
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : A p r i l 2 4 , 2 0 0 3

BEA WebLogic

Programming WebLogic Server
for Wireless Services

and BEA WebLogic Express™

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Server for Wireless Services

Part Number Document Date Software Version

N/A September 19, 2001 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience..v

e-docs Web Site... vi

How to Print the Document... vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions ... viii

1. Introduction
Overview ... 1-1

Wireless Data Protocols .. 1-2

The WAP Protocol at a Glance ... 1-3

The i-Mode Protocol at a Glance... 1-3

Other Wireless Data Protocols .. 1-4

Other Wireless Markup Languages ... 1-5

Evolution of Wireless Data Protocols and Wireless Markup Languages.......... 1-5

Additional Information.. 1-6

2. Using WAP with WebLogic Server
Overview ... 2-1

WAP Application Environment .. 2-2

WML .. 2-2

WMLScript... 2-3

WAP Gateway ... 2-3

WAP Gateway Functionality ... 2-4

WAP Gateway Security and Security Concerns .. 2-4

WAP Gateway Vendors ... 2-5
Programming WebLogic Server for Wireless Services iii

Additional Resources... 2-6

3. Using i-Mode with WebLogic Server
Overview ... 3-1

i-Mode Markup Language ... 3-2

i-Mode Gateway .. 3-2

Additional Resources... 3-3

4. Writing Web Applications to Include Wireless Subscribers
Overview ... 4-1

Locating the Wireless Example Applications ... 4-2

Understanding Basic Web Application Design Concepts 4-5

Form Factors... 4-6

Physical User Interfaces ... 4-7

Limited Memory... 4-7

Support for Multiple Client Types ... 4-8

Personalization ... 4-9

Session Tracking .. 4-9

Writing WAP-Only Web Applications.. 4-12

Working with the date Example ... 4-13

Working with the phoneBook Example ... 4-16

Installing Additional Software for the WAP-Only Example Applications
4-19

Running the WAP-Only Example Applications....................................... 4-19

Writing Multi-Target Web Applications ... 4-20

Understanding the Examples Framework .. 4-21

Registering MIME Types ... 4-21

Working with the helloWorld Example ... 4-22

Working with the stockDemo Example ... 4-25

Working with the travelDemo Example... 4-27

Installing Additional Software for the Multi-Target Example Applications...
4-32

Running the Multi-Target Example Applications 4-32
iv Programming WebLogic Server for Wireless Services

About This Document

This document explains how to use the BEA WebLogic Server™ platform to design
and write Web applications that interface not only with the traditional desktop browser
but also with the different types of wireless devices.

This document is organized as follows:

� Chapter 1, “Introduction,” provides the basic information you need to know
before using WebLogic Server to extend Web applications to wireless
subscribers.

� Chapter 2, “Using WAP with WebLogic Server,” discusses how to provide
content suitable for the Wireless Application Protocol (WAP) application
environment and how to configure and use WebLogic Server with a WAP
Gateway.

� Chapter 3, “Using i-Mode with WebLogic Server,” discusses how to provide
content suitable for the i-Mode application environment and how to configure
and use WebLogic Server with an i-Mode Gateway.

� Chapter 4, “Writing Web Applications to Include Wireless Subscribers,”
demonstrates through example how to use WebLogic Server to extend Web
applications to wireless subscribers.

Audience

This document is written for application developers who are interested in building
transactional Java applications that run in the WebLogic Server environment. It
assumes a familiarity with WebLogic Server and Java™ 2, Enterprise Edition (J2EE)
programming and wireless Web technologies.
Programming WebLogic Server for Wireless Services v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. Other
WebLogic Server documents that you may find helpful when using WebLogic Server
to write application services are:

� Introduction to BEA WebLogic Server at
http://e-docs.bea.com/wls/docs61/intro/index.html

� Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/index.html

� Programming WebLogic XML at
http://e-docs.bea.com/wls/docs61/xml/index.html
vi Programming WebLogic Server for Wireless Services

http://www.adobe.com
http://e-docs.bea.com/wls/docs61/intro/index.html
http://e-docs.bea.com/wls/docs61/adminguide/index.html
http://e-docs.bea.com/wls/docs61/xml/index.html

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by
using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
Programming WebLogic Server for Wireless Services vii

mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
viii Programming WebLogic Server for Wireless Services

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic Server for Wireless Services ix

x Programming WebLogic Server for Wireless Services

CHAPTER
1 Introduction

The following sections provide information that you need to know before using the
BEA WebLogic Server™ platform to extend Web applications to wireless subscribers:

� Overview

� Wireless Data Protocols

� The WAP Protocol at a Glance

� The i-Mode Protocol at a Glance

� Other Wireless Data Protocols

� Other Wireless Markup Languages

� Evolution of Wireless Data Protocols and Wireless Markup Languages

� Additional Information

Overview

The wireless Internet-enabled subscriber base continues to grow. Telecommunications
companies and wireless service providers are looking for ways to rapidly create and
deploy new revenue-generating Internet services while providing their wireless
subscribers with a more personalized experience.
Programming WebLogic Server for Wireless Services 1-1

1 Introduction
Because wireless subscribers have a different set of essential desires and needs than
desktop or even laptop Internet users, Internet services must be designed to present the
optimum experience for subscribers using different types of wireless devices. Writing
Internet services in this manner requires a deep understanding of the technical issues
unique to the wireless environment.

Wireless Data Protocols

Using Internet technologies such as Hypertext Transfer Protocol (HTTP),
Transport-Layer Security (TLS), Transmission Control Protocol (TCP), and Hypertext
Markup Language (HTML) to set up and tear down connections and to transport Web
content on a wireless network is inefficient for several reasons, including:

� HTTP and TCP are not optimized for the intermittent coverage, long latencies,
and limited shared bandwidth associated with wireless networks.

� HTTP sends its headers and commands in a text format, which is not well suited
for the low-bandwidth constraints of wireless networks, instead of the more
efficient compressed binary format.

� HTTP session setup and teardown require many messages to be exchanged
between the wireless device (client) and the server.

� HTML Web content intended for the desktop browser cannot be displayed in an
effective way on the small-size screens of handheld mobile phones, personal
digital assistants (PDAs), pagers, two-way radios, and smartphones.

� Navigation around and between screens is not easy due to no keyboard and no
mouse; navigation is accomplished by pressing numeric keys or writing with a
stylus.

Wireless services using these protocols are often slow, costly, and difficult to use,
which is why special wireless data protocols were created to transport Web-based data
on a wireless network. Wireless data protocols, such as Wireless Application Protocol
(WAP), i-Mode, and others, are designed for the unique constraints of the wireless
environment. They use binary transmission for greater compression of data and are
optimized for long latency and low to medium bandwidth. They support protocol data
1-2 Programming WebLogic Server for Wireless Services

The WAP Protocol at a Glance
unit (PDU) concatenation and delayed acknowledgement to help reduce the number of
messages sent. Their associated markup languages make optimum use of small screens
and allow easy navigation around and between screens.

To read the markup language associated with a wireless data protocol, a wireless
device requires a microbrowser, which is client software specially designed to
interpret the markup language. As examples, a WAP-enabled device has a Wireless
Markup Language (WML) microbrowser, and an i-Mode-enabled device has a
compact HTML (cHTML) microbrowser.

The WAP Protocol at a Glance

The Wireless Application Protocol (WAP) specification consists of a wireless data
protocol—a standardized way that the microbrowser on a wireless device
communicates with a WAP gateway installed in the wireless network—and a markup
language, Wireless Markup Language (WML). WML is an Extensible Markup
Language (XML) used to specify the content and user interface for WAP-enabled
devices.

WAP sessions cope with intermittent coverage and can operate over a wide variety of
wireless bearer networks including but not limited to Cellular Digital Packet Data
(CDPD), Code Division Multiple Access (CDMA), Global System for Mobiles
(GSM), Time Division Multiple Access (TDMA), and General Packet Radio Service
(GPRS). Although most WAP services in Europe and the United states are
circuit-switched (dial-up), WAP will also work on packet-switched networks.

The i-Mode Protocol at a Glance

The i-Mode specification consists of a wireless data protocol—a standardized way that
the microbrowser on a wireless device communicates with an i-Mode gateway
installed in the wireless network—and a markup language, compact HTML (cHTML).
cHTML is a subset of HTML with extensions and is used to specify the content and
user interface for i-Mode-enabled devices.
Programming WebLogic Server for Wireless Services 1-3

1 Introduction
Note: In publications, i-Mode appears in many different forms including i-Mode,
I-Mode, I-mode, i-mode, and imode. i-Mode is used throughout this discussion
and the discussions that follow.

While WAP is an open, global specification, i-Mode is currently a proprietary, closed
specification developed and deployed by NTT DoCoMo of Japan. The only i-Mode
implementation is NTT DoCoMo’s mobile internet access system, although several
telecommunication companies in Europe and the United States have expressed an
interest in i-Mode.

Although i-Mode currently operates only on NTT-DoCoMo’s PDC-P mobile voice
system, i-Mode will work equally well on any underlying wireless bearer network.

Other Wireless Data Protocols

Other wireless data protocols include:

� Handheld Device Transport Protocol (HDTP) developed by Phone.com
(formerly Unwired Planet and now Openwave Systems Inc.)

� Mobitex developed by the Mobitex Operators Association

The wireless industry is also very interested in the Voice over IP (VoIP) technology,
which moves voice and data traffic over a common IP infrastructure. The wireless
industry is looking for ways to converge the VoIP and wireless data protocol
technologies so that voice and Web data can be carried on the same over-the-air
channel.
1-4 Programming WebLogic Server for Wireless Services

Other Wireless Markup Languages
Other Wireless Markup Languages

Other wireless markup languages include:

� Handheld Device Markup Language (HDML) developed by Phone.com
(formerly Unwired Planet and now Openwave Systems Inc.)

� Web Clipping developed by Palm, Inc.

� Extensible HTML (XHTML) (Basic) developed by the World Wide Web
Consortium (W3C)

� VoiceXML developed by the VoiceXML Forum, an industry organization
founded by AT&T, IBM, Lucent, and Motorola

Note: HDTP carries Web content tagged with HDML. HDTP and HDML heavily
influenced the development of WAP and WML.

Evolution of Wireless Data Protocols and
Wireless Markup Languages

The various wireless data protocols and wireless markup languages in existence today
may very well evolve into a single wireless data protocol and wireless markup
language tomorrow. As evidence, proponents of the WAP protocol are about to
migrate to a new generation of the protocol known as WAP-NG, and both AT&T an
NTT DoCoMo have made allegiances to WAP-NG. In addition, proponents of WAP
and i-Mode are talking about migrating to the common markup language XHTML
(Basic).
Programming WebLogic Server for Wireless Services 1-5

1 Introduction
Additional Information

Here are some Web sites (organized by category) to visit for additional information
about wireless data protocols, wireless markup languages, manufacturers of wireless
devices, and wireless standards and specifications.

Related WebLogic Wireless Information

BEA-written white paper titled “Beyond the Wire—Developing Software for Many
Devices” at
http://www.bea.com/products/weblogic/server/paper_pervasive.shtml

BEA Wireless Newsgroup at
news://newsgroups.bea.com/weblogic.developer.interest.wap

BEA Wireless FAQ at
http://e-docs.bea.com/wls/docs61/faq/wireless.html

General Wireless Information

The Wireless FAQ at http://allnetdevices.com/faq

FierceWireless at http://www.fiercewireless.com

MBizCentral at http://www.mbizcentral.com

Unstrung at http://www.unstrung.com

WirelessDevNet at http://www.wirelessdevnet.com

Wireless-Device Manufacturers

Palm at http://www.palm.com/wireless

PocketPC at http://www.microsoft.com/mobile/pocketpc/faq.asp

RIM BlackBerry at http://www.rim.net/products/handhelds/index.shtml

Symbian Limited at http://www.symbian.com
1-6 Programming WebLogic Server for Wireless Services

http://www.bea.com/products/weblogic/server/paper_pervasive.shtml
http://www.bea.com/products/weblogic/server/paper_pervasive.shtml
news://newsgroups.bea.com/weblogic.developer.interest.wap
http://e-docs.bea.com/wls/docs61/faq/wireless.html
http://allnetdevices.com/faq
http://www.fiercewireless.com
http://www.mbizcentral.com
http://www.unstrung.com
http://www.wirelessdevnet.com
http://www.palm.com/wireless
http://www.microsoft.com/mobile/pocketpc/faq.asp
http://www.rim.net/products/handhelds/index.shtml
http://www.symbian.com

Additional Information
Wireless Standards and Specifications

XHTML Basic W3C Recommendation at http://www.w3.org/TR/xhtml-basic

VoiceXML Forum Specifications at http://www.voicexml.org/

The Short Message Peer to Peer (SMPP) Forum at
http://www.smpp.org/index.html

SMS Protocol—SMPP Specification at
http://www.smpp.org/doc/public/index.html

SMS Protocol—CIMD2 Specification at
http://www.forum.nokia.com/download/cimdspec2.pdf

SNPP pagers at http://www.faqs.org/rfcs/rfc1861.html
Programming WebLogic Server for Wireless Services 1-7

http://www.w3.org/TR/xhtml-basic
http://www.voicexml.org/
http://www.smpp.org/index.html
http://www.smpp.org/doc/public/index.html
http://www.forum.nokia.com/download/cimdspec2.pdf
http://www.faqs.org/rfcs/rfc1861.html

1 Introduction
1-8 Programming WebLogic Server for Wireless Services

CHAPTER
2 Using WAP with
WebLogic Server

The following sections describe how to provide content suitable for the Wireless
Application Protocol (WAP) application environment and how to configure and use
WebLogic Server with a WAP gateway:

� Overview

� WAP Application Environment

� WAP Gateway

� Additional Resources

Overview

Wireless Application Protocol (WAP) is an open, global specification, developed and
deployed by the WAP Forum, that allows for the development of Internet and
Web-based services for mobile phones and other wireless digital devices. Its founder
members include the major wireless vendors of Ericsson, Motorola, Nokia, and
Phone.com (formerly Unwired Planet and now Openwave Systems Inc).

The WAP specification addresses the limitations of wireless networks (low bandwidth,
high latency, and unpredictable availability and stability) and wireless devices (limited
CPU, memory, and battery life, and a simple user interface). It specifies two essential
elements of wireless communication: an over-the-air wireless protocol and an
application environment.
Programming WebLogic Server for Wireless Services 2-1

2 Using WAP with WebLogic Server
WAP gateways form the connection between clients on the wireless network and
applications hosted on application servers on the Internet. The WAP gateway builds a
bridge between the telecommunication and computer networks by routing requests
from wireless clients to the application servers. It can be physically located in either
network, though it is needed in only one of them.

WAP Application Environment

The WAP application environment defines the framework for network-neutral,
wireless applications for narrowband devices. Two of the main components of the
WAP application environment are Wireless Markup Language (WML) and
WMLScript.

WML

WML for WAP applications is analogous to HTML for TCP/IP applications. It is an
XML-based language that is specifically designed to interface with the microbrowsers
that exist in WAP-enabled devices. The Wireless Markup Language Specification at
http://www.wapforum.org/what/technical.htm defines the tags and structure
of a WML document.

A WML document is a collection—referred to as a deck—of one or more cards. Each
card in a deck of cards is considered a well defined unit of interaction. The general rule
of thumb is that a card carries enough information to fit in one screen of a wireless
device. For information on ways to serve WML documents to wireless clients, see
“WAP Gateway” on page 2-3. For general information on WML, see “Additional
Resources” on page 2-6.
2-2 Programming WebLogic Server for Wireless Services

http://www.wapforum.org/what/technical.htm

WAP Gateway
WMLScript

WMLScript provides general scripting capability to the WAP architecture. It is
designed to overcome the limitations of narrowband communication and wireless
clients. For example, WMLScript is a good way to validate form input without making
a round trip to the server.

WMLScript resides in .wmls files that are made available to wireless clients by
placing them into the document root. The document root is the root directory for files
that are publicly available on WebLogic Server. For more detail, see the information
on directory structures in Web Applications Basics at
http://e-docs.bea.com/wls/docs61/webapp/basics.html. For general
information on WMLScript, see “Additional Resources” on page 2-6.

WAP Gateway

As shown in the following figure, the WAP gateway acts as the bridge between the
wireless network containing wireless clients and the computer network containing
application servers.

Figure 2-1 WAP Application Architecture

Carrier Network IP Network

WML over IPWML over WAP WAP
Gateway

WebLogic
Server
Programming WebLogic Server for Wireless Services 2-3

http://e-docs.bea.com/wls/docs61/webapp/basics.html

2 Using WAP with WebLogic Server
WAP Gateway Functionality

A WAP gateway typically includes the following functionality:

� Protocol gateway—the protocol gateway translates requests from the WAP
protocol stack to the WWW protocol stack (HTTP and TCP/IP).

� Content encoders and decoders—the content encoders translate Web content into
compact encoded formats to reduce the number and size of packets traveling
over the wireless data network.

When a wireless client sends a request to a WAP application running on WebLogic
Server, the request is first routed through the WAP gateway where it is decoded,
translated to HTTP, then forwarded to the appropriate URL. The response is then
re-routed back through the gateway, translated to WAP, encoded, and forward to the
wireless client. This proxy architecture allows application developers to build services
that are network and terminal independent.

WAP Gateway Security and Security Concerns

The security layer of the WAP protocol stack is called Wireless Transport Layer
Security (WTLS). WTLS is based upon the established Transport-Layer Security
(TLS) protocol standard.

For a secure connection employing the WAP protocol, a very small security risk exists
at the WAP gateway during the switching of WTLS (WAP side) to SSL (IP side) and
SSL to WTLS. Since the WAP protocol allows a session to be redirected from the
carrier’s gateway to the enterprise’s gateway, an enterprise may want to control this
minimal risk by including a WAP gateway behind its firewall. As shown in the
following figure, the enterprise secures the server running the WAP gateway in a
controlled environment to eliminate any exposure to the security risk.
2-4 Programming WebLogic Server for Wireless Services

WAP Gateway
Figure 2-2 WAP Session Redirection

Since the carrier is a trusted entity and is continuously responsible for protecting voice,
fax, computer and other types of data, enterprises probably do not need to host their
own WAP gateway.

WAP Gateway Vendors

There are a growing number of vendors that provide WAP gateways. WebLogic Server
should work with any WAP-compliant gateway. For a list of WAP-compliant
gateways and other WAP products, refer to the WAP Deployment Fact Sheet at
http://www.wapforum.org/new/index.htm compiled by the WAP Forum.

Carrier Network IP Network

WAP
Gateway

WebLogic
Server

WAP
Gateway

Session Redirection

WTLS SSLWTLS
Programming WebLogic Server for Wireless Services 2-5

http://www.wapforum.org/new/index.htm

2 Using WAP with WebLogic Server
Additional Resources

Here are some Web sites (organized by category) to visit for additional information
about WebLogic Server programming, WAP, and WML.

Related WebLogic Technologies

Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs61/jsp/index.html

Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

Programming WebLogic XML at
http://e-docs.bea.com/wls/docs61/xml/index.html

Web Applications Basics at
http://e-docs.bea.com/wls/docs61/webapp/basics.html

General WAP Information

WAP Forum at http://www.wapforum.org

Ericsson: Developers’ Zone at http://www.ericsson.com/developerszone

Motorola at http://developers.motorola.com/developers/wireless

Nokia: WAP Solutions for Mobile Business at
http://www.nokia.com/corporate/wap/index.html

Openwave Developer Resources at
http://developer.openwave.com/resources/index.html

WAP Specifications and White Papers

WAP specifications at http://www.wapforum.org/what/technical.htm

WAP white papers at http://www.wapforum.org/what/whitepapers.htm
2-6 Programming WebLogic Server for Wireless Services

http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/xml/index.html
http://e-docs.bea.com/wls/docs61/webapp/basics.html
http://www.wapforum.org target="wap"
http://www.ericsson.com/developerszone target="wap"
http://developers.motorola.com/developers/wireless target="wap"
http://www.nokia.com/corporate/wap/index.html target="wap"
http://developer.openwave.com/resources/index.html target="wap"
http://www.wapforum.org/what/technical.htm target="wap"
http://www.wapforum.org/what/whitepapers.htm target="wap"

Additional Resources
WAP Toolkits

Nokia WAP Toolkit at http://www.nokia.com/corporate/wap/sdk.html

Motorola Tools and Downloads at
http://developers.motorola.com/developers/wireless/tools

Openwave Software Development Kit at
http://developer.openwave.com/download/index.html

Ericsson Developers’ Zone at http://www.ericsson.com/developerszone
Programming WebLogic Server for Wireless Services 2-7

http://www.nokia.com/corporate/wap/sdk.html target="wap"
http://developers.motorola.com/developers/wireless/tools target="wap"
http://developer.openwave.com/download/index.html target="wap"
http://www.ericsson.com/developerszone target="wap"

2 Using WAP with WebLogic Server
2-8 Programming WebLogic Server for Wireless Services

CHAPTER
3 Using i-Mode with
WebLogic Server

The following sections describe how to provide content suitable for the i-Mode
application environment and how to configure and use WebLogic Server with an
i-Mode gateway:

� Overview

� i-Mode Markup Language

� i-Mode Gateway

� Additional Resources

Overview

i-Mode is currently a proprietary, closed specification, developed and deployed by
NTT DoCoMo of Japan, that allows for the development of Internet and Web-based
services for mobile phones and other wireless digital devices. The only i-Mode
implementation is DoCoMo’s mobile internet access system, although several
telecommunication companies in Europe and the United States have expressed an
interest in i-Mode.

Note: i-Mode is a trademark and/or service mark owned by NTT DoCoMo.
Programming WebLogic Server for Wireless Services 3-1

3 Using i-Mode with WebLogic Server
The i-Mode specification addresses the limitations of wireless networks (low
bandwidth, high latency, and unpredictable availability and stability) and wireless
devices (limited CPU, memory, and battery life, and a simple user interface). It
specifies two essential elements of wireless communication: an over-the-air wireless
protocol and a markup language.

i-Mode gateways form the connection between clients on the wireless network and
applications hosted on application servers on the Internet. The i-Mode gateway builds
a bridge between the telecommunication and computer networks by routing requests
from wireless clients to the application servers.

i-Mode Markup Language

i-Mode applications use the compact Hypertext Markup Language (cHTML), which is
specifically designed to interface with the microbrowsers in i-Mode-enabled devices.
cHTML is a subset of HTML, with a number of extensions for the mobile phone
environment. The NTT DoCoMo (English) Supported Tags and Specs at
http://www.nttdocomo.com/ defines the tags and structure of a cHTML document.

i-Mode Gateway

As shown in the following figure, the i-Mode gateway acts as the bridge between the
wireless network containing wireless clients and the computer network containing
application servers.
3-2 Programming WebLogic Server for Wireless Services

http://www.nttdocomo.com/

Additional Resources
Figure 3-1 i-Mode Application Architecture

An i-Mode gateway typically includes a protocol gateway, which translates requests
from the i-Mode protocol stack to the WWW protocol stack (HTTP and TCP/IP).

When a wireless client sends a request to an i-Mode application running on WebLogic
Server, the request is first routed through the i-Mode gateway and then forwarded to
the appropriate URL. The response is then re-routed back through the gateway,
translated to i-Mode, and forward to the wireless client. This proxy architecture allows
application developers to build services that are network and terminal independent.

Additional Resources

Here are some Web sites (organized by category) to visit for additional information
about WebLogic Server programming, i-Mode, and cHTML.

Related WebLogic Technologies

Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs61/jsp/index.html

Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

Programming WebLogic XML at
http://e-docs.bea.com/wls/docs61/xml/index.html

Carrier Network IP Network

cHTML over IPcHTML over i-Mode iMode
Gateway

WebLogic
Server
Programming WebLogic Server for Wireless Services 3-3

http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/xml/index.html

3 Using i-Mode with WebLogic Server
Web Applications Basics at
http://e-docs.bea.com/wls/docs61/webapp/basics.html

General i-Mode Information

All about i-mode at http://www.nttdocomo.com/corebiz/imode/index.html
3-4 Programming WebLogic Server for Wireless Services

http://e-docs.bea.com/wls/docs61/webapp/basics.html
http://www.nttdocomo.com/corebiz/imode/index.html

CHAPTER
4 Writing Web
Applications to Include
Wireless Subscribers

The following sections demonstrate through example how to use WebLogic Server to
extend Web applications to wireless subscribers:

� Overview

� Locating the Wireless Example Applications

� Understanding Basic Web Application Design Concepts

� Writing WAP-Only Web Applications

� Writing Multi-Target Web Applications

Overview

With the growing popularity of Internet-enabled wireless devices, application
developers need to design their Web applications to interface with more than just the
traditional desktop browser. In addition, because wireless devices vary greatly in their
form factors, their user input interfaces, and their use of over-the-air (OTA) protocols
and markup languages, developers need to consider the different types of wireless
devices when designing Web applications.
Programming WebLogic Server for Wireless Services 4-1

4 Writing Web Applications to Include Wireless Subscribers
The good news is that any existing application built on WebLogic Server is ready for
the wireless Web. In fact, for a well written application, an application’s entire
back-end is ready for use by the new Internet-enabled wireless devices without any
significant code modifications. In the simplest case, an application developer need
only write new front-end software to enable an application to interface with
Internet-enabled wireless devices.

The sections that follow explore different ways of extending Web application services
to wireless devices. These methods are by no means the only methods for extending
services to wireless devices, but are intended to help you use the WebLogic Server
J2EE features to develop your own methods. Five simple example applications are
included to clarify the procedures.

Locating the Wireless Example Applications

During the WebLogic Server software installation, the installer program places the
directories and files for the five wireless example applications in the wireless
directory, as shown in the following figure.

Figure 4-1 WebLogic Server Wireless File Tree

userAgentsdate

wireless

package-summary.html

tools

travelDemo

frameWork

helloWorld

stockDemo

wlserver6.1

examples

samples

phoneBook

WAP-Only Examples HTML and text FilesMulti-Targeted Examples
4-2 Programming WebLogic Server for Wireless Services

Locating the Wireless Example Applications
The product directory shown here, wlserver6.1, is the default for WebLogic Server
6.1. The default name can be changed during installation.

The top-level directories and files of the WebLogic Server wireless directory structure
are briefly described in the following table. The five examples demonstrate how to
access JavaServer Pages (JSPs) and Java Servlets from a wireless device or desktop
browser.

Directory Name Description

date Contains sample code and resources for the date
example, including a package-summary.html file
describing the building, configuring, and running of
the example in detail.

The date example demonstrates (1) connectivity
between a WML client device and WebLogic Server
through a WAP gateway and (2) generation of dynamic
WML documents (content tagged with WML).

phoneBook Contains sample code and resources for the
phoneBook example, including a
package-summary.html file describing the
building, configuring, and running of the example in
detail.

The phoneBook example demonstrates (1)
connectivity between a WML client device and
WebLogic Server through a WAP gateway, (2) serving
up a static WML document, and (3) making an
interactive request to a servlet received from the WML
client.

helloWorld Contains sample code and resources for the
helloWorld example, including a
package-summary.html file describing the
building, configuring, and running of the example in
detail.

The helloWorld example demonstrates the use of
the underlying examples framework to serve up a static
markup-language document specific to the requesting
wireless or desktop device. The document may be
WML, HDML, cHTML, or HTML.
Programming WebLogic Server for Wireless Services 4-3

4 Writing Web Applications to Include Wireless Subscribers
stockDemo Contains sample code and resources for the
stockDemo example, including a
package-summary.html file describing the
building, configuring, and running of the example in
detail.

The stockDemo example demonstrates the use of the
underlying examples framework to serve up a simple
dynamic markup-language document specific to the
requesting wireless or desktop device. The document
may be WML, HDML, cHTML, or HTML.

travelDemo Contains sample code and resources for the
travelDemo example, including a
package-summary.html file describing the
building, configuring, and running of the example in
detail.

The travelDemo example, which has multiple levels
of user interaction, demonstrates the use of the
underlying examples framework to serve up a more
complex markup-language document specific to the
requesting wireless or desktop device. The document
may be WML, HDML, cHTML, or HTML.

frameWork Contains sample code and resources for a simple,
prototypical framework, including a
package-summary.html file describing the
framework in detail.

The frameWork directory, which contains the
examples framework used in the helloWorld,
stockDemo, and travelDemo examples, generates
markup language documents from within a JSP
specific to the requesting wireless or desktop device.
The document may be WML, HDML, cHTML, or
HTML.

package-summary.html (file) Contains a summary of the five wireless example
applications provided by WebLogic Server, and
provides a list of pointers to useful related information.

Directory Name Description
4-4 Programming WebLogic Server for Wireless Services

Understanding Basic Web Application Design Concepts
Understanding Basic Web Application
Design Concepts

You, as an application developer, can use a Web application’s data and business logic
for both wireline desktop devices and wireless devices, but you must tailor the layout
and navigation for the different classes of devices. The application flow should often
be much different for a desktop browser than for a wireless device microbrowser.

For example, consider the following application flow for presenting an e-commerce
site on a desktop browser:

The e-commerce site home page presents many links to different sections of the e-store,
a search form, and several advertisements for current specials. After selecting a part
of the store, a product category, and a specific product, the consumer is presented with
a full description of the product and an option to add the product to the shopping cart.
After selecting the add option, the consumer is presented with options to continue
shopping or to proceed to checkout.

This application flow encourages consumers to browse through more of the e-store and
potentially make more purchases than they originally intended. With a desktop
browser and a mouse, this flow works very well. However, using this flow to present
the e-commerce site on a data-enabled wireless device may cause a consumer to leave
the e-store in frustration; wireless devices simply are not well suited for browsing. As
an alternative, consider the following application flow for presenting the same
e-commerce site on a cell phone:

tools Contains two files listing pointers to the following
types of tools: tools that convert images to the WML
bitmap (WBMP) format for WAP devices, and tools
that emulate wireless client devices.

userAgents Contains a file listing sample userAgents from real
devices; userAgent information appears in HTTP
User-Agent headers.

Directory Name Description
Programming WebLogic Server for Wireless Services 4-5

4 Writing Web Applications to Include Wireless Subscribers
The home screen allows the consumer to enter a UPC bar code or some other unique
identification for the product. The follow-up screen contains a link to add the item to
the cart, proceed to checkout, or get a full description of the product. A link to the
“general e-store” appears on each page so that consumers who want to browse can
do so.

Note that this application flow is the inversion of the desktop-browser application
flow. The key to creating an application flow for a wireless device is to limit the
amount of user interaction with the device’s input and selection mechanisms.

So when developing a Web application, consider the limitations of wireless devices
and determine the most efficient and flexible way to provide suitable content. The
following sections describe some of these considerations:

� “Form Factors” on page 4-6

� “Physical User Interfaces” on page 4-7

� “Limited Memory” on page 4-7

� “Support for Multiple Client Types” on page 4-8

� “Personalization” on page 4-9

� “Session Tracking” on page 4-9

Form Factors

Most wireless devices have different form factors due to the different sizes and shapes
of their screen displays. Wireless markup languages, such as WML, HDML, cHTML,
Web Clipping, and others, are specifically designed to accommodate these form
factors. While some wireless gateways (WAP gateways, i-Mode gateways, ...) have
the ability to automatically translate HTML to a different markup language, in practice
the best applications use the markup language directly to tailor the interface to the
specific needs of the wireless user. Doing so allows for the best possible use of a
wireless device’s form factor and provides the best user experience.

Since many wireless devices can only display four or five lines of text with ten to
twenty characters per line, the challenge is to present information on small screens in
such a way that users will be pleased with the display.
4-6 Programming WebLogic Server for Wireless Services

Understanding Basic Web Application Design Concepts
Physical User Interfaces

Most wireless devices have extremely simple user interfaces due to the lack of a
keyboard and a mouse. Entering input or navigating between screens is accomplished
by pressing numeric keys or buttons, or writing with a stylus.

You need to consider the data entry mechanism as well as the amount of data to be
entered when designing and writing applications. If possible, you should separate an
application’s required data entry points from its optional data entry points, and only
present the required data fields to wireless devices.

Using markup languages such as WML, HDML, cHTML, Web Clipping, and others,
you can write application front-ends that assign operations to the keys and buttons on
wireless devices. For a cell phone, as an example, you can program an application
front-end to assign specific operations to the unlabeled power keys (operations such as
<PREV>, <BACK>, <OK>, <SUBMIT>, <SELECT>, <DONE>, <NEXT>,
<ABORT>, and <HOME>) and to reassign new operations to the labeled soft keys. For
a PDA device, you can program an application front-end to reassign new operations to
the soft buttons (the buttons imprinted on silk) and the hard buttons. Being able to
assign keys or buttons on a wireless-device version of an application to replace the
buttons and links in the desktop-browser version of an application is a very useful data
entry and navigation capability.

Limited Memory

Most wireless devices have little memory. When grouping WML cards into decks, you
should be aware that a deck is the smallest download unit. In other words, information
is downloaded to a wireless client in decks, not cards. Because of the memory
limitations, we at BEA highly recommend that you avoid decks with a large number
of cards or single cards that are large.

Note: It is not always lack of memory that limits the number or size of cards in a
deck. Some wireless gateways put limits on the size of a single payload
delivered to the wireless clients as well.
Programming WebLogic Server for Wireless Services 4-7

4 Writing Web Applications to Include Wireless Subscribers
Support for Multiple Client Types

The most valuable parts of a Web application are its unique content and its back-end
database interaction, not the particular type of markup language (traditionally HTML)
written to interact with the user. A well designed back-end functionality should not
require modification to be able to offer the same services to wireless clients. You, as
an application developer, simply need to develop markup-language specific front-ends
(WML, HDML, cHTML, ...) to extend the same back-end functionality to the wireless
devices. In addition, you need to define customized presentations for the different
classes of devices (cell phones, PDAs, traditional desktop browsers, ...) and add
features that are unique to specific devices, such as personalization for cell phones
based on the geographic location of the requesting device.

Two basic strategies exist for handling user access to HTML-based browser and
wireless client types: programming a Web application to use separate URLs for
browser-based HTML and microbrowser-based WML/HDML/cHTML/... entry points
(such as www.foo.com, www.wap.foo.com, and www.imode.foo.com), or
programming the application to use a single URL (for example, www.foo.com) to
generate content according to the browser type of the requestor. For the latter strategy,
the Web application at the URL determines the browser type by examining the HTTP
User-Agent header of the request and/or soliciting information about the requestor
from the serving wireless gateway. For an example of accessing HTTP User-Agent
header information, see the SnoopServlet example included in the
samples/examples/servlets directory of your WebLogic Server installation.

You can use the same two strategies if you wish to take advantage of the different
features and display sizes of the different wireless devices available on the market. The
display sizes of wireless devices currently range from four lines of text to about eight
lines of text (although this is likely to change dramatically in the near future). By
examining the type of the client, an application can use the extra graphical real estate
when it is available. Obviously, the simplest method is to create content suitable for
the lowest common denominator (four lines), although this method does not lend itself
to the best user experience on most devices.

Generally speaking, we at BEA strongly encourage you to use the same URL for all
devices, including the traditional desktop browser, to make user access to an
application as easy as possible.
4-8 Programming WebLogic Server for Wireless Services

Understanding Basic Web Application Design Concepts
Personalization

You should consider using a personalization mechanism that allows users to customize
an application offering based on device class. For example, the services that a user
wants to see on one device (say a desktop browser) may be very different from the
services that the user wants to see on another device (say a cell phone). Tools such as
BEA WebLogic Personalization Servers are well suited for providing this sort of
flexibility in your application.

The personalization mechanism should also allow users to create portals based on
device class and location. For example, a user may want a certain portal for a device
(say a cell phone) when visiting on the east coast and a different portal for that same
device when visiting on the west coast. Additionally, a user may want to personalize a
portal based on the location of the device, such as:

When the device is more than twenty miles from home, local restaurant names appear
on the home page. When the device is within twenty miles from home, no restaurant
names appear.

The personalization mechanism should also allow for the sending of alerts to different
devices based on the time of day or the day of the week. For example, if a user does
not carry his or her pager on the weekends, a voice alert could be generated and left on
an answering machine.

Session Tracking

Session tracking is useful to keep track of a user’s progress over multiple servlets or
pages. As described in Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html, the server assigns
each client session a session ID and an associated
javax.servlet.http.HttpSession object that lives on the WebLogic Server for
the lifetime of the session. The client provides the session ID with each request in order
for the server to find session data in the HttpSession object.

The session ID for an application not deployed on a cluster of WebLogic Servers has
the following format:
Programming WebLogic Server for Wireless Services 4-9

http://e-docs.bea.com/wls/docs61/servlet/index.html

4 Writing Web Applications to Include Wireless Subscribers
A session ID for an application deployed on a cluster of WebLogic Servers has the
following format consisting of an additional 60 bytes:

Rand_Sess_ID!Primary_JVMID_DIFFERENTIATOR!HOST!PORT!SSLPORT!
SECONDARY_JVMID_DIFFERENTIATOR!HOST!PORT!SSLPORT

The server attempts to store the session ID by setting a cookie on the client. (Cookies
are used on the fixed Internet to identify the Web browser and thereby assist in
providing customized and streamlined services.) Once the cookie is set, the client
includes the cookie with each user request sent to the server. The server automatically
parses the session ID from the cookie to retrieve the session data in the appropriate
HttpSession object.

However, since most wireless devices do not support cookies, and some wireless
gateways do not handle cookies for their clients, you may have to choose an alternate
session-tracking method.

An Alternative Session-Tracking Method—URL Rewriting

URL rewriting involves encoding the session ID into the hyperlinks on the page that
your servlet sends back to the client. When the user subsequently clicks those links,
WebLogic Server extracts the session ID from the URL and finds the appropriate
HttpSession object.

To ensure secure sessions with a uniformly random distribution, session IDs must
contain a certain number of characters. The length of the session ID, however, can
cause problems for many wireless devices because many devices limit URLs to 128 or
fewer characters (bytes).

There are two ways to limit the length of the session ID:

� You can limit the length of the randomly generated portion of the session ID by
setting the IDLength attribute in the Web application deployment descriptor
weblogic.xml, in the <session-descriptor> element at
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#sessi

on-descriptor. The minimum value is 8 bytes.

Rand_Sess_ID!Primary_JVMID_DIFFERENTIATOR!HOST!PORT!SSLPORT

JVMID for Primary WebLogic Server = ~ 60 bytes52 bytes
(default)
4-10 Programming WebLogic Server for Wireless Services

http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#session-descriptor

Understanding Basic Web Application Design Concepts
� You can limit the length of the remaining portion (JMVID) of the session ID by
setting the WAPEnabled attribute to true in the <WebServer> element in the
config.xml file for your domain.

For WebLogic Server 6.1 with no Service Packs applied, setting WAPEnabled to
true shortens the session ID to just the randomly generated portion of the
session ID, that is, no information about the primary and secondary servers is
included in the session ID.

For WebLogic Server 6.1 with Service Pack 1 (or greater) applied, setting
WAPEnabled to true changes the session ID for an application deployed on a
cluster of WebLogic Servers to the following format:

The server maps the Primary_JVMID_HASH and SECONDARY_JVMID_HASH
values to the primary and secondary server information stored on the server to
retrieve the session data in the appropriate HttpSession object.

Note that for both the long session ID format (WAPEnabled set to false) and
the limited session ID format (WAPEnabled set to true), in-memory replication
of state is used: session persistence is not a requirement in a WebLogic Cluster.
If the serving WebLogic Server is not using in-memory replication, the JVMID
will not be encoded in the URL. For more information about the WAPEnabled
attribute, see config.xml Elements and Attributes at
http://e-docs.bea.com/wls/docs61/config_xml/mbeans.html.

The creationTime value refers to the current time when the session ID was
generated. It is the return value of the System.currentTimeMillis() method.

A Better Alternative Session-Tracking Method

A better alternative is to include a WML postfield element containing the session ID
along with any WML go element. In WML, the go element indicates navigation to a
URL. The go element may contain one or more postfield elements. These elements
specify information to be submitted to the origin server during the request. In the
example WML code (with scriptlet) that follows, the session ID is obtained from the
session and used to set the value of the JSESSIONID postfield.

Rand_Sess_ID!Primary_JVMID_HASH!SECONDARY_JVMID_HASH!creationTime

8 - 10 bytes8 bytes min 8 - 10 bytes 13 bytes
Programming WebLogic Server for Wireless Services 4-11

http://e-docs.bea.com/wls/docs61/config_xml/mbeans.html

4 Writing Web Applications to Include Wireless Subscribers
<go href="index.jsp" method="post"> <postfield name="JSESSIONID"
value="<%= session.getId() %>"/></go>

The preceding code will cause an HTTP POST to the URL index.jsp with a message
entity containing JSESSIONID=sessionID, where sessionID is the ID obtained
from the session.getId() call. From within index.jsp, the session ID can then be
obtained by getting the parameter from the HTTP request with the call
request.getParameter("JSESSIONID").

Writing WAP-Only Web Applications

The date and phoneBook applications are examples of WAP-only Web applications.
These example applications, as clarified in the following figure, demonstrate how to
access WebLogic Server from WML clients.

Figure 4-2 Data Flow for the WAP-Only Example Applications

Carrier Network

WML over IPWML over WAP WAP
Gateway

WebLogic
Server

IP Network

Request

Response
4-12 Programming WebLogic Server for Wireless Services

Writing WAP-Only Web Applications
Requests from WML clients are routed through the WAP gateway to WebLogic Server
in the form of HTTP requests. WebLogic Server can respond to HTTP request by
serving static files or HTTP Servlets written as JSP or Java Servlets. For WAP
applications, static files will be WML files, while JSPs and servlets will be used to
generate WML dynamically.

To create a WAP application, you write a WML front-end to support a single class of
application clients: wireless devices having WML-enabled microbrowsers. Since
WML is based on XML, you may want to see Programming WebLogic XML at
http://e-docs.bea.com/wls/docs61/xml/index.html for additional examples
of generating XML from within WebLogic Server.

The date and phoneBook example applications are relatively simple and are a good
place to begin learning about how to develop WAP applications using the J2EE and
WebLogic Server APIs. However, keep in mind that the examples demonstrate just
one of several ways to put the WAP application model into practice and therefore
should be taken as illustrative only.

Working with the date Example

The date example demonstrates generating a WML document from a JSP and serving
it to a WML client. The following figure summarizes the data flow.

Figure 4-3 Accessing the date Application

Client * Gateway Server

Carrier Network IP Network

WML WAP WebLogic

Date_wml ***

URL **

* Microbrowser
** URL = http://wls_machine:listen_port/examplesWebApp/Date.jsp

*** WML document generated and returned by Date.jsp

Date.jsp

Date_wml ***
Programming WebLogic Server for Wireless Services 4-13

http://e-docs.bea.com/wls/docs61/xml/index.html

4 Writing Web Applications to Include Wireless Subscribers
The WAP gateway converts WML requests received from the client to HTTP Servlet
requests and then forwards the converted requests to Date.jsp running on WebLogic
Server. Date.jsp responds by determining the current date and time and returning the
results in the following WML document.

Listing 4-1 Date.jsp from date Directory

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Copyright (c) 2001 by BEA Systems, Inc.
 All Rights Reserved. -->

<!-- set document type to WML -->
<%@ page contentType="text/vnd.wap.wml" %>

<wml>
 <template>
 <do type="prev" label="back">
 <prev/>
 </do>
 </template>

 <card title="WML DATE EXAMPLE" id="frstcard">
 <p>
 <small>The current date is:

 <%= new Date() %>

 Copyright © 2001 by BEA Systems, Inc.
 All Rights Reserved.</small>
 </p>
 </card>
</wml>

The requesting WML client accesses the markup-language document and prints the
current date and time, as illustrated in the following example display.
4-14 Programming WebLogic Server for Wireless Services

Writing WAP-Only Web Applications
Figure 4-4 date Example Display

The line <%@ page contentType="text/vnd.wap.wml" %> in Date.jsp sets the
MIME types of the generated document to the WML MIME type; it is required
whenever you are generating WML directly from a JSP or servlet. Without this line,
the MIME type will default to the HTML MIME type, and the WAP gateway may
attempt to translate the document into WML with unfavorable results.

Note: MIME, for Multipurpose Internet Mail Extensions, is a specification for
enhancing the capabilities of standard Internet electronic mail. It offers a
simple standardized way to represent and encode a wide variety of media types
for transmission via Internet mail.

The MIME types required for the date example, identified in the following table, are
already registered by WebLogic Server.

Table 4-1 MIME Type Definitions for the WAP-Only Example Applications

The current date is:

Back

EDT 2001

Copyright © 2001
by BEA Systems, Inc.

Tue Jun 19 09:09:47

Extension Mime Type Description

.wml text/vnd.wap.wml WML source files

.wmlc application/vnd.wap.wmlc WML compiled files

.wmls text/vnd.wap.wmlscript WMLScript source files

.wmlsc application/vnd.wap.wmlscriptc WMLScript compiled files

.wbmp image/vnd.wap.wbmp WML bitmaps
Programming WebLogic Server for Wireless Services 4-15

4 Writing Web Applications to Include Wireless Subscribers
You can view these MIME types in the
config/examples/applications/examplesWebApp/WEB-INF/web.xml file of
your WebLogic Server installation. The MIME types in this file are informational
only: adding or deleting MIME types in this file will not change the MIME types
registered with WebLogic Server.

Working with the phoneBook Example

The phoneBook example demonstrates processing data from a form received from a
WML client. The following figure summarizes the data flow.

Figure 4-5 Accessing the phoneBook Application

The phone.wml file, shown in the following listing, presents options to the user for
looking up phone numbers via the select element.

Client * Gateway Server

Carrier Network IP Network

WML WAP WebLogic

phone_wml ***

Phone_Number_wml

Person’s_Name_wml

URL **

phone.wml

* Microbrowser
** URL = http://wls_machine:listen_port/examplesWebApp/phone.wml

*** WML document returned from the phone.wml file

phone_wml ***

Phone_Number_wml

Person’s_Name_wml
4-16 Programming WebLogic Server for Wireless Services

Writing WAP-Only Web Applications
Listing 4-2 phone.wml from phoneBook Directory

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

<!-- Copyright (c) 2000-2001 by BEA Systems, Inc.
 All Rights Reserved. -->

<wml>
 <card id="card1" title="Phone Book" newcontext="true">
 <p>
 Name:
 <select name="name" value="" title="Name">
 <option value="">All</option>
 <option value="John">John</option>
 <option value="Paul">Paul</option>
 <option value="George">George</option>
 <option value="Ringo">Ringo</option>
 </select>
 </p>
 <do type="accept" label="Get number">

 <!-- Edit the URL below to point to the appropriate
 hostname and listenport of your WebLogic Server -->
 <go href="http://localhost:7001/examplesWebApp/
 PhoneServlet?name=$(name:escape"/>
 </do>
 </card>
</wml>

The requesting WML client accesses the markup-language document and prints the
options for looking up phone numbers, as illustrated in the following example display.

Figure 4-6 phoneBook Example Display

Name:

Get number

2
3
4
5

1
John
Paul
George
Ringo

All
Programming WebLogic Server for Wireless Services 4-17

4 Writing Web Applications to Include Wireless Subscribers
Based on the user’s input (All or a name), the client initiates the following HTTP
request through the WAP gateway to PhoneServlet—an existing servlet example
located in the samples/examples/servlets directory of your WebLogic Server
installation:

http://wls_machine:listen_port/examplesWebApp/phoneServlet?name=
$(name:escape)

The query parameter name is added to the servlet’s URL. In this example,
PhoneServlet generates a WML response from a text file named phonelist, located
in the samples/examples/servlets directory of your WebLogic Server
installation, and the WAP gateway forwards the response to the WML client. The
following figure helps clarify the phoneBook application flow and user input.
4-18 Programming WebLogic Server for Wireless Services

Writing WAP-Only Web Applications
Figure 4-7 Using the phoneBook Application—Example

Note: Although some WAP gateways can be configured to automatically translate
HTML to WML, we at BEA strongly encourage you to generate WML
directly because WML is designed to address the display limitations of most
WML client devices.

Installing Additional Software for the WAP-Only
Example Applications

You need to install the following additional software to run the date and phoneBook
example applications:

� WML client device or suitable emulation software

� WAP gateway or suitable emulation software

For pointers to vendors who distribute WML client emulation software, see the
samples/examples/wireless/tools/emulators.txt file in your WebLogic
Server installation.

Running the WAP-Only Example Applications

The examples Web application directory hierarchy is in the
config/examples/applications directory of your WebLogic Server installation.
When you build the date and phoneBook examples, the
config/examples/applications/examplesWebApp directory will store the
application archives created for the example applications.

Name:

Get number

2
3
4
5

1
John
Paul
George
Ringo

All
Name:

Get number

2
3
4
5

1
John
Paul
George
Ringo

All
Phone List

Back

John: x5555
Phone List

Back

John
Paul
George
Ringo

x5555
x9999

x5556
x8888
Programming WebLogic Server for Wireless Services 4-19

4 Writing Web Applications to Include Wireless Subscribers
For step-by-step instructions for building, configuring, and running the date or
phoneBook example application, see the package-summary.html file in the target
example directory (date, phoneBook) containing the source files for the example.

Writing Multi-Target Web Applications

The helloWorld, stockDemo, and travelDemo applications are examples of writing
multi-target applications. These example applications, as clarified in the following
figure, demonstrate how to access WebLogic Server from WML, HDML, cHTML,
and HTML clients.

Figure 4-8 Data Flow for Multi-Target Example Applications

Each of the example applications (helloWorld, stockDemo, and travelDemo) has
four front-ends supporting the following classes of application clients: devices having
WML-enabled microbrowsers, devices having HDML-enabled microbrowsers,
devices having cHTML-enabled microbrowsers (see note), and devices having

Wireless
Gateway

IP NetworkCarrier Network

WebLogic
Server

Request

Response

Internet-Enabled TV
4-20 Programming WebLogic Server for Wireless Services

Writing Multi-Target Web Applications
HTML-enabled microbrowsers or browsers. Writing multi-targeted applications
allows an application developer to gain access to wireless subscribers while preserving
previous engineering effort in standard Web technology.

Note: The examples are sufficiently simple that the HTML JSP pages for the
examples also serve as cHTML JSP pages for the examples.

The helloWorld, stockDemo, and travelDemo applications are relatively simple and
are a good place to begin learning about how to develop multi-target Web applications
using the J2EE and WebLogic Server APIs. However, keep in mind that the examples
demonstrate just one of several ways to put the multi-target application model into
practice and therefore should be taken as illustrative only.

Understanding the Examples Framework

The helloWorld, stockDemo, and travelDemo examples use a simple, prototypical
framework to select device-independent pages. When the examples framework is
called to handle a device request, it determines the type of the requesting device by
examining the HTTP User-Agent header of the request and then returns an object
specifying which JSP page to use and the values to pass to the page. The examples
framework is designed to use a single URL to generate content (WML, HDML,
cHTML, HTML) according to the type of the requesting device.

Registering MIME Types

The MIME types required for the helloWorld, stockDemo, and travelDemo
examples, identified in the following table, are already registered by WebLogic Server.
Programming WebLogic Server for Wireless Services 4-21

4 Writing Web Applications to Include Wireless Subscribers
Table 4-2 MIME Type Definitions for the Multi-Target Example Applications

You can view these MIME types in the
config/examples/applications/examplesWebApp/WEB-INF/web.xml file of
your WebLogic Server installation. The MIME types in this file are informational
only: adding or deleting MIME types in this file will not change the MIME types
registered with WebLogic Server.

Working with the helloWorld Example

The helloWorld example demonstrates (1) generating a simple markup-language
document specific to the requesting device and (2) serving the generated document to
the requesting device. The following figure summarizes the data flow.

Extension Mime Type Description

.wml text/vnd.wap.wml WML source files

.wmlc application/vnd.wap.wmlc WML compiled files

.wmls text/vnd.wap.wmlscript WMLScript source files

.wmlsc application/vnd.wap.wmlscriptc WMLScript compiled files

.wbmp image/vnd.wap.wbmp WML bitmaps

.hdml text/x-hdml HDML source files

.bmp image/bmp HDML bitmaps
4-22 Programming WebLogic Server for Wireless Services

Writing Multi-Target Web Applications
Figure 4-9 Accessing the helloWorld Application

For a request from a wireless client, the client’s wireless gateway converts the
markup-language request received from the client to an HTTP Servlet request and then
forwards the converted request to helloWorld’s HTTP Servlet running on WebLogic
Server. For a request from a desktop client, the desktop client sends an HTTP Servlet
request directly to helloWorld’s HTTP Servlet running on WebLogic Server.

The HTTP Servlet passes the request to the examples framework for device-type and
JSP-page resolution, and the examples framework returns the location of the
appropriate helloWorld.jsp page in the wml, hdml, or html subdirectory of the
helloWorld example directory. The selected helloWorld.jsp responds by
generating and returning a markup-language specific document to the requesting
device. The document, of which the WML-version is shown in the following listing,
presents the user with the Hello World! string.

Client * Client * Client * Gateway Client ** Server

helloWorld_wml ****

URL ***

Carrier Network IP Network

WML HDML cHTML Wireless HTML WebLogic

helloWorld_hdml ****

URL ***

helloWorld_html ****

URL ***

helloWorld_html ****

helloWorld.jsp

helloWorld.jsp

helloWorld.jsp

helloWorld.jsp

* Microbrowser ** Browser
*** URL = http://wls_machine:listen_port/helloWorld/Hello

**** Document generated and returned by markup-language specific helloWorld.jsp

helloWorld_wml ****

helloWorld_hdml ****

helloWorld_html ****
Programming WebLogic Server for Wireless Services 4-23

4 Writing Web Applications to Include Wireless Subscribers
Listing 4-3 helloWorld.jsp from wml Subdirectory in helloWorld Directory

<?xml version=”1.0”?>
<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.1//EN”
“http://www.wapforum.org/DTD/wml_1.1.xml”>

<!-- Copyright (c) 2001 by BEA Systems, Inc.
 All Rights Reserved. -->

<%@ page contentType=”text/vnd.wap.wml”%>

<wml>
 <template> <do type=”prev” label=”back”> <prev/></do> </template>
 <card id=”firstcard”>
 <p> Hello World!

 Next
 </p>
 </card>
 <card id=”secondcard”>
 <p> Goodbye from WML.</p>
 </card>
</wml>

The requesting device accesses the markup-language document and prints Hello
World!, as shown in the following example display.

Figure 4-10 helloWorld Example Display

Hello World!

OK alpha
4-24 Programming WebLogic Server for Wireless Services

Writing Multi-Target Web Applications
Working with the stockDemo Example

The stockDemo example application demonstrates processing data from a simple form
received from a client. The following figure summarizes the data flow.

Figure 4-11 Accessing the stockDemo Application

Client * Client * Client * Gateway Client **

stockAlert_wml ****

URL ***

Carrier Network IP Network

WML HDML cHTML Wireless HTML

displayPrice_wml

displayPrice.jsp

stockAlert_hdml ****

displayPrice_hdml

displayPrice.jsp

URL ***

stockAlert_html ****

URL ***

displayPrice_html

displayPrice.jsp

stockAlert_html ****

displayPrice.jsp

stockAlert.jsp

displayPrice_html

* Microbrowser ** Browser
*** URL = http://wls_machine:listen_port/stockDemo/Stock

**** Document generated and returned by markup-language specific stockAlert.jsp

stockAlert.jsp

stockAlert.jsp

stockAlert.jsp

Server
WebLogic

stockAlert_wml ****

stockAlert_hdml ****

stockAlert_html ****

displayPrice_wml

displayPrice_hdml

displayPrice_html

displayPrice.jsp

displayPrice.jsp

displayPrice.jsp
Programming WebLogic Server for Wireless Services 4-25

4 Writing Web Applications to Include Wireless Subscribers
When stockDemo’s HTTP Servlet receives an HTTP Servlet request, it passes the
request to the examples framework for device-type and JSP-page resolution, and the
examples framework returns the location of the appropriate stockAlert.jsp page in
the wml, hdml, or html subdirectory of the stockDemo example directory. The
selected stockAlert.jsp responds by generating and returning a markup-language
specific document to the requesting device. The document, of which the
HDML-version is shown in the following listing, presents the user with a form
containing a Stock: prompt for entering stock queries.

Listing 4-4 stockAlert.jsp from hdml Subdirectory in stockDemo Directory

<%@ page contentType=”text/x-hdml”%>

<!-- Copyright (c) 2001 by BEA Systems, Inc.
 All Rights Reserved. -->

<HDML VERSION=”3.0” TTL=”0” PUBLIC=”TRUE”>

<ENTRY name=”first” KEY=”stock”>
<ACTION TYPE=”ACCEPT” TASK=”GO”

DEST=”/stockDemo/StockAlert?stock=$(stock)”>
Stock:
</ENTRY>

</HDML>

The requesting device accesses the markup-language document and prints the Stock:
prompt and an empty entry field, as shown in the following example display.

Figure 4-12 stockDemo Example Display

Stock:

OK alpha

|

4-26 Programming WebLogic Server for Wireless Services

Writing Multi-Target Web Applications
Based on the user’s input (a stock name), an HTTP request is made to stockDemo’s
HTTP Servlet, and a query parameter (stock) is added to the servlet’s URL. The
examples framework returns the location of the appropriate displayPrice.jsp page
(in the wml, hdml, or html subdirectory of the stockDemo example directory) and the
value of the requested stock (obtained from YaHoo!) to pass to the page. The selected
stockAlert.jsp generates and returns a markup-language specific document to the
requesting device, and the requesting device accesses the markup-language document
and prints the document on its screen. The following figure helps clarify the
stockDemo application flow and user input.

Figure 4-13 Checking a Stock Quote from a Cell Phone—Example

Working with the travelDemo Example

The travelDemo example application demonstrates processing data from a more
complex form received from a client. The following figure summarizes the data flow.

Stock:

OK alpha

^ixic
Stock:

OK alpha

|

[Stock Quote]

Stock Quote

Price: 2037.33 -6.74

Back Another Quote
Programming WebLogic Server for Wireless Services 4-27

4 Writing Web Applications to Include Wireless Subscribers
Figure 4-14 Accessing the travelDemo Application

The travelDemo example application sends a series of form documents to a
requesting device, starting with a login form. After the user successfully logs in using
x as the username and y as the password, travelDemo’s home.jsp generates and
returns a device-specific travel form document to the requesting device, of which the
HTML-version is shown in the following listing.

Client * Client * Client * Gateway Client ** Server

login_wml ****

URL ***

Carrier Network IP Network

WML HDML cHTML Wireless HTML WebLogic

home_wml

home.jsp

login_hdml ****

home_hdml

home.jsp

URL ***

login_html ****

URL ***

home_html

home.jsp

login_html ****

home.jsp

login.jsp

home_html

Continues
Request/Response

Continues
Request/Response

Continues
Request/Response

Continues
Request/Response

* Microbrowser ** Browser
*** URL = http://wls_machine:listen_port/travelDemo/Travel

**** Document generated and returned by markup-language specific login.jsp

login.jsp

login.jsp

login.jsp

login_wml ****

home_wml

login_hdml ****

home_hdml

login_html ****

home_html

home.jsp

home.jsp

home.jsp
4-28 Programming WebLogic Server for Wireless Services

Writing Multi-Target Web Applications
Listing 4-5 home.jsp from html Subdirectory in travelDemo Directory

<html>

<!-- Copyright (c) 2001 by BEA Systems, Inc.
 All Rights Reserved. -->

<HEAD>
<TITLE>Home</TITLE>
<meta name=”palmcomputingplatform” content=”true”>
</HEAD

<body>
<h1>TravelDemo Homepage</h1>

<a href=”<%=
 response.encodeURL(“/travelDemo/FindAFlight”)%>”>
 Book a flight
<a href=”<%=
 response.encodeURL(“/travelDemo/NotImplemented”)%>”>
 Book a hotel
<a href=”<%=
 response.encodeURL(“/travelDemo/NotImplemented”)%>”>
 Book a car
<a href="<%=
 response.encodeURL("/travelDemo/NotImplemented")%>">
 View reservations
<a href=”<%=
 response.encodeURL(“/travelDemo/NotImplemented”)%>”>
 View account
<a href=”<%=
 response.encodeURL(“/travelDemo/Logout”)%>”>Logout

</body>
</html>

The requesting device accesses and prints the travel form document, as shown in the
following example display.
Programming WebLogic Server for Wireless Services 4-29

4 Writing Web Applications to Include Wireless Subscribers
Figure 4-15 travelDemo Example Display

The document presents the user with choices for booking a flight, a hotel, or a car, or
viewing reservations or an account, or logging out. The actual choices that display
depend upon the type of requesting device.

Note: Book a hotel, Book a car, View reservations, and View account are
not implemented for the travelDemo example application.

When a user chooses the Book a flight selection, a new screen appears showing the
following selections: Cheapest at any time and Cheapest on specific days.
When a user chooses one of these selections, the only valid user input for the ensuing
From: prompt is sfo (for San Francisco International Airport) and the ensuing To:
prompt is ewr (for Newark International Airport). The following figure helps clarify
the travelDemo application flow and user input.

Fri Jun 15 12:38:55

Book Flight Logout

EDT 2001

[Book a flight]
[Book a hotel]
[Book a car]
4-30 Programming WebLogic Server for Wireless Services

Writing Multi-Target Web Applications
Figure 4-16 Booking a Flight from a Cell Phone—Example

Based on the user’s input, travelDemo generates a response and forwards the
response to the requesting device. The response is a “canned” response, meaning that
a user cannot actually book a flight, a hotel, or a car, or view reservations or an account
by accessing the travelDemo example application.

Password:

OK alpha

yUser Id:

OK alpha

x

[Login]

Login

Fri Jun 15 12:38:55

Book Flight Logout

EDT 2001

[Book a flight]
[Book a hotel]
[Book a car]

Best Itineraries Logout

[Cheapest at any time]
[Cheapest on specific
days]

OK alpha

[At specific times]

From:
sfo

[U. Airlines : $500.0]

Link Menu

[B. Airways : $510.0]
[A. West : $520.0]

[Find fares]

Find Fares MenuOK alpha

To:
ewr
Programming WebLogic Server for Wireless Services 4-31

4 Writing Web Applications to Include Wireless Subscribers
Installing Additional Software for the Multi-Target
Example Applications

You need to install the additional following software to run the helloWorld,
stockDemo, and travelDemo example applications:

� Wireless client devices (WML, HDML, cHTML, HTML) or suitable emulation
software

� Wireless gateways or suitable emulation software

For pointers to vendors who distribute wireless client emulation software, see the
samples/examples/wireless/tools/emulators.txt file in your WebLogic
Server installation.

Running the Multi-Target Example Applications

The examples Web application directory hierarchy is in the
config/examples/applications directory of your WebLogic Server installation.
When you build the helloWorld, stockDemo, and travelDemo examples, the
config/examples directory will store the exploded war files created for the example
applications, and the config/examples/applications directory will store the jar
file created for the examples framework.

For step-by-step instructions for building, configuring, and running the helloWorld,
stockDemo, or travelDemo example application, see the package-summary.html
file in the target example directory (helloWorld, stockDemo, travelDemo)
containing the source files for the example. Building any of the examples also builds
the examples framework.
4-32 Programming WebLogic Server for Wireless Services

	About This Document
	1 Introduction
	Overview
	Wireless Data Protocols
	The WAP Protocol at a Glance
	The i-Mode Protocol at a Glance
	Other Wireless Data Protocols
	Other Wireless Markup Languages
	Evolution of Wireless Data Protocols and Wireless Markup Languages
	Additional Information

	2 Using WAP with WebLogic Server
	Overview
	WAP Application Environment
	WML
	WMLScript

	WAP Gateway
	WAP Gateway Functionality
	WAP Gateway Security and Security Concerns
	WAP Gateway Vendors

	Additional Resources

	3 Using i-Mode with WebLogic Server
	Overview
	i-Mode Markup Language
	i-Mode Gateway
	Additional Resources

	4 Writing Web Applications to Include Wireless Subscribers
	Overview
	Locating the Wireless Example Applications
	Understanding Basic Web Application Design Concepts
	Form Factors
	Physical User Interfaces
	Limited Memory
	Support for Multiple Client Types
	Personalization
	Session Tracking
	An Alternative Session-Tracking Method—URL Rewriting
	A Better Alternative Session-Tracking Method

	Writing WAP-Only Web Applications
	Working with the date Example
	Working with the phoneBook Example
	Installing Additional Software for the WAP-Only Example Applications
	Running the WAP-Only Example Applications

	Writing Multi-Target Web Applications
	Understanding the Examples Framework
	Registering MIME Types
	Working with the helloWorld Example
	Working with the stockDemo Example
	Working with the travelDemo Example
	Installing Additional Software for the Multi-Target Example Applications
	Running the Multi-Target Example Applications

