BEA WebLogic
Server

WebLogic Tuxedo Connector
Programmer’s Guide

BEA WebLogic Server Version 6.1
Document Date: April 24, 2003

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
BEA WebL ogic Server WebL ogic Tuxedo Connector Programmer’s Guide

Document Date Software Version

June 24, 2002 BEA WebLogic Server 6.1

Contents

About This Document

YU o [1= 3 T viii
E-AOCSWED SIE....ceeeee ettt e r e b viii
HOow to Print the DOCUMENEcccvieveireeeeceeee e snen viii
Related INfOrmation..........cceeoi e s iX
(@01 r=o: A U LS PSSR iX
Documentation CONVENTIONS..........couverererereseesie e seeeeeeseeseesesessessessessessessenseses X

1. Introduction to WebLogic Tuxedo Connector Programming

Developing WebL ogic Tuxedo Connector Applications..........ccoceeeevrerinennne 1-2
Developing WebL ogic Tuxedo Connector Clients.........cocoovvevevveeneeennnnn 12
Developing WebL ogic Tuxedo ConNNector SErVErsocovveeereeeeeerennns 12
Using WebL ogic Tuxedo Connector for Interoperability with Tuxedo

CORBA ODJECES....ccuiierieieieieie et st 1-3

WebL ogic Tuxedo Connector JATMI PrimitiVeS.......ccceceeevvrreernieernesieseenens 1-3

WebL ogic Tuxedo Connector TypedBUFfeErs........ccocueveeeeeerieciesnescesesenee s 14

2. Developing WebLogic Tuxedo Connector Client EJBs

Joining and Leaving APPlICALIONS........c.ooeriririerinise e e 2-1
Joining an APPHICALIONccocuereeri e s 2-2
Leaving an APPHICALiONccoeiiiiie et e 2-3

BasiC Client OPErationcoereeriereeeereeeeieseeie sttt s s e e e e ene s 2-3
Get @ TUXEAO ODJECLecveceiieciesiesiee et s neeneenas 2-3
Perform Message BUFfEringcooieiineie e 2-4
Send and RECEIVE MESSAJES........couieeiriererie et 2-4

Request/Response COmMMUNICAtiON..........cccvererereeriereeeereeeeeeeeeesens 2-5
Conversational COmMMUNICALION.........ccccerereriiniere e 2-5

WebL ogic Tuxedo Connector Programmer’s Guide iii

Close a Connection to a Tuxedo ObJECE.........cccevevereereeeeereee e 26
EXample CHENt BJB........cco ettt e 2-6

3. Developing WebLogic Tuxedo Connector Service EJBs

BasiC Service EJB OPEration........ccccuvvererierieseneesineesesesseseesseseesseseesesssssessenns 31
ACCESS Service INFOrmMation...........cooeieeiiieeneieeee e 32
2T = Y =SS o 32
Perform the Requested SErVICEcovvvveerreere e 33

Return Client Messages for Request/Response Communication....... 33
Use tpsend and tprecv for Conversational Communication............... 33
EXample SErVICEEIBcoovveeceeceeese sttt s 34
4. Using WebLogic Tuxedo Connector for RMI/IIOP and Corba
Interoperability

How to Devel op WebL ogic Tuxedo Connector Client Beansfor Tuxedo CORBA
(@] o 1= v £SO 4-2
USEthe WTC ORB ...ttt 4-2
Get ObJECt REFEIENCES. ..ot eere et enens 4-3
INVOKE ON the OBJECLeeiiiiriiiere e e 4-3
Example ToupperCorbaBean.java Code...........coeverenieieeneeneieereeee e 4-3

How to Modify Inbound RMI/IOP Applications to use the WebL ogic Tuxedo
100013111 (o TSRS 4-5

How to Modify Outbound RMI/IIOP Applications to use the WebL ogic Tuxedo
10010141 0! (o] SRR SRRSOV PRPROR 4-6
How to Modify the gjb-jar.xml File to Pass a FederationURL to EJBs.... 46

ASSIgN ENV-ENEIY-NAIMIEoveeeeeeeeeeee et e e e eneere e 4-8
ASSIGN ENV-ENEFY-TYPE .ttt 4-8
ASSIGN ENV-ENEFY-VBIUE ...t 4-8
How to Modify EJBs to Use FederationURL to Access an Object........... 4-8

How to Use FederationURL FOrMaLS........cccooeverinene e 4-10

Using corbaloC URL FOrMAELccoeeireiiiinesie e 4-10
Examples of corbal OC:tgiop.....couevveeeererere e eeiee e 4-11
Examples using -ORBINItREf..........c..coeiiiiinirrece e 4-11
Examples Using -ORBDefaultInitREfcooerevininenineeees 4-12

Using the corbaname URL FOrmat........ccccvevevereeereseseseseesene e 4-12
Examples Using -ORBINItRES ..o 4-12

WebL ogic Tuxedo Connector Programmer’s Guide

How to Manage Transactions for Tuxedo CORBA Applications................... 4-12

WebLogic Tuxedo Connector ATMI Transactions

GlObal TranSACtIONS.......ccirierierierie et et s se e 5-1
JTA TranSaCtioN APl ..ot 52
Types of JTA INLEIfACES........oceii i e 52
TrANSACION ...ttt 52
TranSaCtioNMaNAgETcviueerereiereerereeseeseereeeereesessesseeresressesreseesenes 53
USEITraNSaCiONoveeeeee ettt e e e 53

JTA Transaction PrimitiVES.........coerieririenne e 5-3
DefiniNg @ TranSACtiONcceiviveerereesecreeeetee e este et eenesse e sneeneas 54
Starting @ TranSACHION.........coue i e e 54
USING TPNOTRAN ..ottt 54
Terminating @ TranSaCliONcccererereereee e sre e e eneees 55
WebL ogic Tuxedo Connector Transaction RUIES............coeiiieiiieeiiccecieeene 55
Example TransaCtion COUE.........ccvervveeceeeriie e seesee e enens 5-7

WebLogic Tuxedo Connector JATMI Conversations
Overview of WebL ogic Tuxedo Connector Conversational Communication ..6—2

WebL ogic Tuxedo Connector Conversation Characteristics........ccovveeveeenene. 62
WebL ogic Tuxedo Connector JATMI Conversation Primitives..........ccccoeuine 6-3
Creating WebL ogic Tuxedo Connector Conversational Clients and Servers...6-4
Creating Conversational ClIENtS...........ooceorerirenene e 64
Establishing a Connection to a Tuxedo Conversational Service........ 64
Example TuxedoConversationBean.java Code..........cccccoerveeerenienncne 6-5

Creating WebL ogic Tuxedo Connector Conversational Servers............... 6-6
Sending and RECEIVING MESSAGESccvevereereeieeerereee e e e e e see e seeseeneeneenas 66
SENAING MESSAGEScuveieeeieeeieiee ettt st e et e e e e e e e e eae e 66
RECEIVING MESSAGES ... ettt et b e 67
ENding @ CONVEISatioNccueoverieeeririeieeeestese e s esie e te e sse e e e enaesaesenneeneas 6-8
Tuxedo Application Originates CONVErsation...........cocecereeeeverienieserenienne 6-8
WebL ogic Tuxedo Connector Application Originates Conversation........ 6-9
Ending Hierarchical CoONVErsations...........ccocveevvevienesesieneseeseseeeesenens 6-9
Executing a Disorderly DiSCONNECLcoirererienieieeneee e 6-10
Understanding Conversational Communication Events.............cccceereceernen. 6-10

WebL ogic Tuxedo Connector Programmer’s Guide v

Vi

WebL ogic Tuxedo Connector Conversation GUIdelings.........cccoevvvveerenennnn, 6-12

Application Error Management

Testing for ApPliCation EITOrS........coooiieiiereieeee e 7-1
EXCEPLION ClaSSES....c.ceeeeeeeceeeeirieseree st e s e ste e seestesee s e e e seeresreseesnens 7-1
Fatal TransaCtion EITOrS........cccoiiiiiniene e e e 72

WebL ogic Tuxedo Connector Time-Out Conditions..........ccceceverereereeeerenneen 72
Blocking vs. TransaCtion TiMeE-0ULccccveeveriereesieneseereeieeese e 7-3
Effect 0N COMMIT() ..oveiereiiie e e 7-3
Effect of TPNOTRAN ..ot e 7-3

Guidelines for Tracking Application EVENtS........ccccevvvevececeneie e -4

WebL ogic Tuxedo Connector Programmer’s Guide

About This Document

This document introduces the BEA WebL ogic Server WebL ogic Tuxedo Connector
application development environment. It describes how to develop EJBs that allow
WebL ogic Server to interoperate with Tuxedo objects.

The document is organized as follows:

Chapter 1, “Introduction to WebL ogic Tuxedo Connector Programming,”
provides information about the development environment you will be using to
write code for applications that interoperate between WebL ogic Server and
Tuxedo.

Chapter 2, “Developing WebL ogic Tuxedo Connector Client EJBs,” provides
information on how to create client EJBs.

Chapter 3, “Developing WebL ogic Tuxedo Connector Service EJBS,” provides
information on how to create service EJBs.

Chapter 4, “Using WebL ogic Tuxedo Connector for RMI/I1OP and Corba
Interoperability,” provides information on how to develop CORBA applications
for the WebL ogic Tuxedo Connector.

Chapter 5, “WebL ogic Tuxedo Connector ATMI Transactions,” provides
information on global transactions and how to define and manage them in your
applications.

Chapter 6, “WebL ogic Tuxedo Connector JATMI Conversations,” provides
information on conversations and how to define and manage them in your
applications.

Chapter 7, “Application Error Management,” provide mechanisms to manage
and interpret error conditions.

WebL ogic Tuxedo Connector Programmer’s Guide vii

Audience

Thisdocument iswritten for system administratorsand application developerswho are
interested in building distributed Java applications that interoperate between

WebL ogic Server and Tuxedo environments. It is assumed that readers are familiar
with the WebL ogic Server, Tuxedo, XML, CORBA, and Java programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from aWeb browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

viii WebL ogic Tuxedo Connector Programmer’s Guide

http://www.adobe.com

Related | nfor mation

The BEA corporate Web site provides al documentation for WebL ogic Server and

Tuxedo.

For moreinformation about Javaand Java CORBA applications, refer to thefollowing
sources:

m The OMG Web Site at http://www.omg.org/

® The Sun Microsystems, Inc. Javasite at http://java.sun.com/

Contact Udl

Y our feedback on BEA documentation isimportant to us. Send us e-mail at

docsupport@bea.com if you have questions or comments. Y our comments will be

reviewed directly by the BEA professional s who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and

running BEA WebL ogic Server, contact BEA Customer Support through BEA

WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

WebL ogic Tuxedo Connector Programmer’s Guide

http://www.omg.com
http://www.java.sun.com/
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Usage

Ctrl+Tab

Keysyou press simultaneously.

italics

Emphasis and book titles.

nonospace
t ext

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chnmod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace
italic
t ext

Variablesin code.

Example:
String Custoner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{}

A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

WebL ogic Tuxedo Connector Programmer’s Guide

Convention Usage

| Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c. depl oy [list| depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in a command line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

WebL ogic Tuxedo Connector Programmer’s Guide Xi

Xii WebL ogic Tuxedo Connector Programmer’s Guide

CHAPTER

1 Introduction to

WebLogic Tuxedo
Connector
Programming

The following sections provide information about the devel opment environment you

will be using to write code for applicationsthat interoperate between WebL ogic Server
and Tuxedo:

m Developing WebLogic Tuxedo Connector Applications
m Webl ogic Tuxedo Connector JATMI Primitives
m WebL ogic Tuxedo Connector TypedBuffers

WebL ogic Tuxedo Connector Programmer’s Guide 1-1

1

Introduction to WebLogic Tuxedo Connector Programming

Developing WebLogic Tuxedo Connector

Applications

Note: For more information on the WebL ogic Tuxedo Connector JATMI, view the
Javadocs for WebL ogic Server Classes. The WebL ogic Tuxedo Connector
classes are located inthewebl ogi c. wt c. j at m and webl ogi c. wt c. gwt
packages.

In addition to the Java code that expresses the logic of your application, you will be
using the Java Application -to-Transaction Monitor Interface (JATMI) to provide the
interface between WebL ogic Server and Tuxedo. This allows you to develop clients
and servers without modifying existing Tuxedo services.

Developing WebLogic Tuxedo Connector Clients

Note: For more information, see “Developing WebL ogic Tuxedo Connector Client
EJBS’ on page 2-1.

A client process takes user input and sends a service request to a server process that
offers the requested service. WebL ogic Tuxedo Connector JATMI client classes are
used to create clients that access services found in Tuxedo. These client classes are
available to any service that is made available through the WebL ogic Tuxedo
Connector XML configuration file in the Startup Class of your WebL ogic Server.

Developing WebLogic Tuxedo Connector Servers

1-2

Note: For moreinformation, see* Developing WebL ogic Tuxedo Connector Service
EJBS’ on page 3-1.

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service
subroutines. WebL ogic Tuxedo Connector uses EJBs to implement services which
Tuxedo clientsinvoke.

WebL ogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html

WebLogic Tuxedo Connector JATMI Primitives

Using WebLogic Tuxedo Connector for Interoperability
with Tuxedo CORBA objects

Note: For moreinformation, see* Using WebL ogic Tuxedo Connector for RMI/110OP
and Corba Interoperability” on page 4-1.

The WebL ogic Tuxedo Connector provides bi-directional interoperability between
WebL ogic Server and Tuxedo CORBA objects. The WebL ogic Tuxedo Connector:

m Enables Tuxedo CORBA objects to invoke upon EJBs deployed in WebL ogic
Server using the RMI/11OP API (Inbound).

m Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Tuxedo using a CORBA Java APl (Outbound).

WebLogic Tuxedo Connector JATMI
Primitives

The JATMI isaset of primitives used to begin and end transactions, allocate and free
buffers, and provide the communication between clients and servers.

Table 1-1 JATMI Primitives

Name Operation

t pacal | Use for asynchronous invocations of a Tuxedo
service during request/response communication.

tpcal | Usefor synchronousinvocation of a Tuxedo service
during reguest/response communication.

t pconnect Useto establish a connection to a Tuxedo
conversational service.

WebL ogic Tuxedo Connector Programmer’s Guide 1-3

1 introductionto WebLogic Tuxedo Connector Programming

Table 1-1 JATMI Primitives

Name Operation

t pdi scon Use to abort a conversational connection and
generate a TPEV_DISCONIMM event when
executed by the process controlling the
conversation.

t pdequeue Use for receiving messages from a Tuxedo /Q
during request/response communication.

t penqueue Use for placing amessage on a Tuxedo /Q during
request/response communication.

tpgetrply Use for retrieving replies from a Tuxedo service
during request/response communication.

tprecv Use to receive data across an open connection from
a Tuxedo application during conversational
communication.

t psend Use to send data across a open connection to a
Tuxedo application during conversational
communication.

tpterm Use to close a connection to a Tuxedo object.

WebLogic Tuxedo Connector TypedBuffers

Note: WebL ogic Tuxedo Connector does not support double-byte character sets or
international character sets. These features are dependent on future rel eases of
Tuxedo.

1-4 WebL ogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector TypedBuffers

WebL ogic Tuxedo Connector provides an interface called TypedBuf f er s that
corresponds to Tuxedo typed buffers. M essages are passed to serversin typed buffers.
The WebL ogic Tuxedo Connector provides the following buffer types..

Table 1-2 TypedBuffers

Buffer Type

Description

TypedString

Buffer type used when the datais an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray

Buffer type used when the data is an undefined array of
characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML

Buffer type used when the datais self-defined. Each datafield
carriesitsown identifier, an occurrence number, and possibly
alength indicator. Tuxedo equivalent: FML.

TypedFML 32

Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML

Buffer type used when datais an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.

WebL ogic Tuxedo Connector Programmer’s Guide 1-5

1 introductionto WebLogic Tuxedo Connector Programming

1-6 WebL ogic Tuxedo Connector Programmer’s Guide

CHAPTER

2 Developing WebLogic
Tuxedo Connector
Client EJBs

Note: For more information on the WebL ogic Tuxedo Connector JATMI, view the
Javadocs for WebL ogic Server Classes. The WebL ogic Tuxedo Connector
classes arelocated in the webl ogi c. wt c. j at mi andwebl ogi c. wt c. gwt
packages.

Thefollowing sections describe how to create client EJBsthat take user input and send
service requests to a server process or outbound object that offers arequested service.

m Joining and Leaving Applications
m Basic Client Operation
m Example Client EJB

WebL ogic Tuxedo Connector JATMI client classes are used to create clients that
access services found in Tuxedo.

Joining and Leaving Applications

Tuxedo and WebL ogic Tuxedo Connector have different approaches to connect to
services.

WebL ogic Tuxedo Connector Programmer’s Guide 2-1

http://e-docs.bea.com/wls/docs61/javadocs/index.html

2 Deve oping WebLogic Tuxedo Connector Client EJBs

Joining an Application

The following section compares how Tuxedo and WebL ogic Tuxedo Connector join
an application:

m Tuxedo usest pi ni t () tojoin an application.

m WebL ogic Tuxedo Connector uses the BDMCONFIG XML configuration fileto
provide information required to create a path to the Tuxedo service. It provides
security and client authentication by configuring the
T_DM_REMOTE_TDOMAIN and T_DM_IMPORT sections of the
BDMCONFIG XML configuration file. This pathway is created when the
WebL ogic Server is started and the WebL ogic Tuxedo Connector XML
configuration file is loaded.

m \WebL ogic Tuxedo Connector uses TuxedoConnect i on to get a Tuxedo object
and then uses get TuxedoConnect i on() to make a connection to the Tuxedo
object. The following example shows how a WebL ogic Server application joins
a Tuxedo application using WebL ogic Tuxedo Connector.

Listing 2-1 Example Client Codeto Join a Tuxedo Application

iry{
ctx
tcf

new I nitial Context();

(TuxedoConnecti onFact ory)
ct x. | ookup("tuxedo. servi ces. TuxedoConnecti on");
} catch (Nam ngException ne) {

/1 Could not get the tuxedo object, throw TPENCENT
t hrow new TPExcepti on(TPExcepti on. TPENCENT,
"Coul d not get TuxedoConnectionFactory : " + ne);

}

nyTux = tcf.get TuxedoConnection();

2-2 WebL ogic Tuxedo Connector Programmer’s Guide

Basic Client Operation

Leaving an Application

Thefollowing section compares how Tuxedo and WebL ogic Tuxedo Connector leave
an application:

m Tuxedo usest pt er () toleave an application.

m WebL ogic Tuxedo Connector uses the JATMI primitivet pt er n() toclosea
connection to a Tuxedo object.

m Webl ogic Tuxedo Connector closes the pathway to a Tuxedo service when the
WebL ogic Server is shutdown.

Basic Client Operation

A client process uses Javaand JATMI primitives to provide the following basic
application tasks:

m Get a Tuxedo Object

m Perform Message Buffering

® Send and Receive Messages

m Close a Connection to a Tuxedo Object

A client may send and receive any number of service requests before leaving the
application.

Get a Tuxedo Object

Establish a connection to aremote domain by using the TuxedoConnect i onFact ory
tolookup “t uxedo. ser vi ces. TuxedoConnecti on” inthe JNDI tree and get a
TuxedoConnect i on object using get TuxedoConnect i on() .

WebL ogic Tuxedo Connector Programmer’s Guide 2-3

2 Deve oping WebLogic Tuxedo Connector Client EJBs

Perform Message Buffering

Use the following buffer types when sending and receiving messages between your
application and Tuxedo:

Table 2-1 TypedBuffers

Buffer Type

Description

TypedString

Buffer type used when the datais an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray

Buffer type used when the datais an undefined array of
characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML

Buffer type used when thedatais self-defined. Each datafield
carriesitsown identifier, an occurrence number, and possibly
alength indicator. Tuxedo equivalent: FML.

TypedFML 32

Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML

Buffer type used when datais an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.

Send and Receive Messages

2-4

WebL ogic Tuxedo Connector clients support two types of communications with

Tuxedo service applications:

B Reguest/Response Communication

m Conversational Communication

WebL ogic Tuxedo Connector Programmer’s Guide

Basic Client Operation

Request/Response Communication

Use the following JATMI primitives to request and receive response messages
between your WebL ogic Tuxedo Connector client application and Tuxedo:

Table2-2 JATMI Primitives

Name Operation

t pacal | Use for asynchronous invocations of a Tuxedo
service.

tpcal | Use for synchronous invocation of a Tuxedo
service.

t pdequeue Use for receiving messages from a Tuxedo /Q.

t penqueue Use for placing a message on a Tuxedo /Q.

tpgetrply Use for retrieving replies from a Tuxedo service.

Conversational Communication

Note: For more information on Conversational Communication, see “WebL ogic
Tuxedo Connector JATMI Conversations’ on page 6-1.

Use the following JATMI primitives when creating conversational clients that
communicate with Tuxedo services:

Table 2-3 WebL ogic Tuxedo Connector Conver sational Client Primitives

Name Operation

t pconnect Useto establish aconnection to a Tuxedo conversationa
service.

t pdi scon Use to abort a connection and generate a

TPEV_DISCONIMM event when executed by the
process controlling the conversation.

tprecv Use to receive data across an open connection from a Tuxedo
application.

WebL ogic Tuxedo Connector Programmer’s Guide 2-5

2 Deve oping WebLogic Tuxedo Connector Client EJBs

Table 2-3 WebL ogic Tuxedo Connector Conversational Client Primitives

Name Operation
t psend Use to send data across a open connection to a Tuxedo
application.

Close a Connection to a Tuxedo Object

Uset pt er () to close aconnection to an object and prevent future operationson this
object.

Example Client EJB

The following Java code provides an example of the Toupper Bean. j ava client EJB
which sends a string argument to a server and receives areply string from the server.

Listing 2-2 Example Client Application

public String Toupper(String toConvert)
t hrows TPException, TPRepl yException
{

Cont ext ctx;

TuxedoConnecti onFactory tcf;
TuxedoConnecti on myTux;
TypedString nyDat a;

Reply nyRtn;

int status;

| og("toupper called, converting " + toConvert);

try {
ctx

tcf

new I nitial Context();
(TuxedoConnecti onFact ory) ctx. | ookup(

2-6 WebL ogic Tuxedo Connector Programmer’s Guide

Example Client EJB

"t uxedo. servi ces. TuxedoConnecti on");

}
catch (Nam ngException ne) {
/1 Could not get the tuxedo object, throw TPENCENT
t hrow new TPExcepti on(TPExcepti on. TPENOENT, "Could not get
TuxedoConnecti onFactory : " + ne);

}

nyTux = tcf.get TuxedoConnection();
nyData = new TypedString(toConvert);
| og(" About to call tpcall");

try {
nyRtn = nmyTux. tpcal |l (" TOUPPER', nyData, 0);

}
catch (TPRepl yException tre) {
log("tpcall threw TPRepl yExcption " + tre);
throw tre;
}
catch (TPException te) {
log("tpcall threw TPException " + te);
throw te;
catch (Exception ee) {
log("tpcall threw exception: " + ee);
t hrow new TPExcepti on(TPExcepti on. TPESYSTEM "Exception: " + ee);
}
| og("tpcall successfull!");
nyData = (TypedString) nyRtn.getReplyBuffer();
nyTux.tpterm();// C osing the association with Tuxedo
return (nyData.toString());

WebL ogic Tuxedo Connector Programmer’s Guide 2-7

2 Deve oping WebLogic Tuxedo Connector Client EJBs

2-8 WebL ogic Tuxedo Connector Programmer’s Guide

CHAPTER

3 Developing WebLogic
Tuxedo Connector
Service EJBs

The following sections provide information on how to create WebL ogic Tuxedo
Connector service EJBs:

B Basic Service EJB Operation

m Example Service EJB

Basic Service EJB Operation

A service application uses Javaand JATMI primitives to provide the following tasks:
m Access Service Information

m Buffer Messages

m Perform the Requested Service

WebL ogic Tuxedo Connector Programmer’s Guide 31

3 Deve oping WebL ogic Tuxedo Connector Service EJBs

Access Service Information

Note: For moredetailedinformation onthe TPSer vi cel nf or mat i on class, view the
Javadocs for WebL ogic Server Classes. The WebL ogic Tuxedo Connector
classes arelocated in thewebl ogi c. wt c. j at mi package.

Usethe TPSer vi cel nf or mat i on class to access service information sent by the
Tuxedo client to run the service.do:

Table 3-1 JATMI TPServicel nformation Primitives

Buffer Type Description

get Servi ceDat a() Use to return the service data sent from the Tuxedo Client.

get Servi ceFl ags() Usetoreturn the serviceflags sent from the Tuxedo Client.

get Servi ceNane() Use to return the service name that was called.

Buffer Messages

Use the following buffer types when sending and receiving messages between your
application and Tuxedo:

Table 3-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the datais an array of characters that
terminates with the null character. Tuxedo equivalent:
STRING.

TypedCArray Buffer type used when the datais an undefined array of

characters (byte array), any of which can be null. Tuxedo
equivalent: CARRAY.

TypedFML Buffer type used when thedatais self-defined. Each datafield
carriesitsown identifier, an occurrence number, and possibly
alength indicator. Tuxedo equivaent: FML.

32 WebL ogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html

Basic Service EJB Operation

Table 3-2 TypedBuffers

Buffer Type Description

TypedFML 32 Buffer type similar to TypeFML but allows for larger
character fields, more fields, and larger overall buffers.
Tuxedo equivalent: FML32.

TypedXML Buffer type used when datais an XML based message.
Tuxedo equivalent: XML for Tuxedo Release 7.1 and higher.

Perform the Requested Service

Use Java code to express the logic required to provide your service.

Return Client Messages for Request/Response Communication

Note: For more detailed information on the TuxedoRepl y class, view the Javadocs
for WebL ogic Server Classes. The WebL ogic Tuxedo Connector classes are
located in thewebl ogi c. wt c. j at mi package.

Usethe TuxedoRepl y classset Repl yBuf f er () method to respond to client requests.

Use tpsend and tprecv for Conversational Communication

Note: For more information on Conversational Communication, see “WebL ogic
Tuxedo Connector JATMI Conversations’ on page 6-1.

Use the following JATMI primitives when creating conversational servers that
communicate with Tuxedo clients:

Table 3-3 WebL ogic Tuxedo Connector Conver sational Client Primitives

Name Operation
t pconnect Useto establish aconnectionto aTuxedo conversational
service.

WebL ogic Tuxedo Connector Programmer’s Guide 33

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

Developing WebLogic Tuxedo Connector Service EJBs

Table 3-3 WebL ogic Tuxedo Connector Conversational Client Primitives

Name Operation

t pdi scon Use to abort a connection and generate a
TPEV_DISCONIMM event when executed by the
process controlling the conversation.

t precv Useto receive data across an open connection from a Tuxedo
application.

t psend Use to send data across a open connection to a Tuxedo
application.

Example Service EJB

The following provides an example of the Tol ower Bean. j ava service EJB which
receives a string argument, converts the string to all lower case, and returns the
converted string to the client.

Listing 3-1 Example Service EJB

public Reply service(TPServicel nformati on nmydata) throws TPException {

34

TypedString data;

String | owered;

TypedString return_data;

| og("service tol ower called");

data = (TypedString) nydata. getServiceData();
| owered = data.toString().toLowerCase();
return_data = new TypedString(l owered);

nmydat a. set Repl yBuf fer (return_data) ;

return (nydata);

WebL ogic Tuxedo Connector Programmer’s Guide

Example Service EJB

WebL ogic Tuxedo Connector Programmer’s Guide 35

3 Deve oping WebL ogic Tuxedo Connector Service EJBs

36 WebL ogic Tuxedo Connector Programmer’s Guide

CHAPTER

A

Using WebLogic Tuxedo

Connector for
RMI/IIOP and Corba
Interoperability

Note: You will need to perform some administration tasks to configure the
WebL ogic Tuxedo Connector for CORBA interoperability. For information
on how to administer the WebL ogic Tuxedo Connector for CORBA
interoperability, see the WebL ogic Tuxedo Connector Programmer’s Guide at
http://e-docs.bea.com/wls/docs6Ll/wtc_atmi/index.html.

The WebL ogic Tuxedo Connector provides bi-directional interoperability between
WebL ogic Server and Tuxedo CORBA objects. The WebL ogic Tuxedo Connector:

m Enables Tuxedo CORBA objects to invoke upon EJBs deployed in WebL ogic
Server using the RMI/11OP API (Inbound).

m Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Tuxedo using a CORBA Java APl (Outbound).

Thefollowing sections provide information on how to modify your applicationsto use
WebL ogic Tuxedo Connector to support interoperability between WebL ogic Server
and Tuxedo CORBA objects:

m How to Develop WebL ogic Tuxedo Connector Client Beans for Tuxedo
CORBA Objects

WebL ogic Tuxedo Connector Programmer’s Guide 4-1

http://e-docs.bea.com/wls/docs61/wtc_atmi/index.html

4 us ng WebL ogic Tuxedo Connector for RMI/IIOP and Corba Interoperability

m How to Modify Inbound RMI/11OP Applications to use the WebL ogic Tuxedo
Connector

m How to Modify Outbound RMI/11OP Applications to use the WebL ogic Tuxedo
Connector

m How to Use FederationURL Formats

m How to Manage Transactions for Tuxedo CORBA Applications

How to Develop WebLogic Tuxedo Connector
Client Beans for Tuxedo CORBA Objects

Note: For an example on how to develop client beansfor outbound Tuxedo CORBA
objects, see the exanpl es/ wt ¢/ cor ba/ si npappcns package in your
WebL ogic Server distribution

Use the following steps when devel oping your EJB that will invoke on CORBA
objects deployed in Tuxedo:

m Usethe WTC ORB
m Get Object References

m Invoke on the Object

Use the WTC ORB

To use CORBA with the WebL ogic Tuxedo Connector, you must use the WTC ORB.
Use the following statement to instantiate the WTC ORB in your Bean:;

Prop. put (" org. ong. CORBA. ORBCl ass",
"webl ogi c. wt c. corba. ORB") ;

4-2 WebL ogic Tuxedo Connector Programmer’s Guide

How to Develop WebL ogic Tuxedo Connector Client Beans for Tuxedo CORBA Objects

Get Object References

Note: For more information on object references, see “How to Use FederationURL
Formats” on page 4-10.

The WebL ogic Tuxedo Connector usesthe CosNaming serviceto get areferenceto an
object in the remote Tuxedo CORBA domain. Thisis accomplished by using a

cor bal oc: t gi op or cor banane: t gi op object reference. The following statements
use the CosNaming service to get areference to a Tuxedo Corba Object:

/1 Get the sinple factory.
org. ong. CORBA. hj ect sinple_fact_oref =
orb.string_to_object("corbanane:tgiop: si npapp#si npl e_factory");

Where:

m sinpapp isthedomain id of the Tuxedo domain specified in the Tuxedo UBB.

m sinpl e_factory isthe name that the object reference was bound to in the
CosNaming server in Tuxedo CORBA.

Invoke on the Object

Perform your task by invoking upon the CORBA object deployed in Tuxedo using a
CORBA JavaAPI.

Example ToupperCorbaBean.java Code

Thefollowing Toupper Cor baBean. j ava code provides an example of how to call
the WTC ORB and get an object reference using the COSNaming Service.

Listing4-1 Example Service Application

WebL ogic Tuxedo Connector Programmer’s Guide 4-3

4 us ng WebL ogic Tuxedo Connector for RMI/IIOP and Corba Interoperability

public String Toupper(String toConvert)
t hrows Renot eException

{

4-4

| og("toupper called, converting " + toConvert);

try {

/1 Initialize the ORB.
String args[] = null;
Properties Prop;

Prop = new Properties();
Pr op. put (" or g. ong. CORBA. ORBC ass”,
"webl ogi c. wt c. corba. ORB") ;

ORB orb = ORB.init(args, Prop);

/1 Get the sinple factory.
or g. ong. CORBA. (bj ect sinple_fact_oref =

orb.string_to_object("corbanane:tgiop:sinpapp#si npl e_factory");

/I Narrow the sinple factory.
Si npl eFactory sinple_factory_ref =
Si npl eFact or yHel per. narrowsi npl e_fact_oref);

/1 Find the sinple object.
Sinple sinple = sinple_factory_ref.find_sinple();

/1 Convert the string to upper case.
org.ong. CORBA. Stri ngHol der buf =

new or g. ong. CORBA. St ri ngHol der (t oConvert);
si npl e. to_upper (buf);
return buf.val ue;

}
catch (Exception e) {
t hrow new Renpt eException("Can't call TUXEDO CORBA server:

" +e) :

WebL ogic Tuxedo Connector Programmer’s Guide

How to Modify Inbound RMI/I1OP Applications to use the WebLogic Tuxedo Connector

How to Modify Inbound RMI/11OP
Applications to use the WebLogic Tuxedo
Connector

Note: For an example on how to develop an inbound RMI/I1OP C++ client, see the

exanpl es/ i iop/ ej b/ st at el ess/ server/tux packagein your WebL ogic
Server distribution

The only WebL ogic Tuxedo Connector programming requirement is that the client
must pass the correct name to which the WebL ogic Server’s name service has been
bound to the COSNaming Service. Listing 4-2 provides example code for obtaining a
naming context from the exanpl es/ i i op/ ej b/ st at el ess/ server/t ux example.
“WLS’ isthe bind name specified in the cnsbi nd command detailed in the WebL ogic
Tuxedo Connector Programmer’s Guide at
http://e-docs.bea.com/wls/docs6l/wtc_admin/index.html.

Listing 4-2 Example Codeto Obtain a Naming Context

/1 obtain a nam ng context
TP: :userlog("Narrowing to a nam ng context");
CosNani ng: : Nam ngCont ext _var context =
CosNanmi ng: : Nam ngCont ext: : _narrow 0);
CosNanmi ng: : Name nane;
nane. | engt h(1);
nanme[0] .id = CORBA::string_dup("WS");
name[0] . ki nd = CORBA: :string_dup("");

WebL ogic Tuxedo Connector Programmer’s Guide 4-5

http://e-docs.bea.com/wls/docs61/wtc_admin/index.html
http://e-docs.bea.com/wls/docs61/wtc_admin/index.html

4 us ng WebL ogic Tuxedo Connector for RMI/IIOP and Corba Interoperability

How to Modify Outbound RMI/I10P
Applications to use the WebLogic Tuxedo
Connector

Note: For an example on how to develop an outbound RMI/11OP client, seethe
exanpl es/iiop/ejb/statel ess/server/w s packageinyour WebL ogic
Server distribution

The only WebL ogic Tuxedo Connector programming requirement isthat the EJB uses
aWebL ogic Tuxedo Connector-specific FederationURL to obtain the initial context
used to access aremote Tuxedo CORBA object. Use the following sections to modify
outbound RMI/110OP applications to use the WebL ogic Tuxedo Connector:

m How to Modify the gjb-jar.xml File to Pass a FederationURL to EJBs
m How to Modify EJBsto Use FederationURL to Access an Object

How to Modify the ejb-jar.xml File to Pass a
FederationURL to EJBs

Thefollowingcodefromthei i op. ej b. st at el ess. server.w s. ej b-j ar. xn file
provides an example of how to configure an ej b-j ar. xm fileto passa
FederationURL format to the EJB at run-time.

Listing 4-3 Example gb-jar.xml File Passing a FederationURL to an EJB

<?xm version="1.0"?>

<! DOCTYPE ejb-jar PUBLIC '-//Sun Mcrosystens, Inc.//DTD Enterprise JavaBeans
1.1//EN 'http://java.sun.comj2ee/dtds/ejb-jar_1_1.dtd" >

<ej b-jar>

<smal | -i con>i mages/ green-cube. gi f</smal | -i con>
<enterpri se-beans>

4-6 WebL ogic Tuxedo Connector Programmer’s Guide

How to Modify Outbound RMI/I11OP Applicationsto use the WebLogic Tuxedo Connector

<sessi on>
<smal | -i con>i mages/ or ange- cube. gi f</smal | -i con>
<ej b- nane>| | OPSt at el essSessi on</ ej b- name>
<honme>exanpl es.iiop. ej b. statel ess. Tr ader Home</ hone>
<r enot e>exanpl es.ii op. ej b. st atel ess. Trader </ renot e>
<ej b-cl ass>exanpl es.iiop. ej b. stat el ess. Trader Bean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transacti on-type>
<env-entry>
<env-entry-name>f or ei gnOr b</ env- ent ry- nane>
<env-entry-type>java.lang. String </env-entry-type>
<env-entry-val ue>corbal oc: t gi op: si npapp</ env-entry-val ue>
</ env-entry>
<env-entry>
<env-entry- name>WEBL</ env- ent ry- nane>
<env-entry-type>j ava. | ang. Doubl e </env-entry-type>
<env-entry-val ue>10. 0</ env-entry-val ue>
</ env-entry>
<env-entry>
<env-entry-nanme>l NTL</ env- entry- nane>
<env-entry-type>j ava. | ang. Doubl e </env-entry-type>
<env-entry-val ue>15. 0</ env-entry-val ue>
</ env-entry>
<env-entry>
<env-entry-nanme>tradeLi m t </ env-entry- nane>
<env-entry-type>j ava.l ang. | nteger </env-entry-type>
<env-entry-val ue>500</ env-entry-val ue>
</ env-entry>
</ sessi on>
</ enterprise-beans>
<assenbl y- descri pt or >
<cont ai ner-transacti on>
<met hod>
<ej b- name>1 | OPSt at el essSessi on</ ej b- nanme>
<met hod- i nt f >Renot e</ met hod- i nt f >
<met hod- name>* </ met hod- nane>
</ met hod>
<trans-attri but e>Not Supported</trans-attribute>
</ contai ner-transacti on>
</ assenbl y-descri pt or>
</ ejb-jar>

To pass the FederationURL to the EJB at run-time, add an env-ent ry for the EJB in
the gjb-jar.xml file for your application. Y ou must assign the following env-entry
sub-elements:

WebL ogic Tuxedo Connector Programmer’s Guide 4-7

4 us ng WebL ogic Tuxedo Connector for RMI/IIOP and Corba Interoperability

m Assign env-entry-name
m Assign env-entry-type

m Assign env-entry-value

Assign env-entry-name

Theenv- ent ry- name element isused to specify the name of the variable used to pass
thevalueintheenv- ent ry-val ue element to the EJB. The example code shownin
Figure 4-3 specifiesthe env- ent ry- name asf or ei gnOr b.

Assign env-entry-type

Theenv-entry-type elementisused to specify the data type (example String,
Integer, Double) of the env- ent ry- val ue element that is passed to the EJB. The
example code shown in Figure 4-3 specifies that the f or ei gnOr b variable passes
St ri ng datato the EJB.

Assign env-entry-value

Theenv-entry-val ue element isused to specify the datathat is passed to the EJB.
The example code shown in Figure 4-3 specifiesthat thef or ei gnOr b variable passes
the following FederationURL format to the EJB:

cor bal oc: t gi op: si npapp

How to Modify EJBs to Use FederationURL to Access an
Object

This section provides information on how to use the FederationURL to obtain the
Initial Context used to access a remote Tuxedo CORBA object.

The following code from the
iiop.ejb.statel ess.server.w s. Trader Bean. j ava fileprovidesan example of
how to use FederationURL to get an Initial Context .

4-8 WebL ogic Tuxedo Connector Programmer’s Guide

How to Modify Outbound RMI/I1OP Applicationsto use the WebLogic Tuxedo Connector

Listing 4-4 Example TraderBean.java Codeto get I nitialContext

public void createRenpote() throws CreateException {
| og("createRenpte() called");

try {
Initial Context ic = new Initial Context();

/1 Lookup a EJB-1ike CORBA server in a renpte CORBA domain
Hasht abl e env = new Hasht abl e() ;
env. put (Cont ext . PROVI DER_URL, (String)
i c.lookup("java:/conp/env/foreignOb") + "/NaneService");

Initial Context cos = new Initial Context(env);

Trader Hone thone = (Trader Hone) Port abl eRenot eObj ect . nar r ow(
cos. | ookup(" Trader Horre_i i op"), Trader Hore. cl ass) ;

renmot eTrader = thone.create();

}
catch (Nam ngException ne) {
t hrow new Creat eException("Failed to find environnent val ue "+ne);
}
catch (RenoteException re) {
throw new Creat eException("Error creating renote ejb "+re);
}

Usethefollowing stepsto use FederationURL to abtain an Initial Context for aremote
Tuxedo CORBA aobject:

1. Retrievethe FederationURL format defined intheej b-j ar. xm file.

Example:
"ic.lookup("java:/conp/env/forei gnOb")

The example code shown in Listing 4-3 specifiesthat the f or ei gnOr b variable
passes the following FederationURL format to the EJB:

cor bal oc: t gi op: si npapp

WebL ogic Tuxedo Connector Programmer’s Guide 4-9

4 us ng WebL ogic Tuxedo Connector for RMI/IIOP and Corba Interoperability

2. Concatenate the FederationURL format with “/NameService” to form the
FederationURL.

Example:
"ic.lookup("java:/conp/env/foreignOb") + "/NameService"
The resulting FederationURL is:
cor bal oc: t gi op: si npapp/ NaneSer vi ce
3. Get the Initial Context.

Example:

env. put (Cont ext . PROVI DER_URL, (String)
i c.lookup("java:/conmp/env/foreignOrb") + "/NaneService");
Initial Context cos = new Initial Context(env);

The result isthe Initial Context of the Tuxedo CORBA object.

How to Use FederationURL Formats

This section provides information on the syntax for the following FederationURL
formats:

B The CORBA URL syntax isdescribed in the CORBA specification. For more
information, see the OMG Web Site at http://www.omg.org/.

m Thecorbal oc: t gi op formis specific to the BEA tgiop protocol.

Using corbaloc URL Format

This section provides the syntax for corbaloc URL format:
<corbal oc> = "corbal oc:tgi op":[<versi on>] <domai n>["/"<key_string>]
<version> = <mgjor> "." <minor>"@ | enpty_string
<donmi n> = TUXEDO CORBA domai n name

<maj or > = nunber

4-10 WebLogic Tuxedo Connector Programmer’s Guide

http://www.omg.com

How to Use FederationURL Formats

<m nor > = nunber

<key_string> = <string> | enpty_string

Examples of corbaloc:tgiop

This section provides examples on how to use cor bal oc: t gi op
orb.string_to_object("corbal oc:tgiop:si npapp/ NaneServi ce");
orb.string_to_object("corbal oc:tgiop: si npapp/ Fact oryFi nder");
orb.string_to_object("corbal oc:tgiop:sinpapp/|nterfaceRepository");
orb.string_to_object("corbal oc:tgiop: si npapp/ Tobj _Si npl eEvent sServi ce");
orb.string_to_object("corbal oc:tgiop:sinpapp/ NotificationService");

orb.string_to_object("corbal oc:tgiop:1. 1@i npapp/ NotificationService);

Examples using -ORBInitRef

Y ou can also use the - ORBI ni t Ref optiontoorb. init and
resolve_initial _reference.

Given the following - ORBI ni t Ref definitions:
- ORBI ni t Ref Fact oryFi nder =cor bal oc: t gi op: si np/ Fact or yFi nder
-ORBI ni t Ref | nterfaceRepository=corbal oc:tgiop:sinp/lnterfaceRepository
-ORBI ni t Ref Tobj _Si npl eEvent Ser vi ce=cor bal oc: t gi op: si np/ Tobj _Si npl eEvent sServi ce
-ORBInit Ref NotificationService=corbal oc:tgiop:sinp/NotificationService
then:
orb.resolve_initial _references("NaneService");
orb.resolve_initial _references("FactoryFinder");
orb.resolve_initial _references("InterfaceRepository");
orb.resolve_initial_references("Tobj_Si npl eEvent Service");

orb.resolve_initial _references("NotificationService");

WebL ogic Tuxedo Connector Programmer’s Guide 4-11

4 us ng WebL ogic Tuxedo Connector for RMI/IIOP and Corba Interoperability

Examples Using -ORBDefaultInitRef
You can usethe - ORBDef aul t | ni t Ref andresol ve_initial _reference.
Given the following - ORBDef aul t I ni t Ref definition:

- ORBDef aul t 1 ni t Ref corbal oc:tgi op: si npapp
then:

orb.resolve_initial_references("NaneService");

Using the corbaname URL Format

Y ou can also use the cor banane format instead of the cor bal oc format.

Examples Using -ORBInitRef

Given the following -ORBI ni t Ref definition:

- ORBI ni t Ref NaneServi ce=cor bal oc: t gi op: si npapp/ NaneSer vi ce

t hen:
orb.string_to_object("corbanane:rir:#sinple_factory");
orb.string_to_object("corbanane:tgiop: si npapp#si npl e_factory");
orb.string_to_object("corbanane:tgiop:1l. 1&i npapp#si npl e_factory");

orb.string_to_object("corbanane: tgiop:sinpapp#si npl e/ si npl e_factory");

How to Manage Transactions for Tuxedo
CORBA Applications

Note: For more information on managing transactions in Tuxedo CORBA
applications, see Overview of Transactionsin BEA Tuxedo CORBA
Applications at http://e-docs.bea.com/tuxedo/tux80/transact/gstrx.htm.

4-12 WebL ogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/tuxedo/tux80/transact/gstrx.htm
http://e-docs.bea.com/tuxedo/tux80/transact/gstrx.htm

How to Manage Transactions for Tuxedo CORBA Applications

The WebL ogic Tuxedo Connector uses the Java Transaction API (JTA) to manage
transactions with Tuxedo Corba Applications. For more detailed information, see:

m Programming WebL ogic JTA at http://e-docs.bea.com/wls/docs6l/jtalindex.html

m Transaction Management at
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html

WebL ogic Tuxedo Connector Programmer’s Guide 4-13

http://e-docs.bea.com/wls/docs61/jta/index.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html#1092031

4 us ng WebL ogic Tuxedo Connector for RMI/IIOP and Corba Interoperability

4-14 WebL ogic Tuxedo Connector Programmer’s Guide

CHAPTER

5 WebLogic Tuxedo

Connector ATMI
Transactions

The following sections provide information on global transactions and how to define
and manage them in your applications:

Global Transactions

JTA Transaction API

Defining a Transaction

WebL ogic Tuxedo Connector Transaction Rules

Example Transaction Code

Global Transactions

A global transactionisatransaction that allowswork involving morethan one resource
manager and spanning more than one physical site to be treated as one logical unit. A
global transaction is always treated as a specific sequence of operationsthat is
characterized by the following four properties:

m Atomicity: All portions either succeed or have no effect.

WebL ogic Tuxedo Connector Programmer’s Guide 51

5 WebLogic Tuxedo Connector ATMI Transactions

m Consistency: Operations are performed that correctly transform the resources
from one consistent state to another.

m |solation: Intermediate results are not accessible to other transactions, although
other processes in the same transaction may access the data.

m Durability: All effects of a completed sequence cannot be atered by any kind of
failure.

JTA Transaction AP

Note: For more detailed information, see the JTA API at
http://java.sun.com/products/jta/index.htm.

The WebL ogic Tuxedo Connector uses the Java Transaction API (JTA) to manage
transactions.

Types of JTA Interfaces

JTA offersthree types of transaction interfaces:
m Transaction
m TransactionManager

m UserTransaction

Transaction

The Transact i on interface allows operations to be performed against a transaction
in the target Transaction object. A transaction object is created to correspond to each
global transaction created. Use the Tr ansact i on interface to enlist resources,
synchronize registration, and perform transaction completion and status query
operations.

5-2 WebL ogic Tuxedo Connector Programmer’s Guide

http://java.sun.com/products/jta/index.html

JTA Transaction API

TransactionManager

TheTr ansact i onManager interface allows the application server to communicate to
the Transaction Manager for transaction boundaries demarcation on behalf of the
application. Usethe Tr ansact i onManager interface to communicate to the
transaction manager on behalf of container-managed EJB components.

UserTransaction

The User Transact i on interface is a subset of the Tr ansact i onManager interface.
Usethe User Transact i on interface when it is necessary to restrict accessto
Transaction object.

JTA Transaction Primitives

The following table maps the functionality of Tuxedo transaction primitives to
equivalent JTA transaction primitives.

Table 5-1 Mapping Tuxedo Transaction Primitivesto JTA Equivalents

Tuxedo Tuxedo Functionality JTA Equivalent

t pabort Use to end atransaction. set Rol | backOnl y
t pcommi t Use to complete a transaction. conmi t

t pgetl ev Useto determineif aserviceroutineis get St at us

in transaction mode.

t pbegi n Use to begin atransaction. set Transacti onTi meout
begi n

WebL ogic Tuxedo Connector Programmer’s Guide 5-3

5 WebLogic Tuxedo Connector ATMI Transactions

Defining a Transaction

Transactions can be defined in either client or server processes. A transaction hasthree
parts: a starting point, the program statements that are in transaction mode, and a
termination point.

To explicitly define atransaction, call the begi n() method. The same process that
makes the call, the initiator, must also be the one that terminatesit by invoking a
commi t () oraset Rol | backOnl y() . Any service subroutinesthat are called between
the transaction delimiter become part of the current transaction.

Starting a Transaction

Note: Setting set Tr ansact i onTi meout () to unrealistically large values delays
system detection and reporting of errors. Use time-out values to ensure
response to service requests occur within areasonable time and to terminate
transactions that have encountered problem, such as a network failure. For
productions environments, adjust thetime-out val ueto accommodate expected
delays due to system load and database contention.

A transaction is started by acall to begi n() . To specify atime-out value, precede the
begi n() statement with aset Transacti onTi neout (i nt seconds) statement.

To propagate the transaction to Tuxedo, you must do the following:
m Look up aTuxedoConnect i onFact ory object in the JNDI.

m Get aTuxedoConnecti on object using get TuxedoConnect i on().

Using TPNOTRAN

Service routines that are called within the transaction delimiter are part of the current
transaction. However, if t pcal | () ort pacal | () havethe flags parameter set to
TPNOTRAN, the operations performed by the called service do not become part of that
transaction. As aresult, services performed by the called process are not affected by
the outcome of the current transaction.

54 WebL ogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector Transaction Rules

Terminating a Transaction

A transaction isterminated by a call to either conmi t () or aset Rol | backOnl y() .
When commi t () returns successfully, all changes to the resource as a result of the
current transaction become permanent. set Rol | backOnl y() isused to indicate an
abnormal condition and rolls back any call descriptorsto their origina state.

Inorder foracomi t () to succeed, the following two conditions must be met:

m The calling process must be the same one that initiated the transaction with a
begi n()

m The calling process must have no transaction replies outstanding

If either condition is not true, the call fails and an exception is thrown.

WebLogic Tuxedo Connector Transaction
Rules

Y ou must follow certain rules while in transaction mode to insure successful
completion of atransaction.The basic rules of etiquette that must be observed whilein
atransaction mode follow:

® You must propagate the transaction to Tuxedo using a TuxedoConnect i on
object after you initiate a transaction with abegi n() .

m tptern() closesaconnection to an object and prevents future operations on this
object.

m Processes that are participants in the same transaction must require replies for
their requests.

m Requests requiring no reply can be made only if the flags parameter of
t pacal | () issetto TPNOREPLY.

m A service must retrieve al asynchronous transaction replies before calling
commt().

WebL ogic Tuxedo Connector Programmer’s Guide 5-5

5 WebLogic Tuxedo Connector ATMI Transactions

m Theinitiator must retrieve all asynchronous transaction replies before calling
begi n() .

m The asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is, replies expected for requests
made with at pacal | () suppressing the transaction but not the reply.

m |f atransaction has not timed out but is marked abort-only, further
communication should be performed with the TPNOTRAN flag set so that the work
done as aresult of the communication has lasting effect after the transaction is
rolled back.

® |f atransaction hastimed out:

e thedescriptor for the timed out call becomes stale and any further reference
to it will return TPEBADDESC.

e further callstot pget rpl y() ortprecv() for any outstanding descriptors
will return the global state of transaction time-out by setting t per r ono to
TPETI ME.

e asynchronous calls can be make with the flags parameter of t pacal | () set
to TPNOREPLY | TPNOBLOCK | TPNOTRAN.

m Once atransaction has been marked abort-only for reasons other than time-out, a
call tot pgetrpl y() will return whatever represents the local state of the call,
that is, it can either return success or an error code that represents the local
condition.

m Onceadescriptor isused with t pget r pl y() toretrieve areply, it becomes
invalid and any further reference to it will return TPEBADDESC.

m Once adescriptor isused with t psend() ort precv() toreport an error
condition, it becomes invalid and any further reference to it will return
TPEV_DI SCONI MM

m Once atransaction is aborted, all outstanding transaction call descriptions (made
without the TPNOTRAN flag) become stale, and any further reference to them will
return TPEBADDESC.

5-6 WebL ogic Tuxedo Connector Programmer’s Guide

Example Transaction Code

Example Transaction Code

The following provides a code example for a transaction:

Listing 5-1 Example Transaction Code

public class TransactionSanpl eBean i npl enents Sessi onBean {

public int transaction_sanple () {

int ret = 0;

try {
j avax. nam ng. Context myContext = new |l nitial Context();
Transacti onManager tm = (javax.transaction. Transacti onManager)
nyCont ext . | ookup("j avax.transacti on. Transacti onManager");

/1 Begin Transaction
tmbegin ();

TuxedoConnecti onFactory tuxConFactory = (TuxedoConnecti onFactory)
ct xt. | ookup("tuxedo. servi ces. TuxedoConnecti on");

/1 You could do a |ocal JDBC/ XA-dat abase operation here
/1 which will be part of this transaction.

/1 NOTE 1: Cet the Tuxedo Connection only after
/1 you begin the transaction if you want the
/1 Tuxedo call to be part of the transaction!

/1 NOTE 2: If you get the Tuxedo Connection before
/1l the transaction was started, all calls nade from
/1 that Tuxedo Connection are out of scope of the
/1l transaction.
TuxedoConnection nmyTux = tuxConFactory. get TuxedoConnection();

/1 Do a tpcall. This tpcall is part of the transaction.
TypedString depositData = new TypedString("sonecharacters, 5000. 00");

Reply depositReply = nyTux. tpcal |l ("DEPCSI T*, depositData, 0);

WebL ogic Tuxedo Connector Programmer’s Guide 5-7

5 WebLogic Tuxedo Connector ATMI Transactions

/1 You could also do tpcalls which are not part of

// transaction (For exanple, Logging all attenpted

/] operations etc.) by setting the TPNOTRAN Fl ag!
TypedString | oghata =
new TypedStri ng(" DEPCSI T: somechar act er s, 5000. 00") ;

Reply | ogReply = nmyTux. tpcall ("LOGTRAN', | ogDat a,
Appl i cati onToMnitorlnterface. TPNOTRAN) ;

/] Done with the Tuxedo Connection. Do tpterm
nyTux.tpterm ();

/1l Commit Transaction...
tmcomit ();

/1 NOTE: The TuxedoConnection object which has been
// used in this transaction, can be used after the
/1 transaction only if TPNOTRAN flag is set.

}
catch (Nami ngException ne) {
Systemout. println ("ERROR Nam ng Exception | ooking up JNDI:
ret = -1;
}
catch (Rol |l backException re) {
System out. println("ERROR TRANSACTI ON ROLLED BACK:
ret = 0;
}
catch (TPException te) {
Systemout.println("ERROR tpcall failed: TpException:
ret = -1;
}
catch (Exception e) {
|l og ("ERROR Exception: " + e);
ret = -1;
}
return ret;
}

" + ne);

" +te);

5-8 WebL ogic Tuxedo Connector Programmer’s Guide

CHAPTER

6

WebLogic Tuxedo

Connector JATMI
Conversations

Note: For more information on conversational communications for BEA Tuxedo,

see Writing Conversational Clients and Servers at
http://e-docs.bea.com/tuxedo/tux80/atmi/pgconv.htm.

The following sections provide information on conversations and how to define and
manage them in your applications:

Overview of WebL ogic Tuxedo Connector Conversational Communication
WebL ogic Tuxedo Connector Conversation Characteristics

WebL ogic Tuxedo Connector JATMI Conversation Primitives

Creating WebL ogic Tuxedo Connector Conversational Clients and Servers
Sending and Receiving M essages

Ending a Conversation

Executing a Disorderly Disconnect

Understanding Conversational Communication Events

WebL ogic Tuxedo Connector Conversation Guidelines

WebL ogic Tuxedo Connector Programmer’s Guide 6-1

http://e-docs.bea.com/tuxedo/tux80/atmi/pgconv.htm

6 WebLogic Tuxedo Connector JATMI Conversations

Overview of WebLogic Tuxedo Connector
Conversational Communication

WebL ogic Tuxedo Connector supports BEA Tuxedo conversations as a method to
exchange messages between WebL ogic Server and Tuxedo applications. In thisform
of communication, avirtual connectionismaintained between the client and the server
and each side maintains information about the state of the conversation. The process
that opens a connection and starts a conversation isthe originator of the conversation.
The process with control of the connection isthe initiator; the process without control
is called the subordinate. The connection remains active until an event occurs to
terminate it.

During conversational communication, a half-duplex connection is established
between the initiator and the subordinate. Control of the connection is passed between
theinitiator and the subordinate. The process that has control can send messages (the
initiator); the process that does not have control can only receive messages (the
subordinate).

WebLogic Tuxedo Connector Conversation
Characteristics

WebL ogic Tuxedo Connector JATMI conversations have the following
characteristics:

m Datais passed using TypedBuffers. The type and sub-type of the data must
match one of the types and sub-types recognized by the service.

m Thelogical connection between the conversational client and the conversational
server remains active until it isterminated.

® Any number of messages can be transmitted across a connection between a
conversational client and the conversational server.

6-2 WebL ogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector JATMI Conversation Primitives

m A WebLogic Tuxedo Connector conversational client initiates a request for
serviceusing t pconnect rather than at pcal | or t pacal | .

m WebL ogic Tuxedo Connector conversational clients and servers use the JATMI
primitivest psend to send dataand t pr ecv receive data.

m A conversational client only sends service requests to a conversational server.

m Conversational servers are prohibited from making callstot pf or war d.

WebLogic Tuxedo Connector JATMI
Conversation Primitives

Note: For more detailed information on WebL ogic Tuxedo Connector JATMI, see
the Javadocs for WebL ogic Classes - weblogic.wtc.jatmi at
http://e-docs.bea.com/wls/docs61/javadocs/index.html.

Use the following WebL ogic Tuxedo Connector primitives when creating
conversational clients and servers that communicate between WebL ogic Server and
Tuxedo:

Table 6-1 WebL ogic Tuxedo Connector Conver sational Client Primitives

Name Operation

t pconnect Useto establish aconnection to aTuxedo conversational
service.

t pdi scon Use to abort a connection and generate a

TPEV_DISCONIMM event.

tprecv Use to receive data across an open connection from a Tuxedo
application.

t psend Use to send data across a open connection to a Tuxedo
application.

WebL ogic Tuxedo Connector Programmer’s Guide 6-3

http://e-docs.bea.com/wls/docs61/javadocs/index.html

6 WebLogic Tuxedo Connector JATMI Conversations

Creating WebLogic Tuxedo Connector
Conversational Clients and Servers

The following sections provide information on how to create conversational clients
and servers.

Creating Conversational Clients

Follow the steps outlined in “ Devel oping WebL ogic Tuxedo Connector Client EJBS”
on page 2-1 to create WebL ogic Tuxedo Connector conversational clients. The
following section provide information on how to uset pconnect to openaconnection
and start a conversation.

Establishing a Connection to a Tuxedo Conversational Service

Note: For more information about t pconnect , see Javadocs for WebL ogic Classes -
weblogic.wtc.jatmi at http://e-docs.bea.com/wls/docs6l/javadocs/index.html.

A WebL ogic Tuxedo Connector conversational client must establish a connection to
the Tuxedo conversational service. Usethe JATMI primitivet pconnect to open a
connection and start aconversation. A successful call returns an object that can be used
to send and receive data for a conversation.

The following table describest pconnect parameters:

Table 6-2 WebL ogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

svc Character pointer to a conversational service name. If you do not
specify a svc, the call will fail and TPExcept i on issetto
TPEV_DI SCONI MM

6-4 WebL ogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html

Creating WebL ogic Tuxedo Connector Conversational Clients and Servers

Cont ext ctx;
Conversation nmyConv;
TuxedoConnecti on nyTux;
TuxedoConnecti onFactory tcf;

Table 6-2 WebL ogic Tuxedo Connector JATMI tpconnect Parameters

Parameter

Description

data

Pointer to the data buffer. When establishing a connection, you can
send data simultaneously by setting the data parameter to point to a
buffer. Thet ype and subt ype of the buffer must be recognized by
the service being called. Y ou can set the value of data to NULL to
specify that no dataiis to be sent.

flags

Use flags or combinations of flags as required by your application
needs. Vdlid flag values are:

TPSENDONLY: specifiesthat the control is being retained by the
originator. The called service is subordinate and can only receive
data. Do not use in combination with TPRECVONLY.

TPRECVONLY: specifiesthat control is being passed to the called
service.The originator becomes subordinate and can only receive
data. Do not use in combination with TPSENDONLY.

TPNOTRAN: specifiesthat when svcisinvoked and the originator is
transaction mode, svc is not part of the originator’ s transaction. A
call remains subject to transaction timeouts. If svc fails, the
originator’s transaction is unaffected.

TPNOBLOCK: specifiesthat arequest is not sent if ablocking
condition exists. If TPNOBLOCK is not specified, the originator
blocks until the condition subsides, a transaction timeout occurs, or
ablocking timeout occurs.

TPNOTI ME: specifiesthat the originator will block indefinitely and
isimmune to blocking timeouts. If the originator isin transaction
mode, the call is subject to transaction timeouits.

Example TuxedoConversationBean.java Code

The following provides a code example to uset pconnect to start a conversation:

WebL ogic Tuxedo Connector Programmer’s Guide 6-5

6 WebLogic Tuxedo Connector JATMI Conversations

ctx = new Initial Context();

tcf = (TuxedoConnectionFactory) ctx.lookup ("tuxedo. services. TuxedoConnection");
nmyTux = tcf.get TuxedoConnection();

flags =ApplicationToMbnitorlnterface. TPSENDONLY;

nyConv = myTux. t pconnect (" CONNECT_SVC', nul |, fl ags) ;

Creating WebLogic Tuxedo Connector Conversational
Servers

Follow the stepsoutlined in “ Devel oping WebL ogic Tuxedo Connector Service EJBS”
on page 3-1 to create WebL ogic Tuxedo Connector conversational servers.

Sending and Receiving Messages

Once a conversational connection is established between a WebL ogic Server
application and a Tuxedo application, the communication between theinitiator (sends
message) and subordinate (receives message) is accomplished using send and receive
calls. Thefollowing sections describe how WebL ogic Tuxedo Connector applications
use the JATMI primitivest psend and t pr ecv:

m Sending Messages

B Receiving Messages

Sending Messages

Note: For more information about t psend, See Javadocs for WebL ogic Classes -
weblogic.wtc.jatmi at http://e-docs.bea.com/wls/docs6l/javadocs/index.html.

Use the JATMI primitive t psend to send a message to a Tuxedo application.

6-6 WebL ogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

Sending and Receiving Messages

The following table describes t psend parameters:

Table 6-3 WebL ogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description
data Pointer to the buffer containing the data sent with this conversation.
flags The flag can be one of the following:

TPRECVONLY: specifiesthat after theinitiator’s datais sent, the
initiator gives up control of the connection.The initiator becomes
subordinate and can only receive data.

TPNOBLOCK: specifies that the request is not sent if a blocking
condition exists. If TPNOBLOCK is not specified, the originator
blocks until the condition subsides, a transaction timeout occurs, or
ablocking timeout occurs.

TPNOTI ME: specifiesthat an initiator is willing to block
indefinitely and is immune from blocking timeouts. The call is
subject to transaction timeouts.

Receiving Messages

Note: For moreinformation about t pr ecv, See Javadocs for WebL ogic Classes -
weblogic.wtc.jatmi at http://e-docs.bea.com/wls/docs6l/javadocs/index.html.

Use the JATMI primitivet pr ecv to receive messages from a Tuxedo application.

WebL ogic Tuxedo Connector Programmer’s Guide 6-7

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

6 WebLogic Tuxedo Connector JATMI Conversations

The following table describest pr ecv parameters:

Table 6-4 WebL ogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

flags The flag can be one of the following:

TPNOBLOCK: specifiesthat t pr ecv does not wait for areply to
arrive. If areply isavailable, t pr ecv getsthereply and returns. If
thisflag isnot specified and areply is not available, t pr ecv waits
for one of thefollowing to occur: areply, atransaction timeout, or a
blocking timeout.

TPNOTI ME: specifiesthat t pr ecv waitsindefinitely for areply.
t pr ecv isimmune from blocking timeouts but is subject to
transaction timeouts.

A flag value of 0 specifiesthat theinitiator blocksuntil the condition
subsides or atimeout occurs.

Ending a Conversation

A conversation between WebL ogic Server and Tuxedo ends when the server process

successfully completes its tasks. The following sections describe how a conversation
ends:

m Tuxedo Application Originates Conversation
m WebL ogic Tuxedo Connector Application Originates Conversation

® Ending Hierarchical Conversations

Tuxedo Application Originates Conversation

A WebL ogic Server conversational server ends a conversation by a successful call to
return. A TPEV_SVCSUCC event is sent to the Tuxedo client that originated
connection to indicate that the service finished successfully. The connection is then
disconnected in an orderly manner.

6-8 WebL ogic Tuxedo Connector Programmer’s Guide

Ending a Conversation

WebLogic Tuxedo Connector Application Originates
Conversation

A Tuxedo conversational server ends aconversation by asuccessful call tot pret ur n.
A TPEV_SVCSUCC event is sent to the WebL ogic Tuxedo Connector client that
originated connection to indicate that the service finished successfully. The connection
is then disconnected in an orderly manner.

Ending Hierarchical Conversations

The order in which an conversation ends is important to gracefully end hierarchal
conversations.

Assume there are two active connections: A-B and B-C. If B isaWebL ogic Tuxedo
Connector application in control of both connections, acall tor et ur n hasthe
following effect: the call failsand a TPEV_SVCERR event is posted on all open
connections, and the connections are closed in a disorderly manner.

In order to terminate both connections in an orderly manner, the application must
execute the following sequence:

1. B calst psend with TPRECVONLY to transfer control of the B-C connection to the
Tuxedo application C.

2. Ccalsdeparture withrval setto TPSUCCESS, TPFAI L, or TPEXI T.

3. Bcdlsreturnand posts an event (TPEV_SVCSUCC or TPEV_SVCFAIL) for
A.

Conversational services can make request/response calls. Therefore, in the preceding
example, the callsfrom B to C may be executed using t pacal | ort pcal | instead of
t pconnect . Conversational services are not permitted to make callsto t pf or war d.

WebL ogic Tuxedo Connector Programmer’s Guide 6-9

6 WebLogic Tuxedo Connector JATMI Conversations

Executing a Disorderly Disconnect

WebL ogic Server conversationa clients or servers execute a disorderly disconnect is
through acall tot pdi scon. Thisisthe equivaent of “pulling the plug” on a
connection.

A call tot pdi scon:

m Immediately tears down the connection and generates a TPEV_DISCONIMM at
the other end of the connection. Any data that has not yet reached its destination
may belost. If the conversation is part of atransaction, the transaction must be
rolled back.

m Canonly be caled by theinitiator of the conversation.

Understanding Conversational
Communication Events

Note: For more detailed information on WebL ogic Tuxedo Connector JATMI, see
the Javadocs for WebL ogic Classes - weblogic.wtc.jatmi at
http://e-docs.bea.com/wls/docs6l/javadocs/index.html.

WebL ogic Tuxedo Connector JATMI uses five events to manage conversational
communication. The following table lists the events, the functions for which they are
returned, and a detailed description of each.

Table 6-5 WebL ogic Tuxedo Connector Conver sational Communication Events

Event Received by Description

TPEV_SENDONLY Tuxedot precv Control of the connection has passed; this Tuxedo
process can now call t psend

JATMI t precv Control of the connection has passed; this JATMI
process can now call t psend

6-10 WebLogic Tuxedo Connector Programmer’s Guide

http://e-docs.bea.com/wls/docs61/javadocs/index.html

Understanding Conversational Communication Events

Table 6-5 WebL ogic Tuxedo Connector Conver sational Communication Events

Event Received by Description

TPEV_DISCONIMM Tuxedot precv, tpsend, The connection has been torn down and no further
tpreturn communication is possible. The JATMI t pdi scon
poststhis event in the originator of the connection. The
originator sends it to all open connections when
t pr et urniscaled. Connectionsare closedin a
disorderly manner and if atransaction exists, itis
aborted.

JATMIt precv, tpsend, The connection has been torn down and no further
return communication is possible. The Tuxedo t pdi scon
posts this event in the originator of the connection. The
originator sends it to all open connections when
ret ur niscalled. Connections are closed in a
disorderly manner and if atransaction exists, it is

aborted.
TPEV_SVCERR Tuxedot psend or JATMI Received by the originator of the connection indicating
t psend that the subordinate programissued at pr et ur n

(Tuxedo) or r et ur n (JATMI) and ended without
control of the connection.

Tuxedot precv or JATMI Received by the originator of the connection indicating
tprecv that the subordinate program issued a successful
t pr et ur n (Tuxedo) or asuccessful r et ur n (JATMI)
without control of the connection, but an error occurred
before the call completed.

TPEV_SVCSUCC Tuxedot precv Received by the originator of the connection, indicating
that the subordinate service finished successfully; that
is, r et ur n was successfully called.

JATMI t precv Received by the originator of the connection, indicating
that the subordinate service finished successfully; that
is, t pr et ur n was caled with TPSUCCESS.

WebL ogic Tuxedo Connector Programmer’s Guide 6-11

6 WebLogic Tuxedo Connector JATMI Conversations

Table 6-5 WebL ogic Tuxedo Connector Conver sational Communication Events

Event Received by Description
TPEV_SVCFAIL Tuxedot psend or JATMI Received by the originator of the connection indicating
t psend that the subordinate program issued at pr et urn

(Tuxedo) or r et ur n (JATMI) and ended without
control of the connection. The service completed with
status of TPFAIL or TPEXIT and the datais set to null.

Tuxedot precv or JATMI Received by the originator of the connection indicating

t precv that the subordinate program finished unsuccessfully.
The service completed with status of TPFAIL or
TPEXIT.

WebLogic Tuxedo Connector Conversation
Guidelines

Use the following guidelines while in conversation mode to insure successful
completion of a conversation:

m Usethe JATMI conversational primitives as defined in the WebL ogic Tuxedo
Connector Conver sat i on interface and Appl i cati onToMnitor | nterface
interface.

e Alwaysuseaflag.

e Only use flags defined in the WebL ogic Tuxedo Connector JATMI.
m WebL ogic Tuxedo Connector does not have a parameter that can be used to limit

the number of simultaneous conversations to prevent overloading the WebL ogic
Server network.

m |f the Tuxedo exceeds the maximum number of possible conversations (defined
by the MAXCONV parameter), TPEV_DISCONIMM is the expected WebL ogic
Tuxedo Connector exception value.

m At precv toan unauthorized Tuxedo serviceresultsina TPEV_DISCONIMM
exception value.

6-12 WebL ogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector Conver sation Guidelines

m |f aWebLogic Tuxedo Connector client is connected to a Tuxedo conversational
service which doest pf or war d to another conversational service,
TPEV_DISCONIMM is the expected WebL ogic Tuxedo Connector exception
value.

m Conversations may beinitiated within atransaction. Start the conversation as
part of the program statements in transaction mode. For more information on
transactions, see “WebL ogic Tuxedo Connector ATMI Transactions’ on page
5-1.

m |f aWebLogic Tuxedo Connector remote domain experiences a TPENOENT, the
remote domain will send back a disconnect event message and be caught on the
WebL ogic Tuxedo Connector applicationt pr ecv asa TPEV_DISCONIMM
exception.

WebL ogic Tuxedo Connector Programmer’s Guide ~ 6-13

6 WebLogic Tuxedo Connector JATMI Conversations

6-14 WebL ogic Tuxedo Connector Programmer’s Guide

CHAPTER

7

Testing

Application Error
Management

The following sections provide mechanisms to manage and interpret error conditions
in your applications:

m Testing for Application Errors
m WebLogic Tuxedo Connector Time-Out Conditions

m Guidelines for Tracking Application Events

for Application Errors

Note: To view an example that demonstrates how to test for error conditions, see
“Example Transaction Code” on page 5-7.

Y our application logic should test for error conditions after the calls that have return
values and take suitable steps based on those conditions. In the event that a function
returned avalue, you may invoke afunctionsthat testsfor specific valuesand performs
the appropriate application logic for each condition.

Exception Classes

The WebL ogic Tuxedo Connector throws the following exception classes:

WebL ogic Tuxedo Connector Programmer’s Guide 7-1

{ Application Error Management

m Ferror: Exception thrown for errors occurring while manipulating FML.
B TPExcepti on: Exception thrown that represents a TPException failure.

B TPRepl yExcept i on: Exception thrown that represents a TPException failure
when user datais associated with the exception thrown.

Fatal Transaction Errors

In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call
conmmi t (). Transactionsfail for the following reasons:

m Theinitiator or participant of the transaction caused it to be marked for rollback.
B The transaction timed out.

m A conmit () wascalled by aparticipant rather than by the originator of a
transaction.

WebLogic Tuxedo Connector Time-Out
Conditions

There are two types of time-out which can occur when using the WebL ogic Tuxedo
Connector:

m Blocking time-out.

B Transaction time-out.

7-2 WebL ogic Tuxedo Connector Programmer’s Guide

WebLogic Tuxedo Connector Time-Out Conditions

Blocking vs. Transaction Time-out

Blocking time-out is exceeding the amount of time acall can wait for a blocking
condition to clear up. Transaction time-out occurs when atransaction takes|onger than
the amount of timed defined for it in set Transact i onTi meout () . By default, if a
process is not in transaction mode, blocking time-outs are performed. When the flags
parameter of aacommunication call is set to TPNOTI ME, it applies to blocking
time-outs only. If a processisin transaction mode, blocking time-out and the

TPNOTI ME flag are not relevant. The process is sensitive to transaction time-out only
asit has been defined for it when the transaction was started. The implications of the
two different types of time-out follow:

m |f aprocessisnot in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call
descriptor is still valid and may be used on are-issue call. Further
communication in general is unaffected.

m |nthe case of transaction time-out, the call descriptor to an asynchronous
transaction reply (done without the TPNOTRAN flag) becomes stale and may no
longer be referenced. The only further communication allowed is the one case
described earlier of no reply, no blocking, and no transaction.

Effect on commit()

Thestateof atransactionif time-out occursafter the call tocormmi t () isundetermined.
If the transaction timed out and the system knows that it was aborted,
set Rol | backOnl y() returnswith an error.

If the state of the transaction isin doubt, you must query the resource to determine if
any of the changes that were part of that transaction have been applied to it in order to
discover whether the transaction committed or aborted.

Effect of TPNOTRAN

Note: A transaction can time-out while waiting for areply that is due from aservice
that is not part of that transaction.

WebL ogic Tuxedo Connector Programmer’s Guide 7-3

{ Application Error Management

When aprocessisin transaction and makes a communications call with flags set to
TPNOTRAN, it prohibits the called service from becoming a participant of that
transaction. The success or failure of the service does not i nfluence the outcome of that
transaction.

Guidelines for Tracking Application Events

Y ou can track the execution of your applications by using Syst em out . print | n()
to write messagesto the WebL ogic Server tracelog. Createal og() method that takes
avariable of type Sring and use the variable name as the argument to the call, or
include the message as aliteral within quotation marks as the argument to the call. In
the following example, a series of messages are used to track the progress of a
tpcall ().

Listing 7-1 Example Event Logging

| og(“About to call tpcall”);

try {
nyRtn = nyTux. tpcal | (" TOUPPER', nyData, O0);

}

catch (TPRepl yException tre) {
log("tpcall threw TPRepl yExcption " + tre);
throw tre;

}

catch (TPException te) {
log("tpcall threw TPException " + te);
throw te;

catch (Exception ee) {

log("tpcall threw exception: " + ee);
t hrow new TPExcepti on(TPExcepti on. TPESYSTEM
"Exception: " + ee);

}

7-4 WebL ogic Tuxedo Connector Programmer’s Guide

Guidelines for Tracking Application Events

log("tpcal |l successfull!");

private static void
log(String s)

{ Systemout.println(s);}

WebL ogic Tuxedo Connector Programmer’s Guide 7-5

{ Application Error Management

7-6 WebL ogic Tuxedo Connector Programmer’s Guide

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic Tuxedo Connector Programming
	Developing WebLogic Tuxedo Connector Applications
	Developing WebLogic Tuxedo Connector Clients
	Developing WebLogic Tuxedo Connector Servers
	Using WebLogic Tuxedo Connector for Interoperability with Tuxedo CORBA objects

	WebLogic Tuxedo Connector JATMI Primitives
	Table 1�1 JATMI Primitives

	WebLogic Tuxedo Connector TypedBuffers
	Table 1�2 TypedBuffers

	2 Developing WebLogic Tuxedo Connector Client EJBs
	Joining and Leaving Applications
	Joining an Application
	Listing 2-1 Example Client Code to Join a Tuxedo Application

	Leaving an Application

	Basic Client Operation
	Get a Tuxedo Object
	Perform Message Buffering
	Table 2�1 TypedBuffers

	Send and Receive Messages
	Request/Response Communication
	Table 2�2 JATMI Primitives

	Conversational Communication
	Table 2�3 WebLogic Tuxedo Connector Conversational Client Primitives

	Close a Connection to a Tuxedo Object

	Example Client EJB
	Listing 2-2 Example Client Application
	. . . public String Toupper(String toConvert) ���throws TPException, TPReplyException { �����Cont...

	3 Developing WebLogic Tuxedo Connector Service EJBs
	Basic Service EJB Operation
	Access Service Information
	Table 3�1 JATMI TPServiceInformation Primitives

	Buffer Messages
	Table 3�2 TypedBuffers

	Perform the Requested Service
	Return Client Messages for Request/Response Communication
	Use tpsend and tprecv for Conversational Communication
	Table 3�3 WebLogic Tuxedo Connector Conversational Client Primitives

	Example Service EJB
	Listing 3-1 Example Service EJB
	. . . public Reply service(TPServiceInformation mydata) throws TPException { �����TypedString dat...

	4 Using WebLogic Tuxedo Connector for RMI/IIOP and Corba Interoperability
	How to Develop WebLogic Tuxedo Connector Client Beans for Tuxedo CORBA Objects
	Use the WTC ORB
	Get Object References
	�����// Get the simple factory. ����������org.omg.CORBA.Object simple_fact_oref = ���������������...

	Invoke on the Object
	Example ToupperCorbaBean.java Code
	Listing 4-1 Example Service Application
	. . . public String Toupper(String toConvert) throws RemoteException { ����� log("toupper called,...
	��������Prop = new Properties(); ��������Prop.put("org.omg.CORBA.ORBClass", ����������������"webl...

	How to Modify Inbound RMI/IIOP Applications to use the WebLogic Tuxedo Connector
	Listing 4-2 Example Code to Obtain a Naming Context

	How to Modify Outbound RMI/IIOP Applications to use the WebLogic Tuxedo Connector
	How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
	Listing 4-3 Example ejb-jar.xml File Passing a FederationURL to an EJB
	<?xml version="1.0"?> <!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBea...
	Assign env-entry-name
	Assign env-entry-type
	Assign env-entry-value

	How to Modify EJBs to Use FederationURL to Access an Object
	Listing 4-4 Example TraderBean.java Code to get InitialContext
	. . . public void createRemote() throws CreateException { �����log("createRemote() called"); ����...
	1. Retrieve the FederationURL format defined in the ejb-jar.xml file.
	2. Concatenate the FederationURL format with “/NameService” to form the FederationURL.
	3. Get the InitialContext.

	How to Use FederationURL Formats
	Using corbaloc URL Format
	<corbaloc> = "corbaloc:tgiop":[<version>] <domain>["/"<key_string>]
	<version> = <major> "." <minor> "@" | empty_string
	<domain> = TUXEDO CORBA domain name
	<major> = number
	<minor> = number
	<key_string> = <string> | empty_string
	Examples of corbaloc:tgiop
	orb.string_to_object("corbaloc:tgiop:simpapp/NameService");
	orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");
	orb.string_to_object("corbaloc:tgiop:simpapp/InterfaceRepository");
	orb.string_to_object("corbaloc:tgiop:simpapp/Tobj_SimpleEventsService");
	orb.string_to_object("corbaloc:tgiop:simpapp/NotificationService");
	orb.string_to_object("corbaloc:tgiop:1.1@simpapp/NotificationService);

	Examples using -ORBInitRef
	-ORBInitRef FactoryFinder=corbaloc:tgiop:simp/FactoryFinder
	-ORBInitRef InterfaceRepository=corbaloc:tgiop:simp/InterfaceRepository
	-ORBInitRef Tobj_SimpleEventService=corbaloc:tgiop:simp/Tobj_SimpleEventsService
	-ORBInitRef NotificationService=corbaloc:tgiop:simp/NotificationService
	orb.resolve_initial_references("NameService");
	orb.resolve_initial_references("FactoryFinder");
	orb.resolve_initial_references("InterfaceRepository");
	orb.resolve_initial_references("Tobj_SimpleEventService");
	orb.resolve_initial_references("NotificationService");

	Examples Using -ORBDefaultInitRef
	-ORBDefaultInitRef corbaloc:tgiop:simpapp
	orb.resolve_initial_references("NameService");

	Using the corbaname URL Format
	Examples Using -ORBInitRef
	orb.string_to_object("corbaname:rir:#simple_factory");
	orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");
	orb.string_to_object("corbaname:tgiop:1.1@simpapp#simple_factory");
	orb.string_to_object("corbaname:tgiop:simpapp#simple/simple_factory");

	How to Manage Transactions for Tuxedo CORBA Applications

	5 WebLogic Tuxedo Connector ATMI Transactions
	Global Transactions
	JTA Transaction API
	Types of JTA Interfaces
	Transaction
	TransactionManager
	UserTransaction

	JTA Transaction Primitives
	Table 5�1 Mapping Tuxedo Transaction Primitives to JTA Equivalents

	Defining a Transaction
	Starting a Transaction
	Using TPNOTRAN

	Terminating a Transaction

	WebLogic Tuxedo Connector Transaction Rules
	Example Transaction Code
	Listing 5-1 Example Transaction Code
	public class TransactionSampleBean implements SessionBean { public int transaction_sample (...

	6 WebLogic Tuxedo Connector JATMI Conversations
	Overview of WebLogic Tuxedo Connector Conversational Communication
	WebLogic Tuxedo Connector Conversation Characteristics
	WebLogic Tuxedo Connector JATMI Conversation Primitives
	Table 6�1 WebLogic Tuxedo Connector Conversational Client Primitives

	Creating WebLogic Tuxedo Connector Conversational Clients and Servers
	Creating Conversational Clients
	Establishing a Connection to a Tuxedo Conversational Service
	Table 6�2 WebLogic Tuxedo Connector JATMI tpconnect Parameters

	Example TuxedoConversationBean.java Code
	. . . Context ctx; Conversation myConv; TuxedoConnection myTux; TuxedoConnectionFactory tcf;

	Creating WebLogic Tuxedo Connector Conversational Servers

	Sending and Receiving Messages
	Sending Messages
	Table 6�3 WebLogic Tuxedo Connector JATMI tpconnect Parameters

	Receiving Messages
	Table 6�4 WebLogic Tuxedo Connector JATMI tpconnect Parameters

	Ending a Conversation
	Tuxedo Application Originates Conversation
	WebLogic Tuxedo Connector Application Originates Conversation
	Ending Hierarchical Conversations
	1. B calls tpsend with TPRECVONLY to transfer control of the B-C connection to the Tuxedo applica...
	2. C calls departure with rval set to TPSUCCESS, TPFAIL, or TPEXIT.
	3. B calls return and posts an event (TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

	Executing a Disorderly Disconnect
	Understanding Conversational Communication Events
	Table 6�5 WebLogic Tuxedo Connector Conversational Communication Events

	WebLogic Tuxedo Connector Conversation Guidelines

	7 Application Error Management
	Testing for Application Errors
	Exception Classes
	Fatal Transaction Errors

	WebLogic Tuxedo Connector Time-Out Conditions
	Blocking vs. Transaction Time-out
	Effect on commit()
	Effect of TPNOTRAN

	Guidelines for Tracking Application Events
	Listing 7-1 Example Event Logging

