
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : N o v e m b e r 1 , 2 0 0 2

BEA WebLogic

Programming WebLogic
Web Services

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Web Services

Part Number Document Date Software Version

N/A November 1, 2002 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience..x

e-docs Web Site...x

How to Print the Document...x

Contact Us! .. xi

Documentation Conventions .. xii

1. Overview of WebLogic Web Services
What Are Web Services?... 1-1

Why Use Web Services? ... 1-2

Web Service Components ... 1-3

SOAP 1.1 with Attachments .. 1-4

WSDL 1.1... 1-5

WebLogic Web Service Features .. 1-6

Web Services Programming Model ... 1-6

RPC-Style Web Services .. 1-7

Message-Style Web Services .. 1-7

SOAP 1.1 Implementation ... 1-8

Web Services Run-time Component .. 1-8

Standardized J2EE Web Services Assembly and Deployment.................. 1-8

Generation of the WSDL File .. 1-9

Java Client to Invoke a WebLogic Web Service.. 1-9

Examples of Creating and Invoking Web Services.................................... 1-9

WebLogic Web Services Architecture .. 1-10

RPC-Style WebLogic Web Services Architecture................................... 1-11

Message-Style WebLogic Web Services Architecture 1-12

SOAP and WSDL Features Not Supported by WebLogic Web Services....... 1-14
Programming WebLogic Web Services iii

Editing XML Files... 1-15

2. Developing WebLogic Web Services
Developing WebLogic Web Services: Main Steps ... 2-1

Designing a WebLogic Web Service... 2-3

Choosing Between an RPC-Style and a Message-Style Web Service 2-3

When to Use RPC-Style Web Services... 2-4

When to Use Message-Style Web Services .. 2-4

EJB That Implements an RPC-Style Web Service..................................... 2-5

Converting an Existing EJB Application into an RPC-Style Web Service 2-5

Avoiding Overloaded Methods in Stateless Session EJBs......................... 2-6

Message-Style Web Services and JMS .. 2-6

Choosing a Queue or Topic... 2-6

Retrieving and Processing Documents.. 2-7

Example of Message-Style Web Services... 2-7

Converting an Existing JMS Application Into a Web Service 2-8

Supported Data Types for Parameters and Return Values of WebLogic Web
Services ... 2-9

XML-Java Conversion in WebLogic Web Services 2-11

Security Issues .. 2-13

Securing Message-Style Web Services ... 2-13

Securing an RPC-Style Web service... 2-15

Using 2-Way SSL When Invoking a WebLogic Web Service 2-15

Implementing a WebLogic Web Service... 2-17

Implementing an RPC-Style Web Service ... 2-17

Implementing Message-Style Web Services .. 2-17

Configuring JMS Components for Message-Style Web Services............ 2-18

Assembling a WebLogic Web Service .. 2-19

Assembling a WebLogic Web Service Using Java Ant Tasks................. 2-20

Example of an Ant build.xml File ... 2-21

Creating the build.xml Ant Build File... 2-23

Dynamic or Static WSDL?.. 2-25

Deploying a WebLogic Web Service .. 2-25

Developing a WebLogic Web Service: A Simple Example............................ 2-26

Writing the Java Code for the EJB... 2-27
iv Programming WebLogic Web Services

Creating EJB Deployment Descriptors .. 2-31

Assembling the EJB ... 2-32

Creating the build.xml File... 2-33

3. Invoking WebLogic Web Services
Overview of Invoking WebLogic Web Services... 3-2

WebLogic Web Services Client API.. 3-2

Client Modes Supported by the WebLogic Web Services Client API....... 3-3

Examples of Clients That Invoke WebLogic Web Services 3-4

Invoking the WebLogic Web Services Home Page .. 3-4

Getting the WSDL from the Web Services Home Page 3-5

Downloading the Java Client JAR File from the Web Services Home Page...
3-6

URLs to Invoke WebLogic Web Services and Get the WSDL......................... 3-7

Creating a Client to Invoke an RPC-Style WebLogic Web Service 3-8

Writing a Java Client.. 3-8

Writing a Static Java Client .. 3-9

Writing a Dynamic Java Client ... 3-11

Writing a Microsoft SOAP Toolkit Client ... 3-13

Creating a Java Client to Invoke a Message-Style WebLogic Web Service... 3-15

Sending Data to a Message-Style Web Service 3-16

Receiving Data From a Message-Style Web Service............................... 3-18

Handling Exceptions from WebLogic Web Services...................................... 3-21

Initial Context Factory Properties for Invoking Web Services 3-22

Additional Classes Needed by Clients Invoking WebLogic Web Services 3-23

4. Administering WebLogic Web Services
Overview of Administering WebLogic Web Services...................................... 4-1

Invoking the Administration Console .. 4-1

Viewing the Web Services Deployed on WebLogic Server 4-3

5. Troubleshooting
Turning on Verbose Mode... 5-1

java.io.FileNotFoundException... 5-2

Unable to Parse Exception... 5-4

java.lang.NullPointerException... 5-6
Programming WebLogic Web Services v

java.net.ConnectException .. 5-7

6. Interoperability
.NET Client Interoperating With a 6.1 WebLogic Web Service....................... 6-1

7.X WebLogic Client Interoperating with a 6.1 WebLogic Web Service......... 6-2

A. Specifications Supported by WebLogic Web Services
SOAP 1.1 Specification .. A-1

SOAP Messages With Attachments Specification ... A-2

Web Services Description Language (WSDL) 1.1 Specification..................... A-2

B. build.xml Elements and Attributes
Example of a build.xml File ... B-2

build.xml Hierarchy Diagram... B-3

Description of Elements and Attributes.. B-3

wsgen... B-4

rpcservices ... B-5

rpcservice... B-6

messageservices... B-7

messageservice .. B-7

clientjar .. B-8

manifest ... B-9

entry... B-9

C. Manually Assembling the Web Services Archive File
Before You Begin ... C-1

Description of the Web Services Archive File ... C-2

Assembling an RPC-Style Web Service Archive File Manually C-3

Updating the web.xml File for RPC-Style Web Services C-6

Updating the weblogic.xml File for RPC-Style Web Services C-10

Updating the application.xml File for RPC-Style Web Services C-10

Assembling a Message-Style Web Service Archive File Manually............... C-11

Creating the Message-Style Web Service WSDL File............................ C-14

Updating the web.xml File for Message-Style Web Services................. C-16

Updating the weblogic.xml File for Message-Style Web Services......... C-20

Updating the application.xml File for Message-Style Web Services...... C-21
vi Programming WebLogic Web Services

Creating the client.jar File Manually...C-21

D. Invoking Web Services Without Using the WSDL File

Glossary

Index
Programming WebLogic Web Services vii

viii Programming WebLogic Web Services

About This Document

This document describes BEA WebLogic® Web Services and describes how to
develop them and invoke them from a client application.

The document is organized as follows:

� Chapter 1, “Overview of WebLogic Web Services,” provides conceptual
information about Web Services, the features of WebLogic Web services, and
their architecture.

� Chapter 2, “Developing WebLogic Web Services,” describes how to develop
WebLogic Web Services.

� Chapter 3, “Invoking WebLogic Web Services,” describes how to access
WebLogic Web Services from client applications.

� Chapter 4, “Administering WebLogic Web Services,” describes how to
administer Web Services using the Administration Console.

� Chapter 5, “Troubleshooting,” describes how to troubleshoot problems that
might occur when creating client applications that invoke Web services.

� Appendix A, “Specifications Supported by WebLogic Web Services,” provides
links to the specifications supported by WebLogic Web Services.

� Appendix B, “build.xml Elements and Attributes,” provides information about
the build.xml Java build file that you use to assemble Web services into
Enterprise Application archive (*.ear) files.

� Appendix C, “Manually Assembling the Web Services Archive File,” describes
how to create a Web services archive file manually without using the wsgen Ant
task.
Programming WebLogic Web Services ix

� Appendix D, “Invoking Web Services Without Using the WSDL File,” describes
how to create a client application that invokes a Web service without using its
WSDL.

A glossary of relevant terms and an index follows the chapters.

Audience

This document is written for application developers who want to make EJBs that are
currently running in WebLogic Server available to third-party clients as Web Services.

It is assumed that readers know Web technologies, XML, and the Java programming
language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.
x Programming WebLogic Web Services

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
Programming WebLogic Web Services xi

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
xii Programming WebLogic Web Services

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic Web Services xiii

xiv Programming WebLogic Web Services

CHAPTER
1 Overview of WebLogic
Web Services

The following sections provide an overview of Web services, and how they are
implemented in WebLogic Server:

� “What Are Web Services?” on page 1-1

� “Why Use Web Services?” on page 1-2

� “Web Service Components” on page 1-3

� “WebLogic Web Service Features” on page 1-6

� “WebLogic Web Services Architecture” on page 1-10

� “SOAP and WSDL Features Not Supported by WebLogic Web Services” on
page 1-14

What Are Web Services?

Web services are a type of service that can be shared by and used as components of
distributed Web-based applications. They commonly interface with existing back-end
applications, such as customer relationship management systems, order-processing
systems, and so on.
Programming WebLogic Web Services 1-1

1 Overview of WebLogic Web Services
Traditionally, software application architecture tended to fall into two categories: huge
monolithic systems running on mainframes or client-server applications running on
desktops. Although these architectures work well for the purpose the applications were
built to address, they are relatively closed to the outside world and can not be easily
accessed by the diverse users of the Web.

Thus the software industry is evolving toward loosely coupled service-oriented
applications that dynamically interact over the Web. The applications break down the
larger software system into smaller modular components, or shared services. These
services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as XML and HTTP, thus making them easily accessible by any user on the Web.

The concept of services is not new—RMI, COM, and CORBA are all service-oriented
technologies. However, applications based on these technologies require them to be
written using that particular technology, often from a particular vendor. This
requirement typically hinders widespread acceptance of an application on the Web. To
solve this problem, Web services are defined to share the following properties that
make them easily accessible from heterogeneous environments:

� Web services are accessed over the Web.

� Web services describe themselves using an XML-based description language.

� Web services communicate with clients (both end-user applications or other Web
services) through XML messages that are transmitted by standard Internet
protocols, such as HTTP.

Why Use Web Services?

The major reasons for using Web services are to gain:

� interoperability among distributed applications that span diverse hardware and
software platforms.

� accessibility of applications through firewalls using Web protocols.

� a cross-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications.
1-2 Programming WebLogic Web Services

Web Service Components
Because Web services are accessed using standard Web protocols, such as XML and
HTTP, the diverse and heterogeneous applications on the Web (which typically
already understand XML and HTTP) can automatically access Web services, solving
the ever-present problem of how different systems communicate with each other.

These different systems might be Microsoft SOAP ToolKit clients, J2EE applications,
legacy applications, and so on. These systems might be written in a variety of
programming languages, such as Java, C++, or Perl. As long as the application that
provides the functionality is packaged as a Web service each of these systems can
communicate with any other.

Web Service Components

A Web service consists of the following components:

� An implementation hosted by a server on the Web.

WebLogic Web Services are hosted by WebLogic Server, are implemented using
standard J2EE components (such as Enterprise Java Beans and JMS), and are
packaged as standard J2EE Enterprise Applications.

� A standardized way to transmit data and Web service invocation calls between
the Web service and the user of the Web service.

WebLogic Web Services use Simple Object Access Protocol (SOAP) 1.1 as the
message format and HTTP as the connection protocol. For a description of
SOAP, see “SOAP 1.1 with Attachments” on page 1-4.

� A standard way to describe the Web service to clients so they can invoke it.

WebLogic Web Services use Web Services Description Language (WSDL) 1.1,
an XML-based specification, to describe themselves. For more information on
WSDL, see “WSDL 1.1” on page 1-5.
Programming WebLogic Web Services 1-3

1 Overview of WebLogic Web Services
SOAP 1.1 with Attachments

SOAP (Simple Object Access Protocol) is a lightweight XML-based protocol used to
exchange information in a decentralized, distributed environment. The protocol
consists of:

� An envelope that describes the SOAP message. In particular, the envelope
contains the body of the message, identifies who should process it, and describes
how to process it.

� A set of encoding rules for expressing instances of application-specific data
types.

� A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions
(MIME)-encoded package that can be transmitted over HTTP or other Web protocols.
MIME is a specification for formatting non-ASCII messages so that they can be sent
over the Internet.

The following example shows a SOAP request for stock trading information
embedded inside an HTTP request:

POST /StockQuote HTTP/1.1
Host: www.sample.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastStockQuote xmlns:m="Some-URI">
 <symbol>BEAS</symbol>
 </m:GetLastStockQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
1-4 Programming WebLogic Web Services

Web Service Components
WSDL 1.1

Web Services Description Language (WSDL) is an XML-based specification used to
describe a Web service. A WSDL document describes the methods provided by a Web
service, the input and output parameters, and how to connect to it.

Developers of WebLogic Web Services do not need to create the WSDL files; these
files can be generated automatically as part of the WebLogic Web Services
development process.

The following example, for informational purposes only, shows a WSDL file that
describes the stock trading Web service StockQuoteService that contains the method
GetLastStockQuote:

<?xml version="1.0"?>
 <definitions name="StockQuote"
 targetNamespace="http://sample.com/stockquote.wsdl"
 xmlns:tns="http://sample.com/stockquote.wsdl"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:xsd1="http://sample.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="GetStockPriceInput">
 <part name="symbol" element="xsd:string"/>
 </message>
 <message name="GetStockPriceOutput">
 <part name="result" type="xsd:float"/>
 </message>
 <portType name="StockQuotePortType">
 <operation name="GetLastStockQuote">
 <input message="tns:GetStockPriceInput"/>
 <output message="tns:GetStockPriceOutput"/>
 </operation>
 </portType>
 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastStockQuote">
 <soap:operation soapAction="http://sample.com/GetLastStockQuote"/>
 <input>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
Programming WebLogic Web Services 1-5

1 Overview of WebLogic Web Services
 </output>
 </operation>>
 </binding>
 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://sample.com/stockquote"/>
 </port>
 </service>
 </definitions>

WebLogic Web Service Features

This section discusses the features of the WebLogic Web Services subsystem:

� Web Services Programming Model

� SOAP 1.1 Implementation

� Web Services Run-time Component

� Standardized J2EE Web Services Assembly and Deployment

� Generation of the WSDL File

� Java Client to Invoke a WebLogic Web Service

� Examples of Creating and Invoking Web Services

Web Services Programming Model

The programming model describes how to implement, assemble, deploy, and invoke
Web services that are hosted by a WebLogic Server. Apart from writing the Enterprise
JavaBeans code that performs the actual work of the Web service, you develop most
of the Web service itself by using a Java Ant task, called wsgen, that generates and
packages the components of the Web service.
1-6 Programming WebLogic Web Services

WebLogic Web Service Features
WebLogic Server supports two types of Web services: remote procedure call
(RPC)-style and message-style.

RPC-Style Web Services

A remote procedure call (RPC)-style Web service is implemented using a stateless
session EJB. It appears as a remote object to the client application.

The interaction between a client and an RPC-style Web service centers around a
service-specific interface. When clients invoke the Web service, they send parameter
values to the Web service, which executes the required methods, and then sends back
the return values. Because of this back and forth conversation between the client and
the Web service, RPC-style Web services are tightly coupled and resemble traditional
distributed object paradigms, such as RMI or DCOM.

RPC-style Web services are synchronous, meaning that when a client sends a request,
it waits for a response before doing anything else.

Message-Style Web Services

A message-style Web service is implemented using a JMS message listener, such as a
message-driven bean, and must be associated with a JMS destination.

Message-style Web services are loosely coupled and document-driven rather than
being associated with a service-specific interface. When a client invokes a
message-style Web service, the client typically sends it an entire document, such as a
purchase order, rather than a discrete set of parameters. The Web service accepts the
entire document, processes it, and may or may not return a result message. Because no
tightly-coupled request-response between the client and Web service occurs,
message-style Web services promote a looser coupling between client and server.

Message-style Web services are asynchronous. A client that invokes the Web service
does not wait for a response before it can do something else. The response from the
Web service, if any, can appear hours or days later.

A client can either send or receive a document to or from a message-style Web service;
the client can not do both using the same Web service.
Programming WebLogic Web Services 1-7

1 Overview of WebLogic Web Services
SOAP 1.1 Implementation

WebLogic Server includes its own implementation of both the SOAP 1.1 and SOAP
1.1 With Attachments specifications that developers can use to create clients that
invoke Web services.

RPC-style Web services use the SOAP 1.1 message format and message-style Web
services use the SOAP 1.1 With Attachments message format.

Note: WebLogic Web Services currently ignore the actual attachment of a SOAP
with attachments message.

Web Services Run-time Component

The WebLogic Web Services run-time component is a set of servlets and associated
infrastructure needed to create a Web service. One element of the run-time is a set of
servlets that handle SOAP requests from a client. You do not need to write these
servlets; they are automatically included in the WebLogic Server distribution. Another
element of the run-time is an Ant task that generates and assembles all the components
of a WebLogic Web Service.

Standardized J2EE Web Services Assembly and
Deployment

Web services developers use an Ant task, called wsgen, and the Administration
Console to assemble and deploy Web services as standard J2EE Enterprise
applications in an *.ear file. The *.ear file contains all the components of the Web
service: for example, the EJBs, references to the SOAP servlets, the web.xml file, the
weblogic.xml file, and so on.
1-8 Programming WebLogic Web Services

WebLogic Web Service Features
Generation of the WSDL File

Developers that create clients that invoke a WebLogic Web Service need the WSDL
that describes the Web service. WebLogic Server automatically generates the WSDL
of a deployed Web service. You access the WSDL of a Web service through a special
URL.

Java Client to Invoke a WebLogic Web Service

WebLogic Server can automatically generate a thin Java client that developers use to
develop Java clients that invoke Web services. The Java client JAR file includes all the
classes you need to invoke a Web service. These classes include the Java client API
classes and interfaces, a parser to parse the SOAP requests and responses, the Java
interface to the EJB, and so on. Client applications that use this Java client JAR file to
invoke Web services do not need to include the full WebLogic Server JAR file on the
client computer.

You download the Java client JAR file from the WebLogic Web Services Home Page.
For detailed information on this Web page, see “Invoking the WebLogic Web Services
Home Page” on page 3-4 in Chapter 3, “Invoking WebLogic Web Services.”

Note: BEA does not currently license client functionality separately from the server
functionality, so, if needed, you can redistribute this Java client JAR file to
your own customers.

Examples of Creating and Invoking Web Services

WebLogic Server includes examples of creating both RPC-style and message-style
Web services and examples of both Java and Microsoft VisualBasic client applications
that invoke the Web services.

The examples are located in the BEA_HOME/samples/examples/webservices
directory, where BEA_HOME refers to the main WebLogic Server installation
directory. The RPC-style Web service example is in the rpc directory and the
message-style Web service example is in the message directory.
Programming WebLogic Web Services 1-9

1 Overview of WebLogic Web Services
For detailed instructions on how to build and run the examples, invoke the Web page
BEA_HOME/samples/examples/webservices/package-summary.html in your
browser.

WebLogic Web Services Architecture

When you develop a WebLogic Web Service, you use standard J2EE components,
such as stateless session EJBs, message-driven beans, and JMS destinations. Because
WebLogic Web Services are based entirely on the J2EE platform, they automatically
inherit all the standard J2EE benefits, such as a simple and familiar component-based
development model, easy scalability, support for transactions, automatic life-cycle
management, easy access to existing enterprise systems through the use of J2EE APIs
(such as JDBC and JTA), and a simple and unified security model.

WebLogic Server Web services are packaged as standard J2EE Enterprise applications
that consist of the following specific components:

� A Web application that contains, at a minimum, a servlet that sends and receives
SOAP messages to and from the client.

Developers do not write this servlet themselves; rather, it is automatically
included as part of the Web services development process.

� A stateless session EJB that implements an RPC-style Web service or a JMS
listener (such as a message-driven bean) for a message-style Web service.

In RPC-style Web service, the stateless session EJBs might do all the actual
work of the Web service, or they may parcel out the work to other EJBs. The
implementer of the Web service decides which EJBs do the real work. In
message-style Web services, a J2EE object (typically a message-driven bean)
gets the messages from the JMS destination and processes them.

WebLogic Web Services are packaged as Enterprise archive (*.ear) files that contain
the Web archive (*.war) files of the Web application and EJB archive (*.jar) files.

The following two sections describe the architecture of RPC-style and message-style
Web services.
1-10 Programming WebLogic Web Services

WebLogic Web Services Architecture
RPC-Style WebLogic Web Services Architecture

Figure 1-1 illustrates the architecture of RPC-style WebLogic Web Services.

Figure 1-1 RPC-Style WebLogic Web Services Architecture

Here’s what happens when a client invokes an RPC-style WebLogic Web Service:

1. A client sends a SOAP message to WebLogic Server over HTTP/HTTPS. The
SOAP message contains instructions, conforming to the WSDL of the Web service,
to invoke an RPC-style Web service.

2. The SOAP servlet designed to handle RPC SOAP requests (which is part of the
Web application invoked by the client) unwraps the SOAP message envelope and
uses the unwrapped information to identify the appropriate stateless session EJB
target. This servlet then unmarshals the parameters, binds them into the
appropriate Java objects, invokes the target stateless session EJB, and passes it
the parameters.

Stateless
Session EJB

WebLogic Server

EJB Container

HTTP/HTTPS

5

7

3

1

RPC Soap
Servlet

Web Container

Client

2

4

Programming WebLogic Web Services 1-11

1 Overview of WebLogic Web Services
The stateless session EJB might perform all the work of the Web service, or it
might parcel out some or all of the work to other EJBs.

3. The invoked stateless session EJB sends return values, if any, back to the RPC
SOAP servlet.

4. The RPC SOAP servlet marshals the return values from the stateless session EJB
into a SOAP message, and sends it back to the client over HTTP/HTTPS.

If errors have occurred, the RPC SOAP servlet also sends a SOAP error message
(called a SOAP fault) back to the client.

Message-Style WebLogic Web Services Architecture

Message-style Web services support a one-way communication; the client application
either sends or receives a document to or from the Web service, but a single
message-style Web service does not allow the client to do both. When you develop a
message-style Web service, you specify whether the client sends or receives messages
to or from the Web service. You can combine two message-style Web services, one for
sending and one for receiving, in order to support round-trip communication. The same
client can use both types, or either type, of service.

Figure 1-2 describes a possible architecture for both styles of message-style WebLogic
Web Services working together.

Note: The dotted lines encapsulate two different message-style Web services. You
do not have to use message-driven beans to take messages off the JMS
destinations, although this is typically the best way to go.
1-12 Programming WebLogic Web Services

WebLogic Web Services Architecture
Figure 1-2 Message-Style WebLogic Web Services Architecture

Here’s what happens when a client invokes message-style WebLogic Web Services:

1. A client sends a SOAP message to WebLogic Server over HTTP/HTTPS. The
SOAP message contains instructions, conforming to the WSDL of the Web service,
to invoke a message-style Web service.

2. The messaging SOAP servlet that is part of the Web application invoked by the
client unwraps the SOAP envelope, decodes the body of the message, and puts
the resulting object on the appropriate JMS destination.

Note: In WebLogic Server 6.1 there is no support for accessing the contents of
the attachments to the SOAP 1.1 With Attachments message.

3. The message sits in the JMS destination until the appropriate JMS listener
(typically a message-driven bean) picks it up.

WebLogic Server

Web Container

EJB Container

HTTP/HTTPS

Messaging

Destination
JMS

SoapServlet

Message-
Driven Bean

4

3

6 2

5

1

Client
Send

Messaging
SoapServlet

Receive

Destination
JMS

7

Programming WebLogic Web Services 1-13

1 Overview of WebLogic Web Services
4. The message-driven bean picks up the message from the JMS destination. The
message-driven bean might do all the work of the Web service, or it might parcel
out some or all of the work to other EJBs.

5. The message-driven bean sends the resulting document to another JMS
destination that is associated with a separate message-style Web service that is
configured to allow clients to receive messages.

6. The messaging SOAP servlet associated with the second Web service picks up
the message from the JMS destination.

7. The messaging SOAP servlet sends the document back to the client when the
client invokes the second receive Web service.

This sample architecture shows two message-style Web services working together to
get and send back information to the client. Note that the client has to invoke two
message-style Web services.

SOAP and WSDL Features Not Supported by
WebLogic Web Services

The following SOAP features are not supported by WebLogic Web Services:

� the Header element - this means that you cannot set or get SOAP Header
elements using the WebLogic Web Services client API. Additionally, the
internal WebLogic Web services runtime ignores the SOAP Header; it only
handles the SOAP Body.

� the SOAP attachment

The following WSDL features are not supported by WebLogic Web Services:

� the import element

� the element attribute of the part element
1-14 Programming WebLogic Web Services

Editing XML Files
Editing XML Files

When creating or invoking WebLogic Web services, you might need to edit XML files,
such as the EJB deployment descriptors, the Java Ant build files, and so on. To edit
these files, BEA provides the BEA XML Editor, an entirely Java-based XML
stand-alone editor.

The BEA XML Editor is a simple, user-friendly tool for creating and editing XML
files. It displays XML file contents both as a hierarchical XML tree structure and as
raw XML code. This dual presentation of the document provides you with the
following two methods of editing the XML document:

� The hierarchical tree view allows structured, limited constrained editing,
providing you with a set of allowable functions at each point in the hierarchical
XML tree structure. The allowable functions are syntactically dictated and in
accordance with the XML document's DTD or schema, if one is specified.

� The raw XML code view allows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, see its on-line help.

You can download the BEA XML Editor from the BEA dev2dev at
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools.
Programming WebLogic Web Services 1-15

http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools

1 Overview of WebLogic Web Services
1-16 Programming WebLogic Web Services

CHAPTER
2 Developing WebLogic
Web Services

The following sections describe how to develop WebLogic Web Services:

� “Developing WebLogic Web Services: Main Steps” on page 2-1

� “Designing a WebLogic Web Service” on page 2-3

� “Implementing a WebLogic Web Service” on page 2-17

� “Assembling a WebLogic Web Service” on page 2-19

� “Deploying a WebLogic Web Service” on page 2-25

� “Developing a WebLogic Web Service: A Simple Example” on page 2-26

Developing WebLogic Web Services: Main
Steps

Most of the following steps are described in detail in later sections:

1. Design the WebLogic Web Service.

Decide whether the Web service will be RPC-style or message-style, which EJB
should implement the service, and so on. The section “Designing a WebLogic
Web Service” on page 2-3 discusses design considerations.

2. Implement the WebLogic Web Service.
Programming WebLogic Web Services 2-1

2 Developing WebLogic Web Services
Write the business logic Java code for the EJBs that make up most of the
WebLogic Web Service. For detailed information, see “Implementing a
WebLogic Web Service” on page 2-17.

3. Package the EJBs that implement the Web service (stateless session EJB for
RPC-style Web services and a message-driven bean for message-style Web
services), along with any supporting EJBs, into an EJB archive file (*.jar).

For detailed information on this step, refer to Developing WebLogic Server
Applications at http://e-docs.bea.com/wls/docs61/programming/packaging.html.

4. Assemble the WebLogic Web Service.

Package all the components that make up the service (such as stateless session
EJBs, the Web application that contains a reference to the SOAP servlet, and so
on) into a J2EE Enterprise Application archive (*.ear) file so that it can be
deployed on WebLogic Server. You use Java Ant to assemble WebLogic Web
Services. Assembling also refers to setting up other J2EE components, such as
JMS destinations for message-style Web services.

 For detailed information, see “Assembling a WebLogic Web Service” on page
2-19.

5. Deploy the WebLogic Web Service.

Make the service available to remote clients. For more information, see
“Deploying a WebLogic Web Service” on page 2-25.

6. Create a client that accesses the Web service to test that your Web service is
working as you expect. For detailed information, see Chapter 3, “Invoking
WebLogic Web Services.”

WebLogic Server includes examples of creating both RPC-style and message-style
Web services and examples of both Java and Microsoft VisualBasic client applications
that invoke the Web services.

The examples are located in the BEA_HOME/samples/examples/webservices
directory, where BEA_HOME refers to the main WebLogic Server installation directory.
The RPC-style Web service example is in the rpc directory and the message-style Web
service example is in the message directory.

For detailed instructions on how to build and run the examples, invoke the Web page
BEA_HOME/samples/examples/webservices/package-summary.html in your
browser.
2-2 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/programming/packaging.html
http://e-docs.bea.com/wls/docs61/programming/packaging.html

Designing a WebLogic Web Service
Designing a WebLogic Web Service

The bulk of WebLogic Web Services are the EJBs that do the work in the background
after the SOAP request has been received and processed.

The first design issue is whether you should create an RPC-style or message-style Web
service. This topic is discussed in “Choosing Between an RPC-Style and a
Message-Style Web Service” on page 2-3.

The following sections discuss RPC-style design issues:

� EJB That Implements an RPC-Style Web Service

� Converting an Existing EJB Application into an RPC-Style Web Service

� Avoiding Overloaded Methods in Stateless Session EJBs

The following sections discuss message-style design issues:

� Message-Style Web Services and JMS

� Converting an Existing JMS Application Into a Web Service

The following sections discuss issues common to both types of Web services:

� Supported Data Types for Parameters and Return Values of WebLogic Web
Services

� XML-Java Conversion in WebLogic Web Services

� Security Issues

Choosing Between an RPC-Style and a Message-Style
Web Service

This section describes when to use an RPC-style or message-style Web service.
Programming WebLogic Web Services 2-3

2 Developing WebLogic Web Services
When to Use RPC-Style Web Services

RPC-style Web services are interface driven, which means that the business methods
of the underlying stateless session EJB determine how the Web service works. When
clients invoke the Web service, they send parameter values to the Web service, which
executes the corresponding methods and sends back the return values. The relationship
is synchronous, which means that the client waits for a response from the Web service
before it continues with the remainder of its application.

Create an RPC-style Web service if your application has the following characteristics:

� The client invoking the Web service needs an immediate response.

� The client and Web service work in a back-and-forth, conversational way.

� The behavior of the Web service can be expressed as an interface.

� The Web service is process-oriented rather than data-oriented.

Examples of RPC-style Web services include providing the current weather conditions
in a particular location; returning the current price for a given stock; or checking the
credit rating of a potential trading partner prior to the completion of a business
transaction. In each case the information is returned immediately, implying a
synchronous relationship between the client and the Web service.

When to Use Message-Style Web Services

You should create a message-style Web service if your application has the following
characteristics:

� the client has an asynchronous relationship with the Web service, or in other
words, the client does not expect an immediate response.

� the Web service is data-oriented rather than process-oriented.

Examples of message-style Web services include processing a purchase order;
accepting a request for new DSL home service; or responding to a request for quote
order from a customer. In each case, the client sends an entire document, such as
purchase order, to the Web service and assumes that the Web service is processing it
in some way, but the client does not require an answer right away or even at all. If your
Web service will work in this asynchronous, document-driven manner, then you
should consider designing it as a message-style Web service.
2-4 Programming WebLogic Web Services

Designing a WebLogic Web Service
EJB That Implements an RPC-Style Web Service

You implement an RPC-style Web service using a single stateless session EJB that
either does all the actual work of the Web service or it parcels out some or all of the
work to other EJBs. This EJB is the one that defines the methods that a client executes
when it invokes a WebLogic Web Service.

Design your EJB to minimize the data that travels between the client and the Web
service. This conversation is synchronous and over the Web, thus the fewer the
requests and responses, the faster the entire transaction.

The data types of the parameters and return values of the EJB are restricted to a list of
supported Web service data types, described in “Supported Data Types for Parameters
and Return Values of WebLogic Web Services” on page 2-9. This data type restriction
facilitates interoperability with other Web service implementation, both Java and
non-Java, such as Microsoft SOAP ToolKit.

Converting an Existing EJB Application into an RPC-Style
Web Service

You might be able to convert an existing stateless session EJB into an RPC-style Web
service, as long as the data types of its parameters and return values are included in the
list of supported Web services data types, listed in “Supported Data Types for
Parameters and Return Values of WebLogic Web Services” on page 2-9.

If you cannot convert an existing EJB, then you must create a new stateless session
EJB that implements the Web service, sends and receives parameters and return values
from the client using the supported data types, then converts these values into the
correct data types and passes the values to the existing stateless session EJB.

Alternatively, you can reprogram the existing stateless session EJB to accept as
parameters and return values only the supported data types.
Programming WebLogic Web Services 2-5

2 Developing WebLogic Web Services
Avoiding Overloaded Methods in Stateless Session EJBs

Due to limitations in the SOAP specification, SOAP messages are unable to
differentiate unambiguously between methods of the same name that have different
signatures (overloaded methods). For this reason, WebLogic Server does not support
overloaded methods in the EJBs that make up RPC-style Web services. Rather, each
method should have its own unique name.

For example, assume your stateless session EJB defines a method called myMethod(),
which can take as a parameter either a String or an integer. Because the SOAP
specification does not force you to declare the data types of parameters in a SOAP
message, the WebLogic Web Service might not know whether to execute
myMethod(String) or myMethod(int) when a client invokes it. To clear up the
confusion, rename one of the overloaded methods.

Message-Style Web Services and JMS

Message-style Web services use JMS listeners (such as message-driven beans) rather
than stateless session EJBs as their entry points. This section describes the relationship
between JMS and WebLogic Web Services and design considerations for developing
message-style Web services.

Choosing a Queue or Topic

JMS queues implement a point-to-point messaging model whereby a message is
delivered to exactly one recipient. JMS topics implement a publish/subscribe
messaging model whereby a message is delivered to multiple recipients.

When you implement a message-style Web service you must make the following two
decisions:

� Whether you want to use a JMS queue or topic.

� Whether the client application that invokes the Web service sends or receives the
document to or from the service. The same service cannot support both sending
and receiving.
2-6 Programming WebLogic Web Services

Designing a WebLogic Web Service
Retrieving and Processing Documents

After you decide what type of JMS destination you are going to use, you must decide
what type of J2EE component will retrieve the document from the JMS destination and
process it. Typically this will be a message-driven bean. This message-driven bean can
do all the document-processing work, or it can parcel out some or all of the work to
other EJBs. Once the message-driven bean finishes processing the document, the
execution of the Web service is complete.

This means that if you want the client that invokes the Web service by sending
documents to receive some sort of response or data, you must create a second
message-style Web service that the client subsequently invokes to retrieve a response.
The second Web service is related to the original Web service because the original
message-driven bean that processed the document puts the resulting information or
response on the JMS destination corresponding to the second Web service. Again, you
must decide whether the second JMS destination is a topic or a queue.

Example of Message-Style Web Services

As a simple example, Figure 2-1 shows two separate Web services, one for receiving
a document from a client and one for sending a document back to the client. The two
Web services have their own JMS destinations. The message-driven bean gets
messages from the first JMS destination, processes the information, then puts a
message back onto the second JMS destination. The client invokes the first Web
service to send the document to WebLogic Server and then invokes the second Web
service to receive a document back from WebLogic Server.
Programming WebLogic Web Services 2-7

2 Developing WebLogic Web Services
Figure 2-1 Data Flow Between Message-Style Web Services and JMS

Converting an Existing JMS Application Into a Web
Service

You might be able to convert an existing JMS application into a message-style Web
service, as long as the message-driven bean that gets messages from the JMS
destination can handle the Java objects that end up on the JMS destination. For
example, WebLogic Web Services convert standard XML documents from a client
into org.w3c.dom.Document objects, as described in “XML-Java Conversion in
WebLogic Web Services” on page 2-11.

If the message-driven bean in your existing JMS application expects some other type
of document object, then you can do one of two things: either reprogram the
message-driven bean to accept org.w3c.dom.Document objects, or create a new

Client
Message-Driven Bean

JMS
Destination

JMS
Destination

Send Web Service

Receive Web Service

WebLogic Server
2-8 Programming WebLogic Web Services

Designing a WebLogic Web Service
message-driven bean that accepts org.w3c.dom.Document objects; converts them
into the data type accepted by the original message-driven bean; and puts the new
object on a JMS destination for the original message-driven bean to pick up.

Supported Data Types for Parameters and Return Values
of WebLogic Web Services

To facilitate interoperability with other Web service implementations, both Java and
non-Java, WebLogic limits the data types that can be used as parameters and return
values to the Web service.

The following table lists the mapping between the supported Java data types and their
XML equivalent.

Table 2-1 Java to XML Mapping

Java Data Type Corresponding XML Data
Type

int int

boolean boolean

float float

long long

short short

double double

java.lang.Integer int

java.lang.Boolean boolean

java.lang.Float float

java.lang.Long long

java.lang.Short short

java.lang.Double double
Programming WebLogic Web Services 2-9

2 Developing WebLogic Web Services
The following table lists the mapping between the supported XML data types and their
Java equivalent.

java.lang.String string

java.math.BigDecimal decimal

java.util.Date dateTime

byte[] base64Binary

java.lang.Object anyType

JavaBeans whose properties are of
the supported Java data types listed in
this table or another JavaBean.

Compound struct whose members are
of the supported XML data types
listed in this table or another
compound struct.

Arrays of supported Java data types
listed in this table (except for the
reference equivalents of primitive
types, such as java.lang.Integer).

Single-dimensional arrays only.

SOAP array of supported XML data
types listed in this table.

Single-dimensional arrays only.

org.w3c.dom.Document No XML equivalent.

org.w3c.dom.DocumentFragment No XML equivalent.

org.w3c.dom.Element No XML equivalent.

Table 2-2 XML to Java Mapping

XML Data Type Corresponding Java Data Type

int java.lang.Integer

boolean java.lang.Boolean

float java.lang.Float

long java.lang.Long

Table 2-1 Java to XML Mapping

Java Data Type Corresponding XML Data
Type
2-10 Programming WebLogic Web Services

Designing a WebLogic Web Service
XML-Java Conversion in WebLogic Web Services

WebLogic Web Services support the following two encoding styles:

� http://schemas.xmlsoap.org/soap/encoding/

� http://xml.apache.org/xml-soap/literalxml

Note: The preceding URIs are not “real” in the sense that you can actually invoke
them in a browser. Rather, it is a standard convention to name encoding styles
using URIs.

short java.lang.Short

double java.lang.Double

decimal java.math.BigDecimal

dateTime java.util.Date

timeInstant java.util.Date

byte java.lang.Byte

base64Binary byte[]

hexBinary byte[]

Compound struct whose members are
of the supported XML data types
listed in this table or another
compound struct.

JavaBeans whose properties are of
the supported Java data types listed in
this table or another JavaBean.

SOAP array of supported XML data
types listed in this table.

Single-dimensional arrays only.

Arrays of supported Java data types
listed in this table (except for the
reference equivalents of primitive
types, such as java.lang.Integer).

Single-dimensional arrays only.

Table 2-2 XML to Java Mapping

XML Data Type Corresponding Java Data Type
Programming WebLogic Web Services 2-11

2 Developing WebLogic Web Services
When a WebLogic Web Service receives data from a client, it uses the encoding style
specified in the SOAP message to identify the data type of the parameter or message
so that it can be converted to the correct Java object.

Note: If you create a Java client using WebLogic’s generated Java client JAR file,
you do not need to know about specific encoding styles, because the Java
client JAR file contains code that handles it for you. This section is included
for programmers who create non-Java clients that invoke WebLogic Web
Services and need to know how they handle encoding styles.

If the SOAP packet specifies the SOAP encoding style, then the Web service tries to
convert the XML data inside the body of the SOAP message into one of the Java data
types listed in “Supported Data Types for Parameters and Return Values of WebLogic
Web Services” on page 2-9.

If the conversion is unsuccessful (for example, if there is no corresponding Java data
type defined for one of the parameters), then the Web service returns a SOAP fault to
the client that invoked the Web service.

If the conversion from XML to Java is successful, then the different styles of Web
services do different things:

� RPC-style Web services pass the resulting Java objects to the appropriate
stateless session EJBs.

� Message-style Web services wrap the Java object into a JMS
javax.jms.ObjectMessage data type and put the message on the appropriate
JMS destination.

If the SOAP packet specifies the Literal XML encoding style, the Web service
converts the XML data inside the body of the XML message into a
org.w3c.dom.Element data type, and then either sends the document to a stateless
session EJB or wraps the document in a javax.jms.ObjectMessage data type and
puts the message on the appropriate JMS destination, depending on whether the Web
service is RPC-style or message-style, respectively.

The reverse happens when WebLogic Web Services send data back to the client:
org.w3c.dom.Element return values are encoded using the Literal XML encoding
style before being sent back to the client, and other Java data types are encoded using
the SOAP encoding style.
2-12 Programming WebLogic Web Services

Designing a WebLogic Web Service
Security Issues

As previously discussed, WebLogic Web Services are packaged as standard J2EE
Enterprise applications. Consequently, to secure access to the Web service, you secure
access to some or all of the following standard J2EE components that make up the Web
service:

� The SOAP servlets

� The stateless session EJB upon which an RPC-style Web service is based

You can use basic HTTP authentication or SSL to authenticate a client that is
attempting to access a WebLogic Web Service. Because the preceding components are
standard J2EE components, you secure them in using standard J2EE security
procedures. For general information about basic HTTP authentication and SSL, see
Programming WebLogic Security at
http://e-docs.bea.com/wls/docs61/security/index.html.

For information about implementing 2-way SSL so that a client invoking a WebLogic
Web Service is required to present its digital cerficate, see “Using 2-Way SSL When
Invoking a WebLogic Web Service” on page 2-15.

Securing Message-Style Web Services

You secure a message-style Web service by securing the SOAP servlet that handles the
SOAP messages between the client and the service.

Note: You can also use this method to secure an RPC-style Web service, although
BEA recommends instead that you secure the EJB, as described in “Securing
an RPC-Style Web service” on page 2-15.

When you assemble a WebLogic Web Service, either using the wsgen Ant task or
manually, you reference SOAP servlets in the web.xml file of the Web application.
These SOAP servlets handle the SOAP messages between WebLogic Server and client
applications. They are always deployed on WebLogic Server, and are shared by all
deployed WebLogic Web Services.

The particular SOAP servlet referenced by a Web service depends on its type
(RPC-style or message-style). The following list describes each SOAP servlet:
Programming WebLogic Web Services 2-13

http://e-docs.bea.com/wls/docs61/security/index.html

2 Developing WebLogic Web Services
� weblogic.soap.server.servlet.DestinationSendAdapter—handles
SOAP messages in a message-style Web service that receives data from a client
application to a JMS destination.

� weblogic.soap.server.servlet.QueueReceiveAdapter—handles SOAP
messages in a message-style Web service that sends data from a JMS Queue to a
client application.

� weblogic.soap.server.servlet.TopicReceiveAdapter—handles SOAP
messages in a message-style Web service that sends data from a JMS Topic to a
client application.

� weblogic.soap.server.servlet.StatelessBeanAdapter—handles SOAP
messages between an RPC-style Web service and a client application.

For example, assume you have created a message-style Web service in which client
applications send data to a JMS destination; the SOAP servlet that handles the SOAP
messages is weblogic.soap.server.servlet.DestinationSendAdapter. The
wsgen Ant task used to assemble the Web service adds the following elements to the
web.xml deployment descriptor of the Web application:

<servlet>
 <servlet-name>sender</servlet-name>
 <servlet-class>
 weblogic.soap.server.servlet.DestinationSendAdapter
 </servlet-class>
 <init-param>
 <param-name>topic-resource-ref</param-name>
 <param-value>senderDestination</param-value>
 </init-param>
 <init-param>
 <param-name>connection-factory-resource-ref</param-name>
 <param-value>senderFactory</param-value>
 </init-param>
</servlet>
...

<servlet-mapping>
 <servlet-name>sender</servlet-name>
 <url-pattern>/sendMsg</url-pattern>
</servlet-mapping>
2-14 Programming WebLogic Web Services

Designing a WebLogic Web Service
To restrict access to the DestinationSendAdapter SOAP servlet, you first define a
role that is mapped to one or more principals in a security realm, then specify that the
security constraint applies to this SOAP servlet by adding the following url-pattern
element inside the web-resources-collection element to the web.xml
deployment descriptor of the Web application:

<url-pattern>/sendMsg</url-pattern>

See Appendix C, “Manually Assembling the Web Services Archive File,” for
information on the structure of the Enterprise Application archive created by the
wsgen Ant task.

For detailed procedural information about restricting access to servlets, see
Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/security.html.

Securing an RPC-Style Web service

Restrict access to an RPC-style Web service by restricting access to the stateless
session EJB that implements the Web service.

Thus client applications that invoke the RPC-style Web service always have access to
the Web application and SOAP servlets, but might not be able to invoke the EJB. This
type of security is useful if you want to closely monitor who has access to the business
logic of the EJB but do not want to block access to the entire Web service.

For information about restricting access to EJBs, see Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/index.html.

Using 2-Way SSL When Invoking a WebLogic Web Service

In 2-way SSL, client applications that invoke a WebLogic Web Service are required to
present their digital certificates to WebLogic Server, which validates digital
certificates against a list of trusted certificate authorities.

To use 2-way SSL when writing a Java client to invoke a WebLogic Web Service,
follow these steps:

1. Configure WebLogic Server for 2-way SSL protocol (also called mutual
authentication) and certificate authentication.

For details, see Configuring the SSL Protocol at
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec015 and
Programming WebLogic Web Services 2-15

http://e-docs.bea.com/wls/docs61/webapp/security.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec015

2 Developing WebLogic Web Services
Configuring Mutual Authentication at
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec020.

2. Add the following lines of Java code to your client application before you obtain
the context you are using the look up your Web service::

System.out.println("********************** loading client certs");

InputStream certs[] = new InputStream[3];
certs[0]=new PEMInputStream(new FileInputStream("sample_key.pem"));
certs[1]=new PEMInputStream(new FileInputStream("sample_cert.pem"));
certs[2]=new PEMInputStream(new FileInputStream("sample_ca.pem"));

h.put(SoapContext.SSL_CLIENT_CERTIFICATE, certs);

String prov = "weblogic.net";

String s = System.getProperty("java.protocol.handler.pkgs");
if (s == null) {
 s = prov;
} else if (s.indexOf(prov) == -1) {
 s += "|" + prov;
}

System.setProperty("java.protocol.handler.pkgs", s);

In the preceding code excerpt:

� sample_key.pem is the name of the file that contains the client’s private key
associated with the certificate.

� sample_cert.pem is the name of the file that contains the client’s
certificate.

� sample_ca.pem is the name of the file that contains the certificate of the
Certificate Authority that issued the client’s certificate.

Note: When establishing an SSL connection, the subject DN of the digital certificate
must match the host name of the server initiating the SSL connection.
Otherwise, the SSL connection is dropped. If you use the demonstration
certificates provided by WebLogic Server, the host names will not match.

To avoid this situation, use the
-Dweblogic.security.SSL.ignoreHostnameVerification=true flag
when running your client application, or even when starting WebLogic Server
if you want this to be true all the time. This flag disables the Host Name
2-16 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec020

Implementing a WebLogic Web Service
Verifier which compares the subject DNs and host names. This solution is
recommended in development environments only. A more secure solution is
to obtain a new digital certificate for the server making outbound SSL
connections.

Implementing a WebLogic Web Service

Implementing a WebLogic Web Service refers to writing the Java code for the stateless
session EJB (for RPC-style Web services) or a JMS listener (for message-style Web
services) that is defined to be the entry point to the Web service. JMS listeners are
typically message-driven beans. The stateless session EJB or JMS listener may contain
all the Web service functionality, or it may call other EJBs to parcel out the work.

It is assumed that you have read and understood the design issues discussed in
“Designing a WebLogic Web Service” on page 2-3, that you have designed your Web
service, and that you essentially know the types of components you need to code.

Implementing an RPC-Style Web Service

To implement an RPC-style Web service, write the Java code for the stateless session
EJB. Remember to use only the supported Java data types as the parameters and return
value of the EJB, listed in “Supported Data Types for Parameters and Return Values
of WebLogic Web Services” on page 2-9.

For detailed information about programming stateless session EJBs, see Programming
WebLogic Enterprise JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/index.html.

Implementing Message-Style Web Services

There are two types of message-style Web services, as described in “Message-Style
Web Services and JMS” on page 2-6: those that receive XML data from a client that
invokes the Web service and those that send XML data to a client.

To implement a message-style Web service, follow these steps:
Programming WebLogic Web Services 2-17

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

2 Developing WebLogic Web Services
1. Use the Administration Console to configure the following JMS components of
WebLogic Server:

� The JMS destination (queue or topic) that will either receive the XML data
from a client or send XML data to a client. Later, when you assemble the
Web service as described in “Assembling a WebLogic Web Service” on page
2-19, you will use the name of this JMS destination.

� The JMS Connection factory that the WebLogic Web Service uses to create
JMS connections.

See “Configuring JMS Components for Message-Style Web Services” on page
2-18 for details on this step. For general information about JMS, see the
WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jms.html.

2. Write the Java code for the J2EE component (typically a message-driven bean)
that will take messages off the JMS destination for message-style Web services
that receive XML data from a client or will put messages on a JMS destination
for message-style Web services that send XML data to a client.

For detailed information about programming message-driven beans, see
Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html.

Configuring JMS Components for Message-Style Web
Services

This section assumes that you have already configured a JMS server. For information
about configuring JMS servers, and general information about JMS, see the WebLogic
Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jms.html and Programming WebLogic
JMS at http://e-docs.bea.com/wls/docs61/jms/index.html.

To configure a JMS destination (either queue or topic) and JMS Connection Factory,
follow these steps:

1. Invoke the Administration Console in your browser. For details, see “Invoking the
Administration Console” on page 4-1.

2. Click to expand the Services node in the left pane and expand the JMS node.
2-18 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/jms/index.html
http://e-docs.bea.com/wls/docs61/jms/index.html

Assembling a WebLogic Web Service
3. Right-click the Connection Factories node and choose Configure a new
JMSConnectionFactory from the drop-down list.

4. Enter a name for the Connection Factory in the Name field.

5. Enter the JNDI name of the Connection Factory in the JNDIName field.

6. Click Create.

7. Click the Targets tab.

8. Move the name of the WebLogic Server hosting the service to the Chosen list
box, if not already there.

9. Click Apply.

10. Click to expand the Servers node under the JMS node in the left pane.

11. Click to expand your JMS server node.

12. Right-click the Destinations node and choose either:

� Configure a new JMSTopic from the drop-down list if you want to create a
topic

� Configure a new JMSQueue if you want to create a queue.

13. Enter the name of the JMS destination in the Name text field.

14. Enter the JNDI name of the destination in the JNDIName text field.

15. Click Create.

Assembling a WebLogic Web Service

This section describes how to assemble all the components of a Web service so it can
be deployed on WebLogic Server and accessed by remote clients.
Programming WebLogic Web Services 2-19

2 Developing WebLogic Web Services
Assembling a WebLogic Web Service Using Java Ant
Tasks

Assembling a WebLogic Web Service refers to packaging all the components of the
Web service, such as the EJB that implements an RPC-style Web service, supporting
EJBs, the Web application that contains the SOAP servlet, and so on, into an Enterprise
Application archive (*.ear) so it can be deployed on WebLogic Server.

Developers use a Java Ant task, called wsgen, to assemble WebLogic Web Services.
The wsgen Ant task generates most of the WebLogic Web Service components, such
as the Web application that contains the SOAP servlet and the application.xml file
that describes the Enterprise Application archive. The only components you need to
have previously created are the EJB or message-driven beans that implement the Web
service.

For general information about Ant, see http://jakarta.apache.org/ant/index.html.

Note: The Java Ant utility included in WebLogic Server uses the ant (UNIX) or
ant.bat (Windows) configuration files in the BEA_HOME\bin directory when
setting the ANTCLASSPATH variable, where BEA_HOME is the directory in
which WebLogic Server is installed. If you need to update the
ANTCLASSPATH variable, make the appropriate changes to these files.

For detailed procedures for assembling WebLogic Web Services manually, see
Appendix C, “Manually Assembling the Web Services Archive File.”

To assemble a WebLogic Web Service, follow these steps:

1. Create a temporary staging directory.

2. If you are assembling an RPC-style Web service, copy the EJB *.jar file that
contains the EJB that implements the service, along with any supporting EJBs, to
the staging directory.

3. Set up your environment.

On Windows NT, execute the setEnv.cmd command, located in the directory
BEA_HOME\config\domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.
2-20 Programming WebLogic Web Services

http://jakarta.apache.org/ant/index.html

Assembling a WebLogic Web Service
On UNIX, execute the setEnv.sh command, located in the directory
BEA_HOME/config/domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

4. Create a file called build.xml in the staging directory that contains the Ant task
elements for assembling a WebLogic Web Service.

For details on creating the build.xml file, refer to “Example of an Ant
build.xml File” on page 2-21.

5. Change location to the staging directory and execute the Ant utility:

$ ant

The wsgen Ant task creates an *.ear file containing the service components in
the staging directory. You are now ready to deploy this *.ear file on WebLogic
Server.

Example of an Ant build.xml File

WebLogic Server includes the wsgen Ant task to help you quickly assemble the
components of a WebLogic Web Service into an Enterprise archive file.

The following example shows a build.xml file that assembles three Web services:
one RPC-style and two message-style (one for sending messages and one for receiving
messages). Table 2-3 describes the file elements.

Listing 2-1 Example build.xml File for Assembling WebLogic Web Services

<project name="myProject" default="wsgen">
 <target name="wsgen">
 <wsgen
 destpath="myWebService.ear"
 context="/myContext"
 protocol="http">
 <rpcservices path="myEJB.jar">
 <rpcservice
 bean="statelessSession"
 uri="/rpc_URI"/>
 </rpcservices>
 <messageservices>
 <messageservice
 name="sendMsgWS"
 action="send"
Programming WebLogic Web Services 2-21

2 Developing WebLogic Web Services
 destination="examples.soap.msgService.MsgSend"
 destinationtype="topic"
 uri="/sendMsg"
 connectionfactory="examples.soap.msgService.MsgConnectionFactory"/>
 <messageservice
 name="receiveMsgWS"
 action="receive"
 destination="examples.soap.msgService.MsgReceive"
 destinationtype="topic"
 uri="/receiveMsg"
 connectionfactory="examples.soap.msgService.MsgConnectionFactory"/>
 </messageservices>
 </wsgen>
 </target>
</project>

Table 2-3 Description of build.xml Example

Element or Attribute Description

wsgen element Specifies the wsgen Ant task used to assemble the Web service.

destpath attribute Specifies that the resulting Enterprise archive will be called
myWebService.ear.

context attribute Specifies that the context root of the Web service is called /myContext. You
will later use this context root in the URL used to view the generated WSDL
for the Web service and to download the Java client JAR file.

protocol attribute Specifies that clients use HTTP to invoke the service.

rpcservices element Contains the single RPC-style Web service that is associated with the
/myContext context.

path attribute Specifies that the EJBs are archived in a JAR file called myEJB.jar.

rpcservice element Specifies the properties of the RPC-style Web service.

bean attribute Specifies that the name of the stateless session EJB that implements the
RPC-style Web service is statelessSession.

This name corresponds to the ejb-name element in the ejb-jar.xml file
of the EJB archive in which the EJB is contained. The path to the EJB archive
is specified in the parent rpcservices element using the path attribute.

uri attribute Specifies that the URI of the service is /rpc_URI. This URI is used in
the URL to access the WSDL of the Web service.
2-22 Programming WebLogic Web Services

Assembling a WebLogic Web Service
For a detailed description of the elements and attributes of the build.xml file, refer to
Appendix B, “build.xml Elements and Attributes.”

Creating the build.xml Ant Build File

The following procedure describes the Ant task elements you must include in your
build.xml file to correctly assemble a WebLogic Web Service; use the example in
the preceding section as a guide.

For detailed description of the elements and attributes of the build.xml file
mentioned in the following procedure, as well as additional elements you can specify,
refer to Appendix B, “build.xml Elements and Attributes.”

messageservices
element

Contains two message-style Web services that are associated with the
/myContext context.

messageservice
element

Specifies the properties of each message-style Web service.

name attribute Assigns a unique name to each service: sendMsgWS and receiveMsgWS.

action attribute Specifies whether a client that invokes the Web service sends or receives
messages from the service. The first service specifies send, the second
receive.

destination attribute Specifies the JNDI name of the JMS destination that sends or receives
messages. The first service specifies
examples.soap.msgService.MsgSend, the second specifies
examples.soap.msgService.MsgReceive.

destinationtype
attribute

Specifies whether the JMS destination is a topic or a queue. Both services
specify topic.

uri attribute Specifies that the URIs of the services are /sendMsg and /receiveMsg,
respectively. The URIs are combined to create the complete URL to the
WSDL of the Web service

connectionfactory
attribute

Specifies the JNDI name of the Connection Factory used to create a JMS
connection. Both services use the same Factory:
examples.soap.msgService.MsgConnectionFactory.

Element or Attribute Description
Programming WebLogic Web Services 2-23

2 Developing WebLogic Web Services
See “Editing XML Files” on page 1-15 for information on using the BEA XML Editor
to create and edit the build.xml file.

To create a build.xml Ant build file for assembling WebLogic Web Services:

1. Create an empty file called build.xml using your favorite text editor.

2. Add one <project> element with the following two attributes:

� name - the name of your project.

� default - set this attribute to wsgen.

3. Within the <project> element, add a <target> element with one attribute,
name; set the name attribute to wsgen.

4. Within the <target> element, add a <wsgen> element with the following
attributes:

� destpath

� context

� protocol

5. If you are assembling one or more RPC-style Web services, add a single
<rpcservices> element within the <wsgen> element with the following
attributes:

� path

6. Within the <rpcservices> element, add an <rpcservice> element for each
RPC-style Web service you are assembling, with the following attributes:

� bean

� uri

7. If you are assembling one or more message-style Web services, add a single
<messageservices> element within the <wsgen> element.

8. Within the <messageservices> element, add a <messageservice> element for
each message-style Web service you are assembling, with the following attributes
that describe the JMS destination and Connection factory that you previously set
up for the message-style Web service:

� name

� action

� destination
2-24 Programming WebLogic Web Services

Deploying a WebLogic Web Service
� destinationtype

� uri

� connectionfactory

Dynamic or Static WSDL?

WebLogic Web Services publish their WSDL files as JSPs. The WSDL JSP can either
hard-code the host and port of a specific WebLogic Server, or it can dynamically
generate the host and port based on the WebLogic Server that is hosting the service.

Typically, you want the WSDL of a WebLogic Web Service to dynamically generate
the host and port, and you do this by not specifying the host and port attributes of the
wsgen element in the build.xml Ant file used to assemble the Web service. If,
however, you want the host and port to be hard-coded in the WSDL JSP, explicitly
specify the host and port attributes.

Deploying a WebLogic Web Service

Deploying a WebLogic Web Service refers to making it available to remote clients.
Because WebLogic Web Services are packaged as standard J2EE Enterprise
applications, deploying a Web service is the same as deploying an Enterprise
application.

For detailed information on deploying Enterprise applications, see BEA WebLogic
Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html.
Programming WebLogic Web Services 2-25

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Web Services
Developing a WebLogic Web Service: A
Simple Example

This section describes the start-to-finish process of developing, assembling, and
deploying the sample RPC-style WebLogic Web Service provided as a product
example in the directory BEA_HOME/samples/examples/rpc.

To develop the sample Weather RPC-style WebLogic Web Service, follow these basic
steps:

1. Set up your environment.

On Windows NT, execute the setEnv.cmd command, located in the directory
BEA_HOME\config\domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

On UNIX, execute the setEnv.sh command, located in the directory
BEA_HOME/config/domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

2. Write the Java interfaces and classes for the Weather stateless session EJB.

See “Writing the Java Code for the EJB” on page 2-27 for details.

3. Compile the EJB Java code into class files.

4. Create the EJB deployment descriptors.

See “Creating EJB Deployment Descriptors” on page 2-31 for details.

5. Assemble the EJB class files and deployment descriptors into a weather.jar
archive file.

See “Assembling the EJB” on page 2-32 for details.

6. Create the build.xml Java Ant build file used to assemble the WebLogic Web
Service.

See “Creating the build.xml File” on page 2-33 for details.

7. Create a staging directory.
2-26 Programming WebLogic Web Services

Developing a WebLogic Web Service: A Simple Example
8. Copy the EJB weather.jar file and the build.xml file into the staging
directory.

9. Execute the Java Ant utility to assemble the Weather Web service into a
weather.ear archive file:

$ ant

10. Auto-deploy the Weather Web service for testing purposes by copying the
weather.ear archive file to the BEA_HOME/config/domain/applications
directory, where BEA_HOME refers to the main WebLogic Server installation
directory and domain refers to the name of your domain.

To invoke the Weather Web service from both a Java and a Visual Basic client
application, see the examples in
BEA_HOME/samples/examples/webservices/rpc/javaClient and
BEA_HOME/samples/examples/webservices/rpc/vbClient.

For instructions for building and running the client applications, invoke the
BEA_HOME/samples/examples/webservices/rpc/package-summary.html
Web page in your browser.

Writing the Java Code for the EJB

The sample Weather stateless session EJB contains one public method: getTemp().
The method takes a single argument, a zip code, and returns a float value of 77 if the
zip code is 90210 and -273.15 otherwise.

Note: This method obviously simulates a real-world Web service that returns the
actual temperature at a given zip code.

The following Java code is the public interface of the Weather EJB:

package examples.webservices.rpc.weatherEJB;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

/**
 * The methods in this interface are the public face of WeatherBean.
 * The signatures of the methods are identical to those of the EJBean, except
 * that these methods throw a java.rmi.RemoteException.
 * Note that the EJBean does not implement this interface. The corresponding
Programming WebLogic Web Services 2-27

2 Developing WebLogic Web Services
 * code-generated EJBObject, WeatherBean, implements this interface and
 * delegates to the bean.
 *
 * @author Copyright (c) 1998 by WebLogic, Inc. All Rights Reserved.
 * @author Copyright (c) 2001 by BEA Systems, Inc. All Rights Reserved.
 */

public interface Weather extends EJBObject {
 /**
 * Gets the temperature of a given ZipCode.
 *
 * @param ZipCode String Stock symbol
 * @return double Temperature
 * @exception RemoteException if there is
 * a communications or systems failure
 */

 public float getTemp(String ZipCode) throws RemoteException;
}

The following Java code is the actual stateless session EJB class:

package examples.webservices.rpc.weatherEJB;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
 * WeatherBean is a stateless Session Bean. This bean illustrates:
 *
 * No persistence of state between calls to the Session Bean
 * Looking up values from the Environment
 *
 *
 * @author Copyright (c) 1998 by WebLogic, Inc. All Rights Reserved.
 * @author Copyright (c) 2001 by BEA Systems, Inc. All Rights Reserved.
 */

public class WeatherBean implements SessionBean {
 private static final boolean VERBOSE = true;
 private SessionContext ctx;
 private int tradeLimit;
 // You might also consider using WebLogic's log service

 private void log(String s) {
 if (VERBOSE) System.out.println(s);
 }
2-28 Programming WebLogic Web Services

Developing a WebLogic Web Service: A Simple Example
 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbActivate() {
 log("ejbActivate called");
 }
 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbRemove() {
 log("ejbRemove called");
 }
 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbPassivate() {
 log("ejbPassivate called");
 }
 /**
 * Sets the session context.
 *
 * @param ctx SessionContext Context for session
 */
 public void setSessionContext(SessionContext ctx) {
 log("setSessionContext called");
 this.ctx = ctx;
 }
 /**
 * This method corresponds to the create method in the home interface
 * "WeatherHome.java".
 * The parameter sets of the two methods are identical. When the client calls
 * <code>WeatherHome.create()</code>, the container allocates an instance of
 * the EJBean and calls <code>ejbCreate()</code>.
 *
 * @exception javax.ejb.CreateException if there is
 * a communications or systems failure
 * @see examples.ejb.basic.statelessSession.Weather
 */
 public void ejbCreate () throws CreateException {
 log("ejbCreate called");
 try {
 InitialContext ic = new InitialContext();
 } catch (NamingException ne) {
Programming WebLogic Web Services 2-29

2 Developing WebLogic Web Services
 throw new CreateException("Failed to find environment value "+ne);
 }
 }
 /**
 * Gets the temperature of a given ZipCode.
 *
 * @param ZipCode String ZipCode
 * @return float Temperature
 * @exception RemoteException if there is
 * a communications or systems failure
 */
 public float getTemp(String ZipCode) {
 log("getTemp called");
 Float result;
 if (ZipCode.equals("90210")) {
 result = new Float(77.0);
 } else {
 result = new Float(-273.15);
 }
 return result.floatValue();
 }
}

The following Java code is the Home interface of the Weather EJB:

package examples.webservices.rpc.weatherEJB;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

/**
 * This interface is the home interface for the WeatherBean.java,
 * which in WebLogic is implemented by the code-generated container
 * class WeatherBeanC. A home interface may support one or more create
 * methods, which must correspond to methods named "ejbCreate" in the EJBean.
 *
 * @author Copyright (c) 1998 by WebLogic, Inc. All Rights Reserved.
 * @author Copyright (c) 2001 by BEA Systems, Inc. All Rights Reserved.
 */
public interface WeatherHome extends EJBHome {
 /**
 * This method corresponds to the ejbCreate method in the bean
 * "WeatherBean.java".
 * The parameter sets of the two methods are identical. When the client calls
 * <code>WeatherHome.create()</code>, the container
 * allocates an instance of the EJBean and calls <code>ejbCreate()</code>.
 *
2-30 Programming WebLogic Web Services

Developing a WebLogic Web Service: A Simple Example
 * @return Weather
 * @exception RemoteException if there is
 * a communications or systems failure
 * @exception CreateException
 * if there is a problem creating the bean
 * @see examples.ejb.basic.statelessSession.WeatherBean
 */
 Weather create() throws CreateException, RemoteException;
}

Creating EJB Deployment Descriptors

See “Editing XML Files” on page 1-15 for information on using the BEA XML Editor
to create and edit the ejb-jar.xml and weblogic-ejb-jar.xml files.

The following example shows the ejb-jar.xml deployment descriptor that describes
the Weather EJB:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar
 PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>statelessSession</ejb-name>
 <home>
 examples.webservices.rpc.weatherEJB.WeatherHome
 </home>
 <remote>
 examples.webservices.rpc.weatherEJB.Weather
 </remote>
 <ejb-class>
 examples.webservices.rpc.weatherEJB.WeatherBean
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>statelessSession</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
Programming WebLogic Web Services 2-31

2 Developing WebLogic Web Services
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

The following example shows the weblogic-ejb-jar.xml deployment descriptor
that describes the Weather EJB:

<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar
 PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN'
 'http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd'>

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>statelessSession</ejb-name>
 <caching-descriptor>
 <max-beans-in-free-pool>100</max-beans-in-free-pool>
 </caching-descriptor>
 <jndi-name>statelessSession.WeatherHome</jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

Assembling the EJB

To assemble the EJB class files and deployment descriptors into a weather.jar
archive file, follow these steps:

1. Create a temporary staging directory.

2. Copy the compiled Java EJB class files into the staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Copy the ejb-jar.xml and weblogic-ejb-jar.xml deployment descriptors
into the META-INF subdirectory.

5. Create the weather.jar archive file using the jar utility:

jar cvf weather.jar -C staging_dir .
2-32 Programming WebLogic Web Services

Developing a WebLogic Web Service: A Simple Example
Creating the build.xml File

See “Editing XML Files” on page 1-15 for information on using the BEA XML Editor
to create and edit the build.xml file.

The following build.xml file references the wsgen Java ant task that assembles the
weather.jar archive file into a WebLogic Web Service weather.ear enterprise
application archive file:

<project name="weather-webservice" default="wsgen">
 <target name="wsgen">
 <wsgen
 destpath="weather.ear"
 context="/weather">
 <rpcservices path="weather.jar">
 <rpcservice bean="statelessSession" uri="/weatheruri"/>
 </rpcservices>
 </wsgen>
 </target>
</project>
Programming WebLogic Web Services 2-33

2 Developing WebLogic Web Services
2-34 Programming WebLogic Web Services

CHAPTER
3 Invoking WebLogic
Web Services

The following sections describe how to invoke WebLogic Web Services from client
applications:

� “Overview of Invoking WebLogic Web Services” on page 3-2

� “Invoking the WebLogic Web Services Home Page” on page 3-4

� “URLs to Invoke WebLogic Web Services and Get the WSDL” on page 3-7

� “Creating a Client to Invoke an RPC-Style WebLogic Web Service” on page 3-8

� “Creating a Java Client to Invoke a Message-Style WebLogic Web Service” on
page 3-15

� “Handling Exceptions from WebLogic Web Services” on page 3-21

� “Initial Context Factory Properties for Invoking Web Services” on page 3-22

� “Additional Classes Needed by Clients Invoking WebLogic Web Services” on
page 3-23
Programming WebLogic Web Services 3-1

3 Invoking WebLogic Web Services
Overview of Invoking WebLogic Web
Services

Invoking a WebLogic Web Service refers to the actions that a client application
performs to use the Web service. Client applications that invoke WebLogic Web
Services can be written using any technology: Java, Microsoft SOAP Toolkit, and so
on.

The client application assembles a SOAP message that describes the Web service it
wants to invoke and includes all the necessary data in the body of the SOAP message.
The client then sends the SOAP message over HTTP/HTTPS to WebLogic Server,
which executes the Web service and sends a SOAP message back to the client over
HTTP/HTTPS.

Note: If you write your client application in Java, WebLogic Server provides an
optional Java client JAR file that includes, for your convenience, everything
you need to invoke a WebLogic Web Service, such as the WebLogic Web
Services Client API and WebLogic FastParser. Unlike other Java WebLogic
Server clients, you do not need to include the weblogic.jar file, thus making
for a very thin client. For details on downloading this JAR file, see
“Downloading the Java Client JAR File from the Web Services Home Page”
on page 3-6.

Each Web service has its own Home Page; Web services that share the same servlet
context share this Web page. You use this Web page to get the WSDL and Java client
JAR file for a Web service. See “Invoking the WebLogic Web Services Home Page”
on page 3-4 for details on this Web page and how to invoke it in your browser.

WebLogic Web Services Client API

WebLogic Server includes a client-side Java SOAP API in a Java client JAR file that
you can download from a deployed WebLogic Web Service. Use this API to create
Java client applications that invoke WebLogic Web Services. The examples in this
book, as well as the examples on the product, use this API.
3-2 Programming WebLogic Web Services

Overview of Invoking WebLogic Web Services
Warning: A standard client-side Web Service API specification from the W3C or
JavaSoft is not yet available. Because the WebLogic Web Services client
API has not yet been standardized in the Java community process, BEA
Systems reserves the right to change how it works from one release to
another, and may not be able to make it backward compatible.

The examples in this chapter briefly describe the main classes, interfaces, and methods
of the WebLogic Web Services client API. For detailed documentation on the API, see
the WebLogic Server API Reference and search for the weblogic.soap package.

Client Modes Supported by the WebLogic Web Services
Client API

The WebLogic Web Services client API supports the following two modes of Java
client applications that invoke WebLogic Web Services:

� Static: Static client applications explicitly use the EJB and JavaBean interfaces
and classes that make up the Web service. These types of client applications are
the most type-safe of the two modes supported by WebLogic Server, and are
thus the type recommended by BEA. Additionally, static client applications do
not contain any WebLogic-specific Java code. For an example of a static Java
client application, see “Writing a Static Java Client” on page 3-9.

� Dynamic: Dynamic client applications do not explicitly reference the EJB
interface of the Web service. For an example of a dynamic client application, see
“Writing a Dynamic Java Client” on page 3-11.

Both the static and dynamic client applications described in this chapter use the WSDL
of the Web service. See Appendix D, “Invoking Web Services Without Using the
WSDL File,” for information on creating a client application that does not use the
WSDL.

You can use both static and dynamic client applications to invoke either RPC-style or
message-style Web services.
Programming WebLogic Web Services 3-3

http://e-docs.bea.com/wls/docs61/javadocs/index.html

3 Invoking WebLogic Web Services
Examples of Clients That Invoke WebLogic Web Services

WebLogic Server includes examples of creating both RPC-style and message-style
Web services and examples of both Java and Microsoft VisualBasic client applications
that invoke the Web services.

The examples are located in the BEA_HOME/samples/examples/webservices
directory, where BEA_HOME refers to the main WebLogic Server installation directory.
The RPC-style Web service example is in the rpc directory and the message-style Web
service example is in the message directory.

For detailed instructions on how to build and run the examples, invoke the Web page
BEA_HOME/samples/examples/webservices/package-summary.html in your
browser.

Invoking the WebLogic Web Services Home
Page

The WebLogic Web Services Home Page lists the Web services defined for a
particular servlet context along with the WSDL files and Java client JAR file
associated with each Web service.

Use the following template URL to invoke the WebLogic Web Services Home Page
in your browser:

[protocol]://[host]:[port]/[context]/index.html

where

� protocol refers to the protocol attribute of the <wsgen> element of the
build.xml Ant file used to build the Web service. The two valid values are
http (default) and https.

� host refers to the hostname of the computer which hosts the Web service.

� port refers to the port number of the WebLogic Server instance that hosts the
Web service.
3-4 Programming WebLogic Web Services

Invoking the WebLogic Web Services Home Page
� context refers to the context attribute of the <wsgen> element of the
build.xml Ant file used to build the Web service.

For example, assume that you built a Web service using the following build.xml file:

<project name="myProject" default="wsgen">
 <target name="wsgen">
 <wsgen
 destpath="myWebService.ear"
 context="/myContext"
 protocol="http">
 <rpcservices path="myEJB.jar">
 <rpcservice
 bean="statelessSession"
 uri="/rpc_URI"/>
 </rpcservices>
 <messageservices>
 <messageservice
 name="sendMsgWS"
 action="send"
 destination="examples.soap.msgService.MsgSend"
 destinationtype="topic"
 uri="/sendMsg"
 connectionfactory="examples.soap.msgService.MsgConnectionFactory"/>
 <messageservice
 name="receiveMsgWS"
 action="receive"
 destination="examples.soap.msgService.MsgReceive"
 destinationtype="topic"
 uri="/receiveMsg"
 connectionfactory="examples.soap.msgService.MsgConnectionFactory"/>
 </messageservices>
 </wsgen>
 </target>
</project>

The URL to invoke the WebLogic Web Services Home Page for the /myContext
context on the myHost host at the default port of 7001 is:

http://www.myHost.com:7001/myContext/index.html

Getting the WSDL from the Web Services Home Page

To get the WSDL of a Web service from the Web Services Home Page:
Programming WebLogic Web Services 3-5

3 Invoking WebLogic Web Services
1. Invoke the Web Services Home Page for your context in your browser, as described
in “Invoking the WebLogic Web Services Home Page” on page 3-4.

2. Click the name of the Web service.

3. Click the WSDL File link. The WSDL file for the specified Web service appears
in your browser in plain text.

Downloading the Java Client JAR File from the Web
Services Home Page

WebLogic Server provides a Java client JAR file that contains most of the Java code
you need to create a Java client application that invokes a WebLogic Web Service. In
particular, the JAR file includes the WebLogic implementation of a client-side SOAP
API, which means that you do not have to write the low-level Java code to create and
process SOAP messages.

The Java client JAR file contains the following objects:

� WebLogic FastParser (high-performance XML parser)

� WebLogic Web Services Client API

� Remote interface of the stateless session EJB that implements the RPC-style
Web service

� Class files for any JavaBeans that are used as EJB parameters or return values

� Additional class files specified by the clientjar element of the build.xml
Java Ant build file used to assemble the Web service

Note: BEA does not currently license client functionality separately from the server
functionality, so, if needed, you can redistribute this Java client JAR file to
your own customers.

To download the Java client JAR file to your computer:

1. Invoke the Web Services Home Page for a given context in your browser, as
described in “Invoking the WebLogic Web Services Home Page” on page 3-4.

1. Click the name of the Web service.
3-6 Programming WebLogic Web Services

URLs to Invoke WebLogic Web Services and Get the WSDL
2. Click the Client JAR File link.

3. Specify a directory on your local computer in which to store the Java client JAR
file.

4. Save the JAR file to the specified directory.

5. Update your CLASSPATH to include the Java client JAR file.

URLs to Invoke WebLogic Web Services and
Get the WSDL

WSDL is used by client applications to describe the Web services they invoke.

The full URL to directly access the WSDL of a WebLogic Web Service is:

[protocol]://[host]:[port]/[context]/[WSname]/[WSname].wsdl

where

� protocol refers to the protocol attribute of the <wsgen> element of the
build.xml Ant file used to build the Web service. By default this value is http.

� host refers to the hostname of the computer which hosts the Web service.

� port refers to the port number of the WebLogic Server instance that hosts the
Web service.

� context refers to the context attribute of the <wsgen> element of the
build.xml Ant file used to build the Web service.

� WSname is the name of the Web service:

� For RPC-style Web services, the JNDI name of the stateless session EJB that
implements the Web service.

For example, if the bean attribute in the build.xml file specifies
statelessSession, and the weblogic-ejb-jar.xml contains the
following entry:
Programming WebLogic Web Services 3-7

3 Invoking WebLogic Web Services
<weblogic-enterprise-bean>
 <ejb-name>statelessSession</ejb-name>
 <jndi-name>statelessSession.WeatherHome</jndi-name>
</weblogic-enterprise-bean>

then the WSname value is statelessSession.WeatherHome.

� For message-style Web services, the name of the Web service is specified by
the name attribute of the messageservice element that defines the Web
service in the build.xml file.

For example, using the sample build.xml file listed in “Invoking the WebLogic Web
Services Home Page” on page 3-4, the URL to access the WSDL for the RPC-style
Web service is:

http://www.myHost.com:7001/myContext/statelessSession.WeatherHome/statelessSess
ion.WeatherHome.wsdl

Similarly, the URLs to access the WSDL for the two message-style Web services are:

http://www.myHost.com:7001/myContext/sendMsgWS/sendMsgWS.wsdl
http://www.myHost.com:7001/myContext/receiveMsgWS/receiveMsgWS.wsdl

Creating a Client to Invoke an RPC-Style
WebLogic Web Service

This section describes how to invoke an RPC-style Web service from two types of
clients: Java and Microsoft SOAP ToolKit.

The examples in this section invoke an RPC-style Web service that is based on the
Trader stateless session EJB described in the
examples.ejb.basic.statelessSession WebLogic Server example.

Writing a Java Client

Creating a Java client application to invoke a WebLogic Web Service is simple
because almost all of the Java code you need is provided by WebLogic Server and
packaged in a Java client JAR file that you can download onto your client computer.
3-8 Programming WebLogic Web Services

Creating a Client to Invoke an RPC-Style WebLogic Web Service
This section describes two modes of client applications: static and dynamic. Use a
static client if you have the Java interfaces of the EJB and JavaBean parameters and
return types, and want to use them directly in your client Java code. Use a dynamic
client if you do not have the interfaces.

Writing a Static Java Client

The following example shows a simple static Java client that invokes an RPC-style
Web service based on the examples.ejb.basic.statelessSession EJB example
in WebLogic Server.

The example uses the URL
http://www.myhost.com:7001/myContext/statelessSession/statelessSession.wsdl to
get the WSDL of the Web Service. For details on how to construct this URL and an
example of the build.xml file used to create the RPC-style Web service, refer to
“URLs to Invoke WebLogic Web Services and Get the WSDL” on page 3-7.

The procedure after the example discusses relevant sections of the example as part of
the basic steps you must follow to create this client.

import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;

import examples.ejb.basic.statelessSession.Trader;
import examples.ejb.basic.statelessSession.TradeResult;

public class Client{

 public static void main(String[] arg) throws Exception

 Properties h = new Properties();

 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");

 h.put("weblogic.soap.wsdl.interface",
 Trader.class.getName());

 Context context = new InitialContext(h);

 Trader service = (Trader)context.lookup(
 "http://www.myHost.com:7001/myContext/statelessSession/statelessSession.wsdl"
);

 TradeResult result = (TradeResult)service.buy("BEAS", 100);
Programming WebLogic Web Services 3-9

3 Invoking WebLogic Web Services
 System.out.print(result.getStockSymbol());
 System.out.print(":");
 System.out.println(result.getNumberTraded());
 }
}

The Java code to statically invoke a WebLogic Web Service is similar to remote
method invocation (RMI) client code that invokes EJBs. The main differences are:

� You do not need to look up and invoke the Home interface of the service.

� The Web service client uses a SOAP-specific INITIAL_CONTEXT_FACTORY.

� The Web service client specifies the interface in the parameters to the
INITIAL_CONTEXT_FACTORY.

Follow these steps to create a static Java client that invokes an RPC-style WebLogic
Web Service:

1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web
Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page” on page 3-6.

2. Add the Java client JAR file to your CLASSPATH on your client computer.

3. Create the client Java program. The following steps point out the Web
service-specific parts of the Java code:

a. Within the main method of your client application, add the following Java code
to initialize the client so it can interact with the Web service:

Properties h = new Properties();

h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");

h.put("weblogic.soap.wsdl.interface",
 Trader.class.getName());

Context context = new InitialContext(h);

Trader service = (Trader)context.lookup(
"http://www.myHost.com:7001/myContext/statelessSession/state
lessSession.wsdl");
3-10 Programming WebLogic Web Services

Creating a Client to Invoke an RPC-Style WebLogic Web Service
In the example, Trader is the public interface to the EJB. Refer to “URLs to
Invoke WebLogic Web Services and Get the WSDL” on page 3-7 for details
on how to construct the URL used in the context.lookup() method.

b. Invoke a Web service operation by executing a public method of the EJB, as
shown in the following example:

TradeResult result = (TradeResult)service.buy("BEAS", 100);

The client executes the buy() method of the Trader EJB. The returned
value is a TraderResult JavaBean object. To find out the public methods of
the Trader EJB, either examine the returned WSDL of the Web service, or
un-JAR the downloaded Java client JAR file and use the javap utility to list
the methods of the Trader interface.

c. Use the get methods of the returned TraderResult JavaBean to get the
returned results. To find out the methods of the TraderResult class, unJAR
the Java client jar file and use the javap utility to list the methods of the
TraderResult class.

System.out.print(result.getStockSymbol());
System.out.print(":");
System.out.println(result.getNumberTraded());

4. Compile and run the client Java program as usual.

Writing a Dynamic Java Client

The following example shows a simple dynamic Java client that invokes an RPC-style
Web service based on the examples.ejb.basic.statelessSession EJB example
in WebLogic Server.

The example uses the URL
http://www.myhost.com:7001/myContext/statelessSession/statelessSession.wsdl to
get the WSDL of the Web Service. For details on how to construct this URL and an
example of the build.xml file used to create the RPC-style Web service, refer to
“URLs to Invoke WebLogic Web Services and Get the WSDL” on page 3-7.

The procedure after the example discusses relevant sections of the example as part of
the basic steps you must follow to create this client.

import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
Programming WebLogic Web Services 3-11

3 Invoking WebLogic Web Services
import examples.ejb.basic.statelessSession.TradeResult;

import weblogic.soap.WebServiceProxy;
import weblogic.soap.SoapMethod;

public class DynamicClient{

 public static void main(String[] arg) throws Exception{

 Properties h = new Properties();

 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");

 Context context = new InitialContext(h);

 WebServiceProxy proxy = (WebServiceProxy)context.lookup(

"http://www.myHost.com:7001/myContext/statelessSession/statelessSession.wsdl");

 SoapMethod method = proxy.getMethod("buy");

 TradeResult result = (TradeResult)method.invoke(
 new Object[]{ "BEAS", new Integer(100) });

 System.out.print(result.getStockSymbol());
 System.out.print(":");
 System.out.println(result.getNumberTraded());
 }
}

Follow these steps to create a dynamic Java client that invokes an RPC-style
WebLogic Web Service:

1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web
Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page” on page 3-6.

2. Add the Java client JAR file to your CLASSPATH on your client computer.

3. Create the client Java program. The following steps point out the Web
service-specific parts of the Java code:

a. Within the main method of your client application, add the following Java code
to initialize the client so it can interact with the Web service:

Properties h = new Properties();
3-12 Programming WebLogic Web Services

Creating a Client to Invoke an RPC-Style WebLogic Web Service
h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");

Context context = new InitialContext(h);

WebServiceProxy proxy = (WebServiceProxy)context.lookup(
"http://www.myHost.com:7001/myContext/statelessSession/state
lessSession.wsdl");

In the example, the context.lookup() method returns a generic
WebServiceProxy object rather than a specific Trader object; this makes
the example more dynamic because WebServiceProxy can represent any
EJB object. Refer to “URLs to Invoke WebLogic Web Services and Get the
WSDL” on page 3-7 for details on how to construct the URL used in the
context.lookup() method.

b. Invoke the Web service operation by executing a public method of the EJB, as
shown in the following example:

SoapMethod method = proxy.getMethod("buy");

TradeResult result = (TradeResult)method.invoke(
 new Object[]{ "BEAS", new Integer(100) });

The client indirectly executes the buy() method of the Trader EJB using
the invoke() method. The returned value is a TraderResult JavaBean
object. To find out the public methods of the Trader EJB, either examine the
returned WSDL of the Web service or unJAR the downloaded Java client jar
and use the javap utility to list the methods of the Trader interface.

c. Use the get methods of the returned TraderResult JavaBean to get the
returned results. To find out the methods of the TraderResult class, unJAR
the Java client jar file and use the javap utility to list the methods of the
TraderResult class.

System.out.print(result.getStockSymbol());
System.out.print(":");
System.out.println(result.getNumberTraded());

4. Compile and run the client Java program as usual.

Writing a Microsoft SOAP Toolkit Client

You can invoke WebLogic Web Services from Microsoft Visual Basic applications by
using the client-side components provided by the Microsoft SOAP ToolKit.
Programming WebLogic Web Services 3-13

3 Invoking WebLogic Web Services
Note: WebLogic Server 6.1 supports only version 2.0sp2 of Microsoft SOAP
ToolKit

The following sample Visual Basic code shows a simple example of invoking the
WebLogic Web Service described by the examples.webservices.rpc example:

SET soapclient = CreateObject("MSSOAP.SoapClient")

Call soapclient.mssoapinit(

"http://myhost:7001/weather/statelessSession.WeatherHome/statelessSession.Weath
erHome.wsdl", "Weather", "WeatherPort")

wscript.echo soapclient.getTemp(94117)

To invoke a WebLogic Web Service from a Visual Basic application using the
Microsoft SOAP ToolKit, follow these main steps:

1. Instantiate a SoapClient object in your Visual Basic application.

2. Initialize the SoapClient object by executing the SoapClient.mssoapinit()
method, passing it the following parameters:

� URL of the WSDL of the WebLogic Web Service. See “URLs to Invoke
WebLogic Web Services and Get the WSDL” on page 3-7 for details on
constructing this URL.

� Name of the Web service, identified by the name attribute of the service
element in the WSDL file.

� Port of the Web service, identified by the name attribute of the port element
in the WSDL file.

After the SoapClient object is initialized, all the methods defined in the WSDL
are dynamically bound to the SoapClient object.

3. Execute the WebLogic Web Service method.
3-14 Programming WebLogic Web Services

Creating a Java Client to Invoke a Message-Style WebLogic Web Service
Creating a Java Client to Invoke a
Message-Style WebLogic Web Service

This section describes how to invoke message-style Web services from a Java client
application.

Creating a Java client application to invoke a message-style WebLogic Web Service is
simple because almost all of the Java code you need is provided by WebLogic Server
and packaged in a Java client JAR file that you can download onto your client
computer.

This section describes two types of Java clients: one that invokes a message-style Web
service that sends data to WebLogic Server and one that invokes a message-style Web
service that receives data. Both examples show how to create a dynamic Java client.

Note: The send and receive actions are from the perspective of the client application.

It is assumed that the two message-style Web services in the examples were assembled
using the following build.xml file:

<project name="myProject" default="wsgen">
 <target name="wsgen">
 <wsgen
 destpath="messageExample.ear"
 context="/msg"
 protocol="http" >
 <messageservices>
 <messageservice
 action="send"
 name="Sender"
 destination="examples.soap.msgService.MsgSend"
 destinationtype="topic"
 uri="/sendMsg"
 connectionfactory="examples.soap.msgService.MsgConnectionFactory"/>
 <messageservice
 action="receive"
 name="Receiver"
 destination="examples.soap.msgService.MsgReceive"
 destinationtype="topic"
 uri="/receiveMsg"
 connectionfactory="examples.soap.msgService.MsgConnectionFactory"/>
Programming WebLogic Web Services 3-15

3 Invoking WebLogic Web Services
 </messageservices>
 </wsgen>
 </target>
</project>

The build.xml file shows two message-style Web services: one named Sender that
client applications use to send data to a JMS topic with the JNDI name
examples.soap.msgService.MsgSend and one named Receiver that client
applications use to receive data from a JMS topic with the JNDI name
examples.soap.msgService.MsgReceive. Both message-style Web services use
the same ConnectionFactory to create the JMS connection:
examples.soap.msgService.MsgConnectionFactory.

Sending Data to a Message-Style Web Service

This section describes how to create a dynamic Java client application that invokes a
Web service to send data to WebLogic Server. For the sake of simplicity, the example
sends a String data type that will contain the data.

Note: For a more complex example that shows how to send a
org.w3c.dom.Document, org.w3c.dom.DocumentFragment, or
org.w3c.dom.Element data type to the send method, see Appendix D,
“Invoking Web Services Without Using the WSDL File.”

Message-style Web services that send data to WebLogic Server define a single method
called send; this is the only method you need to invoke from your Java client
application. The send method takes a single parameter: the actual data. The data type
can be anything you want: a String (used in the example), a DOM tree, an
InputStream, etc. The data will eventually end up on the JMS destination you specify
in the build.xml file used to assemble the Web service.

The example uses the URL http://localhost:7001/msg/Sender/Sender.wsdl
to get the WSDL of the Web Service. For details on how to construct this URL, refer
to “URLs to Invoke WebLogic Web Services and Get the WSDL” on page 3-7.

The procedure after the example discusses relevant sections of the example as part of
the basic steps you follow to create this client.

package examples.soap;

import java.util.Properties;
import java.net.URL;
3-16 Programming WebLogic Web Services

Creating a Java Client to Invoke a Message-Style WebLogic Web Service
import javax.naming.Context;
import javax.naming.InitialContext;

import weblogic.soap.WebServiceProxy;
import weblogic.soap.SoapMethod;
import weblogic.soap.SoapType;
import weblogic.soap.codec.CodecFactory;
import weblogic.soap.codec.SoapEncodingCodec;

public class ProducerClient{

 public static void main(String[] arg) throws Exception{

 Properties h = new Properties();

 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");
 h.put("weblogic.soap.verbose", "true");

 CodecFactory factory = CodecFactory.newInstance();
 factory.register(new SoapEncodingCodec());
 h.put("weblogic.soap.encoding.factory", factory);

 Context context = new InitialContext(h);

 WebServiceProxy proxy = (WebServiceProxy)context.lookup(
 "http://localhost:7001/msg/Sender/Sender.wsdl");
 SoapMethod method = proxy.getMethod("send");

 String toSend = arg.length == 0 ? "No arg to send" : arg[0];
 Object result = method.invoke(new Object[]{ toSend });

 }

}

Follow these steps to create a dynamic Java client that invokes a message-style
WebLogic Web Service that sends data to WebLogic Server:

1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web
Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page” on page 3-6.

2. Add the Java client JAR file to your CLASSPATH on your client computer.

3. Create the client Java program. The following steps point out the Web
service-specific parts of the Java code:
Programming WebLogic Web Services 3-17

3 Invoking WebLogic Web Services
a. In the main method of your client application, create a Properties object and
set some of the initial context properties:

 Properties h = new Properties();

 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");
 h.put("weblogic.soap.verbose", "true");

b. Create a factory of encoding styles and register the SOAP encoding style:

 CodecFactory factory = CodecFactory.newInstance();
 factory.register(new SoapEncodingCodec());
 h.put("weblogic.soap.encoding.factory", factory);

c. Create the initial context, use the WSDL to look up the Web service, then get
the send method:

 Context context = new InitialContext(h);

 WebServiceProxy proxy = (WebServiceProxy)context.lookup(
 "http://localhost:7001/msg/Sender/Sender.wsdl");
 SoapMethod method = proxy.getMethod("send");

d. Invoke the send method and send data to the Web service. In the example, the
client application simply takes its first argument and sends it as a String; if the
user does not specify an argument specified, then the client application sends
the string No arg to send:

 String toSend = arg.length == 0 ? "No arg to send" : arg[0];
 Object result = method.invoke(new Object[]{ toSend });

4. Compile and run the client Java program as usual.

Receiving Data From a Message-Style Web Service

This section describes how to create a dynamic Java client application that invokes a
Web service to receive data from WebLogic Server.

Message-style Web services that receive data from WebLogic Server define a single
method called receive; this is the only method you need to invoke from your Java
client application. The receive method takes no input parameters. It returns a generic
Java object that contains the data that the Web service got from the JMS destination
you specify in the build.xml file used to assemble the Web service.
3-18 Programming WebLogic Web Services

Creating a Java Client to Invoke a Message-Style WebLogic Web Service
The example in this section uses the URL
http://localhost:7001/msg/Receiver/Receiver.wsdl to get the WSDL of the
Web Service. For details on how to construct this URL, refer to “URLs to Invoke
WebLogic Web Services and Get the WSDL” on page 3-7.

The procedure after the example discusses relevant sections of the example as part of
the basic steps you follow to create this client.

package examples.soap;

import java.util.Properties;
import java.net.URL;
import javax.naming.Context;
import javax.naming.InitialContext;

import weblogic.soap.WebServiceProxy;
import weblogic.soap.SoapMethod;
import weblogic.soap.SoapType;
import weblogic.soap.codec.CodecFactory;
import weblogic.soap.codec.SoapEncodingCodec;

public class ConsumerClient{

 public static void main(String[] arg) throws Exception{

 Properties h = new Properties();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");
 h.put("weblogic.soap.verbose", "true");

 CodecFactory factory = CodecFactory.newInstance();
 factory.register(new SoapEncodingCodec());
 h.put("weblogic.soap.encoding.factory", factory);

 Context context = new InitialContext(h);

 WebServiceProxy proxy = (WebServiceProxy)context.lookup(
 "http://localhost:7001/msg/Receiver/Receiver.wsdl");
 SoapMethod method = proxy.getMethod("receive");

 while(true){
 Object result = method.invoke(null);
 System.out.println(result);
 }
 }
}

Follow these steps to create a dynamic Java client that invokes a message-style
WebLogic Web Service that receives data from WebLogic Server:
Programming WebLogic Web Services 3-19

3 Invoking WebLogic Web Services
1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web
Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page” on page 3-6.

2. Add the Java client JAR file to your CLASSPATH on your client computer.

3. Create the client Java program. The following steps point out the Web
service-specific parts of the Java code:

a. In the main method of your client application, create a Properties object and
set some of the initial context properties:

 Properties h = new Properties();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");
 h.put("weblogic.soap.verbose", "true");

b. Create a factory of encoding styles and register the SOAP encoding style:

 CodecFactory factory = CodecFactory.newInstance();
 factory.register(new SoapEncodingCodec());
 h.put("weblogic.soap.encoding.factory", factory);

c. Create the initial context, use the WSDL to look up the Web service , then get
the receive method:

 Context context = new InitialContext(h);

 WebServiceProxy proxy = (WebServiceProxy)context.lookup(
 "http://localhost:7001/msg/Receiver/Receiver.wsdl");
 SoapMethod method = proxy.getMethod("receive");

d. Invoke the receive method to receive data from the Web service. In the
example, the client application uses an infinite while loop to continuously
invoke the receive method, in essence polling the JMS destination for
messages. When the receive method returns data, the client application prints
the result to the standard output:

 while(true){
 Object result = method.invoke(null);
 System.out.println(result);

4. Compile and run the client Java program as usual.
3-20 Programming WebLogic Web Services

Handling Exceptions from WebLogic Web Services
Handling Exceptions from WebLogic Web
Services

If an exception occurs while WebLogic Server is executing a Web service, the client
application that invoked the Web service receives a run-time
weblogic.soap.SoapFault exception that describes a standard SOAP fault.

The following types of exceptions in WebLogic Server could produce a run-time
SoapFault exception in the client application:

� An exception from the stateless session EJB that implements an RPC-style Web
service

� An exception from the SOAP servlets that handle the SOAP messages between
the client application and WebLogic Web Services

� A JMS exception

If your client application receives a SoapFault exception, use the following methods
of weblogic.soap.SoapFault to examine it:

� getFaultCode()—returns the SOAP faultcode.

� getFaultString()—returns the name of the class or interface that raised the
exception in WebLogic Server. For example, if the stateless session EJB that
comprises an RPC-style Web service raised an exception, the
getFaultString() method returns the interface of this EJB.

� printStackTrace()—returns the stack trace of the exception.

The following excerpt from a Java client application shows an example of using
weblogic.soap.SoapFault to examine any errors that occurred on WebLogic
Server:

import weblogic.soap.SoapFault;

...

 try {
 TradeResult result = (TradeResult)method.invoke(
 new Object[]{ "BEAS", new Integer(100) });
Programming WebLogic Web Services 3-21

3 Invoking WebLogic Web Services
 System.out.print(result.getStockSymbol());
 System.out.print(":");
 System.out.println(result.getNumberTraded());
 } catch (SoapFault fault){
 System.out.println("Ooops, got a fault: " + fault);
 fault.printStackTrace();
 }

Initial Context Factory Properties for
Invoking Web Services

The following table lists the Java properties you can set with the Properties object
when you use the WebLogic-generated Java client JAR file in your Java client
applications to invoke a WebLogic Web Service.

Note: The properties are passed to the initial context factory; these are not Java
system properties.

Table 3-1 Initial Context Factory Properties for Invoking Web Services

Property Description

weblogic.soap.wsdl.interface Specifies the interface of the stateless session EJB upon which
the Web service is based.

weblogic.soap.verbose When set to true, the SOAP packet generated by the Java
client to invoke a WebLogic Web Service is output to the
client.

Valid values are true and false (default).

weblogic.soap.encoding.factory Specifies the CodecFactory that contains the encoders and
decoders to convert between XML and Java data.

Valid values are instances of
weblogic.soap.codec.CodecFactory.

java.naming.factory.initial Specifies the initial SOAP context factory.

Valid values are instances of
weblogic.soap.http.SoapInitialContextFacto
ry
3-22 Programming WebLogic Web Services

Additional Classes Needed by Clients Invoking WebLogic Web Services
Additional Classes Needed by Clients
Invoking WebLogic Web Services

WebLogic Web Services support the following two encoding styles:

� http://schemas.xmlsoap.org/soap/encoding/

� http://xml.apache.org/xml-soap/literalxml

If your Java client application uses the SOAP encoding, then the Java client JAR file
that you download from WebLogic Server includes all the classes you need to invoke
a WebLogic Web Service.

However, if your client application uses the Literal XML encoding from Apache, then
the Java client JAR file does not include all the files you need. The client JAR file is
meant to be small, and adding all these classes to the JAR file would make it very large.

The following list shows some of the additional classes you might need to include:

� weblogic.apache.Xerces.*

� weblogic.xml.jaxp.*

� org.w3c.dom.*

� org.w3c.sax.*

� javax.xml.parsers.*

You can include these classes by either setting your CLASSPATH environment
variable to their location when you run the client application or by using the
clientjar element in the build.xml file when assembling the Web service using the
wsgen Java Ant task.

java.naming.security.principal Specifies the user name when setting HTTP security.

java.naming.security.credentials Specifies the user password when setting HTTP security.

Table 3-1 Initial Context Factory Properties for Invoking Web Services

Property Description
Programming WebLogic Web Services 3-23

3 Invoking WebLogic Web Services
To get the complete list of classes your client application needs, compile the
application and then execute it with the -verbose flag, which will list all the classes
it needs.
3-24 Programming WebLogic Web Services

CHAPTER
4 Administering
WebLogic Web Services

The following sections describe tasks for administering WebLogic Web Services:

� “Overview of Administering WebLogic Web Services” on page 4-1

� “Viewing the Web Services Deployed on WebLogic Server” on page 4-3

Overview of Administering WebLogic Web
Services

Once you have developed, assembled, and deployed a WebLogic Web Service, you
can use the Administration Console to perform the following administrative task:

� View the Web services currently deployed on WebLogic Server.

Invoking the Administration Console

To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where
Programming WebLogic Web Services 4-1

4 Administering WebLogic Web Services
� host refers to the computer on which WebLogic Administration server is
running.

� port refers to the port number where WebLogic Administration server is
listening for connection requests. The default port number for WebLogic
Administration server is 7001.

The following figure shows the main Administration Console window.
4-2 Programming WebLogic Web Services

Viewing the Web Services Deployed on WebLogic Server
Viewing the Web Services Deployed on
WebLogic Server

To view all the Web services that are deployed on WebLogic Server, and then view the
properties of a particular Web service, follow these steps:

1. Start the WebLogic Administration server and invoke the Administration Console
in your browser. See “Invoking the Administration Console” on page 4-1 for
detailed information.

2. In the left pane, click to expand the Deployments node.

3. Click to expand the Applications node. A list of Enterprise applications appears
below the node.

4. To determine which of the listed Enterprise applications is deployed as a Web
service, follow these steps for each Enterprise application:

a. Click to expand the Enterprise application. The list of components that make
up the application, including Web applications and EJBs, appears below the
name of the application.

b. Look for a Web application component called web-services, which is the
default name of the Web application that contains the SOAP servlets for Web
services.

The following figure shows three Enterprise applications: messageExample,
messageReceive, and weather, each of which include a web-services
Web application. This indicates that the three applications are deployed as
Web services. The right pane displays information about the weather Web
service.
Programming WebLogic Web Services 4-3

4 Administering WebLogic Web Services
c. If you find a Web application called web-services, right-click on it in the left
pane and chose Edit Descriptor from the drop-down menu. The Deployment
Descriptor Editor for the web-services Web application deployment
descriptors appears in a new browser window.

d. In the left pane of the Deployment Descriptor Editor, see if the RPC Services
node under the Web Services node contains an entry. If it does, then the
Enterprise application is deployed as an RPC-style Web service. Similarly, if
the Message Services node contains an entry, then the Enterprise application is
deployed as a message-style Web service.

e. Click on the entry in either the Message Service or RPC Service node to view
the properties of the Web service.
4-4 Programming WebLogic Web Services

Viewing the Web Services Deployed on WebLogic Server
f. If you do not find a Web application called web-services, it is still possible
that the Enterprise application is deployed as a Web service, but the Web
application that contains the SOAP servlet has been named something other
than the default web-services. In this case, you must check the deployment
descriptors of each Web application contained in the Enterprise application to
see if there are any entries under the Web services node, as described in Steps
c through e of this procedure.
Programming WebLogic Web Services 4-5

4 Administering WebLogic Web Services
4-6 Programming WebLogic Web Services

CHAPTER
5 Troubleshooting

The following sections describe troubleshooting topics related to WebLogic Web
Services:

� “Turning on Verbose Mode” on page 5-1

� “java.io.FileNotFoundException” on page 5-2

� “Unable to Parse Exception” on page 5-4

� “java.lang.NullPointerException” on page 5-6

� “java.net.ConnectException” on page 5-7

Turning on Verbose Mode

Use the weblogic.soap.verbose initial context factory property in your client
application to print out the SOAP messages that pass between WebLogic Server and
the client application, as well as any errors produced by WebLogic Server.

In the following example, a client application that invokes a WebLogic Web Service
has the weblogic.soap.verbose initial context factory property set to true to enable
verbose mode:

Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.soap.http.SoapInitialContextFactory");
h.put("weblogic.soap.verbose", "true");

The output is printed to the shell from which you execute the client application. Use
this output to troubleshoot problems you encounter while invoking a Web service.
Programming WebLogic Web Services 5-1

5 Troubleshooting
java.io.FileNotFoundException

Problem

Your client application, while attempting to invoke a WebLogic Web Service, throws
the java.io.FileNotFoundException exception.

Explanation

The problem could be caused by the following:

� The WebLogic Web Service is not currently deployed on WebLogic Server.

� The Web application that contains the SOAP servlets is not targeted for the
correct instance of WebLogic Server.

� If you are invoking an RPC-style Web service, the stateless session EJB that
implements the Web service is not targeted for the correct instance of WebLogic
Server.

� If you are invoking a message-style Web service, the JMS Server or Connection
Factory is not targeted for the correct instance of WebLogic Server.

The output from a java.io.FileNotFoundException error might look like the
following:

Exception in thread "main" javax.naming.NamingException: i/o failed
java.io.FileNotFoundException:
http://localhost:7001/weather/statelessSession.WeatherHome/statelessSession.Wea
therHome.wsdl.
Root exception is java.io.FileNotFoundException:
http://localhost:7001/weather/statelessSession.WeatherHome/statelessSession.Wea
therHome.wsdl
 at
sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.ja
va:574)
 at weblogic.soap.WebServiceProxy.getXMLStream(WebServiceProxy.java:553)
 at weblogic.soap.WebServiceProxy.getServiceAt(WebServiceProxy.java:172)
 at weblogic.soap.http.SoapContext.lookup(SoapContext.java:64)
5-2 Programming WebLogic Web Services

java.io.FileNotFoundException
 at javax.naming.InitialContext.lookup(InitialContext.java:350)
 at examples.webservices.rpc.javaClient.Client.main(Client.java:34)

Suggested Solution

If this error occurs when you attempt to invoke a WebLogic Web Service, follow these
steps to ensure that the Web service and its components are correctly deployed and
targeted:

1. Invoke the Administration Console in your browser. See “Invoking the
Administration Console” on page 4-1 for details.

2. In the left pane, click to expand the Applications node under the Deployments
node.

3. Click on the Enterprise Application that corresponds to the WebLogic Web
Service that you are attempting to invoke.

4. In the right pane, if the Deployed check box is not selected, select it and click the
Apply button.

5. In the left pane, under the Enterprise application that corresponds to your Web
service, click the Web application that contains the SOAP servlets. The default
name of this Web application is web-services.

6. In the right pane, select the Targets tab.

7. If it is not already there, move the name of the WebLogic Server instance on
which the Web application should be running from the Available to the Chosen
list box. Click Apply.

8. If you are attempting to invoke an RPC-style WebLogic Web Service, follow these
steps:

a. In the left pane, under the Enterprise application that corresponds to your Web
service, click on the name of the EJB jar file.

b. In the right pane, select the Targets tab.

c. If it is not already there, move the name of the WebLogic Server instance on
which the EJB should be running from the Available to the Chosen list box and
click Apply.
Programming WebLogic Web Services 5-3

5 Troubleshooting
If you are attempting to invoke a message-style Web service, follow these steps:

a. In the left pane, click to expand the JMS node under the Services node.

b. Click to expand the Connection Factories node.

c. In the right pane, click the name of the JMS Connection Factory that you
configured for the message-style Web service that you are trying to invoke.

d. Select the Targets tab.

e. If it is not already there, move the name of the WebLogic Server instance for
which the Connection Factory should be targeted from the Available to the
Chosen list box. Click Apply.

f. In the right pane, click to expand the Servers node under the JMS node.

g. Click the name of the JMS server which your message-style Web service is
using.

h. In the right pane, select the Targets tab.

i. If it is not already there, move the name of the WebLogic Server for which the
JMS Server is targeted from the Available to the Chosen list box and click
Apply.

Unable to Parse Exception

Problem

The client application receives an “Unable to Parse” exception.
5-4 Programming WebLogic Web Services

Unable to Parse Exception
Explanation

The client API used to invoke Web Services uses the WebLogic FastParser to parse the
WSDL and SOAP messages from the invoked Web service. If the WSDL or SOAP
message from the Web service is not well-formed, the client application might receive
an Unable to Parse error.

For example, if a Web service’s WSDL file is not well-formed because of an element
specifying two attributes with the same name, the client application produces the
following error:

Exception in thread "main" javax.naming.NamingException: unable to parse
org.xml.sax.SAXException: Attributes may not have the same name, more than
one xmlns:tns.
Root exception is org.xml.sax.SAXException: Attributes may not have the same name,
more than one xmlns:tns
 at
weblogic.xml.babel.baseparser.SAXElementFactory.createAttributes(SAXEleme
ntFactory.java:42)
 at
weblogic.xml.babel.baseparser.StreamElementFactory.createStartElementEven
t(StreamElementFactory.java:39)
 at
weblogic.xml.babel.parsers.StreamParser.streamParseSome(StreamParser.java:113)
 at
weblogic.xml.babel.parsers.BabelXMLEventStream.parseSome(BabelXMLEventStr
eam.java:46)
 at
weblogicx.xml.stream.XMLEventStreamBase.hasNext(XMLEventStreamBase.java:135)
 at
weblogicx.xml.stream.XMLEventStreamBase.hasStartElement(XMLEventStreamBase.java
:241)
 at
weblogicx.xml.stream.XMLEventStreamBase.startElement(XMLEventStreamBase.java:23
4)

 at weblogic.soap.wsdl.binding.Definition.parse(Definition.java:121)
 at weblogic.soap.WebServiceProxy.getServiceAt(WebServiceProxy.java:171)
 at weblogic.soap.http.SoapContext.lookup(SoapContext.java:64)
 at javax.naming.InitialContext.lookup(InitialContext.java:350)
 at examples.webservices.rpc.javaClient.Client.main(Client.java:34)
Programming WebLogic Web Services 5-5

5 Troubleshooting
Suggested Solution

Contact the Web service provider to ensure that the Web service produces well-formed
WSDL and SOAP messages.

java.lang.NullPointerException

Problem

Your client application gets a java.lang.NullPointerException error in the
methods in the weblogic.soap.wsdl.binding.* classes.

Explanation

One possible explanation is that the Web service’s WSDL or SOAP messages,
although possibly well-formed, are not valid.

For example, if the Web service’s WSDL references an inputs element rather than
the correct input, then the client application produces the following error:

was expecting 'input|output' but got:inputs
was expecting 'operation|input|output' but got:inputs
Exception in thread "main" java.lang.NullPointerException
 at weblogic.soap.wsdl.binding.Operation.getInputName(Operation.java:35)
 at
weblogic.soap.wsdl.binding.BindingOperation.populate(BindingOperation.jav
a:49)
 at weblogic.soap.wsdl.binding.Binding.populate(Binding.java:48)
 at weblogic.soap.wsdl.binding.Definition.populate(Definition.java:116)
 at weblogic.soap.WebServiceProxy.getServiceAt(WebServiceProxy.java:174)
 at weblogic.soap.http.SoapContext.lookup(SoapContext.java:64)
 at javax.naming.InitialContext.lookup(InitialContext.java:350)
 at examples.webservices.rpc.javaClient.Client.main(Client.java:34)
5-6 Programming WebLogic Web Services

java.net.ConnectException
Suggested Solution

Contact the Web service host and ensure that the Web service produces valid WSDL
and SOAP messages.

java.net.ConnectException

Problem

Your client application gets a java.net.ConnectException.

Explanation

One possible explanation is that the Web service is unreachable. In particular:

� If the client application is attempting to invoke a WebLogic Web Service, the
application receives a Connection refused error if WebLogic Server is not
currently running.

� If the client application is attempting to invoke a non-WebLogic Web Service,
the application receives an Operation timed out error after a few minutes if
the host is unreachable for any reason.

For example, if the client application attempts to invoke a WebLogic Web Service
from a WebLogic Server instance that is currently not running, the application receives
the following error:

Exception in thread "main" javax.naming.NamingException: i/o failed
java.net.ConnectException: Connection refused: connect.
Root exception is java.net.ConnectException: Connection refused: connect
 at java.net.PlainSocketImpl.socketConnect(Native Method)
 at java.net.PlainSocketImpl.doConnect(FancyJulietImpl.java:320)
 at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:133)
 at java.net.PlainSocketImpl.connect(FancySchmancyBeverleyImpl.java:120)
 at java.net.Socket.<init>(Socket.java:273)
 at java.net.Socket.<init>(Socket.java:100)
Programming WebLogic Web Services 5-7

5 Troubleshooting
 at sun.net.NetworkClient.doConnect(NetworkClient.java:50)
 at sun.net.www.http.HttpClient.openServer(HttpClient.java:331)
 at sun.net.www.http.HttpClient.openServer(HttpClient.java:517)
 at sun.net.www.http.HttpClient.<init>(HttpClient.java:267)
 at sun.net.www.http.HttpClient.<init>(HttpClient.java:277)
 at sun.net.www.http.HttpClient.New(HttpClient.java:289)
 at
sun.net.www.protocol.http.HttpURLConnection.connect(HttpURLConnection.java:408)
 at
sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.ja
va:501)
 at weblogic.soap.WebServiceProxy.getXMLStream(WebServiceProxy.java:553)
 at weblogic.soap.WebServiceProxy.getServiceAt(WebServiceProxy.java:172)
 at weblogic.soap.http.SoapContext.lookup(SoapContext.java:64)
 at javax.naming.InitialContext.lookup(InitialContext.java:350)
 at examples.webservices.rpc.javaClient.Client.main(Client.java:34)

Suggested Solution

Either restart WebLogic Server, or contact the Web service host and ensure that the
Web service is reachable.

For information about starting WebLogic Server, see WebLogic Server Administration
Guide at http://e-docs.bea.com/wls/docs61/adminguide/startstop.html.
5-8 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html

CHAPTER
6 Interoperability

The following sections describe interoperability issues that surfaced when testing
WebLogic Web services with other clients during the Round 2 SOAP Interoperability
Tests :

� “.NET Client Interoperating With a 6.1 WebLogic Web Service” on page 6-1

� “7.X WebLogic Client Interoperating with a 6.1 WebLogic Web Service” on
page 6-2

.NET Client Interoperating With a 6.1
WebLogic Web Service

When a .NET client invokes the array-based methods of the Round 2 SOAP
Interoperability Tests on a 6.1 WebLogic Web service, the returned data does not
contain any of the array elements.

The array-based methods are:

� echoStringArray

� echoIntegerArray

� echoFloatArray

� echoStructArray
Programming WebLogic Web Services 6-1

6 Interoperability
7.X WebLogic Client Interoperating with a
6.1 WebLogic Web Service

When a client application that uses the stubs created by the 7.0 clientgen Ant task
invokes the echoStructArray method of the Round 2 SOAP Interoperability Tests
running on a 6.1 WebLogic Web service, the returned data does not contain the correct
array elements.
6-2 Programming WebLogic Web Services

APPENDIX
A Specifications
Supported by
WebLogic Web Services

The following sections describe the specifications supported by WebLogic Web
Services:

� SOAP 1.1 Specification

� SOAP Messages With Attachments Specification

� Web Services Description Language (WSDL) 1.1 Specification

SOAP 1.1 Specification

Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol for
exchanging information in a decentralized, distributed environment. The protocol
consists of three parts: an envelope that contains a message, a description of the
message, and how to process it; a set of encoding rules for expressing instances of
application-defined data types; and a convention for representing remote procedure
calls and responses.

The SOAP 1.1 specification is available at http://www.w3.org/TR/SOAP.
Programming WebLogic Web Services A-1

http://www.w3.org/TR/SOAP

A Specifications Supported by WebLogic Web Services
SOAP Messages With Attachments
Specification

A SOAP message may need to reference an attached file, often in binary format, such
as an image or spreadsheet file. The SOAP Messages with Attachments specification
describes a standard way to associate a SOAP message with one or more attachments
in their native format in a multipart MIME structure for transport.

Note: WebLogic Web Services currently ignore the actual attachment of a SOAP
with attachments message.

The SOAP Messages with Attachment specification is available at
http://www.w3.org/TR/SOAP-attachments.

Web Services Description Language (WSDL)
1.1 Specification

WSDL is an XML-based language that describes Web services. WSDL defines Web
services as a set of endpoints operating on messages; these message contain either
message-style or RPC-style information. The operations and messages are described
abstractly in WSDL, and then bound to a concrete network protocol and message
format to define an endpoint. Related concrete endpoints are combined into abstract
endpoints (services). WSDL is extensible to allow the description of endpoints and
their associated messages regardless of what message formats or network protocols are
used to communicate, however, the only bindings described in the specification
describe how to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and
MIME.

Note: WebLogic Server supports only SOAP 1.1 bindings.

The WSDL 1.1 Specification is available at http://www.w3.org/TR/wsdl.
A-2 Programming WebLogic Web Services

http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/wsdl

APPENDIX
B build.xml Elements
and Attributes

The build.xml file contains information that the wsgen Java Ant task uses to
assemble Web services into Enterprise Application archive (*.ear) files.

The following sections provide an example build.xml file and describe its elements
and attributes:

� “Example of a build.xml File” on page B-2

� “build.xml Hierarchy Diagram” on page B-3

� “Description of Elements and Attributes” on page B-3

The build.xml file consists of a series of XML elements. Java Ant defines a variety
of elements you can include in this file, such as project and target. This Appendix,
however, describes only those elements that are part of the WebLogic-specific wsgen
Java Ant task. For general information about Java Ant, see
http://jakarta.apache.org/ant/index.html.

Note: The Java Ant utility included in WebLogic Server uses the ant (UNIX) or
ant.bat (Windows) configuration files in the BEA_HOME\bin directory when
setting the ANTCLASSPATH variable, where BEA_HOME is the directory in
which WebLogic Server is installed. If you need to update the
ANTCLASSPATH variable, make the appropriate changes to these files.
Programming WebLogic Web Services B-1

http://jakarta.apache.org/ant/index.html

B build.xml Elements and Attributes
Example of a build.xml File

The following example shows a simple build.xml file used to assemble one
RPC-style Web service and two message-style Web services:

<project name="myProject" default="wsgen">
 <target name="wsgen">
 <wsgen
 destpath="myWebService.ear"
 context="/myContext"
 protocol="http">
 <rpcservices path="myEJB.jar">
 <rpcservice
 bean="statelessSession"
 uri="/rpc_URI"/>
 </rpcservices>
 <messageservices>
 <messageservice
 name="sendMsgWS"
 action="send"
 destination="examples.soap.msgService.MsgSend"
 destinationtype="topic"
 uri="/sendMsg"
 connectionfactory="examples.soap.msgService.MsgConnectionFactory"/>
 <messageservice
 name="receiveMsgWS"
 action="receive"
 destination="examples.soap.msgService.MsgReceive"
 destinationtype="topic"
 uri="/receiveMsg"
 connectionfactory="examples.soap.msgService.MsgConnectionFactory"/>
 </messageservices>
 </wsgen>
 </target>
</project>
B-2 Programming WebLogic Web Services

build.xml Hierarchy Diagram
build.xml Hierarchy Diagram

The following diagram shows all the possible sub-elements of the wsgen element in
the build.xml file, along with the element hierarchy. An asterisk (*) indicates that the
element can be specified zero or more times.

Description of Elements and Attributes

The following sections describe build.xml elements and attributes.

rpcservices *

wsgen

rpcservice *

messageservices *

messageservice *

clientjar

manifest

entry *
Programming WebLogic Web Services B-3

B build.xml Elements and Attributes
wsgen

The wsgen element is the name of the Ant task in the build.xml file. Its attributes
specify information that is common to all Web services described in the file.

This element contains the following attributes.

Table 6-1 wsgen Attributes

Attribute Description Required?

basepath Location of the input Enterprise Application archive file (*.ear) or
exploded directory that contains the EJB jar files for the EJB that
implements the RPC-style Web services, as well as any supporting
EJBs.

Be sure to specify the full pathname of the file or directory if it is not
located in the same directory as the build.xml file.

Default value is null.

No.

destpath Type and location of the output Enterprise Application archive. To
create an actual Enterprise Application archive file (*.ear),
specify the.ear suffix; to create an exploded Enterprise
Application directory, specify a directory name.

Specify the full pathname of the file or directory if you do not want
the Ant task to create the archive in the local directory.

Yes.

context Context root of the Web services.

This value is part of the URL used to access the Web service.

Yes.

protocol Protocol by which clients access the Web service.

There are two possible values: http or https.

The default value is http.

No.

host Name of the host that is running the WebLogic Server instance that
is hosting the Web service; for example, www.bea.com.

If you do not specify this attribute, the host in the WSDL JSP is
generated from the hostname section of the URL used to retrieve the
WSDL.

No.
B-4 Programming WebLogic Web Services

Description of Elements and Attributes
rpcservices

The rpcservices element specifies an EJB archive that contains the stateless session
EJB that implements the RPC-style Web service, as well as any supporting EJBs.

This element can have any number of rpcservice sub-elements that describe each
individual RPC-style Web service.

This element contains the following attributes.

port Port number of WebLogic Server. Default value is 7001.

If you do not specify this attribute, the port in the WSDL JSP is
generated from the port section of the URL used to retrieve the
WSDL.

No.

webapp URI that specifies the path to a Web Application module used to
expose a Web service.

Default value is web-services.war.

No.

classpath Semicolon-separated list of directories or JAR files that contain Java
classes (such as utility classes) needed by the stateless session EJB
that implements an RPC-style Web service.

No.

Table 6-1 wsgen Attributes (Continued)

Table 6-2 rpcservices Attributes

Attribute Description Required?

module If the basepath attribute of the wsgen element is set, this attribute
specifies the URI of the Enterprise Application module that
corresponds to an EJB archive contained by the Enterprise
Application archive.

Only if the
basepath
attribute of the
wsgen element
is set.

path If the basepath attribute of the wsgen element is not set, this
attribute specifies the location of an existing EJB archive that
contains the EJBs, either archive as a *.jar file or as an exploded
directory.

Only if the
basepath
attribute of the
wsgen element
is not set.
Programming WebLogic Web Services B-5

B build.xml Elements and Attributes
rpcservice

The rpcservice element specifies a specific RPC-style Web service.

This element does not have any sub-elements.

This element contains the following attributes.

Table 6-3 rpcservice Attributes

Attribute Description Required?

bean Name of the stateless session EJB that implements the RPC-style
Web service.

This name corresponds to the ejb-name element in the
ejb-jar.xml file of the EJB archive in which the EJB is
contained. The path to the EJB archive is specified in the parent
rpcservices element.

Yes.

uri Part of the URL used by clients to invoke the Web service.

The full URL to access the Web service is:

[protocol]://[host]:[port][context][uri]

where

� protocol refers to the protocol attribute of the wsgen
element.

� host refers to the hostname of the computer upon which the
WebLogic Server hosting the service is running.

� port refers to the port of WebLogic Server.

� context refers to the context attribute of the wsgen
element.

� uri refers to this attribute.

For example, the URL that accesses the RPC-style Web service in
the example in “Example of a build.xml File” on page B-2 is:

http://www.myHost.com:7001/myContext/rpc_URI

Yes.
B-6 Programming WebLogic Web Services

Description of Elements and Attributes
messageservices

The messageservices element is a container for any number of messageservice
sub-elements.

This element does not have any attributes.

messageservice

The messageservice element describes a specific message-style Web service by
specifying a JMS destination that will receive or send messages.

This element does not have any sub-elements.

This element contains the following attributes.

Table 6-4 messageservice Attributes

Attribute Description Required?

name Name of the message-style Web service. Yes.

destination JNDI name of a JMS topic or queue. Yes.

destinationtype Type of JMS destination.

Values: topic or queue.

Yes.

action Specifies whether the client that invokes this message-style Web
service sends or receives messages to or from the JMS
destination.

Values: send or receive.

Specify send if the client sends messages to the JMS
destination and receive if the client receives messages from
the JMS destination.

Yes.

connectionfactory JNDI name of the ConnectionFactory used to create a
connection to the JMS destination.

Yes.
Programming WebLogic Web Services B-7

B build.xml Elements and Attributes
clientjar

Use the clientjar element to specify the name for the generated Java client jar file.
You can also use it specify other arbitrary files that you want to add to the generated
Java client jar file.

This element can have one sub-element: manifest, as well as many filesets and
zipfilesets elements. The filesets and zipfilesets elements are generic Ant
elements, rather than wsgen-specific elements; use them to specify additional files that
should be included in the Java client JAR file.

This element contains the following attributes.

uri Part of the URL used by clients to invoke the Web service.

The full URL to access the Web service is:

[protocol]://[host]:[port][context][uri]

where

� protocol refers to the protocol attribute of the wsgen
element.

� host refers to the hostname of the computer upon which the
WebLogic Server hosting the service is running.

� port refers to the port of WebLogic Server.

� context refers to the context attribute of the wsgen
element.

� uri refers to this attribute.

For example, the URL that accesses the first message-style Web
service in the example in “Example of a build.xml File” on page
B-2 is:

http://www.myHost.com:7001/myContext/sendMsg

Yes.

Table 6-4 messageservice Attributes (Continued)

Table 6-5 clientjar Attributes

Attribute Description Required?

path URI for the generated Java client JAR file that contains all the Java
classes and interfaces needed to invoke the Web services.

Default value is client.jar.

No.
B-8 Programming WebLogic Web Services

Description of Elements and Attributes
manifest

The manifest element is a container for additional header entries to the manifest file
(MANIFEST.MF) included in the generated Java client JAR file.

This element can have any number of entry sub-elements that describe the additional
headers to the manifest file.

This element does not have any attributes.

entry

The entry element specifies the name and value of an additional header to the
manifest file (MANIFEST.MF) included in the generated Java client JAR file.

This element does not have any sub-elements.

This element contains the following attributes.

Table 6-6 entry Attributes

Attribute Description Required?

name Name of the additional header that will appear in the manifest file
(MANIFEST.MF) of the generated Java client JAR file.

Yes.

value Value of the additional header that will appear in the manifest file
(MANIFEST.MF) of the generated Java client JAR file.

Yes.
Programming WebLogic Web Services B-9

B build.xml Elements and Attributes
B-10 Programming WebLogic Web Services

APPENDIX
C Manually Assembling
the Web Services
Archive File

The following sections describe how to assemble a Web service manually into an
Enterprise Application *.ear archive file:

� Before You Begin

� Description of the Web Services Archive File

� Assembling an RPC-Style Web Service Archive File Manually

� Assembling a Message-Style Web Service Archive File Manually

� Creating the client.jar File Manually

Before You Begin

WebLogic Web Services are packaged as standard J2EE Enterprise application archive
files (*.ear). Assembling a WebLogic Web Service archive file manually can be
complicated. For this reason, BEA highly recommends that you use the wsgen Java
Ant task to create an initial *.ear file. Then, if needed, you can customize the
components contained within the archive file for your specific application. For details
on using wsgen, see “Assembling a WebLogic Web Service” on page 2-19.
Programming WebLogic Web Services C-1

C Manually Assembling the Web Services Archive File
You might need to manually create or edit the Enterprise application archive file if:

� you want to integrate the archive with a J2EE deployment tool.

� you need to perform advanced configuration tasks on components of the archive
that are not available through the wsgen Ant task. These tasks include securing
the SOAP servlets, securing the EJB, and so on.

� you want to change the default naming conventions and directories that the
wsgen Ant task uses.

The following procedures shows how to create an Enterprise application archive
similar to the one that the wsgen Java Ant task creates. If you follow the naming
conventions exactly, the instructions in other chapters of this guide that describe how
to access the WSDL of a Web service, the client.jar file, etc, will continue to work
correctly.

Description of the Web Services Archive File

The Enterprise application archive contains the following components:

� A Web application, packaged in a *.war file that contains, among other items:

� An HTML Web page that corresponds to the Web Services Home Page that
lists all the Web services packaged in this Enterprise application archive.

� For each Web service, an HTML Web page that includes links to the WSDL
and client JAR file of the Web service.

� For each Web service, a WSDL JSP that returns the WSDL.

� The web.xml and weblogic.xml deployment descriptor files that contain
Web services-specific information, such as references to the SOAP servlets
that process the SOAP requests from the client.

� The stateless session EJB *.jar file (for RPC-style Web services).

� Other supporting EJB *.jar files.
C-2 Programming WebLogic Web Services

Assembling an RPC-Style Web Service Archive File Manually
Assembling an RPC-Style Web Service
Archive File Manually

This section describes how to assemble an RPC-style Web service manually into an
Enterprise application *.ear file that can be deployed on WebLogic Server.

Note: It is assumed that you have already created the stateless session EJB which
implements the RPC-style Web service and assembled it into a *.jar EJB
archive file. For detailed information about programming and assembling
stateless session EJBs, see Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html.

To assemble an RPC-style Web service archive file manually, follow these steps:

1. Create a temporary staging directory for assembling the Web application
component. You can name this directory anything you want.

2. Set up your shell environment.

On Windows NT, execute the setEnv.cmd command, located in the directory
BEA_HOME\config\domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

On UNIX, execute the setEnv.sh command, located in the directory
BEA_HOME/config/domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

3. Execute the following command to automatically generate initial web.xml and
weblogic.xml deployment descriptors in the WEB-INF subdirectory:

java weblogic.ant.taskdefs.war.DDInit staging-dir

where staging-dir refers to the staging directory.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004.

4. Edit the WEB-INF/web.xml file, adding WebLogic Web Services information,
such as references to the SOAP servlets. For details, see “Updating the web.xml
File for RPC-Style Web Services” in this appendix.
Programming WebLogic Web Services C-3

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004

C Manually Assembling the Web Services Archive File
5. Edit the WEB-INF/weblogic.xml file, adding WebLogic Web Services
information. For details, see “Updating the weblogic.xml File for RPC-Style Web
Services” in this appendix.

6. In the main staging directory, create a sub-directory with the same name as the
JNDI name of your stateless session EJB.

The JNDI name of your EJB corresponds to the jndi-name element in the
weblogic-ejb-jar.xml deployment descriptor file for your EJB.

Note: Using the JNDI name is the wsgen Ant task naming convention, which you
do not have to follow.

7. In the jndi-name subdirectory, create the WSDL JSP by running the following
utility and redirecting the output to a file:

java weblogic.soap.wsdl.Remote2WSDL EJB_interface path -protocol protocol >
wsdl.jsp

where

� EJB_interface refers to the fully qualified class name of the Remote
interface of your stateless session EJB.

� path is either context or context/jndi-name, where context refers to the
context-root element of the Web application in the application.xml file
(to be created in a later step).

� protocol is either http or https.

Note: This generated WSDL JSP dynamically sets the host and port of the
WebLogic Server upon which the Web service is currently running. This
is typically the type of WSDL file you want in your Web service. If,
however, you want to statically specify the host and port in the WSDL file,
edit the soap:address element in the WSDL JSP, replacing the text <%=
request.getServerName() %>:<%= request.getServerPort() %>
with hard-coded host and port values.

8. In the jndi-name subdirectory, create an index.html file that contains links to
the WSDL JSP you created in the preceding step and the client JAR file that you
will create in a later step. The following example shows a simple index.html
file:

<html>
<body>
<h3>jndi-name</h3>

C-4 Programming WebLogic Web Services

Assembling an RPC-Style Web Service Archive File Manually
WSDL
client.jar

</body>
</html>

9. Create a client.jar file in the main staging directory. For details on creating
this file, refer to “Creating the client.jar File Manually” in this appendix.

Note: This step is optional. You only need to create a client.jar file if you are
going to use a Java client application to invoke the Web service.

10. Create an index.html file in the main staging directory that lists the Web
service in this Enterprise application archive and links to its index.html file that
you created in a previous step. The following example shows a simple
index.html file:

<html>
<body>
<h3>RPC-Style Web Services</h3>

jndi-name

</body>
</html>

In the example, context refers to the context-root element of the Web
application in the application.xml file (to be created in a later step) and
jndi-name refers to the name of sub-directory that contains the WSDL file you
created in the previous step.

11. Create the Web application archive (*.war file) using a jar command such as:

jar cvf web-app-name.war -C staging-dir .

Note: The wsgen Java ant task assigns the default name web-services.war to
the Web application *.war file. You do not have to follow this naming
convention.

12. Create a second temporary staging directory for assembling the Enterprise
application. You can name this directory anything you want.

13. Copy your stateless session EJB *.jar file into the second staging directory.

14. Copy the Web application archive *.war file you created in a previous step into
the second staging directory.
Programming WebLogic Web Services C-5

C Manually Assembling the Web Services Archive File
15. Execute the following command to automatically generate an initial
application.xml deployment descriptor in the META-INF subdirectory:

java weblogic.ant.taskdefs.ear.DDInit staging-dir

where staging-dir refers to the second staging directory.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004.

16. Edit the META-INF/application.xml file, adding WebLogic Web Services
information. For details, see “Updating the application.xml File for RPC-Style
Web Services” in this appendix.

17. Create the Enterprise Archive (.ear file) for the application, using a jar
command such as:

jar cvf application.ear -C staging-dir .

You can deploy the resulting .ear file as a WebLogic Web Service through the
Administration Console or the weblogic.deploy command-line utility.

Updating the web.xml File for RPC-Style Web Services

This section describes the elements you must update or add to the web.xml
deployment descriptor for the Web application that references the SOAP servlets in an
RPC-style WebLogic Web Services archive file. For the complete example of a
web.xml deployment descriptor, see the last example in this section.

It is assumed that you have a basic understanding of Web applications and their
deployment descriptors. For more information, see Assembling and Configuring Web
Applications at http://e-docs.bea.com/wls/docs61/webapp/index.html.

To update a web.xml file for RPC-style Web services, add the following elements:

� A <servlet> element that references the SOAP servlet that delegates RPC-style
SOAP requests to the EJB. Set the <servlet-class> element to
weblogic.soap.server.servlet.StatelessBeanAdapter. The servlet takes
one <init-param>: a reference to the stateless session EJB which comprises the
RPC-style Web service. The following example shows a <servlet> entry for
the SOAP servlet:
C-6 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

Assembling an RPC-Style Web Service Archive File Manually
<servlet>
 <servlet-name>statelessSession.WeatherHome</servlet-name>
 <servlet-class>
 weblogic.soap.server.servlet.StatelessBeanAdapter
 </servlet-class>
 <init-param>
 <param-name>ejb-ref</param-name>
 <param-value>statelessSession.WeatherHome</param-value>
 </init-param>
</servlet>

� A <servlet> element that references the SOAP servlet that handles all SOAP
faults. Set the <servlet-class> element to
weblogic.soap.server.servlet.FaultHandler, as shown in the following
example:

<servlet>
 <servlet-name>
 statelessSession.WeatherHomeFault
 </servlet-name>
 <servlet-class>
 weblogic.soap.server.servlet.FaultHandler
 </servlet-class>
</servlet>

� A <servlet> element that references the WSDL JSP, as shown in the following
example:

<servlet>
 <servlet-name>
 statelessSession.WeatherHomeWSDL
 </servlet-name>
 <jsp-file>
 /statelessSession.WeatherHome/wsdl.jsp
 </jsp-file>
</servlet>

The path to the JSP file, <jsp-file>, is the path in your Web application
archive file to the WSDL JSP you created in “Assembling an RPC-Style Web
Service Archive File Manually” in this appendix.

� For each of the preceding <servlet> elements, create a <servlet-mapping>
element to map a URL to the servlet, as shown in the following example:

<servlet-mapping>
 <servlet-name>statelessSession.WeatherHome</servlet-name>
 <url-pattern>/weatheruri</url-pattern>
</servlet-mapping>
<servlet-mapping>
Programming WebLogic Web Services C-7

C Manually Assembling the Web Services Archive File
 <servlet-name>
 statelessSession.WeatherHomeFault
 </servlet-name>
 <url-pattern>/weblogic/webservice/fault</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>
 statelessSession.WeatherHomeWSDL
 </servlet-name>
 <url-pattern>
/statelessSession.WeatherHome/statelessSession.WeatherHome.wsdl
 </url-pattern>
</servlet-mapping>

� An <error-page> element:

<error-page>
 <exception-type>
 weblogic.soap.FaultException
 </exception-type>
 <location>/weblogic/webservice/fault</location>
 </error-page>

� An <ejb-ref> element which references the stateless session EJB that
implements the Web service, as shown in the following example:

<ejb-ref>
 <description>Web Service EJB</description>
 <ejb-ref-name>statelessSession.WeatherHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>examples.webservices.rpc.weatherEJB.WeatherHome</home>
 <remote>examples.webservices.rpc.weatherEJB.Weather</remote>
</ejb-ref>

The following complete sample web.xml deployment descriptor contains elements for
the RPC-style Web service example examples.webservices.rpc:

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">
<web-app>
 <servlet>
 <servlet-name>statelessSession.WeatherHome</servlet-name>
 <servlet-class>
 weblogic.soap.server.servlet.StatelessBeanAdapter
 </servlet-class>
 <init-param>
C-8 Programming WebLogic Web Services

Assembling an RPC-Style Web Service Archive File Manually
 <param-name>ejb-ref</param-name>
 <param-value>statelessSession.WeatherHome</param-value>
 </init-param>
 </servlet>
 <servlet>
 <servlet-name>statelessSession.WeatherHomeFault</servlet-name>
 <servlet-class>weblogic.soap.server.servlet.FaultHandler</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>statelessSession.WeatherHomeWSDL</servlet-name>
 <jsp-file>
 /statelessSession.WeatherHome/wsdl.jsp
 </jsp-file>
 </servlet>
 <servlet-mapping>
 <servlet-name>statelessSession.WeatherHome</servlet-name>
 <url-pattern>/weatheruri</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>statelessSession.WeatherHomeFault</servlet-name>
 <url-pattern>/weblogic/webservice/fault</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>statelessSession.WeatherHomeWSDL</servlet-name>
 <url-pattern>
 /statelessSession.WeatherHome/statelessSession.WeatherHome.wsdl
 </url-pattern>
 </servlet-mapping>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <error-page>
 <exception-type>weblogic.soap.FaultException</exception-type>
 <location>/weblogic/webservice/fault</location>
 </error-page>
 <ejb-ref>
 <description>This bean is exported as a WebService</description>
 <ejb-ref-name>statelessSession.WeatherHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>examples.webservices.rpc.weatherEJB.WeatherHome</home>
 <remote>examples.webservices.rpc.weatherEJB.Weather</remote>
 </ejb-ref>
</web-app>
Programming WebLogic Web Services C-9

C Manually Assembling the Web Services Archive File
Updating the weblogic.xml File for RPC-Style Web
Services

The weblogic.xml deployment descriptor for RPC-style Web services does not
contain any Web services-specific elements. It contains standard references to the
stateless session EJB that implements the Web service.

The following sample weblogic.xml deployment descriptor contains elements for the
RPC-style Web service example examples.webservices.rpc:

<!DOCTYPE weblogic-web-app
 PUBLIC "-//BEA Systems, Inc.//DTD Web Application 6.0//EN"
 "http://www.beasys.com/j2ee/dtds/weblogic-web-jar.dtd">

<weblogic-web-app>
 <reference-descriptor>
 <ejb-reference-description>
 <ejb-ref-name>statelessSession.WeatherHome</ejb-ref-name>
 <jndi-name>statelessSession.WeatherHome</jndi-name>
 </ejb-reference-description>
 </reference-descriptor>
</weblogic-web-app>

For more information on the elements of the weblogic.xml deployment descriptor,
see Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html.

Updating the application.xml File for RPC-Style Web
Services

The application.xml deployment descriptor for RPC-style Web service contains
standard references to the Web application that references the SOAP servlets and
stateless session EJB that comprises the Web service.

The one Web services-related element is the <context-root> sub-element of the
<web> element. The value of the <context-root> element is used in all URLs that
access either the WSDL, the Home Page, or the Web service itself.

The following sample application.xml deployment descriptor contains elements
for the RPC-style Web service example examples.webservices.rpc:
C-10 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/webapp/index.html

Assembling a Message-Style Web Service Archive File Manually
<!DOCTYPE application
 PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN'
 'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
 <display-name>Web-services</display-name>
 <module>
 <web>
 <web-uri>web-services.war</web-uri>
 <context-root>/weather</context-root>
 </web>
 </module>
 <module>
 <ejb>weather.jar</ejb>
 </module>
</application>

See Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/app_xml.html for descriptions of the
elements in the application.xml file.

Assembling a Message-Style Web Service
Archive File Manually

This section describes how to manually assemble a message-style Web service into an
Enterprise application *.ear file that can be deployed on WebLogic Server.

It is assumed that you have used the Administration Console to set up the following
JMS components:

� The JMS destination (queue or topic) which will either receive the message from
a client or from which the message is sent to a client.

� The JMS Connection factory that the WebLogic Web Service uses to create JMS
connections.

For detailed information about using the Administration Console to configure JMS
components, see the WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jms.html.
Programming WebLogic Web Services C-11

http://e-docs.bea.com/wls/docs61/programming/app_xml.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

C Manually Assembling the Web Services Archive File
To assemble a message-style Web service archive file manually, follow these steps:

1. Create a temporary staging directory for assembling the Web application
component. You can name this directory anything you want.

2. Set up your shell environment.

On Windows NT, execute the setEnv.cmd command, located in the directory
BEA_HOME\config\domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

On UNIX, execute the setEnv.sh command, located in the directory
BEA_HOME/config/domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

3. Execute the following command to automatically generate initial web.xml and
weblogic.xml deployment descriptors in the WEB-INF subdirectory:

java weblogic.ant.taskdefs.war.DDInit staging-dir

where staging-dir refers to the staging directory.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004.

4. Edit the WEB-INF/web.xml file, adding WebLogic Web Services information,
such as references to the SOAP servlets. For details, see “Creating the
Message-Style Web Service WSDL File” in this appendix.

5. Edit the WEB-INF/weblogic.xml file, adding WebLogic Web Services
information. For details, see “Updating the weblogic.xml File for Message-Style
Web Services” in this appendix.

6. In the main staging directory, create a sub-directory that will hold the WSDL JSP
for the Web service. You can name this sub-directory anything you want. This
name will become part of the URL used to invoke the Web service.

For this procedure, assume the name of this directory is wsdl_dir.

7. In the wsdl_dir subdirectory, create the WSDL JSP. The wsgen Java utility
names this JSP wsdl.jsp when generating it automatically; you can follow this
naming convention, or follow a convention of your own.

For details on creating this file, see “Creating the Message-Style Web Service
WSDL File” in this appendix.
C-12 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004

Assembling a Message-Style Web Service Archive File Manually
8. In the wsdl_dir subdirectory, create an index.html file that contains links to
the WSDL JSP you created in the preceding step and the client JAR file that you
will create in a later step. The following example shows a simple index.html
file:

<html>
<body>
<h3>Web Service Name</h3>

WSDL
client.jar

</body>
</html>

9. Create a client.jar file in the main staging directory. For details on creating
this file, refer to “Creating the client.jar File Manually” in this appendix.

Note: This step is optional. You only need to create a client.jar file if you are
going to use a Java client application to invoke the Web service.

10. Create an index.html file in the main staging directory that lists the Web
service in this Enterprise application archive and links to its index.html file that
you created in a previous step. The following example shows a simple
index.html file:

<html>
<body>
<h3>Message-Style Web Services</h3>

wsdl_dir

</body>
</html>

In the example, context refers to the context-root element of the Web
application in the application.xml file (to be created in a later step) and
wsdl_dir refers to the name of sub-directory that contains the WSDL file you
created in the previous step.

11. Create the Web application archive (*.war file) using a jar command such as:

jar cvf web-app-name.war -C staging-dir .

Note: The wsgen Java ant task assigns the default name web-services.war to
the Web application *.war file. You do not have to follow this naming
convention.
Programming WebLogic Web Services C-13

C Manually Assembling the Web Services Archive File
12. Create a second temporary staging directory for assembling the Enterprise
application. You can name this directory anything you want.

13. Copy the Web application archive *.war file you created in a previous step into
the staging directory you created in step 12.

14. Execute the following command to automatically generate an initial
application.xml deployment descriptor in the META-INF subdirectory:

java weblogic.ant.taskdefs.ear.DDInit staging-dir

where staging-dir refers to the staging directory you created in step 12.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004.

15. Edit the META-INF/application.xml file, adding WebLogic Web Services
information. For details, see “Updating the application.xml File for
Message-Style Web Services” in this appendix.

16. Create the Enterprise Archive (.ear file) for the application, using a jar
command such as:

jar cvf application.ear -C staging-dir .

The resulting .ear file can be deployed as a WebLogic Web Service using the
Administration Console or the weblogic.deploy command-line utility.

Creating the Message-Style Web Service WSDL File

The WSDL JSP files for all message-style WebLogic Web Services are very similar,
because there are only two operations that these types of Web services ever perform:
send or receive data to or from a client application.

To create the WSDL JSP for a message-style Web service, follow these steps:

1. Using your favorite text editor, create a file called wsdl.jsp.

2. Copy and paste the sample WSDL at the end of this section into the wsdl.jsp
file, and edit it according to the following steps.

In the sample WSDL, the sections that you must modify for your specific Web
service are in bold.
C-14 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/programming/packaging.html#pack004

Assembling a Message-Style Web Service Archive File Manually
3. Globally replace references to myService with the name of your Web service.

4. If your Web service is one in which client applications that invoke it receive
messages from the service, globally replace the word send with the word
receive.

5. Globally replace url:local with the unique namespace for your Web service.

6. Replace the URI used to invoke the Web service from /msg/sendMsg to the
following URI:

/context-root/url-pattern

where context-root refers to the <context-root> element of the
application.xml deployment descriptor and url-pattern refers to the
<url-pattern> for the SOAP servlet in the web.xml deployment descriptor.

7. If you want the WSDL file to statically specify the host and port of the WebLogic
server hosting your Web service, edit the soap:address element in the WSDL
JSP, replacing the text <%= request.getServerName() %>:<%=
request.getServerPort() %> with hard-coded host and port values.

Use the following sample WSDL JSP as a starting point for your WSDL JSP.

<?xml version="1.0"?>
<definitions
 targetNamespace="urn:local"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="urn:local"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" >

 <types>
 <schema targetNamespace='urn:local'
 xmlns='http://www.w3.org/1999/XMLSchema'>
 </schema>
 </types>

 <message name="sendRequest">
 <part name="message" type="xsd:anyType" />
 </message>
 <message name="sendResponse">
 </message>

 <portType name="myServicePortType">
 <operation name="send">
 <input message="tns:sendRequest"/>
Programming WebLogic Web Services C-15

C Manually Assembling the Web Services Archive File
 <output message="tns:sendResponse"/>
 </operation>
 </portType>

 <binding name="myServiceBinding" type="tns:myServicePortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http/"/>
 <operation name="send">
 <soap:operation soapAction="urn:send"/>
 <input>
 <soap:body use="encoded" namespace='urn:myService'
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace='urn:myService'
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service name="myService">
 <documentation>todo</documentation>
 <port name="myServicePort" binding="tns:myServiceBinding">
 <soap:address location="http://<%= request.getServerName() %>:<%=
request.getServerPort() %>/msg/sendMsg"/>
 </port>
 </service>

</definitions>

Updating the web.xml File for Message-Style Web
Services

This section describes the elements you must update or add to the web.xml
deployment descriptor for the Web application that references the SOAP servlets in a
message-style WebLogic Web Services archive file. For the complete example of a
web.xml deployment descriptor, see the end of this section.

It is assumed that you have a basic understanding of Web applications and their
deployment descriptors. For more information, see Assembling and Configuring Web
Applications at http://e-docs.bea.com/wls/docs61/webapp/index.html.

To update a web.xml file for message-style Web services, add the following elements:
C-16 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

Assembling a Message-Style Web Service Archive File Manually
� A <servlet> element that references the SOAP servlet that manages the SOAP
messages between the message-style Web service and the client application. Set
the <servlet-class> sub-element to one of the following servlet classes,
depending on whether the JMS destination is a topic or queue and whether the
client invoking the service sends or receives messages:

� weblogic.soap.server.servlet.DestinationSendAdapter—handles
SOAP messages between the service and a client application that sends
messages to either a JMS topic or queue.

� weblogic.soap.server.servlet.QueueReceiveAdapter—handles
SOAP messages between the service and a client application that receives
messages from a JMS queue.

� weblogic.soap.server.servlet.TopicReceiveAdapter—handles
SOAP messages between the service and a client application that receives
messages from a JMS topic.

This <servlet> element contains two <init-params> elements: one that
references the JMS destination classes and another that references the JMS
connection factory classes.

The following example shows a <servlet> reference to a SOAP servlet:

 <servlet>
 <servlet-name>myService</servlet-name>
 <servlet-class>
 weblogic.soap.server.servlet.DestinationSendAdapter
 </servlet-class>
 <init-param>
 <param-name>topic-resource-ref</param-name>
 <param-value>myServiceDestination</param-value>
 </init-param>
 <init-param>
 <param-name>connection-factory-resource-ref</param-name>
 <param-value>myServiceFactory</param-value>
 </init-param>
 </servlet>

� A <servlet> element that references the SOAP servlet that handles all SOAP
faults. Set the <servlet-class> element to
weblogic.soap.server.servlet.FaultHandler, as shown in the following
example:

 <servlet>
 <servlet-name>myServiceFault</servlet-name>
 <servlet-class>
Programming WebLogic Web Services C-17

C Manually Assembling the Web Services Archive File
 weblogic.soap.server.servlet.FaultHandler
 </servlet-class>
 </servlet>

� A <servlet> element that references the WSDL JSP, as shown in the following
example:

 <servlet>
 <servlet-name>myServiceWSDL</servlet-name>
 <jsp-file>/myService/wsdl.jsp</jsp-file>
 </servlet>

The path to the JSP file, <jsp-file>, is the path in your Web application
archive file to the WSDL JSP you created in “Assembling a Message-Style Web
Service Archive File Manually” in this appendix.

� For each of the preceding <servlet> elements, create a <servlet-mapping>
element to map a URL to the servlet, as shown in the following example:

 <servlet-mapping>
 <servlet-name>myServiceFault</servlet-name>
 <url-pattern>/weblogic/webservice/fault</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>myServiceWSDL</servlet-name>
 <url-pattern>/myService/myService.wsdl</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>myService</servlet-name>
 <url-pattern>/sendMsg</url-pattern>
 </servlet-mapping>

� An <error-page> element, exactly as shown:

<error-page>
 <exception-type>
 weblogic.soap.FaultException
 </exception-type>
 <location>/weblogic/webservice/fault</location>
 </error-page>

� Two <resource-ref> elements to link the JMS destination and connection
factory references in the first <servlet> element to a Java object in JNDI, as
shown in the following example:

 <resource-ref>
 <res-ref-name>myServiceDestination</res-ref-name>
 <res-type>javax.jms.Destination</res-type>
 <res-auth>Container</res-auth>
C-18 Programming WebLogic Web Services

Assembling a Message-Style Web Service Archive File Manually
 </resource-ref>
 <resource-ref>
 <res-ref-name>myServiceFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

The following complete sample web.xml deployment descriptor contains elements for
the message-style Web service example examples.webservices.message:

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
 <servlet>
 <servlet-name>myService</servlet-name>
 <servlet-class>
 weblogic.soap.server.servlet.DestinationSendAdapter
 </servlet-class>
 <init-param>
 <param-name>topic-resource-ref</param-name>
 <param-value>myServiceDestination</param-value>
 </init-param>
 <init-param>
 <param-name>connection-factory-resource-ref</param-name>
 <param-value>myServiceFactory</param-value>
 </init-param>
 </servlet>
 <servlet>
 <servlet-name>myServiceFault</servlet-name>
 <servlet-class>weblogic.soap.server.servlet.FaultHandler</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>myServiceWSDL</servlet-name>
 <jsp-file>/myService/wsdl.jsp</jsp-file>
 </servlet>
 <servlet-mapping>
 <servlet-name>myServiceFault</servlet-name>
 <url-pattern>/weblogic/webservice/fault</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>myServiceWSDL</servlet-name>
 <url-pattern>/myService/myService.wsdl</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>myService</servlet-name>
 <url-pattern>/sendMsg</url-pattern>
 </servlet-mapping>
Programming WebLogic Web Services C-19

C Manually Assembling the Web Services Archive File
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <error-page>
 <exception-type>weblogic.soap.FaultException</exception-type>
 <location>/weblogic/webservice/fault</location>
 </error-page>
 <resource-ref>
 <res-ref-name>myServiceDestination</res-ref-name>
 <res-type>javax.jms.Destination</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <resource-ref>
 <res-ref-name>myServiceFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web-app>

Updating the weblogic.xml File for Message-Style Web
Services

The weblogic.xml deployment descriptor for message-style Web services does not
contain any Web services-specific elements, but rather, contains standard references to
the JMS Destination and JMS Connection Factories.

The following sample weblogic.xml deployment descriptor contains elements for the
message-style Web service example examples.webservices.message:

<!DOCTYPE weblogic-web-app
 PUBLIC "-//BEA Systems, Inc.//DTD Web Application 6.0//EN"
 "http://www.beasys.com/j2ee/dtds/weblogic-web-jar.dtd">

<weblogic-web-app>
 <reference-descriptor>
 <resource-description>
 <res-ref-name>myServiceDestination</res-ref-name>
 <jndi-name>examples.soap.msgService.MsgSend</jndi-name>
 </resource-description>
 <resource-description>
 <res-ref-name>myServiceFactory</res-ref-name>
 <jndi-name>examples.soap.msgService.MsgConnectionFactory</jndi-name>
 </resource-description>
C-20 Programming WebLogic Web Services

Creating the client.jar File Manually
 </reference-descriptor>
</weblogic-web-app>

Updating the application.xml File for Message-Style Web
Services

The application.xml deployment descriptor for message-style Web services
contains the standard reference to the Web application that contains the SOAP servlets.

The one Web services-related element is the <context-root> sub-element of the
<web> element. The value of the <context-root> element is used in all URLs that
access either the WSDL, the Home Page, or the Web service itself.

The following sample application.xml deployment descriptor contains elements
for the message-style Web service example examples.webservices.message:

<!DOCTYPE application
 PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN'
 'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
 <display-name>Web-services</display-name>
 <module>
 <web>
 <web-uri>web-services.war</web-uri>
 <context-root>/msg</context-root>
 </web>
 </module>
</application>

Creating the client.jar File Manually

The Java client.jar file contains the following objects:

� WebLogic FastParser (high-performance XML parser).

� WebLogic Web Services Client API.
Programming WebLogic Web Services C-21

C Manually Assembling the Web Services Archive File
� Remote interface of the stateless session EJB that implements an RPC-style Web
service. This object is optional and only needed if you are using a static client to
invoke the service.

� Class files for JavaBeans that are used as EJB parameters or return values.

BEA recommends that you use the wsgen Java Ant task to create an initial *.ear file
and then extract the Java client.jar file contained within the *.ear file and modify it
for your specific Web service. For details on using wsgen, see “Assembling a
WebLogic Web Service” on page 2-19.
C-22 Programming WebLogic Web Services

APPENDIX
D Invoking Web Services
Without Using the
WSDL File

This Appendix shows an example of a dynamic client application that does not use the
WSDL file when it invokes a WebLogic Web Service. In particular, the example
invokes a message-style Web service and sends data to WebLogic Server.

Dynamic client applications that do not use the WSDL of the Web service are dynamic
in every way, because they can invoke a Web service without knowing either the
interface of the Web service, or the JavaBean interface of return values and parameters,
or even the number and signatures of the methods that make up the Web service.

The example uses the URL http://www.myHost.com:7001/msg/sendMsg to
invoke the Web Service. Because the example shows a dynamic client application that
does not use the WSDL of the Web service, the preceding URL is for the Web service
itself, rather than the URL for the WSDL of the Web service.

The procedure after the example discusses relevant sections of the example as part of
the basic steps you follow to create this client.

import java.util.Properties;
import java.net.URL;
import javax.naming.Context;
import javax.naming.InitialContext;

import weblogic.soap.WebServiceProxy;
import weblogic.soap.SoapMethod;
import weblogic.soap.SoapType;
import weblogic.soap.codec.CodecFactory;
Programming WebLogic Web Services D-1

D Invoking Web Services Without Using the WSDL File
import weblogic.soap.codec.SoapEncodingCodec;
import weblogic.soap.codec.LiteralCodec;

public class ProducerClient{

 public static void main(String[] arg) throws Exception{

 CodecFactory factory = CodecFactory.newInstance();
 factory.register(new SoapEncodingCodec());
 factory.register(new LiteralCodec());

 WebServiceProxy proxy = WebServiceProxy.createService(
 new URL("http://www.myHost.com:7001/msg/sendMsg"));
 proxy.setCodecFactory(factory);
 proxy.setVerbose(true);

 SoapType param = new SoapType("message", String.class);
 proxy.addMethod("send", null, new SoapType[]{ param });
 SoapMethod method = proxy.getMethod("send");

 String toSend = arg.length == 0 ? "No arg to send" : arg[0];
 Object result = method.invoke(new Object[]{ toSend });
 }
}

Follow these steps to create a dynamic Java client that does not use WSDL to invoke
a message-style WebLogic Web Service that sends data to WebLogic Server:

1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web
Service.

For detailed information on this step, refer to “Downloading the Java Client JAR
File from the Web Services Home Page” on page 3-6.

2. Add the Java client JAR file to your CLASSPATH on your client computer.

3. Create the client Java program. The following steps describe the Web
services-specific Java code:

a. In the main method of your client application, create a factory of encoding
styles and register the two that are supported by WebLogic Server (the SOAP
encoding style and Apache’s Literal XML encoding style):

CodecFactory factory = CodecFactory.newInstance();
factory.register(new SoapEncodingCodec());
factory.register(new LiteralCodec());

b. Add the following Java code to create the connection to the Web service and set
the encoding style factory:
D-2 Programming WebLogic Web Services

WebServiceProxy proxy = WebServiceProxy.createService(
 new URL("http://www.myHost.com:7001/msg/sendMsg"));
proxy.setCodecFactory(factory);
proxy.setVerbose(true);

c. Add the following Java code to dynamically get the send method of the Web
service:

 SoapType param = new SoapType("message", String.class);
 proxy.addMethod("send", null, new SoapType[]{ param });
 SoapMethod method = proxy.getMethod("send");

d. Invoke the send method and send data to the Web service. In the example, the
client application simply takes its first argument and sends it as a String; if the
user does not specify an argument specified, then the client application sends
the string No arg to send:

String toSend = arg.length == 0 ? "No arg to send" : arg[0];
Object result = method.invoke(new Object[]{ toSend });

4. Compile and run the client Java program as usual.

The following more complex example shows how to use a send method that accepts
a org.w3c.dom.Document, org.w3c.dom.DocumentFragment, or
org.w3c.dom.Element data type as its parameter. The example shows how to set
literal encoding on this flavor of the send method.

import java.util.Properties;

import java.net.URL;
import java.io.File;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import weblogic.apache.xml.serialize.OutputFormat;
import weblogic.apache.xml.serialize.XMLSerializer;

import weblogic.apache.xerces.dom.DocumentImpl;

import weblogic.soap.WebServiceProxy;
import weblogic.soap.SoapMethod;
import weblogic.soap.SoapType;
Programming WebLogic Web Services D-3

D Invoking Web Services Without Using the WSDL File
import weblogic.soap.codec.CodecFactory;
import weblogic.soap.codec.SoapEncodingCodec;
import weblogic.soap.codec.LiteralCodec;

public class ProducerClient{
 public static void main(String[] args) throws Exception{
 String url = "http://localhost:7001";
 // Parse the arguments list
 if (args.length != 2) {
 System.out.println("Usage: java examples.webservices.message.ProducerClient
http://hostname:port \"message\"");
 return;
 } else if (args.length == 2) {
 url = args[0];
 }

 CodecFactory factory = CodecFactory.newInstance();
 factory.register(new SoapEncodingCodec());
 factory.register(new LiteralCodec());

 URL newURL = new URL(url + "/msg/sendMsg");

 WebServiceProxy proxy = WebServiceProxy.createService(newURL);
 proxy.setCodecFactory(factory);
 proxy.setVerbose(true);
 SoapType param = new SoapType("message", Document.class);
 proxy.addMethod("send", null, new SoapType[]{ param });

 SoapMethod method = proxy.getMethod("send");

 // Print out proxy to make sure method signature looks good
 System.out.println("Proxy:"+proxy);

 DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
 //Obtain an instance of a DocumentBuilder from the factory.
 DocumentBuilder db = dbf.newDocumentBuilder();
 //Parse the document.
 Document w3cDoc = db.parse(new File("/test/fdr_nodtd.xml"));

 //Class parserClass = Class.forName("org.jdom.adapters.XercesDOMAdapter");
 //DOMAdapter da = (DOMAdapter)parserClass.newInstance();
 //Document w3cDoc = da.getDocument(new File("/test/fdr_nodtd.xml"),false);

 // Print out XML just to make sure the document was read successfully
 OutputFormat of = new OutputFormat();
 of.setEncoding("UTF-8");
 of.setLineWidth(40);
 of.setIndent(4);
 XMLSerializer xs = new XMLSerializer(System.out,of);
 xs.serialize(w3cDoc);
D-4 Programming WebLogic Web Services

 System.out.println("Before Invoke");
 Object result = method.invoke(new Object[]{w3cDoc});
 System.out.println("Done");
 }
}

Programming WebLogic Web Services D-5

D Invoking Web Services Without Using the WSDL File
D-6 Programming WebLogic Web Services

Glossary

Assembling a Web service

Packaging all the components of the Web service into an Enterprise Application
archive file (*.ear). You use Java Ant tasks to assemble a WebLogic Web Service.

Deploying a Web service

Making the Web service available to remote clients. This is analogous, although
not exactly the same, as deploying an EJB. You deploy a Web service after you
have deployed the EJBs that make up the Web service. You use the Administra-
tion Console to deploy a WebLogic Web Service.

Implementing a Web service

Writing the Java code for the stateless session EJB (for RPC-style Web services)
or a message-driven bean (for message-style Web services) that is defined to be
the entry point to the Web service. The stateless session EJB or message-driven
bean may contain all the Web service functionality, or it may call other EJBs to
parcel out the work.

Invoking a Web service

The actions that a client application performs to use the Web service. The client
first assembles a SOAP message that describes the Web service it wants to invoke
and includes all the necessary data, either in the SOAP body or in an attachment.
The client then sends the SOAP message over HTTP/HTTPS to the WebLogic
Server, which executes the Web service and may or may not send a SOAP mes-
sage back to the client over HTTP/HTTPS.

Java Ant

The Java utility that you use to assemble WebLogic Web Services into Enterprise
Application archives.
Programming WebLogic Web Services G-1

Message-style Web services

A type of Web service that uses a JMS destination as its entry point. Message-style
Web services are loosely coupled document-driven services; this means that cli-
ents typically use this type of Web service by sending entire documents that will
be processed by the Web service rather than sending parameters and receiving re-
turn values.

Publishing a Web service

Registering the Web service in a well-known location so it can be found by anyone
who wants to use it. This can be done by registering the Web service in a UDDI
registry, emailing the URL that invokes the Web service to whoever wants it, and
so on.

RPC-style Web service

A type of Web service that uses a stateless session EJB as its entry point.
RPC-style Web services are tightly coupled interface-driven services; this means
that clients typically use the Web service by sending it parameters and receiving
return values rather than sending an entire document to be processed by the Web
service.

SOAP

Simple Object Access Protocol. A lightweight XML-based protocol for exchang-
ing information in a decentralized, distributed environment.

SOAP with attachments

A specification that describes a standard way to associate a SOAP message with
one or more attachments in their native format in a multipart MIME structure for
transport.

Web service

A shared application accessed by heterogeneous users over the Web that encapsu-
late a specific functionality.

Web Services Home Page

A Web page that lists the Web services defined for a particular context along with
the WSDL files and Java client JAR file associated with each Web service.

WSDL

Web Services Description Language. An XML-based language used to describe
Web services.
G-2 Programming WebLogic Web Services

Index

A
Administration Console

configuring JMS components 2-18
invoking 4-1
viewing Web services 4-3

Ant 1-6, 2-20, B-1
assembling a WebLogic Web service 2-20

B
BEA XML Editor 1-15
build.xml file

creating 2-23
elements and attributes of B-1
example of 2-21, 2-33, 3-15, B-2
hierarchy diagram of B-3

C
client JAR file

additional classes needed 3-23
contents 3-6
downloading 3-6

clientjar, element of build.xml file B-8
customer support contact information xi

D
DestinationSendAdapter servlet 2-14
documentation, where to find it x
dynamic client 3-3

E
EJB

archive file (*.jar) 1-10
assembling into archive file 2-32
deployment descriptors 2-31
example code 2-27
implementing an RPC-style Web service

1-10, 1-12, 2-5
securing in an RPC-style Web service 2-

15
ejb-jar.xml deployment descriptor 2-22, 2-

31, B-6
Elements of build.xml file

clientjar B-8
entry B-9
manifest B-9
messageservice B-7
messageservices B-7
rpcservice B-6
rpcservices B-5
wsgen B-4

encoding styles
literal XML 2-11
SOAP 2-11

Enterprise archive file (*.ear) 1-10
entry, element of build.xml file B-9
Exceptions

java.io.FileNotFoundException 5-2
java.lang.NullPointerException 5-6
java.net.ConnectException 5-7
unable to parse 5-4
Programming WebLogic Web Services I-1

I
INITIAL_CONTEXT_FACTORY 3-10, 3-

13, 3-18, 3-20

J
java.io.FileNotFoundException 5-2
java.lang.NullPointerException 5-6
java.net.ConnectException 5-7
javap utility 3-11, 3-13
JMS

choosing a queue or topic 2-6
configuring components 2-18
connection factory 2-18
destination 1-13, 2-18
listener 1-10
relationship to message-style Web

services 2-6

L
literal XML encoding style 2-12, 3-23

M
manifest, element of build.xml file B-9
message-driven bean 1-10, 1-14, 2-7, 2-18
messageservice, element of build.xml file B-

7
messageservices, element of build.xml file B-

7
message-style Web services

architecture 1-12
choosing a queue or topic 2-6
converting existing JMS application to

2-8
description 1-7
example of 2-7
implementing 2-17
invoking 3-15
relationship to JMS 2-6

securing 2-13
when to use 2-4
writing client to receive data 3-18
writing client to send data 3-16

Microsoft SOAP Toolkit client 3-13

O
overloaded methods, avoiding 2-6

P
printing product documentation x

Q
queue, JMS 2-6
QueueReceiveAdapter servlet 2-14

R
rpcservice, element of build.xml file B-6
rpcservices, element of build.xml file B-5
RPC-style Web services

architecture 1-11
converting existing EJB into 2-5
description 1-7
designing the EJB 2-5
implementing 2-17
invoking 3-8
invoking from Microsoft Toolkit client

3-13
securing 2-15
when to use 2-4
writing dynamic client 3-11
writing static client 3-9

S
Servlets

DestinationSendAdapter 2-14
QueueReceiveAdapter 2-14
I-2 Programming WebLogic Web Services

StatelessBeanAdapter 2-14
TopicReceiveAdapter 2-14

SOAP
definition 1-4
encoding 3-23
encoding style 2-12
example 1-4
faults 3-21
features not supported 1-14
specification A-1

SOAP servlet
description 1-10
role 1-11, 1-13
securing 2-13

Specifications
SOAP 1.1 A-1
SOAP with Attachments 1.1 A-2
WSDL 1.1 A-2

StatelessBeanAdapter servlet 2-14
static client 3-3
support

technical xi

T
topic, JMS 2-6
TopicReceiveAdapter servlet 2-14
troubleshooting 5-1

U
unable to parse exception 5-4

V
verbose mode 5-1

W
Web archive file (*.war) 1-10
Web services

components 1-3

definition 1-1
why use them 1-2

web.xml 1-8, 2-13, 2-14
WebLogic FastParser 3-6
WebLogic Web services

administering 4-1
architecture 1-10
assembling 2-19
deploying 2-25
designing 2-3
encoding styles 2-11, 3-23
example of developing 2-26
examples of 1-9
examples of clients that invoke 3-4
features 1-6
handling exceptions from 3-21
implementing 2-17
initial context factory properties of 3-22
invoking 3-2, D-1
invoking from Microsoft SOAP Toolkit

client 3-13
invoking using client API 1-9
main steps to develop 2-1
programming model 1-6
run-time component 1-8
security 2-13
standard assembly and deployment of 1-

8
supported data types 2-9
supported specifications A-1
URLs to invoke 3-7
viewing with Administration Console 4-

3
WebLogic Web services client API

description 3-2
supported modes 3-3

WebLogic Web Services Home Page
getting client JAR file 3-6
getting WSDL 3-5
invoking 3-4

weblogic.xml 1-8
Programming WebLogic Web Services I-3

weblogic-ejb-jar.xml deployment descriptor
3-7, C-4

WSDL
description 1-5
example 1-5
features not supported 1-14
getting from WebLogic Web Services

Home Page 3-5
specification A-2
static or dynamic 2-25
URLs to get 3-7

wsgen Ant task
creating 2-33
description 2-20
elements of B-1

wsgen, element of build.xml file B-4

X
XML, editing 1-15
I-4 Programming WebLogic Web Services

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Web Services
	What Are Web Services?
	Why Use Web Services?
	Web Service Components
	SOAP 1.1 with Attachments
	POST /StockQuote HTTP/1.1 Host: www.sample.com Content-Type: text/xml; charset="utf-8" Content-Le...
	<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-ENV:encodingSt...

	WSDL 1.1
	<?xml version="1.0"?> <definitions name="StockQuote" targetNamespace="http://sample.com/stockquot...

	WebLogic Web Service Features
	Web Services Programming Model
	RPC-Style Web Services
	Message-Style Web Services

	SOAP 1.1 Implementation
	Web Services Run-time Component
	Standardized J2EE Web Services Assembly and Deployment
	Generation of the WSDL File
	Java Client to Invoke a WebLogic Web Service
	Examples of Creating and Invoking Web Services

	WebLogic Web Services Architecture
	RPC-Style WebLogic Web Services Architecture
	Figure 1�1 RPC-Style WebLogic Web Services Architecture
	1. A client sends a SOAP message to WebLogic Server over HTTP/HTTPS. The SOAP message contains in...
	2. The SOAP servlet designed to handle RPC SOAP requests (which is part of the Web application in...
	3. The invoked stateless session EJB sends return values, if any, back to the RPC SOAP servlet.
	4. The RPC SOAP servlet marshals the return values from the stateless session EJB into a SOAP mes...

	Message-Style WebLogic Web Services Architecture
	Figure 1�2 Message-Style WebLogic Web Services Architecture
	1. A client sends a SOAP message to WebLogic Server over HTTP/HTTPS. The SOAP message contains in...
	2. The messaging SOAP servlet that is part of the Web application invoked by the client unwraps t...
	3. The message sits in the JMS destination until the appropriate JMS listener (typically a messag...
	4. The message-driven bean picks up the message from the JMS destination. The message-driven bean...
	5. The message-driven bean sends the resulting document to another JMS destination that is associ...
	6. The messaging SOAP servlet associated with the second Web service picks up the message from th...
	7. The messaging SOAP servlet sends the document back to the client when the client invokes the s...

	SOAP and WSDL Features Not Supported by WebLogic Web Services
	Editing XML Files

	2 Developing WebLogic Web Services
	Developing WebLogic Web Services: Main Steps
	1. Design the WebLogic Web Service.
	2. Implement the WebLogic Web Service.
	3. Package the EJBs that implement the Web service (stateless session EJB for RPC-style Web servi...
	4. Assemble the WebLogic Web Service.
	5. Deploy the WebLogic Web Service.
	6. Create a client that accesses the Web service to test that your Web service is working as you ...

	Designing a WebLogic Web Service
	Choosing Between an RPC-Style and a Message-Style Web Service
	When to Use RPC-Style Web Services
	When to Use Message-Style Web Services

	EJB That Implements an RPC-Style Web Service
	Converting an Existing EJB Application into an RPC-Style Web Service
	Avoiding Overloaded Methods in Stateless Session EJBs
	Message-Style Web Services and JMS
	Choosing a Queue or Topic
	Retrieving and Processing Documents
	Example of Message-Style Web Services
	Figure 2�1 Data Flow Between Message-Style Web Services and JMS

	Converting an Existing JMS Application Into a Web Service
	Supported Data Types for Parameters and Return Values of WebLogic Web Services
	Table 2�1 Java to XML Mapping
	Table 2�2 XML to Java Mapping

	XML-Java Conversion in WebLogic Web Services
	Security Issues
	Securing Message-Style Web Services
	<servlet> <servlet-name>sender</servlet-name> <servlet-class> weblogic.soap.server.servlet.Destin...
	<servlet-mapping> <servlet-name>sender</servlet-name> <url-pattern>/sendMsg</url-pattern> </servl...

	Securing an RPC-Style Web service
	Using 2-Way SSL When Invoking a WebLogic Web Service
	1. Configure WebLogic Server for 2-way SSL protocol (also called mutual authentication) and certi...
	2. Add the following lines of Java code to your client application before you obtain the context ...
	System.out.println("********************** loading client certs");
	InputStream certs[] = new InputStream[3]; certs[0]=new PEMInputStream(new FileInputStream("sample...
	h.put(SoapContext.SSL_CLIENT_CERTIFICATE, certs);
	String prov = "weblogic.net";
	String s = System.getProperty("java.protocol.handler.pkgs"); if (s == null) { s = prov; } else if...
	System.setProperty("java.protocol.handler.pkgs", s);

	Implementing a WebLogic Web Service
	Implementing an RPC-Style Web Service
	Implementing Message-Style Web Services
	1. Use the Administration Console to configure the following JMS components of WebLogic Server:
	2. Write the Java code for the J2EE component (typically a message-driven bean) that will take me...

	Configuring JMS Components for Message-Style Web Services
	1. Invoke the Administration Console in your browser. For details, see “Invoking the Administrati...
	2. Click to expand the Services node in the left pane and expand the JMS node.
	3. Right-click the Connection Factories node and choose Configure a new JMSConnectionFactory from...
	4. Enter a name for the Connection Factory in the Name field.
	5. Enter the JNDI name of the Connection Factory in the JNDIName field.
	6. Click Create.
	7. Click the Targets tab.
	8. Move the name of the WebLogic Server hosting the service to the Chosen list box, if not alread...
	9. Click Apply.
	10. Click to expand the Servers node under the JMS node in the left pane.
	11. Click to expand your JMS server node.
	12. Right-click the Destinations node and choose either:
	13. Enter the name of the JMS destination in the Name text field.
	14. Enter the JNDI name of the destination in the JNDIName text field.
	15. Click Create.

	Assembling a WebLogic Web Service
	Assembling a WebLogic Web Service Using Java Ant Tasks
	1. Create a temporary staging directory.
	2. If you are assembling an RPC-style Web service, copy the EJB *.jar file that contains the EJB ...
	3. Set up your environment.
	4. Create a file called build.xml in the staging directory that contains the Ant task elements fo...
	5. Change location to the staging directory and execute the Ant utility:
	Example of an Ant build.xml File
	Listing 2-1 Example build.xml File for Assembling WebLogic Web Services
	<project name="myProject" default="wsgen"> <target name="wsgen"> <wsgen destpath="myWebService.ea...
	Table 2�3 Description of build.xml Example

	Creating the build.xml Ant Build File
	1. Create an empty file called build.xml using your favorite text editor.
	2. Add one <project> element with the following two attributes:
	3. Within the <project> element, add a <target> element with one attribute, name; set the name at...
	4. Within the <target> element, add a <wsgen> element with the following attributes:
	5. If you are assembling one or more RPC-style Web services, add a single <rpcservices> element w...
	6. Within the <rpcservices> element, add an <rpcservice> element for each RPC-style Web service y...
	7. If you are assembling one or more message-style Web services, add a single <messageservices> e...
	8. Within the <messageservices> element, add a <messageservice> element for each message-style We...

	Dynamic or Static WSDL?

	Deploying a WebLogic Web Service
	Developing a WebLogic Web Service: A Simple Example
	1. Set up your environment.
	2. Write the Java interfaces and classes for the Weather stateless session EJB.
	3. Compile the EJB Java code into class files.
	4. Create the EJB deployment descriptors.
	5. Assemble the EJB class files and deployment descriptors into a weather.jar archive file.
	6. Create the build.xml Java Ant build file used to assemble the WebLogic Web Service.
	7. Create a staging directory.
	8. Copy the EJB weather.jar file and the build.xml file into the staging directory.
	9. Execute the Java Ant utility to assemble the Weather Web service into a weather.ear archive file:
	10. Auto-deploy the Weather Web service for testing purposes by copying the weather.ear archive f...
	Writing the Java Code for the EJB
	package examples.webservices.rpc.weatherEJB;
	import java.rmi.RemoteException; import javax.ejb.EJBObject;
	/** * The methods in this interface are the public face of WeatherBean. * The signatures of the m...
	public interface Weather extends EJBObject { /** * Gets the temperature of a given ZipCode. * * @...
	public float getTemp(String ZipCode) throws RemoteException; }
	package examples.webservices.rpc.weatherEJB;
	import javax.ejb.CreateException; import javax.ejb.SessionBean; import javax.ejb.SessionContext; ...
	/** * WeatherBean is a stateless Session Bean. This bean illustrates: * * No persistenc...
	public class WeatherBean implements SessionBean { private static final boolean VERBOSE = true; pr...
	private void log(String s) { if (VERBOSE) System.out.println(s); } /** * This method is required ...
	package examples.webservices.rpc.weatherEJB;
	import java.rmi.RemoteException; import javax.ejb.CreateException; import javax.ejb.EJBHome;
	/** * This interface is the home interface for the WeatherBean.java, * which in WebLogic is imple...

	Creating EJB Deployment Descriptors
	<?xml version="1.0"?>
	<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN' 'http://ja...
	<?xml version="1.0"?>
	<!DOCTYPE weblogic-ejb-jar PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN' 'http://www....
	<weblogic-ejb-jar> <weblogic-enterprise-bean> <ejb-name>statelessSession</ejb-name> <caching-desc...

	Assembling the EJB
	1. Create a temporary staging directory.
	2. Copy the compiled Java EJB class files into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Copy the ejb-jar.xml and weblogic-ejb-jar.xml deployment descriptors into the META-INF subdire...
	5. Create the weather.jar archive file using the jar utility:

	Creating the build.xml File
	<project name="weather-webservice" default="wsgen"> <target name="wsgen"> <wsgen destpath="weathe...

	3 Invoking WebLogic Web Services
	Overview of Invoking WebLogic Web Services
	WebLogic Web Services Client API
	Client Modes Supported by the WebLogic Web Services Client API
	Examples of Clients That Invoke WebLogic Web Services

	Invoking the WebLogic Web Services Home Page
	<project name="myProject" default="wsgen"> <target name="wsgen"> <wsgen destpath="myWebService.ea...
	Getting the WSDL from the Web Services Home Page
	1. Invoke the Web Services Home Page for your context in your browser, as described in “Invoking ...
	2. Click the name of the Web service.
	3. Click the WSDL File link. The WSDL file for the specified Web service appears in your browser ...

	Downloading the Java Client JAR File from the Web Services Home Page
	1. Invoke the Web Services Home Page for a given context in your browser, as described in “Invoki...
	1. Click the name of the Web service.
	2. Click the Client JAR File link.
	3. Specify a directory on your local computer in which to store the Java client JAR file.
	4. Save the JAR file to the specified directory.
	5. Update your CLASSPATH to include the Java client JAR file.

	URLs to Invoke WebLogic Web Services and Get the WSDL
	http://www.myHost.com:7001/myContext/statelessSession.WeatherHome/statelessSess ion.WeatherHome.wsdl
	http://www.myHost.com:7001/myContext/sendMsgWS/sendMsgWS.wsdl http://www.myHost.com:7001/myContex...

	Creating a Client to Invoke an RPC-Style WebLogic Web Service
	Writing a Java Client
	Writing a Static Java Client
	import java.util.Properties; import javax.naming.Context; import javax.naming.InitialContext;
	import examples.ejb.basic.statelessSession.Trader; import examples.ejb.basic.statelessSession.Tra...
	public class Client{
	public static void main(String[] arg) throws Exception
	Properties h = new Properties();
	h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.soap.http.SoapInitialContextFactory");
	h.put("weblogic.soap.wsdl.interface", Trader.class.getName());
	Context context = new InitialContext(h);
	Trader service = (Trader)context.lookup("http://www.myHost.com:7001/myContext/statelessSession/s...
	TradeResult result = (TradeResult)service.buy("BEAS", 100);
	System.out.print(result.getStockSymbol()); System.out.print(":"); System.out.println(result....
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps point out the Web service-specific parts o...
	a. Within the main method of your client application, add the following Java code to initialize t...
	b. Invoke a Web service operation by executing a public method of the EJB, as shown in the follow...
	c. Use the get methods of the returned TraderResult JavaBean to get the returned results. To find...

	4. Compile and run the client Java program as usual.

	Writing a Dynamic Java Client
	import java.util.Properties; import javax.naming.Context; import javax.naming.InitialContext;
	import examples.ejb.basic.statelessSession.TradeResult;
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod;
	public class DynamicClient{
	public static void main(String[] arg) throws Exception{
	Properties h = new Properties();
	h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.soap.http.SoapInitialContextFactory");
	Context context = new InitialContext(h);
	WebServiceProxy proxy = (WebServiceProxy)context.lookup("http://www.myHost.com:7001/myContext/st...
	SoapMethod method = proxy.getMethod("buy");
	TradeResult result = (TradeResult)method.invoke(new Object[]{ "BEAS", new Integer(100) });
	System.out.print(result.getStockSymbol()); System.out.print(":"); System.out.println(result....
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps point out the Web service-specific parts o...
	a. Within the main method of your client application, add the following Java code to initialize t...
	b. Invoke the Web service operation by executing a public method of the EJB, as shown in the foll...
	c. Use the get methods of the returned TraderResult JavaBean to get the returned results. To find...

	4. Compile and run the client Java program as usual.

	Writing a Microsoft SOAP Toolkit Client
	SET soapclient = CreateObject("MSSOAP.SoapClient")
	Call soapclient.mssoapinit(
	"http://myhost:7001/weather/statelessSession.WeatherHome/statelessSession.Weath erHome.wsdl", "We...
	wscript.echo soapclient.getTemp(94117)
	1. Instantiate a SoapClient object in your Visual Basic application.
	2. Initialize the SoapClient object by executing the SoapClient.mssoapinit() method, passing it t...
	3. Execute the WebLogic Web Service method.

	Creating a Java Client to Invoke a Message-Style WebLogic Web Service
	<project name="myProject" default="wsgen"> <target name="wsgen"> <wsgen destpath="messageExample....
	</messageservices> </wsgen> </target> </project>
	Sending Data to a Message-Style Web Service
	package examples.soap;
	import java.util.Properties; import java.net.URL; import javax.naming.Context; import javax.namin...
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod; import weblogic.soap.SoapT...
	public class ProducerClient{
	public static void main(String[] arg) throws Exception{
	Properties h = new Properties();
	h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.soap.http.SoapInitialContextFactory"); h.put("we...
	CodecFactory factory = CodecFactory.newInstance(); factory.register(new SoapEncodingCodec()); h...
	Context context = new InitialContext(h); WebServiceProxy proxy = (WebServiceProxy)context.lookup(...
	String toSend = arg.length == 0 ? "No arg to send" : arg[0]; Object result = method.invoke(new O...
	}
	}
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps point out the Web service-specific parts o...
	a. In the main method of your client application, create a Properties object and set some of the ...
	b. Create a factory of encoding styles and register the SOAP encoding style:
	c. Create the initial context, use the WSDL to look up the Web service, then get the send method:
	d. Invoke the send method and send data to the Web service. In the example, the client applicatio...

	4. Compile and run the client Java program as usual.

	Receiving Data From a Message-Style Web Service
	package examples.soap;
	import java.util.Properties; import java.net.URL; import javax.naming.Context; import javax.namin...
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod; import weblogic.soap.SoapT...
	public class ConsumerClient{
	public static void main(String[] arg) throws Exception{
	Properties h = new Properties(); h.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.soap.http.SoapI...
	CodecFactory factory = CodecFactory.newInstance(); factory.register(new SoapEncodingCodec()); h...
	Context context = new InitialContext(h);
	WebServiceProxy proxy = (WebServiceProxy)context.lookup("http://localhost:7001/msg/Receiver/Rece...
	while(true){ Object result = method.invoke(null); System.out.println(result); } } }
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps point out the Web service-specific parts o...
	a. In the main method of your client application, create a Properties object and set some of the ...
	b. Create a factory of encoding styles and register the SOAP encoding style:
	c. Create the initial context, use the WSDL to look up the Web service , then get the receive met...
	d. Invoke the receive method to receive data from the Web service. In the example, the client app...

	4. Compile and run the client Java program as usual.

	Handling Exceptions from WebLogic Web Services
	Initial Context Factory Properties for Invoking Web Services
	Table 3�1 Initial Context Factory Properties for Invoking Web Services

	Additional Classes Needed by Clients Invoking WebLogic Web Services

	4 Administering WebLogic Web Services
	Overview of Administering WebLogic Web Services
	Invoking the Administration Console

	Viewing the Web Services Deployed on WebLogic Server
	1. Start the WebLogic Administration server and invoke the Administration Console in your browser...
	2. In the left pane, click to expand the Deployments node.
	3. Click to expand the Applications node. A list of Enterprise applications appears below the node.
	4. To determine which of the listed Enterprise applications is deployed as a Web service, follow ...
	a. Click to expand the Enterprise application. The list of components that make up the applicatio...
	b. Look for a Web application component called web-services, which is the default name of the Web...
	c. If you find a Web application called web-services, right-click on it in the left pane and chos...
	d. In the left pane of the Deployment Descriptor Editor, see if the RPC Services node under the W...
	e. Click on the entry in either the Message Service or RPC Service node to view the properties of...
	f. If you do not find a Web application called web-services, it is still possible that the Enterp...

	5 Troubleshooting
	Turning on Verbose Mode
	java.io.FileNotFoundException
	Problem
	Explanation
	Exception in thread "main" javax.naming.NamingException: i/o failed java.io.FileNotFoundException...

	Suggested Solution
	1. Invoke the Administration Console in your browser. See “Invoking the Administration Console” o...
	2. In the left pane, click to expand the Applications node under the Deployments node.
	3. Click on the Enterprise Application that corresponds to the WebLogic Web Service that you are ...
	4. In the right pane, if the Deployed check box is not selected, select it and click the Apply bu...
	5. In the left pane, under the Enterprise application that corresponds to your Web service, click...
	6. In the right pane, select the Targets tab.
	7. If it is not already there, move the name of the WebLogic Server instance on which the Web app...
	8. If you are attempting to invoke an RPC-style WebLogic Web Service, follow these steps:
	a. In the left pane, under the Enterprise application that corresponds to your Web service, click...
	b. In the right pane, select the Targets tab.
	c. If it is not already there, move the name of the WebLogic Server instance on which the EJB sho...
	a. In the left pane, click to expand the JMS node under the Services node.
	b. Click to expand the Connection Factories node.
	c. In the right pane, click the name of the JMS Connection Factory that you configured for the me...
	d. Select the Targets tab.
	e. If it is not already there, move the name of the WebLogic Server instance for which the Connec...
	f. In the right pane, click to expand the Servers node under the JMS node.
	g. Click the name of the JMS server which your message-style Web service is using.
	h. In the right pane, select the Targets tab.
	i. If it is not already there, move the name of the WebLogic Server for which the JMS Server is t...

	Unable to Parse Exception
	Problem
	Explanation
	Exception in thread "main" javax.naming.NamingException: unable to parse org.xml.sax.SAXException...
	at weblogic.soap.wsdl.binding.Definition.parse(Definition.java:121) at weblogic.soap.WebServicePr...

	Suggested Solution

	java.lang.NullPointerException
	Problem
	Explanation
	was expecting 'input|output' but got:inputs was expecting 'operation|input|output' but got:inputs...

	Suggested Solution

	java.net.ConnectException
	Problem
	Explanation
	Exception in thread "main" javax.naming.NamingException: i/o failed java.net.ConnectException: Co...

	Suggested Solution

	6 Interoperability
	.NET Client Interoperating With a 6.1 WebLogic Web Service
	7.X WebLogic Client Interoperating with a 6.1 WebLogic Web Service

	A Specifications Supported by WebLogic Web Services
	SOAP 1.1 Specification
	SOAP Messages With Attachments Specification
	Web Services Description Language (WSDL) 1.1 Specification

	B build.xml Elements and Attributes
	Example of a build.xml File
	<project name="myProject" default="wsgen"> <target name="wsgen"> <wsgen destpath="myWebService.ea...

	build.xml Hierarchy Diagram
	Description of Elements and Attributes
	wsgen
	Table 6�1 wsgen Attributes�

	rpcservices
	Table 6�2 rpcservices Attributes�

	rpcservice
	Table 6�3 rpcservice Attributes�

	messageservices
	messageservice
	Table 6�4 messageservice Attributes�

	clientjar
	Table 6�5 clientjar Attributes�

	manifest
	entry
	Table 6�6 entry Attributes�

	C Manually Assembling the Web Services Archive File
	Before You Begin
	Description of the Web Services Archive File
	Assembling an RPC-Style Web Service Archive File Manually
	1. Create a temporary staging directory for assembling the Web application component. You can nam...
	2. Set up your shell environment.
	3. Execute the following command to automatically generate initial web.xml and weblogic.xml deplo...
	4. Edit the WEB-INF/web.xml file, adding WebLogic Web Services information, such as references to...
	5. Edit the WEB-INF/weblogic.xml file, adding WebLogic Web Services information. For details, see...
	6. In the main staging directory, create a sub-directory with the same name as the JNDI name of y...
	7. In the jndi-name subdirectory, create the WSDL JSP by running the following utility and redire...
	java weblogic.soap.wsdl.Remote2WSDL EJB_interface path -protocol protocol > wsdl.jsp
	8. In the jndi-name subdirectory, create an index.html file that contains links to the WSDL JSP y...
	9. Create a client.jar file in the main staging directory. For details on creating this file, ref...
	10. Create an index.html file in the main staging directory that lists the Web service in this En...
	11. Create the Web application archive (*.war file) using a jar command such as:
	12. Create a second temporary staging directory for assembling the Enterprise application. You ca...
	13. Copy your stateless session EJB *.jar file into the second staging directory.
	14. Copy the Web application archive *.war file you created in a previous step into the second st...
	15. Execute the following command to automatically generate an initial application.xml deployment...
	16. Edit the META-INF/application.xml file, adding WebLogic Web Services information. For details...
	17. Create the Enterprise Archive (.ear file) for the application, using a jar command such as:

	Updating the web.xml File for RPC-Style Web Services
	<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" "http://java.su...

	Updating the weblogic.xml File for RPC-Style Web Services
	<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application 6.0//EN" "http://www...
	<weblogic-web-app> <reference-descriptor> <ejb-reference-description> <ejb-ref-name>statelessSess...

	Updating the application.xml File for RPC-Style Web Services
	<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN' 'http://ja...
	<application> <display-name>Web-services</display-name> <module> <web> <web-uri>web-services.war<...

	Assembling a Message-Style Web Service Archive File Manually
	1. Create a temporary staging directory for assembling the Web application component. You can nam...
	2. Set up your shell environment.
	3. Execute the following command to automatically generate initial web.xml and weblogic.xml deplo...
	4. Edit the WEB-INF/web.xml file, adding WebLogic Web Services information, such as references to...
	5. Edit the WEB-INF/weblogic.xml file, adding WebLogic Web Services information. For details, see...
	6. In the main staging directory, create a sub-directory that will hold the WSDL JSP for the Web ...
	7. In the wsdl_dir subdirectory, create the WSDL JSP. The wsgen Java utility names this JSP wsdl....
	8. In the wsdl_dir subdirectory, create an index.html file that contains links to the WSDL JSP yo...
	9. Create a client.jar file in the main staging directory. For details on creating this file, ref...
	10. Create an index.html file in the main staging directory that lists the Web service in this En...
	11. Create the Web application archive (*.war file) using a jar command such as:
	12. Create a second temporary staging directory for assembling the Enterprise application. You ca...
	13. Copy the Web application archive *.war file you created in a previous step into the staging d...
	14. Execute the following command to automatically generate an initial application.xml deployment...
	15. Edit the META-INF/application.xml file, adding WebLogic Web Services information. For details...
	16. Create the Enterprise Archive (.ear file) for the application, using a jar command such as:
	Creating the Message-Style Web Service WSDL File
	1. Using your favorite text editor, create a file called wsdl.jsp.
	2. Copy and paste the sample WSDL at the end of this section into the wsdl.jsp file, and edit it ...
	3. Globally replace references to myService with the name of your Web service.
	4. If your Web service is one in which client applications that invoke it receive messages from t...
	5. Globally replace url:local with the unique namespace for your Web service.
	6. Replace the URI used to invoke the Web service from /msg/sendMsg to the following URI:
	7. If you want the WSDL file to statically specify the host and port of the WebLogic server hosti...
	<?xml version="1.0"?> <definitions targetNamespace="urn:local" xmlns="http://schemas.xmlsoap.org/...
	<types> <schema targetNamespace='urn:local' xmlns='http://www.w3.org/1999/XMLSchema'> </schema> <...
	<message name="sendRequest"> <part name="message" type="xsd:anyType" /> </message> <message name=...
	<portType name="myServicePortType"> <operation name="send"> <input message="tns:sendRequest"/> <o...
	<binding name="myServiceBinding" type="tns:myServicePortType"> <soap:binding style="rpc" transpor...
	<service name="myService"> <documentation>todo</documentation> <port name="myServicePort" binding...
	</definitions>

	Updating the web.xml File for Message-Style Web Services
	<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" "http://java.su...
	<web-app> <servlet> <servlet-name>myService</servlet-name> <servlet-class> weblogic.soap.server.s...

	Updating the weblogic.xml File for Message-Style Web Services
	<!DOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web Application 6.0//EN" "http://www...
	<weblogic-web-app> <reference-descriptor> <resource-description> <res-ref-name>myServiceDestinati...

	Updating the application.xml File for Message-Style Web Services
	<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN' 'http://ja...
	<application> <display-name>Web-services</display-name> <module> <web> <web-uri>web-services.war<...

	Creating the client.jar File Manually

	D Invoking Web Services Without Using the WSDL File
	import java.util.Properties; import java.net.URL; import javax.naming.Context; import javax.namin...
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod; import weblogic.soap.SoapT...
	public class ProducerClient{
	public static void main(String[] arg) throws Exception{
	CodecFactory factory = CodecFactory.newInstance(); factory.register(new SoapEncodingCodec()); f...
	WebServiceProxy proxy = WebServiceProxy.createService(new URL("http://www.myHost.com:7001/msg/s...
	SoapType param = new SoapType("message", String.class); proxy.addMethod("send", null, new Soap...
	String toSend = arg.length == 0 ? "No arg to send" : arg[0]; Object result = method.invoke(new O...
	1. Get the Java client JAR file from the WebLogic Server hosting the WebLogic Web Service.
	2. Add the Java client JAR file to your CLASSPATH on your client computer.
	3. Create the client Java program. The following steps describe the Web services-specific Java code:
	a. In the main method of your client application, create a factory of encoding styles and registe...
	b. Add the following Java code to create the connection to the Web service and set the encoding s...
	c. Add the following Java code to dynamically get the send method of the Web service:
	d. Invoke the send method and send data to the Web service. In the example, the client applicatio...

	4. Compile and run the client Java program as usual.

	import java.util.Properties;
	import java.net.URL; import java.io.File;
	import javax.naming.Context; import javax.naming.InitialContext; import javax.xml.parsers.Documen...
	import org.w3c.dom.Document; import org.w3c.dom.Element;
	import weblogic.apache.xml.serialize.OutputFormat; import weblogic.apache.xml.serialize.XMLSerial...
	import weblogic.apache.xerces.dom.DocumentImpl;
	import weblogic.soap.WebServiceProxy; import weblogic.soap.SoapMethod; import weblogic.soap.SoapT...
	import weblogic.soap.codec.CodecFactory; import weblogic.soap.codec.SoapEncodingCodec; import web...
	public class ProducerClient{ public static void main(String[] args) throws Exception{ String url ...
	CodecFactory factory = CodecFactory.newInstance(); factory.register(new SoapEncodingCodec()); fac...
	URL newURL = new URL(url + "/msg/sendMsg");
	WebServiceProxy proxy = WebServiceProxy.createService(newURL); proxy.setCodecFactory(factory); pr...
	SoapMethod method = proxy.getMethod("send");
	// Print out proxy to make sure method signature looks good System.out.println("Proxy:"+proxy);
	DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); //Obtain an instance of a Docu...
	//Class parserClass = Class.forName("org.jdom.adapters.XercesDOMAdapter"); //DOMAdapter da = (DOM...
	// Print out XML just to make sure the document was read successfully OutputFormat of = new Outpu...
	System.out.println("Before Invoke"); Object result = method.invoke(new Object[]{w3cDoc}); Syste...

	Glossary
	Assembling a Web service
	Deploying a Web service
	Implementing a Web service
	Invoking a Web service
	Java Ant
	Message-style Web services
	Publishing a Web service
	RPC-style Web service
	SOAP
	SOAP with attachments
	Web service
	Web Services Home Page
	WSDL

	Index

