BEA WebLogic
Server

Programming with
WebLogic RMI-IIOP

BEA WebLogic Server Version 6.1
Document Date: August 16, 2004

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Programming RMI over [IOP

Part Number Date Software Version

April 29, 2001 BEA Weblogic Server Version 6.1

Contents

About This Document

What Y OU Need t0 KNMOWcc.coieieciecciesece ettt s v
E-UOCSWED SHEB....ceieieceee ettt see st aa e sreeaeesreens Vi
HOow t0 Print the DOCUMENE.........cccoeeiiiiriiesenesies et Vi
Related INfOrmMation..........cceeiv e e Vi
(0o 1 r=o: A U LS TR vii
Documentation CONVENLIONSc.uererierieierieie ettt st vii
1. Using WebLogic RMI over IIOP

1 oo (8 Tox o o SRR 1-2
RMI OVEX [HOP OVEIVIEWveneeinieiieeiieeteee sttt 1-3
RMI-11OP Programming MOGEIScccoveeriiiecese e s s 1-4
Choosing an RMI Programming Model ..., 1-5
RMI over HHOP with an RMI CHENtccooviiiiniiereneseee s 1-7
Develop the Remote Interface and Implementation Class...........ccccueuenee. 1-8
Generate the [IOP ClIaSSES.......ccci ettt sre e 1-9
Develop the RMI ClieNtccoieeiceececereceee s 1-9
RMI over HHOP With IDL ClIeNtccoveirieerenesererie e 1-13
JAVA IDL M@DPING...cutrteitiriireiniinie ittt sbe e e se e e e eneas 1-14
ODbJeCtSDY-ValUE.....ceeceeceeee e 1-15
Developing an RMI over 11OP Application Using IDLccccovvveevenene. 1-15
Develop the Remote Interface and Implementation Class...........ccccceuee.e. 1-16
Generate the IDL File.......ooirieeeeee e 1-17
CompPilethe IDL fil€..cveieiriieee e 1-18
Develop the IDL ClENt.......ccooiiiie e 1-18
RMI-110OP with Tuxedo and Tuxedo ClIents.........ccoecveireiennieneienee e 1-20
WebL ogic TuXedo CONNECLONcc.ccerieieerirrereereee s s eeereens 1-20

Document Templates for FrameMaker 5.5 iii

iv

BEA WebLOogIiC CH+ ClieNt......ccocevieeeeeeeeeeere e ese s 1-21

Configuring WebLogic Server for RMI-TTOP.........c.ccooiiiininiiineeeeee 1-21
Protocol CompPatibilityccccerieeerrecre e e 1-22
Server-to-Server INteroperability......cccovveeeveeeevie s s 1-23
Client-to-Server Interoperabilityccoceoeeererinenie e 1-24
S ol ol 0010 S To (= = 1 o] 1= 1-26
RMI-110OP and the RM1 Object Lifecyclecoviriieieieerceccenes 1-26
Limiations on Using RMI-I1OP on the Servercoeveeiiieincneiens 1-27
Limitations on Using RMI-IIOP on the Client.........c.ccocvveeeveccereniencnnnnns 1-27
Javaand the IDL Client MOdel ... 1-28
Using EIBS With RMI-TTOP........cocoiiiiciseeee e 1-28
RMI over HHOP WIth SSL.......cooiieeireercreesres e 1-31
Accessing WebL ogic Server Objects from a CORBA Client Through
DEl@JBLION ...t 1-34
OVEIVIBIV ...ttt bbb e se et ne b s 1-34
(0010 (] e 1 o) = SRS 1-35
COUE EXAMPIES.....eeiieiietiieresie sttt sttt s be bbb es 1-37
Additional RESOUICES........couiiieiiieietireeie ettt e 1-40

Document Templates for FrameMaker 5.5

About This Document

This document explains Remote Method Invocation (RMI) over Internet Inter-ORB
Protocol (110P) and how to create RMI over 11OP applications for various clients
types. It describeshow to extend the RMI programming model by providing the ability
for clientsto access RMI remote objects using 110OP in the BEA WebL ogic Server
environment.

This document covers the following topic:

m Chapter 1, “Using WebL ogic RMI over 11OP,” provides an overview to RMI
over I1OP, describes how to develop an RMI over 11OP application, and explains
how to configure a WebL ogic server. Code segments are provided to illustrate
these tasks.

What You Need to Know

This document isintended mainly for application developers who are interested in
providing the ability for clients to access Remote Method Invocation (RMI) remote
objectsusing the Internet Inter-ORB Protocol (110P). Thisallowsfor RMI to Common
Object Request Broker Architecture (CORBA) interoperability. It assumes a
familiarity with the RMI over I1OP for WebL ogic Server platform, CORBA, and Java
programming.

Programming RMI over [1OP v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “ e-docs’
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefileat atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the RMI over 110OP for WebLogic
Server documentation Home page on the e-docs Web site (and also on the
documentation CD). Y ou can open the PDF in Adobe Acrobat Reader and print the
entire document (or aportion of it) in book format. To accessthe PDFs, open the RMI
over [1OPfor WebL ogic Server documentation Home page, click the PDF files button
and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

Vi

The following BEA RMI over I1OP for WebL ogic Server documents contain
information that is relevant to using RMI over 11OP.

For more information in general about RMI over 11OP refer to the following sources.
m The OMG Web Site at http://www.omg.org/

m The Sun Microsystems, Inc. Javasite at http://java.sun.com/

Programming RMI over |1OP

For more information about CORBA and distributed object computing, transaction
processing, and Java, refer to the Bibliography at http://edocs.bea.com.

Contact Us!

Y our feedback on the BEA RMI over 11OP for WebL ogic Server documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Y our comments will be reviewed directly by the BEA professionals who
create and update the RMI over 110OP for WebL ogic Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA RMI over I1OP for WebL ogic Server 6.0 release.

If you have any questions about this version of BEA RMI over [10OP for WebL ogic
Server, or if you have problemsinstalling and running BEA RMI over I10OP for
WebL ogic Server, contact BEA Customer Support through BEA WebSupport at
www.bea.com. Y ou can also contact Customer Support by using the contact
information provided on the Customer Support Card, which isincluded in the product

package.

When contacting Customer Support, be prepared to provide the following information:
m Your nhame, e-mail address, phone number, and fax number

m Your company name and company address

®m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Programming RMI over [1OP vii

viii

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneoudly.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chmod u+w *
\t ux\ dat a\ ap
. doc
tux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
Cot . Bamvle
void commt ()
nonospace Identifies variables in code.
italic Example:
text String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

Programming RMI over |1OP

Convention

Item

[]

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

buil dobjclient [-v] [-0 name] [-f file-list]...

[-1 file-list]...

Separates mutually exclusive choicesin asyntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The dlipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.

The vertical ellipsisitself should never be typed.

Programming RMI over [1OP

ixX

Programming RMI over |1OP

CHAPTER

1

Using WebLogic RMI
over |IOP

The following sections describe features and functionality of RMI over 11OP:

Introduction

RMI over IIOP Overview

RMI-110P Programming Models

RMI over IIOP with an RMI Client

RMI over IIOP with IDL Client

RMI-110OP with Tuxedo and Tuxedo Clients
Configuring WebL ogic Server for RMI-I1OP
Protocol Compatibility

Special Considerations

Code Examples

Additional Resources

Programming RMI over 110P

1 Using WebLogic RMI over IIOP

Introduction

1-2

WebLogic RMI over [10P extends the RMI programming model by providing the
ahility for clientsto access RMI remote objects using the Internet Inter-ORB Protocol
(I1OP). Thisexposes RM | remote objectsto anew class of client--the Common Object
Request Broker Architecture (CORBA) client. CORBA clients can be writtenin a
variety of languages (including C++) and use the Interface-Definition-Language (IDL)
to interact with aremote object. The WebL ogic Server 6.1 implementation of
RMI-I10OP has been greatly revamped and will allow you to do the following:

m Connect with Java RMI clients using the standardized 11 OP protocol
m Connect with CORBA/IDL clients, including those written in C++
m Interoperate with a Tuxedo Server

m Connect avariety of clientsto EJBs hosted on WebL ogic Server!

Within the devel oper community, there is a strong demand for the ability to access
J2EE services from CORBA/IDL clients (hereafter these will be referred to as ‘' IDL
clients'). Since RMI is an enabling technology for EJB, providing RMI over [|OP
enhances the ability to support various clients. However, Javaand CORBA are based
upon very different object models. Because of this, sharing data between objects
created in the two programming paradigms was, until recently, limited to Remote and
CORBA primitive data types. Neither CORBA structures nor Java objects could be
readily passed between disparate objects. As aresult, the Objects-by-Value
specification was created by the Object Management Group (OMG). This
specification defines the enabling technol ogy for exporting the Java object model into
the CORBA/IDL programming model--allowing for the interchange of complex data
types between the two models. WebL ogic Server can support Objects-by-Va ue with
any CORBA ORB that correctly implements the specification.

Y ou may also wish to use RMI-110P with Java/RMI clients, taking advantage of the
standard 110OP protocol. The release of the 1.3.1 JDK has greatly facilitated this
capability and WebL ogic Server 6.1 can readily be used with RMI-IIOP in ajavato
javaenvironment.

Also, WebL ogic Server 6.1 contains an implementation of the Weblogic Tuxedo
Connector, an underlying technology which allows you to interoperate with Tuxedo
Servers. You can leverage Tuxedo as an ORB, or integrate legacy Tuxedo systems
using this feature.

Programming RMI over 110OP

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/

RMI over IIOP Overview

This document describes how to create RMI over [1OP applicationsfor various clients
types. How you develop your RMI-I10P applicationswill depend on what servicesand
clientsyou are trying to integrate; read the following sections for further details.

RMI over IIOP Overview

RMI over IIOPis an application of the RMI programming model. Init programmers
use JNDI and the RMI type system. For more general information on WebL ogic RMI,
please refer to Using WebLogic RMI at

http://e-docs. bea. coml W s/ docs61/ rni ; for information on INDI see
Programming with WebLogic JNDI at

http://e-docs. bea. confw s/ docs61/] ndi . Both of these technologies are
crucia to RMI-110OP and it highly recommended to become familiar with their general
concepts before proceeding to build an RMI-110P application.

Figure1-1 RMI object relationships

Client
WebL ogic
Server
Sub - p RMI
t object
RMI
ORB -= > runtime

I1OP

Programming RMI over 110P 1-3

http://e-docs.bea.com/wls/docs61/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs61/jndi/index.html

1 Using WebLogic RMI over IIOP

RMI-110OP Programming Models

1-4

Remote Method Invocation (RMI) is the standard for distributed object computing in
Java. RMI enables an application to obtain areference to an object that exists
elsewhere in the network, and then invoke methods on that object asthough it existed
locally inthe client's virtual machine. RMI specifies how distributed Java applications
should operate over multiple Java virtual machines. [1OP is arobust protocol that is
supported by numerous vendors and is designed to facilitate interoperability of
heterogeneous distributed systems. When using RMI-110P there are two basic
programming models that you may choose to follow when devel oping applications:
RMI-11OP with RMI Clients and RMI-11OP with IDL clients. Both models share
certain features and concepts, including the use of a Object Request Broker (ORB) and
the Internet InterORB Protocol (I10OP). They use similar technology, however, the two
models are distinctly different approaches to creating a interoperable environment
between heterogenous systems. Simply, [1OP can be atransport protocol for
distributed applicationswithinterfaceswrittenin either IDL or JavaRMI and you must
choose between the two. When you program, you must decide to use either IDL or
RMI interfaces, you cannot mix them!

RMI over I1OPwith RMI Clients combinesthe features of RMI with the [1OP protocol
and allowsyou to work completely in the Java programming language. RMI-110Pwith
RMI Clientsis a Javato Java model, where the ORB is typically a part of the IDK
running on the client. Objects can be passed both by reference and by value with
RMI-I1OP.

RMI over 11OP with IDL clientsinvolves an Object Request Broker (ORB) and a
compiler that creates an inter-operable language called IDL. A CORBA programmer
can use the interfaces of the CORBA Interface Definition Language (IDL) to enable
CORBA objectsto bedefined, implemented, and accessed from the Java programming
language.

For further reference see the following OMG specifications:

e Javal.anguage Mapping to OMG IDL Specification at
http: //ww. ong. or g/ t echnol ogy/ docunent s/ fornmal / j ava_| anguage
_mapping_to_ong_idl.htm

e CORBA/IIOP 2.4.2 Specification at
http://wwm. ong. or g/ cgi - bi n/ doc?f ornal / 01-02- 33

Programming RMI over 110OP

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm
http://www.omg.org/cgi-bin/doc?formal/01-02-33

RMI-IIOP Programming Models

In addition to these two programming models, there is a third option for those who
wish to integrate there BEA Tuxedo clients or services with the WebL ogic Server.
Using the Weblogic Tuxedo Connector that is included with WebL ogic Server eases
and strengthens the integration of Tuxedo with WebL ogic. The Weblogic Tuxedo
Connector uses RMI-I10P as its underlying mechanism.

Choosing an RMI Programming Model

There are several factors that will define how you will want to create a distributed
environment for your applications. Currently thereis much confusion surrounding the
different modelsfor employing RMI-110P. Because these models share many features
and standardsit is easy to lose clear sight of which model you are following. For sake
of clarity, these will now be separated as follows:

m RMI-IIOP with RMI Clients
m RMI-IIOP with IDL Clients
m RMI-IIOP with Tuxedo Clients

The following sections further outline the benefits of each programming model,
beginning with (for completeness sake) the basic RMI model:

RMI (Remote-Method-Invocation) is a Java-to-Java model of distributed computing.
RMI enables an application to obtain areference to an object that exists elsewhere in
the network, and then invoke methods on that object as though it existed locally in the
client'svirtual machine. Thisisideal in aJavato Javaparadigm. All RMI-I10OP models
are based on RMI, however if you follow a plain RMI model without 110P then you
are not integrating clients written in languages other than Java. For more information
see, Using WebLogic RMI at ht t p: / / e- docs. bea. comf w s/ docs61/ rni .

RMI-110P with RMI clientsis for those oriented towards Java and the J2EE
programming model; it combines the capabilities of RMI with the 11OP protocol. If
your applications are being devel oped in Javaand you wish to leverage the benefits of
[1OP, you should use the RMI-110P with RMI client model. Using RMI-110P, Java
users can program to the RMI interfaces and then use |1 OP as the underlying transport
mechanism. The RMI Client runs an RMI-110P enabled ORB hosted by a J2EE or
J2SE container, in most cases a 1.3 or higher JDK. Note that no WebL ogic specific
classes are required, or automatically downloaded in this scenario; thisis a good way
of having aminimal client distribution. Y ou do not have to use the proprietary t3

Programming RMI over 110P 1-5

http://e-docs.bea.com/wls/docs61/rmi/rmi_api.html

1 Using WebLogic RMI over IIOP

protocol used in normal WebL ogic RMI. RMI-110Pwith RMI is especially useful for
connecting to Enterprise JavaBeans. For further information see, RMI over [10P with
an RMI Client

RMI-11OP with IDL involves following a CORBA programming model and allows
interoperability with non-Java clients. If you have existing CORBA applications, you
should program according to the RMI-11OP with IDL client model. Basically, you will
be generating IDL interfaces from Java. Y our client code will communicate with
WebL ogic Server through these IDL interfaces. Thisis basic CORBA programming.
For further information see, RMI over 11OP with IDL Client.

If you are integrating WebL ogic with existing Tuxedo systems you may wish to take
advantage of the Weblogic Tuxedo Connector. The Weblogic Tuxedo Connector uses
RMI-11OP to enable clients or services already developed on Tuxedo to be
interoperable with WebL ogic Server. For further information see, RMI-110P with
Tuxedo and Tuxedo Clients.

Client Client Protocol Definition Benefits
language
RMI Java t3 Client that follows the JavaSoft RM| Fast, scalable. Uses
specification optimized
WebLogic t3
protocol that
improves
performance.
RMI over Java I1OP RMI client that utilizesthe CORBA RMI with
[IOP with 2.4.2 specification’s support for Internet-Inter-Orb-
RMI Client Objects-by-Value. ThisJavaclientis Protocol. Use of
developed using the standard RMI-110P
RMI/INDI model. standards. No
WebL ogic classes
required on client.
RMI-11OP C++, C, I1OP CORBA client that uses a CORBA Interoperability
with IDL Smalltalk, 2.4.2 ORB. Note: Dueto name-space with WebL ogic
client COBOL conflicts, JavaCORBA clientsarenot and clients written
(any language supported by the RMI over 11OP in C++, COBOL,
which has specification. etc.
mapping from
OMGIDL to
that language.)

1-6 Programming RMI over 110OP

RMI over IIOP with an RMI Client

Client Client Protocol Definition Benefits
language
RMI-IIOP C++,C, TGIIOP Tuxedo Server developed with Interoperability
with COBOL Tuxedo 8.0 or higher betweenWebL ogic
Tuxedo (any language Server applications
Client which has and Tuxedo
mapping services
supplied by
Tuxedo from
OMG IDL to
that language.)

RMI over [IOP with an RMI Client

To develop an RMI over 110P application, the following steps must be performed:

1. Develop the Remote Interface and Implementation Class and compile with a Java
compiler.

2. Generatethe I1OP Classes using the - i i op option. Note that the I1OP stubs
created by the WebL ogic RMI compiler are intended to be used with the JDK 1.3
ORB. If you are using another ORB, consult the ORB vendor’s documentation to
determine whether these stubs are appropriate. Use the -iiopDirectory option to
specify atarget directory where the [1OP classes will be generated.

3. Develop the RMI Client and compile with alanguage-specific compiler

See Using WebLogic RMI at ht t p: // e- docs. bea. coml wl s/ docs61/ rni for more
general instructions on developing an RMI application.

Programming RMI over 110P 1-7

http://e-docs.bea.com/wls/docs61/rmi/rmi_api.html

1 Using WebLogic RMI over IIOP

Develop the Remote Interface and Implementation Class

1-8

Todevelop an RMI object, you must define the object’ s public methodsin aninterface
that extendsj ava. r ni . Renot e.Y our remote interface may not contain much code.
All you need are the method signatures for methods you want to implement in remote

classes. For example, with the Ping exampleincluded in
sanpl es/ exanpl es/iiop/rm/server/ws:

public interface Pinger extends java.rm.Renote {

public void ping() throws java.rm .RenoteException;
public void pingRempbte() throws java.rm .RenoteException;
public void pingCallback(Pinger toPing) throws

java.rm . Renot eExcepti on;

{

With RMI objects, you then implement the interface in a class named

i nt er f aceNanel npl . This class should implement the remote interface that you
wrote, which meansthat you implement the method signaturesthat are contained in the
interface. All the code generation that will take place is dependent on this classfile.
The implementation class can be bound into the JNDI tree to be made available to
clients. Typically, your implementation classwill be configured asaWebL ogic startup
class and will include amai n method that binds the object into the JINDI tree. Hereis
an excerpt from the implementation class devel oped from the previous Ping example:

public static void main(String args[]) throws Exception {
if (args.length > 0)
renmot eDomai n = args[O0];

Pi nger obj = new Pi ngl npl ();

Context initial Nam ngContext = new Initial Context();

i ni tial Nam ngCont ext . rebi nd(NAVE, obj) ;

Systemout. println("Pinglnpl created and bound to "+ NAME);

Once you have devel oped the remote interface and implementation class, compile
them with ajava compiler. Developing these classesin a RMI-110OP application is no
different that doing so in normal RMI. For more information on developing RMI
objects, see Using WebLogic RMI.

Programming RMI over 110OP

http://e-docs.bea.com/wls/docs61/rmi/rmi_api.html

RMI over IIOP with an RMI Client

Generate the [IOP Classes

Run the WebL ogic RMI compiler against the implementation classwith the-i i op
option to generate the necessary |10P stub and skeleton. A stub isthe client-side proxy
for aremote object that forwards each WebL ogic RMI call to its matching server-side
skeleton, which in turn forwards the call to the actual remote object implementation.
To run the WebL ogic RMI compiler with the-i i op option, use the command pattern:

$ java weblogic.rmic -iiop nameO | npl enent ati ond ass

In the case of the Pinger example, here the nameOfl mplementationClass would be
exanpl es.iiop.rm.server.w s. Pingerlnpl.The-iiopDirectory option
allows you to specify where theseiiop classeswill bewritten. The files generated will
appear asthe nane | nt er f ace_St ub. cl ass and the

namef | nt er f ace_Skel . cl ass. The four files you have now created—the remote
interface, the classthat implementsit, and the stub and skeleton—should be placed in
the appropriate directory in the CLASSPATH of the WebL ogic Server whose URL
you used in the naming scheme of the object's mai n() method.

Develop the RMI Client

RMI clients access remote objects by creating an initial context and performing a
lookup on the abject. The object isthen cast to the appropriate type. RMI over [1OP
RMI clients differ from regular RMI clientsin that 110OP is defined as the protocol
when obtaining an initial context. Because of this, lookups and casts must be
performed in conjunction with thej avax. r mi . Por t abl eRenot eCbj ect . narr ow()
method.

For example, in the RMI client statel ess session bean example (the

exanpl es.iiop.ejb.statel ess. rmclient packageincludedinyour
distribution), an RMI client createsaninitial context, performsalookup onthe EJBean
home, obtains a reference to an EJBean, and calls methods on the EJBean. To make
this example work over 110P, you must perform the following steps on the client:

m Obtain aninitial context.

m Modify the client code to perform the lookup in conjunction with the
j avax. rni . Port abl eRenpot eCbj ect . narrow() method.

Programming RMI over 110P 1-9

1 Using WebLogic RMI over IIOP

1-10

Inobtaining aninitial context, you have two choiceswhen defining your INDI context
factory:

® webl ogi c.jndi.WInitial ContextFactory

B com sun. j ndi.cosnam ng. CNCt xFact ory

Y ou can use either of these when setting the value for the

"Cont ext . | NI TI AL_CONTEXT_FACTORY" property that you supply as a parameter to
new | ni tial Cont ext (). If you use the Sun version, you'll have a Sun JNDI client,
which in turn uses the Sun RMI-110P ORB implementation of J2SE 1.3; this may be
important to you if you wish to minimize the use of WebL ogic classes on the client.
To take full advantage of WebL ogic’s RMI-110P implementation however, it is
recommended that you use the webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory
method.

There are someitemsto be aware of when using the Sun JNDI client and the Sun ORB.
Their INDI client supports the capability to read remote object references from the
namespace, but not generic Java serialized objects. Thismeansthat you can read items
such as EJBHomes out of the namespace but not DataSource objects. Thereisalso no
support for client-initiated transactions (the JTA API) in this configuration, and no
support for security. In the statel ess session bean RMI Client example, the client
obtains an initial context asis done below:

Listing 1-1 Obtaining an I nitialContext

* Using a Properties object as follows will work on JDK13
* clients.

*/
private Context getlnitial Context() throws Nam ngException {

try {
/1l Get an Initial Context

Properties h = new Properties();
h. put (Context. | NI TI AL_CONTEXT_FACTORY,
"com sun. j ndi . cosnani ng. CNCt xFact ory");
h. put (Cont ext . PROVI DER _URL, url);
return new Initial Context(h);
} catch (Nam ngException ne) {
| og("We were unable to get a connection to the WbLogic server at
"+url);
| og(" Pl ease make sure that the server is running.");

Programming RMI over 110OP

RMI over IIOP with an RMI Client

* This is another option, using the Java2 version to get an

* | nitial Context.

* This version relies on the existence of a jndi.properties file in
* the application's classpath. See

* http://edocs. bea.comlwW s/docs61l/jndi/jndi.htm for nore

* information

private static Context getlnitial Context()
t hrows Nami ngException

{
}

After getting aninitial context, j avax. r mi . Por t abl eRenmot ebj ect . nar r ow()
must be used in any situation where you would normally cast an object to a specific
class type. For example, the client code responsible for looking up the EJBean home
and casting the result to a Tr ader Home object must be modified to use the

j avax.rni . Portabl eRenpt eCbj ect . narrow() asshown below:

return new Initial Context();

Listing 1-2 Performing alookup

/**

* RM/I110P clients should use this narrow function
*/

private Object narrom Cbject ref, Cass c) {
return Portabl eRenpt eCbj ect. narrow(ref, c);

}

/**
* Lookup the EJBs hone in the JNDI tree
*/
private TraderHone | ookupHone()
t hrows Nami ngException

/1 Lookup the beans home using JNDI
Context ctx = getlnitial Context();

try {
Obj ect honme = ctx. | ookup(JNDI _NAME) ;

return (TraderHome) narrow(hone, TraderHone. cl ass);
} catch (Nam ngException ne) {

Programming RMI over IIOP 1-11

http://e-docs.bea.com/wls/docs61/jndi/jndi.html

1 Using WebLogic RMI over IIOP

| og("The client was unable to | ookup the EJBHone. Pl ease
make sure ");

| og("that you have deployed the ejb with the JNDI nane
"+JNDI _NAME+" on the WebLogic server at "+url);

throw ne;
}
}
/**
* Using a Properties object will work on JDK130
* clients
*/

private Context getlnitial Context() throws Nam ngException {

try {
/1 Get an Initial Context
Properties h = new Properties();
h. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
"com sun. j ndi . cosnam ng. CNCt xFact ory");
h. put (Cont ext. PROVI DER_URL, url);
return new Initial Context(h);
} catch (Nam ngException ne) {
| og("We were unable to get a connection to the WeblLogic
server at "+url);
| og(" Pl ease make sure that the server is running.");
t hr ow ne;

Theur | definesthe protocol, hostname, and listen port for the WebL ogic Server and
is passed in as a command-line argument.

public static void main(String[] args) throws Exception {

| og("\nBegi nning statel essSession.Client...\n");

String url = "iiop://local host: 7001";
To make this client connect over 110P, you would run client with acommand like;
$ java - Dj ava. security. manager -0 ava.security. policy=java.policy

exanples.iiop.ejb.stateless.rmclient.dient
iiop://1ocal host: 7001

1-12 Programming RMI over 110OP

RMI over IIOP with IDL Client

In order to narrow an RMI interface on aclient the server needsto servethe appropriate
stub for that interface. The loading of this classis predicated on the use of the JDK
network classloader and thisis not enabled by default. To enable it you have to set a
security manager in the client with an appropriate java policy file. The following
would be an example of aj ava. pol i cy file

grant {
/1 Allow everything for now

perm ssion java.security.All Perni ssion;

}
:To set the security manager on the client, do the following:

java -D ava.security. manager -D ava.security.policy==java.policy
nyclient

RMI over I1OP with IDL Client

In CORBA, interfaces to remote objects are described in a platform-neutral interface
definition language (IDL). To map the IDL to aspecific language, the DL iscompiled
with an IDL compiler. The IDL compiler generates anumber of classes such as stubs
and skeletons which are used by the client and server for obtaining references to
remote objects, forwarding requests, and marshalling incoming calls. Note that even
with IDL clientsit is strongly recommended you begin with the Javaremote interface
and implementation class asisillustrated in the following sections. Writing code in
IDL that can be then reverse-mapped to create Java codeis adifficult and bug-filled
enterprise. Begin with the Javaremote interface and implementation file and generate
the IDL to alow interopability with WebL ogic and CORBA clients!

Programming RMI over IIOP 1-13

1 Using WebLogic RMI over IIOP

Figure1-2 IDL Client (Corba object) relationships

Client ”IDL Server
¢ l ¢
Sub <« — - IDL compiler- — - = Tie
- >
ORB HoP ORB

Java IDL Mapping

1-14

In WebL ogic RMI, interfaces to remote objects are described in a Javaremote
interface that extendsj ava. r m . Renot e. The Java-to-1DL mapping specification
defineshow an IDL is derived from a Java remote interface. In the WebL ogic RMI
over I1OPimplementation, theimplementation classisrunthrough the WebL ogic RMI
compiler or WebL ogic EJB compiler with the-i dl option. This createsan IDL
equivalent of the remote interface using the Java-to-IDL mapping specification. This
IDL isthen compiled with an IDL compiler to generate the classes required by the
CORBA client.

The client obtains areference to the remote object and forwards method calls through
the stub. WebL ogic Server implements a CosNani ng service that parses incoming
I1OP requests and dispatches them directly into the RMI runtime.

Programming RMI over 110OP

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm

RMI over IIOP with IDL Client

Figure1-3 WebLogic RMI over 110P object relationships

Client

WebL ogic

Server

IDL RMI

Stub <&~ compiler <& |p_ <~ compiler < — — - RMI

¢ object

RMI
ORB -= p runtime

I1OP

Objects-by-Value

The Objects-by-Value specification alows complex data types to be passed between
the two programming languages involved. In order for an IDL client to support
Objects-by-Value, the client should be developed in conjunction with an Object
Request Broker (ORB) that supports Objects-by-Value. To date, relatively few ORBs
support Objects-by-Value correctly. When developing your RMI over [1OP
application, you must consider whether your IDL clients will support
Objects-by-Value and design your RMI interface accordingly. In other words, you
must limit you RMI interface to pass only primitive datatypesif your application will
support only IDL clientsthat do not support Objects-by-Vaue. Thiswill be discussed
further in the Value Types section.

Developing an RMI over IIOP Application Using IDL

To develop an RMI over 110P application with IDL, the following steps must be
performed:

1. Develop the Remote Interface and Implementation Class and compile with a Java
compiler

2. Generatethe IDL File using the WebL ogic RMI compiler or WebL ogic EJB
compiler.

Programming RMI over IIOP 1-15

http://www.omg.org/technology/documents/index.htm

1 Using WebLogic RMI over IIOP

3. Compilethe IDL file with an IDL compiler and compile the resulting classes
with alanguage-specific compiler, such as C++.

4. Develop the IDL client and compile with alanguage-specific compiler

Note: Begin with the remote interface and implementation class! If you area
CORBA programmer you may wish to begin coding with IDL, however this
will lead to problems down the road; IDL does not map to Javawell.
Attempting to generate the Java from the IDL you create(this is sometimes
called the ‘reverse mapping issue') is not advisable.

Develop the Remote Interface and Implementation Class

To develop an RMI object, you must define the object’ s public methodsin aninterface
that extendsj ava. rni . Renot e.

With RMI objects, you can implement the interface in a class named

i nt er f aceNanel npl . The implementation class can be bound to the JINDI treeto be
made available to clients. Typically, your implementation class will be configured as
aWebL ogic startup class and will include amai n method that binds the object into the
JINDI tree. The development of the remote interface and implementation class is the
same whether you are programming for RMI, IDL, or Tuxedo clients. See the section
for Develop the Remote I nterface and Implementation Class for more information on
thisfirst step. For moreinformation on developing RMI aobjects, see Using WebL ogic
RMI.

Special considerations for supporting non-OBV clients

If your client ORB does not support Objects-by-Value, you must limit your RMI
interface to pass only other interfaces or CORBA primitive data types. The following
table lists ORBs that we have tested with respect to Objects-by-Value support:

Table 1-1
Vendor Versions Objects-by-Value
Borland (formerly VisiBroker 3.3, 3.4 not supported
Inprise)
Borland (formerly VisiBroker 4.x supported
Inprise)

1-16 Programming RMI over 110OP

http://e-docs.bea.com/wls/docs61/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs61/rmi/rmi_api.html

RMI over IIOP with IDL Client

Table 1-1
Vendor Versions Objects-by-Value
lona Orhix 2000 supported (we have

encountered issues with
this implementation)

Generate the IDL File

After developing and compiling the implementation class, you must generate an IDL
fileby running the WebL ogic RMI compiler or WebL ogic EJB compiler withthe- i dI
option. Therequired stub classeswill be generated when you compilethe IDL file. For
genera information on the these compilers, refer to Using WebLogic RMI and BEA
WebL ogic Server Enterprise JavaBeans. Also please reference the Java IDL
specification at Java Language Mapping to OMG IDL Specification at

http://ww. ong. or g/ cgi - bi n/ doc?f ormal / 01- 06- 07.

The following compiler options are specific to RMI over I1OP:

Option Function

-idl Creates an IDL for the remote interface of the
implementation class being compiled

-idlDirectory Target directory where the IDL will be generated

-idl Factories

Generate factory methods for value types. Thisisuseful if
your client ORB does not support thef act or y valuetype.

-i dl NoVal ueTypes

Suppresses generation of idl for value types.

-idl Overwite

Causes the compiler to overwrite an existing idl file of the
same name

-idl Strict Createsan IDL that adheres strictly to the Objects-By-Value
specification. (not available with ejbc)

-idl Verbose Display verbose information for IDL generation

-idl Vi si br oker CGenerate | DL sonewhat conpatible with

Vi si broker 4.1 C++

Programming RMI over IIOP 1-17

http://e-docs.bea.com/wls/docs61/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://www.omg.org/cgi-bin/doc?formal/01-06-07

1 Using WebLogic RMI over IIOP

The options are applied as shown in this example of running the RMI compiler:
> java weblogic.rmc -idl -idlDirectory /IDL rm _iiop.Hellolnpl

The compiler will generate the IDL file within sub-directories of thei dl Di r ect oy
according to the package of the implementation class. For example, the above
command will resultinaHel | o. i dl filegeneratedinthe/ 1 DL/ rm _i i op directory.
If thei dI Di rect ory optionis not used, the IDL file will be generated relative to the
location of the generated stub and skeleton classes.

Compile the IDL file

Now that you havean IDL file, it can be used to create the stub classes required by your
IDL client to communicate with the remote class. Y our ORB vendor will provide an
IDL compiler.

The DL filegenerated by the WebL ogic compilers containsthe directives: #i ncl ude
orb.idl.ThisIDL fileshould be provided by your ORB vendor. Anorb. i dl fileis
shippedinthe/ i b directory of the WebL ogic distribution. Thisfileis only intended
for use with the ORB included in the JDK.

Develop the IDL client

1-18

IDL clients are pure CORBA clients and do not require any WebL ogic classes.
Depending on your ORB vendor, additional classes may be generated to help resolve,
narrow, and obtain areference to the remote class. In thefollowing example of aclient
developed against a VisiBroker 4.1 ORB, the client initializes a naming context,
obtains a reference to the remote object, and calls a method on the remote object.

Listing 1-3 Code segment from C++ client of the RM1-11OP example

/1 string to object
CORBA: : (bj ect _ptr o;

cout << "CGetting name service reference" << endl;
if (argc >= 2 && strncnp (argv[1], "IOR', 3) == 0)
0 = orb->string_to_object(argv[1]);

Programming RMI over 110OP

RMI over IIOP with IDL Client

el se
0 = orb->resolve_initial_references("NaneService");

/1 obtain a nanming context

cout << "Narrowing to a nam ng context" << endl;
CosNanmi ng: : Nam ngCont ext _var context =

CosNani ng: : Nam ngCont ext:: _narrow(o) ;

CosNani ng: : Name nane;

nane. | engt h(1);

name[0] .id = CORBA::string_dup("Pinger_iiop");
name[0] . ki nd = CORBA: : string_dup("");

/1 resolve and narrow to RM object
cout << "Resolving the nam ng context" << endl;
CORBA: : Onj ect _var obj ect = context->resol ve(nhane);

cout << "Narrowing to the Ping Server" << endl;

ciexanples::iiop::rm::server::ws::Pinger_var ping =
crexanples::iiop::rm::server::w s::Pinger::_narrow object);

/1 ping it

cout << "Ping (local) ..." << endl;

pi ng- >pi ng();

}

Notice that before obtaining a naming context initial references were resolved using
the standard Object URL (CORBA/IIOP 2.4.2 Specification, section 13.6.7). Lookups
areresolved onthe server by awrapper around JNDI that implementsthe COS Naming
Service API.

The Naming Service allows Weblogic Server applications to advertise object
references using logical names. IDL client applications can then locate an object by
asking the CORBA Name Serviceto look up the name in the INDI tree of WebL ogic
Server. The CORBA Name Service provides:

m Animplementation of the Object Management Group (OMG) Interoperable
Name Service (INS) specification.

m Application programming interfaces (APIs) for mapping object referencesinto
an hierarchical naming structure (JNDI in this case).

m Commands for displaying bindings and for binding and unbinding naming
context objects and application objects into the namespace.

Programming RMI over IIOP 1-19

http://www.omg.org/cgi-bin/doc?formal/01-02-33

Using WebLogic RMI over IIOP

In this case of the example above, you would run the client by using: C i ent . exe
- ORBI ni t Ref NaneServi ce=iioploc://|ocal host: 7001/ NaneSer vi ce.

Note: Thenaming context can also be obtained by narrowing a CORBA object tothe
WebLogic IOR. Thehost 2i or utility (this utility has been deprecated and is
not to be used in production systems) included with WebL ogic Server can be
used to print the WebL ogic Server IOR to the console by running the
following command:

$ java utils.host2ior hostNanme port

Here, host Nare is the name of the machine running WebL ogic Server and
por t isthe port where WebL ogic Server is listening for connections.

RMI-11OP with Tuxedo and Tuxedo Clients

WebL ogic Server provides the ability to interoperate between WebL ogic Server
applications and Tuxedo services using RMI-I1OP. This includes calling EJBs and
other applications on WebL ogic from Tuxedo clients as well as other features.

The RMI-I10P examplesincluded inthe sanpl es/ exanpl es/ i i op directory of your
installation contain some samples of how to configure and set up your WebL ogic
Server to work with Tuxedo Servers and Tuxedo Clients.

WebLogic Tuxedo Connector

1-20

WebL ogic Tuxedo Connector provides interoperability between WebL ogic Server
applications and Tuxedo services. The connector uses an XML configuration file that
alows you to configure the WebL ogic Server to invoke Tuxedo services. It also
enables Tuxedo to invoke WebL ogic Server Enterprise Java Beans (EJBs) and other
applications in response to a service request. If you have developed applications on
Tuxedo and are moving to WebL ogic Server, or if you are seeking to integrate legacy
Tuxedo systems into your newer WebL ogic environment, the WebL ogic Tuxedo
Connector allows you to leverage Tuxedo’s highly scalable and reliable CORBA
environment. The following documentation provides information on the Weblogic
Tuxedo Connector, as well as building CORBA applications on Tuxedo:

Programming RMI over 110OP

Configuring WebLogic Server for RMI-IIOP

m The WebLogic Tuxedo Connector Guide at
http://e-docs.bea.com/wls/docs61/wtc.html

m For Tuxedo, CORBA topics at
http://e-docs.bea.com/tuxedo/tux80/interm/corba.htm

BEA WebLogic C++ Client

WebL ogic Server 6.1 SP3 interoperates with the Tuxedo 8.0 C++ Client ORB. This
client supports object by value and the CORBA |nteroperable Naming Service (INS).
Tuxedo release 8.0 RP 56 and above is required. WebL ogic Server users should
contact their BEA Service Representative for information on how to obtain the Tuxedo
C++ Client ORB.

The following documentation provides information on how to use the WebL ogic C++
Client with the Tuxedo C++ Client ORB:

m For general information on how to create Tuxedo Corba client applications, see
Creating CORBA Client Applications.

m For information on the use of the C++ IDL Compiler, see OMG IDL Syntax and
the C++ IDL Compiler.

m For information on how to use the Interoperable Naming Service to get object
references to initial objects such as NameService, see Interoperable Naming
Service Bootstrapping Mechanism.

Configuring WebLogic Server for RMI-110P

Because of alack of standards for propagating client identity from a CORBA client,
theidentity of any client connecting over I1OP will default to "guest”. Theuser, aswell
as apassword, can be set inthe confi g. xm file to establish asingleidentity for all
clients connecting over I10P, as shown in the example below:

<Server
Name="nyserver"

Nat i vel CEnabl ed="t r ue"
Def aul t | | OPUser =" Bob"

Programming RMI over IIOP 1-21

http://e-docs.bea.com/wls/docs61/wtc.html
http://e-docs.bea.com/tuxedo/tux80/interm/corba.htm
http://e-docs.bea.com/tuxedo/tux80/creclien/index.htm
http://e-docs.bea.com/tuxedo/tux80/cref/idlchap.htm
http://e-docs.bea.com/tuxedo/tux80/cref/idlchap.htm
http://e-docs.bea.com/tuxedo/tux80/cref/boot.htm#1076154
http://e-docs.bea.com/tuxedo/tux80/cref/boot.htm#1076154

1 Using WebLogic RMI over IIOP

Def aul t | | OPPasswor d=" Gunby1234"
Li st enPort ="7001">

Thereisalsoal | OPEnabl ed attribute which canbe setintheconfi g. xm . The
default value" t rue" andsetthisto” f al se” only if youwishto disable!1OP support.
No additional server configurationis required to use RMI over [1OP beyond ensuring
that all remote objects are bound to the INDI tree to be made availableto clients. RMI
objects are typically bound to the JNDI tree by a startup class. EJBean homes are
bound to the INDI tree at the time of deployment. WebL ogic Server implements a
CosNami ng Servi ce by delegating all lookup callsto the INDI tree.

WebL ogic Server 6.1 supportsRMI-I1OP cor baname and cor bal oc JNDI references.
Please refer to the CORBA/IIOP 2.4.2 Specification. So, for instance, the following
could be added to your ej b-j ar. xm :

<ej b-reference-descripti on>

<ej b-ref - name>W.S</ ej b-r ef - name>

<j ndi - nane>cor banane: ii op: 1. 2@ ocal host : 7001#ej b/ f oo</j ndi - name>
</ ej b-reference-descripti on>

The reference-description stanza maps a resource reference defined in ej b-j ar . xm

to the INDI name of an actual resource available in WebL ogic Server. The

ej b- r ef - nane specifiesaresourcereference name. Thisisthe reference that the EJB
provider placeswithinthe ej b-j ar. xmi deployment file. Thej ndi - name specifies
the INDI name of an actual resource factory available in WebL ogic Server.

Notethei i op: 1. 2 contained in the <j ndi - name> section. WebL ogic Server 6.1
contains an implementation of GIOP 1.2. The GIOP specifies formats for messages
that are exchanged between inter-operating ORBs. This allows interoperatability with
many other ORB's and application servers. The GIOP version can be controlled by the
version number in acor banane or cor bal oc reference.

Protocol Compatibility

1-22

Interoperability between WebL ogic Server 6.x and WebL ogic Server 8.1 and 7.0 is
supported in the following scenarios:

m Server-to-Server Interoperability

m Client-to-Server Interoperability

Programming RMI over 110OP

http://www.omg.org/cgi-bin/doc?formal/01-02-33

Protocol Compatibility

Server-to-Server Interoperability

The following table identifies supported options for achieving interoperability

between two WebL ogic Server instances.

Table 1-2 WebL ogic Server-to-Server | nteroperability

To WebL ogic WebL ogic WebL ogic WebL ogic Server
Server Server 6.0 Server 6.1SP2 Server 7.0 8.1

and any
From Server service pack

higher than

SP2
WebL ogic RMI/T3 HTTP HTTP HTTP
Server 6.0 HTTP Web Services! Web Services?
WebL ogic HTTP RMI/T3 RMI/T3 RMI/T3®
asﬁ';j Vzrnfjer S\/'?ge RMI/110P® RMI/11OP* RMI/TIOF®
pack higher than HTTP . HTTP _ HTTP
sp2 Web Services Web Services Web Services’
WebL ogic HTTP RMI/T3 RMI/T3 RMI/T3
Server 7.0 RMI1/11OP8 RM1/11OP° RMI/1OPL0

HTTP HTTP HTTP

Web Services Web Services!!

WebL ogic HTTP RMI/T3 RMI/T3 RMI/T3
Server 8.1 RMI/11OP12 RMI/I1OP RMI/I1OP

HTTP HTTP HTTP

Web Services!3 Web Services

Sun JDK ORB RMI/IIOP® RMI/IIOP® RMI/11OPY RMI/IIOP'8
client!4

1. Must use portable client stubs generated from the “To Server” version
2. Must use portable client stubs generated from the “ To Server” version
3. No support for clustered URL s and no transaction propagation.

Programming RMI over 110P

1-23

1

Using WebLogic RMI over IIOP

4. No support for clustered URL s and no transaction propagation

5. Known problems with exception marshalling with releases prior to 6.1 SP4

6. No support for clustered URL sand no transaction propagation. Known problemswith exception
marshalling

7. Must use portable client stubs generated from the “To Server” version

8. No support for clustered URL s and no transaction propagation

9. No support for clustered URLS

10. No support for clustered URLS

11. Must use portable client stubs generated from the “To Server” version

12. No transaction propagation. Known problems with exception marshalling

13. Must use portable client stubs generated from the “To Server” version

14. This option involves calling directly into the JDK ORB from within application hosted on
WebL ogic Server.
15. JDK 1.3.x only. No clustering. No transaction propagation
16. JDK 1.3.x only. No clustering. No transaction propagation
17. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation
18. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation

Client-to-Server Interoperability

The following table identifies supported options for achieving interoperability
between a stand-alone Java client application and a WebL ogic Server instance.

Table 1-3 Client-to-Server Interoper ability

To WebL ogic WebL ogic WebL ogic WebL ogic Server
Server Server 6.0 Server 6.1 Server 7.0 8.1
From Client
(stand-alone)
WebL ogic RMI HTTP HTTP HTTP
Server 6.0 HTTP Web Services! Web Services?
WebL ogic HTTP RMI/T3 RMI/T3 RMI/T3?
Server 6.1 HTTP HTTP HTTP
Web Services Web Services3 Web Services®
1-24 Programming RMI over 110OP

Protocol Compatibility

To WebL ogic WebL ogic WebL ogic WebL ogic Server
Server Server 6.0 Server 6.1 Server 7.0 8.1
From Client
(stand-alone)
WebL ogic HTTP RMI/T3 RMI/T3 RMI/T3
Server 7.0 RMI/110PP RMI/11OP’ RMI/11OP®
HTTP HTTP HTTP
Web Services Web Services®
WebL ogic HTTP RMI/T3 RMI/T3 RMI/T3
Server 8.1 RMI/110P0 RMI/IOPY RMINIOP
HTTP HTTP HTTP
Web Servicest2 /eb Services

SunJDK ORB RMI/IIOP¥ RMI/IIOPS RMI/IIOP'® RMI/I1OPY
client!3

1. Must use portable client stubs generated from the “To Server” version

2. Must use portable client stubs generated from the “To Server” version

3. Must use portable client stubs generated from the “To Server” version

4. Known problems with exception marshalling with releases prior to 6.1 SP4

5. Must use portable client stubs generated from the “To Server” version

6. No Cluster or failover support. No transaction propagation

7. No Cluster or failover support

8. No Cluster or failover support

9. Must use portable client stubs generated from the “To Server” version

10. No Cluster or failover support and no transaction propogation. Known problems with
exception marshalling

11. NoCluster or failover support ant no transaction propogation. Known problemswith exception
marshalling

12. Must use portable client stubs generated from the “To Server” version

13. Thisoption involved calling directly into the JIDK ORB from within a client application.

14. JDK 1.3.x only. No clustering. No transaction propagation

15. JDK 1.3.x only. No clustering. No transaction propagation

16. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation

17. JDK 1.3.x or 1.4.1. No clustering. No transaction propagation

Programming RMI over 110P

1-25

1 Using WebLogic RMI over IIOP

Special Considerations

The following sections provide additional information about specia considerations
you may need to consider when designing applications that use RMI-110P:;

m RMI-IIOP and the RMI Object Lifecycle

m Limiations on Using RMI-11OP on the Server
m Limitations on Using RMI-11OP on the Client
m Javaand the DL Client Model

m Using EJBswith RMI-11OP

m RMI over [IOP with SSL

m Accessing WebL ogic Server Objects from a CORBA Client Through Delegation

RMI-110P and the RMI Object Lifecycle

1-26

WebL ogic Server's default garbage collection causes unused and unreferenced server
objects to be garbage collected. This reduces the risk running out of memory dueto a
large number of unused objects. This policy can lead to NoSuchbj ect Excepti on
errorsin RMI-I1OPif aclient holds areference to aremote object but does not invoke
on that object for a period of approximately six (6) minutes. Such exceptions should
not occur with EJBs, or typically with RMI objects that are referenced by the server
instance, for instance via JNDI.

The J2SE specification for RMI-110P calls for the use of the expor t Qbj ect () and
unexport Qbj ect () methodsonj avax. rni . Port abl eRenot ethj ect to manage
the lifecycle of RMI objects under RMI-110P, rather than Distributed Garbage
Collection (DGC). Note however that expor t Obj ect () and unexpor t Qbj ect ()
have no effect with WebL ogic Server's default garbage collection policy. If you wish

to change the default garbage collection policy, please contact BEA technical support.

Programming RMI over 110OP

Special Considerations

Limiations on Using RMI-IIOP on the Server

If you are using RMI-110P on the server, note the following limitations:

Clustering support for RMI objects that run over the 11OP protocol is limited to
server-side objects.

Clustered URL s are not supported.

Load balancing and failover is suppported for clustered objects running over
[1OP only if they run within the WebL ogic Server runtime environment.

Limitations on Using RMI-11OP on the Client

JDK 1.3 (and various versions) are not RMI-110P comformant. If you are using
RMI-110P on the client, note the following about the JDK:

It does not support client-demarcated transactions.
It sends GIOP 1.0 messages and GIOP 1.1 profilesin IORs.

It does not support the necessary pieces for EJB 2.0 interoperability (GIOP 1.2,
codeset negotiation, UTF-16).

It has some bugs in its treatment of mangled method names.
It does not correctly unmarshal unchecked exceptions.
It has some subtle bugs relating to the encoding of val uetypes.

It does not support clustering (failover and load balancing).

Many of these items are impossible to support both ways. Where there was a choice,
WebL ogic supports the spec-compliant option.

Programming RMI over IIOP 1-27

1 Using WebLogic RMI over IIOP

Java and the IDL Client Model

WebL ogic strongly recommends devel oping Java clients with the RMI client model if
you are going to use RMI-11OP. If you are developing a Java IDL Client you will
encounter many difficulties. Naming conflicts and keeping the server-side and
client-side classes separate--as well as classpath problems--are some of the more
obvious problems. Since the RMI object and the IDL client have different type
systems, the class that defines the interface for the server-side will be very different
from the class that defines the interface on the client-side.

Using EJBs with RMI-110P

1-28

When Enterprise JavaBeans are implemented using RMI over [1OP for EJB
interoperability in heterogeneous server environments, the standard mapping of the
EJB architecture to CORBA enables the following:

m A JavaRMI client using an ORB can access enterprise beansresiding on a
WebL ogic Server over |IOP.

m A non-Java platform CORBA client can access any enterprise bean object on
WebL ogic Server.

WebL ogic RMI over 11OPistheframework for which EJBscan connect to IDL clients.
Currently however, a standard for passing user identity--required to implement
EJB-to-1DL -- does not exist and the requirement for transaction propagation from the
client isin question. While RMI over [10OP does allow CORBA/IDL clients to access
EJBeans, the following services will not be available:

m EJB transaction services
m EJB security services

When deriving the mapping from aWebL ogic Server application to a CORBA client,
the sources of the mapping information are the EJB classes as defined in the Java
source files. WebL ogic Server provides the webl ogi c. ej bc utility for generating
required IDL files. These files represent the CORBA view into the state and behavior
of the target EJB. Thewebl ogi c. ej be utility will allow the following:

m To place the EJB classes, interfaces, and deployment descriptor filesinto a JAR
file.

Programming RMI over 110OP

Special Considerations

m Generate WebL ogic Server container classes for the EJBs.

m Run each EJB container class through the RMI compiler to create stubs and
skeletons.

m Generate adirectory tree of CORBA IDL files describing the CORBA interface
to these classes.

Thewebl ogi c. ej be utility supports a number of command qualifiers. See the chart
at, Generate the IDL File.

Resulting files are processed using the compiler, reading source files from the

i dl Sour ces directory and generating CORBA C++ stub and skeleton files. These
generated files are sufficient for all CORBA data types with the exception of value
types (see following section for more information). Generated IDL files are placed in
thei dl Sour ces directory. Note that the javato IDL processisfull of pitfalls and
please reference the Java Language Mapping to OMG IDL specification at
http://ww. ong. or g/t echnol ogy/ docunent s/ fornmal / j ava_| anguage_nmapp
ing_to_ong_idl.htm

The following is an example (from
W._HOVE/ exanpl es/iiop/ejb/entity/server/w s inyour distribution) of how
to generate the IDL from a bean you have aready created:

> java webl ogic.ejbc -conpiler javac -keepgenerated
-idl -idlDirectory idl Sources

-iiop build\std_ejb_iiop.jar

YAPPLI CATI ONS% ej b_i i op. j ar

After this step, compile the EJB interfaces and client application (the example here
usesa CLIENT_CLASSES target variable):

> javac -d % LI ENT_CLASSES% Tr ader . j ava Tr ader Hone. j ava
TradeResult.java Cient.java

Then run the IDL compiler against the IDL files built in the step where you used
webl ogi c. ej bc, creating C++ sourcefiles:

>% DL2CPP% i dl Sour ces\ exanpl es\rni _i i op\ej b\ Trader. i dl
>0 DL2CPP% i dl Sour ces\ j avax\ ej b\ RenoveExcepti on. i dl

Now you can compile your C++ client.

Programming RMI over IIOP 1-29

http://www.omg.org/technology/documents/formal/java_language_mapping_to_omg_idl.htm

1 Using WebLogic RMI over IIOP

Value Types

When you wish to pass objects by value rather than reference you will need to use
Value Types (see chapter five of the CORBA/IIOP 2.4.2 Specification for further
information) Value types need to be implemented on each platform on which they are
defined or referenced. The following section deal with the difficulties of passing
complex valuetypes, referencing the particul ar case of aC++ client accessing an Entity
bean on WebL ogic Server (seetheexanpl es/ii op/ ej b/ entity/server/w s and
exanpl es/iiop/ejbl/entity/cppclient directories).

One of the problems encountered by Java programmersisthe use of derived datatypes
that are not usually visible. For instance when accessing an EJB finder the Java
programmer will see a Collection or Enumeration, but doesn't pay attention to the
underlying implementation because the JDK run-timewill haveit classloaded over the
network. However the C++, CORBA programmer has to know the type that comes
across the wire so that he can register a valuetype factory for it so that the ORB can
unmarshall it.

Examplesof thisinthesample/ i i op/ ej b/ enti ty/ cppcl i ent are EJBObjectEnum
and Vector. Simply running ej bc on the defined EJB interfaceswill not generatethese
definitions because they do not appear in the interface. For this reason ej bc will also
accept Java classes that are not remote interfaces--specifically for the purpose of
generating IDL for these interfaces. Please review the
/iiop/ejblentity/cppclient exampleto seehow to register avaluetype factory.

Javatypesthat are serializable but that definewr i t eQoj ect () are mapped to custom
valuetypesin IDL. Youwill haveto write C++ code to hand unmarshall the valuetype.
Seeexanpl es/iiop/ejb/entity/tuxclient/ArrayList_i.cpp foranexample
of how to do so.

Note: When using Tuxedo, you can specify the- i qualifier directsthel DL compiler
to create implementation filesnamed Fi | eName_i . h and Fi | eNane_i . cpp.
For exampl e, this syntax creates the Tr adeResul t _i . h and
TradeResul t _i . cpp implementation files:

idl -lidl Sources -i
i dl Sources\exanples\rm _iiop\ejb\rm _iiop\TradeResult.idl

The resulting source files provide implementations for application-defined operations
on avalue type. Implementation files are included in a CORBA client application.

1-30 Programming RMI over 110OP

http://www.omg.org/cgi-bin/doc?formal/01-02-33

Special Considerations

RMI over I1OP with SSL

The SSL protocol can be used to protect 110OP connectionsto RMI or EJB remote
objects. The SSL protocol secures connectionsthrough authentication and encryptsthe
data exchanged between objects. Y ou can use RMI over [1OP over SSL in WebL ogic
Server in the following ways:

m With a CORBA/IDL client Object Request Broker (ORB)
m With aJavaclient

In either case, you need to configure WebL ogic Server to use the SSL protocol. For
more information, see Configuring the SSL Protocol.

To use RMI over 11OP over SSL with a CORBA/IDL client ORB, do the following:

1. Configure the CORBA client ORB to use the SSL protocol. Refer to the product
documentation for your client ORB for information about configuring the SSL
protocaol.

2. Usethehost 2i or utility to print the WebL ogic Server IOR to the console. The
host 2i or utility prints two versions of the IOR, one for SSL connections and
one for non-SSL connections.

3. Usethe SSL IOR when obtaining the initial reference to the CosNani ng service
that accesses the WebL ogic Server INDI tree.

To use RMI over 11OP over SSL with a Java client, do the following:

1. If youwant to use callbacks, obtain a private key and digital certificate for the Java
client.

2. Runtheej bc compiler with the - d option.

3. Usethe command options below when starting the RMI client. Note that you
must specify a machine name, your regular port and then the SSL port. Also, you
must use the webl ogi c. cor ba. orb. ssl . ORB class which wraps around the
Orb’s own class and fixes problem with the JDK handling secure connections:

java -Dwebl ogi c. security. SSL.ignoreHost naneVerification=true \

- Dwebl ogi c. SSL. Li st enPort s=l ocal host: 7701: 7702 \

- Dor g. ong. CORBA. ORBCl ass=webl ogi c. corba. orb. ssl . ORB \

webl ogic.rmiiop.Hell oJDKClient iiop://localhost: 7702

*

Programming RMI over IIOP 1-31

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

1 Using WebLogic RMI over IIOP

1-32

* or to use cert chains for Server to Client connections:

*

*java - Dwebl ogi c. corba. orb. ssl. certs=nyserver/denocert.pem

- Dwebl ogi c. cor ba. orb. ssl . key=nyser ver/ denokey. pem

- Dwebl ogi c. security. SSL. i gnor eHost naneVeri fi cati on=true

- Dwnebl ogi c. corba. orb. ssl . Li stenPort s=l ocal host: 7701: 7702

- Dor g. ong. CORBA. ORBC ass=webl ogi c. cor ba. orb. ssl . ORB

-D ava. security. manager -Dj ava. security.policy==java. policy -nms32m
-mx32m webl ogi c. rm i op. Hel | 0JDKO i ent port=7702

-Dssl.certs=directory location of digital certificate for Java
client
-Dssl . key=directory |ocation of private key for Java client

The Java client needs to have the classes that WebL ogic Server uses for the SSL
protocol included in its CLASSPATH.

For incoming connections (from WebL ogic Server to the Javaclient for the purpose of
callbacks), you need to specify a digital certificate and private key for the Java client
on the command line. Usethessl . cert s and ssl . key command-line options to
provide this information. Using Client Certificates

Once you have set the client ORB to support SSL, you can enforce an additional level
of security by using client certificateswith RMI over 11OP and SSL. The behavior will
differ depending on whether you choose to enforce client certificates.

The client ORB must be aware of WebL ogic Server’ strusted certificate authenticator
and WebL ogic Server must be aware of the ORB’ strusted certificate authenticator. To
make WebL ogic Server aware of the ORB’s certificate authenticator copy the client
ORB’ s trusted certificate authenticator to WebL ogic Server.

1. Usejavautil s. der 2pemto convert the certificate authenticator.

2. Copy theca. pemfileto anew ca_new. pemfile.

3. Addtheclient ORB’strusted ca. pemfileto the end of the new ca_new. pemfile.
4. Inthe Console, change the Trusted CAFile Nameto ca_new. pem

The certificate chain file will still be ca. pem

Note: Refer tothe ORB’sproduct documentation to see how to make the client ORB
aware of WebL ogic Server’strusted certificate authenticator.

Programming RMI over 110OP

Special Considerations

Implement the webl ogi c. security. acl. Cert Aut hent i cat or interface and
register the classin the Console. See exanpl es. security. cert, inyour WebLogic
Server distribution for a sample of how thisis handled.

Using the Administration Console, set the client certificate enforced option:

1
2.
3.

Click the Server tab and in the right pane, choose the desired server.
Click the SSL tab and select the Client Certificate Enforced box.
Click Apply.

With RMI over 11OP and SSL, you can expect the following behavior:

If client certificates are enforced:

The client ORB invokes on the IOR using SSL.

On the server side, the Certificate Authenticator classis caled to determine if
the user is authorized.

To configure the certificate authenticator, choose on the SSL tab and specify the
certificate authenticator to be used to determine the validity of the certificate.
The certificate authenticator class accesses the certificate and uses the fields on
the certificate to determine the user.

The W._HOVE/ sanpl es/ exanpl es/ securi ty/ cert/ example containsavery
simple certificate authenticator class that maps the email address from a
certificate to auser in the realm.

If the certificate authenticator is not configured or the certificate authenticator
returns nul | , then ano permission exception is returned to the client and the
method is not executed.

If client certificates are not enforced:

The client ORB invokes on the IOR using SSL.

On the server side, the invoke occurs on the default [1OP user.

To set this user option on the SSL tab, click the Protocols tab and check the
Default [10OP Users box.

Programming RMI over IIOP 1-33

1 Using WebLogic RMI over IIOP

Accessing WebLogic Server Objects from a CORBA Client
Through Delegation

Overview

WebL ogic Server provides services that allow CORBA clientsto access RMI remote
objects. As an aternative method, you can also host a CORBA ORB (Object Request
Broker) in WebLogic Server and delegate incoming and outgoing messages to allow
CORBA clientsto indirectly invoke any object that can be bound in the server. This

document provides an overview of how thisis done.

There are a number of objects that must work together to be able to delegate CORBA
callsto an object hosted by WebL ogic Server. First, you must have an ORB that is
co-located with the VM that isrunning WebL ogic Server. To accomplish this, you can
create a startup class that creates and initializes an ORB. Y ou also need an object that
will accept incoming messages from the ORB. To create this object, you must create
an IDL (Interface Definition Language). Compiling the IDL will result in a number of
classes, one of which will be the Tie class. Tie classes are used on the server sideto
process incoming calls, and dispatch the calls to the proper implementation class. The
implementation class is responsible for connecting to the server, looking up the
appropriate object, and invoking methods on the object on behalf of the CORBA client.

Thefollowing isadiagram of a CORBA client invoking an EJBean by delegating the
call to an implementation class that connects to the server and operates upon the
EJBean. Using asimilar architecture, the reverse situation will also work. Y ou can
have a startup class that brings up an ORB and obtains a reference to the CORBA
implementation object of interest. This class can make itself available to other

WebL ogic objects throughout the INDI tree and del egate the appropriate calls to the
CORBA object.

1-34 Programming RMI over 110OP

Special Considerations

WebLogic Server

Startu
class P EJBean

Creates and

initializes Tie CORBA.
class client
ORB I
Delegate architecture

Code Example

The following code exampl e creates an implementation class that connects to the
server, looks up the Foo object in the INDI tree, and callsthebar method. This object
isalso astartup classthat is responsible for initializing the CORBA environment by:

m creating the ORB

m creating the Tie object

m associating the implementation class with the Tie object

m registering the Tie object with the ORB

m hinding the Tie object within the ORB's naming service

For more information on how to implement a startup class, see Starting and Sopping

WeblLogic Servers at

http://e-docs. bea. comw s/ docs61/ adm ngui de/ startstop. htnl .

Programming RMI over IIOP 1-35

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html

1 Using WebLogic RMI over IIOP

1-36

i mport org.ong. CosNami ng. *;

i mport org.ong. CosNani ng. Nam ngCont ext Package. *;
i mport org.ongy. CORBA. *;

inmport java.rm.*;

i mport javax.nam ng.*;

i mport webl ogi c. jndi.Environnent;

public class Fool npl inplenments Foo

public Fool npl () throws RenoteException {
super();

}

public void bar() throws RenpteException, Nam ngException {
/1 1ook up and call the instance to delegate the call to...
webl ogi c. j ndi . Environment env = new Environnent();
Context ctx = env.getlnitial Context();
Foo del egate = (Foo)ct x. | ookup("Foo");
del egat e. bar () ;
System out. println("del egate Foo.bar called!");

}

public static void main(String args[]) {

try {
Fool npl foo = new Fool npl ();

// Create and initialize the ORB
ORB orb = ORB.init(args, null);

/] Create and register the tie with the ORB
_Foolnpl _Tie fooTie = new _Fool npl _Tie();

f ooTi e. set Target (f 00);

orb. connect (f ooTi e);

/1 Get the nam ng context

org. ong. CORBA. Chject o =\

orb.resolve_initial _references("NaneService");

Nam ngCont ext ncRef = Nami ngCont ext Hel per. narrow(o) ;

/1 Bind the object reference in nam ng
NameConponent nc = new NameConponent ("Foo", "");
NameConponent path[] = {nc};

ncRef . rebi nd(path, fooTie);

System out . println("Foolnmpl created and bound in the ORB
registry.");

Programming RMI over 110OP

Code Examples

}

catch (Exception e) {
System out. println("Fool npl.main: an exception occurred:");
e.printStackTrace();

Code Examples

The exanpl es. i i op package isincluded within the

W._HOVE/ sanpl es/ exanpl es/ i i op directory and demonstrates connectivity
between numerousclientsand applications. There are examplesthat demonstrate using
EJBswith RMI-110P, connecting to C++ clients, and setting up interoperability with
a Tuxedo Server. Refer to the example documentation for more details. For examples
pertaining specifically to the Weblogic Tuxedo Connector, see the

/W server 6. 1/ sanpl es/ exanpl es/ wt c directory.

The following table provides information on the RMI-110P examples provided for
WebL ogic Server 6.1.

Figure1-4 WebL ogic Server 6.1 110P Examples

Example ORB/Protocol Requirements

iiop.ejb.entity.cppclient Borland Visibroker 4.1 GIOP 1.0 protocol. Users must add

ExampleprovidesaC++ client which calls the Def aul t G OPM nor Ver si on

Server. Server MBean of theconfi g. xm
file.
iiop.ejb.entity.tuxclient BEA 1IOP Tuxedo 8.x. Does not reguire a

Example provides a Tuxedo client which Tuxedo license.

uses complex valuetypesto call an entity
session bean in WebLogic Server.

Programming RMI over IIOP 1-37

1 Using WebLogic RMI over IIOP

Example ORBY/Pr otocol Requirements

iiop.ejb.entity.server.ws Not Applicable
Example demonstrates connectivity

between a C++ client or a Tuxedo client

and an entity bean.

iiop.ejb.statel ess. cppclient Borland Visibroker 4.1 GIOP 1.0 protocol. Users must add
Example provides a C++ CORBA client the Def aul t G OPM nor Ver si on
which calls a statel ess session bean in attribute and set itsvalueto “1” inthe
WebL ogic Server. The example also Server MBean of theconf i g. xm
demonstrates how to make an outbound file.

RMI-110OP call to a Tuxedo server using

WebL ogic Tuxedo Connector.

iiop.ejb.stateless.rmclient JDK 1.3.1 JDK 1.3.1 requires a security policy
Example provides an RMI Java client file to access server.

which calls a stateless session bean in
WebL ogic Server. The example also
demonstrates how to make an outbound
RMI-110P call to a Tuxedo server using

WebL ogic Tuxedo Connector.

iiop.ejb.statel ess.server.tux Tuxedo TGIOP m Tuxedo 8.x.

z;_’;ﬂ'e”'”ir;’:nir\‘/‘;‘x: C;' 'C'T‘i:tnatte'&s m Tuxedo license when used
bean Y with WebL ogic Tuxedo

applications through a Tuxedo Server. In
conjunction with the Tuxedo Client, it also

demonstrates server-to-server connectivity = WebLogic Tuxedo Connector
using WebL ogic Tuxedo Connector. to provide server-to-server

connectivity. See Using
WebL ogic Tuxedo Connector

for RMI/I1OP and Corba
Interoperability.

Connector.

iiop.ejb.statel ess.server.ws NotApplicable

Example demonstrates using a variety of
clientsto call astateless EJB directly in
WebL ogic Server or indirectly through a
Tuxedo Server.

1-38 Programming RMI over 110OP

http://e-docs.bea.com/wls/docs61/wtc_atmi/WTC_ATMI_CORBA.html
http://e-docs.bea.com/wls/docs61/wtc_atmi/WTC_ATMI_CORBA.html
http://e-docs.bea.com/wls/docs61/wtc_atmi/WTC_ATMI_CORBA.html

Code Examples

Example ORB/Protocol

Requirements

iiop.ejb.statel ess.tuxclient BEA IIOP

Example provides a Tuxedo client which
calls a statel ess session bean directly in
WebL ogic Server or to call the same
statel ess session bean in WebL ogic
through a Tuxedo server. The example

a so demonstrates how to make an
outbound RMI-I10OP call from a Tuxedo
server to WebL ogic Server using

WebL ogic Tuxedo Connector.

Tuxedo 8.x. Does not require a
Tuxedo license.

iiop.rm.cppclient

Example containsaC++ client which calls
either a Tuxedo Server or aWebLogic
Server. It dso demonstrates
server-to-server connectivity using

WebL ogic Tuxedo Connector.

Borland Visibroker 4.1

GIOP 1.0 protocol. Users must add
theDef aul t @ OPM nor Ver si on
attribute and set itsvalueto“1” inthe
Server MBean of theconf i g. xni
file.

iiop.rm.rmclient Not Applicable
Example provides an RMI client which

demonstrates connectivity to a WebL ogic

Server. The example also demonstrates

how to make an outbound call from

WebL ogic Server to aTuxedo server using

WebL ogic Tuxedo Connector.

iiop.rm.server.tux Tuxedo TGIOP

Exampleillustrates connectivity from a
variety of client applications through a
Tuxedo Server. In conjunction with the
Tuxedo Client, it also domesticates
server-to-server connectivity using
WebL ogic Tuxedo Connector.

m Tuxedo 8.x.

m Tuxedo license when used
with WebL ogic Tuxedo
Connector.

m Webl ogic Tuxedo Connector
to provide server-to-server
connectivity. See Using
WebL ogic Tuxedo Connector
for RMI/IIOP and Corba
Interoperability.

Programming RMI over IIOP 1-39

http://e-docs.bea.com/wls/docs61/wtc_atmi/WTC_ATMI_CORBA.html
http://e-docs.bea.com/wls/docs61/wtc_atmi/WTC_ATMI_CORBA.html
http://e-docs.bea.com/wls/docs61/wtc_atmi/WTC_ATMI_CORBA.html

1 Using WebLogic RMI over IIOP

Example ORBY/Pr otocol Requirements

iiop.rm.server.ws Not Applicable

Exampl eillustrates connectivity between a
variety of clients, Tuxedo, and WebL ogic
Server using asimple Ping application.

iiop.rm.tuxclient BEA |10P Tuxedo 8.x. Does not require a
Example provides a Tuxedo client which Tuxedo license.

demonstrates connectivity to a Tuxedo

Server.

Additional Resources

WebL ogic RMI over I10OP isintended to be a complete implementation of RMI.
Please refer to the release notes for any additional considerations that might
apply to your version.

m Programming with WebLogic JNDI at
http://e-docs. bea. comw s/ docs61/j ndi .

m Using WebLogic RMI at htt p: // e- docs. bea. comf Wl s/ docs61/ rni .

m Java Remote Method Invocation (RM1) Homepage at
http://java.sun.conlj2se/ 1. 3/ docs/ gui de/rm /index.htm .

m Sun’s RMI Specifications at
http://java.sun.conlj2se/ 1.3/ docs/ guide/rni/spec/rm TOC htm .

m Sun’'sRMI Tutorials at
e http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html
e http://java.sun.com/j2sel/1.3/docs/guide/rmi/rmisocketfactory.doc.html
e http://java.sun.com/j2se/1.3/docs/guide/rmi/activation.html.

m Sun’'sRMI over |1OP documentation at
http://java.sun.conml products/rm -iiop/index.htm .

m OMG Homepage at ht t p: / / www. ong. or g.

1-40 Programming RMI over 110OP

http://e-docs.bea.com/wls/docs61/notes/index.html
http://e-docs.bea.com/wls/docs61/jndi/index.html
http://e-docs.bea.com/wls/docs61/rmi/rmi_api.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/rmisocketfactory.doc.html
http://java.sun.com/j2se/1.3/docs/guide/rmi/activation.html
http://java.sun.com/products/rmi-iiop/index.html
http://www.omg.org

Additional Resources

CORBA Language Mapping Specifications at
http://ww. ong. org/technol ogy/ docunent s/ i ndex. ht m

CORBA Technology and the Java Platform at
http://java. sun.conij2ee/ corbal.

Sun’s Java IDL page at
http://java.sun.conlj2se/ 1.3/ docs/ guide/idl/index.htn.

Objects-by-Value Specification at
ftp://ftp.ony. org/ pub/ docs/ orbos/ 98-01-18. pdf.

Programming RMI over IOP 1-41

http://www.omg.org/technology/documents/index.htm
http://java.sun.com/j2ee/corba/
http://java.sun.com/j2se/1.3/docs/guide/idl/index.html
ftp://ftp.omg.org/pub/docs/orbos/98-01-18.pdf

1 Using WebLogic RMI over IIOP

1-42 Programming RMI over 110OP

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Using WebLogic RMI over IIOP

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Using WebLogic RMI over IIOP
	Introduction
	RMI over IIOP Overview
	Figure 1�1 RMI object relationships

	RMI-IIOP Programming Models
	Choosing an RMI Programming Model

	RMI over IIOP with an RMI Client
	1. Develop the Remote Interface and Implementation Class and compile with a Java compiler.
	2. Generate the IIOP Classes using the -iiop option. Note that the IIOP stubs created by the WebL...
	3. Develop the RMI Client and compile with a language-specific compiler
	Develop the Remote Interface and Implementation Class
	Generate the IIOP Classes
	Develop the RMI Client
	Listing 1-1 Obtaining an InitialContext
	Listing 1-2 Performing a lookup

	RMI over IIOP with IDL Client
	Figure 1�2 IDL Client (Corba object) relationships
	Java IDL Mapping
	Figure 1�3 WebLogic RMI over IIOP object relationships
	Objects-by-Value

	Developing an RMI over IIOP Application Using IDL
	1. Develop the Remote Interface and Implementation Class and compile with a Java compiler
	2. Generate the IDL File using the WebLogic RMI compiler or WebLogic EJB compiler.
	3. Compile the IDL file with an IDL compiler and compile the resulting classes with a language-sp...
	4. Develop the IDL client and compile with a language-specific compiler

	Develop the Remote Interface and Implementation Class
	Special considerations for supporting non-OBV clients
	Table 1�1

	Generate the IDL File
	Compile the IDL file
	Develop the IDL client
	Listing 1-3 Code segment from C++ client of the RMI-IIOP example

	RMI-IIOP with Tuxedo and Tuxedo Clients
	WebLogic Tuxedo Connector
	BEA WebLogic C++ Client

	Configuring WebLogic Server for RMI-IIOP
	Protocol Compatibility
	Server-to-Server Interoperability
	Table 1�2 WebLogic Server-to-Server Interoperability

	Client-to-Server Interoperability
	Table 1�3 Client-to-Server Interoperability

	Special Considerations
	RMI-IIOP and the RMI Object Lifecycle
	Limiations on Using RMI-IIOP on the Server
	Limitations on Using RMI-IIOP on the Client
	Java and the IDL Client Model
	Using EJBs with RMI-IIOP
	Value Types

	RMI over IIOP with SSL
	1. Configure the CORBA client ORB to use the SSL protocol. Refer to the product documentation for...
	2. Use the host2ior utility to print the WebLogic Server IOR to the console. The host2ior utility...
	3. Use the SSL IOR when obtaining the initial reference to the CosNaming service that accesses th...
	1. If you want to use callbacks, obtain a private key and digital certificate for the Java client.
	2. Run the ejbc compiler with the -d option.
	3. Use the command options below when starting the RMI client. Note that you must specify a machi...
	1. Use java utils.der2pem to convert the certificate authenticator.
	2. Copy the ca.pem file to a new ca_new.pem file.
	3. Add the client ORB’s trusted ca.pem file to the end of the new ca_new.pem file.
	4. In the Console, change the Trusted CAFile Name to ca_new.pem.
	1. Click the Server tab and in the right pane, choose the desired server.
	2. Click the SSL tab and select the Client Certificate Enforced box.
	3. Click Apply.

	Accessing WebLogic Server Objects from a CORBA Client Through Delegation
	Overview
	Code Example

	Code Examples
	Figure 1�4 WebLogic Server 6.1 IIOP Examples

	Additional Resources

