o®%%,

9 F
: #
L e a

BEA
WebLogic Server

Programming
WebLogic Security

BEA WebLogic Server 6.1
Document Date: November 17, 2003

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any el ectronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jaolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic Security

Document Edition Document Date Software Version

N/A November 17, 2003 BEA WebL ogic Server Version 6.1

Contents

About This Document

N 0 [1= 5 TR vii
E-AOCSWED SOttt st et r e b viii
How to Print the DOCUMENL........cccceeiiiir e seee e snens viii
Related INfOrmation..........cceeii et viii
(0o 1 = ox A U LS S viii
Documentation CONVENTIONS.........ccoverrirerieseseeseseeseeeeeeeesesseesessessesse e seessenees iX

1. Introduction to WebLogic Security

WeDL OgiC SECUNtY FEALUIESccuiiviieie ettt e 1-1
WebL ogic Security ArChiteCIUIE........ccvieieeeeee s 1-3
Connections With WED BrOWSEN'S.........cocurrireeniee e 1-5
Connections with Servlets, JSPs, EJBs, RMI Objects and Java Applications.

1-7
Connections with AdMINiStration SEIVErS........cocevennersenne e 1-9
Using WebL ogic Server asa Client to BEA TuXedO........cccvvveerieeererennneenn 1-10

2. Security Fundamentals

RESDUICES......ectii ittt sttt et sre e s be e aaesabe et e e seeere s 2-2
SECUNLY REBIMS.....ceviieecee e e e e e 2-2
L0 E < £ T USRS 2-7
L€ (00 0 SO UR TP PRURPP 2-7
ACLS AN PEMISSIONSveiviieiieiesieiesieeenessee e e ssestes e saessesaeseesseneesssesssssessens 2-8
S I = o] oo o S 2-9
Authentication MeChaniSMS.........cccveeieiieie et 2-11
Digital CertifiCates......cuevviirireresireerese s s ene s 2-12
Certificate AULNOIITYc..ceeeieeeeee e 2-14

Programming WebL ogic Security iii

iv

Supported Public Key AlgOrithms.........ccovvevevereieceese e e 2-14

Supported Symmetric Key Algorithms ... 2-15
Supported Message Digest Algorithms.......ccocvvevvverevecrseeceee e 2-16
SUPPOrted CIPhEr SUITES........ceeeiececese s 2-16

Securing a WebLogic Server Deployment

Why Is Security Important for WebLogic Server?........occoeeviveveceeneneseennns 3-2
Determine the Security Needs of Y our WebL ogic Server Deployment............ 3-3
Secure the Machine on Which WebLogic Server RUNS.........ccooevevevenenenens 34
Accessing Protected Ports 0N UNIXoovvvieveneeeeee e 35
Design Network Connections Carefullycoovvvvevienienineceseeseee e 35
Manage the WebL ogic Server Development and Production Environments.... 3-8
LS Y] (o o S 39
USEthe SSL ProtoCOLcviveeriiiierereses et 3-10
Prevent Man-in-the-Middle Attacks.........c.ccoeie e 311
Prevent Denial Of Service AttacksS........cocovrvirninieineieee s 3-11
Secure the HTTP Response HEAdEc.cceieveeriirece e 312
ProteCt USEr ACCOUNLScverueeiiriiesteetesie et s ee et see e saee e e e 3-12
Protect Application CONEENLcccoveveereeerereeie e ere s 313
Replace HTML Specia Charactersin User-Supplied Data..........ccccceeveeeenee. 314
Use Protected EJBsto Limit Accessto BuSINeSS LOGIC.cceevererenerierieneenins 3-15
USE ACLS .ttt e e e 3-16
Use the Appropriate Security REAIMcc.cceeevveeeecice e 3-17
SECUrE Y OUN DA@DaSE........eeuerieriie ettt st 3-17
LS AN o[11 o R 3-18
Control Accessto Multiple DOMaINS.........cccoovvevinenenecreeeeee s 3-18

Programming with the WebLogic Security SPI

BEfOre YOU BEOIN ..ottt s s 4-2
WEDLOGIC SECUNLY SPlocvviieiiveceerece et e 4-2
Using JAAS AULheNntiCationcoeoeereeeniee e 4-4
Using INDI AUthENTICATONcveiiieiiieeeeee e e 4-14
Communicating Securely with SSL-Enabled Web Browsers.........ccccceveveneee. 4-18
Using Mutual AUtNENtiCaEIONcueouiiieeeeeeere e e 4-18

Mutual Authentication With INDI ..o 4-19

Programming WebL ogic Security

Mapping a Digital Certificate to aWebLogic Server User........ccceevenene. 4-22

Using Mutual Authentication with Other WebLogic Servers.................. 4-25
Using Mutual Authentication with Serviets.........cccocvevvvievevcnececne, 4-27
Using a Custom Host Name VErifier........ccvivivveniene e 4-29
USING @ TIUSE MANAGEYcveiuiieiieiee ettt e 4-31
USING 8N SSL COMEEXLvvvereeriereerirseeieseeseeseeessessesteseeseesreseeseeeeseseesessessensenns 4-32
USING CUSEOM ACLS. ...ttt s e 4-32
Writing a Custom Security REaIM.........coiriiiinrieircnere s 4-35
Define aClass fOr USErS......ueirriereerrereesesnreese e 4-38
Define a Class fOr GrOUPS.cieiverieeereeeeiereee st ere s 4-39
Define Enumeration Classes for Users and Groups..........ccoeeereeeeerenennes 4-40
Define a Class for the Custom Security Realm........cccccevvevecverccneccnnenns 4-42
Using Authorization in a Custom Security Realm..........cooovveiiinieenennens 4-49
Auditing SECUNtY EVENLS.......coui et 4-49
Filtering Network CONNECLIONSccccveevierese et 4-50
Using RMI OVer [HOP OVEr SSLcccoouiiiieiieeeieeeeie et 4-52

Programming WebL ogic Security %

Vi Programming WebL ogic Security

About This Document

This document introduces concepts associated with the BEA WebL ogic Server™
security features, explains how to use those features to make your WebL ogic Server
deployment secure, and provides aguideto application programming interfaces (APIs)
in the WebL ogic Security Service Provider Interface (SPI).

This document is organized as follows:

m Chapter 1, “Introduction to WebL ogic Security,” presents an overview of the
featuresin WebL ogic Security.

m Chapter 2, “Security Fundamentals,” presents a detailed discussion of the
concepts associ ated with the security features in WebL ogic Server.

m Chapter 3, “Securing a WebL ogic Server Deployment,” describes how to secure
your WebL ogic Server deployment and how to thwart common security attacks.

m Chapter 4, “Programming with the WebL ogic Security SPI,” describes how to
define a security policy for WebL ogic Server and how to connect to WebL ogic
Server in a secure manner.

Audience

Thisdocument isintended for programmerswho want to incorporate security into their
WebL ogic Server deployment.

Programming WebL ogic Security vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebL ogic Server.

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professional s who create and update the documentation.

viii Programming WebLogic Security

http://www.adobe.com
mailto:docsupport@bea.com

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
® Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Y our machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneoudly.

italics Emphasis and book titles.

Programming WebL ogic Security iX

http://www.bea.com

Convention Usage

nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and filenames and their extensions. Monospace text also

indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chrmod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace Variablesin code.

italic Example:
t ext .
String Custoner Nane;

UPPERCASE Device names, environment variables, and logical operators.

TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.
[1] Optiona itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Programming WebLogic Security

Convention Usage

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic Security Xi

Xii Programming WebLogic Security

CHAPTER

1 Introduction to
WebLogic Security

The following sections provide an introduction to WebL ogic Security including:
m WebL ogic Security Features

m WebL ogic Security Architecture

m Using WebL ogic Server asa Client to BEA Tuxedo

WebLogic Security Features

Security refers to techniques for ensuring that data stored in a computer or passed
between computers is not compromised. Most security measures involve proof
material and data encryption. Proof material istypically a secret word or phrase that
gives a user accessto a particular application or system. Data encryption is the
translation of datainto aform that cannot be interpreted.

Distributed applications, such as those used for el ectronic commerce (e-commerce),
offer many access points at which malicious people can intercept data, disrupt
operations, or generate fraudulent input. As abusiness becomes more distributed there
isan increased probability that security attacks can be perpetrated. Accordingly, asa
business distributes its applications, it becomes increasingly important for the
distributed computing software upon which such applications are built to provide
security.

Programming WebL ogic Security 1-1

1

Introduction to WebLogic Security

1-2

The security features provided in WebL ogic Server let you establish secure
connections from Web browsers, Javaclients, and other WebL ogic Serversto
WebL ogic Server. In addition, WebL ogic Server can be used as aclient to BEA
Tuxedo over a secure connection.

Specifically, WebL ogic Server provides the following security features:

Security realms which represent alogical grouping of Users, Groups, ACLs, and
permissions for the purpose of protecting WebL ogic Server resources. Y ou can
use the default security realm or one of a set of alternative security realms that
alow you to use Windows NT, UNIX, and LDAP security stores. In addition,
custom developed security realms are supported.

Authentication of clients requesting access to WebL ogic Server resources.
Authentication can be accomplished using a username/password combination or
digital certificates where a client is authenticated using the identity inside of the
X.509 digital certificate provided to WebL ogic Server as part of a Secure
Sockets Layer (SSL) connection.

Authorization of Users and Groups through access control lists (ACLS).

The Java Authentication and Authorization Service (JAAS) application
programming interface (API) for authentication. The JAAS implementation in
WebL ogic Server provides LoginContext authentication and Subject
authorization. Support for JAAS authorization is not provided.

Dataintegrity and confidentiality through the SSL protocol. Clients can establish
SSL sessions with WebL ogic Server using the Hypertext Transfer Protocol
(HTTP), the BEA proprietary T3 protocol, or the Remote Method I nvocation
(RM1) over Internet Inter-ORB (110P) protocol.

Auditing of events such asfailed login attempts, authentication requests, rejected
digital certificates and invalid ACLs.

Filtering of client connections for the purpose of accepting or rejecting the client
request based the origin (host name or network address) or protocol of the client.

Propagation of the security context from WebL ogic Server security realmsto
BEA Tuxedo domains using WebL ogic Enterprise Connectivity (WLEC). This
feature allows the propagation of security information about the requesting
WebL ogic Server User to the BEA Tuxedo domain over network connections
that are part of atrusted WLEC connection pool.

Programming WebL ogic Security

WebLogic Security Architecture

For information about security in WebL ogic EJBs, see Programming WebL ogic
Enterprise JavaBeans.

For information about security in Web applications, see Assembling and Configuring
Web Applications.

WebLogic Security Architecture

The security architecture in WebL ogic Server is based on the authorization and
authentication of Users. Figure 1-1 illustrates the security architecture in WebL ogic
Server.

Figure1-1 WebLogic Server Security Architecture

Authentication

Security Realm

Users Groups

One Way

WebLogic Client

¥

Authorization

Mutual
ACLs Permissions

servers, events, MBeans
JDBC connection poals,
JMZ destinations,
JMDN cantexts

WehLogic Security

Authentication isthe first layer of security in the WebL ogic Server environment.
Authentication is the process of verifying an entity’ sidentity before completing a
connection. Authentication protects who gets access to the WebL ogic Server
environment.

Programming WebL ogic Security 1-3

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

1

Introduction to WebLogic Security

1-4

The default authentication scheme for WebL ogic Server is one-way authentication.
One-way authentication is common on the Internet where customers want to create
secure connections before they share personal data. When WebL ogic Server receives
aclient request, WebL ogic Server authenticates the client by comparing the supplied
username and password against the usernames and passwords defined in the

WebL ogic Server security realm. If the username and password can be validated, the
client is granted access to the WebL ogic Server environment.

If the SSL protocoal is used, the establishment of the secure connection requires
WebL ogic Server to present its digital certificate chain to the client to prove its
identity. The client uses aset of digital certificatesfor certificate authoritiesit truststo
verify the authenticity of the digital certificate presented by WebL ogic Server. When
the SSL protocol on a WebL ogic Server is configured for two-way SSL, the client is
also required to pass a chain of digital certificates that validates its identity.

Once in the WebL ogic Server environment, authorization protects who has access to
the available resources. Authorization is based on the definition of Users and Groups
and the permissions assigned to the resourcesin WebL ogic Server. A resource can be
an event, a servlet, JDBC connection pools, passwords, JMS destinations, and JNDI
contexts. WebL ogic Server uses security realms to logically organize Users, Groups,
ACLSs, and the permissionsfor the resources. A WebL ogic Server resourceis protected
under only one security realm by an ACL in that security realm. A User must be
defined in a security realm in order to access any resources belonging to that security
realm.

When a User attemptsto execute amethod on aresource, the following steps are taken
to determine whether accessis permitted:

1. If theresourceis protected and the User has not previously been authenticated, the
User isrequested to authenticate. If the authentication fails, the request is rejected.

2. WebLogic Server identifies the User invoking the method. If the user cannot be
determined, the request is rejected.

3. WebLogic Server determines the set of required permissions to invoke the
method on the WebL ogic Server resource.

4. If theinvoking User has at least one of the required permission, WebL ogic Server
allows the method to be invoked.

The following sections describe how WebL ogic Server provides security for different
types of connections.

Programming WebL ogic Security

WebLogic Security Architecture

Connections with Web Browsers

Web browsers interact securely with WebL ogic Server in the following manner:

1. A user invokesaresourcein WebL ogic Server by entering the URL for that
resourcein a\Web browser.

2. The Web server in WebL ogic Server receives the request. WebL ogic Server
providesits own Web server but also supports the use of Apache Server,
Microsoft Internet Information Server, and Netscape Enterprise Server as Web
servers.

3. The Web server checks whether the WebL ogic Server resource is protected by an
ACL. If the WebL ogic Server resource is protected, the Web server uses the
established HTTP connection to request a user ID and password from the user.

4. When the user’s Web browser receives the request from WebL ogic Server, it
prompts the user for auser ID and password.

5. The Web browser sends the request again, along with the user 1D and password.

6. The Web server forwards the request to the Web server plug-in. WebL ogic
Server provides the following plug-ins for Web servers:

e Apache-Weblogic Server plug-in
e Netscape Server Application Programming Interface (NSAPI)
e Internet Information Server Application Programming Interface (I1SAPI)

The Web server plug-in performs authentication by sending the request, viathe
HTTP protocol, to the resource in WebL ogic Server, along with the
authentication data (user ID and password) received from the user.

7. Upon successful authentication, WebL ogic Server determines whether the user
has the permissions necessary to access the resource.

8. If authorization succeeds, the servlet engine fulfills the request. The serviet
engine resides within WebL ogic Server.

9. Beforeinvoking a method on the servlet, the serviet engine performs a security
check. During this check, the servlet engine extracts the User’s credentials from
the security context and verifies that the User is authorized to invoke the method
on the servlet.

Programming WebL ogic Security 1-5

1

Introduction to WebLogic Security

Figure 1-2 illustrates the secure login process for Web browsers.

Figure1-2 SecurelLogin for Web Browsers

HTTP
HTTPS

|+ Web Server

Web
Browser

/ 3

1-6

U=zername r
Fassword Web Server Plug-In
{Apache, NSAFPI, or
ISAPD

Servlet Engine
{Apache, NSAPI or
ISAPI)

WebLogic Server

Resource

ACLs

FileRealm
Security Realm

The HTTPS protocol provides an additional level of security to this usage scenario.
Becausethe SSL protocol encrypts the data transmitted between the Web browser and

WebL ogic Server, the user ID and password do not flow in clear text. Therefore,

WebL ogic Server can authenticate a user while protecting that User’s password by

using the SSL protocoal.

For more information, see the following sections:

m Managing Security
m Configuring the Apache Server Plug-In
m Configuring the Microsoft-11S Plug-In

m Configuring the Netscape Plug-1n

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/apache.html
http://e-docs.bea.com/wls/docs61/adminguide/isapi.html
http://e-docs.bea.com/wls/docs61/adminguide/nsapi.html

WebLogic Security Architecture

Connections with Servlets, JSPs, EJBs, RMI Objects and
Java Applications

Servlets, JSPs, EJBs, RMI objects, and Java applications use the Java Authentication
and Authorization Service (JAAS) to authenticate WebL ogic Server. JAASisa
standard extension to the Java 2 Software Development Kit. The authentication
component of JAAS provides the ahility to reliably and securely maintain client
identity, regardless of whether the codeisrunning asaJavaapplication, aJSP, an EJB,
an RMI object or aservlet. In WebL ogic Server, JAAS s layered over the existing
Security Service Provider Interface (SPI) allowing the continued use of realm-based
authorization. Thisis necessary because WebL ogic Server does not provide the
authorization component of JAAS. All authorization checking is done through the
underlying security realm.

When using JAAS authentication, Java clients enable the authentication process by
instantiating a L oginContext object which in turns references a Configuration object.
The Configuration object specifies the configured LoginM odules to be used for client
authentication. The LoginM odul e object promptsfor and verifiesthe client credentials.
It isimportant to understand that you need to write aL oginM odul e object for each type
of authentication mechanism you want to use with WebL ogic Server. For example, if
you want to use mutual authentication, you need to provide a L oginM odul e object that
both requests and provides credentials.WebL ogic Server does not supply any
LoginModule objects.

Clients (servlets, JSPs, EJBs, RMI objects, and Java applications) interact securely
with WebL ogic Server in the following manner:

1. The client creates a LoginContext which instantiates a LoginModule object and a
CallbackHandler object.

e The LoginContext references a Configuration object which specifies the
LoginModules and their order of execution.

e The CallbackHandler object gathers input from users (such as a password or
the name of adigital certificate file) and passesit in turn to the
LoginModules.

2. Theclient invokesthe | ogi n() method of the LoginContext object. The
| ogi n() method then invokes the specified L oginModules.

3. The LoginModule prompts for and verifies the client credentials.

Programming WebL ogic Security 1-7

http://e-docs.bea.com/wls/docs61/adminguide/nsapi.html

1

Introduction to WebLogic Security

1-8

4. Upon successful authentication, WebL ogic Server determines whether the client
has the permission required to access the requested resource. The permission is
determined by the ACL for the resource as defined in the WebL ogic Server
security realm.

5. Upon successful ACL authorization, the client request from the client is fulfilled
by WebL ogic Server.

When using a LoginModul e that implements password authentication, you can
configure WebL ogic Server to use the SSL protocol. The SSL protocol encrypts the
data transmitted between the client and WebL ogic Server so that the username and
password do not flow in clear text.

Figure 1-3 illustrates the secure login process for servlets, JSPs, EJBs, RMI aobjects,
and Java applications.

Figure1-3 Securelogin for Java Clients

WebLogic Server

Client Request

LoginContext +
login() | Resource
il Credentials

Configuration ACLs
JAAS Object
Login Module username.
passvord FileRealm

Security Realm

WebL ogic Server can function asaclient to another WebL ogic Server. Inthisscenario,
WebL ogic Server has the same authentication options as a client.

Programming WebL ogic Security

WebLogic Security Architecture

Note: WebL ogic Server still supports the INDI method of passing authentication.
However, this functionality is being replaced with JAAS authentication.

For more information, see the following sections:
m Programming with the WebL ogic Security SPI

m Managing Security

Connections with Administration Servers

In WebL ogic Server, an Administration Server isaWebL ogic Server that functionsas
the central source of all configuration information. An Administration Server may
contain configuration information for one WebL ogic Server or acluster of WebL ogic
Servers. It isimportant to protect the connection between the Administration Server
and the other WebL ogic Serversin your environment from eavesdropping, tampering,
replay, and impersonation attacks.

When the SSL protocol and certificate authentication are used, the Administration
Server presentsits digital certificate to the managed WebL ogic Server whenever the
managed WebL ogic Server is started. The managed WebL ogic Server then

authenti catesthe Administration Server, using theinformation in the digital certificate.

Digital certificatesfor Administration Serversare provided by BEA. They areinstalled
during the installation of WebL ogic Server in\ w ser ver 6. 1\ confi g\ mydonai n.

By default, the connection between the Administration Server and other WebL ogic
Serversis not secure. The file containing usernames and passwords is not encrypted.
Usernames and passwords are sent in clear text over the connection, leaving
configuration information unprotected. For this reason, we recommend using the SSL
protocol and certificate authentication to protect the configuration information in the
Administration Server.

Figure 1-4 illustrates the secure login process between Administration Servers and
managed WebL ogic Servers.

Programming WebL ogic Security 1-9

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

1 introductionto WebLogic Security

Figure1-4 Securelogin for Managed and Administration Servers

SSL Administration
- Server
Managed 1. Request
WebLogic Server [
2. Certifcate Cunﬁgura.tiun
Information
3. Authenticate
4. Requested
Information

For more information, see Managing Security.

Using WebLogic Server as a Client to BEA
Tuxedo

The scope of security in aWebL ogic Server security realm differsfrom thatin aBEA
Tuxedo domain. Each contains it own security store of Users and its own access
control. However, by using WebL ogic Enterprise Connectivity, theidentity of a User
authenticated in aWebL ogic Server security realm can be used to form the identity of
an authenticated principal in aBEA Tuxedo domain over a connection that ispart of a
trusted WLEC connection pool. This functionality isreferred to as security context
propagation.

1-10 Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

Using WebLogic Server as a Client to BEA Tuxedo

Note: The propagation of security context in the WebL ogic Server product is
unidirectional. It allows you to propagate a User’ sidentity in only one
direction: from aWebL ogic Server security realm to a BEA Tuxedo domain.

Figure 1-5 illustrates how the propagation of the security context between the
WebL ogic Server and the BEA Tuxedo environments works.

Figure1-5 Propagation of the Security Context Between WebL ogic Server and
BEA Tuxedo

WebLogic Server
Security Realm

Authorization

Authentication

BEA Tuxedo Domain
W
L opP IOP Authorization
E Trusted ListenerfHandler
c Connection Authentication
Pool

When propagating the security context, the security identity of aWebLogic Server
User isincluded as part of the service context of an 110OP request. This request is sent
to a BEA Tuxedo domain over a network connection that is part of a pool of WLEC
connections. Each network connection in a WLEC connection pool is authenticated
using adefined User identity. Both password and certificate authentication can be used
to establish a WLEC connection pool.

The propagated security identity is used by the I1OP Listener/Handler to impersonate
a User identity in the BEA Tuxedo domain. The impersonated identity is represented
asapair of tokens: one for authorization and one for auditing. These tokens are
propagated to the target CORBA object in the BEA Tuxedo domain, where they are
used for authorization and auditing.

Tofacilitate the mapping of User identities, the [IOP Listener/Handler in BEA Tuxedo
uses an authentication plug-in. This plug-in is responsible for mapping the User
identity into the authorization and auditing tokens. These tokens are propagated, in

Programming WebL ogic Security ~ 1-11

1 introductionto WebLogic Security

turn, as part of the request being forwarded to the target CORBA object. The target
CORBA object can then use the tokens to determine information about the initiator of
the request, including theidentity of the User and the Role or Group name with which
the User is associated.

The SSL protocol isused to protect the confidentiality and integrity of the request sent
from the WebL ogic Server security realm. SSL encryption is provided for [1OP
reguests sent to CORBA objectsinthe BEA Tuxedo domain. To protect arequest, both
WebL ogic Connectivity and the BEA Tuxedo CORBA application must be configured
to use the SSL protocol.

For more information, see the following sections:
m “Configuring Security Context Propagation” in Managing Security
m Using WebL ogic Connectivity

1-12 Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/wlec/index.html

CHAPTER

2

Security Fundamentals

This section describes the following concepts behind WebL ogic Server security:
m Resources

m Security Realms

m Users

m Groups

m ACLsand Permissions

m SSL Protocol

m Authentication Mechanisms

m Digital Certificates

m Certificate Authority

m Supported Public Key Algorithms

m Supported Symmetric Key Algorithms
m Supported Message Digest Algorithms
m Supported Cipher Suites

Programming WebL ogic Security 2-1

2 Security Fundamentals

Resources

Resources are entities that are accessible from WebL ogic Server, such as events,
servlets, JIDBC connection pools, IMS destinations, JINDI contexts, connections,
sockets, files, and enterprise applications and resources, such as databases.

For each resource you want to protect in WebL ogic Server, you must specify the
following:

m An ACL defining who may access the resource
m The security realm to which the resource belongs

m An authentication mechanism that can verify users who request access to the
resource.

For more information, see Managing Security.

Security Realms

A security realm isalogical grouping of Users, Groups, and ACLs. A WebLogic
Server resourceis protected under only one security realm and by asingle ACL in that
security realm. A User must be defined in a security realm in order to access any
resources belonging to that realm. When a User attempts to access a particular

WebL ogic Server resource, WeblL ogic Server tries to authenticate and authorize the
User by checking the ACL and permissions assigned the User in the relevant realm.
Figure 2-1 illustrates how realms work in WebL ogic Server.

2-2 Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

Security Realms

Figure2-1 Users, Groups, and ACLsin a WebL ogic Server Realm

Users WeblLogic Server
Donna FileRealm
Paul
hdike
Jan
Jennifer
Groups ACLs
Sales userACL (none)
(Donna, Paul)
| —rmanageACL (execute)
SalesManagement™|
(Mike, don, Jennifer)

Salary Servlet

The default security realm in WebL ogic Server isthe File realm. When WebL ogic
Server is started, the File realm creates User, Group, and ACL objects from properties
defined through the Administration Consolein WebL ogic Server and stored in the
fileReal m properti es file

Note: TheFilerealmisdesigned for usewith 10,000 or fewer users. If you have more
that 10,000 users, we recommend using an alternate security realm.

WebL ogic Server also provides support for developers who want or must
accommodate specia security situations. WebL ogic Server allows you to use a
security realm other than the File realm by installing an alternate security realm or by
writing your own customized security realm. Alternate security realms can support
some or al of the authentication and authorization operations WebL ogic Server
requires of arealm.

There are two possible realm configurations:
m Only aFilerealm.

m A Caching realm with an alternate security realm or a custom security realm.

Programming WebL ogic Security 2-3

2

Security Fundamentals

2-4

In this configuration, the alternate security realm or the custom security realm
functions as the primary realm. The File realm is the backup realm. The primary
and backup realmsin WebL ogic Server work together to fulfill client requests
with the proper authentication and authorization. For example, if you choose to
use an alternate security realm such as the LDAP security realm, WebL ogic
Server first looksin that realm for aUser. If the Usersis not in the primary
realm (in this case the LDAP security realm), WebL ogic Server then looks for
the User in the backup realm.

Note: If you chooseto usean aternate security realm or acustom security realm, you
must configure the Caching realm.

In the default scenario, a client request arrives at the WebL ogic Server through the
Caching realm. The Caching realm forwards the request to the File realm for
authorization and authentication. When it receives the results of the realm lookups
(whether successful or unsuccessful), the Caching realm stores these results. It
maintains separate caches for User, Group, permission, ACL, and authentication look
ups. Y ou can selectively enable each type of cache, set the number of objects cached,
and specify the number of seconds a cached object isvalid. Effectively, the Caching
realm makes the authentication and authorization process faster and more efficient.

If you use an alternate security realm or a custom security realm, the Caching realm
evaluates the client request, delegates it to the appropriate security realm, and caches
the results to make the next lookup faster. For example, you may be using an alternate
security realm that supports only authentication operations. When aclient request is
received by WebL ogic Server, the Caching realm contacts the alternate security realm
for authentication, and then the File realm for authorization.

Figure 2-2 illustrates how alternate security realms, the Caching realm, and the File
realm work together to authenticate and authorize usersin a WebL ogic Server
environment.

Programming WebL ogic Security

Security Realms

Figure2-2 Alternate Security Realms, the Caching Realm, and the File Realm
in WebL ogic Server

Client—» C;:;'r';g
Request
= Authentication
Authorizatign
&,
*
Alternate File
Security Realm
Realm
ACL demopool
Uzer Bok ACL BankEJB
Uszer Paul ACL AdminServlet
Uszer Anne
Group Admin

WebL ogic Server provides the following alternate security realms:
m LDAP Security Realm

Provides authentication through a Lightweight Directory Access Protocol
(LDAP) server which allows you to manage Users in one place, the LDAP
directory. When the LDAP security realm is used, the LDAP server
authenticates Users and Groups. If you are using the SSL protocol with

WebL ogic Server, the LDAP Security Realm retrieves a User's common name
fromitsdigital certificate and searches the LDAP directory for that name. The
LDAP Security Realm does not verify the digital certificate, that verificationis
performed by the SSL protocol.

The LDAP Security Realm currently supports Open LDAP, Netscape iPlanet,
Microsoft Site Server, and Novell NDS.

Note: An updated LDAP security realm is provided in thisrelease of WebL ogic
Server. This LDAP security realm provides improved performance and
configurability. BEA recommends upgrading to this updated LDAP

Programming WebL ogic Security 2-5

2

Security Fundamentals

2-6

security realm to take advantage of this functionality. However, you can
still usetheold LDAP security realm. For moreinformation, see Managing
Security.

m Windows NT Security Realm

Uses Windows NT account information to authenticate Users. Users and Groups
defined through Windows NT can be used by WebL ogic Server. Y ou can use the
Administration Console to view this realm, but you must use the facilities
provided by Windows NT to defines Users and Groups.

UNIX Security Realm

Executes a native program, wl aut h, to authenticate Users and Groups using
UNIX login IDs and passwords. The UNIX Security realm is supported only on
the Solaris and Linux platforms. Thew aut h program uses a pluggable
authentication module (PAM) that allows you to configure authentication
servicesin aUNIX platform without altering applications that use those services.
Y ou can use the Administration Console to view this realm, but you must use
the facilities provided by the UNIX platform to define Users and Groups.

RDBMS Security Realm

Reads Users, Groups, and ACL s from a database. The RDBMS Security realm is
provided as an example of a custom realm implementation that provides
authentication and authorization services for WebL ogic Server.

For more information, see the following sections in Managing Security:

“ Specifying a Security Realm”

“Configuring the Caching Realm”

“Configuring the LDAP Security Realm”
“Configuring the Windows NT Security Realm”
“Configuring the UNIX Security Realm”
“Configuring the RDBM S Security Realm”

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

Users

Users

Users are entities that use WebL ogic Server, such as application end users, client
applications, and even other WebL ogic Servers.

When auser wantsto accessWebL ogic Server, it presents ausername and a credential
(either a password or adigital certificate) through programmatic means to WebL ogic
Server. If WebL ogic Server can prove theidentity of the User based on that username
and credential, WebL ogic Server associates the User with athread that executes code
on behalf of the User. Before the thread begins executing code, however, WebL ogic

Server checks pertinent ACL s to make sure the User has the required permissionsto

continue.

When defining aUser inaWebL ogic Server realm, you al so define apassword for that
User. In the past, usernames and passwords were stored in clear text in aWebLogic
Server security realm. Now WebL ogic Server hashes all passwords. When WebL ogic
Server receives a client request, the password presented by the client is hashed and
WebL ogic Server comparesit to the already hashed password for matching.

For more information, see the following sections in Managing Security:
m “Defining Users’
m “Protecting Passwords’

Groups

Groups are logically ordered sets of Users. Managing Groups is more efficient than
managing large numbers of Usersindividually. For example, an administrator may
specify permissions for 50 users at one time by specifying a Group. Usually, Group
members have something in common. For example, a company may separate their
sales staff into two Groups, Sales Representatives and Sales Managers, because staff
members have different levels of accessto WebL ogic Server resources depending on
their job descriptions.

Programming WebL ogic Security 2-7

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

2

Security Fundamentals

WebL ogic Server can be configured to assign Users to Groups. Each Group shares a
common set of permissionsthat govern itsmember users accessto resources. Y ou can
mix Group names and User names whenever alist of Usersis permitted.

A person can be defined as both an individual User and a Group member. Individual
access permissions override any Group member access permissions. WebL ogic Server
evaluates each user by first looking for a Group, and testing whether the user isa
member of the Group, and then looking for the User in the list of defined Users.

For more information, see the “Defining Groups’ topic in Managing Security.

ACLs and Permissions

2-8

Permissions represent privileges required to access resources. A system administrator
protects resources by creating lists of Users and Groups that have the permissions
required to access those resources. Such lists are called access control lists (ACLS).
ACLs and the functions for which they grant permission are resource-specific. For
example, Userswith the proper permissions may read, write, send, and/or receivefiles,
load servlets, and link to libraries.

An ACL fileiscomposed of AclEntries, each of which contains a set of permissions
for aparticular User or Group.

WebL ogic Server uses the JavaSoft ACL standard, distributed with the Java
Development Kit (JDK) 1.1, to extend the security framework of Java and make it
practical for useat the enterpriselevel. The WebL ogic Server implementation of ACLs
isbased onthej ava. security. acl package. Because ACLsinWebLogic Server are
based on an open-standard, you are not tied to a proprietary solution.

Y ou can set permissions on the following WebL ogic Server resources:
m WebL ogic Servers

m WebLogic events

m WebL ogic JDBC connection pools

m WebLogic IMS destinations

m WebLogic INDI contexts

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

SSL Protocol

m Weblogic MBeans

Note: Accessto EJBsand Web applicationsisnot controlled through ACL s. Rather,
security elements in deployment descriptors are used to define accessto a
particular EJB or Web application.

For more information, see the “Defining ACLS’ section in Managing Security.

For information about EJB security, see Programming WebL ogic Enterprise
JavaBeans.

For more information about Web application security, see Assembling and
Configuring Web Applications.

SSL Protocol

The SSL protocol offers security to applications connected through a network.
Specifically, the SSL protocol provides the following:

m A mechanism that the applications can use to authenticate each other’ s identity.
m Encryption of the data exchanged by the applications.

When the SSL protocol is used, the target always authenticates itself to the initiator.
Optionally, if the target requests it, the initiator can authenticate itself to the target.
Encryption makes data transmitted over the network intelligible only to the intended
recipient. An SSL connection begins with a handshake during which the applications
exchange digital certificates, agree on the encryption algorithms to be used, and
generate the encryption keys to be used for the remainder of the session.

The SSL protocol provides the following security features:

m Server authentication—WebL ogic Server usesits digital certificate, issued by a
trusted certificate authority, to authenticate to clients.

m Client Identify Verification—optionally, clients might be required to present
their digital certificatesto WebL ogic Server. WebL ogic Server then verifies that
the digital certificate was issued by atrusted certificate authority and establishes
the SSL connection. An SSL connection is not established if the digital
certificate is not presented and verified. Thistype of connection is called

Programming WebL ogic Security 2-9

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

2

Security Fundamentals

2-10

two-way SSL. When you use two-way SSL, the certificate presented by the
client is not equivalent to a WebL ogic Server User so the client must also
present a username and credential (either a password or adigital certificate) to
use for authentication and authorization.

Confidentiality—all client requests and server responses are encrypted to
maintain the confidentiality of data exchanged over the network.

Data Integrity—data that flows between a client and WebL ogic Server is
protected from tampering by athird party.

If you are using a Web browser to communicate with WebL ogic Server, you can use
the Hypertext Transfer Protocol with SSL (HTTPS) to secure network
communications.

The SSL protocol istunneled over an |P-based protocol. Tunneling means that each
SSL record is encapsulated and packaged with the headers needed to send the record
over another protocol. The use of SSL is signified in the protocol scheme of the URL
used to specify the location of WebL ogic Server.

m SSL communications between Web browsers and WebL ogic Server are

encapsulated in HTTPS packets for transport. For example;
https:// nmyserver. coni nypage. ht m

WebL ogic Server supports HTTPS with Web browsers that support SSL version
3. The Java Virtual Machine (JVM) in WebL ogic Server does not currently
support the HTTPS protocol adapter. Consequently, WebL ogic Server depends
on the implementation of the SSL protocol in the Web browser.

Java clients connecting to WebL ogic Server with the SSL protocol tunnel over
BEA’s multiplexed T3 protocol. For example:
t3s:// nyserver.com 7002/ nypage. ht n

Javaclients running in WebL ogic Server can establish either T3S connections to
other WebL ogic Servers, or HTTPS connections to other servers that support the
SSL protocol, such as Web servers or secure proxy servers.

WebL ogic Server is available with exportable- or domestic-strength SSL.
m Exportable SSL supports 512-bit certificates and 40-bit bulk data encryption.
m Domestic SSL also supports 768-bit and 1024-bit certificates, and 56-bit and

128-bit bulk data encryption.

Programming WebL ogic Security

Authentication Mechanisms

The standard WebL ogic Server distribution supports exportable-strength SSL only.
Thedomestic versionisavailable, by request only from your BEA salesrepresentative.
Since the United States Government relaxed restrictions on exporting encryption
software in early 2000, the domestic version of WebL ogic Server can be used in most
countries.

During installation, you are prompted to choose which strength of the SSL protocol
you want to use.We recommend the domestic WebL ogic Server distribution because
it allows stronger encryption. If you generate a Certificate Signature Reguest (CSR)
using the exportable WebL ogic Server distribution, you cannot support high-strength
connections and you cannot authenticate clients that present domestic-strength
certificates.

The implementation of the SSL protocol provided by WebL ogic Server isapure-Java
implementation. A nativelibrary providesfaster performancefor some SSL operations
onthe Solaris, WindowsNT, and IBM AlX platforms. Y ou can request the use of these
native Java libraries for the SSL protocol through the Administration Console.

For more information, see the “ Configuring the SSL Protocol” section in Managing
Security.

Authentication Mechanisms

WebL ogic Server users must be authenticated whenever they request accessto a
protected WebL ogic Server resource. For thisreason, each user isrequired to provide
acredentia (ausername/password pair or adigital certificate) to WebL ogic Server.
Thefollowing types of authenti cation mechanismsare supported by WebL ogic Server:

m Password authentication—a user ID and password are requested from the user
and sent to WebL ogic Server in clear text. WebL ogic Server checks the
information and if it is trustworthy, grants access to the protected resource.

The SSL (or HTTPS) protocol can be used to provide an additional level of
security to password authentication. Because the SSL protocol encrypts the data
transferred between the client and WebL ogic Server, the user ID and password
of the user do not flow in the clear. Therefore, WebL ogic Server can
authenticate the user without compromising the confidentiality of the user’'s 1D
and password.

Programming WebL ogic Security ~ 2-11

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

2

Security Fundamentals

m Certificate authentication—when an SSL or HTTPS client request isinitiated,
WebL ogic Server responds by presenting its digital certificate to the client. The
client then verifies the digital certificate and an SSL connection is established.
The CertAuthenticator class then extracts data from the client’ s digital certificate
to determine which WebL ogic Server User owns the certificate and then
retrieves the authenticated User from the WebL ogic Server security realm.

Y ou can a'so use mutual authentication. In this case, WebL ogic Server not only
authenticates itself, it also requires authentication from the requesting client.
Clients are required to submit digital certificates issued by atrusted certificate
authority. Mutual authentication is useful when you must restrict access to
trusted clients only. For example, you might restrict access by accepting only
clientswith digital certificates provided by you.

For more information, see the following sections in Managing Security:
m “Configuring the SSL Protocol”

m “Configuring Mutual Authentication”

Digital Certificates

2-12

Digital certificates are electronic documents used to verify the unique identities of
principals and entities over networks such asthe Internet. A digital certificate securely
binds the identity of a user or entity, as verified by atrusted third party known as a
certificate authority, to a particular public key. The combination of the public key and
the private key provides a unique identity to the owner of the digital certificate.

Digital certificatesallow verification of the claim that a specific public key doesin fact
belong to a specific user or entity. A recipient of adigital certificate can use the public
key in adigital certificate to verify that adigital signature was created with the
corresponding private key. If such verification is successful, this chain of reasoning
provides assurance that the corresponding private key is held by the subject named in
the digital certificate, and that the digital signature was created by that subject.

A digital certificate typically includes avariety of information, such as the following:

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

Digital Certificates

m The name of the subject (holder, owner) and other information required to
confirm the unique identity the subject, such asthe URL of the Web server using
the digital certificate, or an individual’s e-mail address

m The subject’s public key
m The name of the certificate authority that issued the digital certificate
m A seria number

m Thevalidity period (or lifetime) of the digital certificate (defined by a start date
and an end date)

The most widely accepted format for digital certificatesisdefined by the ITU-T X.509
international standard. Digital certificates can be read or written by any application
complying with the X.509 standard. The public key infrastructure (PKI) in WebL ogic
Server recognizes digital certificates that comply with X.509 version 3, or X.509v3.
We recommend obtaining digital certificates from a certificate authority such as
Verisign or Entrust.

WebL ogic Server supports the extensions provided by the X.509 standard, however,
thewebl ogi c. security. X509 class does not provide accessors that provide
information about which extensions are used in a particular digital certificate. To
obtain that information, convert the webl ogi c. securi ty. X509 object to a
java.security.cert.X509Certificate object. Thefollowing code example
includes code to perform this conversion:

X509[] W Certs=...
X509Certificate [] javaCerts = new X509Certificate[w Certs.|ength];
try{
CertificateFactory cf =
java.security.cert.CertificateFactory. getlnstance(“X. 509");
for(int i=0; i<w Certs.length; i++){
Byt eArrayQut put Stream bos = new Byt eArrayQut put Strean();
W certs[i].output(bos);
Byt eArrayl nput Stream bis = new
Byt eArrayl nput Strean(bos. toByteArray());
javaCerts[i] = (X509Certificate)cf.generateCertificate(bis);
}
}

For more information, see the “ Configuring the SSL Protocol” section in Managing
Security.

Programming WebL ogic Security ~ 2-13

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

2 Security Fundamentals

Certificate Authority

Digital certificates are issued by a certificate authority. Any trusted third-party
organization or company that iswilling to vouch for the identities of those to whom it
issues digital certificates and public keys can be a certificate authority. When a
certificate authority createsadigital certificate, the certificate authority signsit withits
private key, to ensure that any tampering will be detected. The certificate authority
then returns the signed digital certificate to the requesting subject.

The subject can verify the signature of the issuing certificate authority by using the
public key of the certificate authority. The certificate authority makesits public key
available by providing adigital certificate issued from a higher-level certificate
authority attesting to the validity of the public key of the lower-level certificate
authority. This scheme givesrise to hierarchies of certificate authorities. This
hierarchy is terminated by a self-signed digital certificate known as the root key.

The recipient of an encrypted message can develop trust in the private key of a
certificate authority recursively, if the recipient has a digital certificate containing the
public key of the certificate authority signed by asuperior certificate authority who the
recipient already trusts. In this sense, adigital certificate is a stepping stone in digital
trust. Ultimately, it is necessary to trust only the public keys of a small number of
top-level certificate authorities. Through a chain of digital certificates, trust in alarge
number of users' digital signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but adigital
signature can be trusted only to the extent that the public key for verifying it can be
trusted.

For more information, see the “Configuring the SSL Protocol” section in Managing
Security.

Supported Public Key Algorithms

Public key (or asymmetric key) algorithmsareimplemented through apair of different
but mathematically related keys:

2-14 Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

Supported Symmetric Key Algorithms

m A public key (which isdistributed widely) for verifying adigital signature or
transforming data into a seemingly unintelligible form

m A private key (which isaways kept secret) for creating adigital signature or
returning the data to its original form

The PKI1 in WebL ogic Server also supports digital signature algorithms. Digital
signature algorithms are simply public key algorithms used to generate digital
signatures.

WebL ogic Server supports the Rivest, Shamir, and Adelman (RSA) algorithm.

Supported Symmetric Key Algorithms

In symmetric key algorithms, the same key is used to encrypt and decrypt a message.
The public key encryption system uses a symmetric key algorithm to encrypt a
message sent between two communicating entities. Symmetric key encryption
operates at least 1000 times faster than public key cryptography.

A block cipher is atype of symmetric key algorithm that transforms a fixed-length
block of plain text (unencrypted text) datainto ablock of cipher text (encrypted text)
data of the same length. This transformation takes place in accordance with the value
of arandomly generated session key. The fixed length is called the block size.

The PKI1 in WebL ogic Server supports the following symmetric key algorithms:

m DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a64-hit block cipher runin Cipher Block Chaining (CBC) mode. It
provides 56-hit keys. (8 parity bits are stripped from the full 64-hit key.)

m Two-key triple-DES (Data Encryption Standard)
Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt
(EDE) mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-hit
key).
For some time it has been common practice to protect and transport a key for

DES encryption with triple-DES, which means that the input data (in this case
the single-DES key) is encrypted, decrypted, and then encrypted again (an

Programming WebL ogic Security ~ 2-15

2 Security Fundamentals

encrypt-decrypt-encrypt process). The same key is used for the two encryption
operations.

m RC4 (Rivest's Cipher 4)

RC4 isavariable key-size block cipher with akey size range of 40 to 128 hits. It
is faster than DES and can be exported with akey size of 40 bits. A 56-bit key
sizeis alowed for foreign subsidiaries and overseas offices of United States
companies. In the United States, RC4 can be used with keys of virtually
unlimited length, although the WebL ogic Server PKI restricts the key length to
128 hits.

WebL ogic Server users cannot expand or modify thislist of algorithms.

Supported Message Digest Algorithms

WebL ogic Server supports the MD5 and SHA (Secure Hash Algorithm) message
digest algorithms. Both MD5 and SHA are well known, one-way hash algorithms. A
one-way hash algorithm takes a message and convertsit into afixed string of digits,
which isreferred to as a message digest or hash value.

MD?5 is a high-speed, 128-bit hash; it isintended for use with 32-bit machines. SHA
offers more security by using a 160-bit hash, but is slower than MD5.

Supported Cipher Suites

A cipher suiteisan SSL encryption method that includes the key exchange algorithm,
the symmetric encryption a gorithm, and the secure hash algorithm used to protect the
integrity of a communication. For example, the cipher suite called

RSA W TH_RC4_128_MD5 uses RSA for key exchange, RC4 with a 128-bit key for
bulk encryption, and MD5 for message digest.

The cyptographic modules used by WebL ogic Server are FIPS 140-1 compliant.

2-16 Programming WebL ogic Security

Supported Cipher Suites

WebL ogic Server supports the cipher suites described in Table 2-1.

Table2-1 SSL Cipher Suites Supported by WebL ogic Server

Cipher Suite Key Symmetric
Exchange Key
Type Strength
SSL_RSA W TH RC4_128_SHA RSA 128
SSL_RSA W TH_RC4_128_MD5 RSA 128
SSL_RSA W TH_DES_CBC_SHA RSA 56
SSL_RSA EXPORT_W TH_RC4_40_MD5 RSA 40
SSL_RSA_EXPORT_W TH_DES_40_CBC_SHA RSA 40
SSL_RSA W TH_3DES_EDE_CBC_SHA RSA 112
SSL_NULL_W TH_NULL_NULL
SSL_RSA W TH_NULL_SHA RSA 0
SSL_RSA W TH _NULL_MD5 RSA 0

Thelicense for WebL ogic Server determines what strength (either domestic or export)
of cipher suiteis used to protect communications. If the cipher suite strength defined
intheconfi g. xn file exceeds the strength specified by the license, the server uses
the strength specified by the license. For example, if you have an export strength
license but you define the use of an domestic strength cipher suiteintheconfi g. xm
file, the server regjects the domestic strength cipher suite and uses the export strength

cipher suite.

Programming WebL ogic Security ~ 2-17

2 Security Fundamentals

2-18 Programming WebL ogic Security

CHAPTER

3

Securing a WebLogic
Server Deployment

Thefollowing sections explain how to use the security features of WebL ogic Server to
protect your deployment:

Why |s Security Important for WebL ogic Server?

Determine the Security Needs of Y our WebL ogic Server Deployment
Secure the Machine on Which WebL ogic Server Runs

Accessing Protected Ports on UNIX

Design Network Connections Carefully

Manage the WebL ogic Server Development and Production Environments
Use Encryption

Use the SSL Protocol

Prevent Man-in-the-Middle Attacks

Prevent Denial of Service Attacks

Secure the HTTP Response Header

Protect User Accounts

Protect Application Content

Replace HTML Special Charactersin User-Supplied Data

Use Protected EJBs to Limit Accessto Business Logic

Programming WebL ogic Security 31

Why Is Security Important for WebLogic Server?

m UseACLs

m Usethe Appropriate Security Realm
m Secure Your Database

m UseAuditing

m Control Accessto Multiple Domains

Why Is Security Important for WebLogic
Server?

An application server resides in the sensitive layer between end users and your
valuable dataand resources. WebL ogic Server provides authenti cation, authorization,
and encryption services with which you can guard your resources. These services
cannot provide protection, however, from an intruder who gains access by discovering
and exploiting aweakness in your deployment environment.

Whether you deploy WebL ogic Server on the Internet or on an intranet, it isagood
ideato hire an independent security expert to go over your security plan and
procedures, audit your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues. For the
latest information about securing Web servers, BEA recommends reading the Security
Improvement Modules, Security Practices, and Technical Implementations
information available from the CERT™ Coordination Center operated by Carnegie
Mellon University.

BEA suggeststhat you apply the remedies recommended in our security advisories. In
addition, you are advised to apply every Service Pack asthey are released. Service
Packsinclude aroll up of all bug fixesfor each version of the product, aswell as each
of the previously released Service Packs. Asapolicy, if there are any security-related
issues with any BEA product, BEA will distribute an advisory and instructions with
the appropriate course of action. If you are reponsiblefor security related issuesat your
site, please register to receive future notifications. BEA has established an e-mail
address (securi ty-report @ea. com) to which you can send reports of any possible
security issuesin BEA products.

Programming WebL ogic Security 32

http://www.cert.org/
http://www.cert.org/

Determine the Security Needs of Your WebLogic Server Deployment

In addition, there are partner products that can help you in your effort to secure the
WebL ogic Server production environment. For more information, see the BEA
Partner’ s Page.

This topic makes some specific and general recommendations related to WebL ogic
Server.

Determine the Security Needs of Your
WebLogic Server Deployment

Before securing your WebL ogic Server deployment, it isimportant to understand the
security needs of your WebL ogic Server environment. To better understand the
security needs, ask yourself the following questions:

m What WebL ogic Server resources am | protecting?

There are many resources in the WebL ogic Server environment that can be
protected including information in the database accessed by WebL ogic Server,
the availability of the Web site, the performance of the Web site, and the
integrity of the Web site. Consider the resources you want to protect when
deciding the level of security you must provide.

m From whom am | protecting the WebL ogic Server resources?

For most Web sites resources must be protected from everyone on the Internet.
But should the Web site be protected from the employees on the intranet in your
enterprise? Should your employees have access to all WebL ogic Server
resources? Should the system administrators have access to all WebL ogic Server
resources? Should the system administrators be able to access all data? Y ou
might consider giving access to highly confidential data or strategic resources to
only afew well trusted system administrators. Perhaps it would be best to allow
no system administrators access to the data or resources.

m What will happen if the protections on strategic resources fail ?

In some cases, afault in your security schemeis easily detected and considered
nothing more than an inconvenience. In other cases, afault might cause great

Programming WebL ogic Security 33

Secure the Machine on Which WebLogic Server Runs

damage to companies or individual clients that use the Web site. Understanding
the security ramification of each resource will help you to properly protect it.

Asyou read the following suggestionsfor securing your site, keep the answersto these
guestionsin mind.

Secure the Machine on Which WebLogic
Server Runs

A WebL ogic Server deployment is only as secure as the security of the machine on
whichitisrunning. Therefore, it isimportant that you secure the physical machine, the
operating system, and all other software that isinstaled on the host machine. The
following are suggestions for securing the deployment machine, however, you should
check with the manufacturer of the machine, operating system, and installed software
for additional suggestions:

m Keep your hardware in a secured area to prevent unauthorized users from
tampering with the deployment machine or its network connections.

m Have an expert review network services such as the e-mail program or directory
service to ensure that there are no weaknesses that would permit amalicious
attacker from accessing the operating system or system-level commands.

m Securethefile systems on the deployment machine, limiting directory and file
access to afew, well-monitored user accounts. Some WebL ogic Server
configuration data (and some of your applications, including Java Server Pages
(JSPs) and HTML pages guarded with access control lists (ACLS)) are stored in
clear text on the file system. A user or intruder with read access to files and
directories can easily defeat any security mechanisms you establish with
WebL ogic Server authentication and authorization schemes.

m Avoid creating multiple user accounts on deployment machines and avoid
sharing file systems with other machines in the enterprise network.

m Create aWeblogic User in the operating system and use the security controls of
the operating system to give this user ownership and exclusive accessto al files
and directoriesin the WebL ogic Server deployment. No other user needs
write-accessto any filesin the WebL ogic Server deployment.

Programming WebL ogic Security 34

Accessing Protected Ports on UNIX

m Review active user accounts regularly and when personnel leave. Set a policy to
expire passwords periodically. Never code passwordsin client applications.

Accessing Protected Ports on UNIX

Design

On UNIX systems, only processes that run under a privileged user account (in most
cases, root) can bind to ports lower than 1024.

However, long-running processes like WebL ogic Server should not run under these
privileged accounts. Instead, you can do either of the following:

m For each WebL ogic Server instance that needs access to privileged ports,
configure the server to start under a privileged user account, bind to privileged
ports, and change its user ID to a non-privileged account.

If you use Node Manager to start the server instance, configure Node Manager
to accept requests only on a secure port and only from a single, known host.

See “Binding to Protected Ports on UNIX” in the Administration Console Online
Help.

m Start WebL ogic Server instances from a non-privileged account and configure
your firewall to use Network Address Trandation (NAT) software to map
protected ports to unprotected ones. BEA does not provide NAT software.

Network Connections Carefully

When designing network connections, you want to use the easi est-to-manage sol ution.
This choice must be weighed against the need to protect strategic WebL ogic Server
resources. Placing WebL ogic Server resources further from potential intruders reduces
therisk of a security breach. Inserting firewalls carefully in your enterprise increases
security and can prevent a small security fault from turning into a security crisis. For
example, it isagood ideato protect a database that contains critical data behind a
firewall. In addition, protect the host machinefor the database aswell asthe usernames

Programming WebL ogic Security 35

http://e-docs.bea.com/wls/docs61/ConsoleHelp/machine.html#BindingPortsUNIX

3

Securing a WebLogic Server Deployment

36

and passwordsfor the database. Still, if someone acquiresthe username and passwords
for the database, it is not nearly as damaging if the database is protected by a firewall
and cannot receive connections from computers on the Internet.

There are many ways to combine firewalls, WebL ogic Server, and other network
servers. Figure 3-1 illustrates atypical setup with afirewall that filterstraffic destined
for aWebL ogic Server cluster.

Figure3-1 Typical Firewall Setup

Firewall

External Client

e
i

Webl ogic Server

Cluster

=
=

External Client ?

4+— Metwork A HetworkB —»

Another common firewall configuration restrictsaccesstoonly HTTP or HTTPS Web
connections. The firewall permits clients to connect only to a Web server which
usualy runsat the standard HTTP port 80 or HTTPs port 443. The Web server may be
aWebL ogic Server or athird-party Web server set up to proxy requeststo aWebL ogic
Server. For example, Netscape Enterprise Server, Microsoft Internet Server, and
Apache Server can be set up to serve static Web pages and proxy servlet and JSP
requests to WebL ogic Server. Figure 3-2 illustrates this configuration.

Programming WebL ogic Security

Design Network Connections Carefully

In Figure 3-2, the Web server is a gateway operating in a demilitarized zone (DMZ).
In computer networks, aDMZ isacomputer host or small network inserted asaneutral
zone between acompany's private network and the outside public network. It prevents
outside users from getting direct access to a server on which company dataresides. A
DMZ isan optional and more secure implementation of afirewall which can also act
asaproxy server. WebL ogic Server connections come only from proxied Web server
reguests, enhancing the security of your WebL ogic Server applications and back-end
resources. In the configuration shown in Figure 3-2, clients interact exclusively with
the Web server and WebL ogic Server connections are made only by proxied Web
server requests. As aresult, the security of WebL ogic Server applications and
back-end resources that are configured in this way are enhanced.

Figure3-2 Firewall with Web Server Gateway

Firewall

I
I
I
I
External Client e :
I

\A:
| o
Weh Wehlogic
:—' Server Server
Cluster
I
/
I
External Client e I
I
I
I
I
I
I
I
I
I
DMZF

Programming WebL ogic Security 3-7

3 Securing a WebLogic Server Deployment

In addition to setting up afirewall, you can restrict who connects to your WebL ogic
Server deployment by implementing the

webl ogi c. security. net. Connecti onFil ter interface. Thisinterface allows you
to accept or reject a network connection based on the host name and network address
of the originating machine as well as the protocol used.

Manage the WebLogic Server Development
and Production Environments

For many reasons, development and production are easier when you develop on
machinesthat closely mimic the production environment. However, security concerns
suggest the following differences in the deployment and production environments:

m Do not develop on a production machine. Develop first on a development
machine and then move code to the production machine when it is compl eted
and tested. This process prevents bugs in the development environment from
affecting the security of the production environment.

m Do not install the WebL ogic Server sample applications on a production
machine.

m The system password of a production machine should be unique within your
domains and should be guarded carefully.

m Do not put the development tools on the production machine. These tools
include development product components including the javac, rmic, and gjbc
compilers as well as other devel opment tools you may use. Keeping the
development tools off the production machine, reduces the leverage an intruder
has should they get partial accessto a WebL ogic Server production machine.

m Protect your source code. Getting access to your source code allows an intruder
to find security holes. Always keep source code off of the production machine.
Comments in JSP files that are not meant for the end user should use the JSP
syntax of <% * ... */ % ratherthanthe HTML syntax of <!-- ... -->
because the JSP comments are deleted when the JSP is compiled and therefore
cannot be viewed. Also, disable the Case Sensitive Extensionsfield on the File
tab of the Administration Console to further protect your JSP source.

3-8 Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/net/package-summary.html

Use Encryption

m BEA does not recommend using the Servlet servlet in a production environment.
Y ou should remove al existing mappings between WebL ogic servlets and the
Servlet servlet from all web applications before using the applicationsin a
production environment.

m Do not make the File servlet the default servlet in a production environment.

Use Encryption

Encryption isthe process of taking text or other dataand scrambling it so that it cannot
be understood. Decryption reverses the process making the text or data
understandable. The decryption process always requires knowledge of a secret key or
password. The secret key is along string of bitsthat isrequired as an argument to the
decryption algorithm to make it work correctly. The strength of an encryption
algorithm is measured by the number of bitsin itskey.

There are many types of encryption and each type of encryption comes in many
strengths. The biggest differences between the algorithmsis how much CPU time it
takesto decrypt the data and how many keysthere are (symmetric key algorithms have
just one key that is used to both encryption and decrypt while public key algorithms
have two keys, one to encryption and one to decrypt).

Encryption istypically used in places where sensitive information is stored or
communicated. These places caninclude but are not limited to information on network
machines, on disk, in adatabase, in memory, and in legacy systems.

There are drawbacks to using encryption:

m Encryption and decryption are computationally expensive algorithms that take
CPU time to perform.

m Encryption can make debugging harder as you cannot review encrypted data to
verify that it is correct.

m Theloss of asecret key can render all encrypted data useless. Even the
temporary loss of a secret key (for example, all the people who know the secret
key are on vacation) can render a Web site useless until the secret key can be
retrieved.

Programming WebL ogic Security 39

3

Securing a WebLogic Server Deployment

m Key management is an awkward problem.Who should know the secret key,
where the secret key is stored, and whether the secret key itself should be
encrypted are just some of the issues that must be addressed.

The questions to ask when designing the encryption for a WebL ogic Server
deployment are:

m What needs to be encrypted?
m What algorithm and strength should be used to encrypt data?
m Where will the keys be stored?

Use the SSL Protocol

3-10

Datathat is sent over the network (either the Internet or an intranet) can be viewed by
other parties on the network. This is unavoidable because of the design of networks.
To prevent sensitive data from being compromised, the data should be encrypted.

To send encrypted data over the Internet you should use the HTTPS protocol (HTTP
over the Secure Sockets Layer (SSL)) rather than the HTTP protocol. To configure
your Web application for the SSL protocol you must use the

user - dat a- const rai nt tagintheweb. xm file and set the transport-guarantee to
CONFI DENTI AL.

The demonstration digital certificates provided with WebL ogic Server are for testing
only. Everyone who downloads WebL ogic Server hasthe private keysfor these digital
certificates. Do not use these digital certificatesin a deployed WebL ogic Server.
Check thefi | ereal m properti es fileto make sure that the demonstration digital
certificates have been removed from the deployed WebL ogic Server.

Use the strongest encryption WebL ogic Server supports: 1024-hit keys, 128-bulk data
encryption on your data. The WebL ogic Server version you download allows just
512-bit keys and 40-bit bulk encryption. Contact your BEA sales representative to
request the stronger version.

Programming WebL ogic Security

Prevent Man-in-the-Middle Attacks

Prevent Man-in-the-Middle Attacks

When using the SSL protocol, the data sent between the communi cating parties can be
vulnerable to man-in-the-middle attacks. A man-in-the-middle attack occurs when a
machine inserted into the network captures, modifies, and retransmits messagesto the
unsuspecting parties. One way to avoid man-in-the-middle attacks is to validate that
the host to which a connection is made is the intended or authorized party. An SSL
client can compare the host name of the SSL server with the digital certificate of the
SSL server to validatethe connection. WebL ogic Server providesaHostName Verifier
to protect SSL connections from man-in-the-middle attacks.

By default, the HostName Verifier is enabled. However, during the implementation of
WebL ogic Server at your site, thisfunctionality may have been disabled. To ensure a
HostName Verifier is being used with your WebL ogic Server deployment, check that
the SSL. I gnor e. Host Nane. Veri ficati on attribute on the SSL tab of the Servers
node of the Administration Console is not checked.

Prevent Denial of Service Attacks

A Denial of Service attack leaves a Web site running but unusable. Hackers
accomplish this by depleting or del eting one or morecritical resources of the Web site.
While adenial of service attack can happen if ahacker gets administrative privileges
to your Weblogic Server, it usually occurs when an unprivileged user removes a
required resource from a WebL ogic Server deployment.

To perpetrate a Denial of Service attack on aWebL ogic Server, an intruder bombards
with many requeststhat are either very largein size, are slow to complete, or never
complete so that the client stops sending data before completing the request. To
prevent Denial of Service attacks, WebL ogic Server allows you to restrict the size of
amessage as well asthe maximum time it takes a message to arrive. Y ou can set this
information individually for each of the three protocols used by WebL ogic Server: T3,
HTTP and 11OP. See the online help for the Administration Console for information
on setting the MaxT 3M essageSize, CompleteT 3M essageTimeout,
MaxHTTPMessageSize, CompleteHT TPM essageTimeout, Maxl | OPM essageSi ze,

Programming WebL ogic Security ~ 3-11

3 Securing a WebLogic Server Deployment

and Completel lOPM essageTimeout fields. These fields have a default of 2 gigabytes
for the maximum message size and 480 seconds for the compl ete message timeout. A
value of 0 for any of the fields disables that check.

Secure the HTTP Response Header

Protect

Consider preventing WebL ogic Server from sending its name and version number in HTTP
responses.

By default, when an instance of WebL ogic Server responds to an HTTP request, its HTTP
response header includes the server's name and WebL ogic Server version number. This posesa
potential security risk if an attacker knows about some vulnerability in the specific version of
WebL ogic Server.

To prevent aWebL ogic Server instance from sending its name and version number, disable the
Send Server Header attribute in the Administration Console. The attribute is located on the
Server — ServerName — Configuration — Protocols — HTTP tab.

User Accounts

In adictionary attack, a hacker sets up a script to attempt logins using passwords out
of a“dictionary”. WebL ogic Server provides a set of configurable attributes which
protect user accounts from dictionary attacks. These attributes are configurable in a
number of ways (for example, you can disable all the attributes, increase the number
of invalid login attempts required before locking the account, increase the time period
in which invalid login attempts have to take place before locking the account, and
change the amount of time the user account islocked). It isup to site administratorsto
determine how these attributes should be set. Use this feature to protect accounts with
maximum security. WebL ogic Server ships with the maximum security enforced.

Note: If during development you reduce security by changing these attributes,
remember to reset the attributes before deploying.

For more information, see Protecting Passwords.

312 Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#1060450

Protect Application Content

Protect Application Content

By default, WebL ogic Server usesasingledirectory, known asthe web document root
directory, asthe location that contains static application content (HTML files and
images) and dynamic application content (JSP and jHTML files). A potential
vulnerability may occur if an applicationisallowed to create or modify files containing
dynamic content within the web document root directory.

If an application is capable of modifying existing filesin the web document root
directory, thereisthe potential that the application could insert executable code in the
form of JSP or JHTML tagsin an existing file. If the particular file provides dynamic
content, the inserted code would be executed the next time the file was served to a
client.

To prevent the scenario under which thisvulnerability could occur, BEA recommends
the following supplemental security measures:

m WebLogic Server should only be installed on disks that support the ability to
control access to specific directories and files (e.g., secure file system) to one or
more specific user accounts. The use of an encrypted file system can be used to
heighten the level of security at the cost of performance.

m A special operating system-specific user account (for example, wi s_owner)
should be established specifically to run WebL ogic Server. This user account
should be granted only the minimum operating system rights and privileges that
are essential for successful execution of an application.

m The operating system-specific user account (W s_owner) should be the only user
account that can access, create, or modify files in the web document root
directory. This protection limits the ability of other applications executing on the
same machine as WebL ogic Server to access the web root directory.

m Directories containing JSP or JHTML files should be protected so that they can
only be accessed or modified by the operating system-specific user account
(w s_owner) under which WebL ogic Serve is executed. Read-only access can
be granted for administrative accounts such asr oot or Adni ni st rat or for the
purpose of archiving.

m The operating system-specific user account (W s_owner) that is used to create
JSP and jJHTML files should be granted only read and execute permissions to the

Programming WebL ogic Security ~ 3-13

3

Securing a WebLogic Server Deployment

JSP and jHTML files. This protective measure will prevent the operating
system-specific user account from knowingly writing to these files.

m Remove any unnecessary applications from the machine(s) that are used to run
WebL ogic Server. If it is not possible to remove an application, review the
security environment under which the application executes. Y ou need to
understand which directories applications that execute with privileges (for
example, under a privileged user account or applications with the setuid
privilege) can access. BEA advises that no other application use the operating
system-specific user account (W s_owner) under which WebL ogic Server runs.

m |f the operating system on which WebL ogic Server runs supports security
auditing of file and directory access, BEA recommends using audit logging to
track any denied directory or file access violations.

m Consider the use of an Intrusion Detection System (IDS) to detect attempts to
modify the production environment.

Replace HTML Special Characters in
User-Supplied Data

314

The ability to return user-supplied data can present a security vulnerability called
cross-site scripting, which can be exploited to steal a user’s security authorization.
For a detailed description of cross-site scripting, refer to “ Understanding Malicious
Content Mitigation for Web Developers’ (a CERT security advisory) at
http://www.cert.org/tech_tips/malicious_code_mitigation.html.

To remove the security vulnerability, before you return data that a user has supplied,
scan the datafor HTML specia characters. If you find any such characters, replace
themwith their HTML entity or character reference. Replacing the characters prevents
the browser from executing the user-supplied dataas HTML.

For more information, see “ Securing User-Supplied Datain JSPs’ and “ Securing
Client Input in Servlets.”

Programming WebL ogic Security

http://www.cert.org/tech_tips/malicious_code_mitigation.html
http://e-docs.bea.com/wls/docs61/jsp/reference.html#SecuringUserSuppliedData
http://e-docs.bea.com/wls/docs61/servlet/progtasks.html#SecuringClientInputServlets
http://e-docs.bea.com/wls/docs61/servlet/progtasks.html#SecuringClientInputServlets

Use Protected EJBs to Limit Access to Business Logic

Use Protected EJBs to Limit Access to
Business Logic

Some parts of your Web application are more sensitive than other parts. For example,
the part of your application that renders HTML isless sensitive than the part of the
application that accesses a key database table. More effort should be placed on
protecting the sensitive parts of your Web application. One way to protect the sensitive
parts of your Web application isto wrap them in Enterprise JavaBeans (EJBs) and use
ACLsto protect the EJBs. This security technique ensures that only properly
authenticated and authorized users can execute the EJBs.

The following is an example of how to use EJBs and ACL s to protect sensitive parts
of your Web application:

m Codethat allows a user to place an order on your Web site might bein an ACL
protected EJB that is only accessible to registered users of your Web site.

m Code that searches and displays the catalog of products on your Web site could
be in an EJB that is accessible to all users.

m Code that authorizes a return of merchandise may bein an ACL protected EJB
that is only accessible to customer service personnel.

The exact choice of what to protect and to whom to grant access to specific operations
must be considered on a per-application basis.

Remember your Web application is going to evolve over time. This makes
hard-to-understand schemes even harder to manage. One way to help prevent future
mistakesisto organize security by package. For example, you could have one package
where all methodson all classes are available to registered users and another package
where al methodson all classes are available only to customer service personnel. The
final decision asto whom has what accessis up to the EJB deployer but a security
scheme based on package is an easy mechanism for the deployer to implement.

Programming WebL ogic Security ~ 3-15

3

Securing a WebLogic Server Deployment

Use ACLs

3-16

ACLs are data structures with multiple entries that guard access to WebL ogic Server
resources. WebL ogic Server provides ACL s that protect the following WebL ogic
Server resources:

WebL ogic Servers

WebL ogic Events

WebLogic HTTP servlets/JISPYHTML pages
WebL ogic JDBC connection pools

WebL ogic JMS destinations

WebL ogic JNDI contexts

WebL ogic MBeans

Usethe provided ACLsto protect the resourcesin your WebL ogic Server deployment.

ACLs and permissions for WebL ogic EJBs differ from ACLs and permissions for
other kinds of WebL ogic Server resources in the following ways:

EJB ACLs are configured in the access control properties of the EJB’s
deployment descriptor.

Permissions are granted on individual methods of a bean; there are no predefined
permissions.

Permissions on EJBs are granted to Roles, which map to groupsin WebL ogic
Server.

For more information, see the following sections:

ACLs and Permissions
“Defining ACLS” in Managing Security

Programming WebL ogic Enterprise JavaBeans for information about assigning
ACLsto WebLogic EJBs.

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

Use the Appropriate Security Realm

m Configuring Security in Web Applications for information about assigning
security rolesin Weblogic Web applications.

Use the Appropriate Security Realm

Security in WebL ogic Server is based on the concept of a security realm. A security
realm in WebL ogic Server is acollection of Users and Groups, data about the Users
and Groups, and permissionsfor WebL ogic Server resources assigned to the Usersand
Groups. WebL ogic Server offers many different types of security realms.

The default security realm, the Filerealm, isthe least secure of security realms. Do not
use the File realm for deployed WebL ogic Servers. WebL ogic Server provides a set
alternate security realms that offer authorization and authentication through the
facilities of the security realm. For more information about the available security
realms, see the Security Realms section of the Concepts chapter.

Secure Your Database

Most Web applications use adatabase to storetheir data. Common databases used with
WebL ogic Server are Oracle, Microsoft's SQL Server, and Informix. The databases
frequently hold the Web application’ s sensitive dataincluding customer lists, customer
contact information, credit card information, and other proprietary data. When creating
your Web application you must consider what data is going to be in the database and
how secure you need to make that data. Y ou also need to understand the security
mechanisms provided by the manufacturer of the database and decide whether they are
sufficient for your needs. If the mechanisms are not sufficient, you can use other
security techniques to improve the security of the database. One common techniqueis
to encrypt sensitive data before writing it to the database. For example, you might
leave all customer datain the database in plain text except for the credit card
information which is encrypted.

Programming WebL ogic Security ~ 3-17

http://e-docs.bea.com/wls/docs61/webapp/security.html

3

Securing a WebLogic Server Deployment

Use Auditing

Auditing is the process of recording key security eventsin your WebL ogic Server
environment. The audit record is usually kept separate from the WebL ogic Server log
file. Reviewing the auditing records can help you determine whether there has been a
security breach or an attempted breach. Noting things such as repeated failed logon
attempts or asurprising pattern of security events may be the key to preventing serious
problems. To use auditing, implement thewebl ogi c. securi ty. audi t package. For
more information, see the “Auditing Security Events’ section in Managing Security.

Control Access to Multiple Domains

3-18

If the WebL ogic Server Administration Consoleisused to create multipledomains, the
System user in one domain can accessthe other domains created by that instance of the
Administration Console. This behavior can present a security risk in a production
environment. If you do not want this behavior, make sure that each domain in your
enviroment in created in adifferent location (meaning on a different host or through a
different WebL ogic Server instance). Y ou can aso use the file protections offered
through the operating system to protect the conf i g. xm file so that only the
appropriate System user has access to the file.

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/audit/package-summary.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

CHAPTER

A

Programming with the

WebLogic Security SPI

The following sections describe how to program with the WebL ogic Security SPI

including:

Before You Begin

WebL ogic Security SPI

Using JAAS Authentication

Using JNDI Authentication
Communicating Securely with SSL-Enabled Web Browsers
Using Mutual Authentication

Using a Custom Host Name Verifier
Using a Trust Manager

Using an SSL Context

Using Custom ACLs

Writing a Custom Security Realm
Auditing Security Events

Filtering Network Connections

Programming WebL ogic Security

4

Programming with the WebLogic Security SPI

Before You Begin

This section describes programming with application programming interfaces (APIs)
in the Security service provider interface (SPI) supplied by WebL ogic Server. Before
you perform the programming tasks described in this section, the following
configuration tasks must be compl eted:

1. Specify a security realm (the default, an alternate, or a custom security realm).
2. Add Users and Groups to the security realm.

3. Assign ACLsand permissions to the resourcesin the security realm.

4

. Configurethe SSL protocol (an optional step to provide additional protection for
network connections or when using certificate authentication).

5. Configure two-way SSL (optional).
6. Configure certificate authentication (optional)

For more information about these configuration tasks, see Managing Security in the
Administration Guide.

For information about security in WebL ogic EJBs, see Programming WebL ogic
Enterprise JavaBeans.

WebLogic Security SPI

4-2

The WebL ogic Security SPI builds upon the Java Devel oper’ sKit (JDK) security SPI:
it provides implementations and extensions where needed and a realm interface that
collects the security APIs into an authentication and authorization service for

WebL ogic Server. The authentication schemein WebL ogic Server isbased on the Java
Authentication and Authorization Service (JAAS). This standard provides the support
needed to submit a username and credential (password or digital certificate) when
initiating a secure connection to WebL ogic Server.

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

WebLogic Security SPI

Table 4-1 liststhe packagesthat are used when security isused in the WebL ogic Server

environment.

Table4-1 WebL ogic Security Packages

This Package. . .

IsUsed for. ..

j avax.security.auth

Performing JAAS-style L oginContext and Subject
based authentication.

webl ogi c. security

Mapping digital certificates sent from Web
browsers and Java clients to WebL ogic Server.
This class makes it unnecessary for auser with a
valid digital certificate to enter a username and
password when accessing resources in WebL ogic
Server.

webl ogi c. security. acl

Creating custom security realms to access
WebL ogic Server users, groups, or ACLsfrom an
external store. In addition, this package is used to
test custom ACLs in server-side programs.

webl ogi c. security. audit

Auditing security events. WebL ogic Server calls
the Audit class with information about
authentication and authorization requests. The
package can be used to filter the authorization and
authentication requestsand direct themto alogfile
or other administrative facility.

webl ogi c. security. net

Examining connections to WeblL ogic Server and
allowing or denying the connections based on
attributes such asthe | P address, domain, or
protocoal of theinitiator of the network connection.

webl ogi c. net. http.
HTTPsURLConnect i on

Makes an outbound SSL connection from a
WebL ogic Server acting as a client to another
WebL ogic Server.

webl ogi c. security. SSL. Host N
ameVerifier

Provides support for client authentication. it
includes the Host Name Verifier, Trust Manager,
and SSL Context classes.

Programming WebL ogic Security 4-3

http://java.sun.com/products/jaas
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/audit/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/net/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

4 Programming with the WebLogic Security SPI

Using JAAS Authentication

JAAS isastandard extension to the security in the Java Software Development Kit
version 1.3. JAAS provides the ability to enforce access controls based on who runs
the code. JAAS s provided in WebL ogic Server as an alternative to the JINDI
authentication mechanism. It isthe preferred method of authentication. In order to use
JAAS, you need to have the Java SDK version 1.3 installed.

Note: The authorization component of JAAS s not provided in WebL ogic Server.

Table 4-2 liststhe JAAS classes supported in WebL ogic Server.

Table4-2 JAAS Classes

Class

Description

j avax.

security. aut h. Subj ect

Represents the source of the request and can be any
entity (for example, aperson or aclient). A Subject
object is created at the completion of a successful
user authentication or login.

j avax.

security. auth. | ogin. Logi nCont ext

Through the LoginContext object, an application
initiateslogin, logout, and acquires the authenticated
Subject for the purpose of authorization checking.

j avax.

security.auth.login.Configuration

Providesthe get Conf i gur ati on() method for
the purpose of obtaining alist of LoginModules
providedin aparticul ar implementation of WebL ogic
Server.

j avax.

security. auth. spi.Logi nModul e

Provides the ability to implement different kinds of
authentication technologies into WebL ogic Server.
For example, one LoginModule object may perform
password authentication while another LoginModule
object performs certificate authentication.

j avax.

4-4

security. aut h. cal | back. Cal | back

Programming WebL ogic Security

Gathersinput from users (such as a password or the
name of adigital certificatefile) and passesit to the
Javaclient.

Using JAAS Authentication

Table4-2 JAAS Classes (Continued)

Class

Description

javax. security. aut h. cal | back. Cal | back.
Cal | backHandl er

Providesaway for the LoginModul eto communicate
with a Subject to obtain authentication information.
Implements the CallbackHandler interface and
passes it to the LoginContext which forwards it
directly to the underlying LoginModules. The
LoginModules use the CallbackHandler both to
gather input from users (such as a password) or to
supply information to users (such as status
information). By using CallbackHandlers,
LoginModules can remain independent of the
different ways WebL ogic Server communicateswith
USers.

To use JAASin aJava client to authenticate a Subject, complete the following

procedure:

1. Implement aLoginModule class for the authenti cation mechanism you want to use
with WebL ogic Server. Y ou need aLoginModule class for each type of
authentication mechanism. Y ou can have multiple LoginModule classes for a
single WebL ogic Server deployment.

WebL ogic Server provides a helper class

webl ogi c. security. aut h. Aut henti cat e that facilitatesthe writing of a
LoginModule class. Thewebl ogi c. securi ty. aut h. Aut henti cat e class uses
aJNDI Environment object and returns an authenticated Subject. The JNDI
Environment object should include the properties listed in Table 4-3.

2. Implement a Configuration class that specifies which LoginModule classes
should be used for your WebL ogic Server and in which order the LoginModule

classes should be invoked.

3. Inthe Javaclient, instantiate a L oginContext.

The LoginContext consults the Configuration to load al of the LoginModules

configured for WebL ogic Server.

4. Invokethel ogi n() method of LoginContext.

Thel ogi n() method invokes all the loaded L oginModules. Each LoginModule
attempts to authenticate the Subject.

Programming WebL ogic Security 4-5

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/auth/Authenticate.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jndi/Environment.html

4

Programming with the WebLogic Security SPI

4-6

The LoginContext throws a L oginException if the configured login conditions
are not met.

5. Retrieve the authenticated Subject from the L oginContext.

6. Upon successful authentication of a Subject, access controls can be placed upon
that Subject by invoking the doAs() method of the
j avax. security. aut h. Subj ect class. ThedoAs() method associates the
specified Subject with the current thread’s ACL and then executes the action. If
the Subject has the necessary access controls the action is completed; however, if
the Subject does not have the necessary access controls, a security exception is
raised.

Theexanpl es. security.jaas exampleinthe sanpl es/ exanpl es/ security
directory provided with WebL ogic Server shows how to use JAAS authenticationin a
Javaclient.

Listing 4-1 contains an implementation of the

j avax. security. aut h. spi. Logi nMdul e classthat performs password
authentication. The codein Listing 4-1 is excerpted from the SampleLoginModule in
the exanpl es. security.jaas package.

Listing4-1 Example of LoginM odule for Password Authentication

//1mport the relevant classes.//

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

java. util. Map;

java.io. | CException;
java. net. Mal f or redURLExcepti on;
java.rm . Renot eExcepti on;

javax. security.
javax. security.
javax. security.
javax. security.
javax. security.
javax. security.
javax. security.
javax. security.
javax. security.

aut h.
aut h.
aut h.
aut h.
aut h.
aut h.
aut h.
aut h.
aut h.

Subj ect;

cal | back. Cal | back;

cal | back. Cal | backHandl er;

cal | back. NarmeCal | back;

cal | back. Passwor dCal | back;

cal | back. Unsupport edCal | backExcepti on;
| ogi n. Logi nExcepti on;

| ogi n. Fai | edLogi nExcepti on;

spi . Logi nMbdul e;

webl ogi c. security. aut h. Aut henti cate;
webl ogi c. j ndi . Envi ronmnent ;

Programming WebL ogic Security

Using JAAS Authentication

public cl ass Sanpl eLogi nModul e i npl ements Logi nModul e
{
private Subject subject = null;
private Call backHandl er cal | backHandl er = null;
private Map sharedState = null;
private Map options = null;
private String url = null;

/1 Authentication status
private bool ean succeeded = fal se;
private bool ean conmnit Succeeded = fal se;

/1 Username and password
private String usernane
private String password

nul | ;
nul | ;

/1 Initialize

public void initialize(Subject subject,
Cal | backHandl er cal | backHandl er,
Map sharedState,
Map options)

this. subject = subject;

thi s. call backHandl er = cal | backHandl er;
this.sharedState = sharedSt at e;
this.options = options;

/1 Retrieve WebLogic Server URL string

url = System get Property
("webl ogi c. security.jaas. Server URL");

/1 Aut henti cate the user using the usernane and password passed in.
//Return true if successful.

/| Rai se Fail edLogi nException if the authentication fails.

/1 Rai se Logi nException if this LoginMddule is unable to perform
//the authentication.

publ i c bool ean | ogin() throws Logi nException
{
/1 Verify that the client supplied a callback handl er
i f(callbackHandl er == null)
t hrow new Logi nException("No Cal | backHandl er Specified");

/1 Popul ate cal | back list//

Cal | back[] call backs = new Cal | back[2] ;

cal | backs[0] new NaneCal | back("usernane: ");

cal | backs|[1] new Passwor dCal | back("password: ", false);

Programming WebL ogic Security 4-7

4 Programming with the WebLogic Security SPI

/1 Pronpt for username and password
cal | backHandl er . handl e(cal | backs) ;

I/ Retrieve usernane
usernane = ((NanmeCal | back) call backs[0]).getNane();

/1 Retrieve password, converting fromchar[] to String
char[] charPassword = ((PasswordCal | back)
cal | backs[1]). get Password();

i f(charPassword == null)

{

/1 Treat a NULL password as an enpty password, not NULL
char Password = new char[0];

}
}

/1 Popul at e webl ogi c environment and aut henticate
Envi ronnent env = new Environment ();
env. setProviderUrl (url);
env. set Securi tyPrinci pal (usernane);
env. set SecurityCredenti al s(password);

password = new String(charPassword);

/1 Authenticate user credentials, populating Subject
Aut henti cat e. aut henti cat e(env, subject);

/1 Successfully authenticated subject with supplied info
succeeded = true;
return succeeded;

WebL ogic Server uses the default LoginModule

(webl ogi c. security.internal. ServerLogi nMdul e) to gather authentication
information during server initialization. To replace the default Login module, edit the
Server . pol i cy fileand replace the name of the default L ogin module with the name
of acustom Login module.

The JAAS implementation in WebL ogic Server alows the use of NameCallback,
PasswordCallback, and TextlnputCallback callbacks in the provided L oginModul es.

4-8 Programming WebL ogic Security

Using JAAS Authentication

Optionally, custom Login modules can be specified intheser ver . pol i cy fileahead
of the default LoginModule. The JAAS implementation in WebL ogic Server uses
Login modulesin the order in which they are defined inthe ser ver . pol i cy file. The
default Login module checks for existing system user authentication definitions prior
to execution and does nothing if they are aready defined.

The default Login Moduleis required to define VM properties for both the system
username and password. These properties are specified as

webl ogi c. managenent . user nanme and webl ogi c. managenent . passwor d
respectively. In order to use a custom Login modules, these properties must be set
accordingly.

Listing 4-2 contains an implementation of the
javax. security. auth. | ogin. Configuration class. Thecodein Listing 4-2 is
excerpted from the SampleConfig in the exanpl es. securi ty. j aas package.

Listing 4-2 Example of a Configuration I mplementation

i mport java.util.Hashtabl e;

i mport javax.security.auth.login. Configuration;

i mport javax.security.auth.login. AppConfigurationEntry;
i mport java.io.File;

i mport java.io. Fil eReader;

i mport java.io. | CException;

i mport java.io.lnputStream

i mport java.io. Buf f er edReader;

import java.io.FilelnputStream

i nport java.io. Fi | eNot FoundExcepti on;

public class Sanpl eConfig extends Configuration

{
String configFileName = null;

//Create a new Configuration object.
public Sanpl eConfig()

/I Retrieve an entry fromthe Configuration using an application nanme
//as an index. This code specified a single Login Mdule.

publ i c AppConfigurati onEntry[]
get AppConfigurationEntry(String applicationNane)
{

Programming WebL ogic Security 4-9

4 Programming with the WebLogic Security SPI

AppConfigurationEntry[] list =
new AppConfigurationEntry[1];
AppConfigurationEntry entry = null;

/1 Get the specified configuration file
configFi |l eName =
Syst em get Property("webl ogi c. security.jaas.Policy");
Systemout.println("Using Configuration File: " +
confi gFi | eNane) ;

try
{
Fi |l eReader fr = new Fil eReader (configFil eNane);

Buf f eredReader reader = new BufferedReader (fr);
String |line;

line = reader.readLine();
while(line !'= null)
{

/1 Skip lines until the line starting with a '{'
if(line.length() == 0 || line.charAt(0) !'="{")
{

line = reader.readLine();
conti nue;

/1 Read followi ng |ine which contains the Logi nMddul e confi gured
line = reader.readLine();

int i;

for(i = 0; i <line.length(); i++)

{
char ¢ = line.charAt(i);
if(ct="")

br eak;

}
int sep = line.indexOf(" ', i);

String LMNane
String LMl ag

l'ine.substring(0, sep).trim);
l'i ne.substring(sep + 1)line.indextt
("', sep + 1));

Systemout.println("Login Mdul e Nane: " + LMNane);
Systemout. println("Login Mdule Flag: " + LMl ag);

i f (LMFI ag. equal sl gnor eCase(" OPTI ONAL"))

{
entry = new AppConfi gurati onEntry(LMane,

AppConfi gurati onEntry. Logi nMbdul eCont rol Fl ag.
OPTI ONAL, new Hasht abl e());

4-10 Programming WebL ogic Security

Using JAAS Authentication

list[0] = entry;

}
el se i f (LM ag. equal sl gnor eCase(" REQUI RED"))
{
entry = new AppConfi gurati onEntry(LMane,
AppConfi gurati onEntry. Logi nMbdul eCont rol Fl ag.
REQUI RED, new Hasht abl e());
list[0] = entry;
}

el se i f (LMl ag. equal sl gnor eCase(" REQUI SI TE"))
{
entry = new AppConfi gurati onEntry(LMang,
AppConfi gurationEntry. Logi nMdul eCont r ol Fl ag.
REQUI SI TE, new Hasht abl e());
list[0] = entry;

el se i f (LM ag. equal sl gnor eCase(" SUFFI Cl ENT"))

{
entry = new AppConfi gurati onEntry(LMane,

AppConfi gurati onEntry. Logi nMbdul eCont rol Fl ag.
SUFFI Cl ENT, new Hasht abl e());
list[0] = entry;

)).Refresh and reload all of the Login configurations.

public void refresh()

Listing 4-3 contains an example of a Java client that uses JAAS authentication. The
codein Listing 4-3 is excerpted from the SampleClient in the

exanpl es. securi ty.j aas package. Note that the Java client includes an
implementation of the

j avax. security. aut h. cal | back. Cal | back. Cal | backHandl er class.

Programming WebL ogic Security ~ 4-11

4

Programming with the WebLogic Security SPI

4-12

Listing 4-3 Example of Java Client That Uses JAAS Authentication

//1mport the required cl asses.

import java.io.*;

import java.util.*;

i mport javax.security.auth. Subject;

i mport javax.security.auth. call back. Cal | back;

i mport javax.security.auth. call back. Cal | backHandl er;

i mport javax.security.auth. call back. Text Qut put Cal | back;

i mport javax.security.auth.call back. NameCal | back;

i mport javax.security.auth.call back. PasswordCal | back;

i mport javax.security.auth. call back. UnsupportedCal | backExcepti on;
i mport javax.security.auth.login.Logi nCont ext;

i mport javax.security.auth.login.Logi nExcepti on;

import javax.security.auth.|ogin. Fail edLogi nExcepti on;

i mport javax.security.auth.|ogin. Account Expi redExcepti on;

i mport javax.security.auth.login.Credential Expi redExcepti on;

public class Sanpledient
{

//Attenpt to authenticate the user.
Logi nCont ext | ogi nContext = null;

/1 Set JAAS server url system property and create a Logi nContext.

{

/1 Set Server url for Sanpl eLogi nMbdul e, the Logi nMbdul e for
//the JAAS code exanpl e
Properties property = new Properties();
property = System getProperties();
property. put ("webl ogi c. security.jaas. Server URL", args[0]);
System set Properties(property);

/1 Set configuration class name to | oad Sanpl eConfiguration, the
[/ Configuration for the JAAS code exanple
Properties property = new Properties();
property = System getProperties();
property. put ("webl ogi c. security.jaas. Configuration",
"exanpl es. security.jaas. Sanpl eConfig");
System set Properti es(property);

/1 Set Configuration file nane to | oad sanpl e configuration policy
I1file.
Properties property = new Properties();
property = System getProperties();
property. put ("webl ogi c. security.jaas. Policy",
" Sanpl e. policy");
System set Properti es(property);

Programming WebL ogic Security

Using JAAS Authentication

/| Create Logi nCont ext
| ogi nCont ext = new Logi nCont ext (" Sanpl eLogi nModul e", new
MyCal | backHandl er ());

}

/1 Attenpt authentication
| ogi nCont ext . | ogi n();

/Il Retrieve authenticated Subject and perform Sanpl eAction as
/] Subj ect .

Subj ect subject = | ogi nContext. get Subj ect();

Sanpl eActi on sanpl eAction = new Sanpl eAction();

Subj ect . doAs(subj ect, sanpl eAction);

/11 mpl enentation of the CallbackHandl er Interface
cl ass MyCal | backHandl er inpl enents Cal | backHandl er

{
publ i c voi d handl e(Cal | back[] cal | backs) t hrows | OExcepti on,

Unsupport edCal | backExcepti on
for(int i = 0; i < callbacks.length; i++)

i f(callbacks[i] instanceof Text QutputCall back)
{
/1 Display the message according to the specified type
Text Qut put Cal | back toc = (Text Cutput Cal | back) cal | backs[i];
switch(toc. get MessageType())
{
case Text Cut put Cal | back. | NFORVATI ON:
System out. println(toc.get Message());
br eak;
case Text Qut put Cal | back. ERROR:
Systemout.printIn("ERROR " + toc.getMessage());
br eak;
case Text Qut put Cal | back. WARNI NG
Systemout.printIn("WARNING " + toc.get Message());
br eak;
defaul t:
t hrow new | OExcepti on("Unsupport ed nessage type: " +
t oc. get MessageType());

}

el se if(callbacks[i] instanceof NaneCall back)
/1 Pronpt the user for the usernane
NameCal | back nc = (NaneCal | back) call backs[i];

Systemerr.print(nc.getPronmpt());
Systemerr.flush();

Programming WebL ogic Security ~ 4-13

4

Programming with the WebLogic Security SPI

nc. set Name((new Buf f er edReader (new
I nput StreanmReader (Systemin))).readLine());
telse if(callbacks[i] instanceof PasswordCall back)

/1 Pronpt the user for the password
Passwor dCal | back pc = (PasswordCal | back) call backs[i];
Systemerr.print(pc.getPronmpt());
Systemerr.flush();

/1 JAAS specifies that the password is a char[] rather than a String
String tnpPassword = (new BufferedReader (new
I nput St reanmReader (Systemin))).readLine();

}

el se

{

int passLen = tnpPassword. | ength();

char[] password = new char[passLen];

for(int passldx = 0; passldx < passLen; passldx++)
passwor d[passl dx] = tnpPassword. char At (passl dx) ;
pc. set Passwor d(password) ;

t hrow new UnsupportedCal | backExcepti on(cal | backs[i],
"Unr ecogni zed Cal | back");

}

For more information about using JAAS, see the Java Authentication and
Authorization Service Developer’s Guide.

Using JNDI Authentication

4-14

Java clients can also use JNDI to pass credentials. A Javaclient establishes a
connection with WebL ogic Server by getting a JNDI InitialContext. The Javaclient
then uses the Initial Context to look up the resources it needs in the WebL ogic Server

JNDI tree.

To specify auser and the user’s credentials set the INDI properties listed in the

following table.

Programming WebL ogic Security

http://java.sun.com/security/jaas/doc/api.html

Using JNDI Authentication

Table 4-3 JNDI Properties Used for Authentication

Property Meaning

I NI TI AL_CONTEXT_FACTORY Provides an entry point into the WebL ogic Server
environment. The class
webl ogi c.j ndi . W.I ni tial ContextFactory
isthe INDI SPI for WebL ogic Server.

PROVI DER_URL Specifiesthe host and port of the WebL ogic Server. For
example: t 3://webl ogi c: 7001.

SECURI TY_AUTHENTI CATI ON Indicates the types of authentication to be used. The
following values are valid:

= None indicatesthat no authentication is performed.

m Si npl e indicates that password authentication is
performed.

m Strong indicates that certificate authentication is
performed.

Note: If you try to access a secure component on
WebL ogic Server, user authentication will be
required by WebL ogic Server regardless of the
type of authentication indicated by the
SECURI TY_AUTHENTI CATI ON setting. For
example, if you set
SECURI TY_AUTHENTI CATI ONto None,
you will still be required to supply the correct
password to access a secure component.

SECURI TY_PRI NCI PAL Specifies the identity of the User when that User
authenticates to the WebL ogic Server security realm.

Programming WebL ogic Security ~ 4-15

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jndi/WLInitialContextFactory.html

4 Programming with the WebLogic Security SPI

Table 4-3 JNDI Properties Used for Authentication (Continued)

Property M eaning

SECURI TY_CREDENTI ALS Specifies the credentials of the User when that User
authenticates to the WebL ogic Server security realm.

m For password authentication enabled via
SECURI TY_AUTHENTI CATI ON="si npl e”, this
property specifies a string that is either the User’s
password or aUser object used by WebL ogic
Server to verify credentials.

m For certificate authentication enabled via
SECURI TY_AUTHENTI CATI ON=" st r ong” , this
property specifies the name of the X509 object that
contains the digital certificate and private key for
the WebL ogic Server.

These properties are stored in a hash table that is passed to the | ni ti al Cont ext
constructor.

Listing 4-4 demonstrates how to use password authentication in aJavaclient. The code
in Listing 4-4 is excerpted from the Client in the exanpl es. securi ty. acl example
provided with WebL ogic Server inthe sanpl es/ exanpl es/ securi ty directory.

Listing 4-4 Example of Password Authentication

Hasht abl e env = new Hasht abl e();
env. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"webl ogi c.j ndi.W.Initial Cont ext Factory");
env. put (W.Cont ext . PROVI DER_URL, “t3://webl ogi c: 7001");
env. put (W.Cont ext . SECURI TY_AUTHENTI CATI ON “si npl e");
env. put (Cont ext . SECURI TY_PRI NCl PAL, “javaclient”);
env. put (Cont ext . SECURI TY_CREDENTI ALS, *“password”);

ctx = new Initial Context(env);

4-16 Programming WebL ogic Security

Using JNDI Authentication

Listing 4-5 demonstrates how to use certificate authentication in a Java client. Notice
the use of the T3S protocol, which isaWebL ogic Server proprietary protocol over the
SSL protocol. The SSL protocol protects the connection and communi cation between
WebL ogic Server and the Javaclient.

Listing 4-5 Example of Certificate Authentication

Hasht abl e env = new Hasht abl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"webl ogi c. j ndi . W.I ni tial Cont ext Factory");
env. put (W.Cont ext . PROVI DER_URL, “t3s://webl ogi c: 7001");
env. put (W.Cont ext . SECURI TY_AUTHENTI CATI ON “strong”);
env. put (Cont ext . SECURI TY_PRI NCl PAL, “javaclient”);
env. put (Cont ext . SECURI TY_CREDENTI ALS, “certforclient”);

ctx = new I nitial Context(env);

The codein Listing 4-4 and Listing 4-5 generates acall to

webl ogi c. security. acl. Security. get User () whichreturnsaUser objectif the
username and password are correct or if the digital certificate isvalid. WebL ogic
Server stores this authenticated User object on the Java client’ s thread in WebL ogic
Server and uses it for subsequent authorization requests when the thread attempts to
use resources protected by ACLs.

Note: For information on JNDI contexts and threads and how to avoid potential
JNDI context problems, see“ INDI Contextsand Threads’ and “How to Avoid
JNDI Context Problems’ in the Programming WebLogic JNDI.

Programming WebL ogic Security ~ 4-17

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/Security.html

4

Programming with the WebLogic Security SPI

Communicating Securely with SSL-Enabled
Web Browsers

Y ou can use a URL object to make an outbound SSL connection from a WebL ogic
Server acting as a client to another WebL ogic Server. The

webl ogi c. net . http. H t psURLConnect i on class provides away to specify the
security context information for aclient including the digital certificateand private key
of the client.

Thewebl ogi c. net . http. Ht t psURLConnect i on class provides methods for
determining the negotiated cipher suite, getting/setting a HostName Verifier, getting
the server’s certificate chain, and getting/setting an SSL SocketFactory in order to
create new SSL sockets.

The SSL Client code example demonstrates using the

webl ogi c. net. http. H t psURLConnect i on class to make an outbound SSL
connection. In addition, the SSL client code example demonstrates using the Java
Secure Socket Extension (JSSE) application programming interface (API) to make the
outbound SSL connection. The SSL client code example is available in the

exanpl es. security. sslclient packageinthe

/ sanpl es/ exanpl es/ security/sslclient directory.

Using Mutual Authentication

4-18

When using certificate authentication, WebL ogic Server sends a digital certificate to
the requesting client. The client examines the digital certificate to ensure that it is
authentic, has not expired, and matches the WebL ogic Server that presented it.

With mutual authentication, the requesting client also presents a digital certificateto
WebL ogic Server. By setting fieldsin the Administration Console, you can configure
WebL ogic Server to require requesting clients to present digital certificates from a
specified set of certificate authorities. WebL ogic Server accepts only digital

Programming WebL ogic Security

Using Mutual Authentication

certificatesthat are signed by root certificates from the specified certificate authorities.
For more information, see the “ Configuring the SSL Protocol” section in Managing
Security.

The following sections describes the different ways mutual authentication can be
implemented in WebL ogic Server.

Note: When using JAAS for authentication in a Java client, you write a
LoginModule class that performs mutual authentication.

Mutual Authentication with JNDI

When using JNDI for authentication in a Java client, use the

set SSLO i ent Certificate() method of the WebL ogic INDI Environment class.
This method sets a private key and chain of X.509 digital certificates for client
authentication. To supply the Java client’s digital certificate and private key read the
Definite Encoding Rules (DER) filesthat contain the digital certificate and private key
into an X509 object, and then set the X509 object in a JNDI hash table. Use the INDI
properties described in “Using JINDI Authentication” to specify the information
required for authentication.

To passdigital certificatesto INDI, create an array of | nput St r eans opened onfiles
containing DER-encoded digital certificates and set the array in the INDI hash table.
Thefirst element in the array must contain an I nput St r eamopened on the Java
client’ sprivate key file. The second element must contain an | nput St r eamopened on
the Java client’ s digital certificate file. (Thisfile contains the public key for the Java
client.) Additional elements may contain the digital certificates of the root certificate
authority and the signer of any digita certificates in a certificate chain. A certificate
chain allows WebL ogic Server to authenticate the digital certificate of the Java client
if that digital certificate was not directly issued by a certificate authority registered for
theJavaclientinthefi | eReal m properti es file.

You can usethewebl ogi c. securi ty. PEM nput St r eamclassto read digital
certificates stored in Privacy Enhanced Mail (PEM) files. This class provides afilter
that decodes the base 64-encoded DER certificate into a PEM file.

Listing 4-6 demonstrates how to use mutual authentication in a Java client. The code
in Listing 4-6 is excerpted from the AltClient in the exanpl es. securi ty. acl
exampleinthe sanpl es/ exanpl es/ securi ty directory provided with WebL ogic
Server.

Programming WebL ogic Security ~ 4-19

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/PEMInputStream.html

4

Programming with the WebLogic Security SPI

4-20

Listing4-6 Example of Mutual Authentication

package exanpl es. security. acl;

import java.io.FilelnputStream

i mport java.io.|nputStream

i mport j avax. nam ng. Cont ext ;

i mport webl ogi c. jndi.Environnent;

i mport webl ogi c. security. PEM nput Stream

public class Altdient

{

public static void main(String[] args)

{

Context ctx = null;

String url = args[0];
try
{

Envi ronnent env = new Environnent ();
env. set ProviderUrl (url);

/1 The second and third args are usernane and password
if (args.length >= 3)
{

env. set SecurityPrincipal (args[1]);

env. set SecurityCredential s(args[2]);

}

/1 Fourth and fifths argunments are private key and
/1 public key.
if (url.startsWth("t3s") && args.length >= 5)

Input Strean{] certs = new I nputStreanfargs.length - 3];
for (int g =3; q < args.length; g++)
{

String file = args[q];

InputStreamis = new FilelnputStrean(file);

if (file.toLowerCase().endsWth(".pent))

{

is = new PEM nput Strean(is);
}
certs[q - 3] = is;

Programming WebL ogic Security

Using Mutual Authentication

env.setSSLd ientCertificate(certs);

}

ctx = env.getlnitial Context();

When the INDI get I ni ti al Cont ext () method is called, the Javaclient and

WebL ogic Server execute mutual authentication in the same way that a Web browser
performs mutual authentication to get a secure Web server connection. An exception
isthrown if the digital certificates cannot be validated or if the Java client’s digital
certificate cannot be authenticated in the security realm. The authenticated User object
is stored on the Java client’ s server thread and is used for checking the permissions
governing the Java client’ s access to any ACL -protected WebL ogic Server resources.

When you use the WebL ogic INDI Environment class, you must create a new
Environment object for each call tothe get I ni ti al Cont ext () method. Once you
specify aUser and security credentials, both the user and their associated credentials
remain set in the Environment object. If you try to reset them and then call the INDI
get I ni ti al Cont ext () method, the original User and credentials are used.

When you use mutual authentication from a Java client, WebL ogic Server gets a
unique Java Virtual Machine (JVM) ID for each client VM so that the connection
between the Javaclient and WebL ogic Server is constant. Unless the connection times
out from lack of activity, it persists aslong asthe VM for the Java client continuesto
execute. The only way a Javaclient can negotiate anew SSL connection reliably isby
stopping its VM and running another instance of the VM.

A Javaclient running in aJVM with an SSL connection can change the WebL ogic
Server User identity by creating anew JNDI | ni ti al Cont ext and supplying a new
username and password in the INDI SECURI TY_PRI NCI PAL and

SECURI TY_CREDENTI ALS properties. Any digital certificates passed by the Javaclient
after the SSL connection is made are not used. The new WebL ogic Server User
continues to use the SSL connection negotiated with the initial User’ s digital
certificate.

If you implement the CertAuthenticator interface, WebL ogic Server passes the digital
certificate for the Java client to theimplementation of the CertAuthenticator class. The
CertAuthenticator class maps the digital certificate to aWebL ogic Server User.
Because the digital certificateis processed only at the time of the first connection
request from the JVM, it is not possible to set a new user identity when you use the
CertAuthenticator class.

Programming WebL ogic Security ~ 4-21

4

Programming with the WebLogic Security SPI

Caution: Restriction: Multiple, concurrent, user loginsto WebL ogic Server from a
single client VM when using mutual authentication and JNDI is not
supported. If multiple logins are executed on different threads, the results
are undeterminable and might result in one user’ s requests being executed
on another user’ slogin, thereby allowing one user to access another user’s
data. WebL ogic Server does not support multiple, concurrent,
certificate-based loginsfromasingleclient VM. For information on JNDI
contexts and threads and how to avoid potential INDI context problems,
see “JINDI Contexts and Threads” and “How to Avoid JNDI Context
Problems” in Programming WebLogic JNDI.

Mapping a Digital Certificate to a WebLogic Server User

4-22

When you perform mutual authentication, WebL ogic Server authenticates the digital
certificate of the Web browser or Java client in order to establish an SSL connection.
However, the digital certificate does not identify the Web browser or Javaclient asa
User inthe WebL ogic Server security realm. If the Web browser or Javaclient requests
aWebL ogic Server resource protected by an ACL, WebL ogic Server requiresthe Web
browser or Java client to provide a username and password.

To map aWeb browser or Javaclient to aUser in the WebL ogic Server security realm,
implement thewebl ogi c. security. acl. Cert Aut henti cat or interface. The
CertAuthenticator classis called after an SSL connection has been established. The
class can extract data from a digital certificate to determine which User owns the
digital certificate. The CertAuthenticator class then callsthe

webl ogi c. security. acl . get User () method to retrieve the authenticated User
object from the WebL ogic Server security realm.

When the CertAuthenticator classisinstalled, it is unnecessary for Web browsersto
prompt for WebL ogic Server usernames and for Java applicationsto set apassword in
the INDI SECURI TY_CREDENTI ALS property. For more information, see the
“Configuring the SSL Protocol” section in Managing Security.

If you use the CertAuthenticator class with a Java client application, note that the Java
client cannot change the User identity once the SSL connection is established. To
supply anew digital certificate, you must stop the VM for the Java client and restart
the client in anew JVM instance so that a new SSL connection can be negotiated.

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/CertAuthenticator.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

Using Mutual Authentication

Y ou can use any of the several methods to map a digital certificate to a User. One
technique is to set the password of a User to the fingerprint of the User’ s digital
certificate. Then you can extract the username from the digital certificate, calculate the
fingerprint, and call thewebl ogi c. securi ty. acl . get User () method in the same
way WebL ogic Server doeswhen a User submits ausername and a password to access
aresource.

Note: Thefingerprint of adigital certificateisnot part of the certificate but it can be
computed from the certificate. A fingerprint isthe MD5 digest of the
DER-encoded Certi fi cat el nf o whichisan ANS.1 typeincluded in the
X.509 specification.

The CertAuthenticator class has a public no-arg constructor and invokes the

aut henti cat e() method. WebL ogic Server callstheaut hent i cat e() method with
ausername, which may benull, aCerti f i cat e array containing the digital certificate
of the Javaclient or acertificate chain, and aBoolean that ist r ue if an SSL handshake
succeeds. You can call methodsontheCertificate array to retrieve datafrom the
digital certificate.

Listing 4-7 shows how to implement the CertAuthenticator interface. It extracts the
username from the e-mail addressin the digital certificate and calls the

webl ogi c. security. acl . get User () method to retrieve an authenticated User
object from the WebL ogic Server security realm. Because the code example examines
only aportion of thee-mail address, thisexampleisnot very secure. Digital certificates
with the same e-mail addressin different domains can be mapped to the same User and
no additional authentication is performed. If you want to implement this feature, you
may want to add code that fully establishes the identity of the client.

Listing 4-7 a so shows how to map adigital certificateto aUser in aWebL ogic Server
security realm. The codein Listing 4-7 is excerpted from SimpleCertA uthenticator in
theexanpl es. security. cert exampleinthesanpl es/ exanpl es/ security
directory provided with WebL ogic Server.

Listing4-7 Exampleof Mapping aDigital Certificateto a WebL ogic Server User

package exanpl es.security.cert;

i mport webl ogi c.security.Certificate;
i mport webl ogi c.security. Entity;
i nport webl ogi c. security. X500Nane;

Programming WebL ogic Security ~ 4-23

4 Programming with the WebLogic Security SPI

i mport webl ogi c. security.acl.CertAuthenticator;
i mport webl ogi c. security. acl.Basi cReal m

i mport webl ogi c.security.acl.Realm

i mport webl ogi c. security.acl. User;

public class SinpleCertAuthenticator
i mpl enents Cert Aut henti cat or
{

private BasicReal mreal m

public SinpleCertAuthenticator()
{

real m = Real m get Real m("webl ogic");

}

/**

* Attenpt to authenticate a renote user.
*

* @aram user Nane ignored by this exanple

* @aramcerts used to attenpt to map fromenmail address to

* @ WebLogi c user.

* @aramssl if false, this exanple returns null

* @eturn authenticated user, or null if authentication failed
*/

public User authenticate(String userNanme, Certificate[] certs,
bool ean ssl)

{

/1 This inplenentation only trusts certificates that originate
/1 froma successful two-way SSL handshake.

if (ssl == false)

{

return null;
}
User result = null;
Certificate cert = certs[O0];
Entity hol der = cert. getHol der();
i f (holder instanceof X500Nane)

X500Nanme x500hol der = (X500Nane) hol der;
String email = x500hol der. get Email ();

if (email !'= null)
{
int at = email.indexOh("@);

if (at > 0)

4-24 Programming WebL ogic Security

Using Mutual Authentication

String nane = enmil.substring(0, at);

/1 Make sure that the user we've pulled out of the email
/1 address really exists.
result = real mgetUser(nane);

}
}

return result;

}
}

The constructor in Listing 4-7 shows how to get access to the WebL ogic Server
security realm in a server-side class. The get Real (" webl ogi ¢") method of the
webl ogi c. securi ty. acl . r eal mclass returns the realm being used by WebL ogic
Server, whether it isthe File realm or an alternative security realm, such asthe LDAP
Security realm.

Thewebl ogi c. security. X500Name class includes accessor methods to retrieve
fields from the webl ogi c. security. Certifi cate class. Listing 4-7 caststhe
Certificate object to an X500Name object, calls the get Emai | () method of the
X500Name object, and takes theinitial substring of the e-mail address. The

get User (Stri ng) methodinthewebl ogi c. security. acl . Abstract abl eReal m
classretrievesthe WebL ogic Server user with the computed username. If the user does
not exist, the aut hent i cat e() method of the

webl ogi c. security. acl . Abstract abl eReal m classreturns null.

Using Mutual Authentication with Other WebLogic
Servers
Y ou can use mutual authentication in server-to-server communication in which one
WebL ogic Server is acting as the client of another WebL ogic Server. Using mutual

authentication in server-to-server communication allows you to depend on
high-security connections, even without the more familiar client/server environment.

Programming WebL ogic Security ~ 4-25

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/X500Name.html

4

Programming with the WebLogic Security SPI

4-26

Listing 4-8 establishes a secure connection to a second WebL ogic Server called
server 2. webl ogi c. comfrom aservlet running in WebL ogic Server.

Listing 4-8 Establishing a Secure Connection to Another WebL ogic Server

FilelnputStream[] f = new Filel nputStrean3];
f[0] = new Fil el nput St rean("denokey. peni);
f[1] = new Fil el nput St rean{"denocert. pent');
f[2] = new Fil el nput Streanm("ca. peni);

Envi ronnent e = new Environment ();

e.setProvi der URL("t3s://server 2. webl ogi c. com 443");

e.setSSLd ientCertificate(f);

e. set SSLSer ver Name(" server 2. webl ogi ¢c. coni') ;

e. set SSLRoot CAFi nger pri nt s("ac45e2d1ce492252acc27ee5c345ef 26") ;

T3Cient t3c = e.createProviderdient();
t 3c. connect () ;

e.setlnitial ContextFactory
(“webl ogi c.jndi . W.Initial ContextFactory”);
Context ctx = new | nitial Context(e.getProperties())

In Listing 4-8, the WebL ogic INDI Environment class creates a hash table to store the
following parameters:

m set Provi der URL—specifiesthe URL of the WebL ogic Server instance acting
asthe SSL server. The WebL ogic Server instance acting as SSL client callsthis
method. The URL specifies the T3S protocol which isaWebL ogic Server
proprietary protocol built on the SSL protocol. The SSL protocol protects the
connection and communication between the two WebL ogic Servers instances.

m setSSLdientCertificate—specifiesacertificate chain to use for the SSL
connection. Y ou use this method to specify an input stream array that consists of
aprivate key (which isthefirst input stream in the array) and a chain of X.509
certificates (which make up the remaining input streamsin the array). Each
certificate in the chain of certificatesistheissuer of the certificate preceding it
in the chain.

Programming WebL ogic Security

Using Mutual Authentication

m set SSLSer ver Name—specifies the name of the WebL ogic Server instance
acting asthe SSL server. When the SSL server presentsits digital certificateto
the server acting asthe SSL client, the name specified using the
set SSLSer ver Nane method is compared to the common namefield in the
digital certificate. In order for hostname verification to succeed, the names must
match. This parameter is used to prevent man-in-the-middle attacks.

m set SSLRoot CAFi nger pri nt —specifies digital codes that represent a set of
trusted certificate authorities. The root certificate in the certificate chain received
from the WebL ogic Server instance acting asthe SSL server has to match one of
the fingerprints specified with this method to be trusted. This parameter is used
to prevent man-in-the-middle attacks.

Note: For information on JNDI contexts and threads and how to avoid potential
JNDI context problems, see“ INDI Contextsand Threads’ and “How to Avoid
JNDI Context Problems’ in the Programming WebLogic JNDI.

Using Mutual Authentication with Serviets

To authenticate Javaclientsin aservlet (or any other server-side Java class), you must
check whether the client presented adigital certificate and if so, whether the certificate
wasissued by atrusted certificate authority. The servlet writer isresponsiblefor asking
whether the Java client has avalid digital certificate. When writing servlets with the
WebL ogic Servlet API, you must access information about the SSL connection
through the get At tri but e() method of the HTTPSer vI et Request object.

The following attributes are supported in WebL ogic Server servlets:
m javax. net.ssl.ci pher_sui t e—returnsthe cipher suite in use as a string.

m javax. net.ssl.sessi on—returnsthe SSL Session object that contains the
cipher suite and the dates on which the object was created and last used.

m javax. net.ssl.root CA—returnsthe digital certificate from the specified
certificate authority as a string.

m javax. net. ssl.root CADi gest —returnsthe certificate digest from the
specified certificate authority as a string.

Programming WebL ogic Security ~ 4-27

4

Programming with the WebLogic Security SPI

4-28

B javax.net.ssl.peer_certificat es—obtainsinformation about the client’s
certificate chains and returns an array of digital certificate as objects. Y ou can
then cast the array to webl ogi c. securi ty. X509.

Y ou have access to the user information defined in the digital certificates. A digital
certificate includes information, such as the following:

m The name of the subject (holder, owner) and other identification information
required to verify the unique identity of the subject, such as the uniform resource
locator (URL) of the Web server using the digital certificate, or an individual
user’s e-mail address

m The subject’s public key
m The name of the certificate authority that issued the digital certificate
m A serial number

m Thevalidity period (or lifetime) of the digital certificate (as defined by a start
date and an end date)

Y ou can see the available information in each digital certificate by calling the
t o_string() method on the X509 object that represents the digital certificate.

You can create awebl ogi c. security. JDK11Certi fi cat e object for adigital
certificate by passing an X509 object to its constructor. The

webl ogi c. security. JDK11Certifi cat e classimplementsthe
java.security. Certificate interface

Listing 4-9 converts the first X509 object in an array of X509 objectsto a
JDK111Certificate object.

Listing 4-9 Converting an X509 Object to a JDK 111Certificate Object

webl ogi c. security.JDK11Certificate jdkllcert =
new webl ogi c. security.JDK111Certificate(X509certs [0]);

print(out, “jdkllcert.getPrincipal().getName() -",
jdkllcert.get Principal ().getName());

print(out, “jdkllcert.getGuarantor().getName() -",
jdkllcert.get Guarantor().get Name());

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/X509.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/JDK11Certificate.html

Using a Custom Host Name Verifier

Thewebl ogi c. security. JDK11Certifi cat e class has the following member
functions that provide additional information about the digital certificate:

m getlssuerCertificate()—returnsthedigital certificate of theissuer asa
java.security. Certificate object.

m get Fi nger pri nt () —returns the fingerprint of the digital certificate. The
fingerprint isthe MD5 of the DER-encoded digital certificate. It is difficult to
construct adifferent digital certificate with theidentical fingerprint.

m get Subj ect Or gUni t () —returns a string containing the Organizational unit of
the distinguished name in the digital certificate.

Using a Custom Host Name Verifier

A Host Name Verifier validates that the host to which an SSL connection is madeis
the intended or authorized party. A Host Name Verifier is useful when a WebL ogic
Server or aWebLogic client isacting asan SSL client to another application server. It
prevents man-in-the-middle attacks.

The default behavior of WebL ogic Server, as afunction of the SSL handshake,
compares the common name in the SubjectDN of the SSL server’ s digital certificate
with the host name of the SSL server used to initiate the SSL connection. If these
names do not match, the SSL connection is dropped.

The dropping of the SSL connection is caused by the SSL client which validates the
host name of the server against the digital certificate of the server. If anything but the
default behavior is desired, you can either turn off host name verification or register a
custom host name verifier. Turning off host name verification leaves WebL ogic Server
vulnerable to man-in-the-middle attacks.

Note: Turn off host name verification when using the demonstration digital
certificates shipped with WebL ogic Server.

Y ou can turn off host name verification in the following ways:

m Inthe Administration Console, check the Hostname Verification Ignored
attribute under the SSL tab on the Server node.

m Onthe command line of the SSL client, enter the following argument:

Programming WebL ogic Security ~ 4-29

4

Programming with the WebLogic Security SPI

4-30

- Dwnebl ogi c. security. SSL. i gnor eHost naneVeri fi cati on=true

Y ou can write a custom Host Name Verifier. The

webl ogi c. security. SSL. Host nameVeri fi er interface provides a callback
mechanism so that you can defineapolicy for handling the case where the server name
that is being connected to does not match the server name in the SubjectDN of the
server'sdigital certificate.

To use acustom Host Name Verifier, create a class that implements the
webl ogi c. security. SSI . Host naneVeri fi er interface and define the methods
that capture information about the server’s security identity.

Before you can use acustom Host Name Verifier, you need to define the class for your
implementation in the following ways:

m Inthe Administration Console, define the class for your Host Name Verifier in
the Hostname Verifier attribute under the SSL tab on the Server node.

m Onthe command line, enter the following argument:

- Dwnebl ogi c. security. SSL. Host nameVer i f i er =host nanmeverifier

where host nameveri fi er isthe name of the class that implements the custom
Host Name Verifier.

To make a connection that uses anon-default JDK protocol handler, make sure to
initialize the handler by calling these two functions:;

webl ogic.net. http. Handler.init();
webl ogi c. managenent . application.Handler.init();

An example of acustom Host Name Verifier is available in the SSL client code
exampleinthe exanpl es. security. sslclient packageinthe

/ sanmpl es/ exanpl es/ security/sslclient directory. Thiscode example contains
a NullHostnameV erifier class which always returns true for the comparison. This
sample allowsthe WebL ogic SSL client to connect to any SSL server regardless of the
server’s host name and digital certificate SubjectDN comparison.

Y ou can associate an instance of a Host Name verifier with an SSL Context through
the set Host nameVeri fi er method. For example:

public void setHostnaneVerifier (HostnameVerifier hv)

See the following information on Using an SSL Context.

Programming WebL ogic Security

Using a Trust Manager

Using a Trust Manager

Thewebl ogi c. security. SSL. Trust Manager class allowsyou to override
validation errorsin a peer’s digital certificate and continue the SSL handshake. Y ou
can also use the class to discontinue an SSL handshake by performing additional
validation on a server’sdigital certificate chain.

When an SSL client connectsto an SSL server, the SSL server presentsits digital
certificate chain to the client for authentication. That chain can sometimes contain an
invalid digital certificate. The SSL specification says that the client should drop the
SSL connection upon discovery of aninvalid certificate. Web browers, however,
attempt to ignore the invalid certificate and continue up the chain to determineif it is
possible to authenticate the SSL server with any of the remaining certificatesin the
certificate chain. The Trust Manager eliminates this inconsistent practice by enabling
you to control when to continue or discontinue an SSL connection.

Usethewebl ogi c. security. SSL. Trust Manager classto create a Trust Manager.
Theclasscontainsaset of error codesfor certificate verification. Y ou can also perform
additional validation on the peer certificate and interrupt the SSL handshakeif need be.
After adigital certificate has been verified, the

webl ogi c. security. SSL. Trust Manager classusesacallback function to override
the result of verifying the digital certificate. Y ou can associate an instance of a Trust
Manager wtih an SSL Context through the set Tr ust Manager () method. The

webl ogi c. security. SSL. Trust Manager classconformsto the JSSE specification.
Note that the use of a Trust Manager does not impact performance. Y ou can only set
up aTrust Manger programmatically; itsuseis not defined through the Administration
Console or on the command-line.

Examples of using Trust Manager are availablein the
/ sanpl es/ exanpl es/ security/sslclient directory:

m This example shows how to set up anew SSL connection by using an SSL
Context with the Trust Manager:

/ sanmpl es/ exanpl es/ security/sslclient/SSLSocket d i ent

m Thisexample contains a custom Trust Manager that always returns true:

/ sampl es/ exanpl es/ security/sslclient/NulledTrust Manager

Programming WebL ogic Security ~ 4-31

4

Programming with the WebLogic Security SPI

Using an SSL Context

SSL Context isused to implement asecure socket protocol that holdsinformation such
asHost Name Verifier and Trust Manager for agiven set of SSL connections. An
instance of the SSL Context classis used as afactory for SSL sockets. For example,
all socketsthat are created by socket factories provided by the SSL Context can agree
on session state by using the handshake protocol associated with the SSL Context.
Each instance can be configured with the keys, certificate chains, and trusted root CAs
that it needs to perform authentication. These sessions are cached so that other sockets
created under the same SSL Context can resuse them later. See Modifying Parameters
for Session Caching in the Administration Guide for more information on session
caching. To associate an instance of a Trust Manager class with its SSL Context, use
the setTrustManager method.

Y ou can only set up SSL Context programatically; not by using the Administration
Console or the command line. A Java new expression or the getlnstance () factory
method of the SSL Context class can create an SSL Context object. The getlnstance()
factory method is static and it returns an instance to implement a secure socket
protocol. An example of using SSL Context is available in the

/ sanpl es/ exanpl es/ security/sslclient directory:

m This example shows how to create a new SSL Socket Factory that will create a
new SSL Socket using SSL Context:

/ sanpl es/ exanpl es/ security/sslclient/SSLSocket C i ent

SSL Context conformsto Sun Microsystems's Java Secure Socket Extension (JSEE),
so is forward-compatible code.

Using Custom ACLs

4-32

WebL ogic Server defines a standard set of access control lists (ACL)s to protect
resources. If you createan ACL for aresource, WebL ogic Server automatically checks
the permissions for that resource before allowing anyone to accessit. Most resources
in WebL ogic Server can be fully protected with these standard ACLs.

Programming WebL ogic Security

Using Custom ACLs

Some resources, however, require more protection than is offered by the standard set
of ACLs. WebL ogic Server allowsyou to augment the security for such resources. Y ou
may, for example, create a servlet that checks user permissions before writing certain
datato aWeb page. Thewebl ogi c. security. acl . Securi ty class provides access
to realm operations, such as checking an ACL. This classis available only to
server-side code.

TheSecurity. hasPermi ssi on() andSecurity. checkPer mi ssi on() methodsin
thewebl ogi c. security. acl . Securi ty classtest whether auser has the required
permission necessary to access aresource. The two methods are similar except that the
Security. hasPer ni ssi on() method returnsaBoolean (t r ue if the user hasthe
relevant permission) and the Secur i ty. checkPer ni ssi on() method throws
java.l ang. SecurityExcepti on if the user does not have the permission.

Theexanpl es. security. acl example provided with WebL ogic Server (in the
sanpl es/ exanpl es/ securi ty directory) shows how to create your own ACLs and
test them in a server-side class. The custom ACL protects an RMI class, Fr obl npl ,
with a custom ACL named acl exanpl e that has the permission of f r ob.

Note: Beforeacustom ACL can be used, the ACL must be installed in the security
realm being used by WebL ogic Server.

To use the custom ACL, the Java client application must:
1. GetaJNDI InitialContext from WebL ogic Server.

2. Look up the protected resource in the WebL ogic Server INDI tree using the
permission name. For example, the Java client looks up Fr obl npl using the
permission name, f r ob.

3. Executethef rob() method onthe RMI stub.

TheFr obl npl class contains the server-side code that teststhe ACL. Listing 4-10
shows how to use the static checkPer i ssi on() method inthe
webl ogi c. security. acl . real mclassto test the custom ACL.

Listing4-10 Testing Custom ACLsin the Default Security Realm

Security. checkPerm ssion(Security.getCurrentUser(),
"acl exanpl e",
Security. get Real n{). get Perm ssion("frob"),
)

Programming WebL ogic Security ~ 4-33

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/Security.html

4

Programming with the WebLogic Security SPI

4-34

You can also test custom ACLs in alternate security realms:

1. Usetheget Real n(real m narme) method of the
webl ogi c. security. acl . r eal mclassto get the alternate security realm.

2. Retrieve the custom ACL and permission using the get ACL() and the
get Per ni ssi on() methods of thewebl ogi c. security. acl . real mclass.

3. Test the permission by calling the acl . checkPer ni ssi on() method.

Listing 4-11 illustrates this technique for testing custom ACLSs.

Listing4-11 Testing Custom ACLsin an Alternate Security Realm

User p = Security.getCurrentUser();
Basi cReal m real m = Real m get Real nm(r eal m nane) ;

Acl acl = real mgetAcl (acl _nane);
Perm ssi on perm = real m get Perm ssi on(perm ssi on_nane) ;
bool ean result = acl == null || !acl.checkPernission(p, perm;

Thelast linein Listing 4-11 tests whether the custom ACL was found and whether the
user p hasthef r ob permission. The sense of the test isreversed; if the ACL existsand
the user hasf r ob permission, theresult isf al se.

If asecurity realm does not implement the get ACL() functionality, it should throw a
j ava. | ang. Unsupport edOper at i onExcept i on exception. ACL lookups will then
fall back to the secondary realm. If no secondary realm is configured, aruntime error
will occur.

If you audit security events and you use the technique in Listing 4-12 for testing
permissions, you must explicitly call the static Audit class of the

webl ogi c. security. audi t packageif you want to audit your permission tests. The
call to the Audit class generates a notification of the permission-checking event to the
AuditProvider classin WebLogic Server.

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/audit/package-summary.html

Writing a Custom Security Realm

Listing 4-12 Testing Permission

Audi t. checkPerm ssion("Frob", acl, p, perm !result);

For a complete code example that uses custom ACLSs, see the
exanpl es. security. acl packageinthesanpl es/ exanpl es/ securi ty directory
provided by WebL ogic Server.

Writing a Custom Security Realm

Y ou may need to create your own security realm to draw from an existing security
storein your environment such asadirectory server on the network. To write acustom
security realm that supports authentication you need to write code that:

1. DefinesaUser classfor the custom security realm.

2. Defines a Group class for the custom security realm.

w

Defines an enumeration class that return al Users and Groups in a security store
and rel eases the resources of the security store when finished.

Defines a class for the custom security realm.
Obtains configuration data about the security store.

Authenticates a User.

N o g b

Returns the members of a Group and creates a hash table that contains the
members of a Group.

©

Returns a User object given a User name.
9. Returns a Group object given a Group name.

10. Uses an enumeration for Users to return User objects for all the Usersin the
security store.

Programming WebL ogic Security ~ 4-35

4

Programming with the WebLogic Security SPI

11. Uses an enumeration for Groups to return Group objects for al the Groupsin the

security store.

Y ou can also write a custom security realm that supports authorization. For more
information, see “Using Authorization in a Custom Security Realm.”

Note: WebLogic Server also provides the capability to create a custom security
realm that can be managed through the WebL ogic Server Administration
Console. For more information, see the Javadoc for the

webl ogi c. security. acl

package or contact BEA Professional Services.

Do not execute RMI calls to another server from a custom security realm.
Using RMI calls may cause the server to run out of socket reader threads.

Table 4-4 lists the WebL ogic classes used to create a custom security realm.

Table 4-4 WebL ogic Classes Used to Create Custom Security Realms

Class

Definition

webl ogi c. security. acl . User

Defines aUser that isretrieved from alocal
security store.

webl ogi c. security. acl.
FlI at G oup

Defines a Group whose membership is updated
when the local security store is updated.

webl ogi c. security. acl .
Cl oseabl eEnuner ati on

Defines an enumeration that can be closed thus
releasing resources.

webl ogi c. security. acl .
AbstractLi st abl eReal m

Allowsyouto createasecurity realmwhose Users,
Groups, ACLs, and permissions can be viewed
through the Administration Console. However,
you need to use the facilities provided by the
security store you are using to add and delete
Users, Groups, and ACLs and assign permissions
to Users and Group.

webl ogi c. security. acl.
Ref r eshabl eReal m

Synchronizes the information about Users,
Groups, ACLs, and permissions displayed in the
Administration Console with the information in
the local security store.

webl ogi c. managenent .
configuration.
Cust onReal mvbean

Obtains configuration information about the
security store accessed from the custom security
realm.

4-36 Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/User.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/FlatGroup.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/ClosableEnumeration.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/AbstractListableRealm.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/acl/RefreshableRealm.html

Writing a Custom Security Realm

Figure 4-1 illustrates how these classes work together to create a custom security

ream.

Figure4-1 WebL ogic Classes Used to Create Custom Security Realms

Custom Security

Realm

CustomRealm class that implements
weblogic.security.acl.
AbstractListableReala

!

Enumeration class for Users
that implements

weblogic.security acl.
CloseableEnumeration

FF Y

h J

User class that
implements
weblogic security. acl User

F 3

4

3

!

Enumeration class for Groups
that implements

weblogic. security._acl.

CloseableEnumeration

F 9

¥

Group class that
implements
weblogic.security.acl.
FlatGroup

F 3

weblogic.management .
configuration.CustomRealanlBean

F

h

h

¥

Security Store
{Users, Groups)

The following sections describe the programming tasks required to write and custom

security realm.

Programming WebL ogic Security

4-37

4 Programming with the WebLogic Security SPI

Define a Class for Users
Extend thewebl ogi c. security. acl . User classto create aUser classfor the
custom security realm.

Listing 4-13 contains code that defines a User class.

Listing 4-13 Defining a User Class

/1 lnport the required cl asses
i mport webl ogi c. security.acl.user;

/'l Create a custom User class for the customrealm
/ *package */class CustonReal mJser
ext ends User

/1 Keep track of the User’s customrealm
CustonmReal mreal m = nul | ;

/1 1nplement a constructor
/ *package*/ CustonReal mJser (String nane, CustonmRealmrealn;

{

/1 Call base constructor class passing in the nane of the
/'l User
super (nane) ;

/1 Keep track of this User’'s realm
this.realm= realm

// Return the User’s customrealm
publ i c Basi cReal m get Real m()

{
}

return realm

4-38 Programming WebL ogic Security

Writing a Custom Security Realm

Define a Class for Groups

Groups make it easier to manage security. Internally, a custom security realm
represents a Group as a hash table containing alist of members which can be Users or
Groups.

To implement a Group in a custom security realm, extend the

webl ogi c. security. acl . Fl at gr oup classto create a new Group with no
membership information. The constructor for the class takes as input the name of the
desired Group and the realm object corresponding to the custom security realm.

The Flatgroup class is especially designed to work with custom security realms. A
custom security realm needsto periodically update Group membership. The FlatGroup
maintains its group membership in a cache instead of in a static set. When the cache
expires, the Group implementation queries the security store to obtain the most recent
membership information. The default time for the Group cache is five minutes which
means any changes you make in the underlying store will be recognized in the custom
security realm within five minutes. Y ou can tune this value by setting the
GroupMembershipCacheTTL field in the Administration Console to the number of
seconds a cached group remains valid.

Listing 4-14 contains code that defines a Group class.

Listing 4-14 Defining a Group Class

/1 lnmport the required classes
i mport webl ogi c. security.acl.Fl at G oup;

/ *package*/ class CustonmReal nr oup
extends Fl at Group

/1 1mplenment a constructor
/ *package*/ CustonReal n&oup(String nane,
CustonmReal mreal m;
{
/1 Call the base class constructor passing in the nane
/1 of the Group and custom security realm
super (nane, source);

/1 1nmplement a method that returns the user class for

/] custom security realm
protected O ass get Userd ass()

Programming WebL ogic Security ~ 4-39

4 Programming with the WebLogic Security SPI

{
return CustonReal mJser. cl ass;

}

Define Enumeration Classes for Users and Groups

Write enumeration classes for Users and Groups. If the enumeration holds resources
that must be rel eased when the enumeration is done (for example, release a database
cursor), then implement the webl ogi c. security. acl . Cl oseabl eEnurrer ati on
class. Otherwise, implement thej ava. uti | . Enuner at i on interface. In the
enumerator constructor, pass the arguments needed to access the security store.

Do not create a User or Group object for every User or Group in the custom security
realm and put them in ahash tabl e that enumerates over them. A custom security realm
in a deployed WebL ogic Server can have more Users and Groups than can fit into
memory. Instead, use a database cursor which can be used to incrementally create User
or Groups objects as they are needed.

Listing 4-15 contains code that defines enumeration classes for users and groups.

Listing 4-15 Defining Enumeration Classesfor Users and Groups

/1 lnport the required cl asses
i mport webl ogi c. security. acl.Fl at G oup;
i mport webl ogi c. security. acl.d osabl eEnunerati on;

// Define an enuneration class for users.
/ *package*/ class CustonReal mJser sEnunerati on
i mpl enent's O oseabl eEnunerati on

{

/1 Keep data nenbers here (for exanple, a database cursor)
/1 Keep track of the enuneration’s security realm (for
/1 use with the User constructor)
private CustonReal mrealm = null;

/1 1nmplement a constructor
/ *package */ CustonReal mUsersEnuneration(...,

4-40 Programming WebL ogic Security

Writing a Custom Security Realm

Cust onReal m real m
{

}

/1 lnplenent a method to determine if there are nore Users.
publ i c bool ean hasMr eEl enent s()

{

this.realm =realm

/] For exanpl e, use a database cursor to see if there are
/] nore users
return (there are nore users ...) ? true : false;

}

/1 1nplenent a method to return the next user.

/1 The nethod nust return users objects that use the

/1 User class for the customsecurity realm

public Object nextEl ement()

{
/1 For exanple, use the database cursor to get the nane
/1 of the next user.
return new Cust onReal mUser (next user nane ..., realm;

}

/1 1nplenent a method to term nate the enuneration.
/1 This step is optional
public void close()

/1 1f this enuneration is delegating to an iterator that
/1 needs to be closed (e.g., a database cursor), rel ease
/'l the resources here.

}
/] Create a Group class for the customsecurity realm
/ *package*/ cl ass Cust onmReal m& oupsEnuner ati on
i mpl enents Cl oseabl eEnunerati on
{
/| Keep data nenbers here (for exanple, a database cursor
/'l Keep track of the enuneration's security realm(for
/1 use with the Groups constructor)
private CustonmReal mrealm = nul |;
/1 1nplement a constructor
/ *package */ CustonReal mUser sEnuneration(...,
Cust onReal mreal m
{

this.realm = realm

Programming WebL ogic Security ~ 4-41

4 Programming with the WebLogic Security SPI

}

/1 1nmplenent a nethod to deternmine if there are nore G oups.
publ i ¢ bool ean hasMor eEl ement s()

/1 For exanple, use a database cursor to see if there are
/1 nore groups
return (there are nore groups ...) ? true : false;

}

/1 lnplement a nmethod to return the next group.

/1 The nmethod must return group objects that use the
/1l Group class for the customsecurity realm

public Object nextEl ement ()

/1 For exanple, use the database cursor to get the nane
/1 of the next group.
return new CustonReal MG oup(next group name ..., realm;

}

/1 lnmplement a method to term nate the enuneration.
/1 This step is optional
public void close()

/1 1f this enuneration is delegating to an iterator that
/1 needs to be closed (e.g., a database cursor), release
/1 the resources here.

Define a Class for the Custom Security Realm

Extend thewebl ogi c. security. acl . Abstract Li st abl eReal mclassto definea
new class for the custom security realm and implement a constructor that creates the
custom security realm. This class needs to:

1. Obtain configuration data for the security store.
2. Authenticate Users.

3. Determine the members of a Group

4-42 Programming WebL ogic Security

Writing a Custom Security Realm

4. Get Users and Groups from the security store.

Weblogic Server caches User and Group information in memory. Therefore, BEA
recommends having a custom security realm go to disk to whenever it needs User or
Group information. The WebL ogic Server system administrator can only change Users
or Groups for a custom security realm by editing the information in the security store
with tools provided for the security store. After the system administrator changes User
or Group information in the security store, the system administrator must update the
information in the Administration Console by clicking on the Reset button. Thisaction
automatically flushes the User and Group information kept in memory.

If the custom security realm caches User or Group information in memory, implement
thewebl ogi c. security. acl . Ref reshabl eReal mclassand ther ef resh()
method of the class. When the system administrator updates resets the realm, the
refresh() methodiscalled. Usether ef resh() method to discard any cached User
or Group information.

Listing 4-16 contains code that defines a class for a custom security realm.

Listing 4-16 Defining a Classfor a Custom Security Realm

/1 lnmport the necessary cl asses

i nport webl ogi c. security.acl.AbstractListabl eReal m
i nport webl ogi c. security.acl.Basi cReal m

i mport webl ogi c. security. acl.Refreshabl eReal m

i nport webl ogi c. server. Server;

/1 Create a class for the customsecurity realm
public class CustonReal m

extends AbstractListableRealm// Required

i mpl enents Refreshable Realm// Optional

/1 1nplement a constructor that creates the customsecurity realm
publ i c CustonReal n()

{
super (“Custom Real nf) ;

public void refresh()

{
}

/1 Discard User and Group information in-menory

Programming WebL ogic Security ~ 4-43

4

Programming with the WebLogic Security SPI

Obtain Configuration Data for the Security Store

4-44

In order to connect to the security store, configuration properties (for example, a
property that containsa URL or aproperty that specifies adirectory path) that specify
how to access the security store used by the custom security realm must be defined.
Oncethese properties are defined, the system administrator for WebL ogic Server must
set the properties in the Configuration Data section of the Custom Security Realm
Create window in the Administration Console. The properties for the security store
must be defined in the WebL ogic Server administration environment before the
custom security realm can be used.

For example, define two propertiesuser I nf oFi | eName and gr oupl nf or Fi | eName
that specify directory pathsto files that contain User and Group information. The
system administrator enters those properties in the Configuration Data section of the
Custom Security Realm Create window in the Administration Console.

In the code for the custom security realm, use the webl ogi c. managenent . Hel per
and webl ogi c. managenent . confi gur ati on. Domai nMbean classesto retrieve
configuration properties for the custom security and use those properties to connect to
the security store.

Listing 4-17 contains code that retrieves configuration propertiesfor the security store
and then connects to the security store.

Listing 4-17 Accessing the Security Store

/1 lnmport the necessary cl asses
i mport webl ogi c. managenent . Hel per;
i mport webl ogi c. managenent . confi gurati on. Domai nMBean;

MBeanHone mHone = Hel per. get MBeanHone(user, password, url,
servernane);
Domai nMBean domai nMBean = nHone. get Act i veDomai n() ;
SecurityMBean secMBean = donmi nMBean. get Security();
Basi cReal mvBean basi cReal nvBean =
secMBean. get Real () . get Cachi ngReal m get Basi cReal () ;

Cust onReal mivBean cust onReal mvBean =
(Cust onReal mvBean) basi cReal mvBean;

/] Get configuration data fromthe CustonReal mvBean
Properties configbData = custonReal mvBean. get Confi gurationData();

Programming WebL ogic Security

Writing a Custom Security Realm

Authenticate

/] Get the properties for the custom security store.
String userlnfoFil eNane =

confi gDat a. get Property(“User | nf oFi | eNang) ;
String groupl nfoFil eNane =

confi gDat a. get Property(“ G oupl nf oFi | eNan®e) ;

Users

If the custom security realm uses passwords to authenti cate Users, you must explicitly
implement the aut hUser Passwor d() method to authenticate Users. Write code that
checks the security store to ensure that the user specified by the

aut hUser Passwor d() method exists with the supplied password.

m |f the user exists and the password is correct, return a User object. Use the User
class for the custom security realm.

m |f the user does not exist or if the password is incorrect, the authentication fails.
In this case, return null to indicate the authentication failed.

Listing 4-18 contains code that authenticates a User.

Listing 4-18 Authenticating Users

/11 mpl enent a nmethod which authenticates a user
protected User authUserPassword(String nane, String password)
{

/] Check the security store to see if there is a user

/1 named name with password password

if (...) {
return new Cust onReal mser (nane, this);
} else {
return null;

Programming WebL ogic Security ~ 4-45

4 Programming with the WebLogic Security SPI

Determine the Members of a Group

Usethe get G oupMerber sl nt er nal () method of the
webl ogi c. security. acl . Abstract Li st abl eReal mclassto get the members of a
group and build a hash table with the members of a group.

Listing 4-19 contains code that obtains the members of a Group.

Listing 4-19 Obtaining the M embers of a Group

/1 1nplenent a method to return menbers of a group.
prot ect ed Hashtabl e get G oupMenberslnternal (String nane)

{

/'l Check the security store to see if there is a group with
/1 the specified nane

if ('...) |
/1 1f the group does not exist, throw an exception
t hr ow new Cust onReal nExcepti on(“No such group : “ + nane);

/] Create a hash table which is filled with group menbers
/1 and is then returned.

Hasht abl e menbers = new Hasht abl e();

[/l Get the group nmenbers fromthe security store
for (...) {// loop over the nmenbers
if (...) {
/1 1f this menber is a user, create a user object
/1 for this user and add it to the |list of nenbers.
/'l Use the User class created for the custom
/1 security realm
menber s. put (menber Nane, new Cust onReal mJser
(rmenber Nane, this));
} elseif
/1 1f this menber is a group, create a group object
[/l for this group and add it to the list of menbers.
/1l Use the Group class created for the custom
/1 security realm
menber s. put (menber Nanme, new Cust onReal mG& oup
(rmenber Nane, this));
}

/1 Return the hash table containing the menbers of the group.

4-46 Programming WebL ogic Security

Writing a Custom Security Realm

return nenbers;

}

Get Users and Groups from Security Store

Implement the get User () and get G oup() methods of the

webl ogi c. security. acl . Abstract Li st abl eReal mclassto retrieve Users and
Groups from the security storeinto the custom security realm. Use the get User s()
and get G oups() methods of the

webl ogi c. security. acl . Abst ract Li st abl eReal mclass to return enumeration
objects that return User objects and Group objects for the User and Groups in the
security store. The Users and Groups in the security store can now be viewed through
the Administration Console.

Listing 4-20 contains code that retrieves Users and Groups from the security store.

Listing 4-20 Retrieving Usersand Groups from the Security Store

/1 lnmplement a method to return a User object given the name of
/'l the user.
public User getUser(String nane)
{
/1 Check the security store to see if there is a user with the
/1 the specified nane.
it o
/1 1f the user exists, return a User object for the
/1 the user. Use the User class created for the custom
/1 security realm
return new Cust onReal mJser (nane, this);

} else {

/1 Return a null if the user does not exist

return null;

}
}
/1 lnmplement a method to return a Group object given the nane of
/1 the G oup.

public Group getGoup(String nane)

/1 Check the security store to see if there is a group with the
/1 the specified nane.

Programming WebL ogic Security ~ 4-47

4

Programming with the WebLogic Security SPI

4-48

if (...) {
/1 1f the group exists, return a Goup object for the
/'l the Group. Use the Group class created for the
/] custom security realm
return new CustonReal nG oup(nane, this
} else {
// Return a null if the group does not exist
return null;
}
}

/1 lnmplement a method to return an enuneration object that can
/1 can be used to iterate over all the users in the customsecurity
Il realm
publ i c Enuneration getUsers()
{
// Return an enuneration object that returns User object for
/1 the users in the security store. Use the user enuneration
/1 class created for the customsecurity realm Renenber to
/1 give the enuneration access to the security store so that
/1 it can iterate over the users.
return new Cust onReal mUser sEnuneration(..., this);

}

/1 lnplenent a method to return an enuneration object that can
/] can be used to iterate over all the groups in the customsecurity
Il realm
public Enunerati on get G oups()
{
/1 Return an enuneration object that returns Group object for
// the Groups in the security store. Use the group
[/ enuneration class created for the customsecurity realm
/1 Remenber to give the enuneration access to the security
[/l store so that it can iterate over the G oups.
return new CustonReal G oupsEnuneration(..., this);

Note: Toimprove performance, usethei sMenber () method of the
webl ogi c. security. acl . Fl at G oup class. Thismethod checksto seeif an
individual user isamember of agroup rather than fetching al group members.

Programming WebL ogic Security

Auditing Security Events

Using Authorization in a Custom Security Realm

To construct an ACL in a custom security realm, create anew Aclimpl object, set its
name, and then add an AclEntrylmpl object for each User or Group. Each AclEntry
object contains a set of permissions associated with a particular principal which
represents a User or a Group.

The Aclimpl interface imposes an ordering constraint on constructing ACLSs. Y ou
must add all permissions to an AclEntrylmpl object before you add the AclEntrylmpl
object to the Aclimpl object.

In the class for the custom security realm, use the get Acl () method to retrieve ACLs
from asecurity store. The get Acl I nt er nal () method steps through the result set
creating an Aclimpl object, creating an AclEntrylmpl object for each User or Group,
and then adding permissions to the AclEntrylmpl object. When an AclEntrylmpl
object isfinished, it is added to the Aclimpl object. When the Aclimpl object is
finished, the get Acl I nt er nal () method returns the finished ACL.

Auditing Security Events

Thewebl ogi c. securi ty. audi t package alowsyou to use an audit SPI for events
that occur in the WebL ogic Server security realm. The package includes an interface,
AuditProvider, and a static class, Audit, to which WebL ogic Server sends auditable
security events.

To enable auditing, you create a class that implements the AuditProvider interface and
the methods that represent the security events you want to audit. WebL ogic Server
calls the methods on your class when a user attempts to authenticate, when a
permission is tested, or when an invalid digital certificate or root digital certificateis
presented. Y our AuditProvider class receives the information for each event type and
processes the event in whatever way you choose. For example, it could log only
unsuccessful authentication requests in the WebL ogic Server log file, or record all
auditable events in a database table.

Before you can use an AuditProvider class, you need to install the class through the
Administration Console. For more information, see the “Installing an Audit Provider”
section in Managing Security.

Programming WebL ogic Security ~ 4-49

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/audit/package-summary.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

4

Programming with the WebLogic Security SPI

The LogAuditProvider example is availablein the exanpl es. securi ty. audi t
packageinthe/ sanpl es/ exanpl es/ securi ty/ audi t directory provided by

WebL ogic Server. The example writes all events it receives in the WebL ogic Server
log file. It al'so defines filter methods for each event type, and calls those filters to
decidewhether to log aparticular event. In the example code, thefilter methodsaways
returnt r ue so that all eventsare logged. If you extend this example, you can override
the filter methods with methods that select the events you want to log. If you want to
take some action other than logging, you can use the LogAuditProvider example as a
starting point for creating your own provider.

Filtering Network Connections

4-50

Passwords, ACLs, and digital certificates allow you to secure WebL ogic Server
resources using some characteristic of auser. You can add an additional layer of
security by filtering network connections. For example, you can deny any non-SSL
connections originating outside of your corporate network.

To filter network connections, create a class that implements the

webl ogi c. security. net. ConnectionFilter interface and install the classin
WebL ogic Server so that you can examine requests as they occur and then accept or
deny them.

Before you can use a Connection Filter, you need to install the class through the
Administration Console. For more information, see the “Installing a Connection
Filter” section in Managing Security.

When a Java client or Web browser client tries to connect to WebL ogic Server,
WebL ogic Server constructs a Connect i onEvent object and passesit to the

accept () method of your ConnectionFilter class. The Connect i onEvent object
includes the remote IP address (in the form of j ava. net . | net Addr ess), the remote
port number, the port number of thelocal WebL ogic Server, and astring specifying the
protocol (HTTP, HTTPS, T3, T3S, or 1I1OP).

Your Connect i onFi | t er classcanexaminetheConnect i onEvent object and accept
the connection by returning, or deny the connection by throwing aFi | t er Except i on.

Theexanpl es. security. net. Si npl eConnecti onFi | t er exampleincludedinthe
sanpl es/ exanpl es/ security/ net directory provided by WebL ogic Server filters
connections using arulesfile. The Si npl eConnect i onFi | t er example parsesthe

Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/security/net/ConnectionFilter.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

Filtering Network Connections

rulesfile and sets up a rule-matching algorithm so that connection filtering adds
minimal overhead to aWebL ogic Server connection. The Si npl eConnecti onFi | t er
exampleisan efficient, generalized connection filter. If necessary, you can modify this
code. Y ou may, for example, want to accommodate the local or remote port number in
your filter or a more site-specific algorithm that will reduce filtering overhead.

In Listing 4-21, WebL ogic Server callsthe Si npl eConnecti onFil ter. accept ()
method with a Connect i onEvent . The Si npl eConnecti onFi | t er. accept ()
method gets the remote address and protocol and converts the protocol to abitmask to
avoid string comparisons in rule-matching. Then the

Si npl eConnecti onFi | ter. accept () method compares the remote address and
protocol against each rule until it finds a match.

Listing 4-21 Example of Filtering Network Connections

public void accept (Connecti onEvent evt)
throws FilterException

{
| net Addr ess renot eAddr ess = evt. get Renpt eAddr ess() ;
String protocol = evt.getProtocol ().toLowerCase();
int bit = protocol ToMaskBit (protocol);
/1 this special bitmask indicates that the
/] connection does not use one of the recognized
/1 protocols
if (bit == Oxdeadbeef)
bit = 0;
}
/] Check rules in the order in which they were witten.
for (int i =0; i <rules.length; i++)
{
switch (rules[i].check(renpteAddress, bit))
{
case FilterEntry. ALLON
return;

case FilterEntry. DENY:
throw new FilterException("rule " + (i + 1));
case FilterEntry.| GNORE:
br eak;
defaul t:
t hrow new Runti meException("connection filter internal error!");

}

Programming WebL ogic Security ~ 4-51

4 Programming with the WebLogic Security SPI

}
/1 If no rule matched, we allow the connection to succeed.

return;

}

Using RMI over IIOP over SSL

The SSL protocol can be used to protect 110P connections to RMI or EJB remote
objects. The SSL protocol secures connectionsthrough authentication and encryptsthe
data exchanged between objects. Y ou can use RMI over [1OP over SSL in WebLogic
Server in the following ways:

m With a CORBA client Object Request Broker (ORB)
m With aJavaclient

In either case, you need to configure WebL ogic Server to use the SSL protocol. For
more information, see Configuring the SSL Protocol.

To use RMI over 11OP over SSL with a CORBA client ORB, do the following:

1. Configurethe CORBA client ORB to use the SSL protocol. Refer to the product
documentation for your client ORB for information about configuring the SSL
protocol.

2. Usethehost 2i or utility to print the WebLogic Server IOR to the console. The
host 2i or utility prints two versions of the IOR, one for SSL connections and
one for non-SSL connections.

3. Usethe SSL IOR when obtaining the initial reference to the CosNaming service
that accesses the WebL ogic Server INDI tree.

For more information about using RMI over 110P, see Programming WebL ogic RMI
Over I1OP.

To use RMI over I1OP over SSL with a Java client, do the following:

4-52 Programming WebL ogic Security

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/rmi_iiop/index.html
http://e-docs.bea.com/wls/docs61/rmi_iiop/index.html

Using RMI over IIOP over SSL

1. If youwant to use callbacks, obtain a private key and digital certificate for the Java
client.

2. Extendthejava.rni.server. RM Socket Fact ory classto handle SSL socket
connections. Be sure to specify the port on which WebL ogic Server listens for
SSL connections. For an example of a class that extends the
java.rm .server.RM Socket Factory class, see Listing 4-22.

3. Runthe gjbc compiler with the - d option.

4. Addyour extension of thej ava. rmi . server. RM Socket Fact ory classtothe
CLASSPATH of the Javaclient.

5. Usethe following command options when starting the Java client:

- xboot cl asspat h/ a: %CLASSPATHY%

- Dor g. ongy. CORBA. ORBSocket Fact or yd ass=inpl ement ati on of
java.rm .server. RM Socket Fact ory

-Dssl.certs=directory location of digital certificate for Java
client

-Dssl . key=directory | ocation of private key for Java client

The Java client needs to have the classes that WebL ogic Server uses for the SSL
protocol included in its CLASSPATH.

For incoming connections (from WebL ogic Server to the Javaclient for the purpose of
callbacks), you need to specify a digital certificate and private key for the Java client
on the command line. Usethessl . certs and ssl . key command-line optionsto
provide thisinformation. The Java client in Listing 4-22 usesthe SSL librariesin
WebL ogic Server to provide the SSL socket. Alternatively, you can use SSL provider
such as Sun Microsystem Inc.’s JSSE as the SSL socket.

Listing 4-22 Example of java.rmi.server .RM|SocketFactory

package exanples.rm _iiop.ejb.rm _iiop;
import java.io.FilelnputStream

i mport java.io. | CException;

i mport java.io.|lnputStream

i mport java. net. Server Socket ;

i nport java. net. Socket ;

i mport java.rm.server.RM Socket Factory;
inmport java.util.StringTokenizer;

import java.util.Vector;

i nport webl ogi c. security. PEM nput Stream

Programming WebL ogic Security ~ 4-53

4

Programming with the WebLogic Security SPI

4-54

i mport webl ogi c. security. RSAPri vat eKey;

i mport webl ogi c.security.SSL. SSLCertificate;

i mport webl ogi c. security. SSL. SSLPar ans;

i mport webl ogi c. security. SSL. SSLSer ver Socket ;

i mport webl ogi c. security. SSL. SSLSocket ;

i mport webl ogi c. security. X509;

/**

*To use the SSL protocol , set the

*or g. ong. CORBA. ORBSocket Fact oryCd ass system property to

*exanpl es.rm _iiop.ejb.rm _iiop.SSLSocket Factory.

*Since WebLogic Server may need to talk to the Java client

*(for exanple, when the Java client exports renpte objects that
*WebLogi ¢ Server nust call), it may be necessary to provide an SSL
*private key and digital certificate so that WebLogi ¢ Server can
establish an SSL connection with the Java client/

public class SSLSocket Factory extends RM Socket Factory

{
static int sslPort = 7002;

SSLCertificate cert;
RSAPri vat eKey key;

private static InputStream getDERStream(String fil eNane)
throws | OException

{
InputStreamis = new Fil el nput Strean(fil eNane);
if (fileNane.toLowerCase().endsWth(“.peni)) {

is = new PEM nput Strean{i s);

}

return is;

}

publ i ¢ SSLSocket Factory()

{

String certFiles = System get Property(“ssl.certs”);
String keyFile = System get Property(“ssl.key”);

if (certFiles == null) {

Systemerr.println(“Warning: no server certs (ssl.certs)
provided! ") ;

Systemerr.println(“Warni ng: incom ng server connections
may fail!”);

return;

Programming WebL ogic Security

Using RMI over IIOP over SSL

}

if (keyFile == null) {

Systemerr.println(“Warni ng: no server private key (ssl.key)
provided!”);

Systemerr.println(“Warning: incom ng server connections

may fail!”);

StringTokeni zer toks = new StringTokeni zer(certFiles,
Syst em get Property(“path. separator”,
“ , ”)) ;
cert = new SSLCertificate();
cert.certificatelList = new Vector();

try {
if (keyFile !'=null) {
cert.privateKey = new
RSAPr i vat eKey(get DERSt r ean(keyFil e));

}
whi | e (toks. hasMoreTokens()) {
I nput Stream i s = get DERSt r ean(t oks. next Token());
cert.certificatelist.addEl enent (new X509(is));
is.close();
}

}

catch (Exception e) {
e.printStackTrace();
Systemexit(1);

}

public Socket createSocket(String host, int port)

{

t hrows | OExcepti on

Socket sock = null;
Systemout.println(“*** connecting to “ + host + “:” + port);

if (port == sslPort) {

try {
SSLParans p = new SSLParans();

sock = new SSLSocket (host, port, p);

}
catch (Exception e) {

e.printStackTrace();
}

el se {

Programming WebL ogic Security ~ 4-55

4 Programming with the WebLogic Security SPI

sock = new Socket (host, port);

}

return sock;

public ServerSocket createServerSocket(int i)
t hrows | OExcepti on
{

Server Socket sock = null;

if (true) {

try {
SSLParans p = new SSLParans();

if (cert '=null) {
p. set ServerCert (cert);

}

el se {

Systemerr.println

(“**** Listening for SSL connections w thout server
private key or certs!”);

Systemerr.println
(“**** TH S MAY CAUSE FAI LURES | F THE SERVER
CONNECTS TO US! ™) ;

}

sock = new SSLServer Socket (i, p);

}
catch (Exception e) {

e.printStackTrace();

}
el se {
sock = new Server Socket (i);
}
int | p = sock.getLocal Port();
if (i '=1p) {
Systemout.println(“*** |istening on any port -
got “ + 1p);
}
el se {
Systemout.printIn(“*** |listening on port “ + |Ip);
}

return sock;

4-56 Programming WebL ogic Security

Using RMI over IIOP over SSL

Programming WebL ogic Security ~ 4-57

4 Programming with the WebLogic Security SPI

4-58 Programming WebL ogic Security

	1 Introduction to WebLogic Security
	WebLogic Security Features
	WebLogic Security Architecture
	Connections with Web Browsers
	Connections with Servlets, JSPs, EJBs, RMI Objects and Java Applications
	Connections with Administration Servers

	Using WebLogic Server as a Client to BEA Tuxedo

	2 Security Fundamentals
	Resources
	Security Realms
	Users
	Groups
	ACLs and Permissions
	SSL Protocol
	Authentication Mechanisms
	Digital Certificates
	Certificate Authority
	Supported Public Key Algorithms
	Supported Symmetric Key Algorithms
	Supported Message Digest Algorithms
	Supported Cipher Suites

	3 Securing a WebLogic Server Deployment
	Why Is Security Important for WebLogic Server?
	Determine the Security Needs of Your WebLogic Server Deployment
	Secure the Machine on Which WebLogic Server Runs
	Accessing Protected Ports on UNIX
	Design Network Connections Carefully
	Manage the WebLogic Server Development and Production Environments
	Use Encryption
	Use the SSL Protocol
	Prevent Man-in-the-Middle Attacks
	Prevent Denial of Service Attacks
	Secure the HTTP Response Header
	Protect User Accounts
	Protect Application Content
	Replace HTML Special Characters in User-Supplied Data
	Use Protected EJBs to Limit Access to Business Logic
	Use ACLs
	Use the Appropriate Security Realm
	Secure Your Database
	Use Auditing
	Control Access to Multiple Domains

	4 Programming with the WebLogic Security SPI
	Before You Begin
	WebLogic Security SPI
	Using JAAS Authentication
	Using JNDI Authentication
	Communicating Securely with SSL-Enabled Web Browsers
	Using Mutual Authentication
	Mutual Authentication with JNDI
	Mapping a Digital Certificate to a WebLogic Server User
	Using Mutual Authentication with Other WebLogic Servers
	Using Mutual Authentication with Servlets

	Using a Custom Host Name Verifier
	Using a Trust Manager
	Using an SSL Context
	Using Custom ACLs
	Writing a Custom Security Realm
	Define a Class for Users
	Define a Class for Groups
	Define Enumeration Classes for Users and Groups
	Define a Class for the Custom Security Realm
	Obtain Configuration Data for the Security Store
	Authenticate Users
	Determine the Members of a Group
	Get Users and Groups from Security Store

	Using Authorization in a Custom Security Realm

	Auditing Security Events
	Filtering Network Connections
	Using RMI over IIOP over SSL

