server storage. Refer to the Programming the
WebLogic J2EE Connector Architecture guide for more details.

Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.

-->

<!--

This DTD defines the Weblogic specific deployment information for
defining a deployable Resource Adapter Connection Factory. It
provides for complete specification of all configurable Connection
Factory parameters including Connection Pool parameters, Security
parameters for Resource Principal Mapping and the ability to define
values for configuration parameters which exist in the ra.xml
deployment descriptor.

-->

<!--

The weblogic-connection-factory-dd element is the root element of
the Weblogic specific deployment descriptor for the deployed
resource adapter.
Programming WebLogic J2EE Connectors A-7

A weblogic-ra.xml Deployment Descriptor Elements
-->

<!ELEMENT weblogic-connection-factory-dd (connection-factory-name,
description?, jndi-name, ra-link-ref?,
native-libdir?,pool-params?, (logging-enabled, log-filename)?,
map-config-property*, security-principal-map?)>

<!--

The connection-factory-name element defines that logical name that
will beassociated with this specific deployment of the Resource
Adapter and its corresponding Connection Factory.

The value of connection-factory-name can be used in other deployed
Resource Adapters via the ra-link-ref element. This will allow
multiple deployed Connection Factories to utilize a common deployed
Resource Adapter, as well as share configuration specifications.

This is a required element.

-->

<!ELEMENT connection-factory-name (#PCDATA)>

<!--

The description element is used to provide text describing the
parent element. The description element should include any
information that the deployer wants to describe about the deployed
Connection Factory.

This is an optional element.

-->

<!ELEMENT description (#PCDATA)>

<!--

The jndi-name element defines the name that will be used to bind
the Connection Factory Object into the Weblogic JNDI Namespace.
Client EJBs and Servlets will use this same JNDI in their defined
Reference Desciptor elements of the weblogic specific deployment
descriptors.

This is a required element.

-->

<!ELEMENT jndi-name (#PCDATA)>

<!--
A-8 Programming WebLogic J2EE Connectors

weblogic-ra.xml DTD
The ra-link-ref element allows for the logical association of
multiple deployed Connection Factories with a single deployed
Resource Adapter. The specification of the optional ra-link-ref
element with a value identifying a separately deployed Connection
Factory will result in this newly deployed Connection Factory
sharing the Resource Adapter which had been deployed with the
referenced Connection Factory.

In addition, any values defined in the referred Connection Factories
deployment will be inherited by this newly deployed Connection
Factory unless specified.

This is an optional element.

-->

<!ELEMENT ra-link-ref (#PCDATA)>

<!--

The native-libdir element identifies the directory location to be
used for all native libraries present in this resource adapter
deployment. As part of deployment processing, all encountered
native libraries will be copied to the location specified.

It is the responsibility of the Administrator to perform the
necessary platform actions such that these libraries will be found
during Weblogic Server runtime.

This is a required element IF native libraries are present.

-->

<!ELEMENT native-libdir (#PCDATA)>

<!--

The pool-params element is the root element for providing Connection
Pool specific parameters for this Connection Factory.

Weblogic will use these specifications in controlling the behavior
of the maintained pool of Managed Connections.

This is an optional element. Failure to specify this element or any
of its specific element items will result in default values being
assigned. Refer to the description of each individual element for
the designated default value.

-->

<!ELEMENT pool-params (initial-capacity?, max-capacity?,
capacity-increment?, shrinking-enabled?, shrink-period-minutes?,
Programming WebLogic J2EE Connectors A-9

A weblogic-ra.xml Deployment Descriptor Elements
connection-cleanup-frequency?, connection-duration-time?,
connection-maxidle-time?, connection-profiling-enabled?)>

<!--

The initial-capacity element identifies the initial number of
managed connections which the Weblogic Server will attempt to obtain
during deployment.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value:1

-->

<!ELEMENT initial-capacity (#PCDATA)>

<!--

The max-capacity element identifies the maximum number of managed
connections which the Weblogic Server will allow. Requests for newly
allocated managed connections beyond this limit will result in a
ResourceAllocationException being returned to the caller.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value: 10

-->

<!ELEMENT max-capacity (#PCDATA)>

<!--

The capacity-increment element identifies the number of additional
managed connections which the Weblogic Server will attempt to obtain
during resizing of the maintained connection pool.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value:1

-->
A-10 Programming WebLogic J2EE Connectors

weblogic-ra.xml DTD
<!ELEMENT capacity-increment (#PCDATA)>

<!--

The shrinking-enabled element indicates whether or not the
Connection Pool should have unused Managed Connections reclaimed as
a means to control system resources.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Value Range:true|false

Default Value:true

-->

<!ELEMENT shrinking-enabled (#PCDATA)>

<!--

The shrink-period-minutes element identifies the amount of time the
Connection Pool Management will wait between attempts to reclaim
unused Managed Connections.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value:15

-->

<!ELEMENT shrink-period-minutes (#PCDATA)>

<!--

The connection-cleanup-frequency element identifies the amount of
time (in seconds) the Connection Pool Management will wait between
attempts to destroy Connection handles which have exceeded their
usage duration. This element, used in conjunction with
connection-duration-time, prevents connection leaks when an
Application may have not closed a connection after completing usage.

This element is deprecated. This is being replaced with
connection-maxidle-time.

This is an optional element.
Programming WebLogic J2EE Connectors A-11

A weblogic-ra.xml Deployment Descriptor Elements
Failure to specify this value will result in Weblogic using its
defined default value.

Default Value:-1

-->

<!ELEMENT connection-cleanup-frequency (#PCDATA)>

<!--

The connection-duration-time element identifies the amount of time
(in seconds) a Connection handle can be active. This element, used
in conjunction with connection-cleanup-frequency, prevents leaks
when an Application may have not closed a connection after
completing usage.

This element is deprecated. This is being replaced with
connection-maxidle-time.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value:-1

-->

<!ELEMENT connection-duration-time (#PCDATA)>

<!--

The connection-maxidle-time element identifies the amount of time
(in seconds) a Connection handle can remain idle. This element
prevents leaks when an Application may have not closed a connection
after completing usage. Idle connections will only be terminated in
the case where the connection pool becomes full, and a new
connection request is about to fail because of this.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Default Value:0

-->

<!ELEMENT connection-maxidle-time (#PCDATA)>

<!--
A-12 Programming WebLogic J2EE Connectors

weblogic-ra.xml DTD
The connection-profiling-enabled element indicates whether or not
the Connection Pool should store the call stacks of where each
Connection is allocated. If enabled this information can be viewed
on active Connections through the console. Also, the stacks for
Leaked and Idle connections will be available if this is enabled
and can help debug components that fail to close connections.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Value Range:true|false

Default Value:false

-->

<!ELEMENT connection-profiling-enabled (#PCDATA)>

<!--

The logging-enabled element indicates whether or not the log writer
is set for either the ManagedConnectionFactory or
ManagedConnection. If this element is set to true, output generated
from either the ManagedConnectionFactory or ManagedConnection will
be sent to the file specified by the log-filename element.

This is an optional element.

Failure to specify this value will result in Weblogic using its
defined default value.

Value Range:true|false

Default Value:false

-->

<!ELEMENT logging-enabled (#PCDATA)>

<!--

The log-filename element specifies the name of the log file which
outputgenerated from either the ManagedConnectionFactory or a
ManagedConnection are sent.

The full address of the filename is required.

This is an optional element.

-->
Programming WebLogic J2EE Connectors A-13

A weblogic-ra.xml Deployment Descriptor Elements
<!ELEMENT log-filename (#PCDATA)>

<!--

Each map-config-property element identifies a configuration
property name and value that corresponds to an ra.xml config-entry
element with the corresponding config-property-name.

At deployment time, all values present in a map-config-property
specification will be set on the ManagedConnectionFactory.

Values specified via a map-config-property will supersede any
default value that may have been specified in the corresponding
ra.xml config-entry element.

This is an optional element.

-->

<!ELEMENT map-config-property (map-config-property-name,
map-config-property-value)> <!ELEMENT map-config-property-name
(#PCDATA)> <!ELEMENT map-config-property-value (#PCDATA)>

<!--

Each security-principal-map element provides a mechanism to define
appropriate Resource Principal values for Resource Adapter/EIS
authorization processing, based upon the known Weblogic Runtime
Initiating Principal.

This map allows for the specification of a defined set of Initiating
Principals and the corresponding Resource Principal's Username and
Password that should be used when allocating Managed Connections
and Connection Handles.

A default Resource Principal can be defined for the Connection
Factory via the map. By specifying an initiating-principal value of
'*' and a corresponding resource-principal, the defined
resource-principal will be utilized whenever the current identity
is NOT matched elsewhere in the map.

This element is deprecated. Refer to the Programming the WebLogic
J2EE Connector Architecture guide for more details.

This is an optional element, however, it must be specified in some
form if Container Managed Sign-on is supported by the Resource
Adapter and used by ANY client.

In addition, the deployment-time population of the Connection Pool
with Managed Connections will be attempted using the defined
'default' resource principal if one is specified.
A-14 Programming WebLogic J2EE Connectors

weblogic-ra. xml Element Hierarchy Diagram
-->

<!ELEMENT security-principal-map (map-entry*)>

<!ELEMENT map-entry (initiating-principal+, resource-principal)>

<!ELEMENT initiating-principal (#PCDATA)>

<!ELEMENT resource-principal (resource-username,
resource-password)>

<!ELEMENT resource-username (#PCDATA)>

<!ELEMENT resource-password (#PCDATA)>

weblogic-ra. xml Element Hierarchy
Diagram

The following diagram summarizes the structure of the weblogic-ra.xml
deployment descriptor.
Programming WebLogic J2EE Connectors A-15

A weblogic-ra.xml Deployment Descriptor Elements
Figure 8-1 weblogic-ra.xml Element Hierarchy
A-16 Programming WebLogic J2EE Connectors

weblogic-ra.xml Element Descriptions
weblogic-ra.xml Element Descriptions

The following sections describe each of the elements that can be defined in the
weblogic-ra.xml file.

weblogic-connection-factory-dd (required)

The root element of the Weblogic-specific deployment descriptor for the deployed
resource adapter.

connection-factory-name (required)

Defines the logical name that will be associated with this specific deployment of the
resource adapter and its corresponding connection factory. The value of this element
can be used in other deployed resource adapters through the ra-link-ref element,
allowing multiple deployed Connection Factories to utilize a common deployed
resource adapter, as well as share configuration specifications.

description (optional)

Provides text describing the parent element. This element should include any
information that the deployer wants to describe about the deployed Connection
Factory.

jndi-name (required)

Defines the name that will be used to bind the Connection Factory Object into the
WebLogic JNDI Namespace. Client EJBs and Servlets use the same JNDI in their
defined Reference Descriptor elements of the WebLogic-specific deployment
descriptors.
Programming WebLogic J2EE Connectors A-17

A weblogic-ra.xml Deployment Descriptor Elements
ra-link-ref (optional)

Allows for the logical association of multiple deployed connection factories with a
single deployed resource adapter. The specification of the optional ra-link-ref
element with a value identifying a separately deployed connection factory will result
in this newly deployed connection factory sharing the resource adapter that has been
deployed with the referenced connection factory. In addition, any values defined in the
referred connection factories deployment will be inherited by this newly deployed
connection factory unless specified.

native-libdir (required if native libraries present)

Identifies the directory location to be used for all native libraries present in this
resource adapter deployment. As part of deployment processing, all encountered
native libraries will be copied to the location specified. It is the responsibility of the
administrator to perform the necessary platform actions such that these libraries will
be found during WebLogic Server run time.

pool-params (optional)

The root element for providing connection pool-specific parameters for this
connection factory. WebLogic Server uses these specifications in controlling the
behavior of the maintained pool of managed connections.

Failure to specify this element or any of its specific element items will result in default
values being assigned. Refer to the description of each individual element for the
designated default value.

initial-capacity (optional)

Identifies the initial number of managed connections, which WebLogic Server
attempts to obtain during deployment.

Failure to specify this value will result in WebLogic Server using its defined default
value.

Default Value: 1
A-18 Programming WebLogic J2EE Connectors

weblogic-ra.xml Element Descriptions
max-capacity (optional)

Identifies the maximum number of managed connections, which WebLogic Server
will allow. Requests for newly allocated managed connections beyond this limit results
in a ResourceAllocationException being returned to the caller.

Failure to specify this value will result in WebLogic Server using its defined default
value.

Default Value: 10

capacity-increment (optional)

Identifies the maximum number of additional managed connections that WebLogic
Server attempts to obtain during resizing of the maintained connection pool.

Failure to specify this value will result in WebLogic Server using its defined default
value.

Default Value: 1

shrinking-enabled (optional)

Indicates whether or not the connection pool should have unused managed connections
reclaimed as a means to control system resources.

Failure to specify this value will result in WebLogic Server using its defined default
value.

Value Range: true | false

Default Value: true

shrink-period-minutes (optional)

Identifies the amount of time the connection pool manager will wait between attempts
to reclaim unused managed connections.

Failure to specify this value will result in WebLogic Server using its defined default
value.

Default Value: 15
Programming WebLogic J2EE Connectors A-19

A weblogic-ra.xml Deployment Descriptor Elements
connection-cleanup-frequency (optional)

Identifies the amount of time the connection pool management will wait between
attempts to destroy connection handles which have exceeded their usage duration. This
element, used in conjunction with connection-duration-time, prevents connection
leaks when an application may have not closed a connection after completing usage.

Failure to specify this value will result in Weblogic using its defined default value.

Default Value: -1

Note: The connection-cleanup-frequency element is a deprecated element. If
you currently have this parameter in your configuration, you will still be able
use deployment functions. However, this element will have no effect on the
configuration.

connection-duration-time (optional)

This is a deprecated element.Identifies the amount of time a connection can be
active. This element, used in conjunction with connection-cleanup-frequency,
prevents leaks when an application may have not closed a connection after completing
usage.

Failure to specify this value will result in Weblogic using its defined default value.

Default Value: -1

Note: The connection-duration-time element is a deprecated element. If you
currently have this parameter in your configuration, you will still be able use
deployment functions. However, this element will have no effect on the
configuration.

connection-maxidle-time (optional)

Identifies the amount of time (in seconds) a connection handle can remain idle. This
element prevents leaks when an application may have not closed a connection after
completing usage. Idle connections will only be terminated in the case where the
connection pool becomes full, and a new connection request is about to fail because of
this.

Failure to specify this value will result in WebLogic Server using its defined default
value.
A-20 Programming WebLogic J2EE Connectors

weblogic-ra.xml Element Descriptions
Default Value: 0

connection-profiling-enabled (optional)

Indicates whether or not the connection pool should store the call stacks of where each
connection is allocated. If enabled this information can be viewed on active
connections through the Console. Also, the stacks for Leaked and Idle connections will
be available if this is enabled and can help debug components that fail to close
connections.

Failure to specify this value will result in Weblogic using its defined default value.

Value Range: true | false

Default Value: false

logging-enabled (optional)

Indicates whether or not the log writer is set for either the
ManagedConnectionFactory or ManagedConnection. If this element is set to true,
output generated from either the ManagedConnectionFactory or
ManagedConnection will be sent to the file specified by the log-filename element.

Failure to specify this value will result in WebLogic Server using its defined default
value.

Value Range: true | false

Default Value: false

log-filename (optional)

Specifies the name of the log file from which output generated from the
ManagedConnectionFactory or a ManagedConnection is sent.

The full address of the filename is required.

map-config-property (optional, zero or more)

Identifies a configuration property name and value that corresponds to an ra.xml
config-entry element with the corresponding config-property-name. At
deployment time, all values present in a map-config-property specification will be
Programming WebLogic J2EE Connectors A-21

A weblogic-ra.xml Deployment Descriptor Elements
set on the ManagedConnectionFactory. Values specified via a
map-config-property will supersede any default value that may have been specified in
the corresponding ra.xml config-entry element.

map-config-property-name (optional)

Identifies a name that corresponds to an ra.xml config-entry element with the
corresponding config-property-name.

map-config-property-value (optional)

Identifies a value that corresponds to an ra.xml config-entry element with the
corresponding config-property-name.

security-principal-map (optional)

(This is a deprecated element.) Provides a mechanism to define appropriate
resource-principal values for resource adapter and EIS authorization processing,
based upon the known WebLogic run time initiating-principal. This map allows
for the specification of a defined set of initiating principals and the corresponding
resource principal’s username and password that should be used when allocating
managed connections and connection handles.

A default resource-principal can be defined for the connection factory via the
map. By specifying an initiating-principal value of ‘*’ and a corresponding
resource-principal, the defined resource-principal will be utilized whenever
the current identity is not matched elsewhere in the map.

This is an optional element, however, it must be specified in some form if container
managed sign-on is supported by the resource adapter and used by any client.

In addition, the deployment-time population of the connection pool with managed
connections will be attempted using the defined ‘default’ resource principal if one is
specified.

map-entry

Identifies an entry in the security-principal-map.

initiating-principal (optional, zero or more)
A-22 Programming WebLogic J2EE Connectors

weblogic-ra.xml Element Descriptions
resource-principal (optional)—can be defined for the connection factory
via the security-principal-map. By specifying an initiating-principal value of ‘*’
and a corresponding resource-principal, the defined
resource-principal will be utilized whenever the current identity is not
matched elsewhere in the map.

resource-username (optional)—username identified with the
resource-principal. Used when allocating managed connections and
connection handles.

resource-password (optional)—password identified with the
resource-principal. Used when allocating managed connections and
connection handles.
Programming WebLogic J2EE Connectors A-23

A weblogic-ra.xml Deployment Descriptor Elements
A-24 Programming WebLogic J2EE Connectors

APPENDIX
A Troubleshooting

Cannot Map a ManagedConnectionFactory

BEA WebLogic Server writes the following message to the server log file:

Listing A-1 Cannot Map a ManagedConnectionFactory...

Cannot map a ManagedConnectionFactory to a Connection pool. Ensure
that the MCF’s hashcode() and equals() methods are implemented
properly.

Causes and Workarounds

This exception occurs during a getConnection() method call from an application
component to a resource adapter and can occur due to the following reasons:

Remote Java Virtual Machine (JVM). The application component is executing in
a different JVM than the one that is hosting the resource adapter.

Improper implementation of ManagedConnectionFactory
Programming WebLogic J2EE Connectors A-1

A Troubleshooting
Remote JVM

As currently specified, the J2EE Connector Architecture does not provide for remote
access. None of the defined interfaces are remote, and the architected system contracts
presume a local relationship between a ManagedConnectionFactory and a Connection
Manager.

As a result, you must deploy your application so that the application components are
hosted in the same Java Virtual Machine as your resource adapters.

Improper Implementation of ManagedConnectionFactory

WebLogic Server depends on the hashCode() and equals() methods of the
resource adapter's ManagedConnectionFactory when WebLogic Server is managing
the connections to the resource adapter. The server uses both these methods to identify
a unique instance of a ManagedConnectionFactory. As a result, you need to be aware
of a few things when implementing these methods in your
ManagedConnectionFactory.

For a given instance of a ManagedConnectionFactory, its hashCode() method must
always return the same value throughout the entire lifetime of that
ManagedConnectionFactory. This begins when the associated resource adapter is
deployed and ends when it is undeployed.

You must carefully write the equals() method of a ManagedConnectionFactory to
distinguish between different instances of ManagedConnectionFactory. You are free
to use class or instance data that can change during the lifetime of the resource adapter
in the equals() method. This freedom to use modifiable data in the equals()
method is new with WebLogic Server 7.0. Prior to the 7.0 release, you were restricted
from doing this. BEA has changed the way WebLogic Server stores objects, such as
ManagedConnectionFactory objects, in its JNDI tree.

Prior to the 7.0 release, WebLogic Server stored serialized copies of objects in the
JNDI tree. For example, when a resource adapter was deployed, an entire copy of its
ManagedConnectionFactory object was serialized and stored in the WebLogic Server
JNDI tree. The entire state of that object at that time, including the values of all its data
members, was copied and stored. Later, when a connection request was made to that
resource adapter, WebLogic Server would use the ManagedConnectionFactory passed
along in the connection request to try to locate the connection pool to which it had
earlier assigned the deployed ManagedConnectionFactory. If the state of the
ManagedConnectionFactory object had changed between deploy time and connection
request time, and if this state was reflected in the behavior of the equals() method,
A-2 Programming WebLogic J2EE Connectors

Causes and Workarounds
then the two objects (the one copied into the JNDI tree at deploy time and the one
presented with the connection request) were actually different objects, and WebLogic
disallowed the connection request.

This is no longer a problem because WebLogic Server stores references to objects in
its JNDI tree instead of copies of the objects. Now, when a resource adapter is
deployed, only a reference to its ManagedConnectionFactory object is stored into
JNDI. Later, when the connection request is made and WebLogic Server uses the
stored reference to the deployed ManagedConnectionFactory object, it finds the same
object that is now being passed along in the connection request. An invocation of the
object's equals() method operates on the current state of the object, and it does not
matter if the state of the object has changed since deploy time.
Programming WebLogic J2EE Connectors A-3

A Troubleshooting
A-4 Programming WebLogic J2EE Connectors

Index

Symbols
.ear file

including a resource adapter in 7-8
.rar file 1-4

automatic generation of the
weblogic-ra.xml file 5-9

directory format 7-2
modifying an existing 5-5
packaging 7-4
specifying transaction levels 3-3

A
Administration Console

deploying resource adapters 7-7
monitoring connection pools 4-6
using the deployment descriptor editor

A-4
application.xml file 7-9
application-managed sign-on 2-2
architecture 1-6

B
black box example 1-12

C
capacity-increment element 4-3
client considerations 8-1

connection and ConnectionFactory 8-2
obtaining a connection in a managed

application 8-3
obtaining a connection in a

non-managed application 8-5
obtaining the ConnectionFactory 8-3

client-JNDI interaction 8-3
common client interface (CCI) 1-2, 1-6, 1-8,

8-2
components

common client interface (CCI) 1-6, 1-8
packaging and deployment interface 1-9
packaging and deployment interfaces

1-6
system-level contracts 1-6, 1-7
WebLogic J2EE Connector Architecture

1-6
configuration 5-1

automatic generation of the
weblogic-ra.xml file 5-9

configuring the ra-link-ref element 5-10
modifying an existing resource adapter

5-5
packaging resource adapters 7-4
password converter tool 5-13
ra.xml file 5-7
security principal map 5-11
transaction level type 5-14
weblogic-ra.xml file 5-7

connection
configuring properties 4-2
leak detection 4-5
obtaining in a non-managed application
Programming WebLogic J2EE Connectors I-i

8-5
connection management 1-8, 4-1, 6-2, 8-2

configuring connection properties 4-2
controlling connection pool growth 4-4
controlling system resource usage 4-4
detecting connection leaks 4-5
error logging 4-11
extended features 4-2
tracing facility 4-11

connection pool
controlling growth 4-4
monitoring using the Console 4-6

connection-cleanup-frequency element 4-5,
A-20

connection-duration-time element 4-5, A-20
ConnectionFactory 8-2

obtaining (client-JNDI interaction) 8-3
obtaining a connection in a managed

application 8-3
connection-factory-name element 5-9
ConnectionManager 8-5
container 1-2
container-managed sign-on 2-2

using 2-8
customer support contact information xi

D
default resource principal 2-9
deployment

options, for resource adapters 7-5
overview 7-5
resource adapter names 7-6
using the Administration Console 7-7

deployment descriptors 7-3
basic conventions for manually editing

A-2
DOCTYPE header information A-2
editing A-4
weblogic-ra.xml elements A-1

diagram of WebLogic J2EE Connector

Architecture 1-6
DOCTYPE entry 7-8
document type definition (DTD)

validation A-3
weblogic-ra.xml file A-7

documentation, where to find it x

E
enterprise applications

including a resource adapter in 7-8
enterprise information system (EIS) 1-2
error logging 4-11
example, WebLogic J2EE Connector

Architecture 1-12
extended connection management

features 4-2

H
hierarchy diagram

weblogic-ra.xml elements A-15

I
implementation overview

WebLogic J2EE Connector Architecture
1-5

initial-capacity element 4-3
initiating-principal element 2-8, 5-11, 5-12,

A-22, A-23

J
J2EE connector (see resource adapter) 1-3
J2EE Connector Specification, Version 1.0,

Proposed Final Draft 2 2-7
jar file 7-3
jndi-name element A-17
JTA XAResource-based contract 3-4
I-ii Programming WebLogic J2EE Connectors

L
local transaction

management contract 3-4
support 3-2, 3-4

log-filename element 4-11, A-21
logging-enabled element 4-11, A-21

M
managed environment 1-3
ManagedConnections

minimizing run-time performance costs
4-3

manually editing XML deployment files A-2
map-config-property element 4-2, A-21
map-config-property-name element 4-2
map-config-property-value element 4-2,

A-22
map-entry element A-22
max-capacity element 5-10, A-19
maximum-capacity element 4-4
monitoring

connection pools 4-6

N
native libraries 7-3
native-libdir element A-18
no transaction support 3-4
non-managed environment 1-3

O
overview, WebLogic J2EE Connector

Architecture 1-1

P
packaging

and deployment interface 1-6, 1-9
password converter tool 2-10

instructions for using 5-13
security hint 5-14
syntax 5-13

pool-params element A-18
printing product documentation x

R
ra.xml file 1-4, 4-2

configuring 5-7
DOCTYPE header A-3
specifying the transaction level support

3-3
ra-link-ref element 5-10, A-18
resource adapters 1-4

connection management 6-2
creating, main steps 5-3
deploying using the Administration

Console 7-7
deployment descriptors 7-3
deployment names 7-6
deployment options 7-5
deployment overview 7-5
including in an enterprise application

(.ear file) 7-8
jar files 7-3
modifying an existing 5-5
modifying, main steps 5-3
native libraries 7-3
packaging 7-4
security management 6-3
structure 7-2
transaction management 6-3
writing J2EE Connector

Architecture-compliant
resource adapters 6-1

resource manager 1-4
resource-password element A-23
resource-principal element 2-8, 5-12, A-22,

A-23
default 2-9
Programming WebLogic J2EE Connectors I-iii

resource-username element A-23

S
security 2-1

application-managed sign-on 2-2
configuring the security principal map

5-11
container-managed sign-on 2-2
hint 5-14
management 1-8, 6-3
password converter tool 2-10, 5-13
principal map 2-7

security principal map 2-8
configuring 5-11
default resource principal 2-9
example entries 5-12
using container-managed sign-on 2-8

security-principal-map element 5-11, A-22,
A-23

service provider interface (SPI) 1-4
shrink-period-minutes element A-19
Sun Microsystems J2EE Platform

Specification, Version 1.3 1-5
support

technical xi
system contract 1-4
system resource, controlling usage 4-4
system-level contracts 1-6, 1-7

security management 1-8
transaction management 1-8

T
terminology 1-1
tracing facility 4-11
transaction levels

configuring 5-14
local transaction support 3-2
local transactions 3-4
no transaction support 3-2, 3-4

specifying in the .rar configuration 3-3
XA transaction support 3-2, 3-4

transaction management 1-8, 3-1, 6-3
contract 3-3
supported transaction levels 3-2

W
WebLogic J2EE Connector Architecture 1-3

automatic generation of the
weblogic-ra.xml file 5-9

black box example 1-12
client considerations 8-1
common client interface (CCI) 8-2
components 1-6
configuration 5-1
connection management 4-1
ConnectionFactory 8-2
diagram 1-6
implementation overview 1-5
overview 1-1
password converter tool 2-10
security 2-1
security principal map 2-7
terminology 1-1
transaction management 3-1
writing compliant resource adapters 6-1

WebLogic Server
extended connection management

features 4-2
weblogic-ra.xml file 1-5, 4-11, A-1

automatic generation of 5-9
configuring 5-7
default values 5-9
DOCTYPE header A-3
document type definition (DTD) A-7
element descriptions A-17
element hierarchy diagram A-15
manually editing XML deployment files

A-2
I-iv Programming WebLogic J2EE Connectors

X
XA transaction support 3-2, 3-4
XML deployment files, manually editing A-2
Programming WebLogic J2EE Connectors I-v

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic J2EE Connectors
	J2EE Connector Architecture Terminology
	Overview of the BEA WebLogic J2EE Connector Architecture Implementation
	J2EE Connector Architecture Components
	Figure 1�1 J2EE Connector Architecture
	System-level Contracts
	Common Client Interface (CCI)
	Packaging and Deployment
	Figure 1�2 Packaging and Deployment

	Enhancements in This Release
	Additional Classloading Support
	Secure Password Credential Storage
	Flexible Connection Leak Detection
	Security Policy Processing of an ra.xml Specification

	Black Box Example

	2 Security
	Container-Managed and Application-Managed Sign-on
	Application-Managed Sign-on
	Container-Managed Sign-on
	Password Credential Mapping Mechanism
	1. Instantiate a weblogic.security.Service.EISResource object as follows:
	2. Obtain the Initiating Principal for the connection request.
	3. Obtain the Credentials for that Initiating Principal as follows:
	4. Instantiate a javax.security.auth.Subject.
	5. Add the Credentials to the private set in the Subject as follows:
	Authentication Mechanisms
	Upgrading Security Principle Mappings
	Defining Users and Groups
	Users
	Groups

	Deprecated Security Principal Map Mechanism
	Using Container-Managed Sign-On
	Default Resource Principal

	Deprecated Password Converter Tool
	Security Policy Processing

	3 Transaction Management
	Supported Transaction Levels
	Specifying the Transaction Levels in the RAR Configuration
	Transaction Management Contract

	4 Connection Management
	Configuring Connection Properties
	BEA WebLogic Server Extended Connection Management Features
	Minimizing the Run-Time Performance Cost Associated with Creating ManagedConnections
	Controlling Connection Pool Growth
	Controlling System Resource Usage
	Detecting Connection Leaks
	Garbage Collector Method
	Idle Timer Method
	Deprecation of Previously Used Elements

	Monitoring Connections Using the Console
	Getting Started
	Method One
	1. In the left pane of the Console, select Deployments > Connectors to display a list of connectors.
	2. Right-click a connector, and select Monitor all Connector Connection Pool Runtimes from the po...

	Method Two
	1. In the right pane of the Console, under Deployments, select Connectors.
	2. Under the Name column, click the connector to monitor.
	3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

	Viewing Leaked Connections
	Method One
	1. In the left pane of the Console, select Deployments > Connectors to display a list of connectors.
	2. Right-click a connector, and select View Leaked Connections from the pop-up menu.
	3. Under the Connection Leak Profiles column, click the number of leaked connections pertaining t...

	Method Two
	1. In the right pane of the Console, under Deployments, select Connectors.
	2. Under the Name column, click the name of the connector to monitor.
	3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.
	4. Under the Connection Leak Profiles column, click the number of leaked connections pertaining t...

	Viewing Idle Connections
	Method One
	1. In the left pane of the Console, select Deployments > Connectors to display a list of connectors.
	2. Right-click a connector, and select View Idle Connections from the pop-up menu.
	3. Under the Connection Idle Profiles column, click the number of idle connections pertaining to ...

	Method Two
	1. In the right pane of the Console, under Deployments, select Connectors.
	2. Under the Name column, click the name of the connector to monitor.
	3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.
	4. Under the Connection Idle Profiles column, click the number of idle connections pertaining to ...

	Deleting Connections
	1. In the right pane of the Console, under Deployments, select Connectors.
	2. Under the Name column, click the name of the connector to monitor.
	3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.
	4. Under the Connections column, click the number of connections pertaining to the selected conne...
	5. Click the Delete button to the right of a connection to delete it.

	Error Logging and Tracing Facility
	For more information, see Appendix�A, “weblogic-ra.xml Deployment Descriptor Elements.”

	5 Configuration
	Resource Adapter Developer Tools
	ANT Tasks to Create Skeleton Deployment Descriptors
	Resource Adapter Deployment Descriptor Editor
	XML Editor
	Configuring Resource Adapters
	Resource Adapter Overview
	Creating and Modifying Resource Adapters: Main Steps
	Creating a New Resource Adapter Archive (RAR)
	1. Write the Java code for the various classes required by resource adapter (ConnectionFactory, C...
	2. Compile the Java code for the interfaces and implementation into class files.
	3. Package the Java classes into a Java archive (JAR). For more information on packaging, see Cha...
	4. Create the resource adapter-specific deployment descriptors:
	5. Create a resource adapter archive (RAR).
	a. The first step is to create an empty staging directory.
	b. Place the RAR containing the resource adapter Java classes in the staging directory.
	c. Then, place the deployment descriptors in a subdirectory called META-INF.
	d. Next, create the resource adapter archive by executing a jar command like the following in the...
	6. Deploy the RAR on WebLogic Server or include it in an enterprise archive (EAR) to be deployed ...

	Modifying an Existing Resource Adapter Archive (RAR)
	1. Create a temporary directory to stage the resource adapter:
	2. Copy the resource adapter that you will deploy into the temporary directory:
	3. Extract the contents of the resource adapter archive:
	4. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor for ...
	5. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The META-I...
	6. Create the resource adapter archive:
	7. Deploy the resource adapter in WebLogic Server. For more information on deploying a resource a...

	Configuring the ra.xml File
	Configuring the weblogic-ra.xml File
	Automatic Generation of the weblogic-ra.xml File
	Listing 5-1 weblogic-ra.xml Default Values

	Configuring the ra-link-ref Element

	Configuring the Deprecated Security Principal Map Mechanism
	Listing 5-2 Example <initiating-principal> and <resource-principal> Entry

	Using the Deprecated Password Converter Tool
	How to Execute
	Listing 5-3 Converter Tool Syntax

	Security Hint
	Configuring the Transaction Level Type

	6 Writing J2EE Connector Architecture-Compliant Resource Adapters
	Connection Management
	Security Management
	Transaction Management

	7 Packaging and Deploying Resource Adapters
	Packaging Resource Adapters
	Packaging Directory Structure
	Listing 7-1 Resource Adapter Directory Structure

	Packaging Considerations
	Packaging Limitations
	Packaging Resource Adapters Archives (RARs)
	1. Create a temporary staging directory anywhere on your hard drive.
	2. Compile or copy the resource adapter Java classes into the staging directory.
	3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top level of the ...
	4. Create a META-INF subdirectory in the staging directory.
	5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for the re...
	6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add entries fo...
	7. When the resource adapter classes and deployment descriptors are set up in the staging directo...

	Deploying Resource Adapters
	Deployment Options
	Deployment Descriptor
	Resource Adapter Deployment Names
	Using the weblogic.Deployer Utility
	Using the Administration Console
	Including a Resource Adapter in an Enterprise Application Archive (EAR)
	1. Place the RAR inside the EAR just as you would a Web Application Archive (WAR) or JAR.
	2. Create a valid application.xml and place it in the META-INF directory of the EAR.
	Listing 7-2 DOCTYPE Entry
	Listing 7-3 application.xml File
	3. Deploy the Enterprise Application in WebLogic Server.

	8 Client Considerations
	Common Client Interface (CCI)
	ConnectionFactory and Connection
	Obtaining the ConnectionFactory (Client-JNDI Interaction)
	Obtaining a Connection in a Managed Application
	1. The application assembler or component provider specifies the connection factory requirements ...
	2. The person deploying the resource adapter sets the configuration information for the resource ...
	3. The application server uses a configured resource adapter to create physical connections to th...
	4. The application component looks up a connection factory instance in the component’s environmen...
	Listing 8-1 JNDI Lookup
	5. The application component invokes the getConnection method on the connection factory to obtain...
	6. The application component uses the returned connection to access the underlying EIS.
	7. After the component finishes with the connection, it closes the connection using the close met...
	8. If an application component fails to close an allocated connection after its use, that connect...

	Obtaining a Connection in a Non-Managed Application
	1. The application client calls a method on the javax.resource.cci.ConnectionFactory instance (re...
	2. The ConnectionFactory instance delegates the connection request from the application to the de...
	3. The ConnectionManager instance creates a new physical connection to the underlying EIS instanc...
	4. The ManagedConnectionFactory instance handles the createManagedConnection method by creating a...
	5. The ConnectionManager instance calls the ManagedConnection.getConnection method to get an appl...
	6. The ConnectionManager instance returns the connection handle to the ConnectionFactory instance...

	A weblogic-ra.xml Deployment Descriptor Elements
	Manually Editing XML Deployment Files
	Basic Conventions
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation

	Using the Console Deployment Descriptor Editor to Edit Files
	Using WebLogic Builder to Edit Deployment Descriptors
	weblogic-ra.xml DTD
	weblogic-ra. xml Element Hierarchy Diagram
	weblogic-ra.xml Element Descriptions
	weblogic-connection-factory-dd (required)
	connection-factory-name (required)
	description (optional)
	jndi-name (required)
	ra-link-ref (optional)
	native-libdir (required if native libraries present)
	pool-params (optional)
	logging-enabled (optional)
	log-filename (optional)
	map-config-property (optional, zero or more)
	security-principal-map (optional)

	A Troubleshooting
	Cannot Map a ManagedConnectionFactory
	Causes and Workarounds
	Remote JVM
	Improper Implementation of ManagedConnectionFactory

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

