BEA WebLogic

Server
Using the
Zero Administration Client (ZAC)
(Deprecated)

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Using the Zero Administration Client

Document Edition Date Software Version

6.0 March 2001 BEA WebL ogic Server 6.0

Contents

1. Publishing with WebLogic ZAC

T gL oo ¥ 1o o SRS 5
Trying OUt the ZAC DEMOS.......ceeereeeerieeieete e e e e sae st see st seeneeneas 6
HOW ZAC WOTKS.....coiiieiiieeirieirieesee sttt sttt st st s st 7
How you Publish a ZAC Package on the Servercccocviiieiiienns 8
How ZAC Installs a Published Application on the User’s Machine.......8
How a Published Application Runs on the User’s Machine................... 9
Setting up WebL ogic for Publishing with ZAC ... 10
2. Using the Publish Wizard
Starting the Publish Wizard............ccooviee e 14
Creating @ZAC PaCKagecoceiiieriesee sttt ene s 15
Publishing @ ZAC PaCkage.........cccverreriiiiere ettt 27
Reverting @ ZAC PaCkage........coveeeeieeeerieseseseseseseese s eesse s sre e e e snens 29
Using the command line Publish ULilityccccooeviviiniereneiecsese e 29
Connecting the Publish Wizard to Other SErVers.........cccoovineneneiennceeiesenee 31
Updating a Published ZAC PaCKageccoovvvrereeeeeerereseesesee s sese e 31
Importing a Published ZA C Package from Another Server........ccoceevvvceveennnnn, 3R2
Removing a Published ZAC Package..........ccocovireieiiieiieeeeeeee e 34
Creating an Installer/Bootstrap APpliCation..........ccvvvvevireereseeieee s seseeneens 35
Packaging @JREccoioeiireiereeeree e eeste st te st s sne e 50
BEfOre YOU BEOIN....c..oiieiieee ettt e s 51
Creating and Publishing a ZAC JRE Package.ccecvreverereeiereseseeseens 51
Specifying a Published JRE Package for an Application..........ccccccevveuenee. 52
Debugging and Testing a Published Application...........cocooeeirienienienicnnens 54

Using the Zero Administration Client i

3. Developing with WebLogic ZAC

INEFOAUCTION ..o 57
Whento USEthe ZAC APl ... e 58
How ZAC deploys appliCations.........cccveeereeerierienesieneseeseesieseeneeessesseeeens 59

The WebLOGIC ZAC APl ...ttt 59

Implementing with WebLogic ZAC..........ooiee e 60
IMPOItiNg PaCKagESccceveiiereieeieeeeete st nnens 60
Updating ZAC APPHICALIONS........ciiieiieieereeiriere s 61
Using ZACLog to Query the Latest Updates..........coooeverereneieenenerienennns 62
Restarting a ZAC Client AppliCationcceeveeeeresieseseseseseene e se e 64
Using WebL ogic EventsS With ZAC..........coiinininee e 65
Packaging Librarieswith Your ZAC Application..........ccccevevnenencnniennn. 67

Including Librarieswithin a ZAC Package.........cc.cceovvvvevvneecenenieennns 67
Making a ZA C Package Depend upon Another ZAC Package 67

iv Using the Zero Administration Client

CHAPTER

1 Publishing with
WebLogic ZAC

This section provides an overview of using the WebL ogic Zero Administration Client
(ZAC), including the following topics:

m Introduction

m Trying Out the ZAC Demos

m How ZAC Works

m Setting up WebL ogic for Publishing with ZAC

Introduction

Note: TheWebLogic Zero Administration Client is a deprecated product. BEA
recommendsthat you use the Sun Microsystems Java Web Start product. Java
Web Start is a Java 2-compliant product that enables users to download Java
applications.

WebL ogic ZAC, the Zero Administration Client utility, lets you publish and republish
applications, applets, and libraries with ZAC, so that they are transparently and
automatically updated to the latest version on the end user client machine. With ZAC,
you no longer need to manually distribute applications, applets, or libraries to your
clients; you can depend on ZAC' s automatic services to do so.

Using the Zero Administration Client 1-5

http://java.sun.com/products/javawebstart/

Trying Out the ZAC Demos

ZAC isextremely efficient. When aZAC application is republished, only the minimal
amount of datais sent over the network to each client, to bring the applications on your
clients up-to-date. In atypical scenario where little or nothing has changed, the
overhead for checking for new files at startup is not noticeable to a user.

ZAC is highly configurable, so that you can design how your application should be
published, installed, and updated. Y ou can check for updates to the application and to
its dependent libraries each time the application starts or stops; on a scheduled basis,
or you can disable the check for new ZAC updates altogether. Although thiswould
disable ZAC’smost powerful feature, it may be desirable for packagesthat you intend
to distribute once only as a static version.

ZAC uses aprotocol called the HTTP Distribution and Replication Protocol (DRP), a
specification submitted to the W3C in August 1997 for the efficient replication of data
over HTTP.

Thisdocument includesinstructions on how to usethe ZAC Publish Wizard to publish
applications on a WebL ogic Server for distribution to your users.

Trying Out the ZAC Demos

When you install on Windows with the install shield (.ex€) version, WebL ogic
comes out-of -the-box with two ZA C packages, ZSimple and ZUpdate, that you can try
out immediately to see how WebL ogic ZAC works. (This pre-installed demo does not
function correctly if you have installed WebL ogic Server from the .zip file
distribution.)

1. Start WebL ogic. (You will need to know the system password to publish.)

2. Start the ZAC Publish Wizard. Win32 users can use the shortcut for ZAC
Publisher available in the WebL ogic directory in the Start menu.

Non-Windows users can start the Publish Wizard from the command line (after setting
your CLASSPATH with this command:

$ java webl ogi c. Publ i shw zard

Using the Zero Administration Client 1-6

http://www.w3.org/TR/NOTE-drp-19970825.html
http://www.w3.org/TR/NOTE-drp-19970825.html

How ZAC Works

3. From the Publish Wizard window, double-click the ZSimple or ZUpdate
selection. You can walk through all the steps to see a demonstration of how to
publish a package, or you can just press the Finish button to skip to the review
phase.

4. Pressthe“Done” button.

5. To publish the application, select it in the list and select Publish... from the
Package menu. Select the appropriate Host and press the Publish button. If you
are only connected to one host, thiswill be selected automatically for you. A
“Publishing...” dialog will display the status of the publish operation and, if
successful, the package will appear in the lower-left window of the Publish
Wizard, under the selected WebL ogic Server host. You may need to expand the
“+" symbol to see the published package.

6. You can test the published package by selecting the package under a WebL ogic
Server host in the published window (lower-left), then select Test run from the
Server menu.

Y ou can open the package again after the test run starts, change afew parameters, and
republish the application to see how the client responds.

Therest of this document describes how to create and publish a package, and how to
create a bootstrap executable — which is the standard way to install and run an
application from a ZAC package.

How ZAC Works

Any Java application, applet, or library can be published as a ZAC package. Y ou do
not need to add anything special to the Java source code to publish your program with
ZAC. (However, ZAC does include a Java API that you can use in writing your
application to add interactive control over when ZAC updates should occur or whether
the application should respond immediately to ZAC updates. Developing with the
ZAC API isdiscussed in Developing with WeblL ogic ZAC.)

ZAC works very simply from your user’s perspective.

1. You publish an application to a WebL ogic Server with the ZAC Publish Wizard.

Using the Zero Administration Client 1-7

How ZAC Works

2.

Your user downloads a small native-OS installer, and simply double-clicksto
install and start.

Theinstaller creates your application and installs all necessary libraries to
support it on the user’s machine, as well as a small bootstrap that monitors for
new published versions of your application and carries out updates.

How you Publish a ZAC Package on the Server

The ZAC Publish Wizard makes publishing your application easy. Y ou use the ZAC
Publish Wizard to:

Create new ZAC packages

Publish ZAC packages on a WebL ogic Server

Import ZAC packages from other WebL ogic Servers
Update published ZAC packages on a WebL ogic Server

The ZAC Publish Wizard guides you through the process of creating and publishing a
package with ZAC on aWebL ogic Server. During the publish process, you set up the
parameters necessary to run your application or ZAC package on the client machine,
such asidentifying:

Which directories contain the files that comprise your application
Other ZA C packages that your application depends upon
Which Java runtime environment must be present on the client machine

Other necessary information to allow your application to work correctly

An application is published to aWebL ogic Server and is made available to your users
viaHTTP. Y ou can republish the package each time you change your application or
any of the libraries on which it depends.

How ZAC Installs a Published Application on the User’s Machine

When you complete the publishing phase, your application is published on the
WebL ogic Server. The ZAC Publish Wizard generates a small installation programin
native format for each machine type supported by ZAC. Y our users download and run

Using the Zero Administration Client 1-8

How ZAC Works

this program to install the published application or package. We shall refer to this
installation program asthe'installer’, in the rest of this document. Theinstaller isa
very small executable, and so is quick to download.

To make the published application available to users, just attach the installer to an
email or embed an FTPlink toitinan HTML page. The user downloads and runsthe
installer. Since the installation program is a native executable, a user doesn’t need to
pre-install a Java Runtime Environment (either a JRE or some Java devel opment
environment like the JDK).

Theinstaller performs some or all of the following tasks, depending on how you have
configured it from the ZAC Publish Wizard:

m (Optional) Checksthat a specific JRE that will be needed by the published
application is pre-installed on the client machine; the ZAC installer can
automatically install a JRE that you provide (as another ZAC package) if
necessary.

m (Optional) Queriesthe user for HTTP proxy information to connect to the
publishing WebL ogic Server.

m (Always) Downloads and installs the ZA C application.

m (Optional) Downloads and installs any other ZA C packages that the published
application is dependent upon.

m (Always) Installs a bootstrapper executable that is used to start a published
application, to monitor the publishing WebL ogic Server for new versions, and to
download new versions when appropriate.

m (Optional) Creates a desktop icon or Start menu item that links to the
bootstrapper.

m (Optional) Launchesthe ZAC application.

After theinitial installation, the installer may be deleted from the client’s machine.

How a Published Application Runs on the User’s Machine

Theinstaler installs your user application, aswell as a native bootstrap file. Once the
application isinstalled, your user will use the native-OS bootstrap to invoke the
application. Part of the ZAC Publish Wizard process involves creating the bootstrap
program.

Using the Zero Administration Client 1-9

javascript:openit(../techdoc/glossary/jdk.html')'

Setting up WebLogic for Publishing with ZAC

Setting

Each time the client runs the bootstrapper, it first checks for new versions of the
published application on the WebL ogic Server. If anew version of your application —
or any other ZAC packages that the ZAC application depends upon — has been
published, the bootstrapper automatically updates the ZAC packages on the client
machine with the new versions. The bootstrapper then starts the published application.

up WebLogic for Publishing with ZAC

ZAC must be deployed as aWeb application on the WebL ogic Server for usersto have
accessto it. Servletsincluded within the ZAC Web application handl e requests from

clients. ZAC is deployed on the server asa WAR file, zac. war . To preparethe ZAC
package for deployment, do the following:

1. Editthefileweb. xm (part of the ZAC Web application) to set a publish root for
locating published packages. If the publish root is set to arelative path, the
directory will be located in the WebL ogic home directory (parallel to the
myser ver\ directory). If unset, the publish root defaultstotheexpor t s\ directory
in WebL ogic home). The following is an example of an entry in web.xml that sets
the publish root:

<cont ext - par an»
<par am nane>webl ogi c. zac. publ i shRoot </ par am nane>
<par am val ue>C: / webl ogi ¢/ publ i sh</ param val ue>

</ cont ext - par anm>

2. Optionally, set an ACL for each published package to limit access. If unset, the
write permission defaults to system, and the read permission defaults to
everyone. Setting an Access Control List isaso accomplished by editing the
web. xm filethat isincluded with the zac. war application. The following isan
example of an entry intheweb. xm file that setsan ACL for nyApp that limits
access to three users, Peter, Paul and Mary:

<cont ext - par an>

<par am nane>webl ogi c. al | ow. r ead. webl ogi c. zac. nyApp</ par am nane>
<par am val ue>Pet er, Paul , Mar y</ par am val ue>

</ cont ext - par anm>

To deploy the ZAC Web application, do the following:

Using the Zero Administration Client 1-10

Setting up WebLogic for Publishing with ZAC

1. Start the WebL ogic Server as usual. The WebL ogic Server must be running when
you can actually publish your ZAC packages, though it need not be running when
you are creating the ZAC packages.

2. Invoke the WebL ogic Administration Console.

3. To make published packages available, deploy the ZAC Web application archive
filezac. war asaWeb application. For information on deploying Web
applications, see Assembling and Configuring Web Applicationsin the
WebL ogic Server Administration Guide.

Using the Zero Administration Client 1-11

http://e-docs.bea.com/wls/docs61/webapp/index.html

1 Publishing with WebLogic ZAC

1-12 Using the Zero Administration Client

CHAPTER

2

Using the Publish
Wizard

This section discusses how to use the Publish Wizard, including the following topics:

Starting the Publish Wizard

Creating a ZAC Package

Publishing a ZAC Package

Using the command line Publish Utility

Connecting the Publish Wizard to Other Servers
Updating a Published ZA C Package

Importing a Published ZAC Package from Another Server
Removing a Published ZAC Package

Creating an Installer/Bootstrap Application

Packaging a JRE

Using the Zero Administration Client

2-13

Sarting the Publish Wizard

Starting the Publish Wizard

If you wish to publish to a WebL ogic Server, that server must be running, you must
have configured aDefaultWebA pp for the server, and you will need to know auser and
password that has permission to publish. For more details, see Publishing aZAC
package. However, you can create and inspect existing ZAC packages without any
Serversrunning.

Users can start the Publish Wizard from the command line (after setting your
CLASSPATH with this command:

$ java webl ogi c. drp. adm n. Publ i shw zard

The ZA C Publish Wizard splash screen will appear while ZAC startsup, thenthemain
dialog for the Publish Wizard will appear:

Using the Zero Administration Client 2-14

Creating a ZAC Package

Figure2-1 TheZAC Publish Wizard Main Window

#& ZAC Publish Wizard =] 3
Fackane Semer Help
Properties
Fackage name L3imple
~{§ ZUpdate Ahstract Basic ZAC example showing how para..
Title Simple ZAC GLUI example
Yarsion 3.1.0
Type Application
Local directory diM0texamplesizacisimplelclasses
lgnared files *java, ~* hakindexxmlindex.osd
“4Weblogic Servers Thumbnail image |=none=
#- 1 localhost 7001 CLASSPATH :
Main class examples zac.simple £Z5imple
Parameters hello, wehster, These, are, arguments, ...
System properties | ZAC=Coolll
Dependencies =nones=
4 i

Creating a ZAC Package

Y ou use the ZAC Publish Wizard to create new ZAC packages, import existing
packages from other servers, or update previously published packages. A ZAC
package may be an application, applet, or library.

The Publish Wizard will guide you through the process of creating a new package or
republishing an existing. Y ou can also use ZAC’s“test run” option, which allowsyou
to try running your ZAC application to check that it will run as configured.

Using the Zero Administration Client 2-15

Creating a ZAC Package

1. From the Package menu, select New to create a new package, or Open to view or
edit an existing package. Alternatively, you can double-click on an existing
package. Thiswill open the Package panel.

2. Onthe Package panel, select a package type. You may publish an applet, a Java
application, or aclasslibrary asaZAC package. Typically, you publish libraries
as a component that other published applications depend upon.

Figure2-2 Publishing a New Library Package
4% ZAC package Z5imple [_ O] x|

[WebLogic
= Package type
¢

Select the type of this package. A package
ray be an application, applet, or a library used
by other packages.

* Anplication
= Applet

= Library

= Hank: | Mext = I Finish == Cancel

3. Name the package. Thiswill not be apublic display name; it will be used for
filename purposes, so make it short and easy to identify. Note: You may not use
spacesin the package name.

Using the Zero Administration Client ~ 2-16

Creating a ZAC Package

Figure2-3 Naming the Package

4% ZAC package Z5imple [_ O] x|

| WebLogic

Package name

Select a name for the package. Make it
relatively short so that it is appropriate for use
as a filename. Do not use spaces in the name.

Mame [ZSimple

= Back | Mext = I Finish == Cancel

4. Supply atitle for the package and a short prose description of it. Both will be
used for display purposes.

Using the Zero Administration Client ~ 2-17

Creating a ZAC Package

Figure2-4 Supplyinga Titleand Description
4% ZAC package Z5imple |_ O] x|

| WebLogic
v . (l

Title and description

Enter a title and description for your package.
Both of these fields will be wisible when
browsing the packages published on a
WehlLogic Server.

The title of a package is a detailed
name.

The description can include any further
information about the package.

Title |Eimp|e FAC GUI example

Basic ZAC example showing how =
parameters & systemn properies are

Abstract passed. See
hitp:finanan weehlogic.comidocsfadmind

ocsizac.html for details on running the =,
=¥ r=laulall=] ful

= Back | Mext = I Finish == Cancel

5. Set the version number.

Using the Zero Administration Client ~ 2-18

Creating a ZAC Package

Figure2-5 Setting the Version Number

4% ZAC package Z5imple

; WebLogic
- " (J

Package version

Supply a version nurmber for the package. You
can have several different versions of the
same package published on a WehlLogic
Server; for example, you can have
applications that use different versions of the
sarne library. When you update a package,
you should change the version numhber.

Major [3 j Minar |1_j Micro [0 :|'

I [=] B3

= Back

[wet» | Finish== | cancel |

6. Browseto the directory that contains the files for the ZAC package. Everything
in the directory you choose, plus everything in all its subdirectories, will be

published.

You can exclude files from the published package by adding to thelist of file

types to be ignored. This allows you to locate files that may be used to generate
the package in the same directory, without publishing them. In general, you will
always want to ignore index.xml and index.osd files, which are specific to each
client. A list of suggested files to exclude is supplied; you can add to or delete

from thislist for your published package.

Using the Zero Administration Client

2-19

Creating a ZAC Package

Figure2-6 Choosing the Top-Level Directory of the Package

4% ZAC package Z5imple |_ O] x|

I' WebLogic
- Top-level directory
\¢

Select a top-level directory -- the directory
that contains the files for this package -- by
typing it in or browsing to it. The contents of
this directory and ail s subdirectories will go
into the package. To exclude files in these
directories from the published package,
specify them in the ignore field.

Directory |C:1weh|ngic4[lmexampls Browse... |

lgnare [".java,*~,*.hak,index.}{ml

<pack | Nea» | Finish=» | cancel |

7. Find aGIF image to use as a thumbnail for the package. The image should be
32x32 pixels with atransparent background for best resullts.

Using the Zero Administration Client 2-20

Creating a ZAC Package

Figure2-7 Supplying a Thumbnail Image

#% ZAC package Z5imple |_ O] x|

| WebLogic
- : (I

Package thumbnail image

Optionally, select a thumbnail image to
represent the package. The image will be
displayed when browsing packages on a
publishing WebLogic Server. A thurbnail
should be a GIF-format image with a
transparent background that is 32x32 pixels;
any other size will be scaled.

G Zacicon.gif

<Back | Next» | Finish=> | cancel |

Clear

L

8. If you are publishing an applet, you will be asked to enter the applet’s main class,
the CODEBASE, and alist of applet parameters that would customarily be listed
in PARAM tags. If the applet is online, you can enter a URL that ZAC will useto
find the applet and complete the list of parameters automatically. To identify the

applet, supply:

The main classname
If you enter a URL for an online location of the applet (along with
the document base), ZAC will find the applet and supply its
parameter list automatically.

The document base
Thisisthe URL of the webserver that is hosting the applet.
Supplying the document base and the name of the class is enough
information for ZAC to find an online running version of the applet
and load the parameter list automatically.

Using the Zero Administration Client ~ 2-21

Creating a ZAC Package

The CODEBASE attribute
ThisisaURL wherethe applet may retrieve additional classfilesas
required. It is acommon practice to set thisto
http://yourserver:port/cl asses whereyourserver isyour
WebL ogic Server and you have registered the ClasspathServlet
against the virtual name cl asses. For more details see the
Administrators Guide on Registering the WebL ogic servlets.

The applet parameters
Applet parameters are alist of name=value pairs that supply
initialization and runtime variables to the applet, analogousto those
supplied between the <APPLET> tagsin an HTML file.

Using the Zero Administration Client ~ 2-22

http://e-docs.bea.com/wls/docs61/webapp/components.html#configuring-servlets

Creating a ZAC Package

Figure 2-8 Specifying Applet Parameters

4% ZAC package Z5imple [_ O] x|

{ WebLogic
_,/ (, Applet runtime information

Specify the name of the main applet class, a
document base or document root (the URL of the
serving webserver), and a CODEBASE, if required.
To specify the applet parameters, enter each
parameter as a nawme=value pair (one per ling), or
use the Browse hutton to browse and find the
applet, which will automatically fill in its parameters.

Main cl... Iaxamples.zac.simple.ZBimple

Dacum... |http:IIaIma:TElEl1Iclaaaeaiinde: Find ap... |

Codeh... |http:ifalma: 7001 classest

These

are
command_line
arguments

|»

Faram...

4

= Back | Mext = I Finish == Cancel

9. Enter the path to the appropriate class for the published package. If you are
publishing an application, you will be asked to enter the full path to the Java class
that contains the mai n() method that starts the application. You may also enter

any initialization arguments, required by the mai n() method, in the Parameters
text area.

Using the Zero Administration Client ~ 2-23

Creating a ZAC Package

Figure2-9 Locatingthe Classto Start the Application

EAE package Z5imple
E WebLogic
- " | (I

Application runtime information

Specify the name of the main class of the
application — the class that contains the
main () method. This class must be public
(have the public access modifier). If the
application requires any arguments, enter therm
in the Parameters space, one on each line.
These strings will be passed to the main ()
rethod when it is invoked.

I [=] B3

Main cla... |examplea.zac.simple.zaimple

These

are

the
Paramet.. |arguments
to

maing

Rl

|»

| ol

<Back | MNext» | Finish=> | cancel |

Specify the CLASSPATH for your package (Required). If all of the necessary
classes are contained in the published package itself, you can simply specify a
dot “.” for the current directory. The CLASSPATH isaways relative to the
top-level directory for the application. If you are publishing an application, the
class that contains the mai n() method to run your application must be in the

CLASSPATH of the package.

When publishing any type of package, CLASSPATH entries are aways relative
to the top of the local directory being published. For example, when publishing
thelocal directory c: \ myapps—which contains the following—

Using the Zero Administration Client 2-24

Creating a ZAC Package

c:\ nyapps\ cl asses\ f oo\ Mai n. cl ass
c:\ nyapps\ bundl el.jar
c:\nyapps\Iib\bundl e2.jar

where the classf oo. Mai n is contained in the package f oo—you would set the
CLASSPATH for the package as:

cl asses; bundl el. jar;lib\bundl e2.jar

Figure2-10 Specifying the Package CLASSPATH

#% ZAC package Z5imple |_ O] x|

WebLogic
../ [_J Application CLASSPATH

Specify a CLASSPATH for the application. The
CLASSPATH should include the jar file or
directory for the main class and any other
tlass directories the application needs to run.
The CLASSPATH is specified relative to the
top-level directory of the package; you can
enter simply "." {dot) if the top-level directory
of the package contains the only classes your
application needs to run.

CLASSPATH ||:Iaaaea;hundle1.jar;lthbundIeE.jar

= Back | Mext = I Finish == Cancel

10. Here, you may specify Java system properties that your application requires. List
one name=value pair per line.

Using the Zero Administration Client 2-25

Creating a ZAC Package

Figure2-11 Specifying Java System Properties
4% ZAC package Z5imple [_ O] x|

1 WebLogic
_,/ [_J Java system property settings

'

Specify any Java systemn properties (that s,
settings for the

Jawva. lang. System. getProperty ()
method) to be set for the code in this
package.

Each system property should be of the form
hame=value, and each should be on a
separate line.

defaults ave="user,-"settinz'
defaultserver="http: //

System propedies

4] | 3
<pack [Nea» | Finish=> | cancel |

11. Next, you may set up dependencies for your package upon other packages. ZAC
will ensure those packages are installed and up-to-date on the client machine
also. You must make ZAC packages of shared libraries or other applications that
your package depends upon, and specify the dependencies using package names.

Using dependencies with ZAC allows several different applications to share
common code on the client machine. When common code is updated, it is
consequently updated for all dependent ZAC applications.

For example, if you were developing applications that depend upon the
WebL ogic and the Swing classes as libraries, you could list these as

Using the Zero Administration Client ~ 2-26

Publishing a ZAC Package

dependencies for each application, and there need only be a single copy of those
libraries on the client machine.

Figure2-12 Setting up Dependencies

4" ZAC package ZSimple E

Dependencies

A package may depend on other packages. For example,
suppose that package A depends on packages B and C; when
package A is updated, packages B and C will also be checked
and updated, if appropriate.

The CLASSPATH for each dependency will be added to the
main CLASSPATH when the application or applet is published,
ordered to match this list.

24 WebLogic Servers || | '
= JW '
ZSimple
& zupdate

= Back I Mext = | Finish == Cancel

Locate a published package from an available WebL ogic Server in the left
hand window and click *Add’. Details about the depended-upon package are
displayed in the right hand window. To remove a depended-upon package,
select it in the right hand window, and click on’Remove'.

Publishing a ZAC Package

Once you have created a new package or updated details for a package that you have
published previously, you are ready to publish the package to a WebL ogic Server.

Using the Zero Administration Client ~ 2-27

2 Using the Publish Wizard

1. Select the package you wish to publish in the ZAC Publish Wizard main window.
In the "Package" menu, select " Publish" if it is enabled. If you have multiple
WebL ogic Serverslisted in the "WebL ogic Servers panel, the second option
" Publish to" will be enabled, which allows you to select the WebL ogic Server to
publish to.

If you select "Publish" the WebL ogic Server is automatically chosen for you.
Thiswill be either the only server listed, or the last server that you published to
or reverted from.

If you select "Publish to", you will need to select the address/port of the
WebL ogic Server to which you want to publish this package.

2. Thefirst time you publish to a WebL ogic Server, and each time you publish after
you have restarted ZAC, you will be asked to supply a name and password. To
publish, you must supply a username and password for the T3User that has
“write” permission for the ACL webl ogi c. zac in thewebl ogi c. properti es
file. If unset, this ACL defaultsto granting only the “system” user with write
(publish) privileges.

Figure2-13 Supplying Authorization for Publishing

Login for ZAC puhblishing on WehlLogic host localhost 7001

Username |system

Pasgword [rrewsass

] I Cancell

3. The progress of the publishing operation is shown in the “ Publishing...” window.
When complete, press” Close", or " Details >>" to review the details of the
published package.

2-28 Using the Zero Administration Client

Using the command line Publish Utility

Figure 2-14 The Publishing Progress Dialog

#* Publishing... _ (O] x|
Fuhblishing £5imple to localhost 7001

Close Details ==

Reverting a ZAC Package

If you make changesto alocal ZAC package before publishing it, you may revert the
package to a version previously published on a WebL ogic Server. Select thelocal
package, and choose" Revert" , or " Revert from" inthe" Package" menu. If you are
running more than one server you will need to select thelater option in order to choose
the server to revert from. If you choose" Revert" , the server ischosen for you aseither
the only server that islisted, or the last server that you published to or reverted from.

Using the command line Publish Utility

Y ou can use the command line Publish Utility to publish a ZAC package on the
WebL ogic Server, as an aternative to using the ZAC Publish Wizard. The Publish
Utility is a stand alone java application that you may run from the command line, or
invoke from a shell script. You configure the actions of the Publish Utility by
supplying command line options. These options closely follow the parametersthat you
define in the ZAC Publish Wizard. Use the Publish Utility on the command line as
follows:

$ java webl ogi c. drp. adm n. Publ i sh [options]

Using the Zero Administration Client ~ 2-29

2 Using the Publish Wizard

-name zacPackage
(Required) The name for the ZAC package you are publishing, asit shall
appear on the WebL ogic Server. Note that the name should not contain any
spaces.

-dir packageDir
(Required) The pathname of the top-level local directory that contains the
entire contentsfor the ZA C package that you are creating and publishing. The
contents of the directory, and all subdirectories are included in the new
package.

-host hostname
(Optional) The host name of the WebL ogic Server you are publishingto. This
defaultsto "local host".

-port portnumber
(Optional) The port number of the WebL ogic Server you are publishing to.
This defaults to " 7001".

-login username -password passwd
(Optional) Y ou must specify a username and password to publish a package
on aWebL ogic Server that uses security controls for publish authentication.
By default, thisis set to the system user and password by the WebL ogic
Server. You may grant publish (write) privilegesto auser or group by
specifying an ACL inthe webl ogi c. properti es file. See Setting up
WebL ogic for Publishing with ZAC (step 2) for details.

By default, the Publish Utility will attempt to publish the package without
using a username and password. Thiswill fail unlessZAC publishwrite
privileges have been granted to ever yone.

-verbose | -v
Causes the Publish Utility to print verbose messages about its operation.

-help
Prints a short summary of usage for the Publish Utility.

2-30 Using the Zero Administration Client

Connecting the Publish Wizard to Other Servers

Connecting the Publish Wizard to Other
Servers

When you start the Publish Wizard, it will connect automatically to the WebL ogic
Server running at the default location, and display it in the lower window pane. To
discover other WebL ogic Servers, select" Add" fromthe" server” menuto accessthe
following dialog.

Figure2-15 The Add Server dialog

4 Add Server E3

Host [anotherserver

Part f30

Username [system

Pasgsword [rresesws

[T Etare [mgim infarmeticn

(0] 4 Cancel

Updating a Published ZAC Package

Updating a previously published application is simple.
1. Start the Publish Wizard.
2. Select the package you want to update

3. Select " Open" from the " Package" menu.

Using the Zero Administration Client ~ 2-31

2 Using the Publish Wizard

4. Carry out the same steps as for creating and publishing a new package.

Importing a Published ZAC Package from
Another Server

Y ou can import a published package from one WebL ogic Server and publish it on
another WebL ogic Server. At that point, the package becomes a separate copy at will
not be updated if the original package is updated.

To import a published package:

1. Add the WebL ogic Server host you wish to import from to the Publish Wizard's
host list. See “ Connecting the Publish Wizard to Other Servers’ on page 2-31.

2. Select the published package in the other WebL ogic Server host.
3. Select"import" from the " Package" menu.

4. You will be asked where you wish to store the imported ZAC package files.
Select an appropriate directory, and enter a directory name in the text box. A new
directory will be created under that name in the current directory you have
browsed to. If you do not specify a name, the operation will not be successful.

2-32 Using the Zero Administration Client

Importing a Published ZAC Package from Another Server

Figure2-16 Storingthe ZAC Packaged Files

4 Directory for imported package files E3

Look in: |_| imported_packages

File narme: |Impnrted_ZUpdate_ﬂlea Save

Files of type: |Directnrg.f LI Zancel

5. Next, you are prompted for a name to save the ZAC package definition under.
This should be saved in the default directory where you keep your ZAC package
definitions. Thisis usually saved under the directory / webl ogi c¢_publ i sh.

Using the Zero Administration Client ~ 2-33

2 Using the Publish Wizard

Figure2-17 Savingthe ZAC Package Definition

5ave package definition E3
Look in: |_|weh|ngi|:_puhli5h ;I | | Eﬁl

File name: [ZUpdate_imponed|zac Save

Files of type: |Z-'%C packages (.zac) LI Zancel

6. Theimported package will apper under the “local package” list, under the name it
was published with on the originating server.

7. You may now publish the package, as described under Publishing aZAC
Package.

Removing a Published ZAC Package

The remove operation only removes the published application files themselves,
including directory for the package that is stored in a package directory in the ZAC
publish root.

Removing a package does not affect the WebL ogic Server or the original files from
which the package was published, nor will it removelocal filesfrom a ZAC client.

1. From the Server menu, choose Remove package.

2-34 Using the Zero Administration Client

Creating an Installer/Bootstrap Application

2. Browse the WebL ogic Server from which the package is to be removed.
3. Select the package and press the Choose button.

Creating an Installer/Bootstrap Application

Y ou can aso use the ZAC Publish Wizard to create a set of native programs — an
installer and a bootstrap — for various operating systems that become part of a
published Java application.

Theinstaller program is a native executabl e that install s your published Java program
on the local machine; it may also install a JRE. It doesn’t require a Java environment
itself, so it can run out-of-the-box in the native OS. It'salittle like an Install Shield for
Java.

The bootstrap is also a native program; the user runs the bootstrap to invoke the
published application. The bootstrap takes care of monitoring for updates,
downloading and updating the user’ s application, and other administrative ZAC
functions.

Installer/bootstrap programs can be created for the following OS types:
m Win32 (Windows95/98 and Windows NT)

m SolarisSPARC

m Linux/x86

m DECUnix/Alpha

m HPUX (HPUX 11)

Both the installer and the bootstrapper are small native, applications. Y ou will need to
create these for each type of operating system and CPU type that you expect your
clientswill use.

To create the installer/bootstrap executables in the Publish Wizard:

1. Start the Publish Wizard, and highlight the ZA C package for which you wish to
create a bootstrapper installation program. You must have previously created a
ZAC package for your application and published it on the WebL ogic Server.

Using the Zero Administration Client ~ 2-35

2 Using the Publish Wizard

2. Select Create bootstrap app... from the Package menu.

3. Set the appropriate operating system and CPU type for this application. Choosing
an OS and CPU will set some default values that you can adjust as necessary.

Figure2-18 Setting OS Detailsfor the Bootstrap

#% Bootstrap generator: ETrader [_ O] x|

WebLogic
- i (4

Operating system and CPU type

Select the operating system and CPU type far
this bootstrap application.

Since the installer portion of a bootstrap
application is a native application -- that is, it
doesn't reguire that Java or any other software
be installed on the user's system in order to
run -- you must generate a different bootstrap
application for each operating system and type
of computer on which your application will be
installed.

Client 05 Iwin32 vI Client CFL I}{BE vI

= Back || Mext = I Generate == | Cancel |

4. Enter the host and port of the publishing WebL ogic Server. If you are preparing a
bootstrapper application for a package installed on another server, you can find
the available servers by pressing the Browse button.

2-36 Using the Zero Administration Client

Creating an Installer/Bootstrap Application

Figure2-19 Identifying the Publishing WebL ogic Server

#% Bootstrap generator: ETrader [_ O] x|

WebLogic
- i (l

WebLogic Server

Enter the host name and port number for the
WehlLogic Server where the ZAC package will
he published.

If the package has already been published,
and the publishing WeblLogic Server is running
and accessible, use the Browse button to
browse to the package, and the fields will be
filled in automatically.

st flocalhost Port [7001 Browse..

= Back || Mext = I Generate == | Cancel |

5. Assign aname for the native bootstrapper executable. The bootstrapping process
creates two applications: the installer package (usually very small) that the client
downloads and runsinitially, and the bootstrap that the user uses to invoke the
published application each time he runs it. What you name in this step is the
bootstrapper executable.

Using the Zero Administration Client ~ 2-37

2 Using the Publish Wizard

Figure2-20 Assigning a Name
#* Bootstrap generator: ETrader =] E3

WebLogic
- i (4

Mative executable name

Choose a name for the final native installer.

Two applications will be created for the
bootstrapping application process:

Aninstaller that downloads a ZAC
package and installs the application,
shortcuts, and icons. You'll name the
installer in a later step.

The application itself. That's what you're
narming in this step.

Mative application name |ETrader

= Back || Mext = I Generate == | Cancel |

6. Select one or more methods for finding and choosing a Java environment. You
may depend on alocally available copy of the Microsoft or JavaSoft VM, or you
can load a JRE (Java Runtime Environment) that has been published asa ZAC
package. Check the options that you want to be available to the client, and then
order how those options should be processed by using the up-and-down arrowsto
the right.

2-38 Using the Zero Administration Client

Creating an Installer/Bootstrap Application

Figure2-21 Makingthe JRE Availabletothe Client Application

7.

#* Bootstrap generator: ETrader

WebLogic

-.-‘ [—l

Java environment

Select the method(s) the bootstrap application
should use for finding and choosing a Java
environment, and use the arrows to arrange
the order in which the methods should be
atternpted. If you select Load own JRE, you'l
also need to specify a WehlLogic Server where
the JRE package is published.

As Java applications, hoth ZAC and your
application packages require a Java
environment of some sort to be installed on
the user's computer. ZAC can look for installed
versions of Java on the user's system, or ZAC
can download a copy of the Java Runtime
Environment (JRE) that has been published as
a ZAC package, options that are specified
here.

W Local JavaSof wi

.
W Local Microsoft Wi
el

W Load own JRE

Generate == | Cancel

If you selected L oad own JRE, you will be prompted to locate the publishing

=] B3

WebL ogic Server where the installer can find a published package of the JRE.
For details on packaging your own JRE with ZAC, see the section Packaging a

JRE later in this document.

Using the Zero Administration Client ~ 2-39

2 Using the Publish Wizard

8. Specify options for the Sun VM memory flags when if isinitiated by the
bootstrap application. The default values are specified here. You should set them
accordingly if you application has special needs.

Figure2-22 Setting Memory Optionsfor the Sun VM

#% Bootstrap generator: ETrader [_ O] x|
WebLogic

Sun VM memory flags

When starting a Sun JOKARE WM, the
bootstrap executable will set initial and
rnaximurn heap numbers (analogous the -ms
and -mx flags). Specify the preferred numbers
for your app below. The units are in megabytes
(ME]. Note:

The initial heap must be less than, or
equal to, the maximum heap.

The initial heap cannot exceed 32 MB.

The maximum heap cannot exceed 512
ME, nor be less than 4 MEB.

= Back || Mext = I Generate == | Cancel |

9. Enter thelocal directory on the client machine into which the bootstrap
application should be installed when the user double-clicks the .exefile. The
directory will be absolute if you begin the path with a slash (forward or backward
depending upon the operating system for which you are publishing this
bootstrap). If you choose the Sart app in install directory option, the directory
selected here is where the application will start from.

2-40 Using the Zero Administration Client

Creating an Installer/Bootstrap Application

Figure2-23 Settinga Local Client Directory

#% Bootstrap generator: ETrader

WebLogic

ZAC

Install directory

Select the default directory name where the
files for this package will be installed on the
client's system, relative to the user's home
directory at install time. On UNIX systems, the
user's home directory is that given by the
$HOME environment variahle; on Windows
systems, the home directory is usually in the
root of the € drive.

If Query user for install directory is selected,
the user will be prompted for to select a
directory for installation. Otherwise, the user is
not prompted and the default is used.

If Start app in install directory is selected, the
application will start in the directory selected on
this panel. Starting in the current directory
allows the application to load data and other
resources from files in the current directory.

Directary frac
[+ Guuery user for install directary

[+ Start app in install directary

= Back

[ext = Generate == Cancel

10. Set the client permissions for the files associated with this package.

Using the Zero Administration Client ~ 2-41

=] B3

2 Using the Publish Wizard

Figure2-24 Setting Access Permissionsfor Client Files

#% Bootstrap generator: ETrader [_ O] x|

WebLogic

File permissions

Set the permissions that will be applied to the
files that are created as part of this package.

[v &llow group read access

[w Allow group write access
v Allow all users read access

[Allow all users write access

= Back || Mext = I Generate == Cancel

11. If you are publishing for Windows, you will be asked to choose some special
settings for Windows. You can install shortcuts for the Windows Start menu or
desktop and you can set an icon for the bootstrapper package.

2-42 Using the Zero Administration Client

Creating an Installer/Bootstrap Application

Figure2-25 Setting Windows-Specific Options

Windows options

Select special settings for Windows:

Choose whether the ZAC application should run as a
Windows application or a console application with text
output.

Choose whether the installer application should install
shortcuts for the application in the Start menu or on the
desktop.

|fyou opt to use an icon for your shortcuts, the file selected
rust be a Windows Icon (.ico) file.

& Windows app (ho console)

" Console app (DOS consaole)

v Create a Start menu shortcut Menu folder [ETrader
[+ Create a desktop shorcut Menu name [ETrader

Shorteuticon [ET16%16.gif

12. Specify the behavior of the ZAC installation-bootstrap and the post-installation
bootstrap. These options are defined as follows:

Update application
If this option is checked, the bootstrap executable will check for newly
published versions of the ZAC application and update it if necessary. Y ou
may wish to disable thisfeature if one of these conditionsis true:

m You wish the client to run the application offline

= You have embedded ZAC update functionality directly into the application using
the ZAC API

m You plan to generate another bootstrap executable for the purpose of updating
the ZAC application (See Launch application option below)

Using the Zero Administration Client ~ 2-43

2 Using the Publish Wizard

Check all dependencies
If this option is checked, the bootstrap executable will check for newly
published versions of the ZAC packages that this application depends upon.
Y ou may wish to disablethisfeature for similar reasonsto those listed above.

Show progress window
If this option is checked, the bootstrap executable will display a meter
indicating the progress of the download when the application updates. If you
wish the update to be silent, you can uncheck this option.

Launch application
This option is usually checked. If this option is not checked, then the
bootstrap executable will not launch the application. Y ou might uncheck this
option to create a bootstrap that will only update the application on the client
machine. Y ou could use such abootstrap in conjunction with a bootstrap that
only starts the application and does not update it.

2-44 Using the Zero Administration Client

Creating an Installer/Bootstrap Application

Figure 2-26 Setting up Bootstrapper Options
4 Bootstrap generator: E Trader [_ (O]

WebLogic
- ¢ [.l

ZAC startup options

Select startup options for the bootstrap
application.

Ordinarily, when a ZAC application starts, it
connects to the WebLogic Server, updates the
application and its dependencies if necessary
(displaying a progress window), and then
launches the application. In some cases you may
wish to disable some of these actions. For
example, you can set options for an offline
version of a ZAC hootstrap application that just
launches the app without atternpting to connect
and update, or for an updater bootstrap that
does nothing except update the application.

|

LIpdate application [+ Show prodress window

Y

Check all dependencies v Launch application

= Back " [ext = Generate == | Cancel |

13. Set a WebL ogic username and password for access to this package. This should
correspond to a WebL ogic user that is on the access control list (ACL) for read
permission to this application on the publishing WebL ogic Server. Note that if
you do not set an ACL for a published package, the permission to read defaults to
the special group everyone and the permission to write (publish) the package
defaults to the special administrative user system. That means that anyone can
download your published package, but only a system-level user can publish or
republish packages.

Using the Zero Administration Client ~ 2-45

2 Using the Publish Wizard

Figure2-27 Settingthe User and Password for Secure ZAC Packages

#* Bootstrap generator: ETrader =] E3
WebLogic
__/ (_, WebLogic login
- ! q Enter & username and password that ZAC will use
4 x| when connecting to WebLogic to update this
g package. If wou leave these fields blank, ZAC will
Luse the "guest" [ogin, which reguires no
password.
Jsemame [etraderzac Passwiord [r++x=*
= Back || Mext = I Generate == | Cancel |

14. 1f you expect your users to access the internet from behind afirewall, you should
configure the bootstrap to ask for an HTTP proxy server through which it may
access the WebL ogic Server. It isagood ideato always leave this option
checked, unless you know that your clients are not behind a firewall.

2-46 Using the Zero Administration Client

Creating an Installer/Bootstrap Application

Figure2-28 Configuring the Bootstrapper to Prompt for HT TP Proxy Details

#* Bootstrap generator: ETrader [_ O] x|
WebLogic

..J

HTTP proxy info

ZAC uses the HTTP network protocol to download
files from the publishing YWehlLogic Server to the
client machine. A client machine located behind a
firewall may use an HTTP proxy to access the
Internet. The ZAC hootstrap will need to know
about any proxy server it must use in the client
environment to reach the publishing WeblLogic
Server. You may tell the installation program to
guery the user for the name of a proxy server
that it should use.

It is recommended that you enable this option if

you expect any of your users will be behind a
fireswall.

v Guuery user far HTTP Proxy Info

= Back || Mext = I Generate == Cancel

15. Set the debug mode and verbosity of the application. Thisis useful while you are
testing the deployment of your ZAC application from a client machine.

Using the Zero Administration Client ~ 2-47

2 Using the Publish Wizard

Figure2-29 Setting Debug Mode

16. Review the bootstrap settings. Press the Generate button when completed.

2-48 Using the Zero Administration Client

Creating an Installer/Bootstrap Application

Figure2-30 Confirming Your Choices
#* Bootstrap generator: ETrader =] E3

WebLogic
_/ (, Confirm bootstrap settings

“ Install options <
Installed program name |ETrader
Installation directony Zac
Dehugiverbose install false

Launchin installation ... |true
Guery user far installati... |true
Guery user far HTTP Pr... |true
YWhi options
Whi order TidavaSoft, DMicrosoft, .
JRE update frequency Alweays

WeblLogic hostfor JRE [localhost

WebhlLogic part for JRE oo

DRP name of JRE JRE
Initial heap size (MB) 1
ey hean size WAY 1R ;I
K| o
= Back || WEsts I Generate Cancel |

17. From the Save As... window, select the [ocation and name of the installation
executable. The default name is based on the ZAC package name and the target
OS; but you may call this executable file anything you like. You will deploy this
executable to clients to install your application.

Using the Zero Administration Client ~ 2-49

Using the Publish Wizard

Figure2-31 Savingthe Generated ZAC Installation Program

Loak in; |_i weblogic400

| @

1 higtel

1 hin

[lrclasses

1 eval

] examples
ik

1 myserver

1 serletimages
st

README. HTML

S [ETrader_win32_xS6w.exe

Save |

Files of type: IAII Files (**)

LI Cancel |

Packaging a JRE

2-50

Y ou can wrap the entire JRE in a ZAC package and include it with your ZAC
application. Including the JRE means that you do not need to make any assumptions
about the end user’s machine and you are assured that everything necessary for your
application is provided, including the correct version of Java. The downsideisthat the
initial download package islarger, and it may install the JRE even though there being
another JRE present. This small initial inconvenience may be more desirable than

causing installation problems for the user.

Using the Zero Administration Client

Packaging a JRE

Before You Begin

The following steps describe how you should make a ZAC package of theJRE. Y ou
can then include this ZAC package as a dependency of yourapplication. Before you
start the Publish Wizard, you should do thefollowing:

1. Download the JRE install-shield. The JRE from JavaSoft can be downloaded from
JavaSoft.

2. Instal it on your development machine. In these instructions, we'll assume you
haveinstalled it inthedirectory c: \j re117.

Now start the Publish Wizard and continue the process.

Creating and Publishing a ZAC JRE Package.

1. Createthe packagetype as“Library” and giveit CLASSPATH “.” (CLASSPATH
doesn’t matter in this case). Give it no dependencies.

2. Create anew package for the JRE. We recommend that you choose a name that
reflects the OS and CPU type; for example, “JRE_117 win32_x86".

3. Enter atitle and description for the JRE package. You can enter any title you
wish.

4. Enter the package version as closely to the JRE version as possible. For example,
For JRE 1.1.7enter'1" "1 ' 7
For JRE 1.2.0enter'1’ '2' '0’

Entering the correct JRE version isimportant since the version string is used to
determine the default local installation directory for the JRE. Using the same version
number as the JRE version will minimize the chance that two separate ZAC packages
will overwrite each other’s JREs with incompatible versions. Of course, thisis only
used to determine the default install directory; the user ultimately decides where the
JRE shall beinstalled.

5. You may optionally select athumbnail image for the package.

6. Specify the top-level directory where you have previousdly installed the JRE. (In
this example, we'reusingc: \jrel17.)

Using the Zero Administration Client ~ 2-51

http://java.sun.com/products/jdk/1.1/jre/index.html

2 Using the Publish Wizard

7. Specify simply . (dot) asthe CLASSPATH for your library.

8. Skip the other dialog screens and publish the package. Make sure that the
publishing server is running before you try to publish.

After the publishing step is complete, you should see the new ZAC JRE package
appear inthe’ZAC Publish Wizard’” window.

Specifying a Published JRE Package for an Application

Now that you have created your own JRE ZAC package (see section above), you need
to add a dependency between it and your ZAC application. Here is how:

1. InthePublish Wizard, create an installer/bootstrap executabl e for your application,
using the instructionsin this document in the section Creating an
Installer/Bootstrap Application.

W Local JavaSoft v

B Load own JRE
hd
[Local Microsoft Wi

2. During the create process, when you make choices on how to configure the Java
Environment, you will see three choices that show the preference for choosing a
JRE on the client user’s host. You can order, select, or deselect these choices as
illustrated on the right. Select Load own JRE as one of your VM choices and
adjust its position in the preference list using the arrow buttons; then press the
Next button.

3. When the bootstrap wizard asks where the JRE is published, provide the
following:

e The hostname and port for the WebL ogic Server where you published the
ZAC JRE

e TheZAC name (eg., “JRE_117 win32_x86") under which the JRE
distribution is published

2-52 Using the Zero Administration Client

Packaging a JRE

You can typein the path or Browse for the published package on the appropriate
server in your server list.

Figure2-32 Locating a Published JRE
JRE package

Locate the Java Runtime Environment (JRE) package on which
the bootstrap application will depend. Enter the host name and
port nurmber of the publishing WeblLogic Server, and enter
package name of the Java Runtime Environment (JRE) ZAC
package.

If the package has already been published, and the publishing
WehlLogic Server is running and accessible, use the Browse
button to browse to the package, and the fields will be filed in
automatically .

WeblLogic host |I|:u:alh|:|5t WeblLogic port [7001

LAC package name |.JRE Browse...
Lpdate JRE [Ahways =

4. Pressthe Generate button, or proceed to the end of the bootstrap wizard.

5. Finally, choose afile name and path to save the installation executable on the
publishing server. For example, \ webl ogi c\ publ i c_ht mi \ MyAppl nstal | . exe
saves the installer/bootstrapper into the default document root of a WebL ogic
Server host, where you can publish access to it from an HTML page.

The native installer will be small, probably about 250 KB for a Windows
architecture. You can distribute it to clients however you like; for example, put a
link to it on aweb page, or attach it to an email.

Using the Zero Administration Client ~ 2-53

2 Using the Publish Wizard

Debugging and Testing a Published Application

The WebL ogic distribution contains native executabl esfor running the ZAC bootstrap
from the command line for Win32, Solaris, Linux, and DECUnix. The Windows
version (zac. exe) islocated in the bi n/ directory; the non-Windows versions are
locatedinthel i b/ {arch}/zac_{arch}/ directories. Each executablealso hasan g
version that can be used for verbose debugging.

Use the appropriate version of the command line bootstrapper to install or runaZAC
package. For example, you run the Windows version as shown here:

$ zac. exe -nane zacPackage options
The options are defined as follows:

-name zacPackage
Required. The name of the application to launch or download. For example:

$ zac. exe -nane ETrader
-host hostname

Hostname of the publishing WebL ogic Server. This defaultsto| ocal host .
For example:

$ zac.exe -nane ETrader -host zac.webl ogi c.com

-port port
Port at which the publishing WebL ogic Server islistening for login requests.
Defaultsto 7001. For example:

$ zac.exe -nane ETrader -host zac.webl ogic.com-port 80

-proxy
Promptsfor proxy information, according to the configuration set inthe ZAC
bootstrap wizard when the package was published.

-dir localDir
Thelocal (client) directory where the ZAC application files are located. This
defaults to the current working directory. The following example launches a
ZAC application called ETrader:

$ zac.exe -nane ETrader -dir /usr/local/zac/

For this example, all files for the ETrader application and all of its
dependencies will be stored in the subdirectories below / usr /1 ocal / zac/ .

2-54 Using the Zero Administration Client

Packaging a JRE

The actual ZAC application ETrader is stored beneath this directory in
another directory with the same name as the package, that is
/usr/1ocal / zac/ ETrader/ . The ZAC bootstrapper looks inside this
directory for the OSD application manifest (i ndex. osd).

-root
Start the Java ZAC application in the ZAC root directory. The default it to
start the ZAC application in the current working directory.

-vmJIVM type

Specifiesthe order of preferencefor locating a VM on the client’ s machine.
Specify any combination of the characters"S","M",or “O” where the highest
preference is on the | eft, and the characters represent:

e S(SunJavaVM)
e M (Microsoft VM)
e O (Own VM. You provide your own JVM as apublished ZAC package.)

If you use“O” in thisargument, you must specify a JRE with the -jre flag.

-jre zacPackage
Required if you use“O” as an option for the -vm flag. Specifiesa
ZAC-published JRE.

-Dname=value
Specifiesone or more Javasystem property to the JavaVM whenitisinvoked
by the bootstrapper.

—option
Pass the flag “-option” (with a single hyphen) to the Java application as it
starts up.

-msnumber
Setsthe VM initial heap size for your client application (in megabytes).

-mxnumber
Setsthe VM maximum heap size for your client application (in megabytes).

-nolaunch
Updates a ZAC package without launching it.

Using the Zero Administration Client 2-55

2 Using the Publish Wizard

-noquery
Disablesthedial og that promptsthe user for an alternate installation directory
when the bootstrapper is run. By default this is enabled.

-noprogress
Disables the display of the download progress meter.

-noupdate
Launches a ZAC application without attempting to update it. Requires a
previously successful download.

-verbose
Enables verbosity for clasdoading in the Sun VM. This can be useful for
tracking down problems with missing class dependencies on the client.

-help
View alist of the available options. Each option also has ashorthand version;
These are indicated in the output of the - hel p command.

2-56 Using the Zero Administration Client

CHAPTER

3 Developing with
WebLogic ZAC

This section describes the Application Programmatic Interface (API) for the Zero
Administration Client, including the following topics:

m Introduction
m TheWebLogic ZAC API
m Implementing with WebL ogic ZAC

Introduction

This document describes how to use the ZAC API to ZAC-enable your Java
applications. Y ou should also befamiliar writing aWebL ogic client application, which
introduces all of the services and facilities within the WebL ogic environment.

WebLogic ZAC (Zero Administration Client), lets you automate the distribution and
maintenance of your application software. ZAC removes the burden of manual
software distribution, installation, re-installation, upgrades, bug-fix patches, and data
distribution. It keeps your application software always up-to-date on your client
machines viathe Internet or intranet. ZAC’s services can be made automatic and
transparent to the end-user. Updates are fast and efficient, since ZAC only transmits
the minimum changes required to bring each client up-to-date.

Using the Zero Administration Client ~ 3-57

Introduction

ZAC is an implementation of the W3C specification, the HTTP Distribution and
Replication Protocol. In addition to a GUI wizard, the ZAC Publish Wizard, that
makes it easy to publish software on a ZAC-enabled WebL ogic Server. ZAC also has
an APl with which you can incorporate the same functionality directly into your Java
applications. Notethat ZAC isnot supported using the 1.3.0 JDK with or without Java
HotSpot TM.

Note: The JRE Update Frequency property set in the ZAC Publishing Wizard is not
supported as of Version 4.5.1, and you need to use one of the following
methods to update your JRE when necessary.

When aJRE is packaged with an application, it will bereinstalled on the client
only if:

(a) Theentire JRE installation directory is deleted from the client AND either
the client executable OR the ZAC bootstrap routineis run; or

(b) A new version of the JRE library package is published on the WebL ogic
Server AND the bootstrap routine (not the client executable) is run from the
client.

No package versioning takes place on the server (unlessthe version number is
made part of the package name); it isonly possible to "revert" a packageif it
has not already been published.

When to use the ZAC API

ZAC can be used as awrapper around your existing Java applets and applications, or
can be incorporated into your applications viathe ZAC API. If you want to distribute
and automatically update your Java software with ZAC, you do not really need to use
the ZAC API; the ZAC Publish Wizard allows you to specify everything necessary to
publish your application and make it available to client machines. For information on
publishing applications with ZAC, see Publishing with WebL ogic ZAC.

Y ou should consider building ZAC into your Java code if you need to closely control
the ZA C update services with your application. Y our application can respond
automatically when new updates are published, or offer more control to the user over
when to accept new software updates. Another use of the ZAC API isto write
applications that administer updates for other applications, or non-executable dataon
the client machine. For instance, maintaining alarge dataset on each client machine,

Using the Zero Administration Client ~ 3-58

http://www.w3.org/TR/NOTE-drp-19970825.html
http://www.w3.org/TR/NOTE-drp-19970825.html
http://e-docs.bea.com/wls/docs61/zac/wizard.html

The WebLogic ZAC API

such asacopy of alarge corporate intranet that must be kept up-to-date on every Sales
person’s field laptop. Downloading the entire dataset every time a change is made
might take along time over the network, but when a ZA C-enabled application finds
newly published versions, it downloads only the required changes.

How ZAC deploys applications

ZAC applications must be published on a ZAC-enabled WebL ogic Server to be made
available to WebL ogic clients. Y ou do not have to use the ZAC Java APl in your
application codein order to publish the application with ZAC; as part of the publishing
process, ZAC supplies atiny bootstrap executable that your client can download, and
the bootstrapper will then handleinitial download, subsequent updates (configurable),
and starting of the published application. This bootstrap executable is compiled for
each target platform’s operating system, so that Java need not be pre-installed on the
client.

Y ou publish the bootstrap by posting alink for the executable from any web page; after
the user downloads and runs the bootstrapper, an icon isinstalled on the desktop that
the user can double-click to start the initial installation and subsequently to start the
applicationitself. Before starting the published application, the bootstrapper checksfor
new updates on the server and upgrades the application as necessary. Subsequent
updates will be more efficient since only the changes are downl oaded.

Y ou can exercise more control over when an application is updated by using the ZAC
API to add code to your Java client. When the bootstrapper is generated by the ZAC
Publish Wizard (see Using the Publish Wizard), you may uncheck the option so that it
will not automatically update the client from anewly published ZAC package; rather,
you can add the ZA C update functionality to the application itself, enabling the user
can choose when to update from the application’s user interface.

The WebLogic ZAC API

Package-weblogic.zac

Cl ass java.l ang. Obj ect
Cl ass webl ogi c. zac. ZAC

Using the Zero Administration Client ~ 3-59

Implementing with WebLogic ZAC

(i nmpl ements webl ogi c. dr p. event s. Progr essLi st ener,
webl ogi c. dr p. common. DRPConst ant s)

Cl ass webl ogi c. zac. ZACLog

Use the ZAC class to manage ZAC packages on the client machine from within your
application. Most likely, you will use only avery small subset of the methodsin this
class, such asthe updat e() method to update the ZA C package on the client machine
from the publishing WebL ogic Server.

The ZACLog class provides information about the published ZAC packages in use by
your client, and the most recent updates for each of these packages.

Implementing with WebLogic ZAC

This section discusses the following topics:

Importing Packages

Updating ZAC Applications

Using ZACL og to Query the Latest Updates
Restarting a ZAC Client Application

Using WebL ogic Events with ZAC

Packaging Librarieswith Your ZAC Application

Importing Packages

To usethe zAC classin your Java application or applet you must import the WebL ogic
ZAC package, aswell asthe package that supportsall WebL ogic clients. For example:

i nport webl ogi c. zac. *;
i mport webl ogi c. conmon. *;

Using the Zero Administration Client 3-60

Implementing with WebLogic ZAC

Updating ZAC Applications

Y our application should create and use a ZA C object to reference and update aZAC
package. The ZAC constructor requiresthat you specify thefollowing details about the
ZAC package you want to administer:

m The address of the WebL ogic Server where the ZAC package is published
m The name of the published ZAC package on the WebL ogic Server
m Thelocal installation directory of the ZAC package on the client machine

Y ou can use the ZACLog class to obtain information about each ZAC package in use
by your client application, and then passthat information to the ZAC constructor. The
code below illustrates how you might do this:

/1 Find the address of each publishing server

/1 and connect to each in turn

ZACLog zl;

ZAC zac;

/1 Qotain an enuneration of ZACLog(s) for each published
/| package this application is dependent upon

Enurer ati on enum = ZACLog. get Updat eLogs() ;

whil e (enum hasMoreEl enents()) {

zl = (ZACLog) enum next El ement () ;
/] Construct a URL of the server address from each ZACLog
t3url ="t3://" + zl.getZACHost () + ":" + zl.getZACPort() + '/'

/1 Create a new ZAC object, and connect to the server.
zac = new ZAC(zl . get ZACHost (),
z|l . get ZACPort (),
z| . get ZACNane() ,
zl . getLocal Directory());
/1 Now performthe ZAC package update. ..
zac. update();

In the above example, we use the ZACLog. get Updat eLogs() method to examine an
enumeration of ZACLog instances. Each ZACL og instance refers to a separate ZAC
package that this application depends upon. We use the properties of each ZACLog to
create aZAC object for each ZAC package. We then update each ZAC package using
the zac. updat e() method.

Using the Zero Administration Client ~ 3-61

Implementing with WebLogic ZAC

If your application administers another ZAC package that it is not dependent upon,
then the ZACLog. get Updat eLogs() method will be ineffective, sinceit only returns
aZACLog for each package that the current ZAC application uses. In this case, your
application will need to passexplicit detail s about the publishing WebL ogic Server and
the name of the package to the constructor.

Once you have created a ZAC object, you may call itsupdat e() method. This checks
for anewly published ZAC package, and updates the package on the client if
necessary.

Using ZACLog to Query the Latest Updates

The details of each ZAC update are recorded into a set of ZACL og objects. Updates
can occur when the application starts, or when the application initiates an update itself
(asabove). Y ou obtain an Enumeration of ZACL og object from the latest update using
the ZACLog. get Updat eLogs() static method. All previous ZACL og records are
discarded; it is the responsibility of the application to maintain arecord of updatesiif
required.

The Enumeration returned by acall to the get Updat eLogs() method contains one
ZACLog for each package that the application is dependent upon. Y ou might process
this Enumeration as shown in the following code:

/1 Qotain Enumeration of ZACLog(s)
Enurer ati on enum = ZACLog. get Updat eLogs() ;
ZACLog 1zl ;
/1l Process each ZACLog. . .
whi | e(enum hasMor eEl emrents()) {
zl = (ZACLog) enum next El enent () ;
/1 Print the ZAC package nanme
Systemout. println("ZAC | og for package" + zl.get ZACNane());

/1 Print the ZAC update status
switch(zl.getUpdateStatus()) {
case ZACLog. UPDATE_NONE:
System out. println("ZAC update status: No update was
necessary.");
br eak;
case ZACLog. UPDATE_FAI LURE:
System out. println("ZAC update status: FAILED");
Systemout.printin("Details: " + zl.getUpdateFailureString());
br eak;

Using the Zero Administration Client ~ 3-62

Implementing with WebLogic ZAC

/1 This is where the real work starts
case ZACLog. UPDATE_SUCCESS:

System out. println("ZAC update status: Conpleted

successful ly");

/1 Get info about the update
int fileCnt = zl.getUpdateFileCount();
| ong binarySi ze = zl. get Updat eByt eCount () ;

String details;

if (fileCnt == 0) {
details = "Update Success, O files updated, O bytes

transferred.";

}

}

el se {
if (fileCnt == 1) {
details = "Update Success, 1 file updated, ";
}
el se {
details = "Update Success, " + fileCnt + " files updated, ";

}

if (binarySize > 1000) {
details += (binarySize / 1000) + " KBytes transferred.";
}
el se {
details += (binarySize) + " bytes transferred."”;
}
}
Systemout.println("Details: " + details);

/1 Report which files were updated
Systemout.println("The following files were updated:");
Enunmeration fl = zl.getUpdateFileList();
File zacroot = zl.getLocal Directory();
while (fl.hasMreEl ements()) {
String path = (String)fl.nextEl ement();
Fil e updated = new Fil e(zacroot, path);
System out. println("Updated: " + updated. get Absol utePath());

}

Using the Zero Administration Client ~ 3-63

Implementing with WebLogic ZAC

The example above shows how to retrieve detailed information about the latest ZAC
update from the ZACL og. First, the name of the ZAC package to which the ZACLog
refersisobtained and printed out to the console. Next, the status of the ZAC updateis
queried and aswi t ch statement is used to act upon the possible outcomes. The

get Updat eSt at us() method will return one of the following constants:

ZACLog. UPDATE_NONE
No update was necessary; the package was up-to-date.

ZACLog. UPDATE_FAI LURE
The update failed in some way. More information can be obtained about the
failure by calling the get Updat eFai | ureString() andthe
get Updat eFai | ur e() methods. Thisreturns a String containing a stack
trace and the Thr owabl e exception that occurred respectively. An update
may fail dueto aserver error, acommunicationsinterruption, or alack of disk
space on the client machine.

ZACLog. UPDATE_SUCCESS
Indicates that a successful update occurred. Severa other pieces of
information about the ZACLog are available when an update is successful,
such as the size of the data transferred and the files that were updated.

The names of the updated files returned by the get Updat eFi | eLi st () method are
relative to the installation directory into which the ZAC package was installed. In the
above example, aFILE object is constructed from the relative pathname, appended to
the path returned by theget Local Di r ect or y() method, giving the full path name of
each file.

Changesthat an update makesto an application will not bereflected until it isrestarted.

Restarting a ZAC Client Application

If your client application was started using the ZA C bootstrapper, you may request it
to be restarted by sending azAC. ZAC_EXI T_RESTART flag to the Syst em exi t ()
method. Here is an example:

Syst em exi t (ZAC. ZAC_EXI T_RESTART) ;

Using the Zero Administration Client 3-64

Implementing with WebLogic ZAC

Since, the ZA C bootstrapper was used to start the application, it can also catch the exit
status. When it receivesthe ZAC. ZAC_EXI T_RESTART status, it restartsthe application.
Prior to restarting, the bootstrapper will aso update the application and other ZAC
packagesit is dependent upon if configured to do so. Y ou usually configure thiswhen
you publish the application with the ZAC Publish Wizard.

Using WebLogic Events with ZAC

Y ou can incorporate WebL ogic Events into your client application to have it respond
instantly when a new version of a ZAC package is published on aWebL ogic Server.

Note: WebL ogic Events are deprecated with the 6.0 release of WebL ogic Server.

The WebL ogic Server generates a new event for the
VEBLOG C. ZAC. UPDATE. nmyPackage topic when a new update of the package named
myPackage is published on the WebL ogic Server. When your application registers an
interest in the event topic WEBLOG C. ZAC. UPDATE and setsthesi nk flag to true, your
application isnotified when anew package versionis published. For information about
events, see Using WebL ogic Events.

Thefollowing code shows how aclient connects to the WebL ogic Server and registers
interest in the publication of a ZAC package. In this example, the client registers
interest in the " WEBLOG C. ZAC. UPDATE. nyPackage" event topic.

ZACLog zl;
String t3url = null;
whil e (enum hasMoreEl enents()) {
ZACLog zl = (ZACLog)enum nextEl enent();
/] Test for a match to the package nane
if (zl.get ZACNare() . equal s(" nyPackage")) {
t3url = "t3://" + zl.get ZACHost () +
"+ zl.getZACPort() + '/";
br eak;
}
}

if (t3url !'=null) {
/1 Now connect to the server.
T3Servi cesDef t3services = getT3Services(t3url);

/] Register interest in the update event...

/'l Create an Evaluate object to be used in the registration
Eval uate eval =

Using the Zero Administration Client 3-65

http://e-docs.bea.com/wls/docs61/event/event.html
http://e-docs.bea.com/wls/docs61/event/index.html

3 Dev oping with WebLogic ZAC

new Eval uat e("webl ogi c. event. eval uat ors. Eval uat eTrue");

/] Create an Action object paraneter for the registration
// To have the notification returned to the client, the client
/1 must inplenment ActionDef and the Action nust be instantiated
/1l with the client object, i.e. "this".
Action act = new Action(this);
/1 Create the EventRegi strati onDef object
Event Regi strati onDef erd =
t 3servi ces. event s()
. get Event Regi strati on("WEBLOGJ C. ZAC. UPDATE. nyPackage",
eval, act, true, true, 1);

/1 Finally, we register interest in the event
int regid = erd.register();

}

The client must implement theact i on() method, part of the ActionDef interface. In
theact i on() method, you client may act upon notification of a published update, and
update itself. Here is an example:

publ i c synchroni zed void action(Event MessageDef ev) {
Systemout.println("Notification of an " +
ev.get Topic() +
" Event received.");
zacUpdate = true;
noti fyAll();
}

Theacti on() method isusually synchronized to prevent multiple threads from
executing in it simultaneously. In this implementation, we simply print a message to
the console, set the private variablezacUpdat e tot r ue, and wake up other application
threads to handle the event by calling thenot i f yAl | () method. The zacUpdat e
variable indicates to the suspended application thread that is should perform aZAC
update.

Note: It is not good practice to perform time-consuming operations in a callback
method such as this, since the event notification is called from another thread. Small
operationsthat return quickly are acceptible, but in our case, we may decideto perform
aZAC update, which may take some time so is best handled from one of the client
application threads.

366 Using the Zero Administration Client

Implementing with WebLogic ZAC

Packaging Libraries with Your ZAC Application

Y our published ZA C application should be published with any required libraries that
it depends upon. The ZAC subset of the Weblogic classesis distributed with any ZAC
application by default and is necessary for its operation, regardless of whether the
application usesthe ZAC API or not. These classes are downloaded to the client in the
zac.jar file and placed in alib directory below the ZAC application installation
directory. For thisreason, applicationsthat use the ZAC API need not deploy the ZAC
classes, since they are supplied by default.

However, applicationsthat use WebL ogic resourcesthat are not included in the zac.jar
file, or any other non-default libraries or packages, must be configured so that those
resources are also installed on the client machine. This can be achieved in two ways,
described below.

Including Libraries within a ZAC Package

If you include the required classes, jars, libraries, or any other data under your ZAC
application’ s publish directory, they will automatically be deployed with that package
and installed under the same rel ative package directory on the client machine.

If you application depends on classes outside of the application package, you must
make sure that they arein the CLASSPATH of the ZAC application. Y ou can specify
aruntime CLASSPATH for your application in the ZAC Publish Wizard (see Using
the Publish Wizard); the CLASSPATH must be specified relative to the root
installation directory.

Making a ZAC Package Depend upon Another ZAC Package

If you intend to publish several ZA C applicationsthat use the samelibrariesor classes,
you can save disc space on the client machine by publishing the shared components as
a separate package. Y ou then make each ZA C package dependent upon the shared
package. The packagesthat your application depends upon, aswell asyour application
itself, will be included each time your client application is updated.

When ZAC ingtallsapackage on aclient, everythingisinstalled under aroot directory.
The ZAC application you originally published will beinstalled in asubdirectory of the
same name under this root directory. Any other packages will also be stored in

subdirectories with the same name as the package under this root directory. ZAC only

Using the Zero Administration Client ~ 3-67

3 Dev oping with WebLogic ZAC

3-68

has knowledge of the packagesit hasinstalled under the root directory. The location
of theinstall-root directory is either defined when the package is published, or the
package may be configured to allow the user to choose itslocation at install time.

_| WwieblogicClazses
P & ZSimple
In thisexample, the ZAC root directory is called ZacExamples, under which there are
two packages, ZSimple and Webl ogicClasses. In this case, the ZSimple package might
depend upon Webl ogicClasses.

For two ZA C packagesto share adependency on another package, both ZA C packages
must be installed under the same root directory.

E|_| ZacE xamples

_| Anotherdne

..... 11l

F-__| WeblogicClazzes

- B ZSimple

L [1 ZSimple

Thisillustration shows the directory structure when another package (called
AnotherOne) has been installed under the same root directory. Both packages can
share dependency on the same Webl ogicClasses package, and both will update it if
necessary.

Note: If not installed under the same root, each will maintain separate copies of the
same package under their corresponding root directories. Thisis the default behavior;
otherwise, a ZAC package might unintentionally update a package that another
package was dependent upon.

Using the Zero Administration Client

	Copyright
	1 Publishing with WebLogic ZAC
	Introduction
	Trying Out the ZAC Demos
	How ZAC Works
	How you Publish a ZAC Package on the Server
	How ZAC Installs a Published Application on the User’s Machine
	How a Published Application Runs on the User’s Machine

	Setting up WebLogic for Publishing with ZAC

	2 Using the Publish Wizard
	Starting the Publish Wizard
	Creating a ZAC Package
	Publishing a ZAC Package
	Reverting a ZAC Package

	Using the command line Publish Utility
	Connecting the Publish Wizard to Other Servers
	Updating a Published ZAC Package
	Importing a Published ZAC Package from Another Server
	Removing a Published ZAC Package
	Creating an Installer/Bootstrap Application
	Packaging a JRE
	Before You Begin
	Creating and Publishing a ZAC JRE Package.
	Specifying a Published JRE Package for an Application
	Debugging and Testing a Published Application

	3 Developing with WebLogic ZAC
	Introduction
	When to use the ZAC API
	How ZAC deploys applications

	The WebLogic ZAC API
	Implementing with WebLogic ZAC
	Importing Packages
	Updating ZAC Applications
	Using ZACLog to Query the Latest Updates
	Restarting a ZAC Client Application
	Using WebLogic Events with ZAC
	Packaging Libraries with Your ZAC Application
	Including Libraries within a ZAC Package
	Making a ZAC Package Depend upon Another ZAC Package

