
BEAWebLogic
Server™

Introduction to
WebLogic Server and
WebLogic Express™

Release 7.0
Document Revised: September 3, 2002
Part Number: 860-001001-011

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy the
software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from
BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License Agreement
and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 52.227-19; subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER,
BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and
How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Introduction to WebLogic Server v

Contents

About This Document
Audience . ix

e-docs Web Site . ix

How to Print the Document . x

Contact Us!. x

Documentation Conventions . x

1. Introduction to WebLogic Server
The WebLogic Server Solution. 1-2

J2EE Platform . 1-2

Application Deployment Across Distributed, Heterogeneous Environments. 1-2

About WebLogic Express . 1-4

WebLogic Server Application Architecture . 1-4

Software Component Tiers. 1-5

Client Tier Components . 1-6

Middle Tier Components . 1-7

Backend Tier Components . 1-7

Application Logic Layers . 1-8

Presentation Logic Layer . 1-9

Web Browser Clients. 1-9

Non-Browser Clients. 1-10

Web Service Clients . 1-11

vi Introduction to WebLogic Server

Business Logic Layer. .1-11

Entity Beans. .1-11

Session Beans. .1-12

Message-Driven Beans .1-13

Application Services Layer .1-13

XML Implementation .1-13

Network Communications Technologies .1-13

Data and Access Services .1-17

Messaging Technologies .1-20

WebLogic Server Users .1-22

Evaluator .1-22

Installer .1-22

System Administrator . 1-24

Developer/Engineer. 1-25

2. WebLogic Server Services
WebLogic Server as a Web Server .2-1

How WebLogic Server Functions as a Web Server .2-1

Web Server Features .2-2

Virtual Hosting .2-2

Using Proxy Server Configurations .2-2

Load Balancing .2-2

Failover and Replication. .2-3

WebLogic Server Security Service .2-3

WebLogic Server Clusters .2-6

Benefits of Using Clusters. .2-6

Cluster Architecture .2-6

How a WebLogic Server Cluster Is Defined in a Network .2-7

Introduction to WebLogic Server vii

How WebLogic Servers in a Cluster Communicate . 2-7

Clustered Services . 2-8

Server Management and Monitoring . 2-9

Administration Server . 2-9

Administration Console . 2-9

Index

viii Introduction to WebLogic Server

Introduction to WebLogic Server ix

About This Document

This document introduces basic concepts relating to the Java 2 Platform, Enterprise Edition (J2EE)
from Sun Microsystems, Inc. It also outlines BEA WebLogic Server™ features, and describes the
architecture of J2EE-compliant applications that run on the WebLogic Server platform.

The document is organized as follows:

Chapter 1, “Introduction to WebLogic Server,” introduces WebLogic Server and describes BEA
WebLogic Server products.

Chapter 2, “WebLogic Server Services,” outlines the basic services that WebLogic Server
provides, including Web, security, clustering, and management services.

Audience
This document is written for application developers who want to build e-commerce applications using
the Java 2 Platform, Enterprise Edition (J2EE) from Sun Microsystems. It is assumed that readers
know Web technologies, object-oriented programming techniques, and the Java programming
language.

Non-developers will also benefit from reading this document, which describes the place of the
application server in enterprise software systems, the basic requirements and architecture of J2EE
applications, and how WebLogic Server fulfills these requirements.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home page,
click on Product Documentation.

About Th is Document

x Introduction to WebLogic Server

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using the
File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page on the
e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe Acrobat Reader
and print the entire document (or a portion of it) in book format. To access the PDFs, open the
WebLogic Server documentation Home page, click Download Documentation, and select the
document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at http://www.adobe.com.

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at docsupport@bea.com if
you have questions or comments. Your comments will be reviewed directly by the BEA professionals
who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as the
title and document date of your documentation. If you have any questions about this version of BEA
WebLogic Server, or if you have problems installing and running BEA WebLogic Server, contact BEA
Customer Support through BEA WebSupport at http://www.bea.com. You can also contact Customer
Support by using the contact information provided on the Customer Support Card, which is included
in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Introduction to WebLogic Server xi

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also indicates
text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

About Th is Document

xii Introduction to WebLogic Server

... Indicates one of the following in a command line:

• An argument can be repeated several times in the command line.

• The statement omits additional optional arguments.

• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

Introduction to WebLogic Server 1-1

C H A P T E R 1

Introduction to WebLogic Server

The following sections provide an overview of the WebLogic Server e-commerce platform:

“The WebLogic Server Solution” on page 1-2

“About WebLogic Express” on page 1-4

“WebLogic Server Application Architecture” on page 1-4

“Software Component Tiers” on page 1-5

“Application Logic Layers” on page 1-8

“WebLogic Server Users” on page 1-22

In t roduct ion to WebLog ic Se rve r

1-2 Introduction to WebLogic Server

The WebLogic Server Solution
Today’s business environment demands Web and e-commerce applications that accelerate your entry
into new markets, help you find new ways to reach and retain customers, and allow you to introduce
new products and services quickly. To build and deploy these new solutions, you need a proven,
reliable e-commerce platform that can connect and empower all types of users while integrating your
corporate data, mainframe applications, and other enterprise applications in a powerful, flexible,
end-to-end e-commerce solution. Your solution must provide the performance, scalability, and high
availability needed to handle your most critical enterprise-scale computing.

As the industry-leading e-commerce transaction platform, WebLogic Server allows you to quickly
develop and deploy reliable, secure, scalable and manageable applications. It manages system-level
details so you can concentrate on business logic and presentation.

J2EE Platform
WebLogic Server implements Java 2 Platform, Enterprise Edition (J2EE) version 1.3 technologies
(http://java.sun.com/j2ee/sdk_1.3/index.html). J2EE is the standard platform for
developing multitier enterprise applications based on the Java programming language. The
technologies that make up J2EE were developed collaboratively by Sun Microsystems and other
software vendors, including BEA Systems.

J2EE applications are based on standardized, modular components. WebLogic Server provides a
complete set of services for those components and handles many details of application behavior
automatically, without requiring programming.

Note: Because J2EE is backward compatible, you can still run J2EE 1.2 on WebLogic Server 7.0.

Application Deployment Across Distributed, Heterogeneous
Environments
WebLogic Server provides essential features for developing and deploying mission-critical
e-commerce applications across distributed, heterogeneous computing environments. These
features include the following:

Standards leadership—Comprehensive enterprise Java support to ease the implementation and
deployment of application components. WebLogic Server is the first independently developed
Java application server to achieve J2EE certification. In addition, BEA actively participates in
the development of J2EE and Web Services standards that drive innovation and advancement in
Java and XML technology.

http://java.sun.com/j2ee/sdk_1.3/index.html

The WebLogic Se rver So lut ion

Introduction to WebLogic Server 1-3

Rich client options—WebLogic Server supports Web browsers and other clients that use HTTP;
Java clients that use RMI (Remote Method Invocation) or IIOP (Internet Inter-ORB Protocol);
SOAP clients on any SOAP-enabled plaftorm; and mobile devices that use (WAP) Wireless
Access Protocol. Connectors from BEA and other companies enable virtually any client or
legacy application to work with a WebLogic Server application.

Flexible Web services—WebLogic Server provides a solid platform for deploying Web services as
components of a heterogeneous distributed application. Web services use a cross-platform,
cross-language data model (XML) to provide interoperability among application components on
diverse hardware and software platforms. Web services support user-defined data types and
one-way asynchronous operations. A Web service can intercept SOAP messages for further
processing. New Ant tasks automatically generate important components and package the
service into a deployable EAR file.

WebLogic Server 7.0 uses Web Services Description Language (WSDL) 1.1, an XML-based
specification, to describe Web services. WebLogic Web services support Simple Object Access
Protocol (SOAP) 1.1 and 1.2 as the message format and HTTP as a connection protocol.

Note: WebLogic Web services accept both SOAP 1.1 and 1.2 incoming requests, but produce
only SOAP 1.1 outgoing responses.

Enterprise e-business scalability—Efficient use and high availability of critical resources are
achieved through Enterprise JavaBean business components and mechanisms such as WebLogic
Server clustering for dynamic Web pages, backend resource pooling, and connection sharing.

Robust administration—WebLogic Server offers a Web-based Administration Console for
configuring and monitoring WebLogic Server services. A command-line interface for
configuration makes it convenient to administer WebLogic Servers with scripts.

E-commerce-ready security—WebLogic Server provides Secure Sockets Layer (SSL) support for
encrypting data transmitted across WebLogic Server, clients, and other servers. User
authentication and authorization for all WebLogic Server services are provided through roles
and security providers. External security stores, such as Lightweight Directory Access Protocol
(LDAP) servers, can still be adapted to WebLogic realms, enabling single sign-on for the
enterprise. The Security Service Provider Interface makes it possible to extend WebLogic
Security services and to implement WebLogic Security features in applications.

Maximum development and deployment flexibility—WebLogic Server provides tight integration
with and support for leading databases, development tools, and other environments.

Bi-directional functional interoperability between Java/J2EE objects and Microsoft ActiveX
components—BEA WebLogic jCOM provides a run-time component that implements both
Component Object Model (COM)/Distributed Component Object Model (DCOM) and Remote

In t roduct ion to WebLog ic Se rve r

1-4 Introduction to WebLogic Server

Method Invocation (RMI) distributed components infrastructures. This makes the objects look
like native objects for each environment.

Java Message Service (JMS)—An enterprise messaging system, also referred to as
message-oriented middleware (MOM), enables applications to communicate with one another
through the exchange of messages. A message is a request, report, and/or event that contains
information needed to coordinate communication between different applications. A message
provides a level of abstraction, allowing you to separate the details about the destination system
from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging systems.
Specifically, JMS enables Java applications sharing a messaging system to exchange messages,
and it simplifies application development by providing a standard interface for creating,
sending, and receiving messages.

About WebLogic Express
BEA WebLogic Express™ is a scalable platform that serves dynamic content and data to Web and
wireless applications. WebLogic Express incorporates the presentation and database access services
from WebLogic Server, enabling developers to create interactive and transactional e-business
applications quickly and to provide presentation services for existing applications.

WebLogic Express offers many services and APIs available with WebLogic Server, including WebLogic
JDBC features, JavaServer Pages (JSP), servlets, Remote Method Invocation (RMI), and Web server
functionality.

WebLogic Express differs from WebLogic Server in that WebLogic Express does not provide Enterprise
JavaBeans (EJB), Java Message Services (JMS), or the two-phase commit protocol for transactions.

WebLogic Server Application Architecture
WebLogic Server is an application server: a platform for developing and deploying multitier
distributed enterprise applications. WebLogic Server centralizes application services such as Web
server functionality, business components, and access to backend enterprise systems. It uses
technologies such as caching and connection pooling to improve resource use and application
performance. WebLogic Server also provides enterprise-level security and powerful administration
facilities.

WebLogic Server operates in the middle tier of a multitier (or n-tier) architecture. A multitier
architecture determines where the software components that make up a computing system are
executed in relation to each other and to the hardware, network, and users. Choosing the best location
for each software component lets you develop applications faster; eases deployment and

Sof tware Component T i e rs

Introduction to WebLogic Server 1-5

administration; and provides greater control over performance, utilization, security, scalability, and
reliability.

WebLogic Server implements J2EE, the Java Enterprise standard. Java is a network-savvy,
object-oriented programming language, and J2EE includes component technologies for developing
distributed objects. This functionality adds a second dimension to the WebLogic Server application
architecture—a layering of application logic, with each layer selectively deployed among WebLogic
Server J2EE technologies.

The next two sections describe these two views of WebLogic Server architecture: software tiers and
application logic layers.

Software Component Tiers
The software components of a multitier architecture consist of three tiers:

The client tier contains programs executed by users, including Web browsers and
network-capable application programs. These programs can be written in virtually any
programming language.

The middle tier contains WebLogic Server and other servers that are addressed directly by
clients, such as existing Web servers or proxy servers.

The backend tier contains enterprise resources, such as database systems, mainframe and
legacy applications, and packaged enterprise resource planning (ERP) applications.

Client applications access WebLogic Server directly, or through another Web server or proxy server.
WebLogic Server generally connects with backend services on behalf of clients. However, clients may
directly access backend services using a multitier JDBC driver.

Figure 1-1 illustrates the three tiers of the WebLogic Server architecture.

Figure 1-1 Three-Tier Architecture

In t roduct ion to WebLog ic Se rve r

1-6 Introduction to WebLogic Server

Client Tier Components
WebLogic Server clients use standard interfaces to access WebLogic Server services. WebLogic Server
has complete Web server functionality, so a Web browser can request pages from WebLogic Server
using the Web’s standard HTTP protocol. WebLogic Server servlets and JavaServer Pages (JSPs)
produce the dynamic, personalized Web pages required for advanced e-commerce Web applications.

Client programs written in Java may include highly interactive graphical user interfaces built with
Java Swing classes. They can also access WebLogic Server services using standard J2EE APIs.

All these services are also available to Web browser clients by deploying servlets and JSP pages in
WebLogic Server.

CORBA-enabled client programs written in Visual Basic, C++, Java, and other programming
languages can execute WebLogic Server Enterprise JavaBeans and RMI (Remote Method Invocation)
classes using WebLogic RMI-IIOP. Client applications written in any language with support for the
HTTP protocol can access any WebLogic Server service through a servlet.

Sof tware Component T i e rs

Introduction to WebLogic Server 1-7

Middle Tier Components
The middle tier includes WebLogic Server and other Web servers, firewalls, and proxy servers that
mediate traffic between clients and WebLogic Server. The Nokia WAP server, part of the BEA mobile
commerce solution, is an example of another middle tier server that provides connectivity between
wireless devices and WebLogic Server.

Applications based on a multitier architecture require reliability, scalability, and high performance in
the middle tier. The application server you select for the middle tier is, therefore, critical to the
success of your system.

The WebLogic Server cluster option allows you to distribute client requests and back-end services
among multiple cooperating WebLogic Servers. Programs in the client tier access the cluster as if it
were a single WebLogic Server. As the workload increases, you can add WebLogic Servers to the
cluster to share the work. The cluster uses a selectable load-balancing algorithm to choose a WebLogic
Server in the cluster that is capable of handling the request.

When a request fails, another WebLogic Server that provides the requested service can take over.
Failover is transparent whenever possible, which minimizes the amount of code that must be written
to recover from failures. For example, servlet session state can be replicated on a secondary WebLogic
Server so that if the WebLogic Server that is handling a request fails, the client’s session can resume
uninterrupted on the secondary server. WebLogic EJB, JMS, JDBC, and RMI services are all
implemented with clustering capabilities.

Backend Tier Components
The backend tier contains services that are accessible to clients only through WebLogic Server.
Applications in the backend tier tend to be the most valuable and mission-critical enterprise
resources. WebLogic Server protects them by restricting direct access by end users. With technologies
such as connection pools and caching, WebLogic Server uses back-end resources efficiently and
improves application response.

Backend services include databases, enterprise resource planning (ERP) systems, mainframe
applications, legacy enterprise applications, and transaction monitors. Existing enterprise
applications can be integrated into the backend tier using the Java Connector Architecture (JCA)
specification from Sun Microsystems. WebLogic Server makes it easy to add a Web interface to an
integrated backend application.

A database management system is the most common backend service, required by nearly all WebLogic
Server applications. WebLogic EJB and WebLogic JMS typically store persistent data in a database in
the backend tier.

In t roduct ion to WebLog ic Se rve r

1-8 Introduction to WebLogic Server

A JDBC connection pool, defined in WebLogic Server, opens a predefined number of database
connections. Once opened, database connections are shared by all WebLogic Server applications that
need database access. The expensive overhead associated with establishing a connection is incurred
only once for each connection in the pool, instead of once per client request. WebLogic Server
monitors database connections, refreshing them as needed and ensuring reliable database services
for applications.

WebLogic Enterprise Connectivity, which provides access to BEA WebLogic Enterprise™ systems,
and Jolt® for WebLogic Server, which provides access to BEA Tuxedo® systems, also use connection
pools to enhance system performance.

Application Logic Layers
WebLogic Server implements J2EE component technologies and services. J2EE component
technologies include servlets, JSP Pages, and Enterprise JavaBeans. J2EE services include access to
standard network protocols, database systems, and messaging systems. To build a WebLogic Server
application, you must create and assemble components, using the service APIs when necessary.

Components are executed in the WebLogic Server Web container or EJB container. Containers
provide the life cycle support and services defined by the J2EE specifications so that the components
you build do not have to handle underlying details.

Web components provide the presentation logic for browser-based J2EE applications. EJB
components encapsulate business objects and processes. Web applications and EJBs are built on J2EE
application services, such as JDBC, JMS (Java Messaging Service), and JTA (Java Transaction API).

Figure 1-2 illustrates WebLogic Server component containers and application services.

Appl i cat ion Log ic Layers

Introduction to WebLogic Server 1-9

Figure 1-2 Application Logic Layers

The following sections discuss the presentation logic, business logic, and application services layers.

Presentation Logic Layer
The presentation layer includes an application’s user interface and display logic. Most J2EE
applications use a Web browser on the client machine because it is much easier than deploying client
programs to every user’s computer. In this case, the presentation logic is the WebLogic Server Web
container. Client programs written in any programming language, however, must contain either logic
to render HTML or their own presentation logic. A client that accesses a Web service must assemble
a SOAP message that describes the Web service it wants to invoke, and include the necessary data in
the body of the SOAP message.

Web Browser Clients
Web-based applications built with standard Web technologies are easy to access, maintain, and port.
Web browser clients are standard for e-commerce applications.

In Web-based applications, the user interface is represented by HTML documents, JavaServer Pages
(JSP), and servlets. The Web browser contains the logic to render the Web page on the user’s
computer from the HTML description.

JavaServer Pages (JSP) and servlets are closely related. Both produce dynamic Web content by
executing Java code on WebLogic Server each time they are invoked. The difference between them is

In t roduct ion to WebLog ic Se rve r

1-10 Introduction to WebLogic Server

that JSP is written with an extended version of HTML, and servlets are written with the Java
programming language.

JSP is convenient for Web designers who know HTML and are accustomed to working with an HTML
editor or designer. Servlets, written entirely in Java, are more suited to Java programmers than to Web
designers. Writing a servlet requires some knowledge of the HTTP protocol and Java programming. A
servlet receives the HTTP request in a request object and typically writes HTML or XML in its response
object.

JSP pages are converted to servlets before they are executed on WebLogic Server, so ultimately JSP
pages and servlets are different representations of the same thing. JSP pages are deployed on
WebLogic Server the same way an HTML page is deployed. The .jsp file is copied into a directory
served by WebLogic Server. When a client requests a .jsp file, WebLogic Server checks whether the
page has been compiled or has changed since it was last compiled. If needed, it calls the WebLogic
JSP compiler, which generates Java servlet code from the .jsp file, and then it compiles the Java
code to a Java class file.

Non-Browser Clients
A client program that is not a Web browser must supply its own code for rendering the user interface.
Non-browser clients usually contain their own presentation and rendering logic, depending on
WebLogic Server only for business logic and access to back-end services. This makes them more
difficult to develop and deploy and less suited for Internet-based e-commerce applications than
browser-based clients.

Client programs written in Java can use any WebLogic Server service over Java RMI (Remote Method
Invocation). RMI allows a client program to operate on a WebLogic Server object the same way it
would operate on a local object in the client. Because RMI hides the details of making calls over a
network, J2EE client code and server-side code are very similar.

Java programs can use the Java Swing classes to create powerful and portable user interfaces.
Although by using Java you can avoid portability issues, you cannot use WebLogic Server services over
RMI unless the WebLogic Server classes are installed on the client. This means that Java RMI clients
are not suited to e-commerce applications. They can be used effectively, however, in enterprise
applications in which an internal network makes installation and maintenance viable.

Client programs written in languages other than Java and Java client programs that do not use
WebLogic Server objects over RMI can access WebLogic Server using HTTP or RMI-IIOP.

HTTP is the standard protocol for the Web. It allows a client to make different types of requests to a
server and to pass parameters to the server. A servlet on WebLogic Server can examine client requests,
retrieve parameters from the request, and prepare a response for the client, using any WebLogic

Appl i cat ion Log ic Layers

Introduction to WebLogic Server 1-11

Server service. For example, a servlet might respond to a client program with an XML business
document. Thus an application can use servlets as gateways to other WebLogic Server services.

WebLogic RMI-IIOP allows CORBA-enabled programs to execute WebLogic Server enterprise beans
and RMI classes as CORBA objects. The WebLogic Server RMI and EJB compilers can generate IDL
(Interface Definition Language) for RMI classes and enterprise beans. IDL generated this way is
compiled to create skeletons for an ORB (Object Request Broker) and stubs for the client program.
WebLogic Server parses incoming IIOP requests and dispatches them to the RMI run-time system.

Web Service Clients
Client applications that invoke WebLogic Web services can be written using any technology: Java,
Microsoft .NET Toolkit, and so on. The client application assembles a SOAP (Simple Object Access
Protocol) message that describes the Web service it wants to invoke and includes all the necessary
data in the body of the SOAP message. The client then sends the SOAP message over HTTP/HTTPS to
WebLogic Server, which executes the Web service and sends a SOAP message back to the client over
HTTP/HTTPS.

For Java-based Web services clients, WebLogic Server also provides an optional Java client JAR file.
The JAR file includes everything a client application needs to invoke a WebLogic Web Service, such as
the WebLogic Web services Client API and WebLogic FastParser. Unlike other Java WebLogic Server
clients, you do not need to include the weblogic.jar file with Web services clients, thus making for
very thin client applications.

Business Logic Layer
Enterprise JavaBeans are the business logic components for J2EE applications. The WebLogic Server
EJB container hosts enterprise beans, providing life cycle management and services such as caching,
persistence, and transaction management.

There are three types of enterprise beans: entity beans, session beans, and message-driven beans. The
following sections describe each type in detail.

Entity Beans
An entity bean represents an object that contains data, such as a customer, an account, or an
inventory item. Entity beans contain data values and methods that can be invoked on those values.
The values are saved in a database (using JDBC) or some other data store. Entity beans can
participate in transactions involving other enterprise beans and transactional services.

In t roduct ion to WebLog ic Se rve r

1-12 Introduction to WebLogic Server

Entity beans are often mapped to objects in databases. An entity bean can represent a row in a table,
a single column in a row, or an entire table or query result. Associated with each entity bean is a
unique primary key used to find, retrieve, and save the bean.

An entity bean can employ one of the following:

Bean-managed persistence—the bean contains code to retrieve and save persistent values.

Container-managed persistence—the EJB container loads and saves values on behalf of the
bean.

When container-managed persistence is used, the WebLogic EJB compiler can generate JDBC support
classes to map an entity bean to a row in a database. Other container-managed persistence
mechanisms are available. For example, TopLink for WebLogic Foundation Library, from WebGain
(http://www.webgain.com), provides persistence for an object relational database.

Entity beans can be shared by many clients and applications. An instance of an entity bean can be
created at the request of any client, but it does not disappear when that client disconnects. It
continues to live as long as any client is actively using it. When the bean is no longer in use, the EJB
container may passivate it: that is, it may remove the live instance from the server.

Session Beans
A session bean is a transient EJB instance that serves a single client. Session beans tend to implement
procedural logic; they embody actions more than data.

The EJB container creates a session bean at a client’s request. It then maintains the bean as long as
the client maintains its connection to the bean. Sessions beans are not persistent, although they can
save data to a persistent store if needed.

A session bean can be stateless or stateful. Stateless session beans maintain no client-specific state
between calls and can be used by any client. They can be used to provide access to services that do not
depend on the context of a session, such as sending a document to a printer or retrieving read-only
data into an application.

A stateful session bean maintains state on behalf of a specific client. Stateful session beans can be
used to manage a process, such as assembling an order or routing a document through a workflow
process. Because they can accumulate and maintain state through multiple interactions with a client,
session beans are often the controlling objects in an application. Because they are not persistent,
session beans must complete their work in a single session and use JDBC, JMS, or entity beans to
record the work permanently.

http://www.webgain.com

Appl i cat ion Log ic Layers

Introduction to WebLogic Server 1-13

Message-Driven Beans
Message-driven beans, introduced in the EJB 2.0 specification, are enterprise beans that handle
asynchronous messages received from JMS Message Queues. JMS routes messages to a
message-driven bean, which selects an instance from a pool to process the message.

Message-driven beans are managed in the WebLogic Server EJB container. Because they are not
called directly by user-driven applications, they cannot be accessed from an application using an EJB
home. A user-driven application can, however, instantiate a message-driven bean indirectly by
sending a message to the bean’s JMS Queue.

Application Services Layer
WebLogic Server supplies the fundamental services that allow components to concentrate on business
logic without concern for low-level implementation details. It handles networking, authentication,
authorization, persistence, and remote object access for EJBs and servlets. Standard Java APIs
provide portable access to other services that an application can use, such as database and messaging
services.

XML Implementation
WebLogic Server consolidates Extensible Markup Language (XML) technologies applicable to
WebLogic Server and XML applications based on WebLogic Server. A simplified version of the
Standard Generalized Markup Language (SGML) markup language, XML describes the content and
structure of data in a document and is an industry standard for delivering content on the Internet.
Typically, XML is used as the data exchange format between J2EE applications and client
applications, or between components of a J2EE application. The WebLogic Server XML subsystem
supports the use of standard parsers, the WebLogic FastParser, the WebLogic PullParser, XSLT
transformers, and DTDs and XML schemas to process and convert XML files.

Network Communications Technologies
Client applications connect with WebLogic Server using standard networking protocols over TCP/IP.
WebLogic Server listens for connection requests at a network address that can be specified as part of
a Uniform Resource Identifier (URI).

A URI is a standardized string that specifies a resource on a network, including the Internet. It
contains a protocol specifier called a scheme, the network address of the server, the name of the
desired resource, and optional parameters. The URL you enter in a Web browser, for example,
http://www.bea.com/index.html, is the most familiar URI format.

In t roduct ion to WebLog ic Se rve r

1-14 Introduction to WebLogic Server

Web-based clients communicate with WebLogic Server using the HTTP protocol. Java clients connect
using Java RMI (Remote Method Invocation), which allows a Java client to execute objects in
WebLogic Server. CORBA-enabled clients access WebLogic Server RMI objects using RMI-IIOP, which
allows them to execute WebLogic Server objects using standard CORBA protocols.

In the following table, the scheme in a URI determines the protocol for network exchanges between
a client and WebLogic Server.

Table 1-1 Network Protocols

The following sections provide more information about these protocols.

HTTP
HTTP, the standard protocol of the World Wide Web, is a request-response protocol. A client issues a
request that includes a URI. The URI begins with http:// and the WebLogic Server address, and the
name of a resource on WebLogic Server, such as an HTML page, servlet, or JSP page. If the resource

Scheme Protocol

HTTP HyperText Transfer Protocol. Used by Web browsers and
HTTP-capable programs.

HTTPS Hypertext Transfer Protocol over Secure Sockets Layer (SSL). Used
by Web browsers and HTTPS-capable client programs.

T3 WebLogic T3 protocol for Java-to-Java connections, which
multiplexes JNDI, RMI, EJB, JDBC, and other WebLogic services
over a network connection.

T3S WebLogic T3 protocol over Secure Sockets Layer (SSL).

RMI Remote Method Invocation (RMI), the standard Java facility for
distributed applications.

IIOP Internet Inter-ORB protocol, used by CORBA-enabled Java clients
to execute WebLogic RMI objects over IIOP. Other CORBA clients
connect to WebLogic Server with a CORBA naming context instead
of a URI for WebLogic Server.

IIOPS Internet Inter-ORB protocol over Secure Sockets Layer (SSL).

SOAP WebLogic Web services use Simple Object Access Protocol (SOAP)
1.1 as the message format and HTTP as a connection protocol.

Appl i cat ion Log ic Layers

Introduction to WebLogic Server 1-15

name is omitted, WebLogic Server returns the default Web page, usually index.html. The header of
an HTTP request includes a command, usually GET or POST. The request can include data parameters
and message content.

WebLogic Server always responds to an HTTP request by executing a servlet, which returns results to
the client. An HTTP servlet is a Java class that can access the contents of an HTTP request received
over the network and return an HTTP-compliant result to the client.

WebLogic Server directs a request for an HTML page to the built-in File servlet. The File servlet
looks for the HTML file in the document directory of the WebLogic Server file system. A request for a
custom-coded servlet executes the corresponding Java class on WebLogic Server. A request for a JSP
page causes WebLogic Server to compile the JSP page into a servlet, if it has not already been
compiled, and then to execute the servlet, which returns results to the client.

T3
T3 is an optimized protocol used to transport data between WebLogic Server and other Java programs,
including clients and other WebLogic Servers. WebLogic Server keeps track of every Java Virtual
Machine (JVM) with which it connects, and creates a single T3 connection to carry all traffic for a
JVM.

For example, if a Java client accesses an enterprise bean and a JDBC connection pool on WebLogic
Server, a single network connection is established between the WebLogic Server JVM and the client
JVM. The EJB and JDBC services can be written as if they had sole use of a dedicated network
connection because the T3 protocol invisibly multiplexes packets on the single connection.

T3 is an efficient protocol for Java-to-Java applications because it avoids unnecessary network
connection events and uses fewer OS resources. The protocol also has internal enhancements that
minimize packet sizes

RMI
Remote Method Invocation (RMI) is the standard Java facility for distributed applications. RMI allows
one Java program, called the server, to publish Java objects that another Java program, called a client,
can execute. In most applications, WebLogic Server is the RMI server and a Java client application is
the client. But the roles can be reversed; RMI allows any Java program to play the role of server.

RMI architecture is similar to the CORBA architecture. To create a remote object, a programmer
writes an interface for a Java class that defines the methods that may be executed by a remote client.
The WebLogic Server RMI compiler, rmic, processes the interface, producing RMI stub and skeleton
classes. The remote class, stubs, and skeletons are installed in WebLogic Server.

In t roduct ion to WebLog ic Se rve r

1-16 Introduction to WebLogic Server

A Java client looks up a remote object in WebLogic Server using the Java Naming and Directory
Interface (JNDI), which is described later in this section. JNDI establishes a connection to WebLogic
Server, looks up the remote class, and returns the stubs to the client.

The client executes a stub method as if it were executing the method directly on the remote class. The
stub method prepares the call and transmits it over the network to the skeleton class in WebLogic
Server.

On WebLogic Server, the skeleton class unpacks the request and executes the method on the
server-side object. Then it packages the results and returns them to the stub on the client side.

WebLogic EJB and several other services available to Java clients are built on RMI. Most applications
should use EJB instead of using RMI directly, because EJB provides a better abstraction for business
objects. In addition, the WebLogic Server EJB container provides enhancements such as caching,
persistence, and life cycle management that are not automatically available to remote classes.

RMI-IIOP
Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) is a protocol that allows
CORBA client programs to execute WebLogic RMI objects, including enterprise beans. RMI-IIOP is
based on two specifications from the Object Management Group (http://www.omg.com):

Java-to-IDL mapping

Objects-by-value

The Java-to-IDL specification defines how an Interface Definition Language (IDL) is derived from a
Java interface. The WebLogic Server compilers for RMI and EJB give you the option of producing IDL
when compiling RMI and EJB objects. This IDL can be compiled with an IDL API compiler to produce
the stubs required by a CORBA client.

The objects-by-value specification defines how complex data types are mapped between Java and
CORBA. To use objects-by-value, a CORBA client must use an Object Request Broker (ORB) with
CORBA 2.3 support. Without a CORBA 2.3 ORB, CORBA clients can use only Java primitive data types.

SSL
Data exchanged with the HTTP and T3 protocols can be encrypted with the Secure Sockets Layer
(SSL) protocol. Using SSL assures the client that it has connected with an authenticated server and
that data transmitted over the network is private.

SSL uses public key encryption. Public key encryption requires you to purchase a Server ID, which is
a certificate for your WebLogic Server from a Certificate Authority such as VeriSign. When a client
connects to the WebLogic Server SSL port, the server and client execute a protocol that includes

Appl i cat ion Log ic Layers

Introduction to WebLogic Server 1-17

authenticating the server’s Server ID and negotiating encryption algorithms and parameters for the
session. WebLogic Server can also be configured to require the client to present a certificate, an
arrangement that is called mutual authentication.

SOAP
SOAP (Simple Object Access Protocol) is a lightweight, XML-based protocol used to exchange
information in a decentralized, distributed environment. The protocol consists of an envelop that
describes the SOAP message, encoding rules, and conventions for representing remote procedure
calls and responses.

All information is embedded in a Multipurpose Internet Mail Extensions (MIME)-encoded package
that can be transmitted over HTTP or other Web protocols. MIME is a specification for formatting
non-ASCII messages so that they can be sent over the Internet.

Data and Access Services
WebLogic Server implements standard J2EE technologies to provide data and access services to
applications and components. These services include the following APIs:

Java Naming and Directory Interface (JNDI)

Java Database Connectivity (JDBC)

Java Transaction API (JTA)

J2EE Connector Architecture

eXtensible Markup Language (XML)

The following sections discuss these services in detail.

JNDI
The Java Naming and Directory Interface (JNDI) is a standard Java API that enables applications to
look up an object by name. WebLogic Server or a user application binds the Java objects it serves to a
name in a naming tree. An application can look up objects, such as RMI objects, Enterprise JavaBeans,
JMS Queues and Topics, and JDBC DataSources, by getting a JNDI context from WebLogic Server and
then calling the JNDI lookup method with the name of the object. The lookup returns a reference to
the WebLogic Server object.

WebLogic JNDI supports WebLogic Server cluster load balancing and failover. Each WebLogic Server
in a cluster publishes the objects it serves in a replicated cluster-wide naming tree. An application can
get an initial JNDI context from any WebLogic Server in the cluster, perform a lookup, and receive an

In t roduct ion to WebLog ic Se rve r

1-18 Introduction to WebLogic Server

object reference from any WebLogic Server in the cluster that serves the object. A configurable
load-balancing algorithm is used to spread the workload among the servers in the cluster.

JDBC
Java Database Connectivity (JDBC) provides access to backend database resources. Java applications
access JDBC using a JDBC driver, which is a database vendor-specific interface for a database server.
Although any Java application can load a vendor’s JDBC driver, connect to the database, and perform
database operations, WebLogic Server provides a significant performance advantage by offering JDBC
connection pools.

A JDBC connection pool is a named group of JDBC connections managed through WebLogic Server.
At startup time WebLogic Server opens JDBC connections and adds them to the pool. When an
application requires a JDBC connection, it gets a connection from the pool, uses it, and then returns
it to the pool for use by for other applications. Establishing a database connection is often a
time-consuming, resource-intensive operation, so a connection pool, which limits the number of
connection operations, improves performance.

WebLogic Server also provides JDBC multipools for achieving load balancing or high availability
capabilities with database connections in single-server configurations. Multipools are a “pool of pools”
that provide a configurable algorithm for choosing which pool to provide a connection for a given
request. Currently, WebLogic Server provides algorithms to support either high availability or load
balancing behavior for database connections.

To register a connection pool in the JNDI naming tree, define a DataSource object for it. Java client
applications can then get a connection from the pool by performing a JNDI lookup on the DataSource
name.

Server-side Java classes use the WebLogic JDBC pool driver, which is a generic JDBC driver that calls
through to the vendor-specific JDBC driver. This mechanism makes application code more portable,
even if you change the brand of database used in the backend tier.

The client-side JDBC driver is the WebLogic JDBC/RMI driver, which is an RMI interface to the pool
driver. Use this driver the same way you use any standard JDBC driver. When the JDBC/RMI driver is
used, Java programs can access JDBC in a manner consistent with other WebLogic Server distributed
objects, and they can keep database data structures in the middle tier.

WebLogic EJB and WebLogic JMS rely on connections from a JDBC connection pool to load and save
persistent objects. By using EJB and JMS, you can often get a more useful abstraction than you can
get by using JDBC directly in an application. For example, using an enterprise bean to represent a
dataful object allows you to change the underlying store later without modifying JDBC code. If you use

Appl i cat ion Log ic Layers

Introduction to WebLogic Server 1-19

persistent JMS messages instead of coding database operations with JDBC, it will be easier to adapt
your application to a third-party messaging system later.

JTA
The Java Transaction API (JTA) is the standard interface for managing transactions in Java
applications. By using transactions, you can protect the integrity of the data in your databases and
manage access to that data by concurrent applications or application instances. Once a transaction
begins, all transactional operations must commit successfully or all of them must be rolled back.

WebLogic Server supports transactions that include EJB, JMS, JCA, and JDBC operations. Distributed
transactions, coordinated with two-phase commit, can span multiple databases that are accessed with
XA-compliant JDBC drivers, such as BEA WebLogic jDriver for Oracle/XA.

The EJB specification defines bean-managed and container-managed transactions.When an
enterprise bean is deployed with container-managed transactions, WebLogic Server coordinates the
transaction automatically. If an enterprise bean is deployed with bean-managed transactions, the EJB
programmer must provide transaction code.

Application code based on the JMS or JDBC API can initiate a transaction, or participate in a
transaction started earlier. A single transaction context is associated with the WebLogic Server thread
executing an application; all transactional operations performed on the thread participate in the
current transaction.

J2EE Connector Architecture
The J2EE Connector Architecture adds simplified Enterprise Information System (EIS) integration to
the J2EE platform. It provides a Java solution to the problem of connectivity between the multitude
of application servers and EISes. By using the Connector Architecture, it is no longer necessary for
EIS vendors to customize their product for each application server. By conforming to the J2EE
Connector Architecture, BEA WebLogic Server does not require added custom code in order to extend
its support connectivity to a new EIS.

The J2EE Connector Architecture is implemented both in WebLogic Server and in an EIS-specific
resource adapter. A resource adapter is a system library specific to an EIS and provides connectivity
to the EIS. A resource adapter is analogous to a JDBC driver. The interface between a resource
adapter and the EIS is specific to the underlying EIS, and can be a native interface.

The J2EE Connector Architecture comprises the system-level contracts between WebLogic Server and
a given resource adaptor, a common interface for clients to access the adaptor, and interfaces for
packaging and deploying resource adaptors to J2EE applications. See Programming the J2EE
Connector Architecture for more information.

http://e-docs.bea.com/wls/docs70/jconnector/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html

In t roduct ion to WebLog ic Se rve r

1-20 Introduction to WebLogic Server

XML
WebLogic Server consolidates Extensible Markup Language (XML) technologies applicable to
WebLogic Server and XML applications based on WebLogic Server. For more information, refer to
“XML Implementation” on page 1-13.

Messaging Technologies
The J2EE messaging technologies provide standard APIs that WebLogic Server applications can use
to communicate with one another as well as with non-WebLogic Server applications. The messaging
services include the following APIs:

– Java Message Service (JMS)

– JavaMail

The following sections describe these APIs in detail.

JMS
Java Messaging Service (JMS) enables applications to communicate with one another by exchanging
messages. A message is a request, report, and/or event that contains the information needed to
coordinate communication between different applications. A message provides a level of abstraction,
allowing you to separate details about the destination system from the application code.

WebLogic JMS implements two messaging models: point-to-point (PTP) and publish/subscribe
(pub/sub). The PTP model allows any number of senders to send messages to a Queue. Each message
in the Queue is delivered to a single reader. The pub/sub model allows any number of senders to send
messages to a Topic. Each message on the Topic is sent to every reader with a subscription to the
Topic. Messages can be delivered to readers synchronously or asynchronously; the particular
messaging mode can be controlled either using the Administration Console or via the method used to
send messages in the JMS application.

JMS messages can be persistent or non-persistent. Persistent messages are stored in a database and
are not lost if WebLogic Server restarts. Non-persistent messages are lost if WebLogic Server is
restarted. Persistent messages sent to a Topic can be retained until all interested subscribers have
received them.

JMS supports several message types that are useful for different types of applications. The message
body can contain arbitrary text, byte streams, Java primitive data types, name/value pairs, serializable
Java objects, or XML content.

Appl i cat ion Log ic Layers

Introduction to WebLogic Server 1-21

JavaMail
WebLogic Server includes the Sun JavaMail reference implementation. JavaMail allows an application
to create e-mail messages and send them through an SMTP server on the network.

In t roduct ion to WebLog ic Se rve r

1-22 Introduction to WebLogic Server

WebLogic Server Users
The most common WebLogic Server user types are:

Evaluator—a user who performs product evaluations

Installer—a user who installs and sets up the WebLogic Server environment

System Administrator—a user who administers WebLogic Server after it is installed

Developer/Engineer—a user who develops applications to run in the WebLogic Server
environment

Evaluator
If you are a product evaluator in charge of evaluating or reviewing the WebLogic Server product, you
will probably be interested in high-level task types that provide an overview of the product and its key
tasks. Evaluators should refer to the following task-related documents. These documents are located
on the BEA Web site. From the BEA Home page, click on Product Documentation, then click WebLogic
Server 7.0.

Table 1-2 Evaluator Tasks

Installer
If you are in charge of installing and setting up the WebLogic Server environment, you will probably
be interested in tasks that help you provide a fully functional system. Installers should refer to the

Task Type Related Documentation

• Obtain an overview of WebLogic Server Introduction to BEA WebLogic Server

• Learn what new features are provided with this
release of WebLogic Server

What’s New?

• Install WebLogic Server Preparing to Install WebLogic Server

• Get started using WebLogic Server

• Configure and run WebLogic Server samples

Samples and Tutorials

• Review frequently asked questions relating to
WebLogic Server

Frequently Asked Questions

http://e-docs.bea.com/wls/docs70/intro/index.html
http://e-docs.bea.com/wls/docs70/notes/new.html
http://e-docs.bea.com/wls/docs70/install/instpre.html
http://e-docs.bea.com/wls/docs70/install/index.html
http://e-docs.bea.com/wls/docs70/samples.html
http://e-docs.bea.com/wls/docs70/faq/index.html

WebLogic Se rver Users

Introduction to WebLogic Server 1-23

following task-related documentation. These documents are located on the BEA Web site. From the
BEA Home page, click on Product Documentation, then click WebLogic Server 7.0.

Table 1-3 Planner/Installer Tasks

Task Type Related Documentation

• Obtain an overview of WebLogic Server Introduction to BEA WebLogic Server

• Learn what new features are provided with this
release of WebLogic Server

What’s New?

• Install WebLogic Server Preparing to Install WebLogic Server

• Perform upgrades to WebLogic Server Upgrade Guide for BEA WebLogic
Server 7.0

• Obtain platform-specific information about
using WebLogic Server, including system
requirements, operating system versions, JDKs,
DBMSs, JDBC™ drivers, and more

BEA WebLogic Server Platform Support

• Start, Configure, and Monitor WebLogic Server System Administration

• Get started using WebLogic Server

• Configure and run WebLogic Server samples

Samples and Tutorials

• Learn about assembling, packaging, and
deploying WebLogic Server applications and
components

Deployment

http://e-docs.bea.com/wls/docs70/intro/index.html
http://e-docs.bea.com/wls/docs70/notes/new.html
http://e-docs.bea.com/wls/docs70/install/instpre.html
http://e-docs.bea.com/wls/docs70/install/instpre.html
http://e-docs.bea.com/wls/docs70/upgrade/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/wls/docs70/admin.html
http://e-docs.bea.com/wls/docs70/samples.html
http://e-docs.bea.com/wls/docs70/deployment.html

In t roduct ion to WebLog ic Se rve r

1-24 Introduction to WebLogic Server

System Administrator
If you are in charge of administering the WebLogic Server environment, you will probably be
interested in tasks that help you maintain a fully functional system. System Administrators should
refer to the following task-related documentation. These documents are located on the BEA Web site.
From the BEA Home page, click on Product Documentation, then click WebLogic Server 7.0.

Table 1-4 System Administrator Tasks

Task Type Related Documentation

• Obtain an overview of WebLogic Server Introduction to BEA WebLogic Server

• Start, Configure, and Monitor WebLogic Server System Administration

• Learn about WebLogic Server performance and
tuning

Performance and Tuning

• Configure security for WebLogic Server Security

• Obtain platform-specific information about
using WebLogic Server, including system
requirements, operating system versions, JDKs,
DBMSs, JDBC™ drivers, and more

BEA WebLogic Server Platform Support

http://e-docs.bea.com/wls/docs70/intro/index.html
http://e-docs.bea.com/wls/docs70/admin.html
http://e-docs.bea.com/wls/docs70/perform/index.html
http://e-docs.bea.com/wls/docs70/security.html
http://e-docs.bea.com/platform/suppconfigs/index.html

WebLogic Se rver Users

Introduction to WebLogic Server 1-25

Developer/Engineer
If you are in charge of developing WebLogic Server applications or components, you should refer to
the following task-related documentation. These documents are located on the BEA Web site. From
the BEA Home page, click on Product Documentation, then click WebLogic Server 7.0.

Table 1-5 System Administrator Tasks

Task Type Related Documentation

• Obtain an overview of WebLogic Server Introduction to BEA WebLogic Server

• Learn what new features are provided with this
release of WebLogic Server

What’s New?

• Install WebLogic Server Preparing to Install WebLogic Server

• Perform upgrades to WebLogic Server Upgrade Guide for BEA WebLogic
Server 7.0

• Get started using WebLogic Server

• Configure and run WebLogic Server samples

Samples and Tutorials

• Learn about assembling, packaging, and
deploying WebLogic Server applications and
components

Deployment

• Obtain platform-specific information about
using WebLogic Server, including system
requirements, operating system versions, JDKs,
DBMSs, JDBC™ drivers, and more

BEA WebLogic Server Platform Support

• Configure security for WebLogic Server Security

• Program WebLogic J2EE applications and
components

• Learn about resources for programming
WebLogic J2EE applications

Programming

• Learn about WebLogic Server developer tools Developer Tools

http://e-docs.bea.com/wls/docs70/intro/index.html
http://e-docs.bea.com/wls/docs70/notes/new.html
http://e-docs.bea.com/wls/docs70/install/instpre.html
http://e-docs.bea.com/wls/docs70/install/instpre.html
http://e-docs.bea.com/wls/docs70/upgrade/index.html
http://e-docs.bea.com/wls/docs70/samples.html
http://e-docs.bea.com/wls/docs70/deployment.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/wls/docs70/security.html
http://e-docs.bea.com/wls/docs70/programming.html
http://e-docs.bea.com/wls/docs70/tools.html

In t roduct ion to WebLog ic Se rve r

1-26 Introduction to WebLogic Server

Introduction to WebLogic Server 2-1

C H A P T E R 2

WebLogic Server Services

The following sections describe WebLogic Server services:

“WebLogic Server as a Web Server” on page -1

“WebLogic Server Security Service” on page -3

“WebLogic Server Clusters” on page -6

“Server Management and Monitoring” on page -9

WebLogic Server as a Web Server
WebLogic Server can be used as the primary Web server for advanced Web-enabled applications. A
J2EE Web application is a collection of HTML or XML pages, JavaServer Pages, servlets, Java classes,
applets, images, multimedia files, and other types of files.

How WebLogic Server Functions as a Web Server
A Web application runs in the Web container of a Web server. In a WebLogic Server environment, a
Web server is a logical entity, deployed on one or more WebLogic Servers in a cluster.

The files in a Web application are stored in a directory structure that, optionally, can be packed into
a single .war (Web ARchive) file using the Java jar utility. A set of XML deployment descriptors
define the components and run-time parameters of an application, such as security settings.
Deployment descriptors make it possible to change run-time behaviors without changing the contents
of Web application components, and they make it easy to deploy the same application on multiple Web
servers.

WebLogic Se rver Se rv i ces

2-2 Introduction to WebLogic Server

Web Server Features
When used as a Web server, WebLogic Server supports the following functionality:

Virtual hosting

Support for proxy server configurations

Load balancing

Failover

This section describes how each function is supported by WebLogic Server.

Virtual Hosting
WebLogic Server supports virtual hosting, an arrangement that allows a single WebLogic Server
instance or WebLogic Server cluster to host multiple Web sites. Each logical Web server has its own
host name, but all Web servers are mapped in DNS to the same cluster IP address. When a client sends
an HTTP request to the cluster address, a WebLogic Server is selected to serve the request. The Web
server name is extracted from the HTTP request headers and is maintained on subsequent exchanges
with the client so that the virtual host name remains constant from the client’s perspective.

Multiple Web applications can be deployed on a WebLogic Server, and each Web application can be
mapped to a virtual host.

Using Proxy Server Configurations
WebLogic Server can be integrated with existing Web servers. Requests can be proxied from a
WebLogic Server to another Web server or, using a native plug-in supplied with WebLogic Server, from
another Web server to WebLogic Server. BEA supplies plug-ins for Apache Web Server, Netscape
Enterprise Server, and Microsoft Internet Information Server.

The use of proxy Web servers between clients and a set of independent WebLogic Servers or a
WebLogic Server cluster makes it possible to perform load balancing and failover for Web requests. To
the client, there appears to be only one Web server.

Load Balancing
You can set up multiple WebLogic Servers behind a proxy server to accommodate large volumes of
requests. The proxy server performs load-balancing by distributing requests across the multiple
servers in the tier behind it.

WebLog ic Se rve r Secur i t y Se rv i ce

Introduction to WebLogic Server 2-3

The proxy server can be a WebLogic Server Web server, or it can be an Apache, Netscape, or Microsoft
Web server. WebLogic Server includes native code plug-ins for some platforms that allow these
third-party Web servers to proxy requests to WebLogic Server.

The proxy server is set up to redirect certain types of requests to the servers behind it. For example,
a common arrangement is to configure the proxy server to handle requests for static HTML pages and
redirect requests for servlets and JavaServer Pages to a WebLogic Server cluster behind the proxy.

Failover and Replication
When a Web client starts a servlet session, the proxy server may send subsequent requests that are
part of the same session to a different WebLogic Server. WebLogic Server provides session replication
to ensure that a client’s session state remains available.

There are two types of session replication:

JDBC session replication is used with a WebLogic Server cluster or with a set of independent
WebLogic Servers. It does not require the WebLogic Server clustering option.

In-memory session replication requires the WebLogic Server clustering option.

JDBC session replication writes session data to a database. Once a session has been started, any
WebLogic Server the proxy server selects can continue the session by retrieving the session data from
the database.

When a WebLogic Server cluster is deployed behind a proxy server, servlet sessions can be replicated
over the network to a secondary WebLogic Server selected by the cluster, thus avoiding the need to
access a database. In-memory replication uses fewer resources and is much faster than JDBC session
replication, so it is the best way to provide failover for servlets in a WebLogic Server cluster.

WebLogic Server Security Service
The security component of WebLogic Server has been completely redesigned in this version to offer a
level of flexibility and control never before available with any application server platform. The new
security architecture in WebLogic Server isolates the application developer from the intricacies of
security implementation while allowing the use of the latest security technologies as implemented by
a company’s development staff or a security vendor.

The security framework in WebLogic Server is based on a set of Service Provider Interfaces (SPIs)
used to develop security services for the WebLogic Server environment. SPIs are available for
Authentication, Authorization, Auditing, Public Key Infrastructure (PKI), Credential Mapping, and
User Profiles. You now have the choice of either using the out-of-the-box security services provided by
BEA or using the SPIs to create customized security services for the WebLogic Server. The customized

WebLogic Se rver Se rv i ces

2-4 Introduction to WebLogic Server

security services can be integrated into the WebLogic Server management environment so that all
configuration and monitoring can be done through the WebLogic Server Administration Console.

The open security architecture in WebLogic Server allows you to use existing security products while
taking advantage of new security technologies available in the marketplace. You also have the choice
of security technologies and vendors. Security products can be “mixed and matched” to create
complete custom security solutions.

The security architecture in WebLogic Server uses Java Standards (where applicable) to create a
framework that unifies security enforcement and presents security as a service to other WebLogic
Server components. The following Java security standards are supported in WebLogic Server:

– The Java Crytography Extension (JCE)—A set of packages that provide a framework for
encryption using strong ciphers, key generation and agreement, and Message
Authentication Code algorithms.

– The Java Secure Socket Extension (JSSE)—A set of packages that support and implement
SSL and TLS, making those protocols and capabilities programmatically available.

– Java Authentication and Authorization Services (JAAS)—A set of packages that provide a
framework for user-based authentication and access control. WebLogic Server uses the
authentication classes of JAAS only.

– The Java Security Manager (JSM)—The security manager for the Java virtual machine
(JVM). The security manager works with the Java API to define security boundaries through
the java.lang.SecurityManager class, enabling programmers to establish a custom
security policy for their Java applications.

Figure 2-1 illustrates the WebLogic Security Service.

WebLog ic Se rve r Secur i t y Se rv i ce

Introduction to WebLogic Server 2-5

Figure 2-1 The WebLogic Security Service

WebLogic Server now offers a dynamic, role-based authorization scheme that can be applied to all
WebLogic Server resources. You are no longer constrained by the limitations of the declarative
security model in J2EE. The Authorization service included with WebLogic Server 7.0 includes an
embedded entitlement engine that allows you to create simple prose-based rules for dynamically
assigning roles and calculating access privileges. Application developers are freed from having to
write application code to implement complex business policies because the entitlements engine
separates the tasks of business policy creation and application creation.

All user profile and entitlement data can be stored in the system data store integrated with WebLogic
Server 7.0. The system data store is a scalable data store optimized for quick data reads. In addition
to the system data store, you can configure one or more LDAP stores to provide a single unified
profiling system from multiple back-end sources.

For more information about the WebLogic Security Service, see Introduction to WebLogic Security.

WebLogic Se rver Se rv i ces

2-6 Introduction to WebLogic Server

WebLogic Server Clusters
A WebLogic Server cluster is a group of WebLogic Server instances that work together to provide a
powerful and reliable Web application platform. A cluster appears to its clients as a single server but
it is, in fact, a group of servers acting as one. It provides two key benefits that are not provided by a
single server: scalability and availability.

Using WebLogic Server Clusters provides complete information about planning and configuring
WebLogic Server clusters.

Benefits of Using Clusters
WebLogic Server clusters bring scalability and high-availability to J2EE applications in a way that is
transparent to application developers. The benefit of scalability is that it expands the capacity of the
middle tier beyond that of a single instance of WebLogic Server or a single computer. The only
limitation on cluster membership is that all WebLogic Server instances must be able to communicate
by IP multicast. New WebLogic Servers can be added to a cluster dynamically to increase capacity.

A WebLogic Server cluster also guarantees high availability by using the redundancy of multiple
servers to insulate clients from failures. The same service can be provided on multiple servers in a
cluster. If one server fails, another can take over. The ability to have a functioning server take over
from a failed server increases the availability of the application to clients.

Cluster Architecture
A WebLogic Server cluster consists of a number of WebLogic Server instances deployed on a network,
coordinated with a combination of Domain Name Service (DNS), JNDI naming tree replication,
session data replication, and WebLogic RMI.

Web proxy servers between Web clients and the WebLogic Server cluster coordinate clustering
services for servlets and JavaServer Pages. Web proxy servers can be other WebLogic Servers, or
third-party Web servers from Netscape, Microsoft, or Apache, used with a plug-in supplied with
WebLogic Server.

Web clients connect with a WebLogic Server cluster by directing requests to a proxy server. Java
RMI-based clients connect with a WebLogic Server cluster using a cluster address defined on the
network.

Server-side code also benefits from the load-balancing and failover services provided by a WebLogic
Cluster. In J2EE applications, most application code runs in the middle tier and can use services
distributed among several WebLogic Servers. For example, a servlet running on WebLogic Server A

http://e-docs.bea.com/wls/docs70/cluster/index.html

WebLog ic Se rve r C lus te rs

Introduction to WebLogic Server 2-7

could use an enterprise bean on WebLogic Server B and read messages from a JMS Queue on
WebLogic Server C.

How a WebLogic Server Cluster Is Defined in a Network
WebLogic Server services are accessed through DNS, the standard naming service for resources on a
network, including the Internet. DNS maps IP addresses, such as 170.0.20.1, to names, such as
mycomputer.mydomain.com or www.bea.com. Each instance of WebLogic Server runs on the
network at a unique IP address. A client connects to a WebLogic Server by encoding in a URL its name
and the number of the port where it is listening for connections.

For example, a WebLogic Server instance running on a computer named onyx, configured to listen on
port 7701, can be accessed with a Web browser using the following URL: http://onyx:7701. For this
connection to succeed, the name server on the network must be able to resolve the name onyx in the
local domain. If the destination server is in another domain on the Internet, the full domain name, for
example, http://onyx.bea.com:7701, must be supplied.

An additional DNS entry maps the names of all WebLogic Server instances participating in a cluster
to a single cluster name. Clients connect to the cluster using the cluster name or through a Web proxy
server that directs requests into the cluster. When DNS performs a lookup on a cluster name, it returns
a list of all the servers that belong to the cluster. A client usually selects the first server in the list, and
if it gets no response, tries the second server, working its way through the list until it gets a response.

DNS provides the initial load-balancing service that distributes requests across the servers in the
cluster. Each DNS responds to a lookup on the cluster name, by rotating the list of servers by one, so
that eventually each server gets a turn.

An intelligent router, proxy server, firewall, or other software operating on the network may override
DNS and select the initial server based on machine load, network traffic, or other dynamic
load-balancing criteria.

The initial WebLogic Server connection provides the naming service for the client. It looks up the
service requested by the client and chooses a server from the cluster to handle the request, using a
load-balancing algorithm configured in WebLogic Server.

How WebLogic Servers in a Cluster Communicate
WebLogic Servers in a cluster communicate with each other using IP multicast to replicate certain
classes of information to all servers in the cluster. A common multicast address is configured for each
server instance in the cluster. When one server sends a message to the cluster’s multicast address, all
servers receive the message. This process is much more efficient than having servers send

WebLogic Se rver Se rv i ces

2-8 Introduction to WebLogic Server

point-to-point messages. However, it does require all the servers in a cluster to be on a network with
multicast support. Multicast does not work on the Internet, so a cluster cannot traverse the Internet.

For some services, the cluster selects primary and secondary WebLogic Servers. If the primary
WebLogic Server starts processing a request and then becomes unavailable, the secondary server can
take over processing of the request without interruption. The primary server replicates state to the
secondary server using a server-to-server connection.

Most services can be deployed on any number of WebLogic Servers in a cluster. As each service is
deployed, the WebLogic Server uses IP multicast to add the service to a cluster-wide naming tree. Any
server in the cluster can find a WebLogic Server to provide a given service by looking up the service in
the cluster-wide naming tree. When more than one server can provide a service, the cluster uses a
configurable load-balancing algorithm to choose a server.

Clustered Services
Most WebLogic Server services can be clustered; that is, they can be deployed on an unlimited number
of servers in the cluster. The cluster selects the WebLogic Server instance that will provide a service.
Once that server has been selected and stateful objects have been instantiated on the server, the
client is pinned to that WebLogic Server until it has finished with the service. If a WebLogic Server
hosting a pinned object fails, the client must detect the failure and create another instance on another
server in the cluster.

To provide more resilient failover, a WebLogic Server cluster avoids pinning an object to a server
unless absolutely necessary. In some cases the cluster replicates the stateful object to a backup server
to enable failover for the service.

Web applications can be clustered, as described in the section “WebLogic Server as a Web Server” on
page 2-1. Servlet sessions are replicated to a secondary server, allowing the cluster to recover from a
failure transparently.

All Enterprise JavaBeans can be clustered. They can be deployed on an unlimited number of servers
in a WebLogic Server cluster. However, not all EJB instances can be clustered. An application can get
the home interface for an EJB from any server where the bean has been deployed, and it can use that
home interface to create bean instances. If the server that provides the home interface fails, a home
interface can be retrieved from another server without interrupting the application.

Some types of EJB instances, including stateless session beans and read-only entity beans, can always
be clustered. Stateful session beans can be clustered using in-memory replication to provide failover.
Read-write entity beans are always pinned to the server where they are instantiated. If the server
hosting a read-write entity bean fails, the entity bean will automatically fail-over if it is safe to do so.

Serve r Management and Mon i to r ing

Introduction to WebLogic Server 2-9

Otherwise, fail-over occurs on the next transaction and the entity bean instance is recreated by the
remote stub on another server in the cluster.

A JDBC metapool provides clustering for JDBC connection pools deployed on multiple servers in a
WebLogic Server cluster. When a client requests a connection from the metapool, the cluster selects
the server that will provide the connection, allowing load-balancing and protection against server
failure. Once a client has a connection, the state maintained by the JDBC driver makes it necessary
to pin the client to the host WebLogic Server.

JMS objects can be distributed among the servers in a cluster. Connection factories (which clients use
to establish a connection to a destination) and destinations can be deployed on multiple servers in a
cluster. By distributing destinations and connection factories throughout a cluster, administrators
can manually balance the load for JMS services.

Server Management and Monitoring
WebLogic Server administration is accomplished by setting attributes for the servers in a domain,
using either the Administration Console or the command-line interface. The Administration Console
is a Web browser application that allows you to configure WebLogic Server services, manage security,
deploy applications, and monitor services dynamically.

Both the Administration Console and the command-line interface connect to the Administration
Server.

Administration Server
The Administration Server is the WebLogic Server used to configure and manage all the WebLogic
Servers in its domain. A domain may include multiple WebLogic Server clusters and independent
WebLogic Server instances. If a domain contains only one WebLogic Server, then that server is the
Administration Server. In a domain with multiple instances of WebLogic Server, the first instance to
start must be the Administration Server.

Administration Console
The WebLogic Server Administration Console runs in a Web browser. It displays the components of
the domain it administers, including clusters and independent WebLogic Servers, in a graphical tree
in the left pane. The right pane displays details about the object selected in the left pane. Figure 2-2
is a sample snapshot from an Administration Console session.

WebLogic Se rver Se rv i ces

2-10 Introduction to WebLogic Server

Figure 2-2 Administration Console

To use the Administration Console to configure a service, select an item in the left pane, and then
choose the Configuration tab in the right pane. The Administration Console displays the configurable
attributes in the right pane. You can use the online help to find detailed information about the
displayed attributes.

The usual process for configuring a service in the Administration Console is to configure the service
and then select the targets (WebLogic Servers) to which you want to deploy the service.

Each deployed service keeps run-time statistics, which you can view in the Monitoring tab in the right
pane of the Administration Console.

Introduction to WebLogic Server Index-1

Index

A
Administration Console 2-9
Administration Server 2-9
Apache Web Server 2-2
application logic layers

business components 1-8
presentation layer 1-9

application services 1-13

B
backend tier 1-5, 1-7
BEA JOLT for WebLogic Server 1-8
BEA Tuxedo 1-8
BEA WebLogic Enterprise 1-8
BEA WebLogic jDriver for Oracle/XA 1-19
BEA WebLogic Server

application architecture 1-4
features for e-commerce applications 1-2

business components 1-8

C
client tier 1-5, 1-6
cluster option

architecture 2-6
overview 1-7, 2-6

configuring WebLogic Server 2-9
connection pool 1-18
CORBA 1-6, 1-11, 1-14, 1-16
customer support contact information x

D
Database Management System (DBMS) 1-7
DataSource, JDBC 1-18
deployment descriptors

Web application 2-1
documentation, where to find it ix
domain 2-9
Domain Name Service (DNS), cluster option 2-6

E
EJB

container 1-8
message-driven beans 1-13

encryption, SSL 1-17
Enterprise JavaBeans (EJB)

JTA transactions 1-19
overview 1-11

enterprise resource planning (ERP) applications
1-5

F
failover 1-7, 1-17

servlet session replication 2-3
firewall 2-7

H
high-availability 2-6
HTTP 1-14

Index-2 Introduction to WebLogic Server

I
Interface Definition Language (IDL) 1-11
Internet Inter-ORB Protocol (RMI-IIOP) 1-16
IP multicast, cluster option 2-6, 2-7

J
jar utility 2-1
Java 2 Platform, Enterprise Edition (J2EE)

about 1-2
Java and J2EE 1-5
Java clients 1-10
Java Connector Architecture (JCA) 1-7
Java Database Connectivity (JDBC) 1-18
Java Message Service (JMS)

and message-driven beans 1-13
overview 1-20

Java Naming and Directory Interface (JNDI) 1-17
Java Transaction API (JTA) 1-19
JavaMail 1-21
JavaServer Pages (JSP) 1-9

L
legacy applications 1-5
load balancing 1-7, 1-17

for Web requests 2-2

M
message-driven beans 1-13
messaging technologies 1-20
Microsoft Internet Information Server 2-2
middle tier 1-5, 1-7
monitoring WebLogic Server services 2-9
multitier architecture, overview 1-4

N
Netscape Enterprise Server 2-2
network 1-13

cluster configuration 2-7

protocols 1-14
SMTP 1-21

Nokia WAP server 1-7
non-browser clients 1-10

O
Object Request Broker (ORB) 1-11

P
persistence

EJB 1-12
JMS messages 1-20

point-to-point (PTP) messaging 1-20
presentation logic 1-9
printing product documentation x
protocols, network 1-14
proxy server 2-2, 2-6, 2-7
public key encryption 1-16
publish/subscribe (pub/sub) messaging 1-20

R
remote class, RMI 1-16
Remote Method Invocation (RMI) 1-10

overview 1-15
RMI-IIOP protocol 1-16
router 2-7

S
scalability 2-6
Secure Sockets Layer (SSL) 1-16
Server ID 1-16
servlets 1-9
session replication 2-3
skeleton class, RMI 1-16
software components 1-5
stub class 1-15, 1-16
Sun Microsystems 1-2
support

Introduction to WebLogic Server Index-3

technical x
Swing 1-10

T
transactions, JTA 1-19

with EJB 1-19

U
Uniform Resource Identifier (URI) 1-13
user interface

Swing 1-10
Web browser 1-9

V
VeriSign 1-16
virtual hosting 2-2

W
Web

application 2-1
container 1-8
URIs and URLs 1-13

Web ARchive file 2-1
Web browser clients 1-9
Web container 2-1
Web server 1-6, 2-1

features 2-2
WebLogic EJB

relationship to RMI 1-16
WebLogic Enterprise Connectivity 1-8
WebLogic JDBC/RMI driver 1-18
Wireless Access Protocol (WAP) 1-7

X
XML 1-13, 1-20

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	Introduction to WebLogic Server
	The WebLogic Server Solution
	J2EE Platform
	Application Deployment Across Distributed, Heterogeneous Environments

	About WebLogic Express
	WebLogic Server Application Architecture
	Software Component Tiers
	Client Tier Components
	Middle Tier Components
	Backend Tier Components

	Application Logic Layers
	Presentation Logic Layer
	Web Browser Clients
	Non-Browser Clients
	Web Service Clients

	Business Logic Layer
	Entity Beans
	Session Beans
	Message-Driven Beans

	Application Services Layer
	XML Implementation
	Network Communications Technologies
	Data and Access Services
	Messaging Technologies

	WebLogic Server Users
	Evaluator
	Installer

	System Administrator
	Developer/Engineer

	WebLogic Server Services
	WebLogic Server as a Web Server
	How WebLogic Server Functions as a Web Server
	Web Server Features
	Virtual Hosting
	Using Proxy Server Configurations
	Load Balancing
	Failover and Replication

	WebLogic Server Security Service
	WebLogic Server Clusters
	Benefits of Using Clusters
	Cluster Architecture
	How a WebLogic Server Cluster Is Defined in a Network
	How WebLogic Servers in a Cluster Communicate
	Clustered Services

	Server Management and Monitoring
	Administration Server
	Administration Console

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

