
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA WebLogic

Developing WebLogic
Server Applications

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Developing WebLogic Server Applications

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience.. viii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Understanding WebLogic Server J2EE Applications
What Are WebLogic Server J2EE Applications and Components? 1-2

J2EE Platform .. 1-3

WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality 1-3

Web Application Components ... 1-4

Servlets.. 1-4

JavaServer Pages... 1-5

Web Application Directory Structure ... 1-5

For More Information on Web Application Components................... 1-5

Enterprise JavaBean Components.. 1-6

EJB Overview ... 1-6

EJB Interfaces ... 1-6

EJBs and WebLogic Server .. 1-7

WebLogic Server Components .. 1-8

Connector Component.. 1-8

Enterprise Applications ... 1-9

Client Applications.. 1-9
Developing BEA WebLogic Server Applications iii

2. Developing WebLogic Server J2EE Applications
Creating Web Applications: Main Steps ... 2-2

Creating Enterprise JavaBeans: Main Steps .. 2-3

Creating WebLogic Server Enterprise Applications: Main Steps 2-5

Creating Resource Adapters: Main Steps .. 2-9

Creating a New Resource Adapter (.rar) .. 2-9

Modifying an Existing Resource Adapter (.rar) 2-11

Establishing a Development Environment .. 2-13

Software Tools.. 2-13

Source Code Editor or IDE ... 2-13

XML Editor ... 2-13

Java Compiler.. 2-14

Development WebLogic Server .. 2-14

Database System and JDBC Driver .. 2-15

Web Browser... 2-16

Third-Party Software .. 2-16

Preparing to Compile... 2-17

Putting the Java Tools in Your Search Path ... 2-17

Setting the Classpath for Compiling... 2-18

Setting Target Directories for Compiled Classes 2-18

Editing Deployment Descriptors ... 2-20

Using the BEA XML Editor... 2-20

Using the Administration Console Deployment Descriptor Editor.......... 2-21

Editing EJB Deployment Descriptors ... 2-21

Editing Web Application Deployment Descriptors 2-23

Editing Resource Adapter Deployment Descriptors 2-25

Editing Enterprise Application Deployment Descriptors.................. 2-27

3. Packaging WebLogic Server J2EE Applications
Packaging Overview.. 3-2

JAR Files .. 3-2

XML Deployment Descriptors ... 3-3

Automatically Generating Deployment Descriptors 3-4

Development Mode vs. Production Mode.. 3-6

Packaging Web Applications... 3-6
iv Developing BEA WebLogic Server Applications

Packaging Enterprise JavaBeans ... 3-8

Packaging Resource Adapters ... 3-10

Packaging Enterprise Applications.. 3-11

Packaging Client Applications .. 3-13

Executing a Client Application in an EAR File 3-13

Special Considerations for Deploying J2EE Client Applications 3-15

Packaging J2EE Applications Using Apache Ant... 3-16

Compiling Java Source Files.. 3-17

Running WebLogic Server Compilers ... 3-17

Packaging J2EE Deployment Units ... 3-18

Running Ant ... 3-21

Resolving Class References Between Components .. 3-21

Classloader Overview .. 3-21

About Application Classloaders... 3-22

About Resource Adapter Classes ... 3-23

Using PreferWebInfClasses in J2EE Applications 3-23

Packaging Common Utilities and Third-Party Classes 3-24

Handling Interactions Between Startup Classes and Applications 3-24

4. Programming Topics
Logging Messages ... 4-1

Using Threads in WebLogic Server .. 4-4

Using JavaMail with WebLogic Server Applications 4-6

About JavaMail Configuration Files .. 4-6

Configuring JavaMail for WebLogic Server.. 4-7

Sending Messages with JavaMail .. 4-9

Reading Messages with JavaMail .. 4-10

Programming Applications for WebLogic Server Clusters............................. 4-12

A. application.xml Deployment Descriptor Elements
application .. A-2

icon .. A-3

small-icon... A-3

large-icon ... A-3

display-name ... A-3
Developing BEA WebLogic Server Applications v

description ... A-3

module ... A-3

ejb ... A-4

java ... A-4

web ... A-4

security-role... A-5

description .. A-5

role-name.. A-5

.. A-5

B. Client Application Deployment Descriptor Elements
application-client.xml Deployment Descriptor Elements B-1

application-client ... B-4

icon ... B-4

display-name .. B-4

description .. B-4

env-entry... B-5

ejb-ref ... B-5

resource-ref... B-6

WebLogic Run-time Client Application Deployment Descriptor B-7

application-client ... B-8

env-entry*... B-8

ejb-ref* ... B-9

resource-ref*... B-9
vi Developing BEA WebLogic Server Applications

About This Document

This document introduces the BEA WebLogic Server™ application development
environment. It describes how to establish a development environment and how to
package applications for deployment on the WebLogic Server platform.

The document is organized as follows:

� Chapter 1, “Understanding WebLogic Server J2EE Applications,” describes
components of WebLogic Server applications.

� Chapter 2, “Developing WebLogic Server J2EE Applications,” outlines
high-level procedures for creating WebLogic Server applications and helps Java
programmers establish their programming environment.

� Chapter 3, “Packaging WebLogic Server J2EE Applications,” describes how to
bundle WebLogic Server components and applications in standard JAR files for
distribution and deployment.

� Chapter 4, “Programming Topics,” covers general WebLogic Server application
programming issues, such as logging messages and using threads.

� Appendix A, “application.xml Deployment Descriptor Elements,” is a reference
for the standard J2EE Enterprise application deployment descriptor,
application.xml.

� Appendix B, “Client Application Deployment Descriptor Elements,” is a
reference for the standard J2EE Client application deployment descriptor,
application-client.xml, and the WebLogic-specific client application
deployment descriptor.
Developing WebLogic Server Applications vii

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii Developing WebLogic Server Applications

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. The
following WebLogic Server documents contain information that is relevant to creating
WebLogic Server application components:

� Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html

� Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

� Programming WebLogic JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html

� Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html

� Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs61/jdbc/index.html

� Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs61/webServices/index.html

� Programming WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.
Developing WebLogic Server Applications ix

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/jdbc/index.html
http://e-docs.bea.com/wls/docs61/webServices/index.html
http://e-docs.bea.com/wls/docs61/jconnector/index.html
http://java.sun.com/products/j2ee/
mailto:docsupport@bea.com

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
x Developing WebLogic Server Applications

http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
Developing WebLogic Server Applications xi

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
xii Developing WebLogic Server Applications

CHAPTER
1 Understanding
WebLogic Server
J2EE Applications

The following sections provide an overview of WebLogic Server J2EE applications
and application components:

� What Are WebLogic Server J2EE Applications and Components?

� Web Application Components

� Enterprise JavaBean Components

� WebLogic Server Components

� Connector Component

� Enterprise Applications

� Client Applications
Developing WebLogic Server Applications 1-1

1 Understanding WebLogic Server J2EE Applications
What Are WebLogic Server J2EE
Applications and Components?

A BEA WebLogic Server™ application is an application composed of one or many
J2EE components that runs on WebLogic Server. They can include the following
components:

� Web components—HTML pages, servlets, JavaServer Pages, and related files

� EJB components—entity beans, session beans, and message-driven beans

� WebLogic Server components—startup and shutdown classes

� Connector component—resource adapters

Web designers, application developers, and application assemblers create applications
and their components by using J2EE technologies such as JavaServer Pages, servlets,
Enterprise JavaBeans, and resource adapters.

Components are packaged in Java ARchive (JAR) files—archives created with the
Java jar utility. JAR files bundle all component files in a directory into a single file,
maintaining the directory structure. JAR files also include XML descriptors that
instruct WebLogic Server how to deploy the components.

Web applications are packaged in a JAR file with a .war extension. Enterprise beans,
WebLogic components, and client applications are packaged in JAR files with .jar
extensions. Resource adapters are packaged in a JAR file with a .rar extension.

An enterprise application, consisting of assembled Web application, EJB components,
and resource adapters, is a JAR file with an .ear extension. An .ear file contains all
of the .jar, .war, and .rar component archive files for an application and an XML
descriptor that describes the bundled components.

To deploy a component, an application, or a resource adapter, you use the
Administration Console or the weblogic.deploy command-line utility to upload
JAR files to the target WebLogic Servers.
1-2 Developing WebLogic Server Applications

What Are WebLogic Server J2EE Applications and Components?
Client applications that are not Web browsers are Java classes that connect to
WebLogic Server using Remote Method Invocation (RMI). A Java client can access
Enterprise JavaBeans, JDBC connections, JMS messaging, and other services by using
RMI.

J2EE Platform

WebLogic Server contains Java 2 Platform, Enterprise Edition (J2EE) technologies.
J2EE is the standard platform for developing multitier enterprise applications based on
the Java programming language. The technologies that make up J2EE were developed
collaboratively by Sun Microsystems and other software vendors, including BEA
Systems.

J2EE applications are based on standardized, modular components. WebLogic Server
provides a complete set of services for those components and handles many details of
application behavior automatically, without requiring programming.

WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality

BEA WebLogic Server 6.1 is the first e-commerce transaction platform to implement
advanced J2EE 1.3 features. To comply with the rules governing J2EE, BEA Systems
provides two separate downloads: one with J2EE 1.3 features enabled, and one that is
limited to J2EE 1.2 features only. Both downloads offer the same container and differ
only in the APIs that are available.

Note: Your CLASSPATH setting for compiling J2EE components depends on
whether you want to create components that are completely J2EE
1.2-compliant or components that contain J2EE 1.3 features. For detailed
information, see “Setting the Classpath for Compiling” on page 2-18.

WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features

With this download, WebLogic Server defaults to running with J2EE 1.3 features
enabled. These features include EJB 2.0, JSP 1.2, Servlet 2.3, and J2EE Connector
Architecture 1.0. When you run WebLogic Server 6.1 with J2EE 1.3 features enabled,
J2EE 1.2 applications are still fully supported. The J2EE 1.3 feature implementations
use non-final versions of the appropriate API specifications. Therefore, application
Developing WebLogic Server Applications 1-3

1 Understanding WebLogic Server J2EE Applications
code developed for BEA WebLogic Server 6.1 that uses the new features of J2EE 1.3
may be incompatible with the J2EE 1.3 platform supported in future releases of BEA
WebLogic Server.

WebLogic Server 6.1 with J2EE 1.2 Certification

With this download, WebLogic Server defaults to running with J2EE 1.3 features
disabled and is fully compliant with the J2EE 1.2 specification and regulations.

Web Application Components

A Web archive contains the files that make up a Web application. A .war file is
deployed as a unit on one or more WebLogic Servers.

A Web archive on WebLogic Server always includes the following files:

� at least one servlet or JSP page, along with any helper classes

� A web.xml deployment descriptor, a J2EE standard XML document that
describes the contents of a .war file.

� A weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

A Web archive might also include HTML/XML pages with supporting files such as
images and multimedia files.

Servlets

Servlets are Java classes that execute in WebLogic Server, accept a request from a
client, process it, and optionally return a response to the client. A GenericServlet is
protocol independent and can be used in J2EE applications to implement services
accessed from other Java classes. An HttpServlet extends GenericServlet with support
for the HTTP protocol. An HttpServlet is most often used to generate dynamic Web
pages in response to Web browser requests.
1-4 Developing WebLogic Server Applications

What Are WebLogic Server J2EE Applications and Components?
JavaServer Pages

JSP pages are Web pages coded with an extended HTML that makes it possible to
embed Java code in a Web page. JSP pages can call custom Java classes, called taglibs,
using HTML-like tags. The WebLogic JSP compiler, weblogic.jspc, translates JSP
pages into servlets. WebLogic Server automatically compiles JSP pages if the servlet
class file is not present or is older than the JSP source file.

You can also precompile JSP pages and package the servlet class in the Web Archive
to avoid compiling in the server. Servlets and JSP pages may depend upon additional
helper classes that must also be deployed with the Web application.

Web Application Directory Structure

Web application components are assembled in a directory in order to stage the .war
file for the jar command. HTML pages, JSP pages, and the non-Java class files they
reference are accessed beginning in the top level of the staging directory.

The XML descriptors, compiled Java classes and JSP taglibs are stored in a WEB-INF
subdirectory at the top level of the staging directory. Java classes include servlets,
helper classes and, if desired, precompiled JSP pages.

The entire directory, once staged, is bundled into a .war file using the jar command.
The .war file can be deployed alone or packaged in an Enterprise Archive (.ear file)
with other application components, including other Web Applications, EJB
components, and WebLogic components.

For More Information on Web Application Components

For more information about creating Web application components, see these
documents:

� Programming WebLogic Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

� Programming WebLogic JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html

� Writing JSP Extensions at http://e-docs.bea.com/wls/docs61/taglib/index.html

� Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html.
Developing WebLogic Server Applications 1-5

http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/taglib/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

1 Understanding WebLogic Server J2EE Applications
Enterprise JavaBean Components

Enterprise JavaBeans (EJBs) beans are server-side Java components that implement a
business task or entity and are written according to the EJB specification. There are
three types of enterprise beans: session beans, entity beans, and message-driven beans.

EJB Overview

Session beans execute a particular business task on behalf of a single client during a
single session. Session beans can be stateful or stateless, but are not persistent; when a
client finishes with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually a relational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be accessed concurrently by multiple clients and they are
persistent by definition.

A message-driven bean is an enterprise bean that runs in the EJB container and handles
asynchronous messages from a JMS Queue. When a message is received in the JMS
Queue, the message-driven bean assigns an instance of itself from a pool to process the
message. Message-driven beans are not associated with any client. They simply handle
messages as they arrive. A JMS ServerSessionPool provides a similar capability, but
without the advantages of running in the EJB container.

Enterprise beans are bundled into a JAR file that contains their compiled classes and
XML deployment descriptors.

EJB Interfaces

Entity beans and session beans have remote interfaces, home interfaces, and
implementation classes provided by the bean developer. (Message-driven beans do not
require home or remote interfaces, because they are not accessible outside of the EJB
container.)
1-6 Developing WebLogic Server Applications

What Are WebLogic Server J2EE Applications and Components?
The remote interface defines the methods a client can call on an entity bean or session
bean. The implementation class is the server-side implementation of the remote
interface. The home interface provides methods for creating, destroying, and finding
enterprise beans. The client accesses instances of an enterprise bean through the bean’s
home interface.

EJB home and remote interfaces and implementation classes are portable to any EJB
container that implements the EJB specification. An EJB developer can supply a JAR
file containing just the compiled EJB interfaces and classes and a deployment
descriptor.

EJBs and WebLogic Server

J2EE cleanly separates the development and deployment roles to ensure that
components are portable between EJB servers that support the EJB specification.
Deploying an enterprise bean in WebLogic Server requires running the WebLogic EJB
compiler, weblogic.ejbc, to generate the stub and skeleton classes that allow an
enterprise bean to be executed remotely.

WebLogic stubs and skeletons can also contain support for WebLogic clusters, which
enable load-balancing and failover for enterprise beans. You can run weblogic.ejbc
to generate the stub and skeleton classes and add them to the EJB JAR file, or
WebLogic Server can create them by running the compiler at deployment time.

The J2EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise
beans packaged in an EJB JAR file. It defines the beans’ types, names, and the names
of their home and remote interfaces and implementation classes. The ejb-jar.xml
deployment descriptor defines security roles for the beans, and transactional behaviors
for the beans’ methods.

Additional deployment descriptors provide WebLogic-specific deployment
information. A weblogic-cmp-rdbms-jar.xml deployment descriptor for
container-managed entity beans maps a bean to tables in a database. The
weblogic-ejb-jar.xml deployment descriptor supplies additional information
specific to the WebLogic Server environment, such as clustering and cache
configuration.

For help creating and deploying EJBs, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/index.html.
Developing WebLogic Server Applications 1-7

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

1 Understanding WebLogic Server J2EE Applications
WebLogic Server Components

The WebLogic Server components are startup and shutdown classes, Java classes that
execute when deployed or at shutdown time, respectively.

Startup classes can be RMI classes that register themselves in the WebLogic Server
naming tree or any other Java class that can be executed in WebLogic Server. Startup
classes can be used to implement new services in WebLogic Server. You could create
a startup class that provides access to a legacy application or a real-time feed, for
example.

Shutdown classes execute when WebLogic Server shuts down and are usually used to
free resources obtained by startup classes.

Startup and shutdown classes can be configured in WebLogic Server from the
Administration Console. The Java class must be in the server’s CLASSPATH.

Connector Component

The central component within the WebLogic J2EE Connector architecture is the
resource adapter, which serves as the “connector.” The Connector architecture enables
both Enterprise Information Systems (EISs) vendors and third-party application
developers to develop resource adapters that can be deployed in any application server
supporting the J2EE 1.3 specification from Sun Microsystems. Resource adapters
contain the Java, and if necessary, the native components required to interact with the
EIS.

When a resource adapter is deployed in the WebLogic Server environment, it enables
the development of robust J2EE applications that now have access to a remote EIS
system. Developers of WebLogic Server applications can use HTTP servlets,
JavaServer Pages (JSPs), Enterprise Java Beans (EJBs), and other APIs to develop
integrated applications that use the data and business logic of the EIS.

As is, the basic Resource ARchive (.rar) or deployment directory cannot be
deployed to WebLogic Server. You must first create and configure WebLogic
Server-specific deployment properties in the weblogic-ra.xml file, and add that file
to the deployment.
1-8 Developing WebLogic Server Applications

Enterprise Applications
For help configuring and deploying resource adapters, see Programming the
WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html.

Enterprise Applications

An enterprise J2EE application contains both Web and EJB components, deployment
descriptors, and archive files. An Enterprise Archive (.ear) file contains the Web
archives and EJB archives. The META-INF/application.xml deployment descriptor
contains an entry for each Web and EJB component, and additional entries to describe
security roles and application resources such as databases.

From the WebLogic Administration Server you use the Administration Console or the
weblogic.deploy command line utility to deploy an .ear file on one or more
WebLogic Servers in a domain.

Client Applications

Client-side applications written in Java that access WebLogic Server components
range from simple command line utilities that use standard I/O to highly interactive
GUI applications built using the Java Swing/AWT classes.

Client applications use WebLogic Server components indirectly, using HTTP requests
or RMI requests. The components actually execute in WebLogic Server, not in the
client.

To execute a WebLogic Server Java client, the client computer needs the
weblogic.jar file, weblogic_sp.jar file (if you are using a Service Pack version
of WebLogic Server), the remote interfaces for any RMI classes and enterprise beans
on WebLogic Server, and the client application classes.
Developing WebLogic Server Applications 1-9

http://e-docs.bea.com/wls/docs61/jconnector/index.html
http://e-docs.bea.com/wls/docs61/jconnector/index.html

1 Understanding WebLogic Server J2EE Applications
The application developer packages client-side applications so they can be deployed
on client computers. To simplify maintenance and deployment, it is a good idea to
package a client-side application in a JAR file that can be added to the client’s
classpath along with the weblogic.jar and weblogic_sp.jar files.

WebLogic Server also supports J2EE client applications (as opposed to simple Java
programs) that are packaged in a JAR file with a standard XML deployment descriptor
(client-application.xml) and a WebLogic-specific deployment descriptor. The
weblogic.ClientDeployer command line utility is executed on the client computer
to package a client application to this specification. See “Packaging Client
Applications” on page 3-13 for more about J2EE client applications.
1-10 Developing WebLogic Server Applications

CHAPTER
2 Developing WebLogic
Server J2EE
Applications

The following sections describe how to create different types of WebLogic Server
J2EE applications (such as enterprise applications, Web applications, and Enterprise
JavaBeans) and set up a development environment:

� Creating Web Applications: Main Steps

� Creating Enterprise JavaBeans: Main Steps

� Creating WebLogic Server Enterprise Applications: Main Steps

� Creating Resource Adapters: Main Steps

� Establishing a Development Environment

� Preparing to Compile

� Editing Deployment Descriptors

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create components that implement
the business logic and presentation logic for the application. Application assemblers
assemble the components into applications ready to deploy on WebLogic Server.
Developing WebLogic Server Applications 2-1

2 Developing WebLogic Server J2EE Applications
Creating Web Applications: Main Steps

Creating a Web application requires creating HTML pages, JSPs, servlets, JSP taglibs,
and two deployment descriptors, and then packaging everything into a *.war file. The
*.war file is deployed on WebLogic Server as a Web application.

Here are the main steps for creating a Web application:

1. Create the HTML pages and JSPs that make up the Web interface of the Web
application. Typically, Web designers create these parts of a Web application.

For detailed information about creating JSPs, refer to Programming WebLogic
JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html.

2. Write the Java code for the servlets and the JSP taglibs referenced in JavaServer
Pages (JSPs). Typically, Java programmers create these parts of a Web
application.

For detailed information about creating servlets, refer to Programming
WebLogic HTTP Servlets at http://e-docs.bea.com/wls/docs61/servlet/index.html.

3. Compile the servlets into class files.

For detailed information about compiling, refer to “Preparing to Compile” on
page 2-17.

4. Create the web.xml and weblogic.xml deployment descriptors.

The web.xml file defines each servlet and JSP page and enumerates enterprise
beans referenced in the Web application. The weblogic.xml file adds additional
deployment information for WebLogic Server.

You can create the web.xml and weblogic.xml deployment descriptors by
hand, or you can use a Java-based utility included in WebLogic Server to
automatically generate them. For more information on automatically generating
these files, see “Automatically Generating Deployment Descriptors” on page
3-4.

See Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html for detailed information on
the elements in these deployment descriptors and instructions for creating them
by hand.
2-2 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

Creating Enterprise JavaBeans: Main Steps
5. Package the HTML pages, servlet class files, JSP files, web.xml, and
weblogic.xml files into a Web archive (*.war) file.

The first step in creating a *.war file is to create a Web application staging
directory. JSP pages, HTML pages, and multimedia files referenced by the pages
are saved in the top level of the staging directory. Compiled servlet classes,
taglibs, and, if desired, servlets compiled from JSP pages are stored under a
WEB-INF directory in the staging directory. When the Web application
components are all in place in the staging directory, you create the *.war file
with the JAR command.

For detailed information about creating a *.war file, refer to “Packaging Web
Applications” on page 3-6.

6. Auto-deploy the *.war file on WebLogic server for testing purposes.

While you are testing the Web application you might need to edit the web.xml
and weblogic.xml deployment descriptors; you can do this manually, or you
can use the deployment descriptor editor in the Administration Console. For
detailed information on using the deployment descriptor editor, see “Editing
Deployment Descriptors” on page 2-20.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html for detailed
information about auto-deploying components and applications.

7. Deploy the *.war file on the WebLogic Server for production use or include it in
an enterprise archive (*.ear) file to be deployed as part of an enterprise
application. You use the Administration Console to deploy applications and
components.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html for detailed
information about deploying components and applications.

Creating Enterprise JavaBeans: Main Steps

Creating an Enterprise JavaBean requires creating the classes for the particular EJB
(session, entity, or message-driven) and the EJB-specific deployment descriptors, and
then packaging everything up into an *.ear file to be deployed on WebLogic Server.
Developing WebLogic Server Applications 2-3

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Server J2EE Applications
Here are the main steps for creating an Enterprise JavaBean:

1. Write the Java code for the various classes required by each type of EJB (session,
entity, or message-driven) in accordance with the EJB specification. For example,
session and entity EJBs require the following three classes:

� An EJB home interface

� A remote interface for the EJB

� An implementation class for the EJB

Message-driven beans, however, require only an implementation class.

2. Compile the Java code for the interfaces and implementation into class files.

For detailed information about compiling, refer to “Preparing to Compile” on
page 2-17.

3. Create the EJB-specific deployment descriptors:

� ejb-jar.xml describes the EJB type and its deployment properties using a
standard DTD from Sun Microsystems.

� weblogic-ejb-jar.xml adds additional WebLogic Server-specific
deployment information.

� weblogic-cmp-rdbms-jar.xml maps a container-managed entity EJB to
tables in a database. This file can must have a different name for each CMP
bean packaged in a JAR file. The name of the file is specified in the bean’s
entry in the weblogic-ejb.jar file.

You can create the EJB deployment descriptors by hand, or you can use a
Java-based utility included in WebLogic Server to automatically generate them.
For more information on automatically generating these files, see “Automatically
Generating Deployment Descriptors” on page 3-4.

For detailed information about the elements in the EJB-specific deployment
descriptors and how to create the files by hand, refer to Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/index.html.

4. Package the class files and deployment descriptors into a *.jar Java archive file

The first step in creating a *.jar file is to create an EJB staging directory. Place
the compiled Java classes in the staging directory and the deployment
descriptors in a subdirectory called META-INF. Then run the weblogic.ejbc
EJB compiler to generate the stub and skeleton classes into the staging directory.
2-4 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

Creating WebLogic Server Enterprise Applications: Main Steps
Then you create the EJB archive by executing a jar command like the
following in the staging directory:

jar cvf myEJB.jar *

For detailed information about creating the EJB *.jar archive file, refer to
“Packaging Enterprise JavaBeans” on page 3-8.

5. Auto-deploy the *.jar EJB archive file on WebLogic server for testing
purposes.

While you are testing the EJB you might need to edit the EJB deployment
descriptors; you can do this manually, or you can use the deployment descriptor
editor in the Administration Console. For detailed information on using the
deployment descriptor editor, see “Editing Deployment Descriptors” on page
2-20.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html for detailed
information about auto-deploying components and applications.

6. Deploy the *.jar file on WebLogic Server for production use or include it in an
enterprise archive (*.ear) file to be deployed as part of an enterprise application.
You use the Administration Console to deploy applications and components.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html for detailed
information about deploying components and applications.

Creating WebLogic Server Enterprise
Applications: Main Steps

Creating a WebLogic Server enterprise application requires creating Web and EJB
components, deployment descriptors, and archive files. The result is an enterprise
application archive (.ear file), that can be deployed on WebLogic Server.

Here are the main steps for creating a WebLogic Server enterprise application:

1. Create Web and EJB components for your application.
Developing WebLogic Server Applications 2-5

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Server J2EE Applications
Programmers create servlets and EJBs using the J2EE APIs for these
components. Web designers create Web pages using HTML/XML, and
JavaServer Pages.

For overview information about creating Web and EJB components, refer to
“Creating Web Applications: Main Steps” on page 2-2 and “Creating Enterprise
JavaBeans: Main Steps” on page 2-3.

For detailed information about creating the Java code that makes up the Web and
EJB components, refer to Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html, Programming WebLogic HTTP
Servlets at http://e-docs.bea.com/wls/docs61/servlet/index.html, and
Programming WebLogic JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html.

2. Create Web and EJB component deployment descriptors.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebLogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as
ejb-jar.xml and web.xml. Additional deployment descriptors supplement the
J2EE-specified descriptors with information required to deploy components in
WebLogic Server.

You can create the these deployment descriptors by hand, or you can use a
Java-based utility included in WebLogic Server to automatically generate them.
For more information on automatically generating these files, see “Automatically
Generating Deployment Descriptors” on page 3-4.

Refer to Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html for detailed information
about writing Web component deployment descriptors by hand and to
Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html for detailed information about
writing EJB component deployment descriptors by hand.

3. Package the Web and EJB components into their component archive files.

Component archives are JAR files containing all of the component files,
including deployment descriptors. You package Web components into a *.war
file and EJB components into an EJB *.jar file.

Refer to “Packaging Web Applications” on page 3-6 and “Packaging Enterprise
JavaBeans” on page 3-8 for detailed information for creating component
archives.
2-6 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

Creating WebLogic Server Enterprise Applications: Main Steps
4. Create the enterprise application deployment descriptor.

The enterprise application deployment descriptor, application.xml, lists
individual components that are assembled together in an application.

You can create the application.xml deployment descriptor by hand, or you
can use a Java-based utility included in WebLogic Server to automatically
generate it. For more information on automatically generating this file, see
“Automatically Generating Deployment Descriptors” on page 3-4.

Refer to “application.xml Deployment Descriptor Elements” on page -1 for
detailed information about the elements of the application.xml file.

5. Package the enterprise application.

Package the Web and EJB component archives along with the enterprise
application deployment descriptor into an enterprise archive (*.ear) file. This is
the file that is deployed on WebLogic Server. WebLogic Server uses the
application.xml deployment descriptor to locate and deploy the individual
components packaged in the EAR file.

For detailed information about creating the Enterprise Application *.ear
archive file, refer to “Packaging Enterprise Applications” on page 3-11.

6. Auto-deploy the *.ear enterprise application on WebLogic server for testing
purposes.

While you are testing the enterprise application you might need to edit the
application.xml deployment descriptor; you can do this manually, or you can
use the deployment descriptor editor in the Administration Console. For detailed
information on using the deployment descriptor editor, see “Editing Deployment
Descriptors” on page 2-20.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html for detailed
information about auto-deploying components and applications.

7. Deploy the *.ear file on WebLogic Server for production use. You use the
Administration Console to deploy applications and components.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html for detailed
information about deploying components and applications.

Figure 2-1 illustrates the process for developing and packaging WebLogic Server
enterprise applications.
Developing WebLogic Server Applications 2-7

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Server J2EE Applications
Figure 2-1 Creating Enterprise Applications

JSP Pages

Servlets

Web Pages

Assemble

Web Archive

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms.xml

web.xml

weblogic.xml

Application

Create
Component
Archive

EJB Archive

Enterprise Beans
Create
Components

Enterprise Archive

.jar .war

.ear

Create Application
Deployment
Descriptor

application.xml

Create Component
Deployment
Descriptor
2-8 Developing WebLogic Server Applications

Creating Resource Adapters: Main Steps
Creating Resource Adapters: Main Steps

Creating a resource adapter requires creating the classes for a resource adapter and the
connector-specific deployment descriptors, and then packaging everything up into an
.rar file to be deployed on WebLogic Server.

Creating a New Resource Adapter (.rar)

The following are the main steps for creating a resource adapter (.rar):

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2EE
Connector Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec).

When implementing a resource adapter, you must specify classes in the ra.xml
file. For example:

� <managedconnectionfactory-class>com.sun.connector.blackbox.Loc
alTxManagedConnectionFactory</managedconnectionfactory-class
>

� <connectionfactory-interface>javax.sql.DataSource</connectionf
actory-interface>

� <connectionfactory-impl-class>com.sun.connector.blackbox.JdbcD
ataSource</connectionfactory-impl-class>

� <connection-interface>java.sql.Connection</connection-interfac
e>

� <connection-impl-class>com.sun.connector.blackbox.JdbcConnecti
on</connection-impl-class>

2. Compile the Java code for the interfaces and implementation into class files.

3. Package the Java classes into a Java archive (.jar) file.

The first step in creating a .jar file is to create a connector staging directory.
Place the .jar file in the staging directory and the deployment descriptors in a
subdirectory called META-INF.
Developing WebLogic Server Applications 2-9

2 Developing WebLogic Server J2EE Applications
Then you create the resource adapter archive by executing a jar command like
the following in the staging directory:

jar cvf myRAR.rar *

For detailed information about creating the resource adapter .jar archive file,
refer to “Packaging Resource Adapters” on page 3-10.

4. Create the resource connector-specific deployment descriptors:

� ra.xml describes the resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.

� weblogic-ra.xml adds additional WebLogic Server-specific deployment
information.

For detailed information about creating connector-specific deployment
descriptors, refer to Programming the WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html.

5. Create a resource adapter archive file (.rar file).

a. The first step is to create an empty staging directory.

b. Place the .rar file containing the resource adapter Java classes in the staging
directory.

c. Then, place the deployment descriptors in a subdirectory called META-INF.

d. Next, create the resource adapter archive by executing a jar command like the
following in the staging directory:

jar cvf myRAR.rar *

For detailed information about creating the resource adapter archive file,
refer to “Packaging Resource Adapters” on page 3-10.

6. Auto-deploy the .rar resource adapter archive file on WebLogic server for
testing purposes.

While you are testing the resource adapter you might need to edit the
deployment descriptors; you can do this manually, or you can use the
deployment descriptor editor in the Administration Console. For detailed
information on using the deployment descriptor editor, see “Editing Deployment
Descriptors” on page 2-20.
2-10 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/jconnector/index.html

Creating Resource Adapters: Main Steps
Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html for detailed
information about auto-deploying components and applications.

7. Deploy the .rar resource adapter archive file on WebLogic Server or include it
in an enterprise archive (.ear) file to be deployed as part of an enterprise
application.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/appman.html for detailed
information about deploying components and applications.

Modifying an Existing Resource Adapter (.rar)

The following is an example of how to take an existing resource adapter (.rar) and
modify it for deployment to WebLogic Server. This involves adding the
weblogic-ra.xml deployment descriptor and repacking.

1. Create a temporary directory to stage the resource adapter:

mkdir c:/stagedir

2. Copy the resource adapter that you will deploy into the temporary directory:

cp blackbox-notx.rar c:/stagedir

3. Extract the contents of the resource adapter archive:

cd c:/stagedir

jar xf blackbox-notx.rar

The staging directory should now contain the following:

� A jar file containing Java classes that implement the resource adapter

� A META-INF directory containing the files: Manifest.mf and ra.xml

Execute these commands to see these files:

c:/stagedir> ls

blackbox-notx.jar

META-INF
Developing WebLogic Server Applications 2-11

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Server J2EE Applications
c:/stagedir> ls META-INF

Manifest.mf

ra.xml

4. Create the weblogic-ra.xml file. This file is the WebLogic-specific
deployment descriptor for resource adapters. In this file, you specify parameters
for connection factories, connection pools, and security mappings.

Refer to Programming the WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html for more information on
the weblogic-ra.xml DTD.

5. Copy the weblogic-ra.xml file into the temporary directory's META-INF
subdirectory. The META-INF directory is located in the temporary directory
where you extracted the .rar file or in the directory containing a resource
adapter in exploded directory format. Use the following command:

cp weblogic-ra.xml c:/stagedir/META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml

weblogic-ra.xml

6. Create the resource adapter archive:

jar cvf blackbox-notx.jar -C c:/stagedir

7. Deploy the resource adapter in WebLogic Server. For more information on
deploying a resource adapter in WebLogic Server, see Programming the
WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html.
2-12 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/jconnector/index.html
http://e-docs.bea.com/wls/docs61/jconnector/index.html
http://e-docs.bea.com/wls/docs61/jconnector/index.html

Establishing a Development Environment
Establishing a Development Environment

To develop WebLogic Server applications, you need to assemble your software tools
and set up an environment for creating, compiling, deploying, testing, and debugging
your code. This section helps you start building your toolkit and setting up the
compiler-related environment on your development computer.

Software Tools

This section reviews the software required to develop WebLogic Server applications
and describes optional tools for development and debugging.

Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML/XML pages,
and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differences is preferred, but there are no other special requirements for
your editor.

Java Interactive Development Environments (IDEs) such as WebGain VisualCafé
usually include a programmer’s editor with custom support for Java. An IDE may also
have support for creating and deploying servlets and Enterprise JavaBeans on
WebLogic Server, which makes it much easier to develop, test, and debug
applications.

You can edit HTML/XML pages and JavaServer Pages with a plain text editor, or use
a Web page editor such as DreamWeaver.

XML Editor

You use an XML editor to edit the XML files used by WebLogic Server, such as the
EJB and Web application deployment descriptors, the config.xml file, and so on.
WebLogic Server includes the following two XML editors:

� Deployment Descriptor Editor, part of the Administration Console

� BEA XML Editor, a stand-alone Java-based editor
Developing WebLogic Server Applications 2-13

2 Developing WebLogic Server J2EE Applications
For detailed information about using these XML editors, see “Editing Deployment
Descriptors” on page 2-20.

Java Compiler

A Java compiler produces Java class files, containing portable byte code, from Java
source. The compiler compiles the Java code you write for your applications, as well
as the code generated by the WebLogic RMI, EJB, and JSP compilers.

Sun Microsystems Java 2, Standard Edition includes a Java compiler, javac. If you
install the bundled JRE when you install WebLogic Server, the javac compiler is
installed on your computer.

Other Java compilers are available for various platforms. You can use a different Java
compiler for WebLogic Server application development as long as it produces
standard Java .class files. Most Java compilers are many times faster than javac,
and some are integrated nicely with an IDE.

Occasionally, a compiler generates optimized code that does not behave well in all
Java Virtual Machines (JVMs). When you debug problems, try disabling
optimizations, choosing a different set of optimizations, or compiling with javac to
rule out your Java compiler as the cause. Always test your code in each target JVM
before deploying.

Development WebLogic Server

Never deploy untested code on a WebLogic Server that is serving production
applications. This means that you will need a development WebLogic Server in your
environment. You can run a development WebLogic Server on the same computer you
edit and compile on, or you can use one deployed somewhere on the network.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

Even if you do not run a development WebLogic Server on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or J2EE APIs, the Java compiler
2-14 Developing WebLogic Server Applications

Establishing a Development Environment
needs access to the weblogic.jar file and other JAR files in the distribution
directory. Installing WebLogic Server on your development computer makes these
files available locally.

Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any
DBMS that you can access with a standard JDBC driver, but services such as
WebLogic JMS require a supported JDBC driver for Oracle, Sybase, Informix,
Microsoft SQL Server, IBM DB2, or Cloudscape. Refer to the Platform Support Web
page at http://e-docs.bea.com/wls/certifications/certs_610/index.html to find out about
supported database systems and JDBC drivers.

JDBC connection pools offer such significant performance advantages that you should
only rarely consider writing an application that uses a two-tier JDBC driver directly.
Connection pools are a collection of ready-to-use database connections. When a
connection pool starts up, it creates a specified number of identical physical database
connections. By establishing connections at start-up, the connection pool eliminates
the overhead of creating a database connection for each application. BEA recommends
that both client and server-side applications obtain connections from a connection pool
through a Data Source on the JNDI tree. When finished with a connection, applications
return the connection to the connection pool.

 Multipools are multiplexers for basic connection pools. To the application they appear
exactly as basic pools, but multipools allow you to establish a pool of connection
pools, in which the connection attributes vary from connection pool to connection
pool. All of the connections in a given connection pool are identical, but the
connections in each connection pool in a multipool should vary in some significant
way such that an expected failure of one pool will not invalidate another pool in the
multipool. Usually these pools will be to different instances of the same database.

Multipools are only useful if there are multiple distinct database instances that can
equally handle an application connection, and the application system takes care of
synchronizing the databases when application work is distributed among the
databases. In rare cases it may be valuable to have the pools to the same database
instance, but as different users. This would be useful if the DBA disabled one user,
leaving the other user viable.

By default, a clustered multipool provides high availability (DBMS failover). A
multipool can be optionally configured to also provide load balancing.
Developing WebLogic Server Applications 2-15

http://e-docs.bea.com/wls/certifications/certs_610/index.html

2 Developing WebLogic Server J2EE Applications
Web Browser

Most J2EE applications are designed to be executed by Web browser clients.
WebLogic Server supports the HTTP 1.1 specification and is tested with current
versions of the Netscape Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.
Be explicit about version numbers and browser configurations. Will your application
support SSL? Test alternative security settings in the browser so that you can tell your
users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differences in the JVMs embedded in
various browsers. One solution is to require users to install the Java plug-in from Sun
so that everyone has the same Java run-time version.

Third-Party Software

You can use third-party software products, such as WebGain Studio, WebGain
StructureBuilder, and BEA WebLogic Integration Kit for VisualAge for Java, to
enhance your WebLogic Server development environment.

For more information, see the BEA WebLogic Developer Tools Resources Web page
at http://www.bea.com/products/weblogic/tools.shtml which provides developer tools
information for products that support the BEA application servers.

To download some of these tools, see the BEA WebLogic Server Downloads Web page
at http://commerce.bea.com/downloads/weblogic_server_tools.jsp.

Note: Check with the software vendor to verify software compatibility with your
platform and WebLogic Server version.
2-16 Developing WebLogic Server Applications

http://www.bea.com/products/weblogic/tools.shtml
http://commerce.bea.com/downloads/weblogic_server_tools.jsp

Preparing to Compile
Preparing to Compile

Compiling Java programs for WebLogic Server is the same as compiling any other
Java program. To compile successfully, you must:

� Have the Java compiler in your search path

� Set your classpath so that the Java compiler can find all of the dependent classes

� Specify the output directories for the compiled classes

One way to set up your environment is to create a command file or shell script to set
variables in your environment, which you can then pass to the compiler. The
setExamplesEnv.cmd (Windows) and setExamplesEnv.sh (UNIX) files in the
config/examples directory are examples of this technique.

Putting the Java Tools in Your Search Path

Make sure the operating system can find the compiler and other JDK tools by adding
it to the PATH environment variable in your command shell. If you are using the JDK,
the tools are in the bin subdirectory of the JDK directory. To use an alternative
compiler, such as the sj compiler from WebGain VisualCafé, add the directory
containing that compiler to your search path.

For example, if the JDK is installed in /usr/local/java/java130 on your UNIX
file system, use a command such as the following to add javac to your path in a
Bourne shell or shell script:

PATH=/usr/local/java/java130/bin:$PATH; export PATH

To add the WebGain sj compiler to your path on Windows NT or Windows 2000, use
a command such as the following in a command shell or in a command file:

PATH=c:\VisualCafe\bin;%PATH%

If you are using an IDE, see the IDE documentation for help setting up an equivalent
search path.
Developing WebLogic Server Applications 2-17

2 Developing WebLogic Server J2EE Applications
Setting the Classpath for Compiling

Most WebLogic services are based on J2EE standards and are accessed through
standard J2EE packages. The Sun, WebLogic, and other Java classes required to
compile programs that use WebLogic services are packaged in the weblogic.jar file
in the lib directory of your WebLogic Server installation. In addition to
weblogic.jar, include the following in your compiler’s CLASSPATH:

� If you are using the version of WebLogic Server 6.1 that is limited to J2EE 1.2
features (rather than the one that also includes J2EE 1.3 features), you must
include the j2ee12.jar file in your CLASSPATH before you specify the
weblogic.jar file. BEA recommends that you include the j2ee12.jar file in
the beginning of your CLASSPATH.

For more information on the version of J2EE (1.2 or 1.3) that your WebLogic
Server instance implements, see “J2EE Platform” on page 1-3.

� The lib/tools.jar file in the JDK directory, or other standard Java classes
required by the Java Development Kit you use.

� Classes for third party Java tools or services your programs import.

� Other application classes referenced by the programs you are compiling.

Include in your classpath the target directories where the compiler writes the
classes you are compiling so that the compiler can locate all of the
interdependent classes in your application. The next section has more
information on target directories.

Setting Target Directories for Compiled Classes

The Java compiler writes class files in the same directory with the Java source unless
you specify an output directory for the compiled classes. If you specify the output
directory, the compiler stores the class file in a directory structure that matches the
package name. This allows you to compile Java classes into the correct locations in the
staging directory you use to package your application. If you do not specify an output
directory, you have to move files around before you can create the jar file that
contains your packaged component.
2-18 Developing WebLogic Server Applications

Preparing to Compile
J2EE applications consist of modules assembled into an application and deployed on
one or more WebLogic Servers or WebLogic clusters. Each module should have its
own staging directory so that it can be compiled, packaged, and deployed
independently from other modules. For example, you can package EJBs in a separate
module, Web components in a separate module, and other server-side classes in
another module.

See the setExamplesEnv scripts in the config/examples directory of the WebLogic
Server distribution for an example of setting up target directories for the compiler. The
scripts set the following variables:

CLIENT_CLASSES

The directory where compiled client classes are written. These classes are
usually standalone Java programs that connect to WebLogic Server. They do
not have to be in the WebLogic Server CLASSPATH.

SERVER_CLASSES

The directory where server-side classes are written. These classes include
startup classes and other Java classes that must be in the WebLogic Server
CLASSPATH when the server starts up. Application classes should usually
not be compiled into this directory, because the classes in this directory
cannot be redeployed without restarting WebLogic Server.

EX_WEBAPP_CLASSES

The directory where classes used by the Web Application are written.

APPLICATIONS

The applications directory for the examples domain. Unlike the others,
this variable is not used to specify a target for the Java compiler. It is used as
a convenient reference to the applications directory in copy commands
that move files from source directories into the applications directory. For
example, if you have .html, .jsp, and image files in your source tree, you
can use the variable in a copy command to install them in your development
server.

These environment variables are passed to the compiler in commands such as the
following command for Windows:

javac -d %SERVER_CLASSES% *.java

If you do not use an IDE, consider writing a make file, shell script, or command file to
compile and package your components and applications. Set the variables in the build
script so that you can rebuild components by typing a single command.
Developing WebLogic Server Applications 2-19

2 Developing WebLogic Server J2EE Applications
Editing Deployment Descriptors

You can edit the deployment descriptors of WebLogic applications and components
using one of the following tools:

� BEA XML Editor

� Deployment Descriptor Editor from within the Administration Console

Use either editor to update existing elements in, add new elements to, and delete
existing elements from the following deployment descriptors:

� web.xml

� weblogic.xml

� ejb-jar.xml

� weblogic-ejb-jar.xml

� weblogic-cmp-rdbms-jar.xml

� ra.xml

� weblogic-ra.xml

� application.xml

Using the BEA XML Editor

To edit XML files, use the BEA XML Editor, an entirely Java-based XML stand-alone
editor. It is a simple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
This dual presentation of the document provides you with the following two methods
of editing the XML document:

� The hierarchical tree view allows structured, limited constrained editing,
providing you with a set of allowable functions at each point in the hierarchical
XML tree structure. The allowable functions are syntactically dictated and in
accordance with the XML document's DTD or schema, if one is specified.

� The raw XML code view allows free-form editing of the data.
2-20 Developing WebLogic Server Applications

Editing Deployment Descriptors
BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, see its on-line help.

You can download BEA XML Editor from the BEA dev2dev at
http://dev2dev.bea.com/resourcelibrary/utilitiestools/index.jsp.

Using the Administration Console Deployment
Descriptor Editor

The Administration Console Deployment Descriptor Editor looks very much like the
main Administration Console: the left pane lists the elements of the deployment
descriptor files in tree form and the right pane contains the form for updating a
particular element.

When you use the editor, you can either update the in-memory deployment descriptor
only, or update both the in-memory and disk files. When you click the Apply button
after updating a particular element, or the Create button to create a new element, only
the deployment descriptor in WebLogic Server’s memory is updated; the change has
not yet been written to disk. To do this you must explicitly click the Persist button. If
you do not explicitly persist the changes to disk, the changes will be lost when you stop
and restart WebLogic Server.

Editing EJB Deployment Descriptors

This section describes the procedure for editing the following EJB deployment
descriptors using the Administration Console Deployment Descriptor Editor:

� ejb-jar.xml

� weblogic-ejb-jar.xml

� weblogic-cmp-rdbms-jar.xml

For detailed information about the elements in the EJB-specific deployment
descriptors, refer to Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html.

To edit the EJB deployment descriptors, follow these steps:
Developing WebLogic Server Applications 2-21

http://dev2dev.bea.com/resourcelibrary/utilitiestools/index.jsp
http://e-docs.bea.com/wls/docs61/ejb/index.html

2 Developing WebLogic Server J2EE Applications
1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the EJB node under the Deployments node.

4. Right-click the name of the EJB whose deployment descriptors you want to edit
and choose Edit EJB Descriptor from the drop-down menu. The Administration
Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the three EJB
deployment descriptors and the right pane contains a form for the descriptive
elements of the ejb-jar.xml file.

5. To edit, delete, or add elements in the EJB deployment descriptors, click to
expand the node in the left pane that corresponds to the deployment descriptor
file you want to edit, as described in the following list:

� the EJB Jar node contains the elements of the ejb-jar.xml deployment
descriptor.

� the WebLogic EJB Jar node contains the elements of the
weblogic-ejb-jar.xml deployment descriptor.

� the CMP node contains the elements of the weblogic-cmp-rdbms-jar.xml
deployment descriptor.

6. To edit an existing element in one of the EJB deployment descriptors, follow
these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the EJB deployment descriptors, follow these
steps:
2-22 Developing WebLogic Server Applications

Editing Deployment Descriptors
a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the EJB deployment descriptors,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you have made all your changes to the EJB deployment descriptors, click
the root element of the tree in the left pane. The root element is the either the
name of the EJB *.jar archive file or the display name of the EJB.

10. Click Validate if you want to ensure that the entries in the EJB deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server’s memory.

Editing Web Application Deployment Descriptors

This section describes the procedure for editing the following Web application
deployment descriptors using the Administration Console Deployment Descriptor
Editor:

� web.xml

� weblogic.xml

See Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html for detailed information on the
elements in the Web application deployment descriptors.

To edit the Web application deployment descriptors, follow these steps:
Developing WebLogic Server Applications 2-23

http://e-docs.bea.com/wls/docs61/webapp/index.html

2 Developing WebLogic Server J2EE Applications
1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Web Applications node under the Deployments node.

4. Right-click the name of the Web application whose deployment descriptors you
want to edit and choose Edit Web Application Descriptor from the drop-down
menu. The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the two Web
application deployment descriptors and the right pane contains a form for the
descriptive elements of the web.xml file.

5. To edit, delete, or add elements in the Web application deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit, as described in the following list:

� the Web App Descriptor node contains the elements of the web.xml
deployment descriptor.

� the WebApp Ext node contains the elements of the weblogic.xml
deployment descriptor.

6. To edit an existing element in one of the Web application deployment descriptors,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the Web application deployment descriptors,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.
2-24 Developing WebLogic Server Applications

Editing Deployment Descriptors
b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the Web application deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you have made all your changes to the Web application deployment
descriptors, click the root element of the tree in the left pane. The root element is
the either the name of the Web application *.war archive file or the display name
of the Web application.

10. Click Validate if you want to ensure that the entries in the Web application
deployment descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server’s memory.

Editing Resource Adapter Deployment Descriptors

This section describes the procedure for editing the following resource adapter
deployment descriptors using the Administration Console Deployment Descriptor
Editor:

� ra.xml

� weblogic-ra.xml

For detailed information about the elements in the resource adapter deployment
descriptors, refer to Programming the WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html.

To edit the resource adapter deployment descriptors, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:
Developing WebLogic Server Applications 2-25

http://e-docs.bea.com/wls/docs61/jconnector/index.html

2 Developing WebLogic Server J2EE Applications
http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Connectors node under the Deployments node.

4. Right-click the name of the resource adapter whose deployment descriptors you
want to edit and choose Edit Connector Descriptor from the drop-down menu.
The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the two
resource adapter deployment descriptors and the right pane contains a form for
the descriptive elements of the ra.xml file.

5. To edit, delete, or add elements in the resource adapter deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit, as described in the following list:

� the RA node contains the elements of the ra.xml deployment descriptor.

� the WebLogic RA node contains the elements of the weblogic-ra.xml
deployment descriptor.

6. To edit an existing element in one of the resource adapter deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the resource adapter deployment descriptors,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.
2-26 Developing WebLogic Server Applications

Editing Deployment Descriptors
c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the resource adapter deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you have made all your changes to the resource adapter deployment
descriptors, click the root element of the tree in the left pane. The root element is
the either the name of the resource adapter *.rar archive file or the display name
of the resource adapter.

10. Click Validate if you want to ensure that the entries in the resource adapter
deployment descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server’s memory.

Editing Enterprise Application Deployment Descriptors

This section describes the procedure for editing the Enterprise Application deployment
descriptor (application.xml) using the Administration Console Deployment
Descriptor Editor.

Refer to “application.xml Deployment Descriptor Elements” on page -1 for detailed
information about the elements of the application.xml file.

Note: The following procedure describes only how to edit the application.xml
file; to edit the deployment descriptors in the components that make up the
Enterprise application, see “Editing EJB Deployment Descriptors” on page
2-21, “Editing Web Application Deployment Descriptors” on page 2-23, or
“Editing Resource Adapter Deployment Descriptors” on page 2-25.

To edit the Enterprise Application deployment descriptor, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:
Developing WebLogic Server Applications 2-27

2 Developing WebLogic Server J2EE Applications
http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Applications node under the Deployments node.

4. Right-click the name of the Enterprise Application whose deployment descriptor
you want to edit and choose Edit Application Descriptor from the drop-down
menu. The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the
application.xml file and the right pane contains a form for its descriptive
elements, such as the display name and icon file names.

5. To edit an existing element in the application.xml deployment descriptor,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

6. To add a new element to the application.xml deployment descriptors, follow
these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

7. To delete an existing element from the application.xml deployment
descriptor, follow these steps:
2-28 Developing WebLogic Server Applications

Editing Deployment Descriptors
a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

8. Once you have made all your changes to the application.xml deployment
descriptor, click the root element of the tree in the left pane. The root element is
the either the name of the Enterprise application *.ear archive file or the display
name of the Enterprise application.

9. Click Validate if you want to ensure that the entries in the application.xml
deployment descriptor are valid.

10. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server’s memory.
Developing WebLogic Server Applications 2-29

2 Developing WebLogic Server J2EE Applications
2-30 Developing WebLogic Server Applications

CHAPTER
3 Packaging WebLogic
Server J2EE
Applications

The following sections describe how to package and deploy WebLogic Server J2EE
applications:

� Packaging Overview

� Packaging Web Applications

� Packaging Enterprise JavaBeans

� Packaging Resource Adapters

� Packaging Enterprise Applications

� Packaging Client Applications

� Packaging J2EE Applications Using Apache Ant

� Packaging Client Applications
Developing WebLogic Server Applications 3-1

3 Packaging WebLogic Server J2EE Applications
Packaging Overview

WebLogic Server J2EE applications are packaged in a standard way, defined by the
J2EE specifications. J2EE defines component behaviors and packaging in a generic,
portable way, postponing run-time configuration until the component is actually
deployed on an application server.

J2EE includes deployment specifications for Web applications, EJB modules,
enterprise applications, client applications, and resource adapters. J2EE does not
specify how an application is deployed on the target server—only how a standard
component or application is packaged.

For each component type, the specifications define the files required and their location
in the directory structure. Components and applications may include Java classes for
EJBs and servlets, resource adapters, Web pages and supporting files, XML-formatted
deployment descriptors, and JAR files containing other components.

An application that is ready to deploy on WebLogic Server contains additional,
WebLogic-specific deployment descriptors and, possibly, container classes generated
with the WebLogic EJB, RMI, or JSP compilers.

JAR Files

A file created with the Java jar utility bundles the files in a directory into a single Java
ARchive (JAR) file, maintaining the directory structure. The Java classloader can
search for Java class files (and other file types) in a JAR file the same way that it
searches a directory in its classpath. Because the classloader can search a directory or
a JAR file, you can deploy J2EE components on WebLogic Server in either an
“exploded” directory or a JAR file.

JAR files are convenient for packaging components and applications for distribution.
They are easier to copy, they use up fewer file handles than an exploded directory, and
they can save disk space with file compression. If your Administration Server manages
a domain with multiple WebLogic Servers, you can only deploy JAR files, because the
Administration Console does not copy expanded directories to managed servers.
3-2 Developing WebLogic Server Applications

Packaging Overview
The jar utility is in the bin directory of your Java Development Kit. If you have
javac in your path, you also have jar in your path. The jar command syntax and
behavior is similar to the UNIX tar command.

The most common usages of the jar command are:

jar cf jar-file files ...

Creates a JAR file named jar-file containing listed files. If you include a
directory in the list of files, all files in that directory and its subdirectories are
added to the JAR file.

jar xf jar-file

Extract (unbundle) a JAR file in the current directory.

jar tf jar-file

List (tell) the contents of a JAR file.

The first flag specifies the operation: create, extract, or list (tell). The f flag must be
followed by a JAR file name. Without the f flag, jar reads or writes JAR file contents
on stdin or stdout which is usually not what you want. See the documentation for
the JDK utilities for more about jar command options.

XML Deployment Descriptors

Components and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The J2EE specifications define standard,
portable deployment descriptors for J2EE components and applications. BEA defines
additional WebLogic-specific deployment descriptors required to deploy a component
or application in the WebLogic Server environment.

Table 3-1 lists the types of components and applications and their J2EE-standard and
WebLogic-specific deployment descriptors.

Table 3-1 J2EE and WebLogic Deployment Descriptors

Component or
Application

Scope Deployment Descriptors

Web Application J2EE WEB-INF/web.xml

WebLogic WEB-INF/weblogic.xml
Developing WebLogic Server Applications 3-3

3 Packaging WebLogic Server J2EE Applications
When you package a component or application, you create a directories to hold the
deployment descriptors—WEB-INF or META-INF—and then create the required XML
deployment descriptors in that directory.

You can create the deployment descriptors by hand, or you can use WebLogic-specific
Java-based utilities to automatically generate them for you. For more information
about generating deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 3-4.

If you receive a J2EE-compliant JAR file from a developer, it already contains
J2EE-defined deployment descriptors. To deploy the JAR file on WebLogic Server,
you must extract the contents of the JAR file into a directory, add the required
WebLogic-specific deployment descriptors and any generated container classes, and
then create a new JAR file containing the old and new files.

Automatically Generating Deployment Descriptors

WebLogic Server includes a set of Java-based utilities that automatically generate the
deployment descriptors for the following J2EE components or applications: Web
applications, Enterprise JavaBeans (versions 1.1 and 2.0), and Enterprise Applications.

Enterprise Bean J2EE META-INF/ejb-jar.xml

WebLogic META-INF/weblogic-ejb-jar.xml

META-INF/weblogic-cmp-rdbms-jar.xml

Resource
Adapter

J2EE META-INF/ra.xml

WebLogic META-INF/weblogic-ra.xml

Enterprise
Application

J2EE META-INF/application.xml

Client
Application

J2EE application-client.xml

WebLogic client-application.runtime.xml

Table 3-1 J2EE and WebLogic Deployment Descriptors

Component or
Application

Scope Deployment Descriptors
3-4 Developing WebLogic Server Applications

Packaging Overview
These utilities examine the objects you have assembled in a staging directory and build
the appropriate deployment descriptors based on the servlet classes, EJB classes, and
so on. The utilities generate both the standard J2EE and WebLogic-specific
deployment descriptors for each component.

WebLogic Server includes the following utilities:

� weblogic.ant.taskdefs.ejb.DDInit

Creates the deployment descriptors for Enterprise JavaBeans 1.1.

� weblogic.ant.taskdefs.ejb20.DDInit

Creates the deployment descriptors for Enterprise JavaBeans 2.0.

� weblogic.ant.taskdefs.war.DDInit

Creates the deployment descriptors for Web applications.

� weblogic.ant.taskdefs.ear.DDInit

Creates the deployment descriptors for Enterprise Applications.

Note: Although these utilities attempt to create deployment descriptor files that are
complete and accurate for your component or application, the utilities must
guess at the value of many of the required elements. Often this guess is wrong,
causing WebLogic Server to return an error when you deploy the component
or application. In this case, you must undeploy the component or application,
edit the deployment descriptor using the Deployment Descriptor Editor of the
Administration Console, and then redeploy it. For details on using the
Deployment Descriptor Editor, see “Editing Deployment Descriptors” on page
2-20.

Each utility takes a single parameter: the root directory that contains the objects in the
component or application for which you are generating deployment descriptors. The
root directory is the one that contains the WEB-INF or META-INF subdirectories.

For example, assume that you have created a directory called c:\stage that contains
the WEB-INF directory, JSP files, and other objects that make up a Web application but
you have not yet created the web.xml and weblogic.xml deployment descriptors. To
automatically generate them, execute the following command:

$ java weblogic.ant.taskdefs.war.DDInit c:\stage

The utility generates the web.xml and weblogic.xml deployment descriptors and
places them in the WEB-INF directory.
Developing WebLogic Server Applications 3-5

3 Packaging WebLogic Server J2EE Applications
Development Mode vs. Production Mode

You can run WebLogic Server in two different modes: development and production.
You determine this mode by configuring the STARTMODE script variable, which is a
variable you can modify in domain_name\startWebLogic. The STARTMODE
variable allows you to toggle the start mode from production to development.

To enable development mode, configure the STARTMODE script variable as follows:

-Dweblogic.ProductionModeEnabled=false

To enable production mode, set the variable as follows:

-Dweblogic.ProductionModeEnabled=true

Note: The default setting is false.

For more information on starting WebLogic Server in development and production
modes, refer to “Starting and Stopping WebLogic Servers.”

When you specify development mode, you can use the auto-deploy feature of the
applications directory. This means that you can copy new files into the
applications directory of your Administration Server, located in the
config/domain_name directory of the WebLogic Server installation (where
domain_name is the name of a WebLogic Server domain). The aplications will be
automatically deployed and updated.

In production mode, you must use the WebLogic Server Administration Console or the
weblogic.Deploy tool to redeploy an application. Both deployment methods require a
user name and password. This addresses security concerns around users who have
write access to the file system and have the ability to deploy applications on the server.

Packaging Web Applications

Before you package your Web application, be sure you read and understand
“Packaging Client Applications” on page 3-13 which describes how WebLogic server
loads your application classes.

To stage and package a Web application:
3-6 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html

Packaging Web Applications
1. Create a temporary staging directory. You can name this directory anything you
want.

2. Copy all of your HTML files, JSP files, images, and any other files that these
Web pages reference into the staging directory, maintaining the directory
structure for referenced files. For example, if an HTML file has a tag such as
, the pic.gif file must be in the images
subdirectory beneath the HTML file.

3. Create META-INF and WEB-INF/classes subdirectories in the staging directory
to hold deployment descriptors and compiled Java classes.

4. Copy or compile any servlet classes and helper classes into the
WEB-INF/classes subdirectory.

5. Copy the home and remote interface classes for enterprise beans used by the
servlets into the WEB-INF/classes subdirectory.

Note: See “Classloader Overview” on page 3-21 to understand how the
WebLogic Server class-loading mechanism affects EJB references from
servlets within the same application.

6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be
installed in a subdirectory beneath WEB-INF; the path to the .tld file is coded in
the .jsp file.)

7. Set up your shell environment.

On Windows NT, execute the setEnv.cmd command, located in the directory
BEA_HOME\config\domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

On UNIX, execute the setEnv.sh command, located in the directory
BEA_HOME/config/domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

8. Execute the following command to automatically generate the web.xml and
weblogic.xml deployment descriptors in the WEB-INF subdirectory:

java weblogic.ant.taskdefs.war.DDInit staging-dir

where staging-dir refers to the staging directory.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 3-4.
Developing WebLogic Server Applications 3-7

3 Packaging WebLogic Server J2EE Applications
Alternatively, you can create the web.xml and weblogic.xml files in the
WEB-INF subdirectory by hand.

Note: See Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html for detailed
descriptions of the elements of the web.xml and weblogic.xml files.

9. Bundle the staging directory into a .war file by executing a jar command such
as the following:

jar cvf myapp.war -C staging-dir .

The resulting .war file can be added to an Enterprise application (.ear file) or
deployed independently using the Administration Console or the
weblogic.deploy command-line utility.

Packaging Enterprise JavaBeans

You can stage one or more enterprise beans in a directory and package them in an EJB
JAR file.

Before you package your EJBs, be sure you read and understand “Packaging Client
Applications” on page 3-13 which describes how WebLogic server loads your EJB
classes.

To stage and package an enterprise bean:

1. Create a temporary staging directory.

2. Compile or copy the bean’s Java classes into the staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Set up your shell environment.

On Windows NT, execute the setEnv.cmd command, located in the directory
BEA_HOME\config\domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

On UNIX, execute the setEnv.sh command, located in the directory
BEA_HOME/config/domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.
3-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/webapp/index.html

Packaging Enterprise JavaBeans
5. Execute the following command to automatically generate the ejb-jar.xml,
weblogic-ejb-jar.xml, and weblogic-rdbms-cmp-jar-bean_name.xml (if
needed) deployment descriptors in the META-INF subdirectory:

java weblogic.ant.taskdefs.ejb.DDInit staging-dir

where staging-dir refers to the staging directory. Use this utility for EJB 1.1.
If you are creating EJB 2.0, use the following utility:

java weblogic.ant.taskdefs.ejb20.DDInit staging-dir

For more information on the Java-based DDInit utility for generating
deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 3-4.

Alternatively, you can create the EJB deployment descriptor files by hand.
Create an ejb-jar.xml and weblogic-ejb-jar.xml files in the META-INF
subdirectory. If the bean is an entity bean with container-managed persistence,
create a weblogic-rdbms-cmp-jar—bean_name.xml deployment descriptor in
the META-INF directory with entries for the bean. Map the bean to this CMP
deployment descriptor with a <type-storage> attribute in the
weblogic-ejb-jar.xml file.

Note: See Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html for help compiling
enterprise beans and creating EJB deployment descriptors.

6. When all of the enterprise bean classes and deployment descriptors are set up in
the staging directory, you can create the EJB JAR file with a jar command such
as:

jar cvf jar-file.jar -C staging-dir .

This command creates a jar file that you can deploy on a WebLogic Server or
package in an application JAR file.

The -C staging-dir option instructs the jar command to change to the
staging-dir directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the enterprise beans.

Enterprise beans require container classes, classes the WebLogic EJB compiler
generates to allow the bean to deploy in a WebLogic Server. The WebLogic EJB
compiler reads the deployment descriptors in the EJB JAR file to determine how
to generate the classes. You can run the WebLogic EJB compiler on the JAR file
before you deploy the beans, or you can let WebLogic Server run the compiler
for you at deployment time. See Programming WebLogic Enterprise JavaBeans
Developing WebLogic Server Applications 3-9

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

3 Packaging WebLogic Server J2EE Applications
at http://e-docs.bea.com/wls/docs61/ejb/index.html for help with the WebLogic
EJB compiler.

Packaging Resource Adapters

You can stage one or more resource adapters in a directory and package them in a JAR
file.

Before you package your resource adapters, be sure you read and understand
“Packaging Client Applications” on page 3-13 which describes how WebLogic server
loads classes.

To stage and package a resource adapter:

1. Create a temporary staging directory.

2. Compile or copy the resource adapter’s Java classes into the staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Create an ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note: Refer to the following Sun Microsystems documentation for information
on the ra.xml document type definition:

http://java.sun.com/dtd/connector_1_0.dtd

5. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory
and add entries for the resource adapter.

Note: Refer to Programming the WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html for information
on the weblogic-ra.xml document type definition.

6. When all of the resource adapter classes and deployment descriptors are set up in
the staging directory, you can create the resource adapter JAR file with a jar
command such as:

jar cvf jar-file.jar -C staging-dir.
3-10 Developing WebLogic Server Applications

http://java.sun.com/dtd/connector_1_0.dtd
http://e-docs.bea.com/wls/docs61/jconnector/index.html

Packaging Enterprise Applications
This command creates a jar file that you can deploy on a WebLogic Server or
package in an application JAR file.

The -C staging-dir option instructs the jar command to change to the
staging-dir directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the resource adapters.

Note: For instructions on creating a resource adapter and modifying an existing
resource adapter for deployment to WebLogic Server, see “Creating
Resource Adapters: Main Steps” on page 2-9 of Chapter 2, “Developing
WebLogic Server J2EE Applications.”

Packaging Enterprise Applications

An Enterprise archive contains EJB and Web modules that are part of a related
application. The EJB and Web modules are bundled together in another JAR file with
an .ear extension.

The META-INF subdirectory in an .ear file contains an application.xml
deployment descriptor, which identifies the modules packaged in the .ear file. You
can find the DTD for the application.xml file at
http://java.sun.com/j2ee/dtds/application_1_2.dtd. No
WebLogic-specific deployment descriptor is needed for an enterprise archive.

Here is the application.xml file from the Pet Store example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD
J2EE Application 1.2//EN'
'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
 <display-name>estore</display-name>
 <description>Application description</description>
 <module>
 <web>
 <web-uri>petStore.war</web-uri>
 <context-root>estore</context-root>
 </web>
 </module>
Developing WebLogic Server Applications 3-11

http://java.sun.com/j2ee/dtds/application_1_2.dtd

3 Packaging WebLogic Server J2EE Applications
 <module>
 <ejb>petStore_EJB.jar</ejb>
 </module>
 <security-role>
 <description>the gold customer role</description>
 <role-name>gold_customer</role-name>
 </security-role>
 <security-role>
 <description>the customer role</description>
 <role-name>customer</role-name>
 </security-role>
</application>

Before you package your enterprise application, be sure you read and understand
“Packaging Client Applications” on page 3-13 which describes how WebLogic server
loads your enterprise application classes.

To stage and package an Enterprise application:

1. Create a temporary staging directory.

2. Copy the Web archives (.war files) and EJB archives (.jar files) into the
staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Set up your shell environment.

On Windows NT, execute the setEnv.cmd command, located in the directory
BEA_HOME\config\domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

On UNIX, execute the setEnv.sh command, located in the directory
BEA_HOME/config/domain, where BEA_HOME is the directory in which
WebLogic Server is installed and domain refers to the name of your domain.

5. Execute the following command to automatically generate the
application.xml deployment descriptor in the META-INF subdirectory:

java weblogic.ant.taskdefs.ear.DDInit staging-dir

where staging-dir refers to the staging directory.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 3-4.
3-12 Developing WebLogic Server Applications

Packaging Client Applications
Alternatively, you can create the application.xml file by hand in the
META-INF directory. See Appendix A, “application.xml Deployment Descriptor
Elements,” for detailed information about the elements in this file.

6. Create the Enterprise Archive (.ear file) for the application, using a jar
command such as:

jar cvf application.ear -C staging-dir .

The resulting .ear file can be deployed using the Administration Console or the
weblogic.deploy command-line utility.

Packaging Client Applications

Although not required for WebLogic Server applications, J2EE includes a standard for
deploying client applications. A J2EE client application module is packaged in a JAR
file. This JAR file contains the Java classes that execute in the client JVM (Java Virtual
Machine) and deployment descriptors that describe EJBs (Enterprise JavaBeans) and
other WebLogic Server resources used by the client.

A de-facto standard deployment descriptor application-client.xml from Sun is
used for J2EE clients and a supplemental deployment descriptor contains additional
WebLogic-specific deployment information.

Note: See “application.xml Deployment Descriptor Elements” in Appendix A,
“application.xml Deployment Descriptor Elements,” for help with these
deployment descriptors.

Executing a Client Application in an EAR File

In order to simplify distribution of an application, J2EE defines a way to include
client-side components in an EAR file, along with the server-side modules that are
used by WebLogic Server. This enables both the server-side and client-side
components to be distributed as a single unit.
Developing WebLogic Server Applications 3-13

3 Packaging WebLogic Server J2EE Applications
The client JVM must be able to locate the Java classes you create for your application
and any Java classes your application depends upon, including WebLogic Server
classes. You stage a client application by copying all of the required files on the client
into a directory and bundling the directory in a JAR file. The top level of the client
application directory can have a batch file or script to start the application. Create a
classes subdirectory to hold Java classes and JAR files, and add them to the client
Class-Path in the startup script. You may also want to package a Java Runtime
Environment (JRE) with a Java client application.

Note: The use of the Class-Path manifest entries in client component JARs is not
portable, because it has not yet been addressed by the J2EE standard.

The Main-Class attribute of the JAR file manifest defines the main class for the client
application. The client typically uses java:/comp/env JNDI lookups to execute the
Main-Class attribute. As a deployer, you must provide runtime values for the JNDI
lookup entries and populate the component local JNDI tree before calling the client’s
Main-Class attribute. You define JNDI lookup entries in the client deployment
descriptor. (Refer to “Client Application Deployment Descriptor Elements.”)

You use weblogic.ClientDeployer to extract the client-side JAR file from a J2EE
EAR file, creating a deployable JAR file. The weblogic.ClientDeployer class is
executed on the Java command line with the following syntax:

java weblogic.ClientDeployer ear-file client

The ear-file argument is an expanded directory (or Java archive file with a .ear
extension) that contains one or more client application JAR files.

For example:

java weblogic.ClientDeployer app.ear myclient

where app.ear is the EAR file that contains a J2EE client packaged in
myclient.jar.

Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and
point it to a WebLogic Server instance as follows:

java weblogic.j2eeclient.Main clientjar URL [application
args]

For example

java weblogic.j2eeclient.Main helloWorld.jar
t3://localhost:7001 Greetings
3-14 Developing WebLogic Server Applications

Packaging Client Applications
Special Considerations for Deploying J2EE Client
Applications

The following is a list of special considerations for deploying J2EE client applications:

� Name the WebLogic Server client deployment file using the suffix
.runtime.xml.

� The weblogic.ClientDeployer class is responsible for generating and adding
a client.properties file to the client JAR file. A separate program,
weblogic.j2eeclient.Main, creates a local client JNDI context and runs the
client from the entry point named in the client manifest file.

Note: To run the J2EE client application using weblogic.ClientDeployer,
you need the weblogic.j2eeclient.Main class (located in the
weblogic.jar file).

� If a resource mentioned by the application-client.xml file is one of the
following types, the weblogic.j2eeclient.Main class attempts to bind it
from the global JNDI tree on the server to java:comp/env/:

ejb-ref

javax.jms.QueueConnectionFactory

javax.jms.TopicConnectionFactory

javax.mail.Session

javax.sql.DataSource

� The weblogic.j2eeclient.Main class binds UserTransaction to
java:comp/UserTransaction.

� The rest of the client environment is bound from the client.properties file
created by the weblogic.ClientDeployer class into java:comp/env/. The
weblogic.j2eeclient.Main class emits error messages for missing or
incomplete bindings.

� The <res-auth> tag in the application deployment file is currently ignored and
should be entered as Application. We do not currently support form-based
authentication.
Developing WebLogic Server Applications 3-15

3 Packaging WebLogic Server J2EE Applications
Packaging J2EE Applications Using Apache
Ant

The topics in this section discuss building and packaging J2EE applications using
Apache Ant, an extensible Java-based tool. Ant is similar to the make command but is
designed for building Java applications. Ant libraries are bundled with WebLogic
Server to make it easier for our customers to build Java applications out of the box.

Developers write Ant build scripts using eXtensible Markup Language (XML). XML
tags define the targets to build, dependencies among targets, and tasks to execute in
order to build the targets.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html
3-16 Developing WebLogic Server Applications

Packaging J2EE Applications Using Apache Ant
Compiling Java Source Files

Ant provides a javac task for compiling Java source files. The following example
compiles all of the Java files in the current directory into a classes directory.

<target name=”compile”>

 <javac srcdir=”.” destdir=”classes”/>

</target>

Refer to Apache Ant online documentation for a full set of options relating to the
javac task.

Running WebLogic Server Compilers

Running arbitrary Java programs from Ant can be accomplished by either writing
custom Ant tasks or by simply executing the program using the java task. Tasks such
as ejbc or rmic can be executed using the java task as shown below:

Listing 3-1 Running WebLogic Server Compilers

<java classname="weblogic.ejbc" fork="yes" failonerror="yes">

 <sysproperty key="weblogic.home" value="${WL_HOME}"/>

 <arg line="-compiler java ${dist}/std_ejb_basic_containerManaged.jar

 ${APPLICATIONS}/ejb_basic_containerManaged.jar"/>

 <classpath>

 <pathelement path="${CLASSPATH}"/>

 </classpath>

</java>

The above example uses the fork system call to create a Java process to run ejbc. The
example supplies a system property to define weblogic.home and provide
command line arguments using the arg tag. The classpath for the called Java process
is specified using the classpath tag.
Developing WebLogic Server Applications 3-17

3 Packaging WebLogic Server J2EE Applications
Packaging J2EE Deployment Units

As previously discussed, J2EE applications are packaged as JAR files containing a
specific file extension depending on the component type:

� EJBs are packaged as JAR files.

� Web Applications are packaged as WAR files.

� Resource Adapters are packaged as RAR files.

� Enterprise Applications are packaged as EAR files.

These components are structured according to the J2EE specifications. In addition to
the standard XML deployment descriptors, components may also be packaged with
WebLogic Server-specific XML deployment descriptors.

Ant provides tasks that make the construction of these JAR files easier. In addition to
the features of the JAR command, Ant provides specific tasks for building EAR and
WAR files. Using Ant, you can specify the pathname as it appears in the JAR archive,
which may differ from the original path in the file system. This ability is useful for
packaging deployment descriptors (in which J2EE specifies an exact location in the
archive), which may not correspond to the location in your source tree. See the Apache
Ant online documentation pertaining to the ZipFileSet command for related
information.

The following listing shows:

Listing 3-2 WAR Task Example

<war warfile="cookie.war" webxml="web.xml"
manifest="manifest.txt">

 <zipfileset dir="." prefix="WEB-INF" includes="weblogic.xml"/>

 <zipfileset dir="." prefix="images" includes="*.gif,*.jpg"/>

 <classes dir="classes" includes="**/CookieCounter.class"/>

 <fileset dir="." includes="*.jsp,*.html">

 </fileset>

</war>
3-18 Developing WebLogic Server Applications

Packaging J2EE Applications Using Apache Ant
Packaging J2EE deployment units requires the following steps:

1. Specify the standard XML deployment descriptor using the webxml parameter.

2. The war task automatically maps XML deployment descriptor to the standard
name in the WAR archive WEB-INF/web.xml.

3. Apache Ant stores the manifest file, specified using the manifest parameter,
under the standard name META-INF/MANIFEST.MF.

4. Use the Apache Ant ZipFileSet command to define a set of files (in this case,
just the WebLogic Server-specific deployment descriptor weblogic.xml) that
should be stored in the WEB-INF directory.

5. Use a second ZipFileSet command to package all the images in an images
directory.

6. The classes tag packages servlet classes in the WEB-INF/classes directory.

7. Finally, add all the .jsp and .html files from the current directory to the
archive.

You can achieve the same result by staging the files in a directory that directly
corresponds to the structure of the WAR file and creating a JAR file from that
directory. Using special features of the Ant JAR tasks eliminates the need to copy files
into a specific directory hierarchy.

The following example builds a Web application and an EJB, and then packages them
together in an EAR file:

Listing 3-3 Packaging Example

<project name="app" default="app.ear">

 <property name="wlhome" value="/bea/wlserver6.1"/>

 <property name="srcdir" value="/bea/myproject/src"/>

 <property name="appdir" value="/bea/myproject/config/mydomain/applications"/>

 <target name="timer.war">

 <mkdir dir="classes"/>
Developing WebLogic Server Applications 3-19

3 Packaging WebLogic Server J2EE Applications
 <javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/timer/*.java"/>

 <war warfile="timer.war" webxml="timer/web.xml" manifest="timer/manifest.txt">

 <classes dir="classes" includes="**/TimerServlet.class"/>

 </war>

 </target>

 <target name="trader.jar">

 <mkdir dir="classes"/>

 <javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/trader/*.java"/>

 <jar jarfile="trader0.jar" manifest="trader/manifest.txt">

 <zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xml"/>

 <fileset dir="classes" includes="**/Trade*.class"/>

 </jar>

 <ejbc source="trader0.jar" target="trader.jar"/>

 </target>

 <target name="app.ear" depends="trader.jar, timer.war">

 <jar jarfile="app.ear">

 <zipfileset dir="." prefix="META-INF" includes="application.xml"/>

 <fileset dir="." includes="trader.jar, timer.war"/>

 </jar>

 </target>

 <target name="deploy" depends="app.ear">

 <copy file="app.ear" todir="${appdir}/>

 </target>

</project>
3-20 Developing WebLogic Server Applications

Resolving Class References Between Components
Running Ant

BEA provides a simple script to run Ant in the server/bin directory. By default, Ant
loads the build.xml build file, but you can override this using the -f flag. Use the
following command to build and deploy an application using the build script shown
above:

ant -f yourbuildscript.xml

Resolving Class References Between
Components

Your applications may use many different Java classes, including enterprise beans,
servlets and JavaServer Pages, startup classes, utility classes, and third-party packages.
WebLogic Server deploys applications in separate classloaders to maintain
independence and to facilitate dynamic redeployment and undeployment. Because of
this, you need to package your application classes in such a way that each component
has access to the classes it depends on. In some cases, you may have to include a set
of classes in more than one application or component. This section describes how
WebLogic Server uses multiple classloaders so that you can stage your applications
successfully.

Classloader Overview

A classloader is a Java class that locates and loads a requested class into the Java
virtual machine (JVM). A classloader resolves references by searching for files in the
directories or JAR files listed in its classpath. Most Java programs have a single
classloader, the default system classloader created when the JVM starts up. WebLogic
Server creates additional classloaders when it deploys applications because these
classloaders can be destroyed in order to undeploy the application. This allows
WebLogic Server to redeploy modified applications without having to restart the
server.
Developing WebLogic Server Applications 3-21

3 Packaging WebLogic Server J2EE Applications
Classloaders are hierarchical. When you start WebLogic Server, the Java system
classloader is active and is the parent of all subsequent classloaders that WebLogic
Server creates. A classloader always asks its parent for a class before it searches its
own classpath, but a parent classloader does not consult its children. Because the
search only proceeds upwards in the classloader hierarchy, this also means that a child
classloader cannot locate classes on a sibling’s classpath.

The search protocol also clarifies how duplicate classes are handled in Java. Classes
located in the Java system classpath always have precedence over any class with the
same name in a child classloader’s classpath. Because of this, you should avoid placing
application classes in the Java system classpath before you start WebLogic Server. The
classloader created at startup time cannot be destroyed, so any classes it contains
cannot be redeployed without restarting WebLogic Server.

About Application Classloaders

When WebLogic Server deploys an application, it creates two new classloaders: one
for EJBs and one for Web applications. The EJB classloader is a child of the Java
system classloader and the Web application classloader is a child of the EJB
classloader. This allows classes in a Web application to locate EJB classes, but EJB
classes cannot locate Web application classes. A positive side-effect of this classloader
hierarchy is that it allows servlets and JSPs direct access to EJB implementation
classes. WebLogic Server can bypass the intermediate RMI classes because the EJB
client and implementation are in the same JVM.

If your application includes servlets and JSPs that use enterprise beans:

� Package the servlets and JSPs in a .war file

� Package the enterprise beans in an EJB .jar file

� Package the .war and .jar files in an .ear file

� Deploy the .ear file

Although you could deploy the .war and .jar files separately, deploying them
together in an .ear file produces a classloader arrangement that allows the servlets and
JSPs to find the EJB classes. If you deploy the .war and .ejb files separately,
WebLogic Server creates sibling classloaders for them. This means that you must
3-22 Developing WebLogic Server Applications

Resolving Class References Between Components
include the EJB home and remote interfaces in the .war file, and WebLogic Server
must use the RMI stub and skeleton classes for EJB calls, just as it does when EJB
clients and implementation classes are in different JVMs.

About Resource Adapter Classes

Make sure that no resource-adapter specific classes exist in your WebLogic Server
system classpath. If you need to use resource adapter-specific classes with Web
components (for example, an EJB or Web application), you must bundle these classes
in their corresponding archive file (for example, in the .war’s /classes directory for
servlets or in the .jar’s /classes directory for EJBs).

Using PreferWebInfClasses in J2EE Applications

By default, the classloader for a web application follows the standard delegation model
described in the Javasoft documentation. The servlet specification requires that a Web
application obtain its class definition from the WAR file.

To support this requirement, BEA has included a switch that modifies the delegation
model for a Web application so that the Web application's classloader looks for a class
in the WAR file before asking its parent classloader for the class. This switch is called
PreferWebInfClasses and is located on the WebAppComponentMBean. You can
set this switch in the WebLogic Server console.

When you set PreferWebInfClasses to false (the default), the classloader for a
Web application follows the standard delegation model. When set to true, it looks for
class definitions in the WAR file before asking its parent for a class definition.

This switch satisfies the specification requirement. However, it leads to the possibility
of having different versions of the same classes loaded in the Web application
classloader than those versions existing in parent classloaders. This can lead to
ClassCastExceptions if the developer is not careful to keep these two instances
separate. For this reason, we have set the default for this setting to false, which means
you use the standard delegation model.
Developing WebLogic Server Applications 3-23

3 Packaging WebLogic Server J2EE Applications
Packaging Common Utilities and Third-Party Classes

If you create or acquire utility classes that you will use in more than one application,
you must package them with each application. Alternatively, you could add them to
the Java system classpath by editing the java command in the script that runs
WebLogic Server. If you modify your utility classes and they are in the Java system
classpath, however, you will have to restart WebLogic Server after you modify the
utility classes.

Classes that WebLogic Server uses during startup must be in the Java system classpath.
For example, JDBC drivers used for connection pools must be in the classpath when
you start WebLogic Server. Again, if you need to modify classes in the Java system
classpath, or modify the classpath itself, you will have to restart WebLogic Server after
you modify the classes or the classpath.

Handling Interactions Between Startup Classes and
Applications

Startup classes are classes you create that WebLogic Server executes at startup time.
Startup classes are located by the Java system classpath, so you must put them in the
system classpath before you start the server. Also, any classes they require must be
included in the system classpath.

If a startup class uses application classes (such as EJB interfaces) you will also have to
add those classes to the WebLogic Server startup classpath. Unfortunately, this means
that you cannot modify those classes without restarting the server afterwards.

Startup classes that use application objects must wait for WebLogic Server to finish
deploying the applications before the classes attempt to access the application objects.
For example, if a startup class uses EJBs, you must include the home and remote
interfaces in the system classpath, and you must ensure that the startup class does not
create any EJB instances until WebLogic Server has finished deploying the EJB
application.

The Pet Store application has a startup class that demonstrates one method a startup
class can use to wait for applications to finish deploying. The
com.bea.estore.startup.StartBrowser startup class displays the initial URL to
3-24 Developing WebLogic Server Applications

Resolving Class References Between Components
access the Pet Store application, and on Windows it also launches the browser with the
URL. StartBrowser executes a while loop until applications have deployed and the
server begins accepting connection requests.

Here is an excerpt from that class to show how this works:

while (loop) {
 try {
 socket = new Socket(host, new Integer(port).intValue());
 socket.close();

 //launch browser
 String[] cmdArray = new String[3];
 cmdArray[0] = "beaexec.exe";
 cmdArray[1] = "-target:browser";
 cmdArray[2] = "-command:\"http://"+host+":"+port+"\"";
 try {
 Process p = Runtime.getRuntime().exec(cmdArray);
 p.getInputStream().close();
 p.getOutputStream().close();
 p.getErrorStream().close();
 }
 catch (IOException ioe) {
 }
 loop = false;
 } catch (Exception e) {
 try {
 Thread.sleep(SLEEPTIME); // try every 500 ms
 } catch (InterruptedException ie) {}
 finally {
 try {
 socket.close();
 } catch (Exception se) {}
 }
 }
 }

If the system fails to create a socket, the class sleeps for 500 milliseconds before
repeating the loop. If a startup class needs to create an EJB instance, it could use a
similar technique by looping until the EJB create method succeeds.
Developing WebLogic Server Applications 3-25

3 Packaging WebLogic Server J2EE Applications
3-26 Developing WebLogic Server Applications

CHAPTER
4 Programming Topics

The following sections contain information about programming in the WebLogic
Server environment, including descriptions of useful WebLogic Server facilities and
advice about using various programming techniques:

� Logging Messages

� Using Threads in WebLogic Server

� Using JavaMail with WebLogic Server Applications

� Programming Applications for WebLogic Server Clusters

Logging Messages

Each WebLogic Server instance has a log file that contains messages generated from
that server. Your applications can write messages to the log file using
internationalization services that access localized message catalogs. If localization is
not required, you can use the weblogic.logging.NonCatalogLogger class to write
messages to the log. This class can also be use in client applications to write messages
in a client-side log file.

This section describes how to use the NonCatalogLogger class. See the BEA
WebLogic Server Internationalization Guide at
http://e-docs.bea.com/wls/docs61/i18n/index.html for details on using the
internationalization interface.
Developing WebLogic Server Applications 4-1

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/logging/NonCatalogLogger.html
http://e-docs.bea.com/wls/docs61/i18n/index.html
http://e-docs.bea.com/wls/docs61/i18n/index.html

4 Programming Topics
The log file name, location, and other properties can be administered in the
Administration Console. Log messages written via the NonCatalogLogger class
contain the following information.

Table 4-1 Log Message Format

Property Description

Localized Timestamp Date and time when message originated, including the year, month, day of month,
hours, minutes and seconds.

millisecondsFromEpoch The origination time of the message, in milliseconds since the epoch.

ServerName,
MachineName,
ThreadId, TransactionId

The origin of the message. TransactionId is present only for messages logged within
the context of a transaction.

User Id User on behalf of whom the system was executing when the error was reported.

Subsystem Source of the message, for example EJB, JMS, or RMI. A user application supplies
a Subsystem String in the NonCatalogLogger constructor.

Message Id A unique six-digit identifier for the message. All message IDs through 499000 are
reserved for WebLogic Server.
4-2 Developing WebLogic Server Applications

Logging Messages
To use NonCatalogLogger, import the weblogic.logging.NonCatalogLogger
class and call the constructor with a subsystem String. Here is an example using the
subsystem name “MyApp”:

Severity One of the following severity values:

Debug Should be output only when the server/application is configured
in a debug mode. May contain detailed information about
operations or the state of the server/application.

Informational Used to log normal operations for later examination.

Warning A suspicious operation, event, or configuration that does not
affect the normal operation of the server/application.

Error A user level error. The system/application can handle the error
with no interruption and with limited degradation in service.

In addition to the above, some severity levels are reserved for WebLogic Server
messages:

Notice A warning message. A suspicious operation or configuration
that does not affect the normal operation of the server.

Critical A system/service level error. The system is able to recover,
perhaps with a momentary loss or permanent degradation of
service.

Alert A particular service is in an unusable state. Other parts of the
system continue to function. Automatic recovery is not possible
and the immediate attention of the administrator is required to
resolve the problem.

Emergency The server is in an unusable state. This is used to designate
severe system failures or panics.

ExceptionName If the message is logging an Exception, this field contains the name of the Exception.

Message text For WebLogic Server messages, this field contains the “short description” of the
message defined in the system message catalog.

Table 4-1 Log Message Format

Property Description
Developing WebLogic Server Applications 4-3

4 Programming Topics
import weblogic.logging.NonCatalogLogger;
...
NonCatalogLogger mylogger = new NonCatalogLogger("MyApp");

NonCatalogLogger provides the methods debug(), info(), warn(), and error(),
which write messages with Debug, Informational, Warning, and Error severities,
respectively. Each method has two signatures, one that takes a String message
argument, and another that takes a String message and a java.lang.Throwable
argument. If you use the latter form, the log message includes a stack trace.

Here is an example of writing an informational message, without stack trace, to the log:

mylogger.info("MyApp initialized.");

If you are using NonCatalogLogger in a Java client, you specify the name of the log
file on the java command line, using the weblogic.log.FileName Java system
property. For example:

java -Dweblogic.log.FileName=myapp.log myapp

If you have special processing requirements for some log messages, you can add your
own message handlers.Your message handler provides a filter to select the messages
it is interested in processing. For each log message, the WebLogic Server logging
infrastructure raises a JMX notification, which is delivered to the registered message
handlers with filters that match the message.

See weblogic.management.logging.WebLogicLogNotification information
about using this JMX feature.

Using Threads in WebLogic Server

WebLogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the
components it hosts. To obtain the greatest advantage from WebLogic Server’s
architecture you should construct your applications from components created using the
standard J2EE APIs.

It is advisable to avoid application designs that require creating new threads in
server-side components for several reasons:
4-4 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/logging/WebLogicLogNotification.html

Using Threads in WebLogic Server
� Applications that create their own threads do not scale well. Threads in the JVM
are a limited resource that must be allocated thoughtfully. Your applications may
break or cause WebLogic Server to thrash when the server load increases.
Problems such as deadlocks and thread starvation may not appear until the
application is under a heavy load.

� Multithreaded components are complex and difficult to debug. Interactions
between application-generated threads and WebLogic Server threads are
especially difficult to anticipate and analyze.

There are some situations where creating threads may be appropriate, in spite of these
warnings. For example, an application that searches several repositories and returns a
combined result set can return results sooner if the searches are done asynchronously
using a new thread for each repository instead of synchronously using the main client
thread.

If you decide you must use threads in your application code, your should create a pool
of threads so that you can control the number of threads your application creates. Like
a JDBC connection pool, you allocate a given number of threads to a pool, and then
obtain an available thread from the pool for your runnable class. If all threads in the
pool are in use, wait until one is returned. A thread pool can help avoid performance
issues and will also allow you to optimize the allocation of threads between WebLogic
Server execution threads and your application.

Be sure you understand where your threads can deadlock and handle the deadlocks
when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

To avoid undesirable interactions with WebLogic Server threads, do not let your
threads call into WebLogic Server components. For example, do not use enterprise
beans or servlets from threads that you create. Application threads are best used for
independent, isolated tasks, such as conversing with an external service with a TCP/IP
connection or, with proper locking, reading or writing to files. A short-lived thread that
accomplishes a single purpose and ends (or returns to the thread pool) is less likely to
interfere with other threads.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even
to the point of failure. Observe the application performance and WebLogic Server
behavior and then add checks to prevent failures from occurring in production.
Developing WebLogic Server Applications 4-5

4 Programming Topics
Using JavaMail with WebLogic Server
Applications

WebLogic Server includes the JavaMail API version 1.1.3 reference implementation
from Sun Microsystems. Using the JavaMail API, you can add email capabilities to
your WebLogic Server applications. JavaMail provides access from Java applications
to IMAP- and SMTP-capable mail servers on your network or the Internet. It does not
provide mail server functionality; so you must have access to a mail server to use
JavaMail.

Complete documentation for using the JavaMail API is available on the JavaMail page
on the Sun Web site at http://java.sun.com/products/javamail/index.html. This section
describes how you can use JavaMail in the WebLogic Server environment.

The weblogic.jar file contains the javax.mail and javax.mail.internet
packages from Sun. weblogic.jar also contains the Java Activation Framework
(JAF) package, which JavaMail requires.

The javax.mail package includes providers for Internet Message Access protocol
(IMAP) and Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate
POP3 provider for JavaMail, which is not included in weblogic.jar. You can
download the POP3 provider from Sun and add it to the WebLogic Server classpath if
you want to use it.

About JavaMail Configuration Files

JavaMail depends on configuration files that define the mail transport capabilities of
the system. The weblogic.jar file contains the standard configuration files from
Sun, which enable IMAP and SMTP mail servers for JavaMail and define the default
message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, you should download JavaMail from Sun and follow Sun’s
instructions for adding your extensions. Then add your extended JavaMail package in
the WebLogic Server classpath in front of weblogic.jar.
4-6 Developing WebLogic Server Applications

http://java.sun.com/products/javamail/index.html

Using JavaMail with WebLogic Server Applications
Configuring JavaMail for WebLogic Server

To configure JavaMail for use in WebLogic Server, you create a Mail Session in the
WebLogic Server Administration Console. This allows server-side components and
applications to access JavaMail services with JNDI, using Session properties you
preconfigure for them. For example, by creating a Mail Session, you can designate the
mail hosts, transport and store protocols, and the default mail user in the
Administration Console so that components that use JavaMail do not have to set these
properties. Applications that are heavy email users benefit because WebLogic Server
creates a single Session object and makes it available via JNDI to any component that
needs it.

1. In the Administration Console, click on the Mail node in the left pane of the
Administration Console.

2. Click Create a New Mail Session.

3. Complete the form in the right pane, as follows:

� In the Name field, enter a name for the new session.

� In the JNDIName field, enter a JNDI lookup name. Your code uses this
string to look up the javax.mail.Session object.

� In the Properties field, enter properties to configure the Session. The property
names are specified in the JavaMail API Design Specification. JavaMail
provides default values for each property, and you can override the values in
the application code. The following table lists the properties you can set in
this field.

Table 4-2 Mail Session Properties Field

Property Description Default

mail.store.protocol The protocol to use to retrieve email.

Example:

mail.store.protocol=imap

The bundled JavaMail
library has support for
IMAP.

mail.transport.protocol The protocol to use to send email.

Example:

mail.transport.protocol=smtp

The bundled JavaMail
library has support for
SMTP.
Developing WebLogic Server Applications 4-7

4 Programming Topics
You can override any properties set in the Mail Session in your code by creating a
Properties object containing the properties you want to override. Then, after you
lookup the Mail Session object in JNDI, call the Session.getInstance() method
with your Properties to get a customized Session.

mail.host The name of the mail host machine.

Example:

mail.host=mailserver

The default is the local
machine.

mail.user The name of the default user for retrieving
email.

Example:

mail.user=postmaster

The default is the value
of the user.name Java
system property.

mail.protocol.host The mail host for a specific protocol. For
example, you can set mail.SMTP.host and
mail.IMAP.host to different machine
names.

Examples:

mail.smtp.host=mail.mydom.com
mail.imap.host=localhost

The value of the
mail.host property.

mail.protocol.user The protocol-specific default user name
for logging into a mailer server.

Examples:

mail.smtp.user=weblogic
mail.imap.user=appuser

The value of the
mail.user property.

mail.from The default return address.

Examples:

mail.from=master@mydom.com

username@host

mail.debug Set to True to enable JavaMail debug
output.

False

Table 4-2 Mail Session Properties Field

Property Description Default
4-8 Developing WebLogic Server Applications

Using JavaMail with WebLogic Server Applications
Sending Messages with JavaMail

Here are the steps to send a message with JavaMail from within a WebLogic Server
component:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the
Administration Console, create a Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties.

Properties props = new Properties();
props.put("mail.transport.protocol", "smtp");
props.put("mail.smtp.host", "mailhost");
// use mail address from HTML form for from address
props.put("mail.from", emailAddress);
Session session2 = session.getInstance(props);

4. Construct a MimeMessage. In the following example, to, subject, and
messageTxt are String variables containing input from the user.

Message msg = new MimeMessage(session2);
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(to, false));
msg.setSubject(subject);
msg.setSentDate(new Date());
// Content is stored in a MIME multi-part message
// with one body part
MimeBodyPart mbp = new MimeBodyPart();
mbp.setText(messageTxt);

Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp);
msg.setContent(mp);
Developing WebLogic Server Applications 4-9

4 Programming Topics
5. Send the message.

Transport.send(msg);

The JNDI lookup can throw a NamingException on failure. JavaMail can throw a
MessagingException if there are problems locating transport classes or if
communications with the mail host fails. Be sure to put your code in a try block and
catch these exceptions and handle them.

Reading Messages with JavaMail

The JavaMail API allows you to connect to a message store, which could be an IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders
are stored on the mail server, including folders that contain incoming messages and
folders that contain archived messages. With POP3, the server provides a folder that
stores messages as they arrive. When a client connects to a POP3 server, it retrieves
the messages and transfers them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain
messages or other folders. The default folder is at the top of the structure. The special
folder name INBOX refers to the primary folder for the user, and is within the default
folder. To read incoming mail, you get the default folder from the store, and then get
the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified
message number or range of message numbers, or pre-fetching specific parts of
messages into the folder’s cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic
Server component:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:
4-10 Developing WebLogic Server Applications

Using JavaMail with WebLogic Server Applications
InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the
Administration Console, create a Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props.put("mail.pop3.host", "mailhost");
Session session2 = session.getInstance(props);

4. Get a Store object from the Session and call its connect() method to connect
to the mail server. To authenticate the connection, you need to supply the
mailhost, username, and password in the connect method:

Store store = session.getStore();
store.connect(mailhost, username, password);

5. Get the default folder, then use it to get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder("INBOX");

6. Read the messages in the folder into an array of Messages:

Message[] messages = folder.getMessages();

7. Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement a full-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage a message store
via WebLogic Server, possibly using a database or file system to represent folders.
Developing WebLogic Server Applications 4-11

4 Programming Topics
Programming Applications for WebLogic
Server Clusters

JSPs and Servlets that will be deployed to a WebLogic Server cluster must observe
certain requirements for preserving session data. See Session Programming
Requirements in Using WebLogic Server Clusters for more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB
type. See The WebLogic Server EJB Container for information about the capabilities
of different EJB types in a cluster. EJBs can be deployed to a cluster by setting
clustering properties in the EJB deployment descriptor. weblogic-ejb-jar.xml
Deployment Descriptors describes the XML deployment elements relevant for
clustering.

If you are developing either EJBs or custom RMI objects for deployment in a cluster,
also refer to Using WebLogic JNDI in a Clustered Enviroment to understand the
implications of binding clustered objects in the JNDI tree.
4-12 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs61/cluster/servlet.html#sessionprog
http://e-docs.bea.com/wls/docs61/cluster/servlet.html#sessionprog
http://e-docs.bea.com/wls/docs61/cluster/index.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs61/ejb/reference.html
http://e-docs.bea.com/wls/docs61/ejb/reference.html
http://e-docs.bea.com/wls/docs61/jndi/jndi.html#jndi012

APPENDIX
A application.xml
Deployment Descriptor
Elements

The following sections describe the application.xml file.

The application.xml file is the deployment descriptor for Enterprise Application
Archives. The file is located in the META-INF subdirectory of the application archive.
It must begin with the following DOCTYPE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">

The following diagram summarizes the structure of the application.xml
deployment descriptor.
Developing WebLogic Server Applications A-1

A application.xml Deployment Descriptor Elements
The following sections describe each of the elements that can appear in the file.

application

application is the root element of the application deployment descriptor. The
elements within the application element are described in the following sections.

application

icon

small-icon

large-icon

display-name

description?

module+

security-role*

ejb

java

web

web-uri

context-root

description

role-name

? = Optional
+ = One or more
* = Zero or more
A-2 Developing WebLogic Server Applications

application
icon

The icon element specifies the locations of small and large images that represent the
application in a GUI tool. This element is not currently used by WebLogic Server.

small-icon

Optional. Specifies the location for a small (16x16 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this is not used by WebLogic Server.

large-icon

Optional. Specifies the location for a large (32x32 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebLogic Server.

display-name

Optional. The display-name element specifies the application display name, a short
name that is intended to be displayed by GUI tools.

description

The optional description element provides descriptive text about the application.

module

The application.xml deployment descriptor contains one module element for each
module in the Enterprise Archive file. Each module element contains an ejb, java, or
web element that indicates the module type and location of the module within the
application. An optional alt-dd element specifies an optional URI to the
post-assembly version of the deployment descriptor.
Developing WebLogic Server Applications A-3

A application.xml Deployment Descriptor Elements
ejb

Defines an EJB module in the application file. Contains the path to an EJB JAR file in
the application.

Example:

<ejb>petStore_EJB.jar</ejb>

java

Defines a client application module in the application file.

Example:

<java>client_app.jar</java>

web

Defines a Web application module in the application file. The web element contains a
web-uri element and a context-root element.

web-uri

Defines the location of a Web module in the application file. This is the name of the
.war file.

context-root

Required. Specifies a context root for the Web application.

Example:

<web>
<web-uri>petStore.war</web-uri>
<context-root>estore</context-root>

</web>
A-4 Developing WebLogic Server Applications

security-role

The security-role element contains the definition of a security role which is global
to the application. Each security-role element contains an optional description
element, and a role-name element.

description

Optional. Text description of the security role.

role-name

Required. Defines the name of a security role or principal that is used for authorization
within the application. Roles are mapped to WebLogic Server users or groups in the
application.xml deployment descriptor.

Example:

<security-role>
<description>the gold customer role</description>
<role-name>gold_customer</role-name>

</security-role>
<security-role>
<description>the customer role</description>
<role-name>customer</role-name>

</security-role>
Developing WebLogic Server Applications A-5

A application.xml Deployment Descriptor Elements
A-6 Developing WebLogic Server Applications

APPENDIX
B Client Application
Deployment Descriptor
Elements

The following sections describe deployment descriptors for J2EE Client applications
on WebLogic Server. Two deployment descriptors are required: a J2EE standard
deployment descriptor, named application-client.xml, and a WebLogic-specific
runtime deployment descriptor with a name derived from the client application JAR
file.

� application-client.xml Deployment Descriptor Elements

� WebLogic Run-time Client Application Deployment Descriptor

application-client.xml Deployment
Descriptor Elements

The application-client.xml file is the deployment descriptor for J2EE client
applications. It must begin with the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application Client 1.2//EN"
"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">
Developing WebLogic Server Applications B-1

B Client Application Deployment Descriptor Elements
The following diagram summarizes the structure of the application-client.xml
deployment descriptor.
B-2 Developing WebLogic Server Applications

application-client.xml Deployment Descriptor Elements
The following sections describe each of the elements that can appear in the file.

application-client

icon?

small-icon?

large-icon?

display-name

description?

env-entry*

description?

env-entry-name

env-entry-type

? = Optional
+ = One or more
* = Zero or more

env-entry-value?

ejb-ref*

description?

ejb-ref-name

ejb-ref-type

home

remote

ejb-link?

resource-ref*

description?

res-ref-name

res-type

res-auth
Developing WebLogic Server Applications B-3

B Client Application Deployment Descriptor Elements
application-client

application-client is the root element of the application client deployment
descriptor. The application client deployment descriptor describes the EJB
components and other resources used by the client application.

The elements within the application-client element are described in the following
sections.

icon

Optional. The icon element specifies the locations of small and large images that
represent the application in a GUI tool. This element is not currently used by
WebLogic Server.

small-icon

Optional. Specifies the location for a small (16x16 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this is not used by WebLogic Server.

large-icon

Optional. Specifies the location for a large (32x32 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebLogic Server.

display-name

The display-name element specifies the application display name, a short name that
is intended to be displayed by GUI tools.

description

Optional. The description element provides a description of the client application.
B-4 Developing WebLogic Server Applications

application-client.xml Deployment Descriptor Elements
env-entry

The env-entry element contains the declaration of a client application’s environment
entries.

description

Optional. The description element contains a description of the particular
environment entry.

env-entry-name

The env-entry-name element contains the name of a client application’s
environment entry.

env-entry-type

The env-entry-type element contains the fully-qualified Java type of the
environment entry. The possible values are: java.lang.Boolean,
java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and java.lang.Float.

env-entry-value

Optional. The env-entry-value element contains the value of a client application’s
environment entry. The value must be a String that is valid for the constructor of the
specified env-entry-type.

ejb-ref

The ejb-ref element is used for the declaration of a reference to an EJB referenced in
the client application.

description

Optional. The description element provides a description of the referenced EJB.
Developing WebLogic Server Applications B-5

B Client Application Deployment Descriptor Elements
ejb-ref-name

The ejb-ref-name element contains the name of the referenced EJB. Typically the
name is prefixed by ejb/, such as ejb/Deposit.

ejb-ref-type

The ejb-ref-type element contains the expected type of the referenced EJB, either
Session or Entity.

home

The home element contains the fully-qualified name of the referenced EJB’s home
interface.

remote

The remote element contains the fully-qualified name of the referenced EJB’s remote
interface.

ejb-link

The ejb-link element specifies that an EJB reference is linked to an enterprise
JavaBean in the J2EE application package. The value of the ejb-link element must
be the name of the ejb-name of an EJB in the same J2EE application.

resource-ref

The resource-ref element contains a declaration of the client application’s reference
to an external resource.

description

Optional. The description element contains a description of the referenced external
resource.
B-6 Developing WebLogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor
res-ref-name

The res-ref-name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the client application’s
environment entry whose value contains the JNDI name of the data source.

res-type

The res-type element specifies the type of the data source. The type is specified by
the Java interface or class expected to be implemented by the data source.

res-auth

The res-auth element specifies whether the EJB code signs on programmatically to
the resource manager, or whether the Container will sign on to the resource manager
on behalf of the EJB. In the latter case, the Container uses information that is supplied
by the Deployer. The res-auth element can have one of two values: Application or
Container.

WebLogic Run-time Client Application
Deployment Descriptor

This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory as the client application JAR file.

The file name for the deployment descriptor is the base name of the JAR file, with the
extension .runtime.xml. For example, if the client application is packaged in a file
named c:/applications/ClientMain.jar, the run-time deployment descriptor is
in the file named c:/applications/ClientMain.runtime.xml.
Developing WebLogic Server Applications B-7

B Client Application Deployment Descriptor Elements
The following diagram shows the structure of the elements in the run-time deployment
descriptor.

application-client

The application-client element is the root element of a WebLogic-specific
run-time client deployment descriptor.

env-entry*

The env-entry element specifies values for environment entries declared in the
deployment descriptor.

env-entry-name

The env-entry-name element contains the name of an application client's
environment entry.

Example:

application-client

env-entry*

env-entry-name

env-entry-value

ejb-ref*

ejb-ref-name

jndi-name

resource-ref*

resource-ref-name

jndi-name

? = Optional
+ = One or more
* = Zero or more
B-8 Developing WebLogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor
<env-entry-name>EmployeeAppDB</env-entry-name>

env-entry-value

The env-entry-value element contains the value of an application client’s
environment entry. The value must be a string valid for the constructor of the specified
type that takes a single string parameter.

ejb-ref*

The ejb-ref element specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

ejb-ref-name

The ejb-ref-name element contains the name of an EJB reference. The EJB
reference is an entry in the application client’s environment. It is recommended that
name is prefixed with ejb/.

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

jndi-name

The jndi-name element specifies the JNDI name for the EJB.

resource-ref*

The resource-ref element declares an application client’s reference to an external
resource. It contains the resource factory reference name, an indication of the resource
factory type expected by the application client’s code, and the type of authentication
(bean or container).

Example:

<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<jndi-name>enterprise/databases/HR1984</jndi-name>

</resource-ref>
Developing WebLogic Server Applications B-9

B Client Application Deployment Descriptor Elements
resource-ref-name

The res-ref-name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the application client’s
environment entry whose value contains the JNDI name of the data source.

jndi-name

The jndi-name element specifies the JNDI name for the resource.
B-10 Developing WebLogic Server Applications

Symbols
.ear file 1-9, 2-3, 2-5
.jar file 2-5
.rar file 1-8, 2-9

modifying an existing 2-11
.war file 1-4
A
Administration Console

creating a Mail Session 4-7
editing deployment descriptors 2-20

application classloaders 3-22
application components 1-2
application element A-2
application.xml file

application element A-2
deployment descriptor elements A-1
description element A-3, A-5
display-name element A-3
ejb element A-4
icon element A-3
java element A-4
large-icon element A-3
module element A-3
role-name element A-5
security-role A-5
small-icon element A-3
web element A-4

application-client element B-4, B-8
application-client.xml

application-client element B-4
deployment descriptor elements B-1
description element B-4, B-5, B-6
display-name element B-4
ejb-link element B-6
ejb-ref element B-5
ejb-ref-name element B-6
ejb-ref-type element B-6
env-entry element B-5
env-entry-name B-5
env-entry-type element B-5

env-entry-value element B-5
home element B-6
icon element B-4
large-icon element B-4
remote element B-6
res-auth element B-7
resource-ref element B-6
res-ref-name element B-7
res-type element B-7
small-icon element B-4

applications 1-2
and threads 4-5
deployment descriptors 3-3
developing WebLogic Server 2-1
interactions between startup classes and 3-24

B
BEA XML Editor 2-20
C
class references

resolving between components 3-21
classes

interactions between startup classes and applications 3-24
resource adapter 3-23
third-party, packaging 3-24

classloader
application 3-22
overview 3-21

classpath setting 2-18
client applications 1-3, 1-9

deployment descriptor B-7
deployment descriptor elements B-1
HTTP requests 1-9
packaging and deploying 3-13
RMI requests 1-9

ClientMain.runtime.xml file
application-client element B-8
ejb-ref element B-9
ejb-ref-name element B-9
env-entry element B-8
env-entry-name B-8

env-entry-value element B-9
jndi-name element B-9, B-10
resource-ref element B-9
resource-ref-name element B-10

common utilities in packaging 3-23
compiled classes, setting target directories for 2-18
compiling

preparation 2-17
putting the Java tools in your search path 2-17
setting target directories for compiled classes 2-18
setting the classpath 2-18

components 1-2, 1-8
Connector 1-2
connector 1-8
deployment descriptors 3-3
EJB 1-2, 1-6
Enterprise JavaBean 1-6
packaging 1-2
Web 1-2
Web application 1-4
WebLogic Server 1-2

configuration
modifying an existing resource adapter 2-11

configuration files, JavaMail 4-6
connector components 1-2, 1-8
connectors

developing, main steps 2-9
modifying existing 2-13
packaging 3-10
XML deployment descriptors 3-4

customer support contact information ix
D
database system 2-15
deploying

client applications 3-13
enterprise applications 2-7
Enterprise JavaBeans 2-5
Web applications 2-3

deployment descriptors
application.xml elements A-1

automatically generating 3-4
client application elements B-1
editing connector 2-25
editing EJB 2-21
editing enterprise application 2-27
editing resource adapter 2-25
editing using the Administration Console 2-20
editing Web application 2-23
WebLogic run-time client application B-7

description element A-3, A-5, B-4, B-5, B-6
developing

connectors, main steps 2-9
enterprise applications 2-5
Enterprise JavaBeans, main steps 2-3
establishing a development environment 2-13
resource adapters, main steps 2-9
Web applications 2-2
WebLogic Server applications 2-1

development environment 2-13
development WebLogic Server 2-14
software tools 2-13
third-party software 2-16

display-name element A-3, B-4
documentation, where to find it viii
E
editing

connector deployment descriptors 2-25
deployment descriptors 2-20
EJB deployment descriptors 2-21
enterprise application deployment descriptors 2-27
resource adapter deployment descriptors 2-25
Web application deployment descriptors 2-23

EJB components 1-2
ejb element A-4
ejb-link element B-6
ejb-ref element B-5, B-9
ejb-ref-name element B-6, B-9
ejb-ref-type element B-6
EJBs 1-6

and WebLogic Server 1-7

compiling Java code 2-4
deploying 2-5
deployment descriptor 1-7, 2-4
developing 2-3
interfaces 1-6
overview 1-6
packaging 2-4, 3-8
XML deployment descriptors 3-3

enterprise applications 1-2, 1-9
archives A-1
deploying 2-7
deployment descriptor 2-7
developing, main steps 2-5
packaging 2-6, 2-7, 3-11

Enterprise JavaBeans 1-6
and WebLogic Server 1-7
compiling Java code 2-4
deploying 2-5
deployment descriptor 1-7
deployment descriptors 2-4
developing 2-3
interfaces 1-6
overview 1-6
packaging 2-4, 3-8
XML deployment descriptors 3-3

entity beans 1-2, 1-6
env-entry element B-5, B-8
env-entry-name element B-5, B-8
env-entry-type element B-5
env-entry-value element B-5, B-9
ExceptionName, logging message 4-3
G
generating deployment descriptors automatically 3-4
H
home element B-6
home interfaces 1-6
HTML pages 1-2
HTTP requests 1-9
I
icon element A-3, B-4

IDE 2-13
implementation classes 1-6
interactions between startup classes and applications 3-24
J
JAR files 1-2, 3-2
JAR utility 1-2, 3-2
Java 2 Platform, Enterprise Edition (J2EE)

about 1-3
Java classes 1-8
Java compiler 2-14, 2-18
java element A-4
Java tools

putting in your search path 2-17
JavaMail

API version 1.1.3 4-6
configuration files 4-6
configuring for WebLogic Server 4-7
Mail Session properties 4-7
reading messages 4-10
sending messages 4-9
using with WebLogic Server applications 4-6

JavaServer pages 1-2, 1-5
javax.mail package 4-6
JDBC driver 2-15
jndi-name element B-9, B-10
L
large-icon element A-3, B-4
localized timestamp, logging message 4-2
logging messages 4-1

format, property and description 4-2
how to write 4-4
processing requirements 4-4

M
MachineName, logging message 4-2
Mail Session

creating in the Console 4-7
properties 4-7

Message Id, logging message 4-2
Message text, logging message 4-3
message-driven beans 1-2, 1-6

millisecondsFromEpoch, logging message 4-2
modifying

existing .rar file 2-13
existing resource adapter 2-13

module element A-3
multithreaded components 4-5
P
packaging

automatically generating deployment descriptors 3-4
classloader overview 3-21
client applications 3-13
common utilities and third-party classes 3-24
connectors 3-10
enterprise application 2-7
enterprise applications 2-6, 3-11
Enterprise JavaBeans 2-4, 3-8
handling interactions between startup classes and applications 3-24
JAR files 3-2
resolving class references between components 3-21
resource adapters 3-10
Web applications 2-3, 3-6
WebLogic Server applications 3-1
XML deployment descriptors 3-3

preparing to compile 2-17
printing product documentation viii
programming

JavaMail configuration files 4-6
logging messages 4-1
reading messages with JavaMail 4-10
sending messages with JavaMail 4-9
topics 4-1
using JavaMail with WebLogic Server applications 4-6

R
remote element B-6
remote interfaces 1-6
res-auth element B-7
resource adapters 1-2, 1-8

classes 3-23
developing, main steps 2-9
modifying an existing 2-11

modifying existing 2-13
packaging 3-10
XML deployment descriptors 3-4

resource-ref element B-6, B-9
resource-ref-name element B-10
res-ref-name element B-7
res-type element B-7
RMI requests 1-9
role-name element A-5
run-time deployment descriptor B-8
S
search path 2-17
security-role element A-5
ServerName, logging message 4-2
servlets 1-2, 1-4

compiling into class files 2-2
session beans 1-2, 1-6
severity, logging message 4-3
shutdown classes 1-2, 1-8
small-icon element A-3, B-4
sockets, creation failure 3-25
software tools

database system 2-15
development WebLogic Server 2-14
IDE 2-13
Java compiler 2-14
JDBC driver 2-15
source code editor 2-13
Web browser 2-16

source code editor 2-13
startup classes 1-2, 1-8, 3-24
Subsystem, logging message 4-2
Sun Microsystems 1-3
support

technical x
T
target directories setting 2-18
third-party software 2-16
ThreadId, logging message 4-2
threads

and applications 4-5
avoiding undesirable interactions with WebLogic Server threads 4-5
multithreaded components 4-5
testing multithreaded code 4-5
using in WebLogic Server 4-4

TransactionId, logging message 4-2
U
User Id, logging message 4-2
W
Web application components 1-4

directory structure 1-5
JavaServer pages 1-5
more information 1-5
servlets 1-4

Web applications 1-2
compiling servlets into class files 2-2
creating HTML pages and JSPs 2-2
deploying 2-3
main steps for developing 2-2
packaging 2-3, 3-6
XML deployment descriptors 3-3

Web archive 1-4
Web browser 2-16
Web components 1-2
web element A-4
WebLogic run-time client application

deployment descriptor B-7
WebLogic Server

components 1-8
configuring JavaMail for 4-7
development server 2-14
editing deployment descriptors using the Console 2-20
EJBs 1-7
using threads in 4-4

WebLogic Server application
components 1-2

WebLogic Server applications 1-2
developing 2-1
establishing a developing environment 2-13
packaging 3-1

preparing to compile 2-17
programming topics 4-1
using JavaMail with 4-6

X
XML deployment descriptors 3-3
XML,editing 2-20

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding WebLogic Server J2EE Applications
	What Are WebLogic Server J2EE Applications and Components?
	J2EE Platform
	WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality
	WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features
	WebLogic Server 6.1 with J2EE 1.2 Certification

	Web Application Components
	Servlets
	JavaServer Pages
	Web Application Directory Structure
	For More Information on Web Application Components

	Enterprise JavaBean Components
	EJB Overview
	EJB Interfaces
	EJBs and WebLogic Server

	WebLogic Server Components
	Connector Component

	Enterprise Applications
	Client Applications

	2 Developing WebLogic Server J2EE Applications
	Creating Web Applications: Main Steps
	1. Create the HTML pages and JSPs that make up the Web interface of the Web application. Typicall...
	2. Write the Java code for the servlets and the JSP taglibs referenced in JavaServer Pages (JSPs)...
	3. Compile the servlets into class files.
	4. Create the web.xml and weblogic.xml deployment descriptors.
	5. Package the HTML pages, servlet class files, JSP files, web.xml, and weblogic.xml files into a...
	6. Auto-deploy the *.war file on WebLogic server for testing purposes.
	7. Deploy the *.war file on the WebLogic Server for production use or include it in an enterprise...

	Creating Enterprise JavaBeans: Main Steps
	1. Write the Java code for the various classes required by each type of EJB (session, entity, or ...
	2. Compile the Java code for the interfaces and implementation into class files.
	3. Create the EJB-specific deployment descriptors:
	4. Package the class files and deployment descriptors into a *.jar Java archive file
	5. Auto-deploy the *.jar EJB archive file on WebLogic server for testing purposes.
	6. Deploy the *.jar file on WebLogic Server for production use or include it in an enterprise arc...

	Creating WebLogic Server Enterprise Applications: Main Steps
	1. Create Web and EJB components for your application.
	2. Create Web and EJB component deployment descriptors.
	3. Package the Web and EJB components into their component archive files.
	4. Create the enterprise application deployment descriptor.
	5. Package the enterprise application.
	6. Auto-deploy the *.ear enterprise application on WebLogic server for testing purposes.
	7. Deploy the *.ear file on WebLogic Server for production use. You use the Administration Consol...
	Figure 2�1 Creating Enterprise Applications

	Creating Resource Adapters: Main Steps
	Creating a New Resource Adapter (.rar)
	1. Write the Java code for the various classes required by resource adapter (ConnectionFactory, C...
	2. Compile the Java code for the interfaces and implementation into class files.
	3. Package the Java classes into a Java archive (.jar) file.
	4. Create the resource connector-specific deployment descriptors:
	5. Create a resource adapter archive file (.rar file).
	a. The first step is to create an empty staging directory.
	b. Place the .rar file containing the resource adapter Java classes in the staging directory.
	c. Then, place the deployment descriptors in a subdirectory called META-INF.
	d. Next, create the resource adapter archive by executing a jar command like the following in the...
	6. Auto-deploy the .rar resource adapter archive file on WebLogic server for testing purposes.
	7. Deploy the .rar resource adapter archive file on WebLogic Server or include it in an enterpris...

	Modifying an Existing Resource Adapter (.rar)
	1. Create a temporary directory to stage the resource adapter:
	2. Copy the resource adapter that you will deploy into the temporary directory:
	3. Extract the contents of the resource adapter archive:
	4. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor for ...
	5. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The META-I...
	6. Create the resource adapter archive:
	7. Deploy the resource adapter in WebLogic Server. For more information on deploying a resource a...

	Establishing a Development Environment
	Software Tools
	Source Code Editor or IDE
	XML Editor
	Java Compiler
	Development WebLogic Server
	Database System and JDBC Driver
	Web Browser

	Third-Party Software

	Preparing to Compile
	Putting the Java Tools in Your Search Path
	Setting the Classpath for Compiling
	Setting Target Directories for Compiled Classes
	CLIENT_CLASSES
	SERVER_CLASSES
	EX_WEBAPP_CLASSES
	APPLICATIONS

	Editing Deployment Descriptors
	Using the BEA XML Editor
	Using the Administration Console Deployment Descriptor Editor
	Editing EJB Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the EJB node under the Deployments node.
	4. Right-click the name of the EJB whose deployment descriptors you want to edit and choose Edit ...
	5. To edit, delete, or add elements in the EJB deployment descriptors, click to expand the node i...
	6. To edit an existing element in one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you have made all your changes to the EJB deployment descriptors, click the root element ...
	10. Click Validate if you want to ensure that the entries in the EJB deployment descriptors are v...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Web Application Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Web Applications node under the Deployments node.
	4. Right-click the name of the Web application whose deployment descriptors you want to edit and ...
	5. To edit, delete, or add elements in the Web application deployment descriptors, click to expan...
	6. To edit an existing element in one of the Web application deployment descriptors, follow these...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the Web application deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the Web application deployment descriptors, follow t...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you have made all your changes to the Web application deployment descriptors, click the r...
	10. Click Validate if you want to ensure that the entries in the Web application deployment descr...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Resource Adapter Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Connectors node under the Deployments node.
	4. Right-click the name of the resource adapter whose deployment descriptors you want to edit and...
	5. To edit, delete, or add elements in the resource adapter deployment descriptors, click to expa...
	6. To edit an existing element in one of the resource adapter deployment descriptors, follow thes...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the resource adapter deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the resource adapter deployment descriptors, follow ...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you have made all your changes to the resource adapter deployment descriptors, click the ...
	10. Click Validate if you want to ensure that the entries in the resource adapter deployment desc...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Enterprise Application Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Applications node under the Deployments node.
	4. Right-click the name of the Enterprise Application whose deployment descriptor you want to edi...
	5. To edit an existing element in the application.xml deployment descriptor, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	6. To add a new element to the application.xml deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	7. To delete an existing element from the application.xml deployment descriptor, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	8. Once you have made all your changes to the application.xml deployment descriptor, click the ro...
	9. Click Validate if you want to ensure that the entries in the application.xml deployment descri...
	10. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	3 Packaging WebLogic Server J2EE Applications
	Packaging Overview
	JAR Files
	jar cf jar-file files ...
	jar xf jar-file
	jar tf jar-file

	XML Deployment Descriptors
	Table 3�1 J2EE and WebLogic Deployment Descriptors

	Automatically Generating Deployment Descriptors
	Development Mode vs. Production Mode

	Packaging Web Applications
	1. Create a temporary staging directory. You can name this directory anything you want.
	2. Copy all of your HTML files, JSP files, images, and any other files that these Web pages refer...
	3. Create META-INF and WEB-INF/classes subdirectories in the staging directory to hold deployment...
	4. Copy or compile any servlet classes and helper classes into the WEB-INF/classes subdirectory.
	5. Copy the home and remote interface classes for enterprise beans used by the servlets into the ...
	6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be installed in a sub...
	7. Set up your shell environment.
	8. Execute the following command to automatically generate the web.xml and weblogic.xml deploymen...
	9. Bundle the staging directory into a .war file by executing a jar command such as the following:

	Packaging Enterprise JavaBeans
	1. Create a temporary staging directory.
	2. Compile or copy the bean’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. Execute the following command to automatically generate the ejb-jar.xml, weblogic-ejb-jar.xml,...
	6. When all of the enterprise bean classes and deployment descriptors are set up in the staging d...

	Packaging Resource Adapters
	1. Create a temporary staging directory.
	2. Compile or copy the resource adapter’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for the re...
	5. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add entries fo...
	6. When all of the resource adapter classes and deployment descriptors are set up in the staging ...

	Packaging Enterprise Applications
	1. Create a temporary staging directory.
	2. Copy the Web archives (.war files) and EJB archives (.jar files) into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. Execute the following command to automatically generate the application.xml deployment descrip...
	6. Create the Enterprise Archive (.ear file) for the application, using a jar command such as:

	Packaging Client Applications
	Executing a Client Application in an EAR File
	Special Considerations for Deploying J2EE Client Applications

	Packaging J2EE Applications Using Apache Ant
	Compiling Java Source Files
	Running WebLogic Server Compilers
	Listing 3-1 Running WebLogic Server Compilers

	Packaging J2EE Deployment Units
	Listing 3-2 WAR Task Example
	1. Specify the standard XML deployment descriptor using the webxml parameter.
	2. The war task automatically maps XML deployment descriptor to the standard name in the WAR arch...
	3. Apache Ant stores the manifest file, specified using the manifest parameter, under the standar...
	4. Use the Apache Ant ZipFileSet command to define a set of files (in this case, just the WebLogi...
	5. Use a second ZipFileSet command to package all the images in an images directory.
	6. The classes tag packages servlet classes in the WEB-INF/classes directory.
	7. Finally, add all the .jsp and .html files from the current directory to the archive.

	Listing 3-3 Packaging Example
	<project name="app" default="app.ear">
	<property name="wlhome" value="/bea/wlserver6.1"/>
	<property name="srcdir" value="/bea/myproject/src"/>
	<property name="appdir" value="/bea/myproject/config/mydomain/applications"/>
	<target name="timer.war">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/timer/*.java"/>
	<war warfile="timer.war" webxml="timer/web.xml" manifest="timer/manifest.txt">
	<classes dir="classes" includes="**/TimerServlet.class"/>
	</war>
	</target>
	<target name="trader.jar">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/trader/*.java"/>
	<jar jarfile="trader0.jar" manifest="trader/manifest.txt">
	<zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xml"/>
	<fileset dir="classes" includes="**/Trade*.class"/>
	</jar>
	<ejbc source="trader0.jar" target="trader.jar"/>
	</target>
	<target name="app.ear" depends="trader.jar, timer.war">
	<jar jarfile="app.ear">
	<zipfileset dir="." prefix="META-INF" includes="application.xml"/>
	<fileset dir="." includes="trader.jar, timer.war"/>
	</jar>
	</target>
	<target name="deploy" depends="app.ear">
	<copy file="app.ear" todir="${appdir}/>
	</target>
	</project>

	Running Ant

	Resolving Class References Between Components
	Classloader Overview
	About Application Classloaders
	About Resource Adapter Classes
	Using PreferWebInfClasses in J2EE Applications
	Packaging Common Utilities and Third-Party Classes
	Handling Interactions Between Startup Classes and Applications

	4 Programming Topics
	Logging Messages
	Table 4�1 Log Message Format

	Using Threads in WebLogic Server
	Using JavaMail with WebLogic Server Applications
	About JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	1. In the Administration Console, click on the Mail node in the left pane of the Administration C...
	2. Click Create a New Mail Session.
	3. Complete the form in the right pane, as follows:
	Table 4�2 Mail Session Properties Field

	Sending Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are String vari...
	5. Send the message.

	Reading Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Get a Store object from the Session and call its connect() method to connect to the mail serve...
	5. Get the default folder, then use it to get the INBOX folder:
	6. Read the messages in the folder into an array of Messages:
	7. Operate on messages in the Message array. The Message class has methods that allow you to acce...

	Programming Applications for WebLogic Server Clusters

	A application.xml Deployment Descriptor Elements
	application
	icon
	small-icon
	large-icon

	display-name
	description
	module
	ejb
	java
	web
	web-uri
	context-root

	security-role
	description
	role-name

	B Client Application Deployment Descriptor Elements
	application-client.xml Deployment Descriptor Elements
	application-client
	icon
	small-icon
	large-icon

	display-name
	description
	env-entry
	description
	env-entry-name
	env-entry-type
	env-entry-value

	ejb-ref
	description
	ejb-ref-name
	ejb-ref-type
	home
	remote
	ejb-link

	resource-ref
	description
	res-ref-name
	res-type
	res-auth

	WebLogic Run-time Client Application Deployment Descriptor
	application-client
	env-entry*
	env-entry-name
	env-entry-value

	ejb-ref*
	ejb-ref-name
	jndi-name

	resource-ref*
	resource-ref-name
	jndi-name

