
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA WebLogic

Performance and Tuning

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Server Performance and Tuning

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server Version 6.1

Contents

About This Document
What You Need to Know ..v

e-docs Web Site... vi

How to Print the Document... vi

Contact Us! .. vi

Documentation Conventions ... viii

1. Tuning Hardware, Operating System, and Network
Performance

Hardware Tuning... 1-1

Supported Platforms... 1-2

Operating System Tuning.. 1-3

Linux Tuning Parameters ... 1-6

Other Operating System Tuning Information .. 1-7

Network Performance.. 1-8

Determining Network Bandwidth .. 1-8

LAN Infrastructure... 1-9

2. Tuning Java Virtual Machines (JVMs)
JVM Tuning Considerations.. 2-2

About JVM Heap Size... 2-3

About Generational Garbage Collection ... 2-4

Determining Heap Size.. 2-5

Turning On Verbose Garbage Collection and Redirecting Output 2-6

Specifying Heap Size Values .. 2-7

Java Heap Size Options.. 2-7

Forcing Garbage Collection .. 2-9
BEA WebLogic Server Performance and Tuning i

Setting Java HotSpot VM Options .. 2-9

Standard Options for NT .. 2-10

Standard Options for UNIX.. 2-10

Setting Non-Standard Java Command Line Options....................................... 2-11

Non-Standard Options for NT.. 2-11

Non-Standard Options for Solaris .. 2-12

3. Tuning WebLogic Server
Tuning config.xml File Parameters ... 3-1

Using WebLogic Server Performance Packs ... 3-2

Setting Thread Count.. 3-3

Assigning Applications to Execute Queues ... 3-5

Allocating Threads to Act as Socket Readers .. 3-6

How Connection Pools Enhance Performance... 3-6

Tuning JDBC Connection Pool Size .. 3-7

Tuning Connection Backlog Buffering .. 3-8

Tuning weblogic-ejb-jar.xml Parameters .. 3-9

Setting EJB Pool Size... 3-9

Tuning Initial Beans in Free Pool... 3-11

Setting EJB Caching Size... 3-11

Deferring Database Locking... 3-13

Setting Transaction Isolation Level.. 3-13

Tuning Parameters for Starting WebLogic Server .. 3-14

Setting Your Java Compiler .. 3-14

Changing Compilers in the WebLogic Server Console 3-15

Setting Your Compiler in weblogic.xml .. 3-15

Compiling EJB Container Classes.. 3-16

Compiling on UNIX... 3-16

WebLogic Server Clusters and Scalability .. 3-16

Performance Considerations for Multi-CPU Machines 3-17

Monitoring a WebLogic Server Domain ... 3-18

4. Tuning WebLogic Server Applications
Using Performance Analysis Tools ... 4-1

Using the JProbe Profiler API .. 4-2
ii BEA WebLogic Server Performance and Tuning

Using the Optimizeit Profiler ... 4-2

JDBC Application Tuning... 4-2

JDBC Optimization for Type-4 MS SQL Driver 4-3

Managing Session Persistence... 4-3

In-Memory Replication .. 4-3

JDBC-based Persistence... 4-4

Minimizing Sessions ... 4-4

Using Execute Queues to Control Thread Usage .. 4-5

Execute Queue Drawbacks... 4-6

Creating Execute Queues ... 4-6

Assigning Servlets and JSPs to Execute Queues 4-7

Assigning EJBs and RMI Objects to Execute Queues 4-8

A. Related Reading
BEA Systems, Inc. Information.. A-2

Sun Microsystems Information .. A-2

Linux OS Information .. A-3

Hewlett-Packard Company Information... A-4

Microsoft Information .. A-4

Web Performance Tuning Information .. A-5

Network Performance Tools... A-5

Performance Analysis Tools... A-6

Benchmarking Information .. A-6

Java Virtual Machine (JVM) Information.. A-7

Enterprise JavaBeans Information.. A-8

Java Message Service (JMS) Information.. A-9

General Performance Information.. A-9

Index
BEA WebLogic Server Performance and Tuning iii

iv BEA WebLogic Server Performance and Tuning

About This Document

To achieve the best performance for your WebLogic Server™ platform, you need to
optimize the performance of the components that constitute the WebLogic Server
environment. This document provides the following performance-related information:

� Chapter 1, “Tuning Hardware, Operating System, and Network Performance,”
discusses hardware, operating system, and network performance issues.

� Chapter 2, “Tuning Java Virtual Machines (JVMs),” discusses JVM tuning
considerations.

� Chapter 3, “Tuning WebLogic Server,” contains information on how to tune
WebLogic Server to match your application needs.

� Chapter 4, “Tuning WebLogic Server Applications,” discusses application tuning
considerations.

� Appendix A, “Related Reading,” provides an extensive performance-related
reading list.

The document also contains an index.

What You Need to Know

This document is intended for people involved with tuning the components in a
WebLogic Server platform. It is assumed that readers know server administration and
performance tuning fundamentals, the WebLogic Server platform, XML, and Java
programming.
BEA WebLogic Server Performance and Tuning v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site at
http://www.bea.com. From the BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
and the title and document date of your documentation. If you have questions about
this version of BEA WebLogic Server, or if you have problems installing and running
it, contact BEA Customer Support through BEA WebSupport at http://www.bea.com,
or by using the contact information provided on the Customer Support Card, which is
included in the product package.
vi BEA WebLogic Server Performance and Tuning

http://www.bea.com
http://www.adobe.com
http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number, company name and
company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
BEA WebLogic Server Performance and Tuning vii

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
viii BEA WebLogic Server Performance and Tuning

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
BEA WebLogic Server Performance and Tuning ix

x BEA WebLogic Server Performance and Tuning

CHAPTER
1 Tuning Hardware,
Operating System, and
Network Performance

The following sections describe issues related to optimizing hardware, operating
system, and network performance:

� “Hardware Tuning” on page 1-1

� “Operating System Tuning” on page 1-3

� “Network Performance” on page 1-8

Hardware Tuning

When you examine performance, a number of factors influence how much capacity a
given hardware configuration will need in order to support WebLogic Server and a
given application. The hardware capacity required to support your application depends
on the specifics of the application and configuration. You should consider how each
factor applies to your configuration and application.

Before continuing with this section, you may want to review the Standard Performance
Evaluation Corporation, at www.spec.org, which provides a set of standardized
benchmarks and metrics for evaluating computer system performance.
BEA WebLogic Server Performance and Tuning 1-1

http://www.spec.org
http://www.spec.org

1 Tuning Hardware, Operating System, and Network Performance
Supported Platforms

The following table provides selected links to the information on the Supported
Configurations pages, at
http://e-docs.bea.com/wls/certifications/certs_610/index.html,
which contains a complete listing of the latest certification information on the
hardware/operating system platforms that are supported for each release of WebLogic
Server.

Table 1-1 Platform-Specific Tuning Information

Platform For more information

Bull/IBM pSeries with AIX See the Bull/IBM links on the Supported Configurations
pages at
http://e-docs.bea.com/wls/certifications/
certs_610/index.html.

� Bull/IBM pSeries with AIX 5L v5.1

� Bull/IBM pSeries with AIX 5L v5.2

Hewlett-Packard with HP-UX See Hewlett-Packard HP/9000 with HP-UX 11.0 and 11i on
the Supported Configurations pages at
http://e-docs.bea.com/wls/certifications/
certs_610/hpux/index.html.

See also “Hewlett-Packard Company Information” on page
A-4.

Intel Pentium-compatible
with Windows

See the Intel/Windows links on the Supported
Configurations pages at
http://e-docs.bea.com/wls/certifications/
certs_610/index.html.

� Windows 2000 Server or Windows 2000 Advanced
Server

� Windows 2000 Professional

� Windows NT

� Windows XP

See also “Microsoft Information” on page A-4.
1-2 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://edocs.bea.com/wls/certifications/certs_610/bull_ibm_aix5.html
http://edocs.bea.com/wls/certifications/certs_610/bull_ibm_aix5_2.html
http://edocs.bea.com/wls/certifications/certs_610/hp9000.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://edocs.bea.com/wls/certifications/certs_610/win2000.html
http://edocs.bea.com/wls/certifications/certs_610/win2000_professional.html
http://edocs.bea.com/wls/certifications/certs_610/winNT.html
http://edocs.bea.com/wls/certifications/certs_610/winXP.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html

Operating System Tuning
Operating System Tuning

Tune your operating system according to your operating system documentation. BEA
certifies WebLogic Server on multiple operating systems on the Supported
Configurations pages, at
http://e-docs.bea.com/wls/certifications/certs_610/index.html.

Intel 32-bit-compatible with
Red Hat Linux and SuSE
Linux

See the Red Hat Linux and SuSE Linux links on the
Supported Configurations pages at
http://e-docs.bea.com/wls/certifications/
certs_610/index.html.

� SuSE Linux (SLES 7) for IA-32

See also “Linux OS Information” on page A-3.

IBM S/390 and Z-Series
compatible with Red Hat
Linux and SuSE Linux

See the Red Hat Linux and SuSE Linux links on the
Supported Configurations pages at
http://e-docs.bea.com/wls/certifications/
certs_610/index.html.

� Red Hat Linux for IBM S/390 and Z-Series

� SuSE Linux (SLES 7) for IBM S/390 and Z-Series

� SuSE Linux (SLES 8) for IBM S/390 and Z-Series

See also “Linux OS Information” on page A-3.

Sun Microsystems SPARC
with Solaris

See the Sun Microsystems SPARC Solaris links on the
Supported Configurations pages at
http://e-docs.bea.com/wls/certifications/
certs_610/index.html.

� SPARC with Solaris 2.6

� SPARC with Solaris 2.7

� SPARC with Solaris 8

� SPARC with Solaris 9

See also “Sun Microsystems Information” on page A-2.

Table 1-1 Platform-Specific Tuning Information

Platform For more information
BEA WebLogic Server Performance and Tuning 1-3

http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://edocs.bea.com/wls/certifications/certs_610/suse_linux_intel.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://edocs.bea.com/wls/certifications/certs_610/redhat_linux_s390.html
http://edocs.bea.com/wls/certifications/certs_610/suse_linux_s390.html
http://edocs.bea.com/wls/certifications/certs_610/sles8_s390.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://edocs.bea.com/wls/certifications/certs_610/sun_solaris26.html
http://edocs.bea.com/wls/certifications/certs_610/sun_solaris27.html
http://edocs.bea.com/wls/certifications/certs_610/sun_solaris8.html
http://edocs.bea.com/wls/certifications/certs_610/sun_solaris9.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html

1 Tuning Hardware, Operating System, and Network Performance
For Windows platforms, the default settings are usually sufficient. However, the
Solaris and Linux platforms usually need to be tuned appropriately.

Setting TCP Parameters With the ndd Command

Set the following TCP-related tuning parameters using the ndd command, as
demonstrated in the following example:

ndd -set /dev/tcp tcp_conn_req_max_q 16384

Note: Prior to Solaris 2.7, the tcp_time_wait_interval parameter was called
tcp_close_wait_interval. This parameter determines the time interval
that a TCP socket is kept alive after issuing a close call. The default value of

Table 1-2 Suggested TCP-Related Parameter Values

Parameter Suggested Value

/dev/tcp tcp_time_wait_interval 60000

/dev/tcp tcp_conn_req_max_q 16384

/dev/tcp tcp_conn_req_max_q0 16384

/dev/tcp tcp_ip_abort_interval 60000

/dev/tcp tcp_keepalive_interval 7200000

/dev/tcp tcp_rexmit_interval_initial 4000

/dev/tcp tcp_rexmit_interval_max 10000

/dev/tcp tcp_rexmit_interval_min 3000

/dev/tcp tcp_smallest_anon_port 32768

/dev/tcp tcp_xmit_hiwat 131072

/dev/tcp tcp_recv_hiwat 131072

/dev/tcp tcp_naglim_def 1

/dev/ce instance 0

/dev/ce rx_intr_time 32
1-4 BEA WebLogic Server Performance and Tuning

Operating System Tuning
this parameter on Solaris is four minutes. When many clients connect for a
short period of time, holding these socket resources can have a significant
negative impact on performance. Setting this parameter to a value of 60000
(60 seconds) has shown a significant throughput enhancement when running
benchmark JSP tests on Solaris. You might want to reduce this setting further
if the server gets backed up with a queue of half-opened connections.

Tip: Use the netstat -s -P tcp command to view all available TCP parameters.

Setting Parameters In the /etc/system File

Each socket connection to the server consumes a file descriptor. To optimize socket
performance, you need to configure your operating system to have the appropriate
number of file descriptors. Therefore, you should change the default file descriptor
limits, as well as the hash table size and other tuning parameters in the /etc/system
file, to the recommended values in the following table.

Note: You must reboot your machine anytime you modify /etc/system
parameters.

CE Gigabit Network Card Settings

If you are using CE gigabit cards, we recommend using the following settings.

Table 1-3 Suggested /etc/system Values

Parameter Suggested Value

set rlim_fd_cur 8192

set rlim_fd_max 8192

set tcp:tcp_conn_hash_size 32768

set shmsys:shminfo_shmmax

Note: This should only be set for machines that have
at least 4 GB RAM or higher.

4294967295

set autoup 900

set tune_t_fsflushr 1
BEA WebLogic Server Performance and Tuning 1-5

1 Tuning Hardware, Operating System, and Network Performance
For more information about Solaris tuning options, see:

� Solaris Tunable Parameters Reference Manual (Solaris 8), at
http://docs.sun.com/db/doc/816-0607

� Solaris Tunable Parameters Reference Manual (Solaris 9), at
http://docs.sun.com/db/doc/806-7009

Linux Tuning Parameters

For Linux operating systems, the following settings are recommended for optimal
performance.

Table 1-4 Suggested CE Gigabit Card Values

Parameter Suggested Value

set ce:ce_bcopy_thresh 256

set ce:ce_dvma_thresh 256

set ce:ce_taskq_disable 1

set ce:ce_ring_size 256

set ce:ce_comp_ring_size 1024

set ce:ce_tx_ring_size 4096

Table 1-5 Suggested Linux Values

Parameter Suggested Value

/sbin/ifconfig lo mtu 1500

kernel.msgmni 1024

kernel.sem 1000 32000 32 512

fs.file-max 65535
1-6 BEA WebLogic Server Performance and Tuning

http://docs.sun.com/db/doc/816-0607
http://docs.sun.com/db/doc/806-7009

Operating System Tuning
For more information about Linux tuning, you should consult your Linux vendor’s
documentation. Also, the Ipsysctl Tutorial 1.0.4, at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html,
describes all of the IP options provided by Linux.

Other Operating System Tuning Information

For more information about Windows, HP-UX, and AIX tuning options, refer to the
following Web sites:

� For Windows tuning information, see the Microsoft Windows 2000 TCP/IP
Implementation Details white paper, at
http://www.microsoft.com/windows2000/techinfo/howitworks/commu
nications/networkbasics/tcpip_implement.asp.

� For HP-UX tuning information, see the Tunable Kernel Parameters reference
documentation, at
http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html.

� For AIX tuning information, see the AIX 5L Version 5.2 Performance
Management Guide, at
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/

prftungd.htm.

� Maximum memory for a user process — Check your operating system
documentation for the maximum memory available for a user process. In some
operating systems, this value is as low as 128 MB. Also, refer to your operating
system documentation.For more information about memory management, see
Chapter 2, “Tuning Java Virtual Machines (JVMs).”

kernel.shmmax 2147483648

net.ipv4.tcp_max_syn_backlog 8192

Table 1-5 Suggested Linux Values

Parameter Suggested Value
BEA WebLogic Server Performance and Tuning 1-7

http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html
http://www.microsoft.com/windows2000/techinfo/howitworks/communications/networkbasics/tcpip_implement.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/communications/networkbasics/tcpip_implement.asp
http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd.htm
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd.htm

1 Tuning Hardware, Operating System, and Network Performance
Network Performance

Network performance is affected when the supply of resources is unable to keep up
with the demand for resources. Today’s enterprise-level networks are very fast and are
now rarely the direct cause of performance in well-designed applications. However, if
you find that you have a problem with one or more network components (hardware or
software), work with your network administrator to isolate and eliminate the problem.
You should also verify that you have an appropriate amount of network bandwidth
available for WebLogic Server and the connections it makes to other tiers in your
architecture, such as client and database connections. Therefore, it is important to
continually monitor your network performance to troubleshoot potential performance
bottlenecks.

Determining Network Bandwidth

A common definition of bandwidth is “the rate of the data communications
transmission, usually measured in bits-per-second, which is the capacity of the link to
send and receive communications.” A machine running WebLogic Server requires
enough network bandwidth to handle all WebLogic Server client connections. In the
case of programmatic clients, each client JVM has a single socket to the server, and
each socket requires dedicated bandwidth. A WebLogic Server instance handling
programmatic clients should have 125–150 percent of the bandwidth that a similar
Web server would handle. If you are handling only HTTP clients, expect a bandwidth
requirement similar to a Web server serving static pages.

To determine whether you have enough bandwidth in a given deployment, you can use
the network monitoring tools provided by your network operating system vendor to see
what the load is on the network system. You can also use common operating system
tools, such as the netstat command for Solaris or the System Monitor (perfmon) for
Windows, to monitor your network utilization. If the load is very high, bandwidth may
be a bottleneck for your system.

Also monitor the amount of data being transferred across the your network by checking
the data transferred between the application and the application server, and between
the application server and the database server. This amount should not exceed your
network bandwidth; otherwise, your network becomes the bottleneck. To verify this,
monitor the network statistics for retransmission and duplicate packets, as follows:
1-8 BEA WebLogic Server Performance and Tuning

Network Performance
netstat -s -P tcp

For instructions on viewing other TCP parameters using the netstat -s -P
command, see “Setting TCP Parameters With the ndd Command” on page 1-4.

LAN Infrastructure

Your local area network must be fast enough to handle your application’s peak
capacity. If your network is fully utilized, in that the amount of traffic consistently
exceeds its bandwidth capacity, yet your WebLogic Server machine is not fully
utilized, do one of the following:

� Redesign the network and redistribute the load.

� Reduce the number of network clients.

Increase the number of systems handling the network load.
BEA WebLogic Server Performance and Tuning 1-9

1 Tuning Hardware, Operating System, and Network Performance
1-10 BEA WebLogic Server Performance and Tuning

CHAPTER
2 Tuning Java Virtual
Machines (JVMs)

The Java virtual machine (JVM) is an “execution engine” that executes the byte codes
in Java class files on a microprocessor. How you tune your JVM affects the
performance of WebLogic Server and your applications.

This document discusses the following JVM tuning topics:

� “JVM Tuning Considerations” on page 2-2

� “About JVM Heap Size” on page 2-3

� “About Generational Garbage Collection” on page 2-4

� “Forcing Garbage Collection” on page 2-9

� “Setting Java HotSpot VM Options” on page 2-9

� “Setting Non-Standard Java Command Line Options” on page 2-11

For links to related reading, see “Java Virtual Machine (JVM) Information” on page
A-7.
BEA WebLogic Server Performance and Tuning 2-1

2 Tuning Java Virtual Machines (JVMs)
JVM Tuning Considerations

Table 2-1 presents general JVM tuning considerations.

Table 2-1 General JVM Tuning Considerations

Issue Description

JVM vendor and version Use only production JVMs on which WebLogic Server has
been certified. WebLogic Server 6.x supports only those
JVMs that are Java 1.3-compliant.

The Platform Support page at
http://e-docs.bea.com/wls/platforms/index
.html is frequently updated and contains the latest
certification information on various platforms.

Tuning heap size and garbage
collection

For tuning details, see “About JVM Heap Size” on page 2-3.

For a good overview of garbage collection, see Tuning
Garbage Collection with the 1.3.1 Java Virtual Machine, at
http://java.sun.com/docs/hotspot/gc/.

Generational garbage
collection

See “About Generational Garbage Collection” on page 2-4.

Mixed client/server JVMs Deployments using different JVM versions for the client and
server are supported in WebLogic Server. For information
about support for mixed client/server JVMs, see
http://e-docs.bea.com/wls/platforms/index
.html#mix.

UNIX threading models There are two UNIX threading models: green threads and
native threads. To get the best performance and scalability
with WebLogic Server, choose a JVM that uses native
threads.

For Solaris, see “Threading Models and Solaris Versions
Supported” on the JavaSoft web site at
http://www.javasoft.com/products/jdk/1.1/
solaris-product-comparison.html#threading.
2-2 BEA WebLogic Server Performance and Tuning

http://edocs.bea.com/wls/platforms/index.html
http://java.sun.com/docs/hotspot/gc/
http://java.sun.com/docs/hotspot/gc/
http://e-docs.bea.com/wls/platforms/index.html#mix
http://www.javasoft.com/products/jdk/1.1/solaris-product-comparison.html#threading
http://www.javasoft.com/products/jdk/1.1/solaris-product-comparison.html#threading

About JVM Heap Size
About JVM Heap Size

Garbage collection is the VM process of de-allocating unused Java objects in the Java
heap.The Java heap is where the objects of a Java program live. It is a repository for
live objects, dead objects, and free memory. When an object can no longer be reached
from any pointer in the running program, the object is garbage.

The JVM heap size determines how often and how long the VM spends collecting
garbage. An acceptable rate for garbage collection is application-specific and should
be adjusted after analyzing the actual time and frequency of garbage collections.

If you set a large heap size, full garbage collection is slower, but it occurs less
frequently. If you set your heap size in accordance with your memory needs, full
garbage collection is faster, but occurs more frequently.

The goal of tuning your heap size is to minimize the time that you spend doing garbage
collection while maximizing the number of clients that you can handle at a given time.

To ensure maximum performance during benchmarking, you might set high heap size
values to ensure that garbage collection does not occur during the entire run of the
benchmark.

You might see the following java error if you are running out of heap space:

java.lang.OutOfMemoryError <<no stack trace available>>
java.lang.OutOfMemoryError <<no stack trace available>>
Exception in thread "main"

Just-in-Time (JIT) JVMs Use a JIT compiler when you run WebLogic Server. Most
JVMs use a JIT compiler, including those from Sun
Microsystems and Symantec.

See your JVM supplier documentation for more information.

Note: Sun’s JVM 1.3.x, JIT options are no longer valid.
See “Java Virtual Machine (JVM) Information” on
page A-7.

Table 2-1 General JVM Tuning Considerations (Continued)

Issue Description
BEA WebLogic Server Performance and Tuning 2-3

2 Tuning Java Virtual Machines (JVMs)
To modify heap space values, see “Specifying Heap Size Values” on page 2-7.

About Generational Garbage Collection

The 1.3 Java HotSpot JVM uses generational garbage collection. While naive garbage
collection examines every living object in the heap, generational garbage collection
considers the lifetime of an object to avoid extra work.

The heap is divided into two general areas: New and Old. The New generation area is
sub-divided further into Eden and two survivor spaces. Eden is the area where new
objects are allocated. When garbage collection occurs, live objects in Eden are copied
into the next survivor space. Objects are copied between survivor spaces in this way
until they exceed a maximum threshold, and then they are moved out of the New area
and into the Old. For information about specifying the size and ratios of the New and
Old generation areas, see “Specifying Heap Size Values” on page 2-7.

Many objects become garbage shortly after being allocated. These objects are said to
have “infant mortality.” The longer an object survives, the more garbage collection it
goes through, and the slower garbage collection becomes. The rate at which your
application creates and releases objects determines how often garbage collection
occurs. Attempt to cache objects for re-use, whenever possible, rather than creating
new objects.

Knowing that a majority of objects die young allows you to tune for efficient garbage
collection. When you manage memory in generations, you create memory pools to
hold objects of different ages. Garbage collection can occur in each generation when
it fills up. If you can arrange for most of your objects to survive less than one
collection, garbage collection is very efficient. Poorly sized generations cause frequent
garbage collection, impacting your performance.

For a good overview of generational garbage collection, see Tuning Garbage
Collection with the 1.3.1 Java Virtual Machine, at
http://java.sun.com/docs/hotspot/gc/.
2-4 BEA WebLogic Server Performance and Tuning

http://java.sun.com/docs/hotspot/gc/
http://java.sun.com/docs/hotspot/gc/

Determining Heap Size
Determining Heap Size

This section describes basic steps for determining the most effective heap size:

1. Monitor the performance of WebLogic Server under maximum load while running
your application.

2. Use the -verbosegc option to measure exactly how much time and resources are
put into garbage collection.

3. Turn on verbose garbage collection output for your Java VM and redirect both
the standard error and standard output to a log file.

See “Turning On Verbose Garbage Collection and Redirecting Output” on page
2-6.

4. Analyze the following:

a. How often is garbage collection taking place? In the weblogic.log file,
compare the time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take
longer than 3 to 5 seconds.

c. What is your average memory footprint? In other words, what does the heap
settle back down to after each full garbage collection? If the heap always settles
to 85% free, you might set the heap size smaller.

5. If you are using 1.3 Java HotSpot JVM, set generation sizes.

“Specifying Heap Size Values” on page 2-7.

6. Make sure that the heap size is not larger than the available free RAM on your
system.

Use as large a heap size as possible without causing your system to “swap”
pages to disk. The amount of free RAM on your system depends on your
hardware configuration and the memory requirements of running processes on
your machine. See your system administrator for help in determining the amount
of free RAM on your system.
BEA WebLogic Server Performance and Tuning 2-5

2 Tuning Java Virtual Machines (JVMs)
7. If you find that your system is spending too much time collecting garbage (your
allocated “virtual” memory is more than your RAM can handle), lower your heap
size.

Typically, you should use 80% of the available RAM (not taken by the operating
system or other processes) for your JVM.

8. If you find that you have a large amount of RAM remaining, run more WebLogic
Servers on your machine.

See also “Specifying Heap Size Values” on page 2-7

Turning On Verbose Garbage Collection and
Redirecting Output

This section describes how to turn on verbose garbage collection and redirect output
to a log file for diagnostic purposes:

1. Turn on verbose garbage collection output for your Java VM when you start
WebLogic Server, as shown in the example in the following step.

2. Redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic
Server informational and error messages, and provides a more useful log for
diagnostic purposes.

For example:

% java -ms64m -mx64m -verbosegc -classpath $CLASSPATH
-Dweblogic.domain=mydomain -Dweblogic.Name=clusterServer1
-Djava.security.policy==/bea/weblogic6x/lib/weblogic.policy
-Dweblogic.management.server=192.168.0.101:7001
-Dweblogic.management.username=system
-Dweblogic.management.password=systemPassword weblogic.Server
>> logfile.txt

On HPUX, use the following option to redirect stderr stdout to a single file:

-Xverbosegc:file=/tmp/gc$$.out

where $$ maps to the PID of the java process. Because the output includes timestamps
for when garbage collection ran, you can infer how often garbage collection occurs.
2-6 BEA WebLogic Server Performance and Tuning

Specifying Heap Size Values
On Solaris, use the following command:

weblogic.Server > server.out 2>&1

Specifying Heap Size Values

You can specify Java heap size values when starting the WebLogic Administration
Server from the Java command line. For example:

$ java ... -XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8
-Xms512m -Xmx512m

The default size for these values is measured in bytes. Append the letter ‘k’ or ‘K’ to
the value to indicate kilobytes, ‘m’ or ‘M’ to indicate megabytes, and ‘g’ or ‘G’ to
indicate gigabytes.

Be aware that WebLogic Server startup and environment scripts affect these
parameters. Sample scripts are provided with the WebLogic distribution for starting
the default server and for setting the environment to build and run the server:

� startWebLogic.cmd and setEnv.cmd for Windows systems

� startWebLogic.sh and setEnv.sh for UNIX systems.

You will need to modify these scripts to fit your environment and applications. See
Starting and Stopping WebLogic Servers at
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html.

Java Heap Size Options

You achieve best performance by individually tuning each of your applications.
Configuring the JVM heap size options listed in Table 2-2 increases performance for
most applications.
BEA WebLogic Server Performance and Tuning 2-7

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html

2 Tuning Java Virtual Machines (JVMs)
The options listed in Table 2-2 may differ depending on your architecture and
operating system. See your vendor’s documentation for platform-specific JVM tuning
options.

Table 2-2 Java Heap Size Options

Task Option Description

Setting the New generation
heap size

-XX:NewSize Use this option to set the New generation Java heap
size. Set this value to a multiple of 1024 that is
greater than 1MB. As a general rule, set
-XX:NewSize to be one-fourth the size of the
maximum heap size. Increase the value of this option
for larger numbers of short-lived objects.

Be sure to increase the New generation as you
increase the number of processors. Memory
allocation can be parallel, but garbage collection is
not parallel.

Setting the maximum New
generation heap size

-XX:MaxNewSize Use this option to set the maximum New generation
Java heap size. Set this value to a multiple of 1024
that is greater than 1MB.

Setting New heap size
ratios

-XX:SurvivorRatio The New generation area is divided into three
sub-areas: Eden, and two survivor spaces that are
equal in size.

Use the -XX:SurvivorRatio=X option to
configure the ratio of the Eden/survivor space size.
Try setting this value to 8 and then monitor your
garbage collection.

Setting minimum heap size -Xms Use this option to set the minimum size of the
memory allocation pool. Set this value to a multiple
of 1024 that is greater than 1MB. As a general rule,
set minimum heap size (-Xms) equal to the
maximum heap size (-Xmx).

Setting maximum heap size -Xmx Use this option to set the maximum Java heap size.
Set this value to a multiple of 1024 that is greater
than 1MB.
2-8 BEA WebLogic Server Performance and Tuning

Forcing Garbage Collection
Forcing Garbage Collection

Make sure that full garbage collection is necessary before forcing it on a server. When
you force garbage collection, the JVM often examines every living object in the heap.

To use the Administration Console to force garbage collection on a specific server:

1. On the Administration Console, click the server instance node in the left pane for
the server whose memory usage you want to view. A dialog displays in the right
pane showing the tabs associated with this instance.

2. Click the Monitoring tab.

3. Click the JVM tab.

4. Check the Memory Usage graph for high usage.

Note that the Memory Usage graph displays only for servers that are currently
running.

5. Click the Force Garbage Collection text link to force garbage collection.

A message displays indicating that the collection operation was successful.

Setting Java HotSpot VM Options

You can use standard java options to improve performance. Be aware that how you
use these options depends on how your application is coded. Although command line
options are consistent across platforms, some platforms may have different defaults.

You need to test both your client and server JVMs and see what performs better for
your particular application.

See “Setting Non-Standard Java Command Line Options” on page 2-11 for more VM
options that affect performance.
BEA WebLogic Server Performance and Tuning 2-9

2 Tuning Java Virtual Machines (JVMs)
Standard Options for NT

For NT, WebLogic Server invokes the JVM via the java command. Use the options
listed in listed in Table 2-3.

Standard Options for UNIX

For UNIX, the WebLogic Server invokes the JVM via the java command. Use the
options listed in listed in Table 2-4.

Table 2-3 Standard options for HotSpot VM on NT

Option Description

-hotspot Selects the Client HotSpot VM.

-server Selects the server VM.

-classic Selects the classic VM.

Table 2-4 Standard options for HotSpot VM on UNIX

Option Description

-client or -hotspot Selects the Client HotSpot VM.

-server Selects the server VM.
2-10 BEA WebLogic Server Performance and Tuning

Setting Non-Standard Java Command Line Options
Setting Non-Standard Java Command
Line Options

You can use non-standard java options to improve performance. Be aware that how
you use these options depends on how your application is coded. Although command
line options are consistent across platforms, some platforms may have different
defaults.

Non-Standard Options for NT

Some examples of non-standard options for improving performance on the Hotspot
VM on NT are listed in Table 2-5.

Table 2-5 Non-standard options for HotSpot VM on NT

Option Description

-Xnoclassgc This option disables garbage collection for the class,
It prevents re-loading of the class when the class is
referenced after all references to it have been lost.
This option requires a greater heap size.

-oss This option controls the Java thread stack size.
Setting it too high (>2MB) severely degrades
performance.

-ss This option controls the native thread stack size.
Setting it too high (>2MB) severely degrades
performance.
BEA WebLogic Server Performance and Tuning 2-11

2 Tuning Java Virtual Machines (JVMs)
Non-Standard Options for Solaris

See non-standard options for Solaris VMs at
http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html#nons

tandard.

-Xverbosegc:file=/tmp/gc$
$.out

This option redirects -verbosegc messages to a
file, allowing you to separate your garbage collection
messages from the rest of the messages on stderr.

It also provides a performance advantage because
writes to files are buffered better than writes to a
character stream like stderr.

See also “Turning On Verbose Garbage Collection
and Redirecting Output” on page 2-6.

Table 2-5 Non-standard options for HotSpot VM on NT (Continued)

Option Description
2-12 BEA WebLogic Server Performance and Tuning

http://java.sun.com/j2se/1.3/docs/tooldocs/solaris/java.html#nonstandard

CHAPTER
3 Tuning WebLogic
Server

The following sections describe how to tune WebLogic Server to match your
application needs.

� “Tuning config.xml File Parameters” on page 3-1

� “Tuning weblogic-ejb-jar.xml Parameters” on page 3-9

� “Tuning Parameters for Starting WebLogic Server” on page 3-14

� “Setting Your Java Compiler” on page 3-14

� “WebLogic Server Clusters and Scalability” on page 3-16

� “Monitoring a WebLogic Server Domain” on page 3-18

Tuning config.xml File Parameters

Table 3-1 lists the config.xml file parameters that impact server performance:

Table 3-1 Performance-Related config.xml Elements

Element Attribute For more information

Server NativeIOEnabled See “Using WebLogic
Server Performance Packs”
on page 3-2.
BEA WebLogic Server Performance and Tuning 3-1

3 Tuning WebLogic Server
Using WebLogic Server Performance Packs

Benchmarks show major performance improvements in WebLogic Server when you
use the performance pack for your platform. Performance packs use a
platform-optimized (native) socket multiplexor to improve server performance.

To use a performance pack, make sure the NativeIOEnabled attribute of the Server
element is defined in your config.xml file. The default config.xml file shipped with
your distribution enables this attribute by default: NativeIOEnabled=true.

Which Platforms Have Performance Packs?

To see which platforms currently have performance packs available:

1. Go to the Platform Support page at
http://e-docs.bea.com/wls/platforms/index.html.

2. Choose Edit→Find to locate all instances of “performance pack included”.

Enabling Performance Packs

To use the Administration Console to make sure performance packs are enabled:

ExecuteQueue ThreadCount See “Setting Thread Count”
on page 3-3.

Server ThreadPoolPercentSoc
ketReaders

See “Allocating Threads to
Act as Socket Readers” on
page 3-6.

Server AcceptBacklog See “Tuning Connection
Backlog Buffering” on page
3-8.

JDBCConnectionPool InitialCapacity

MaxCapacity

See “Tuning JDBC
Connection Pool Size” on
page 3-7.

Table 3-1 Performance-Related config.xml Elements (Continued)

Element Attribute For more information
3-2 BEA WebLogic Server Performance and Tuning

http://edocs.bea.com/wls/platforms/index.html

Tuning config.xml File Parameters
1. Start the WebLogic Server Console.

2. Open the Servers folder in the navigation tree.

3. Select your server (myserver in a default installation) in the Servers folder.

4. Select the Configuration tab.

5. Select the Tuning tab.

6. If the Native IO Enabled check box is not selected, select the check box.

7. Click Apply.

8. Restart your sever.

Setting Thread Count

The value of the ThreadCount attribute of an ExecuteQueue element in the
config.xml file equals the number of simultaneous operations that can be performed
by applications that use the execute queue. As work enters a WebLogic Server
instance, it is placed in an execute queue. This work is then assigned to a thread that
does the work on it. Threads consume resources, so handle this attribute with care—
you can degrade performance by increasing the value unnecessarily.

By default, a new WebLogic Server instance is configured with a default execute
queue (named “default”) that contains 15 threads. WebLogic Server instances also
contain two built-in execute queues named __weblogic_admin_html_queue and
__weblogic_admin_rmi_queue, but these queues are reserved for communicating
with the WebLogic Administration Console. If you configure no additional execute
queues, all Web applications and RMI objects use the default queue.

Note: For most applications, leave the default value unchanged.

Modifying Thread Count

Adding more threads to the default execute queue does not necessarily imply that you
can process more work. Even if you add more threads, you are still limited by the
power of your processor. You can degrade performance by increasing the value of the
BEA WebLogic Server Performance and Tuning 3-3

3 Tuning WebLogic Server
ThreadCount attribute unnecessarily. Threads consume memory. A high execute
thread count causes more memory to be used and increases context switching, which
can degrade performance.

The value of the ThreadCount attribute depends very much on the type of work your
application does. Suppose your client application is thin and does a lot of its work
through remote invocation. The time your thin client application spends connected will
be greater than for a client application that does a lot of client-side processing.

If you do not need to use additional threads for your work, do not change the value of
this attribute. The thread will not be held for the client application.

If your application makes database calls that take a long time to return, you need more
execute threads than an application that makes calls that are short and turn over very
rapidly. For the latter, you can use a small number of execute threads and improve
performance.

Thread Count Scenarios

Table 3-2 shows some possible scenarios adjusting available threads in the default
execute queue. These scenarios assume that all thread requests are satisfied by using
the default execute queue. If you configure additional execute queues and assign
applications to specific queues, results must be monitored on a pool-by-pool basis.

Table 3-2 Thread Count Scenarios

When... Results Do This:

Thread Count < number of CPUs Results in an under-utilized
CPU.

Increase the thread count.

(Thread Count == number of CPUs) Theoretically ideal, but the
CPUs are under-utilized.

Increase the thread count.

(Thread Count > number of CPUs) by a
moderate number of threads

Practically ideal, resulting in a
moderate amount of context
switching and a high CPU
utilization rate.

Tune the moderate number of
threads and compare performance
results.
3-4 BEA WebLogic Server Performance and Tuning

Tuning config.xml File Parameters
Symptoms: Thread Count Too Low

If your thread count is too low, these symptoms appear when WebLogic Server is
running under maximum load:

� The CPU is waiting to do work, but there is work that could be done.

� The CPU never reaches 100% utilization.

Symptoms: Thread Count Too High

If your thread count is set too high when you run WebLogic Server under maximum
load, your performance increases as you decrease the number of threads.

Assigning Applications to Execute Queues

Although you can configure the default execute queue to supply the optimal number
threads for all WebLogic Server applications, configuring multiple execute queues can
provide additional control for key applications. By using multiple execute queues, you
can guarantee that selected applications have access to a fixed number of execute
threads, regardless of the load on WebLogic Server. See “Using Execute Queues to
Control Thread Usage” on page 4-5 for more information on assigning applications to
configured execute queues.

(Thread Count > number of CPUs) by
many threads

Results in too much context
switching which could lead to
significant performance
degradation.

Reduce the number of threads.

For example, if you have 4
processors, then 4 threads can be
running concurrently. So, you
want the execute threads to be 4 +
(the number of blocked threads).

This is very
application-dependent. For
instance, the length of time the
application might block threads
can invalidate the formula.

Table 3-2 Thread Count Scenarios (Continued)

When... Results Do This:
BEA WebLogic Server Performance and Tuning 3-5

3 Tuning WebLogic Server
Allocating Threads to Act as Socket Readers

To set the maximum percentage of execute threads that read messages from a socket,
use the ThreadPoolPercentSocketReaders attribute in the config.xml file. The
optimal value for this attribute is application-specific. The default is value 33, and the
valid range is 1-99.

The ThreadPoolPercentSocketReaders attribute sets the maximum percentage of
execute threads that are set to read messages from a socket. Allocating execute threads
to act as socket reader threads increases the speed and the ability of the server to accept
client requests. It is essential to balance the number of execute threads that are devoted
to reading messages from a socket and those threads that perform the actual execution
of tasks in the server.

When the native performance packs are not being used, execute threads must be
allocated to act as socket reader threads. If possible, use the Performance Pack for your
platform. See “Using WebLogic Server Performance Packs” on page 3-2.

Note: Due to a known problem in WebLogic Server 6.1, if you are not using the
Performance Pack for your platform, and are allocating threads to act as socket
readers, you must set the desired thread pool size as a command line option
when starting a Managed Server. For more information and instructions, see
“CR179419” in WebLogic Server 6.1 Release Notes.

How Connection Pools Enhance Performance

Establishing a JDBC connection with a DBMS can be very slow. If your application
requires database connections that are repeatedly opened and closed, this can become
a significant performance issue. WebLogic connection pools offer an efficient solution
to this problem.

When WebLogic Server starts, connections from the connection pools are opened and
are available to all clients. When a client closes a connection from a connection pool,
the connection is returned to the pool and becomes available for other clients; the
connection itself is not closed. There is little cost to opening and closing pool
connections.
3-6 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs61/notes/issues.html#CR179419

Tuning config.xml File Parameters
How many connections should you create in the pool? A connection pool can grow and
shrink according to configured parameters, between a minimum and a maximum
number of connections. The best performance occurs when the connection pool has as
many connections as there are concurrent users.

Tuning JDBC Connection Pool Size

The InitialCapacity attribute of the JDBCConnectionPool element allows you to
set the number of physical database connections to create when configuring the pool.
If the server is unable to create this number of connections, the creation of this
connection pool will fail. See “Tuning JDBC Connection Pool Initial Capacity” on
page 3-7.

The MaxCapacity attribute of the JDBCConnectionPool element allows you to set
the maximum number of physical database connections in a connection pool. See
“Tuning JDBC Connection Pool Maximum Capacity” on page 3-8.

For additional JDBC tuning information, see “Performance Tuning Your JDBC
Application” in Programming WebLogic JDBC, at
http://e-docs.bea.com/wls/docs61/jdbc/performance.html.

Tuning JDBC Connection Pool Initial Capacity

During development, it is convenient to set the value of the InitialCapacity
attribute to a low number. This helps the server start up faster.

In production systems, consider setting InitialCapacity equal to the MaxCapacity
so that all database connections are acquired during server start-up.

If InitialCapacity is less than MaxCapacity, the server then needs to create
additional database connections when its load is increased. When the server is under
load, all resources should be working to complete requests as fast as possible, rather
than creating new database connections.
BEA WebLogic Server Performance and Tuning 3-7

http://e-docs.bea.com/wls/docs61/jdbc/performance.html
http://e-docs.bea.com/wls/docs61/jdbc/performance.html

3 Tuning WebLogic Server
Tuning JDBC Connection Pool Maximum Capacity

The MaxCapacity attribute of the JDBCConnectionPool element allows you to set
the maximum number of physical database connections that a connection pool can
contain. Different JDBC drivers and database servers might limit the number of
possible physical connections.

In production, it is advisable that the number of connections in the pool equal the
number of concurrent client sessions that require JDBC connections. The pool capacity
is independent of the number of execute threads in the server. There may be many
more ongoing user sessions than there are execute threads.

Tuning Connection Backlog Buffering

The AcceptBacklog attribute of the Server element in the config.xml file allows
you to set the number of connection requests the server will accept before refusing
additional requests. The AcceptBacklog attribute specifies how many TCP
connections can be buffered in a wait queue. This fixed size queue is populated with
requests for connections that the TCP stack has received, but the application has not
accepted yet. The default value is 50 and the maximum value is operating system
dependant.

Select Server→Configuration→Tuning from the Administration Console to enter
a value for the Accept Backlog attribute.

During operations, if many connections are dropped or refused at the client, and there
are no other error messages on the server, the AcceptBacklog attribute might be set
too low.

If you are getting “connection refused” messages when you try to access WebLogic
Server, raise the value of the AcceptBacklog attribute from the default by 25%.
Continue increasing the attribute’s value by 25% until the messages cease to appear.
3-8 BEA WebLogic Server Performance and Tuning

Tuning weblogic-ejb-jar.xml Parameters
Tuning weblogic-ejb-jar.xml Parameters

Table 3-3 lists the weblogic-ejb-jar.xml file parameters that impact performance.

The following sections describe these elements.

Setting EJB Pool Size

WebLogic Server maintains a free pool of EJBs for every stateless session bean class.
The max-beans-in-free-pool element of the weblogic-ejb-jar.xml file defines
the size of this pool. By default, max-beans-in-free-pool has no limit; the
maximum number of beans in the free pool is limited only by the available memory.

This section discusses the following topics:

� “Allocating Pool Size for Session and Message Beans” on page 3-10

� “Allocating Pool Size for Entity Beans” on page 3-10

� “Tuning the Pool Size” on page 3-11

See also:

Table 3-3 Performance-Related weblogic-ejb-jar.xml Parameters

Element For more information

max-beans-in-free-pool See “Setting EJB Pool Size” on page 3-9.

initial-beans-in-free-po
ol

See “Tuning Initial Beans in Free Pool” on page 3-11.

max-beans-in-cache See “Setting EJB Caching Size” on page 3-11.

concurrency-strategy See “Deferring Database Locking” on page 3-13.

isolation-level See “Setting Transaction Isolation Level” on page 3-13.
BEA WebLogic Server Performance and Tuning 3-9

3 Tuning WebLogic Server
� max-beans-in-free-pool in Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/reference.html#max_beans_i
n_free_pool_60

� “Using max-beans-in-free-pool” in Programming WebLogic Enterprise
JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html#Using
_max_beans_in_free_pool

Allocating Pool Size for Session and Message Beans

When EJBs are created, the session bean instance is created and given an identity.
When the client removes a bean, the bean instance is placed in the free pool. When you
create a subsequent bean, you can avoid object allocation by reusing the previous
instance that is in the free pool. The max-beans-in-free-pool element can improve
performance if EJBs are frequently created and removed.

The EJB container creates new instances of message beans as needed for concurrent
message processing. The max-beans-in-pool element puts an absolute limit on how
many of these instances will be created. The container may override this setting
according to the runtime resources that are available.

For the best performance for stateless session and message beans, use the default
setting max-beans-in-free-pool element. The default allows you to run beans in
parallel, using as many threads as possible. The only reason to change the setting
would be to limit the number of beans running in parallel.

Allocating Pool Size for Entity Beans

There is a pool of anonymous entity beans that are used for invoking finders, home
methods, and creation of entity beans. The max-beans-in-free-pool element
controls the size of this pool.

If you are running lots of finders or home methods or creating lots of beans, you may
want to tune the max-beans-in-free-pool element so that there are enough beans
available for use in the pool.
3-10 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs61/ejb/reference.html#max_beans_in_free_pool_60
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html#Using_max_beans_in_free_pool

Tuning weblogic-ejb-jar.xml Parameters
Tuning the Pool Size

Do not change the value of the max-beans-in-free-pool parameter unless you
frequently create session beans, do a quick operation, and then throw them away. If
you do this, enlarge your free pool by 25 to 50%, and see if performance improves. If
object creation represents a small fraction of your workload, increasing this parameter
will not significantly improve performance. For applications where EJBs are database
intensive, do not change the value of this parameter.

Caution: Tuning this parameter too high uses extra memory. Tuning it too low
causes unnecessary object creation. If you are in doubt about changing this
parameter, leave it unchanged.

Tuning Initial Beans in Free Pool

Use the initial-beans-in-free-pool element of the weblogic-ejb-jar.xml
file to specify the number of stateless session bean instances in the free pool at startup.

If you specify a value for initial-bean-in-free-pool, WebLogic Server
populates the free pool with the specified number of bean instances at startup.
Populating the free pool in this way improves initial response time for the EJB, since
initial requests for the bean can be satisfied without generating a new instance.

initial-bean-in-free-pool defaults to 0 if the element is not defined.

The initial-beans-in-free-pool element is described in Programming
WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/reference.html#initial-beans

-in-free-pool_60.

Setting EJB Caching Size

WebLogic Server allows you to configure the number of active beans that are present
in the EJB cache (the in-memory space where beans exist).
BEA WebLogic Server Performance and Tuning 3-11

http://e-docs.bea.com/wls/docs61/ejb/reference.html#initial-beans-in-free-pool_60

3 Tuning WebLogic Server
The max-beans-in-cache element of the weblogic-ejb-jar.xml file specifies the
maximum number of objects of this class that are allowed in memory. When
max-bean-in-cache is reached, WebLogic Server passivates some EJBs that have
not been recently used by a client. The max-beans-in-cache element also affects
when EJBs are removed from the WebLogic Server cache.

Using this element sets the cache size for stateful session and entity beans similarly.

For more information, see “Locking and Caching Services for Entity EJBs” at
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html#ejb20_l

ocking.

The max-beans-in-cache element is described in Programming WebLogic
Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/reference.html#max-beans-in-

cache_60.

Activation and Passivation of Stateful Session EJBs

Set the appropriate cache size with the max-beans-in-cache element to avoid
excessive passivation and activation. Activation is the transfer of an EJB instance from
secondary storage to memory. Passivation is the transfer of an EJB instance from
memory to secondary storage. Tuning max-beans-in-cache too high consumes
memory unnecessarily.

The EJB container performs passivation when it invokes the ejbPassivate()
method. When the EJB session object is needed again, it is recalled with the
ejbActivate() method. When the ejbPassivate() call is made, the EJB object is
serialized using the Java serialization API or other similar methods and stored in
secondary memory (disk). The ejbActivate() method causes the opposite.

The container automatically manages this working set of session objects in the EJB
cache without the client’s or server’s direct intervention. Specific callback methods in
each EJB describe how to passivate (store in cache) or activate (retrieve from cache)
these objects. Excessive activation and passivation nullifies the performance benefits
of caching the working set of session objects in the EJB cache —especially when the
application has to handle a large number of session objects.
3-12 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html#ejb20_locking
http://e-docs.bea.com/wls/docs61/ejb/reference.html#max-beans-in-cache_60

Tuning weblogic-ejb-jar.xml Parameters
Deferring Database Locking

WebLogic Server supports database locking and exclusive locking mechanisms. The
default and recommended mechanism for EJB 1.1 and EJB 2.0 is database locking.

Database locking improves concurrent access for entity EJBs. The WebLogic Server
container does this by deferring locking services to the underlying database. Unlike
exclusive locking, the underlying data store can provide finer granularity for locking
EJB data, in most cases, as well as provide deadlock detection.

For details about database locking, see Locking Services for Entity EJBs, at
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.fm#LockingSe

rvices.

You specify the locking mechanism used for an EJB by setting the
concurrency-strategy deployment parameter in weblogic-ejb-jar.xml. See
http://e-docs.bea.com/wls/docs61/ejb/reference.fm#concurrency_str

ategy_60.

Setting Transaction Isolation Level

Data accessibility is controlled through the transaction isolation level mechanism.
Transaction isolation level determines the degree to which multiple interleaved
transactions are prevented from interfering with each other in a multi-user database
system. Transaction isolation is achieved through use of locking protocols that guide
the reading and writing of transaction data. This transaction data is written to the disk
in a process called “serialization.” Lower isolation levels give you better database
concurrency at the cost of less transaction isolation.

For more information, see the description of the isolation-level element of the
weblogic-ejb-jar.xml file, in Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/reference.html#ref_ejbc.

Refer to your database documentation for more information on the implications and
support for different isolation levels.
BEA WebLogic Server Performance and Tuning 3-13

http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html#LockingServices
http://e-docs.bea.com/wls/docs61/ejb/reference.html#concurrency_strategy_60
http://e-docs.bea.com/wls/docs61/ejb/reference.html#ref_ejbc

3 Tuning WebLogic Server
Tuning Parameters for Starting WebLogic
Server

Sample scripts are provided with the WebLogic distribution that you can use to start
WebLogic Servers, as described in Starting and Stopping WebLogic Servers, at
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html#Starti

ngStoppingServers.

You will need to modify these scripts to fit your environment and applications.
Separate sample scripts are provided for starting the Administration Server and the
Managed Server. The scripts for starting the Administration Server are called
startWebLogic.sh (UNIX) and startWeblogic.cmd (Windows). These scripts
are located in the configuration subdirectory for your domain.

The important performance tuning parameters in these files are the JAVA_HOME
parameter and the java heap size parameters:

� Change the value of the variable JAVA_HOME to the location of your JDK. For
example:

set JAVA_HOME=C:\bea\jdk131

� For higher performance throughput, set the minimum java heap size equal to the
maximum heap size. For example:

"%JAVA_HOME%\bin\java" -hotspot –ms512m –mx512m -classpath
%CLASSPATH% -

See “Specifying Heap Size Values” on page 2-7 for details about setting heap
size options.

Setting Your Java Compiler

The standard Java compiler for compiling JSP servlets is javac. You can improve
performance significantly by setting your server’s java compiler to sj or jikes
instead of javac. The following sections discuss this procedure and other compiler
considerations.
3-14 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html#StartingStoppingServers

Setting Your Java Compiler
Changing Compilers in the WebLogic Server Console

To change your compiler in the console:

1. Start the WebLogic Server Console.

2. Open the Servers folder in the navigation tree.

3. Select your server (myserver in a default installation) in the Servers folder.

4. Select the Configuration tab.

5. Select the Compilers tab and enter the full path of the compiler in the Java
Compiler text box. For example:

c:\visualcafe31\bin\sj.exe

6. Enter the full path to the JRE rt.jar library in the Append to classpath text box.
For example:

weblogic_home\jdk131\jre\lib\rt.jar

7. Click Apply.

8. Restart your server for the new Java Compiler and Append to classpath values to
take effect.

Setting Your Compiler in weblogic.xml

In the weblogic.xml file, the jsp-descriptor element defines parameter names
and values for servlet JSPs.

The compileCommand parameter specifies the Java compiler to use for compiling the
generated JSP servlets.

The precompile parameter allows you to configure WebLogic Server to precompile
your JSPs when WebLogic Server starts up.

For more information about setting your server’s java compiler in the weblogic.xml
file, see the jsp-descriptor element at
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-des

criptor.
BEA WebLogic Server Performance and Tuning 3-15

http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

3 Tuning WebLogic Server
Compiling EJB Container Classes

WebLogic Server includes the weblogic.ejbc utility for compiling EJB 2.0 and 1.1
container classes. If you compile .jar files for deployment into the EJB container, you
must use weblogic.ejbc to generate the container classes. By default, ejbc uses
javac as a compiler. For faster performance, specify a different compiler (such as
Symantec sj) using the -compiler flag.

For more information, see “WebLogic Server EJB Utilities” at
http://e-docs.bea.com/wls/docs61/ejb/EJB_utilities.html.

Compiling on UNIX

If you receive the following error message received when compiling JSP files on a
UNIX machine:

failed: java.io.IOException: Not enough space

Try any or all of the following solutions:

� Add more RAM if you have only 256 MB.

� Raise the file descriptor limit, for example:

set rlim_fd_max = 4096

set rlim_fd_cur = 1024

� Use the -native flag to use native threads when starting the JVM.

WebLogic Server Clusters and Scalability

A WebLogic Server cluster is a group of WebLogic Servers that work together to
provide fail-over and replicated services to support scalable high-availability
operations for clients. A cluster appears to its clients as a single server but is in fact a
group of servers acting as one.
3-16 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs61/ejb/EJB_utilities.html

WebLogic Server Clusters and Scalability
Scalability is the ability of a system to grow in one or more dimensions as more
resources are added to the system. Typically, these dimensions include (among other
things), the number of concurrent users that can be supported and the number of
transactions that can be processed in a given unit of time.

Given a well-designed application, it is entirely possible to increase performance by
simply adding more resources. To increase the load handling capabilities of WebLogic
Server, simply add another WebLogic Server to your cluster — without changing your
application. Clusters provide two key benefits that are not provided by a single server:
scalability and availability.

WebLogic Server clusters bring scalability and high-availability to J2EE applications
in a way that is transparent to application developers. Scalability expands the capacity
of the middle tier beyond that of a single WebLogic Server or a single computer. The
only limitation on cluster membership is that all WebLogic Servers must be able to
communicate by IP multicast. New WebLogic Servers can be added to a cluster
dynamically to increase capacity.

A WebLogic Server cluster guarantees high-availability by using the redundancy of
multiple servers to insulate clients from failures. The same service can be provided on
multiple servers in a cluster. If one server fails, another can take over. The ability to
have a functioning server take over from a failed server increases the availability of the
application to clients.

For complete information about clusters, see “Using WebLogic Server Clusters” at
http://e-docs.bea.com/wls/docs61/cluster/index.html.

Caution: Provided that you have resolved all application and environment
bottleneck issues, adding additional servers to a cluster should provide
linear scalability. When doing benchmark or initial configuration test runs,
isolate issues in a single server environment before moving to a clustered
environment.

Performance Considerations for Multi-CPU Machines

With multi-processor machines, additional consideration must be given to the ratio of
clustered WebLogic Server instances to the number of available CPUs. Because
WebLogic Server has no built-in limit to the number of server instances that reside in
a cluster, large, multi-processor servers such as Sun Microsystems, Inc. Sun Enterprise
10000, can potentially host very large clusters or multiple clusters
BEA WebLogic Server Performance and Tuning 3-17

http://e-docs.bea.com/wls/docs61/cluster/index.html

3 Tuning WebLogic Server
Before determining the optimal ratio of servers to CPUs, thoroughly test your
application to determine:

� Network Requirements—If you discover that a web application is primarily
network I/O-bound, then you should consider measures to increase network
throughput before increasing the number of available CPUs. For truly network
I/O-bound applications, installing a faster NIC may increase performance more
than additional CPUs, because most CPUs would remain idle while waiting to
read available sockets.

� Disk I/O Requirements—If you discover that a web application is primarily disk
I/O-bound, you should consider upgrading the number of disk spindles or
individual disks and controllers before allocating additional CPUs.

In summary, you should ensure that a web application is truly CPU-bound, rather than
network or disk I/O-bound, before allocating additional CPUs.

For CPU-bound applications, begin performance tests using a ratio of one WebLogic
Server instance for every CPU. If CPU utilization is consistently at or near 100%,
increase the ratio of CPUs to servers (for example, allocate one WebLogic Server
instance for ever two CPUs). For production systems, keep in mind that some spare
CPU cycles should always be available to perform administration tasks.

Although the processing needs of web applications varies, BEA has found that optimal
results are generally obtained using a ratio of one Weblogic Server instance for every
two CPUs.

Monitoring a WebLogic Server Domain

The tool for monitoring the health and performance of your WebLogic Server domain
is the Administration Console. You use the Administration Console to view status and
statistics for WebLogic Server resources such as servers, HTTP, the JTA subsystem,
JNDI, security, CORBA connection pools, EJB, JDBC, and JMS.

For details, see “Monitoring a WebLogic Server Domain” at
http://e-docs.bea.com/wls/docs61/adminguide/monitoring.html.
3-18 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs61/adminguide/monitoring.html

CHAPTER
4 Tuning WebLogic
Server Applications

WebLogic Server only performs as well as the applications running on it. It is
important to determine the bottlenecks that impede performance, as described in the
following sections:

� “Using Performance Analysis Tools” on page 4-1

� “JDBC Application Tuning” on page 4-2

� “Managing Session Persistence” on page 4-3

� “Minimizing Sessions” on page 4-4

� “Using Execute Queues to Control Thread Usage” on page 4-5

Using Performance Analysis Tools

This section provides a quick reference for using the OptimizeIt and JProbe profilers
with WebLogic Server.

A profiler is a performance analysis tool that allows you to reveal hot spots in the
application that result in either high CPU utilization or high contention for shared
resources. For a list of common profilers, see “Performance Analysis Tools” on page
A-6.
BEA WebLogic Server Performance and Tuning 4-1

4 Tuning WebLogic Server Applications
Using the JProbe Profiler API

The JProbe Suite is a family of products that provide the capability to detect
performance bottlenecks, find and fix memory leaks, perform code coverage, and other
metrics. For product details, see http://www.quest.com/jprobe/

The JProbe website provides a technical white paper, “Using Sitraka JProbe and BEA
WebLogic Server”, which describes how developers can analyze code with any of the
JProbe Suite tools running inside BEA WebLogic Server.

Using the Optimizeit Profiler

Borland’s Optimizeit Performance Profiler is a performance debugging tool for Solaris
and Windows.

Borland provides detailed J2EE Integration Tutorials for the supported versions of
Optimizeit Profiler that work with WebLogic Server. For details, see
http://info.borland.com/optimizeit/j2ee_support.html#bea.

JDBC Application Tuning

BEA offers three WebLogic jDrivers for use with the WebLogic Server software:

� Type 2 native JDBC driver for Oracle with distributed transaction capability

See Installing and Using WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs61/oracle/index.html.

� Type 4 JDBC drivers for Informix and Microsoft SQL Server

See Installing and Using WebLogic jDriver for Informix at
http://e-docs.bea.com/wls/docs61/informix4/index.html and
Installing and Using WebLogic jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs61/mssqlserver4/index.html.
4-2 BEA WebLogic Server Performance and Tuning

http://www.quest.com/jprobe/profiler.asp
http://www.quest.com/jprobe/pdfs/jprobe_weblogic.pdf
http://www.quest.com/jprobe/pdfs/jprobe_weblogic.pdf
http://www.borland.com/optimizeit/optimizeit_profiler/index.html
http://info.borland.com/optimizeit/j2ee_support.html#bea
http://e-docs.bea.com/wls/docs61/oracle/index.html
http://e-docs.bea.com/wls/docs61/informix4/index.html
http://e-docs.bea.com/wls/docs61/mssqlserver4/index.html

Managing Session Persistence
Type-2 drivers use client libraries supplied by a database vendor. Type-4 drivers are
pure-Java; they connect to the database server at the wire level without
vendor-supplied client libraries.

See “Performance Tuning Your JDBC Application,” in Programming WebLogic
JDBC at http://e-docs.bea.com/wls/docs61/jdbc/performance.html.

JDBC Optimization for Type-4 MS SQL Driver

When using the type-4 MS SQL driver, it may be much faster to create and execute an
SQL statement either without parameters or with parameter values converted to their
string counterparts and added as appropriate to the string, rather than declaring a long
series of setXXX() calls, followed by execute().

Managing Session Persistence

Optimize your application so that it does as little work as possible when handling
session persistence. In WebLogic Server, the following options are available for
session persistence:

� “In-Memory Replication” on page 4-3

� “JDBC-based Persistence” on page 4-4

For additional details, see “Configuring Session Persistence,” in the WebLogic Server
Administration Guide, at
http://e-docs.bea.com/wls/docs61/webapp/sessions.html#session-per

sistence.

In-Memory Replication

In-memory replication is up to ten times faster than JDBC-based persistence for
session state. Use in-memory replication, if possible.
BEA WebLogic Server Performance and Tuning 4-3

http://e-docs.bea.com/wls/docs61/jdbc/performance.html
http://e-docs.bea.com/wls/docs61/webapp/sessions.html#session-persistence

4 Tuning WebLogic Server Applications
For more information, see “Understanding HTTP Session State Replication,” in Using
WebLogic Server Clusters, at
http://http://e-docs.bea.com/wls/docs61/cluster/servlet.html.

See also “In-Memory Replication for Stateful Session EJBs,” in Programming
WebLogic Enterprise JavaBeans, at
http://http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html.

JDBC-based Persistence

If you are using JDBC-based persistence, optimize your code so that it has as high a
granularity for session state persistence as possible. In the case of JDBC-based
persistence, every session “put” that you use in your code results in a database write of
the entire object.

Keep the number of “puts” that you use during your HTTP session to a mininmum.To
minimize how often information is persisted during a given session, look at your
“puts” and see if you can combine them into a single, large “put,” instead.

For more information, see “Using a Database for Persistent Storage (JDBC
Persistence),” in Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/sessions.html#jdbc_persis

tence.

Minimizing Sessions

Configuring how WebLogic Server manages sessions is a key part of tuning your
application for best performance. Consider the following:

� Use of sessions involves a scalability trade-off.

� Use sessions sparingly.

Use sessions only for state that cannot realistically be kept on the client or if
URL rewriting support is required. Keep simple bits of state, such as a user’s
name, directly in cookies. You might also write a wrapper class to do the getting
4-4 BEA WebLogic Server Performance and Tuning

http://e-docs.bea.com/wls/docs61/cluster/servlet.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs61/webapp/sessions.html#jdbc_persistence
http://e-docs.bea.com/wls/docs61/webapp/sessions.html#jdbc_persistence

Using Execute Queues to Control Thread Usage
and setting of these cookies, in order to simplify the work of servlet developers
working on the same project.

� Keep frequently used values in local variables.

� Put aggregate objects rather than multiple single objects into the session where
possible.

See “Setting Up Session Management,” in Assembling and Configuring Web
Applications, at
http://e-docs.bea.com/wls/docs61/webapp/sessions.html#session-man

agement.

Using Execute Queues to Control Thread
Usage

You can fine-tune an application’s access to execute threads to optimize its
performance or limit its CPU utilization by configuring multiple execute queues in
WebLogic Server. An execute queue represents a named collection of execute threads
that are available to one or more designated servlets, JSPs, EJBs, or RMI objects.

Default WebLogic Server installations are configured with a default execute queue,
which is used by all applications running on the server instance. You may want to
configure additional queues to:

� Optimize the performance of critical applications. For example, you can
assign a single, mission-critical application to a particular execute queue,
guaranteeing a fixed number of execute threads. During peak server loads,
nonessential applications may compete for threads in the default execute queue,
but the mission-critical application has access to the same number of threads at
all times.

� Throttle the performance of nonessential applications. If you have an
application that can potentially consume large amounts of memory, assigning the
application to a dedicated execute queue effectively limits the amount of
memory it can consume. Although the application can potentially use all threads
available in its assigned execute queue, it cannot affect thread usage in any other
queue.
BEA WebLogic Server Performance and Tuning 4-5

http://e-docs.bea.com/wls/docs61/webapp/sessions.html#session-management

4 Tuning WebLogic Server Applications
� Remedy deadlocks in thread usage. With certain application designs,
deadlocks can occur when all execute threads are currently utilized. For
example, consider a servlet that reads messages from a designated JMS queue. If
all execute threads in a server are used for processing the servlet requests, then
no threads are available to deliver messages from the JMS queue. In this
situation, a deadlock condition exists, and no work can progress. Assigning the
servlet to a separate execute queue remedies the potential deadlock, because the
servlet and JMS queue do not compete for thread resources.

Execute Queue Drawbacks

Although execute queues can provide fine-tuning for application performance, keep in
mind that unused threads represent significant wasted resources in a Weblogic Server
system. Without careful consideration of thread usage in all execute queues, you may
find that available threads in configured execute queues go unused, while applications
in other queues sit idle waiting for threads to become available. In such a situation, the
division of threads into queues may yield poorer overall performance than having a
single, default execute queue.

Be sure to monitor each execute queue to ensure proper thread usage in the system as
a whole. See “Setting Thread Count” on page 3-3 for general information about
optimizing the number of threads.

Creating Execute Queues

An execute queue is represented in the domain config.xml file as part of the Server
element. For example, an execute queue named CriticalAppQueue with 4 execute
threads appears in the config.xml file as follows:

...
<Server
Name="examplesServer"
ListenPort="7001"
NativeIOEnabled="true"/>
<ExecuteQueue Name="default"
ThreadCount="15"/>
<ExecuteQueue Name="CriticalAppQueue"
ThreadCount="4"/>
4-6 BEA WebLogic Server Performance and Tuning

Using Execute Queues to Control Thread Usage
...
</Server>

To configure a new execute queue using the WebLogic Administration Console:

1. Start the Administration Console and click on the name of the server to which you
will add the execute queue.

2. Click the Monitoring tab.

3. From the General monitoring tab, click Monitor all Active Queues...

4. Click Configure Execute Queues...

5. Click Configure a New Execute Queue...

6. Enter the name, thread priority, and number of threads for the new queue.

7. Click Create to create the new queue in config.xml.

Assigning Servlets and JSPs to Execute Queues

You can assign a servlet or JSP to a configured execute queue by identifying the
execute queue name in the initialization parameters. Initialization parameters appear
within the init-param element of the servlet or JSP’s deployment descriptor file,
web.xml. To assign an execute queue, enter the queue name as the value of the
wl-dispatch-policy parameter, as in the example:

<servlet>
<servlet-name>MainServlet</servlet-name>
<jsp-file>/myapplication/critical.jsp</jsp-file>
<init-param>

<param-name>wl-dispatch-policy</param-name>
<param-value>CriticalAppQueue</param-value>

</init-param>
</servlet>

See Initializing a Servlet in Programming WebLogic HTTP Servlets for more
information about specifying initialization parameters in web.xml.
BEA WebLogic Server Performance and Tuning 4-7

4 Tuning WebLogic Server Applications
Assigning EJBs and RMI Objects to Execute Queues

To assign an RMI object to a configured execute queue, use the -dispatchPolicy
option to the rmic compiler. For example:

java weblogic.rmic -dispatchPolicy CriticalAppQueue ...

To assign an EJB object to a configured execute queue, use the -dispatchPolicy
option with ejbc. The ejbc compiler passes this option and its argument to rmic when
compiling the EJB.
4-8 BEA WebLogic Server Performance and Tuning

APPENDIX
A Related Reading

This section provides an extensive performance-related reading list, including the
following:

� “BEA Systems, Inc. Information” on page A-2

� “Sun Microsystems Information” on page A-2

� “Linux OS Information” on page A-3

� “Hewlett-Packard Company Information” on page A-4

� “Microsoft Information” on page A-4

� “Web Performance Tuning Information” on page A-5

� “Network Performance Tools” on page A-5

� “Performance Analysis Tools” on page A-6

� “Benchmarking Information” on page A-6

� “Java Virtual Machine (JVM) Information” on page A-7

� “Enterprise JavaBeans Information” on page A-8

� “Java Message Service (JMS) Information” on page A-9

� “General Performance Information” on page A-9
BEA WebLogic Server Performance and Tuning A-1

A Related Reading
BEA Systems, Inc. Information

� For general information about BEA Systems, see The BEA web site at
http://www.bea.com.

� BEA WebLogic Server Product Documentation page

See http://e-docs.bea.com/wls/docs61/index.html.

� BEA WebLogic Server White Papers

See http://dev2dev.bea.com/products/wlserver61/resources.jsp.

� J2EE Design Considerations for WebLogic Server, BEA White Paper, 2000

See http://www.bea.com/products/j2ee_wp_index.shtml.

� J2EE Applications and BEA WebLogic Server by Michael Girdley, Rob Woollen,
Sandra Emerson, 2001

� Professional J2EE Programming with BEA WebLogic Server by Paco Gomez,
Peter Zadrozny, 2000

� J2EE Performance Testing with BEA WebLogic Server by Peter Zadrozny,
Philip Aston, and Ted Osborne 2002

Sun Microsystems Information

� For general information about Sun Microsystems, see Sun’s web site at
http://www.sun.com.

� Sun Microsystems Performance Information

See http://www.sun.com/sun-on-net/performance.html.

� Java Standard Edition Platform Documentation

See http://java.sun.com.
A-2 BEA WebLogic Server Performance and Tuning

http://www.BEA.com
http://e-docs.bea.com/wls/docs61/index.html
http://dev2dev.bea.com/products/wlserver61/resources.jsp
http://www.bea.com/products/j2ee_wp_index.shtml
http://www.amazon.com/exec/obidos/tg/detail/-/0130911119/qid=1070891172/sr=1-2/ref=sr_1_2/103-8570318-1663817?v=glance&s=books
http://www.amazon.com/exec/obidos/ASIN/1861002998/qid%3D990130139/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/1904284000/qid=1024655766/sr=8-3/ref=sr_8_3/102-8494684-1874510
http://www.sun.com
http://www.sun.com/sun-on-net/performance.html
http://java.sun.com

Linux OS Information
� Java 2 SDK, Standard Edition Documentation

See http://java.sun.com/products/jdk/1.2/docs.

� Solaris Tunable Parameters Reference Manual

See http://docs.sun.com/db?p=/doc/806-4015.

� For BEA WebLogic Server and Solaris-specific details, see Sun Microsystems
Solaris on SPARC on the BEA Platform page.

See http://www.weblogic.com/platforms/sun/index.html.

� For more about Solaris configuration, check the Solaris FAQ.

See http://www.science.uva.nl/pub/solaris/solaris2/index.html.

� Sun Performance and Tuning Java and the Internet by Adrian Cockcroft, et al,
1997.

� Solaris 7 Performance Administration Tools by Frank Cervone, 2000.

Linux OS Information

� For general information about the Linux operating system, see Linux Online at
http://www.linux.org/

� For information about the Linux Documentation Project, see LDP at
http://www.tldp.org/

� For information about Redhat Enterprise Linux, see Redhat at
http://www.redhat.com/software/rehel/

� For information about SuSE Linux Enterprise Server, see SuSE Linux at
http://www.suse.com/us/business/products/server/sles/index.html

� Linux Performance Tuning and Capacity Planning, by Jason R. Find, et al, 1997,
Sams 2001

� Ipsysctl Tutorial 1.0.4, at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html,
describes the IP options provided by Linux
BEA WebLogic Server Performance and Tuning A-3

http://java.sun.com/products/jdk/1.2/docs
http://docs.sun.com/db?p=/doc/806-4015
http://edocs.bea.com/wls/platforms/index.html
http://edocs.bea.com/wls/platforms/index.html
http://www.science.uva.nl/pub/solaris/solaris2/index.html
http://www.amazon.com/exec/obidos/ASIN/0130952494/o/qid=990130340/sr=8-1/ref=aps_sr_b_1_1/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/0072122110/qid%3D990130401/107-7659827-5248549
http://www.linux.org/
http://www.tldp.org/
http://www.redhat.com/software/rhel/
http://www.suse.com/us/business/products/server/sles/index.html
http://www.amazon.com/exec/obidos/tg/detail/-/0672320819/104-9412286-0155141?vi=glance
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html

A Related Reading
Hewlett-Packard Company Information

� General Hewlett-Packard information

See http://www.thenewhp.com.

� Java Performance Tuning on HP-UX

See
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage
_IDX/1,1701,1602,00.html

� Hewlett Packard JMeter, a tool for analyzing profiling information

See http://www.hp.com/products1/unix/java/hpjmeter/

� GlancePlus system performance diagnostic tool

See http://www.openview.hp.com/products/gplus/index.html

� HPjconfig Java configuration tool

See
http://www.hp.com/products1/unix/java/java2/hpjconfig/index.htm

l.

Microsoft Information

� General Microsoft information

See http://www.microsoft.com/ms.htm.

� Windows 2000 Performance Tuning White Paper

See
http://www.microsoft.com/technet/win2000/win2ksrv/technote/perf
tune.asp.

� SQL-Server-Performance.Com, Microsoft SQL Server Performance Tuning and
Optimization

See http://www.sql-server-performance.com/.
A-4 BEA WebLogic Server Performance and Tuning

http://thenew.hp.com/
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,1602,00.html
http://www.hp.com/products1/unix/java/hpjmeter/
http://managementsoftware.hp.com/products/glanceplus/index.asp
http://www.hp.com/products1/unix/java/java2/hpjconfig/index.html
http://www.microsoft.com/ms.htm
http://www.microsoft.com/technet/win2000/win2ksrv/technote/perftune.asp
http://www.sql-server-performance.com/

Web Performance Tuning Information
� Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook, by Ken
England, 2001, Digital Press.

See
http://www.sql-server-performance.com/sql_server_2000_perform_o

ptimization_review.asp.

Web Performance Tuning Information

� Apache Performance Notes

See http://httpd.apache.org/docs/misc/perf-tuning.html.

� iPlanet Web Server 4.0 Performance Tuning, Sizing, and Scaling

See
http://docs.iplanet.com/docs/manuals/enterprise/40/scaling/perf

.htm.

� The Art and Science of Web Server Tuning with Internet Information Services
5.0

See
http://www.microsoft.com/windows2000/techinfo/administration/we

b/tuning.asp.

� Web Performance Tuning: Speeding Up the Web, by Patrick Killelea, Linda Mui
(Editor), O'Reilly Nutshell, 1998.

� Capacity Planning for Web Performance: Metrics, Models, and Methods, by
Daniel A. Menasce, Virgilio A. F. Almeida, Prentice Hall PTR, 1998.

Network Performance Tools

� Systems, Software, Technology (SST) Incorporated, Trace Plus/Ethernet.

TracePlus/Ethernet is a network packet analysis tool for Windows 95/98/ME, NT
4.x, Windows 2000/XP.
BEA WebLogic Server Performance and Tuning A-5

http://www.sql-server-performance.com/sql_server_2000_perform_optimization_review.asp
http://httpd.apache.org/docs/misc/perf-tuning.html
http://docs.sun.com/db/doc/816-5663-10
http://www.microsoft.com/windows2000/techinfo/administration/web/tuning.asp
http://www.amazon.com/exec/obidos/ASIN/1565923790/qid=995320796/sr=1-1/ref=sc_b_1/002-2021652-9667227
http://www.amazon.com/exec/obidos/search-handle-form/002-2021652-9667227
http://www.sstinc.com/home.html

A Related Reading
See http://www.sstinc.com/home.html.

Performance Analysis Tools

A profiler is a performance analysis tool that allows you to reveal hot spots in the
application that result in either high CPU utilization or high contention for shared
resources. Some common profilers are:

� Optimizeit Performance Profiler from Borland, a performance debugging tool for
Solaris and Windows.

See
http://www.borland.com/optimizeit/optimizeit_profiler/index.com

.

� JProbe Profiler with Memory Debugger, a family of products that provide the
capability to detect performance bottlenecks, perform code coverage and other
metrics.

See http://www.sitraka.com.

� Hewlett Packard JMeter, a tool for analyzing profiling information.

See http://www.hp.com/products1/unix/java/hpjmeter/.

� Topaz, Mercury Interactive's application performance management solution

See http://www-svca.mercuryinteractive.com/products/topaz/.

� SE Toolkit, a performance analysis tool kit.

See http://www.setoolkit.com/.

Benchmarking Information

� SPECjbb2000
A-6 BEA WebLogic Server Performance and Tuning

http://www.sitraka.com
http://www.hp.com/products1/unix/java/hpjmeter/
http://www-svca.mercuryinteractive.com/products/topaz/
http://www.setoolkit.com/
http://www.spec.org/osg/jbb2000/docs/whitepaper.html

Java Virtual Machine (JVM) Information
SPECjbb2000 is a software benchmark product developed by the Standard
Performance Evaluation Corporation (SPEC). It is designed to measure a
system’s ability to run Java server applications.

See http://www.spec.org/osg/jbb2000/docs/whitepaper.html.

� ECPerf Benchmark Specification

See
http://jcp.org/aboutJava/communityprocess/final/jsr004/index.ht
ml

� eTesting Labs Inc.

eTesting Labs Inc., a Ziff Davis Media company, is an independent developer of
benchmark software, including WebBench 4.0.

See http://www.etestinglabs.com/.

Java Virtual Machine (JVM) Information

� JVM Corner at artima.com

See http://www.artima.com/jvm.

� Frequently asked questions about the Java HotSpot virtual machine

This Sun Microsystems FAQ answers common questions about Java HotSpot
technology and about performance in general.

See http://java.sun.com/docs/hotspot/PerformanceFAQ.html.

� Tuning Garbage Collection with the 1.3.1 Java Virtual Machine

This Sun Microsystems document provides an thorough overview of garbage
collection tuning.

See http://java.sun.com/docs/hotspot/gc/.

� Java HotSpot VM Options

This Sun Microsystems document provides information on the command-line
options and environment variables that can affect the performance characteristics
of the Java HotSpot Virtual Machine.
BEA WebLogic Server Performance and Tuning A-7

http://www.spec.org/osg/jbb2000/docs/whitepaper.html
http://jcp.org/aboutJava/communityprocess/final/jsr004/index.html
http://www.etestinglabs.com/
http://www.artima.com/jvm
http://java.sun.com/docs/hotspot/PerformanceFAQ.html
http://java.sun.com/docs/hotspot/gc/
http://java.sun.com/docs/hotspot/VMOptions.html

A Related Reading
See http://java.sun.com/docs/hotspot/VMOptions.html.

� The Java HotSpot Client and Server Virtual Machines

This Sun Microsystems document discusses the two implementations of the Java
virtual machine that are available for J2SE 1.3

See
http://java.sun.com/j2se/1.3/docs/guide/performance/hotspot.htm

l.

� Which Java VM scales best?

From JavaWorld, results of a VolanoMark 2.0 server benchmark show how 12
virtual machines stack up.

See http://www.javaworld.com/jw-08-1998/jw-08-volanomark.html.

� Garbage Collection: Algorithms for Automatic Dynamic Memory Management
by Richard Jones, Rafael D Lins, John Wiley & Sons, 1999.

See
http://www.amazon.com/exec/obidos/ASIN/0471941484/richardjones/

002-1748120-9756040.

Enterprise JavaBeans Information

� Programming WebLogic Enterprise JavaBeans

See http://e-docs.bea.com/wls/docs61/ejb/index.html.

� Enterprise JavaBeans, Second Edition, by Richard Monson-Haefel, Mike
Loukides (Editor), 2000.

� Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition, by
Ed Roman, 1999.

� TheServerSide.com

A free online community dedicated to Enterprise JavaBeans (EJBs) and J2EE.

See http://www.theserverside.com/home/index.jsp.
A-8 BEA WebLogic Server Performance and Tuning

http://java.sun.com/j2se/1.3/docs/guide/performance/hotspot.html
http://www.javaworld.com/jw-08-1998/jw-08-volanomark.html
http://www.amazon.com/exec/obidos/ASIN/0471941484/richardjones/002-1748120-9756040
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://www.amazon.com/exec/obidos/ASIN/0471417114/o/qid=990129064/sr=2-1/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=990128989/sr=1-1/ref=sc_b_1/107-7659827-5248549
http://www.theserverside.com/home/index.jsp

Java Message Service (JMS) Information
� Seven Rules for Optimizing Entity Beans, by Akara Sucharitakul, Java Developer
Connection, 2001.

See
http://developer.java.sun.com/developer/technicalArticles/ebean

s/sevenrules/.

Java Message Service (JMS) Information

� Programming WebLogic JMS

See http://e-docs.bea.com/wls/docs61/jms/index.html.

� WebLogic JMS Performance Guide white paper on the BEA dev2dev Web site

See
http://dev2dev.bea.com/resourcelibrary/whitepapers/index.jsp#Se
rver

� JMS Specification

See http://java.sun.com/products/jms/docs.html

General Performance Information

� Jack Shirazi’s Java Performance Tuning web site.

See http://www.javaperformancetuning.com.

� The Software Testing and Quality Engineering Magazine, Web Application
Scalability, “Avoiding Scalability Shock” by Bill Shea, May/June 2000.

See
http://www.stqemagazine.com/index.asp?frame=CORE&content=BACKIS
SUE&stamp=417165320).

� Performance and Idiom Guide by Craig Larman and Rhett Guthrie, 1999.
BEA WebLogic Server Performance and Tuning A-9

http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://e-docs.bea.com/wls/docs61/jms/index.html
http://dev2dev.bea.com/technologies/jms/index.jsp
http://java.sun.com/products/jms/docs.html
http://www.javaperformancetuning.com
http://www.stqemagazine.com/index.asp?frame=CORE&content=BACKISSUE&stamp=417165320)
http://www.amazon.com/exec/obidos/ASIN/0130142603/qid%3D990129234/107-7659827-5248549

A Related Reading
A-10 BEA WebLogic Server Performance and Tuning

Index

A
AcceptBacklog attribute 3-8
Activation, stateful session EJBs 3-12

B
Bandwidth, network 1-8
Benchmarking, related reading A-6
Bull IBM

hardware tuning 1-2

C
-classic option, NT HotSpot VM 2-10
-client option, UNIX HotSpot VM 2-10
Clusters, scalability 3-16
Command-line options, Java

NT 2-10
NT, non-standard 2-11
Solaris 2-12

compileCommand parameter, jsp-descriptor
element 3-15

Compilers
changing in Console 3-15
changing in weblogic.xml 3-15
setting a 3-14

config.xml parameters, tuning 3-1
Connection backlog buffering 3-8
Connection pools, database 3-7
Container classes, compiling EJB 3-16
Customer support contact information vi

D
Database connection pools 3-7
Disable garbage collection 2-11
Documentation, where to find it vi
Domain, WebLogic Server 3-18

E
ECperf benchmark specification A-7
Eden/survivor space, setting heap ratios 2-8
EJB

activation 3-11
caching size 3-11
container classes, compiling 3-16
parameters, tuning 3-9
passivation 3-11
pool size, setting 3-9
related reading A-8

F
Forcing garbage collection 2-9

G
Garbage collection

disabling, noclassgc 2-11
forcing on a server 2-9
generational 2-4
infant mortality 2-4
tuning 2-3
tuning, 1.3.1 JVM A-7
BEA WebLogic Server Performance and Tuning I-1

General performance, related reading A-9
Generational garbage collection 2-4
Green threads vs. native threads 2-2

H
Hardware tuning 1-1

Bull IBM 1-2
Hewlett-Packard 1-2, 1-3
Intel Pentium 1-2
network 1-8
platform-specific 1-1
Solaris 1-3

Heap size
setting maximum 2-8
setting minimum 2-8
specifying values 2-7
tuning 2-3

Heap size ratios 2-8
Hewlett-Packard

hardware tuning 1-2, 1-3
related reading A-4

-hotspot option
NT Client HotSpot VM 2-10
UNIX Client HotSpot VM 2-10
UNIX HotSpot VM 2-10

I
Infant mortality, garbage collection 2-4
In-memory replication 4-3
Intel Pentium

hardware tuning 1-2
Isolation level, setting transaction 3-13
isolation-level element 3-13

J
Java command-line options

NT 2-10
NT, non-standard 2-11

Solaris 2-12
Java compiler, setting 3-14
Java thread stack size 2-11
JDBC application tuning 4-2
JDBC-based persistence 4-4
JMeter, Hewlett Packard profiler A-4, A-6
JMS, related reading A-9
JProbe profiler 4-2, A-6

related reading A-6
jsp-descriptor element, weblogic.xml 3-15
JSPs, precompiling 3-15
Just-in-Time (JIT) JVMs 2-3
JVMs

Just-in-Time (JIT) 2-3
mixed client/server 2-2
related reading A-7
-verbosegc option 2-5

L
LAN infrastructure 1-9

M
max-beans-in-cache element 3-11
max-beans-in-free-pool element 3-9
Maximum heap size, setting 2-8
Maximum memory, operating system tuning

1-7
Maximum New generation heap size, setting

2-8
MaxNewSize option 2-8
Memory allocation pool, minimum size 2-8
Microsoft, related reading A-4
Minimizing sessions 4-4
Minimum heap size, setting 2-8
Minimum size, memory allocation pool 2-8
Mixed client/server JVMs 2-2
I-2 BEA WebLogic Server Performance and Tuning

N
Native thread stack size 2-11
Native threads vs. green threads 2-2
NativeIOEnabled attribute 3-2
Network tuning

bandwidth 1-8
hardware and software 1-8
LAN infrastructure 1-9
performance tools A-5

New generation heap size, setting 2-8
NewSize option 2-8
-noclassgc option 2-11
NT

java command-line options 2-10
java command-line options non-standard

2-11

O
Operating system tuning

max memory for user process 1-7
OptimizeIt Profiler

API, using 4-2
-oss option 2-11

P
Passivation, stateful session EJBs 3-12
Performance analysis tools

related reading A-6
using JProbe and OptimizeIt 4-1

Performance packs
enabling via Console 3-2
using 3-2
which platforms? 3-2

Persistence
JDBC-based 4-4
session, managing 4-3

Platform-specific
hardware tuning 1-1
JVM tuning 2-2

Pool size, database connection 3-7
Precompiling JSPs 3-15
Printing product documentation vi
Profilers

related reading A-6
using 4-1

R
Ratios, setting heap size 2-8
Redirect -verbosegc messages to file 2-12
Related reading A-1

BEA Systems A-2
benchmarking A-6
EJBs A-8
general performance A-9
Hewlett Packard A-4
JMS A-9
JVMs A-7
Microsoft A-4
network performance tools A-5
performance analysis tools A-6
profilers A-6
Sun Microsystems A-2

Replication, in-memory 4-3

S
Scalability, clusters 3-16
SE Toolkit A-6
-server option

NT HotSpot VM 2-10
UNIX HotSpot VM 2-10

Session management 4-4
Session persistence

in-memory replication 4-3
managing 4-3

Setting Java HotSpot VM options 2-9
Socket readers, allocating threads 3-6
Solaris

hardware tuning 1-3
BEA WebLogic Server Performance and Tuning I-3

java command-line options 2-12
SPECjbb2000 A-7
-ss option 2-11
Standardized benchmarks and metrics 1-1
Start-up scripts for Administration Server 3-

14
startWebLogic.cmd

heap size values 2-7
startWebLogic.sh

heap size values 2-7
Stateful session EJBs

activation and passivation 3-12
Sun Microsystems, related reading A-2
Support, technical vi
SurvivorRatio option 2-8

T
TCP connections 3-8
Thread count

modifying 3-3
scenarios 3-4
setting 3-3
too high 3-5
too low 3-5

Thread stack size 2-11
ThreadCount attribute 3-3
Threading models, UNIX 2-2
ThreadPoolPercentSocketReaders attribute

3-6
Threads, socket reader 3-6
TracePlus/Ethernet A-5
Transaction isolation level, setting 3-13
Tuning

config.xml parameters 3-1
Tuning weblogic-ejb-jar.xml parameters 3-9
Type-4 MS SQL Driver 4-3

U
UNIX threading models 2-2

Using profilers 4-1

V
-verbosegc option

JVM 2-5
redirect 2-12

W
WebBench A-7
WebLogic Server

clusters 3-16
monitoring a domain 3-18
performance packs 3-2
tuning 3-1

weblogic.ejbc utility 3-16
weblogic-ejb-jar.xml parameters, tuning 3-9

X
-Xms option 2-8
-XX

MaxNewSize option 2-8
NewSize option 2-8
SurvivorRatio option 2-8
I-4 BEA WebLogic Server Performance and Tuning

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Tuning Hardware, Operating System, and Network Performance
	Hardware Tuning
	Supported Platforms

	Operating System Tuning
	Setting TCP Parameters With the ndd Command
	Setting Parameters In the /etc/system File
	CE Gigabit Network Card Settings
	Linux Tuning Parameters
	Other Operating System Tuning Information

	Network Performance
	Determining Network Bandwidth
	LAN Infrastructure

	2 Tuning Java Virtual Machines (JVMs)
	JVM Tuning Considerations
	About JVM Heap Size
	About Generational Garbage Collection
	Determining Heap Size
	Turning On Verbose Garbage Collection and Redirecting Output

	Specifying Heap Size Values
	Java Heap Size Options

	Forcing Garbage Collection
	Setting Java HotSpot VM Options
	Standard Options for NT
	Standard Options for UNIX

	Setting Non-Standard Java Command Line Options
	Non-Standard Options for NT
	Non-Standard Options for Solaris

	3 Tuning WebLogic Server
	Tuning config.xml File Parameters
	Using WebLogic Server Performance Packs
	Which Platforms Have Performance Packs?
	Enabling Performance Packs

	Setting Thread Count
	Modifying Thread Count
	Thread Count Scenarios
	Symptoms: Thread Count Too Low
	Symptoms: Thread Count Too High

	Assigning Applications to Execute Queues
	Allocating Threads to Act as Socket Readers
	How Connection Pools Enhance Performance
	Tuning JDBC Connection Pool Size
	Tuning JDBC Connection Pool Initial Capacity
	Tuning JDBC Connection Pool Maximum Capacity

	Tuning Connection Backlog Buffering

	Tuning weblogic-ejb-jar.xml Parameters
	Setting EJB Pool Size
	Allocating Pool Size for Session and Message Beans
	Allocating Pool Size for Entity Beans
	Tuning the Pool Size

	Tuning Initial Beans in Free Pool
	Setting EJB Caching Size
	Activation and Passivation of Stateful Session EJBs

	Deferring Database Locking
	Setting Transaction Isolation Level

	Tuning Parameters for Starting WebLogic Server
	Setting Your Java Compiler
	Changing Compilers in the WebLogic Server Console
	Setting Your Compiler in weblogic.xml
	Compiling EJB Container Classes
	Compiling on UNIX

	WebLogic Server Clusters and Scalability
	Performance Considerations for Multi-CPU Machines

	Monitoring a WebLogic Server Domain

	4 Tuning WebLogic Server Applications
	Using Performance Analysis Tools
	Using the JProbe Profiler API
	Using the Optimizeit Profiler

	JDBC Application Tuning
	JDBC Optimization for Type-4 MS SQL Driver

	Managing Session Persistence
	In-Memory Replication
	JDBC-based Persistence

	Minimizing Sessions
	Using Execute Queues to Control Thread Usage
	Execute Queue Drawbacks
	Creating Execute Queues
	Assigning Servlets and JSPs to Execute Queues
	Assigning EJBs and RMI Objects to Execute Queues

	A Related Reading
	BEA Systems, Inc. Information
	Sun Microsystems Information
	Linux OS Information
	Hewlett-Packard Company Information
	Microsoft Information
	Web Performance Tuning Information
	Network Performance Tools
	Performance Analysis Tools
	Benchmarking Information
	Java Virtual Machine (JVM) Information
	Enterprise JavaBeans Information
	Java Message Service (JMS) Information
	General Performance Information

	Index

