BEA WebLogic
Server

Programming
WebLogic Time Services
(Deprecated)

BEA WebLogic Server Version 6.1
Document Date: September 19, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc..

All other product names may be trademarks of the respective companies with which they are associated.
Programming WebL ogic Server Time Services

Part Number Document Date Software Version

N/A July 30, 2001 BEA WebL ogic Server Version 6.1

Contents

About This Document

N 0 [1= 0 TS \Y
E-UOCSWED SHB....eieee et e e et beeaeenns \Y
HOw to Print the DOCUMENEcccvieeieeere s s Vi
(0] 31 =t B U L P URRSRRN: vi
Documentation CONVENLIONScccueiieiieieeriese e ceesre e e seesessee e e tesreenre e Vii

Time Services DEPreCated........coviiiireierirere st eeeree et 1-1
L@ Y= V1= 1-2
WebL0ogiC Time ArChiteCIUIE......c.ueveee et et 1-2
WEDBLOGIC TIME AP ...ttt e nneene s 1-3

2. Implementing with WebLogic Time

Scheduling a Recurring Trigger on aClient.........cocooeveieieiennceeeeere e 2-1
Scheduling a Recurring Server-side Trigger from aWebLogic Client............. 2-3

Step 1. Implement the ScheduleDef and TriggerDef interfaces................. 2-3

Step 2. Create the ScheduledTrigger from aWebL ogic Client.................. 2-5
Setting up Complex SChedUIES..........cccvvi i 2-6
RESCNEAUIING ...ttt 2-7
Stopping & SChedUIEAT QULc.eierieierere et 2-8

Programming WebL ogic Time Services iii

Programming WebL ogic Time Services

About This Document

This document describes the architecture of the WebL ogic Time Servicesthat runson
BEA WebLogic Server™ .

The document is organized as follows:

m Chapter 1, “Programming WebL ogic Time Services (Deprecated),” isan
overview of the architecture of the WebL ogic Time Services.

m Chapter 2, “Implementing with WebL ogic Time,” describes how to implement
the WebL ogic Time Services.

Audience

This document is written for application devel opers who want to implement Time
Services for their applications. It is assumed that readers know Web technologies,
object-oriented programming techniques, and the Java programming language.

e-docs Webh Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

Introduction to BEA WebL ogic Server v

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Ud!

Vi

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionalswho create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:;
® Your name, e-mail address, phone number, and fax number

® Your company name and company address

® Your machine type and authorization codes

® The name and version of the product you are using

Introduction to BEA WebL ogic Server

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Usage

Ctrl+Tab

Keysyou press simultaneoudly.

italics

Emphasis and book titles.

nonospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

i mport java.util.Enuneration;
chrmod u+w *

conf i g/ exanpl es/ appl i cati ons
.java

config. xm

f1 oat

nonospace
italic
t ext

Variablesin code.
Example:
String Custoner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{1

A set of choicesin asyntax line.

Introduction to BEA WebL ogic Server vii

viii

Convention

Usage

[]

Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several times in the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Introduction to BEA WebL ogic Server

Time Services Deprecated

1 Programming

WebLogic Time
Services (Deprecated)

The WebL ogic Time API provides a mechanism for scheduling actions (triggers) to
take place at afuture date and time, or on aregularly recurring schedule. Thefollowing
sections provide an introductiont to the Time Services features:

m Time Services Deprecated

m Overview

m WebL ogic Time Architecture
m WebLogic Time API

Time Services Deprecated

WebL ogic Time Services are deprecated in WebL ogic Server Version 6.1. See J2EE
Scheduling Toolsin WebL ogic Server Tools for third-party scheduling services.

Programming WebL ogic Time Services 1-1

http://e-docs.bea.com/wls/docs70/toolstable/index.html

1

Programming WebLogic Time Services (Deprecated)

Overview

The Time API alows any user-written trigger to be scheduled and then executed,
either in the client VM, or on WebL ogic Server on behalf of aclient. The Time API
provides a dependabl e, distributable method of setting up actions that occur
automatically.

Note: Although you can use the time service with individual WebL ogic Server
instancesin acluster, the serviceitself isnon-clusterable. The WebL ogic Time
API does not make use of cluster features such as load balancing and failover.

WebLogic Time Architecture

1-2

WebLogic Timeisalightweight, efficient API that shares many characteristics of
other WebL ogic Server APIs. WebL ogic Time isbuilt around a ScheduledTrigger Def
object, constructed from a Schedulable object. The ScheduledTriggerDef object is
responsible for starting, stopping, or repeating the action schedule. A Triggerable
object defines the action to be carried out on schedule. Y ou use an object factory to
create a ScheduledTrigger. Object factories provide a well-defined, easy-to-use
methodology for managing scarce resources within WebL ogic Server.

Accounting for scheduling iskept in aseries of efficient linked liststhat are sorted only
at the most proximate chronological point asnew triggers are scheduled and then acted
upon. For example, atrigger for aweek from Tuesday at 12:15:30 isinitially inserted
into the schedule for next Tuesday. Not until noon on Tuesday is the schedule for the
noon hour sorted, and not until fifteen minutes past noon are the triggers for that
minute sorted. This drastically reduces the overhead for scheduling in a heavily
scheduled environment.

WebL ogic Server also keeps accounting of the differencesin time zone, clock
accuracy, and latency between users of the Time service. Note that WebL ogic triggers
are not real time triggers that can be used to millisecond granularity. WebL ogic
triggers used properly will function reliably within an estimated 1 second of accuracy.

Programming WebL ogic Time Services

WebLogic Time API

WebLogic Time API

A ScheduledTrigger takes two objectsin its constructor:

An object that implements either webl ogi c. ti ne. cormon. Schedul abl e or
webl ogi c. ti me. conmon. Schedul eDef

An object that implements either webl ogi c. ti me. common. Tri gger abl e or
webl ogi c. ti me. common. Tri gger Def

An object passed to the ScheduledTrigger object factory method may also be a
client-side object, in which case the client creates, schedules, and executes a
ScheduledTrigger within its own JVM. The client-side object must implement
Schedulable (or ScheduleDef) and Triggerable (or TriggerDef).

The Ti neSer vi cesDef interface also provides methods for obtaining time-related
information about client and server:

current TimeM | i s() returnsthe current server time, in “local server time’
format, which isthe server’s time adjusted for propagation delay between the
method invoker and the server (zero when the method invoker isthe server, and
some positive milliseconds when the invoker is the client or another WebL ogic
Server).

get RoundTri pDel ayM | | i s() returnsthe number of milliseconds of round-trip
delay between the client and server. This method depends on the algorithm
described in the overview.

get Local O ockOf fset M |1 s() returns the number of milliseconds of offset
between the client and server clocks, based on the algorithm described in the
overview.

Thewebl ogi c. ti me. common. Ti neRepeat classimplements Schedulable. This
utility classis a prefabricated scheduler you can use to set up arepeating trigger. Just
passani nt that istheinterval (in milliseconds) at which the trigger should repeat.
Then call itsschedul e() method with the starting time.

Warning: If your trigger throws an exception, it isnot rescheduled. Thisisto ensure

that afailing trigger is not re-executed indefinitely. If you want to
reschedule atrigger after an exception, you must catch the exception and
schedule the trigger again.

Programming WebL ogic Time Services 1-3

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/Schedulable.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/ScheduleDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/Triggerable.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/TriggerDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/TimeServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/TimeRepeat.html

1 Programming WebLogic Time Services (Deprecated)

The package contains a single exception class, TimeTriggerException.

1-4 Programming WebL ogic Time Services

CHAPTER

2 Implementing with
WebLogic Time

The following sections describe how to implement with the deprecated WebL ogic
Time Service:

Scheduling a Recurring Trigger on a Client

Scheduling a Recurring Server-side Trigger from a WebL ogic Client
Setting up Complex Schedules

Rescheduling

Stopping a ScheduledTrigger

Scheduling a Recurring Trigger on a Client

The simplest case of scheduling arecurring trigger isto create a ScheduledTrigger that
is scheduled and executed on aWebL ogic client. In such acase, you write a class that
implements both Schedul able and Triggerable, and implement the methods of those
interfaces.

This exampleillustrates how to schedul e and execute atrigger:

i mport webl ogi c. tine. conmon. *;
i nport webl ogi c. common. *;
import java.util.*;

i mport webl ogi c.jndi.*;

i mport javax. nam ng.*;

Programming WebL ogic Time Services 2-1

2 I mplementing with WebLogic Time

import java.util.*;

class nyTrigger inplenents Schedul abl e, Triggerable {

}

First, obtain a ScheduledTrigger object from the TimeServices factory. Obtain the
TimeServices factory from the T3Services remote factory stub on the WebL ogic
Server viathe get T3Ser vi ces() method.

Note: To obtain ahandle to the Ti meSer vi ces interface on a WebL ogic Server
instance (as opposed to a client application) use the static method,
webl ogi c. common. T3Ser vi ces. get T3Ser vi ces() .

Next, call theschedul e() and cancel () methods on the trigger, as shown in this
example:

public myTrigger() throws Ti neTriggerException {
/] Obtain a T3Services factory
T3Servi cesDef t3 = get T3Services("t3://1ocal host: 7001");

/1 Request a Schedul edTrigger fromthe factory. Use
/1 this class for scheduling and execution
Schedul edTri gger Def std =
t 3services.tine().getSchedul edTrigger(this, this);
/1 Start the ball rolling
std. schedul e();
/1 Your class may do other things after scheduling the trigger
/1 When you are finished, cancel the trigger
std. cancel ();

}

Y our class must implement the methods in the following interfaces.

Schedul abl e
The Schedul abl e interface has only one method, schedul e(), which
allows you to set the time at which the trigger should be executed.

public | ong schedul e(long tine) {
/1 Schedule the trigger for every 5 seconds
return tinme + 5000

}

Triggerabl e
The Tri gger abl e interface has only one method, t ri gger () , where the
client performs an action in response to the timed triggered.

2-2 Programming WebL ogic Time Services

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/Schedulable.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/Triggerable.html

Scheduling a Recurring Server-side Trigger from a WebLogic Client

public void trigger() {
/1 The trigger nmethod is where the work takes pl ace
Systemout.println("trigger called");

}

This exampleis self-contained within a single class that implements both the
scheduler and the trigger. Thisis convenient since both required methods share class
variables necessary for scheduling or execution.

Scheduling a Recurring Server-side Trigger
from a WebLogic Client

Y ou can write more flexible schedulers and triggers, which may be executed anywhere
within the WebL ogic framework, by implementing Schedul eDef and Tri gger Def
instead of the simpler interfaces Schedul abl e and Tri gger abl e. This example
illustrates aflexible implementation that creates arecurring trigger that is rescheduled
and executed on a WebL ogic Server, or anywhere within the WebL ogic framework.

Here are the steps to creating a scheduled trigger in this scenario. You will need to
write a class that implements ScheduleDef and TriggerDef. We implement these
interfaces in separate classesin this example.

Compile the classes and place them in the WebL ogic Server ser ver cl asses
directory. Then create a Schedul edTr i gger with those classes from aclient
application.

Step 1. Implement the ScheduleDef and TriggerDef
interfaces

Inthisexample, the schedul er implements Schedul eDef rather than Schedulable so that
itsset Servi ces() andschedul el ni t () methodsarecalled. Thetrigger implements
TriggerDef rather than Triggerable for the same reason. These objects differ from the

Programming WebL ogic Time Services 2-3

2

I mplementing with WebLogic Time

2-4

interfaces they implement in that they can be initialized with a ParamSet, and have
accessto WebL ogic servicesthrough the T3Ser vi ces stub. Thesetwo differencesare
important for the following reasons.

Y ou do not need to write different versionsfor client-side and server-side deployment
because the T3Ser vi cesDef interfaceis aremote stub.

When you instantiate an object dynamically, you must call the default constructor.
Consequently, all service-related interfaces, including the Timeinterfaces, requirethat
you implement the schedul el ni t () method which takes a ParamSet, thus allowing
you to passinitialization parameters for the object.

Here isa simple implementation of ScheduleDef.
package exanpl es.tine;

i mport webl ogi c. conmon. *;

i mport webl ogi c.ti me. conmon. *;

import java.util.*;

cl ass MySchedul er inplements Schedul eDef {

private int interval = 0;
private T3ServicesDef services;

public void setServices(T3Servi cesDef services) {
this.services = services;

}

public void schedul el nit (ParanBSet ps) throws ParanBSet Exception {
interval = ps.getParam("interval").aslnt();

}

public | ong schedul e(long currentMIlis) {
return currentMlIlis + interval;

}

}

Hereisasimple class that implements TriggerDef. In this case, we do not need to set
or get any parameters for the Trigger, so we implement the method to do nothing.

package exanpl es.tine;
i mport webl ogi c. conmon. *;
i mport webl ogi c. ti me. conmon. *;

import java.util.*;

public class MyTrigger inplenents TriggerDef {

Programming WebL ogic Time Services

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/ParamSet.html

Scheduling a Recurring Server-side Trigger from a WebLogic Client

private T3Servi cesDef services;

public void setServices(T3ServicesDef services) {
this.services = services;
}

public void triggerlnit (ParanfSet ps) throws ParanSet Exception {
/1 Enpty nethod definition

}

public void trigger(Schedul abl e sched) {
Systemout.println("trigger called");
}

}

Step 2. Create the ScheduledTrigger from a WebLogic
Client

This method of setting up a scheduler and trigger require that you create a Scheduler
and Trigger object to passtotheget Schedul edTri gger () factory method. We
created thosein “ Step 1. Implement the ScheduleDef and TriggerDef interfaces.”

We have compiled those classes and placed them in the CLASSPATH of the
WebL ogic Server. Now we'll writeaclient that usesthose classesto schedule atrigger
that runsin the server’s VM.

We use a ParamSet to passinitialization parameters between the client and the objects
that the WebL ogic Server instantiates. The classthat we wrote in Step 1 to implement
ScheduleDef depends upon a Parameter “interval” to be set by the caller, so we'll
create a ParamSet with one Param. The class we wrote to implement TriggerDef
doesn’t require any initialization parameters.

T3Servi cesDef t3services = getT3Services("t3://1ocal host: 7001");

/] Create a ParanBet to pass initialization paraneters for
/1 the Schedul eDef object. Set one paraneter, "interval,"
/1 for 10 seconds

Par anet schedParans = new Par anBSet () ;

schedPar ans. set Paran{"i nterval ", 10000);

Programming WebL ogic Time Services 2-5

2 I mplementing with WebLogic Time

Add the get T3Ser vi ces() method to your client class and create the Scheduler and
Trigger wrapper objects that instantiate a ScheduledTrigger on the server. The
Scheduler and Trigger wrapper objects hold the name of the target class and a
ParamSet to initiaize it, if necessary.

Schedul er schedul er =

new Schedul er ("exanpl es. ti me. MySchedul er”, schedParans);
Tri gger trigger =

new Tri gger ("exanpl es. tine. MyTri gger");

Finally, use the time services object factory to manufacture a ScheduledTrigger. It
takes two arguments, a Scheduler and a Trigger, which we have just created.

Schedul edTri gger Def std =
t3.services.tine().getSchedul edTri gger (schedul er, trigger);

The get Schedul edTri gger () method returns a ScheduledTriggerDef object. To
initiate execute, the client calls the ScheduledTriggerDef’ sschedul e() and
cancel () methods.

If you are setting up a repeating schedule, you might also use the utility class

Ti neRepeat , whichispart of this package. Hereisasimple example of how to usethe
Ti neRepeat classto set up aregular schedule for aSchedul edTri gger that repeats
every 10 seconds. Again, it usesthe get T3Ser vi ces() method to access the

WebL ogic server-side services.

T3Servi cesDef t3services = getT3Services("t3://1ocal host: 7001");

Schedul er schedul er
Tri gger trigger

new Schedul er (new Ti meRepeat (1000 * 10));
new Tri gger ("exanples.time. MyTrigger");

Schedul edTri gger Def std =
t3services.time().getSchedul edTri gger (schedul er, trigger);

std. schedul e();

Setting up Complex Schedules

Y ou can design arbitrarily complex schedules with theschedul e() method of a
Schedulable object. Here are some examples and tips on scheduling.

2-6 Programming WebL ogic Time Services

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/time/common/TimeRepeat.html

Rescheduling

Thereareseveral waysinwhich theargument totheschedul e() method can describe
the execution time:

m The current time, in milliseconds since the epoch.

m A specific future date and time, in a millisecond representation by performing
date arithmetic using standard Java classes (such asj ava. uti | . Dat e).

The schedul e() method returns along value, which allows you to set up repeating
triggers. Simply return the time at which theschedul e() method waslast called plus
theinterval (in milliseconds) at which the schedule should repeat.

Rescheduling

In this example, we write the schedul e() method to delay for an incrementing
interval between each call to thet ri gger () method. The schedul e() and
trigger () methods areimplemented in the same class in this example.

Inthetri gger () method, we set an incrementing delay, using a private int delay,
which we initialize to zero in the class constructor. Each time the trigger is called, it
incrementally adjusts its own schedule.

public void trigger() {
Systemout. println("Trigger called");
/] Carry out sone arbitrary tasks . .
System out. println("Trigger conpleted");
// Add a thousand nilliseconds to the del ay
del ay += 1000;

}

Intheschedul e() method, we return the next execution of the trigger as the time of
the last scheduled execution, plus the delay incremented by the last scheduled
execution (in milliseconds). We also include an upper bounds on the delay to end the
scheduling.

public | ong schedule(long t) {
Systemout.println("--------cmmmmm o ");
if (delay > 10000) {
Systemout.println("Cancelling Tinmer");
return O;

}

Programming WebL ogic Time Services 2-7

2 I mplementing with WebLogic Time

el se {
System out. println("Scheduling next trigger for " +
del ay/ 1000 + " seconds");
returnt + del ay;

}
}

Stopping a ScheduledTrigger

There are two ways to stop a ScheduledTrigger:
m Call the ScheduledTrigger's cancel () method.
m Return zero (0) when the schedul e() method is called ends the scheduling.

There is some dlight difference in these two methods. If you return zero from the
schedul e() method, the schedule isimmediately ended. If you call a
ScheduledTrigger's cancel () method, the clock continues to run until the next
scheduled instance of thet ri gger (), at which paint it is cancelled.

2-8 Programming WebL ogic Time Services

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Programming WebLogic Time Services (Deprecated)
	2. Implementing with WebLogic Time

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Programming WebLogic Time Services (Deprecated)
	Time Services Deprecated
	Overview
	WebLogic Time Architecture
	WebLogic Time API

	2 Implementing with WebLogic Time
	Scheduling a Recurring Trigger on a Client
	Schedulable
	Triggerable

	Scheduling a Recurring Server-side Trigger from a WebLogic Client
	Step 1. Implement the ScheduleDef and TriggerDef interfaces
	Step 2. Create the ScheduledTrigger from a WebLogic Client

	Setting up Complex Schedules
	Rescheduling
	Stopping a ScheduledTrigger

