
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA WebLogic

Installing and Using
WebLogic jDriver

and BEA WebLogic Express™

for Oracle

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Installing and Using WebLogic jDriver for Oracle

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience... vii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ... ix

1. Introduction
Overview of WebLogic jDrivers ... 1-1

WebLogic jDriver for Oracle .. 1-2

Oracle Shared Libraries.. 1-2

Distributed Transactions with the WebLogic jDriver for Oracle/XA........ 1-2

2. Installing WebLogic jDriver for Oracle
Preparing to Install WebLogic jDriver for Oracle... 2-1

Checking Software Requirements for WebLogic jDriver for Oracle . 2-1

Supported Platforms.. 2-2

Requirements for Running JDBC 2.0 ... 2-2

Setting Up the Environment for Using WebLogic jDriver for Oracle 2-2

Windows NT... 2-3

Solaris.. 2-4

IBM AIX ... 2-5

HP-UX 11 ... 2-5

SGI IRIX ... 2-7

Siemens MIPS... 2-7

Compaq Tru64 UNIX ... 2-8
Installing and Using WebLogic jDriver for Oracle iii

Installation Procedures for WebLogic jDriver for Oracle 2-8

After Installing WebLogic jDriver for Oracle ... 2-10

Licensing Functionality .. 2-10

Checking Connections to the Oracle Database .. 2-10

Setting Up a Connection Pool .. 2-11

Configuring a Connection Pool with WebLogic Server Software.... 2-11

Using the Connection Pool in an Application................................... 2-12

Using IDEs or Debuggers with WebLogic jDrivers................................. 2-12

Preparing to Set Up a Development Environment and Use the WebLogic
jDriver for Oracle .. 2-13

3. Using WebLogic jDriver for Oracle
Local Versus Distributed Transactions.. 3-2

Importing JDBC Packages... 3-2

Setting CLASSPATH .. 3-3

Oracle Client Library Versions, URLs, and Driver Class Names 3-3

Connecting to an Oracle DBMS.. 3-4

Connecting Using WebLogic Server in a Two-Tier Configuration 3-4

Connecting Using WebLogic Server in a Multi-Tier Configuration.......... 3-5

Connection Example .. 3-6

Connecting Using a DataSource Object ... 3-6

Setting Properties for WebLogic JDBC Use .. 3-6

About the Connection Object ... 3-7

Setting Autocommit.. 3-7

Making a Simple SQL Query .. 3-7

Inserting, Updating, and Deleting Records ... 3-9

Creating and Using Stored Procedures and Functions 3-10

Disconnecting and Closing Objects... 3-13

Working with ResultSets from Stored Procedures .. 3-14

Row Caching With WebLogic JDBC.. 3-14

Code Example.. 3-15

Unsupported JDBC 2.0 Methods... 3-19
iv Installing and Using WebLogic jDriver for Oracle

4. Using WebLogic jDriver for Oracle/XA in Distributed
Transactions

Differences Using the WebLogic jDriver for Oracle in XA versus Non-XA Mode
4-2

Configuring JDBC XA and Non-XA Resources... 4-2

JDBC/XA Resources.. 4-3

Non-XA JDBC Resources.. 4-3

Limitations of the WebLogic jDriver for Oracle XA.. 4-3

Implementing Distributed Transactions .. 4-4

Importing Packages .. 4-4

Finding the Data Source via JNDI ... 4-5

Performing a Distributed Transaction .. 4-5

5. Advanced Oracle Features
Allowing Mixed Case Metadata.. 5-2

Data Types... 5-2

WebLogic Server and Oracle’s NUMBER Column ... 5-4

Using Oracle Long Raw Data Types... 5-5

Waiting on Oracle Resources .. 5-5

Autocommit... 5-6

Transaction Isolation Levels.. 5-7

Codeset Support... 5-7

Support for Oracle Array Fetches.. 5-10

Using Stored Procedures ... 5-11

Binding a Parameter to an Oracle Cursor... 5-11

Notes on Using CallableStatement... 5-13

DatabaseMetaData Methods.. 5-13

Support for JDBC Extended SQL ... 5-14

Overview of JDBC 2.0 for Oracle... 5-15

Configuration Required to Support JDBC 2.0 .. 5-16

BLOBs and CLOBs... 5-16

Transaction Boundaries.. 5-17

BLOBs.. 5-17

Connection Properties ... 5-17

Import Statements ... 5-18
Installing and Using WebLogic jDriver for Oracle v

Initializing a BLOB Field.. 5-18

Writing Binary Data to a BLOB ... 5-19

Writing a BLOB Object .. 5-20

Updating a CLOB Value Using a Prepared Statement 5-20

Reading BLOB Data ... 5-20

Other Methods... 5-21

CLOBs.. 5-21

Codeset Support .. 5-22

Initializing a CLOB Field.. 5-22

Writing ASCII Data to a CLOB.. 5-23

Writing Unicode Data to a CLOB... 5-24

Writing CLOB Objects.. 5-24

Reading CLOB Data ... 5-25

Other Methods... 5-25

Character and ASCII Streams.. 5-26

Unicode Character Streams .. 5-26

ASCII Character Streams ... 5-26

Batch Updates... 5-27

Using Batch Updates... 5-27

Clearing the Batch... 5-28

Update Counts ... 5-28

New Date Methods .. 5-28
vi Installing and Using WebLogic jDriver for Oracle

About This Document

This document describes how to install and develop applications using WebLogic
jDriver for Oracle, BEA’s type-2 Java Database Connectivity (JDBC) driver for the
Oracle Database management system, for local and distributed transactions.

This document is organized as follows:

� Chapter 1, “Introduction”

� Chapter 2, “Installing WebLogic jDriver for Oracle”

� Chapter 3, “Using WebLogic jDriver for Oracle”

� Chapter 4, “Using WebLogic jDriver for Oracle/XA in Distributed Transactions”

� Chapter 5, “Advanced Oracle Features”

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers are familar with SQL, general database
concepts, and Java programming.
Installing and Using WebLogic jDriver for Oracle vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs61.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.
viii Installing and Using WebLogic jDriver for Oracle

http://e-docs.bea.com/wls/docs61
http://www.adobe.com

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Installing and Using WebLogic jDriver for Oracle ix

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
x Installing and Using WebLogic jDriver for Oracle

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Installing and Using WebLogic jDriver for Oracle xi

xii Installing and Using WebLogic jDriver for Oracle

CHAPTER
1 Introduction

This document explains how to install and use BEA’s JDBC driver for the Oracle
Database Management System (DBMS) with WebLogic Server. It also describes the
new feature, MultiPools, added to WebLogic Server in Version 6.

We assume you are familiar with Java, general DBMS concepts, and Structured Query
Language (SQL).

This section discusses the following topics:

� Overview of WebLogic jDrivers

� WebLogic jDriver for Oracle

Overview of WebLogic jDrivers

BEA offers three WebLogic jDrivers for use with the WebLogic Server software:

� Type 2 native JDBC driver for Oracle that includes distributed transaction
capability

� Type 4 JDBC drivers for Informix and Microsoft SQL Server

Type-2 drivers use client libraries supplied by a database vendor, while Type-4 drivers
are pure-Java; they connect to the database server at the wire level without
vendor-supplied client libraries.
Installing and Using WebLogic jDriver for Oracle 1-1

1 Introduction
WebLogic jDriver for Oracle

WebLogic jDriver for Oracle, a Type 2 JDBC driver for the Oracle DBMS, is provided
with the WebLogic Server software. To use this driver, you must install a complete
Oracle client, including all required libraries, on the machine that will be the client to
the Oracle DBMS. This Oracle client installation must contain vendor-supplied client
libraries and associated files required by WebLogic Server.

Note: You must use the same version of the WebLogic jDriver for Oracle, the Oracle
client, and the database management system. That is, if you use version 8.1.7
of the Oracle DBMS, you must also use the 8.1.7 version of the Oracle client
and the WebLogic jDriver for Oracle.

Oracle Shared Libraries

The WebLogic Server distribution includes a choice of several BEA-supplied native
libraries for WebLogic Server. Which library you choose depends on which Oracle
client version is installed on your client machine and which version of the Oracle API
you will use to access your Oracle server. Before you can install this driver, you must
include both the BEA-supplied native library and the Oracle-supplied client libraries
in your the client’s PATH (Windows NT) or shared library path (UNIX). For more
information, see “Installing WebLogic jDriver for Oracle” on page 2-1.

Distributed Transactions with the WebLogic jDriver for
Oracle/XA

WebLogic Server provides a multithreaded JDBC/XA driver for Oracle Corporations
Oracle8i database management system. The WebLogic jDriver for Oracle/XA is the
transaction-enabled version of WebLogic jDriver for Oracle. The WebLogic jDriver
for Oracle/XA fully supports XA, the bidirectional system-level interface between a
transaction manager and a resource manager of the X/Open Distributed Transaction
Processing (DTP) model.
1-2 Installing and Using WebLogic jDriver for Oracle

CHAPTER
2 Installing WebLogic
jDriver for Oracle

This section discusses the following topics:

� Preparing to Install WebLogic jDriver for Oracle

� Installation Procedures for WebLogic jDriver for Oracle

� After Installing WebLogic jDriver for Oracle

Preparing to Install WebLogic jDriver for
Oracle

Before installing the WebLogic jDriver for Oracle, you must complete the tasks
described in this section:

� Checking Software Requirements for WebLogic jDriver for Oracle

� Setting Up the Environment for Using WebLogic jDriver for Oracle

Checking Software Requirements for WebLogic jDriver for Oracle

This section lists the software requirements in the following areas:

� Supported Platforms
Installing and Using WebLogic jDriver for Oracle 2-1

2 Installing WebLogic jDriver for Oracle
� Requirements for Running JDBC 2.0

Supported Platforms

For details about the platforms, operating systems, JVMs, DBMS versions, and client
libraries supported by the WebLogic jDrivers, see Platform Support for Weblogic
jDrivers at http://e-docs.bea.com/wls/certifications/certs_610/index.html.

Requirements for Running JDBC 2.0

WebLogic Server 6.1 runs under the JDK 1.3.1 platform, supporting the JDBC 2.0
API— The JDBC 2.0 Core API and the JDBC Optional Package API that includes
distributed transactions. In addition, you must use a driver that uses the Oracle Call
Interface version 8 API.

Setting Up the Environment for Using WebLogic jDriver
for Oracle

To set up your environment to support the use of WebLogic jDrivers, you must set
your path variable to include pathnames for the following:

� The directory that contains your driver. (The driver file could be a native dll,
so, or sl file.) The file containing the driver must be available to your
WebLogic Server client. The name of the path variable depends on the system
you are using:

� On a Windows NT system, set PATH.

� On most UNIX systems, set LD_LIBRARY_PATH.

� On an HP-UX system, set SHLIB_PATH.

The directory containing the driver file varies, depending on several factors
discussed in the following text.

� The directory in which vendor-supplied libraries from Oracle reside. The
location of the directory containing your Oracle client libraries varies, depending
on your installation. On Windows NT, the Oracle installer places these libraries
in your system path.
2-2 Installing and Using WebLogic jDriver for Oracle

http://www.weblogic.com/platforms/index.html
http://www.weblogic.com/platforms/index.html#jdbc
http://www.weblogic.com/platforms/index.html#jdbc
http://www.weblogic.com/platforms/index.html#jdbc

Preparing to Install WebLogic jDriver for Oracle
WebLogic Server uses the dll, so, or sl files built with the Oracle Call Interface
(OCI) version 8 API as the native interface for accessing an Oracle DBMS.

The tables in the following platform-specific sections list the directories—based on the
Oracle client version—that you must specify in your system PATH to access the desired
version of the driver.

Windows NT

Add the pathnames for the WebLogic shared library (.dll) directory and the directory
where you installed the Oracle client to the PATH as follows:

Syntax

Use the following syntax:

� Add WL_HOME\bin\ and the appropriate WebLogic Server shared library
directory from the table below to your PATH, where WL_HOME is the directory of
your WebLogic Server installation. For example:

%WL_HOME%\bin\oci

� Add ORACLE_HOME\bin to your PATH, where ORACLE_HOME is the directory of
your Oracle client installation. Always add the WebLogic jDriver for Oracle and
Oracle home information at the beginning of your PATH. For example:

%ORACLE_HOME%\bin;%PATH%

Example

Using the above syntax to create an actual example for Oracle 8.1.7, your path may
look like:

$set PATH=%WL_HOME%\bin\oci817_8;c:\ORANT817\bin;%PATH%

Where ocixx is oci817_8, and ORACLE_HOME is c:\ORANT817.

For Oracle 9.0.1, your path may look like:

$set PATH=%WL_HOME%\bin\oci901_8;c:\ORANT901\bin;%PATH%
Installing and Using WebLogic jDriver for Oracle 2-3

2 Installing WebLogic jDriver for Oracle
The following table provides the directory and Oracle client versions for Windows NT.

Solaris

To set up your Solaris environment to support the use of WebLogic jDrivers, you must
set your environment variable LD_LIBRARY_PATH to include 1) the directory in which
you installed the Oracle client, and 2) the directory that contains the native interface
file.

Syntax

Use the following syntax:

� The directory in which the native interface libweblogicocixx.so resides. For
example:

$WL_HOME/lib/solaris/oci

� The directory in which vendor-supplied libraries from Oracle reside. The
location of the directory containing your Oracle client libraries varies, depending
on your installation. For example:

$ORACLE_HOME/lib

Table 2-1 Oracle on Windows NT

Oracle Client
Version

OCI
API
Version

Shared Library
(.dll) Directory

Notes

8.1.7 8 oci817_8 Allows access to Oracle 8 and
JDBC 2.0 Core API and
Optional Package API (includes
distributed transactions).

9.0.1 8 oci901_8 Allows access to Oracle 9 and
JDBC 2.0 Core API and
Optional Package API (includes
distributed transactions).

9.2.0 8 oci920_8 Allows access to Oracle 9 and
JDBC 2.0 Core API and
Optional Package API (includes
distributed transactions).
2-4 Installing and Using WebLogic jDriver for Oracle

Preparing to Install WebLogic jDriver for Oracle
Example

Using the above syntax to create an actual path for Oracle 8.1.7, your path may look
like:

export LD_LIBRARY_PATH=
$WL_HOME/lib/solaris/oci817_8:ORACLE/lib:$LD_LIBRARY_PATH

Where ocixx is oci817_8, and ORACLE_HOME is /ORACLE/.

The following table provides the directory and Oracle client versions for Solaris.

IBM AIX

To find out if your platform is supported, see BEA WebLogic Server Platform Support
at http://e-docs.bea.com/wls/certifications/certs_610/index.html.

HP-UX 11

To set up your HP environment to support the use of WebLogic jDrivers, you must set
your environment variable SHLIB_PATH to include 1) the directory in which you
installed your Oracle client, and 2) the directory that contains the native interface file.

Table 2-2 Oracle on Solaris

Oracle Client
Version

OCI
API
Version

Shared
Library (.so)
Directory

Notes

8.1.7 8 oci817_8 Allows access to Oracle 8 and JDBC
2.0 Core API and Optional Package
API (includes distributed
transactions).

9.0.1 8 oci901_8 Allows access to Oracle 9 and JDBC
2.0 Core API and Optional Package
API (includes distributed
transactions).

9.2.0 8 oci920_8 Allows access to Oracle 9 and JDBC
2.0 Core API and Optional Package
API (includes distributed
transactions).
Installing and Using WebLogic jDriver for Oracle 2-5

http://e-docs.bea.com/wls/certifications/certs_610/index.html

2 Installing WebLogic jDriver for Oracle
Note: Oracle 9 for HP-UX is available in a 64-bit version only, including the Oracle
client. Because the WebLogic jDriver for Oracle is a type-2 JDBC driver, it
requires the Oracle client for database access. Therefore, to use the WebLogic
jDriver for Oracle with Oracle 9 on HP-UX, you must run WebLogic Server
on a 64-bit machine.

Syntax

For Oracle 8, use the following syntax:

� The directory in which the native interface file weblogicocixx.sl resides. For
example:

$WL_HOME/lib/hpux11/ocixx

� The directory in which vendor-supplied libraries from Oracle reside. The
location of the directory containing your Oracle client libraries varies, depending
on your installation. For example:

$ORACLE_HOME/lib

For Oracle 9i, use the following syntax:

� The directory in which the native interface file weblogicocixx.sl resides. For
example:

$WL_HOME/lib/hpux11/ocixx

� The directory in which vendor-supplied libraries from Oracle reside. The
location of the directory containing your Oracle client libraries varies, depending
on your installation. For example:

$ORACLE_HOME/lib32

Example

Using the above syntax to create an actual path for Oracle 8.1.7, your path may look
like:

export SHLIB_PATH=
$WL_HOME/lib/hpux11/oci817_8:ORACLE/lib:$SHLIB_PATH

Where ocixx is oci817_8, and ORACLE_HOME is ORACLE.

For Oracle 9.0.1, your path may look like:
2-6 Installing and Using WebLogic jDriver for Oracle

Preparing to Install WebLogic jDriver for Oracle
export SHLIB_PATH=
$WL_HOME/lib/hpux11/oci901_8:ORACLE/lib32:$SHLIB_PATH

The following table provides the directory and Oracle client versions for HP-UX.

SGI IRIX

To find out if your platform is supported, see BEA WebLogic Server Platform Support
at http://e-docs.bea.com/wls/certifications/certs_610/index.html.

Siemens MIPS

To find out if your platform is supported, see BEA WebLogic Server Platform Support
at http://e-docs.bea.com/wls/certifications/certs_610/index.html.

Table 2-3 Oracle on HP

Oracle Client
Version

OCI
API
Version

Shared Library
(.sl) Directory

Notes

8.1.7 8 oci817_8 Allows access to Oracle 8
and JDBC 2.0 Core API and
Optional Package API
(includes distributed
transactions).

9.0.1 8 oci901_8 Allows access to Oracle 9
and JDBC 2.0 Core API and
Optional Package API
(includes distributed
transactions).

9.2.0 8 oci920_8 Allows access to Oracle 9
and JDBC 2.0 Core API and
Optional Package API
(includes distributed
transactions).
Installing and Using WebLogic jDriver for Oracle 2-7

http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html

2 Installing WebLogic jDriver for Oracle
Compaq Tru64 UNIX

To find out if your platform is supported, see BEA WebLogic Server Platform Support
at http://e-docs.bea.com/wls/certifications/certs_610/index.html.

Installation Procedures for WebLogic jDriver
for Oracle

The instructions in this document assume that you are installing WebLogic Server on
a computer running the Microsoft Windows operating system and that you are
unpacking the archive in the root directory of your C drive. If you are installing on a
different operating system or in a different location, check your system documentation
for help in adjusting the commands shown in these instructions for your own
environment.

The following instructions are for installing WebLogic jDriver for Oracle on servers
with Oracle and WebLogic Server, and for installing WebLogic jDriver for Oracle as
a stand-alone type-2 JDBC driver (separate from WebLogic Server). For installations
with WebLogic Server follow only Steps 1 and 2 below, and Step 5 if you are using
WebLogic Server to access databases via applets. For stand-alone installations, follow
all the steps.

1. Select the appropriate native library for your environment.

WebLogic Server is shipped with dll, sl, or so files for various combinations
of Oracle client versions, APIs, and platforms. You must place the appropriate
file in your system’s path or shared library path for this driver to function.
Unlike previous releases of WebLogic Server, which had only one such file that
was always present in the default path, you now must specify this path setting
explicitly. For details and instructions on setting these options, see Setting Up the
Environment for Using WebLogic jDriver for Oracle.

2. Add the client libraries from your Oracle installation to your system PATH
(Windows NT) or load library path (UNIX—the name of this variable differs
among UNIX systems). Check your Oracle documentation for the location of
these libraries. On most Windows NT platforms, the client libraries are located in
c:\ORANT\bin.
2-8 Installing and Using WebLogic jDriver for Oracle

http://e-docs.bea.com/wls/certifications/certs_610/index.html

Installation Procedures for WebLogic jDriver for Oracle
3. Unpack the distribution.

If you have purchased WebLogic Server, WebLogic jDriver for Oracle is
provided with your distribution. No further steps are required to unpack the
distribution. The remainder of these installation steps are required only for users
of the stand-alone version of WebLogic jDriver.

If you have not already unpacked the archive you downloaded in the root
directory of your computer, you should unpack it now. You must use a program
such as WinZip (available at http://www.winzip.com) that preserves the
directory structure of the archive. The files are unpacked into the weblogic
directory.

4. Add the WebLogic Server classes directory to your CLASSPATH variable.

Note: If you are using the WebLogic jDriver for Oracle that is bundled with the
WebLogic Server software, the CLASSPATH settings are the same as those
required for WebLogic Server. The standard startup scripts supplied with the
WebLogic Server distribution will do this for you.

To change your CLASSPATH temporarily at a Windows Command Prompt, use
this command:

$set CLASSPATH=%CLASSPATH%;c:\weblogic\oracle\classes

To change your CLASSPATH permanently:

a. Double-click the System icon in the Control Panel.

b. Click the Environment tab.

c. In the lower panel, select the CLASSPATH variable. If no CLASSPATH variable is
defined, add it.

d. Add %WL_HOME%\oracle\classes to the value of the CLASSPATH variable.
Use a semicolon (;) to separate the new path from the previous value of the
variable, if any.

Any program you launch after you update the CLASSPATH variable in the System
control panel has access to the new value.

For more help with setting your CLASSPATH, see Compiling and Deploying
WebLogic Server in Developing WebLogic Server Applications. If you are using
WebLogic Server from within an IDE like Symantec Cafe or JBuilder, the
procedure for adding classes to the CLASSPATH may be different.

5. Install license file.
Installing and Using WebLogic jDriver for Oracle 2-9

http://www.winzip.com
http://e-docs.bea.com/wls/docs61/programming/environment.html
http://e-docs.bea.com/wls/docs61/programming/environment.html

2 Installing WebLogic jDriver for Oracle
After Installing WebLogic jDriver for Oracle

This section describes the tasks you must perform after installing the WebLogic
jDriver for Oracle software:

� Licensing Functionality

� Checking Connections to the Oracle Database

� Setting Up a Connection Pool

Licensing Functionality

The Oracle licensing functionality is included in the license file located in the BEA
home directory where you installed this WebLogic Server. For example:

c:\bea\license.bea

Checking Connections to the Oracle Database

Once you have installed WebLogic jDriver for Oracle, verify that you can use it to
connect to your database. To test your connection, use a utility called dbping that is
provided with the WebLogic Server software.

To set your environment to use dbping, type the following on the command line (in a
single line):

%WL_HOME%\config\mydomain\setEnv.cmd
java utils.dbping ORACLE user password server

Replace %WL_HOME% with the path for the directory that contains your WebLogic
Server or WebLogic Server installation.

For detailed instructions on verifying your connection to a DBMS, see Testing
connections.

If you have problems, check Troubleshooting WebLogic JDBC in Programming
WebLogic JDBC.
2-10 Installing and Using WebLogic jDriver for Oracle

http://e-docs.bea.com/wls/docs61/jdbc/index.html

After Installing WebLogic jDriver for Oracle
Setting Up a Connection Pool

If you are using WebLogic jDriver for Oracle with either BEA WebLogic Server or
BEA WebLogic Express, you can set up a pool of connections to your Oracle DBMS
to be established when WebLogic Server starts. Because the connections are shared
among users, these connection pools eliminate the overhead of opening a new database
connection for each user.

Your application then uses a multitier (Type 3) JDBC driver, such as the WebLogic
Pool, or RMI driver to connect to the WebLogic Server software. The WebLogic
Server software then uses WebLogic Server and one of the existing connections from
the pool to connect to the Oracle database on behalf of your application.

Configuring a Connection Pool with WebLogic Server Software

1. Include the vendor-supplied native libraries and the WebLogic native libraries for
WebLogic Server in the PATH (Windows) or load library path (UNIX) of the
shell where you will start WebLogic Server. For more information, see Starting and
Stopping WebLogic Servers in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html.

2. Use the Administration Console to set connection pools. To read about
connection pools, see Connection Pools in the Administration Guide or, to go
directly to the procedure, see Create a JDBC Connection Pool in Online Help.

3. Start the WebLogic Server software.
Installing and Using WebLogic jDriver for Oracle 2-11

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#connection_pools
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbcconnectionpool.html#jdbc_conn_pool_create

2 Installing WebLogic jDriver for Oracle
Using the Connection Pool in an Application

Using IDEs or Debuggers with WebLogic jDrivers

If you are using Symantec Cafe or any other IDE, or a debugger, copy the
WebLogic-supplied native library to a new file with a name (excluding the extension)
that ends in _g. For example,

� On a UNIX system, copy libweblogicoci37.so to
libweblogicoci37_g.so. For distributed transactions, copy
libweblogicoxa37.so to libweblogicoxa37_g.so.

� On a Windows NT platform, copy weblogicoci37.dll to
weblogicoci37_g.dll. For distributed transactions, copy
weblogicoxa37.dll to weblogicocoxa37_g.dll.

To use a
connection pool
in this type of
application . . .

Establish a database
connection using . . .

For details, see . . .

Client-side WebLogic JDBC/RMI
driver

Using WebLogic JDBC/RMI and WebLogic Clustered
JDBC in Programming WebLogic JDBC.

Server-side (such as
a servlet)

WebLogic Pool, JTS,
and WebLogic jDriver
for Oracle/XA drivers

Connecting To a Database Using a JDBC Connection
Pool in Programming WebLogic HTTP Servlets.

Creating a startup connection pool in Administration
Guide.
2-12 Installing and Using WebLogic jDriver for Oracle

http://e-docs.bea.com/wls/docs61/jdbc/index.html
http://e-docs.bea.com/wls/docs61/jdbc/index.html
http://e-docs.bea.com/wls/docs61/servlet/progtasks.html#pools0
http://e-docs.bea.com/wls/docs61/servlet/progtasks.html#pools0
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html

After Installing WebLogic jDriver for Oracle
Preparing to Set Up a Development Environment and
Use the WebLogic jDriver for Oracle

For more information, read the following:

For information about . . . See the section called . . .

Setting up a development environment for running
JDBC clients

 Compiling and Deploying WebLogic Server in
Developing WebLogic Server Applications

Using the driver Using WebLogic jDriver for Oracle
Installing and Using WebLogic jDriver for Oracle 2-13

http://e-docs.bea.com/wls/docs61/programming/environment.html
http://e-docs.bea.com/wls/docs61/oracle/API_joci.html

2 Installing WebLogic jDriver for Oracle
2-14 Installing and Using WebLogic jDriver for Oracle

CHAPTER
3 Using WebLogic jDriver
for Oracle

This section walks you through the basic tasks associated with a simple application and
ends with a code example:

� Local Versus Distributed Transactions

� Importing JDBC Packages

� Setting CLASSPATH

� Oracle Client Library Versions, URLs, and Driver Class Names

� Connecting to an Oracle DBMS

� Making a Simple SQL Query

� Inserting, Updating, and Deleting Records

� Creating and Using Stored Procedures and Functions

� Disconnecting and Closing Objects

� Working with ResultSets from Stored Procedures

� Row Caching With WebLogic JDBC

� Code Example

� Unsupported JDBC 2.0 Methods
Installing and Using WebLogic jDriver for Oracle 3-1

3 Using WebLogic jDriver for Oracle
Local Versus Distributed Transactions

When performing transactions with WebLogic Server, there are differences in some
basic tasks, depending on whether you are using local or distributed transactions.
These transactions are as follows:

� Local transactions—use the WebLogic jDriver for Oracle

� Distributed, or global, transactions—use the WebLogic jDriver for Oracle in XA
mode, written as WebLogic jDriver for Oracle/XA.

For more information about distributed transactions, see Using WebLogic jDriver for
Oracle/XA in Distributed Transactions.

Importing JDBC Packages

The classes that you import into your application should include:

import java.sql.*;
import java.util.Properties; \\ required only if using a Properties
 \\ object to set connection parameters
import weblogic.common.;

import javax.sql.Datasource; \\required only if using DataSource
 \\API to get connections

import javax.naming.*; \\required only if using JNDI
 \\to look up DataSource objects

The WebLogic Server driver implements the java.sql interface. You write your
application using the java.sql classes. You do not need to import the JDBC driver
class; instead, you load the driver inside the application. This allows you to select an
appropriate driver at runtime. You can even decide what DBMS to connect to after the
program is compiled.
3-2 Installing and Using WebLogic jDriver for Oracle

Setting CLASSPATH
Setting CLASSPATH

When running a WebLogic Server client using the driver provided with WebLogic
Server you must put the following directory in your CLASSPATH:

%WL_HOME%/lib/weblogic.jar

(where %WL_HOME% is the directory containing your WebLogic Server
installation)

If you are running a stand-alone version of WebLogic Server, specify the following
pathname in your classpath:

%WL_HOME%/oci/classes

Replace %WL_HOME% with the name of the directory containing your WebLogic Server
installation.

For more information about setting CLASSPATH and other issues related to setting up
your environment, see Establishing a Development Environment in Developing
WebLogic Server Applications.

Oracle Client Library Versions, URLs, and
Driver Class Names

Which driver class name and URL you use depends on these factors:

� Which platform you are using

� Which version of the Oracle client libraries you are using

You must also specify the correct driver version in your system’s path. For more
information, see Setting Up the Environment for Using WebLogic jDriver for Oracle.

� Driver class: weblogic.jdbc.oci.Driver

� URL: jdbc:weblogic:oracle
Installing and Using WebLogic jDriver for Oracle 3-3

http://e-docs.bea.com/wls/docs61/programming/environment.html
http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html

3 Using WebLogic jDriver for Oracle
When using the driver in XA mode:

� Driver class: weblogic.jdbc.oci.xa.XADataSource

� URL: none required

Connecting to an Oracle DBMS

You make connections from your application to an Oracle DBMS using either a
two-tier or multi-tier connection, as described in the following sections.

Connecting Using WebLogic Server in a Two-Tier
Configuration

To make a two-tier connection from your application to an Oracle DBMS using
WebLogic Server, complete the following procedure. For more information on
connections, see “After Installing WebLogic jDriver for Oracle” on page 2-10.

1. Load the WebLogic Server JDBC driver class, casting it to a java.sql.Driver
object. If you are using an XA driver, use the Datasource API, but not the
java.sql.Driver API. For example:

Driver myDriver = (Driver)Class.forName
 ("weblogic.jdbc.oci.Driver").newInstance();

2. Create a java.util.Properties object describing the connection. This object
contains name-value pairs containing information such as user name, password,
database name, server name, and port number. For example:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "secret");
props.put("server", "DEMO");

The server name (DEMO in the preceding example) refers to an entry in the
tnsnames.ora file, which is located in your Oracle client installation. The
server name defines host names and other information about an Oracle database.
If you do not supply a server name, the system looks for an environment
3-4 Installing and Using WebLogic jDriver for Oracle

Connecting to an Oracle DBMS
variable (ORACLE_SID in the case of Oracle). You may also add the server name
to the URL, using the following format:

"jdbc:weblogic:oracle:DEMO"

If you specify a server with this syntax, you do not need to provide a server
property.

You can also set properties in a single URL, for use with products such as
PowerSoft’s PowerJ.

3. Create a JDBC Connection object, which becomes an integral piece in your
JDBC operations, by calling the Driver.connect() method. This method takes,
as its parameters, the URL of the driver and the java.util.Properties object
you created in Step 2. For example:

Connection conn =
 myDriver.connect("jdbc:weblogic:oracle", props);

In Steps 1 and 3, you are describing the JDBC driver: in the first step, you use the full
package name of the driver. Note that it is dot-delimited. In the third step, you identify
the driver with its URL, which is colon-delimited. The URL must include the
following string: jdbc:weblogic:oracle. It may also include other information,
such as the server host name and the database name.

Connecting Using WebLogic Server in a Multi-Tier
Configuration

To make a connection from your application to an Oracle DBMS in a WebLogic
Server multi-tier configuration, complete the following procedure:

1. To access the WebLogic RMI driver using JNDI, obtain a Context from the JNDI
tree by looking up the JNDI name of your DataSource object. For example, to
access a DataSource with JNDI name "myDataSource" that is defined in
Administration Console:

 try {
 Context ctx = new InitialContext();
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");
 } catch (NamingException ex) {
Installing and Using WebLogic jDriver for Oracle 3-5

3 Using WebLogic jDriver for Oracle
 // lookup failed

 }

2. To obtain the JDBC connection from the DataSource object:

 try {
 java.sql.Connection conn = ds.getConnection();
 } catch (SQLException ex) {
 // obtain connection failed
 }

Connection Example

This example shows how to use a Properties object to connect to a database named
myDB.

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "secret");
props.put("db", "myDB");

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
Connection conn =
 myDriver.connect("jdbc:weblogic:oracle", props);

Connecting Using a DataSource Object

You can also obtain a connection by using a DataSource object. For more information,
see Overview of DataSources in Programming WebLogic JDBC.

Setting Properties for WebLogic JDBC Use

If you are using WebLogic JDBC in a multitier environment with the WebLogic Server
driver, you will set connection properties in a slightly different way. For more
information, see Programming WebLogic JDBC.
3-6 Installing and Using WebLogic jDriver for Oracle

http://e-docs.bea.com/wls/docs61/jdbc/intro.html#datasources

Making a Simple SQL Query
About the Connection Object

The Connection object is an important part of the application. The Connection class
has constructors for many fundamental database objects that you use throughout the
application; in the examples that follow, for instance, you will see the Connection
object conn used frequently. Connecting to the database completes the initial portion
of the application.

You should call the close() method on the Connection object as soon as you finish
working with it, usually at the end of a class.

Setting Autocommit

The defaults for autocommit are described in the following table:.

Making a Simple SQL Query

The most fundamental task in database access is to retrieve data. To retrieve data with
WebLogic Server, complete the following three-step procedure:

1. Create a Statement to send a SQL query to the DBMS.

2. Execute the Statement.

Table 3-1 Autocommit Defaults

Transaction
Type

Autocommit
Default

Change
Default?

Result

Local transaction true yes Changing default to false can
improve performance

Distributed
transaction

false no Do not change default.
Changing default to true results
in SQLException.
Installing and Using WebLogic jDriver for Oracle 3-7

3 Using WebLogic jDriver for Oracle
3. Retrieve the results into a ResultSet. In this example, we execute a simple
query on the Employee table (alias emp) and display data from three of the
columns. We also access and display metadata about the table from which the
data was retrieved. Note that we close the Statement at the end.

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");
ResultSet rs = stmt.getResultSet();

while (rs.next()) {
 System.out.println(rs.getString("empid") + " - " +
 rs.getString("name") + " - " +
 rs.getString("dept"));
 }

ResultSetMetaData md = rs.getMetaData();

System.out.println("Number of columns: " +
 md.getColumnCount());
for (int i = 1; i <= md.getColumnCount(); i++) {
 System.out.println("Column Name: " +
 md.getColumnName(i));
 System.out.println("Nullable: " +
 md.isNullable(i));
 System.out.println("Precision: " +
 md.getPrecision(i));
 System.out.println("Scale: " +
 md.getScale(i));
 System.out.println("Size: " +
 md.getColumnDisplaySize(i));
 System.out.println("Column Type: " +
 md.getColumnType(i));
 System.out.println("Column Type Name: "+
 md.getColumnTypeName(i));
 System.out.println("");
 }

stmt.close();
3-8 Installing and Using WebLogic jDriver for Oracle

Inserting, Updating, and Deleting Records
Inserting, Updating, and Deleting Records

We illustrate three common database tasks in this step: inserting, updating, and
deleting records from a database table. We use a JDBC PreparedStatement for these
operations; we create the PreparedStatement, then execute it and close it.

A PreparedStatement (subclassed from JDBC Statement) allows you to execute the
same SQL over and over again with different values. PreparedStatements use the
JDBC “?” syntax.

String inssql =
 "insert into emp(empid, name, dept) values (?, ?, ?)";
PreparedStatement pstmt = conn.prepareStatement(inssql);
for (int i = 0; i < 100; i++) {
 pstmt.setInt(1, i);
 pstmt.setString(2, "Person " + i);
 pstmt.setInt(3, i);
 pstmt.execute():
}
 pstmt.close();

We also use a PreparedStatement to update records. In this example, we add the value
of the counter “i” to the current value of the “dept” field.

String updsql =
 "update emp set dept = dept + ? where empid = ?";
PreparedStatement pstmt2 = conn.prepareStatement(updsql);
 for (int i = 0; i < 100; i++) {
 pstmt2.setInt(1, i);
 pstmt2.setInt(2, i);
 pstmt2.execute();
}
pstmt2.close();

Finally, we use a PreparedStatement to delete the records that were added and then
updated.
Installing and Using WebLogic jDriver for Oracle 3-9

3 Using WebLogic jDriver for Oracle
String delsql = "delete from emp where empid = ?";
PreparedStatement pstmt3 = conn.prepareStatement(delsql);
for (int i = 0; i < 100; i++) {
 pstmt3.setInt(1, i);
 pstmt3.execute();
}
pstmt3.close();

Creating and Using Stored Procedures and
Functions

The type of transaction you use with WebLogic Server determines how you use stored
procedures and functions:

� For local transactions—you can create, use, and drop stored procedures and
functions.

� For distributed transactions (driver in XA mode)—you can execute stored
procedures and functions. You cannot, however, drop and create stored
procedures and functions.

First, we execute a series of Statements to drop a set of stored procedures and functions
from the database.

Statement stmt = conn.createStatement();
try {stmt.execute("drop procedure proc_squareInt");}
catch (SQLException e) {//code to handle the exception goes here;}
try {stmt.execute("drop procedure func_squareInt");}
catch (SQLException e) {//code to handle the exception goes here;}
try {stmt.execute("drop procedure proc_getresults");}
catch (SQLException e) {//code to handle the exception goes here;}
stmt.close();

We use a JDBC Statement to create a stored procedure or function, and then we use a
JDBC CallableStatement (subclassed from Statement) with the JDBC “?” syntax to set
IN and OUT parameters.
3-10 Installing and Using WebLogic jDriver for Oracle

Creating and Using Stored Procedures and Functions
Note that Oracle does not natively support binding to “?” values in a SQL statement.
Instead it uses “:1”, “:2”, etc. You can use either syntax in your SQL with WebLogic
Server.

Stored procedure input parameters are mapped to JDBC IN parameters, using the
CallableStatement.setXXX() methods, like setInt(), and the JDBC
PreparedStatement “?” syntax. Stored procedure output parameters are mapped to
JDBC OUT parameters, using the CallableStatement.registerOutParameter()
methods and JDBC PreparedStatement “?” syntax. A parameter may be both IN and
OUT, which requires both a setXXX() and a registerOutParameter() call to be
done on the same parameter number.

In this example, we use a JDBC Statement to create an Oracle stored procedure; then
we execute the stored procedure with a CallableStatement. We use the
registerOutParameter() method to set an output parameter for the squared value.

Statement stmt1 = conn.createStatement();
stmt1.execute
 ("CREATE OR REPLACE PROCEDURE proc_squareInt " +
 "(field1 IN OUT INTEGER, field2 OUT INTEGER) IS " +
 "BEGIN field2 := field1 * field1; field1 := " +
 "field1 * field1; END proc_squareInt;");
stmt1.close();

// Native Oracle SQL is commented out here
// String sql = "BEGIN proc_squareInt(?, ?); END;";

// This is the correct syntax as specified by JDBC
String sql = "{call proc_squareInt(?, ?)}";
CallableStatement cstmt1 = conn.prepareCall(sql);

// Register out parameters
cstmt1.registerOutParameter(2, java.sql.Types.INTEGER);
for (int i = 0; i < 5; i++) {
 cstmt1.setInt(1, i);
 cstmt1.execute();
 System.out.println(i + " " + cstmt1.getInt(1) + " "
 + cstmt1.getInt(2));
} cstmt1.close();

In the next example, we use similar code to create and execute a stored function that
squares an integer.

Statement stmt2 = conn.createStatement();
stmt2.execute("CREATE OR REPLACE FUNCTION func_squareInt " +
 "(field1 IN INTEGER) RETURN INTEGER IS " +
 "BEGIN return field1 * field1; " +
Installing and Using WebLogic jDriver for Oracle 3-11

3 Using WebLogic jDriver for Oracle
 "END func_squareInt;");
stmt2.close();

// Native Oracle SQL is commented out here
// sql = "BEGIN ? := func_squareInt(?); END;";

// This is the correct syntax specified by JDBC
sql = "{ ? = call func_squareInt(?)}";
CallableStatement cstmt2 = conn.prepareCall(sql);

cstmt2.registerOutParameter(1, Types.INTEGER);
for (int i = 0; i < 5; i++) {
 cstmt2.setInt(2, i);
 cstmt2.execute();
 System.out.println(i + " " + cstmt2.getInt(1) +
 " " + cstmt2.getInt(2));
}
cstmt2.close();

This next example uses a stored procedure named sp_getmessages (the code for this
stored procedure is not included with this example) This stored procedure takes a
message number as an input parameter, looks up the message number in a table
containing the message text and returns the message text in a ResultSet as an output
parameter. Note that you must process all ResultSets returned by a stored procedure
using the Statement.execute() and Statement.getResult() methods before
OUT parameters and return status are available.

First, we set up the three parameters to the CallableStatement:

1. Parameter 1 (output only) is the stored procedure return value

2. Parameter 2 (input only) is the msgno argument to sp_getmessage

3. Parameter 3 (output only) is the message text return for the message number

 String sql = "{ ? = call sp_getmessage(?, ?)}";
 CallableStatement stmt = conn.prepareCall(sql);

 stmt.registerOutParameter(1, java.sql.Types.INTEGER);
 stmt.setInt(2, 18000); // msgno 18000
 stmt.registerOutParameter(3, java.sql.Types.VARCHAR);

We execute the stored procedure and check the return value to see if the ResultSet is
empty. If it is not, we use a loop to retrieve and display its contents.

 boolean hasResultSet = stmt.execute();
 while (true)
 {
3-12 Installing and Using WebLogic jDriver for Oracle

Disconnecting and Closing Objects
 ResultSet rs = stmt.getResultSet();
 int updateCount = stmt.getUpdateCount();
 if (rs == null && updateCount == -1) // no more results
 break;
 if (rs != null) {
 // Process the ResultSet until it is empty
 while (rs.next()) {
 System.out.println
 ("Get first col by id:" + rs.getString(1));
 }
 } else {
 // we have an update count
 System.out.println("Update count = " +
 stmt.getUpdateCount());
 }
 stmt.getMoreResults();
 }

Once we finish processing the ResultSet, the OUT parameters and return status are
available.

 int retstat = stmt.getInt(1);
 String msg = stmt.getString(3);

 System.out.println("sp_getmessage: status = " +
 retstat + " msg = " + msg);
 stmt.close();

Disconnecting and Closing Objects

There are occasions on which you will want to call the commit() method to commit
changes you’ve made to the database before you close the connection.

When autocommit is set to true (the default JDBC transaction mode) each SQL
statement is its own transaction. After we created the Connection for these examples,
however, we set autocommit to false; in this mode, the Connection always has an
implicit transaction associated with it, and any call to the rollback() or commit()
methods will end the current transaction and start a new one. Calling commit() before
close() ensures that all of the transactions are completed before closing the
Connection.
Installing and Using WebLogic jDriver for Oracle 3-13

3 Using WebLogic jDriver for Oracle
Just as you close Statements, PreparedStatements, and CallableStatements when you
have finished working with them, you should always call the close() method on the
connection as final cleanup in your application, in a try {} block, and you should
catch exceptions and deal with them appropriately. The final two lines of this example
include a call to commit and then a call to close the connection.

 conn.commit();
 conn.close();

Working with ResultSets from Stored
Procedures

Executing stored procedures may return multiple ResultSets. When you process
ResultSets returned by a stored procedure, using Statement.execute() and
Statement.getResultSet() methods, you must process all ResultSets returned
before any of the OUT parameters or the return status codes are available.

Row Caching With WebLogic JDBC

Oracle also provides array fetching to its clients, and jDriver for Oracle supports this
feature. By default, jDriver for Oracle will array-fetch up to 100 rows from the DBMS.
This number can be altered via the property weblogic.oci.cacheRows.

By using the above methods, a WebLogic JDBC query for 100 rows will make only 4
calls from the client to WebLogic, and for only one of those will WebLogic actually
go all the way to the DBMS for data.

For more information about array fetching, see “Support for Oracle Array Fetches” on
page 5-10.
3-14 Installing and Using WebLogic jDriver for Oracle

Code Example
Code Example

Here are selected portions of the code used in these examples to give you an overall
idea of structure for a JDBC application. The code example shown here includes
retrieving data, displaying metadata, inserting, deleting, and updating data, and stored
procedures and functions. Note the explicit calls to close() for each JDBC-related
object, and note also that we close the Connection itself in a finally {} block, with
the call to close() wrapped in a try {} block.

package examples.jdbc.oracle;

import java.sql.*;
import java.util.Properties;
import weblogic.common.*;

public class test {
 static int i;
 Statement stmt = null;

 public static void main(String[] argv) {
 try {
 Properties props = new Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("server", "DEMO");

 Driver myDriver = (Driver) Class.forName
 ("weblogic.jdbc.oci.Driver").newInstance();

 Connection conn =
 myDriver.connect("jdbc:weblogic:oracle", props);

 }
 catch (Exception e)
 e.printStackTrace();
 }

 try {
 // This will improve performance in Oracle
 // You'll need an explicit commit() call later
 conn.setAutoCommit(false);

 stmt = conn.createStatement();
 stmt.execute("select * from emp");
 ResultSet rs = stmt.getResultSet();
Installing and Using WebLogic jDriver for Oracle 3-15

3 Using WebLogic jDriver for Oracle

 while (rs.next()) {
 System.out.println(rs.getString("empid") + " - " +
 rs.getString("name") + " - " +
 rs.getString("dept"));
 }

 ResultSetMetaData md = rs.getMetaData();

 System.out.println("Number of Columns: " +
 md.getColumnCount());
 for (i = 1; i <= md.getColumnCount(); i++) {
 System.out.println("Column Name: " +
 md.getColumnName(i));
 System.out.println("Nullable: " +
 md.isNullable(i));
 System.out.println("Precision: " +
 md.getPrecision(i));
 System.out.println("Scale: " +
 md.getScale(i));
 System.out.println("Size: " +
 md.getColumnDisplaySize(i));
 System.out.println("Column Type: " +
 md.getColumnType(i));
 System.out.println("Column Type Name: "+
 md.getColumnTypeName(i));
 System.out.println("");
 }
 rs.close();
 stmt.close();

 Statement stmtdrop = conn.createStatement();
 try {stmtdrop.execute("drop procedure proc_squareInt");}
 catch (SQLException e) {;}
 try {stmtdrop.execute("drop procedure func_squareInt"); }
 catch (SQLException e) {;}
 try {stmtdrop.execute("drop procedure proc_getresults"); }
 catch (SQLException e) {;}
 stmtdrop.close();

 // Create a stored procedure
 Statement stmt1 = conn.createStatement();
 stmt1.execute
 ("CREATE OR REPLACE PROCEDURE proc_squareInt " +
 "(field1 IN OUT INTEGER, " +
 "field2 OUT INTEGER) IS " +
 "BEGIN field2 := field1 * field1; " +
 "field1 := field1 * field1; " +
 "END proc_squareInt;");
3-16 Installing and Using WebLogic jDriver for Oracle

Code Example
 stmt1.close();

 CallableStatement cstmt1 =
 conn.prepareCall("BEGIN proc_squareInt(?, ?); END;");
 cstmt1.registerOutParameter(2, Types.INTEGER);
 for (i = 0; i < 100; i++) {
 cstmt1.setInt(1, i);
 cstmt1.execute();
 System.out.println(i + " " + cstmt1.getInt(1) +
 " " + cstmt1.getInt(2));
 }
 cstmt1.close();

 // Create a stored function
 Statement stmt2 = conn.createStatement();
 stmt2.execute
 ("CREATE OR REPLACE FUNCTION func_squareInt " +
 "(field1 IN INTEGER) RETURN INTEGER IS " +
 "BEGIN return field1 * field1; END func_squareInt;");
 stmt2.close();

 CallableStatement cstmt2 =
 conn.prepareCall("BEGIN ? := func_squareInt(?); END;");
 cstmt2.registerOutParameter(1, Types.INTEGER);
 for (i = 0; i < 100; i++) {
 cstmt2.setInt(2, i);
 cstmt2.execute();
 System.out.println(i + " " + cstmt2.getInt(1) +
 " " + cstmt2.getInt(2));
 }
 cstmt2.close();

 // Insert 100 records
 System.out.println("Inserting 100 records...");
 String inssql =
 "insert into emp(empid, name, dept) values (?, ?, ?)";
 PreparedStatement pstmt = conn.prepareStatement(inssql);

 for (i = 0; i < 100; i++) {
 pstmt.setInt(1, i);
 pstmt.setString(2, "Person " + i);
 pstmt.setInt(3, i);
 pstmt.execute();
 }
 pstmt.close();

 // Update 100 records
 System.out.println("Updating 100 records...");
 String updsql =
Installing and Using WebLogic jDriver for Oracle 3-17

3 Using WebLogic jDriver for Oracle
 "update emp set dept = dept + ? where empid = ?";
 PreparedStatement pstmt2 = conn.prepareStatement(updsql);

 for (i = 0; i < 100; i++) {
 pstmt2.setInt(1, i);
 pstmt2.setInt(2, i);
 pstmt2.execute();
 }
 pstmt2.close();

 // Delete 100 records
 System.out.println("Deleting 100 records...");
 String delsql = "delete from emp where empid = ?";
 PreparedStatement pstmt3 = conn.prepareStatement(delsql);

 for (i = 0; i < 100; i++) {
 pstmt3.setInt(1, i);
 pstmt3.execute();
 }
 pstmt3.close();

 conn.commit();
 }
 catch (Exception e) {
 // Deal with failures appropriately
 }
 finally {
 try {conn.close();}
 catch (Exception e) {
 // Catch and deal with exception
 }
 }
 }
}

For more Oracle code examples, see the examples.jdbc.oracle package
provided with WLS in the samples/examples directory.
3-18 Installing and Using WebLogic jDriver for Oracle

Unsupported JDBC 2.0 Methods
Unsupported JDBC 2.0 Methods

Although WebLogic Server supports all JDBC 2.0 methods, the WebLogic jDriver for
Oracle does not support all JDBC 2.0 methods. If you need to use these methods, you
can use another JDBC driver to connect to your database, such as the Oracle Thin
Driver. Table 3-2 lists unsupported JDBC 2.0 methods in the WebLogic jDriver for
Oracle.

Table 3-2 Unsupported JDBC 2.0 Methods in the WebLogic jDriver for Oracle

Class or Interface Unsupported Methods

java.sql.Blob public long position(Blob blob, long l)

public long position(byte abyte0[], long l)

java.sql.CallableStatement public Array getArray(int i)

public Date getDate(int i, Calendar calendar)

public Object getObject(int i, Map map)

public Ref getRef(int i)

public Time getTime(int i, Calendar calendar)

public Timestamp getTimestamp(int i, Calendar calendar)

public void registerOutParameter(int i, int j, String s)

java.sql.Clob public long position(String s, long l)

public long position(java.sql.Clob clob, long l)

java.sql.Connection public java.sql.Statement createStatement(int i, int j)

public Map getTypeMap()

public CallableStatement prepareCall(String s, int i, int j)

public PreparedStatement prepareStatement(String s, int i, int j)

public void setTypeMap(Map map)

java.sql.DatabaseMetaData public Connection getConnection()

public ResultSet getUDTs(String s, String s1, String s2, int ai[])

public boolean supportsBatchUpdates()
Installing and Using WebLogic jDriver for Oracle 3-19

3 Using WebLogic jDriver for Oracle
java.sql.PreparedStatement public void addBatch()

public ResultSetMetaData getMetaData()

public void setArray(int i, Array array)

public void setNull(int i, int j, String s)

public void setRef(int i, Ref ref)

java.sql.ResultSet public boolean absolute(int i)

public void afterLast()

public void beforeFirst()

public void cancelRowUpdates()

public void deleteRow()

public boolean first()

public Array getArray(int i)

public Array getArray(String s)

public int getConcurrency()

public int getFetchDirection()

public int getFetchSize()

public Object getObject(int i, Map map)

public Object getObject(String s, Map map)

public Ref getRef(int i)

public Ref getRef(String s)

public int getRow()

public Statement getStatement()

public int getType()

public void insertRow()

Table 3-2 Unsupported JDBC 2.0 Methods in the WebLogic jDriver for Oracle

Class or Interface Unsupported Methods
3-20 Installing and Using WebLogic jDriver for Oracle

Unsupported JDBC 2.0 Methods
java.sql.ResultSet
(continued)

public boolean isAfterLast()

public boolean isBeforeFirst()

public boolean isFirst()

public boolean isLast()

public boolean last()

public void moveToCurrentRow()

public void moveToInsertRow()

public boolean previous()

public void refreshRow()

public boolean relative(int i)

public boolean rowDeleted()

public boolean rowInserted()

public boolean rowUpdated()

public void setFetchDirection(int i)

public void setFetchSize(int i)

public void updateAsciiStream(int i, InputStream inputstream, int j)

public void updateAsciiStream(String s, InputStream inputstream, int i)

public void updateBigDecimal(int i, BigDecimal bigdecimal)

public void updateBigDecimal(String s, BigDecimal bigdecimal)

public void updateBinaryStream(int i, InputStream inputstream, int j)

public void updateBinaryStream(String s, InputStream inputstream, int i)

public void updateBoolean(int i, boolean flag)

public void updateBoolean(String s, boolean flag)

public void updateByte(int i, byte byte0)

public void updateByte(String s, byte byte0)

public void updateBytes(int i, byte abyte0[])

public void updateBytes(String s, byte abyte0[])

Table 3-2 Unsupported JDBC 2.0 Methods in the WebLogic jDriver for Oracle

Class or Interface Unsupported Methods
Installing and Using WebLogic jDriver for Oracle 3-21

3 Using WebLogic jDriver for Oracle
java.sql.ResultSet
(continued)

public void updateCharacterStream(int i, Reader reader, int j)

public void updateCharacterStream(String s, Reader reader, int i)

public void updateDate(int i, Date date)

public void updateDate(String s, Date date)

public void updateDouble(int i, double d)

public void updateDouble(String s, double d)

public void updateFloat(int i, float f)

public void updateFloat(String s, float f)

public void updateInt(int i, int j)

public void updateInt(String s, int i)

public void updateLong(int i, long l)

public void updateLong(String s, long l)

public void updateNull(int i)

public void updateNull(String s)

public void updateObject(int i, Object obj)

public void updateObject(int i, Object obj, int j)

public void updateObject(String s, Object obj)

public void updateObject(String s, Object obj, int i)

public void updateRow()

public void updateShort(int i, short word0)

public void updateShort(String s, short word0)

public void updateString(int i, String s)

public void updateString(String s, String s1)

public void updateTime(int i, Time time)

public void updateTime(String s, Time time)

public void updateTimestamp(int i, Timestamp timestamp)

public void updateTimestamp(String s, Timestamp timestamp)

java.sql.ResultSetMetaData public String getColumnClassName(int i)

Table 3-2 Unsupported JDBC 2.0 Methods in the WebLogic jDriver for Oracle

Class or Interface Unsupported Methods
3-22 Installing and Using WebLogic jDriver for Oracle

CHAPTER
4 Using WebLogic jDriver
for Oracle/XA in
Distributed
Transactions

The following sections describe how to integrate transactions with EJB and RMI
applications that use the WebLogic jDriver for Oracle/XA and run under BEA
WebLogic Server.

� Differences Using the WebLogic jDriver for Oracle in XA versus Non-XA Mode

� Configuring JDBC XA and Non-XA Resources

� Limitations of the WebLogic jDriver for Oracle XA

� Implementing Distributed Transactions
Installing and Using WebLogic jDriver for Oracle 4-1

4 Using WebLogic jDriver for Oracle/XA in Distributed Transactions
Differences Using the WebLogic jDriver for
Oracle in XA versus Non-XA Mode

WebLogic jDriver for Oracle fully supports the JDBC 2.0 Optional Package API for
distributed transactions. Applications using the driver in distributed transaction (XA)
mode can use all JDBC 2.0 Core API the same way as in local transaction (non-XA)
mode, with the exception of the following:

� Connections have to be obtained via the JDBC 2.0 javax.sql.DataSource API,
but not through the deprecated java.sql.DriverManager or java.sql.Driver API.

� When used in WebLogic Server, you must configure a TxDataSource in order to
use it. Refer to "Managing JDBC Connectivity" in the Administration Guide for
instructions about configuring TxDataSource and Connection Pools.

� Auto commit is false by default. Attempting to enable autocommit mode by
calling the java.sql.Connection.setAutoCommit method on the Connection
will throw a SQLException.

� Attempting to complete the distributed transaction by calling
java.sql.Connection.commit or java.sql.Connection.rollback
methods will throw a SQLException.

The reason for the last two differences is because when the WebLogic jDriver for
Oracle/XA participates in a distributed transaction, it is the external Transaction
Manager that is demarcating and coordinating the distributed transaction.

For more information, refer to the JDBC 2.0 Standard Extension API spec [version 1.0,
dated 98/12/7 Section 7.1 last 2 paragraphs].

Configuring JDBC XA and Non-XA Resources

You use the Administration Console to configure your JDBC resources, as described
in the following sections.
4-2 Installing and Using WebLogic jDriver for Oracle

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html

Limitations of the WebLogic jDriver for Oracle XA
JDBC/XA Resources

To allow XA JDBC drivers to participate in distributed transactions, configure the
JDBC connection pool as follows:

� Specify the DriverName property as the name of the class supporting the
javax.sql.XADataSource interface.

� Ensure that the database properties are specified. For more information on data
source properties for the WebLogic jDriver for Oracle, see the Administration
Guide. For information on data source properties for third-party drivers, see the
vendor's documentation.

See the Administration Console Online Help on the JDBC Connection Pools panel for
procedures and attribute definitions.

Non-XA JDBC Resources

To support non-XA JDBC resources, select the enableTwoPhaseCommit database
property when configuring a JDBC Tx Data Source. For more information on this
property, see Configuring Non-XA JDBC Drivers for Distributed Transactions in the
Administration Guide.

Limitations of the WebLogic jDriver for
Oracle XA

WebLogic jDriver for Oracle in XA mode does not support the following:

� Mixing local and global transactions. This throws a SQLException if an SQL
operation is attempted with no global transaction.

� Performing DDL operations (e.g. create/drop table, stored procedures, and so
forth). If you want to perform DDL operations, you need to define two different
connection pools as follows:
Installing and Using WebLogic jDriver for Oracle 4-3

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#1075918

4 Using WebLogic jDriver for Oracle/XA in Distributed Transactions
� One non-XA connection pool that can be used for DDL operations.

� One XA connection pool that can be used for DML operations in distributed
transactions.

Implementing Distributed Transactions

This topic includes the following sections:

� Importing Packages

� Finding the Data Source via JNDI

� Performing a Distributed Transaction

Importing Packages

Listing 4-1 shows the packages that the application imports. In particular, note that:

� The java.sql.* and javax.sql.* packages are required for database
operations.

� The javax.naming.* package is required for performing a JNDI lookup on the
pool name, which is passed in as a command-line parameter upon server startup.
The pool name must be registered on that server group.

Listing 4-1 Importing Required Packages

import java.sql.*;
import javax.sql.*;
import javax.naming.*;
4-4 Installing and Using WebLogic jDriver for Oracle

Implementing Distributed Transactions
Finding the Data Source via JNDI

Listing 4-2 shows finding the data source via JNDI.

Listing 4-2 Finding the Data Source via JNDI

static DataSource pool;

...

public void get_connpool(String pool_name)
 throws Exception
 {
 try {
 javax.naming.Context ctx = new InitialContext();
 pool = (DataSource)ctx.lookup("jdbc/" + pool_name);
 }
 catch (javax.naming.NamingException ex){
 TP.userlog("Couldn't obtain JDBC connection pool: " +
pool_name);
 throw ex;
 }
 }
}

Performing a Distributed Transaction

Listing 4-3 shows a distributed transaction involving two database connections and
implemented as a business method within a session bean.

Listing 4-3 Performing a Distributed Transaction

public class myEJB implements SessionBean {
 EJBContext ejbContext;

 public void myMethod(...) {
 javax,transaction.UserTransaction usertx;
 javax.sql.DataSource data1;
 javax.sql.DataSource data2;
Installing and Using WebLogic jDriver for Oracle 4-5

4 Using WebLogic jDriver for Oracle/XA in Distributed Transactions
 java.sql.Connection conn1;
 java.sql.Connection conn2;
 java.sql.Statement stat1;
 java.sql.Statement stat2;

 InitialContext initCtx = new InitialContext();

 //
 // Initialize a user transaction object.
 //
 usertx = ejbContext.getUserTransaction();

 //Start a new user transaction.
 usertx.begin();

 // Establish a connection with the first database
 // and prepare it for handling a transaction.
 data1 = (javax.sql.DataSource)
 initCtx.lookup(“java:comp/env/jdbc/DataBase1”);
 conn1 = data1.getConnection();

 stat1 = conn1.getStatement();

 // Establish a connection with the second database
 // and prepare it for handling a transaction.
 data2 = (javax.sql.DataSource)
 initCtx.lookup(“java:comp/env/jdbc/DataBase2”);
 conn2 = data1.getConnection();

 stat2 = conn2.getStatement();

 //Update both conn1 and conn2. The EJB Container
 //automatically enlists the participating resources.
 stat1.executeQuery(...);
 stat1.executeUpdate(...);
 stat2.executeQuery(...);
 stat2.executeUpdate(...);
 stat1.executeUpdate(...);
 stat2.executeUpdate(...);

 //Commit the transaction (apply the changes to the
 //participating databases).
 usertx.commit();

 //Release all connections and statements.
 stat1.close();
 stat2.close();
 conn1.close();
 conn2.close();
4-6 Installing and Using WebLogic jDriver for Oracle

Implementing Distributed Transactions
 }
 ...
 }
Installing and Using WebLogic jDriver for Oracle 4-7

4 Using WebLogic jDriver for Oracle/XA in Distributed Transactions
4-8 Installing and Using WebLogic jDriver for Oracle

CHAPTER
5 Advanced Oracle
Features

This section presents advanced Oracle features:

� Allowing Mixed Case Metadata

� Data Types

� WebLogic Server and Oracle’s NUMBER Column

� Using Oracle Long Raw Data Types

� Waiting on Oracle Resources

� Support for JDBC Extended SQL

� Overview of JDBC 2.0 for Oracle

� Configuration Required to Support JDBC 2.0

� BLOBs and CLOBs

� Character and ASCII Streams

� New Date Methods
Installing and Using WebLogic jDriver for Oracle 5-1

5 Advanced Oracle Features
Allowing Mixed Case Metadata

WebLogic Server supports the setting of the allowMixedCaseMetaData property.
When set to the boolean true, this property sets up the Connection such that mixed
case is used in calls to DatabaseMetaData methods. If this property is set to false,
Oracle defaults to UPPERCASE for database metadata.

The following sample code shows how to set up the properties to include this feature:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");
props.put("allowMixedCaseMetaData", "true");

Driver myDriver = (Driver)
 Class.for.Name(weblogic.jdbc.oci.Driver).newInstance();

Connection conn =
 myDriver.connect("jdbc:weblogic:oracle", props);

If you do not set this property, WebLogic Server defaults to the Oracle default, and
UPPERCASE is used for database metadata.

Data Types

The following table shows the recommended mapping between Oracle data types and
Java types. There are additional possibilities for representing Oracle data types in Java.
If the getObject() method is called when result sets are being processed, it returns
the default Java data type for the Oracle column being queried.
5-2 Installing and Using WebLogic jDriver for Oracle

Data Types
Figure 5-1 Oracle Types Mapped to WebLogic Server

* Note that when PreparedStatement.setBoolean() is called, it converts a
VARCHAR type to 1 or 0 (string), and it converts a NUMBER type to 1 or 0 (number).

Oracle WebLogic Server

Varchar String

Number Tinyint

Number Smallint

Number Integer

Number Long

Number Float

Number Numeric

Number Double

Long Longvarchar

RowID String

Date Timestamp

Raw (var)Binary

Long raw Longvarbinary

Char (var)Char

Boolean* Number OR
Varchar

MLS label String

Blob Blob

Clob Clob
Installing and Using WebLogic jDriver for Oracle 5-3

5 Advanced Oracle Features
WebLogic Server and Oracle’s NUMBER
Column

Oracle provides a column type called NUMBER, which can be optionally specified with
a precision and a scale, in the forms NUMBER(P) and NUMBER(P,S). Even in the simple
unqualified NUMBER form, this column can hold all number types from small integer
values to very large floating point numbers, with high precision.

WebLogic Server reliably converts the values in a column to the Java type requested
when a WebLogic Server application asks for a value from such a column. Of course,
if a value of 123.456 is asked for with getInt(), the value will be rounded.

The method getObject(), however, poses a little more complexity. WebLogic Server
guarantees to return a Java object which will represent any value in a NUMBER column
with no loss in precision. This means that a value of 1 can be returned in an Integer,
but a value like 123434567890.123456789 can only be returned in a BigDecimal.

There is no metadata from Oracle to report the maximum precision of the values in the
column, so WebLogic Server must decide what sort of object to return based on each
value. This means that one ResultSet may return multiple Java types from
getObject() for a given NUMBER column. A table full of integer values may all be
returned as Integer from getObject(), whereas a table of floating point
measurements may be returned primarily as Double, with some Integer if any value
happens to be something like “123.00”. Oracle does not provide any information to
distinguish between a NUMBER value of “1” and a NUMBER of “1.0000000000”.
5-4 Installing and Using WebLogic jDriver for Oracle

Using Oracle Long Raw Data Types
There is some more reliable behavior with qualified NUMBER columns, that is, those
defined with a specific precision. Oracle's metadata provides these parameters to the
driver so WebLogic Server will always return a Java object appropriate for the given
precision and scale, regardless of the values in the table.

Using Oracle Long Raw Data Types

There are two properties available for use with WebLogic Server in support of Oracle’s
chunking of Blobs, Clobs, Long, and Long raw data types. Although Blob and Clob
data types are only supported with Oracle Version 8 and JDBC 2.0, these properties
also apply to Oracle’s Long raw data type, which is available in Oracle Version 7.

Waiting on Oracle Resources

Note: The waitOnResources() method is not supported for use with the Oracle 8
API.

The WebLogic Server driver supports Oracle’s oopt() C functionality, which allows
a client to wait until resources become available. The Oracle C function sets options in
cases in which requested resources are not available, such as whether to wait for locks.

Column Definition Returned by getObject()

NUMBER(P <= 9) Integer

NUMBER(P <= 18) Long

NUMBER(P = 19) BigDecimal

NUMBER(P <=16, S 0) Double

NUMBER(P = 17, S 0) BigDecimal
Installing and Using WebLogic jDriver for Oracle 5-5

5 Advanced Oracle Features
A developer can specify whether a client will wait for DBMS resources, or will receive
an immediate exception. The following code is an excerpt from a sample code file
(examples/jdbc/oracle/waiton.java):

java.util.Properties props = new java.util.Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "myserver");

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();

// You must cast the Connection as a weblogic.jdbc.oci.Connection
// to take advantage of this extension

Connection conn =(weblogic.jdbc.oci.Connection)
 myDriver.connect("jdbc:weblogic:oracle", props);

// After constructing the Connection object, immediately call
// the waitOnResources method

conn.waitOnResources(true);

Use of this method can cause several error return codes to be generated while the
software waits for internal resources that are locked for short durations.

To take advantage of this feature, you must do the following:

1. Cast your Connection object as a weblogic.jdbc.oci.Connection.

2. Call the waitOnResources() method.

This functionality is described in section 4-97 of The OCI Functions for C.

Autocommit

The default transaction mode for JDBC WebLogic Server assumes autocommit to be
true. You can improve the performance of your programs by setting autocommit to
false, after creating a Connection object, with the following statement:

 Connection.setAutoCommit(false);
5-6 Installing and Using WebLogic jDriver for Oracle

Transaction Isolation Levels
Transaction Isolation Levels

WebLogic Server supports the following transaction isolation levels:

� SET TRANSACTION ISOLATION LEVEL READ COMMITTED

� SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

The Oracle DBMS supports only these two isolation levels. Unlike other JDBC
drivers, WebLogic Server throws an exception if you try to use an isolation level that
is unsupported. Some drivers silently ignore attempts to set an unsupported isolation
level.

The READ_UNCOMMITTED transaction isolation level is not supported.

Codeset Support

JDBC and the WebLogic Server driver handle character strings in Java as Unicode
strings. Because the Oracle DBMS uses a different codeset, the driver must convert
character strings from Unicode to the codeset used by Oracle. The WebLogic Server
examines the value stored in the Oracle environment variable NLS_LANG and selects a
codeset for the JDK to use for the conversion, using the mapping shown in Table 5-1.
If the NLS_LANG variable is not set, or if it is set to a codeset not recognized by the JDK,
the driver cannot determine the correct codeset. (For information about the correct
syntax for setting NLS_LANG, see your Oracle documentation.)

If you are converting codesets, you should pass the following property to the
WebLogic Server with the Driver.connect() method when you establish the
connection in your code:

props.put("weblogic.oci.min_bind_size", 660);

This property defines the minimum size of buffers to be bound. The default is 2000
bytes, which is also the maximum value. If you are converting codesets, you should
use this property to reduce the bind size to a maximum of 660, one-third of the
maximum 2000 bytes, since Oracle codeset conversion triples the buffer to allow for
expansion.
Installing and Using WebLogic jDriver for Oracle 5-7

5 Advanced Oracle Features
WebLogic Server provides the weblogic.codeset property to set the codeset from
within your Java code. For example, to use the cp863 codeset, create a Properties
object and set the weblogic.codeset property before calling Driver.connect(),
as shown in the following example:

java.util.Properties props = new java.util.Properties();
props.put("weblogic.codeset", "cp863");
props.put("user", "scott");
props.put("password", "tiger");

String connectUrl = "jdbc:weblogic:oracle";

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn =
 myDriver.connect(connectUrl, props);

Codeset support can vary with different JVMs. Check the documentation for the JDK
you are using to determine whether a particular codeset is supported.

Note: You must also set the NLS_LANG environment variable in your Oracle client to
the same or a corresponding codeset.

Table 5-1 NLS_LANG Settings Mapped to JDK Codesets

NLS_LANG JDK codeset

al24utffss UTF8

al32utf8 UTF8

ar8iso8859p6 ISO8859_6

cdn8pc863 Cp863

cl8iso8859p5 ISO8859_5

cl8maccyrillic MacCyrillic

cl8mswin1251 Cp1251

ee8iso8859p2 ISO8859_2

ee8macce MacCentralEurope

ee8maccroatian MacCroatian

ee8mswin1250 Cp1250

ee8pc852 Cp852

el8iso8859p7 ISO8859_7
5-8 Installing and Using WebLogic jDriver for Oracle

Codeset Support
el8macgreek MacGreek

el8mswin1253 Cp1253

el8pc737 Cp737

is8macicelandic MacIceland

is8pc861 Cp861

iw8iso8859p8 ISO8859_8

ja16euc EUC_JP

ja16sjis SJIS

ko16ksc5601 EUC_KR

lt8pc772 Cp772

lt8pc774 Cp774

n8pc865 Cp865

ne8iso8859p10 ISO8859_10

nee8iso8859p4 ISO8859_4

ru8pc855 Cp855

ru8pc866 Cp866

se8iso8859p3 ISO8859_3

th8macthai MacThai

tr8macturkish MacTurkish

tr8pc857 Cp857

us7ascii ASCII

us8pc437 Cp437

utf8 UTF8

we8ebcdic37 Cp1046

we8ebcdic500 Cp500

we8iso8859p1 ISO8859_1

we8iso8859p15 ISO8859_15_FDIS

we8iso8859p9 ISO8859_9

we8macroman8 MacRoman

we8pc850 Cp850
Installing and Using WebLogic jDriver for Oracle 5-9

5 Advanced Oracle Features
Support for Oracle Array Fetches

WebLogic Server supports Oracle array fetches. When called for the first time,
ResultSet.next() retrieves an array of rows (rather than a single row) and stores it
in memory. Each time that next() is called subsequently, it reads a row from the rows
in memory until they are exhausted, and only then will next() go back to the database.

You set a property (java.util.Property) to control the size of the array fetch. The
property is weblogic.oci.cacheRows; it is set by default to 100. Here's an example
of setting this property to 300, which means that calls to next() only hit the database
once for each 300 rows retrieved by the client.

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");
props.put("weblogic.oci.cacheRows", "300");

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn = myDriver.connect("jdbc:weblogic:oracle", props);

You can improve client performance and lower the load on the database server by
taking advantage of this JDBC extension. Caching rows in the client, however,
requires client resources. You should tune your application for the best balance
between performance and client resources, depending upon your network
configuration and your application.

If any columns in a SELECT are of type LONG, BLOB, or CLOB, WebLogic Server
temporarily resets the cache size to 1 for the ResultSet associated with that select
statement.

we8pc860 Cp860

zht16big5 Big5
5-10 Installing and Using WebLogic jDriver for Oracle

Using Stored Procedures
Using Stored Procedures

This section describes variations in the implementation of stored procedures that are
specific to Oracle.

� Binding a Parameter to an Oracle Cursor

� Notes on Using CallableStatement

Binding a Parameter to an Oracle Cursor

WebLogic has created an extension to JDBC
(weblogic.jdbc.oci.CallableStatement) that allows you to bind a parameter for
a stored procedure to an Oracle cursor. You can create a JDBC ResultSet object with
the results of the stored procedure. This allows you to return multiple ResultSets in an
organized way. The ResultSets are determined at run time in the stored procedure.

Here is an example. First define the stored procedures as follows:

create or replace package
curs_types as
type EmpCurType is REF CURSOR RETURN emp%ROWTYPE;
end curs_types;
/

create or replace procedure
single_cursor(curs1 IN OUT curs_types.EmpCurType,
ctype in number) AS BEGIN
 if ctype = 1 then
 OPEN curs1 FOR SELECT * FROM emp;
 elsif ctype = 2 then
 OPEN curs1 FOR SELECT * FROM emp where sal 2000;
 elsif ctype = 3 then
 OPEN curs1 FOR SELECT * FROM emp where deptno = 20;
 end if;
END single_cursor;
/
create or replace procedure
multi_cursor(curs1 IN OUT curs_types.EmpCurType,
 curs2 IN OUT curs_types.EmpCurType,
 curs3 IN OUT curs_types.EmpCurType) AS
Installing and Using WebLogic jDriver for Oracle 5-11

5 Advanced Oracle Features
BEGIN
 OPEN curs1 FOR SELECT * FROM emp;
 OPEN curs2 FOR SELECT * FROM emp where sal 2000;
 OPEN curs3 FOR SELECT * FROM emp where deptno = 20;
END multi_cursor;
/

In your Java code, you'll construct CallableStatements with the stored procedures
and register the output parameter as data type java.sql.Types.OTHER. When you
retrieve the data into a ResultSet, use the output parameter index as an argument for
the getResultSet() method.

 java.sql.CallableStatement cstmt = conn.prepareCall(
 "BEGIN OPEN ? " +
 "FOR select * from emp; END;");
 cstmt.registerOutParameter(1, java.sql.Types.OTHER);

 cstmt.execute();
 ResultSet rs = cstmt.getResultSet(1);
 printResultSet(rs);
 rs.close();
 cstmt.close();

 java.sql.CallableStatement cstmt2 = conn.prepareCall(
 "BEGIN single_cursor(?, ?); END;");
 cstmt2.registerOutParameter(1, java.sql.Types.OTHER);

 cstmt2.setInt(2, 1);
 cstmt2.execute();
 rs = cstmt2.getResultSet(1);
 printResultSet(rs);

 cstmt2.setInt(2, 2);
 cstmt2.execute();
 rs = cstmt2.getResultSet(1);}
 printResultSet(rs);

 cstmt2.setInt(2, 3);
 cstmt2.execute();
 rs = cstmt2.getResultSet(1);
 printResultSet(rs);
 cstmt2.close();

 java.sql.CallableStatement cstmt3 = conn.prepareCall(
 "BEGIN multi_cursor(?, ?, ?); END;");
 cstmt3.registerOutParameter(1, java.sql.Types.OTHER);
 cstmt3.registerOutParameter(2, java.sql.Types.OTHER);
 cstmt3.registerOutParameter(3, java.sql.Types.OTHER);
5-12 Installing and Using WebLogic jDriver for Oracle

DatabaseMetaData Methods
 cstmt3.execute();

 ResultSet rs1 = cstmt3.getResultSet(1);
 ResultSet rs2 = cstmt3.getResultSet(2);
 ResultSet rs3 = cstmt3.getResultSet(3);

For the full code for this example, including the printResultSet() method, see the
examples in the samples/examples/jdbc/oracle/ directory.

Note that the default size of an Oracle stored procedure string is 256K.

Notes on Using CallableStatement

The default length of a string bound to an OUTPUT parameter of a CallableStatement
is 128 characters. If the value you assign to the bound parameter exceeds that length,
you'll get the following error:

ORA-6502: value or numeric error

You can adjust the length of the value of the bound parameter by passing an explicit
length with the scale argument to the
CallableStatement.registerOutputParameter() method. Here is a code
example that binds a VARCHAR that will never be larger than 256 characters:

 CallableStatement cstmt =
 conn.prepareCall("BEGIN testproc(?); END;");

 cstmt.registerOutputParameter(1, Types.VARCHAR, 256);
 cstmt.execute();
 System.out.println(cstmt.getString());
 cstmt.close();

DatabaseMetaData Methods

This section describes some variations in the implementation of DatabaseMetaData
methods that are specific to Oracle:
Installing and Using WebLogic jDriver for Oracle 5-13

5 Advanced Oracle Features
� As a general rule, the String catalog argument is ignored in all
DatabaseMetaData methods.

� In the DatabaseMetaData.getProcedureColumns() method:

� The String catalog argument is ignored.

� The String schemaPattern argument accepts only exact matches (no pattern
matching).

� The String procedureNamePattern argument accepts only exact matches (no
pattern matching).

� The String columnNamePattern argument is ignored.

Support for JDBC Extended SQL

The JavaSoft JDBC specification includes SQL Extensions, also called SQL Escape
Syntax. All WebLogic jDrivers support Extended SQL. Extended SQL provides access
to common SQL extensions in a way that is portable between DBMSs.

For example, the function to extract the day name from a date is not defined by the SQL
standards. For Oracle, the SQL is:

 select to_char(date_column, 'DAY') from table_with_dates

The equivalent function for Sybase and Microsoft SQL Server is:

 select datename(dw, date_column) from table_with_dates

Using Extended SQL, you can retrieve the day name for both DBMSs as follows:

 select {fn dayname(date_column)} from table_with_dates

Here’s an example that demonstrates several features of Extended SQL:

 String query =
 "-- This SQL includes comments and " +
 "JDBC extended SQL syntax.\n" +
 "select into date_table values(\n" +
 " {fn now()}, -- current time \n" +
 " {d '1997-05-24'}, -- a date \n" +
 " {t '10:30:29' }, -- a time \n" +
 " {ts '1997-05-24 10:30:29.123'}, -- a timestamp\n" +
5-14 Installing and Using WebLogic jDriver for Oracle

Overview of JDBC 2.0 for Oracle
 " '{string data with { or } will not be altered}'\n" +
 "-- Also note that you can safely include" +
 " { and } in comments or\n" +
 "-- string data.";
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(query);

Extended SQL is delimited with curly braces (“{}”) to differentiate it from common
SQL. Comments are preceded by two hyphens, and are ended by a new line (“\n”).
The entire Extended SQL sequence, including comments, SQL, and Extended SQL, is
placed within double quotes and passed to the execute() method of a Statement
object. Here is Extended SQL used as part of a CallableStatement:

 CallableStatement cstmt =
 conn.prepareCall("{ ? = call func_squareInt(?)}");

This example shows that you can nest extended SQL expressions:

 select {fn dayname({fn now()})}

You can retrieve lists of supported Extended SQL functions from a DatabaseMetaData
object. This example shows how to list all the functions a JDBC driver supports:

 DatabaseMetaData md = conn.getMetaData();
 System.out.println("Numeric functions: " +
 md.getNumericFunctions());
 System.out.println("\nString functions: " +
 md.getStringFunctions());
 System.out.println("\nTime/date functions: " +
 md.getTimeDateFunctions());
 System.out.println("\nSystem functions: " +
 md.getSystemFunctions());
 conn.close();

Overview of JDBC 2.0 for Oracle

The following JDBC 2.0 features are implemented in WebLogic jDriver for Oracle:

� BLOBs (Binary Large Objects)—WebLogic Server can now handle this Oracle
data type.

� CLOBs (Character Large Objects)—WebLogic Server can now handle this
Oracle data type.
Installing and Using WebLogic jDriver for Oracle 5-15

5 Advanced Oracle Features
� Character Streams for both ASCII and Unicode characters—A better way to
handle characters streams, as streams of characters instead of as byte arrays.

� Batch Updates—You can now send multiple statements to the database as a
single unit.

These features have been added to the existing JDBC functionality previously
available in the WebLogic Server. All of your existing code for previous drivers will
work with the new WebLogic jDriver for Oracle.

Configuration Required to Support JDBC 2.0

Since WebLogic Server Version 6.1 runs on JDK 1.3.1, this provides the Java 2
environment required by JDBC 2.0. For a complete list of supported configurations,
see the WebLogic Platform support page.

BLOBs and CLOBs

The BLOB (Binary Large Object) and CLOB (Character Large Object) data types
were made available with the release of Oracle version 8. The JDBC 2.0 specification
and WebLogic Server also support these data types. This section contains information
about using these data types.

Note: Please note the following limitation: You cannot use BLOBs and CLOBs
when using the RMI driver in conjunction with the WebLogic jDriver for
Oracle. BLOB and CLOB's are not serializable and therefore not supported
with the JDBC RMI Driver used with WebLogic 6.x.
5-16 Installing and Using WebLogic jDriver for Oracle

http://www.weblogic.com/platforms/index.html

BLOBs and CLOBs
Transaction Boundaries

BLOBs and CLOBs in Oracle behave differently than other data types in regards to
transactional boundaries (statements issued before an SQL commit or rollback
statement). in that a BLOB or CLOB will be come inactive as soon as a transaction is
committed. If AutoCommit is set to TRUE, the transaction will be automatically
committed after each command issued on the connection, including SELECT
statements. For this reason you will need to set AutoCommit to false if you need to
have a BLOB or CLOB available across multiple SQL statements. You will then need
to manually commit (or rollback) the transactions at the appropriate time. To set
AutoCommit to false, enter the following command:

conn.setAutoCommit(false); // where conn is your connection object

BLOBs

The BLOB data type, available with Oracle version 8, allows you to store and retrieve
large binary objects in an Oracle table. Although BLOBs are defined as part of the
JDBC 2.0 specification, the specification does not provide methods to update BLOB
columns in a table. The BEA WebLogic implementation of BLOBs, however, does
provide this functionality by means of an extension to JDBC 2.0.

Connection Properties

weblobic.oci.selectBlobChunkSize

This property sets the size of an internal buffer used for sending bytes or
characters to an I/O stream. When the Chunk size is reached, the driver will
perform an implicit flush() operation, which will cause the data to be sent
to the DBMS.

Explicitly setting this value can be useful in controlling memory usage on the
client.

If the value of this property is not explicitly set, a default value of 65534 will
be used.

Set this property by passing it to the Connection object as a property. For
example, this code fragment sets weblobic.oci.selectBlobChunkSize to
1200:
Installing and Using WebLogic jDriver for Oracle 5-17

5 Advanced Oracle Features
Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");

props.put ("weblobic.oci.selectBlobChunkSize","1200");

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn =
 driver.connect("jdbc:weblogic:oracle:myServer", props);

weblogic.oci.insertBlobChunkSize

This property specifies the buffer size (in bytes) of input streams used
internally by the driver.

Set this property to a positive integer to insert Blobs into an Oracle DBMS
with the Blob chunking feature. By default, this property is set to zero (0),
which means that BLOB chunking is turned off.

Import Statements

To use the BLOB functionality described in this section, import the following classes
in your client code:

import java.sql.*;
import java.util.*;
import java.io.*;
import weblogic.jdbc.common.*;

Initializing a BLOB Field

When you first insert a row containing a BLOB data type, you must insert the row with
an “empty” BLOB before the field can be updated with real data. You can insert an
empty BLOB with the Oracle EMPTY_BLOB() function.

To initialize a BLOB field:

1. Create a table with one or more columns defined as a BLOB data type.

2. Insert a new row with an empty BLOB column, using the Oracle EMPTY_BLOB()
function:

stmt.execute("INSERT into myTable values (1,EMPTY_BLOB()");
5-18 Installing and Using WebLogic jDriver for Oracle

BLOBs and CLOBs
3. Obtain a “handle” to the BLOB column:

java.sql.Blob myBlob = null;
Statement stmt2 = conn.createStatement();
stmt2.execute("SELECT myBlobColumn from myTable
 where pk = 1 for update");
ResultSet rs = stmt2.getResultSet();
rs.next() {
 myBlob = rs.getBlob("myBlobColumn");
 // do something with the BLOB
}

4. You can now write data to the BLOB. Continue with the next section, Writing
Binary Data to a BLOB.

Writing Binary Data to a BLOB

To write binary data to a BLOB column:

1. Obtain a handle to the BLOB field as described above, in Initializing a BLOB
Field, step 3.

2. Create an InputStream object containing the binary data.

java.io.InputStream is = // create your input stream

3. Create an output stream to which you write your BLOB data. Note that you must
cast your BLOB object to weblogic.jdbc.common.OracleBlob.

java.io.OutputStream os =
((weblogic.jdbc.common.OracleBlob)
myBlob).getBinaryOutputStream();

4. Write the input stream containing your binary data to the output stream. The
write operation is finalized when you call the flush() method on the
OutputStream object.

byte[] inBytes = new byte[65534]; // see note below
int numBytes = is.read(inBytes);
while (numBytes > 0) {
 os.write(inBytes, 0, numBytes);
 numBytes = is.read(inBytes);
}
os.flush();

Note: The value [65534] in the above code presumes that you have not set the
weblogic.oci.select.BlobChunkSize property whose default is
65534. If you have set this property, setting the byte[] value to match the
Installing and Using WebLogic jDriver for Oracle 5-19

5 Advanced Oracle Features
value set in the weblogic.oci.select.BlobChunkSize property
will provide the most efficient handling of the data. For more information
about this property, see Connection Properties on page 17.

5. Clean up:

os.close();
pstmt.close();
conn.close();

Writing a BLOB Object

Writing a BLOB object to a table is performed with Prepared Statements. For example,
to write the myBlob object to the table myOtherTable:

PreparedStatement pstmt = conn.preparedStatement(
 "UPDATE myOtherTable SET myOtherBlobColumn = ? WHERE id = 12");

pstmt.setBlob(1, myBlob);

Updating a CLOB Value Using a Prepared Statement

If you use a prepared statement to update a CLOB and the new value is shorter than
the previous value, the CLOB will retain the characters that were not specifically
replaced during the update. For example, if the current value of a CLOB is
abcdefghij and you update the CLOB using a prepared statement with zxyw, the
value in the CLOB is updated to zxywefghij. To correct values updated with a
prepared statement, you should use the dbms_lob.trim procedure to remove the
excess characters left after the update. See the Oracle documentation for more
information about the dbms_lob.trim procedure.

Reading BLOB Data

When you retrieve a BLOB column with the getBlob() method and then use a
ResultSet from a SQL SELECT statement, only a pointer to the BLOB data is
returned; the binary data is not actually transferred to the client until the
getBinaryStream() method is called and the data is read into the stream object.

To read BLOB data from an Oracle table:

1. Execute a SELECT statement:

stmt2.execute("SELECT myBlobColumn from myTable");
5-20 Installing and Using WebLogic jDriver for Oracle

BLOBs and CLOBs
2. Use the results from the SELECT statement.

int STREAM_SIZE = 10;
byte[] r = new byte[STREAM_SIZE];

ResultSet rs = stmt2.getResultSet();
java.sql.Blob myBlob = null;
while (rs.next) {
 myBlob = rs.getBlob("myBlobColumn");

 java.io.InputStream readis = myBlob.getBinaryStream();

 for (int i=0 ; i < STREAM_SIZE ; i++) {
 r[i] = (byte) readis.read();
 System.out.println("output [" + i + "] = " + r[i]);
 }

3. Clean up:

rs.close();
stmt2.close();

Note: You can also use a CallableStatement to generate a ResultSet. This
ResultSet can then be used as shown above. See your JDK documentation
under java.sql.CallableStatment for details.

Other Methods

The following methods of the java.sql.Blob interface are also implemented in the
WebLogic Server JDBC 2.0 driver. For details, see your JDK documentation:

� getBinaryStream()

� getBytes()

� length()

The position() method is not implemented.

CLOBs

The CLOB data type, available with Oracle version 8, enables storage of large
character strings in an Oracle table. Since the JDBC 2.0 specification does not include
functionality to directly update CLOB columns, BEA has implemented the methods
getAsciiOutputStream() (for ASCII data) and getCharacterOutputStream()
(for Unicode data) to insert or update a CLOB.
Installing and Using WebLogic jDriver for Oracle 5-21

5 Advanced Oracle Features
Codeset Support

Depending on which version of the Oracle Server and client you are using you may
need to set one of the following properties by passing them to the Connection object
when you establish your connection the DBMS in your Java client code.

weblogic.codeset
This property allows you to set a codeset from within your Java code. You must also
set the NLS_LANG Oracle environment variable.

weblogic.oci.ncodeset
This property sets the National codeset used by the Oracle server. You must also set
the NLS_NCHAR Oracle environment variable.

weblogic.oci.codeset_width

This property tells the WebLogic Server which type you are using.
Possible Values:

0 for variable-width codesets
1 for fixed-width codesets (1 is is the default value)
2 or 3 for the width, in bytes, of the codeset

weblogic.oci.ncodeset_width

If you are using one of Oracle’s National codesets, specify the width of that
codeset with this property.
Possible Values:

0 for variable-width codesets
1 for fixed-width codesets (1 is the default value)
2 or 3 for the width, in bytes, of the codeset

Initializing a CLOB Field

When you first insert a row containing a CLOB data type, you must insert the row with
an “empty” CLOB before the field can be updated with real data. You can insert an
empty CLOB with the Oracle EMPTY_CLOB() function.

To initialize a CLOB column:

1. Create a table with one or more columns defined as a CLOB data type.

2. Insert a new row with an empty CLOB column, using the Oracle EMPTY_CLOB()
function:

stmt.execute("INSERT into myTable VALUES (1,EMPTY_CLOB()");

3. Obtain an object for the CLOB column:
5-22 Installing and Using WebLogic jDriver for Oracle

BLOBs and CLOBs
java.sql.Clob myClob = null;
Statement stmt2 = conn.createStatement();
stmt2.execute("SELECT myClobColumn from myTable
 where pk = 1 for update");
ResultSet rs = stmt2.getResultSet();
while (rs.next) {
 myClob = rs.getClob("myClobColumn");
}

4. You can now write character data to the CLOB. If your data is in the ASCII
format, Continue with the next section, Writing ASCII Data to a CLOB. If your
character data is in Unicode format, see Writing Unicode Data to a CLOB

Writing ASCII Data to a CLOB

To write ASCII character data to a CLOB column:

1. Obtain a “handle” to the CLOB as described above, in Initializing a CLOB Field,
step 3.

2. Create an object containing the character data:

String s = // some ASCII data

3. Create an ASCII output stream to which you write your CLOB characters. Note
that you must cast your CLOB object to weblogic.jdbc.common.OracleClob.

java.io.OutputStream os =
((weblogic.jdbc.common.OracleClob)
myclob).getAsciiOutputStream();

4. Write the input stream containing your ASCII data to the output stream. The
write operation is finalized when you call the flush() method on the
OutputStream object.

byte[] b = s.getBytes("ASCII");

os.write(b);
os.flush();

5. Clean up:

os.close();
pstmt.close();
conn.close();
Installing and Using WebLogic jDriver for Oracle 5-23

5 Advanced Oracle Features
Writing Unicode Data to a CLOB

To write Unicode character data to a CLOB column:

1. Obtain a “handle” to the CLOB as described earlier, in step 3 of “Initializing a
CLOB Field.”

2. Create an object containing the character data:

String s = // some Unicode character data

3. Create a character output stream to which you write your CLOB characters. Note
that you must cast your CLOB object to weblogic.jdbc.common.OracleClob.

java.io.Writer wr =
((weblogic.jdbc.common.OracleClob)
myclob).getCharacterOutputStream();

4. Write the input stream containing your ASCII data to the output stream. The
write operation is finalized when you call the flush() method on the
OutputStream object.

char[] b = s.toCharArray(); // converts ’s’ to a character array

wr.write(b);
wr.flush();

5. Clean up:

wr.close();
pstmt.close();
conn.close();

Writing CLOB Objects

Writing a CLOB object to a table is performed with Prepared Statements. For example,
to write the myClob object to the table myOtherTable:

PreparedStatement pstmt = conn.preparedStatement(
 "UPDATE myOtherTable SET myOtherClobColumn = ? WHERE id = 12");

pstmt.setClob(1, myClob);
5-24 Installing and Using WebLogic jDriver for Oracle

BLOBs and CLOBs
Reading CLOB Data

When a CLOB column is retrieved using a result set from a SQL SELECT statement,
only a pointer to the CLOB data is returned; the actual data is not transferred to the
client with the result set until the getAsciiStream() method is called and the
characters are read in to the stream.

To read CLOB data from an Oracle table:

1. Execute a SELECT statement:

java.sql.Clob myClob = null;
Statement stmt2 = conn.createStatement();
stmt2.execute("SELECT myClobColumn from myTable");

2. Use the results from the SELECT statement:

ResultSet rs = stmt2.getResultSet();

while (rs.next) {
 myClob = rs.getClob("myClobColumn");
 java.io.InputStream readClobis =
 myReadClob.getAsciiStream();
 char[] c = new char[26];
 for (int i=0 ; i < 26 ; i++) {
 c[i] = (char) readClobis.read();
 System.out.println("output [" + i + "] = " + c[i]);
 }
}

3. Clean up:

rs.close();
stmt2.close();

Note: You can also use a CallableStatement to generate a ResultSet. This
ResultSet can then be used as shown above. See your JDK documentation
under java.sql.CallableStatment for details.

Other Methods

The following methods of the java.sql.Clob interface are also implemented in the
WebLogic Server (a JDBC 2.0 driver):
Installing and Using WebLogic jDriver for Oracle 5-25

5 Advanced Oracle Features
� getSubString()

� length()

For details about these methods, see the JDK documentation.

Note: The position() method is not implemented.

Character and ASCII Streams

Some new methods in the JDBC 2.0 specification allow character and ASCII streams
to be manipulated as characters rather than as bytes, as in earlier versions. The
following methods for handling character and ASCII streams are implemented in
WebLogic Server.

Unicode Character Streams

getCharacterStream()

The java.sql.ResultSet interface uses this method for reading Unicode
streams as the Java type java.io.Reader. This method replaces the
deprecated getUnicodeStream() method.

setCharacterStream()

The java.sql.PreparedStatement interface uses this method for writing
a java.io.Reader object. This method replaces the deprecated
setUnicodeStream() method.

ASCII Character Streams

getAsciiStream()

The java.sql.ResultSet interface uses this method for reading ASCII
streams as the Java type java.io.InputStream.

setAsciiStream()

The java.sql.PreparedStatement interface uses this method for writing
a java.io.InputStream object.
5-26 Installing and Using WebLogic jDriver for Oracle

Character and ASCII Streams
 For details about using these methods, see your JDK documentation.

Batch Updates

Batch updates are a feature of JDBC 2.0 that allows you to send multiple SQL update
statements to the DBMS as a single unit. Depending on the application, this can
provide improved performance over sending multiple update statements individually.
The Batch update feature is available in the Statement interface and requires the use
of SQL statements that return an update count and do not return a result set. Using
Batch updates with the callableStatement or preparedStatement is not
supported.

The following SQL statements can be used with Batch updates:

� INSERT INTO

� UPDATE

� DELETE

� CREATE TABLE

� DROP TABLE

� ALTER TABLE

Using Batch Updates

This is the basic procedure for using Batch updates:

1. Get a connection by using the WebLogic Server JDBC 2.0 driver as described in
“Connecting to an Oracle DBMS” in Chapter 3, “Using WebLogic jDriver for
Oracle.” For this example, the connection object is called conn.

2. Create a statement object using the createStatement() method. For example:

Statement stmt = conn.createStatement();

3. Use the addBatch() method to add SQL statements to the batch. These
statements are not sent to the DBMS until the executeBatch() method is
called. For example:

stmt.addBatch("INSERT INTO batchTest VALUES ('JOE', 20,35)");
stmt.addBatch("INSERT INTO batchTest VALUES ('Bob', 30,44)");
stmt.addBatch("INSERT INTO batchTest VALUES ('Ed', 34,22)");
Installing and Using WebLogic jDriver for Oracle 5-27

5 Advanced Oracle Features
4. Use the executeBatch() method to send the batch to the DBMS for processing.
For example:

stmt.executeBatch();

If any of the statements fail an exception is thrown, and none of the statements is
executed.

Clearing the Batch

You may clear a batch of statements that was created with the addBatch() method,
by using the clearBatch() method. For example:

stmt.clearBatch();

Update Counts

According to the JDBC 2.0 specification, the executeBatch() method should return
an array of Integers containing the number of rows updated for each Statement. The
Oracle DBMS, however, does not supply this information to the driver. Instead, the
Oracle DBMS returns -2 for all updates.

New Date Methods

The following methods have a signature which takes a java.util.Calendar object
as a parameter. java.util.Calendar allows you to specify time zone and location
information that is used to translate dates. Consult your JDK API guide for details
about using the java.util.Calendar class.

java.sql.ResultSet.getDate(int columnIndex, Calendar cal)
(returns a java.sql.Date object)

java.sql.PreparedStatement.setDate
 (int parameterIndex, Date x, Calendar cal)
5-28 Installing and Using WebLogic jDriver for Oracle

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	1 Introduction
	Overview of WebLogic jDrivers
	WebLogic jDriver for Oracle
	Oracle Shared Libraries
	Distributed Transactions with the WebLogic jDriver for Oracle/XA

	2 Installing WebLogic jDriver for Oracle
	Preparing to Install WebLogic jDriver for Oracle
	Checking Software Requirements for WebLogic jDriver for Oracle
	Supported Platforms
	Requirements for Running JDBC 2.0
	Setting Up the Environment for Using WebLogic jDriver for Oracle
	Windows NT
	Syntax
	Example

	Solaris
	Syntax
	Example

	IBM AIX
	HP-UX 11
	Syntax
	Example

	SGI IRIX
	Siemens MIPS
	Compaq Tru64 UNIX

	Installation Procedures for WebLogic jDriver for Oracle
	After Installing WebLogic jDriver for Oracle
	Licensing Functionality
	Checking Connections to the Oracle Database
	Setting Up a Connection Pool
	Configuring a Connection Pool with WebLogic Server Software
	Using the Connection Pool in an Application

	Using IDEs or Debuggers with WebLogic jDrivers
	Preparing to Set Up a Development Environment and Use the WebLogic jDriver for Oracle

	3 Using WebLogic jDriver for Oracle
	Local Versus Distributed Transactions
	Importing JDBC Packages
	Setting CLASSPATH
	Oracle Client Library Versions, URLs, and Driver Class Names
	Connecting to an Oracle DBMS
	Connecting Using WebLogic Server in a Two-Tier Configuration
	Connecting Using WebLogic Server in a Multi-Tier Configuration
	Connection Example
	Connecting Using a DataSource Object
	Setting Properties for WebLogic JDBC Use
	About the Connection Object
	Setting Autocommit

	Making a Simple SQL Query
	Inserting, Updating, and Deleting Records
	Creating and Using Stored Procedures and Functions
	Disconnecting and Closing Objects
	Working with ResultSets from Stored Procedures
	Row Caching With WebLogic JDBC
	Code Example
	Unsupported JDBC 2.0 Methods

	4 Using WebLogic jDriver for Oracle/XA in Distributed Transactions
	Differences Using the WebLogic jDriver for Oracle in XA versus Non-XA Mode
	Configuring JDBC XA and Non-XA Resources
	JDBC/XA Resources
	Non-XA JDBC Resources

	Limitations of the WebLogic jDriver for Oracle XA
	Implementing Distributed Transactions
	Importing Packages
	Finding the Data Source via JNDI
	Performing a Distributed Transaction

	5 Advanced Oracle Features
	Allowing Mixed Case Metadata
	Data Types
	WebLogic Server and Oracle’s NUMBER Column
	Using Oracle Long Raw Data Types
	Waiting on Oracle Resources
	Autocommit
	Transaction Isolation Levels
	Codeset Support
	Support for Oracle Array Fetches
	Using Stored Procedures
	Binding a Parameter to an Oracle Cursor
	Notes on Using CallableStatement

	DatabaseMetaData Methods
	Support for JDBC Extended SQL
	Overview of JDBC 2.0 for Oracle
	Configuration Required to Support JDBC 2.0
	BLOBs and CLOBs
	Transaction Boundaries
	BLOBs
	Connection Properties
	Import Statements
	Initializing a BLOB Field
	Writing Binary Data to a BLOB
	Writing a BLOB Object
	Updating a CLOB Value Using a Prepared Statement
	Reading BLOB Data
	Other Methods

	CLOBs
	Codeset Support
	Initializing a CLOB Field
	Writing ASCII Data to a CLOB
	Writing Unicode Data to a CLOB
	Writing CLOB Objects
	Reading CLOB Data
	Other Methods

	Character and ASCII Streams
	Unicode Character Streams
	ASCII Character Streams
	Batch Updates
	Using Batch Updates
	Clearing the Batch
	Update Counts

	New Date Methods

