
WebLogic Server
Programming

B E A W e b L o g i c S e r v e r 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA

WebLogic RMI

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic RMI

Part Number Date Software Version

N/A June 24, 2001 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience..v

e-docs Web Site... vi

How to Print the Document... vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions .. vii

1. Introducing WebLogic RMI
What is WebLogic RMI?... 1-1

Features of WebLogic RMI... 1-2

2. Programming Considerations
WebLogic RMI Compiler.. 2-1

Dynamic Proxies and Bytecode ... 2-2

.WebLogic RMI Compiler Options.. 2-3

Replicating Stubs in a Cluster .. 2-6

WebLogic RMI Framework .. 2-7

Additional WebLogic RMI Compiler Features.. 2-7

Dynamic Proxies in RMI... 2-8

Using the WebLogic RMI Compiler with Proxies..................................... 2-8

Hot Code Generation... 2-9

WebLogic RMI Registry ... 2-9

WebLogic RMI Implementation Features... 2-9

JNDI ... 2-10

rmi.RMISecurityManager .. 2-10

rmi.registry.LocateRegistry.. 2-10
Programming WebLogic RMI iii

rmi.server Classes... 2-11

setSecurityManager .. 2-12

Unused Classes... 2-12

RMI and T3 Protocol ... 2-12

3. Implementing WebLogic RMI
Overview of the WebLogic RMI API ... 3-1

Procedures for Implementing WebLogic RMI.. 3-2

Creating Classes That Can Be Invoked Remotely 3-3

Step 1. Write a Remote Interface .. 3-3

Step 2. Implement the Remote Interface... 3-4

Step 3. Compile the Java Class ... 3-6

Step 4. Compile the Implementation Class with RMI Compiler 3-6

Step 5: Write Code That Invokes Remote Methods............................ 3-7

Full Code Examples ... 3-7
iv Programming WebLogic RMI

About This Document

This document describes the BEA WebLogic Server™ RMI implementation of the
JavaSoft Remote Method Invocation (RMI) specification from Sun Microsystems. The
BEA implementation is known as WebLogic RMI.

The document is organized as follows:

� Chapter 1, “Introducing WebLogic RMI,” is an overview of WebLogic RMI
features and its architecture.

� Chapter 2, “Programming Considerations,” describes the features that you use to
program RMI for WebLogic Server.

� Chapter 3, “Implementing WebLogic RMI,” describes the packages shipped as
part of WebLogic RMI and provides procedures for implementing WebLogic
RMI. (The public API includes the WebLogic implementation of the RMI base
classes, the registry, and the server packages.)

Audience

This document is written for application developers who want to build e-commerce
applications using the Remote Method Invocation (RMI) features. It is assumed that
readers know Web technologies, object-oriented programming techniques, and the
Java programming language.
Programming WebLogic RMI v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. In
addition to this document you may want to review the Programming RMI over IIOP
document. WebLogic RMI over IIOP extends the RMI programming model by
providing the ability for clients to access RMI remote objects using the Internet
Inter-ORB Protocol (IIOP).
vi Programming WebLogic RMI

http://www.adobe.com
http://e-docs.bea.com/wls/docs61/rmi_iiop/index.html

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

If you have any questions about this version of BEA WebLogic Server, or if you have
problems installing and running BEA WebLogic Server, contact BEA Customer
Support through BEA WebSupport at http://www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Programming WebLogic RMI vii

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
viii Programming WebLogic RMI

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic RMI ix

x Programming WebLogic RMI

What is WebLogic RMI?
1 Introducing WebLogic
RMI

The following sections introduce and describe the features of WebLogic RMI.

� What is WebLogic RMI?

� Features of WebLogic RMI

What is WebLogic RMI?

Remote Method Invocation (RMI) is the standard for distributed object computing in
Java. RMI enables an application to obtain a reference to an object that exists
elsewhere in the network, and then invoke methods on that object as though it existed
locally in the client’s virtual machine. RMI specifies how distributed Java applications
should operate over multiple Java virtual machines.

WebLogic implements the JavaSoft RMI specification. WebLogic RMI provides
standards-based distributed object computing. WebLogic Server enables fast, reliable,
large-scale network computing, and WebLogic RMI allows products, services, and
resources to exist anywhere on the network but appear to the programmer and the end
user as part of the local environment.

WebLogic RMI scales linearly under load, and execution requests can be partitioned
into a configured number of server threads. Multiple server threads allow WebLogic
Server to take advantage of latency time and available processors.
Programming WebLogic RMI 1-1

Features of WebLogic RMI
WebLogic RMI is completely standards-compliant. If you use another implementation
of RMI, you can convert your programs by changing nothing more than the import
statement. Differences exist between the JavaSoft reference implementation of RMI
and the WebLogic RMI product; however, these differences are completely
transparent to the developer.

In addition, WebLogic RMI is fully integrated with WebLogic Java Naming and
Directory Interface (JNDI). Applications can be partitioned into meaningful name
spaces by using either the JNDI API or the Registry interfaces in WebLogic RMI.

This document contains information about using WebLogic RMI, but it is not a
beginner's tutorial on remote objects or writing distributed applications. If you are just
beginning to learn about RMI, visit the JavaSoft Web site and take the RMI tutorial.

Features of WebLogic RMI

Like the JavaSoft reference implementation of RMI, WebLogic RMI provides
transparent remote invocation in different JVMs. Remote interfaces and
implementations that are written to the RMI specification can be used with WebLogic
RMI without changes.

The following tables highlight important features of WebLogic implementation of
RMI.

Table 1-1 WebLogic RMI Performance

Feature WebLogic RMI

Overall performance Enhanced by WebLogic RMI integration into the
WebLogic Server framework, which provides
underlying support for communications,
management of threads and sockets, efficient
garbage collection, and server-related support.

Scalability Scales linearly under load. Scales dramatically
better than JavaSoft RMI. Even relatively small,
single-processor, PC-class servers can support more
than 1,000 simultaneous RMI clients, depending on
server workload and complexity of method calls.
Programming WebLogic RMI 1-2

Features of WebLogic RMI
Management of threads and
sockets

Uses a single, asynchronous, bidirectional
connection for WebLogic RMI client-to-network
traffic. Same connection can support WebLogic
JDBC requests or other services.

Serialization Uses high-performance serialization, which offers a
significant performance gain, even for one-time use
of remote class.

Resolution of co-located
objects

No performance penalty for co-located objects that
are defined as remote. References to co-located
“remote” objects resolved as direct references to the
actual implementation object.

Processes for supporting
services

WebLogic RMI registry replaces the RMI registry
process. WebLogic RMI runs inside WebLogic
Server. No additional processes needed.

Table 1-2 WebLogic RMI Ease of Use

Feature WebLogic RMI

rmic Proxies and bytecode dynamically generated by
WebLogic RMI at run time, which obviates need
to explicitly run rmic, except for clusterable or
IIOP clients.

Ease-of-use extensions Provides ease-of-use extensions for remote
interfaces and code generation. For example, it is
not necessary for each method in the interface to
declare a java.rmi.RemoteException in
its throws block. Exceptions that your application
throws can be specific to that application and can
extend RuntimeException.

Table 1-1 WebLogic RMI Performance

Feature WebLogic RMI
Programming WebLogic RMI 1-3

Features of WebLogic RMI
Proxies A class used by the clients of a remote object. In
the case of RMI, skeleton and a stub classes are
used. The stub class is the instance that is invoked
upon in the client's Java Virtual Machine (JVM).
The skeleton class, which exists in the remote
JVM, unmarshals the invoked method and
arguments on the remote JVM, invokes the method
on the instance of the remote object, and then
marshals the results for return to the client.

Security Manager No Security Manager required. All WebLogic
RMI services provided by WebLogic Server,
which provides more sophisticated security
options, such as SSL and ACLs. You can comment
out the call to setSecurityManager() when
converting RMI code to WebLogic RMI.

Inheritance No requirement to extend UnicastRemoteObject,
thus preserving your logical object hierarchy.
Remote classes do not have to inherit from
UnicastRemoteObject in order to inherit
rmi.server package implementation. They can
inherit classes from within your application
hierarchy and yet retain the behavior of the
rmi.server package.

Instrumentation and
management

WebLogic Server, which hosts the RMI registry,
provides a well-instrumented environment for
development and deployment of distributed
applications.

Table 1-2 WebLogic RMI Ease of Use

Feature WebLogic RMI
Programming WebLogic RMI 1-4

Features of WebLogic RMI
Table 1-3 WebLogic RMI Naming and Lookup

Feature WebLogic RMI

Naming Fully integrated with WebLogic JNDI. Applications
can be partitioned into meaningful name spaces by
using JNDI API or the WebLogic RMI registry
interfaces. JNDI allows publication of RMI objects
through enterprise naming services, such as LDAP
or NDS.

Lookup In URLs, use the standard rmi:// scheme, https://,
iiop://, or http://, which tunnels WebLogic RMI
requests over HTTP, making WebLogic RMI
remote invocation available through firewalls.

Client-side invocation Supports client-to-server, client-to-client, and
server-to-client invocations. Operates within the
well-defined WebLogic Server environment with
optimized, multiplexed, asynchronous, and
bidirectional client-server connections. Thus a client
application can publish its objects through the
registry, and other clients or servers can use the
client-resident objects as they would any
server-resident objects.
Programming WebLogic RMI 1-5

1 Introducing WebLogic RMI
1-6 Programming WebLogic RMI

WebLogic RMI Compiler
2 Programming
Considerations

The following sections describe the WebLogic RMI features that you use to program
RMI for use with WebLogic Server.

� WebLogic RMI Compiler

� WebLogic RMI Framework

� Dynamic Proxies in RMI

� Hot Code Generation

� WebLogic RMI Registry

� WebLogic RMI Implementation Features

� RMI and T3 Protocol

WebLogic RMI Compiler

The WebLogic RMI compiler (weblogic.rmic) generates dynamic proxies on the
client-side for custom remote object interfaces and provides hot code generation for
server-side objects. When rmic is run, the hot code generation feature generates
bytecode that is dynamically created at runtime, when the RMI object is deployed.
Programming WebLogic RMI 2-1

2 Programming Considerations
Note: You only need to explicitly run rmic for clusterable or IIOP clients.
(WebLogic RMI over IIOP extends the RMI programming model by
providing the ability for clients to access RMI remote objects using the
Internet Inter-ORB Protocol, IIOP.) See Programming WebLogic RMI over
IIOP for more information on using RMI over IIOP.

The dynamic proxy class is the serializable class that is passed to the client. Hot code
generation is the RMI feature that produces the bytecode is a server-side class that
processes requests from the dynamic proxy on the client. The implementation for the
class is bound to a name in the RMI registry in WebLogic Server.

A client acquires the proxy for the class by looking up the class in the registry. The
client calls methods on the proxy just as if it were a local class and the proxy serializes
the requests and sends them to WebLogic Server. The dynamically created bytecode
de-serializes client requests and executes them against the implementation classes,
serializing results and sending them back to the proxy on the client.

Dynamic Proxies and Bytecode

In previous versions of WebLogic Server, pre 6.1, running rmic generated stubs on the
client and skeleton code on the server-side. Now, rmic generates an XML deployment
descriptor which is loaded at runtime. Instead of a stub, the client uses a dynamic proxy
to communicate with remote objects. A skeleton class is created on the fly in memory.
So, you no longer need to generate classes.

To enable pre-6.1 WebLogic RMI objects to run under later versions of WebLogic
Server, rerun rmic on those objects. This will generate the necessary proxies and
bytecode that enable the deployed RMI object.

If your remote objects are EJBs, rerun weblogic.ejbc again to enable pre-WebLogic
Server 6.1 objects to work in the post-6.1 version. See Programming Enterprise
JavaBeans for instructions on using weblogic.ejbc.

Rerunning either weblogic.rmic using one or more of the following parameters,
-oneway, -clusterable, -stickToFirstServer or weblogic.ejbc on the
remote object produces a deployment descriptor file for that object
2-2 Programming WebLogic RMI

http://e-docs.bea.com/wls/docs61/ejb/EJB_utilities.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_utilities.html

WebLogic RMI Compiler
.WebLogic RMI Compiler Options

The WebLogic RMI compiler accepts any option supported by the Java compiler; for
example, you could add -d \classes examples.hello.HelloImpl to the
compiler option at the command line. All other options supported by the Java compiler
can be used and are passed directly to the Java compiler.

The following tables list java weblogic.rmic options. Enter these options after
java weblogic.rmic and before the name of the remote class.

Table 2-1 WebLogic RMI Compiler Options

Option Description

-callRouter
<callRouterClass>

Only for use in conjunction with -clusterable.
Specifies the class to be used for routing method calls.
This class must implement
weblogic.rmi.cluster.CallRouter. If specified,
an instance of the class is called before each method call
and can designate a server to route to based on the method
parameters. This option either returns a server name or
null. Null indicates that the current load algorithm should
be used.

-clusterable Marks the service as clusterable (can be hosted by multiple
servers in a WebLogic cluster). Each hosting object, or
replica, is bound into the naming service under a common
name. When the service proxy is retrieved from the
naming service, it contains a replica-aware reference that
maintains the list of replicas and performs load-balancing
and fail-over between them.

-commentary Emits commentary

-dispatchPolicy
<queueName>

Specifies a configured execute queue that the service
should use for obtaining execute threads in WebLogic
Server. See Using Execute Queues to Control Thread
Usage for more information.

-help Prints a description of the options

-idl Generates IDLs for remote interfaces

-idlOverwrite Overwrites existing IDL files
Programming WebLogic RMI 2-3

2 Programming Considerations
-idlVerbose Displays verbose information for IDL information

-idlStrict Generates IDL according to OMG standard

-idlNoFactories Prevents generation of factory methods for value types

-idlDirectory
<idlDirectory>

Specifies the directory where IDL files will be created
(Default = current directory)

-iiop Generates IIOP proxy from servers

-iiopDirectory Specifies the directory where IIOP proxy classes are
written

-keepgenerated Allows you to keep the source of generated proxy classes
and bytecode when you run the WebLogic RMI compiler.

-loadAlgorithm
<algorithm>

Only for use in conjunction with -clusterable.
Specifies a service specific algorithm to use for
load-balancing and fail-over (Default =
weblogic.cluster.loadAlgorithm). Must be one
of the following: round-robin, random, or weight-based.

-methodsAreIdempotent Only for use in conduction with -clusterable.
Indicates that the methods on this class are idem potent.
This allows the proxy to attempt recovery form any
communication failure, even if it can not ensure that
failure occurred before the remote method was invoked.
By default (if this option is not used) the proxy only retries
on failures that are guaranteed to have occurred before the
remote method was invoked.

-nomanglednames Causes the compiler to produce proxies specific to the
remote class.

-replicaListRefreshInt
erval <seconds>

Only for use in conjunction with -clusterable.
Specifies the minimum time to wait between attempts to
refresh the replica list from the cluster (Default = 180
seconds).

-stickToFirstServer Only for use in conjunction with -clusterable.
Enables “sticky” load balancing. The server chosen for
servicing the first request is used for all subsequent
requests.

Option Description
2-4 Programming WebLogic RMI

WebLogic RMI Compiler
Table 2-2 Cluster-Specific WebLogic RMI Compiler Options

-version Prints version information

Option Description

-callRouter
<callRouterClass>

Only for use in conjunction with -clusterable.
Specifies the class to be used for routing method calls.
This class must implement
weblogic.rmi.cluster.CallRouter. If specified,
an instance of the class is called before each method call
and can designate a server to route to based on the method
parameters. This option either returns a server name or
null. Null indicates that the current load algorithm should
be used.

-clusterable Marks the service as clusterable (can be hosted by multiple
servers in a WebLogic cluster). Each hosting object, or
replica, is bound into the naming service under a common
name. When the service proxy is retrieved from the
naming service, it contains a replica-aware reference that
maintains the list of replicas and performs load-balancing
and fail-over between them.

-loadAlgorithm
<algorithm>

Only for use in conjunction with -clusterable.
Specifies a service specific algorithm to use for
load-balancing and fail-over (Default =
weblogic.cluster.loadAlgorithm). Must be one
of the following: round-robin, random, or weight-based.

Load algorithm name may only be used in conjunction
with -clusterable. Specifies a service-specific
algorithm that will be used by the proxy to handle fail-over
and load balancing. If this argument is unspecified, the
default load balancing algorithm is specified in the
Administration Console. For example, to specify
weight-based load balancing:

 $ java weblogic.rmic -clusterable
-loadAlgorithm=weight-based

Option Description
Programming WebLogic RMI 2-5

2 Programming Considerations
Replicating Stubs in a Cluster

You can also generate stubs that are not replicated in the cluster; these are known as
"pinned" services, because after they are registered they will be available only from the
host with which they are registered and will not provide transparent fail-over or load
balancing.

If you use weblogic.rmic to compile an RMI object using the clustering option and
then deploy the object on two nodes (A and B) of a three node server cluster A, B, and
C) with replicating binding on all three nodes you get the same view from each server.
When you do a JNDI lookup on all three nodes, you get the same stub and when you
make method calls, the server performs load balancing between the first two nodes

Therefore, if you compile RMI objects with the clusterable option and bind them to a
JNDI tree with replicate bindings set to false, when you do a JNDI lookup you get the
following results:

� On Server A, you get a stub that points to Sever A

� On Server B, you get a stub that points to Server B

� On Server C, you get a NameNotFoundException

-methodsAreIdempotent May only be used in conjunction with -clusterable.
Indicates to the proxy that it can attempt retries after
fail-over even if it might result in executing the same
method multiple times. If this flag isn't present, methods
for this proxy are not considered idem potent. The
exceptions that are handled by this are described in
Exceptions Used for fail-over.

-replicaListRefreshInt
erval <seconds>

Only for use in conjunction with -clusterable.
Specifies the minimum time to wait between attempts to
refresh the replica list from the cluster (Default = 180
seconds).

-stickToFirstServer Only for use in conjunction with -clusterable.
Enables “sticky” load balancing. The server chosen for
servicing the first request is used for all subsequent
requests.

Option Description
2-6 Programming WebLogic RMI

WebLogic RMI Framework
If you make a remote call to Server A fails and it fails because the server is no longer
available, the clusterable stub does a re-lookup and depending on where the call is
routed, one of the following can occur:

� On Server B, you get a stub that points to Server B

� On Server C, you get a NameNotFoundException

If your RMI object is non-clusterable and you bind it to a JNDI tree with replicate
bindings set to false, when you do a JNDI lookup you get pinned stubs and there is
no failover. Pinned services are available cluster-wide, because they are bound into the
replicated cluster-wide JNDI tree. However, if the individual server that hosts the
pinned services fails, the client cannot fail-over to another server.

If your RMI object is non-clusterable and you bind it to a JNDI tree with replicate
bindings set to true, this will fail because the object is non-clusterable and only one
server can provide a non-clusterable service in a cluster.

WebLogic RMI Framework

WebLogic RMI is divided between a client and server framework. The client runtime
does not have server sockets and therefore does not listen for connections. It obtains
its connections through the server. Only the server knows about the client socket.
Therefore if you plan to host a remote object on the client, the client must be connected
to WebLogic Server. WebLogic Server processes requests for and passes information
to the client. In other words, client-side RMI objects can only be reached through a
single WebLogic Server, even in a cluster. If a client-side RMI object is bound into the
JNDI naming service, it will only be reachable as long as the server that carried out the
bind is reachable.

Additional WebLogic RMI Compiler Features

Other features of the WebLogic RMI compiler include:

� Signatures of remote methods do not need to throw RemoteException.

� Remote exceptions can be mapped to RuntimeException.
Programming WebLogic RMI 2-7

2 Programming Considerations
� Remote classes can also implement non-remote interfaces.

Dynamic Proxies in RMI

A dynamic proxy or proxy is a class used by the clients of a remote object. This class
implements a list of interfaces specified at runtime when the class is created. In the
case of RMI, dynamic proxies are

In the case of RMI, dynamically generated bytecode and proxy classes are used. The
proxy class is the instance that is invoked upon in the client's Java Virtual Machine
(JVM). The proxy class marshals the invoked method name and its arguments;
forwards these to the remote JVM. After the remote invocation is completed and
returns, the proxy class unmarshals the results on the client. The generated bytecode—
which exists in the remote JVM—unmarhsals the invoked method and arguments on
the remote JVM, invokes the method on the instance of the remote object, and then
marshals the results for return to the client.

Using the WebLogic RMI Compiler with Proxies

The default behavior of the WebLogic RMI compiler is to produce proxies for the
remote interface and for the remote classes to share the proxies. A proxy is a class used
by the clients of a remote object. In the case of RMI, dynamically generated bytecode
and proxy classes are used.

For example, example.hello.HelloImpl and counter.example.CiaoImpl are
represented by a single proxy class and bytecode—the proxy that matches the remote
interface implemented by the remote object, in this case, example.hello.Hello.

When a remote object implements more than one interface, the proxy names and
packages are determined by encoding the set of interfaces. You can override this
default behavior with the WebLogic RMI compiler option -nomanglednames, which
causes the compiler to produce proxies specific to the remote class. When a
class-specific proxy is found, it takes precedence over the interface-specific proxy.
2-8 Programming WebLogic RMI

Hot Code Generation
In addition, with WebLogic RMI proxy classes, the proxies are not final. References
to collocated remote objects are references to the objects themselves, not to the
proxies.

Hot Code Generation

When you run rmic, you use WebLogic Server’s hot code generation feature to
automatically generate bytecode in memory for server classes. This bytecode is
generated on the fly as needed for the remote object. WebLogic Server no longer
generates the skeleton class for the object when weblogic.rmic is run.

WebLogic RMI Registry

WebLogic Server hosts the RMI registry and provides server infrastructure for RMI
clients. The overhead for RMI registry and server communications is minimal, because
registry traffic is multiplexed over the same connection as JDBC and other kinds of
traffic. Clients use a single socket for RMI; scaling for RMI clients is linear in the
WebLogic Server environment.

The WebLogic RMI registry is created when WebLogic Server starts up, and calls to
create new registries simply locate the existing registry. Objects that have been bound
in the registry can be accessed with a variety of client protocols, including the standard
rmi://, as well as http://, or https://. In fact, all of the naming services use JNDI.

WebLogic RMI Implementation Features

In general, functional equivalents of all methods in the java.rmi package are
provided in WebLogic RMI, except for those methods in the RMIClassLoader and
the method java.rmi.server.RemoteServer.getClientHost().
Programming WebLogic RMI 2-9

2 Programming Considerations
All other interfaces, exceptions, and classes are supported in WebLogic RMI. The
following sections note particular implementations that may be of interest.

JNDI

Use Java Naming and Directory Interface (JNDI) as the preferred mechanism for
naming objects in WebLogic RMI. The JNDI is an application programming interface
(API) that provides naming services to Java applications. JNDI is an integral
component of Sun Microsystems Inc.’s Java 2 Enterprise Edition (J2EE) technology.
A naming service associates names with objects and finds objects based on their given
names. (The RMI registry is an example of a naming service.)

Using JNDI with RMI allows you to make distributed programming more efficient.
However, you should be aware of the number of round trips between remote client and
the server. Repeated JNDI lookups between the client and server may cause
performance problems

rmi.RMISecurityManager

rmi.RMISecurityManager is implemented as a non-final class with all public
methods in WebLogic RMI, and, unlike the restrictive JavaSoft reference
implementation, is entirely permissive. Security in WebLogic RMI is an integrated
part of the larger WebLogic environment, for which there is support for SSL (Secure
Socket Layer) and ACLs (Access Control Lists).

rmi.registry.LocateRegistry

rmi.registry.LocateRegistry is implemented as a final class with all public
methods. However, a call to LocateRegistry.createRegistry(int port) does
not create a collocated registry, but rather attempts to connect to the server-side
instance that implements JNDI, for which host and port are designated by attributes. In
WebLogic RMI, a call to this method allows the client to find the JNDI tree on
WebLogic Server.
2-10 Programming WebLogic RMI

WebLogic RMI Implementation Features
Note: You can use protocols other than the default (rmi) as well, and provide the
scheme, host, and port as a URL, as shown here:

LocateRegistry.getRegistry(https://localhost:7002);

This example locates a WebLogic Server registry on the local host at port 7002, using
a standard SSL protocol.

rmi.server Classes

rmi.server.LogStream diverges from the JavaSoft reference implementation in
that the write(byte[]) method logs messages through the WebLogic Server log
file.

rmi.server.RemoteObject is implemented in WebLogic RMI to preserve the type
equivalence of UnicastRemoteObject, but the functionality is provided by the
WebLogic RMI base class proxy.

rmi.server.RemoteServer is implemented as the abstract super-class of
rmi.server.UnicastRemoteObject and all public methods are supported in
WebLogic RMI with the exception of getClientHost().

rmi.server.UnicastRemoteObject is implemented as the base class for remote
objects, and all the methods in this class are implemented in terms of the WebLogic
RMI base class Proxy. This allows the proxy to override non-final Object methods
and equate these to the implementation without making any requirements on the
implementation.

In WebLogic RMI, all method parameters are pass-by-value, unless the invoking
object resides in the same Java Virtual Machine (JVM) as the RMI object. In this
scenario, method parameters are pass-by-reference.

Note: WebLogic RMI does not support uploading classes from the client. In other
words, any classes passed to a remote object must be available within the
server's CLASSPATH.
Programming WebLogic RMI 2-11

2 Programming Considerations
setSecurityManager

The setSecurityManager() method is provided in WebLogic RMI for compilation
compatibility only. No security is associated with it, because WebLogic RMI depends
on the more general security model within WebLogic Server. If, however, you do set
a security manager, you can set only one. Before setting a security manager, you
should test to see if one has already been set; if you try to set another, your program
will throw an exception. Here is an example:

 if (System.getSecurityManager() == null)

Unused Classes

System.setSecurityManager(new RMISecurityManager());

The following classes are implemented but unused in WebLogic RMI:

� rmi.dgc.Lease

� rmi.dgc.VMID

� rmi.server.ObjID

� rmi.server.Operation

� rmi.server.RMIClassLoader

� rmi.server.RMISocketFactory

� rmi.server.UID

RMI and T3 Protocol

RMI communications in WebLogic Server use the T3 protocol, an optimized protocol
used to transport data between WebLogic Server and other Java programs, including
clients and other WebLogic Servers. A server instance keeps track of each Java Virtual
Machine (JVM) with which it connects, and creates a single T3 connection to carry all
traffic for a JVM.
2-12 Programming WebLogic RMI

RMI and T3 Protocol
For example, if a Java client accesses an enterprise bean and a JDBC connection pool
on WebLogic Server, a single network connection is established between the
WebLogic Server JVM and the client JVM. The EJB and JDBC services can be written
as if they had sole use of a dedicated network connection because the T3 protocol
invisibly multiplexes packets on the single connection.

Any two Java programs with a valid T3 connection—such as two server instances, or
a server instance and a Java client—use periodic point-to-point “heartbeats” to
announce and determine continued availability. Each end point periodically issues a
heartbeat to the peer, and similarly, determines that the peer is still available based on
continued receipt of heartbeats from the peer.

The frequency with which a server instance issues heartbeats is determined by the
heartbeat interval, which by default is 60 seconds.

The number of missed heartbeats from a peer that a server instance waits before
deciding the peer is unavailable is determined by the heartbeat period, which by
default, is 4.

Hence, each server instance waits up to 240 seconds, or 4 minutes, with no messages—
either heartbeats or other communication—from a peer before deciding that the peer is
unreachable.

Changing timeout defaults is not recommended.
Programming WebLogic RMI 2-13

2 Programming Considerations
2-14 Programming WebLogic RMI

Overview of the WebLogic RMI API
3 Implementing
WebLogic RMI

The following sections describe the WebLogic RMI API:

� Overview of the WebLogic RMI API

� Procedures for Implementing WebLogic RMI

Overview of the WebLogic RMI API

Several packages are shipped with WebLogic Server as part of WebLogic RMI. The
public API includes:

� WebLogic implementation of the RMI base classes

� Registry

� Server packages

� WebLogic RMI compiler

� Supporting classes that are not part of the public API

If you have written RMI classes, you can drop them in WebLogic RMI by changing
the import statement on a remote interface and the classes that extend it. To add remote
invocation to your client applications, look up the object by name in the registry.
Programming WebLogic RMI 3-1

3 Implementing WebLogic RMI
The basic building block for all remote objects is the interface java.rmi.Remote,
which contains no methods. You extend this "tagging" interface—that is, it functions
as a tag to identify remote classes—to create your own remote interface, with methods
that create a structure for your remote object. Then you implement your own remote
interface with a remote class. This implementation is bound to a name in the registry,
where a client or server can look up the object and use it remotely.

As in the JavaSoft reference implementation of RMI, the java.rmi.Naming class is
an important one. It includes methods for binding, unbinding, and rebinding names to
remote objects in the registry. It also includes a lookup() method to give a client
access to a named remote object in the registry.

In addition, WebLogic JNDI provides naming and lookup services. WebLogic RMI
supports naming and lookup in JNDI.

WebLogic RMI exceptions are identical to and extend java.rmi exceptions so that
existing interfaces and implementations do not have to change exception handling.

Procedures for Implementing WebLogic RMI

The following sections describe how to implement WebLogic Server RMI:

� Creating Classes That Can Be Invoked Remotely

Step 1. Write a Remote Interface

Step 2. Implement the Remote Interface

Step 3. Compile the Java Class

Step 4. Compile the Implementation Class with RMI Compiler

Step 5: Write Code That Invokes Remote Methods

� Full Code Examples
3-2 Programming WebLogic RMI

Procedures for Implementing WebLogic RMI
Creating Classes That Can Be Invoked Remotely

You can write your own WebLogic RMI classes in just a few steps. Here is a simple
example.

Step 1. Write a Remote Interface

Every class that can be remotely invoked implements a remote interface. Using a Java
code text editor, write the remote interface in adherence with the following guidelines.

� A remote interface must extend the interface java.rmi.Remote, which
contains no method signatures. Include method signatures that will be
implemented in every remote class that implements the interface. For detailed
information on how to write an interface, see the Sun Microsystems JavaSoft
tutorial Creating Interfaces.

� The remote interface must be public. Otherwise a client gets an error when
attempting to load a remote object that implements it.

� Unlike the JavaSoft RMI, it is not necessary for each method in the interface to
declare java.rmi.RemoteException in its throws block. The exceptions
that your application throws can be specific to your application, and can extend
RuntimeException. WebLogic RMI subclasses
java.rmi.RemoteException, so if you already have existing RMI classes,
you will not have to change your exception handling.

� Your Remote interface may not contain much code. All you need are the method
signatures for methods you want to implement in remote classes.

Here is an example of a remote interface with the method signature
sayHello().

package examples.rmi.multihello;

import java.rmi.*;

public interface Hello extends java.rmi.Remote {

 String sayHello() throws RemoteException;

}

With JavaSoft's RMI, every class that implements a remote interface must have
accompanying, precompiled proxies. WebLogic RMI supports more flexible runtime
code generation; WebLogic RMI supports dynamic proxies and dynamically created
Programming WebLogic RMI 3-3

3 Implementing WebLogic RMI
bytecode that are type-correct but are otherwise independent of the class that
implements the interface. If a class implements a single remote interface, the proxy and
bytecode that is generated by the compiler will have the same name as the remote
interface. If a class implements more than one remote interface, the name of the proxy
and bytecode that result from compilation will depend on the name mangling used by
the compiler.

Step 2. Implement the Remote Interface

Still using a Java code text editor, write the class be invoked remotely. The class should
implement the remote interface that you wrote in Step 1, which means that you
implement the method signatures that are contained in the interface. Currently, all the
code generation that takes place in WebLogic RMI is dependent on this class file.

With WebLogic RMI, your class does not need to extend UnicastRemoteObject,
which is required by JavaSoft RMI. This allows you to retain a class hierarchy that
makes sense for your application.

Your class can implement more than one remote interface. Your class can also define
methods that are not in the remote interface, but you cannot invoke those methods
remotely.

This example implements a class that creates multiple HelloImpls and binds each to
a unique name in the registry. The method sayHello() greets the user and identifies
the object which was remotely invoked.

package examples.rmi.multihello;

import java.rmi.*;

public class HelloImpl implements Hello {

 private String name;

 public HelloImpl(String s) throws RemoteException {

 name = s;

 }

 public String sayHello() throws RemoteException {

 return "Hello! From " + name;

 }
3-4 Programming WebLogic RMI

Procedures for Implementing WebLogic RMI
Next, write a main() method that creates an instance of the remote object and registers
it in the WebLogic RMI registry, by binding it to a name (a URL that points to the
implementation of the object). A client that needs to obtain a proxy to use the object
remotely will be able to look up the object by name.

The string name excepted by the RMI registry has the following syntax:

rmi://hostname:port/remoteObjectName

The hostname and port identify the machine and port on which the RMI registry is
running and the remoteObjectName is the remote object’s string name. The hostname,
port, and the prefix, rmi: are optional. If you do not specify a hostname, then WebLogic
Server defaults to the local host. If you do not specify a port, then WebLogic Server
uses 1099. If you do not specify the remoteObjectName, then the object being named
is the RMI registry itself.

For more information, see the RMI specification.

Below is an example of a main() method for the HelloImpl class. This registers the
HelloImpl object under the name MultiHelloServer in a WebLogic Server
registry.

 public static void main(String[] argv) {

 // Not needed with WebLogic RMI

 // System.setSecurityManager(new RmiSecurityManager());

 // But if you include this line of code, you should make

 // it conditional, as shown here:

 // if (System.getSecurityManager() == null)

 // System.setSecurityManager(new RmiSecurityManager());

 int i = 0;

 try {

 for (i = 0; i < 10; i++) {

 HelloImpl obj = new HelloImpl("MultiHelloServer" + i);

 Naming.rebind("//localhost/MultiHelloServer" + i, obj);

System.out.println("MultiHelloServer" + i + " created.");

 }
Programming WebLogic RMI 3-5

3 Implementing WebLogic RMI
 System.out.println("Created and registered " + i +

 " MultiHelloImpls.");

 }

 catch (Exception e) {

 System.out.println("HelloImpl error: " + e.getMessage());

 e.printStackTrace();

 }

 }

WebLogic RMI does not require that you set a Security Manager in order to integrate
security into your application. Security is handled by WebLogic Server support for
SSL and ACLs. If you must, you may use your own security manager, but do not install
it in WebLogic Server.

Step 3. Compile the Java Class

Use javac or some other Java compiler to compile the .java files to produce .class
files for the remote interface and the class that implements it.

Step 4. Compile the Implementation Class with RMI Compiler

To run the WebLogic RMI compilern (weblogic.rmic), use the command pattern:

 $ java weblogic.rmic nameOfRemoteClass

where nameOfRemoteClass is the full package name of the class that implements
your Remote interface. With the examples we have used previously, the command
would be:

 $ java weblogic.rmic examples.rmi.hello.HelloImpl

Set the flag -keepgenerated when you run the WebLogic RMI compiler if you want
to keep the generated wource if creating stubs and skeleton classes. For a listing of the
available WebLogic RMI compiler options, see “.WebLogic RMI Compiler Options”
on page 2-3.
3-6 Programming WebLogic RMI

Procedures for Implementing WebLogic RMI
Step 5: Write Code That Invokes Remote Methods

Using a Java code text editor, once you compile and install the remote class, the
interface it implements, and its proxy and the bytecode on the WebLogic Server, you
can add code to a WebLogic client application to invoke methods in the remote class.

In general, it takes just a single line of code: get a reference to the remote object. Do
this with the Naming.lookup() method. Here is a short WebLogic client application
that uses an object created in a previous example.

package mypackage.myclient;

import java.rmi.*;

public class HelloWorld throws Exception {

 // Look up the remote object in the

 // WebLogic's registry

 Hello hi = (Hello)Naming.lookup("HelloRemoteWorld");

 // Invoke a method remotely

 String message = hi.sayHello();

 System.out.println(message);

}

This example demonstrates using a Java application as the client.

Full Code Examples

Here is the full code for the Hello interface.

package examples.rmi.hello;

import java.rmi.*;

public interface Hello extends java.rmi.Remote {
Programming WebLogic RMI 3-7

3 Implementing WebLogic RMI
 String sayHello() throws RemoteException;

}

Here is the full code for the HelloImpl class that implements it.

package examples.rmi.hello;

import java.rmi.*;

public class HelloImpl

 // Don't need this in WebLogic RMI:

 // extends UnicastRemoteObject

 implements Hello {

 public HelloImpl() throws RemoteException {

 super();

 }

 public String sayHello() throws RemoteException {

 return "Hello Remote World!!";

 }

 public static void main(String[] argv) {

 try {

 HelloImpl obj = new HelloImpl();

 Naming.bind("HelloRemoteWorld", obj);

 }
3-8 Programming WebLogic RMI

Procedures for Implementing WebLogic RMI
 catch (Exception e) {

 System.out.println("HelloImpl error: " + e.getMessage());

 e.printStackTrace();

 }

 }

}

Programming WebLogic RMI 3-9

3 Implementing WebLogic RMI
3-10 Programming WebLogic RMI

	1 Introducing WebLogic RMI
	What is WebLogic RMI?
	Features of WebLogic RMI

	2 Programming Considerations
	WebLogic RMI Compiler
	Dynamic Proxies and Bytecode
	.WebLogic RMI Compiler Options
	Replicating Stubs in a Cluster

	WebLogic RMI Framework
	Additional WebLogic RMI Compiler Features

	Dynamic Proxies in RMI
	Using the WebLogic RMI Compiler with Proxies

	Hot Code Generation
	WebLogic RMI Registry
	WebLogic RMI Implementation Features
	JNDI
	rmi.RMISecurityManager
	rmi.registry.LocateRegistry
	rmi.server Classes
	setSecurityManager
	Unused Classes

	RMI and T3 Protocol

	3 Implementing WebLogic RMI
	Overview of the WebLogic RMI API
	Procedures for Implementing WebLogic RMI
	Step 1. Write a Remote Interface
	Step 2. Implement the Remote Interface
	Step 3. Compile the Java Class
	Step 4. Compile the Implementation Class with RMI Compiler
	Step 5: Write Code That Invokes Remote Methods
	Full Code Examples

