
BEA
 WebLogic
Server™

Programming WebLogic
Enterprise JavaBeans
Release 7.0
Document Revised: February 18, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

About This Document
Audience.. xxi
e-docs Web Site... xxi
How to Print the Document... xxi
Related Information.. xxii
Contact Us!.. xxiii
Documentation Conventions ... xxiii

1. Introducing WebLogic Server Enterprise JavaBeans
Overview of Enterprise JavaBeans.. 1-2

EJB Components .. 1-2
Types of EJBs... 1-2

Implementation of Java Specifications.. 1-3
J2EE Specification ... 1-3
EJB 2.0 Specification ... 1-4

Securing WebLogic Server EJB Resources .. 1-4
WebLogic Server EJB 2.0 Support ... 1-4
EJB Roles .. 1-5

Application Roles... 1-5
Infrastructure Roles .. 1-6
Deployment and Management Roles ... 1-7

EJB Enhancements in WebLogic Server 7.0... 1-7
Changed Deployment Elements in WebLogic Server 7.0.......................... 1-7
Dynamic Query Support... 1-8
Message-Driven Bean Migratable Service Support 1-8
EJB CMP Multiple Table Mapping Support.. 1-8
EJB WebLogic QL Enhancements Support ... 1-8
Programming WebLogic Enterprise JavaBeans -iv

Optimistic Concurrency Support .. 1-9
ReadOnly Entity Concurrency Support.. 1-9
Combined Caching Support ... 1-10
Relationship Caching Support.. 1-10
EJB Links Support.. 1-10
Bulk Insert Support... 1-10

EJB Developer Tools... 1-11
ANT Tasks to Create Skeleton Deployment Descriptors......................... 1-11
WebLogic Builder .. 1-11
EJBGen... 1-12
weblogic.Deployer.. 1-12
WebLogic EJB Deployment Descriptor Editor.. 1-12
XML Editor .. 1-13

2. Designing EJBs
Designing Session Beans... 2-1
Designing Entity Beans ... 2-2

Entity Bean Home Interface ... 2-2
Make Entity EJBs Coarse-Grained... 2-3
Encapsulate Additional Business Logic in Entity EJBs 2-3
Optimize Entity EJB Data Access.. 2-3

Designing Message-Driven Beans... 2-4
Using WebLogic Server Generic Bean Templates.. 2-4
Using Inheritance with EJBs ... 2-5
Accessing Deployed EJBs ... 2-6

Differences Between Accessing EJBs from Local Clients and Remote Clients
2-6

Restrictions on Concurrency Access of EJB Instances 2-7
Storing EJB References in Home Handles... 2-7
Using Home Handles Across a Firewall .. 2-8

Preserving Transaction Resources... 2-8
Allowing the Datastore to Manage Transactions 2-9
Using Container-Managed Transactions Instead of Bean-Managed

Transactions for EJBs.. 2-9
Never Demarcate Transactions from Application............................. 2-10
-v Programming WebLogic Enterprise JavaBeans

Always Use A Transactional Datasource for Container-Managed EJBs..
2-10

3. Designing Message-Driven Beans
What Are Message-Driven Beans? ... 3-2

Differences Between Message-Driven Beans and Standard JMS Consumers.
3-2

Differences Between Message-Driven Beans and Stateless Session EJBs 3-3
Concurrent Processing for Topics and Queues .. 3-3

Developing and Configuring Message-Driven Beans....................................... 3-4
Message-Driven Bean Class Requirements ... 3-7
Using the Message-Driven Bean Context .. 3-8
Implementing Business Logic with onMessage() 3-9
Handling Exceptions .. 3-9

Invoking a Message-Driven Bean ... 3-9
Creating and Removing Bean Instances.. 3-10
Deploying Message-Driven Beans in WebLogic Server................................. 3-11
Using Transaction Services with Message-Driven Beans............................... 3-11

Message Receipts ... 3-12
Message Acknowledgment .. 3-12

Message-Driven Bean Migratable Service.. 3-13
Enabling the Message-Driven Bean Migratable Service 3-13
Migrating Message-Driven Beans.. 3-14

Configuring Message-Driven Beans for
non-BEA JMS Providers.. 3-15
Specifying an MDB as Transactional... 3-15
Specifying an MDB as Non-Transactional .. 3-16

Reconnecting to a JMS Server or Non-BEA Service Provider 3-16
Configuring an MDB to Listen on a JMS Distributed Destination 3-17
Configuring a Security Identity for a Message-Driven Bean.......................... 3-18

4. The WebLogic Server EJB Container and Supported Services
EJB Container.. 4-2
EJB Life Cycle .. 4-2

Entity Bean Lifecycle and Caching and Pooling 4-2
Initializing Entity EJB Instances (Free Pool)...................................... 4-3
Programming WebLogic Enterprise JavaBeans -vi

READY and ACTIVE Entity EJB Instances (Cache)......................... 4-3
Removing Beans from Cache.. 4-4
Entity EJB Lifecycle Transitions .. 4-5

Stateless Session EJB Life Cycle ... 4-6
Initializing Stateless Session EJB Instances.. 4-6
Activating and Pooling Stateless Session EJBs 4-7

Stateful Session EJB Life Cycle... 4-7
Stateful Session EJB Creation .. 4-8
Stateful Session EJB Passivation.. 4-9

Controlling Passivation ... 4-9
Concurrent Access to Stateful Session Beans .. 4-11

ejbLoad() and ejbStore() Behavior for Entity EJBs .. 4-12
Using is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)

4-12
Warning for is-modified-method-name.. 4-13
Using delay-updates-until-end-of-tx to Change ejbStore() Behavior 4-14

EJB Concurrency Strategy... 4-14
Concurrency Strategy for Read-Write EJBs... 4-15

Specifying the Concurrency Strategy.. 4-16
Exclusive Concurrency Strategy ... 4-16
Database Concurrency Strategy .. 4-17
Optimistic Concurrency Strategy .. 4-17

ReadOnly Concurrency Strategy.. 4-20
Read-Only Entity Beans and ReadOnly Concurrency 4-21
Restrictions for ReadOnly Concurrency Strategy............................. 4-21
Read-Only Multicast Invalidation... 4-21

Read-Mostly Pattern... 4-23
Combined Caching with Entity Beans... 4-24
Caching Between Transactions ... 4-25

Caching Between Transactions with Exclusive Concurrency.................. 4-26
Caching Between Transactions with ReadOnly Concurrency 4-27
Caching Between Transactions with Optimistic Concurrency................. 4-27
Enabling Caching Between Transactions... 4-27
Using cache-between-transactions to Limit Calls to ejbLoad() 4-28
Restrictions for cache-between-transactions .. 4-29
-vii Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters ... 4-29
Clustered Homes and EJBObjects.. 4-29

Clustered EJB Home Objects.. 4-30
Clustered EJBObjects ... 4-30

Clustering Support for Different Types of EJBs...................................... 4-31
Stateless Session EJBs in a Cluster... 4-31
Stateful Session EJBs in a Cluster .. 4-33
Entity EJBs in a Cluster .. 4-35

Cluster Address .. 4-38
Transaction Management .. 4-38

Transaction Management Responsibilities... 4-38
Using javax.transaction.UserTransaction... 4-39

Restriction for Container-Managed EJBs ... 4-40
Transaction Isolation Levels .. 4-40

Setting Bean-Managed Transaction Isolation Levels 4-40
Setting Container-Managed Transaction Isolation Levels................ 4-41

Distributing Transactions Across Multiple EJBs 4-42
Calling Multiple EJBs from a Single Transaction Context............... 4-42
Encapsulating a Multi-Operation Transaction 4-43
Distributing Transactions Across EJBs in a WebLogic Server Cluster....

4-43
Database Insert Support... 4-44

Delay-Database-Insert-Until .. 4-44
Bulk Insert .. 4-45

Resource Factories... 4-46
Setting Up JDBC Data Source Factories.. 4-46
Setting Up URL Connection Factories... 4-48

5. WebLogic Server Container-Managed Persistence Service
Overview of Container Managed Persistence Service 5-2

EJB Persistence Services.. 5-3
Using WebLogic Server RDBMS Persistence ... 5-3

Writing for RDBMS Persistence for EJB 1.1 CMP .. 5-5
Finder Signature ... 5-5
finder-list Stanza .. 5-6
Programming WebLogic Enterprise JavaBeans -viii

finder-query Element.. 5-6
Using WebLogic Query Language (WLQL) for EJB 1.1 CMP 5-7

WLQL Syntax .. 5-7
WLQL Operators.. 5-7
WLQL Operands .. 5-8
Examples of WLQL Expressions ... 5-9

Using SQL for CMP 1.1 Finder Queries ... 5-10
Using EJB QL for EJB 2.0 .. 5-11

EJB QL Requirement for EJB 2.0 Beans ... 5-12
Migrating from WLQL to EJB QL... 5-12
Using EJB 2.0 WebLogic QL Extension for EJB QL.............................. 5-13

upper and lower Functions .. 5-13
Using SELECT DISTINCT .. 5-14
Using ORDERBY ... 5-14
Using SubQueries.. 5-15
Using Aggregate Functions... 5-20
Using Queries that Return ResultSets ... 5-22

Properties-Based Methods of the Query Interface 5-24
Using Dynamic Queries... 5-24

Enabling Dynamic Queries... 5-25
Executing Dynamic Queries... 5-25

Using Oracle SELECT HINTS.. 5-26
“get” and “set” Method Restrictions ... 5-27
BLOB and CLOB DBMS Column Support for the Oracle DBMS................. 5-27

Specifying a BLOB Using the Deployment Descriptor 5-28
Controlling Serialization of cmp-fields Mapped to OracleBlobs............. 5-28
Specifying a CLOB Using the Deployment Descriptors.......................... 5-28

Tuned EJB 1.1 CMP Updates in WebLogic Server .. 5-29
Optimized Database Updates for CMP 2.0 Entity Beans 5-30
Flushing the CMP Cache ... 5-30
Using Primary Keys... 5-31

Primary Key Mapped to a Single CMP Field... 5-31
Primary Key Class That Wraps Single or Multiple CMP Fields.............. 5-32
Anonymous Primary Key Class ... 5-32
Hints for Using Primary Keys .. 5-32
-ix Programming WebLogic Enterprise JavaBeans

Mapping to a Database Column.. 5-33
Automatic Primary Key Generation for EJB 2.0 CMP 5-33

Valid Key Field Types .. 5-35
Specifying Primary Key Support for Oracle .. 5-35
Specifying Primary Key Support for Microsoft SQL Server 5-36
Specifying Primary Key Named Sequence Table Support 5-36

Multiple Table Mapping for EJB 2.0 CMP... 5-38
Multiple Table Mappings for cmp-fields ... 5-38

Automatic Table Creation ... 5-40
Container-Managed Relationships .. 5-42

Understanding CMRs... 5-43
Requirements and Limitations .. 5-43
Relationship Cardinality ... 5-44
Relationship Direction .. 5-44
Removing Relationships ... 5-44

Defining Container-Managed Relationships.. 5-45
Specifying Relationship in ejb-jar.xml ... 5-45
Specifying Relationships in weblogic-cmp-jar.xml.......................... 5-47

Using Relationship Caching for CMRs.. 5-51
Nested caching-elements... 5-52
Relationship Caching Limitations... 5-53

Cascade Delete .. 5-53
Cascade Delete Method.. 5-54
Database Cascade Delete Method .. 5-54
CMRs and Local Interfaces.. 5-55

Using the Local Client .. 5-56
Changes to the Container for Local Interfaces.................................. 5-57

Groups ... 5-58
Specifying Field Groups... 5-58

Using EJB Links.. 5-59
Java Data Types for CMP Fields... 5-59

6. Packaging EJBs for the WebLogic Server Container
Required Steps for Packaging EJBs .. 6-2
Reviewing the EJB Source File Components.. 6-2
Programming WebLogic Enterprise JavaBeans -x

WebLogic Server EJB Deployment Files.. 6-3
ejb-jar.xml .. 6-4
weblogic-ejb-jar.xml .. 6-4
weblogic-cmp-rdbms.xml... 6-4
Relationships Among the Deployment Files.. 6-4

Specifying and Editing the EJB Deployment Descriptors................................. 6-5
Creating the Deployment Files .. 6-6

Manually Editing EJB Deployment Descriptors .. 6-6
Using the EJB Deployment Descriptor Editor ... 6-7

Referencing Other EJBs and Resources .. 6-8
Referencing External EJBs... 6-8
Referencing Application-Scoped EJBs .. 6-9
Referencing Application-Scoped JDBC DataSources.............................. 6-10

Packaging EJBs into a Deployment Directory .. 6-10
ejb.jar file.. 6-12

Compiling EJB Classes and Generating EJB Container Classes 6-12
Possible Generated Class Name Collisions.. 6-13

Loading EJB Classes into WebLogic Server... 6-14
Specifying an ejb-client.jar.. 6-14
Manifest Class-Path ... 6-16

7. Deploying EJBs to WebLogic Server
Roles and Responsibilities... 7-1
Deploying EJBs at WebLogic Server Startup ... 7-2

Deploying EJBs in Different Applications... 7-3
Deploying EJBs on a Running WebLogic Server ... 7-3

EJB Deployment Names... 7-4
Deploying New EJBs into a Running Environment................................... 7-4
Deploying Pinned EJBs - Special Step Required 7-5

Viewing Deployed EJBs.. 7-6
Undeploying Deployed EJBs... 7-6

Undeploying EJBs .. 7-6
Redeploying EJBs.. 7-7

The Redeploy Process .. 7-7
Steps to Redeploy ... 7-8
-xi Programming WebLogic Enterprise JavaBeans

Deploying Compiled EJB Files ... 7-8
Deploying Uncompiled EJB Files ... 7-9
Deployment Restriction with Container Managed Relationships 7-10

8. WebLogic Server EJB Utilities
EJBGen.. 8-1

EJBGen Syntax .. 8-2
Surround Attributes that Contain Spaces With Double Quotes 8-4

EJBGen Example ... 8-5
EJBGen Tags ... 8-7

@ejbgen:automatic-key-generation .. 8-7
@ejbgen:cmp-field.. 8-7
@ejbgen:cmr-field .. 8-7
@ejbgen:create-default-rdbms-tables ... 8-8
@ejbgen:ejb-client-jar... 8-8
@ejbgen:ejb-local-ref ... 8-8
@ejbgen:ejb-ref... 8-9
@ejbgen:entity .. 8-9
@ejbgen:env-entry.. 8-11
@ejbgen:finder.. 8-11
@ejbgen:jndi-name ... 8-12
@ejbgen:local-home-method.. 8-12
@ejbgen:local-method .. 8-13
@ejbgen:message-driven .. 8-13
@ejbgen:primkey-field ... 8-14
@ejbgen:relation ... 8-14
@ejbgen:remote-home-method... 8-15
@ejbgen:remote-method... 8-15
@ejbgen:resource-env-ref... 8-16
@ejbgen:resource-ref .. 8-16
@ejbgen:role-mapping.. 8-17
@ejbgen:select .. 8-17
@ejbgen:session.. 8-17
@ejbgen:value-object ... 8-19

ejbc .. 8-19
Programming WebLogic Enterprise JavaBeans -xii

Advantages of Using ejbc... 8-20
ejbc Syntax ... 8-20
ejbc Arguments... 8-21
ejbc Options.. 8-21
ejbc Examples... 8-23

DDConverter ... 8-23
Conversion Options Available with DDConverter................................... 8-24
Using DDConverter to Convert EJBs... 8-26
DDConverter Syntax .. 8-26
DDConverter Arguments.. 8-26
DDConverter Options... 8-27
DDConverter Examples.. 8-27

weblogic.Deployer... 8-28
weblogic.deploy... 8-28

deploy Syntax ... 8-28
deploy Arguments .. 8-29
deploy Options.. 8-29

9. weblogic-ejb-jar.xml Document Type Definitions
EJB Deployment Descriptors .. 9-2
DOCTYPE Header Information .. 9-2

Document Type Definitions (DTDs) for Validation 9-4
weblogic-ejb-jar.xml ... 9-4
ejb-jar.xml ... 9-5

Changed Deployment Elements in WebLogic Server 7.0 EJB 9-5
2.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure 9-6
2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements 9-7
allow-concurrent-calls ... 9-11
allow-remove-during-transaction .. 9-12
cache-between-transactions ... 9-13
cache-type .. 9-14
client-authentication .. 9-15
client-cert-authentication ... 9-16
clients-on-same-server... 9-17
concurrency-strategy.. 9-18
-xiii Programming WebLogic Enterprise JavaBeans

confidentiality.. 9-20
connection-factory-jndi-name ... 9-21
delay-updates-until-end-of-tx .. 9-22
description ... 9-23
destination-jndi-name .. 9-24
ejb-name .. 9-25
ejb-reference-description... 9-26
ejb-ref-name .. 9-27

Example.. 9-27
ejb-local-reference-description.. 9-28
enable-call-by-reference .. 9-29
enable-dynamic-queries... 9-30
entity-cache.. 9-31
entity-cache-name.. 9-32
entity-cache-ref.. 9-33
entity-clustering... 9-34
entity-descriptor... 9-35
estimated-bean-size ... 9-36
externally-defined.. 9-37
finders-load-bean... 9-38
global-role.. 9-39
home-call-router-class-name ... 9-40
home-is-clusterable.. 9-41
home-load-algorithm ... 9-42
idempotent-methods .. 9-43
identity-assertion ... 9-44
idle-timeout-seconds.. 9-45
iiop-security-descriptor.. 9-46
initial-beans-in-free-pool ... 9-47
initial-context-factory .. 9-48
integrity.. 9-49
invalidation-target.. 9-50
is-modified-method-name ... 9-51
isolation-level .. 9-52
jms-polling-interval-seconds ... 9-54
Programming WebLogic Enterprise JavaBeans -xiv

jms-client-id .. 9-55
jndi-name ... 9-56
local-jndi-name.. 9-57
max-beans-in-cache ... 9-58
max-beans-in-free-pool.. 9-59
message-driven-descriptor... 9-60
method ... 9-61
method-intf .. 9-62
method-name ... 9-63
method-param.. 9-64
method-params .. 9-65
persistence ... 9-66
persistence-use... 9-67
persistent-store-dir ... 9-68
pool .. 9-69
principal-name ... 9-70
provider-url .. 9-71
read-timeout-seconds... 9-72
reference-descriptor ... 9-73
relationship-description ... 9-74
replication-type .. 9-74
res-env-ref-name.. 9-75
res-ref-name... 9-76
resource-description... 9-77
resource-env-description.. 9-78
role-name ... 9-79
security-permission.. 9-80
security-permission-spec ... 9-81
security-role-assignment.. 9-82
session-timeout-seconds .. 9-83
stateful-session-cache .. 9-84
stateful-session-clustering ... 9-85
stateful-session-descriptor ... 9-86
stateless-bean-call-router-class-name .. 9-87
stateless-bean-is-clusterable .. 9-88
-xv Programming WebLogic Enterprise JavaBeans

stateless-bean-load-algorithm.. 9-89
stateless-bean-methods-are-idempotent .. 9-90
stateless-clustering... 9-91
stateless-session-descriptor.. 9-92
transaction-descriptor .. 9-93
transaction-isolation .. 9-94
transport-requirements... 9-95
trans-timeout-seconds.. 9-96
type-identifier .. 9-97
type-storage ... 9-98
type-version ... 9-99
weblogic-ejb-jar... 9-100
weblogic-enterprise-bean .. 9-100
5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure.................. 9-101
5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements......................... 9-101

caching-descriptor .. 9-102
max-beans-in-free-pool ... 9-102
initial-beans-in-free-pool .. 9-102
max-beans-in-cache .. 9-103
idle-timeout-seconds ... 9-103
cache-strategy.. 9-103
read-timeout-seconds .. 9-103

persistence-descriptor... 9-104
is-modified-method-name... 9-104
delay-updates-until-end-of-tx.. 9-104
persistence-use .. 9-105
db-is-shared... 9-106
stateful-session-persistent-store-dir .. 9-106

clustering-descriptor... 9-106
home-is-clusterable ... 9-107
home-load-algorithm... 9-107
home-call-router-class-name... 9-107
stateless-bean-is-clusterable.. 9-108
stateless-bean-load-algorithm ... 9-108
stateless-bean-call-router-class-name ... 9-108
Programming WebLogic Enterprise JavaBeans -xvi

stateless-bean-methods-are-idempotent .. 9-108
transaction-descriptor ... 9-108

trans-timeout-seconds.. 9-109
reference-descriptor.. 9-109

resource-description .. 9-110
ejb-reference-description... 9-110

enable-call-by-reference ... 9-110
jndi-name.. 9-110
transaction-isolation ... 9-111

isolation-level .. 9-111
method... 9-113

security-role-assignment... 9-114
... 9-114

10. weblogic-cmp-rdbms-
jar.xml Document Type Definitions

EJB Deployment Descriptors .. 10-2
DOCTYPE Header Information .. 10-2

Document Type Definitions (DTDs) for Validation 10-4
weblogic-cmp-rdbms-jar.xml.. 10-4
ejb-jar.xml ... 10-5

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure....... 10-5
2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements.............. 10-6
automatic-key-generation .. 10-9
caching-element... 10-10
caching-name... 10-11
check-exists-on-method... 10-12
cmp-field.. 10-13
cmr-field .. 10-14
column-map ... 10-15
create-default-dbms-tables... 10-16
database-type ... 10-17
data-source-name... 10-18
db-cascade-delete... 10-19
dbms-column ... 10-20
-xvii Programming WebLogic Enterprise JavaBeans

dbms-column-type... 10-21
description ... 10-22
delay-database-insert-until .. 10-23

Example.. 10-23
ejb-name .. 10-24
enable-tuned-updates... 10-25
field-group ... 10-26
field-map.. 10-27
foreign-key-column ... 10-28
foreign-key-table ... 10-29
generator-name .. 10-30
generator-type.. 10-31
group-name.. 10-32
include-updates.. 10-33

Function.. 10-33
key-cache-size ... 10-34

Example.. 10-34
key-column .. 10-35
max-elements... 10-36
method-name ... 10-37
method-param.. 10-38
method-params .. 10-39
optimistic-column.. 10-40
primary-key-table .. 10-41
query-method... 10-42
relation-name... 10-43
relationship-caching .. 10-44
relationship-role-map .. 10-45
relationship-role-name... 10-46
sql-select-distinct... 10-47
table-map ... 10-48
table-name ... 10-50
use-select-for-update ... 10-51
validate-db-schema-with ... 10-52
verify-columns... 10-53
Programming WebLogic Enterprise JavaBeans -xviii

weblogic-ql .. 10-54
weblogic-query .. 10-55
weblogic-rdbms-bean .. 10-56
weblogic-rdbms-jar.. 10-57
weblogic-rdbms-relation.. 10-58
weblogic-relationship-role... 10-59
1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure..... 10-60
1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements............ 10-61

RDBMS Definition Elements... 10-61
pool-name.. 10-61
schema-name... 10-62
table-name ... 10-62

EJB Field-Mapping Elements... 10-62
attribute-map ... 10-62
object-link.. 10-62
bean-field... 10-63
dbms-column... 10-63

Finder Elements.. 10-63
finder-list ... 10-63
finder ... 10-64
method-name... 10-64
method-params .. 10-64
method-param.. 10-64
finder-query... 10-64
finder-expression... 10-65
-xix Programming WebLogic Enterprise JavaBeans

About This Document

This document describes how to develop and deploy Enterprise JavaBeans (EJBs) on
WebLogic Server. This document is organized as follows:

Chapter 1, “Introducing WebLogic Server Enterprise JavaBeans,” is an overview
of EJB features supported in WebLogic Server.

Chapter 2, “Designing EJBs,” is an overview of design techniques developers
can use to create EJBs.

Chapter 3, “Designing Message-Driven Beans,” explains how to develop and
deploy message-driven beans in the WebLogic Server container.

Chapter 4, “The WebLogic Server EJB Container and Supported Services,”
describes the services available to the EJB with the WebLogic Services
container.

Chapter 5, “WebLogic Server Container-Managed Persistence Service,”
describes the EJB container-managed persistence services available for entity
EJBs in the WebLogic Server container.

Chapter 6, “Packaging EJBs for the WebLogic Server Container,” describes the
steps necessary to package EJBs for deployment to WebLogic Server.

Chapter 7, “Deploying EJBs to WebLogic Server,” describes the process for
deploying EJBs in the EJB container.

Chapter 8, “WebLogic Server EJB Utilities,” describes the utilities, shipped with
WebLogic Server, that are used with EJBs.

Chapter 9, “weblogic-ejb-jar.xml Document Type Definitions,” describes the
WebLogic-specific deployment descriptors found in the
weblogic-ejb-jar.xml file shipped with WebLogic Server.
Programming WebLogic Enterprise JavaBeans xx

Chapter 10, “weblogic-cmp-rdbms- jar.xml Document Type Definitions,”
describes the WebLogic-specific deployment descriptors found in
weblogic-cmp-rdbms-jar.xml file, shipped with WebLogic Server.

Audience

This document is intended mainly for application developers who are interested in
developing Enterprise JavaBeans (EJBs) for use in dynamic Web-based applications.
Readers are assumed to be familiar with EJB architecture, XML coding, and Java
programming.

e-docs Web Site

BEA WebLogic Server product documentation is available on the BEA corporate Web
site. From the BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com/.
xxi Programming WebLogic Enterprise JavaBeans

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.
However, the following information will provide you with related information that
may help you when using Enterprise JavaBeans with WebLogic Server.

For more information about Sun Microsystem’s EJB Specification, see the
JavaSoft EJB Specification.

For more information about the J2EE Specification, see the JavaSoft J2EE
Specification.

For more information about SunMicrosystem’s EJB deployment descriptors and
descriptions, see the JavaSoft EJB Specification.

For more information on the deployment descriptors in WebLogic Server’s
weblogic-ejb-jar.xml file, see weblogic-ejb-jar.xml Document Type Definitions.

For more information on the deployment descriptors in WebLogic Server’s
weblogic-cmp-rdbms-jar.xml file, see Chapter 10, “weblogic-cmp-rdbms- jar.xml
Document Type Definitions.”

For more information on transactions, see Programming WebLogic JTA.

For more information about WebLogic’s implementation of the JavaSoft Remote
Method Invocation (RMI) specification, see the following:

JavaSoft Remote Method Invocation Specification

Programming WebLogic RMI

Programming RMI over IIOP
Programming WebLogic Enterprise JavaBeans xxii

Contact Us!

Your feedback on the BEA WebLogic Server documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Server documentation.

In your e-mail message, please indicate the software name and version you are using
as well as the title and document date of your documentation.

If you have any questions about this version of BEA WebLogic Server, or if you have
problems installing and running BEA WebLogic Server, contact BEA Customer
Support through BEA WebSupport at http://www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
xxiii Programming WebLogic Enterprise JavaBeans

http://www.bea.com

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
Programming WebLogic Enterprise JavaBeans xxiv

... Indicates one of the following in a command line:
That an argument can be repeated several times in a command line
That the statement omits additional optional arguments
That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xxv Programming WebLogic Enterprise JavaBeans

CHAPTER
1 Introducing WebLogic
Server Enterprise
JavaBeans

WebLogic Server includes an implementation of Sun Microsystems Enterprise
JavaBeans (EJB) architecture as defined by Sun’s EJB specification.

Note: WebLogic Server is compliant with the Sun J2EE specification and EJB 1.1
and EJB 2.0 specifications. Except where descriptions of EJB features and
behaviors make specific mention of EJB 1.1 or EJB 2.0, all information in this
guide relates to both implementation. You can deploy existing EJB 1.1 beans
in this version of WebLogic Server. However, if you are developing new
beans, we recommend that you develop EJB 2.0 beans.

The following sections provide an overview of the EJB features and introduce the
changes in the WebLogic Server’s Enterprise JavaBeans implementation:

Overview of Enterprise JavaBeans

Implementation of Java Specifications

WebLogic Server EJB 2.0 Support

EJB Roles

EJB Enhancements in WebLogic Server 7.0

EJB Developer Tools
Programming WebLogic Enterprise JavaBeans 1-1

1 Introducing WebLogic Server Enterprise JavaBeans
Overview of Enterprise JavaBeans

Enterprise JavaBeans are reusable Java components that implement business logic and
enable you to develop component-based distributed business applications. EJBs reside
in an EJB container, which provides a standard set of services such as persistence,
security, transactions, and concurrency. Enterprise JavaBeans are the standard for
defining server-side components. WebLogic Server’s implementation of the
Enterprise JavaBeans component architecture is based on Sun Microsystems EJB
specification.

EJB Components

An EJB consists of three main components:

Remote interface. This interface exposes business logic to the client.

Home interface. The EJB factory. Clients use this interface to create, find, and
remove EJB instances.

Bean class. This interface implements business logic.

To create an EJB, you code a distributed application’s business logic into the EJB’s
implementation class; specify the deployment parameters in deployment descriptor
files; and package the EJB into a JAR file. You can then deploy the EJB individually
from a JAR file, or package it along with other EJBs and a Web application into an
EAR file, which you then deploy on WebLogic Server. Client applications can locate
the EJB and create an instance of the bean using the bean’s home interface. The client
can then invoke the methods of the EJB using the EJB’s remote interface. WebLogic
Server manages the EJB container and provides access to system-level services such
as database management, security management, and transaction services.

Types of EJBs

The EJB specification defines the following four types of Enterprise JavaBeans:
1-2 Programming WebLogic Enterprise JavaBeans

Implementation of Java Specifications
Stateless session. An instance of these non-persistent EJBs provides a service
without storing an interaction or conversation state between methods. Any
instance can be used for any client. Stateless session beans can use either
container-managed or bean-managed transaction demarcation.

Stateful session. An instance of these non-persistent EJBs maintains state across
methods and transactions. Each instance is associated with a particular client.
Stateful session beans can use either container-managed or bean-managed
transaction demarcation.

Entity. An instance of these persistent EJBs represents an object view of the
data, usually rows in a database. An entity bean has a primary key as a unique
identifier. Entity bean persistence can be container-managed or bean-managed,
but uses container-managed transaction demarcation only.

Message-driven. An instance of these EJBs is integrated with the Java Message
Service (JMS) to enable message-driven beans to act as a standard JMS message
consumer and perform asynchronous processing between the server and the JMS
message producer. The WebLogic Server container directly interacts with a
message-driven bean by creating bean instances and passing JMS messages to
those instances as necessary. Message-driven beans can use either
container-managed or bean-managed transaction demarcation.

Note: Message driven beans are part of the Sun Microsystems EJB 2.0 specification.
They are not part of the EJB 1.1 specification.

Implementation of Java Specifications

WebLogic Server is compliant with the following Java Specifications.

J2EE Specification

WebLogic Server 7.0 is compliant with the J2EE 1.3 specification.
Programming WebLogic Enterprise JavaBeans 1-3

1 Introducing WebLogic Server Enterprise JavaBeans
EJB 2.0 Specification

The Enterprise JavaBeans 2.0 implementation in WebLogic Server is fully compliant
and can be used in production.

Securing WebLogic Server EJB Resources

The vast majority of business applications apply some means of securing application
resources so that only certain users can access such resources under certain conditions.
WebLogic Server includes robust functionality to protect your EJB resources in this
way.

The Securing WebLogic Resources guide gives background information application
on and steps you through securing all WebLogic Server application resources,
including EJBs.

WebLogic Server EJB 2.0 Support

WebLogic Server supports an implementation of Sun Microsystems’s EJB 2.0
specification and is compliant with the Sun Microsystem’s EJB 1.1 specification. In
most cases, you can use EJB 1.1 beans with this version of WebLogic Server.
However, in a few cases you may need to migrate existing EJB deployments from
earlier versions of WebLogic Server to this version of the EJB container. If necessary,
see the information on “DDConverter” on page 8-23 for instructions on converting the
beans.

Sun Microsystem’s EJB 2.0 specification supports the following new features:

New type of EJB called message-driven bean that is a Java Messaging Service
(JMS) consumer. See Chapter 3, “Designing Message-Driven Beans,” for more
information.
1-4 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/secwlres/index.html

EJB Roles
New entity EJB container-managed persistence model that provides a new way
of handling container-managed persistence. See Chapter 5, “WebLogic Server
Container-Managed Persistence Service,” for more information.

Model for creating container-managed relationships between entity EJBs allows
you to define the relationship between the beans in the implementation classes
and the deployment descriptors. See Chapter 5, “WebLogic Server
Container-Managed Persistence Service,” for more information.

New standard query language called EJB-QL which you use to query EJBs and
their properties. See Chapter 5, “WebLogic Server Container-Managed
Persistence Service,” for more information.

New ejbSelect methods that allow an entity EJB to internally query for
properties using an EJB-QL query defined in a deployment descriptor. See
Chapter 5, “WebLogic Server Container-Managed Persistence Service,” for more
information.

Local interfaces for session and entity beans. EJB relationships are now based on
the local interface. Any EJB that participates in a relationship must have a local
interface. See Chapter 5, “WebLogic Server Container-Managed Persistence
Service,” for more information.

Home methods that allow you to execute a home business method that is not
specific to a particular instance of an entity bean. You use the home interface to
define one or more home methods for the entity bean See Chapter 2, “Designing
EJBs,” for more information.

EJB Roles

The process of developing EJBs is divided into the following distinct roles.

Application Roles

Enterprise Bean Providers—Enterprise Bean Providers produce the EJBs.
Their output is the ejb.jar file that contains one or more EJBs. The providers
Programming WebLogic Enterprise JavaBeans 1-5

1 Introducing WebLogic Server Enterprise JavaBeans
use the design process documented in this guide to design the EJBs that are
deployed in the WebLogic Server environment.

For more information on the design process, see Chapter 2, “Designing EJBs.”

Application Assemblers—Application Assemblers combine the EJBs into
deployable units such as JARs, EARs, or WARs. Their output is the JAR, EAR,
or WAR file that contains the EJB and the application assembly instructions;
these instructions are set by the EJB’s deployment descriptors. The assemblers
use the design process and the EJB deployment descriptor elements to assemble
the deployment unit.

For more information in the design process, see Chapter 2, “Designing EJBs.”
For more information in the assembly process, see Chapter 6, “Packaging EJBs
for the WebLogic Server Container.” For more information on the deployment
descriptors, see “weblogic-ejb-jar.xml Document Type Definitions” on page
9-1and Chapter 10, “weblogic-cmp-rdbms- jar.xml Document Type Definitions.”

Infrastructure Roles

Container Providers—Container Providers supply EJB deployment tools,
container monitoring and management tools, and runtime support for deployed
EJB instances. This support includes services such as transaction and security
management, network distribution of clients, and scalability. The container
providers use the container management process documented in this guide to
provide the container.

For more information on the container management process, see Chapter 4, “The
WebLogic Server EJB Container and Supported Services.”

Persistence Manager Providers—Persistence Manager Providers are
responsible for persistence support for the Entity EJBs in the container, if the
EJB has container-managed persistence. This support is provided during
deployment to generate the code that moves data between the EJB and a
database. The persistence manager providers use the deploy process and
container-managed persistence (CMP) information documented in this guide to
provide container-managed persistence.

For more information on container-managed persistence, see Chapter 5,
“WebLogic Server Container-Managed Persistence Service.” For more
1-6 Programming WebLogic Enterprise JavaBeans

EJB Enhancements in WebLogic Server 7.0
information on the deploy process, see Chapter 6, “Packaging EJBs for the
WebLogic Server Container.”

Deployment and Management Roles

Deployers—Deployers, following the application assembly instructions in the
deployment descriptors, deploy the EJBs contained in the JAR, EAR, or WAR
file to the target environment. The target environment includes the WebLogic
Server environment and the container. The deployer’s output is the EJB
customized for the target environment and deployed in a specific EJB container.
The deployers use the deploy process documented in this guide to deploy the
EJBs.

For more information on the deploy process, see Chapter 7, “Deploying EJBs to
WebLogic Server.”

System Administrators—System Administrators configure and administer the
computing and networking infrastructure that includes WebLogic Server and the
container. System Administrators use the administration process documented in
the Administration Guide and the WebLogic Server online help to manage the
deployed applications at runtime.

For more information on system administrator’s tasks, see the Administration
Guide.

EJB Enhancements in WebLogic Server 7.0

The following EJB enhancements are new to this release of WebLogic Server.

Changed Deployment Elements in WebLogic Server 7.0

For information about new, changed, or deprecated deployment elements in
weblogic-ejb-jar.xml, see “Changed Deployment Elements in WebLogic Server
7.0 EJB” on page 9-5.
Programming WebLogic Enterprise JavaBeans 1-7

1 Introducing WebLogic Server Enterprise JavaBeans
Dynamic Query Support

Dynamic queries allow you to construct and execute queries programmatically in your
application code. Therefore, all finder queries no longer need to be static and
hardcoded into an EJB’s deployment descriptor. This gives you the ability to create
and execute new queries without having to update and redeploy an EJB and reduces
the size of the EJB’s deployment descriptor. See “Using Dynamic Queries” on page
5-24 for more information on dynamic queries.

Message-Driven Bean Migratable Service Support

Message-driven bean migratable service support allows the message-driven bean and
the Java Messaging Service (JMS) server to migrate to another server in the same
cluster, to expedite message-driven bean recovery. In previous versions of WebLogic
Server, there was no recovery mechanism for the JMS server and the message-driven
bean when a server failed. See “Message-Driven Bean Migratable Service” on page
3-13 for more information on the message-driven bean migration service.

EJB CMP Multiple Table Mapping Support

Multiple table mapping allows you to map a single EJB to multiple DBMS tables
within a single database. You use the WebLogic Server-specific CMP container XML
deployment descriptors to map multiple DBMS tables and columns to the EJB and its
fields. See “Multiple Table Mapping for EJB 2.0 CMP” on page 5-38 for more
information on multiple table mapping.

EJB WebLogic QL Enhancements Support

EJB WebLogic QL enhancements support in this release of WebLogic Server includes
a set of enhancements to the WebLogic QL query language. WebLogic QL is a
WebLogic-specific extension of the EJB 2.0 Query Language known as EJB QL. This
enhancement supports the following features:

Subqueries
1-8 Programming WebLogic Enterprise JavaBeans

EJB Enhancements in WebLogic Server 7.0
Aggregate functions

Queries returning ResultSets

See “Using EJB QL for EJB 2.0” on page 5-11 for more information on these
three EJB WebLogic QL enhancements.

SELECT FOR UPDATE with NO WAIT

See “Special Note for Oracle Databases” on page 4-41 for more information on
this EJB WebLogic QL enhancement in
TRANSACTION_READ_COMMITTED UPDATES.

Optimistic Concurrency Support

Optimistic concurrency support is a new concurrency strategy offered by WebLogic
Server. Provides optimistic support with and without caching. The EJB guarantees that
the data is consistent by making sure that it was not modified before committing the
transaction. See “Optimistic Concurrency Strategy” on page 4-17 for more
information on this feature.

ReadOnly Entity Concurrency Support

ReadOnly entity bean concurrency support allows WebLogic Server to activate
separate instance of a read-only bean for each transaction that needs concurrent access
to that bean. This will eliminate the need for exclusive locking in the EJB Container
and allow concurrent requests that access the same bean to proceed in parallel. See
“ReadOnly Concurrency Strategy” on page 4-20 for more information on read-only
entity bean caching.
Programming WebLogic Enterprise JavaBeans 1-9

1 Introducing WebLogic Server Enterprise JavaBeans
Combined Caching Support

Combined caching support allows you to configure a single cache for use with multiple
entity beans. This will help solve usability and performance problems. Previously, you
were required to configure a separate cache for each entity bean that was part of an
application. See “Combined Caching with Entity Beans” on page 4-24 for more
information on combined caching.

Relationship Caching Support

Relationship caching support will improve entity bean performance by loading related
entity beans into a cache and avoid multiple queries by issuing a join query for the
related beans. See “Combined Caching with Entity Beans” on page 4-24 for more
information on relationship caching.

EJB Links Support

EJB links support allows you to link EJB references declared in one application
component to an enterprise bean contained in the same J2EE application. See “Using
EJB Links” on page 5-59 for more information on EJB links.

Bulk Insert Support

Bulk insert support increases the performance of container managed persistence
(CMP) bean creation by enabling the EJB container to perform multiple database
inserts for CMP beans in one SQL statement. This feature allows the container to avoid
multiple database inserts. See “Database Insert Support” on page 4-44 for more
information on this feature.
1-10 Programming WebLogic Enterprise JavaBeans

EJB Developer Tools
EJB Developer Tools

BEA provides several tools you can use to help you create and configure EJBs.

ANT Tasks to Create Skeleton Deployment Descriptors

You can use the WebLogic ANT utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
ANT task looks at a directory containing an EJB and creates deployment descriptors
based on the files it finds in the ejb.jar file. Because the ANT utility does not have
information about all of the desired configurations and mappings for your EJB, the
skeleton deployment descriptors the utility creates are incomplete. After the utility
creates the skeleton deployment descriptors, you can use a text editor, an XML editor,
or the EJB Deployment Descriptor Editor in the Administration Console to edit the
deployment descriptors and complete the configuration of your EJB.

For more information on using ANT utilities to create deployment descriptors, see
Packaging Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/programming/packaging.html in the
Developing WebLogic Server Applications.

WebLogic Builder

WebLogic Builder is a development tools that provides a visual environment for you
to edit an application’s deployment descriptor XML files. You can use WebLogic
Builder’s interface to view these XML files as you edit them, but you will not need to
make textual edits to the XML files. For instructions on how to use the WebLogic
Builder tool, see WebLogic Builder.
Programming WebLogic Enterprise JavaBeans 1-11

http://e-docs.bea.com/wls/docs70/programming/packaging.html

1 Introducing WebLogic Server Enterprise JavaBeans
EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator. You can annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application. For more
information on EJBGen and a list of the supported javadoc tags, see “EJBGen” on page
8-1.

weblogic.Deployer

The weblogic.Deployer command-line utility is new in WebLogic Server 7.0 and
replaces the deprecated weblogic.deploy utility. The weblogic.Deployer utility
allows your to initiate deployment from the command line, a shell script, or any
automated environment other than Java.

For instructions on using weblogic.Deployer and a list of the commands, see
Deploying Using weblogic.Deployer.

WebLogic EJB Deployment Descriptor Editor

The WebLogic Server Administration Console has an integrated EJB deployment
descriptor editor. You must create at least a skeleton of the following deployment
descriptor files that you add to the ejb.jar file before using this integrated editor:

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

For more information, see “Specifying and Editing the EJB Deployment Descriptors”
on page 6-5.
1-12 Programming WebLogic Enterprise JavaBeans

EJB Developer Tools
XML Editor

The XML editor is a simple, user-friendly tool from Ensemble for creating and editing
XML files. It can validate XML code according to a specified DTD or XML Schema.
You can use the XML editor on Windows or Solaris machines and download it from
the Dev2Dev Online.
Programming WebLogic Enterprise JavaBeans 1-13

http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools

1 Introducing WebLogic Server Enterprise JavaBeans
1-14 Programming WebLogic Enterprise JavaBeans

CHAPTER
2 Designing EJBs

The following sections provide guidelines for designing WebLogic Server Enterprise
JavaBeans (EJB)s. Some suggestions apply to remote object models and Remote
Method Invocation (RMI) as much as they do to EJB.

Designing Session Beans

Designing Entity Beans

Designing Message-Driven Beans

Using WebLogic Server Generic Bean Templates

Using Inheritance with EJBs

Accessing Deployed EJBs

Preserving Transaction Resources

Designing Session Beans

One way to design session beans is to use the model-view design. The view is the
graph-user interface (GUI) form and the model is the piece of code that supplies data
to the GUI. In a typical client-server system, the model lives on the same server as the
view and talks to the server.

Have the model reside on the server, in the form of a session bean. (This is analogous
to having a servlet providing support for an HTML form, except that a model session
bean does not affect the final presentation.) There should be one model session bean
instance for each GUI form instance, which acts as the form’s representative on the
Programming WebLogic Enterprise JavaBeans 2-1

2 Designing EJBs
server. For example, if you have a list of 100 network nodes to display in a form, you
might have a method called getNetworkNodes() on the corresponding EJB that
returns an array of values relevant to that list.

This approach keeps the overall transaction time short, and requires minimal network
bandwidth. In contrast, consider an approach where the GUI form calls an entity EJB
finder method that retrieves references to 100 separate network nodes. For each
reference, the client must go back to the datastore to retrieve additional data, which
consumes considerable network bandwidth and may yield unacceptable performance.

Designing Entity Beans

Reading and writing RDBMS data via an entity bean can consume valuable network
resources. Network traffic may occur between a client and WebLogic Server, as well
as between WebLogic Server and the underlying datastore. Use the following
suggestions to model entity EJB data correctly and avoid unnecessary network traffic.

Entity Bean Home Interface

The container provides an implementation of the home interface for each entity bean
deployed in the container and it makes the home interface accessible to the clients
through JNDI. An object that implements an entity beans’s home interface is called an
EJBHome object. The entity bean’s home interface enables a client to do the
following:

Use the create() methods to create new entity objects within the home.

Use the finder() methods to find existing entity objects within the home.

Use the remove() methods to remove an entity object from the home.

Execute a home method that is not specific to a particular entity bean instance.
2-2 Programming WebLogic Enterprise JavaBeans

Designing Entity Beans
Make Entity EJBs Coarse-Grained

Do not attempt to model every object in your system as an entity EJB. In particular,
small subsets of data consisting of only a few bytes should never exist as entity EJBs,
because the trade-off in network resources is unacceptable.

For example, cells in a spreadsheet are too fine-grained and should not be accessed
frequently over a network. In contrast, logical groupings of an invoice’s entries, or a
subset of cells in a spreadsheet can be modeled as an entity EJB, if additional business
logic is required for the data.

Encapsulate Additional Business Logic in Entity EJBs

Even coarse-grained objects may be inappropriate for modeling as an entity EJB if the
data requires no additional business logic. For example, if the methods in your entity
EJB work only to set or retrieve data values, it is more appropriate to use JDBC calls
in an RDBMS client or to use a session EJB for modeling.

Entity EJBs should encapsulate additional business logic for the modeled data. For
example, a banking application that uses different business rules for “Platinum” and
“Gold” customers might model all customer accounts as entity EJBs; the EJB methods
can then apply the appropriate business logic when setting or retrieving data fields for
a particular customer type.

Optimize Entity EJB Data Access

Entity EJBs ultimately model fields that exist in a data store. Optimize entity EJBs
wherever possible to simplify and minimize database access. In particular:

Limit the complexity of joins against EJB data.

Avoid long-running operations that require disk access in the datastore.

Ensure that EJB methods return as much data as possible, so as to minimize
round-trips between the client and the datastore. For example, if your EJB client
must retrieve data fields, use bulk get/setAttributes() methods to minimize
network traffic.
Programming WebLogic Enterprise JavaBeans 2-3

2 Designing EJBs
Designing Message-Driven Beans

A message-driven bean acts as a message consumer in the WebLogic JMS messaging
system. For more information on designing message-driven beans, see Chapter 3,
“Designing Message-Driven Beans.”

Using WebLogic Server Generic Bean
Templates

For each EJB type, WebLogic Server provides a generic class that contains Java
callbacks, or listeners, that are required for most EJBs. The generic classes are in the
weblogic.ejb package:

GenericEnterpriseBean

GenericEntityBean

GenericMessageDrivenBean

GenericSessionBean

You can implement a generic bean template in a class of your own by importing the
generic class into the class you are writing. This example imports the
GenericSessionBean class into HelloWorldEJB:

import weblogic.ejb.GenericSessionBean;
...
public class HelloWorldEJB extends GenericSessionBean {
2-4 Programming WebLogic Enterprise JavaBeans

Using Inheritance with EJBs
Using Inheritance with EJBs

Using inheritance may be appropriate when building groups of related beans that share
common code. However, be aware of several inheritance restrictions apply to EJB
implementations.

For bean-managed entity EJBs, the ejbCreate() method must return a primary key.
Any class that inherits from the bean-managed EJB class cannot have an
ejbCreate() method that returns a different primary key class than does the
bean-managed EJB class. This restriction applies even if the new class is derived from
the base EJB’s primary key class. The restriction also applies to the bean’s ejbFind()
method.

Also, EJBs inheriting from other EJB implementations change the interfaces. For
example, the following figure shows a situation where a derived bean adds a new
method that is meant to be accessible remotely.

Figure 2-1 Derived bean (BBean) adding new method to be accessible remotely

An additional restriction is that because AHome.create() and BHome.create()
return different remote interfaces, you cannot have the BHome interface inherit from the
AHome interface. You can still use inheritance to have methods in the beans that are
unique to a particular class, that inherit from a superclass or that are overridden in the
subclass. See the EJB 1.1 subclass Child example in the and classes in the WebLogic
Server distribution for an examples of inheritance.

ABean

BBean
extends ABean

Bean Interface

ARemote

BRemote
extends ARemote

foo ()
foo2 ()

foo3 ()foo3 ()

foo ()
foo2 ()
Programming WebLogic Enterprise JavaBeans 2-5

2 Designing EJBs
Accessing Deployed EJBs

WebLogic Server automatically creates implementations of an EJB’s home and remote
interfaces that can function remotely. This means that all clients — whether they reside
on the same server as the EJB, or on a remote computer — can access deployed EJBs
in a similar fashion.

All EJBs must specify their environment properties using Java Naming and Directory
Interface (JNDI). You can configure the JNDI name spaces of EJB clients to include
the home EJBs that reside anywhere on the network — on multiple machines,
application servers, or containers.

However, in designing enterprise application systems, you must still consider the
effects of transmitting data across a network between EJBs and their clients. Because
of network overhead, it is still more efficient to access beans from a “local” client —
a servlet or another EJB — than to do so from a remote client where data must be
marshalled, transmitted over the network, and then unmarshalled.

Differences Between Accessing EJBs from Local Clients
and Remote Clients

One difference between accessing EJBs from local clients and remote clients is in
obtaining an InitialContext for the bean. Remote clients obtain an
InitialContext from the WebLogic Server InitialContext factory. WebLogic
Server local clients generally use a getInitialContext method to perform this
lookup, similar to the following excerpt:

Figure 2-2 Code sample of a local client performing a lookup

...
Context ctx = getInitialContext("t3://localhost:7001", "user1", "user1Password");
...
static Context getInitialContext(String url, String user, String password) {

Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
h.put(Context.PROVIDER_URL, url);
2-6 Programming WebLogic Enterprise JavaBeans

Accessing Deployed EJBs
h.put(Context.SECURITY_PRINCIPAL, user);
h.put(Context.SECURITY_CREDENTIALS, password);

return new InitialContext(h);

}

Internal clients of an EJB, such as servlets, can simply create an InitialContext
using the default constructor, as shown here:

Context ctx = new InitialContext();

Restrictions on Concurrency Access of EJB Instances

Although database concurrency is the default and recommended concurrency access
option, multiple clients can use the exclusive concurrency option to access EJBs in a
serial fashion. Using this exclusive option means that if two clients simultaneously
attempt to access the same entity EJB instance (an instance having the same primary
key), the second client is blocked until the EJB is available. For more information on
the database concurrency option, see “Exclusive Concurrency Strategy” on page 4-16.

Simultaneous access to a stateful session EJB results in a RemoteException. This
access restriction on stateful session EJBs applies whether the EJB client is remote or
internal to WebLogic Server. However, you can set the allow-concurrent-calls
option to specify that a stateful session bean instance will allow concurrent method
calls.

If multiple servlet classes access a session EJB, each servlet thread (rather than each
instance of the servlet class) must have its own session EJB instance. To avoid
concurrent access, a JSP/servlet can use a stateful session bean in request scope.

Storing EJB References in Home Handles

Once a client obtains the EJBHome object for an EJB instance, you can create a handle
to the home object by calling getHomeHandle(). getHomeHandle() returns a
HomeHandle object, which can be used to obtain the home interface to the same EJB
at a later time.
Programming WebLogic Enterprise JavaBeans 2-7

2 Designing EJBs
A client can pass the HomeHandle object as arguments to another client, and the
receiving client can use the handle to obtain a reference to the same EJBHome object.
Clients can also serialize the HomeHandle and store it in a file for later use.

Using Home Handles Across a Firewall

By default, WebLogic Server stores its IP address in the HomeHandle object for EJBs.
This can cause problems with certain firewall systems. If you cannot locate EJBHome
objects when you use home handles passed across a firewall, use the following steps:

1. Start WebLogic Server.

2. Start the WebLogic Server Administration Console.

3. From the left pane, expand the Servers node and select a server.

4. In the right pane, select the Configuration tab for that server and then the
Network tab.

5. Check the Reverse DNS Allowed box to enable reverse DNS lookups.

When you enable reverse DNS lookups, WebLogic Server stores the DNS name of the
server, rather than the IP address, in EJB home handles.

Preserving Transaction Resources

Database transactions are typically one of the most valuable resources in an online
transaction-processing system. When you use EJBs with WebLogic Server,
transaction resources are even more valuable because of their relationship with
database connections.

WebLogic Server can use a single connection pool to service multiple, simultaneous
database requests. The efficiency of the connection pool is largely determined by the
number and length of database transactions that use the pool. For non-transactional
database requests, WebLogic Server can allocate and deallocate a connection very
2-8 Programming WebLogic Enterprise JavaBeans

Preserving Transaction Resources
quickly, so that the same connection can be used by another client. However, for
transactional requests, a connection becomes “reserved” by the client for the duration
of the transaction.

To optimize transaction use on your system, always follow an “inside-out” approach
to transaction demarcation. Transactions should begin and end at the “inside” of the
system (the database) where possible, and move “outside” (toward the client
application) only as necessary. The following sections describe this rule in more detail.

Allowing the Datastore to Manage Transactions

Many RDBMS systems provide high-performance locking systems for Online
Transaction Processing (OLTP) transactions. With the help of Transaction Processing
(TP) monitors such as Tuxedo, RDBMS systems can also manage complex decision
support queries across multiple datastores. If your underlying datastore has such
capabilities, use them where possible. Never prevent the RDBMS from automatically
delimiting transactions.

Using Container-Managed Transactions Instead of
Bean-Managed Transactions for EJBs

Your system should rarely rely on bean-managed transaction demarcation. Use
WebLogic Server container-managed transaction demarcation unless you have a
specific need for bean-managed transactions.

Possible scenarios where you must use bean-managed transactions are:

You define multiple transactions from within a single method call. WebLogic
Server demarcates transactions on a per-method basis.

Note: However, instead of using multiple transactions in a single method call, it
is better to break the method into multiple methods, with each of the
multiple methods having its own container-managed transaction.

You define a single transaction that “spans” multiple EJB method calls. For
example, you define a stateful session EJB that uses one method to begin a
transaction, and another method to commit or roll back a transaction.
Programming WebLogic Enterprise JavaBeans 2-9

2 Designing EJBs
Note: Avoid this practice if possible because it requires detailed information
about the workings of the EJB object. However, if this scenario is required,
you must use bean-managed transaction coordination, and you must
coordinate client calls to the respective methods.

Never Demarcate Transactions from Application

In general, client applications are not guaranteed to stay active over long periods of
time. If a client begins a transaction and then exits before committing, it wastes
valuable transaction and connection resources in WebLogic Server. Moreover, even if
the client does not exit during a transaction, the duration of the transaction may be
unacceptable if it relies on user activity to commit or roll back data. Always demarcate
transactions at the WebLogic Server or RDBMS level where possible.

For more information on demarcating transaction see “Transaction Management
Responsibilities” on page 4-38.

Always Use A Transactional Datasource for Container-Managed EJBs

If you configure a JDBC datasource factory for use with container-managed EJBs,
make sure you configure a transactional datasource (TXDataSource) rather than a
non-transactional datasource (DataSource). With a non-transactional datasource, the
JDBC connection operates in auto commit mode, committing each insert and update
operation to the database immediately, rather than as part of a container-managed
transaction.
2-10 Programming WebLogic Enterprise JavaBeans

CHAPTER
3 Designing
Message-Driven Beans

The following sections describe how to develop message-driven beans and to deploy
then on WebLogic Server. Because message-driven beans use parts of the standard
Java Messaging Service (JMS) API, you should first become familiar with the
WebLogic JMS before attempting to implement message-driven beans. See the
Programming WebLogic JMS document for more information.

What Are Message-Driven Beans?

Developing and Configuring Message-Driven Beans

Invoking a Message-Driven Bean

Creating and Removing Bean Instances

Deploying Message-Driven Beans in WebLogic Server

Using Transaction Services with Message-Driven Beans

Message-Driven Bean Migratable Service

Configuring Message-Driven Beans for non-BEA JMS Providers

Reconnecting to a JMS Server or Non-BEA Service Provider

Configuring an MDB to Listen on a JMS Distributed Destination
Programming WebLogic Enterprise JavaBeans 3-1

http://e-docs.bea.com/wls/docs70/jms/index.html

3 Designing Message-Driven Beans
What Are Message-Driven Beans?

A message-driven bean is an EJB that acts as a message consumer in the WebLogic
JMS messaging system. As with standard JMS message consumers, message-driven
beans receive messages from a JMS Queue or Topic, and perform business logic based
on the message contents.

EJB deployers create listeners to a Queue or Topic at deployment time, and WebLogic
Server automatically creates and removes message-driven bean instances as needed to
process incoming messages.

Differences Between Message-Driven Beans and
Standard JMS Consumers

Because message-driven beans are implemented as EJBs, they benefit from several
key services that are not available to standard JMS consumers. Most importantly,
message-driven bean instances are wholly managed by the WebLogic Server EJB
container. Using a single message-driven bean class, WebLogic Server creates
multiple EJB instances as necessary to process large volumes of messages
concurrently. This stands in contrast to a standard JMS messaging system, where the
developer must create a MessageListener class that uses a server-wide session pool.

The WebLogic Server container provides other standard EJB services to message-
driven beans, such as security services and automatic transaction management. These
services are described in more detail in “Transaction Management” on page 4-38 and
in “Using Transaction Services with Message-Driven Beans” on page 3-11.

Finally, message-driven beans benefit from the write-once, deploy-anywhere quality
of EJBs. Whereas a JMS MessageListener is tied to specific session pools,
Queues, or Topics, message-driven beans can be developed independently of available
server resources. A message-driven bean’s Queues and Topics are assigned only at
deployment time, utilizing resources available on WebLogic Server.

Note: One limitation of message-driven beans compared to standard JMS listeners is
that you can associate a given message-driven bean deployment with only one
Queue or Topic, as described in “Invoking a Message-Driven Bean” on page
3-2 Programming WebLogic Enterprise JavaBeans

What Are Message-Driven Beans?
3-9. If your application requires a single JMS consumer to service messages
from multiple Queues or Topics, you must use a standard JMS consumer, or
deploy multiple message-driven bean classes.

Differences Between Message-Driven Beans and
Stateless Session EJBs

The dynamic creation and allocation of message-driven bean instances partially
mimics the behavior of stateless session EJB instances. However, message-driven
beans differ from stateless session EJBs (and other types of EJBs) in several significant
ways:

Message-driven beans process multiple JMS messages asynchronously, rather
than processing a serialized sequence of method calls.

Message-driven beans have no home or remote interface, and therefore cannot
be directly accessed by internal or external clients. Clients interact with
message-driven beans only indirectly, by sending a message to a JMS Queue or
Topic.

Note: Only the WebLogic Server container directly interacts with a message-driven
bean by creating bean instances and passing JMS messages to those instances
as necessary.

WebLogic Server maintains the entire life cycle of a message-driven bean;
instances cannot be created or removed as a result of client requests or other API
calls.

Concurrent Processing for Topics and Queues

Message-driven beans (MDBs) support concurrent processing for both topics and
queues. Previously, only concurrent processing for queues was supported.

To ensure concurrency, the container uses threads from the execute queue. The default
setting for the max-beans-in-free-pool deployment descriptor
weblogic-ejb-jar.xml file provides the most parallelism. The only reason to change
this setting would be to limit the number of parallel consumers.
Programming WebLogic Enterprise JavaBeans 3-3

3 Designing Message-Driven Beans
Note: The maximum number of MDBs configured—via the
max-beans-in-free-pool deployment descriptor element—to receive
messages at one time cannot exceed the maximum number of execution
threads. For example, if max-beans-in-free-pool is set to 50 but 25 is the
maximum number of execution threads allowed, only 25 of the MDBs will
actually receive messages.

For more information on max-beans-in-free-pool, see, “max-beans-in-free-pool”
on page 9-59.

Developing and Configuring
Message-Driven Beans

When developing message-driven beans, follow the conventions described in the
JavaSoft EJB 2.0 specification, and observe the general practices that result in proper
bean behavior. Once you have created the message-driven bean class, configuring the
bean for WebLogic Server by specify the bean’s deployment descriptor elements in the
EJB XML deployment descriptor files.

To develop a message-driven bean:

1. Create a source file (message-driven bean class) that implements both the
javax.ejb.MessageDrivenBean and javax.jms.MessageListener
interfaces.

The message-driven bean class must define the following methods:

One ejbCreate() method that the container uses to create an instance of the
message-driven bean on the free pool.

One onMessage() method that is called by the bean’s container when a
message is received. This method contains the business logic that handles
processing of the message.

One setMessageDrivenContext{} method that provides information to
the bean instance about its environment (certain deployment descriptor
values); the Context is also the mechanism the bean class uses to access
some services provided by the EJB container.
3-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html

Developing and Configuring Message-Driven Beans
One ejbRemove() method that removes the message-driven bean instance
from the free pool.

For an example of output for a message-driven bean class, see “Message-Driven
Bean Class Requirements” on page 3-7.

2. Specify the following XML deployment descriptor files for the message-driven
bean.

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

For instructions on specifying the XML files, see “Specifying and Editing the
EJB Deployment Descriptors” on page 6-5.

3. Set the message-driven element in the bean’s ejb-jar.xml file to declare the
bean.

4. Set the message-driven-destination element in the bean’s ejb-jar.xml file
to specify whether the bean is intended for a Topic or Queue.

5. Set the subscription-durability sub-element in the bean’s ejb-jar.xml
file when you want to specify whether an associated Topic should be durable.

6. If your bean will demarcate its own transaction boundaries, set the
acknowledge-mode sub-element to specify the JMS acknowledgment semantics
to use. This element has two possible values: AUTO_ACKNOWLEDGE (the default)
or DUPS_OK_ACKNOWLEDGE.

7. If the container will manage the transaction boundaries, set the
transaction-type element in the bean’s ejb-jar.xml file to specify how the
container must manage the transaction boundaries when delegating a method
invocation to an enterprise bean’s method.

The following sample shows how to specify a message-driven bean in the
ejb-jar.xml file.

Figure 3-1 Sample XML stanza from an ejb-jar.xml file:

<enterprise-beans>

<message-driven>

<ejb-name>exampleMessageDriven1</ejb-name>
Programming WebLogic Enterprise JavaBeans 3-5

http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#AUTO_ACKNOWLEDGE
http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#DUPS_OK_ACKNOWLEDGE

3 Designing Message-Driven Beans
<ejb-class>examples.ejb20.message.MessageTraderBean</ejb-class>

<transaction-type>Container</transaction-type>

<message-driven-destination>

<destination-type>

javax.jms.Topic

</destination-type>

</message-driven-destination>

...

</message-driven>

...

</enterprise-beans>

8. Set the message-driven-descriptor element in the bean’s
weblogic-ejb-jar.xml file to associate the message-driven bean with a JMS
destination in WebLogic Server.

The following sample shows how to specify a message-driven bean in an
weblogic-ejb-jar.xml file.

Figure 3-2 Sample XML stanza from an weblogic-ejb-jar.xml file:

<message-driven-descriptor>

<destination-jndi-name>...</destination-jndi-name>

</message-driven-descriptor>

9. Compile and generate the message-driven bean class using instructions in
“Packaging EJBs into a Deployment Directory” on page 6-10.

10. Deploy the bean on WebLogic Server using the instructions in “Deploying
Compiled EJB Files” on page 7-8.

The container manages the message-driven bean instances at runtime.
3-6 Programming WebLogic Enterprise JavaBeans

Developing and Configuring Message-Driven Beans
Message-Driven Bean Class Requirements

The EJB 2.0 specification provides detailed guidelines for defining the methods in a
message-driven bean class. The following output shows the basic components of a
message-driven bean class. Classes, methods, and method declarations are highlighted
bold.

Figure 3-3 Sample output of basic components of message-driven beans class

public class MessageTraderBean implements MessageDrivenBean,
MessageListener{

public MessageTraderBean() {...};

// An EJB constructor is required, and it must not

// accept parameters. The constructor must not be
declared as

// final or abstract.

public void ejbCreate() (...)

//ejbCreate () is required and must not accept
parameters.

The throws clause (if used) must not include an
application

//exception. ejbCreate() must not be declared as
final or static.

public void onMessage(javax.jms.Message MessageName) {...}

// onMessage() is required, and must take a single
parameter of

// type javax.jms.Message. The throws clause (if
used) must not

// include an application exception. onMessage() must
not be

// declared as final or static.

public void ejbRemove() {...}

// ejbRemove() is required and must not accept
parameters.
Programming WebLogic Enterprise JavaBeans 3-7

3 Designing Message-Driven Beans
// The throws clause (if used) must not include an
application

//exception. ejbRemove() must not be declared as
final or static.

// The EJB class cannot define a finalize() method

}

Using the Message-Driven Bean Context

WebLogic Server calls setMessageDrivenContext() to associate the
message-driven bean instance with a container context.This is not a client context; the
client context is not passed along with the JMS message. WebLogic Server provides
the EJB with a container context, whose properties can be accessed from within the
bean’s instance by using the following methods from the MessageDrivenContext
interface:

getCallerPrincipal()) — This method is inherited from the EJBContext
interface and should not be called by message-driven bean instances.

isCallerInRole()) — This method is inherited from the EJBContext
interface and should not be called by message-driven bean instances.

setRollbackOnly() — The EJB can use this method only if it uses
container-managed transaction demarcation.

getRollbackOnly() — The EJB can use this method only if it uses
container-managed transaction demarcation.

getUserTransaction() — The EJB can use this method only if it uses
bean-managed transaction demarcation.

Note: Although getEJBHome() is also inherited as part of the
MessageDrivenContext interface, message-driven beans do not have a
home interface. Calling getEJBHome() from within a message-driven EJB
instance yields an IllegalStateException.
3-8 Programming WebLogic Enterprise JavaBeans

Invoking a Message-Driven Bean
Implementing Business Logic with onMessage()

The message-driven bean’s onMessage() method implements the business logic for
the EJB. WebLogic Server calls onMessage() when the EJB’s associated JMS Queue
or Topic receives a message, passing the full JMS message object as an argument. It is
the message-driven bean’s responsibility to parse the message and perform the
necessary business logic in onMessage().

Make sure that the business logic accounts for asynchronous message processing. For
example, it cannot be assumed that the EJB receives messages in the order they were
sent by the client. Instance pooling within the container means that messages are not
received or processed in a sequential order, although individual onMessage() calls to
a given message-driven bean instance are serialized.

See javax.jms.MessageListener.onMessage() for more information.

Handling Exceptions

Message-driven bean methods should not throw an application exception or a
RemoteException, even in onMessage(). If any method throws such an exception,
WebLogic Server immediately removes the EJB instance without calling
ejbRemove(). However, from the client perspective the EJB still exists, because
future messages are forwarded to a new bean instance that WebLogic Server creates.

Invoking a Message-Driven Bean

When a JMS Queue or Topic receives a message, WebLogic Server calls an associated
message-driven bean as follows:

1. WebLogic Server obtains a new bean instance.

WebLogic Server uses the max-beans-in-free-pool attribute, set in the
weblogic-ejb-jar.xml file, to determine if a new bean instance is available in
the free pool.
Programming WebLogic Enterprise JavaBeans 3-9

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/jms/MessageListener.html

3 Designing Message-Driven Beans
2. If a bean instance is available in the free pool, WebLogic Server uses that
instance.

If no bean instance is available in the free pool and the limit specified by
max-beans-in-free-pool) has been reached, WebLogic Server waits until a
bean instance is free. See “max-beans-in-free-pool” on page 9-59 for more
information about this attribute.

If no bean instance is located in the free pool, and the limit specified by
max-beans-in-free-pool has not been reached, WebLogic Server creates a
new instance by calling the bean’s ejbCreate() method and then the bean’s
setMessageDrivenContext() to associate the instance with a container
context. The bean can use elements of this context as described in “Using the
Message-Driven Bean Context” on page 3-8.

WebLogic Server calls the bean’s onMessage() method to implement the
business logic when the bean’s associated JMS Queue or Topic receives a
message.

See “Implementing Business Logic with onMessage()” on page 3-9.

Note: These instances can be pooled.

Creating and Removing Bean Instances

The WebLogic Server container calls the message-driven bean’s ejbCreate() and
ejbRemove() methods, to create or remove an instance of the bean class. Each
message-driven bean must have at least one ejbCreate() and ejbRemove() method.
The WebLogic Server container uses these methods to handle the create and remove
functions when a bean instance is created, upon receipt of a message from a JMS
Queue or Topic or removed, once the transaction commits. WebLogic Server receives
a message from a JMS queue or Topic.

As with other EJB types, the ejbCreate() method in the bean class should prepare
any resources that are required for the bean’s operation. The ejbRemove() method
should release those resources, so that they are freed before WebLogic Server removes
the instance.
3-10 Programming WebLogic Enterprise JavaBeans

Deploying Message-Driven Beans in WebLogic Server
Message-driven beans should also perform some form of regular clean-up routine
outside of the ejbRemove() method, because the beans cannot rely on ejbRemove()
being called under all circumstances (for example, if the EJB throws a runtime
exception).

Deploying Message-Driven Beans in
WebLogic Server

Deploy the message-driven bean on WebLogic Server either when the server is first
started or on a running server. For instructions on deploying the bean, see “Deploying
EJBs at WebLogic Server Startup” on page 7-2 or “Deploying EJBs on a Running
WebLogic Server” on page 7-3.

Using Transaction Services with
Message-Driven Beans

As with other types of EJB, message-driven beans can demarcate transaction
boundaries either on their own (using bean-managed transactions), or by having the
WebLogic Server container manage transactions (container-managed transactions). In
either case, a message-driven bean does not receive a transaction context from the
client that sends a message. WebLogic Server always calls a bean’s onMessage()
method by using the transaction context specified in the bean’s deployment descriptor
file.

Because no client provides a transaction context for calls to a message-driven bean,
beans that use container-managed transactions must be deployed with the Required
or NotSupported trans-attribute specified for the container-transaction
element in the ejb-jar.xml file.

The following sample code from the ejb-jar.xml file shows how to specify the
bean’s transaction context.
Programming WebLogic Enterprise JavaBeans 3-11

3 Designing Message-Driven Beans
Figure 3-4 Sample XML stanza from an ejb-jar.xml file:

<assembly-descriptor>

<container-transaction>

<method>

<ejb-name>MyMessageDrivenBeanQueueTx</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

</assembly-descriptor>

Message Receipts

The receipt of a JMS message that triggers a call to an EJB’s onMessage() method is
not generally included in the scope of a transaction. However, it is handled differently
for bean-managed and container-managed transactions.

For EJBs that use bean-managed transactions, the message receipt is always
outside the scope of the bean’s transaction.

For EJBs that use container-managed transaction demarcation, WebLogic Server
includes the message receipt as part of the bean’s transaction only if the bean’s
transaction-type element in the ejb-jar.xml file is set to Required.

Message Acknowledgment

For message-driven beans that use container-managed transaction demarcation,
WebLogic Server automatically acknowledges a message when the EJB transaction
commits. If the EJB uses bean-managed transactions, both the receipt and the
acknowledgment of a message occur outside the EJB transaction context. WebLogic
3-12 Programming WebLogic Enterprise JavaBeans

Message-Driven Bean Migratable Service
Server automatically acknowledges messages for EJBs with bean-managed
transactions, but you can configure acknowledgment semantics using the
acknowledge-mode deployment descriptor element defined in the ejb-jar.xml file.

Message-Driven Bean Migratable Service

WebLogic Server supports migratable and recovery services for message-driven
beans. To provide these migratable and recovery services, WebLogic JMS uses the
migration framework provided by WebLogic Server to respond to migration requests
and bring a JMS server back online after a failure. Once the JMS server migrates to an
available server, you should manually migrate the associated message-driven beans
from a failed server in a WebLogic Server cluster to the same available server. The
Message-driven bean can only use the Migratable Service when they are on clustered
servers At this time, the Migratable Service cannot span multiple clusters.

If WebLogic Server does not migrate the message-driven bean along with the JMS
Server to an available server in the cluster, the JMS destination will be flooded with
messages. To expedite message-driven bean recovery until the original server
recovers, the message-driven bean marks itself as migratable and WebLogic Server
implements the Migratable Service process. After you migrate the bean to another
server, it connects to its JMS server and continues to pull messages from the JMS
destination on behalf of the failed server.

Enabling the Message-Driven Bean Migratable Service

To enable the message-driven bean Migratable Service:

1. Configure the message-driven bean as described in “Developing and Configuring
Message-Driven Beans” on page 3-4.

2. Specify the message-driven bean’s JMS destination type as either topic or queue
by setting the destination-type element in the ejb-jar.xml file. For
instructions on configuring JMS destinations, see Configuring Destinations.

3. Specify one of the following deployment schemes for the JMS destination:
Programming WebLogic Enterprise JavaBeans 3-13

http://e-docs.bea.com/wls/docs70/adminguide/jms.html#jms_destinations_config

3 Designing Message-Driven Beans
Simple destination - EJB container deploys the message-driven bean with the
JMS destination when the topic or queue destination isn’t distributed.

Distributed destination - EJB container deploys the message-driven bean
with the JMS destination on every server when the topic or queue destination
is distributed.

For instructions, see Configuring Distributed Destinations.

4. Use the WebLogic Server Administration Console, configure a JMS server. For
instructions see Configuring JMS Servers.

A JMS server is deployed on a server in a WebLogic Server cluster and handles
requests for a set of JMS destinations.

5. Configure JMS migratable targets for the JMS server. For instructions, see
Configuring JMS Migratable Targets.

Migrating Message-Driven Beans

To migrate message-driven bean from a failed server in a WebLogic Server cluster to
an available server:

1. Start the WebLogic Server Administration Console.

2. Specify one of the following deployment schemes for the JMS destination:

Simple destination - EJB container deploys the message-driven bean with the
JMS destination when the JMS destination isn’t distributed.

Distributed destination - EJB container deploys the message-driven bean
with the JMS destination on every server when the JMS destination is
distributed.

Because the message-driven bean can detect the migration target for the JMS server,
you do not need to change the migration target for the message-driven bean.

However, the message-driven bean must be deployed in the cluster or all of the servers
on the JMS server migration target lists because message-driven bean is not possible
during migration.The message-driven bean is deployed with the a JMS destination on
all servers in the migration target list, and remain inactive when the JMS destination is
inactive.
3-14 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/adminguide/jms.html#config_distributed_destinations
http://e-docs.bea.com/wls/docs70/adminguide/jms.html#jms_servers_config
http://e-docs.bea.com/wls/docs70/jms/config.html#config_jms_migratable_target

Configuring Message-Driven Beans for non-BEA JMS Providers
When WebLogic Server activates a message-driven bean, it detects the JMS server and
starts pulling the message from the JMS destination that is specified for the bean.

Configuring Message-Driven Beans for
non-BEA JMS Providers

You can configure message-driven beans to work with non-BEA JMS providers such
as IBM MQSeries. Beginning with WebLogic Server 7.0, you can do this for MDBs
supporting container-managed transactions (“transactional MDBs”) in addition to
MDBs supporting bean-managed transactions (“non-transactional MDBs”).

This means that it is now possible to for applications with transactional MDBs to
achieve exactly-once semantics with a non-BEA JMS provider for messages processed
by an MDB. In addition, WebLogic Server will use XA to automatically enlist the
non-BEA JMS provider in a transaction.

For applications with non-transactional MDBs, the MDB will provide at-least-once
message processing semantics and XA is not required.

If the non-BEA JMS provider does not support XA, then you cannot deploy an MDB
that supports container-managed transactions with that provider. Furthermore, if the
JMS provider does support XA, you must ensure that the JMS connection factory that
you specify in the weblogic-ejb-jar.xml file supports XA—each JMS provider has
a different way to specify this.

Specifying an MDB as Transactional

To specify an MDB as transactional, do the following:

Set the transaction-type element inside the message-driven element in the
ejb-jar.xml file to Container.

Set the trans-attribute element inside the container-transaction
attribute in the ejb-jar.xml file to Required.
Programming WebLogic Enterprise JavaBeans 3-15

3 Designing Message-Driven Beans
Also, sure to set destination-jndi-name, initial-context-factory, provider-url, and
connection-factory-jndi-name elements in weblogic-ejb-jar.xml appropriately for the
non-BEA JMS provider.

For transactional MDBs, the JMS connection factory specified in
connection-factory-jndi-name must support the optional XA extensions to JMS.

Specifying an MDB as Non-Transactional

To specify an MDB as non-transactional, do the following:

Set the transaction-type element inside the message-driven element in the
ejb-jar.xml file to Bean.

Set the trans-attribute element inside the container-transaction
attribute in the ejb-jar.xml file to NotRequired.

See the white paper, “Using Foreign JMS Providers with WLS Message Driven
Beans” (jmsmdb.pdf) at
http://dev2dev.bea.com/resourcelibrary/whitepapers/jmsproviders.jsp for an example
of how to configure an MDB to use a non-BEA provider.

Reconnecting to a JMS Server or Non-BEA
Service Provider

A message-driven bean listens to an associated JMS destination on either a JMS server
deployed on a non-clustered WebLogic Server instance or a non-BEA service
provider. If the connection to that destination is lost, because the server goes down, the
message-driven bean attempts to reconnect to that destination at periodic intervals.
You can specify the number of seconds between attempts to reconnect to the
destination by setting the jms-polling-interval-seconds element in the bean's
weblogic-ejb-jar.xml file.
3-16 Programming WebLogic Enterprise JavaBeans

http://dev2dev.bea.com/resourcelibrary/whitepapers/jmsproviders.jsp
http://dev2dev.bea.com/resourcelibrary/whitepapers/jmsproviders.jsp

Configuring an MDB to Listen on a JMS Distributed Destination
Configuring an MDB to Listen on a JMS
Distributed Destination

WebLogic JMS supports service continuity in the event of a WebLogic Server instance
failure within a cluster through the configuration of multiple physical destinations
(queues and topics) as members of a single distributed destination set. Once
configured, your producers and consumers send and receive messages through what
appears to be a single destination.

However, WebLogic JMS actually distributes the messaging load across all the
available destination members within the distributed destination. In the event that a
member becomes unavailable due to a server failure, traffic is then redirected toward
the other available destination members in the set.

Beginning with this release, when an MDB is deployed to a server in a cluster,
WebLogic Server automatically enumerates the distributed destination members and
ensures that there's an MDB listening on each member.

When an MDB is deployed to a server in a cluster, WebLogic Server automatically
enumerates the distributed destination members and ensures that there's an MDB
listening on each member.

Follow these steps to configure a message-driven bean for a distributed destination:

1. Configure a JMS distributed destination, as described in Configuring Distributed
Destinations at
http://edocs.bea.com/wls/docs70/adminguide/jms.html#config_distributed_destin
ations.

2. Set the MDB’s destination-jndi-name in weblogic-ejb-jar.xml to the name
used to bind the distributed topic or queue into the JNDI namespace.

3. Set the target for MDB to be the same as the distributed destination. The MDB
need to be deployed wherever that distributed destination exists.

4. Deploy the MDB.

At deployment time, the MDB detects the member of the distributed destination the
exists on that WebLogic Server instance, pin itself to the member, and start processing
messages.
Programming WebLogic Enterprise JavaBeans 3-17

http://e-docs.bea.com/wls/docs70/adminguide/jms.html#config_distributed_destinations
http://e-docs.bea.com/wls/docs70/adminguide/jms.html#config_distributed_destinations

3 Designing Message-Driven Beans
Configuring a Security Identity for a
Message-Driven Bean

When a message-driven bean (MDB) receives messages from a JMS queue or topic,
the EJB container uses a Credential Mapping provider and a credential map to obtain
the security identity (username and password) to use when establishing the JMS
connection. This credential mapping occurs only once, when the MDB is started. Once
the EJB container is connected, the JMS provider uses the established security identity
to retrieve all messages. The security identity is especially important when using an
MDB to receive messages from a non-BEA JMS provider (either a JMS provider from
another vendor or a WebLogic Server JMS provider running in another WebLogic
Server domain).

To configure a security identity for an MDB:

1. Create WebLogic user for the MDB. For more information, see “Users and
Groups” in Securing WebLogic Resources. This WebLogic user should have the
username and password required by the non-BEA JMS provider to establish a JMS
connection.

2. In the ejb-jar.xml deployment descriptor, define a run-as identity for the
MDB:
<security-identity>

<run-as>
<role-name>admin</role-name>

</run-as>
</security-identity>

3. In the weblogic-ejb-jar.xml deployment descriptor, map the run-as identity
to the user defined in the previous step, as shown below:
<security-role-assignment>

<role-name>admin</role-name>
<principal-name>username</principal-name>

</security-role-assignment>

where username is the username for the user created in step 1.

4. If the JMS provider is not WebLogic JMS, configure the credential mapper:
3-18 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/secwlres/usrs_grps.html
http://e-docs.bea.com/wls/docs70/secwlres/usrs_grps.html

Configuring a Security Identity for a Message-Driven Bean
Note: If the JMS provider is WebLogic JMS, it is not necessary to configure a
credential mapper.

To configure the credential mapper:

a. In the left pane of the WebLogic Server Administration Console, expand
Deployments.

The Deployments node expands to show the types of WebLogic resources
that can be deployed.

b. Right-click the EJB resource (in this case, the MDB) for which you want to
create a credential map.

c. Choose the Define Policies and Roles for Individual Beans... option.

d. Click the [Define Credential Maps] link for the MDB for which you want to
create a credential map.

e. Click the Configure a New Credential Map link.

f. Enter the WebLogic Server username and password you defined for the MDB
in step 1 in the WLS User field.

g. Click Apply to save your changes.
Programming WebLogic Enterprise JavaBeans 3-19

3 Designing Message-Driven Beans
3-20 Programming WebLogic Enterprise JavaBeans

CHAPTER
4 The WebLogic Server
EJB Container and
Supported Services

The following sections describe the WebLogic Server EJB container, plus various
aspects of EJB behavior in terms of the features and services that the container
provides. See Chapter 5, “WebLogic Server Container-Managed Persistence Service,”
for more information on container-managed persistence (CMP).

EJB Container

EJB Life Cycle

ejbLoad() and ejbStore() Behavior for Entity EJBs

EJB Concurrency Strategy

Combined Caching with Entity Beans

Caching Between Transactions

EJBs in WebLogic Server Clusters

Transaction Management

Database Insert Support

Resource Factories
Programming WebLogic Enterprise JavaBeans 4-1

4 The WebLogic Server EJB Container and Supported Services
EJB Container

The EJB container is a runtime container for deployed EJBs. It is automatically created
when WebLogic Server is started. During the entire life cycle of an EJB object, from
its creations to removal, it lives in the container. The EJB container provides a standard
set of services, including caching, concurrency, persistence, security, transaction
management, locking, environment, memory replication, and clustering for the EJB
objects that live in the container.

You can deploy multiple beans in a single container. For each session and entity bean
deployed in a container, the container provides a home interface. The home interface
allows a client to create, find, and remove entity objects that belong to the entity bean
as well as to execute home business methods which are not specific to a particular
entity bean object. A client can look up the entity bean’s home interface through the
Java Naming and Directory Interface (JNDI) or by following an EJB reference, which
is preferred. The container is responsible for making the entity bean’s home interface
available in the JNDI name space. For instructions on looking up the home interface
through JNDI, see Programming WebLogic JNDI.

EJB Life Cycle

The following sections provide information about how the container supports caching
services. They describe the life cycle of EJB instances in WebLogic Server, from the
perspective of the server. These sections use the term EJB instance to refer to an actual
instance of the EJB bean class. EJB instance does not refer to the logical instance of
the EJB as seen from the point of view of a client.

Entity Bean Lifecycle and Caching and Pooling

WebLogic Server provides these features to improve performance and throughput for
entity EJBs:
4-2 Programming WebLogic Enterprise JavaBeans

EJB Life Cycle
Free pool—stores anonymous entity beans that are used for invoking finders,
home methods, and creating entity beans.

Cache—contains instances that have an identity—a primary key, or are currently
enlisted in a transaction (READY and ACTIVE entity EJB instances).

The sections that follow describe the lifecycle of an entity bean instance, and how the
container populates and manages the free pool and the cache. For an illustration, see
Figure 4-2.

Initializing Entity EJB Instances (Free Pool)

If you specify a non-zero value for initial-beans-in-free-pool, WebLogic
Server populates the pool with the specified quantity of bean instances at startup.

The default value of initial-beans-in-free-pool is zero. Populating the free pool
at startup improves initial response time for the EJB, because initial requests for the
bean can be satisfied without generating a new instance.

An attempt to obtain an entity bean instance from the free pool will always succeed,
even if the pool is empty. If the pool is empty, a new bean instance is be created and
returned.

POOLED beans are anonymous instances, and are used for finders and home
methods. The maximum number of instances the pool can contain is specified by the
value of the max-beans-in-free-pool element in weblogic-ejb-jar.xml.

READY and ACTIVE Entity EJB Instances (Cache)

When a business method is called on a bean, the container obtains an instance from the
pool, calls ejbActivate, and the instance services the method call.

A READY instance is in the cache, has an identity—an associated primary key, but is
not currently enlisted in a transaction. WebLogic maintains READY entity EJB
instances in least-recently-used (LRU) order. Current Beans in Cache field in the
monitoring tab displays the count of active and ready beans.

An ACTIVE instance is currently enlisted in a transaction. After completing the
transaction, the instance becomes READY, and remains in cache until space is needed
for other beans.
Programming WebLogic Enterprise JavaBeans 4-3

4 The WebLogic Server EJB Container and Supported Services
The effect of max-beans-in-cache, and the quantity of instances with the same
primary key allowed in the cache vary by concurrency strategy, as described in the
following section, “Cache Rules Vary by Concurrency Strategy”.

Cache Rules Vary by Concurrency Strategy

Table 4-1 lists, for each concurrency strategy:

How the value of the max-beans-in-cache element in
weblogic-ejb-jar.xml limits the number of entity bean instances in the
cache.

How many entity bean instances with the same primary key are allowed in the
cache.

Figure 4-1 Entity EJB Caching Behavior by Concurrency Type

Removing Beans from Cache

READY entity EJB instances are removed from the cache when the space is needed
for other beans. When a READY instance is removed from cache, ejbPassivate is
called on the bean, and the container will try to put it back into the free pool.

Concurrency
Option

What is the effect of
max-beans-in-cache on the num-
ber of bean instances in the cache?

How many instances
with same primary
key can exist in cache
simultaneously?

Exclusive max-beans-in-cache = number of
ACTIVE bean + number of READY in-
stances.

one

Database The cache can contain up to
max-beans-in-cache ACTIVE bean
instances and up to max-beans-in-cache
READY bean instances.

multiple

ReadOnly max-beans-in-cache = number of
ACTIVE bean + number of READY in-
stances.

one
4-4 Programming WebLogic Enterprise JavaBeans

EJB Life Cycle
When the container tries to return an instance to the free pool and the pool already
contains max-beans-in-free-pool instances, the instance is discarded.

ACTIVE entity EJB instances will not be removed from cache until the transaction
they are participating in commits or rolls back, at which point they will become
READY, and hence eligible for removal from the cache.

Entity EJB Lifecycle Transitions

Figure 4-2 illustrates the EJB free pool and cache, and the transitions that occur
throughout an entity bean instance’s lifecycle.

Figure 4-2 Entity Bean Lifecycle
Programming WebLogic Enterprise JavaBeans 4-5

4 The WebLogic Server EJB Container and Supported Services
Stateless Session EJB Life Cycle

WebLogic Server uses a free pool to improve performance and throughput for stateless
session EJBs. The free pool stores unbound stateless session EJBs. Unbound EJB
instances are instances of a stateless session EJB class that are not processing a method
call.

The following figure illustrates the WebLogic Server free pool, and the processes by
which stateless EJBs enter and leave the pool. Dotted lines indicate the “state” of the
EJB from the perspective of WebLogic Server.

Figure 4-3 WebLogic Server free pool showing stateless session EJB life cycle

Initializing Stateless Session EJB Instances

By default, no stateless session EJB instances exist in WebLogic Server at startup time.
As clients access individual beans, WebLogic Server initializes new instances of the
EJB. However, if you want inactive instances of the EJB to exist in WebLogic Server
when it is started, specify how many in the initial-beans-in-free-pool
deployment descriptor element, in the weblogic-ejb-jar.xml file.

Method complete

Client request

C
lie

nt
R

eq
ue

st

<initial-beans-in-free-pool>

free pool

 EJB busy EJB inactive

EJB does not exist
4-6 Programming WebLogic Enterprise JavaBeans

EJB Life Cycle
This can improve initial response time when clients access EJBs, because initial client
requests can be satisfied by activating the bean from the free pool (rather than
initializing the bean and then activating it). By default,
initial-beans-in-free-pool is set to 0.

Note: The maximum size of the free pool is limited by the value of the
max-beans-in-free-pool deployment element, available memory, or the
number of execute threads.

Activating and Pooling Stateless Session EJBs

When a client calls a method on a stateless session EJB, WebLogic Server obtains an
instance from the free pool. The EJB remains active for the duration of the client’s
method call. After the method completes, the EJB instance is returned to the free pool.
Because WebLogic Server unbinds stateless session beans from clients after each
method call, the actual bean class instance that a client uses may be different from
invocation to invocation.

If all instances of an EJB class are active and max-beans-in-free-pool has been
reached, new clients requesting the EJB class will be blocked until an active EJB
completes a method call. If the transaction times out (or, for non-transactional calls, if
five minutes elapse), WebLogic Server throws a RemoteException for a remote
client or an EJBException for a local client.

Stateful Session EJB Life Cycle

WebLogic Server uses a cache of bean instances to improve the performance of
stateful session EJBs. The cache stores active EJB instances in memory so that they
are immediately available for client requests. The cache contains EJBs that are
currently in use by a client and instances that were recently in use. Stateful session
beans in cache are bound to a particular client.

The following figure illustrates the WebLogic Server cache, and the processes by
which stateful EJBs enter and leave the cache.
Programming WebLogic Enterprise JavaBeans 4-7

4 The WebLogic Server EJB Container and Supported Services
Figure 4-4 Stateful Session EJB Life Cycle

Stateful Session EJB Creation
No stateful session EJB instances exist in WebLogic Server at startup. Before a client
begins accessing a stateful session bean, it creates a new bean instance to use during
its session with the bean. When the session is over the instance is destroyed. While the
session is in progress, the instance is cached in memory.
4-8 Programming WebLogic Enterprise JavaBeans

EJB Life Cycle
Stateful Session EJB Passivation
Passivation is the process by which WebLogic Server removes an EJB instance from
cache while preserving its state on disk. While passivated, EJBs are not in memory and
are not immediately available for client requests, as they are when in the cache.

The EJB developer must ensure that a call to the ejbPassivate() method leaves a
stateful session bean in a condition such that WebLogic Server can serialize its data
and passivate the instance. During passivation, WebLogic Server attempts to serialize
any fields that are not declared transient. This means that you must ensure that all
non-transient fields represent serializable objects, such as the bean’s remote or
home interface. EJB 2.1 specifies the field types that are allowed.

Controlling Passivation
The rules that govern the passivation of stateful session beans vary, based on the value
of the beans cache-type element, which can be:

LRU—least recently used, referred to as eager passivation.

NRU—not recently used, referred to as lazy passivation

The idle-timeout-seconds and max-beans-in-cache elements also affect
passivation and removal behaviors, based on the value of cache-type.

Eager Passivation (LRU)
When you configure eager passivation for a stateful session bean by setting
cache-type to LRU, the container:

Passivates instances to disk:

– as soon as an instance has been inactive for idle-timeout-seconds,
regardless of the value of max-beans-in-cache.

– when max-beans-in-cache is reached, even though
idle-timeout-seconds has not expired.

Removes a passivated instance from disk after it has been inactive for
idle-timeout-seconds after passivation.
Programming WebLogic Enterprise JavaBeans 4-9

4 The WebLogic Server EJB Container and Supported Services
Lazy Passivation (NRU)

When lazy passivation is configured by setting cache-type to NRU, the container
avoids passivating beans, because of the associated systems overhead—pressure on
the cache is the only event that causes passivation or eager removal of beans.

The container:

Removes a bean instance from cache when idle-timeout-seconds expires,
and does not passivate it to disk. This is referred to as a eager remove. An eager
remove ensures that an inactive instance does not consume memory or disk
resources.

Passivates instances to disk when max-beans-in-cache is reached, even
though idle-timeout-seconds has not expired.

Preventing Removal of Idle EJBs

Setting idle-timeout-seconds to 0 stops WebLogic Server from removing EJBs
that are idle for a period of time. However, EJBs may still be passivated if cache
resources become scarce.

Managing EJB Cache Size

For a discussion of managing cache size to optimize performance in a production
environment see “Setting EJB Pool Size” in WebLogic Server Performance and
Tuning.

Specifying the Persistent Store Directory for Passivated Beans
When a stateful session bean is passivated, its state is stored in a file system directory.
Each server instance has its own directory for storing the state of passivated stateful
session beans, known as the persistent store directory. The persistent store directory
contains one subdirectory for each passivated bean.

The persistent store directory is created by default in the server instance directory, for
example:
D:\releases\700\bea\user_domains\mydomain\myserver\pstore\

The path to the persistence store is:

RootDirectory\ServerName\persistent-store-dir

where:
4-10 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/perform/WLSTuning.html#wlstuning-SetEJBCachingSize

EJB Life Cycle
RootDirectory—the directory where WebLogic Server runs, for example:
D:\releases\700\bea\user_domains\mydomain

RootDirectory can be specified at server startup with the
-Dweblogic.RootDirectory property.

ServerName—the name of the server instance.

persistent-store-dir—the value of the of the persistent-store-dir
element in the <stateful-session-descriptor> stanza of
weblogic-ejb-jar.xml. If no value is specified for
<persistent-store-dir>, the directory is named pstore by default.

The persistent store directory contains a subdirectory, named with a hash code, for
each passivated bean. For example, the subdirectory for a passivated bean in the
example above might be:

D:\releases\700\bea\user_domains\mydomain\myserver\pstore\14t89ge
x0m2fr

Concurrent Access to Stateful Session Beans
In accordance with the EJB 2.0 specification, simultaneous access to a stateful session
EJB results in a RemoteException. This access restriction on stateful session EJBs
applies whether the EJB client is remote or internal to WebLogic Server. To override
this restriction and configure a stateful session bean to allow concurrent calls, set the
allow-concurrent-calls deployment element.

If multiple servlet classes access a stateful session EJB, each servlet thread (rather than
each instance of the servlet class) must have its own session EJB instance. To prevent
concurrent access, a JSP/servlet can use a stateful session bean in request scope.
Programming WebLogic Enterprise JavaBeans 4-11

4 The WebLogic Server EJB Container and Supported Services
ejbLoad() and ejbStore() Behavior for Entity
EJBs

WebLogic Server reads and writes the persistent fields of entity EJBs using calls to
ejbLoad() and ejbStore(). By default, WebLogic Server calls ejbLoad() and
ejbStore() in the following manner:

1. A transaction is initiated for the entity EJB. The client may explicitly initiate a new
transaction and invoke the bean, or WebLogic Server may initiate a new transaction
in accordance with the bean’s method transaction attributes.

2. WebLogic Server calls ejbLoad() to read the most current version of the bean’s
persistent data from the underlying datastore.

3. When the transaction commits, WebLogic Server calls ejbStore() to write
persistent fields back to the underlying datastore.

This simple process of calling ejbLoad() and ejbStore() ensures that new
transactions always use the latest version of the EJB’s persistent data, and always write
the data back to the datastore upon committing. In certain circumstances, however, you
may want to limit calls to ejbLoad() and ejbStore() for performance reasons.
Alternately, you may want to call ejbStore() more frequently to view the
intermediate results of uncommitted transactions.

WebLogic Server provides several deployment descriptor elements in the
weblogic-ejb-jar.xml and weblogic-cmp-rdbms-jar.xml files that enable you
to configure ejbLoad() and ejbStore() behavior.

Using is-modified-method-name to Limit Calls to
ejbStore() (EJB 1.1 Only)

The is-modified-method-name deployment descriptor element applies to EJB 1.1
container-managed-persistence (CMP) beans only. This element is found in the
weblogic-ejb-jar.xml file. WebLogic Server CMP implementation automatically
detects modifications of CMP fields and writes only those changes to the underlying
4-12 Programming WebLogic Enterprise JavaBeans

ejbLoad() and ejbStore() Behavior for Entity EJBs
datastore. We recommend that you do not use is-modified-method-name with
bean-managed-persistence (BMP) because you would need to create both the
is-modified-method-name element. and the ejbstore method.

By default, WebLogic Server calls the ejbStore() method at the successful
completion (commit) of each transaction. ejbStore() is called at commit time
regardless of whether the EJB’s persistent fields were actually updated, and results in
a DBMS update. WebLogic Server provides the is-modified-method-name
element for cases where unnecessary calls to ejbStore() may result in poor
performance.

To use is-modified-method-name, EJB providers must first develop an EJB
method that “cues” WebLogic Server when persistent data has been updated. The
method must return “false” to indicate that no EJB fields were updated, or “true” to
indicate that some fields were modified.

The EJB provider or EJB deployment descriptors then identify the name of this method
by using the value of the is-modified-method-name element. WebLogic Server
calls the specified method name when a transaction commits, and calls ejbStore()
only if the method returns “true.” For more information on this element, see
“is-modified-method-name” on page 9-51.

Warning for is-modified-method-name

Using the is-modified-method-name element can improve performance by
avoiding unnecessary calls to ejbStore(). However, it places a greater burden on the
EJB developer to identify correctly when updates have occurred. If the specified
is-modified-method-name returns an incorrect flag to WebLogic Server, data
integrity problems can occur, and they may be difficult to track down.

If entity EJB updates appear “lost” in your system, start by ensuring that the value for
all is-modified-method-name elements return “true” under every circumstance. In
this way, you can revert to WebLogic Server’s default ejbStore() behavior and
possibly correct the problem.
Programming WebLogic Enterprise JavaBeans 4-13

4 The WebLogic Server EJB Container and Supported Services
Using delay-updates-until-end-of-tx to Change ejbStore()
Behavior

By default, WebLogic Server updates the persistent store of all beans in a transaction
only at the completion (commit) of the transaction. This generally improves
performance by avoiding unnecessary updates and repeated calls to ejbStore().

If your datastore uses an isolation level of READ_UNCOMMITTED, you may want to allow
other database users to view the intermediate results of in-progress transactions. In this
case, the default WebLogic Server behavior of updating the datastore only at
transaction completion may be unacceptable.

You can disable the default behavior by using the
delay-updates-until-end-of-tx deployment descriptor element. This element is
set in the weblogic-ejb-jar.xml file. When you set this element to “false,”
WebLogic Server calls ejbStore() after each method call, rather than at the
conclusion of the transaction.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

EJB Concurrency Strategy

The concurrency strategy specifies how the EJB container should manage concurrent
access to an entity bean. Although the Database option is the default concurrency
strategy for WebLogic Server, you may want to specify other options for your entity
bean depending on the type of concurrency access the bean requires. WebLogic Server
provides the following concurrency strategy options:
4-14 Programming WebLogic Enterprise JavaBeans

EJB Concurrency Strategy
Concurrency Strategy for Read-Write EJBs

You can use the Exclusive, Database, and Optimistic concurrency strategies for
read-write EJBs. WebLogic Server loads EJB data into the cache at the beginning
of each transaction, or as described in “Using cache-between-transactions to Limit
Calls to ejbLoad()” on page 4-28. WebLogic Server calls ejbStore() at the
successful commit of a transaction, or as described under “Using
is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)” on page 4-12.

Concurrency Option Description

Exclusive Places an exclusive lock on cached entity EJB instances when
the bean is associated with a transaction. Other requests for the
EJB instance are block until the transaction completes. This
option was the default locking behavior for WebLogic Server
versions 3.1 through 5.1

Database Defers locking requests for an entity EJB to the underlying
datastore. WebLogic Server allocates a separate entity bean
instance and allows locking and caching to be handled by the
database. This is the default option.

Optimistic Holds no locks in the EJB container or database during a
transaction. The EJB container verifies that none the data
updated by the transaction has changed before committing the
transaction. If any updated data changed, the EJB container rolls
back the transaction.

ReadOnly Used only for read-only entity beans. Activates a new
instance for each transaction so that requests proceed in
parallel. WebLogic Server calls ejbLoad() for
ReadOnly beans are based on the
read-timeout-seconds parameter.
Programming WebLogic Enterprise JavaBeans 4-15

4 The WebLogic Server EJB Container and Supported Services
Specifying the Concurrency Strategy

You specify the locking mechanism that the EJB uses by setting the
concurrency-strategy deployment parameter in weblogic-ejb-jar.xml. You set
concurrency-strategy at the individual EJB level, so that you can mix locking
mechanisms within the EJB container.

The following excerpt from weblogic-ejb-jar.xml shows how to set the
concurrency strategy for an EJB. In the following sample XML, the code specifies the
default locking mechanism, Database.

Figure 4-5 Sample XML specifying the concurrency strategy

<entity-descriptor>
<entity-cache>
...
<concurrency-strategy>Database</concurrency-strategy>
</entity-cache>
...

</entity-descriptor>

If you do not specify a concurrency-strategy, WebLogic Server performs database
locking for entity EJB instances.

A description of each concurrency strategy is covered in the following sections.

Exclusive Concurrency Strategy

The Exclusive concurrency strategy was the default in WebLogic Server 5.1 and
4.5.1. This locking method provides reliable access to EJB data, and avoids
unnecessary calls to ejbLoad() to refresh the EJB instance’s persistent fields.
However, exclusive locking does not provide the best model for concurrent access to
the EJB’s data. Once a client has locked an EJB instance, other clients are blocked
from the EJB’s data even if they intend only to read the persistent fields.

The EJB container in WebLogic Server can use exclusive locking mechanism for
entity EJB instances. As clients enlist an EJB or EJB method in a transaction,
WebLogic Server places an exclusive lock on the EJB instance for the duration of the
transaction. Other clients requesting the same EJB or method are blocked until the
current transaction completes.
4-16 Programming WebLogic Enterprise JavaBeans

EJB Concurrency Strategy
Database Concurrency Strategy

The Database concurrency strategy is the default option for WebLogic Server and the
recommended mechanism for EJB 1.1 and EJB 2.0 beans. It improves concurrent
access for entity EJBs. The WebLogic Server container defers locking services to the
underlying database. Unlike exclusive locking, the underlying data store can provide
finer granularity for locking EJB data, and deadlock detection.

With the database locking mechanism, the EJB container continues to cache instances
of entity EJB classes. However, the container does not cache the intermediate state of
the EJB instance between transactions. Instead, WebLogic Server calls ejbLoad() for
each instance at the beginning of a transaction to obtain the latest EJB data. The request
to commit data is subsequently passed along to the database. The database, therefore,
handles all lock management and deadlock detection for the EJB’s data.

Deferring locks to the underlying database improves throughput for concurrent access
to entity EJB data, while also providing deadlock detection. However, using database
locking requires more detailed knowledge of the underlying datastore’s lock policies,
which can reduce the EJB’s portability among different systems.

When using the Database concurrency strategy instead of Optimistic with the
cache-between-transactions element set to “True,” you will receive a warning
message from the compiler indicating that cache-between-transactions should be
disabled. If this condition exists, WebLogic Server automatically disables
cache-between-transactions.

Optimistic Concurrency Strategy

The Optimistic concurrency strategy does not hold any locks in the EJB container
or the database while the transaction is in process. When you specify this option, the
EJB container ensures that the data being updated by a transaction has not changed. It
performs a “smart update” by checking the fields before it commits the transaction.

Note: The EJB container does not check Blob/Clob fields for optimistic
concurrency. The work-around is to use version or timestamp checking.
Programming WebLogic Enterprise JavaBeans 4-17

4 The WebLogic Server EJB Container and Supported Services
Limitations of Optimistic Concurrency

If you use optimistic concurrency, BEA recommends that the include-updates
element in weblogic-cmp-jar.xml be set to false. Using optimistic concurrency
with include-updates set to true is inefficient—it is equivalent to using pessimistic
concurrency. If you need to set include-updates true, use the database
concurrency strategy.

Using optimistic concurrency with include-updates set to true is not supported for
databases that hold locks during transactions (non-Oracle databases) This is because:
optimistic transactions read using a local transaction to avoid holding locks until the
end of the transaction. However, optimistic transactions write using the current JTA
transaction so that the updates can be rolled back, if necessary. In general, updates
made by the JTA transaction are not visible to the read transactions until the JTA
transaction commits.

Check Data for Validity with Optimistic Concurrency

You can configure the EJB container to validate an Optimistic bean’s transaction data
before committing the transaction, to verify that no data read or updated by the
transaction has bean changed by another transaction. If it detects changed data, the EJB
container rolls back the transaction.

Note: The EJB container does not validate Blob or Clob fields in a bean with
Optimistic concurrency. The work-around is to use version or timestamp
checking.

Configuring Optimistic Checking

Configure validity checking for a bean with Optimistic concurrency using the
verify-columns element in the table-name stanza for the bean in
weblogic-cmp-jar.xml.

The verify-columns element specifies how columns in a table are checked for
validity when you use the optimistic concurrency strategy.

1. Set the value of the verify-columns element to:

Read—to check all columns in the table that have been read during the
transaction. This includes both rows that are simply read and rows that are read
and then updated or deleted by the transaction.
4-18 Programming WebLogic Enterprise JavaBeans

EJB Concurrency Strategy
Modified—to check only the columns that have been updated or deleted by the
current transaction.

Version—to check that a version column exists in the table and that this
column is used to implement optimistic concurrency.

A version column must be created with an initial value of 0, and must increment
by 1 whenever the row is modified.

Timestamp—to check that a timestamp column exists in the table and that this
column is used to implement optimistic concurrency. Timestamp-based
optimistic concurrency requires a 1 second granularity for the database column.

The EJB container manages the version or timestamp column, updating its value as
appropriate upon completion of the transaction.

Note: The version or timestamp column is not updated if the transaction did not
modify and regular CMP or CMR fields—if the only data changed during the
transaction was the value of the version or timestamp column (as a result of
transaction initiation) the column used for optimistic checking will not be
updated at the end of the transaction.

2. If verify-columns is set to Version or Timestamp, specify the version or
timestamp column using the optimistic-column in the table-map stanza in
the weblogic-cmp-jar.xml file. Mapping this column to a cmp-field is
optional.

The optimistic-column element identifies a database column that contains a
version or timestamp value used to implement optimistic concurrency. This
element is case maintaining, though not all databases are case sensitive. The
value of this element is ignored unless verify-columns is set to Version or
Timestamp.

If the EJB is mapped to multiple tables, optimistic checking is only performed on the
tables that are updated during the transaction.

By default, caching between transactions is not enabled for optimistic beans. You must
explicitly enable it. See “Using cache-between-transactions to Limit Calls to
ejbLoad()” on page 4-28. When you enable long term caching for an entity bean with
an optimistic concurrency strategy the EJB container reuses the cached values from
previous transactions. The container ensures that the updates are transactionally
consistent by checking for optimistic conflicts at the end of the transaction. In addition,
notifications for updates of optimistic data are broadcast to other cluster members to
help avoid optimistic conflicts and keep cached data fresh.
Programming WebLogic Enterprise JavaBeans 4-19

4 The WebLogic Server EJB Container and Supported Services
Optimistic Checking and Oracle Databases

For Oracle databases, if you set verify-columns to Modified for an entity EJB with
a CMP non-key field type java.util.Date and implementation type Oracle DATE,
WebLogic Server throws an optimistic concurrency violation exception when a simple
update is made to the non-key DATE field—even though only one user is updating the
record.

This problem occurs because of a mismatch in date value precision between the Oracle
DATE column and the java.util.Date type. The java.util.Date type is in
milliseconds, and the Oracle DATE column is not. There are two ways to avoid this
error:

Set the Oracle database column type to Timestamp, a higher precision type
introduced in Oracle9i.

Include logic in your application to zero out the milliseconds of a
java.util.Date value. To accomplish this, prepare a date field for an entity
bean java.util.Date field in this way:

Calendar cal = Calendar.getInstance();
cal.set(Calendar.MILLISECOND, 0); // clears millisecond
Date myDate = cal.getTime();

ReadOnly Concurrency Strategy

WebLogic Server provides support for concurrent access to read-only entity beans.
This concurrency strategy activates an instance of a read-only entity bean for each
transaction so that requests may be processed in parallel.

Prior to WebLogic Server 7.0 read-only entity beans used the exclusive locking
concurrency strategy. This strategy places an exclusive lock on cached entity bean
instances when the bean is associated with a transaction. Other requests for the entity
bean instance are block until the transaction completes.

To avoid reading from the database, WebLogic Server copies the state for an EJB 2.0
CMP bean from the existing instance in the cache. For this release, the default
concurrency strategy for read-only entity beans is the ReadOnly option.

You can specify read-only entity bean caching at the application-level or the
component-level.
4-20 Programming WebLogic Enterprise JavaBeans

EJB Concurrency Strategy
To enable read-only entity bean caching:

1. Specify the ReadOnly option in the concurrency-strategy deployment
descriptor element for either a JAR file or an EAR file.

Specify the concurrency-strategy element for application-level caches
(EARS) in the entity-cache-ref element in the weblogic-ejb-jar.xml
file.

Specify the concurrency-strategy element for component-level caches
(JARS) in the weblogic-ejb-jar.xml file.

2. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 6-5.

Read-Only Entity Beans and ReadOnly Concurrency

Previous versions of read-only entity beans will work in this version of WebLogic
Server. As in previous versions, you can set the read-timeout-seconds element set
in weblogic-ejb-jar.xml. If an EJB’s concurrency strategy is ReadOnly and
read-timeout-seconds is set, when a read-only bean is invoked, WebLogic Server
checks whether the cached data is older than the read-timeout-seconds setting. If
it is, the bean’s ejbLoad is called. Otherwise, the cached data is used.

Restrictions for ReadOnly Concurrency Strategy

Entity EJBs using the read-only concurrency strategy must observe the following
restrictions:

They cannot require updates to the EJB data, because WebLogic Server never
calls ejbStore() for read-only entity EJBs.

The EJB’s method calls must be idempotent. See “Stateless Session EJBs in a
Cluster” on page 4-31 for more information.

Because the bean’s underlying data may be updated by an external source, calls
to ejbLoad() are governed by the deployment parameter,
read-timeout-seconds.

Read-Only Multicast Invalidation

Read-only multicast invalidation is an efficient means of invalidating cached data.
Programming WebLogic Enterprise JavaBeans 4-21

4 The WebLogic Server EJB Container and Supported Services
Invalidate a read-only entity bean by calling the following invalidate() method on
either the CachingHome or CachingLocalHome interface:

Figure 4-6 Sample code showing CachingHome and CachingLocalHome
interfaces

package weblogic.ejb;

public interface CachingHome {

public void invalidate(Object pk) throws RemoteException;
public void invalidate (Collection pks) throws RemoteException;
public void invalidateAll() throws RemoteException;

public interface CachingLocalHome {

public void invalidate(Object pk) throws RemoteException;
public void invalidate (Collection pks) throws RemoteException;
public void invalidateAll() throws RemoteException

}

The following example codes shows how to cast the home to CachingHome and then
call the method:

Figure 4-7 Sample code showing how to cast the home and call the method

import javax.naming.InitialContext;
import weblogic.ejb.CachingHome;

Context initial = new InitialContext();
Object o = initial.lookup("CustomerEJB_CustomerHome");
CustomerHome customerHome = (CustomerHome)o;

CachingHome customerCaching = (CachingHome)customerHome;
customerCaching.invalidateAll();

When the invalidate() method is called, the read-only entity beans are invalidated
in the local server, and a multicast message is sent to the other servers in the cluster to
invalidate their cached copies. The next call to an invalidated read-only entity bean
causes ejbLoad to be called. ejbLoad() reads the most current version of the
persistent data from the underlying datastore

WebLogic Server calls the invalidate() method after the transaction update has
completed. If the invalidation occurs during a transaction update, the previous version
may be read if the isolation level does not permit reading uncommitted data.
4-22 Programming WebLogic Enterprise JavaBeans

EJB Concurrency Strategy
Read-Mostly Pattern

WebLogic Server does not support a read-mostly cache strategy setting in
weblogic-ejb-jar.xml. However, if you have EJB data that is only occasionally
updated, you can create a “read-mostly pattern” by implementing a combination of
read-only and read-write EJBs.

For an example of the read-mostly pattern, see the Read Mostly example in your
WebLogic Server distribution:

%SAMPLES_HOME%/server/config/examples/ejb/extensions/readMostl
y

WebLogic Server provides an automatic invalidate() method for the Read-Mostly
pattern. With this pattern, Read-Only entity bean and a Read-Write entity bean are
mapped to the same data. To read the data, you use the Read-Only entity bean; to
update the data, you use the Read-Write entity bean.

In a read-mostly pattern, a read-only entity EJB retrieves bean data at intervals
specified by the read-timeout-seconds deployment descriptor element specified in
the weblogic-ejb-jar.xml file. A separate read-write entity EJB models the
same data as the read-only EJB, and updates the data at required intervals.

When creating a read-mostly pattern, use the following suggestions to reduce data
consistency problems:

For all read-only EJBs, set read-timeout-seconds to the same value for all
beans that may be updated in the same transaction.

For all read-only EJBs, set read-timeout-seconds to the smallest timeframe
that yields acceptable performance levels.

Ensure that all read-write EJBs in the system update only the smallest portion
of data necessary; avoid beans that write numerous, unchanged fields to the
datastore at each ejbStore().

Ensure that all read-write EJBs update their data in a timely fashion; avoid
involving read-write beans in long-running transactions that may span the
read-timeout-seconds setting for their read-only counterparts.

If you are running EJB 2.0, you can approximate the read-mostly pattern using a
single bean that uses optimistic concurrency. An optimistic bean acts like a
read-only beans when performing a read—it reads from the cache and can return
Programming WebLogic Enterprise JavaBeans 4-23

4 The WebLogic Server EJB Container and Supported Services
stale data. However, when an optimistic bean performs a write, the container
ensures that the data being updated has not changed—providing the same level
of consistency for writes as a bean that uses Database concurrency. See
“Optimistic Concurrency Strategy” on page 4-17.

Note: In a WebLogic Server cluster, clients of the read-only EJB benefit from
using cached EJB data. Clients of the read-write EJB benefit from true
transactional behavior, because the read-write EJB’s state always matches
the state of its data in the underlying datastore. See “Entity EJBs in a Cluster”
on page 4-35 for more information.

Combined Caching with Entity Beans

Combined caching allows multiple entity beans that are part of the same J2EE
application to share a single runtime cache. Previously, you had to configure a separate
cache for each entity bean that was part of an application. This caused some usability
and performance problems in that it took more time to configure caches for each entity
bean and more memory to run the application. This feature will help solve those
problems.

To configure an application level cache:

1. Verify that the weblogic-application.xml file is located in the META-INF
directory of the EAR file.

2. Provide an entry in the weblogic-application.xml file as follows:

<weblogic-application>
<ejb>

<entity-cache>
<entity-cache-name>large_account</entity-cache-name>
<max-cache-size>

<megabytes>1</megabytes>
</max-cache-size>

</entity-cache>
</ejb>
</weblogic_application>

Use the entity-cache element to define a named application level cache that
will be used to cache entity bean instances at runtime. There are no restrictions
on the number of different entity beans that may reference an individual cache.
4-24 Programming WebLogic Enterprise JavaBeans

Caching Between Transactions
The sub elements of entity-cache have the same basic meaning as they do in
the weblogic-ejb-jar.xml deployment descriptor file.

3. Specify an entity-descriptor element in weblogic-ejb-jar.xml file.

Use the entity-descriptor element to configure an entity bean to use an
application level cache.

For instructions on specifying deployment descriptors, see “Specifying and Editing the
EJB Deployment Descriptors” on page 6-5.

The weblogic-application.xml deployment descriptor is documented in full in the
“Application.xml Deployment Descriptor Elements” section of Developing WebLogic
Server Applications.

Caching Between Transactions

Use caching between transactions or long tern caching to enable the EJB container to
cache an entity bean’s persistent data between transactions. Whether you can set
caching between transactions for an entity bean depends on its concurrency strategy,
as summarized in the following three tables:

Table 4-1 Permitted cache-between-transactions values, by concurrency strategy, for
BMP beans

Table 4-2 Permitted cache-between-transactions values, by concurrency strategy, for CMP 2.0
beans

A BMP bean using this
concurrency strategy

Can set cache-between-transactions
to

Database False only

Exclusive True or False

Read-Only True or False

Optimistic Not applicable. Optimistic concurrency is
not available for BMP beans.
Programming WebLogic Enterprise JavaBeans 4-25

http://e-docs.bea.com/wls/docs70/programming/app_xml.html#1007302

4 The WebLogic Server EJB Container and Supported Services
Table 4-3 Permitted cache-between-transactions values, by concurrency
strategy, for CMP 1.1 beans

Caching Between Transactions with Exclusive
Concurrency

When you enable long term caching for an entity bean with an Exclusive
concurrency strategy the EJB container must have exclusive update access to the
underlying data. This means that another application outside of the EJB container must
not be updating the data. If you deploy an EJB with an Exclusive concurrency strategy
in a cluster, long term caching is disabled automatically because any node in the cluster
may update the data. This would make long term caching impossible.

A CMP 2.0 bean using this
concurrency strategy

Can set
cache-between-transactions to this
value

Database True only

Exclusive True or False

Read-Only True or False

Optimistic True or False

A CMP 1.1 bean using this
concurrency strategy

Can set cache-between-transactions
to this value

Database True only

Exclusive True or False

Read-Only True or False

Optimistic Not applicable. Optimistic concurrency is
not available for CMP 1.1 beans.
4-26 Programming WebLogic Enterprise JavaBeans

Caching Between Transactions
In previous versions of WebLogic Server, this feature was controlled by the
db-is-shared element of weblogic-ejb-jar.xml.

Note: Exclusive concurrency is a single-server feature. Do not attempt to use it with
clustered servers.

Caching Between Transactions with ReadOnly
Concurrency

When you disable long term caching for an entity bean with a ReadOnly concurrency
strategy it ignores the value of the cache-between-transactions setting because
the EJB container always performs long term caching of read-only data.

Caching Between Transactions with Optimistic
Concurrency

When you enable long term caching for an entity bean with an Optimistic
concurrency strategy the EJB container reuses the cached values from previous
transactions. The container ensures that the updates are transactionally consistent by
checking for optimistic conflicts at the end of the transaction. See “Optimistic
Concurrency Strategy” on page 4-17 for instructions on setting optimistic checking.

In addition, notifications for updates of optimistic data are broadcast to other cluster
members to help avoid optimistic conflicts.

Enabling Caching Between Transactions

To enable caching between transactions:

1. Set the cache-between-transactions element in the weblogic-ejb-jar.xml
file by choosing one of the following options:

Specify True to enable the EJB container performs long term caching of the
data.
Programming WebLogic Enterprise JavaBeans 4-27

4 The WebLogic Server EJB Container and Supported Services
Specify False to enable the EJB container performs short caching of the
data. This is the default setting.

2. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 6-5.

Using cache-between-transactions to Limit Calls to
ejbLoad()

WebLogic Server’s default behavior of calling ejbLoad() at the start of each
transaction works well for environments where multiple sources may update the
datastore. Because multiple clients (including WebLogic Server) may be modifying an
EJB’s underlying data, an initial call to ejbLoad() notifies the bean that it needs to
refresh its cached data and ensures that it works against the most current version of the
data.

In the special circumstance where only a single WebLogic Server transaction ever
accesses a particular EJB concurrently, such as when you use exclusive concurrency
for a single server; not a cluster, calling ejbLoad() by default is unnecessary. Because
no other clients or systems update the EJB’s underlying data, WebLogic Server’s
cached version of the EJB data is always up-to-date. Calling ejbLoad() in this case
simply creates extra overhead for WebLogic Server clients that access the bean.

To avoid unnecessary calls to ejbLoad() in the case of a single WebLogic Server
transaction accessing a particular EJB, WebLogic Server provides the
cache-between-transactions deployment parameter. By default,
cache-between-transactions is set to “false” for each EJB in the bean’s
weblogic-ejb-jar.xml file, which ensures that ejbLoad() is called at the start of
each transaction. Where only a single WebLogic Server transaction ever accesses an
EJB’s underlying data concurrently, you can set d to “true” in the bean’s
weblogic-ejb-jar.xml file. When you deploy an EJB with
cache-between-transactions set to “true,” the single instance of WebLogic
Server calls ejbLoad() for the bean only when:

A client first references the EJB

The EJB’s transaction is rolled back
4-28 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
Restrictions for cache-between-transactions

The following restrictions apply to cache-between-transactions:

In a single-server deployment, enable cache-between-transactions only with
Exclusive, Optimistic and Read-Only concurrency strategies. You cannot use
cache-between transactions with a Database concurrency strategy.

In a clustered deployment, enable cache-between-transactions only with
Optimistic and Read-Only concurrency strategies. You cannot use
cache-between-transactions with an Exclusive or Database Concurrency strategy.

EJBs in WebLogic Server Clusters

This section describes clustering support for EJBs.

Clustered Homes and EJBObjects

EJBs in a WebLogic Server cluster use modified versions of two key structures: the
Home object and the EJB object. In a single-server (unclustered) environment, a client
looks up an EJB through the EJB’s home interface, which is backed on the server by a
corresponding Home object. After referencing the bean, the client interacts with the
bean’s methods through the remote interface, which is backed on the server by an EJB
object.

The following figure shows EJB behavior in a single server environment.
Programming WebLogic Enterprise JavaBeans 4-29

4 The WebLogic Server EJB Container and Supported Services
Figure 4-8 Single server behavior

Note: Failover of EJBs work only between a remote client and the EJB.

Clustered EJB Home Objects

All EJB types—stateless session, stateful session, and entity EJBs—can have
cluster-aware home stubs. Whether or not a cluster-aware home stub is created is
determined by the home-is-clusterable deployment element in
weblogic-ejb-jar.xml.

When an EJB bean is deployed to a cluster, its home is bound into the cluster-wide
naming service. Each server can bind an instance of the home under the same name.
When a client looks up this home, it gets a replica-aware stub that has a reference to
the home on each server that deployed the bean. When create() or find() is called,
the replica-aware stub routes the call to one of the replicas. The home replica receives
the find() results or creates an instance of the bean on this server.

The clustered home stub provides load balancing by distributing EJB lookup requests
to available servers. It can also provide failover support for lookup requests, because
it routes those requests to available servers when other servers have failed.

Clustered EJBObjects

In a WebLogic Server cluster, the server-side representation of the EJBObject
can also be replaced by a replica-aware EJBObject stub. This stub maintains
knowledge about all copies of the EJBObject that reside on servers in the
cluster. The EJBObject stub can provide load balancing and failover for EJB

Home EJBHome
Interface Object

Remote EJB
Interface Object

WebLogic Server (single-server)

Datastore

Client

comm
it

obtain bean

call method
4-30 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
method calls. For example, if a client invokes an EJB method call on a particular
WebLogic Server and the server goes down, the EJBObject stub can failover
the method call to another, running server.

Whether or not an EJB can use a replica-aware EJBObject stub depends on the
type of EJB deployed and, for entity EJBs, the concurrency strategy selected at
deployment time. For more information, see “Clustering Support for Different
Types of EJBs” on page 4-31.

Clustering Support for Different Types of EJBs

These sections describe the clustering support for session and entity EJBs.

“Stateless Session EJBs in a Cluster” on page 4-31

“Stateful Session EJBs in a Cluster” on page 4-33

“Entity EJBs in a Cluster” on page 4-35

Stateless Session EJBs in a Cluster

Stateless session EJBs can have both a cluster-aware home stub and a replica-aware
EJBObject stub. By default, WebLogic Server provides failover services for EJB
method calls, but only if a failure occurs between method calls. For example, failover
is automatically supported if a failure occurs after a method completes, or if the method
fails to connect to a server. When failures occur while an EJB method is in progress,
WebLogic Server does not automatically fail over from one server to another.

This default behavior ensures that database updates within an EJB method are not
“duplicated” due to a failover scenario. For example, if a client calls a method that
increments a value in a datastore and WebLogic Server fails over to another server
before the method completes, the datastore would be updated twice for the client’s
single method call.

If methods are written in such a way that repeated calls to the same method do not
cause duplicate updates, the method is said to be “idempotent.” For idempotent
methods, WebLogic Server provides two weblogic-ejb-jar.xml deployment
properties, one at the bean level and one at the method level.
Programming WebLogic Enterprise JavaBeans 4-31

4 The WebLogic Server EJB Container and Supported Services
At the bean level, if you set stateless-bean-methods-are-idempotent to “true”,
WebLogic Server assumes that the method is idempotent and will provide failover
services for the EJB method, even if a failure occurs during a method call.

At the method level, you can use the idempotent-methods deployment property to
accomplish the same thing:

<idempotent-methods>
<method>

<description>...</description>
<ejb-name>...</ejb-name>
<method-intf>...</method-intf>
<method-name>...</method-name>
<method-params>...</method-params>

</method>
</idempotent-methods>

The following figure illustrates stateless session EJBs in a WebLogic Server clustered
environment.
4-32 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
Figure 4-9 Stateless session EJBs in a clustered server environment

Stateful Session EJBs in a Cluster

To enable stateful session EJBs to use cluster-aware home stubs, set
home-is-clusterable to “true.” This provides failover and load balancing for
stateful EJB lookups. Stateful session EJBs configured this way use replica-aware
EJBObject stubs. For more information on in-memory replication for stateful session
EJBs, see “In-Memory Replication for Stateful Session EJBs” on page 4-34.

Note: Load balancing and failover are discussed extensively in Using WebLogic
Server Clusters. See these three sections: “EJB and RMI Objects”, “Load
Balancing for EJBs and RMI Objects” and “Replication and Failover for EJBs
and RMIs”.

Datastore

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

Home Home
Stub

Remote Object
Stub

failure

commit

during
method

obtain bean

call method

Client
Programming WebLogic Enterprise JavaBeans 4-33

http://e-docs.bea.com/wls/docs70/cluster/overview.html#1003909
http://e-docs.bea.com/wls/docs70/cluster/load_balancing.html#1008605
http://e-docs.bea.com/wls/docs70/cluster/load_balancing.html#1008605
http://e-docs.bea.com/wls/docs70/cluster/failover.html#1008850
http://e-docs.bea.com/wls/docs70/cluster/failover.html#1008850

4 The WebLogic Server EJB Container and Supported Services
In-Memory Replication for Stateful Session EJBs

The WebLogic Server EJB container supports clustering for stateful session EJBs.
Whereas in WebLogic Server 5.1 only the EJBHome object is clustered for stateful
session EJBs, the EJB container can also replicate the state of the EJB across clustered
WebLogic Server instances.

Replication support for stateful session EJBs is transparent to clients of the EJB. When
a stateful session EJB is deployed, WebLogic Server creates a cluster-aware EJBHome
stub and a replica-aware EJBObject stub for the stateful session EJB. The EJBObject
stub maintains a list of the primary WebLogic Server instances on which the EJB
instance runs, as well as the name of a secondary WebLogic Server to use for
replicating the bean’s state.

Each time a client of the EJB commits a transaction that modifies the EJB’s state,
WebLogic Server replicates the bean’s state to the secondary server instance.
Replication of the bean’s state occurs directly in memory, for best performance in a
clustered environment.

Should the primary server instance fail, the client’s next method invocation is
automatically transferred to the EJB instance on the secondary server. The secondary
server becomes the primary WebLogic Server for the EJB instance, and a new
secondary server handles possible additional failovers. Should the EJB’s secondary
server fail, WebLogic Server enlists a new secondary server instance from the cluster.

Clients of a stateful session EJB are therefore guaranteed to have quick access to the
latest committed state of the EJB, except under the special circumstances described in
“Limitations of In-Memory Replication” on page 4-35. For more information on the
use of replication groups, see Using Replication Groups.

Requirements and Configuration for In-Memory Replication

To replicate the state of a stateful session EJB in a WebLogic Server cluster, make sure
that the cluster is homogeneous for the EJB class. In other words, deploy the same EJB
class to every WebLogic Server instance in the cluster, using the same deployment
descriptor. In-memory replication is not supported for heterogeneous clusters.

By default, WebLogic Server does not replicate the state of stateful session EJB
instances in a cluster. This models the behavior released with WebLogic Server
Version 6.0. To enable replication, set the replication-type deployment parameter
in the weblogic-ejb-jar.xml deployment file to InMemory.
4-34 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
Figure 4-10 XML sample enabling replication

<stateful-session-clustering>
...
<replication-type>InMemory</replication-type>

</stateful-session-clustering>

Limitations of In-Memory Replication

By replicating the state of a stateful session EJB, clients are generally guaranteed to
have the last committed state of the EJB, even if the primary WebLogic Server instance
fails. However, in the following rare failover scenarios, the last committed state may
not be available:

A client commits a transaction involving a stateful EJB, but the primary
WebLogic Server fails before the EJB’s state is replicated. In this case, the
client’s next method invocation works against the previous committed state.

A client creates an instance of a stateful session EJB and commits an initial
transaction, but the primary WebLogic Server fails before the EJB’s initial state
can be replicated. The client’s next method invocation fails to locate the bean
instance, because the initial state could not be replicated. The client needs to
recreate the EJB instance, using the clustered EJBHome stub, and restart the
transaction.

Both the primary and secondary servers fail. The client needs to recreate the EJB
instance and restart the transaction.

Entity EJBs in a Cluster

As with all EJBs, entity EJBs can utilize cluster-aware home stubs once you set
home-is-clusterable to “true.”

The behavior of the EJBObject stub depends on the concurrency-strategy
deployment element in weblogic-ejb-jar.xml. concurrency-strategy can be
set to Read-Write or Read-Only. The default value is Read-Write.

Fore details, see:

“Read-Only Entity EJBs in a Cluster” on page 4-36

“Read-Write Entity EJBs in a Cluster” on page 4-36
Programming WebLogic Enterprise JavaBeans 4-35

4 The WebLogic Server EJB Container and Supported Services
Read-Only Entity EJBs in a Cluster

When a home finds or creates a read-only entity bean, it returns a replica-aware an
EJBObject stub. This stub load balances on every call but does not automatically fail
over in the event of a recoverable call failure. Read-only beans are also cached on
every server to avoid database reads.

Read-Write Entity EJBs in a Cluster

When a home finds or creates a read-write entity bean, it obtains an instance on the
local server and returns an EJBObject stub pinned to that server. Load balancing and
failover occur only at the home level. Because it is possible for multiple instances of
the entity bean to exist in the cluster, each instance must read from the database before
each transaction and write on each commit.

read-write entity EJBs in a cluster behave similarly to entity EJBs in a non-clustered
system, in that:

Multiple clients can use the bean in transactions.

ejbLoad() is always called at the beginning of each transaction when
cache-between-transactions is set to false.

ejbStore() behavior is governed by the rules described in “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 4-12.

Figure 4-11 shows read-write entity EJBs in a WebLogic Server clustered
environment. The three arrows on Home Stub point to all three servers and show
multiple client access.
4-36 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
Figure 4-11 Read-write entity EJBs in a clustered server environment

Note: In the preceding figure, the set of three arrows for both home stubs refers to
the EJBHome on each server.

read-write entity EJBs support automatic failover on a safe exception, if
home-is-clusterable is set to true. For example, failover is automatically
supported if there is a failure after a method completes, or if the method fails to connect
to a server.

Datastore

Home Home
Stub

Remote Object
Stub

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

Home Home
Stub

Remote Object
Stub

begin
...
commit

begin
...
commit

obtain bean

call methodcall methodcall method

obtain bean

call method

obtain bean

Client

Client
Programming WebLogic Enterprise JavaBeans 4-37

4 The WebLogic Server EJB Container and Supported Services
Cluster Address

When you configure a cluster, you supply a cluster address that identifies the Managed
Servers in the cluster. The cluster address is used in entity and stateless beans to
construct the host name portion of URLs. If the cluster address is not set, EJB handles
may not work properly. For more information on cluster addresses, see Using
WebLogic Server Clusters.

Transaction Management

The following sections provide information on how the EJB container supports
transaction management services. They describe EJBs in several transaction scenarios.
EJBs that engage in distributed transactions (transactions that make updates in
multiple datastores) guarantee that all branches of the transaction commit or roll back
as a logical unit.

The current version of WebLogic Server supports Java Transaction API (JTA), which
you can use to implement distributed transactional applications.

Also, two-phase commit is supported for both 1.1 and 2.0 EJBs. The two-phase
commit protocol is a method of coordinating a single transaction across two or more
resource managers. It guarantees data integrity by ensuring that transactional updates
are committed in all participating databases, or are fully rolled back out of all the
databases, reverting to the state prior to the start of the transaction.

Transaction Management Responsibilities

Session EJBs can rely on their own code, their client’s code, or the WebLogic Server
container to define transaction boundaries. EJBs can use container- or
client-demarcated transaction boundaries, but they cannot define their own transaction
boundaries unless they observe certain restrictions.

In bean-managed transactions, the EJB’ code manages the transaction
demarcation. If bean- or client-managed transactions are required, you must
provide the java code and use the javax.transaction.UserTransaction
4-38 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/cluster/setup.html#cluster_address
http://e-docs.bea.com/wls/docs70/cluster/setup.html#cluster_address

Transaction Management
interface. The EJB or client can then access a UserTransaction object through
JNDI and specify transaction boundaries with explicit calls to tx.begin(),
tx.commit(), tx.rollback(). See “Using javax.transaction.UserTransaction”
on page 4-39 for more information on defining transaction boundaries.

In container-managed transactions, the WebLogic Server EJB container
manages the transaction demarcation. For EJBs that use container-managed
transactions, you can use several deployment elements to control the
transactional requirements for individual EJB methods. For more information
about the deployment descriptors, see Programming WebLogic EJB.

Note: If the EJB provider does not specify a transaction attribute for a method in the
ejb-jar.xml file, WebLogic Server uses the supports attribute by default.

The sequence of transaction events differs between container-managed and
bean-managed transactions.

Using javax.transaction.UserTransaction

To define transaction boundaries in EJB or client code, you must obtain a
UserTransaction object and begin a transaction before you obtain a Java
Transaction Service (JTS) or JDBC database connection. To obtain the
UserTransaction object, use this command:

ctx.lookup("javax.transaction.UserTransaction");

If you start a transaction after obtaining a database connection, the connection has no
relationship to the new transaction, and there are no semantics to “enlist” the
connection in a subsequent transaction context. If a JTS connection is not associated
with a transaction context, it operates similarly to a standard JDBC connection that has
autocommit equal to true, and updates are automatically committed to the datastore.

Once you create a database connection within a transaction context, that connection
becomes “reserved” until the transaction either commits or rolls back. To maintain
performance and throughput for your applications, always ensure that your transaction
completes quickly, so that the database connection can be released and made available
to other client requests. See “Preserving Transaction Resources” on page 2-8 for more
information.

Note: You can associate only a single database connection with an active transaction
context.
Programming WebLogic Enterprise JavaBeans 4-39

4 The WebLogic Server EJB Container and Supported Services
Restriction for Container-Managed EJBs

You cannot use the javax.transaction.UserTransaction method within an EJB
that uses container-managed transactions.

Transaction Isolation Levels

The method for setting the transaction isolation level differs according to whether your
application uses bean-managed or container-managed transaction demarcation. The
following sections examine each of these scenarios.

Setting Bean-Managed Transaction Isolation Levels

You set the isolation level for bean-managed transactions in the EJB’s java code.
When the application runs, the transaction is explicitly started. Allowable isolation
levels are defined in “transaction-isolation” on page 9-94.

Note: The Oracle-only isolation level values—
TRANSACTION_READ_COMMITTED_FOR_UPDATE and
TRANSACTION_READ_COMMITTED_FOR_UPDATE_NO_WAIT cannot be set for a
bean-managed transaction.

See Figure 4-12 for a code sample.

Figure 4-12 Sample Code Setting Transaction Isolation Level

import javax.transaction.Transaction;
import java.sql.Connection
import weblogic.transaction.TxHelper:
import weblogic.transaction.Transaction;
import weblogic.transaction.TxConstants;

User Transaction tx = (UserTransaction)

ctx.lookup("javax.transaction.UserTransaction");

//Begin user transaction

tx.begin();

//Set transaction isolation level to TRANSACTION_READ_COMMITED
4-40 Programming WebLogic Enterprise JavaBeans

Transaction Management
Transaction tx = TxHelper.getTransaction();
tx.setProperty (TxConstants.ISOLATION_LEVEL, new Integer
 (Connection.TRANSACTION_READ_COMMITED));

//perform transaction work

tx.commit();

Setting Container-Managed Transaction Isolation Levels

You set the isolation level for container-managed transactions in the
isolation-level sub-element of the transaction-isolation element of the
weblogic-ejb-jar.xml deployment file. WebLogic Server passes this value to the
underlying database. The behavior of the transaction depends both on the EJB’s
isolation level setting and the concurrency control of the underlying persistent store.
For more information on setting container-managed transaction isolation levels, see
Programming WebLogic JTA.

Limitations of TransactionSerializable

Many datastores provide limited support for detecting serialization problems, even for
a single user connection. Therefore, even if you set transaction-level to
TransactionSerializable setting for an EJB, you may receive exceptions or
rollbacks in the EJB client if contention occurs between clients for the same rows. To
prevent these problems, make sure that the code in your client application catches and
examines the SQL exceptions, and that you take the appropriate action to resolve the
exceptions, such as restarting the transaction.

WebLogic Server provides special isolation-level settings designed to prevent
this problem with Oracle databases, as described in “Special Note for Oracle
Databases” on page 4-41.

For other database vendors, refer to your database documentation for more details
about isolation level support.

Special Note for Oracle Databases

Even with an isolation-level setting of TransactionSerializable, Oracle
does not detect serialization problems until commit time. The error message returned
is:

java.sql.SQLException: ORA-08177: can't serialize access for this
transaction
Programming WebLogic Enterprise JavaBeans 4-41

4 The WebLogic Server EJB Container and Supported Services
WebLogic Server provides special isolation-level settings to prevent this. For
more information, see “isolation-level” on page 9-111.

Distributing Transactions Across Multiple EJBs

WebLogic Server does support transactions that are distributed over multiple
datasources; a single database transaction can span multiple EJBs on multiple servers.
You can explicitly enable support for these types of transactions by starting a
transaction and invoking several EJBs. Or, a single EJB can invoke other EJBs that
implicitly work within the same transaction context. The following sections describe
these scenarios.

Calling Multiple EJBs from a Single Transaction Context

In the following code fragment, a client application obtains a UserTransaction
object and uses it to begin and commit a transaction. The client invokes two EJBs
within the context of the transaction. The transaction attribute for each EJB is set to
Required:

Figure 4-13 Beginning and committing a transaction

import javax.transaction.*;
...
u = (UserTransaction)
jndiContext.lookup("javax.transaction.UserTransaction");
u.begin();
account1.withdraw(100);
account2.deposit(100);
u.commit();
...

In the above code fragment, updates performed by the “account1” and “account2”
EJBs occur within the context of a single UserTransaction. The EJBs commit or roll
back as a logical unit. This is true regardless of whether “account1” and “account2”
reside on the same WebLogic Server, multiple WebLogic Servers, or a WebLogic
Server cluster.

The only requirement for wrapping EJB calls in this manner is that both “account1”
and “account2” must support the client transaction. The beans’ trans-attribute
element must be set to Required, Supports, or Mandatory.
4-42 Programming WebLogic Enterprise JavaBeans

Transaction Management
Encapsulating a Multi-Operation Transaction

You can also use a “wrapper” EJB that encapsulates a transaction. The client calls the
wrapper EJB to perform an action such as a bank transfer. The wrapper EJB responds
by starting a new transaction and invoking one or more EJBs to do the work of the
transaction.

The “wrapper” EJB can explicitly obtain a transaction context before invoking other
EJBs, or WebLogic Server can automatically create a new transaction context, if the
EJB’s trans-attribute element is set to Required or RequiresNew. The
trans-attribute element is set in the ejb-jar.xml file. All EJBs invoked by the
wrapper EJB must be able to support the transaction context (their trans-attribute
elements must be set to Required, Supports, or Mandatory).

Distributing Transactions Across EJBs in a WebLogic Server Cluster

WebLogic Server provides additional transaction performance benefits for EJBs that
reside in a WebLogic Server cluster. When a single transaction utilizes multiple EJBs,
WebLogic Server attempts to use EJB instances from a single WebLogic Server
instance, rather than using EJBs from different servers. This approach minimizes
network traffic for the transaction.

In some cases, a transaction can use EJBs that reside on multiple WebLogic Server
instances in a cluster. This can occur in heterogeneous clusters, where all EJBs have
not been deployed to all WebLogic Server instances. In these cases, WebLogic Server
uses a multitier connection to access the datastore, rather than multiple direct
connections. This approach uses fewer resources, and yields better performance for the
transaction.

However, for best performance, the cluster should be homogeneous — all EJBs should
reside on all available WebLogic Server instances.
Programming WebLogic Enterprise JavaBeans 4-43

4 The WebLogic Server EJB Container and Supported Services
Database Insert Support

WebLogic Server allows you to control when and how the EJB container inserts newly
created beans into the database.You specify your preference by setting the
delay-database-insert-until deployment descriptor element in the
weblogic-cmp-rdbms-jar.xml file. This element allows you to choose:

To delay the database insert until after the EJB Container performs either an
ejbCreate or ejbPostCreate, as described in the following section.

To insert multiple entries into the database in one SQL statement, as described in
“Bulk Insert” on page 4-45.

The allowed values for the delay-database-insert-until element are:

ejbCreate—This method performs a database insert immediately after
ejbCreate.

ejbPostCreate—This method performs an insert immediately after
ejbPostCreate (default).

commit—performs a bulk insert when the transaction commits

Figure 4-14 Sample xml specifying delay-database-insert-until

<delay-database-insert-until>ejbPostCreate</delay-database-insert
-until> -->

Delay-Database-Insert-Until

By default, the database insert occurs after the client calls the ejbPostCreate
method. The EJB container delays inserting the new bean when you specify either the
ejbCreate or ejbPostCreate options for the delay-database-insert-until
element in the weblogic-cmp-rdbms-jar.xml file. Setting either of these options
specifies the precise time at which the EJB Container inserts a new bean that uses
RDBMS CMP into the database.
4-44 Programming WebLogic Enterprise JavaBeans

Database Insert Support
You must specify that the EJB Container delay the database insert until after
ejbPostCreate when a cmr-field is mapped to a foreign-key column that does
not allow null values. In this case, set the cmr-field to a non-null value in
ejbPostCreate before the bean is inserted into the database.

Note: You may not set the cmr-fields during a ejbCreate method call, before the
primary key of the bean is known.

BEA recommends that you specify the delay the database insert until after
ejbPostCreate if the ejbPostCreate method modifies the bean’s persistent field.
Doing so yields better performance by avoiding an unnecessary store operation.

For maximum flexibility, avoid creating related beans in their ejbPostCreate
method. Creating these additional instances may make delaying the database insert
impossible if database constraints prevent related beans from referring to a bean that
has not yet been created.

Note: In a one-to-one relationship, if the parent bean’s primary key is embedded
in the child bean's CMR field, when the EJB container creates the beans, it
will not check if the parent bean has children, for performance reasons. To
avoid a duplicationKeyException database exception, you must set the
foreign key constraint on the child table in the database.

Bulk Insert

Bulk insert support increases the performance of container-managed persistence
(CMP) bean creation by enabling the EJB container to perform multiple database
inserts for CMP beans in one SQL statement. This feature allows the container to avoid
making multiple database inserts.

The EJB container performs bulk database inserts when you specify the commit option
for the delay-database-insert-until element in the
weblogic-cmp-rdbms-jar.xml file.

When using bulk insert, you must set the boundary for the transaction as bulk insert
only applies to the inserts between transaction begin and transaction commit.

Note: Bulk insert only works with drivers that support the addBatch() and
executeBatch() methods. For example, the Oracle thin driver supports these
methods but the WebLogic Oracle JDBC driver does not.
Programming WebLogic Enterprise JavaBeans 4-45

4 The WebLogic Server EJB Container and Supported Services
The two limitations on using bulk insert are:

The total number of entries you create in a single bulk insert cannot exceed the
max-beans-in-cache setting, which is specified in the weblogic-ejb-jar.xml
file. See “max-beans-in-cache” on page 9-58 for more information on this element.

If you set the dbms-column-type element in the weblogic-cmp-rdbms-jar.xml
file to either OracleBlob or OracleClob, bulk insert automatically turns off because
you will not save much time if a Blob or Clob column exist in the database table. In
this case, WebLogic Server performs one insert per bean, which is the default
behavior.

Resource Factories

The following sections provide information on how the EJB container supports
resource services. In WebLogic Server, EJBs can access JDBC connection pools by
directly instantiating a JDBC pool driver. However, it is recommended that you instead
bind a JDBC datasource resource into the WebLogic Server JNDI tree as a resource
factory.

Using resource factories enables the EJB to map a resource factory reference in the
EJB deployment descriptor to an available resource factory in a running WebLogic
Server. Although the resource factory reference must define the type of resource
factory to use, the actual name of the resource is not specified until the bean is
deployed.

The following sections explain how to bind JDBC datasource and URL resources to
JNDI names in WebLogic Server.

Note: WebLogic Server also supports JMS connection factories.

Setting Up JDBC Data Source Factories

Follow these steps to bind a javax.sql.DataSource resource factory to a JNDI
name in WebLogic Server. Note that you can set up either a transactional or
non-transactional JDBC datasource as necessary.
4-46 Programming WebLogic Enterprise JavaBeans

Resource Factories
With a non-transactional data source, the JDBC connection operates in auto commit
mode, committing each insert and update operation to the database immediately, rather
than as part of a container-managed transaction.

With a transactional data source, multiple insert and update operations in a method can
be submitted as a single, container-managed transaction that either commits or rolls
back as a logical unit.

Note: Entity beans that use container-managed persistence should always use a
transactional data source, rather than a non-transactional data source, to
preserve data consistency.

To create a JDBC data source factory:

1. Set up a JDBC connection pool in the Administration Console. See Managing
JDBC Connectivity in the Administration Guide for more information.

2. Start WebLogic Server.

3. Start WebLogic Server Administration Console.

4. In the left pane of the Console, click the Services node and expand JDBC.

5. Select JDBC Data Source Factory and click the Configure a New JDBC Data
Source Factory option in the right pane.

6. Enter values in the Name, User Name, URL, Driver Class Name, and Factory
Name, attribute fields.

7. Enter any connection properties in the Properties attribute field.

a. For non-transactional JDBC datasources, enter:

weblogic.jdbc.DataSource.jndi_name=pool_name

where jndi_name is the full WebLogic Server JNDI name to bind to the
datasource and pool_name is the name of the WebLogic Server connection pool
you created in step 1.

b. For transactional JDBC datasources, select Tx Data Sources from the left pane
of the Administration Console, click Configure a New JDBC Tx Data Source
in the right pane, and enter:

weblogic.jdbc.TXDataSource.jndi_name=pool_name
Programming WebLogic Enterprise JavaBeans 4-47

http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html

4 The WebLogic Server EJB Container and Supported Services
where jndi_name is the full WebLogic Server JNDI name to bind to the
transactional datasource and pool_name is the name of the WebLogic Server
connection pool you created in step 1.

For more information on configuring transactional and non-transactional data
sources, see Configure a JDBC Data Source.

8. Click Create to create the JDBC Data Source Factory. The new Data Source
Factory is added under the JDBC Data source Node in the left pane.

9. Click Apply to save the changes.

10. Bind the JNDI name of the datasource to the EJB’s local JNDI environment by
doing one of the following:

Map an existing EJB resource factory reference to the JNDI name.

Directly edit the resource-description element in the
weblogic.ejb-jar.xml deployment file. See “Specifying and Editing the
EJB Deployment Descriptors” on page 6-5 for instructions on editing
deployment descriptors.

Setting Up URL Connection Factories

To set up a URL connection factory in WebLogic Server, bind a URL string to a JNDI
name using these instructions:

1. In a text editor, open the config.xml file for the instance of the WebLogic Server
you are using and set the URLResource attribute for the following config.xml
elements:

WebServer

VirtualHost:

2. Set the URLResource attribute for the WebServer element using the following
syntax:

<WebServer URLResource=”weblogic.httpd.url.testURL=http://
localhost:7701/testfile.txt” DefaultWebApp=”default-tests”/>

3. Set the URLResource attribute for the VirtualHost element, when virtual
hosting is required, using the following syntax:
4-48 Programming WebLogic Enterprise JavaBeans

message URL http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html

Resource Factories
<VirtualHostName=guestserver” targets=”myserver,test_web_server
“URLResource=”weblogic.httpd.url.testURL=http://
localhost:7701/testfile.txt” VirtualHostNames=”guest.com”/>

4. Save the changes in the config.xml file and reboot WebLogic Server.
Programming WebLogic Enterprise JavaBeans 4-49

4 The WebLogic Server EJB Container and Supported Services
4-50 Programming WebLogic Enterprise JavaBeans

CHAPTER
5 WebLogic Server
Container-Managed
Persistence Service

The following sections describe the container-managed persistence (CMP) features
supported by the WebLogic Server EJB container.

Overview of Container Managed Persistence Service

Writing for RDBMS Persistence for EJB 1.1 CMP

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP

Using SQL for CMP 1.1 Finder Queries

Using EJB QL for EJB 2.0

Using Dynamic Queries

Using Oracle SELECT HINTS

“get” and “set” Method Restrictions

BLOB and CLOB DBMS Column Support for the Oracle DBMS

Tuned EJB 1.1 CMP Updates in WebLogic Server

Tuned EJB 1.1 CMP Updates in WebLogic Server

Flushing the CMP Cache

Using Primary Keys
Programming WebLogic Enterprise JavaBeans 5-1

5 WebLogic Server Container-Managed Persistence Service
Automatic Primary Key Generation for EJB 2.0 CMP

Multiple Table Mapping for EJB 2.0 CMP

Automatic Table Creation

Container-Managed Relationships

Groups

Using EJB Links

Java Data Types for CMP Fields

Overview of Container Managed Persistence
Service

The EJB container provides a uniform interface between the EJB and WebLogic
Server. The container creates new instances of the EJBs, manages these bean
resources, and provides persistent services such as, transactions, security, concurrency,
and naming at runtime. In most cases, EJBs from earlier version of WebLogic Server
run in the container. However, see the Migration Guide for information on when you
would need to migrate your bean code. See “DDConverter” on page 8-23 for
instructions on using the conversion tool.

WebLogic Server’s container-managed persistence (CMP) model handles persistence
of CMP entity beans automatically at runtime by synchronizing the EJB’s instance
fields with the data in the database.

The entity bean relies on container-managed persistence to generate the methods that
perform persistent data access for the entity bean instances. The generated methods
transfer data between entity bean instances and the underlying resource manager.
Persistence is handled by the container at runtime. The advantage of using
container-managed persistence is that the entity bean can be logically independent of
the data source in which the entity is stored. The container manages the mapping
between the logical and physical relationships at runtime and manages their referential
integrity.
5-2 Programming WebLogic Enterprise JavaBeans

Overview of Container Managed Persistence Service
Persistent fields and relationships make up the entity bean’s abstract persistence
schema. The deployment descriptors indicate that the entity bean uses
container-managed persistence, and these descriptors are used as input to the container
for data access.

EJB Persistence Services

WebLogic Server provides persistence services for entity beans. An entity EJB can
save its state in any transactional or non-transactional persistent storage
(“bean-managed persistence”), or the container can save the EJB’s non-transient
instance variables automatically (“container-managed persistence”). WebLogic Server
allows both choices and a mixture of the two.

If an EJB will use container-managed persistence, you specify the type of persistence
services that the EJB uses in the weblogic-ejb-jar.xml deployment file. High-level
definitions for automatic persistence services is stored in the persistence-use element.
The persistence-use element defines which service the EJB uses at deployment
time.

Automatic persistence services use additional deployment files to specify their
deployment descriptors, and to define entity EJB finder methods. For example,
WebLogic Server RDBMS-based persistence services obtain deployment descriptors
and finder definitions from a particular bean using the bean’s
weblogic-cmp-rdbms-jar.xml file, described in “Using WebLogic Server RDBMS
Persistence” on page 5-3.

Third-party persistence services cause other file formats to configure deployment
descriptors. However, regardless of the file type, you must reference the configuration
file in the persistence-use element in weblogic-ejb-jar.xml.

Note: Configure container-managed persistence beans with a connection pool with
maximum connections greater than 1. WebLogic Server’s container-managed
persistence service sometimes needs to get two connections simultaneously.

Using WebLogic Server RDBMS Persistence

To use WebLogic Server RDBMS-based persistence service with your EJBs:
Programming WebLogic Enterprise JavaBeans 5-3

5 WebLogic Server Container-Managed Persistence Service
1. Create a dedicated XML deployment file.

2. Define the persistence elements for each EJB that will use container-managed
persistence.

3. For instructions on creating deployment descriptor files, see “Specifying and
Editing the EJB Deployment Descriptors” on page 6-5.

If you use WebLogic Server’s utility, DDConverter to create this file, it is named
weblogic-cmp-rdbms-jar.xml. If you create the file from scratch, you can save it
to a different filename. However, you must ensure that the persistence-type and
persistence-use elements in weblogic-ejb-jar.xml refer to the correct file.

weblogic-cmp-rdbms-jar.xml defines the persistence deployment descriptors for
EJBs using WebLogic Server RDBMS-based persistence services.

In each weblogic-cmp-rdbms-jar.xml file you define the following persistence
options:

EJB connection pools or data source for EJB 2.0 CMP

EJB field to database element mappings

Query Language

WebLogic Query Language (WLQL) for EJB 1.1 CMP

WebLogic EJB-QL with WebLogic QL extension for EJB 2.0 CMP
(optional)

Finder method definitions (CMP 1.1)

Foreign key mappings for relationships

WebLogic Server-specific deployment descriptors for queries
5-4 Programming WebLogic Enterprise JavaBeans

Writing for RDBMS Persistence for EJB 1.1 CMP
Writing for RDBMS Persistence for EJB 1.1
CMP

Clients use finder methods to query and receive references to entity beans that fulfill
query conditions. This section describes how to write finders for WebLogic-specific
1.1 EJBs that use RDBMS persistence. You use EJB QL, a portable query language,
to define finder queries for 2.0 EJBs with container-managed persistence. For more
information about on EJB QL, see “Using EJB QL for EJB 2.0” on page 5-11.

WebLogic Server provides an easy way to write finders.

1. Write the method signature of a finder in the EJBHome interface.

2. Define the finder’s query expressions in the ejb-jar.xml deployment file.

ejbc creates implementations of the finder methods at deployment time, using the
queries in ejb-jar.xml.

The key components of a finder for RDBMS persistence are:

The finder method signature in EJBHome.

A query stanza defined within ejb-jar.xml.

An optional finder-query stanza within weblogic-cmp-rdbms-jar.xml.

The following sections explain how to write EJB finders using XML elements in
WebLogic Server deployment files.

Finder Signature

Specify finder method signatures using the form findMethodName(). Finder methods
defined in weblogic-cmp-rdbms-jar.xml must return a Java collection of EJB
objects or a single object.

Note: You can also define a findByPrimaryKey(primkey) method that returns a
single object of the associated EJB class.
Programming WebLogic Enterprise JavaBeans 5-5

5 WebLogic Server Container-Managed Persistence Service
finder-list Stanza

The finder-list stanza associates one or more finder method signatures in EJBHome
with the queries used to retrieve EJB objects. The following is an example of a simple
finder-list stanza using WebLogic Server RDBMS-based persistence:

<finder-list>
<finder>

<method-name>findBigAccounts</method-name>
<method-params>

<method-param>double</method-param>
</method-params>
<finder-query><![CDATA[(> balance $0)]]></finder-query>

</finder>
</finder-list>

Note: If you use a non-primitive data type in a method-param element, you must
specify a fully qualified name. For example, use java.sql.Timestamp rather
than Timestamp. If you do not use a qualified name, ejbc generates an error
message when you compile the deployment unit.

finder-query Element

The finder-query element defines the WebLogic Query Language (WLQL)
expression you use to query EJB objects from the RDBMS. WLQL uses a standard set
of operators against finder parameters, EJB attributes, and Java language expressions.
See “Using WebLogic Query Language (WLQL) for EJB 1.1 CMP” on page 5-7 for
more information on WLQL.

Note: Always define the text of the finder-query value using the XML CDATA
attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

A CMP finder can load all beans using a single database query. So, 100 beans can be
loaded with a single database round trip. A bean-managed persistence (BMP) finder
must do one database round trip to get the primary key values of the beans selected by
the finder. As each bean is accessed, another database access is also typically required,
assuming the bean wasn’t already cached. So, to access 100 beans, a BMP might do
101 database accesses.
5-6 Programming WebLogic Enterprise JavaBeans

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
Using WebLogic Query Language (WLQL) for
EJB 1.1 CMP

WebLogic Query Language (WLQL) for EJB 1.1 CMP allows you to query 1.1 entity
EJBs with container-managed persistence. In the weblogic-cmp-rdbms-jar.xml
file, each finder-query stanza must include a WLQL string that defines the query
used to return EJBs. Use WLQL for EJBs and their corresponding deployment files
that are based on the EJB 1.1 specification.

Note: For queries to 2.0 EJBs, see “Using EJB QL for EJB 2.0” on page 5-11. Using
the weblogic-ql query completely overrides the ejb-ql query.

WLQL Syntax

WLQL strings use the prefix notation for comparison operators, as follows:

(operator operand1 operand2)

Additional WLQL operators accept a single operand, a text string, or a keyword.

WLQL Operators

The following are valid WLQL operators.

Operator Description Sample Syntax

= Equals (= operand1 operand2)

< Less than (< operand1 operand2)

> Greater than (> operand1 operand2)

<= Less than or equal to (<= operand1 operand2)

>= Greater than or equal to (>= operand1 operand2)
Programming WebLogic Enterprise JavaBeans 5-7

5 WebLogic Server Container-Managed Persistence Service
WLQL Operands

Valid WLQL operands include:

Another WLQL expression

A container-managed field defined elsewhere in the
weblogic-cmp-rdbms-jar.xml file

Note: You cannot use RDBMS column names as operands in WLQL. Instead,
use the EJB attribute (field) that maps to the RDBMS column, as defined
in the attribute-map in weblogic-cmp-rdbms-jar.xml.

! Boolean not (! operand)

& Boolean and (& operand)

| Boolean or (| operand)

like Wildcard search based on % symbol
in the supplied text_string or an
input parameter

(like text_string%)

isNull Value of single operand is null (isNull operand)

isNotNull Value of single operand is not null (isNotNull operand)

orderBy Orders results using specified
database columns

Note: Always specify a database
column name in the
orderBy clause, rather
than a persistent field name.
WebLogic Server does not
translate field names
specified in orderBy.

(orderBy 'column_name')

desc Orders results in descending order.
Used only in combination with
orderBy.

(orderBy 'column_name
desc')

Operator Description Sample Syntax
5-8 Programming WebLogic Enterprise JavaBeans

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
A finder parameter or Java expression identified by $n, where n is the number of
the parameter or expression. By default, $n maps to the nth parameter in the
signature of the finder method. To write more advanced WLQL expressions that
embed Java expressions, map $n to a Java expression.

Note: The $n notation is based on an array that begins with 0, not 1. For example,
the first three parameters of a finder correspond to $0, $1, and $2.
Expressions need not map to individual parameters. Advanced finders can
define more expressions than parameters.

Examples of WLQL Expressions

The following example code shows excerpts from the
weblogic-cmp-rdbms-jar.xml file that use basic WLQL expressions.

This example returns all EJBs that have the balance attribute greater than the
balanceGreaterThan parameter specified in the finder. The finder method
signature in EJBHome is:

public Enumeration findBigAccounts(double balanceGreaterThan)
throws FinderException, RemoteException;

The sample <finder> stanza is:

<finder>
<method-name>findBigAccounts</method-name>
<method-params>

<method-param>double</method-param>
</method-params>
<finder-query><![CDATA[(> balance $0)]]></finder-query>

</finder>

Note that you must define the balance field n the attribute map of the EJB’s
persistence deployment file.

Note: Always define the text of the finder-query value using the XML CDATA
attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

The following example shows how to use compound WLQL expressions. Also
note the use of single quotes (') to distinguish strings:

<finder-query><![CDATA[(& (> balance $0) (! (= accountType
'checking')))]]></finder-query>
Programming WebLogic Enterprise JavaBeans 5-9

5 WebLogic Server Container-Managed Persistence Service
The following example finds all the EJBs in a table. It uses the sample finder
method signature:

public Enumeration findAllAccounts()
throws FinderException, RemoteException

The sample <finder> stanza uses an empty WLQL string:

<finder>
<method-name>findAllAccounts</method-name>
<finder-query></finder-query>

</finder>

The following query finds all EJBs whose lastName field starts with “M”:

<finder-query><![CDATA[(like lastName M%)]]></finder-query>

This query returns all EJBs that have a null firstName field:

<finder-query><![CDATA[(isNull firstName)]]></finder-query>

This query returns all EJBs whose balance field is greater than 5000, and orders
the beans by the database column, id:

<finder-query><![CDATA[WHERE >5000 (orderBy 'id' (> balance
5000))]]></finder-query>

This query is similar to the previous example, except that the EJBs are returned
in descending order:
<finder-query><![CDATA[(orderBy 'id desc' (>
))]]></finder-query>

Using SQL for CMP 1.1 Finder Queries

WebLogic Server allows you to use a SQL string instead of the standard WLQL query
language to write SQL for a CMP 1.1 finder query. The SQL statement retrieves the
values from the database for the CMP 1.1 finder query. Use SQL to write a CMP 1.1
finder query when a more complicated finder query is required and you cannot use
WLQL.

For more information on WLQL, see “Using WebLogic Query Language (WLQL) for
EJB 1.1 CMP” on page 5-7.
5-10 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
To specify this SQL finder query:

1. In the weblogic-cmp-rdbms-jar.xml file write a SQL query using the
finder-sql element in the weblogic-cmp-rdbms-jar.xml file as follows.

findBigAccounts(double cutoff) as follows:

<finder-sql><![CDATA{balance >$0]]></finder-sql>

Use values like $0, or $1 in the SQL string to reference the parameters to the
finder method. The EJB container replaces the $ parameters but will not interpret
the SQL query.

2. The Container emits the following SQL:
SELECT <columns> FROM table WHERE balance > ?

The SQL should be the WHERE clause of an SQL statement. The Container
prepends the SELECT and FROM clauses. The WHERE clause may contain
arbitrary SQL.

If you use characters in your SQL query that may confuse an XML parser, such as
the.greater than (>) symbol and the less than (<) symbol, make sure that you declare
the SQL query using the CDATA format shown in the preceding sample SQL
statement.

Note: You can use any amount of vendor-specific SQL in the SQL query.

Using EJB QL for EJB 2.0

EJB Query Language (QL) is a portable query language that defines finder methods
for 2.0 entity EJBs with container-managed persistence. Use this SQL-like language
to select one or more entity EJB objects or fields in your query. Because of the
declaration of CMP fields in a deployment descriptor, you can create queries in the
deployment descriptor for any finder method other than findByPrimaryKey().
findByPrimaryKey is automatically handled by the container. The search space for
an EJB QL query consists of the EJB’s schema as defined in ejb-jar.xml (the bean’s
collection of container-managed fields and their associated database columns).
Programming WebLogic Enterprise JavaBeans 5-11

5 WebLogic Server Container-Managed Persistence Service
EJB QL Requirement for EJB 2.0 Beans

The deployment descriptors must define each finder query for EJB 2.0 entity beans by
using an EJB QL query string. You cannot use WebLogic Query Language (WLQL)
with EJB 2.0 entity beans. WLQL is intended for use with EJB 1.1 CMP.

Migrating from WLQL to EJB QL

If you have used previous versions of WebLogic Server, your container-managed
entity EJBs may use WLQL for finder methods. This section provides a quick
reference to common WLQL operations. Use this table to map the WLQL syntax to
EJB QL syntax.

Sample WLQL Syntax Equivalent EJB QL Syntax

(= operand1 operand2) WHERE operand1 = operand2

(< operand1 operand2) WHERE operand1 < operand2

(> operand1 operand2) WHERE operand1 > operand2

(<= operand1 operand2) WHERE operand1 <= operand2

(>= operand1 operand2) WHERE operand1 >= operand2

(! operand) WHERE NOT operand

(& expression1
expression2)

WHERE expression1 AND
expression2

(| expression1
expression2)

WHERE expression1 OR
expression2

(like text_string%) WHERE operand LIKE
‘text_string%’

(isNull operand) WHERE operand IS NULL

(isNotNull operand) WHERE operand IS NOT NULL
5-12 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
Using EJB 2.0 WebLogic QL Extension for EJB QL

WebLogic Server has an SQL-like language, called WebLogic QL, that extends the
standard EJB QL. This language works with the finder expressions and is used to query
EJB objects from the RDBMS. You define the query in the
weblogic-cmp-rdbms-jar.xml deployment descriptor using the weblogic-ql
element.

There must be a query element in the ejb-jar.file that corresponds to the
weblogic-ql element in the weblogic-cmp-rdbms-jar.xml file. However, the
weblogic-cmp-rdbms-jar.xml query element overrides the ejb-jar.xml query
element.

upper and lower Functions

The EJB WebLogic QL upper and lower extensions convert the case of arguments to
allow finder methods to return results that match the characters in an search expression
but not the case. The case change is transient, for the purpose of string matching, and
is not persisted in database. The underlying database must also support upper and
lower functions.

The upper function converts characters in its arguments from any case to upper case
before string matching is performed. Use the upper function with an upper-case
expression in a query to return all items that match the expression, regardless of case.
For example:

select name from products where upper(name)='DETERGENT';

The lower function converts characters in its arguments from any case to lower case
before string matching is performed. Use the lower function with an lower-case
expression in a query to return all items that match the expression, regardless of case.

select type from products where lower(name)='domestic';

Note: The upper and lower extensions were added in WebLogic Server 7.0 SP03.
Programming WebLogic Enterprise JavaBeans 5-13

5 WebLogic Server Container-Managed Persistence Service
Using SELECT DISTINCT

The EJB WebLogic QL extension SELECT DISTINCT allows your database to filter
duplicate queries. Using SELECT DISTINCT means that the EJB container’s
resources are not used to sort through duplicated results when SELECT DISTINCT is
specified in the EJB QL query.

If you specify a sql-select-distinct element with the value TRUE in a
weblogic-ql element’s XML stanza for an EJB 2.0 CMP bean, then the generated
SQL STATEMENT for the database query will contain a DISTINCT clause.

You specify the sql-select-distinct element in the
weblogic-cmp-rdbms-jar.xml file. However, you cannot specify
sql-select-distinct if you are running an isolation level of
READ_C0MMITED_FOR_UPDATE on an Oracle database. This is because a query on
Oracle cannot have both a sql-select-distinct and a
READ_C0MMITED_FOR_UPDATE. If there is a chance that this isolation level will be
used, for example in a session bean, do not use the sql-select-distinct element.

Using ORDERBY

The EJB WebLogic QL extension ORDERBY is a keyword that works with the Finder
method to specify the CMP field selection sequence for your selections.

Figure 5-1 WebLogic QL ORDERBY extension showing order by id.

ORDERBY
SELECT OBJECT(A) from A for Account.Bean

ORDERBY A.id

Note: ORDERBY defers all sorting to the DBMS. Thus, the order of the retrieved
result depends on the particular DBMS installation on top of which the bean is
running

Also, you can specify an ORDERBY with ascending [ASC] or descending [desc] order
for multiple fields as follows:.

Figure 5-2 WebLogic QL ORDERBY extension showing order by id. with ASC
and DESC

ORDERBY <field> [ASC|DESC], <field> [ASC|DESC]
SELECT OBJECT(A) from A for Account.Bean, OBJECT(B) from B
5-14 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
for Account.Bean
ORDERBY A.id ASC; B.salary DESC

Using SubQueries

WebLogic Server supports the use of the following features with subqueries in EJB
QL:

Subquery return type

Single cmp-fields

Aggregate functions

Beans with simple primary keys

Subqueries as comparison operands

Correlated subqueries

Uncorrelated subqueries

DISTINCT clauses with subqueries

The relationship between WebLogic QL and subqueries is similar to the relationship
between SQL queries and subqueries. Use WebLogic QL subqueries in the WHERE
clause of an outer WebLogic QL query. With a few exceptions, the syntax for a
subquery is the same as a WebLogic QL query.

To specify WebLogic QL, see “Using EJB 2.0 WebLogic QL Extension for EJB QL”
on page 5-13. Use those instructions with a SELECT statement that specifies a
subquery as shown the following sample.

The following query selects all above average students as determined by the provided
grade number:

SELECT OBJECT(s) FROM studentBean AS s WHERE s.grade > (SELECT
AVG(s2.grade) FROM StudentBean AS s2)

Note that in the above query the subquery, (SELECT AVG(s2.grade) FROM
StudentBean AS s2), has the same syntax as an EJB QL query.

You can create nested subqueries.The depth is limited by the underlying database’s
nesting capabilities.
Programming WebLogic Enterprise JavaBeans 5-15

5 WebLogic Server Container-Managed Persistence Service
In a WebLogic QL query, the identifiers declared in the FROM clauses of the main
query and all of its subqueries must be unique. This means that a subquery may not
re-declare a previously declared identifier for local use within that subquery.

For example, the following example is not legal because employee bean is being
declared as emp in both the query and the subquery:

SELECT OBJECT(emp)
FROM EmployeeBean As emp

WHERE emp.salary=(SELECT MAX(emp.salary) FROM
EmployeeBean AS emp WHERE employee.state=MA)

Instead, this query should be written as follows:

SELECT OBJECT(emp)
FROM EmployeeBean As emp

WHERE emp.salary=(SELECT MAX(emp2.salary) FROM
EmployeeBean AS emp2 WHERE emp2.state=MA)

The above examples correctly declares the subquery’s employee bean to have a
different identifier from the main query’s employee bean.

Subquery Return Types

The return type of a WebLogic QL subquery can be one of a number of different types,
such as:

Single cmp-field Type Subqueries

WebLogic Server supports a return type consisting of a cmp-field. The results
returned by the subquery may consists of a single value or collection of values. An
example of a subquery that returns value(s) of the type cmp-field is as follows:

SELECT emp.salary FROM EmployeeBean AS emp WHERE emp.dept =
‘finance’

This subquery selects all of the salaries of employees in the finance department.

Aggregate Functions

WebLogic Server supports a return type consisting of an aggregate of a cmp-field.
As an aggregate always consist of a single value, the value returned by the aggregate
is always a single value. An example of a subquery that return a value of the type
aggregate (MAX) of a cmp-field is as follows:

SELECT MAX(emp.salary) FROM EmployeeBean AS emp WHERE emp.state=MA
5-16 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
This subquery selects the single highest employee salary in Massachusetts.

For more information on aggregate functions, see “Using Aggregate Functions” on
page 5-20.

Beans with Simple Primary Key

WebLogic Server supports a return type consisting of a cmp-bean with a simple
primary key.

Note: Beans with compound primary keys are NOT supported. Attempts to
designate the return type of a subquery to a bean with a compound
primary key will result in a failure when you compile the query.

An example of a subquery that returns the value(s) of the type bean with a simple
primary key is as follows:

SELECT OBJECT(emp) FROM EMployeeBean As emp WHERE
emp.department.budget>1,000,000

This subquery provides a list of all employee in departments with budgets greater than
$1,000,000.

Subqueries as Comparison Operands

Use subqueries as the operands of comparison operators. WebLogic QL supports
subqueries as the operands of the following Comparison Operators: [NOT]IN,
[NOT]EXISTS, and the following Arithmetic Operators: <, >, <=, >=, =, <> with
ANY and ALL.

[NOT]IN

The [NOT]IN comparison operator tests whether the left-had operand is or is not a
member of the subquery operand on the right-hand side.

An example of a subquery which is the right-hand operand of the NOT IN operator is
as follows:

SELECT OBJECT(item)
FROM ItemBean AS item

WHERE item.itemId NOT IN
(SELECT oItem2.item.itemID

FROM OrderBean AS orders2,
IN(orders2.orderItems)oIttem2

The subquery selects all items from all orders.
Programming WebLogic Enterprise JavaBeans 5-17

5 WebLogic Server Container-Managed Persistence Service
The main query’s NOT IN operator selects all the items that are not in the set returned
by the subquery. So the end result is that the main query selects all unordered items.

[NOT]EXISTS

The [NOT]EXISTS comparison operator tests whether the set returned by the
subquery operand is or is not empty.

An example of a subquery which is the operand of the NOT EXISTS operand is as
follows:

SELECT (cust) FROM CustomerBean AS cust
WHERE NOT EXISTS

(SELECT order.cust_num FROM OrderBean AS order
WHERE cust.num=order_num)

This is an example of a query with a correlated subquery. See “Correlated and
UnCorrelated Subqueries” on page 5-19 for more information. This query returns all
customers that have not placed an order.

SELECT (cust) FROM CustomerBean AS cust
WHERE cust.num NOT IN

(SELECT order.cust_num FROM OrderBean AS order
WHERE cust.num=order_num)

Arithmetic Operators

Use arithmetic operators for comparison when the right-hand subquery operand
returns a single value. If the right hand subquery instead returns multiple values, then
the qualifiers ANY or ALL must precede the subquery.

An example of a subquery which uses the ‘=’ operator is as follows:

SELECT OBJECT (order)
FROM OrderBean AS order, IN(order.orderItems)oItem

WHERE oItem.quantityOrdered =
(SELECT MAX (subOItem.quantityOrdered)

FROM Order ItemBean AS subOItem
WHERE subOItem,item itemID = ?1)

AND oItem.item.itemId = ?1

For a given itemId, the subquery returns the maximum quantity ordered of that item.
Note that this aggregate returned by the subquery is a single value as required by the
‘=’ operator.
5-18 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
For the same given itemId, the main query’s ‘=’ comparison operator checks which
order’s OrderItem.quantity Ordered equals the maximum quantity returned by the
subquery. The end result is that the query returns the OrderBean that contains the
maximum quantity of a given item that has been ordered.

Use arithmetic operators in conjunction with ANY or ALL, when the right-hand
subquery operand may return multiple values.

An example of a subquery which uses ANY and ALL is as follows:

SELECT OBJECT (order)
FROM OrderBean AS order, IN(order.orderItems)oItem

WHERE oItem.quantityOrdered > ALL
(SELECT subOItem.quantityOrdered

FROM OrderBean AS suborder IN
(subOrder.orderItems)subOItem

WHERE subOrder,orderId = ?1)

For a given orderId, the subquery returns the set of orderItem.quantityOrdered of each
item ordered for that orderId. The main query’s ‘>’ ALL operator looks for all orders
whose orderItem.quantityOrdered exceeds all values in the set returned by the
subquery. The end result is that the main query returns all orders in which all
orderItem.quantityOrdered exceeds every orderItem.quantityOrdered of the input
order.

Note that since the subquery can return multi-valued results that they ‘>’ALL operator
is used rather then the ‘>’ operator.

All of the arithmetic operators, <, >, <= >=, =, <> are use, as in the above examples.

Correlated and UnCorrelated Subqueries

WebLogic Server supports both correlated and Uncorrelated subqueries.

UnCorrelated Subqueries

Uncorrelated subqueries may be evaluated independently of the outer query. An
example of an uncorrelated subquery is as follows:

SELECT OBJECT(emp) FROM EmployeeBean AS emp
WHERE emp.salary>
(SELECT AVG(emp2.salary) FROM EmployeeBean AS emp2)

This example of a uncorrelated subquery selects the employees whose salaries are
above average. This examples uses the ‘>’ arithmetic operator.
Programming WebLogic Enterprise JavaBeans 5-19

5 WebLogic Server Container-Managed Persistence Service
Correlated

Correlated subqueries are subqueries in which values from the outer query are
involved in the evaluation of the subquery. An example of a correlated subquery is as
follows:

SELECT OBJECT (mainOrder) FROM OrderBean AS mainOrder
WHERE 10>

(SELECT COUNT (DISTINCT subOrder.ship_date)
FROM OrderBean AS subOrder
WHERE subOrder.ship_date>mainOrder.ship_date
AND mainOrder.ship_date IS NOT NULL

This example of a correlated subquery selects the last 10 shipped Orders. This example
uses the NOT IN operator.

Note: Keep in mind that correlated subqueries can involve more processing
overhead the uncorrelated subqueries.

DISTINCT Clause with Subqueries

Use the DISTINCT clause in a subquery to enable an SQL SELECT DISTINCT in the
subquery’s generated SQL. Using a DISTINCT clause in a subquery is different from
using one in a main query because the EJB container enforces the DISTICNT clause
in a main query; whereas the DISTICT clause in the subquery is enforced by the
generated SQL, SELECT DISTINCT. An example of a DISTINCT clause in a
subquery is as follows:

SELECT OBJECT (mainOrder) FROM OrderBean AS mainOrder
WHERE 10>

(SELECT COUNT (DISTINCT subOrder.ship_date)
FROM OrderBean AS subOrder
WHERE subOrder.ship_date>mainOrder.ship_date
AND mainOrder.ship_date IS NOT NULL

This example of a selects the last 10 shipped Orders.

Using Aggregate Functions

WebLogic Server supports aggregate functions with WebLogic QL. You only use
these functions as SELECT clause targets, not as other parts of a query, such as a
WHERE clause. The aggregate functions behave like SQL functions. They are
evaluated over the range of the beans returned by the WHERE conditions of the query
5-20 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
To specify WebLogic QL, see “Using EJB 2.0 WebLogic QL Extension for EJB QL”
on page 5-13. Use those instructions with a SELECT statement that specifies an
aggregate function as shown in the samples shown in the following table.

A list of the supported functions and sample statements follow:

You can return aggregate functions in ResultSets as described below.

Aggregate
Function

Description Sample Statement

MIN(x) Returns the minimum value of
this field.

SELECT MIN(t.price) FROM TireBean AS t
WHERE t.size=?1
This statement selects the lowest price for a tire of
a given input size.

MAX(x) Returns the maximum value of
this field.

SELECT MAX(s.customer_count) FROM
SalesRepBean AS s WHERE s.city=’Los
Angeles’
This statement selects the maximum number of
customers served by any single sales
representative in Los Angeles.

AVG([DISTINCT] x) Returns the average value of
this field

SELECT AVG(b.price) FROM BookBean AS b
WHERE b.category=’computer_science’
This statement selects the Average Price of a book
in the Computer Science category.

SUM([DISTINCT] x) Returns the sum of this field. SELECT SUM(s.customer_count) FROM
SalesRepBean AS s WHERE s.city=’Los
Angeles’
This statement retrieves the total number of
customers served by sales representatives in Los
Angeles.

COUNT([DISTINCT] x) Returns the number of
occurrences of a field.

SELECT COUNT(s.deal.amount) FROM
SalesRepBean AS s, IN(deal)s WHERE
s.deal.status=’closed’ AND
s.deal.amount>=1000000
This statement retrieves the number of closed
deals for at lease 1 million dollars.
Programming WebLogic Enterprise JavaBeans 5-21

5 WebLogic Server Container-Managed Persistence Service
Using Queries that Return ResultSets

WebLogic Server supports ejbSelect() queries that return the results of
multi-column queries in the form of a java.sql.ResultSet. To support this feature,
WebLogic Server now allows you to use the SELECT clause to specify a comma
delimited list of target fields as shown in the following query:

SELECT emmp.name, emp.zip FROM EmployeeBean AS emp

This query returns a java.sqlResultSet with rows whose columns are the values
Employee’s Name and Employee’s Zip.

To specify WebLogic QL, see “Using EJB 2.0 WebLogic QL Extension for EJB QL”
on page 5-13. Use those instructions with a query specifying a ResultSet as shown in
the above query to specify WebLogic QL, see “Using EJB 2.0 WebLogic QL
Extension for EJB QL” on page 5-13. Use those instructions with a SELECT statement
that specifies an aggregate query like the samples shown in the following table.

ResultSets created in EJB QL can only return cmp-field values or aggregates of
cmp-field values, they cannot return beans.

In addition, you can create powerful queries, as described in the following example,
when you combine cmp-fields and aggregate functions.

The following rows (beans) show the salaries of employees in different locations:

CMP fields showing salaries of employees in California

CMP fields showing salaries of employees in Arizona

Name Location Salary

Matt CA 110,000

Rob CA 100,000

Name Location Salary

Dan AZ 120,000

Dave AZ 80,000
5-22 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
CMP fields showing salaries of employees in Texas

Note: Each row represents a bean.

The following SELECT statement shows a query that uses ResultSets and the
aggregate function (AVG) along with a GROUP BY statement and an ORDER BY
statement using a descending sort to retrieve results from a multi-column query.

SELECT e.location, AVG(e.salary)
FROM Finder EmployeeBean AS e

GROUP BY e.location
ORDER BY 2 DESC

The query shows the average salary in of employees at each location in descending
order. The number, 2 means that the ORDERBY sort is on the second item in the
SELECT statement. The GROUP BY clause specifies the AVEAGE salary of
employees with a matching e.location attribute.

The ResultSet, in descending order is as follows:

Note: You can only use integers as ORDERBY arguments in queries that return
ResultSets. WebLogic Server does not support the use of integers as
ORDERBY arguments in any Finder or ejbselect() that returns beans.

Name Location Salary

Curly TX 70,000

Larry TX 180,000

Moe TX 80,00

Location Average

TX 110,000

AZ 100,000

CA 105,000
Programming WebLogic Enterprise JavaBeans 5-23

5 WebLogic Server Container-Managed Persistence Service
Properties-Based Methods of the Query Interface

The Query interface contains both find and execute methods. The find methods work
like standard EJB methods, in that they return EJBObjects. The execute methods work
more like Select statements in that you can select individual fields.

The Query interface return type is a disconnected ResultSet, meaning you access the
information from the returned object the same way you would access it from a
ResultSet, except that the ResultSet does not hold open a database connection.

The Query interface’s properties-based methods offer an alternate way of specifying
settings particular to a query. The QueryProperties interface holds standard EJB
query settings while the WLQueryProperties interface holds WebLogic-specific
query settings.

Although the Query interface extends QueryProperties, the actual Query
implementation extends WLQueryProperties so it can be safely casted, as in the
example in Figure 5-3, which sets field group settings:

Figure 5-3 Setting Field Group Settings with WLQueryProperties

Query query=qh.createQuery(); ((WLQueryProperties)
query).setFieldGroupName("myGroup"); Collection
results=query.find(ejbql);

or

Query query=qh.createQuery(); Properties props = new Properties();
props.setProperty(WLQueryProperties.GROUP_NAME, "myGroup");
Collection results=query.find(ejbql, props);

Using Dynamic Queries

Dynamic queries allow you to construct and execute EJB-QL queries
programmatically in your application code. Queries are expressions that allow you to
request information of EJB objects from the RDBMS. This feature is only available for
use with EJB 2.0 CMP beans. Using dynamic queries provides the following benefits:
5-24 Programming WebLogic Enterprise JavaBeans

Using Dynamic Queries
Allows you to create and execute new queries without having to update and
deploy an EJB.

Allows you to reduce the size of the EJB’s deployment descriptor file. This is
because finder queries can be dynamically created instead of statically defined in
the deployment descriptors.

Enabling Dynamic Queries

To enable dynamic queries:

1. Specify the enable-dynamic-queries element in the EJB’s
weblogic-ejb-jar.xml deployment descriptor file as follows:
<enable-dynamic-queries>True</enable-dynamic-queries>

2. For instructions on how to add or edit the enable-dynamic-queries element,
see “Specifying and Editing the EJB Deployment Descriptors” on page 6-5.

3. Set standard method permissions to control access to dynamic queries by
specifying the method-permission element in the ejb-jar.xml deployment
descriptor file.

Setting method-permission for the createQuery() method of the
weblogic.ejb.QueryHome interface controls access to the
weblogic.ejb.Query object necessary to executes the dynamic queries.

If you specify method-permission for the createQuery() method, the
method-permission settings apply to the execute and find methods of the
Query class.

Executing Dynamic Queries

The following code sample demonstrates how to execute a dynamic query.

InitialContext ic=new InitialContext();
FooHome fh=(FooHome)ic.lookup(“fooHome”);
QueryHome qh=(QueryHome)fh;
Sring ejbql=”SELECT OBJECT(e)FROM EmployeeBean e WHERE
e.name=’rob’”
Query query=qh.createQuery();
Programming WebLogic Enterprise JavaBeans 5-25

5 WebLogic Server Container-Managed Persistence Service
query.setMaxElements(10)
Collection results=query.find(ejbql);

Using Oracle SELECT HINTS

WebLogic Server supports an EJB QL extension that allows you to pass INDEX usage
hints to the Oracle Query optimizer. With this extension, you can provide a hint to the
database engine. For example, if you know that the database you are searching can
benefit from an ORACLE_SELECT_HINT, you can define an
ORACLE_SELECT_HINT clause that will take ANY string value and then insert that
String value after the SQL SELECT statement as a hint to the database.

To use this option, declare a query that uses this feature in the weblogic-ql element.
This element is found in the weblogic-cmp-rdbms-jar.xml file. The weblogic-ql
element specifies a query that contains a WebLogic specific extension to the EJB-QL
language.

The WebLogic QL keyword and usage is as follows:

SELECT OBJECT(a) FROM BeanA AS a WHERE a.field > 2 ORDERBY a.field
SELECT_HINT '/*+ INDEX_ASC(myindex) */'

This statement generates the following SQL with the optimizer hint for Oracle:

SELECT /*+ INDEX_ASC(myindex) */ column1 FROM (etc)

In the WebLogic QL ORACLE_SELECT_HINT clause, whatever is between the
single quotes (' ') is what gets inserted after the SQL SELECT. It is the query writer's
responsibility to make sure that the data within the quotes makes sense to the Oracle
database.
5-26 Programming WebLogic Enterprise JavaBeans

“get” and “set” Method Restrictions
“get” and “set” Method Restrictions

WebLogic Server uses container-generated accessor methods to read and modify
container-managed fields. Their names begin with get or set and use the actual name
of a persistent field defined in ejb-jar.xml. The methods are declared as public,
protected, and abstract.

BLOB and CLOB DBMS Column Support for
the Oracle DBMS

WebLogic Server supports Oracle Binary Large Object (BLOB) and Character Large
Object (CLOB) DBMS columns with EJB CMP. BLOBs and CLOBs are data types
used for efficient storage and retrieval of large objects. CLOBs are string or char
objects; BLOBs are binary or serializable objects such as pictures that translate into
large byte arrays.

BLOBs and CLOBs map a string variable, a value of OracleBlob or OracleClob, to
a BLOB or CLOB column. WebLogic Server maps BLOBs to byte arrays or
serializable objects. WebLogic Server maps CLOBs to the data type
java.lang.string. At this time, no support is available for mapping char arrays to
a CLOB column.

To enable BLOB/CLOB support:

1. In the bean class, declare the variable.

2. Edit the XML by declaring the dbms-column-type deployment descriptor in the
weblogic-cmp-rdbms jar.xml file.

3. Create the BLOB or CLOB in the Oracle database.

Using BLOB or CLOB may slow performance because of the size of the BLOB or
CLOB object.
Programming WebLogic Enterprise JavaBeans 5-27

5 WebLogic Server Container-Managed Persistence Service
Specifying a BLOB Using the Deployment Descriptor

The following XML code shows how to specify a BLOB object using the
dbms-column element in weblogic-cmp-rdbms-jar-xml file.

Figure 5-4 Specifying a BLOB object

<field-map>
<cmp-field>photo</cmp-field>
<dbms-column>PICTURE</dbms-column>
<dbms_column-type>OracleBlob</dbms-column-type>

</field-map>

Controlling Serialization of cmp-fields Mapped to
OracleBlobs

By default, when WebLogic Server writes and reads a cmp-field of type byte[] that
is mapped to an OracleBlob, it serializes and deserializes the field, respectively.

If WebLogic Server reads a BLOB that was written directly to the database by another
program, errors can result, because the container assumes that the data is serialized.

To specify that the data is not serialized, compile the EJB with this flag:

java -Dweblogic.byteArrayIsSerializedToOracleBlob=false
weblogic.ejbc std_ejb.jar ejb.jar

Specifying a CLOB Using the Deployment Descriptors

The following XML code shows how to specify a CLOB object using the
dbms-column element in the weblogic-cmp-rdbms-jar-xml file.

Figure 5-5 Specifying a CLOB object

<field-map>
<cmp-field>description</cmp-field>
<dbms-column>product_description</dbms-column>
<dbms_column-type>OracleClob</dbms-column-type>
5-28 Programming WebLogic Enterprise JavaBeans

Tuned EJB 1.1 CMP Updates in WebLogic Server
</field-map>

Tuned EJB 1.1 CMP Updates in WebLogic
Server

EJB container-managed persistence (CMP) automatically support tuned updates
because the container receives get and set callbacks when container-managed EJBs
are read or written. Tuning EJB 1.1 CMP beans helps improve their performance.

WebLogic Server now supports tuned updates for EJB 1.1 CMP. When ejbStore is
called, the EJB container automatically determines which container-managed fields
have been modified in the transaction. Only modified fields are written back to the
database. If no fields are modified, no database updates occur.

With previously versions of WebLogic Server, you could to write an isModified
method that notified the container whether the EJB 1.1 CMP bean had been modified.
isModified is still supported in WebLogic Server, but we recommend that you no
longer use isModified methods and instead allow the container to determine the
update fields.

This feature is enabled for EJB 2.0 CMP, by default. To enable tuned EJB 1.1 CMP
updates, make sure that you set the following deployment descriptor element in the
weblogic-cmp-rdbms-jar.xml file to true.

<enable-tuned-updates>true</enable-tuned-updates>

You can disable tuned CMP updates by setting this deployment descriptor element as
follows:

<enable-tuned-updates>false</enable-tuned-updates>

In this case, ejbStore always writes all fields to the database.
Programming WebLogic Enterprise JavaBeans 5-29

5 WebLogic Server Container-Managed Persistence Service
Optimized Database Updates for CMP 2.0
Entity Beans

For CMP 2.0 entity beans, the setXXX() method does not write the values of
unchanged primitive and immutable fields to the database. This optimization improves
performance, especially in applications with a high volume of database transactions.

Flushing the CMP Cache

Updates made by a transaction must be reflected in the results of queries, finders, and
ejbSelects issued during the transactions. Because this requirement can slow
performance, a new option enables you to specify that the cache be flushed before the
query for the bean is executed.

If this option is turned off, which is the default behavior, the results of the current
transactions are not reflected in the query. If this option is turned on, the container
flushes all changes for cached transactions written to the database before executing the
new query. This way, the changes show up in the results.

To enable this option, in weblogic-cmp-rdbms-jar.xml file set the
include-updates element to true.

Figure 5-6 Specifying that results of transactions be reflected in the query

<weblogic-query>
<query-method>
<method-name>findBigAccounts</method_name>
<method-params>

<method-param>double</method-param>
</method-params>
</query-method>
<weblogic-ql>WHERE BALANCE>10000 ORDERBY NAME</weblogic-ql>
<include-updates>true</include-updates>

</weblogic-query>
5-30 Programming WebLogic Enterprise JavaBeans

Using Primary Keys
The default is false, which provides the best performance. Updates made to the
cached transaction are reflected in the result of a query; no changes are written to the
database, and you do not see the changes in the query result.

Whether you use this feature depends on whether performance is more important than
current and consistent data.

Using Primary Keys

The primary key is an object that uniquely identifies an entity bean within its home.
The container must be able to manipulate the primary key of an entity bean. Each entity
bean class may define a different class for its primary key, but multiple entity beans
can use the same primary key class. The primary key is specified in the deployment
descriptor for the entity bean. You can specify a primary key class for an entity bean
with container-managed persistence by mapping the primary key to either a single field
or to multiple fields in the entity bean class.

Every entity object has a unique identity within its home. If two entity objects have the
same home and the same primary key, they are considered identical. A client can
invoke the getPrimaryKey() method on the reference to an entity object’s remote
interface to determine the entity object’s identity within its home. The object identify
associated with the a reference does not change during the lifetime of the reference.
Therefore, the getPrimaryKey() method always returns the same value when called
on the same entity object reference. A client that knows the primary key of an entity
object can obtain a reference to the entity object by invoking the
findByPrimaryKey(key) method on the bean’s home interface.

Primary Key Mapped to a Single CMP Field

In the entity bean class, you can have a primary key that maps to a single CMP field.
You use the primkey-field element, a deployment descriptor in the ejb-jar.xml
file, to specify the container-managed field that is the primary key. The
prim-key-class element must be the primary key field’s class.
Programming WebLogic Enterprise JavaBeans 5-31

5 WebLogic Server Container-Managed Persistence Service
Primary Key Class That Wraps Single or Multiple CMP
Fields

You can have a primary key class that maps to single or multiple fields. The primary
key class must be public, and have a public constructor with no parameters. You
use the prim-key-class element, a deployment descriptor in the ejb-jar.xml file
to specify the name of the entity bean’s primary key class. You can only specify the
the class name in this deployment descriptor element. All fields in the primary key
class must be declared public. The fields in the class must have the same name as the
primary key fields in the ejb-jar.xml file.

Anonymous Primary Key Class

If your entity EJB uses an anonymous primary key class, you must subclass the EJB
and add a cmp-field of type java.lang.Integer to the subclass. Enable automatic
primary key generation for the field so that the container fills in field values
automatically, and map the field to a database column in the
weblogic-cmp-rdbms-jar.xml deployment descriptor.

Finally, update the ejb-jar.xml file to specify the EJB subclass, rather than the
original EJB class, and deploy the bean to WebLogic Server.

If you use the original EJB (instead of the subclass) with an anonymous primary key
class, WebLogic Server displays the following error message during deployment:

In EJB ejb_name, an 'Unknown Primary Key Class' (<prim-key-class>
== java.lang.Object) MUST be specified at Deployment time (as
something other than java.lang.Object).

Hints for Using Primary Keys

Some hints for using primary keys with WebLogic Server include:

Do not make the primary key class a container-managed field.

Although ejbCreate specifies the primary key class as a return type:
5-32 Programming WebLogic Enterprise JavaBeans

Automatic Primary Key Generation for EJB 2.0 CMP
Do not construct a new primary key class with an ejbCreate. Instead, allow the
container to create the primary key class internally.

Set the values of the primary key cmp-fields using the setXXX methods within
the ejbCreate method.

Do not use a cmp field of the type BigDecimal as a primary key field for CMP
beans. The boolean BigDecimal.equals (object x) method considers two
BigDecimal equal only if they are equal in value and scale. This is because
there are differences in precision between the Java language and different
databases. For example, the method does not consider 7.1 and 7.10 to be equal.
Consequently, this method will most likely return false or cause the CMP bean
to fail.

If you need to use BigDecimal as the primary key, you should:

a. Implement a primary key class.

b. In this primary key class, implement the boolean equal (Object x)
method.

c. In the equal method, use boolean BigDecimal.compareTo(BigDecimal
val).

Mapping to a Database Column

WebLogic Server supports mapping a database column to a cmp-field and a
cmr-field concurrently. The cmp-field is read-only in this case. If the cmp-field
is a primary key field, specify that the value for the field be set when the create()
method is invoked by using the setXXX method for the cmp-field.

Automatic Primary Key Generation for EJB
2.0 CMP

WebLogic Server supports an automatic primary key generation feature for
container-managed persistence (CMP).
Programming WebLogic Enterprise JavaBeans 5-33

5 WebLogic Server Container-Managed Persistence Service
Note: This feature is supported for the EJB 2.0 CMP container only, there is no
automatic primary key generation support for EJB 1.1 CMP. For 1.1 beans,
you must use bean-managed-persistence (BMP.)

Generated key support is provided in two ways:

Using DBMS primary key generation. A set of deployment descriptors are
specified at compile time to generate container code that is used in conjunction
with a supported database to provide key generation support.

With this option, the container defers all key generation to the underlying
database. To enable this feature, you specify the name of the supported DBMS
and the generator name, if required by the database. The CMP code handles all
details of implementing this feature.

For more information on this feature, see “Specifying Primary Key Support for
Oracle” on page 5-35 and “Specifying Primary Key Support for Microsoft SQL
Server” on page 5-36.

Using Bean Provider Designated Named Sequence table. A user-named and
user-created database table has a schema specified by WebLogic Server. The
container uses this table to generate the keys.

With this option, you name a table that holds the current primary key value. The
table consists of a single row with a single column as defined by the following
statement:
CREATE table_name (SEQUENCE int)
INSERT into table_name VALUES (0)

Note: For instructions on creating a table in Oracle, use the Oracle database
documentation.

In the weblogic-cmp-rdbms-jar.xml file, set the key_cache_size element
to specify how many primary key values a database SELECT and UPDATE will
fetch at one time. The default value of key_cache_size is 1. BEA recommends
that you set this element to a value of >1, to minimize database accesses and to
improve performance. For more information in this feature, see “Specifying
Primary Key Named Sequence Table Support” on page 5-36.

At this time, WebLogic Server only provides DBMS primary key generation support
for Oracle and Microsoft SQL Server. However, you can use named sequence tables
with other unsupported databases. Also, this feature is intended for use with simple
(non-compound) primary keys.
5-34 Programming WebLogic Enterprise JavaBeans

Automatic Primary Key Generation for EJB 2.0 CMP
Valid Key Field Types

In the abstract ‘get’ and ‘set’ methods of the bean, you can declare the field to be either
of these two types:

java.lang.Integer

java.lang.Long

Specifying Primary Key Support for Oracle

Generated primary key support for Oracle databases uses Oracle’s SEQUENCE feature.
This feature works with a Sequence entity in the Oracle database to generate unique
primary keys. The Oracle SEQUENCE is called when a new number is needed.

Once the SEQUENCE already exists in the database, you specify automatic key
generation in the XML deployment descriptors. In the
weblogic-cmp-rdbms-jar.xml file, you specify automatic key generation as
follows:

Figure 5-7 Specifying automatic key generation for Oracle

<automatic-key-generation>
<generator-type>ORACLE</generator-type>
<generator_name>test_sequence</generator-name>
<key-cache-size>10</key-cache-size>

</automatic-key-generation>

Specify the name of the ORACLE SEQUENCE to be used, using the generator-name
element. If the ORACLE SEQUENCE was created with a SEQUENCE INCREMENT value,
then you must specify a key-cache-size. This value must match the Oracle
SEQUENCE INCREMENT value. If these two values are different, then you will most
likely have duplicate key problems.

Warning: Do not use the generator type USER_DESIGNATED_TABLE with
Oracle, as doing so can cause the following exception:

javax.ejb.EJBException: nested exception is:
java.sql.SQLException: Automatic Key Generation Error:
attempted to UPDATE or QUERY NAMED SEQUENCE TABLE
NAMED_SEQUENCE_TABLE, but encountered SQLException
java.sql.SQLException: ORA-08177: can't serialize access
for this transaction.
Programming WebLogic Enterprise JavaBeans 5-35

5 WebLogic Server Container-Managed Persistence Service
USER_DESIGNATED_TABLE mode sets the TX ISOLATION LEVEL
to SERIALIZABLE which can cause problems with Oracle.

Instead, use the AutoKey option ORACLE.

Specifying Primary Key Support for Microsoft SQL Server

Generated primary key support for Microsoft SQL Server databases uses SQL Server’s
IDENTITY column. When the bean is created and a new row is inserted in the database
table, SQL Server automatically inserts the next primary key value into the column that
was specified as an IDENTITY column.

Note: For instructions on creating a table in Microsoft SQL Server, see the Microsoft
SQL Server database documentation.

Once the IDENTITY column is created in the database table, you specify automatic key
generation in the XML deployment descriptors. In the
weblogic-cmp-rdbms-jar.xml file, you specify automatic key generation as
follows:

Figure 5-8 Specifying automatic key generation for Microsoft SQL

<automatic-key-generation>
<generator-type>SQL_SERVER</generator-type>

</automatic-key-generation>

The generator-type element lets you specify the primary key generation method
that you want to use.

Specifying Primary Key Named Sequence Table Support

Generated primary key support for unsupported databases uses a Named SEQUENCE
TABLE to hold key values. The table must contain a single row with a single column
that is an integer, SEQUENCE INT. This column will hold the current sequence value.

Note: For instructions on creating the table, see the documentation for the specific
database product.
5-36 Programming WebLogic Enterprise JavaBeans

Automatic Primary Key Generation for EJB 2.0 CMP
To use Named Sequence Table support, make sure that the underlying database
supports the transaction isolation level, TRANSACTION_SERIALIZABLE. You specify
this option for the isolation-level element, in the weblogic-ejb.xml file. The
TRANSACTION_SERIALIZABLE option specifies that simultaneously executing a
transaction multiple times has the same effect as executing the transaction multiple
times in a serial fashion. If the database doesn’t support the transaction isolation level,
TRANSACTION_SERIALIZABLE, then you cannot use Named Sequence Table support.

Note: See the documentation for the underlying database to determine the type of
isolation level support it provides and see “Specifying and Editing the EJB
Deployment Descriptors” on page 6-5 for instructions on setting the isolation
level.

Once the NAMED_SEQUENCE_TABLE exists in the database, you specify automatic key
generation by using the XML deployment descriptors in the
weblogic-cmp-rdbms-jar.xml file, as follows:

Figure 5-9 Specifying automatic key generation for named sequence table
support

<automatic-key-generation>
<generator-type>NAMED_SEQUENCE_TABLE</generator-type>
<generator_name>MY_SEQUENCE_TABLE_NAME</generator-name>
<key-cache-size>100</key-cache-size>

</automatic-key-generation>

Specify the name of the SEQUENCE TABLE to be used, with the generator-name
element. Using the key-cache-size element, specify the optional size of the key
cache that tells you how many keys the container will fetch in a single DBMS call.

For improved performance, BEA recommends that you set this value to >1, a number
greater than one. This setting reduces the number of calls to the database to fetch the
next key value.

Also, it is recommended that you define one NAMED SEQUENCE table per bean type.
Beans of different types should not share a common NAMED SEQUENCE table. This
reduces contention for the key table.
Programming WebLogic Enterprise JavaBeans 5-37

5 WebLogic Server Container-Managed Persistence Service
Multiple Table Mapping for EJB 2.0 CMP

Multiple table mapping allows you to map a single EJB to multiple DBMS tables
within a single database for EJB 2.0 CMP beans. You configure this feature by
mapping multiple DBMS tables and columns to the EJB and its fields in the EJB’s
weblogic-cmp-rdbms-xml file. This includes the following types of mappings:

EJB container-managed persistence (cmp) fields - These fields describe which of
the EJB’s cmp-fields are mapped to which DBMS tables.

EJB container-managed relationship (cmr) fields - These fields describes which
of the EJBs DBMS tables contain the foreign key columns required for mapping
the relationships in the DBMS.

When enabling multiple table mappings, the following requirement applies:

If the EJB is a participant in a container-managed relationship and the
relationship requires that the DBMS tables maintain foreign keys, then those
foreign keys will reside on only one of the EJB’s multiple tables.

Previously, you could associate an EJB with a single table and a list of fields and
columns. Now, you can associate sets of fields and columns for as many tables as the
EJB maps to.

Note this restriction for multiple mapped tables on a single bean:

Tables that are mapped to a single entity bean must not have referential integrity
constraints declared between their primary keys. Doing so may result in a runtime error
upon bean removal.

Multiple Table Mappings for cmp-fields

Configure multiple table mappings for cmp-fields, in a weblogic-rdbms-bean
stanza of the EJB’s weblogic-cmp-rdbms-xml file, as follows:

1. Specify the following elements in the weblogic-cmp-rdbms-jar.xml file:

table-field-map element

table-name element
5-38 Programming WebLogic Enterprise JavaBeans

Multiple Table Mapping for EJB 2.0 CMP
field-map element

2. For instructions on specifying deployment descriptors, see “Specifying and
Editing the EJB Deployment Descriptors” on page 6-5.

The following sample XML shows an EJB that maps to a single DBMS table:

Figure 5-10 Mapping a single DBMS table

<table-name>TableName</table-name>
<field-map>

<cmp-field>name</cmp-field>
<dbms-column>name_in_tablename</dbms-column>

</field-map>

<field-map>
<cmp-field>street_address</cmp-field>
<dbms-column>street_address_in_tablename

</dbms_column>
</field-map>
<field-map>

<cmp-field>phone</cmp-field>
<dbms-column>phone_in_tablename</dbms-column>

</field-map>

The following sample XML shows an EJB that maps to two different tables:

Figure 5-11 Mapping to two DBMS tables

<table-map>
 <table-name>TableName_1</table-name>

<field-map>
<!--Note ‘name’is the primary key field of this EJB -->

<cmp-field>name</cmp-field>
<dbms-column>name_in_tablename_1</dbms-column>

</field-map>

<field-map>
<cmp-field>street_address</cmp-field>
<dbms-column>street_address_in_tablename_1

</dbms-column>
</field-map>

 </table-map>
 <table-map>

<table-name>TableName_2</table-name>
<field-map>

<!--Note ‘name’is the primary key field of this EJB -->
<cmp-field>name</cmp-field>
Programming WebLogic Enterprise JavaBeans 5-39

5 WebLogic Server Container-Managed Persistence Service
<dbms-column>name_in_tablename_2</dbms-column>
</field-map>
<field-map>
<cmp-field>phone</cmp-field>
<dbms-column>phone_in_tablename_2</dbms-column>

</field-map>
</table-map>

Note: As shown in the above XML sample for a table mapping, you must map the
primary key field to each table’s primary key column.

For information about specifying CMRs when one of the beans in the relationship
maps to multiple tables, see “Specifying CMRs for EJBs that Map to Multiple Tables”
on page 5-50.

Automatic Table Creation

You can specify that WebLogic Server automatically create tables based on the
descriptions in the XML deployment descriptor files and the bean class, if the table
does not already exist. Tables are created for all beans and relationship join tables, if
the relationships in the JAR files have joins. You explicitly turn on this feature by
defining it in the deployment descriptors per each RDBMS deployment, for all beans
in the JAR file.

If you enable automatic table creation, WebLogic Serve examines the value of the
database-type element in weblogic-cmp-rdbms-jar.xml to determine the
correct syntax and datatype conversions to use to create a table in your database.
WebLogic Server version 7.0 uses the vendor-specific CREATE TABLE syntax and
datatype conversions for the following databases and vendors:

Informix

Oracle

PointBase

SQL Server

Sybase
5-40 Programming WebLogic Enterprise JavaBeans

Automatic Table Creation
For all other database systems, WebLogic Server makes a best attempt to create the
new table using a basic syntax and the datatype conversions shown in the following
table:

Table 5-1 Generic Java Field to DBMS Column Type Conversion

Java Type DBMS Column Type

boolean INTEGER

byte INTEGER

char CHAR

double DOUBLE PRECISION

float FLOAT

int INTEGER

long INTEGER

short INTEGER

java.lang.string VARCHAR (150)

java.lang.BigDecimal DECIMAL (38, 19)

java.lang.Boolean INTEGER

java.lang.Byte INTEGER

java.lang.Character CHAR (1)

java.lang.Double DOUBLE PRECISION

java.lang.Float FLOAT

java.lang.Integer INTEGER

java.lang.Long INTEGER

java.lang.Short INTEGER

java.sql.Date DATE

java.sql.Time DATE
Programming WebLogic Enterprise JavaBeans 5-41

5 WebLogic Server Container-Managed Persistence Service
If, based on the descriptions in the deployment files, a field cannot be successfully
mapped to an appropriate column type in the database, the CREATE TABLE fails, an
error is thrown, and you must create the table yourself.

Automatic table creation is not recommended for use in a production environment. It
is better suited for the development phase of design and prototype work. A production
environment may require the use of more precise table schema definitions, for
example; the declaration of foreign key constraints.

To define automatic table creation:

1. In the weblogic-cmp-rdbms-jar.xml file, set the
create-default-dbms-tables element to True to explicitly turn on automatic
table creation for all beans in the JAR file. Use the following syntax:
<create-default-dbms-tables>True</create-default-dbms-tables>

2. Specify the correct database system or database vendor name in the
database-type element of weblogic-cmp-rdbms-jar.xml. CREATE TABLE
syntax and datatype mapping is provide for the following database-type
values: INFORMIX, ORACLE, POINTBASE, SQL_SERVER, and SYBASE. All other
DBMS systems use a basic syntax and the datatype conversions shown in the
table above.

Container-Managed Relationships

Container-managed relationships (CMRs) are relationships that you define between
two entity EJBs, analogous to the relationships between the tables in a database. If you
define a CMR between two EJBs that are involved in the same processing task, your
application can benefit from these features:

java.sql.Timestamp DATETIME

byte[] RAW (1000)

Any serializable Class that is not a valid
SQL type:

RAW (1000)

Java Type DBMS Column Type
5-42 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
Related beans can be cached together, reducing the number of queries necessary
to accomplish a processing task.

Batched database operations can be ordered correctly at the end of a transaction,
avoiding data consistency problems

Related beans can be deleted automatically, using the cascade delete feature.

Understanding CMRs

This section describes the features and limitations of WebLogic Server CMRs. For
instruction on configuring CMRs, see “Defining Container-Managed Relationships”
on page 5-45.

Requirements and Limitations

You can define a relationship between two WebLogic Server entity beans that will be
packaged in the same .jar and whose data persist in the same database. Entities that
participate in the same relationship must map to the same datasource. WebLogic
Server does not support relationships between entity beans that are mapped to different
datasources. The abstract schema for each bean that participates in a
container-managed relationship must be defined the same ejb-jar.xml file.

Note: EJB 2.1 states that if an entity bean does not have a local interface, the only
CMR in which it can participate is a unidirectional one, from itself to another
entity bean.

However, WebLogic Server allows an entity bean with only a remote interface
to:

participate in CMRs that are bidirectional, or

be the target of a unidirectional CMR with another entity.

Because this feature is not specified in EJB 2.1, entity beans that have only
remote interfaces, and either participate in bidirectional relationships or are the
target of a unidirectional relationship, may not be portable to other application
servers.
Programming WebLogic Enterprise JavaBeans 5-43

5 WebLogic Server Container-Managed Persistence Service
Relationship Cardinality

An entity bean can have a one-to-one, one-to-many, or many-to-many relationship
with another entity bean.

Relationship Direction

Any CMR, whether one-to-one, one-to-many, or many-to-many, can be either
unidirectional or bidirectional. The direction of a CMR determines whether the bean
on one side of the relationship can be accessed by the bean on the other side.

Unidirectional CMRs can be navigated in one direction only—the “dependent” bean”
is unaware of the other bean in the relationship. CMR-related features such as cascade
deletes can only be applied to the dependent bean. For example, if cascade deletes have
been configured for a unidirectional CMR from to EJB1 to EJB2, deleting EJB1 will
cause deletion of EJB2, but deleting EJB2 will not cause deletion of EJB1.

Note: For the cascade delete feature, the cardinality of the relationship is a factor—
cascade deletes are not supported from the many side of a relationship, even if
the relationship is bidirectional.

Bidirectional relationships can be navigated in both directions—each bean in the
relationship is aware of the other. CMR-related features are supported in both
directions. For example, if cascade deletes have been configured for a bidirectional
CMR between EJB1 to EJB2, deleting either bean in the CMR will cause deletion of
the other bean.

Removing Relationships

When a bean instance that participates in a relationship is removed, the container
automatically removes the relationship. For instance, given a relationship between an
employee and a department, if the employee is removed, the container removes the
relationship between the employee and the department as well.
5-44 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
Defining Container-Managed Relationships

Defining a CMR involves specifying the relationship and its cardinality and direction
in ejb-jar.xml. You define database mapping details for the relationship and enable
relationship caching in weblogic-cmp-jar.xml. These sections provide instructions:

“Specifying Relationship in ejb-jar.xml” on page 5-45

“Specifying Relationships in weblogic-cmp-jar.xml” on page 5-47

Specifying Relationship in ejb-jar.xml

Container-managed relationships are defined in the ejb-relation stanza of
ejb-jar.xml. Figure 5-12 shows the ejb-relation stanza for a relationship
between two entity EJBs: TeacherEJB and StudentEJB.

The ejb-relation stanza contains a ejb-relationship-role for each side of the
relationship. The role stanzas specify each bean’s view of the relationship.

Figure 5-12 One-to-Many, Bidirectional CMR in ejb-jar.xml

<ejb-relation>
<ejb-relation-name>TeacherEJB-StudentEJB</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>teacher-has-student
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>TeacherEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>teacher</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>student-has-teacher
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>StudentEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>student</cmr-field-name>
Programming WebLogic Enterprise JavaBeans 5-45

5 WebLogic Server Container-Managed Persistence Service
<cmr-field-type>java.util.Collection
<cmr-field>

</ejb-relationship-role>

Specifying Relationship Cardinality

The cardinality on each side of a relationship is indicated using the <multiplicity>
element in its ejb-relationship-role stanza.

In Figure 5-12, the cardinality of the TeacherEJB-StudentEJB relationship is
one-to-many—it is specified by setting multiplicity to one on the TeacherEJB
side and Many on the StudentEJB side.

The cardinality of the CMR in Figure 5-13, is one-to-one—the multiplicity is set
to one in both role stanza for the relationship

Figure 5-13 One-to-One, Unidirectional CMR in ejb-jar.xml

<ejb-relation>
<ejb-relation-name>MentorEJB-StudentEJB</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>mentor-has-student
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>MentorEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>mentorID</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>student-has-mentor
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>StudentEJB</ejb-name>
</relationship-role-source>

</ejb-relationship-role>

If a side of a relationship of a relationship has a <multiplicity> of Many, its
<cmr-field> is a collection, and you must specify its <cmr-field-type> as
java.util.Collection, as shown in the StudentEJB side of the relationship in
Figure 5-12. It is not necessary to specify the cmr-field-type when the cmr-field
is a single valued object.
5-46 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
Table 5-2 lists the contents of cmr-field for each bean in a relationship, based on the
cardinality of the relationship.

Table 5-2 Cardinality and cmr-field-type

Specifying Relationship Directionality

The directionality of a CMR by configured by the inclusion (or exclusion) of a
cmr-field in the ejb-relationship-role stanza for each side of the relationship

A bidirectional CMR has a cmr-field element in the ejb-relationship-role
stanza for both sides of the relationship, as shown in Figure 5-12.

A unidirectional relationship has a cmr-field in only one of the role stanzas for the
relationship. The ejb-relationship-role for the starting EJB contains a
cmr-field, but the role stanza for the target bean does not. Figure 5-13 specifies a
unidirectional relationship from MentorEJB to StudentEJB— there is no cmr-field
element in the ejb-relationship-role stanza for StudentEJB.

Specifying Relationships in weblogic-cmp-jar.xml

Each CMR defined in ejb-jar.xml must also be defined in a
weblogic-rdbms-relation stanza in weblogic-cmp-jar.xml.
weblogic-rdbms-relation identifies the relationship, and contains the
relationship-role-map stanza, which maps the database-level relationship
between the participants in the relationship, for one or both sides of the relationship.

The relation-name in weblogic-rdbms-relation must be the same as the
ejb-relation-name for the CMR in ejb-jar.xml.

If relationship between
EJB1 and EJB2 is...

EJB1’s cmr-field
contains...

EJB2’s cmr-field
contains is a...

one-to-one single valued object single valued object

one-to-many single valued object Collection

many-to-many Collection Collection
Programming WebLogic Enterprise JavaBeans 5-47

5 WebLogic Server Container-Managed Persistence Service
One-to-One and One-to-Many Relationships

For one-to-one and one-to-many relationships, relationship-role-map is defined
for only one side of the relationship.

For one-to-one relationships, the mapping is from a foreign key in one bean to the
primary key of the other.

Figure 5-14 is the weblogic-rdbms-relation stanza for a the one-to-one
relationship between MentorEJB and StudentEJB, whose <ejb-relation> is shown
in Figure 5-13.

Figure 5-14 One-to-One CMR weblogic-cmp-jar.xml
<weblogic-rdbms-relation>

<relation-name>MentorEJB-StudentEJB</relation-name>
<weblogic-relationship-role>

<relationship-role-name>
mentor-has-student
</relationship-role-name>

<relationship-role-map>
<column-map>

<foreign-key-column>student</foreign-key-column>
<key-column>StudentID/key-column>

</column-map>
<relationship-role-map>

</weblogic-relationship-role>

For one-to-many relationships, the mapping is also always from a foreign key in one
bean to the primary key of another. In a one-to-many relationship, the foreign key is
always associated with the bean that is on the many side of the relationship.

Figure 5-15 is the weblogic-rdbms-relation stanza for a the one-to-many
relationship between TeacherEJB and StudentEJB, whose <ejb-relation> is
shown in Figure 5-12.

Figure 5-15 weblogic-rdbms-relation for a One-to-Many CMR
<weblogic-rdbms-relation>

<relation-name>TeacherEJB-StudentEJB</relation-name>
<weblogic-relationship-role>

<relationship-role-name>
teacher-has-student
</relationship-role-name>

<relationship-role-map>
<column-map>
5-48 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
<foreign-key-column>student</foreign-key-column>
<key-column>StudentID/key-column>

</column-map>
<relationship-role-map>

</weblogic-relationship-role>

Many-to-Many Relationships

For many-to-many relationships, specify a weblogic-relationship-role stanza
for each side of the relationship. The mapping involves a join table. Each row in the
join table contains two foreign keys that map to the primary keys of the entities
involved in the relationship. The direction of a relationship does not affect how you
specify the database mapping for the relationship.

Figure 5-16 shows the weblogic-rdbms-relation stanza for the friends
relationship between two employees.

The FRIENDS join table has two columns, first-friend-id and
second-friend-id. Each column contains a foreign key that designates a particular
employee who is a friend of another employee. The primary key column of the
employee table is id. The example assumes that the employee bean is mapped to a
single table. If employee bean is mapped to multiple tables, then the table containing
the primary key column must be specified in the relation-role-map. For an
example, see “Specifying CMRs for EJBs that Map to Multiple Tables” on page 5-50.

Figure 5-16 weblogic-rdbms-relation for a Many-to-Many CMR

<weblogic-rdbms-relation>
<relation-name>friends</relation-name>
<table-name>FRIENDS</table-name>
<weblogic-relationship-role>
<relationship-role-name>first-friend
</relationship-role-name>
<relationship-role-map>

<column-map>
<foreign-key-column>first-friend-id</foreign-key-column>
<key-column>id</key-column>

</column-map
</relationship-role-map>

<weblogic-relationship-role>
<weblogic-relationship-role>

<relationship-role-name>second-friend</relationship-role-
name>

<relationship-role-map>
<column-map>
Programming WebLogic Enterprise JavaBeans 5-49

5 WebLogic Server Container-Managed Persistence Service
<foreign-key-column>second-friend-id</foreign-key-column>
<key-column>id</key-column>

</column-map>
</relationship-role-map>
</weblogic-relationship-role>

</weblogic-rdbms-relation>

Specifying CMRs for EJBs that Map to Multiple Tables

A CMP bean that is involved in a relationship may be mapped to multiple DBMS
tables.

If the bean on the foreign-key side of a one-to-one or one-to-many relationship
is mapped to multiple tables then the name of the table containing the
foreign-key columns must be specified using the foreign-key-table element.

Conversely, if the bean on the primary-key side of a one-to-one or one-to-many
relationship or a bean participating in a many-to-many relationship is mapped to
multiple tables then the name of the table containing the primary-key must be
specified using the primary-key-table element.

If neither of the beans in a relationship is mapped to multiple tables, then the
foreign-key-table and primary-key-table elements may be omitted since the
tables being used are implicit.

Figure 5-17 contains a relationship-role-map for a CMR in which the bean on the
foreign-key side of a one-to-one relationship, Fk_Bean, is mapped to two tables:
Fk_BeanTable_1 and Fk_BeanTable_2.

The foreign key columns for the relationship, Fk_column_1 and Fk_column_2, are
located in Fk_BeanTable_2. The bean on the primary key side, Pk_Bean, is mapped
to a single table with primary-key columns Pk_table_pkColumn_1 and
Pk_table_pkColumn_2.

The table that contains the foreign-key columns is specified by the
<foreign-key-table> element.

Figure 5-17 One-to-One CMR, One Bean Maps to Multiple Tables

<relationship-role-map
<foreign-key-table>Fk_BeanTable_2</foreign-key-table>
<column-map>

<foreign-key-column>Fk_column_1</foreign-key-column>
<key-column>Pk_table_pkColumn_1</key-column>

</column-map>
5-50 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
<column-map>
<foreign-key-column>Fk_column_2</foreign-key-column>
<key-column>Pk_table_pkColumn_2</key-column>

</column-map>
</relationship-role-map>

Using Relationship Caching for CMRs

Relationship caching improves the performance of entity beans by loading related
beans into the cache and avoiding multiple queries by issuing a join query for the
related bean.

For example, given entity beans with the following relationships:

Consider the following EJB code for accountBean and addressBean, which have a
1-to-1 relationship:

Account acct = acctHome.findByPrimaryKey("103243");
Address addr = acct.getAddress();

Without relationship caching, a SQL query is issued by the first line of code to load
accountBean and another SQL query is issued by the second line of code to load the
addressBean; this results in two queries to the database.

With relationship caching, a single query is issued to load both the accountBean and
addressBean by the first line of code, which should result in better performance. So,
if you know that a related bean will be accessed after executing a particular finder
method, its a good idea to let the finder method know via the relationship caching
feature.

Specify relationship caching using these stanzas in weblogic-cmp-jar.xml

relationship-caching—define the caching-name and the
caching-element for the related bean, as shown in Figure 5-18.

customerBean has a one-to-many relationship with accountBean

accountBean has a one-to-one relationship with addressBean

customerBean has a one-to-one relationship with phoneBean
Programming WebLogic Enterprise JavaBeans 5-51

5 WebLogic Server Container-Managed Persistence Service
caching-name element in the weblogic-query—if specified, when the finder
query is executed, WebLogic Server loads the related beans into cache. For an
example, see Figure 5-19.

database-type in weblogic-rdbms-jar, the root of weblogic-cmp-jar.xml
—relationship caching uses outer joins for queries, the syntax for which can vary
from database to database.

Note: Make sure that the finders-load-bean element, specified in the
weblogic-ejb-jar.xml file, in the bean that specifies an relationship (for
example, customerBean in the above sample XML code) is not set to False
or relationship caching will not be enabled. The finder-load-bean
element’s default is True.

Figure 5-18 relationship-caching in weblogic-cmp-jar.xml

<relationship-caching>
<caching-name>cacheMoreBeans</caching-name>
<caching-element>
<cmr-field>accounts</cmr-field>

</caching-element>
</relationship-caching>

Figure 5-19 weblogic-query in weblogic-cmp-jar.xml

<weblogic-query>
<query-method>
<method-name>findBigAccounts</method-name>

<method-params>
<method-param>java.lang.String</method-param>
<method-param>java.lang.Integer</method-param>

</method-params>
</query-method>
<caching-name>cacheMoreBeans</caching-name>

</weblogic-query>

Nested caching-elements

Using nested caching-elements enables the bean to load more than one level of related
beans. Currently, there is no limitation on the number of caching-elements that you
can specify. However, setting too many caching-element levels could have an
impact on the performance of the current transaction.
5-52 Programming WebLogic Enterprise JavaBeans

Cascade Delete
Since relationship caching uses join queries, and a join query might duplicate results
for a table in the ResultSet, the number of caching-element elements specified will
have a direct impact on the number of duplicate results in the ResultSet. For
one-to-many relationships, do not specify too many caching-element deployment
descriptors in the relationship-caching element because the number of duplicate
results might multiply for each caching-element deployment descriptor.

Relationship Caching Limitations

The relationship caching feature has the following limitations:

1. Relationship caching only works with one-to-one and one-to-many
relationships.

2. When using weblogic-ql, this feature only works with finder methods that
return references to either EJBObject or EJBLocalObject beans.

3. If you enable relationship caching for a finder or a select method, the result of the
query will always be a distinct set even if the distinct keyword is not specified.
This is because there is no way to identify the duplicate in the ResultSet is the
result of the original data or the result of the outer join.

Cascade Delete

Use the cascade delete mechanism to remove entity bean objects. When cascade delete
is specified for a particular relationship, the lifetime of one entity object depends on
another. You can specify cascade delete for one-to-one and one-to-many relationships;
many-to-many relationships are not supported. The cascade delete() method uses
the delete features in WebLogic Server, and the database cascade delete()
method instructs WebLogic Server to use the underlying database’s built-in support
for cascade delete.

To enable this feature, you must recompile the bean code for the changes to the
deployment descriptors to take effect.

Use one of the following two methods to enable cascade delete.
Programming WebLogic Enterprise JavaBeans 5-53

5 WebLogic Server Container-Managed Persistence Service
Cascade Delete Method

With the cascade delete() method you use WebLogic Server to remove objects. If
an entity is deleted and the cascade delete element is specified for a related entity
bean, then the removal is cascaded and any related entity bean objects are also
removed.

To specify cascade delete, use the cascade-delete element in the ejb-jar.xml
deployment descriptor elements. This is the default method. Make no changes to your
database settings, and WebLogic Server will cache the entity objects for removal when
the cascade delete is triggered.

Specify cascade delete using the cascade-delete element in the ejb-jar.xml file
as follows:

Figure 5-20 Specifying a cascade delete

<ejb-relation>
<ejb-relation-name>Customer-Account</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Account-Has-Customer
</ejb-relationship-role-name>
<multiplicity>one</multiplicity>
<cascade-delete/>

</ejb-relationship-role>
</ejb-relation>

Note: This cascade delete() method can only be specified for a
ejb-relationship-role element contained in an ejb-relation element if
the other ejb-relationship-role element in the same ejb-relation
element specifies a multiplicity attribute with a value of one.

Database Cascade Delete Method

The database cascade delete() method allows an application to take advantage
of a database's built-in cascade delete support, and possibly improve performance. If
the db-cascade-delete element is not already specified in the
weblogic-cmp-rdbms-jar.xml file, do not enable any of the database's cascade
delete functionality, because this will produce incorrect results in the database.
5-54 Programming WebLogic Enterprise JavaBeans

Cascade Delete
The db-cascade-delete element in the weblogic-cmp-rdbms-jar.xml file
specifies that a cascade delete operation will use the built-in cascade delete facilities
of the underlying DBMS. By default, this feature is turned off and the EJB container
removes the beans involved in a cascade delete by issuing an individual SQL DELETE
statement for each bean.

If db-cascade-delete element is specified in the weblogic-cmp-rdbms-jar.xml,
the cascade-delete element must be specified in the ejb-jar.xml.

When db-cascade-delete is enabled, additional database table setup is required.
For example, the following setup for the Oracle database table will cascade delete all
of the employees if the dept is deleted in the database.

Figure 5-21 Oracle table setup for cascade delete

 CREATE TABLE dept

 (deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,

 dname VARCHAR2(9));

 CREATE TABLE emp

 (empno NUMBER(4) PRIMARY KEY,

 ename VARCHAR2(10),

 deptno NUMBER(2) CONSTRAINT fk_deptno

 REFERENCES dept(deptno)

 ON DELETE CASCADE);

CMRs and Local Interfaces

WebLogic Server provides support for local interfaces for session and entity beans.
Local interfaces allow enterprise javabeans to work together within the same EJB
container using different semantics and execution contexts. The EJBs are usually
co-located within the same EJB container and execute within the same Java Virtual
Machine (JVM). This way, they do not use the network to communicate and avoid the
over-head of a Java Remote Method Invocation-Internet Inter-ORB Protocol
(RMI-IIOP) connection.
Programming WebLogic Enterprise JavaBeans 5-55

5 WebLogic Server Container-Managed Persistence Service
EJB relationships with container-managed persistence are now based on the EJB’s
local interface. Any EJB that participates in a relationship must have a local interface.
Local interface objects are lightweight persistent objects. They allow you to do more
fine grade coding than do remote objects. Local interfaces also use pass-by-reference.
The getter is in the local interface.

In earlier versions of WebLogic Server, you can base relationships on remote
interfaces. However, CMP relationships that use remote interfaces should probably not
be used in new code.

The EJB container makes the local home interface accessible to local clients through
JNDI. To reference a local interface you need to have a local JNDI name. The objects
that implement the entity beans’ local home interface are called EJBLocalHome
objects. You can specify either a jndi-name or local-jndi-name in the
weblogic-ejb-jar.xml file. For more information on how to specify deployment
descriptors, see “Specifying and Editing the EJB Deployment Descriptors” on page
6-5

In earlier versions of WebLogic Server, ejbSelect methods were used to return
remote interfaces. Now you can specify a result-type-mapping element in the
ejb-jar.xml file that indicates whether the result returned by the query will be
mapped to a local or remote object.

Using the Local Client

A local client of a session bean or entity bean can be another EJB, such as a session
bean, entity bean, or message-driven bean. A local client can be a servlet as long as it
is included as part of the same EAR file and as long as the EAR file is not remote.
Clients of a local bean must be part of an EAR or a standalone JAR.

A local client accesses a session or entity bean through the bean’s local interface and
local home interfaces. The container provides classes that implement the bean’s local
and local home interfaces. The objects that implement these interfaces are local Java
objects. The following diagram shows the container with a local client and local
interfaces.
5-56 Programming WebLogic Enterprise JavaBeans

Cascade Delete
Figure 5-22 Local client and local interfaces

WebLogic Server provides support for both local and uni-directional remote
relationships between EJBs. If the EJBs are on the same server and are part of the same
JAR file, they can have local relationships. If the EJBs are not on the same server, the
relationships must be remote. For a relationship between local beans, multiple column
mappings are specified if the key implementing the relation is a compound key. For a
remote bean, only a single column-map is specified, since the primary key of the
remote bean is opaque. No column-maps are specified if the role just specifies a
group-name. No group-name is specified if the relationship is remote.

Changes to the Container for Local Interfaces

Changes made to the structure of the container to accommodate local interfaces
include the following additions:

EJB local home

New model for handling exceptions that propagates the correct exception to the
client.

 Client

Container

EJB 1

EJB 2

EJB LocalObjects

EJB LocalHome

EJB Home

EJB Objects
Programming WebLogic Enterprise JavaBeans 5-57

5 WebLogic Server Container-Managed Persistence Service
Groups

In container-managed persistence, you use groups to specify certain persistent
attributes of an entity bean. A field-group represents a subset of the cmp and
CMR-fields of a bean. You can put related fields in a bean into groups that are faulted
into memory together as a unit. You can associate a group with a query or relationship,
so that when a bean is loaded as the result of executing a query or following a
relationship, only the fields mentioned in the group are loaded.

A special group named “default” is used for queries and relationships that have no
group specified. By default, the default group contains all of a bean's CMP-fields and
any CMR-fields that add a foreign key to the persistent state of the bean.

A field can belong to multiple groups. In this case, the getXXX() method for the field
will fault in the first group that contains the field.

Specifying Field Groups

Field groups are specified in the weblogic-rdbms-cmp-jar.xml file as follows:

<weblogic-rdbms-bean>
<ejb-name>XXXBean</ejb-name>
<field-group>

<group-name>medical-data</group-name>
<cmp-field>insurance</cmp-field>
<cmr-field>doctors</cmr-fields>

</field-group>
</weblogic-rdbms-bean>

You use field groups when you want to access a subset of fields.
5-58 Programming WebLogic Enterprise JavaBeans

Using EJB Links
Using EJB Links

WebLogic Server fully supports EJB links as defined in the EJB 2.0 Specification. You
can link an EJB reference that is declared in one application component to an
enterprise bean that is declared in the same J2EE application.

To create an ejb-link:

1. Specify the link to the EJB using the optional ejb-link deployment descriptor
element of the ejb-ref element of the referencing application component.

The value of the ejb-link element must be the ejb-name of the target EJB.
The target EJB can be in any EJB JAR file in the same J2EE application as the
referencing application component.

Because ejb-names are not required to be unique across EJB JAR files, you may
need to provide the qualified path for the link.

2. Use the following syntax to provide the path name for the EJBs within the same
J2EE application.

<ejb-link>../products/product.jar#ProductEJB</ejb-link>

This reference provides the path name of the EJB JAR file that contains the
referenced EJB with the appended ejb-name of the target bean separated from
the path by “#”. The path name is relative to the referencing application
component JAR file.

For instructions on specifying deployment descriptors, see “Specifying and Editing the
EJB Deployment Descriptors” on page 6-5.

Java Data Types for CMP Fields

The following table provides a list of the Java data types for CMP fields used in
WebLogic Server and shows how they map to the Oracle extensions for the standard
SQL data types.
Programming WebLogic Enterprise JavaBeans 5-59

5 WebLogic Server Container-Managed Persistence Service
Table 5-3 Java data types for CMP fields

Java Types for CMP Fields Oracle Data Types

boolean SMALLINT

byte SMALLINT

char SMALLINT

double NUMBER

float NUMBER

int INTEGER

long NUMBER

short SMALLINT

java.lang.String VARCHAR/VARCHAR2

java.lang.Boolean SMALLINT

java.lang.Byte SMALLINT

java.lang.Character SMALLINT

java.lang.Double NUMBER

java.lang.Float NUMBER

java.lang.Integer INTEGER

java.lang.Long NUMBER

java.lang.Short SMALLINT

java.sql.Date DATE

java.sql.Time DATE

java.sql.Timestamp DATE

java.math.BigDecimal NUMBER

byte[] RAW, LONG RAW
5-60 Programming WebLogic Enterprise JavaBeans

Java Data Types for CMP Fields
Do not use the SQL CHAR data type for database columns that are mapped to CMP
fields. This is especially important for fields that are part of the primary key, because
padding blanks that are returned by the JDBC driver can cause equality comparisons
to fail when they should not. Use the SQL VARCHAR data type instead of SQL
CHAR.

A CMP field of type byte[] cannot be used as a primary key unless it is wrapped in a
user-defined primary key class that provides meaningful equals() and hashCode()
methods. This is because the byte[] class does not provide useful equals and
hashCode.

serializable RAW, LONG RAW

Java Types for CMP Fields Oracle Data Types
Programming WebLogic Enterprise JavaBeans 5-61

5 WebLogic Server Container-Managed Persistence Service
5-62 Programming WebLogic Enterprise JavaBeans

CHAPTER
6 Packaging EJBs for the
WebLogic Server
Container

The following sections describe how to package EJBs into a WebLogic Server
container for deployment. They includes a description of the contents of a deployment
package, including the source files, deployment descriptors, and the deployment mode.

Required Steps for Packaging EJBs

Reviewing the EJB Source File Components

WebLogic Server EJB Deployment Files

Specifying and Editing the EJB Deployment Descriptors

Creating the Deployment Files

Referencing Other EJBs and Resources

Packaging EJBs into a Deployment Directory

Compiling EJB Classes and Generating EJB Container Classes

Loading EJB Classes into WebLogic Server

Specifying an ejb-client.jar

Manifest Class-Path
Programming WebLogic Enterprise JavaBeans 6-1

6 Packaging EJBs for the WebLogic Server Container
Required Steps for Packaging EJBs

Packaging EJBs for deployment to WebLogic Server in an EJB container involves the
following steps:

1. Review the EJB source file components.

2. Create the EJB deployment files.

3. Edit the EJB deployment descriptors.

4. Set the deployment mode.

5. Generate the EJB container classes.

6. Package the EJBs into a JAR or EAR file.

7. Load EJB classes into WebLogic Server.

Reviewing the EJB Source File Components

To implement entity and session beans, use the following components:

Component Description

Bean Class The bean class implements the bean’s business and life cycle
methods.

Remote Interface The remote interface defines the beans’s business methods that
can be accessed from applications outside of the bean’s EJB
container.

Remote Home Interface The remote home interface defines the bean’s life cycle methods
that can be accessed from applications outside of the bean’s EJB
container.
6-2 Programming WebLogic Enterprise JavaBeans

WebLogic Server EJB Deployment Files
WebLogic Server EJB Deployment Files

Use the following WebLogic Server deployment files to specify the deployment
descriptor elements for the EJB.

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml (optional, for CMP only)

The deployment files become part of the EJB deployment when the bean is compiled.
The XML deployment descriptor files should contain the minimum deployment
descriptor settings for the EJB. Once the file exists, it can later be edited using the
instructions in “Specifying and Editing the EJB Deployment Descriptors” on page 6-5.
The deployment descriptor files must conform to the correct version of the Document
Type Definition (DTD) for each file you use. All element and sub element (attribute)
names for each of the EJB XML deployment descriptor files are described in the file’s
Document Type Definition (DTD) file. For a description of each file, see the following
sections.

Local Interface The local interface defines the bean’s business methods that can
be used by other beans that are co-located in the same EJB
container.

Local Home Interface The local home interface defines the bean’s life cycle methods
that can be used by other beans that are co-located in the same
EJB container.

Primary Key The primary key class provides a pointer into the database. Only
entity beans need a primary key.

Component Description
Programming WebLogic Enterprise JavaBeans 6-3

6 Packaging EJBs for the WebLogic Server Container
ejb-jar.xml

The ejb-jar.xml file contains the Sun Microsystem-specific EJB DTD. The
deployment descriptors in this file describe the enterprise bean’s structure and declares
its internal dependences and the application assembly information, which describes
how the enterprise bean in the ejb-jar file is assembled into an application
deployment unit. For a description of the elements in this file, see the JavaSoft
specification.

weblogic-ejb-jar.xml

The weblogic-ejb-jar.xml file contains the WebLogic Server-specific EJB DTD
that defines the concurrency, caching, clustering, and behavior of EJBs. It also
contains descriptors that map available WebLogic Server resources to EJBs.
WebLogic Server resources include security role names and data sources such as
JDBC pools, JMS connection factories, and other deployed EJBs. For a description of
the elements in this file, see Chapter 9, “weblogic-ejb-jar.xml Document Type
Definitions.”

weblogic-cmp-rdbms.xml

The weblogic-cmp-rdbms.xml file contains the WebLogic Server-specific EJB
DTD that defines container-managed persistence services. Use this file to specify how
the container handles synchronizing the entity beans’s instance fields with the data in
the database. For a description of the elements in this file, see Chapter 10,
“weblogic-cmp-rdbms- jar.xml Document Type Definitions.”

Relationships Among the Deployment Files

Descriptors in weblogic-ejb-jar.xml are linked to EJB names in ejb-jar.xml, to
resource names in a running WebLogic Server, and to persistence type data defined in
weblogic-cmp-rdbms-jar.xml (for entity EJBs using container-managed
persistence). The following diagram shows the relationship among the deployment
files and WebLogic Server.
6-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

Specifying and Editing the EJB Deployment Descriptors
Figure 6-1 The relationship among the components of the deployment files.

Specifying and Editing the EJB Deployment
Descriptors

You specify or edit EJB deployment descriptors by any of the following methods:

Using a text editor to manually edit the bean’s deployment files. For instructions
on manually editing the deployment files, see “Manually Editing EJB
Deployment Descriptors” on page 6-6.

<security-role-assignment>. . .
<weblogic-enterprise-bean>
<ejb-name>. . .

<caching-descriptor>. . .
<clustering-descriptor>. . .
<resource-descriptor>. . .
<reference-descriptor>. . .
<persistence-descriptor>. . .

</ejb-name>
</weblogic-enterprise-bean>

weblogic-ejb-jar.xml

Principal

JDBC Pool

JMS

<weblogic-rdbms-bean>
. . .

</weblogic-rdbms-bean>

weblogic-cmp-rdbms-jar.xml

<assembly-descriptor>
<security-role>. . .

</assembly-descriptor>
<entity>

<ejb-name>. . .
<ejb-ref>. . .

</entity>

ejb-jar.xml
WebLogic Server

EJB
Programming WebLogic Enterprise JavaBeans 6-5

6 Packaging EJBs for the WebLogic Server Container
Using the EJB Deployment Descriptor Editor in the WebLogic Server
Administration Console to edit the bean’s deployment files. For instructions on
using the EJB Deployment Descriptor Editor, see “Using the EJB Deployment
Descriptor Editor” on page 6-7.

Using a WebLogic Server command line utility tool called DDConverter to
convert EJB 1.1 deployment descriptors to EJB 2.0 XML. For instructions on
using the DDConverter tool, see “DDConverter” on page 8-23.

Creating the Deployment Files

You create the basic XML deployment files for the EJB that conforms to the correct
version of the Document Type Definition (DTD) for each file. You can use an existing
EJB deployment file as a template or copy one from the EJB examples in your
WebLogic Server distribution:

SAMPLES_HOME\server\config\examples\applications

Manually Editing EJB Deployment Descriptors

To edit XML deployment descriptor elements manually:

1. Use an ASCII text editor that does not reformat the XML or insert additional
characters that could invalidate the file.

2. Open the XML deployment descriptor file that you want to edit.

3. Type in your changes. Use the correct case for file and directory names, even if
your operating system ignores the case.

4. To use the default value for an optional element, either omit the entire element
definition or specify a blank value, as in:

<max-beans-in-cache></max-beans-in-cache>
6-6 Programming WebLogic Enterprise JavaBeans

Creating the Deployment Files
Using the EJB Deployment Descriptor Editor

To edit the EJB deployment descriptors in the WebLogic Server Administration
Console:

1. Start WebLogic Server.

2. Start the Administration Console and select the Deployments node from the
right pane and then click EJB.

3. From the expanded list of deployed EJBs, right-click the bean you want to edit
and choose Edit EJB Descriptor...

4. When the EJB Deployment Descriptor Editor displays, click either the Persist or
Validate button.

Choose Persist to save your changes to the EJB’s deployment descriptor file.

Choose Validate to specify that WebLogic Server check the structure of the
EJB’s deployment descriptor files to verify that the files XML can be parsed
correctly.

5. In the left pane, click the EJB to expand the node.

You should see the following nodes that represent the EJB’s three deployment
descriptor files:

EJB Jar: represents the ejb-jar.xml file deployment descriptors for this
EJB.

WebLogic EJB Jar: represents the weblogic-ejb-jar.xml file
deployment descriptors for this EJB.

CMP: represents the weblogic-cmp-rdbms-jar.xml file deployment
descriptors for this EJB.

6. Expand the node for the deployment descriptors that you want to edit.

The current deployment descriptors for the selected EJB appear in the left pane
the configured setting appear in the right pane. When you right-click on an item
in the list, a dialog window for that item appears in the right pane.

7. Clicking on the circles displays a dialog window in the right pane with various
settings.
Programming WebLogic Enterprise JavaBeans 6-7

6 Packaging EJBs for the WebLogic Server Container
You can change the settings in the dialog window to edit those deployment
descriptors.

8. Clicking on the folders displays tables in the right pane where you can view your
settings.

Here you can usually configure a new descriptor or customize your view of the
existing settings. If an item in the table is underlined, you can click on it to
display a dialog where you can change the settings.

9. By right-clicking on deployment descriptor items in the right pane, you can also
delete descriptors.

Note: For more information on the EJB deployment descriptors, see either the online
help in the Administration Console or Chapter 9, “weblogic-ejb-jar.xml
Document Type Definitions,” and Chapter 10, “weblogic-cmp-rdbms- jar.xml
Document Type Definitions.”

Referencing Other EJBs and Resources

An EJB can look up and use other EJBs deployed in WebLogic Server by specifying
an EJB reference in the deployment descriptor. The requirements for creating an EJB
reference differ depending on whether the referenced EJB is external to the calling EJB
(deployed independently of the calling EJB’s application EAR file) or deployed as part
of the same application EAR file.

Referencing External EJBs

To reference an external EJB, you add a <reference-descriptor> stanza to the
calling EJB’s weblogic-ejb-jar.xml file. The following XML code shows a
sample stanza that references an external EJB:

Figure 6-2 Sample XML code referencing an external EJB

<reference-descriptor>
<ejb-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>
6-8 Programming WebLogic Enterprise JavaBeans

Referencing Other EJBs and Resources
<jndi-name>payroll.AdminBean</jndi-name>
</ejb-reference-description>

76</reference-descriptor>

In the sample stanza, the ejb-ref-name element specifies the name that the calling
EJB uses to look up the external EJB. The jndi-name element specifies the global
JNDI name to use when looking up the specified ejb-ref-name.

Referencing Application-Scoped EJBs

When you deploy multiple EJBs as part of the same EAR file, WebLogic Server adds
the EJB names to the application’s local JNDI tree. EJBs and other components of the
application can look up other application-scoped components directly in the JNDI tree
relative to java:comp/env.

An EJB that references other EJBs deployed as part of the same EAR file does not need
to specify a global JNDI name in the weblogic-ejb-jar.xml file. In fact, you can
omit the weblogic-ejb-jar.xml file entirely if you do not need other
WebLogic-specific features of the deployment descriptor.

To reference an EJB deployed as part of the same EAR file, add an <ejb-local-ref>
stanza to the calling EJB’s ejb-jar.xml deployment descriptor file. For example:

Figure 6-3 Sample XML code referencing an EJB in the same EAR file

<ejb-local-ref>
<description>Reference to application EJB</description>
<ejb-ref-name>ejb1</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>mypackage.ejb1.MyHome</home>
<local>mypackage.ejb1.MyRemote</local>
<ejb-link>ejb1.jar#myejb</ejb-link>

</ejb-local-ref>

In this example, the ejb-ref-name element indicates the name the calling EJB uses
to look up the application-scoped EJB. The ejb-link element maps the indicated
<ejb-ref-name> to the other EJB deployed in the EAR file. Note that this example
qualifies the <ejb-link> name with the filename that stores the second EJB.
Qualifying the EJB name in this manner is necessary when two or more EJBs in the
EAR file use the same name; the filename qualifier ensures a unique reference.

For more information about EJB links, see “Using EJB Links” on page 5-59.
Programming WebLogic Enterprise JavaBeans 6-9

6 Packaging EJBs for the WebLogic Server Container
Referencing Application-Scoped JDBC DataSources

EJBs can also access JDBC DataSources that are deployed as part of the same EAR
file. DataSources that are identified in the weblogic-application.xml deployment
descriptor can be accessed locally from java:comp/env (without referencing the
DataSource’s global JNDI name). See Configuring Application-Scoped Resources in
Configuring Web Applications for more information.

Packaging EJBs into a Deployment Directory

The deployment process begins with a JAR file or a deployment directory that contains
the compiled EJB interfaces and implementation classes created by the EJB provider.
Regardless of whether the compiled classes are stored in a JAR file or a deployment
directory, they must reside in subdirectories that match their Java package structures.

The EJB provider should also supply an EJB compliant ejb-jar.xml file that
describes the bundled EJB(s). The ejb-jar.xml file and any other required XML
deployment file must reside in a top-level META-INF subdirectory of the JAR or
deployment directory. The following diagram shows the first stage of packaging the
the EJB and the deployment descriptor files into a deployment directory or JAR file.
6-10 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/webapp/components.html#appres
http://e-docs.bea.com/wls/docs70/webapp/index.html

Packaging EJBs into a Deployment Directory
Figure 6-4 Packaging the EJB classes and deployment descriptors into a
deployment directory

As is, the basic JAR or deployment directory cannot be deployed to WebLogic Server.
You must first create and configure the WebLogic-specific deployment descriptor
elements in the weblogic-ejb-jar.xml file, and add that file to the deployment
directory or ejb.jar file. For more information on creating the deployment descriptor
files, see “WebLogic Server EJB Deployment Files” on page 6-3.

If you are deploying an entity EJB that uses container-managed persistence, you must
also add the WebLogic -specific deployment descriptor elements for the bean’s
persistence type. For WebLogic Server container-managed persistence (CMP)
services, the file is generally named weblogic-cmp-rdbms-jar.xml. You require
a separate file for each bean that uses CMP. If you use a third-party persistence vendor,
the file type as well as its contents may be different from
weblogic-cmp-rdbms-jar.xml; refer to your persistence vendor’s documentation
for details.

If you do not have any of the deployment descriptor files needed for your EJB, you
must manually create one. The best method is to copy an existing file and edit the
settings to conform to the needs of your EJB. Use the instructions in “Specifying and
Editing the EJB Deployment Descriptors” on page 6-5 to create the files.

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

ejb-jar.xml

Step 1:
Set deployment
descriptors

 JAR file or deployment directory JAR file or deployment directory

EJB home,
EJB local
home, local,
remote, bean

EJB home, EJB localhome
local, remote, bean
Programming WebLogic Enterprise JavaBeans 6-11

6 Packaging EJBs for the WebLogic Server Container
ejb.jar file

You create the ejb.jar file with the Java Jar utility (javac). This utility bundles the
EJB classes and deployment descriptors into a single Java ARchive (JAR) file that
maintains the directory structure. The ejb-jar file is the unit that you deploy to
WebLogic Server.

Compiling EJB Classes and Generating EJB
Container Classes

For part of the process of building your deployment unit, you need to compile your
EJB classes, add your deployment descriptors to the deployment unit, and generate the
container classes used to access the deployment unit.

1. Compile the EJB classes using javac compiler from the command line.

2. Add the appropriate XML deployment descriptor files to the compiled unit using
the guidelines in “WebLogic Server EJB Deployment Files” on page 6-3.

3. Generate the container classes that are used to access the bean using ejbc.

Container classes include both the internal representation of the EJB that
WebLogic Server uses, as well as implementation of the external interfaces
(home, local, and/or remote) that clients use.

The ejbc compiler generates container classes according to the deployment
descriptors you have specified in WebLogic-specific XML deployment descriptor
files. For example, if you indicate that your EJBs will be used in a cluster, ejbc creates
special cluster-aware classes that will be used for deployment.

You can also use ejbc directly from the command line by supplying the required
options and arguments. See “ejbc” on page 8-19 for more information.

The following figure shows the container classes added to the deployment unit when
the JAR file is generated.
6-12 Programming WebLogic Enterprise JavaBeans

Compiling EJB Classes and Generating EJB Container Classes
Figure 6-5 Generating EJB container classes

Once you have generated the deployment unit, you can designate the file extension as
either a JAR, EAR, or WAR archive.

Possible Generated Class Name Collisions

Although infrequent, when you generate classes with ejbc, you may encounter a
generated class name collision which could result in a ClassCaastException and
other undesireable behavior. This is because the names of the generated classes are
based on three keys: the bean class name, the bean class package, and the ejb-name for

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

Step 2:
Generate
container
classes

 JAR file or deployment directory

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

 JAR file or deployment directory

ejbHomeImpl.class

ejbHomeImplWLProxy.class

ejbPSWeblogic_CMP_RDBMS.class

ejbEOImpl.class

EJB home, EJB localhome,
local, remote, bean

EJB home, EJB localhome
local, remote, bean
Programming WebLogic Enterprise JavaBeans 6-13

6 Packaging EJBs for the WebLogic Server Container
the bean. This problem occurs when you use an EAR file that contains multiple JAR
files and at least two of the JAR files contains an EJB with both the same bean class,
package, or classname and both of those EJBs have the same ejb-name in their
respective JAR files. If you experience this problem, change the ejb-name of one of
the beans to make it unique.

Since the ejb-name is one of the keys on which the file name is based and the
ejb-name must be unique within a JAR file, this problem never occurs with two EJBs
in the same JAR file. Also, since each EAR file has its own classloader, this problem
never occurs with two EJBs in different EAR files.

Loading EJB Classes into WebLogic Server

Classloaders in Weblogic Server are hierarchical. When you start WebLogic Server,
the Java system classloader is active and is the parent of all subsequent classloaders
that WebLogic Server creates. When WebLogic Server deploys an application, it
automatically creates two new classloaders: one for EJBs and one for Web
applications. The EJB classloader is a child of the Java system classloader and the Web
application classloader is a child of the EJB classloader.

For more information on classloading, see “Classloader Overview” and “About
Application Classloaders” in Developing WebLogic Server Applications.

Specifying an ejb-client.jar

WebLogic Server supports the use of ejb-client.jar files.

The ejb-client.jar contains the home and remote interfaces, the primary key class
(as applicable), and the files they reference. WebLogic Server does not add files
referenced in your classpath to ejb-client.jar. This enables WebLogic Server to
add necessary custom classes to the ejb-client.jar without adding generic classes
such as java.lang.String.
6-14 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/programming/packaging.html

Specifying an ejb-client.jar
For example, the ShoppingCart remote interface might have a method that returns an
Item class. Because this remote interface references this class, and it is located in the
ejb-jar file, it will be included in the client jar.

You configure the creation of an ejb-client.jar file in the bean’s ejb-jar.xml
deployment descriptor file.When you compile the bean with ejbc, WebLogic Server
creates the ejb-client.jar.

To specify an ejb-client.jar:

1. Compile the bean’s Java classes into a directory, using the javac compiler from
the command line.

2. Add the EJB XML deployment descriptor files to the compiled unit using the
guidelines in “WebLogic Server EJB Deployment Files” on page 6-3.

3. Edit the ejb-client-jar deployment descriptor in the bean’s ejb-jar.xml
file, as follows, to specify support for ejb-client.jar:
<ejb-client-jar>ShoppingCartClient.jar</ejb-client-jar>

4. Generate the container classes that are used to access the bean using
weblogic.ejbc and create the ejb-client.jar using the following
command:
$ java weblogic.ejbc <ShoppingCart.jar>

Container classes include both the internal representation of the EJB that
WebLogic Server uses, as well as implementation of the external interfaces
(home, local, and/or remote) that clients use.

External clients can include the ejb-client.jar in their classpath. Web applications
would include the ejb-client.jar in their /lib directory.

Note: WebLogic Server classloading behavior varies, depending on whether or not
the client is stand-alone. Stand-alone clients with access to the
ejb-client.jar can load the necessary classes over the network. However,
for security reasons, programmatic clients running in a server instance cannot
load classes over the network.
Programming WebLogic Enterprise JavaBeans 6-15

6 Packaging EJBs for the WebLogic Server Container
Manifest Class-Path

Use the manifest file to specify that a JAR file can reference another JAR file.
Standalone EJBs cannot use the Manifest Class-Path. It is only supported for
components that are deployed within an EAR file. The clients should reference the
client.jar in the classpath entry of the manifest file.

To use the manifest file to reference another JAR file:

1. Specify the name of the referenced JAR file in a Class-Path header in the
referencing JAR file’s Manifest file.

The referenced JAR file is named using a URL relative to the URL of the
referencing JAR file.

2. Name the manifest file META-INF/MANIFEST.MF in the JAR file

3. The Class-Path entry in the Manifest file is as follows:

Class-Path: AAyy.jar BByy.jar CCyy.jar.

Note: The entry is a list of JAR files separated by spaces.

To place the home/remote interfaces for the EJB in the classpath of the calling
component:

1. Use ejbc to compile the EJB into a JAR file.

2. Create a client.jar file. For instructions on using the client.jar, see
“Specifying an ejb-client.jar” on page 6-14.

3. Place the client.jar, along with all the clients of the bean in an EAR.

4. Reference the EAR in the manifest file.

.

6-16 Programming WebLogic Enterprise JavaBeans

CHAPTER
7 Deploying EJBs to
WebLogic Server

The following sections provides instructions for deploying EJBs to WebLogic Server
at WebLogic Server startup or on a running WebLogic Server.

Roles and Responsibilities

Deploying EJBs at WebLogic Server Startup

Deploying EJBs on a Running WebLogic Server

Deploying New EJBs into a Running Environment

Undeploying Deployed EJBs

Redeploying EJBs

Deploying Compiled EJB Files

Deploying Uncompiled EJB Files

Deployment Restriction with Container Managed Relationships

Roles and Responsibilities

The following sections are written primarily for:

Deployers who configure EJBs to run in the WebLogic Server container
Programming WebLogic Enterprise JavaBeans 7-1

7 Deploying EJBs to WebLogic Server
Application assemblers who link multiple EJBs and EJB resources to create
larger Web application systems

EJB developers who create and configure new EJB JAR files

You can create, modify, and deploy EJBs in one or more instance of WebLogic Server.
You can set up your EJB deployment, and map EJB references to actual resource
factories, roles, and other EJBs available on a server by editing the XML deployment
descriptor files.

Deploying EJBs at WebLogic Server Startup

To deploy EJBs automatically when WebLogic Server starts:

1. Follow the instructions in “Specifying and Editing the EJB Deployment
Descriptors” on page 6-5 to ensure that your deployable EJB JAR file or
deployment directory contains the required WebLogic Server XML deployment
files.

2. Use a text editor or the EJB Deployment Descriptor Editor in the Administration
Console to edit the XML deployment descriptor elements, as necessary.

3. Follow the instructions in “Compiling EJB Classes and Generating EJB
Container Classes” on page 6-12 to compile implementation classes required for
WebLogic Server.

Compiling the container classes places the JAR file in the deployment directory.
If you want the EJB to automatically deploy when WebLogic Server starts, place
the EJB you want to deploy in the following directory:

mydomain\applications directory

If your EJB JAR file is located in a different directory, make sure that you copy
it to this directory if you want to deploy it at startup.

4. Start WebLogic Server.

When you boot WebLogic Server, it automatically attempts to deploy the
specified EJB JAR file or deployment directory.

5. Launch the Administration Console.
7-2 Programming WebLogic Enterprise JavaBeans

Deploying EJBs on a Running WebLogic Server
6. In the left pane, click Deployments and then the EJB node.

A list of the EJB deployments for the server displays under the node.

Deploying EJBs in Different Applications

When you deploy EJBs with remote calls to each other in different applications,
you cannot use call-by-reference to invoke the EJBs. Instead, you use
pass-by-value. You should place components that commonly interact with
each other in the same application where call-by-reference can be used. By
default, EJB methods called from within the same server pass arguments by
reference. This increases the performance of method invocation because
parameters are not copied. Pass-by-value is always necessary when EJBs are
called remotely (not from within the server).

Deploying EJBs on a Running WebLogic
Server

Although placing the EJB JAR file or deployment directory in the
wlserver/config/mydomain/applications directory allows the EJB to be
immediately deployed, if you make a change to the deployed EJB, you must redeploy
the EJB for the changes to take effect.

Automatic deployment is provided for situations where rebooting WebLogic Server is
not feasible and is for development purposes only. Using automatic deployment only
deploys the updated EJB to the Administration Server and does not deploy the EJB to
any Managed Server on the domain. Using automatic deployment features, you can:

Deploy a newly developed EJB to a running development system

Remove a deployed EJB to restrict access to data

Update a deployed EJB implementation class to fix a bug or test a new feature
Programming WebLogic Enterprise JavaBeans 7-3

7 Deploying EJBs to WebLogic Server
Whether you deploy or update the EJB from the command line or the Administration
Console, you use the automatic deployment features. The following sections describe
automatic deployment concepts and procedures.

EJB Deployment Names

When you deploy an EJB JAR file or deployment directory, you specify a name for the
deployment unit. This name is a shorthand reference to the EJB deployment that you
can later use to undeploy or update the EJB.

When you deploy an EJB, WebLogic Server implicitly assigns a deployment name that
matches the path and filename of the JAR file or deployment directory. You can use
this assigned name to undeploy or update the bean after the server has started.

Note: The EJB deployment name remains active in WebLogic Server until the server
is rebooted. Undeploying an EJB does not remove the associated deployment
name, because you may later re-use that name to deploy the bean.

Deploying New EJBs into a Running Environment

To deploy an EJB JAR file or deployment directory that has not been deployed to
WebLogic Server:

1. Start the WebLogic Server Administration Console.

2. Select the Domain in which you will be working.

3. In the left pane of the Console, click Deployments.

4. In the left pane of the Console, click EJB. A table displays in the right pane of the
Console showing all the deployed EJBs.

5. Select the Configure a new EJB option.

6. Locate the EAR, WAR or JAR file you would like to configure. You can also
configure an exploded application or component directory. Note that WebLogic
Server will deploy all components it finds in and below the specified directory.
7-4 Programming WebLogic Enterprise JavaBeans

Deploying EJBs on a Running WebLogic Server
7. Click [select] to the left of a directory or file to choose desired file and proceed to
the next step.

8. Select a Target Server from among Available Servers.

9. Enter a name for the EJB or application in the provided field.

10. Click Configure and Deploy to install the EJB or application. The Console will
display the Deploy panel, which lists deployment status and deployment
activities for the EJB.

11. Using the available tabs, enter the following information:

Configuration—Edit the staging mode and enter the deployment order.

Targets—Indicate the Targets-Server for this configured EJB or application
by moving the server from the Available list to the Chosen list.

Deploy—Deploy the EJB or application to all or selected targets or undeploy
it from all or selected targets.

Monitoring—Enable session monitoring for the EJB or application.

Notes—Enter notes related to the EJB or application.

Deploying Pinned EJBs - Special Step Required
There is a known issue with deploying or redeploying EJBs to a single server instance
in a cluster—referred to as pinned deployment—if the .jar file contains contain
uncompiled classes and interfaces.

During deployment, the uncompiled EJB is copied to each server instance in the
cluster, but it is compiled only on the server instance to which it has been deployed. As
a result, the server instances in the cluster to which the EJB was not targeted lack the
classes generated during compilation that are necessary to invoke the EJB. When a
client on another server instance tries to invoke the pinned EJB, it fails, and an
Assertion error is thrown in the RMI layer.

If you are deploying or redeploying an EJB to a single server instance in a cluster,
compile the EJB with ejbc before deploying it, to ensure that the generated classes
copied to all server instances available to all nodes in the cluster.

For more information on pinned deployments, see Setting Up WebLogic Clusters at
http://e-docs.bea.com/wls/docs70/cluster/setup.html#pinned_deployment.
Programming WebLogic Enterprise JavaBeans 7-5

http://e-docs.bea.com/wls/docs70/cluster/setup.html#pinned_deployment

7 Deploying EJBs to WebLogic Server
Viewing Deployed EJBs

To view deployed EJBs:

1. Start the Administration Console.

2. Click the Deployments node in the left pane and then choose the EJB sub-node.
A list of EJBs deployed on your domain displays under EJB and in the right pane.

Undeploying Deployed EJBs

Undeploying an EJB effectively prohibits all clients from using the EJB. When you
undeploy the EJB, the specified EJB’s implementation class is immediately marked as
unavailable in the server. WebLogic Server automatically removes the implementation
class and propagates an UndeploymentException to all clients that were using the
bean.

Undeployment does not automatically remove the specified EJB’s public interface
classes. Implementations of the home interface, remote interface, and any support
classes referenced in the public interfaces, remain in the server until all references to
those classes are released. At that point, the public classes may be removed due to
normal Java garbage collection routines.

Similarly, undeploying an EJB does not remove the deployment name associated with
the ejb.jar file or deployment directory. The deployment name remains in the server
to allow for later updates of the EJB.

Undeploying EJBs

To undeploy a deployed EJB, use the following steps:

From the WebLogic Server Administration Console:

1. Select the component in the left panel.
7-6 Programming WebLogic Enterprise JavaBeans

Redeploying EJBs
2. In the component Deployments table, select the component to undeploy.

3. Click Apply.

Undeploying an EJB does not remove the EJB deployment name from WebLogic
Server. The EJB remains undeployed for the duration of the server session, as long as
you do not change it once it had been undeployed. You cannot re-use the deployment
name with the deploy argument until you reboot the server. You can re-use the
deployment name to update the deployment, as described in the following section.

Redeploying EJBs

When you change a deployed EJB’s classes, these changes are not reflected in
WebLogic Server until:

You reboot the server (if the JAR or directory is to be automatically deployed),

or

you redeploy the EJB deployment.

Redeploying an EJB deployment enables an EJB provider to make changes to a
deployed EJB’s classes, recompile, and then “refresh” the classes in a running server.

The Redeploy Process

When you redeploy, the classes currently loaded for the EJB are immediately marked
as unavailable in the server, and the EJB’s classloader and associated classes are
removed. At the same time, a new EJB classloader is created, which loads and
maintains the revised EJB classes.

When clients next acquire a reference to the EJB, their EJB method calls use the
changed EJB classes.
Programming WebLogic Enterprise JavaBeans 7-7

7 Deploying EJBs to WebLogic Server
Steps to Redeploy

You can redeploy an EJB that is standalone or part of an application, using the
weblogic.Deployer tool or via the Administration Console.

To redeploy using weblogic.Deployer:

1. Use the -deploy flag:
java weblogic.Deployer -deploy ejb_name

To redeploy via the WebLogic Server Administration Console:

1. Choose EJB from the Deployments node in the left pane of the Console, or—if the
EJB is part of an application—choose Applications, then the application name.

2. Click the name of the EJB you want to redeploy.

3. Click the Deploy tab in the right pane.

4. Click Redeploy.

Deploying Compiled EJB Files

To create compiled EJB 2.0 JAR or EAR files:

1. Compile your EJB classes and interfaces using javac.

2. Package the EJB classes and interfaces into a valid JAR or EAR file.

3. Use the weblogic.ejbc compiler on the JAR file to generate WebLogic Server
container classes. For instructions on using ejbc, see “ejbc” on page 8-19.

To create compiled EJBs from previous versions of WebLogic Server:

1. Run weblogic.ejbc against the ejb JAR file to generate EJB 2.0
container-classes.

2. Copy the compiled ejb JAR files into

mydomain\applications\DefaultWebApp directory
7-8 Programming WebLogic Enterprise JavaBeans

Deploying Uncompiled EJB Files
Note: You should manually recompile any EJBs from previous versions before
deploying then to the EJB container. Otherwise, WebLogic Server
automatically recompiles the EJBs and if there are errors, the output from the
compile is sent to a separate log file.

If you change the contents of a compiled ejb.jar file in applications (by
repackaging, recompiling, or copying over the existing ejb.jar), WebLogic Server
automatically attempts to redeploy the ejb.jar file using the automatic deployment
feature.

Deploying Uncompiled EJB Files

The WebLogic Server container also enables you to automatically deploy JAR files
that contain uncompiled EJB classes and interfaces. An uncompiled EJB file has the
same structure as a compiled file, with the following exceptions:

You do not have to compile individual class files and interfaces.

You do not have to use weblogic.ejbc on the packaged JAR file to generate
WebLogic Server container classes.

The .java or .class files in the JAR file must still be packaged in subdirectories that
match their Java package hierarchy. Also, as with all ejb.jar files, you must include
the appropriate XML deployment files in a top-level META-INF directory.

After you package the uncompiled classes, simply copy the JAR into the
wlserver\config\mydomain\applications directory. If necessary, WebLogic
Server automatically runs javac (or a compiler you specify) to compile the .java
files, and runs weblogic.ejbc to generate container classes. The compiled classes are
copied into a new JAR file in mydomain\applications\DefaultWebApp, and
deployed to the EJB container.

Should you ever modify an uncompiled ejb .jar in the applications directory
(either by repackaging or copying over the JAR file), WebLogic Server automatically
recompiles and redeploys the JAR using the same steps.
Programming WebLogic Enterprise JavaBeans 7-9

7 Deploying EJBs to WebLogic Server
Deployment Restriction with Container
Managed Relationships

Two EJBs that have a container-managed relationship must be deployed in the same
JAR file. For more information on container-managed relationships, see
“Container-Managed Relationships” on page 5-42.
7-10 Programming WebLogic Enterprise JavaBeans

CHAPTER
8 WebLogic Server EJB
Utilities

The following sections provide a complete reference to the utilities and support files
supplied with WebLogic Server that are used with EJBs:

EJBGen

ejbc (weblogic.ejbc)

DDConverter (weblogic.ejb.utils.DDConverter)

weblogic.Deployer (weblogic.Deployer)

weblogic.deploy (weblogic.deploy)

EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator. You can annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to one the
number of EJB files you need to edit and maintain.

If you have installed BEA WebLogic 7.0 examples, see
SAMPLES_HOME\server\src\examples\ejb20\ejbgen for an example application
called Bands that uses EJBGen.
Programming WebLogic Enterprise JavaBeans 8-1

8 WebLogic Server EJB Utilities
EJBGen Syntax

javadoc -docletpath weblogic.jar -doclet
weblogic.tools.ejbgen.EJBGen (YourBean).java

If you do not have weblogic.jar in your classpath, add the path to weblogic.jar
as follows:

javadoc -docletpath <path_to_weblogic.jar> weblogic.jar -doclet
weblogic.tools.ejbgen.EJBGen (YourBean).java

If you are invoking EJBGen for an EJB that has relationships with other EJBs, invoke
the related EJBs by naming them, following your EJB, in the invocation, as follows:

 javadoc -docletpath weblogic.jar -doclet
weblogic.tools.ejbgen.EJBGen (YourBean).java (RelatedBean).java

EJBGen uses the following options.

Option Definition

-d [directory] The directory under which all the files will
be created.

-ignorePackage If this flag is set, EJBGen will ignore the
package name of the Java files it generates
and will create those in the output directory
as specified by the -d flag (or in the current
directory if no -d was specified).

-pfd1 If this flag is set, EJBGen will generate
deployment descriptors compatible with
the Public Final Draft 1 of the EJB 2.0
specification. You should use this flag if
you are using any version anterior to
Weblogic 6.1.

-ejbPrefix [string] (default: "") The prefix to use when generating the EJB
class.

-ejbSuffix [string] (default:
"Bean" or "EJB")

The suffix to use when generating the EJB
class.

-localHomePrefix [string]
(default: "")

The prefix to use when generating the local
EJB class.
8-2 Programming WebLogic Enterprise JavaBeans

EJBGen
-localHomeSuffix [string]
(default: "LocalHome")

The suffix to use when generating the local
EJB class.

-remoteHomePrefix [string]
(default: "")

The prefix to use when generating the
remote EJB home class.

-remoteHomeSuffix [string]
(default: "Home")

The suffix to use when generating the
remote EJB home class.

-remotePrefix [string] (default:
"")

The prefix to use when generating the
remote EJB class.

-remoteSuffix [string] (default:
"")

The suffix to use when generating the
remote EJB class.

-localPrefix [string] (default:
"")

The prefix to use when generating the local
EJB class.

-localSuffix [string] (default:
"Local")

The suffix to use when generating the local
EJB class.

-valueObjectPrefix [string]
(default: "")

The prefix to use when generating the
value object class.

-valueObjectSuffix [string]
(default: "Value")

The suffix to use when generating the
value object class.

-jndiPrefix [string] (default: "") The prefix to use for
@remote-jndi-name and
@local-jndi-name

-jndiSuffix [string] (default: "") The suffix to use for
@remote-jndi-name and
@local-jndi-name

-checkTags If invoked with this option, EJBGen will
not generate any classes but will search the
classes supplied on the command line for
tags that are not valid EJBGen tags.

Option Definition
Programming WebLogic Enterprise JavaBeans 8-3

8 WebLogic Server EJB Utilities
Surround Attributes that Contain Spaces With Double Quotes
When you specify an attribute that contains spaces, surround the attribute value with
double quotes. For example:

group-names = “group1, group2”

-docTags Print out all the tags known by EJBGen.
Note that even though this option does not
need any source file, you still need to
specify an existing .java class on the
command line, or Javadoc will emit an
error message even though it recognized
the flag.

-docTag tagName Print out the detailed documentation for
this tag, including all the recognized
attributes. Note that even though this
option does not need any source file, you
still need to specify an existing .java class
on the command line, or Javadoc will emit
an error message even though it
recognized the flag.

-docTagsHtml Same as -docTags, but generate an HTML
document.

-propertyFile [fileName] The name of a property file that EJBGen
will read to define substitution variables.
See the substitution variable
documentation

-valueBaseClass [className] Removed. Use the variable
value.baseClass.

-noValueClasses If specified, value classes will not be
generated.

Option Definition
8-4 Programming WebLogic Enterprise JavaBeans

EJBGen
EJBGen Example

This example shows a Bean file annotated so that EJBGen will generate the Remote
and Home interfaces and the deployment descriptor files. AccountBean.java is the
main bean class. It is a CMP EJB 2.0 Entity bean:

/**

 * @ejbgen:entity

 * ejb-name = AccountEJB-OneToMany

 * data-source-name = examples-dataSource-demoPool

 * table-name = Accounts

 * prim-key-class = java.lang.String

 *

 * @ejbgen:jndi-name

 * local = one2many.AccountHome

 * @ejbgen:finder

 * signature = "Account findAccount(double balanceEqual)"

 * ejb-ql = "WHERE balance = ?1"

 *

 * @ejbgen:finder

 * signature = "Collection findBigAccounts(double
balanceGreaterThan)"

 * ejb-ql = "WHERE balance > ?1"

 *

 * @ejbgen:relation

 * name = Customer-Account

 * target-ejb = CustomerEJB-OneToMany

 * multiplicity = many
Programming WebLogic Enterprise JavaBeans 8-5

8 WebLogic Server EJB Utilities
 * cmr-field = customer

 *

 */

abstract public class AccountBean implements EntityBean {

 /**

 * @ejbgen:cmp-field column = acct_id

 * @ejbgen:primkey-field

 * @ejbgen:remote-method transaction-attribute = Required

 */

 abstract public String getAccountId();

 abstract public void setAccountId(String val);

 //

}

As you can see from this example, there are two types of tags: class tags and method
tags, depending on where you can use them.

Once you finish editing your file, you invoke EJBGen through the following javadoc
command:

javadoc -docletpath weblogic.jar -doclet
weblogic.tools.ejbgen.EJBGen AccountBean.java

When javadoc exits, it will have generated the following files for you:

Account.java

AccountHome.java

ejb-jar.xml

weblogic-ejb-jar.xml

weblog-cmp-rdbms-jar.xml
8-6 Programming WebLogic Enterprise JavaBeans

EJBGen
EJBGen Tags

Use the following tags to annotate your Bean file.

@ejbgen:automatic-key-generation

Where: Class

Applicable on: Entity bean

@ejbgen:cmp-field

Where: Method

Applicable on: Entity bean

@ejbgen:cmr-field

Where:Method

Attribute Description Required

cache-size The size of the key cache. Yes

name The name of the generator. Yes

type The type of the generator. Yes

Attribute Description Required

column The column where this CMP field will be mapped. Yes

column-type The type of this column. (OracleClob|OracleBlob) No

ordering-number
(0..n)

The number where this field must appear in signatures and
constructors. For this ordering to work, all CMR and CMP
fields must have this attribute to a distinct numeric value.

No
Programming WebLogic Enterprise JavaBeans 8-7

8 WebLogic Server EJB Utilities
Applicable on: Entity

@ejbgen:create-default-rdbms-tables

Where: Class

Applicable on: Entity bean

@ejbgen:ejb-client-jar

Where: Class

Applicable on: All types of beans

@ejbgen:ejb-local-ref

Where: Class

Applicable on: All types of beans

Attribute Description Required

ordering-number
(0..n)

The number where this field must appear in signatures and
constructors. For this ordering to work, all CMR and CMP
fields must have this attribute to a distinct numeric value.

No

Attribute Description Required

file-name The name of the client jar to generate. If more than one
EJB's have this tag, only one of the specified jar files will
be included in the deployment descriptor.

Yes

Attribute Description Required

home Local class of the bean. No

jndi-name The JNDI name of the reference. No

link Link of the bean. No

local Home class of the bean. No
8-8 Programming WebLogic Enterprise JavaBeans

EJBGen
@ejbgen:ejb-ref

Where: Class

Applicable on: All types of beans

@ejbgen:entity

Where: Class

Applicable on: Entity beans

name Name of the reference. No

type (Entity|Session) No

Attribute Description Required

Attribute Description Required

home Remote class of the bean. No

jndi-name The JNDI name of the reference. No

link Link of the bean. No

name Name of the reference. No

remote Home class of the bean. No

type (Entity|Session) No

Attribute Description Required

ejb-name The name of this Entity bean. Yes

prim-key-class null Yes

abstract-sche
ma-name

The abstract schema name for this EJB. If not specified, the
ejb-name value will be used.

No

concurrency-st
rategy

 (Optimistic|ReadOnly|Exclusive|Database) Defines the
concurrency strategy for this bean.

No
Programming WebLogic Enterprise JavaBeans 8-9

8 WebLogic Server EJB Utilities
data-source-na
me

The name of the DataSource (as it was declared in your
config.xml).

No

db-is-shared (True|False) No

default-transac
tion

The transaction attribute to be applied to all methods that do
not have a more specific transaction attribute setting.

No

delay-database
-insert-until

 (ejbCreate|ejbPostCreate) No

delay-updates-
until-end-of-tx

(True|False) Whether updates will be sent after the
transaction has committed.

No

idle-timeout-s
econds

Maximum duration an EJB should stay in the cache. No

invalidation-ta
rget

The ejb-name of a read-only Entity bean that should be
invalidated when this Container-Managed Persistence Entity
EJB has been modified.

No

max-beans-in-
cache

The maximum number of beans in the cache. No

persistence-ty
pe

(cmp|bmp) The type of this Entity bean (default: cmp). No

prim-key-class
-nogen

(True|False). If this keyword is specified, EJBGen will not
generate the primary key class (it is assumed that you are
providing it yourself).

No

read-timeout-s
econds

The number of seconds between each ejbLoad() call on a
Read-Only Entity bean.

No

reentrant (True|False) No

run-as Specifies the role-name for this EJB. No

run-as-identity
-principal

The name of the principal in case the role maps to several
principals.

No

table-name The Java class of the primary key. In case of a compound
primary key, this class will be generated by EJBGen.

No

Attribute Description Required
8-10 Programming WebLogic Enterprise JavaBeans

EJBGen
@ejbgen:env-entry

Where:Class

Applicable on: All types of beans

@ejbgen:finder

Where: Class
Applicable on: Entity beans

trans-timeout-
seconds

The transaction timeout (in seconds). No

use-caller-iden
tity

(True|False) Whether this EJB uses caller's identity. No

Attribute Description Required

Attribute Description Required

name The name of this environment entry. Yes

type The Java type for this environment entry (must be fully
qualified, even if java.lang).

Yes

value The value for this environment entry. Yes

Attribute Description Required

ejb-ql The EJB QL request as it will appear in the deployment
descriptor.

Yes

signature It must match exactly the signature as you want it generated on
the Home class. EJBGen will add the conformant exceptions,
but you must make sure that you specify the fully qualified type
of each parameter, even if it belongs to java.lang.

Yes

isolation-le
vel

The type of transaction isolation for this method. No
Programming WebLogic Enterprise JavaBeans 8-11

8 WebLogic Server EJB Utilities
@ejbgen:jndi-name

Where: Class

Applicable on: All types of beans

@ejbgen:local-home-method

Where: Method

Applicable on: Entity and Session beans

transaction-
attribute

The transaction attribute for this local method. If not specified,
the default transaction attribute will be used. Methods with this
tag will be generated on the Local class.

No

weblogic-ej
b-ql

The Weblogic EJB QL request as it will appear in the
deployment descriptor. Note: if this request is needed, you need
to enclose both EJBQL and Weblogic EJBQL within double
quotes.

No

Attribute Description Required

Attribute Description Required

local The local JNDI name of this EJB. It not specified, no local
interfaces will be generated.

No

remote The remote JNDI name of this EJB. It not specified, no remote
interfaces will be generated.

No

Attribute Description Required

transaction-attribute The transaction attribute for this local method. If not
specified, the default transaction attribute will be
used. Methods with this tag will be generated on the
Local class.

No
8-12 Programming WebLogic Enterprise JavaBeans

EJBGen
@ejbgen:local-method

Where: Method

Applicable on: Entity and Session beans

@ejbgen:message-driven

Where: Class

Applicable on: Message-Driven beans

Attribute Description Requir
ed

isolation-level The type of transaction isolation for this method. No

transaction-attribute The transaction attribute for this local method. If not
specified, the default transaction attribute will be
used. Methods with this tag will be generated on the
Local class.

No

Attribute Description Required

destination-jndi-name The JNDI name of the destination. Yes

ejb-name The name of this Message-Driven bean. Yes

acknowledge-mode (auto-acknowledge|dups-ok-acknowledge) The
acknowledgement mode.

No

default-transaction The transaction attribute to be applied to all methods
that do not have a more specific transaction attribute
setting.

No

destination-type (javax.jms.Queue|javax.jms.Topic). No

durable (True|False) If the destination-type is "Topic",
setting this attribute to True will make the
subscription durable.

No

initial-beans-in-free-p
ool

The initial number of beans in the free pool. No
Programming WebLogic Enterprise JavaBeans 8-13

8 WebLogic Server EJB Utilities
@ejbgen:primkey-field

Where: Method

Applicable on: Entity beans

@ejbgen:relation

Where: Class

Applicable on: Entity beans

max-beans-in-free-po
ol

The maximum number of beans in the free pool. No

message-selector The JMS message selector. No

run-as Specifies the role-name for this EJB. No

run-as-identity-princi
pal

The name of the principal in case the role maps to
several principals.

No

trans-timeout-seconds The transaction timeout (in seconds). No

use-caller-identity (True|False) Whether this EJB uses caller's identity. No

Attribute Description Required

Attribute Description Required

multiplicity (one|many) Yes

name The name of the relationship. Make sure you use the
same name on both ends of a relationship for the
roles to be generated properly (note that this
constraint applies to unidirectional as well).

Yes

target-ejb The EJB name of the target of this relationship. Yes

cascade-delete (True|False) No
8-14 Programming WebLogic Enterprise JavaBeans

EJBGen
@ejbgen:remote-home-method

Where: Method

Applicable on: Entity and Session beans

@ejbgen:remote-method

Where: Method

Applicable on: Entity and Session beans

cmr-field The CMR field where this relationship will be kept.
This field is optional. If it not present, the
relationship is unidirectional. If it is present, the
attribute fk-column must be specified as well.

No

fk-column Only needed in a relationship having at least one One
side. In that case, the non-One side EJB must declare
a column that it will use to store the primary key of
its counterpart.

No

joint-table Only needed in a Many-Many relationship. It must
be the name of an existing table that will be used to
hold the joint table containing the relationships. In
case you are using a compound primary key, you
need to specify a set of corresponding foreign keys
separated by a comma.

No

role-name The name of this role (such as "ParentHasChildren").
If no role name is given, EJBGen will generate one
for you. Note that you have to specify a role-name if
you are going to inherit relations.

No

Attribute Description Required

Attribute Description Required

transaction-attribute The transaction attribute for this remote method. If
not specified, the default transaction attribute will be
used. Methods with this tag will be generated on the
Remote class.

No
Programming WebLogic Enterprise JavaBeans 8-15

8 WebLogic Server EJB Utilities
@ejbgen:resource-env-ref

Where: Class

Applicable on: All types of beans

@ejbgen:resource-ref

Where: Class

Applicable on: All types of beans

Attribute Description Required

isolation-level The type of transaction isolation for this method. No

transaction-attribute The transaction attribute for this remote method. If
not specified, the default transaction attribute will be
used. Methods with this tag will be generated on the
Remote class.

No

Attribute Description Required

name Name of the resource environment reference. Yes

type Type of the environment resource references (e.g.
javax.jms.Queue).

Yes

jndi-name JNDI name of the resource. No

Attribute Description Required

auth (Application|Container) Yes

jndi-name JNDI name of the resource. Yes

name Name of the resource. Yes

type Type of the resource (e.g. javax.sql.DataSource). Yes
8-16 Programming WebLogic Enterprise JavaBeans

EJBGen
@ejbgen:role-mapping

Where: Class

Applicable on: All types of beans

@ejbgen:select

Where: Method

Applicable on: Entity beans

@ejbgen:session

Where: Class

sharing-scope (Shareable|Unshareable) No

Attribute Description Required

Attribute Description Required

principals The names of the principals in this role (separated by
commas).

Yes

role-name The name of the role Yes

Attribute Description Required

ejb-ql The EJB-QL defining this select method. Note: the
method name must start with ejbSelect.

Yes

result-type-mapping (Remote|Local) Whether the returned objects are
mapped to EJBLocalObject or EJBObject.

No

weblogic-ejb-ql The Weblogic EJB QL request as it will appear in the
deployment descriptor. Note: if this request is
needed, you need to enclose both EJBQL and
Weblogic EJBQL within double quotes.

No
Programming WebLogic Enterprise JavaBeans 8-17

8 WebLogic Server EJB Utilities
Applicable on: Session beans

Attribute Description Required

ejb-name The name of this Session bean. Yes

call-router-class-name Class name to be used for routing home method calls No

default-transaction The transaction attribute to be applied to all methods
that do not have a more specific transaction attribute
setting.

No

idle-timeout-seconds Maximum duration an EJB should stay in the cache. No

initial-beans-in-free-p
ool

The initial number of beans in the free pool. No

is-clusterable (True|False) Whether this bean is clusterable No

load-algorithm (RoundRobin|Random|WeightBased) The name of
the algorithm used to balance replicas of this home

No

max-beans-in-cache The maximum number of beans in the cache. No

max-beans-in-free-po
ol

The maximum number of beans in the free pool. No

methods-are-idempot
ent

(True|False) Whether the methods for this stateless
session bean are idempotent or not.

No

run-as Specifies the role-name for this EJB. No

run-as-identity-princi
pal

The name of the principal in case the role maps to
several principals.

No

trans-timeout-seconds The transaction timeout (in seconds). No

type (Stateless|Stateful) The type of the Session bean. If
this attribute is not specified, EJBGen will guess the
right type by looking at the ejbCreate() methods on
your class.

No

use-caller-identity (True|False) Whether this EJB uses caller's identity. No
8-18 Programming WebLogic Enterprise JavaBeans

ejbc
@ejbgen:value-object

Where: Class

Applicable on: All types of beans

ejbc

Use the weblogic.ejbc utility for generating and compiling EJB 2.0 and 1.1
container classes. If you compile JAR files for deployment into the EJB container, you
must use weblogic.ejbc to generate the container classes.

weblogic.ejbc does the following:

Places the EJB classes, interfaces, and XML deployment descriptor files in a
specified JAR file.

Checks all EJB classes and interfaces for compliance with the EJB specification.

Generates WebLogic Server container classes for the EJBs.

Runs each EJB container class through the RMI compiler to create client-side
dynamic proxies and server-side byte code.

Note: ejbc accepts both JAR files and exploded directories as input.

If you specify an output JAR file, ejbc places all generated files into the JAR file.

By default, ejbc uses javac as a compiler. For faster performance, specify a different
compiler (such as Symantec’s sj) using the -compiler flag.

Although versions of the WebLogic-specific XML deployment descriptor files are
published on or web site for your convience, an internal version is shipped with the
product for use by weblogic.ejbc.

Attribute Description Required

reference (Local|Value) Specify what objects the value
object class should reference when accessing other
EJB's.

Yes
Programming WebLogic Enterprise JavaBeans 8-19

8 WebLogic Server EJB Utilities
For the location of the public version of weblogic-ejb-jar.xml, see “DOCTYPE
Header Information” on page 9-2; for the location of the public version of
weblogic-cmp-rdbms-jar.xml, see “DOCTYPE Header Information” on page
10-2.

Advantages of Using ejbc

The ejbc utility offers the following benefits:

It is easy to identify and correct errors ejbc produces.

If an error occurs while running ejbc from the command line, ejbc exits with an
error message.

By contrast, if you defer compilation to the time of deployment and a
compilation error occurs, the server fails the deployment and goes on with its
work. To determine why deployment failed, you must examine the server output,
fix the problem and then redeploy.

By running ejbc prior to deployment, you potentially reduce the number of time
a bean is compiled.

For example, if you deploy a .jar file to a cluster of 3 servers, the .jar file is
copied to each of the three servers for deployment. If the .jar file wasn't
precompiled, each of the three servers will have to compile the file during
deployment.

ejbc Syntax

prompt> java weblogic.ejbc [options] <source directory or jar file>

<target directory or jar file>

Note: If you output to a JAR file, the output JAR name must be different from the
input JAR name.
8-20 Programming WebLogic Enterprise JavaBeans

ejbc
ejbc Arguments

ejbc Options

Argument Description

<source
directory or jar
file>

Specifies the exploded source directory or JAR file containing the
compiled EJB classes, interfaces, and XML deployment files.

<target
directory or jar
file>

Specifies the destination JAR file or deployment directory in which
ejbc places the output JAR. If you specify an output JAR file,
ejbc places the original EJB classes, interfaces, and XML
deployment files in the JAR, as well as the new container classes
that ejbc generates.

Option Description

-help Prints a list of all options available for the compiler.

-version Prints ejbc version information.

-basicClientJar Does not include deployment descriptors in client JARs
generated for EJBs.

-dispatchPolicy
<queueName>

Specifies a configured execute queue that the EJB should use
for obtaining execute threads in WebLogic Server. For more
information, see Using Execute Queues to Control Thread
Usage.

-forceGeneration Forces generation of EJB classes. Without this flag, the classes
may not be regenerated (if determined to be unnecessary).

-idl Generates CORBA Interface Definition Language for remote
interfaces.
Programming WebLogic Enterprise JavaBeans 8-21

8 WebLogic Server EJB Utilities
-idlNoValueTypes Does not generate valuetypes and the methods/attributes that
contain them.

-idlFactories Generates factory methods for valuetypes.

-idlVisibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.

-idlOrbix Generates IDL somewhat compatible with Orbix 2000 2.0
C++.

-idlOverwrite Overwrites existing IDL files.

-idlVerbose Displays verbose information while generating IDL.

-idlDirectory <dir> Specifies the directory where ejbc creates IDL files. By
default, ejbc uses the current directory.

-idlMethodSignatures <> Specifies the method signatures used to trigger IDL code
generation.

-iiop Generates CORBA stubs for EJBs.

-iiopDirectory <dir> Specifies the directory where IIOP stub files will be written
(default: target directory or JAR)

-J Specifies the heap size for weblogic.ejbc. Use as follows:
java weblogic.ejbc -J-mx256m input.jar
output.jar

-keepgenerated Saves the intermediate Java files generated during compilation.

-compiler <compiler
name>

Sets the compiler for ejbc to use.

-normi Passed through to Symantec's java compiler, sj, to stop
generation of RMI stubs. Otherwise sj creates its own RMI
stubs, which are unnecessary for the EJB.

-classpath <path> Sets a CLASSPATH used during compilation. This augments
the system or shell CLASSPATH.

-convertDD Attempts to update deployment descriptors to the latest version.
8-22 Programming WebLogic Enterprise JavaBeans

DDConverter
ejbc Examples

The following example uses the javac compiler against an input JAR file in
c:\%SAMPLES_HOME%\server\src\examples\ejb\basic\containerManaged\
build. The output JAR file is placed in
c:\%SAMPLES_HOME%\server\config\examples\applications.

prompt> java weblogic.ejbc -compiler javac
c:\%SAMPLES_HOME%\server\samples\src\examples\ejb\basic\container
Managed\build\std_ejb_basic_containerManaged.jar
c:%SAMPLES_HOME%\server\config\examples\ejb_basic_containerManage
d.jar

The following example checks a JAR file for compliance with the EJB 1.1
specification and generates WebLogic Server container classes, but does not generate
RMI stubs:

prompt> java weblogic.ejbc -normi
c:%SAMMPLES_HOME%\server\src\examples\ejb\basic\containerManaged\
build\std_ejb_basic_containerManaged.jar

DDConverter

The DDConverter is a command line utility that converts earlier versions EJB
deployment descriptors into EJB deployment descriptors that conform to this version
of WebLogic Server. The WebLogic Server EJB container supports both the EJB 1.1
and EJB 2.0 specifications including the EJB 1.1 and EJB 2.0 document type
definitions (DTD). Each WebLogic Server EJB deployment includes standard
deployment descriptors in the following files:

ejb-jar.xml

This XML file contains the J2EE-specific EJB deployment descriptors.

weblogic-ejb-jar-.xml

This XML file contains the WebLogic-specific EJB deployment descriptors.

weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 8-23

8 WebLogic Server EJB Utilities
This XML file contains the WebLogic-specific container-managed persistence
(CMP) deployment descriptors.

Conversion Options Available with DDConverter

The DDConverter command line utility includes the following conversion options:

Converting beans from earlier versions of WebLogic Server (WLS).

Converting CMP and non-CMP beans from earlier version of the EJB
specification.

The following table lists the various conversion options for the DDconverter:

Note: Converting non-CMP EJB 1.0 beans to non-CMP EJB 1.1 beans is not
necessary because the EJB 1.1 non-CMP deployment descriptors are the same
as the EJB 2.0 non-CMP deployment descriptors.

Note: Use the DDConverter command line option -EJBVer for converting EJB CMP
1.0 to EJB CMP 1.1. See “DDConverter Options” on page 8-27 for a
description of this option.

Table 8-1

Conversion Options for the DDConverter Utility

WLS EJB non-CMP EJB CMP

 From To From To From To

 WLS 4.5 - WLS 7.0 See Note 1 EJB CMP 1.0 - EJB CMP 1.1
 See Note 2

 WLS 4.5 - WLS 7.0 EJB 1.1 - EJB 2.0 EJB CMP 1.0 - EJB CMP 2.0

 WLS 5.x - WLS 7.0 EJB 1.1 - EJB 2.0 See Note 3

 WLS 6.x - WLS 7.0 EJB 1.1 - EJB 2.0 EJB CMP 1.1 - EJB CMP 2.0
8-24 Programming WebLogic Enterprise JavaBeans

DDConverter
Note: Even though WLS 5.x CMP 1.1 beans and WLS 7.0 CMP 1.1 beans are
different, WLS 5.1 CMP 1.1 beans can run in WebLogic Server 7.0 without
any changes to the source code.

You should always recompile the beans after you use the DDConverter. We
recommend that you use weblogic.ejbc and then deploy the new generated JAR file.
Recompiling the bean makes sure that the code is compliant with the EJB
Specifications and saves you time because you can skip the recompile process during
server startup.

When converting WLS 4.5 EJB 1.0 beans to WLS 7.0 EJB 1.1 beans, the input
to DDConverter is the WebLogic 4.5 deployment descriptor text. The output is a
JAR file that only includes the WebLogic 7.0 deployment descriptors. Run
weblogic-ejbc to see if you need to make any additional changes to the source
code following the steps in “Using DDConverter to Convert EJBs” on page
8-26. See the first row in the Conversion Options for the DDConverter Utility
table.

When converting WLS 4.5 EJB 1.1 beans to WLS 7.0 EJB 2.0 beans, the input
to DDConverter is the WebLogic Server 4.5 deployment descriptor text. The
output is a JAR file that only includes the WebLogic 7.0 deployment descriptors.
Run weblogic-ejbc to see if you need to make any additional changes to the
source code, follow the steps in “Using DDConverter to Convert EJBs” on page
8-26. See the second row in the Conversion Options for the DDConverter Utility
table.

You can deploy WLS 5.x EJB 1.1 beans to WLS 7.0 without any making
changes to the source code because WLS 7.0 is backward compatible. WLS 7.0
detects, recompiles, and then deploys beans from previous versions of WLS.
However, we recommend that you use the DDConverter to upgrade the WLS 5.x
EJB 1.1 beans to WLS 7.0 EJB 2.0 beans.

When converting WLS 5.x EJB 1.1 beans to WLS 7.0 EJB 2.0 beans, the input
to DDConverter is the WebLogic 5.1 JAR file. This file contains the
deployment descriptor files and class files. The output goes to a JAR file that
includes the WebLogic 7.0 deployment descriptor files and all necessary class
files. See the third row in the Conversion Options for the DDConverter Utility
table.

You can convert non-CMP beans to EJB 2.0 beans with little or no changes to
the source code. To do this, run weblogic.ejbc on the output.jar file and then
deploy the generated JAR file. With CMP beans, you must make changes to the
Programming WebLogic Enterprise JavaBeans 8-25

8 WebLogic Server EJB Utilities
source code using the steps in “Using DDConverter to Convert EJBs” on page
8-26.

Using DDConverter to Convert EJBs

To convert earlier versions of EJBs for use in WebLogic Server:

1. Input the EJB’s deployment descriptor file into the DDConverter using the
command line format shown in “DDConverter Syntax” on page 8-26.

The output is a JAR file.

2. Extract the XML deployment descriptors from the JAR file.

3. Modify the source code according to the JavaSoft EJB Specification.

4. Compile the modified java file with the extracted XML deployment descriptors,
using weblogic.ejbc to create a JAR file.

5. Deploy the JAR file.

DDConverter Syntax

prompt> java weblogic.ejb20.utils.DDConverter [options] file1
[file2...]

DDConverter Arguments

DDConverter takes the argument file1 [file2...], where file is one of the
following:

A text file containing EJB 1.0-compliant deployment descriptors.

A JAR file containing EJB 1.1 compliant deployment descriptors.

DDConverter uses the beanHomeName property of EJBs in the text deployment
descriptor to define new ejb-name elements in the resultant ejb-jar.xml file.
8-26 Programming WebLogic Enterprise JavaBeans

DDConverter
DDConverter Options

The following table lists the DDConverter command-line options:

DDConverter Examples

The following example converts a WLS 5.x EJB 1.1 bean into a WLS 7.0 EJB 2.0
bean.

The JAR file is created in the destDir subdirectory:

prompt> java weblogic.ejb20.utils.DDConverter -d destDir
Employee.jar

Where the Employee bean is a WLS 5.x EJB 1.1 JAR file.

Option Description

-d destDir Specifies the destination directory for the output of
the JAR files.
This is a required option.

-c jar name Specifies a JAR file in which you combine all beans
in the source files.

-EJBVer output EJB
version

Specifies the output EJB version number, such as 2.0
or 1.1. The default is 2.0.

-log log file Specifies a file into which the log information can be
placed instead of the ddconverter.log.

-verboseLog Specifies that extra information on the conversion be
placed in the ddconverter.log.

-help Prints a list of all options available for the
DDConverter utility.
Programming WebLogic Enterprise JavaBeans 8-27

8 WebLogic Server EJB Utilities
weblogic.Deployer

The weblogic.Deployer command-line utility is new in WebLogic Server 7.0 and
replaces the earlier weblogic.deploy utility, which has been deprecated. The
weblogic.Deployer utility is a Java-based deployment tool that provides a command
line interface to the WebLogic Server deployment API. This utility was developed for
administrators and developers who need to initiate deployment from the command
line, a shell script, or any automated environment other than Java.

For instructions on using weblogic.Deployer and a list of the commands, see
Deploying Using weblogic.Deployer.

weblogic.deploy

Note: This tool is being deprecated in this release. We strongly encourage you to use
the command-line tool weblogic.Deployer. It provides more sophisticated
deployment options.

Use the weblogic.deploy command-line utility tool to deploy EJBs. Given an
EJB-compliant JAR file, the JAR’s EJBs are deployed into a running WebLogic
Server.

deploy Syntax

prompt> java weblogic.deploy [options]
[list|deploy|undeploy|update] password {name} {source}
8-28 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/programming/deploying.html

weblogic.deploy
deploy Arguments

deploy Options

Argument Description

list Lists all EJB deployment units in the specified
WebLogic Server.

deploy Deploys an EJB JAR to the specified server.

undeploy Removes an existing EJB deployment unit from the
specified server.

update Redeploys an EJB deployment unit in the specified
server.

password Specifies the system password for the WebLogic
Server.

{name} Identifies the name of the EJB deployment unit. This
name can be specified at deployment time, either
with the deploy or console utilities.

{source} Specifies the exact location of the EJB JAR file, or
the path to the top level of an EJB deployment
directory.

Option Description

-help Prints a list of all options available for the deploy
utility.

-version Prints the version of the utility.
Programming WebLogic Enterprise JavaBeans 8-29

8 WebLogic Server EJB Utilities
-port <port> Specifies the port number of the WebLogic Server to
use for deploying the JAR file. If you do not specify
this option, the deploy utility attempts to connect
using port number 7001.

-host <host> Specifies the host name of the WebLogic Server to
use for deploying the JAR file. If you do not specify
this option, the deploy utility attempts to connect
using host name localhost.

-user Specifies the system username of the WebLogic
Server to be used to deploy the JAR file. If you do not
specify this option, deploy attempts to make a
connection using the system username system. You
use the weblogic.system.user property to
define the system username.

-debug Prints detailed debugging information during the
deployment process.
8-30 Programming WebLogic Enterprise JavaBeans

CHAPTER
9 weblogic-ejb-jar.xml
Document Type
Definitions

The following sections describe the EJB 1.1 and EJB 2.0 deployment descriptor
elements found in the weblogic-ejb-jar.xml file, the weblogic-specific XML
document type definitions (DTD) file. Use these definitions to create the
WebLogic-specific weblogic-ejb-jar.xml file that is part of your EJB deployment.

EJB Deployment Descriptors

DOCTYPE Header Information

Changed Deployment Elements in WebLogic Server 7.0 EJB

2.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure

2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements

5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
Programming WebLogic Enterprise JavaBeans 9-1

9 weblogic-ejb-jar.xml Document Type Definitions
EJB Deployment Descriptors

The EJB deployment descriptors contain structural and application assembly
information for an enterprise bean. You specify this information by specifying values
for the deployment descriptors in three EJB XML DTD files. These files are:

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

You package these three XML files with the EJB and other classes into a deployable
EJB component, usually a JAR file, called ejb.jar.

The ejb-jar.xml file is based on the deployment descriptors found in Sun
Microsystems’s ejb.jar.xml file. The other two XML files are weblogic-specific
files that are based on the deployment descriptors found in weblogic-ejb-jar.xml
and weblogic-cmp-rdbms-jar.xml.

DOCTYPE Header Information

When you edit or create XML deployment files, it is critical to include the correct
DOCTYPE header for the deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose.

WebLogic provides a public location for you to access the correct text for the
WebLogic Server-specific DTD file, weblogic-ejb-jar.xml. However, an identical
version of this DTD file is embedded in WebLogic Server for internal use.
weblogic.ejbc uses this file when the XML parser checks the sequence of the
deployment descriptors files.
9-2 Programming WebLogic Enterprise JavaBeans

DOCTYPE Header Information
The correct text for the PUBLIC elements for the WebLogic Server-specific
weblogic-ejb-jar.xml file are as follows.

The correct text for the PUBLIC elements for the Sun Microsystem-specific
ejb-jar.xml file are as follows.

For example, the entire DOCTYPE header for a weblogic-ejb-jar.xml file is as
follows:

<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN'
'http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd'>

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier ‘identifier_name’

XML File PUBLIC Element String

weblogic-ejb-jar.xml '-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN'
'http://www.bea.com/servers/wls700/dtd/weblogic-ejb-j
ar.dtd'

weblogic-ejb-jar.xml '-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic-ejb-j
ar.dtd'

weblogic-ejb-jar.xml '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN'

'http://www.bea.com/servers/wls510/dtd/weblogic-ejb-j
ar.dtd'

XML File PUBLIC Element String

ejb-jar.xml '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN'

'http://java.sun.com/dtd/ejb-jar_2_0.dtd'

ejb-jar.xml '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN'

'http://www.java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'
Programming WebLogic Enterprise JavaBeans 9-3

9 weblogic-ejb-jar.xml Document Type Definitions
identifier_name generally includes the invalid text from the PUBLIC element.

Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server ignores the
DTDs embedded within the DOCTYPE header of XML deployment files, and instead
uses the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid parser
errors.

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

weblogic-ejb-jar.xml

The following links provide the new public DTD locations for the
weblogic-ejb-jar.xml deployment files used with the WebLogic Server:

For weblogic-ejb-jar.xml 7.0 DTD:

http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd
contains the DTD used for creating weblogic-ejb-jar.xml, which defines
EJB properties used for deployment to WebLogic Server.

For weblogic-ejb-jar.xml 6.0 DTD:

http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd
contains the DTD used for creating weblogic-ejb-jar.xml, which defines
EJB properties used for deployment to WebLogic Server.

For weblogic-ejb-jar.xml 5.1 DTD:

weblogic-ejb-jar.dtd contains the DTD used for creating
weblogic-ejb-jar.xml, which defines EJB properties used for deployment to
WebLogic Server. This file is located at
http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd
9-4 Programming WebLogic Enterprise JavaBeans

Changed Deployment Elements in WebLogic Server 7.0 EJB
ejb-jar.xml

The following links provide the public DTD locations for the ejb-jar.xml
deployment files used with WebLogic Server:

For ejb-jar.xml 2.0 DTD:

http://www.java.sun.com/dtd/ejb-jar_2_0.dtd contains the DTD for
the standard ejb-jar.xml deployment file, required for all EJBs. This DTD is
maintained as part of the JavaSoft EJB 2.0 specification; refer to the JavaSoft
specification for information about the elements used in ejb-jar.dtd.

For ejb-jar.xml 1.1 DTD:

ejb-jar.dtd contains the DTD for the standard ejb-jar.xml deployment
file, required for all EJBs. This DTD is maintained as part of the JavaSoft EJB
1.1 specification; refer to the JavaSoft specification for information about the
elements used in ejb-jar.dtd.

Note: Refer to the appropriate JavaSoft EJB specification for a description of the
ejb-jar.xml deployment descriptors.

Changed Deployment Elements in WebLogic Server 7.0 EJB
These changes were made to weblogic-ejb-jar.xml in WebLogic Server 7.0:

“cache-between-transactions” on page 9-13 was added.

“entity-cache-name” on page 9-32 was added.

“entity-cache-ref” on page 9-33 was added.

“estimated-bean-size” on page 9-36 was added.

“externally-defined” on page 9-37 was added.

“global-role” on page 9-39 was deprecated.

“idempotent-methods” on page 9-43

“isolation-level” on page 9-52—the new
TransactionReadCommittedForUpdateNoWait value was added.
Programming WebLogic Enterprise JavaBeans 9-5

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

9 weblogic-ejb-jar.xml Document Type Definitions
2.0 weblogic-ejb-jar.xml Deployment
Descriptor File Structure

The WebLogic Server 7.0 weblogic-ejb-jar.xml deployment descriptor file
describes the elements that are unique to WebLogic Server. Although you can use both
WebLogic 7.0 and WebLogic 6.0 deployment descriptor elements in the EJB
container, the WebLogic Server 7.0 version of weblogic-ejb-jar.xml is different
from the version shipped with WebLogic Server Version 6.0.

The top level elements in the WebLogic Server 7.0 weblogic-ejb-jar.xml are as
follows:

description

weblogic-version

weblogic-enterprise-bean

ejb-name

entity-descriptor | stateless-session-descriptor |
stateful-session-descriptor | message-driven-descriptor

transaction-descriptor

reference-descriptor

enable-call-by-reference

clients-on-same-server

jndi-name

security-role-assignment

transaction-isolation
9-6 Programming WebLogic Enterprise JavaBeans

2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
2.0 weblogic-ejb-jar.xml Deployment
Descriptor Elements

“allow-concurrent-calls” on page 9-11

“allow-remove-during-transaction” on page 9-12

“cache-between-transactions” on page 9-13

“cache-type” on page 9-14

“client-authentication” on page 9-15

“client-cert-authentication” on page 9-16

“clients-on-same-server” on page 9-17

“concurrency-strategy” on page 9-18

“confidentiality” on page 9-20

“connection-factory-jndi-name” on page 9-21

“delay-updates-until-end-of-tx” on page 9-22

“description” on page 9-23

“destination-jndi-name” on page 9-24

“ejb-local-reference-description” on page 9-28

“ejb-name” on page 9-25

“ejb-reference-description” on page 9-26

“ejb-ref-name” on page 9-27

“ejb-local-reference-description” on page 9-28

“enable-call-by-reference” on page 9-29

“enable-dynamic-queries” on page 9-30

“entity-cache” on page 9-31
Programming WebLogic Enterprise JavaBeans 9-7

9 weblogic-ejb-jar.xml Document Type Definitions
“entity-cache-name” on page 9-32

“entity-cache-ref” on page 9-33

“entity-clustering” on page 9-34

“entity-descriptor” on page 9-35

“externally-defined” on page 9-37

“estimated-bean-size” on page 9-36

“finders-load-bean” on page 9-38

“home-call-router-class-name” on page 9-40

“home-is-clusterable” on page 9-41

“home-load-algorithm” on page 9-42

“idempotent-methods” on page 9-43

“identity-assertion” on page 9-44

“idle-timeout-seconds” on page 9-45

“iiop-security-descriptor” on page 9-46

“initial-beans-in-free-pool” on page 9-47

“initial-context-factory” on page 9-48

“integrity” on page 9-49

“invalidation-target” on page 9-50

“is-modified-method-name” on page 9-51

“isolation-level” on page 9-52

“jms-polling-interval-seconds” on page 9-54

“jms-client-id” on page 9-55

“jndi-name” on page 9-56

“local-jndi-name” on page 9-57

“max-beans-in-cache” on page 9-58
9-8 Programming WebLogic Enterprise JavaBeans

2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
“max-beans-in-free-pool” on page 9-59

“message-driven-descriptor” on page 9-60

“method” on page 9-61

“method-intf” on page 9-62

“method-name” on page 9-63

“method-param” on page 9-64

“method-params” on page 9-65

“persistence” on page 9-66

“persistence-use” on page 9-67

“persistent-store-dir” on page 9-68

“pool” on page 9-69

“principal-name” on page 9-70

“provider-url” on page 9-71

“read-timeout-seconds” on page 9-72

“reference-descriptor” on page 9-73

“relationship-description” on page 9-74

“replication-type” on page 9-74

“res-env-ref-name” on page 9-75

“res-ref-name” on page 9-76

“resource-description” on page 9-77

“resource-env-description” on page 9-78

“role-name” on page 9-79

“security-permission” on page 9-80

“security-permission-spec” on page 9-81

“security-role-assignment” on page 9-82
Programming WebLogic Enterprise JavaBeans 9-9

9 weblogic-ejb-jar.xml Document Type Definitions
“security-role-assignment” on page 9-82

“stateful-session-cache” on page 9-84

“stateful-session-clustering” on page 9-85

“stateful-session-descriptor” on page 9-86

“stateless-bean-call-router-class-name” on page 9-87

“stateless-bean-is-clusterable” on page 9-88

“stateless-bean-load-algorithm” on page 9-89

“stateless-bean-methods-are-idempotent” on page 9-90

“stateless-clustering” on page 9-91

“stateless-session-descriptor” on page 9-92

“transaction-descriptor” on page 9-93

“transaction-isolation” on page 9-94

“transport-requirements” on page 9-95

“trans-timeout-seconds” on page 9-96

“type-identifier” on page 9-97

“type-storage” on page 9-98

“type-version” on page 9-99

“weblogic-ejb-jar” on page 9-100

“weblogic-enterprise-bean” on page 9-100
9-10 Programming WebLogic Enterprise JavaBeans

allow-concurrent-calls
allow-concurrent-calls

Function

The allow-concurrent-calls element specifies whether a stateful session bean
instance allows concurrent method calls. By default, allows-concurrent-calls is
false. However, when this value is set to true, the EJB container blocks the
concurrent method call and allows it to proceed when the previous call has completed.

Example

See “stateful-session-descriptor” on page 9-86.

Range of values: true | false

Default value: false

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

stateful-session-descriptor
Programming WebLogic Enterprise JavaBeans 9-11

9 weblogic-ejb-jar.xml Document Type Definitions
allow-remove-during-transaction

Function

The allow-remove-during-transaction element specifies that the remove
method on a stateful session bean can be invoked within a transaction context.

Stateful session beans implementing the Synchronization interface should not use
this tag and then call remove before the transaction ends. If this is done the EJB
container will not invoke the synchronization callbacks.

Example

See “stateful-session-descriptor” on page 9-86.

Range of values: True | False

Default value: False

Requirements:

Parent elements: weblogic-enterprise-bean

stateful-session-descriptor
9-12 Programming WebLogic Enterprise JavaBeans

cache-between-transactions
cache-between-transactions

Function

The cache-between-transactions element, formerly the db-is-shared element,
specifies whether the EJB container will cache the persistent data of an entity bean
across (between) transactions.

The cache-between-transactions element applies only to entity beans. Specify
True to enable the EJB container performs long term caching of the data. Specify
False to enable the EJB container to perform short term caching of the data. This is
the default setting.

A Read-Only bean ignores the value of the cache-between-transactions element
because WebLogic Server always performs long term caching of Read-Only data.

See “Caching Between Transactions” on page 4-25 for more information.

Example

See “persistence” on page 9-66.

Range of values: true | false

Default value: false

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
Programming WebLogic Enterprise JavaBeans 9-13

9 weblogic-ejb-jar.xml Document Type Definitions
cache-type

Function

The cache-type element specifies the order in which EJBs are removed from the
cache. The values are:

Least recently used (LRU)

Not recently used (NRU)

The minimum cache size for NRU is 8. If max-beans-in-cache is less than 3,
WebLogic Server uses a value of 8 for cache-type.

Example

The following example shows the structure of the cache-type element.

<stateful-session-cache>

<cache-type>NRU</cache-type>

</stateful-session-cache>

Range of values: NRU | LRU

Default value: NRU

Requirements:

Parent elements: weblogic-enterprise-bean

stateful-session-cache
9-14 Programming WebLogic Enterprise JavaBeans

client-authentication
client-authentication

Function

The client-authentication element specifies whether the EJB supports or
requires client authentication.

Example

See “iiop-security-descriptor” on page 9-46.

Range of values: none | supported | required

Default value:

Requirements: n/a

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor
Programming WebLogic Enterprise JavaBeans 9-15

9 weblogic-ejb-jar.xml Document Type Definitions
client-cert-authentication

Function

The client-cert-authentication element specifies whether the EJB supports or
requires client certificate authentication at the transport level.

Example

See “transport-requirements” on page 9-95.

Range of values: none | supported | required

Default value:

Requirements: n/a

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor

transport-requirements
9-16 Programming WebLogic Enterprise JavaBeans

clients-on-same-server
clients-on-same-server

Function

The clients-on-same-server attribute determines whether WebLogic Server
sends JNDI announcements for this EJB when it is deployed. When this attribute is
“false” (the default), a WebLogic Server cluster automatically updates its JNDI tree to
indicate the location of this EJB on a particular server. This ensures that all clients can
access the EJB, even if the client is not collocated on the same server.

You can set clients-on-same-server to “true” when you know that all clients that
will access this EJB will do so from the same server on which the bean is deployed. In
this case, a WebLogic Server cluster does not send JNDI announcements for this EJB
when it is deployed. Because JNDI updates in a cluster utilize multicast traffic, setting
clients-on-same-server to “true” can reduce the startup time for very large
clusters.

See Optimization for Collocated Objects in Using WebLogic Server Clusters for more
information on collocated EJBs.

Example

The following example enables pass-by-value for EJB methods:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

...

Range of values: true | false

Default value: false

Requirements: n/a

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 9-17

http://e-docs.bea.com/wls/docs70/cluster/load_balancing.html
http://e-docs.bea.com/wls/docs70/cluster/index.html

9 weblogic-ejb-jar.xml Document Type Definitions
<clients-on-same-server>true</clients-on-same-server>

</weblogic-enterprise-bean>

concurrency-strategy

Function

The concurrency-strategy element specifies how the container should manage
concurrent access to an entity bean. Set this element to one of four values:

Exclusive causes WebLogic Server to place an exclusive lock on cached entity
EJB instances when the bean is associated with a transaction. Other requests for
the EJB instance are block until the transaction completes. This option was the
default locking behavior for WebLogic Server versions 3.1 through 5.1.

Database causes WebLogic Server to defer locking requests for an entity EJB to
the underlying datastore. With the Database concurrency strategy, WebLogic
Server allocates a separate entity bean instance and allows locking and caching
to be handled by the database. This is the default option.

ReadOnly used for read-only entity beans. Activates a new instance for each
transaction so that requests proceed in parallel. WebLogic Server calls
ejbLoad() for ReadOnly beans are based on the read-timeout-seconds
parameter.

Range of values: Exclusive | Database | ReadOnly | Optimistic

Default value: Database

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache
9-18 Programming WebLogic Enterprise JavaBeans

concurrency-strategy
Optimistic holds no locks in the EJB container or database during a
transaction. The EJB container verifies that none of the data updated by a
transaction has changed before committing the transaction. If any updated data
changed, the EJB container rolls back the transaction.

See “EJB Concurrency Strategy” on page 4-14 for more information on the
Exclusive and Database locking behaviors. See “Read-Only Multicast
Invalidation” on page 4-21 for more information about read-only entity EJBs.

Example

The following entry identifies the AccountBean class as a read-only entity EJB:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

<concurrency-strategy>ReadOnly</concurrency-strategy>

</entity-cache>

</entity-descriptor>

</weblogic-enterprise-bean>
Programming WebLogic Enterprise JavaBeans 9-19

9 weblogic-ejb-jar.xml Document Type Definitions
confidentiality

Function

The confidentiality element specifies the transport confidentiality requirements
for the EJB. Using the confidentiality element ensures that the data is sent
between the client and server in such a way as to prevent other entities from observing
the contents.

Example

See “transport-requirements” on page 9-95.

Range of values: none | supported | required

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor

transport-requirements n
9-20 Programming WebLogic Enterprise JavaBeans

connection-factory-jndi-name
connection-factory-jndi-name

Function

The connection-factory-jndi-name element specifies the JNDI name of the JMS
ConnectionFactory that the MessageDriven Bean should look up to create its queues
and topics. If this element is not specified, the default is the
weblogic.jms.MessageDrivenBeanConnectionFactory in config.xml.

Example

The following example shows the structure of the connection-factory-jndi-name
element:

<message-driven-descriptor>

<connection-factory-jndi-name>weblogic.jms.MessageDrivenBean
ConnectionFactory</connection-factory-jndi-name>

</message-driven-descriptor>

Range of values: valid name

Default value: weblogic.jms.MessageDrivenBeanConnectionFactory in config.xml

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

message-driven-descriptor
Programming WebLogic Enterprise JavaBeans 9-21

9 weblogic-ejb-jar.xml Document Type Definitions
delay-updates-until-end-of-tx

Function

Set the delay-updates-until-end-of-tx element to true (the default) to update
the persistent store of all beans in a transaction at the completion of the transaction.
This setting generally improves performance by avoiding unnecessary updates.
However, it does not preserve the ordering of database updates within a database
transaction.

If your datastore uses an isolation level of TRANSACTION_READ_UNCOMMITTED, you
may want to allow other database users to view the intermediate results of in-progress
transactions. In this case, set delay-updates-until-end-of-tx to false to update
the bean's persistent store at the conclusion of each method invoke. See “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 4-12 for more information.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

Example

The following example shows a delay-updates-until-end-of-tx stanza.

<entity-descriptor>

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
9-22 Programming WebLogic Enterprise JavaBeans

description
<persistence>

<delay-updates-until-end-of-tx>false</delay-updates-until-end-of-
tx>

</persistence>

</entity-descriptor>

description

Function

The description element is used to provide text that describes the parent element.

Example

The following example specifies the description element.

<description>Contains a description of parent element</description>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-ejb-jar
transaction-isolation

method
Programming WebLogic Enterprise JavaBeans 9-23

9 weblogic-ejb-jar.xml Document Type Definitions
destination-jndi-name

Function

The destination-jndi-name element specifies the JNDI name used to associate a
message-driven bean with an actual JMS Queue or Topic deployed in the WebLogic
Server JNDI tree.

Example

See “message-driven-descriptor” on page 9-60.

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required in message-driven-descriptor.

Parent elements: weblogic-enterprise-bean
message-driven-descriptor
9-24 Programming WebLogic Enterprise JavaBeans

ejb-name
ejb-name

Function

ejb-name specifies the name of an EJB to which WebLogic Server applies isolation
level properties. This name is assigned by the ejb-jar file’s deployment descriptor.
The name must be unique among the names of the enterprise beans in the same
ejb.jar file. The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without breaking the
enterprise bean’s function. There is no built-in relationship between the ejb-name in
the deployment descriptor and the JNDI name that the deployer will assign to the
enterprise bean’s home.

Example

See “method” on page 9-61.

Range of values: Name of an EJB defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in method stanza. The name must conform to the lexical rules for an
NMTOKEN.

Parent elements: weblogic-enterprise-bean
method
Programming WebLogic Enterprise JavaBeans 9-25

9 weblogic-ejb-jar.xml Document Type Definitions
ejb-reference-description

Function

The ejb-reference-description element maps the JNDI name in the WebLogic
Server of an EJB that is referenced by the bean in the ejb-reference element.

ejb-ref-name specifies a resource reference name. This is the reference that
the EJB provider places within the ejb-jar.xml deployment file.

jndi-name specifies the JNDI name of an actual resource factory available in
WebLogic Server.

Example

The ejb-reference-description stanza is shown here:

<ejb-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-reference-description>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor
9-26 Programming WebLogic Enterprise JavaBeans

ejb-ref-name
ejb-ref-name

Function

The ejb-ref-name element specifies a resource reference name. This element is the
reference that the EJB provider places within the ejb-jar.xml deployment file.

Example

The ejb-ref-name stanza is shown here:

<reference-descriptor>

<ejb-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-description

ejb-reference-description
Programming WebLogic Enterprise JavaBeans 9-27

9 weblogic-ejb-jar.xml Document Type Definitions
ejb-local-reference-description

Function

The ejb-local-reference-description element maps the JNDI name of an EJB
in the WebLogic Server that is referenced by the bean in the ejb-local-ref element.

Example

The following example shows the ejb-local-reference-description element.

<ejb-local-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-local-reference-description>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor
9-28 Programming WebLogic Enterprise JavaBeans

enable-call-by-reference
enable-call-by-reference

Function

By default, EJB methods called from within the same application (EAR) pass
arguments by reference. This increases the performance of method invocation because
parameters are not copied.

If you set enable-call-by-reference to False, parameters to the EJB methods
are copied (pass-by-value) in accordance with the EJB 1.1 specification. Pass by value
is always necessary when the EJB is called remotely (not from within the same
application).

Example

The following example enables pass-by-value for EJB methods:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

...

<enable-call-by-reference>false</enable-call-by-reference>

</weblogic-enterprise-bean>

Range of values: true | false

Default value: true

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor

ejb-reference-description
Programming WebLogic Enterprise JavaBeans 9-29

9 weblogic-ejb-jar.xml Document Type Definitions
enable-dynamic-queries

Function

The optional enable-dynamic-queries element must be set to true to enable dynamic
queries. Dynamic queries are only available for use with EJB 2.0 CMP beans.

Example

The following example enables dynamic queries:

<enable-dynamic-queries>True</enable-dynamic-queries>

Range of values: true | false

Default value: true

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
entity-descriptor
9-30 Programming WebLogic Enterprise JavaBeans

entity-cache
entity-cache

Function

The entity-cache element defines the following options used to cache entity EJB
instances within WebLogic Server:

max-beans-in-cache

idle-timeout-seconds

read-timeout-seconds

concurrency-strategy

See “EJB Life Cycle” on page 4-2 for a general discussion of the caching services
available in WebLogic Server.

Example

The entity-cache stanza is shown here:

<entity-descriptor>

<entity-cache>

<max-beans-in-cache>...</max-beans-in-cache>

<idle-timeout-seconds>...</idle-timeout-seconds>

<read-timeout-seconds>...<read-timeout-seconds>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The entity-cache stanza is optional, and is valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor
Programming WebLogic Enterprise JavaBeans 9-31

9 weblogic-ejb-jar.xml Document Type Definitions
<concurrency-strategy>...</concurrency-strategy>

</entity-cache>

<persistence>...</persistence>

<entity-clustering>...</entity-clustering>

</entity-descriptor>

entity-cache-name

Function

The entity-cache-name element refers to an application level entity cache that the
entity bean uses. An application level cache is a cache that may be shared by multiple
entity beans in the same application.

For more information about the weblogic-application.xml file, see the
application deployment descriptors.

Example

See “entity-cache-ref” on page 9-33.

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The value you specify for entity-cache-name must match the name assigned to an
application level entity cache in the weblogic-application.xml file.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

entity-cache-ref
9-32 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/programming/app_xml.html

entity-cache-ref
entity-cache-ref

Function

The entity-cache-ref element refers to an application level entity cache which can
cache instances of multiple entity beans that are part of the same application.
Application level entity caches are declared in the weblogic-application.xml file.

Use the “concurrency-strategy” on page 9-18 to define the type of concurrency you
want the bean to use. The concurrency-strategy must be compatible with the
application level cache’s caching strategy. For example, an Exclusive cache only
supports banes with a concurrency-strategy of Exclusive. While a MultiVersion
cache supports the Database, ReadOnly, and Optimistic concurrency strategies.

Example

The entity-cache-ref stanza is shown here:

<entity-cache-ref>
<entity-cache-name>AllEntityCache</entity-cache-name>
<concurrency-strategy>ReadOnly</concurrency-strategy>
<estimated-bean-size>20</estimated-bean-size>

</entity-cache-ref>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The entity-cache-name element in the entity-cache-ref stanza must contain
the name of the application level cache.

Parent elements: weblogic-enterprise-bean,
entity-descriptor
Programming WebLogic Enterprise JavaBeans 9-33

9 weblogic-ejb-jar.xml Document Type Definitions
entity-clustering

Function

The entity-clustering element uses the following options to specify how an entity
bean will be replicated in a WebLogic cluster:

home-is-clusterable

home-load-algorithm

home call-router-class-name

Example

The following excerpt shows the structure of a entity-clustering stanza:

<entity-clustering>

<home-is-clusterable>true</home-is-clusterable>

<home-load-algorithm>random</home-load-algorithm>

<home-call-router-class-name>beanRouter</home-call-router-class-n
ame>

</entity-clustering>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for entity EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor
9-34 Programming WebLogic Enterprise JavaBeans

entity-descriptor
entity-descriptor

Function

The entity-descriptor element specifies the following deployment parameters
that are applicable to an entity bean:

pool

entity-cache

persistence

entity-clustering

Example

The following example shows the structure of the entity-descriptor stanza:

<entity-descriptor>

<entity-cache>...</entity-cache>

<persistence>...</persistence>

<entity-clustering>...</entity-clustering>

</entity-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One entity-descriptor stanza is required for each entity EJB in the .jar.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 9-35

9 weblogic-ejb-jar.xml Document Type Definitions
estimated-bean-size

Function

The estimated-bean-size- element specifies the estimated average size of the
instances of an entity bean in bytes. This is the average number of byte of memory that
is consumed by each instance.

Use the estimated-bean-size element when the application level cache you use to
cache beans is also specified in terms of bytes and megabytes.

Although you may not know the exact number of bytes consumed by the entity bean
instances, specifying a size allows you to give some relative weight to the beans that
share a cache. at one time.

For example, suppose bean A ad bean B share a cache, called AB-cache, that has a size
of 1000 bytes and the size of A is 10 bytes and the size of B is 20 bytes, then the cache
can hold at most 100 instances of A and 50 instances of B. If 100 instance s of A are
cached, this implies that 0 instances of B are cached.

Example

See “entity-cache-ref” on page 9-33.

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: n/a

Parent elements: weblogic-enterprise-bean
entity-descriptor
9-36 Programming WebLogic Enterprise JavaBeans

externally-defined
externally-defined

Function
The externally-defined element indicates that a particular security role is defined
externally in a security realm, outside of the deployment descriptor. Because the
security role and it's principal-name mapping is defined elsewhere, principal-names
are not to be specified in the deployment descriptor. This tag is used as an indicative
placeholder instead of a set of principal-name elements.

Range of values: True | False

Default value:

Requirements: n/a

Parent elements: weblogic-enterprise-bean

 security-role-assignment
Programming WebLogic Enterprise JavaBeans 9-37

9 weblogic-ejb-jar.xml Document Type Definitions
finders-load-bean

Function

The finders-load-bean element determines whether WebLogic Server loads the
EJB into the cache after a call to a finder method returns a reference to the bean. If you
set this element to true, WebLogic Server immediately loads the bean into the cache
if a reference to a bean is returned by the finder. If you set this element to false,
WebLogic Server does not automatically load the bean into the cache until the first
method invocation; this behavior is consistent with the EJB 1.1 specification.

Example

The following entry specifies that EJBs are loaded into the WebLogic Server cache
automatically when a finder method returns a reference to the bean:

<entity-descriptor>

<persistence>

<finders-load-bean>true</finders-load-bean>

</persistence>

</entity-descriptor>

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for CMP entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
9-38 Programming WebLogic Enterprise JavaBeans

global-role
global-role

Function

The global-role element indicates that a particular security role is defined
“globally” in a security realm. Because the security role and its principal-name
mapping is defined elsewhere, principal-names are not to be specified in the
deployment descriptor. This tag is used as an indicative placeholder instead of a set of
principal-name elements.

Range of values: True | False

Default value: True

Requirements:

Parent elements: weblogic-enterprise-bean

 security-role-assignment
Programming WebLogic Enterprise JavaBeans 9-39

9 weblogic-ejb-jar.xml Document Type Definitions
home-call-router-class-name

Function

home-call-router-class-name specifies the name of a custom class to use for
routing bean method calls. This class must implement
weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

Example

See “entity-clustering” on page 9-34 and “stateful-session-clustering” on page 9-85.

Range of values: Valid router class name

Default value: null

Requirements: Optional element. Valid only for entity EJBs, stateful session EJBs, and stateless session
EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering
9-40 Programming WebLogic Enterprise JavaBeans

home-is-clusterable
home-is-clusterable

Function

Use home-is-clusterable to specify whether the home interface of an entity,
stateless session, or stateful session bean is clustered.

When home-is-clusterable is true for an EJB deployed to a cluster, each server
instance binds the bean’s home interface to its cluster JNDI tree under the same name.
When a client requests the bean’s home from the cluster, the server instance that does
the look-up returns a EJBHome stub that has a reference to the home on each server.

When the client issues a create() or find() call, the stub routes selects a server from
the replica list in accordance with the load balancing algorithm, and routes the call to
the home interface on that server. The selected home interface receives the call, and
creates a bean instance on that server instance and executes the call, creating an
instance of the bean.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid for entity EJBs, stateless session EJBs, and stateful session EJBs
in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

and

weblogic-enterprise-bean
stateless-session-descriptor

stateless-clustering
Programming WebLogic Enterprise JavaBeans 9-41

9 weblogic-ejb-jar.xml Document Type Definitions
Example

See “entity-clustering” on page 9-34.

home-load-algorithm

Function

home-load-algorithm specifies the algorithm to use for load balancing between
replicas of the EJB home. If this element is not defined, WebLogic Server uses the
algorithm specified by the server element,
weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

Range of values: round-robin | random | weight-based

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Requirements: Optional element. Valid only for entity EJBs and stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering
9-42 Programming WebLogic Enterprise JavaBeans

idempotent-methods
weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

Example

See “entity-clustering” on page 9-34 and “stateful-session-clustering” on page 9-85.

idempotent-methods

Function

The idempotent-methods element defines list of methods which are written in such
a way that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually compiled on the failed server. When you
enable idempotent-methods for a method, the EJB stub can automatically recover from
any failure as long as it can reach another server hosting the EJB.

To enable clustering, see “entity-clustering” on page 9-34,
“stateful-session-clustering” on page 9-85, and “stateless-clustering” on page 9-91.

The methods on stateless session bean homes and read-only entity beans are
automatically set to be idempotent. It is not necessary to explicitly specify them as
idempotent.

Range of values: n/a

Default value: n/a

Requirements: Clustering must be enabled for the EJB.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 9-43

9 weblogic-ejb-jar.xml Document Type Definitions
Example

The method stanza can contain the elements shown here:

<idempotent-method>
<method>

<description>...</description>
<ejb-name>...</ejb-name>
<method-intf>...</method-intf>
<method-name>...</method-name>
<method-params>...</method-params>

</method>
</idempotent-method>

identity-assertion

Function

The identity-assertion element specifies whether the EJB supports or requires
identity assertion.

Example

See “iiop-security-descriptor” on page 9-46.

Range of values: none | supported | required

Default value:

Requirements: n/a

Parent elements: weblogic-enterprise-bean
iiop-security-descriptor
9-44 Programming WebLogic Enterprise JavaBeans

idle-timeout-seconds
idle-timeout-seconds

Function

idle-timeout-seconds defines the maximum length of time a stateful EJB should
remain in the cache. After this time has elapsed, WebLogic Server removes the bean
instance if the number of beans in cache approaches the limit of
max-beans-in-cache. The removed bean instances are passivated. See “EJB Life
Cycle” on page 4-2 for more information.

Note: Although idle-timeout-seconds appears in the entity-cache stanza,
WebLogic Server 7. 0 SP01, SP02, SP03, and SP04 do not use its value in
managing the lifecycle of entity EJBs—in those service pecks,
idle-timeout-seconds has no effect on when entity beans are removed
from cache.

Example

The following entry indicates that the stateful session EJB, AccountBean, should
become eligible for removal if max-beans-in-cache is reached and the bean has
been in cache for 20 minutes:

Range of values: 1 to maxSeconds, where maxSeconds is the maximum value of an int.

Default value: 600

Requirements: Optional element

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

and

weblogic-enterprise-bean,
stateful-session-descriptor,

stateful-session-cache
Programming WebLogic Enterprise JavaBeans 9-45

9 weblogic-ejb-jar.xml Document Type Definitions
<weblogic-enterprise-bean>
<ejb-name>AccountBean</ejb-name>
<stateful-session-descriptor>

<stateful_session-cache>
<max-beans-in-cache>200</max-beans-in-cache>
<idle-timeout-seconds>1200</idle-timeout-seconds>

</stateful-session-cache>
</stateful-session-descriptor>

</weblogic-enterprise-bean>

iiop-security-descriptor

Function

The iiop-security-descriptor element specifies security configuration
parameters at the bean-level. These parameters determine the IIOP security
information contained in the IOR.

Example

The iiop-security-descriptor stanza can contain the elements shown here

<iiop-security-descriptor>

<transport-requirements>...</transport-requirements>

<client-authentication>supported<client-authentication>

<identity-assertion>supported</identity-assertion>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean
9-46 Programming WebLogic Enterprise JavaBeans

initial-beans-in-free-pool
</iiop-security-descriptor>

initial-beans-in-free-pool

Function

If you specify a value for initial-beans-in-free-pool, you set the initial size of
the pool. WebLogic Server populates the free pool with the specified number of bean
instances for every bean class at startup. Populating the free pool in this way improves
initial response time for the EJB, because initial requests for the bean can be satisfied
without generating a new instance.

Example

See “pool” on page 9-69.

Range of values: 0 to maxBeans

Default value: 0

Requirements: Optional element. Valid for stateless session, entity, and message-driven EJBs.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor, message-bean-descriptor,

entity-descriptor
pool
Programming WebLogic Enterprise JavaBeans 9-47

9 weblogic-ejb-jar.xml Document Type Definitions
initial-context-factory

Function

The initial-context-factory element specifies the initial contextFactory that the
container will use to create its connection factories. If initial-context-factory is not
specified, the default will be weblogic.jndi.WLInitialContextFactory.

Example

The following example specifies the initial-context-factory element.

<message-driven-descriptor>

<initial-context-factory>weblogic.jndi.WLInitialContextFactory
</initial-context-factory>

</message-driven-descriptor>

Range of values: true | false

Default value: weblogic.jndi.WLInitialContextFactory

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

message-driven-descriptor
9-48 Programming WebLogic Enterprise JavaBeans

integrity
integrity

Function

The integrity element specifies the transport integrity requirements for he EJB.
Using the integrity element ensures that the data is sent between the client and server
in such a way that it cannot be changed in transit.

Example

See “transport-requirements” on page 9-95.

Range of values: none | supported | required

Default value:

Requirements: n/a.

Parent elements: weblogic-enterprise-bean

iiop-security-descriptor
transport-requirements
Programming WebLogic Enterprise JavaBeans 9-49

9 weblogic-ejb-jar.xml Document Type Definitions
invalidation-target

Function

The invalidation-target element specifies a Read-Only entity EJB that should be
invalidated when this container-managed persistence entity EJB has been modified.

Example

The following entry specifies that the EJB named StockReaderEJB should be
invalidated when the EJB has been modified.

<invalidation-target>

<ejb-name>StockReaderEJB</ejb-name>

</invalidation-target>

Range of values:

Default value:

Requirements: The target ejb-name must be a Read-Only entity EJB and this element can only be
specified for an EJB 2.0 container-managed persistence entity EJB.

Parent elements: weblogic-enterprise-bean

entity-descriptor
9-50 Programming WebLogic Enterprise JavaBeans

is-modified-method-name
is-modified-method-name

Function

is-modified-method-name specifies a method that WebLogic Server calls when the
EJB is stored. The specified method must return a boolean value. If no method is
specified, WebLogic Server always assumes that the EJB has been modified and
always saves it.

Providing a method and setting it as appropriate can improve performance for EJB
1.1-compliant beans, and for beans that use bean-managed persistence. However, any
errors in the method’s return value can cause data inconsistency problems. See “Using
is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)” on page 4-12
for more information.

Note: isModified() is no longer required for 2.0 CMP entity EJBs based on the
EJB 2.0 specification However, it still applies to BMP and 1.1 CMP EJBs.
When you deploy EJB 2.0 entity beans with container-managed persistence,
WebLogic Server automatically detects which EJB fields have been modified,
and writes only those fields to the underlying datastore.

Example

The following entry specifies that the EJB method named semidivine will notify
WebLogic Server when the EJB has been modified:

Range of values: Valid entity EJB method name

Default value: None

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
Programming WebLogic Enterprise JavaBeans 9-51

9 weblogic-ejb-jar.xml Document Type Definitions
<entity-descriptor>

<persistence>

<is-modified-method-name>semidivine</is-modified-method-name>

</persistence>

</entity-descriptor>

isolation-level

Function

The transaction-isolation element defines method-level transaction isolation
settings for an EJB. Allowable values include:

TRANSACTION_SERIALIZABLE—Simultaneously executing this transaction
multiple times has the same effect as executing the transaction multiple times in
a serial fashion.

TRANSACTION_READ_COMMITTED—The transaction can view only committed
updates from other transactions

TRANSACTION_READ_UNCOMMITTED—The transaction can view uncommitted
updates from other transactions.

Range of values: TransactionSerializable | TransactionReadCommitted |
TransactionReadUncommitted | TransactionRepeatableRead |
TransactionReadCommittedForUpdate |
TransactionReadCommittedForUpdateNoWait

Default value: default setting of the underlying database

Requirements: Optional element.

Parent elements: weblogic-ejb-jar
transaction-isolation
9-52 Programming WebLogic Enterprise JavaBeans

isolation-level
TRANSACTION_REPEATABLE_READ—Once the transaction reads a subset of data,
repeated reads of the same data return the same values, even if other transactions
have subsequently modified the data.

These addition values are supported only for Oracle databases, and only for
container-managed persistence (CMP) EJBs:

TRANSACTION_READ_COMMITTED_FOR_UPDATE— Supported only for Oracle
databases, for container-managed persistence (CMP) beans only. This value sets
the isolation level to TRANSACTION_READ_COMMITTED, and for the duration of
the transaction, all SQL SELECT statements executed in any method are executed
with FOR UPDATE appended to them. This causes the selected rows to be locked
for update. If Oracle cannot lock the rows affected by the query immediately,
then it waits until the rows are free. This condition remains in effect until the
transaction does a COMMIT or ROLLBACK

This isolation level can be used to avoid the error:
java.sql.SQLException: ORA-08177: can't serialize access for
this transaction

which can occur when using the TRANSACTION_SERIALIZABLE isolation level
with Oracle databases.

TRANSACTION_READ_COMMITTED_FOR_UPDATE_NO_WAIT—Supported only for
Oracle databases, for container-managed persistence (CMP) beans only.

This value sets the isolation level to TRANSACTION_READ_COMMITTED, and for
the duration of the transaction, all SQL SELECT statements executed in any
method are executed with FOR UPDATE NO WAIT appended to them. This
causes the selected rows to be locked for update.

In contrast to the TRANSACTION_READ_COMMITTED_FOR_UPDATE setting,
TRANSACTION_READ_COMMITTED_FOR_UPDATE_NO_WAIT causes the Oracle
DBMS to NOT WAIT if the required locks cannot be acquired immediately—the
affected SELECT query will fail and an exception will be thrown by the
Container.

See “Setting Container-Managed Transaction Isolation Levels” on page 4-41 for
background information on the Oracle-specific isolation-level values.

Refer to your database documentation for more information support for different
isolation levels.
Programming WebLogic Enterprise JavaBeans 9-53

9 weblogic-ejb-jar.xml Document Type Definitions
Example

See “transaction-isolation” on page 9-94.

jms-polling-interval-seconds

Function

The jms-polling-interval-seconds specifies the number of seconds between
each attempt to reconnect to the JMS destination. Each message-driven bean listens on
an associated JMS destination. If the JMS destination is located on another WebLogic
Server instance or a foreign JMS provider, then the JMS destination may become
unreachable. In this case, the EJB container automatically attempts to reconnect to the
JMS Server. Once the JMS Server is up again, the message-driven bean can again
receive messages.

Example

The following entry specifies the jms polling intervals for message-driven beans:

<jms-polling-interval-seconds>5</jms-polling-interval seconds>

Range of values: n/a

Default value: 10 seconds

Requirements: n/a

Parent elements: weblogic-enterprise-bean
9-54 Programming WebLogic Enterprise JavaBeans

jms-client-id
jms-client-id

Function

The jms-client-id specifies an associated id for the JMS consumers. A
message-driven bean with a durable subscription needs an associated client id. If you
use a separate connection factory, you can set the client id on the connection factory.
In this case, the message-driven bean uses this client id.

If the associated connection factory does not have a client id or if you use the default
connection factory, then the message-driven bean used the jms-client-id value as its
client id.

Example

The following entry specifies an associated id for JMS consumers:

<jms-client-id>MyClientID</jms-client-id>

Range of values: n/a

Default value: The default client identifier is the ejb-name for this EJB.

Requirements: The jms-client-id is necessary for durable subscriptions to JMS topics.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 9-55

9 weblogic-ejb-jar.xml Document Type Definitions
jndi-name

Function

jndi-name specifies the JNDI name of an actual EJB, resource, or reference available
in WebLogic Server.

Example

See “resource-description” on page 9-77 and “ejb-reference-description” on page 9-26.

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required in resource-description and ejb-reference-description.

Parent elements: weblogic-enterprise-bean

and

weblogic-enterprise-bean
reference-descriptor

resource-description

and

weblogic-enterprise-bean
reference-descriptor

ejb-reference-description
9-56 Programming WebLogic Enterprise JavaBeans

local-jndi-name
local-jndi-name

Function

The local-jndi-name element specifies a jndi-name for a bean’s local home. If a
bean has both a remote and a local home, then it must have two JNDI names; one for
each home.

Example

The following example shows the specifies the local-jndi-name element.

<local-jndi-name>weblogic.jndi.WLInitialContext
</local-jndi-name>

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required if the bean has a local home.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 9-57

9 weblogic-ejb-jar.xml Document Type Definitions
max-beans-in-cache

Function

The max-beans-in-cache element specifies the maximum number of objects of this
class that are allowed in memory. When max-bean-in-cache is reached, WebLogic
Server passivates some EJBs that have not recently been used by a client.
max-beans-in-cache also affects when EJBs are removed from the WebLogic
Server cache, as described in “EJB Concurrency Strategy” on page 4-14.

Example

The following entry enables WebLogic Server to cache a maximum of 200 instances
of the AccountBean class:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

Range of values: 1 to maxBeans

Default value: 1000

Requirements: Optional element

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-cache
9-58 Programming WebLogic Enterprise JavaBeans

max-beans-in-free-pool
<max-beans-in-cache>200</max-beans-in-cache>

</entity-cache>

</entity-descriptor>

</weblogic-enterprise-bean>

max-beans-in-free-pool

Function

WebLogic Server maintains a free pool of EJBs for every entity, stateless session, and
message-driven bean class. The max-beans-in-free-pool element defines the size
of this pool. See “Stateless Session EJB Life Cycle” on page 4-6 and “Differences
Between Message-Driven Beans and Stateless Session EJBs” on page 3-3 for more
information.

Range of values: 0 to maxBeans

Default value: 1000

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor,

pool

weblogic-enterprise-bean,
message-bean-descriptor,

pool

weblogic-enterprise-bean,
entity-descriptor,

pool
Programming WebLogic Enterprise JavaBeans 9-59

9 weblogic-ejb-jar.xml Document Type Definitions
Example

See “pool” on page 9-69.

message-driven-descriptor

Function

The message-driven-descriptor element associates a message-driven bean with a
JMS destination in WebLogic Server. This element specifies the following
deployment parameters:

pool

destination-jndi-name

initial-context-factory

provider-url

connection-factory-jndi-name

Example

The following example shows the structure of the message-driven-descriptor
stanza:

<message-driven-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements:

Parent elements: weblogic-enterprise-bean
9-60 Programming WebLogic Enterprise JavaBeans

method
<destination-jndi-name>...</destination-jndi-name>

</message-driven-descriptor>

method

Function

The method element defines a method or set of methods for an enterprise bean’s home
or remote interface.

Example

The method stanza can contain the elements shown here:

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. You can specify more than one method stanza to configure multiple
EJB methods.

Parent elements: weblogic-ejb-jar
transaction-isolation
Programming WebLogic Enterprise JavaBeans 9-61

9 weblogic-ejb-jar.xml Document Type Definitions
method-intf

Function

method-intf specifies the EJB interface to which WebLogic Server applies isolation
level properties, if the method has the same signature in multiple interfaces.

Example

See “method” on page 9-61.

Range of values: Home | Remote | Local | Localhome

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-ejb-jar
transaction-isolation

method
9-62 Programming WebLogic Enterprise JavaBeans

method-name
method-name

Function

method-name specifies the name of an individual EJB method to which WebLogic
Server applies isolation level properties. Use the asterisk (*) to specify all methods in
the EJB’s home and remote interfaces.

If you specify a method-name, the method must be available in the specified
ejb-name.

Example

See “method” on page 9-61.

Range of values: Name of an EJB defined in ejb-jar.xml | *

Default value: n/a

Requirements: Required element in method stanza.

Parent elements: weblogic-ejb-jar
transaction-isolation

method
Programming WebLogic Enterprise JavaBeans 9-63

9 weblogic-ejb-jar.xml Document Type Definitions
method-param

Function

The method-param element specifies the fully qualified Java type name of a method
parameter.

Example

See “method-params” on page 9-65.

Range of values: Fully qualified Java type of a method parameter

Default value: n/a

Requirements: Required element in method-params.

Parent elements: weblogic-ejb-jar
transaction-isolation

method
method-params
9-64 Programming WebLogic Enterprise JavaBeans

method-params
method-params

Function

The method-params stanza contains one or more elements that define the Java type
name of each of the method’s parameters.

Example

The method-params stanza contains one or more method-param elements, as shown
here:

<method-params>

<method-param>java.lang.String</method-param>

...

</method-params>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional stanza.

Parent elements: weblogic-ejb-jar
transaction-isolation

method
Programming WebLogic Enterprise JavaBeans 9-65

9 weblogic-ejb-jar.xml Document Type Definitions
persistence

Function

The persistence element defines the following options that determine the
persistence type, transaction commit behavior, and ejbLoad() and ejbStore()
behavior for entity EJBs in WebLogic Server:

is-modified-method-name

delay-updates-until-end-of-tx

finders-load-bean

db-is-shared

persistence-use

Example

The following example specifies the persistence element.

<entity-descriptor>
<persistence>

<is-modified-method-name>...</is-modified-
method-name>
<delay-updates-until-end-of-tx>
</delay-updates-until-end-of-tx>
<finders-load-beand>...</finders-load-bean>
<db-is-shared>false</db-is-shared>
<persistence-use>...</persistence-use>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor
9-66 Programming WebLogic Enterprise JavaBeans

persistence-use
</persistence>
</entity-descriptor>

persistence-use

Function

The persistence-use element stores an identifier of the persistence type to be used
for this particular bean.

Example

The following excerpt shows a sample persistence-use stanza:

<persistence-use>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

<type-storage>META-INF/weblogic-cmp-jar.xml</type-storage>

</persistence-use>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
Programming WebLogic Enterprise JavaBeans 9-67

9 weblogic-ejb-jar.xml Document Type Definitions
persistent-store-dir

Function

Specifies a file system directory where WebLogic Server stores the state of passivated
stateful session bean instances. For more information, see “Specifying the Persistent
Store Directory for Passivated Beans” on page 4-10.

Example

<stateful-session-descriptor>
<stateful-session-cache>...</stateful-session-cache>
<allow-concurrent-calls>...</allow-concurrent-calls>
<persistent-store-dir>MyPersistenceDirr</persistent-store-dir>
<stateful-session-clustering>...</stateful-session-clustering>
<allow-remove-during-transaction>

</stateful-session-descriptor>

Default value: pstore

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
stateful-session-descriptor
9-68 Programming WebLogic Enterprise JavaBeans

pool
pool

Function

The pool element configures the behavior of the WebLogic Server free pool for EJBs.

Example

The pool stanza can contain the elements shown here:

<stateless-session-descriptor>
<pool>

<max-beans-in-free-pool>500</max-beans-in-free-pool>
<initial-beans-in-free-pool>250</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
stateless-session-descriptor, message-bean-descriptor,

entity-descriptor
Programming WebLogic Enterprise JavaBeans 9-69

9 weblogic-ejb-jar.xml Document Type Definitions
principal-name

Function

principal-name specifies the name of an actual WebLogic Server principal to apply
to the specified role-name.

Example

See “security-role-assignment” on page 9-82.

Range of values: valid WebLogic Server principal name

Default value: n/a

Requirements: At least one principal-name is required in the security-role-assignment stanza.
You may define more than one principal-name for each role-name.

Parent elements: weblogic-enterprise-bean
security-role-assignment
9-70 Programming WebLogic Enterprise JavaBeans

provider-url
provider-url

Function

The provider-url element specifies the URL provider to be used by the
InitialContext. Typically, this is the host:port and used in conjunction with
initial-context-factory and connection-factory-jndi-name.

Example

The following example specifies the provider-url element.

<message-driven-descriptor>

<provider-url>WeblogicURL:Port</provider-url>

</message-driven-descriptor>

Range of values: valid name

Default value: n/a

Requirements: Used in conjunction with initial-context-factory and
connection-factory-jndi-name.

Parent elements: weblogic-enterprise-bean
message-driven-descriptor
Programming WebLogic Enterprise JavaBeans 9-71

9 weblogic-ejb-jar.xml Document Type Definitions
read-timeout-seconds

Function

The read-timeout-seconds element specifies the number of seconds between
ejbLoad() calls on a Read-Only entity bean. A setting of 0 causes WebLogic Server
to calls ejbLoad() only when the bean is brought into the cache.

Example

The following entry causes WebLogic Server to call ejbLoad() for instances of the
AccountBean class only when the instance is first brought into the cache:

<weblogic-enterprise-bean>
<ejb-name>AccountBean</ejb-name>

<entity-descriptor>
<entity-cache>

<read-timeout-seconds>0</read-timeout-seconds>
</entity-cache>

</entity-descriptor>
</weblogic-enterprise-bean>

Range of values: 0 to maxSeconds, where maxSeconds is the maximum value of an int.

Default value: 600

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache
9-72 Programming WebLogic Enterprise JavaBeans

reference-descriptor
reference-descriptor

Function

The reference-descriptor element maps references in the ejb-jar.xml file to
the JNDI names of actual resource factories and EJBs available in WebLogic Server.

Example

The reference-descriptor stanza contains one or more additional stanzas to define
resource factory references and EJB references. The following shows the organization
of these elements:

<reference-descriptor>

<resource-description>

...

</resource-description>

<ejb-reference-description>

...

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 9-73

9 weblogic-ejb-jar.xml Document Type Definitions
relationship-description

This element is no longer supported in WebLogic Server.

replication-type

Function

The replication-type element determines whether WebLogic Server replicates the
state of stateful session EJBs across WebLogic Server instances in a cluster. If you
select InMemory, the state of the EJB is replicated. If you select None, the state is not
replicated.

See “In-Memory Replication for Stateful Session EJBs” on page 4-34 for more
information.

Example

See “stateful-session-clustering” on page 9-85.

Range of values: InMemory | None

Default value: None

Requirements: Optional element. Valid only for stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering
9-74 Programming WebLogic Enterprise JavaBeans

res-env-ref-name
res-env-ref-name

Function

The res-env-ref-name element specifies the name of a resource environment
reference.

Example

See “resource-description” on page 9-77.

Range of values: A valid resource environment reference name from the ejb-jar.xml file

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean
reference-descriptor

resource-env-description
Programming WebLogic Enterprise JavaBeans 9-75

9 weblogic-ejb-jar.xml Document Type Definitions
res-ref-name

Function

The res-ref-name element specifies the name of a resourcefactory reference.
This is the reference that the EJB provider places within the ejb-jar.xml deployment
file.

Example

See “resource-description” on page 9-77.

Range of values: A valid resource reference name from the ejb-jar.xml file

Default value: n/a

Requirements: Required element if the EJB specifies resource references in ejb-jar.xml

Parent elements: weblogic-enterprise-bean
reference-descriptor

resource-description
9-76 Programming WebLogic Enterprise JavaBeans

resource-description
resource-description

Function

The resource-description element maps a resource reference defined in
ejb-jar.xml to the JNDI name of an actual resource available in WebLogic Server.

Example

The resource-description stanza can contain additional elements as shown here:

<reference-descriptor>

<resource-description>

<res-ref-name>. . .</res-ref-name>

<jndi-name>...</jndi-name>

</resource-description>

<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>

<jndi-name>. . .</jndi-name>

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor
Programming WebLogic Enterprise JavaBeans 9-77

9 weblogic-ejb-jar.xml Document Type Definitions
resource-env-description

Function

The resource-env-description element maps a resource environment reference
defined in ejb-jar.xml to the JNDI name of an actual resource available in
WebLogic Server.

Example

The resource-env-description stanza can contain additional elements as shown
here:

<reference-descriptor>
<resource-env-description>

<res-env-ref-name>. . .</res-env-ref-name>
<jndi-name>...</jndi-name>

<reference-env-description>
</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor
9-78 Programming WebLogic Enterprise JavaBeans

role-name
role-name

Function

The role-name element identifies an application role name that the EJB provider
placed in the ejb-jar.xml deployment file. Subsequent principal-name elements
in the stanza map WebLogic Server principals to the specified role-name.

Example

See “security-role-assignment” on page 9-82.

Range of values: An EJB role name defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in security-role-assignment.

Parent elements: weblogic-enterprise-bean
security-role-assignment
Programming WebLogic Enterprise JavaBeans 9-79

9 weblogic-ejb-jar.xml Document Type Definitions
security-permission

Function

The security-permission element specifies a security permission that is associated
with a J2EE Sandbox.

For more information, see Sun's implementation of the security permission
specification:

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

Example

The security-permission stanza can contain one or more of the following
elements:

<security-permission> </security-permission>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: .

Parent elements: n/a
9-80 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

security-permission-spec
security-permission-spec

Function

The security-permission-spec element specifies a security permission associated
with a J2EE sandbox.

For more information, see Sun's implementation of the security permission
specification:

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

Example

To grant the “read” permission to “java.vm.version” and prevent it from being
overwritten:

1. Set the security-permission-spec as shown below:

<security-permission>
<description>Optional explanation goes here</description>
<security-permission-spec> grant { permission
java.util.PropertyPermission "java.vm.version", "read"; };
</security-permission-spec>

</security-permission>

2. Modify the startWeblogic script to start the server using this option:
JAVA_OPTIONS=-Djava.security.manager

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: n/a

Parent elements: security-permission
Programming WebLogic Enterprise JavaBeans 9-81

http://java.sun.com/j2se/1.3/docs/guide/security/PolicyFiles.html#FileSyntax

9 weblogic-ejb-jar.xml Document Type Definitions
3. Create a directory named lib in your domain directory.

4. Add this line to the %WL_HOME%\server\lib\weblogic.policy file:

add grant codeBase "file:/<Your user_projects
dir>/YourDomain/lib/-" { permission
java.security.AllPermission; };

This is necessary because the EJB stub's classpath is lib.

security-role-assignment

Function

The security-role-assignment element maps application roles in the
ejb-jar.xml file to the names of security principals available in WebLogic Server.

Example

The security-role-assignment stanza can contain one or more of the following
elements:

<security-role-assignment>
<role-name>PayrollAdmin</role-name>
<principal-name>Tanya</principal-name>
<principal-name>system</principal-name>
...

</security-role-assignment>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required element if ejb-jar.xml defines application roles.

Parent elements: n/a
9-82 Programming WebLogic Enterprise JavaBeans

session-timeout-seconds
session-timeout-seconds

Function

The session-timeout-seconds element specifies how long the EJB container waits before
removing a passivated stateful session EJB from disk.

The idle-timeout-seconds element determines how long the EJB container waits
before passivating stateful session beans, that is, removing them from cache and
writing them to disk.

In past releases, the EJB container also used idle-timeout-seconds to determine
how long to wait before removing passivated EJBs from the disk. With the addition of
session-timeout-seconds, you can specify how long stateful session beans stay
idle in the cache and how long they stay idle on disk using two different elements.

Example

The following example shows how to specify the session-timeout-seconds
element

<session-timeout-seconds>3600</session-timeout-seconds>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The session-timeout-seconds stanza is valid only for stateful session EJBs.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor

stateful-session-cache
Programming WebLogic Enterprise JavaBeans 9-83

9 weblogic-ejb-jar.xml Document Type Definitions
stateful-session-cache

Function

The stateful-session-cache element defines the following options used to cache
stateful session EJB instances within WebLogic Server.

max-beans-in-cache

idle-timeout-seconds

cache-type

See “EJB Life Cycle” on page 4-2 for a general discussion of the caching services
available in WebLogic Server.

Example

The following example shows how to specify the stateful-session-cache element

<stateful-session-cache>

<max-beans-in-cache>...</max-beans-in-cache>

<idle-timeout-seconds>...</idle-timeout-seconds>

<cache-type>...</cache-type>

</stateful-session-cache>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The stateful-session-cache stanza is optional, and is valid only for stateful
session EJBs.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor
9-84 Programming WebLogic Enterprise JavaBeans

stateful-session-clustering
stateful-session-clustering

Function

The stateful-session-clustering stanza element specifies clustering behaviors
for a stateful session EJB instances in a cluster:

Example

The following excerpt shows the structure of a entity-clustering stanza:

<stateful-session-clustering>

<home-is-clusterable>true</home-is-clusterable>

<home-load-algorithm>random</home-load-algorithm>

<home-call-router-class-name>beanRouter</home-call-router-class-n
ame>

<replication-type>InMemory</replication-type>

</stateful-session-clustering>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor
Programming WebLogic Enterprise JavaBeans 9-85

9 weblogic-ejb-jar.xml Document Type Definitions
stateful-session-descriptor

Function

The stateful-session-descriptor element specifies deployment behavior for a
stateful session EJB:

Example

The following example shows the structure of the stateful-session-descriptor
stanza:

<stateful-session-descriptor>
<stateful-session-cache>...</stateful-session-cache>
<allow-concurrent-calls>...</allow-concurrent-calls>
<persistent-store-dir>...</persistent-store-dir>
<stateful-session-clustering>...</stateful-session-clustering>
<allow-remove-during-transaction>...
</allow-remove-during-transaction>

</stateful-session-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One stateful-session-descriptor stanza is required for each stateful session
EJB in the .jar.

Parent elements: weblogic-enterprise-bean
9-86 Programming WebLogic Enterprise JavaBeans

stateless-bean-call-router-class-name
stateless-bean-call-router-class-name

Function

The stateless-bean-call-router-class-name element specifies the name of a
custom class to use for routing bean method calls. This class must implement
weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

Example

See “stateless-clustering” on page 9-91.

Range of values: Valid router class name

Default value: n/a

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering
Programming WebLogic Enterprise JavaBeans 9-87

9 weblogic-ejb-jar.xml Document Type Definitions
stateless-bean-is-clusterable

Function

Use stateless-bean-is-clusterable to specify whether a stateless session
bean’s EJBObject interface is clustered. Clustered EJBObjects support load
balancing and failover.

If stateless-bean-is-clusterable is true, when a home interface of a clustered
stateless session bean creates a bean instance, it returns a EJBObject stub to the client
that lists all of the servers in the cluster. Given the stateless nature of the bean, any
instance can service any client request.

Example

See “stateless-clustering” on page 9-91.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering
9-88 Programming WebLogic Enterprise JavaBeans

stateless-bean-load-algorithm
stateless-bean-load-algorithm

Function

stateless-bean-load-algorithm specifies the algorithm to use for load balancing
between replicas of the EJB home. If this property is not defined, WebLogic Server
uses the algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define stateless-bean-load-algorithm as one of the following values:

round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

Example

See “stateless-clustering” on page 9-91.

Range of values: round-robin | random | weight-based

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering
Programming WebLogic Enterprise JavaBeans 9-89

9 weblogic-ejb-jar.xml Document Type Definitions
stateless-bean-methods-are-idempotent

Function

DEPRECATED: The stateless-bean-methods-are-idempotent element is now
deprecated and will be removed in a future version of WebLogic.

Please use the idempotent-methods element instead.

Example

See “stateless-clustering” on page 9-91.

Range of values: true | false

Default value: false

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering
9-90 Programming WebLogic Enterprise JavaBeans

stateless-clustering
stateless-clustering

Function

The stateless-clustering element specifies the options that determine how
WebLogic Server replicates stateless session EJB instances in a cluster:

Example

The following excerpt shows the structure of a stateless-clustering stanza:

<stateless-clustering>
<home-is-clusterable>.../home-is-clusterable>
<home-load-algorithm>...</home-load-algorithm>
<home-call-router-class-name>...</home-call-router-class-name>
<use-serverside-stubs>...</use-serverside-stubs>
<stateless-bean-is-clusterable>...</stateless-bean-is-
clusterable>
<stateless-bean-load-algorithm>...</stateless-bean-load-
algorithm>
<stateless-bean-call-router-class-name>...
</stateless-bean-call-router-class-name>
<stateless-bean-methods-are-idempotent>...
</stateless-bean-methods-are-idempotent>

</stateless-clustering>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor
Programming WebLogic Enterprise JavaBeans 9-91

9 weblogic-ejb-jar.xml Document Type Definitions
stateless-session-descriptor

Function

The stateless-session-descriptor element defines deployment behaviors, such
as caching, clustering, and persistence, for stateless session EJBs in WebLogic Server.

Example

The following example shows the structure of the stateless-session-descriptor
stanza:

<stateless-session-descriptor>
<pool>...</pool>
<stateless-clustering>...</stateless-clustering>

</stateless-session-descriptor>

Requirements: One stateless-session-descriptor element is required for each stateless
session EJB in the JAR file.

Parent elements: weblogic-enterprise-bean
9-92 Programming WebLogic Enterprise JavaBeans

transaction-descriptor
transaction-descriptor

Function

The transaction-descriptor element specifies options that define transaction
behavior in WebLogic Server. Currently, this stanza includes only one element:
trans-timeout-seconds.

Example

The following example shows the structure of the transaction-descriptor stanza:

<transaction-descriptor>

<trans-timeout-seconds>20</trans-timeout-seconds>

</transaction-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 9-93

9 weblogic-ejb-jar.xml Document Type Definitions
transaction-isolation

Function

The transaction-isolation element specifies method-level transaction isolation
settings for an EJB. Example

The transaction-isolation stanza can contain the elements shown here:

<transaction-isolation>
<isolation-level>...</isolation-level>
<method>

<description>...</description>
<ejb-name>...</ejb-name>
<method-intf>...</method-intf>
<method-name>...</method-name>
<method-params>...</method-params>

</method>
</transaction-isolation>

For more information see “isolation-level” on page 9-52.

Range of values: n/a (XML stanza)

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-ejb-jar
9-94 Programming WebLogic Enterprise JavaBeans

transport-requirements
transport-requirements

Function

The transport-requirements element provides the transport requirements for the
EJB.

Example

The transport-requirements stanza can contain the elements shown here

<iiop-security-descriptor>
<transport-requirements>

<confidentiality>supported</confidentiality>
<integrity>supported</integrity>
<client-cert-authorization>suppoted

</client-cert-authentication>
</transport-requirements>

</iiop-security-descriptor>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean,
iiop-security-descriptor
Programming WebLogic Enterprise JavaBeans 9-95

9 weblogic-ejb-jar.xml Document Type Definitions
trans-timeout-seconds

Function

The trans-timeout-seconds element specifies the maximum duration for an EJB’s
container-initiated transactions. If a transaction lasts longer than
trans-timeout-seconds, WebLogic Server rolls back the transaction.

Example

See “transaction-descriptor” on page 9-93.

Range of values: 0 to max

Default value: 30

Requirements: Optional element. Valid for any type of EJB.

Parent elements: weblogic-enterprise-bean,
transaction-descriptor
9-96 Programming WebLogic Enterprise JavaBeans

type-identifier
type-identifier

Function

The type-identifier element contains text that identifies an entity EJB persistence
type. WebLogic Server RDBMS-based persistence uses the identifier,
WebLogic_CMP_RDBMS. If you use a different persistence vendor, consult the vendor’s
documentation for information on the correct type-identifier.

Example

See “persistence-use” on page 9-67 for an example that shows the complete
persistence-use definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string.
WebLogic_CMP_RDBMS specifies WebLogic Server RDBMS-based persistence.

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
persistence-use
Programming WebLogic Enterprise JavaBeans 9-97

9 weblogic-ejb-jar.xml Document Type Definitions
type-storage

Function

The type-storage element defines the full path of the file that stores data for this
persistence type. The path must specify the file’s location relative to the top level of
the EJB’s JAR deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named
weblogic-cmp-rdbms-jar.xml to store persistence data for a bean. This file is
stored in the META-INF subdirectory of the JAR file.

Example

See “persistence-use” on page 9-67 for an example that shows the complete
persistence-use definition for WebLogic Server RDBMS-based persistence.

Range of values: 5.1.0 for WebLogic persistence, EJB 1.1
6.0 for WebLogic persistence, EJB 2.0.

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
persistence-use
9-98 Programming WebLogic Enterprise JavaBeans

type-version
type-version

Function

For example, for WebLogic 2.0 CMP persistence, use the value:

6.0

For WebLogic 1.1 CMP persistence, use the value:
5.1.0

This element is necessary if multiple versions of the same persistence type are installed.

Note: If you use WebLogic Server RDBMS-based persistence, the specified version
must exactly match the RDBMS persistence version for the WebLogic Server
release. Specifying an incorrect version results in the error:

weblogic.ejb.persistence.PersistenceSetupException: Error
initializing the CMP Persistence Type for your bean: No installed
Persistence Type matches the signature of (identifier
‘Weblogic_CMP_RDBMS’, version ‘version_number’).

Example

See persistence-use for an example that shows the complete persistence-use
definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
persistence-use
Programming WebLogic Enterprise JavaBeans 9-99

9 weblogic-ejb-jar.xml Document Type Definitions
weblogic-ejb-jar

Function

weblogic-ejb-jar is the root element of the weblogic component of the EJB
deployment descriptor.

weblogic-enterprise-bean

Function

The weblogic-enterprise-bean element contains the deployment information for
a bean that is available in WebLogic Server.

Range of values: N/A

Default value: N/A

Requirements: N/A

Parent elements: N/A

Range of values:

Default value:

Requirements:

Parent elements: weblogic-ejb-jar
9-100 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
5.1 weblogic-ejb-jar.xml Deployment
Descriptor File Structure

The WebLogic Server 5.1 weblogic-ejb-jar.xml file defines the EJB
document type definitions (DTD)s you use with EJB 1.1 beans. These deployment
descriptor elements are WebLogic-specific. The top level elements in the WebLogic
Server 5.1 weblogic-ejb-jar.xml are as follows:

description

weblogic-version

weblogic-enterprise-bean

ejb-name

caching-descriptor

persistence-descriptor

clustering-descriptor

transaction-descriptor

reference-descriptor

jndi-name

transaction-isolation

security-role-assignment

5.1 weblogic-ejb-jar.xml Deployment
Descriptor Elements

The following sections describe WebLogic-Server 5.1 weblogic-ejb-jar.xml
deployment descriptor elements.
Programming WebLogic Enterprise JavaBeans 9-101

9 weblogic-ejb-jar.xml Document Type Definitions
caching-descriptor

The caching-descriptor stanza affects the number of EJBs in the WebLogic Server
cache as well as the length of time before EJBs are passivated or pooled. The entire
stanza, as well as each of its elements, is optional. WebLogic Server uses default
values where no elements are defined.

The following is a sample caching-descriptor stanza that shows the caching
elements described in this section:

<caching-descriptor>

<max-beans-in-free-pool>500</max-beans-in-free-pool>

<initial-beans-in-free-pool>50</initial-beans-in-free-pool>

<max-beans-in-cache>1000</max-beans-in-cache>

<idle-timeout-seconds>20</idle-timeout-seconds>

<cache-strategy>Read-Write</cache-strategy>

<read-timeout-seconds>0</read-timeout-seconds>

</caching-descriptor>

max-beans-in-free-pool

Note: This element is valid only for stateless session EJBs.

WebLogic Server maintains a free pool of EJBs for every bean class. This optional
element defines the size of the pool. By default, max-beans-in-free-pool has no
limit; the maximum number of beans in the free pool is limited only by the available
memory. See “EJB Life Cycle” on page 4-2.

initial-beans-in-free-pool

Note: This element is valid only for stateless session EJBs.

If you specify a value for initial-bean-in-free-pool, WebLogic Server
populates the free pool with the specified number of bean instances at startup.
Populating the free pool in this way improves initial response time for the EJB, since
initial requests for the bean can be satisfied without generating a new instance.
9-102 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
initial-bean-in-free-pool defaults to 0 if the element is not defined.

max-beans-in-cache

Note: This element is valid only for stateful session EJBs and entity EJBs.

This element specifies the maximum number of objects of this class that are allowed
in memory. When max-bean-in-cache is reached, WebLogic Server passivates
some EJBs that have not been recently used by a client. max-beans-in-cache also
affects when EJBs are removed from the WebLogic Server cache, as described in “EJB
Life Cycle” on page 4-2.

The default value of max-beans-in-cache is 100.

idle-timeout-seconds

idle-timeout-seconds defines the maximum length of time a stateful EJB should
remain in the cache. After this time has elapsed, WebLogic Server may remove the
bean instance if the number of beans in cache approaches the limit of
max-beans-in-cache. See “EJB Life Cycle” on page 4-2 for more information.

idle-timeout-seconds defaults to 600.

cache-strategy

The cache-strategy element can be one of the following:

Read-Write

Read-Only

The default value is Read-Write.

read-timeout-seconds

The read-timeout-seconds element specifies the number of seconds between
ejbLoad() calls on a Read-Only entity bean. By default, read-timeout-seconds
is set to 600 seconds. If you set this value to 0, WebLogic Server calls ejbLoad only
when the bean is brought into the cache.
Programming WebLogic Enterprise JavaBeans 9-103

9 weblogic-ejb-jar.xml Document Type Definitions
persistence-descriptor

The persistence-descriptor stanza specifies persistence options for entity EJBs.
The following shows all elements contained in the persistence-descriptor
stanza:

<persistence-descriptor>
<is-modified-method-name>
</is-modified-method-name>
<delay-updates-until-end-of-tx>
</delay-updates-until-end-of-tx>
<persistence-use>

<type-identifier>...</type-identifier>
<type-version>...</type-version>
<type-storage>...</type-storage>

</persistence-use>
<db-is-shared>...</db-is-shared>
<stateful-session-persistent-store-dir>
</stateful-session-persistent-store-dir>
<persistence-use>...</persistence-use>

</persistence-descriptor>

is-modified-method-name

is-modified-method-name specifies a method that WebLogic Server calls when the
EJB is stored. The specified method must return a boolean value. If no method is
specified, WebLogic Server always assumes that the EJB has been modified and
always saves it.

Providing a method and setting it as appropriate can improve performance. However,
any errors in the method’s return value can cause data inconsistency problems. See
“Using is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)” on page
4-12 for more information.

delay-updates-until-end-of-tx

Set this property to true (the default), to update the persistent store of all beans in a
transaction at the completion of the transaction. This generally improves performance
by avoiding unnecessary updates. However, it does not preserve the ordering of
database updates within a database transaction.
9-104 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
If your datastore uses an isolation level of TRANSACTION_READ_UNCOMMITTED, you
may want to allow other database users to view the intermediate results of in-progress
transactions. In this case, set delay-updates-until-end-of-tx to false to update
the bean's persistent store at the conclusion of each method invoke. See “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 4-12 for more information.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

persistence-use

A persistence-use defines a persistence service that can be used by an EJB. You
can define multiple persistence-use entries in weblogic-ejb-jar.xml for testing
with multiple persistence services.

persistence-use includes several elements that define the properties of a service:

type-identifier contains text that identifies the specified persistence type.
For example, WebLogic Server RDBMS persistence uses the identifier,
WebLogic_CMP_RDBMS.

type-version identifies the version of the specified persistence type.

Note: The specified version must exactly match the RDBMS persistence version for
the WebLogic Server release. Specifying an incorrect version results in the
error:

weblogic.ejb.persistence.PersistenceSetupException: Error
initializing the CMP Persistence Type for your bean: No installed
Persistence Type matches the signature of (identifier
‘Weblogic_CMP_RDBMS’, version ‘version_number’).

type-storage defines the full path of the file that stores data for this
persistence type. The path must specify the file’s location relative to the top level
of the EJB’s JAR deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named
weblogic-cmp-rdbms-jar.xml to store persistence data for a bean. This file is
stored in the META-INF subdirectory of the JAR file.

The following shows an example persistence-use stanza with values appropriate
for WebLogic Server RDBMS persistence:
Programming WebLogic Enterprise JavaBeans 9-105

9 weblogic-ejb-jar.xml Document Type Definitions
<persistence-use>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

<type-storage>META-INF\weblogic-cmp-rdbms-jar.xml</type-stora
ge>

</persistence-use>

db-is-shared

The db-is-shared element applies only to entity beans. When set to true (the
default value), WebLogic Server assumes that EJB data could be modified between
transactions and reloads data at the beginning of each transaction. When set to false,
WebLogic Server assumes that it has exclusive access to the EJB data in the persistent
store. See “Using cache-between-transactions to Limit Calls to ejbLoad()” on page
4-28 for more information.

stateful-session-persistent-store-dir

stateful-session-persistent-store-dir specifies the file system directory
where WebLogic Server stores the state of passivated stateful session bean instances.

clustering-descriptor

The clustering-descriptor stanza defines the replication properties and behavior
for EJBs deployed in a WebLogic Server cluster. The clustering-descriptor
stanza and each of its elements are optional, and are not applicable to single-server
systems.

The following shows all elements contained in the clustering-descriptor stanza:

<clustering-descriptor>
<home-is-clusterable>. . .</home-is-clusterable>
<home-load-algorithm>. . .</home-load-algorithm>
<home-call-router-class-name>...</home-call-router-class-name>
<stateless-bean-is-clusterable>...</stateless-bean-is-
clusterable>
<stateless-bean-load-algorithm>
</stateless-bean-load-algorithm>
9-106 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
<stateless-bean-call-router-class-name>
</stateless-bean-call-router-class-name>
<stateless-bean-methods-are-idempotent>
</stateless-bean-methods-are-idempotent>

</clustering-descriptor>

home-is-clusterable

You can set this element to either true or false. When home-is-clusterable is
true, the EJB can be deployed from multiple WebLogic Servers in a cluster. Calls to
the home stub are load-balanced between the servers on which this bean is deployed,
and if a server hosting the bean is unreachable, the call automatically fails over to
another server hosting the bean.

home-load-algorithm

home-load-algorithm specifies the algorithm to use for load balancing between
replicas of the EJB home. If this property is not defined, WebLogic Server uses the
algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

home-call-router-class-name

home-call-router-class-name specifies the custom class to use for routing bean
method calls. This class must implement weblogic.rmi.cluster.CallRouter().
If specified, an instance of this class is called before each method call. The router class
has the opportunity to choose a server to route to based on the method parameters. The
class returns either a server name or null, which indicates that the current load
algorithm should select the server.
Programming WebLogic Enterprise JavaBeans 9-107

9 weblogic-ejb-jar.xml Document Type Definitions
stateless-bean-is-clusterable

Use stateless-bean-is-clusterable to specify whether a stateless session
bean’s EJBObject interface is clustered. Clustered EJBObjects support load
balancing and failover.

If stateless-bean-is-clusterable is true, when a home interface of a clustered
stateless session bean creates a bean instance, it returns a EJBObject stub to the client
that lists all of the servers in the cluster. Given the stateless nature of the bean, any
instance can service any client request

stateless-bean-load-algorithm

This property is similar to home-load-algorithm, but it is applicable only to
stateless session EJBs.

stateless-bean-call-router-class-name

This property is similar to home-call-router-class-name, but it is applicable only
to stateless session EJBs.

stateless-bean-methods-are-idempotent

You can set this element to either true or false. Set
stateless-bean-methods-are-idempotent to true only if the bean is written
such that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually completed on the failed server. Setting this
property to true makes it possible for the bean stub to automatically recover from any
failure as long as another server hosting the bean can be reached.

Note: This property is applicable only to stateless session EJBs.

transaction-descriptor

The transaction-descriptor stanza contains elements that define transaction
behavior in WebLogic Server. Currently, this stanza includes only one element:
9-108 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
<transaction-descriptor>

<trans-timeout-seconds>20</trans-timeout-seconds>

<transaction-descriptor>

trans-timeout-seconds

The trans-timeout-seconds element specifies the maximum duration for the EJB’s
container-initiated transactions. If a transaction lasts longer than
trans-timeout-seconds, WebLogic Server rolls back the transaction.

If you specify no value for trans-timeout-seconds, container-initiated transactions
timeout after five minutes, by default.

reference-descriptor

The reference-descriptor stanza maps references in the ejb-jar.xml file to the
JNDI names of actual resource factories and EJBs available in WebLogic Server.

The reference-descriptor stanza contains one or more additional stanzas to define
resource factory references and EJB references. The following shows the organization
of these elements:

<reference-descriptor>

<resource-description>

<res-ref-name>. . .</res-ref-name>

<jndi-name>. . .</jndi-name>

</resource-description>

<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>

<jndi-name>. . .</jndi-name>

</ejb-reference-description>

</reference-descriptor>
Programming WebLogic Enterprise JavaBeans 9-109

9 weblogic-ejb-jar.xml Document Type Definitions
resource-description

The following elements define an individual resource-description:

res-ref-name specifies a resource reference name. This is the reference that
the EJB provider places within the ejb-jar.xml deployment file.

jndi-name specifies the JNDI name of an actual resource factory available in
WebLogic Server.

ejb-reference-description

The following elements define an individual ejb-reference-description:

ejb-ref-name specifies an EJB reference name. This is the reference that the
EJB provider places within the ejb-jar.xml deployment file.

jndi-name specifies the JNDI name of an actual EJB available in WebLogic
Server.

enable-call-by-reference

By default, EJB methods called from within the same EAR pass arguments by
reference. This increases the performance of method invocation since parameters are
not copied.

If you set enable-call-by-reference to false, parameters to EJB methods are
copied (pass by value) in accordance with the EJB 1.1 specification. Pass by value is
always necessary when the EJB is called remotely (not from within the same
application).

jndi-name

The jndi-name element specifies a jndi-name for a bean, resource, or reference.
9-110 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
transaction-isolation

The transaction-isolation stanza specifies the transaction isolation level for EJB
methods. The stanza consists of one or more isolation-level elements that apply
to a range of EJB methods. For example:

<transaction-isolation>
<isolation-level>TransactionSerializable</isolation-level>
<method>

<description>...</description>
<ejb-name>...</ejb-name>
<method-intf>...</method-intf>
<method-name>...</method-name>
<method-params>...</method-params>

</method>
</transaction-isolation>

The following sections describe each element in transaction-isolation.

isolation-level

Function

The transaction-isolation element defines method-level transaction isolation
settings for an EJB. Allowable values include:

TRANSACTION_SERIALIZABLE—Simultaneously executing this transaction
multiple times has the same effect as executing the transaction multiple times in
a serial fashion.

Range of values: TransactionSerializable | TransactionReadCommitted |
TransactionReadUncommitted | TransactionRepeatableRead |
TransactionReadCommittedForUpdate |
TransactionReadCommittedForUpdateNoWait

Default value: default setting of the underlying database

Requirements: Optional element.

Parent elements: weblogic-ejb-jar
transaction-isolation
Programming WebLogic Enterprise JavaBeans 9-111

9 weblogic-ejb-jar.xml Document Type Definitions
TRANSACTION_READ_COMMITTED—The transaction can view only committed
updates from other transactions

TRANSACTION_READ_UNCOMMITTED—The transaction can view uncommitted
updates from other transactions.

TRANSACTION_REPEATABLE_READ—Once the transaction reads a subset of data,
repeated reads of the same data return the same values, even if other transactions
have subsequently modified the data.

These addition values are supported only for Oracle databases, and only for
container-managed persistence (CMP) EJBs:

TRANSACTION_READ_COMMITTED_FOR_UPDATE— Supported only for Oracle
databases, for container-managed persistence (CMP) beans only. This value sets
the isolation level to TRANSACTION_READ_COMMITTED, and for the duration of
the transaction, all SQL SELECT statements executed in any method are executed
with FOR UPDATE appended to them. This causes the secluded rows to be locked
for update. If Oracle cannot lock the rows affected by the query immediately,
then it waits until the rows are free. This condition remains in effect until the
transaction does a COMMIT or ROLLBACK

This isolation level can be used to avoid the error:
java.sql.SQLException: ORA-08177: can't serialize access for
this transaction

which can occur when using the TRANSACTION_SERIALIZABLE isolation level
with Oracle databases.

TRANSACTION_READ_COMMITTED_FOR_UPDATE_NO_WAIT—Supported only for
Oracle databases, for container-managed persistence (CMP) beans only.

This value sets the isolation level to TRANSACTION_READ_COMMITTED, and for
the duration of the transaction, all SQL SELECT statements executed in any
method are executed with FOR UPDATE NO WAIT appended to them. This causes
the selected rows to be locked for update.

In contrast to the TRANSACTION_READ_COMMITTED_FOR_UPDATE setting,
TRANSACTION_READ_COMMITTED_FOR_UPDATE_NO_WAIT causes the Oracle
DBMS to NOT WAIT if the required locks cannot be acquired immediately—the
affected SELECT query will fail and an exception will be thrown by the
Container.

See “Setting Container-Managed Transaction Isolation Levels” on page 4-41 for
background information on the Oracle-specific isolation-level values.
9-112 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
Refer to your database documentation for more information on the implications and
support for different isolation levels.

Example

See “transaction-isolation” on page 9-111.

method

The method stanza defines the EJB methods to which an isolation level applies.
method defines a range of methods using the following elements:

description is an optional element that describes the method.

ejb-name identifies the EJB to which WebLogic Server applies isolation level
properties.

method-intf is an optional element that indicates whether the specified
method(s) reside in the EJB’s home or remote interface. The value of this
element must be “Home” or “Remote”. If you do not specify method-intf, you
can apply an isolation to methods in both interfaces.

method-name specifies either the name of an EJB method or an asterisk (*) to
designate all EJB methods.

method-params is an optional stanza that lists the Java types of each of the
method’s parameters. The type of each parameter must be listed in order, using
individual method-param elements within the method-params stanza.

For example, the following method stanza designates all methods in the
“AccountBean” EJB:

<method>

<ejb-name>AccountBean</ejb-name>

<method-name>*</method-name>

</method>

The following stanza designates all methods in the remote interface of
“AccountBean:”

<method>
Programming WebLogic Enterprise JavaBeans 9-113

9 weblogic-ejb-jar.xml Document Type Definitions
<ejb-name>AccountBean</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

security-role-assignment

The security-role-assignment stanza maps application roles in the ejb-jar.xml
file to the names of security principals available in WebLogic Server.

security-role-assignment can contain one or more pairs of the following
elements:

role-name is the application role name that the EJB provider placed in the
ejb-jar.xml deployment file.

principal-name specifies the name of an actual WebLogic Server principal.
9-114 Programming WebLogic Enterprise JavaBeans

CHAPTER
10 weblogic-cmp-rdbms-
jar.xml Document Type
Definitions

The chapter describes both the EJB 1.1and EJB 2.0 deployment descriptor elements
found in the weblogic-cmp-rdbms-jar.xml file, the weblogic-specific XML
document type definitions (DTD) file. Use these definitions to create the
WebLogic-specific weblogic-cmp-rdbms-jar.xml file that is part of your EJB
deployment.

The following sections provide a complete reference of both versions of the
WebLogic-specific XML including the DOCTYPE header information. Use these
deployment descriptor elements to specify container-managed-persistence (CMP).

EJB Deployment Descriptors

DOCTYPE Header Information

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
Programming WebLogic Enterprise JavaBeans 10-1

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
EJB Deployment Descriptors

The EJB deployment descriptors provide structural and application assembly
information for an enterprise bean. You specify this information by specifying values
for the deployment descriptors in three EJB XML DTD files. These files are:

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

You package these three XML files with the EJB and other classes into a deployable
EJB component, usually a JAR file, called ejb.jar.

The ejb-jar.xml file is based on the deployment descriptors found in Sun
Microsystems’s ejb.jar.xml file. The other two XML files are weblogic-specific
files that are based on the deployment descriptors found in weblogic-ejb-jar.xml
and weblogic-cmp-rdbms-jar.xml.

DOCTYPE Header Information

When editing or creating XML deployment files, it is critical to include the correct
DOCTYPE header for each deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose. The correct text for the PUBLIC element for each XML deployment file is as
follows.

The correct text for the PUBLIC element for the WebLogic Server-specific
weblogic-cmp-rdbms-jar.xml files are as follows.

XML File PUBLIC Element String

weblogic-cmp-rdbms
-jar.xml

'-// BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB RDBMS
Persistence//EN'
'http://www.bea.com/servers/wls700/dtd/weblogic-rdbms
20-persistence-700.dtd'
10-2 Programming WebLogic Enterprise JavaBeans

DOCTYPE Header Information
The correct text for the PUBLIC elements for the Sun Microsystem-specific ejb-jar
files are as follows.

For example, the entire DOCTYPE header for a weblogic-cmp-rdbms-jar.xml file is
as follows:

<!DOCTYPE weblogic-cmp-rdbms-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB RDBMS
Persistence//EN'
'http://www.bea.com/servers/wls700/dtd/weblogic-rdbms20-persisten
ce-700.dtd '>

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier ‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

weblogic-cmp-rdbms
-jar.xml

'-// BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS
Persistence//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic-rdbms
20-persistence-600.dtd'

XML File PUBLIC Element String

XML File PUBLIC Element String

ejb-jar.xml '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN'

'http://java.sun.com/dtd/ejb-jar_2_0.dtd'

ejb-jar.xml '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN'

'http://www.java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'
Programming WebLogic Enterprise JavaBeans 10-3

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server utilities
ignore the DTDs embedded within the DOCTYPE header of XML deployment files, and
instead use the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid
parser errors.

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

weblogic-cmp-rdbms-jar.xml

The following links provide the public DTD locations for the
weblogic-cmp-rdbms-jar.xml deployment files used with WebLogic Server:

For weblogic-cmp-rdbms-jar.xml 2.0 DTD:

http://www.bea.com/servers/wls700/dtd/weblogic-rdbms20-
persistence-700.dtd contains the DTD that defines container-managed
persistence properties for entity EJBs. This DTD is changed from WebLogic
Server Version 6.0, and you must still include a
weblogic-cmp-rdbms-jar.xml file for entity EJBs using WebLogic Server
RDBMS-based persistence.

Use the existing DTD file located at:
http://www.bea.com/servers/wls700/dtd/weblogic-rdbms-
persistence-700.dtd

http://www.bea.com/servers/wls600/dtd/weblogic-rdbms20-
persistence-600.dtd contains the DTD that defines container-managed
persistence properties for entity EJBs. This DTD is changed from WebLogic
Server Version 5.1, and you must still include a
weblogic-cmp-rdbms-jar.xml file for entity EJBs using WebLogic Server
RDBMS-based persistence.

Use the existing DTD file located at:
http://www.bea.com/servers/wls600/dtd/weblogic-rdbms-
persistence-600.dtd
10-4 Programming WebLogic Enterprise JavaBeans

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
ejb-jar.xml

The following links provide the public DTD locations for the ejb-jar.xml
deployment files used with WebLogic Server:

For ejb-jar.xml 2.0 DTD:

http://www.java.sun.com/dtd/ejb-jar_2_0.dtd contains the DTD for
the standard ejb-jar.xml deployment file, required for all EJBs. This DTD is
maintained as part of the JavaSoft EJB 2.0 specification; refer to the JavaSoft
specification for information about the elements used in ejb-jar.dtd.

For ejb-jar.xml 1.1 DTD:

ejb-jar.dtd contains the DTD for the standard ejb-jar.xml deployment
file, required for all EJBs. This DTD is maintained as part of the JavaSoft EJB
1.1 specification; refer to the JavaSoft specification for information about the
elements used in ejb-jar.dtd.

Note: Refer to the appropriate JavaSoft EJB specification for a description of the
ejb-jar.xml deployment descriptors.

2.0 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor File Structure

The weblogic-cmp-rdbms-jar.xml file defines deployment descriptors for a entity
EJBs that uses WebLogic Server RDBMS-based persistence services. The EJB
container uses a version of weblogic-cmp-rdbms-jar.xml that is different from the
XML shipped with WebLogic Server Version 6.x.

You can continue to use the earlier weblogic-cmp-rdbms-jar.xml DTD for EJB 1.1
beans that you will deploy on the WebLogic Server Version 7.0. However, if you want
to use any of the new CMP 2.0 features, you must use the new DTD described below.

The top-level element of the WebLogic Server 7.0 weblogic-cmp-rdbms-jar.xml
consists of a weblogic-rdbms-jar stanza:

description
Programming WebLogic Enterprise JavaBeans 10-5

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
weblogic-version

weblogic-rdbms-jar

weblogic-rdbms-bean
ejb-name
data-source-name
table-map
field-group
relationship-caching
weblogic-query
delay-database-insert-until
automatic-key-generation
check-exists-on-method

weblogic-rdbms-relation
relation-name
table-name
weblogic-relationship-role

create-default-dbms-tables
validate-db-schema-with
database-type

2.0 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor Elements

“automatic-key-generation” on page 10-9

“caching-element” on page 10-10

“caching-name” on page 10-11

“check-exists-on-method” on page 10-12

“cmp-field” on page 10-13

“cmr-field” on page 10-14

“column-map” on page 10-15

“create-default-dbms-tables” on page 10-16
10-6 Programming WebLogic Enterprise JavaBeans

2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
“database-type” on page 10-17

“data-source-name” on page 10-18

“db-cascade-delete” on page 10-19

“dbms-column” on page 10-20

“dbms-column-type” on page 10-21

“description” on page 10-22

“delay-database-insert-until” on page 10-23

“ejb-name” on page 10-24

“enable-tuned-updates” on page 10-25

“field-group” on page 10-26

“field-map” on page 10-27

“foreign-key-column” on page 10-28

“foreign-key-table” on page 10-29

“generator-name” on page 10-30

“generator-type” on page 10-31

“group-name” on page 10-32

“include-updates” on page 10-33

“key-cache-size” on page 10-34

“key-column” on page 10-35

“max-elements” on page 10-36

“method-name” on page 10-37

“method-param” on page 10-38

“method-params” on page 10-39

“optimistic-column” on page 10-40

“primary-key-table” on page 10-41
Programming WebLogic Enterprise JavaBeans 10-7

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
“query-method” on page 10-42

“relation-name” on page 10-43

“relationship-caching” on page 10-44

“relationship-role-map” on page 10-45

“relationship-role-name” on page 10-46

“sql-select-distinct” on page 10-47

“table-map” on page 10-48

“table-name” on page 10-50

“use-select-for-update” on page 10-51

“validate-db-schema-with” on page 10-52

“verify-columns” on page 10-53

“weblogic-ql” on page 10-54

“weblogic-query” on page 10-55

“weblogic-rdbms-bean” on page 10-56

“weblogic-rdbms-jar” on page 10-57

“weblogic-rdbms-relation” on page 10-58

“weblogic-relationship-role” on page 10-59
10-8 Programming WebLogic Enterprise JavaBeans

automatic-key-generation
automatic-key-generation

Function

The automatic-key-generation element specifies the use of the Sequence/Key
Generation feature.

Example

The XML stanza can contain the elements shown here:

<automatic-key-generation>
<generator-type>ORACLE</generator-type>
<generator-name>test_sequence</generator-name>
<key-cache-size>10</key-cache-size>

</automatic-key-generation>

<automatic-key-generation>
<generator-type>SQL-SERVER</generator-type>

</automatic-key-generation>

<automatic-key-generation>
<generator-type>NAMED_SEQUENCE_TABLE</generator-type>
<generator-name>MY_SEQUENCE_TABLE_NAME</generator-name>

Range of values: n/a

Default value: n/a

Requirements: Optional.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-9

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
<key-cache-size>100</key-cache-size>
</automatic-key-generation>

caching-element

Function

caching-element specifies the container-managed relationship (cmr-field) for the
related bean, and the group-name in the related bean. If group-name is not specified,
the default group-name (load all fields) is used. For more information about
group-name, see “group-name” on page 10-32.

The caching-element descriptor specifies the container-managed relationship
(cmr-field) for the related bean, and the group-name in the related bean. If
group-name is not specified, the default group-name (load all fields) is used. For
more information about group-name, see “group-name” on page 10-32.

As of WebLogic Server release 7.0 Service Pack 3, the EJB container now allows
multiple caching-element sub-elements. The relevant DTD entry is this:

<!ELEMENT caching-element (
cmr-field,
group-name?,
caching-element*
)>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-bean

relationship-caching

Deployment file: weblogic-cmp-rdbms-jar.xml
10-10 Programming WebLogic Enterprise JavaBeans

caching-name
Previously, the DTD entry read this way:

<!ELEMENT caching-element (
cmr-field,
group-name?,
caching-element?
)>

Example

See “relationship-caching” on page 10-44:

caching-name

Function

The caching-name element specifies the name of a relationship cache.

Example

See “relationship-caching” on page 10-44:

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-bean

relationship-caching

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-11

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
check-exists-on-method

Function

By default, the EJB container waits for a transaction to complete to check that a
container-managed persistence (CMP) entity bean exists. This results in high
performance and still provides a sufficient level of checking for most applications.

To specify that the EJB container check that bean exists before any business method
invoked on the bean completes, set check-exists-on-method to True. This means
the container notifies an application as soon as any business method is invoked on a
container-managed entity bean that has been removed.

Example

The following example specifies that WebLogic Server notify the application that a
business method has been invoked on a CMP entity bean that has been removed.

<check-exists-on-method>True</check-exists-on-method>

Range of values: True|False

Default value: False

Requirements: .

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
10-12 Programming WebLogic Enterprise JavaBeans

cmp-field
cmp-field

Function

This name specifies the mapped field in the bean instance which should be populated
with information from the database.

Example

See “field-map” on page 10-27.

Range of values: Valid name

Default value: n/a

Requirements: Field is case sensitive and must match the name of the field in the bean and must also
have a cmp-entry entry in the ejb-jar.xml.

Parent elements: weblogic-rdbms-bean
field-map

weblogic-rdbms-relation
field-group

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-13

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
cmr-field

Function

The cmr-field element specifies the name of a container-managed relationship field
(cmr-field.)

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

<cmp-field>employee stock
purchases</cmp-field>

<cmr-field>stock options</cmr-field>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: The field referenced in cmr-field must have a matching cmr-field entry in the
ejb-jar.xml.

Parent elements: weblogic-rdbms-relation

field-group

Deployment file: weblogic-cmp-rdbms-jar.xml
10-14 Programming WebLogic Enterprise JavaBeans

column-map
column-map

Function

This element represents the mapping of a foreign key column in one table in the
database to a corresponding primary key. The two columns may or may not be in the
same table. The tables to which the column belong are implicit from the context in
which the column-map element appears in the deployment descriptor.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>
<weblogic-rdbms-bean>

<column-map

<foreign-key-column>account-id</foreign-key-column>
<key-column>id</key-column>

</column-map>

 </weblogic-rdbms-bean>
</weblogic-rdbms-jar>

Range of values: n/a.

Default value: n/a

Requirements: The key-column element is not specified, if the foreign-key-column refers to a
remote bean.

Parent elements: weblogic-rdbms-bean
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-15

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
create-default-dbms-tables

Function

The create-default-dbms-table element turns on or off a feature that
automatically creates a default table based on the descriptions in the deployment files
and the bean class. When set to False, this feature is turned off and table will not
automatically be generated. When set to True, this feature is turned on and the table is
automatically created. If TABLE CREATION fails, a Table Not Found error is thrown
and the table must be created by hand.

Example

The following example specifies the create-default-dbms-tables element.

<create-default-dbms-tables>True</create-default-dbms-tables>

Range of values: True | False.

Default value: False

Requirements: Use this element only for convenience during the development and prototyping phases.
This is because the Table Schema in the DBMS CREATE statement used will be the
container’s best approximation of the definition. A production environment most likely,
will require a more precise schema definition.

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
10-16 Programming WebLogic Enterprise JavaBeans

database-type
database-type

Function

The database-type element specifies the database used as the underlying dbms.

Example

The following example specifies the underlying dbms.

<database-type>POINTBASE</database-type>

Range of values: DB2| INFORMIX| ORACLE| SQL_SERVER| SYBASE| POINTBASE.

Default value: NA

Requirements: NA.

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-17

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
data-source-name

Function

The data-source-name that specifies the JDBC data source name to be used for all
database connectivity for this bean.

Example

See “table-name” on page 10-50.

Range of values: Valid name of the data source used for all data base connectivity for this bean.

Default value: n/a

Requirements: Must be defined as a standard WebLogic Server JDBC data source for database
connectivity. For more information on datasources, see Programming WebLogic JDBC.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
10-18 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs70/jdbc/index.html

db-cascade-delete
db-cascade-delete

Function

The db-cascade-delete element specifies whether the database cascade feature is
turned on. If this element is not specified, WebLogic Server assumes that database
cascade delete is not specified.

Example

See “Cascade Delete Method” on page 5-54.

Range of values:

Default value: n/a

Requirements: Only supported for Oracle database. Can only be specified for one-to-one or
one-to-many relationships.

Parent elements: weblogic-rdbms-bean
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-19

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
dbms-column

Function

The name of the database column to which the field should be mapped.

Example

See “field-map” on page 10-27.

Range of values: Valid name

Default value: n/a

Requirements: dbms-column is case maintaining, although not all database are case sensitive.

Parent elements: weblogic-rdbms-bean
field-map

Deployment file: weblogic-cmp-rdbms-jar.xml
10-20 Programming WebLogic Enterprise JavaBeans

dbms-column-type
dbms-column-type

Function

The dbms-column-type element maps the current field to a Blob or Clob in an Oracle
database or a LongString or SybaseBinary in a Sybase database. This element can be
one of the following:

OracleBlob

OracleCLob

LongString

SybaseBinary

Example

<field-map>
<cmp-field>photo</cmp-field>
<dbms-column>PICTURE</dbms-column>
<dbms_column-type>OracleBlob</dbms-column-type>

</field-map>

Range of values: Valid name

Default value: n/a

Requirements: Available for use with Oracle database only.

Parent elements: weblogic-rdbms-bean
field-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-21

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
description

Function

The description element is used to provide text that describes the parent element.

Example

The following example specifies the description element.

<dscription>Contains a description of parent element</description>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
10-22 Programming WebLogic Enterprise JavaBeans

delay-database-insert-until
delay-database-insert-until

Function

The delay-database-insert-until element specifies the precise time when a new
bean that uses RDBMS CMP is inserted into the database.

It is advisable to delay the database insert until after the ejbPostCreate method
modifies the persistent fields of the bean. This can yield better performance by
avoiding an unnecessary store operation.

For maximum flexibility, you should avoid creating related beans in your
ejbPostCreate method. This may make delaying the database insert impossible if
database constraints prevent related beans from referring to a bean that has not yet been
created.

Example

The following example specifies the delay-database-insert-until element.

Range of values: ejbCreate | ejbPostCreate | commit

Default value: ejbPostCreate

Requirements: Database insert is delayed until after ejbPostCreate when a cmr-field is mapped
to a foreign-key column that does not allow null values. In this case, the
cmr-field must be set to a non-null value in ejbPostCreate before the bean is
inserted into the database.
The cmr-fields may not be set during ejbCreate, before the primary key of the
bean is known.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-23

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
<delay-database-insert-until>ejbPostCreate</delay-database-insert
-until>

ejb-name

Function

The name that specifies an EJB as defined in the ejb-cmp-rdbms.xml. This name must
match the ejb-name of a cmp entity bean contained in the ejb-jar.xml.

Example

See “table-name” on page 10-50.

Range of values: Valid name of an EJB.

Default value: n/a

Requirements: Must match the ejb-name of the cmp entity bean defined in the ejb-jar.xml.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
10-24 Programming WebLogic Enterprise JavaBeans

enable-tuned-updates
enable-tuned-updates

Function

The enable-tuned-updates element specifies that when ejbStore is called that the
EJB container automatically determine which container-managed fields have been
modified and then writes only those fields back to the database.

Example

The following examples shows how to specify the enable-tuned-updates element.

<enable-tuned-updates>True</enable-tuned-updates>

Range of values: True/False

Default value: True

Requirements:

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-25

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
field-group

Function

The field-group element represents a subset of the cmp and cmr-fields of a bean.
Related fields in a bean can be put into groups that are faulted into memory together
as a unit. A group can be associated with a finder or relationship, so that when a bean
is loaded as the result of executing a finder or following a relationship, only the fields
specified in the group are loaded.

A field may belong to multiple groups. In this case, the getXXX method for the field
faults in the first group that contains the field.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-bean>
<ejb-name>XXXBean</ejb-name>
<field-group>

<group-name>medical-data</group-name>
<cmp-field>insurance</cmp-field>
<cmr-field>doctors</cmr-fields>

</field-group>
</weblogic-rdbms-bean>

Range of values: Valid name

Default value: A special group named default is used for finders and relationships that have no group
specified.

Requirements: The default group contains all of a bean’s cmp-fields, but none of its cmr-fields.

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
10-26 Programming WebLogic Enterprise JavaBeans

field-map
field-map

Function

The name of the mapped field for a particular column in a database that corresponds
to a cmp field in the bean instance.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>
<weblogic-rdbms-bean>

<field-map>
<cmp-field>accountId</cmp-field>

<dbms-column>id</dbms-column>
</field-map>

<field-map>
<cmp-field>balance</cmp-field>

<dbms-column>bal</dbms-column>
</field-map>

 <field-map>
<cmp-field>accountType</cmp-field>

<dbms-column>type</dbms-column>
</field-map>

Range of values: Valid name

Default value: n/a

Requirements: Field mapped to the column in the database must correspond to a cmp field in the bean.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-27

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
 </weblogic-rdbms-bean>
</weblogic-rdbms-jar>

foreign-key-column

Function

The foreign-key-column element represents a column of a foreign key in the
database.

Example

See “column-map” on page 10-15.

Range of values: Valid name

Default value: n/a

Requirements: Must correspond to a column of a foreign key.

Parent elements: weblogic-rdbms-bean
column-map

Deployment file: weblogic-cmp-rdbms-jar.xml
10-28 Programming WebLogic Enterprise JavaBeans

foreign-key-table
foreign-key-table

Function

The foreign-key-table element specifies the name of a DBMS table that contains
a foreign key.

Example

See “relationship-role-map” on page 10-45.

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-relation

weblogic-relationship-role
relationship-role-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-29

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
generator-name

Function

The generator-name element is used to specify the name of the generator.

For example;

If the generator-type element is ORACLE, then the generator-name element
would be the name of the ORACLE_SEQUENCE to be used.

If the generator-type element is NAMED_SEQUENCE_TABLE, then the
generator-name element would be the name of the SEQUENCE_TABLE to be
used.

Example

See “automatic-key-generation” on page 10-9.

Range of values: n/a

Default value: n/a

Requirements: Optional.

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
10-30 Programming WebLogic Enterprise JavaBeans

generator-type
generator-type

Function

The generator-type element specifies the key generation method to use. The options
include:

ORACLE

SQL_SERVER

NAMED_SEQUENCE_TABLE

Example

See “automatic-key-generation” on page 10-9.

Range of values: n/a

Default value: n/a

Requirements: Optional

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-31

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
group-name

Function

The group-name element specifies the name of a field group.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

<cmp-field>employee stock
purchases</cmp-field>

<cmr-field>stock options</cmr-field>

<group-name>financial
data</group-name>

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-relation

field-group

weblogic-rdbms-bean

finder

finder-query

Deployment file: weblogic-cmp-rdbms-jar.xml
10-32 Programming WebLogic Enterprise JavaBeans

include-updates
</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

include-updates

Function

The include-updates element specifies that updates made during the current transaction
must be reflected in the result of a query. If this element is set to True, the container
will flush all changes made by the current transaction to disk before executing the
query.

Example

The XML stanza can contain the elements shown here:

<include-updates>False</include_updates>

Range of values: True | False

Default value: False

Requirements: The default value, which is False, provides the best performance.

Parent elements: weblogic-rdbms-bean
weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-33

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
key-cache-size

Function

The key-cache-size element specifies the optional size of the primary key cache
available in the automatic primary key generation feature.

Example

See “automatic-key-generation” on page 10-9.

Range of values: n/a

Default value: 1

Requirements: Optional

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
10-34 Programming WebLogic Enterprise JavaBeans

key-column
key-column

Function

The key-column element represents a column of a primary key in the database.

Example

See “column-map” on page 10-15.

Range of values: Valid name

Default value: n/a

Requirements: Must correspond to a column of a primary key.

Parent elements: weblogic-rdbms-bean
column-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-35

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
max-elements

Function

max-elements specifies the maximum number of elements that should be returned by
a multi-valued query. This element is similar to the maxRows feature in JDBC.

Example

The XML stanza can contain the elements shown here:

 <max-elements>100</max-elements>

 <!ELEMENT max-element (PCDATA)>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean
weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
10-36 Programming WebLogic Enterprise JavaBeans

method-name
method-name

Function

The method-name element specifies the name of a finder or ejbSelect method.

Example

See “weblogic-query” on page 10-55.

Range of values: n/a

Default value: n/a

Requirements: The ‘*’ character may not be used as a wildcard.

Parent elements: weblogic-rdbms-bean

query-method

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-37

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
method-param

Function

The method-param element contains the fully qualified Java type name of a method
parameter.

Example

The XML stanza can contain the elements shown here:

<method-param>java.lang.String</method-param>

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

method-params

Deployment file: weblogic-cmp-rdbms-jar.xml
10-38 Programming WebLogic Enterprise JavaBeans

method-params
method-params

Function

The method-params element contains an ordered list of the fully-qualified Java type
names of the method parameters.

Example

See “weblogic-query” on page 10-55.

Range of values: list of valid names

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

query-method

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-39

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
optimistic-column

Function

The optimistic-column element denotes a database column that contains a version
or timestamp value used to implement optimistic concurrency. For more information
on optimistic concurrency, see “Optimistic Concurrency Strategy” on page 4-17.

Example

The following sample XML shows the use of the optimistic-column element.

<optimistic-column>ROW_VERSION</optimistic-column>

Range of values: n/a

Default value: n/a

Requirements: Although not all databases are case sensitive, this element preserves case.

Parent elements: weblogic-rdbms-bean

table-map

Deployment file: weblogic-cmp-rdbms-jar.xml
10-40 Programming WebLogic Enterprise JavaBeans

primary-key-table
primary-key-table

Function

The primary-key-table element specifies the name of a DBMS table that contains
a primary key. For more information about primary keys, see “Using Primary Keys”
on page 5-31.

In the following XML stanza The bean on the primary-key side of a one-to-one
relationship, called Pk_bean is mapped to multiple tables, but the bean on the
foreign-key side of the relationship, called Fk_Bean is mapped to one table, called
Fk_BeanTable. The foreign-key columns are named Fk_column_1 and
Fk_column_2.

For more information, see “Container-Managed Relationships” on page 5-42.

Example

The following sample XML shows the use of the primary-key-table element.

<relationship-role-map
<primary-key-table->Pk_BeanTable_1</primary-key-table>
<column-map>
<foreign-key-column>Fk_column_1</foreign-key-column>

Range of values: n/a

Default value: n/a

Requirements: Although not all databases are case sensitive, this element is case maintaining.

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-relation

weblogic-relationship-role
relationship-role-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-41

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
<key-column>Pk_table1_pkColumn_1</key-column>
</column-map>
<column-map>
<foreign-key-column>Fk_column_2</foreign-key-column>
<key-column>Pk_table1_pkColumn_2</key-column>
</column-map>
</relationship-role-map>

query-method

Function

The query-method element specifies the method that is associated with a
weblogic-query. It also uses the same format as the ejb-jar.xml descriptor.

Example

See “weblogic-query” on page 10-55.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
10-42 Programming WebLogic Enterprise JavaBeans

relation-name
relation-name

Function

The relation-name element specifies the name of a relation.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<relation-name>stocks-holders</relation-name>

<table-name>stocks</table-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: Must match the ejb-relation-name of an ejb-relation in the associated
ejb-jar.xml deployment descriptor file. The ejb-relation-name is optional, but is
required for each relationship defined in the associated ejb-jar.xml deployment
descriptor file

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-43

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
relationship-caching

Function

The relation-caching element specifies relationship caching. For more
information on relationship caching, see “Using Relationship Caching for CMRs” on
page 5-51.

Example

<relationship-caching>
<caching-name>cacheMoreBeans</caching-name>
<caching-element>

<cmr-field>accounts<</cmr-field>
<group-name>acct_group</group-name>
<caching-element>

<cmr-field>address</cmr-field>
<group-name>addr_group</group-name>

</caching-element>
</caching-element>

<caching-element>
<cmr-field>phone</cmr-field>
<group-name>phone_group</group-name>

</caching-element>
</relationship-caching>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
10-44 Programming WebLogic Enterprise JavaBeans

relationship-role-map
The accounts and phone fields are container-managed relationship (CMR) fields in
the customerBean table; the address field is a CMR field in the accountBean table;
and the addr_group and phone_group are groups in the addressBean and
phoneBean.

Using nested caching-elements enables the bean to load more than one level of
related beans. In this example, addressBean is the second level related bean because
it is nested in the accountBean. Currently, there is no limitation on the number of
caching-elements that you can specify. However, setting too many
caching-element levels could have an impact on the performance of the current
transaction.

Since relationship caching uses join queries, and a join query might duplicate results
for a table in the ResultSet, the number of caching-element deployment descriptors
specified in the relationship-caching element will have a direct impact on the
number of duplicate results in the ResultSet. For one-to-many relationships, do not
specify too many caching-element deployment descriptors in the
relationship-caching element because the number of duplicate results might
multiply for each caching-element deployment descriptor.

relationship-role-map

Function

The relationship-role-map element specifies foreign-key-column to key-column
mapping for beans involved in a relationship.

Default value: n/a

Requirements: The name must match the ejb-relationship-role-name of an
ejb-relationship-role in the associated ejb-jar.xml descriptor file.

Parent elements: weblogic-rdbms-relation
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-45

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
For more information, see “Container-Managed Relationships” on page 5-42.

Example

The XML stanza can contain the elements shown here:

<relationship-role-map
<foreign-key-table>Fk_BeanTable_2</foreign-key-table>
<column-map>

<foreign-key-column>Fk_column_1</foreign-key-column>
<key-column>Pk_table_pkColumn_1</key-column>

</column-map>
<column-map>

<foreign-key-column>Fk_column_2</foreign-key-column>
<key-column>Pk_table_pkColumn_2</key-column>

</column-map>
</relationship-role-map>

relationship-role-name

Function

The relationship-role-name element specifies the name of a relationship role.

Default value: n/a

Requirements: The name must match the ejb-relationship-role-name of an
ejb-relationship-role in the associated ejb-jar.xml descriptor file.

Parent elements: weblogic-rdbms-relation
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
10-46 Programming WebLogic Enterprise JavaBeans

sql-select-distinct
Example

The XML stanza can contain the elements shown here:

<relationship-role-name>
</relationship- role-name>

sql-select-distinct

Function

The sql-select-distinct element controls whether the generated SQL SELECT
statement will contain a a DISTINCT qualifier. Using the DISTINCT qualifier caused
the database to return unique rows.

Example

The XML example contains the element shown here:

Range of values: True | False

Default value: False

Requirements: The Oracle database does not allow you to use a SELECT DISTINCT in conjunction
with a FOR UPDATE clause. Therefore, you cannot use the sql-select-distinct
element if any bean in the calling chain has a method with a
transaction-isolation element set to the isolation-level sub element with
a value of TransactionReadCommittedForUpdate. You specify the
transaction-isolation element in the weblogic-ejb-jar.xml file.

Parent elements: weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-47

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
<sql-select-distinct>True</sql-select-distinct>

table-map

Function

The table-map element specifies a mapping between the cmp-fields of a bean and the
columns of a table for all of the cmp-fields mapped to that table. If you map a CMP
bean to n DBMS tables, then you must specify n table-map elements for the bean,
one for each n DBMS table.

When you map a CMP bean to multiple tables, each table contains a row that maps to
a particular bean instance. Consequently, all tables will contain the same number of
rows at any point in time. In addition, each table contains the same set of homogeneous
primary key values. Therefore, each table must have the same number of primary key
columns and corresponding primary key columns in different tables must have the
same type, although they may have different names.

Each table-map element must specify a mapping from the primary key column(s) for
a particular table to the primary key field(s) of the bean. You can only map
non-primary key fields to a single table.

Range of values: n/a

Default value: n/a

Requirements: Each table-map element must contain a mapping for the bean’s primary key fields.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
10-48 Programming WebLogic Enterprise JavaBeans

table-map
Example

The XML stanza can contain the elements shown here:

<table-map>
<table-nme>DeptTable</table-name>

<field-map>
<cmp-field>deptId1</cmp-field>
<dbms-column>t1_deptId1_column</dbms-column>

</field-map>
<field-map>

<cmp-field>deptId2</cmp-field>
<dbms-column>t1_deptId2_column</dbms-column>

</field-map>
<field-map>

<cmp-field>location</cmp-field>
<dbms-column>location_column</dbms-column>

</field-map>
<cmp-field>budget</cmp-field>
<dbms-column>budget</dbms-column>

</field-map>
<fieldmap

</table-map>
Programming WebLogic Enterprise JavaBeans 10-49

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
table-name

Function

The fully qualified SQL name of the table. The user defined for the data-source for
this bean must have read and write privileges for this table, but does not necessarily
need schema modification privileges.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms.jar>

 <weblogic-rdbms-bean>

 <ejb-name>containerManaged</ejb-name>

<data-source-name>examples-dataSource-demoPool</data-source-name>

 <table-name>ejbAccounts</table-name>

</weblogic-rdbms-bean>

</weblogic-rdbms-jar>

Range of values: Valid, fully qualified SQL name of the source table in the database.

Default value: n/a

Requirements: table-name must be set in all cases.

Parent elements: weblogic-rdbms-bean

weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
10-50 Programming WebLogic Enterprise JavaBeans

use-select-for-update
use-select-for-update

Function

Enforces pessimistic concurrency on a per-bean basis. Specifying “true” for this flag
causes SELECT ... FOR UPDATE to be used whenever the bean is loaded from the
database. This is different from the transaction isolation level of
TRANSACTION_READ_COMMITTED_FOR_UPDATE in that this is set at the bean level
rather than the transaction level.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms.jar>

 <weblogic-rdbms-bean>

 <ejb-name>containerManaged</ejb-name>

<use-select-for-update>true</use-select-for-update>

</weblogic-rdbms-bean>

</weblogic-rdbms-jar>

Range of values: True, False

Default value: False

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-51

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
validate-db-schema-with

Function

The validate-db-schema-with element specifies that container-managed
persistence checks that beans have been mapped to a valid database schema during
deployment.

If you specify MetaData WebLogic Server uses the JDBC metadata to validate the
schema.

If you specify TableQuery, the default setting, WebLogic Server queries the tables
directly to verify that they have the schema expected by CMP runtime.

Example

The XML stanza can contain the elements shown here:

<validate-db-schema-with>TableQuery</validate-db-schema-with>

Range of values: MetaData | TableQuery

Default value: TableQuery

Requirements: n/a

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
10-52 Programming WebLogic Enterprise JavaBeans

verify-columns
verify-columns

Function

The verify-columns element specifies the columns in a table to check for validity
when you use the Optimistic concurrency strategy. WebLogic Server checks
columns at the end of a transaction, before committing it to the database, to make sure
that no other transaction has modified the data.

Read—all of the columns in the table that have been read during the transaction
are checked.

Modified—only the columns that have been updated by the current transaction
are checked.

Version and Timestamp—specify that a version or timestamp (pseudo)column
exists in the table and that this column is used to implement optimistic
concurrency. The EJB container will automatically increment the version or
timestamp column when a row in the table is updated. The name of the version
(or timestamp) column is specified using the optimistic-column element. It
is not necessary to map this column to a cmp field, unless desired.

If a bean is mapped to multiple tables, checking is only performed on the tables that
are updated during the transaction. The verify-columns elements for each table do
not need to have the same value.

See “Optimistic Concurrency Strategy” on page 4-17 for more information.

Range of values: Read | Modified | Version | Timestamp

Default value: none

Requirements: table-name must be set in all cases.

Parent elements: weblogic-rdbms-bean
table-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-53

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
Example

The XML stanza can contain the elements shown here:

<verify-columns>Modified</verify-columns>

weblogic-ql

Function

The weblogic-ql element specifies a query that contains a WebLogic specific
extension to the ejb-ql language. You should specify queries that only use standard
EJB-QL language features in the ejb-jar.xml deployment descriptor.

Example

See “weblogic-query” on page 10-55.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
10-54 Programming WebLogic Enterprise JavaBeans

weblogic-query
weblogic-query

Function

The weblogic-query element allows you to associate WebLogic specific attributes
with a query, as necessary. For example, weblogic-query can be used to specify a
query that contains a WebLogic specific extension to EJB-QL. Queries that do not take
advantage of WebLogic extensions to EJB-QL should be specified in the
ejb-jar.xml deployment descriptor.

Also, the weblogic-query element is used to associate a field-group with the
query if the query retrieves an entity bean that should be pre-loaded into the cache by
the query.

Example

The XML stanza can contain the elements shown here:

<weblogic-query>

 <query-method>

 <method-name>findBigAccounts</method-name>

 <method-params>

 <method-param>double</method-param>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-55

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
 </method-params>

 <query-method>

<weblogic-ql>WHERE BALANCE>10000
ORDERBY NAME</weblogic-ql>

</weblogic-query>

weblogic-rdbms-bean

Function

The weblogic-rdbms-bean represents a single entity bean that is managed by the
WebLogic RDBMS CMP persistence type.

Example

The XML structure of weblogic-rdbms-bean is:

weblogic-rdbms-bean
ejb-name
data-source-name

table-map
field-group
relationship-caching
weblogic-query

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
10-56 Programming WebLogic Enterprise JavaBeans

weblogic-rdbms-jar
delay-database-insert-until
automatic-key-generation
check-exists-on-method

weblogic-rdbms-jar

Function

The weblogic-rdbms-jar element is the root level element of a WebLogic RDBMS
CMP deployment descriptor. This element contains the deployment information for
one or more entity beans and an optional set of relations.

Example

The XML structure of weblogic-rdbms-jar is:

weblogic-rdbms-jar
weblogic-rdbms-bean
weblogic-rdbms-relation
create-default-dbms-tables
validate-db-schema-with
database-type

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: n/a

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-57

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
weblogic-rdbms-relation

Function

The weblogic-rdbms-relation element represents a single container-managed
relationship (CMR).

For more information about CMRs, see “Container-Managed Relationships” on page
5-42.

Example

<weblogic-rdbms-relation>
<relation-name>...</relation-name>
<weblogic-relationship-role>...</weblogic-relationship-role>

</weblogic-rdbms-relation>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
10-58 Programming WebLogic Enterprise JavaBeans

weblogic-relationship-role
weblogic-relationship-role

Function

The weblogic-relationship-role element is used to express a mapping from a
foreign key to a primary key. Only one mapping is specified for one-to-one or a
one-to-many relationships. With a many-to-many relationship, you must specify two
mappings

Multiple column mappings are specified for a single role, if the key is complex. No
column-map is specified if the role is just specifying a group-name.

For more information, see “Container-Managed Relationships” on page 5-42.

Example

The XML stanza can contain the elements shown here:

<weblogic-relationship-role>
<relationship-role-name>...</relationhsip-role-name>
<relationship-role-map>

<<column-map>
<foreign-key-column>manager-id

</foreign-key-column>
<key-column>id</key-column>

Range of values: Valid name

Default value: n/a

Requirements: The mapping of a role to a table is specified in the associated weblogic-rdbms-bean
and ejb-relation elements.

Parent elements: weblogic-rdbms-jar
weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 10-59

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
</column-map>
<relationship-role-name>

</weblogic-relationship-role>

1.1 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor File Structure

weblogic-cmp-rdbms-jar.xml defines deployment elements for a single entity EJB
that uses WebLogic Server RDBMS-based persistence services.

The top-level element of the WebLogic Server 1.1 weblogic-cmp-rdbms-jar.xml
consists of a weblogic-enterprise-bean stanza:

description

weblogic-version

<weblogic-enterprise-bean>

<pool-name>finance_pool</pool-name>

<schema-name>FINANCE_APP</schema-name>

<table-name>ACCOUNT</table-name>

<attribute-map>

<object-link>

<bean-field>accountID</bean-field>

<dbms-column>ACCOUNT_NUMBER</dbms-column>

</object-link>

<object-link>

<bean-field>balance</bean-field>

<dbms-column>BALANCE</dbms-column>

</object-link>
10-60 Programming WebLogic Enterprise JavaBeans

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
</attribute-map>

<finder-list>

<finder>

<method-name>findBigAccounts</method-name>

<method-params>

<<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

<finder-expression>. . .</finder-expression>

</finder>

</finder-list>

</weblogic-enterprise-bean>

1.1 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor Elements

RDBMS Definition Elements

This section describes the RDBMS definition elements.

pool-name

pool-name specifies name of the WebLogic Server connection pool to use for this
EJB’s database connectivity. See Using connection pools for more information.
Programming WebLogic Enterprise JavaBeans 10-61

http://e-docs.bea.com/wls/docs70/jdbc/index.html

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
schema-name

schema-name specifies the schema where the source table is located in the database.
This element is required only if you want to use a schema that is not the default schema
for the user defined in the EJB’s connection pool.

Note: This field is case sensitive, although many SQL implementations ignore case.

table-name

table-name specifies the source table in the database. This element is required in all
cases.

Note: The user defined in the EJB’s connection pool must have read and write
privileges to the specified table, though not necessarily schema modification
privileges. This field is case sensitive, although many SQL implementations
ignore case.

EJB Field-Mapping Elements

This section describes the EJB field-mapping elements.

attribute-map

The attribute-map stanza links a single field in the EJB instance to a particular
column in the database table. The attribute-map must have exactly one entry for
each field of an EJB that uses WebLogic Server RDBMS-based persistence.

object-link

Each attribute-map entry consists of an object-link stanza, which represents a
link between a column in the database and a field in the EJB instance.
10-62 Programming WebLogic Enterprise JavaBeans

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
bean-field

bean-field specifies the field in the EJB instance that should be populated from the
database. This element is case sensitive and must precisely match the name of the field
in the bean instance.

The field referenced in this tag must also have a cmp-field element defined in the
ejb-jar.xml file for the bean.

dbms-column

dbms-column specifies the database column to which the EJB field is mapped. This
tag is case sensitive, although many databases ignore the case.

Note: WebLogic Server does not support quoted RDBMS keywords as entries to
dbms-column. For example, you cannot create an attribute map for column
names such as “create” or “select” if those names are reserved in the
underlying datastore.

Finder Elements

This section describes the finder elements.

finder-list

The finder-list stanza defines the set of all finders that are generated to locate sets
of beans. See “Writing for RDBMS Persistence for EJB 1.1 CMP” on page 5-5 for
more information.

finder-list must contain exactly one entry for each finder method defined in the
home interface, except for findByPrimarykey. If an entry is not provided for
findByPrimaryKey, one is generated at compilation time.

Note: If you do provide an entry for findByPrimaryKey, WebLogic Server uses
that entry without validating it for correctness. In most cases, you should omit
an entry for findByPrimaryKey and accept the default, generated method.
Programming WebLogic Enterprise JavaBeans 10-63

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
finder

The finder stanza describes a finder method defined in the home interface. The
elements contained in the finder stanza enable WebLogic Server to identify which
method in the home interface is being described, and to perform required database
operations.

method-name

method-name defines the name of the finder method in the home interface. This tag
must contain the exact name of the method.

method-params

The method-params stanza defines the list of parameters to the finder method being
specified in method-name.

Note: WebLogic Server compares this list against the parameter types for the finder
method in the EJB’s home interface; the order and type for the parameter list
must exactly match the order and type defined in the home interface.

method-param

method-param defines the fully-qualified name for the parameter’s type. The type
name is evaluated into a java.lang.Class object, and the resultant object must
precisely match the respective parameter in the EJB’s finder method.

You can specify primitive parameters using their primitive names (such as “double” or
“int”). If you use a non-primitive data type in a method-param element, you must
specify a fully qualified name. For example, use java.sql.Timestamp rather than
Timestamp. If you do not use a qualified name, ejbc generates an error message when
you compile the deployment unit.

finder-query

finder-query specifies the WebLogic Query Language (WLQL) string that is used
to retrieve values from the database for this finder. See “Using WebLogic Query
Language (WLQL) for EJB 1.1 CMP” on page 5-7 for more information.
10-64 Programming WebLogic Enterprise JavaBeans

1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
Note: Always define the text of the finder-query value using the XML CDATA
attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

finder-expression

finder-expression specifies a Java language expression to use as a variable in the
database query for this finder.

Note: Future versions of the WebLogic Server EJB container will use the EJB QL
query language (as required by the EJB 2.0 specification). EJB QL does not
provide support for embedded Java expressions. Therefore, to ensure easier
upgrades to future EJB containers, create entity EJB finders without
embedding Java expressions in WLQL.
Programming WebLogic Enterprise JavaBeans 10-65

http://java.sun.com/products/ejb/docs.html

10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
10-66 Programming WebLogic Enterprise JavaBeans

Index

A
acessing remote clients 2-6
aggregate functions

EJB WebLogic QL 1-9
subqueries 5-20
with subquery return types 5-16

ANT tasks 1-11
application level cache

configuring 4-24
applications

building with EJBs 2-1
application-scoped

EJBs 6-9
arguments

ejbc 8-21
weblogic.deploy (deprecated) 8-29

arithmetic operators 5-18
automatic

table creation 5-40
automatic generation

primary key 5-33
primary key support for named sequence

table 5-36
primary key support for Oracle 5-35, 5-

36

B
bean-managed transactions 4-38
bidirectional

relationships 5-44

BLOB
binary large object 5-27
DBMS column support 5-27
specifying with deployment descriptors

5-28
bulk insert support 1-10, 4-45
business logic

modeling in entity EJBs 2-3

C
cache strategy

Read-Mostly 4-23
caching

application level cache 4-24
between transactions 4-25
between transactions with exclusive

concurrency 4-26
between transactions with optimistic

concurrency 4-27
between transactions with ReadOnly

concurrency 4-27
combined caching 4-24
flushing the CMP cache 5-30
relationship caching 5-51

calling
multiple EJBs 4-42

cascade delete
database cascade delete method 5-54
method 5-54
removing objects 5-53
Programming WebLogic Enterprise JavaBeans I-i

class name
possible generated collisions 6-13

class requirements
message-driven beans 3-7

classloading 6-14
clients

accessing local clients 2-6
accessing remote clients 2-6

CLOB
character large object 5-27
DBMS column support 5-27
specifying with deployment descriptors

5-28
cluster

distributing transactions across EJBS 4-
43

entity EJBs 4-35
read-wrie entity EJBs 4-36
stateful session EJBs 4-33
stateless session EJBs 4-31
using EJBs 4-29

clustered
EJBObjrcts 4-30

CMP 5-1
EJB persistence services 5-3
flushing the cache 5-30
groups 5-58
Java data types for CMP fields 5-59
relationships 5-2
using SQL with 1.1 finder queries 5-10

combined caching
with entity beans 4-24

combined caching support 1-10
compiling

EJBs 6-12
components

bean class 1-2
EJBs 1-2
home interface 1-2
remote interface 1-2

concurrency strateg

optimistic 4-17
concurrency strategy

database 4-17
exclusive 4-16
for EJBs 4-14
ReadOnly 4-20
ReadOnly restrictions 4-21
read-write EJBs 4-15
specifying 4-16

concurrent processing
topics and queues 3-3

configure
application level cache 4-24

container
EJB 4-1

container-managed
restrictions for EJBs 4-40
setting transaction isolation levels 4-41
transactions 4-39

container-managed persistence 5-1
groups 5-58
relationships 5-2

context interface 3-8
correlated subqueries 5-20
customer support contact information xxiii

D
data source factories 4-46
data types

java data types
for CMP fields 5-59

database
concurrency strategy 4-17

database insert
bulk insert 4-45

database insert support 4-44
delay-database-insert-until 4-44

datastore
managing transactions 2-9

DDConverter 8-23
I-ii Programming WebLogic Enterprise JavaBeans

conversion options 8-24
examples 8-27
options 8-27
syntax 8-26

defining the methods 3-7
delay-database-insert-until 4-44
delay-updates-until-end-of-tx

ejbStore 4-14
transactions 4-14

delete
cascade 5-53

deploy
arguments 8-29
depercated tool 8-28
invoking deployed EJBs 2-6
options 8-29
syntax 8-28

Deployer
weblogic.Deployer tool 8-28

deploying
message-driven beans 3-11

deployment
descriptors

EJB 9-2
descriptors (DOCTYPE header

information 9-2
EJB files 6-3
EJB roles and responsibilities 7-1
EJBs at server startup 7-2
EJBs in different applications 7-3
names 7-4
new EJBS in a running environment 7-4
on a running server 7-3
packaging EJBs 6-10
relationship among deployment files 6-4
uncompiled EJBs 7-9
undeploying EJBs 7-6
updating EJBs 7-7
weblogic-cmp-rdbms-jar.xml file

structure 10-5
deployment descriptor

creating deployment files 6-6
editing using Administration Console 1-

12
ejb-jar.xml 6-4
weblogic-cmp-rdbms.xml 6-4
weblogic-ejb-jar.xml 6-4

Deployment Descriptor Editor 1-12
deployment descriptors

editing in the Console 6-7
manually editing 6-6

design tips 2-1
designing

message-driven beans 2-4
session beans 2-1

developer tools
ANT 1-11
EJB 1-11
EJB DD Editor 1-12
EJBGen 1-12
WebLogic Builder 1-11
weblogic.Deployer 1-12
XML Editor 1-13

DISTINCT clause
with subqueries 5-20

distributing
transactions accross multiple EJBs 4-42

documentation, where to find it xxi
DTD

elements 9-7
valid definitions (weblogic-cmp-rdbms-

jar.xml) 10-4
weblogic-cmp-rdbms-jar.xml 10-1

dynamic queries
enabling 5-25
executing 5-25
queries

dynamic
EJB QL

dynamic queries 5-24
dynamic query support 1-8
Programming WebLogic Enterprise JavaBeans I-iii

E
eager

relationship caching 5-51
editing

deployment descriptors in the Console 6-
7

EJB deployment descriptors 6-5
manually editing deployment descriptors

6-6
EJB 6-5

accessing local clients 2-6
activating EJB instance from free pool 4-

7
ANT tasks 1-11
building applications 2-1
changes in this release 1-1
coarse-grained entity EJBs 2-3
compiling 6-12
components 1-2
concurrency strategy 4-14
container 4-1
container context 3-8
conversion options 8-24
converting to latest version of WLS 8-26
creating bean instances 3-10
creating deployment files 6-6
creating message-driven beans 3-4
deploying at server startup 7-2
deploying in a running environment 7-4
deploying in different applications 7-3
deploying on a running server 7-3
deploying uncompiled EJBs 7-9
Deployment Descriptor Editor 1-12, 6-7
deployment descriptors 9-2
deployment descriptors (weblogic-cmp-

rdbms-jar.xml) 10-2
deployment names 7-4
design and development 2-1
developer tools 1-11
document type definitions 9-4

editing deployment descriptors 6-5
ejb-client.jar 6-14
EJBGen 1-12
ejb-jar 6-12
ejb-jar.xml file 6-4
enhancements for this release 1-7
enity bean home interface 2-2
features 1-1
generated class name collisions 6-13
generating 6-12
handling beans 3-9
initializing EJB instances 4-6
invoking deployed EJBs 2-6
lifecycle of EJB instances 4-2
lifecycle of stateless session EJBs 4-6
links 5-59
links support 1-10
loading into WebLogic Server 6-14
manually editing deployment descriptors

6-6
message-driven beans 3-1
modeling entity EJBs 2-2
multiple table mapping for 2.0 CMP 5-

38
optimizing data access 2-3
overview 1-2
packaging for use in the container 6-1
packaging in deployment directory 6-10
packaging steps 6-2
persistence services 5-3
pooling EJB instances 4-7
QL for 2.0 beans 5-11
referencing applicaion-scoped EJBs 6-9
referencing external EJBs 6-8
removing bean instances 3-10
restriction for accessing EJBs 2-7
source file components 6-2
storing references in home handles 2-7
transaction resources 2-8
tuned 1.1 CMP updates 5-29
types of 1-2
I-iv Programming WebLogic Enterprise JavaBeans

undeploying 7-6
updating 7-7
using inheritance 2-5
utilities 8-1
viewing deployed EJBs

EJB
viewing deployed 7-6

WebLogic Builder 1-11
weblogic.Deployer 1-12
weblogic-cmp-rdbms.xml file 6-4
weblogic-ejb-jar.xml file 6-4
writing RDBMS persistence for 1.1

CMP beans 5-5
XML Editor 1-13

EJB 2.0 support 1-4
EJB container

description 4-2
resource factoires 4-46
supported services 4-1

EJB deployment files 6-3
EJB life cycle

stateful session 4-7
EJB manifest class-path 6-16
EJB QL

migration from WLQL 5-12
requirements for 2.0 EJBs 5-12
WebLogic QL extension for EJB 2.0 5-

13
EJB roles 1-5

application roles 1-5
deployment roles 1-7
infrastructure roles 1-6
management roles 1-7

EJB Support
combined caching 1-10

EJB support
bulk insert 1-10, 4-45
database insert 4-44
dynamic query 1-8
EJB links 1-10

EJB WebLogic QL enhancements 1-8
message-driven bean migratable service

1-8
multiple table mapping 1-8
optimistic concurrency 1-9
ReadOnly entity concurrency 1-9
relationship caching 1-10

EJB WebLogic QL
aggregate functions 1-9
ResultSets 1-9
subqueries 1-8
UPDATE NO WAIT 1-9

EJB WebLogic QL enhancements support 1-
8

ejbc 8-19
arguments 8-21
examples 8-23
options 8-21
syntax 8-20

ejbCreate() 3-10
EJBGen 1-12, 8-1

example 8-5
syntax 8-2
tags 8-7

ejbLoad
entity beans 4-12

EJBObjects
clustered 4-30

ejbRemove() 3-10
EJBs

distributing transactions across multiple
EJBs 4-42

in clusters 4-29
restrictions for container-managed 4-40

ejbStore
delay-updates-until-end-of-tx 4-14
entity beans 4-12

enabling
caching between transactions 4-27

encapsulating
multi-operational transactions 4-43
Programming WebLogic Enterprise JavaBeans I-v

entity bean
home interface 2-2

entity beans
combined caching 4-24
relationship caching 5-51

entity EJBs 1-3
behavior with ejbLoad entity EJBs

behavior with ejbStore 4-12
in a cluster 4-35

examples
DDConverter 8-27
ejbc 8-23

exceptions
for message-driven beans 3-9

exclusive
concurrency strategy 4-16

EXISTS
comparison operator 5-18

F
field groups 5-58
file components

EJBs 6-2
finder

EJB QL for 2.0 beans 5-11
signature 5-5

finder-list
stanza 5-6

finder-query
element 5-6
using for 1.1 CMP with SQL 5-10

firewall
using with home handles 2-8

G
generating

EJBs 6-12
get method

restrictions 5-27

groups 5-58
field groups 5-58

H
home handles

EJB references 2-7
using across a firewall 2-8

home interface
entity bean 2-2

I
IN 5-17
inheritance

restrictions 2-5
using with EJBs 2-5

initial-bean-free-pool property 4-6
initializing

EJB instances 4-6
in-memory replication

limitations 4-35
requirements 4-34

installing
EJBs 7-4

is-modified-method-name
EJB 1.1 only 4-13

isolation levels
setting 4-40
setting for container-managed

transactions 4-41

J
Java specification

EJB 2.0 1-3
J2EE 1-3

java.transaction.UserTransaction 4-39
JDBC data source 4-46
I-vi Programming WebLogic Enterprise JavaBeans

L
limitations

in-memory replication 4-35
relationship caching 5-53
TRANSACTION_SERIALIZABLE 4-

41
links

EJB links 5-59
local client 5-56
local interfaces 5-55

local client 5-56

M
manifest class-path 6-16
message acknowledgement 3-12
message receipts 3-12
message-driven bean migratable service 1-8
message-driven beans 3-7

basic components 3-7
basic invocation procedure 3-9
container context 3-8
deploying 3-11
description 3-2
designing 2-4
develop and deploy 3-1
developing 3-4
differences from JMS 3-2
differences from stateless session 3-3
EJB services 3-2
ejbCreate() 3-10
ejbRemove() 3-10
handling exceptions 3-9
implementing business logic with

onMessage() 3-9
message acknowledgement 3-12
message receipts 3-12
migratable service 3-13
migrating 3-14
onMessage() 3-9
transaction services 3-11

message-driven EJBs 1-3
migratable service

enabling 3-13
for message-driven beans 3-13

migrating
from WLQL to EJB QL 5-12
message-driven beans 3-14

modeling
coarse-entity EJBs 2-3
entity EJBs 2-2
entity EJBs with business logic 2-3

multicast invalidation
Read-Only beans 4-21

multiple table mapping
for cmp-fields 5-38
for EJB 2.0 CMP 5-38

multiple table mapping support 1-8

N
comparison operands

 5-17, 5-18

O
optimistic

concurrency strategy 4-17
concurrency support 1-9

optimizing
entity EJB data access 2-3

options
DDConverter 8-27
ejbc 8-21
weblogic.deploy (deprecated) 8-29

ORDERBY 5-13, 5-14
overview

EJBs 1-2

P
packaging
Programming WebLogic Enterprise JavaBeans I-vii

EJBs 6-1
EJBs in deployment directory 6-10

persistence
finder signature 5-5
finder-list stanza 5-6
finder-query element 5-6
using this service 5-3
writing for EJB 1.1 CMP 5-5

persistence services 5-3
primary key 5-31

anonymous class 5-32
automatic generation for EJB 2.0 CMP

5-33
automatic generation support for named

sequence table 5-36
automatic generation support for Oracle

5-35, 5-36
mapped to single CMP field 5-31
mapping to a database column 5-33
usage hints 5-32
wraps single or multiple CMP fields 5-

32
printing product documentation xxi

Q
queries

that return ResultSets 5-22
query language

for EJB 2.0 5-11
queues and topics

concurrent processing 3-3

R
Read-Mostly pattern 4-23
Read-Only

multicast invalidation 4-21
ReadOnly

concurrency strategy 4-20
concurrency strategy restrictions 4-21

entity concurrency support 1-9
read-write

EJBs
in a cluster 4-36

read-write EJBs
concurrency strategy 4-15

referencing
application-scoped EJBs 6-9
external EJBs 6-8

relationship caching
limations 5-53
support for "eager" relationship caching

1-10
with entity beans 5-51

relationships
among deployment files 6-4
bidirectional 5-44
contianer-managed persistence 5-2

relatoinship caching
specifying 5-51

removing
cascade delete 5-53

requirements
for in-memory replications 4-34

resource factories 4-46
JDBC data source factories 4-46
URL connection factories 4-48

restrictions
accessing EJB instances 2-7
container-managed EJBs 4-40
get method 5-27
set method 5-27

ResultSets
EJB WebLogic QL 1-9
using with queries 5-22

S
SELECT DISTINCT 5-14
SELECT HINTS 5-26
serializable objects
I-viii Programming WebLogic Enterprise JavaBeans

BLOB 5-27
session beans 2-1

designing 2-1
set method

restrictions 5-27
setting

container-managed isolation levels 4-41
JDBC data source factories 4-46
transaction isolation levels 4-40
URL connection factories 4-48

specification
final EJB version 1-4

specifying
concurrency strategy 4-16
EJB deployment descriptors 6-5
ejb-client.jar 6-14
field groups 5-58
primary key support for named sequence

table 5-36
primary key support for Oracle 5-35, 5-

36
relationship caching 5-51

SQL
for CMP 1.1 finder queries 5-10

stateful session
activating instances 4-8
EJB life cycle 4-7

stateful session EJBs 1-3
in a cluster 4-33

stateless session
lifecycle of these EJBs 4-6

stateless session EJBs 1-3
in a cluster 4-31

storing
EJB references in home handles 2-7

string objects
CLOB 5-27

subqueries 5-15
aggregate functions 5-20
arithmetic operators 5-18
as comparison operands 5-17

correlated 5-20
EJB WebLogic QL 1-8
uncorrelated 5-19
with DISTINCT clause 5-20

subquery return types 5-16
aggregate functions 5-16
beans with simple primary key 5-17
single cmp-field type 5-16

support
DBMS column 5-27
technical xxiii

syntax
DDConverter 8-26
deploy 8-28
ejbc 8-20
EJBGen 8-2

T
table creation

automatic 5-40
tags

EJBGen 8-7
tips

allow datastore to manage transactions
2-9

business logic in entity EJBs 2-3
demarcating transactions 2-10
modeling enitty EJBs 2-2
optimizing EJB data access

data access
optimizing for EJBs 2-3

preserve transaction resources 2-8
using coarse-grained entity EJBs 2-3
using container-managed transactions 2-

9
using inheritance with EJBs 2-5
using session beans 2-1

topics and queues
concurrent processing 3-3

transaction boundaries
Programming WebLogic Enterprise JavaBeans I-ix

using java.transaction.UserTransaction
4-39

transaction management 4-38
responsibilities 4-38

TRANSACTION_SERIALIZABLE
limitations 4-41

transactions
bean-managed 4-38
caching betwteen 4-25
container-managed 4-39
container-managed over bean-managed

2-9
demarcating in WebLogic Server 2-10
distributing across EJBS in a cluster 4-

43
encapsulating multi-opeartional 4-43
managed by the datastore 2-9
message acknowledgements 3-12
message receipts 3-12
preserving resources 2-8
single context (calling multiple EJBs) 4-

42
with message-driven beans 3-11

tuned
EJB 1.1 CMP updates 5-29

types of EJBs 1-2
entity 1-3
message-driven 1-3
stateful session 1-3
stateless session 1-3

U
uncorrelated subqueries 5-19
undeploying

EJBs 7-6
UPDATE NO WAIT

EJB WebLogic QL 1-9
updating

EJBs 7-7
URL connections 4-48

using
DDConverter 8-26
Oracle SELECT HINTS 5-26
RDBMS persistence 5-3

utilities
DDConverter 8-23
Deployer 8-28
ejbc 8-19
EJBGen 8-1
for EJBs 8-1
weblogic.deploy (deprecated) 8-28

W
WebLogic Builder 1-11
WebLogic QL

EJB QL extension 5-13
ORDERBY 5-13, 5-14
SELECT DISTINCT 5-14
subqueries 5-15

WebLogic Query Language
expressions 5-9
for EJB 1.1 CMP 5-7
operands 5-8
operators 5-7
syntax 5-7

WebLogic Server
creating bean instances 3-10
developing message-driven beans 3-4
EJB 2.0 support 1-4
EJB container 4-1
features 1-1
free pool 4-6
invocation procedure for message-

driven beans 3-9
message-driven beans 3-2
removing bean instances 3-10

WebLogic Server immplementation of
final EJBspecification 1-4

weblogic.Deployer 1-12
weblogic-cmp-rdbms.xml file 6-4
I-x Programming WebLogic Enterprise JavaBeans

weblogic-cmp-rdbms-jar.xml
definitions 10-1
descriptor elements 10-6

weblogic-ejb-jar.xml
2.0 file structure 9-6
descriptor elements 9-7

weblogic-ejb-jar.xml file 6-4
weblogiic-cmp-rdbms-jar.xml

DOCTYPE Header information 10-2
WLQL

expressions 5-9
for EJB 1.1 CMP 5-7
migration to EJB QL 5-12
operands 5-8
operators 5-7
syntax 5-7

X
XML Editor 1-13
Programming WebLogic Enterprise JavaBeans I-xi

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introducing WebLogic Server Enterprise JavaBeans
	Overview of Enterprise JavaBeans
	EJB Components
	Types of EJBs

	Implementation of Java Specifications
	J2EE Specification
	EJB 2.0 Specification

	Securing WebLogic Server EJB Resources
	WebLogic Server EJB 2.0 Support
	EJB Roles
	Application Roles
	Infrastructure Roles
	Deployment and Management Roles

	EJB Enhancements in WebLogic Server 7.0
	Changed Deployment Elements in WebLogic Server 7.0
	Dynamic Query Support
	Message-Driven Bean Migratable Service Support
	EJB CMP Multiple Table Mapping Support
	EJB WebLogic QL Enhancements Support
	Optimistic Concurrency Support
	ReadOnly Entity Concurrency Support
	Combined Caching Support
	Relationship Caching Support
	EJB Links Support
	Bulk Insert Support

	EJB Developer Tools
	ANT Tasks to Create Skeleton Deployment Descriptors
	WebLogic Builder
	EJBGen
	weblogic.Deployer
	WebLogic EJB Deployment Descriptor Editor
	XML Editor

	2 Designing EJBs
	Designing Session Beans
	Designing Entity Beans
	Entity Bean Home Interface
	Make Entity EJBs Coarse-Grained
	Encapsulate Additional Business Logic in Entity EJBs
	Optimize Entity EJB Data Access

	Designing Message-Driven Beans
	Using WebLogic Server Generic Bean Templates
	Using Inheritance with EJBs
	Accessing Deployed EJBs
	Differences Between Accessing EJBs from Local Clients and Remote Clients
	Restrictions on Concurrency Access of EJB Instances
	Storing EJB References in Home Handles
	Using Home Handles Across a Firewall

	Preserving Transaction Resources
	Allowing the Datastore to Manage Transactions
	Using Container-Managed Transactions Instead of Bean-Managed Transactions for EJBs
	Never Demarcate Transactions from Application
	Always Use A Transactional Datasource for Container-Managed EJBs

	3 Designing Message-Driven Beans
	What Are Message-Driven Beans?
	Differences Between Message-Driven Beans and Standard JMS Consumers
	Differences Between Message-Driven Beans and Stateless Session EJBs
	Concurrent Processing for Topics and Queues

	Developing and Configuring Message-Driven Beans
	Message-Driven Bean Class Requirements
	Using the Message-Driven Bean Context
	Implementing Business Logic with onMessage()
	Handling Exceptions

	Invoking a Message-Driven Bean
	Creating and Removing Bean Instances
	Deploying Message-Driven Beans in WebLogic Server
	Using Transaction Services with Message-Driven Beans
	Message Receipts
	Message Acknowledgment

	Message-Driven Bean Migratable Service
	Enabling the Message-Driven Bean Migratable Service
	Migrating Message-Driven Beans

	Configuring Message-Driven Beans for non-BEA JMS Providers
	Specifying an MDB as Transactional
	Specifying an MDB as Non-Transactional

	Reconnecting to a JMS Server or Non-BEA Service Provider
	Configuring an MDB to Listen on a JMS Distributed Destination
	Configuring a Security Identity for a Message-Driven Bean

	4 The WebLogic Server EJB Container and Supported Services
	EJB Container
	EJB Life Cycle
	Entity Bean Lifecycle and Caching and Pooling
	Initializing Entity EJB Instances (Free Pool)
	READY and ACTIVE Entity EJB Instances (Cache)
	Removing Beans from Cache
	Entity EJB Lifecycle Transitions

	Stateless Session EJB Life Cycle
	Initializing Stateless Session EJB Instances
	Activating and Pooling Stateless Session EJBs

	Stateful Session EJB Life Cycle
	Stateful Session EJB Creation
	Stateful Session EJB Passivation
	Controlling Passivation

	Concurrent Access to Stateful Session Beans

	ejbLoad() and ejbStore() Behavior for Entity EJBs
	Using is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)
	Warning for is-modified-method-name
	Using delay-updates-until-end-of-tx to Change ejbStore() Behavior

	EJB Concurrency Strategy
	Concurrency Strategy for Read-Write EJBs
	Specifying the Concurrency Strategy
	Exclusive Concurrency Strategy
	Database Concurrency Strategy
	Optimistic Concurrency Strategy

	ReadOnly Concurrency Strategy
	Read-Only Entity Beans and ReadOnly Concurrency
	Restrictions for ReadOnly Concurrency Strategy
	Read-Only Multicast Invalidation

	Read-Mostly Pattern

	Combined Caching with Entity Beans
	Caching Between Transactions
	Caching Between Transactions with Exclusive Concurrency
	Caching Between Transactions with ReadOnly Concurrency
	Caching Between Transactions with Optimistic Concurrency
	Enabling Caching Between Transactions
	Using cache-between-transactions to Limit Calls to ejbLoad()
	Restrictions for cache-between-transactions

	EJBs in WebLogic Server Clusters
	Clustered Homes and EJBObjects
	Clustered EJB Home Objects
	Clustered EJBObjects

	Clustering Support for Different Types of EJBs
	Stateless Session EJBs in a Cluster
	Stateful Session EJBs in a Cluster
	Entity EJBs in a Cluster

	Cluster Address

	Transaction Management
	Transaction Management Responsibilities
	Using javax.transaction.UserTransaction
	Restriction for Container-Managed EJBs

	Transaction Isolation Levels
	Setting Bean-Managed Transaction Isolation Levels
	Setting Container-Managed Transaction Isolation Levels

	Distributing Transactions Across Multiple EJBs
	Calling Multiple EJBs from a Single Transaction Context
	Encapsulating a Multi-Operation Transaction
	Distributing Transactions Across EJBs in a WebLogic Server Cluster

	Database Insert Support
	Delay-Database-Insert-Until
	Bulk Insert

	Resource Factories
	Setting Up JDBC Data Source Factories
	Setting Up URL Connection Factories

	5 WebLogic Server Container-Managed Persistence Service
	Overview of Container Managed Persistence Service
	EJB Persistence Services
	Using WebLogic Server RDBMS Persistence

	Writing for RDBMS Persistence for EJB 1.1 CMP
	Finder Signature
	finder-list Stanza
	finder-query Element

	Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
	WLQL Syntax
	WLQL Operators
	WLQL Operands
	Examples of WLQL Expressions

	Using SQL for CMP 1.1 Finder Queries
	Using EJB QL for EJB 2.0
	EJB QL Requirement for EJB 2.0 Beans
	Migrating from WLQL to EJB QL
	Using EJB 2.0 WebLogic QL Extension for EJB QL
	upper and lower Functions
	Using SELECT DISTINCT
	Using ORDERBY
	Using SubQueries
	Using Aggregate Functions
	Using Queries that Return ResultSets

	Properties-Based Methods of the Query Interface

	Using Dynamic Queries
	Enabling Dynamic Queries
	Executing Dynamic Queries

	Using Oracle SELECT HINTS
	“get” and “set” Method Restrictions
	BLOB and CLOB DBMS Column Support for the Oracle DBMS
	Specifying a BLOB Using the Deployment Descriptor
	Controlling Serialization of cmp-fields Mapped to OracleBlobs
	Specifying a CLOB Using the Deployment Descriptors

	Tuned EJB 1.1 CMP Updates in WebLogic Server
	Optimized Database Updates for CMP 2.0 Entity Beans
	Flushing the CMP Cache
	Using Primary Keys
	Primary Key Mapped to a Single CMP Field
	Primary Key Class That Wraps Single or Multiple CMP Fields
	Anonymous Primary Key Class
	Hints for Using Primary Keys
	Mapping to a Database Column

	Automatic Primary Key Generation for EJB 2.0 CMP
	Valid Key Field Types
	Specifying Primary Key Support for Oracle
	Specifying Primary Key Support for Microsoft SQL Server
	Specifying Primary Key Named Sequence Table Support

	Multiple Table Mapping for EJB 2.0 CMP
	Multiple Table Mappings for cmp-fields

	Automatic Table Creation
	Container-Managed Relationships
	Understanding CMRs
	Requirements and Limitations
	Relationship Cardinality
	Relationship Direction
	Removing Relationships

	Defining Container-Managed Relationships
	Specifying Relationship in ejb-jar.xml
	Specifying Relationships in weblogic-cmp-jar.xml

	Using Relationship Caching for CMRs
	Nested caching-elements
	Relationship Caching Limitations

	Cascade Delete
	Cascade Delete Method
	Database Cascade Delete Method
	CMRs and Local Interfaces
	Using the Local Client
	Changes to the Container for Local Interfaces

	Groups
	Specifying Field Groups

	Using EJB Links
	Java Data Types for CMP Fields

	6 Packaging EJBs for the WebLogic Server Container
	Required Steps for Packaging EJBs
	Reviewing the EJB Source File Components
	WebLogic Server EJB Deployment Files
	ejb-jar.xml
	weblogic-ejb-jar.xml
	weblogic-cmp-rdbms.xml
	Relationships Among the Deployment Files

	Specifying and Editing the EJB Deployment Descriptors
	Creating the Deployment Files
	Manually Editing EJB Deployment Descriptors
	Using the EJB Deployment Descriptor Editor

	Referencing Other EJBs and Resources
	Referencing External EJBs
	Referencing Application-Scoped EJBs
	Referencing Application-Scoped JDBC DataSources

	Packaging EJBs into a Deployment Directory
	ejb.jar file

	Compiling EJB Classes and Generating EJB Container Classes
	Possible Generated Class Name Collisions

	Loading EJB Classes into WebLogic Server
	Specifying an ejb-client.jar
	Manifest Class-Path

	7 Deploying EJBs to WebLogic Server
	Roles and Responsibilities
	Deploying EJBs at WebLogic Server Startup
	Deploying EJBs in Different Applications

	Deploying EJBs on a Running WebLogic Server
	EJB Deployment Names
	Deploying New EJBs into a Running Environment
	Deploying Pinned EJBs - Special Step Required

	Viewing Deployed EJBs
	Undeploying Deployed EJBs
	Undeploying EJBs

	Redeploying EJBs
	The Redeploy Process
	Steps to Redeploy

	Deploying Compiled EJB Files
	Deploying Uncompiled EJB Files
	Deployment Restriction with Container Managed Relationships

	8 WebLogic Server EJB Utilities
	EJBGen
	EJBGen Syntax
	Surround Attributes that Contain Spaces With Double Quotes

	EJBGen Example
	EJBGen Tags
	@ejbgen:automatic-key-generation
	@ejbgen:cmp-field
	@ejbgen:cmr-field
	@ejbgen:create-default-rdbms-tables
	@ejbgen:ejb-client-jar
	@ejbgen:ejb-local-ref
	@ejbgen:ejb-ref
	@ejbgen:entity
	@ejbgen:env-entry
	@ejbgen:finder
	@ejbgen:jndi-name
	@ejbgen:local-home-method
	@ejbgen:local-method
	@ejbgen:message-driven
	@ejbgen:primkey-field
	@ejbgen:relation
	@ejbgen:remote-home-method
	@ejbgen:remote-method
	@ejbgen:resource-env-ref
	@ejbgen:resource-ref
	@ejbgen:role-mapping
	@ejbgen:select
	@ejbgen:session
	@ejbgen:value-object

	ejbc
	Advantages of Using ejbc
	ejbc Syntax
	ejbc Arguments
	ejbc Options
	ejbc Examples

	DDConverter
	Conversion Options Available with DDConverter
	Using DDConverter to Convert EJBs
	DDConverter Syntax
	DDConverter Arguments
	DDConverter Options
	DDConverter Examples

	weblogic.Deployer
	weblogic.deploy
	deploy Syntax
	deploy Arguments
	deploy Options

	9 weblogic-ejb-jar.xml Document Type Definitions
	EJB Deployment Descriptors
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation
	weblogic-ejb-jar.xml
	ejb-jar.xml

	Changed Deployment Elements in WebLogic Server 7.0 EJB
	2.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure
	2.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
	allow-concurrent-calls
	allow-remove-during-transaction
	cache-between-transactions
	cache-type
	client-authentication
	client-cert-authentication
	clients-on-same-server
	concurrency-strategy
	confidentiality
	connection-factory-jndi-name
	delay-updates-until-end-of-tx
	description
	destination-jndi-name
	ejb-name
	ejb-reference-description
	ejb-ref-name
	Example

	ejb-local-reference-description
	enable-call-by-reference
	enable-dynamic-queries
	entity-cache
	entity-cache-name
	entity-cache-ref
	entity-clustering
	entity-descriptor
	estimated-bean-size
	externally-defined
	finders-load-bean
	global-role
	home-call-router-class-name
	home-is-clusterable
	home-load-algorithm
	idempotent-methods
	identity-assertion
	idle-timeout-seconds
	iiop-security-descriptor
	initial-beans-in-free-pool
	initial-context-factory
	integrity
	invalidation-target
	is-modified-method-name
	isolation-level
	jms-polling-interval-seconds
	jms-client-id
	jndi-name
	local-jndi-name
	max-beans-in-cache
	max-beans-in-free-pool
	message-driven-descriptor
	method
	method-intf
	method-name
	method-param
	method-params
	persistence
	persistence-use
	persistent-store-dir
	pool
	principal-name
	provider-url
	read-timeout-seconds
	reference-descriptor
	relationship-description
	replication-type
	res-env-ref-name
	res-ref-name
	resource-description
	resource-env-description
	role-name
	security-permission
	security-permission-spec
	security-role-assignment
	session-timeout-seconds
	stateful-session-cache
	stateful-session-clustering
	stateful-session-descriptor
	stateless-bean-call-router-class-name
	stateless-bean-is-clusterable
	stateless-bean-load-algorithm
	stateless-bean-methods-are-idempotent
	stateless-clustering
	stateless-session-descriptor
	transaction-descriptor
	transaction-isolation
	transport-requirements
	trans-timeout-seconds
	type-identifier
	type-storage
	type-version
	weblogic-ejb-jar
	weblogic-enterprise-bean
	5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
	5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
	caching-descriptor
	max-beans-in-free-pool
	initial-beans-in-free-pool
	max-beans-in-cache
	idle-timeout-seconds
	cache-strategy
	read-timeout-seconds

	persistence-descriptor
	is-modified-method-name
	delay-updates-until-end-of-tx
	persistence-use
	db-is-shared
	stateful-session-persistent-store-dir

	clustering-descriptor
	home-is-clusterable
	home-load-algorithm
	home-call-router-class-name
	stateless-bean-is-clusterable
	stateless-bean-load-algorithm
	stateless-bean-call-router-class-name
	stateless-bean-methods-are-idempotent

	transaction-descriptor
	trans-timeout-seconds

	reference-descriptor
	resource-description
	ejb-reference-description

	enable-call-by-reference
	jndi-name
	transaction-isolation
	isolation-level
	method

	security-role-assignment

	10 weblogic-cmp-rdbms- jar.xml Document Type Definitions
	EJB Deployment Descriptors
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation
	weblogic-cmp-rdbms-jar.xml
	ejb-jar.xml

	2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
	2.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
	automatic-key-generation
	caching-element
	caching-name
	check-exists-on-method
	cmp-field
	cmr-field
	column-map
	create-default-dbms-tables
	database-type
	data-source-name
	db-cascade-delete
	dbms-column
	dbms-column-type
	description
	delay-database-insert-until
	Example

	ejb-name
	enable-tuned-updates
	field-group
	field-map
	foreign-key-column
	foreign-key-table
	generator-name
	generator-type
	group-name
	include-updates
	Function

	key-cache-size
	Example

	key-column
	max-elements
	method-name
	method-param
	method-params
	optimistic-column
	primary-key-table
	query-method
	relation-name
	relationship-caching
	relationship-role-map
	relationship-role-name
	sql-select-distinct
	table-map
	table-name
	use-select-for-update
	validate-db-schema-with
	verify-columns
	weblogic-ql
	weblogic-query
	weblogic-rdbms-bean
	weblogic-rdbms-jar
	weblogic-rdbms-relation
	weblogic-relationship-role
	1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
	1.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
	RDBMS Definition Elements
	pool-name
	schema-name
	table-name

	EJB Field-Mapping Elements
	attribute-map
	object-link
	bean-field
	dbms-column

	Finder Elements
	finder-list
	finder
	method-name
	method-params
	method-param
	finder-query
	finder-expression

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

