
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : D e c e m b e r 1 9 , 2 0 0 1

BEA WebLogic

Programming WebLogic JSP

and BEA WebLogic Express™

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic JSP

Part Number Document Date Software Version

N/A December 19, 2001 BEA WebLogic Server Version 6.1

Contents

About This Document

1. JSP Overview
What Is JSP?.. 1-1

WebLogic Implementation of JSP... 1-2

WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality 1-3

WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features.
1-3

WebLogic Server 6.1 with J2EE 1.2 Certification.............................. 1-3

How JSP Requests Are Handled ... 1-3

Additional Information.. 1-4

2. Administering WebLogic JSP
Overview of WebLogic JSP Administration... 2-1

Setting JSP Operating Parameters ... 2-2

3. WebLogic JSP Reference
JSP Tags .. 3-2

Reserved Words for Implicit Objects .. 3-3

Directives for WebLogic JSP .. 3-5

Using the page Directive to Set Character Encoding................................. 3-6

Using the taglib Directive .. 3-6

Declarations... 3-6

Scriptlets .. 3-7

 Expressions... 3-8

Example of a JSP with HTML and Embedded Java ... 3-9

Actions... 3-10
Programming WebLogic JSP iii

Using JavaBeans in JSP.. 3-10

Instantiating the JavaBean Object ... 3-11

Doing Setup Work at JavaBean Instantiation 3-11

Using the JavaBean Object ... 3-12

Defining the Scope of a JavaBean Object ... 3-12

Forwarding Requests .. 3-13

Including Requests ... 3-13

Securing User-Supplied Data in JSPs.. 3-14

Using a WebLogic Server Utility Method .. 3-15

Using Sessions with JSP.. 3-16

Deploying Applets from JSP ... 3-17

Using the WebLogic JSP Compiler... 3-19

Running JSPC on Windows Systems ... 3-19

JSP Compiler Syntax.. 3-19

JSP Compiler Options .. 3-20

Precompiling JSPs .. 3-23

System Properties and JSPs.. 3-23

4. Using Custom WebLogic JSP Tags (cache, process, repeat)
Overview of WebLogic Custom JSP Tags .. 4-1

Using the WebLogic Custom Tags in a Web Application 4-2

Cache Tag .. 4-2

Refreshing a Cache... 4-3

Flushing a Cache .. 4-3

Process Tag.. 4-7

Repeat Tag ... 4-8

5. Using WebLogic JSP Form Validation Tags
Overview of WebLogic JSP Form Validation Tags .. 5-1

Validation Tag Attribute Reference... 5-2

<wl:summary>.. 5-2

<wl:form>... 5-4

<wl:validator> .. 5-4

Using WebLogic JSP Form Validation Tags in a JSP....................................... 5-6

Creating HTML Forms Using the <wl:form> Tag.. 5-8
iv Programming WebLogic JSP

Defining a Single Form .. 5-8

Defining Multiple Forms.. 5-8

Re-Displaying the Values in a Field When Validation Returns Errors...... 5-9

Re-Displaying a Value Using the <input> Tag................................... 5-9

Re-Displaying a Value Using the Apache Jakarta <input:text> Tag .. 5-9

Using a Custom Validator Class.. 5-10

Extending the CustomizableAdapter Class .. 5-11

Sample User-Written Validator Class .. 5-11

Sample JSP with Validator Tags ... 5-12

6. Using the WebLogic EJB to JSP Integration Tool
Overview of the WebLogic EJB-to-JSP Integration Tool................................. 6-2

Basic Operation ... 6-3

Interface Source Files .. 6-3

Build Options Panel... 6-4

Troubleshooting... 6-5

Using EJB Tags on a JSP Page.. 6-6

EJB Home Methods... 6-6

Stateful Session and Entity Beans ... 6-7

Default Attributes .. 6-8

7. Troubleshooting
Debugging Information in the Browser... 7-1

Error 404—Not Found ... 7-2

Error 500—Internal Server Error ... 7-2

Error 503—Service Unavailable .. 7-2

Errors Using the <jsp:plugin> tag .. 7-2

Symptoms in the Log File ... 7-3

Page Compilation Failed Errors ... 7-3
Programming WebLogic JSP v

vi Programming WebLogic JSP

About This Document

This document describes how to program e-commerce applications by using
JavaServer Pages (JSP) and WebLogic Server.

The document is organized as follows:

� Chapter 1, “JSP Overview,”provides an introduction and reference for the basic
syntax of JSP and information about how to use JSP with WebLogic Server.

� Chapter 2, “Administering WebLogic JSP,” provides a brief overview of
administration and configuration tasks for WebLogic JSP.

� Chapter 3, “WebLogic JSP Reference,” provides a reference on writing JSPs.

� Chapter 4, “Using Custom WebLogic JSP Tags (cache, process, repeat),”
discusses the use of three custom JSP tags provided with the WebLogic Server
distribution: the cache tag, the repeat tag, and the process tag.

� Chapter 7, “Troubleshooting,” describes several techniques for debugging your
JSP files.

Audience

This document is written for application developers who want to build e-commerce
applications using JSP and the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.
Programming WebLogic JSP vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

� JSP 1.1 Specification from Sun Microsystems, available at
http://java.sun.com/products/jsp/download.html.

� Programming WebLogic JSP Tag Extensions at
http://e-docs.bea.com/wls/docs61/taglib/index.html.

� Deploying and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/adminguide/config_web_app.html

.

viii Programming WebLogic JSP

http://www.adobe.com
http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs61/taglib/index.htm
http://e-docs.bea.com/wls/docs61/adminguide/config_web_app.html

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Programming WebLogic JSP ix

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
x Programming WebLogic JSP

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic JSP xi

xii Programming WebLogic JSP

CHAPTER
1 JSP Overview

This document is an introduction and reference for the basic syntax of JavaServer
Pages (JSP). It provides information about how to use JSP with WebLogic Server. It
is not intended as a comprehensive guide to programming with JSP.

The following sections provide an overview of JSP:

� What Is JSP?

� WebLogic Implementation of JSP

� How JSP Requests Are Handled

� Additional Information

What Is JSP?

JavaServer Pages (JSP) is a Sun Microsystems specification for combining Java with
HTML to provide dynamic content for Web pages. When you create dynamic content,
JSPs are more convenient to write than HTTP servlets because they allow you to
embed Java code directly into your HTML pages, in contrast with HTTP servlets, in
which you embed HTML inside Java code. JSP is part of the Java 2 Enterprise Edition
(J2EE).

JSP enables you to separate the dynamic content of a Web page from its presentation.
It caters to two different types of developers: HTML developers, who are responsible
for the graphical design of the page, and Java developers, who handle the development
of software to create the dynamic content.
Programming WebLogic JSP 1-1

1 JSP Overview
Because JSP is part of the J2EE standard, you can deploy JSPs on a variety of
platforms, including WebLogic Server. In addition, third-party vendors and
application developers can provide JavaBean components and define custom JSP tags
that can be referenced from a JSP page to provide dynamic content.

WebLogic Implementation of JSP

BEA WebLogic JSP supports the JSP 1.1 specification (see
http://java.sun.com/products/jsp/download.html) from Sun Microsystems.
JSP 1.1 includes support for defining custom JSP tag extensions. (See Programming
JSP Extensions at http://e-docs.bea.com/wls/docs61/taglib/index.html.)

WebLogic Server also supports the Servlet 2.2 specification
(http://java.sun.com/products/servlet/download.html#specs) from Sun
Microsystems, and the proposed final draft of the Servlet 2.3 specification. For more
information, see Servlet 2.3 at
http://e-docs.bea.com/wls/docs61/notes/new.html#servlet-webapp.

Note: WebLogic Server version 6.1 supports the JSP 1.2 specification with the
following exceptions:

The jsp:id mechanism has not been implemented

The following feature has not been implemented:

A JAR containing a packaged tag libraries can be dropped into the
WEB-INF/lib directory to make its classes available at request time

The following DTD Elements are not supported:

� The <listener> element in the taglib.tld is not registered with the webapp

� The <example> element in the taglib.tld is not honored.

We still use the older signature of the TaglibraryValidator.validate() method
which returns a String

The Servlet 2.3 and JSP 1.2 specifications are part of the J2EE 1.3
specification. To use these features, please see “WebLogic Server 6.1 with
J2EE 1.2 and J2EE 1.3 Functionality” on page 3.
1-2 Programming WebLogic JSP

http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs61/taglib/index.html
http://e-docs.bea.com/wls/docs61/taglib/index.html
http://java.sun.com/products/servlet/download.html#specs
http://e-docs.bea.com/wls/docs61/notes/new.html#servlet-webapp

How JSP Requests Are Handled
WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3
Functionality

BEA WebLogic Server 6.1 is the first e-commerce transaction platform to implement
advanced J2EE 1.3 features. To comply with the rules governing J2EE, BEA Systems
provides two separate downloads: one with J2EE 1.3 features enabled, and one that is
limited to J2EE 1.2 features only. Both downloads offer the same container and differ
only in the APIs that are available.

WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features

With this download, WebLogic Server defaults to running with J2EE 1.3 features
enabled. These features include EJB 2.0, JSP 1.2, Servlet 2.3, and J2EE Connector
Architecture 1.0. When you run WebLogic Server 6.1 with J2EE 1.3 features enabled,
J2EE 1.2 applications are still fully supported. The J2EE 1.3 feature implementations
use non-final versions of the appropriate API specifications. Therefore, application
code developed for BEA WebLogic Server 6.1 that uses the new features of J2EE 1.3
may be incompatible with the J2EE 1.3 platform supported in future releases of BEA
WebLogic Server.

WebLogic Server 6.1 with J2EE 1.2 Certification

With this download, WebLogic Server defaults to running with J2EE 1.3 features
disabled and is fully compliant with the J2EE 1.2 specification and regulations.

How JSP Requests Are Handled

WebLogic Server handles JSP requests in the following sequence:

1. A browser requests a page with a .jsp file extension from WebLogic Server.

2. WebLogic Server reads the request.
Programming WebLogic JSP 1-3

1 JSP Overview
3. Using the JSP compiler, WebLogic Server converts the JSP into a servlet class
that implements the javax.servlet.jsp.JspPage interface. The JSP file is
compiled only when the page is first requested, or when the JSP file has been
changed. Otherwise, the previously compiled JSP servlet class is re-used, making
subsequent responses much quicker.

4. The generated JspPage servlet class is invoked to handle the browser request.

It is also possible to invoke the JSP compiler directly without making a request from a
browser. For details, see “Using the WebLogic JSP Compiler” on page 3-19. Because
the JSP compiler creates a Java servlet as its first step, you can look at the Java files it
produces, or even register the generated JspPage servlet class as an HTTP servlet (See
http://e-docs.bea.com/wls/docs61/servlet/index.html).

Additional Information

� JavaServer Pages Tutorial from Sun Microsystems at
http://java.sun.com/products/jsp/docs.html

� JSP product overview from Sun Microsystems at
http://www.java.sun.com/products/jsp/index.html

� JSP 1.1 Specification from Sun Microsystems at
http://java.sun.com/products/jsp/download.htm

� Programming JSP Extensions at
http://e-docs.bea.com/wls/docs61/taglib/index.html

� Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

� Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html
1-4 Programming WebLogic JSP

http://e-docs.bea.com/wls/docs61/servlet/index.html
http://java.sun.com/products/jsp/docs.html
http://www.java.sun.com/products/jsp/index.html
http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs61/taglib/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

CHAPTER
2 Administering
WebLogic JSP

The following sections provide an overview of administration and configuration tasks
required to deploy WebLogic JavaServer Pages (JSP):

� Overview of WebLogic JSP Administration

� Setting JSP Operating Parameters

For a complete discussion of JSP administration and configuration see Configuring
JSP at
http://e-docs.bea.com/wls/docs61/webapp/components.html#configuri
ng-jsp.

Overview of WebLogic JSP Administration

In keeping with the Java 2 Enterprise Edition standard, JSPs are deployed as part of a
Web Application. A Web Application is a grouping of application components, such as
HTTP servlets, JavaServer Pages (JSP), static HTML pages, images, and other
resources.

In a Web Application, the components are organized using a standard directory
structure. You can deploy your application using this directory structure or you can
archive the files into a single file called a Web Application Archive (.war) and deploy
the .war file. You define information about the resources and operating parameters of
Programming WebLogic JSP 2-1

http://e-docs.bea.com/wls/docs61/webapp/components.html#configuring-jsp
http://e-docs.bea.com/wls/docs61/webapp/components.html#configuring-jsp

2 Administering WebLogic JSP
a Web Application using two deployment descriptors, which are included in the files
of the Web Application. For more information, see Assembling and Configuring Web
Applications at http://e-docs.bea.com/wls/docs61/webapp/index.html.

The first deployment descriptor, web.xml, is defined in the Servlet 2.2 specification
from Sun Microsystems. It provides a standardized format that describes the Web
Application. The second deployment descriptor, weblogic.xml, is a
WebLogic-specific deployment descriptor that maps resources defined in the web.xml
file to resources available in WebLogic Server, defines JSP parameters, and defines
HTTP session parameters. For more information, see “Writing Web Application
Deployment Descriptors” at
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html.

JSPs do not require specific mappings as do HTTP servlets. To deploy JSPs in a Web
Application, simply place them in the root directory (or in a sub-directory of the root)
of the Web Application. No additional registrations are required. You can deploy both
servlets and JSPs in the same Web Application.

Setting JSP Operating Parameters

Parameters that govern the behavior of JSPs are defined in weblogic.xml, the
WebLogic-specific deployment descriptor of your Web Application. For more
information about editing this file, see “Assembling and Configuring Web
Applications at http://e-docs.bea.com/wls/docs61/webapp/index.html

A complete description of JSP properties in the WebLogic-specific deployment
descriptor, including their default values is provided in the jsp-descriptor section,
available at
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-des

criptor.

Parameters set in weblogic.xml include:

� compileCommand

� compileFlags

� compilerclass

� encoding
2-2 Programming WebLogic JSP

http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

Setting JSP Operating Parameters
� keepgenerated

� packagePrefix

� pageCheckSeconds

� verbose

� workingDir
Programming WebLogic JSP 2-3

2 Administering WebLogic JSP
2-4 Programming WebLogic JSP

CHAPTER
3 WebLogic JSP
Reference

The following sections provide reference information for writing JavaServer Pages
(JSPs):

� JSP Tags

� Reserved Words for Implicit Objects

� Directives for WebLogic JSP

� Scriptlets

� Expressions

� Example of a JSP with HTML and Embedded Java

� Actions

� Securing User-Supplied Data in JSPs

� Using Sessions with JSP

� Deploying Applets from JSP

� Using the WebLogic JSP Compiler
Programming WebLogic JSP 3-1

3 WebLogic JSP Reference
JSP Tags

The following table describes the basic tags that you can use in a JSP page. Each
shorthand tag has an XML equivalent.

Table 3-1 Basic Tags for JSP Pages

JSP Tag Syntax Description

Scriptlet <% java_code %>

 . . . or use the XML equivalent:

<jsp:scriptlet>
 java_code
</jsp:scriptlet>

Embeds Java source code scriptlet
in your HTML page. The Java code
is executed and its output is
inserted in sequence with the rest
of the HTML in the page. For
details, see “Scriptlets” on page
3-7.

Directive <%@ dir-type dir-attr %>

. . . or use the XML equivalent:

<jsp:directive.dir_type
dir_attr />

Directives contain messages to the
application server.

A directive can also contain
name/value pair attributes in the
form attr=”value”, which
provides additional instructions to
the application server. See
“Directives for WebLogic JSP” on
page 3-5.

Declarations <%! declaration %>

. . . or use XML equivalent...

<jsp:declaration>
 declaration;
</jsp:declaration>

Declares a variable or method that
can be referenced by other
declarations, scriptlets, or
expressions in the page. See
“Declarations” on page 3-6.

Expression <%= expression %>

. . . or use XML equivalent...

<jsp:expression>
expression
</expression>

Defines a Java expression that is
evaluated at page request time,
converted to a String, and sent
inline to the output stream of the
JSP response. See “Expressions”
on page 3-8.
3-2 Programming WebLogic JSP

Reserved Words for Implicit Objects
Reserved Words for Implicit Objects

JSP reserves words for implicit objects in scriptlets and expressions. These implicit
objects represent Java objects that provide useful methods and information for your
JSP page. WebLogic JSP implements all implicit objects defined in the JSP 1.1
specification. The JSP API is described in the Javadocs available from the Sun
Microsystems JSP Home Page at
http://www.java.sun.com/products/jsp/index.html.

Note: Use these implicit objects only within Scriptlets or Expressions. Using
these keywords from a method defined in a declaration causes a
translation-time compilation error because such usage causes your page to
reference an undefined variable.

request

request represents the HttpServletRequest object. It contains
information about the request from the browser and has several useful
methods for getting cookie, header, and session data.

response

response represents the HttpServletResponse object and several useful
methods for setting the response sent back to the browser from your JSP page.
Examples of these responses include cookies and other header information.

Actions <jsp:useBean ... >

JSP body is included if the bean is
instantiated here

</jsp:useBean>
<jsp:setProperty ... >
<jsp:getProperty ... >
<jsp:include ... >
<jsp:forward ... >
<jsp:plugin ... >

Provide access to advanced
features of JSP, and only use XML
syntax. These actions are
supported as defined in the JSP 1.1
specification. See “Actions” on
page 3-10.

Table 3-1 Basic Tags for JSP Pages

JSP Tag Syntax Description
Programming WebLogic JSP 3-3

http://www.java.sun.com/products/jsp/index.html
http://www.java.sun.com/products/jsp/index.html

3 WebLogic JSP Reference
Warning: You cannot use the response.getWriter() method from within
a JSP page; if you do, a run-time exception is thrown. Use the out keyword
to send the JSP response back to the browser from within your scriptlet code
whenever possible. The WebLogic Server implementation of
javax.servlet.jsp.JspWriter uses
javax.servlet.ServletOutputStream, which implies that you can use
response.getServletOutputStream(). Keep in mind, however, that this
implementation is specific to WebLogic Server. To keep your code
maintainable and portable, use the out keyword.

out

out is an instance of javax.jsp.JspWriter that has several methods you
can use to send output back to the browser.

If you are using a method that requires an output stream, then JspWriter
does not work. You can work around this limitation by supplying a buffered
stream and then writing this stream to out. For example, the following code
shows how to write an exception stack trace to out:

 ByteArrayOutputStream ostr = new ByteArrayOutputStream();
 exception.printStackTrace(new PrintWriter(ostr));
 out.print(ostr);

pageContext

pageContext represents a javax.servlet.jsp.PageContext object. It is
a convenience API for accessing various scoped namespaces and
servlet-related objects, and provides wrapper methods for common
servlet-related functionality.

session

session represents a javax.servlet.http.HttpSession object for the
request. The session directive is set to true by default, so the session is valid
by default. The JSP 1.1 specification states that if the session directive is set
to false, then using the session keyword results in a fatal translation time
error. For more information about using sessions with servlets, see
Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html.

application

application represents a javax.servlet.ServletContext object. Use
it to find information about the servlet engine and the servlet environment.

When forwarding or including requests, you can access the servlet
requestDispatcher using the ServletContext, or you can use the JSP
3-4 Programming WebLogic JSP

http://e-docs.bea.com/wls/docs61/servlet/index.html

Directives for WebLogic JSP
forward directive for forwarding requests to other servlets, and the JSP
include directive for including output from other servlets.

config

config represents a javax.servlet.ServletConfig object and provides
access to the servlet instance initialization parameters.

page

page represents the servlet instance generated from this JSP page. It is
synonymous with the Java keyword this when used in your scriptlet code.

To use page, you must cast it to the class type of the servlet that implements
the JSP page, because it is defined as an instance of java.lang.Object. By
default, the servlet class is named after the JSP filename. For convenience, we
recommend that you use the Java keyword this to reference the servlet
instance and get access to initialization parameters, instead of using page.

For more information on the underlying HTTP servlet framework, see the related
developers guide, Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html.

Directives for WebLogic JSP

Use directives to instruct WebLogic JSP to perform certain functions or interpret the
JSP page in a particular way. You can insert a directive anywhere in a JSP page. The
position is generally irrelevant (except for the include directive), and you can use
multiple directive tags. A directive consists of a directive type and one or more
attributes of that type.

You can use either of two types of syntax: shorthand or XML:

� Shorthand:

<%@ dir_type dir_attr %>

� XML:

 <jsp:directive.dir_type dir_attr />

Replace dir_type with the directive type, and dir_attr with a list of one or more
directive attributes for that directive type.
Programming WebLogic JSP 3-5

http://e-docs.bea.com/wls/docs61/servlet/index.html

3 WebLogic JSP Reference
There are three types of directives page, taglib, or include.

Using the page Directive to Set Character Encoding

To specify a character encoding set, use the following directive at the top of the page:

<%@ page contentType="text/html; charset=custom-encoding” %>

Replace the custom-encoding with a standard HTTP-style character set name (see
http://www.isi.edu/in-notes/iana/assignments/character-sets).

The character set you specify with a contentType directive specifies the character set
used in the JSP as well as any JSP included in that JSP.

You can specify a default character encoding by specifying it in the WebLogic-specific
deployment descriptor for your Web Application. For more information, see the
jsp-descriptor section at
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-des

criptor.

Using the taglib Directive

Use a taglib directive to declare that your JSP page uses custom JSP tag extensions
that are defined in a tag library. For details about writing and using custom JSP tags,
see “Programming WebLogic JSP Extensions” at
http://e-docs.bea.com/wls/docs61/taglib/index.html.

Declarations

Use declarations to define variables and methods at the class-scope level of the
generated JSP servlet. Declarations made between JSP tags are accessible from other
declarations and scriptlets in your JSP page. For example:

<%!
 int i=0;
3-6 Programming WebLogic JSP

http://www.isi.edu/in-notes/iana/assignments/character-sets
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor
http://e-docs.bea.com/wls/docs61/taglib/index.html

Scriptlets
 String foo= "Hello";
 private void bar() {
 // ...java code here...
 }
%>

Remember that class-scope objects are shared between multiple threads being
executed in the same instance of a servlet. To guard against sharing violations,
synchronize class scope objects. If you are not confident writing thread-safe code, you
can declare your servlet as not-thread-safe by including the following directive:

<%@ page isThreadSafe="false" %>

By default, this attribute is set to true. When set to false, the generated servlet
implements the javax.servlet.SingleThreadModel interface, which prevents
multiple threads from running in the same servlet instance. Setting isThreadSafe to
false consumes additional memory and can cause performance to degrade.

Scriptlets

JSP scriptlets make up the Java body of your JSP servlet’s HTTP response. To include
a scriptlet in your JSP page, use the shorthand or XML scriptlet tags shown here:

Shorthand:

<%
 // Your Java code goes here
%>

XML:

<jsp:scriptlet>
 // Your Java code goes here
</jsp:scriptlet>

Note the following features of scriptlets:

� You can have multiple blocks of scriptlet Java code mixed with plain HTML.
Programming WebLogic JSP 3-7

3 WebLogic JSP Reference
� You can switch between HTML and Java code anywhere, even within Java
constructs and blocks. In “Example of a JSP with HTML and Embedded Java”
on page 3-9 the example declares a Java loop, switches to HTML, and then
switches back to Java to close the loop. The HTML within the loop is generated
as output multiple times as the loop iterates.

� You can use the predefined variable out to print HTML text directly to the
servlet output stream from your Java code. Call the print() method to add a
string to the HTTP page response.

Any time you print data that a user has previously supplied, BEA recommends
that you remove any HTML special characters that a user might have entered. If
you do not remove these characters, your Web site could be exploited by
cross-site scripting. See “Securing User-Supplied Data in JSPs” on page 3-14.

� The Java tag is an inline tag; it does not force a new paragraph.

 Expressions

To include an expression in your JSP file, use the following tag:

<%= expr %>

Replace expr with a Java expression. When the expression is evaluated, its string
representation is placed inline in the HTML response page. It is shorthand for

 <% out.print(expr); %>

This technique enables you to make your HTML more readable in the JSP page. Note
the use of the expression tag in the example in the next section.

Expressions are often used to return data that a user has previously supplied. Any time
you print user-supplied data, BEA recommends that you remove any HTML special
characters that a user might have entered. If you do not remove these characters, your
Web site could be exploited by cross-site scripting. See “Securing User-Supplied Data
in JSPs” on page 3-14.
3-8 Programming WebLogic JSP

Example of a JSP with HTML and Embedded Java
Example of a JSP with HTML and Embedded
Java

The following example shows a JSP with HTML and embedded Java:

<html>
 <head><title>Hello World Test</title></head>

<body bgcolor=#ffffff>
<center>
<h1> Hello World Test </h1>

<%

 out.print("Java-generated Hello World");
%>

<p> This is not Java!
<p><i>Middle stuff on page</i>
<p>

<%
for (int i = 1; i<=3; i++) {

%>
<h2>This is HTML in a Java loop! <%= i %> </h2>

<%
}

%>

</center>
</body>
</html>

After the code shown here is compiled, the resulting page is displayed in a browser as
follows:
Programming WebLogic JSP 3-9

3 WebLogic JSP Reference
Actions

You use JSP actions to modify, use, or create objects that are reperesented by
JavaBeans. Actions use XML syntax exclusively.

Using JavaBeans in JSP

The <jsp:useBean> action tag allows you to instantiate Java objects that comply with
the JavaBean specification, and to refer to them from your JSP pages.

To comply with the JavaBean specification, objects need:

� A public constructor that takes no arguments
3-10 Programming WebLogic JSP

Actions
� A setVariable() method for each variable field

� A getVariable() method for each variable field

Instantiating the JavaBean Object

The <jsp:useBean> tag attempts to retrieve an existing named Java object from a
specific scope and, if the existing object is not found, may attempt to instantiate a new
object and associate it with the name given by the id attribute. The object is stored in
a location given by the scope attribute, which determines the availability of the object.
For example, the following tag attempts to retrieve a Java object of type
examples.jsp.ShoppingCart from the HTTP session under the name cart.

<jsp:useBean id="cart"
 class="examples.jsp.ShoppingCart" scope="session"/>

If such an object does not currently exist, the JSP attempts to create a new object, and
stores it in the HTTP session under the name cart. The class should be available in
the CLASSPATH used to start WebLogic Server, or in the WEB-INF/classes directory
of the Web Application containing the JSP.

It is good practice to use an errorPage directive with the <jsp:useBean> tag
because there are run-time exceptions that must be caught. If you do not use an
errorPage directive, the class referenced in the JavaBean cannot be created, an
InstantiationException is thrown, and an error message is returned to the
browser.

 You can use the type attribute to cast the JavaBean type to another object or interface,
provided that it is a legal type cast operation within Java. If you use the attribute
without the class attribute, your JavaBean object must already exist in the scope
specified. If it is not legal, an InstantiationException is thrown.

Doing Setup Work at JavaBean Instantiation

The <jsp:useBean> tag syntax has another format that allows you to define a body
of JSP code that is executed when the object is instantiated. The body is not executed
if the named JavaBean already exists in the specified scope. This format allows you to
set up certain properties when the object is first created. For example:

<jsp:useBean id="cart" class="examples.jsp.ShoppingCart"
 scope=session>
 Creating the shopping cart now...
 <jsp:setProperty name="cart"
Programming WebLogic JSP 3-11

3 WebLogic JSP Reference
 property="cartName" value="music">
</jsp:useBean>

Note: If you use the type attribute without the class attribute, a JavaBean object is
never instantiated, and you should not attempt to use the tag format to include
a body. Instead, use the single tag format. In this case, the JavaBean must exist
in the specified scope, or an InstantiationException is thrown. Use an
errorPage directive to catch the potential exception.

Using the JavaBean Object

After you instantiate the JavaBean object, you can refer to it by its id name in the JSP
file as a Java object. You can use it within scriptlet tags and expression evaluator tags,
and you can invoke its setXxx() or getXxx() methods using the
<jsp:setProperty> and <jsp:getProperty> tags, respectively.

Defining the Scope of a JavaBean Object

Use the scope attribute to specify the availability and life-span of the JavaBean object.
The scope can be one of the following:

page

This is the default scope for a JavaBean, which stores the object in the
javax.servlet.jsp.PageContext of the current page. It is available only
from the current invocation of this JSP page. It is not available to included
JSP pages, and it is discarded upon completion of this page request.

request

When the request scope is used, the object is stored in the current
ServletRequest, and it is available to other included JSP pages that are
passed the same request object. The object is discarded when the current
request is completed.

session

Use the session scope to store the JavaBean object in the HTTP session so
that it can be tracked across several HTTP pages. The reference to the
JavaBean is stored in the page’s HttpSession object. Your JSP pages must
be able to participate in a session to use this scope. That is, you must not have
the page directive session set to false.
3-12 Programming WebLogic JSP

Actions
application

At the application-scope level, your JavaBean object is stored in the Web
Application. Use of this scope implies that the object is available to any other
servlet or JSP page running in the same Web Application in which the object
is stored.

For more information about using JavaBeans, see the JSP 1.1 specification at
http://www.java.sun.com/products/jsp/index.html.

Forwarding Requests

If you are using any type of authentication, a forwarded request made with the
<jsp:forward> tag, by default, does not require the user to be re-authenticated. You
can change this behavior to require authentication of a forwarded request by adding the
<check-auth-on-forward/> element to the <container-descriptor> element of
the WebLogic-specific deployment descriptor, weblogic.xml. For example:

<container-descriptor>
<check-auth-on-forward/>

</container-descriptor>

For information on editing the WebLogic-specific deployment descriptor, see Writing
the WebLogic-Specific Deployment Descriptor at
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html#web

logic-xml.

Including Requests

You can use the <jsp:include> tag to include another resource in a JSP. This tag
takes two attributes:

page
Use the page attribute to specify the included resource. For example:

<jsp:include page=”somePage.jsp”/>

flush
Setting this boolean attribute to true buffers the page output and then flushes
the buffer before including the resource.
Programming WebLogic JSP 3-13

http://www.java.sun.com/products/jsp/index.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html#weblogic-xml
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html#weblogic-xml

3 WebLogic JSP Reference
Setting flush=”false” can be useful when the <jsp:include> tag is located within
another tag on the JSP page and you want the included resource to be processed by the
tag.

Securing User-Supplied Data in JSPs

Expressions and scriptlets enable a JSP to receive data from a user and return the user
supplied data. For example, the sample JSP in Listing 3-1 prompts a user to enter a
string, assigns the string to a parameter named userInput, and then uses the <%=
request.getParameter("userInput")%> expression to return the data to the
browser.

Listing 3-1 Using Expressions to Return User-Supplied Content

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<body>

<h1>My Sample JSP</h1>
<form method="GET" action="mysample.jsp">

Enter string here:
<input type="text" name="userInput" size=50>
<input type=submit value="Submit">

</form>

<hr>

Output from last command:
<%= request.getParameter("userInput")%>

</body>
</html>

This ability to return user-supplied data can present a security vulnerability called
cross-site scripting, which can be exploited to steal a user’s security authorization.
For a detailed description of cross-site scripting, refer to “Understanding Malicious
Content Mitigation for Web Developers” (a CERT security advisory) at
http://www.cert.org/tech_tips/malicious_code_mitigation.html.
3-14 Programming WebLogic JSP

http://www.cert.org/tech_tips/malicious_code_mitigation.html

Securing User-Supplied Data in JSPs
To remove the security vulnerability, before you return data that a user has supplied,
scan the data for any of the HTML special characters in Table 3-2. If you find any
special characters, replace them with their HTML entity or character reference.
Replacing the characters prevents the browser from executing the user-supplied data
as HTML.

Using a WebLogic Server Utility Method

WebLogic Server provides the
weblogic.servlet.security.Utils.encodeXSS() method to replace the special
characters in user-supplied data. To use this method, provide the user-supplied data as
input. For example,
<%= weblogic.servlet.security.Utils.encodeXSS(

request.getParameter("userInput"))%>

Table 3-2 HTML Special Characters that Must Be Replaced

Replace this special character: With this entity/character
reference:

< <

> >

(&40;

) &41;

&35;

& &38;
Programming WebLogic JSP 3-15

3 WebLogic JSP Reference
To secure an entire application, you must use the encodeXSS() method each time you
return user-supplied data. While the example in Listing 3-1 is an obvious location in
which to use the encodeXSS() method, Table 3-3 describes other locations to
consider.

Using Sessions with JSP

Sessions in WebLogic JSP perform according to the JSP 1.1 specification. The
following suggestions pertain to using sessions:

� Store small objects in sessions. For example, a session should not be used to
store an EJB, but an EJB primary key instead. Store large amounts of data in a
database. The session should hold only a simple string reference to the data.

� When you use sessions with dynamic reloading of servlets or JSP, the objects
stored in the servlet session must be serializable. Serialization is required
because the servlet is reloaded in a new class loader, which results in an
incompatibility between any classes loaded previously (from the old version of
the servlet) and any classes loaded in the new class loader (for the new version
of the servlet classes). This incompatibility causes the servlet to return
ClassCastException errors.

� If session data must be of a user-defined type, the data class should be
serializable. Furthermore, the session should store the serialized representation
of the data object. Serialization should be compatible across versions of the data
class.

Table 3-3 Code that Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneous input string, invalid URL,
username

An error page that says “username is not
permitted access.”

Status page Username, summary of input from
previous pages

A summary page that asks a user to confirm
input from previous pages.

Database
display

Data presented from a database A page that displays a list of database entries
that have been previously entered by a user.
3-16 Programming WebLogic JSP

Deploying Applets from JSP
� If you need to log out an authenticated user, see the following section in
Programming WebLogic HTTP Servlets: Logging Out and Ending a Session at
http://e-docs.bea.com/wls/docs61/servlet/progtasks.html#session

end.

Deploying Applets from JSP

Using the JSP provides a convenient way to include the Java Plug-in in a Web page,
by generating HTML that contains the appropriate client browser tag. The Java Plug-in
allows you to use a Java Runtime Environment (JRE) supplied by Sun Microsystems
instead of the JVM implemented by the client Web browser. This feature avoids
incompatibility problems between your applets and specific types of Web browsers.
The Java Plug-in is available from Sun at
http://java.sun.com/products/plugin/.

Because the syntax used by Internet Explorer and Netscape is different, the servlet
code generated from the <jsp:plugin> action dynamically senses the type of browser
client and sends the appropriate <OBJECT> or <EMBED> tags in the HTML page.

The <jsp:plugin> tag uses many attributes similar to those of the <APPLET> tag, and
some other attributes that allow you to configure the version of the Java Plug-in to be
used. If the applet communicates with the server, the JVM running your applet code
must be compatible with the JVM running WebLogic Server.

In the following example, the plug-in action is used to deploy an applet:

<jsp:plugin type="applet" code="examples.applets.PhoneBook1"
codebase="/classes/" height="800" width="500"
jreversion="1.1"
nspluginurl=
"http://java.sun.com/products/plugin/1.1.3/plugin-install.html"
iepluginurl=
"http://java.sun.com/products/plugin/1.1.3/
jinstall-113-win32.cab#Version=1,1,3,0" >

<jsp:params>
<param name="weblogic_url" value="t3://localhost:7001">
<param name="poolname" value="demoPool">

</jsp:params>
Programming WebLogic JSP 3-17

http://e-docs.bea.com/wls/docs61/servlet/progtasks.html#sessionend
http://java.sun.com/products/plugin/

3 WebLogic JSP Reference
<jsp:fallback>
Sorry, cannot run java applet!!

</jsp:fallback>

</jsp:plugin>

The sample JSP syntax shown here instructs the browser to download the Java Plug-in
version 1.3.1 (if it has not been downloaded previously), and run the applet identified
by the code attribute from the location specified by codebase.

The jreversion attribute identifies the spec version of the Java Plug-in that the applet
requires to operate. The Web browser attempts to use this version of the Java Plug-in.
If the plug-in is not already installed on the browser, the nspluginurl and
iepluginurl attributes specify URLs where the Java Plug-in can be downloaded
from the Sun Web site. Once the plug-in is installed on the Web browser, it is not
downloaded again.

Because WebLogic Server uses the Java 1.3.x VM, you must specify the Java Plug-in
version 1.3.x in the <jsp:plugin> tag. To specify the 1.3 JVM in the previous
example code, replace the corresponding attribute values with the following:

jreversion="1.3"
nspluginurl=
"http://java.sun.com/products/plugin/1.3/plugin-install.html"
iepluginurl=
"http://java.sun.com/products/plugin/1.3/jinstall-131-win32.cab"

The other attributes of the plug-in action correspond with those of the <APPLET> tag.
You specify applet parameters within a pair of <params> tags, nested within the
<jsp:plugin> and </jsp:plugin> tags.

The <jsp:fallback> tags allow you to substitute HTML for browsers that are not
supported by the <jsp:plugin> action. The HTML nested between the <fallback>
and </jsp:fallback> tags is sent instead of the plug-in syntax.
3-18 Programming WebLogic JSP

Using the WebLogic JSP Compiler
Using the WebLogic JSP Compiler

Because the JSP Servlet automatically calls the WebLogic JSP compiler to process
your JSP pages, you generally do not need to use the compiler directly. However, in
some situations, such as when you are debugging, accessing the compiler directly is
useful. This section is a reference for the compiler.

The WebLogic JSP compiler parses your JSP file into a .java file, and then compiles
the generated .java file into a Java class, using a standard Java compiler.

Running JSPC on Windows Systems

When you run the JSP compiler on Windows systems, output files names are always
created with lower case names. To prevent this behavior, and preserve the case used in
class names, set the system property, weblogic.jsp.windows.caseSensitive to
true. You can set the property at the command line when compiling a JSP using this
following command:

java -Dweblogic.jsp.windows.caseSensitive=true weblogic.jspc *.jsp

or include this command in your WebLogic Server startup scripts:

-Dweblogic.jsp.windows.caseSensitive=true

JSP Compiler Syntax

The JSP compiler works in much the same way that other WebLogic compilers work
(including the RMI and EJB compilers). To start the JSP compiler, enter the following
command.

$ java weblogic.jspc -options fileName

Replace fileName with the name of the JSP file that you want to compile. You can
specify any options before or after the target fileName. The following example uses
the -d option to compile myFile.jsp into the destination directory,
weblogic/classes:
Programming WebLogic JSP 3-19

3 WebLogic JSP Reference
$ java weblogic.jspc -d /weblogic/classes myFile.jsp

Note: If you are precompiling JSPs that are part of a Web Application and that
reference resources in the Web Application (such as a JSP tag library), you
must use the -webapp flag to specify the location of the Web Application. The
-webapp flag is described in the following listing of JSP compiler options.

JSP Compiler Options

You can use any combination of the following options:

-classpath

Add a list (separated by semi-colons on Windows NT/2000 platforms or
colons on UNIX platforms) of directories that make up the desired
CLASSPATH. Include directories containing any classes required by the JSP.
For example (to be entered on one line):

$ java weblogic.jspc
-classpath java/classes.zip;/weblogic/classes.zip
myFile.JSP

-charsetMap

Specifies mapping of IANA or unofficial charset names used in JSP
contentType directives to java charset names. For example:
-charsetMap x-sjis=Shift_JIS,x-big5=Big5

The most common mappings are built into the JSP compiler. Use this option
only if a desired charset mapping is not recognized.

-commentary

Causes the JSP compiler to include comments from the JSP in the generated
HTML page. If this option is omitted, comments do not appear in the
generated HTML page.

-compileAll

Recursively compiles all JSPs in the current directory, or in the directory
specified with the -webapp flag. (See the listing for -webapp in this list of
options.). JSPs in subdirectories are also compiled.

-compileFlags

Passes one or more command-line flags to the compiler. Enclose multiple
flags in quotes, separated by a space. For example:
java weblogic.jspc -compileFlags "-g -v" myFile.jsp
3-20 Programming WebLogic JSP

Using the WebLogic JSP Compiler
-compiler
Specifies the Java compiler to be used to compile the class file from the
generated Java source code. The default compiler used is javac. The Java
compiler program should be in your PATH unless you specify the absolute
path to the compiler explicitly.

-compilerclass

Runs a Java compiler as a Java class and not as a native executable.

-d <dir>

Specifies the destination of the compiled output (that is, the class file). Use
this option as a shortcut for placing the compiled classes in a directory that is
already in your CLASSPATH.

-depend

If a previously generated class file for a JSP has a more recent date stamp than
the JSP source file, the JSP is not recompiled.

-debug

Compile with debugging on.

-deprecation

Warn about the use of deprecated methods in the generated Java source file
when compiling the source file into a class file.

-docroot directory

See -webapp.

-encoding default|named character encoding

Valid arguments include (a) default which specifies using the default
character encoding of your JDK, (b) a named character encoding, such as
8859_1. If the -encoding flag is not specified, an array of bytes is used.

-g

Instructs the Java compiler to include debugging information in the class file.

-help

Displays a list of all the available flags for the JSP compiler.

-J

Takes a list of options that are passed to your compiler.

-k

When compiling multiple JSPs with a single command, the compiler
continues compiling even if one or more of the JSPs failed to compile.
Programming WebLogic JSP 3-21

3 WebLogic JSP Reference
-keepgenerated

Keeps the Java source code files that are created as an intermediary step in the
compilation process. Normally these files are deleted after compilation.

-noTryBlocks

If a JSP file has numerous or deeply nested custom JSP tags and you receive
a java.lang.VerifyError exception when compiling, use this flag to
allow the JSPs to compile correctly.

-nowarn

Turns off warning messages from the Java compiler.

-O

Compiles the generated Java source file with optimization turned on. This
option overrides the -g flag.

-package packageName

Sets the package name that is prepended to the package name of the generated
Java HTTP servlet. Defaults to jsp_servlet.

-superclass classname

Sets the classname of the superclass extended by the generated servlet. The
named superclass must be a derivative of HttpServlet or
GenericServlet.

-verbose

Passes the verbose flag to the Java compiler specified with the compiler
flag. See the compiler documentation for more information. The default is
off.

-verboseJavac

Prints messages generated by the designated JSP compiler.

-version

Prints the version of the JSP compiler.

-webapp directory

Name of a directory containing a Web Application in exploded directory
format. If your JSP contains references to resources in a Web Application
such as a JSP tag library or other Java classes, the JSP compiler will look for
those resources in this directory. If you omit this flag when compiling a JSP
that requires resources from a Web Application, the compilation will fail.
3-22 Programming WebLogic JSP

Using the WebLogic JSP Compiler
Precompiling JSPs

You can configure WebLogic Server to precompile your JSPs when a Web
Application is deployed or re-deployed or when WebLogic Server starts up by setting
the precompile parameter to true in the <jsp-descriptor> element of the
weblogic.xml deployment descriptor:

For an exploded webapp, precompilation only occurs on the administration server. For
an archived webapp, precompilation will occur on the administration server and the
managed server once during the first deployment.

For more information on the web.xml deployment descriptor, see Assembling and
Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html.

Windows NT command length limitations can be overcome using the new
compilerclass option for WebLogic JSPs. It can be configured in the weblogic.xml
file.

The in memory compilerclass option uses the compiler class used by Sun to
internally compile Java files. This does not require creating a new process and thus is
more efficient than compiling each Java file separately using a new process.

The compilerclass can be used by adding the following to weblogic.xml:

<jsp-descriptor>

 <jsp-param>

 <param-name>compilerclass</jsp-param>

 <param-value>com.sun.tools.javac.Main</param-value>

 </jsp-param>

</jsp-descriptor>

System Properties and JSPs

weblogic.jspc

,weblogic.jsp.windows.caseSensitive is NOT a JSPC option, it is a system property.
Programming WebLogic JSP 3-23

http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

3 WebLogic JSP Reference
You can either call java -Dweblogic.jsp.windows.caseSensitive=true weblogic.jspc
*.jsp or put -Dweblogic.jsp.windows.caseSensitive=true in the start server script.
3-24 Programming WebLogic JSP

CHAPTER
4 Using Custom
WebLogic JSP Tags
(cache, process, repeat)

The following sections describe the use of three custom JSP tags—cache, repeat,
and process—provided with the WebLogic Server distribution:

� Overview of WebLogic Custom JSP Tags

� Using the WebLogic Custom Tags in a Web Application

� Cache Tag

� Process Tag

� Repeat Tag

Overview of WebLogic Custom JSP Tags

BEA provides three specialized JSP tags that you can use in your JSP pages: cache,
repeat, and process. These tags are packaged in a tag library jar file called
weblogic-tags.jar. This jar file contains classes for the tags and a tag library
descriptor (TLD). To use these tags, you copy this jar file to the Web Application that
contains your JSPs and reference the tag library in your JSP.
Programming WebLogic JSP 4-1

4 Using Custom WebLogic JSP Tags (cache, process, repeat)
Using the WebLogic Custom Tags in a Web
Application

Using the WebLogic custom tags requires that you include them within a Web
Application. For more information on Web Applications, see Assembling and
Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html.

To use these tags in your JSP:

1. Copy the weblogic-tags.jar file from the ext directory of your WebLogic
Server installation to the WEB-INF/lib directory of the Web application containing
the JSPs that will use the WebLogic Custom Tags.

2. Reference this tag library descriptor in the <taglib> element of the Web
Application deployment descriptor, web.xml. For example:

<taglib>
<taglib-uri>weblogic-tags.tld</taglib-uri>
<taglib-location>

/WEB-INF/lib/weblogic-tags.jar
</taglib-location>

</taglib>

For more information, see Writing Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html.

3. Reference the tag library in your JSP with the taglib directive. For example:

<%@ taglib uri="weblogic-tags.tld" prefix="wl" %>

Cache Tag

The cache tag enables caching the work that is done within the body of the tag. It
supports both output (transform) data and input (calculated) data. Output caching
refers to the content generated by the code within the tag. Input caching refers to the
values to which variables are set by the code within the tag. Output caching is useful
4-2 Programming WebLogic JSP

http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html

Cache Tag
when the final form of the content is the important thing to cache. Input caching is
important when the view of the data can vary independently of the data calculated
within the tag.

If one client is already recalculating the contents of a cache and another client requests
the same content it does not wait for the completion of the recalculation, instead it
shows whatever information is already in the cache. This is to make sure that the web
site does not come to a halt for all your users because a cache is being recalculated.
Additionally, the async attribute means that no one, not even the user that initiates the
cache recalculation waits.

Caches are stored using soft references to prevent the caching system from using too
much system memory.

Refreshing a Cache

You can force the refresh of a cache by setting the _cache_refresh object to true in
the scope that you want affected. For example, to refresh a cache at session scope,
specify the following:

<% request.setAttribute("_cache_refresh", "true"); %>

If you want all caches to be refreshed, set the cache to the application scope. If you
want all the caches for a user to be refreshed, set it in the session scope. If you want
all the caches in the current request to be refreshed, set the _cache_refresh object
either as a parameter or in the request.

The <wl:cache> tag specifies content that must be updated each time it is displayed.
The statements between the <wl:cache> and </wl:cache> tags are only executed if
the cache has expired or if any of the values of the key attributes (see the Cache Tag
Attributes table) have changed.

Flushing a Cache

Flushing a cache forces the cached values to be erased; the next time the cache is
accessed, the values are recalculated. To flush a cache, set its flush attribute to true.
The cache must be named using the name attribute. If the cache has the size attribute
Programming WebLogic JSP 4-3

4 Using Custom WebLogic JSP Tags (cache, process, repeat)
set, all values are flushed. If the cache sets the key attribute but not the size attribute,
you can flush a specific cache by specifying its key along with any other attributes
required to uniquely identify the cache (such as scope or vars).

For example:

1. Define the cache.

<wl:cache name="dbtable" key="parameter.tablename"
scope="application">
// read the table and output it to the page
</wl:cache>

2. Update the cached table data.

3. Flush the cache using the flush attribute in an empty tag (an empty tag ends
with / and does not use a closing tag). For example

<wl:cache name="dbtable" key="parameter.tablename"
scope="application" flush="true"/>

Table 4-1 Cache Tag Attributes

Attribute Required Default Value Description

 timeout no -1 Cache timeout property. The amount of time, in
seconds, after which the statements within the cache tag
are refreshed. This is not proactive; the value is
refreshed only if it is requested. If you prefer to use a
unit of time other than seconds, you can specify an
alternate unit by postfixing the value with desired unit:

ms = milliseconds
s = seconds (default)
m = minutes
h = hours
d = days

 scope no application Specifies the scope in which the data is cached. Valid
scopes include: page, request, session,
application. Most caches will be either session
or application scope.
4-4 Programming WebLogic JSP

Cache Tag
 key no -- Specifies additional values to be used when evaluating
whether to cache the values contained within the tags.
The list of keys is comma-separated. The value of this
attribute is the name of the variable whose value you
wish to use as a key into the cache. You can additionally
specify a scope by prepending the name of the scope to
the name. For example:

parameter.key | page.key | request.key
| application.key | session.key

It defaults to searching through the scopes in the order
shown in the preceding list. Each named key is
available in the cache tag as a scripting variable. A list
of keys is comma-separated.

 name no -- A unique name for the cache that allows caches to be
shared across multiple JSP pages. This same buffer is
used to store the data for all pages using the named
cache. This attribute is useful for textually included
pages that need cache sharing. If this attribute is not set,
a unique name is chosen for the cache.

We recommended that you avoid manually calculating
the name of the tag; the key functionality can be used
equivalently in all cases. The name is calculated as
weblogic.jsp.tags.CacheTag. plus the URI
plus a generated number representing the tag in the
page you are caching. If different URIs reach the same
JSP page, the caches are not shared in the default case.
Use named caches in this case.

 size no -1 (unlimited) For caches that use keys, the number of entries allowed.
The default is an unlimited cache of keys. With a
limited number of keys the tag uses a least-used system
to order the cache. Changing the value of the size
attribute of a cache that has already been used does not
change the size of that cache.

Table 4-1 Cache Tag Attributes

Attribute Required Default Value Description
Programming WebLogic JSP 4-5

4 Using Custom WebLogic JSP Tags (cache, process, repeat)
The following examples show how you can use the <wl:cache> tag.

Listing 4-1 Examples of Using the cache Tag

<wl:cache>
<!--the content between these tags will only be
 refreshed on server restart-->
</wl:cache>

<wl:cache key="request.ticker" timeout="1m">
<!--get stock quote for whatever is in the request parameter ticker
 and display it, only update it every minute-->
</wl:cache>

<!--incoming parameter value isbn is the number used to lookup the
 book in the database-->
<wl:cache key="parameter.isbn" timeout="1d" size="100">
<!--retrieve the book from the database and display
the information -- the tag will cache the top 100
most accessed book descriptions-->
</wl:cache>

<wl:cache timeout="15m">
<!--get the new headlines from the database every 15 minutes and
 display them-->
</wl:cache>

 vars no -- In addition to caching the transformed output of the
cache, you can also cache calculated values within the
block. These variables are specified exactly the same
way as the cache keys. This type of caching is called
Input caching.

flush no none When set to true, the cache is flushed. This attribute
must be set in an empty tag (ends with /).

Table 4-1 Cache Tag Attributes

Attribute Required Default Value Description
4-6 Programming WebLogic JSP

Process Tag
Process Tag

Use the <wl:process> tag for query parameter-based flow control. By using a
combination of the tag’s four attributes, you can selectively execute the statements
between the <wl:process> and </wl:process> tags. The process tag may also be
used to declaratively process the results of form submissions. By specifying conditions
based on the values of request parameters you can include or not include JSP syntax
on your page.

The following examples show how you can use the <wl:process> tag:

Listing 4-2 Examples of Using the process tag:

<wl:process notname="update">
<wl:process notname="delete">
<!--Only show this if there is no update or delete parameter-->
<form action="<%= request.getRequestURI() %>">
 <input type="text" name="name"/>
 <input type="submit" name="update" value="Update"/>
 <input type="submit" name="delete" value="Delete"/>
</form>
</wl:process>
</wl:process>

<wl:process name="update">
<!-- do the update -->
</wl:process>

Table 4-2 Process Tag Attributes

Tag Attribute Required Description

name no Name of a query parameter.

notname no Name of a query parameter.

value no Value of a query parameter.

notvalue no Value of a query parameter.
Programming WebLogic JSP 4-7

4 Using Custom WebLogic JSP Tags (cache, process, repeat)
<wl:process name="delete">
<!--do the delete-->
</wl:process>

<wl:process name="lastBookRead" value="A Man in Full">
<!--this section of code will be executed if lastBookRead exists
 and the value of lastBookRead is "A Man in Full"-->
</wl:process>

Repeat Tag

Use the <wl:repeat> tag to iterate over many different types of sets, including
Enumerations, Iterators, Collections, Arrays of Objects, Vectors, ResultSets,
ResultSetMetaData, and the keys of a Hashtable. You can also just loop a certain
number of times by using the count attribute. Use the set attribute to specify the type
of Java objects.

Table 4-3 Repeat Tag Attributes

Tag
Attribute

Required Type Description

set No Object The set of objects that includes:

� Enumerations

� Iterators

� Collections

� Arrays

� Vectors

� Result Sets

� Result Set MetaData

� Hashtable keys

count No Int Iterate over first count entries in the set.

id No String Variable used to store current object being
iterated over.
4-8 Programming WebLogic JSP

Repeat Tag
The following example shows how you can use the <wl:repeat> tag.

Listing 4-3 Examples of Using the repeat Tag

<wl:repeat id="name" set="<%= new String[] { "sam", "fred", "ed" }
%>">
 <%= name %>
</wl:repeat>

<% Vector v = new Vector();%>
<!--add to the vector-->

<wl:repeat id="item" set="<%= v.elements() %>">
<!--print each element-->
</wl:repeat>

type No String Type of object that results from iterating over
the set you passed in. Defaults to Object. This
type must be fully qualified.

Table 4-3 Repeat Tag Attributes

Tag
Attribute

Required Type Description
Programming WebLogic JSP 4-9

4 Using Custom WebLogic JSP Tags (cache, process, repeat)
4-10 Programming WebLogic JSP

CHAPTER
5 Using WebLogic JSP
Form Validation Tags

The following sections describe how to use WebLogic JSP form validation tags:

� Overview of WebLogic JSP Form Validation Tags

� Validation Tag Attribute Reference

� Using WebLogic JSP Form Validation Tags in a JSP

� Creating HTML Forms Using the <wl:form> Tag

� Using a Custom Validator Class

� Sample JSP with Validator Tags

Overview of WebLogic JSP Form Validation
Tags

WebLogic JSP form validation tags provide a convenient way to validate the entries
an end user makes to HTML form text fields generated by JSP pages. Using the
WebLogic JSP form validation tags prevents unnecessary and repetitive coding of
commonly used validation logic. The validation is performed by several custom JSP
tags that are included with the WebLogic Server distribution. The tags can

� Verify that required fields have been filled in (Required Field Validator
class).
Programming WebLogic JSP 5-1

5 Using WebLogic JSP Form Validation Tags
� Validate the text in the field against a regular expression (Regular
Expression Validator class).

� Compare two fields in the form (Compare Validator class).

� Perform custom validation by means of a Java class that you write (Custom
Validator class).

WebLogic JSP form validation tags include:

� <wl:summary>

� <wl:form>

� <wl:validator>

When a validation tag determines that data in a field is not been input correctly, the
page is re-displayed and the fields that need to be re-entered are flagged with text or
an image to alert the end user. Once the form is correctly filled out, the end user’s
browser displays a new page specified by the validation tag.

Validation Tag Attribute Reference

This section describes the WebLogic form validation tags and their attributes. Note
that the prefix used to reference the tag can be defined in the taglib directive on your
JSP page. For clarity, the wl prefix is used to refer to the WebLogic form validation
tags throughout this document.

<wl:summary>

<wl:summary> is the parent tag for validation. Place the opening <wl:summary> tag
before any other element or HTML code in the JSP. Place the closing </wl:summary>
tag anywhere after the closing </wl:form> tag(s).

name
(Optional) Name of a vector variable that holds all validation error messages
generated by the <wl:validator> tags on the JSP page. If you do not define
this attribute, the default value, errorVector, is used. The text of the error
5-2 Programming WebLogic JSP

Validation Tag Attribute Reference
message is defined with the errorMessage attribute of the <wl:validator>
tag.

To display the values in this vector, use the <wl:errors/> tag. To use the
<wl:errors/> tag, place the tag on the page where you want the output to
appear. For example:

<wl:errors color="red"/>

Alternately, you can use a scriptlet. For example:

<% if (errorVector.size() > 0) {
for (int i=0; i < errorVector.size(); i++) {
out.println((String)errorVector.elementAt(i));
out.println("
");
}

} %>

Where errorVector is the name of the vector assigned using the name
attribute of the <wl:summary> tag.

The name attribute is required when using multiple forms on a page.

headerText

A variable that contains text that can be displayed on the page. If you only
want this text to appear when when errors occur on the page, you can use a
scriptlet to test for this condition. For example:

<% if(summary.size() >0) {
 out.println(headerText);

}
%>

Where summary is the name of the vector assigned using the name attribute
of the <wl:summary> tag.

redirectPage

URL for the page that is displayed if the form validation does not return
errors. This attribute is not required if you specify a URL in the action
attribute of the <wl:form> tag.

Note: Do not set the redirectPage attribute to the same page containing the
<wl:summary> tag—you will create an infinite loop causing a
StackOverFlow exception.
Programming WebLogic JSP 5-3

5 Using WebLogic JSP Form Validation Tags
<wl:form>

The <wl:form> tag is similar to the HTML <form> tag and defines an HTML form
that can be validated using the the WebLogic JSP form validataion tags. You can
define multiple forms on a single JSP by uniquely identifying each form using the
name attribute.

method

Enter GET or POST. Functions exactly as the method attribute of the HTML
<form> tag.

action

URL for the page that is displayed if the form validation does not return
errors. The value of this attribute takes precedence over the value of the
redirectPage attribute of the <wl:summary> tag and is useful if you have
multiple forms on a single JSP page.

Note: Do not set the action attribute to the same page containing the
<wl:form> tag—you will create an infinite loop causing a StackOverFlow
exception.

name

Functions exactly as the name attribute of the HTML <form> tag. Identifies
the form when multiple forms are used on the same page. The name attribute
is also useful for JavaScript references to a form.

<wl:validator>

Use one or more <wl:validator> tags for each form field. If, for instance, you want
to validate the input against a regular expression and also require that something be
entered into the field you would use two <wl:validator> tags, one using the
RequiredFieldValidator class and another using the RegExpValidator class.
(You need to use both of these validators because blank values are evaluated by the
Regular Expression Field Validator as valid.)

errorMessage

A string that is stored in the vector variable defined by the name attribute of
the <wl:summary> tag.
5-4 Programming WebLogic JSP

Validation Tag Attribute Reference
expression

When using the RegExpValidator class, the regular expression to be
evaluated.

If you are not using RegExpValidator, you can omit this attribute.

fieldToValidate

Name of the form field to be validated. The name of the field is defined with
the name attribute of the HTML <input> tag.

validatorClass

The name of the Java class that executes the validation logic. Three classes
are provided for your use. You can also create your own custom validator
class. For more information, see “Using a Custom Validator Class” on
page 5-10.

The available validation classes are:

weblogicx.jsp.tags.validators.RequiredFieldValidator

Validates that some text has been entered in the field.

weblogicx.jsp.tags.validators.RegExpValidator

Validates the text in the field using a standard regular expression.

Note: A blank value is evaluated as valid.

weblogicx.jsp.tags.validators.CompareValidator

Checks to see if two fields contain the same string. When using this
class, set the fieldToValidate attribute to the two fields you want
to compare. For example:

fieldToValidate="field_1,field_2"

Note: If both fields are blank, the comparison is evaluated as valid.

myPackage.myValidatorClass

Specifies a custom validator class.
Programming WebLogic JSP 5-5

5 Using WebLogic JSP Form Validation Tags
Using WebLogic JSP Form Validation Tags in
a JSP

To use a validation tag in a JSP:

1. Write the JSP.

a. Enter a taglib directive to reference the tag library containing the WebLogic
JSP Form Validation Tags. For example:

<%@ taglib uri="tagl" prefix="wl" %>

Note that the prefix attribute defines the prefix used to reference all tags in
your JSP page. Although you may set the prefix to any value you like, the
tags referred to in this document using the wl prefix.

b. Enter the <wl:summary> ... </wl:summary> tags.

Place the opening <wl:summary ...> tag before any HTML code, JSP tag,
scriptlet, or expression on the page.

Place the closing </wl:summary> tag anywhere after the </wl:form>
tag(s).

c. Define an HTML form using the <wl:form> JSP tag that is included with the
supplied tag library. For more information, see “<wl:form>” on page 5-4 and
“Creating HTML Forms Using the <wl:form> Tag” on page 5-8. Be sure to
close the form block with the </wl:form> tag. You can create multiple forms
on a page if you uniquely define the name attribute of the <wl:form> tag for
each form.

d. Create the HTML form fields using the HTML <input> tag.

e. Add <wl:validator> tags. For the syntax of the tags, see “<wl:validator>” on
page 5-4. Place <wl:validator> tags on the page where you want the error
message or image to appear. If you use multiple forms on the same page, place
the <wl:validator> tag inside the <wl:form> block containing the form
fields you want to validate.

The following example shows a validation for a required field:
5-6 Programming WebLogic JSP

Using WebLogic JSP Form Validation Tags in a JSP
<wl:form name="FirstForm" method="POST" action="thisJSP.jsp">

<wl:validator
errorMessage="Field_1 is required" expression=""
fieldToValidate="field_1"
validatorClass=
"weblogicx.jsp.tags.validators.RequiredFieldValidator"

>

Field 1 is a required field

</wl:validator>

<p> <input type="text" name = "field_1"> </p>
<p> <input type="text" name = "field_2"> </p>
<p> <input type="submit" value="Submit FirstForm"> </p>
</wl:form>

If the user fails to enter a value in field_1, the page is redisplayed, showing
a warning.gif image, followed by the text (in red) “Field 1 is a
required field,” followed by the blank field for the user to re-enter the
value.

2. Copy the weblogic-vtags.jar file from the ext directory of your WebLogic
Server installation into the WEB-INF/lib directory of your Web Application. You
may need to create this directory.

3. Configure your Web Application to use the tag library by adding a <taglib>
element to the web.xml deployment descriptor for the Web Application. For
example:

<taglib>
<taglib-uri>tagl</taglib-uri>

 <taglib-location>
/WEB-INF/lib/weblogic-vtags.jar

</taglib-location>
</taglib>

For more information on Web Application deployment descriptors, see Writing
Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html.
Programming WebLogic JSP 5-7

http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html

5 Using WebLogic JSP Form Validation Tags
Creating HTML Forms Using the <wl:form>
Tag

This section contains information on creating HTML forms in your JSP page. You use
the <wl:form> tag to create a single form or multiple forms on a page.

Defining a Single Form

Use the <wl:form> tag that is provided in the weblogic-vtags.jar tag library: For
example:

<wl:form method="POST" action="nextPage.jsp">
<p> <input type="text" name ="field_1"> </p>
<p> <input type="text" name ="field_2"> </p>
<p> <input type="submit" value="Submit Form"> </p>
</wl:form>

For information on the syntax of this tag see “<wl:form>” on page 5-4.

Defining Multiple Forms

When using multiple forms on a page, use the name attribute to identify each form. For
example:

<wl:form name="FirstForm" method="POST" action="thisJSP.jsp">
<p> <input type="text" name="field_1"> </p>
<p> <input type="text" name="field_2"> </p>
<p> <input type="submit" value="Submit FirstForm"> </p>
</wl:form>

<wl:form name="SecondForm" method="POST" action="thisJSP.jsp">
<p> <input type="text" name="field_1"> </p>
<p> <input type="text" name="field_2"> </p>
<p> <input type="submit" value="Submit SecondForm"> </p>
</wl:form>
5-8 Programming WebLogic JSP

Creating HTML Forms Using the <wl:form> Tag
Re-Displaying the Values in a Field When Validation
Returns Errors

When the JSP page is re-displayed after the validator tag has found errors, it is useful
to re-display the values that the user already entered, so that the user does not have to
fill out the entire form again. Use the value attribute of the HTML <input> tag or use
a tag library available from the Apache Jakarta Project. Both procedures are described
next.

Re-Displaying a Value Using the <input> Tag

You can use the javax.servlet.ServletRequest.getParameter() method
together with the value attribute of the HTML <input> tag to re-display the user’s
input when the page is re-displayed as a result of failed validation. For example:

<input type="text" name="field_1"
value="<%= request.getParameter("field_1") %>" >

To prevent cross-site scripting security vulnerabilities, replace any HTML special
characters in user-supplied data with HTML entity references. See “Securing
User-Supplied Data in JSPs” on page 3-14.

Re-Displaying a Value Using the Apache Jakarta <input:text> Tag

You can also use a JSP tag library available free from the Apache Jakarta Project,
which provides the <input:text> tag as a replacement for the HTML <input> tag.
For example, the following HTML tag:

<input type="text" name="field_1">

could be entered using the Apache tag library as:

<input:text name="field_1">

For more information and documentation, download the Input Tag library, available at
http://jakarta.apache.org/taglibs/doc/input-doc/intro.html.

To use the Apache tag library in your JSP:

1. Copy the input.jar file from the Input Tag Library distribution file into the
WEB-INF/lib directory of your Web Application.
Programming WebLogic JSP 5-9

http://jakarta.apache.org/taglibs/doc/input-doc/intro.html

5 Using WebLogic JSP Form Validation Tags
2. Add the following directive to your JSP:

<%@ taglib uri="input" prefix="input" %>

3. Add the following entry to the web.xml deployment descriptor of your Web
Application:

<taglib>
 <taglib-uri>input</taglib-uri>
 <taglib-location>/WEB-INF/lib/input.jar</taglib-location>
</taglib>

Using a Custom Validator Class

To use your own validator class:

1. Write a Java class that extends the
weblogicx.jsp.tags.validators.CustomizableAdapter abstract class. For
more information, see “Extending the CustomizableAdapter Class” on page 5-11.

2. Implement the validate() method. In this method:

a. Look up the value of the field you are validating from the ServletRequest
object. For example:

String val = req.getParameter("field_1");

b. Return a value of true if the field meets the validation criteria.

3. Compile the validator class and place the compiled .class file in the
WEB-INF/classes directory of your Web Application.

4. Use your validator class in a <wl:validator> tag by specifying the class name
in the validatorClass attribute. For example:

<wl:validator errorMessage="This field is required"
fieldToValidate="field_1"
validatorClass="mypackage.myCustomValidator">
5-10 Programming WebLogic JSP

Using a Custom Validator Class
Extending the CustomizableAdapter Class

The CustomizableAdapter class is an abstract class that implements the
Customizable interface and provides the following helper methods:

getFieldToValidate()

Returns the name of the field being validated (defined by the
fieldToValidate attribute in the <wl:validator> tag)

getErrorMessage()

Returns the text of the error message defined with the errorrMessage
attribute in the <wl:validator> tag.

getExpression()

Returns the text of the expression attribute defined in the <wl:validator>
tag.

Instead of extending the CustomizableAdapter class, you can implement the
Customizable interface. For more information, see the Javadocs for
weblogicx.jsp.tags.validators.Customizable at
http://e-docs.bea.com/wls/docs61/javadocs/weblogicx/jsp/tags/vali

dators/Customizable.html.

Sample User-Written Validator Class

Listing 5-1 Example of a User-written Validator Class

import weblogicx.jsp.tags.validators.CustomizableAdapter;

public class myCustomValidator extends CustomizableAdapter{

 public myCustomValidator(){
super();

 }

public boolean validate(javax.servlet.ServletRequest req)
throws Exception {
String val = req.getParameter(getFieldToValidate());
// perform some validation logic
// if the validation is successful, return true,
// otherwise return false
Programming WebLogic JSP 5-11

http://e-docs.bea.com/wls/docs61/javadocs/weblogicx/jsp/tags/validators/Customizable.html

5 Using WebLogic JSP Form Validation Tags
if (true) {
 return true;
}
return false;

}

}

Sample JSP with Validator Tags

This sample code shows the basic structure of a JSP that uses the WebLogic JSP form
validation tags. A complete functioning code example is also available if you installed
the examples with your WebLogic Server installation. Instructions for running the
example are available at
samples/examples/jsp/tagext/form_validation/package.html, in your
WebLogic Server installation.

Listing 5-2 JSP with WebLogic JSP Form Validation Tags

<%@ taglib uri="tagl" prefix="wl" %>
<%@ taglib uri="input" prefix="input" %>

<wl:summary
name="summary"
headerText="Some fields have not been filled out
correctly."
redirectPage="successPage.jsp"
>

<html>
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">
</head>

<body bgcolor="#FFFFFF">
5-12 Programming WebLogic JSP

Sample JSP with Validator Tags
<% if(summary.size() >0) {
 out.println("<h3>" + headerText + "</h3>");
} %>

<% if (summary.size() > 0) {
out.println("<H2>Error Summary:</h2>");
for (int i=0; i < summary.size(); i++) {
out.println((String)summary.elementAt(i));
out.println("
");
}

} %>

<wl:form method="GET" action="successPage.jsp">

 User Name: <input:text name="username"/>
 <wl:validator
 fieldToValidate="username"

validatorClass="weblogicx.jsp.tags.validators.RequiredFieldValida
tor"
 errorMessage="User name is a required field!"
 >
 This is a required field!
 </wl:validator>

<p>

 Password: <input type="password" name="password">
 <wl:validator
 fieldToValidate="password"

validatorClass="weblogicx.jsp.tags.validators.RequiredFieldValida
tor"
 errorMessage="Password is a required field!"
 >
 This is a required field!
 </wl:validator>

 <p>

 Re-enter Password: <input type="password" name="password2">
 <wl:validator
 fieldToValidate="password,password2"
 validatorClass="weblogicx.jsp.tags.validators.CompareValidator"
 errorMessage="Passwords don't match"
 >
Programming WebLogic JSP 5-13

5 Using WebLogic JSP Form Validation Tags
 Passwords don't match.
 </wl:validator>

 <p>

 <input type="submit" value="Submit Form"> </p>

</wl:form>

</wl:summary>

</body>
</html>
5-14 Programming WebLogic JSP

CHAPTER
6 Using the WebLogic
EJB to JSP Integration
Tool

The following sections describe how to use the WebLogic EJB-to-JSP integration tool
to create JSP tag libraries that you can use to invoke EJBs in a JavaServer Page (JSP).
This document assumes at least some familiarity with both EJB and JSP.

� Overview of the WebLogic EJB-to-JSP Integration Tool

� Basic Operation

� Interface Source Files

� Build Options Panel

� Troubleshooting

� Using EJB Tags on a JSP Page

� EJB Home Methods

� Stateful Session and Entity Beans

� Default Attributes
Programming WebLogic JSP 6-1

6 Using the WebLogic EJB to JSP Integration Tool
Overview of the WebLogic EJB-to-JSP
Integration Tool

Given an EJB jar file, the WebLogic EJB-to-JSP integration tool will generate a JSP
tag extension library whose tags are customized for calling the EJB(s) of that jar file.
From the perspective of a client, an EJB is described by its remote interface. For
example:

public interface Trader extends javax.ejb.EJBObject {
 public TradeResult buy(String stockSymbol, int shares);
 public TradeResult sell(String stockSymbol, int shares);
}

For Web Applications that call EJBs, the typical model is to invoke the EJB using Java
code from within a JSP scriptlet (<% ... %>). The results of the EJB call are then
formatted as HTML and presented to the Web client. This approach is both tedious and
error-prone. The Java code required to invoke an EJB is lengthy, even in the simplest
of cases, and is typically not within the skill set of most Web designers responsible for
HTML presentation.

The EJB-to-JSP tool simplifies the EJB invocation process by removing the need for
java code. Instead, you invoke the EJB is invoked using a JSP tag library that is custom
generated for that EJB. For example, the methods of the Trader bean above would be
invoked in a JSP like this:

<% taglib uri="/WEB-INF/trader-tags.tld" prefix="trade" %>
invoking trade:

<trade:buy stockSymbol="BEAS" shares="100"/>

<trade:sell stockSymbol="MSFT" shares="200"/>

The resulting JSP page is cleaner and more intuitive. A tag is (optionally) generated
for each method on the EJB. The tags take attributes that are translated into the
parameters for the corresponding EJB method call. The tedious machinery of invoking
the EJB is hidden, encapsulated inside the handler code of the generated tag library.
The generated tag libraries support stateless and stateful session beans, and entity
beans. The tag usage scenarios for each of these cases are slightly different, and are
described below.
6-2 Programming WebLogic JSP

Basic Operation
Basic Operation

You can run the WebLogic EJB-to-JSP integration tool in command-line mode using
the following command:

 java weblogic.servlet.ejb2jsp.Main

or graphical mode. For all but the simplest EJBs, the graphical tool is preferable.

Invoke the graphical tool as follows:

 java weblogic.servlet.ejb2jsp.gui.Main

Initially, no ejb2jsp project is loaded by the Web Application. Create a new project by
selecting the File -> New menu item, browsing in the file chooser to an EJB jar file,
and selecting it. Once initialized, you can modify, save, and reload ejb2jsp projects for
future modification.

The composition of the generated tag library is simple: for each method, of each EJB,
in the jar file, a JSP tag is generated, with the same name as the method. Each tag
expects as many attributes as the corresponding method has parameters.

Interface Source Files

When a new EJB jar is loaded, the tool also tries to find the Java source files for the
home and remote interfaces of your EJB(s). The reason is that, although the tool can
generate tags only by introspecting the EJB classes, it cannot assign meaningful
attribute names to the tags whose corresponding EJB methods take parameters. In the
Trader example in “Overview of the WebLogic EJB-to-JSP Integration Tool” on
page 2, when the EJB jar is loaded, the tool tries to find a source file called
Trader.java. This file is then parsed and detects that the buy() method takes
parameters called stockSymbol and shares. The corresponding JSP tag will then have
appropriately named attributes that correspond to the parameters of the buy() method.
Programming WebLogic JSP 6-3

6 Using the WebLogic EJB to JSP Integration Tool
When a new EJB jar is loaded, the tool operates on the premise that the source
directory is the same directory where the EJB jar is located. If that is not the case, the
error is not fatal. After the new project is loaded, under the Project Build Options
panel, you can adjust the EJB Source Path element to reflect the correct directory.
You can then select the File -> Resolve Attributes menu to re-run the resolve process.

When looking for java source files corresponding to an interface class, the tool
searches in both the directory specified, and in a sub-directory implied by the
interface's java package. For example, for my.ejb.Trader, if the directory given is
C:/src, the tool will look for both C:/src/Trader.java and
C:/src/my/ejb/Trader.java.

Access to the source files is not strictly necessary. You can always modify attribute
names for each tag in a project by using the tool. However, parsing the source files of
the EJB's public interface was developed as the quickest way to assign meaningful
attribute names.

Build Options Panel

Use this panel to set all parameters related to the local file system that are needed to
build the project. Specify the Java compiler, the Java package of the generated JSP tag
handlers, and whether to keep the generated Java code after a project build, which can
be useful for debugging.

You can also use this panel to specify the type of tag library output you want. For use
in a J2EE web application, a tag library should be packaged one of two ways: as
separate class files and a Tag Library Descriptor (.tld) file, or as a single taglib jar file.
Either output type is chosen with the Output Type pull-down. For development and
testing purposes, DIRECTORY output is recommended, because a Web Application
in WebLogic Server must be re-deployed before a jar file can be overwritten.

For either DIRECTORY or JAR, the output locations must be chosen appropriately
so that the tag library will be found by a web application. For example, if you wish to
use the tag library in a web application rooted in directory C:/mywebapp, then the
DIRECTORY classes field should be specified as:

C:/mywebapp/WEB-INF/classes

and the DIRECTORY .tld File field should be something like:
6-4 Programming WebLogic JSP

Troubleshooting
C:/mywebapp/WEB-INF/trader-ejb.tld

The Source Path, described earlier, is edited in the Build Options panel as well. The
Extra Classpath field can be used if your tag library depends on other classes not in
the core WebLogic Server or J2EE API. Typically, nothing will need to be added to
this field.

Troubleshooting

Sometimes, a project fails to build because of errors or conflicts. This section describes
the reasons for those errors, and how they may be resolved.

� Missing build information One of the necessary fields in the Build Options
panel is unspecified, like the java compiler, the code package name, or a
directory where the output can be saved. The missing field(s) must be filled in
before the build can succeed.

� Duplicate tag names When an EJB jar is loaded, the tool records a tag for each
method on the EJB, and the tag name is the same as the method name. If the
EJB has overloaded methods (methods with the same name but different
signatures), the tag names conflict. Resolve the conflict by renaming one of the
tags or by disabling one of the tags. To rename a tag, navigate to the tag in
question using the tree hierarchy in the left window of the tool. In the tag panel
that appears in the right window, modify the Tag Name field. To disable a tag,
navigate to the tag in question using the tree hierarchy in the left window of the
tool. In the tag panel that appears in the right window, deselect the Generate
Tag box. For EJB jars that contain multiple EJBs, you can disable tags for an
entire bean may as well.

� Meaningless attribute names arg0, arg1... This error occurs when reasonable
attribute names for a tag could not be inferred from the EJB's interface source
files. To fix this error, navigate to the tag in question in the project hierarchy
tree. Select each of the attribute tree leaves below the tag, in order. For each
attribute, assign a reasonable name to the Attribute Name field, in the panel
that appears on the right side of the tool.

� Duplicate attribute names This occurs when a single tag expecting multiple
attributes has two attributes with the same name. Navigate to the attribute(s) in
question, and rename attributes so that they are all unique for the tag.
Programming WebLogic JSP 6-5

6 Using the WebLogic EJB to JSP Integration Tool
Using EJB Tags on a JSP Page

Using the generated EJB tags on a JSP page is simply a matter of declaring the tag
library on the page, and then invoking the tags like any other tag extension:

<% taglib uri="/WEB-INF/trader-ejb.tld"
 prefix="trade" %>
<trade:buy stockSymbol="XYZ" shares="100"/>

For EJB methods that have a non-void return type, a special, optional tag attribute
"_return", is built-in. When present, the value returned from the method is made
available on the page for further processing:

<% taglib uri="/WEB-INF/trader-ejb.tld"
 prefix="trade" %>
<trade:buy stockSymbol="XYZ"
 shares="100" _return="tr"/>
<% out.println("trade result: " + tr.getShares()); %>

For methods that return a primitive numeric type, the return variable is a Java object
appropriate for that type (for example, "int" -> java.lang.Integer, etc).

EJB Home Methods

EJB 2.0 allows for methods on the EJB home interface that are neither create() or
find() methods. Tags are generated for these home methods as well. To avoid
confusion, the tool prepends "home-" to the tags for each method on an EJB's home,
when a new project is loaded. These methods may be renamed, if desired.
6-6 Programming WebLogic JSP

Stateful Session and Entity Beans
Stateful Session and Entity Beans

Typical usage of a “stateful” bean is to acquire an instance of the bean from the bean's
Home interface, and then to invoke multiple methods on a single bean instance. This
programming model is preserved in the generated tag library as well. Method tags for
stateful EJB methods are required to be inside a tag for the EJB home interface that
corresponds to a find() or create() on the home. All EJB method tags contained within
the find/create tag operate on the bean instance found or created by the enclosing tag.
If a method tag for a stateful bean is not enclosed by a find/create tag for its home, a
run-time exception occurs. For example, given the following EJB:

public interface AccountHome extends EJBHome {

 public Account create(String accountId, double initialBalance);
 public Account findByPrimaryKey(String accountID);
 /* find all accounts with balance above some threshold */
 public Collection findBigAccounts(double threshold);
}

public interface Account extends EJBObject {
 public String getAccountID();
 public double deposit(double amount);
 public double withdraw(double amount);
 public double balance();
}

Correct tag usage might be as follows:

<% taglib uri="/WEB-INF/account-ejb.tld" prefix="acct" %>
<acct:home-create accountId="103"
 initialBalance="450.0" _return="newAcct">
 <acct:deposit amount="20"/>
 <acct:balance _return="bal"/>
 Your new account balance is: <%= bal %>
</acct:home-create>

If the "_return" attribute is specified for a find/create tag, a page variable will be
created that refers to the found/created EJB instance. Entity beans finder methods may
also return a collection of EJB instances. Home tags that invoke methods returning a
collection of beans will iterate (repeat) over their tag body, for as many beans as are
returned in the collection. If "_return" is specified, it is set to the current bean in the
iteration:
Programming WebLogic JSP 6-7

6 Using the WebLogic EJB to JSP Integration Tool
Accounts above $500:

<acct:home-findBigAccounts threshold="500" _return="acct">
Account <%= acct.getAccountID() %>
 has balance $<%= acct.balance() %>
</acct:home-findBigAccounts>

The preceding example will display an HTML list of all Account beans whose balance
is over $500.

Default Attributes

By default, the tag for each method requires that all of its attributes (method
parameters) be set on each tag instance. However, the tool will also allow "default"
method parameters to be specified, in case they are not given in the JSP tag. You can
specify default attributes/parameters in the Attribute window of the EJB-to-JSP tool.
The parameter default can come from an simple EXPRESSION, or if more complex
processing is required, a default METHOD body may be written. For example, in the
Trader example in “Overview of the WebLogic EJB-to-JSP Integration Tool” on
page 2, suppose you want the “buy” tag to operate on stock symbol “XYZ” if none is
specified. In the Attribute panel for the “stockSymbol” attribute of the “buy” tag, you
set the “Default Attribute Value” field to EXPRESSION, and enter “XYZ” (quotes
included!) in the Default Expression field. The buy tag then acts as if the
stockSymbol="XYZ" attribute were present, unless some other value is specified.

Or if you want the shares attribute of the "buy" tag to be a random number between
0-100, we would set "Default Attribute Value" to METHOD, and in the Default
Method Body area, you write the body of a Java method that returns int (the expected
type for the "shares" attribute of the "buy" method):

long seed = System.currentTimeMillis();
java.util.Random rand = new java.util.Random(seed);
int ret = rand.nextInt();
/* ensure that it is positive...*/
ret = Math.abs(ret);
/* and < 100 */
return ret % 100;
6-8 Programming WebLogic JSP

Default Attributes
Because your default method bodies appear within a JSP tag handler, your code has
access to the pageContext variable. From the JSP PageContext, you can gain access
to the current HttpServletRequest or HttpSession, and use session data or request
parameters to generate default method parameters. For example, to pull the "shares"
parameter for the "buy" method out of a ServletRequest parameter, you could write the
following code:

HttpServletRequest req =
 (HttpServletRequest)pageContext.getRequest();
String s = req.getParameter("shares");
if (s == null) {
 /* webapp error handler will redirect to error page
 * for this exception
 */
 throw new BadTradeException("no #shares specified");
}
int ret = -1;
try {
 ret = Integer.parseInt(s);
} catch (NumberFormatException e) {
 throw new BadTradeException("bad #shares: " + s);
}
if (ret <= 0)
 throw new BadTradeException("bad #shares: " + ret);
return ret;

The generated default methods are assumed to throw exceptions. Any exceptions
raised during processing will be handled by the JSP's errorPage, or else by the
registered exception-handling pages of the Web Application.
Programming WebLogic JSP 6-9

6 Using the WebLogic EJB to JSP Integration Tool
6-10 Programming WebLogic JSP

CHAPTER
7 Troubleshooting

The following sections describe several techniques for debugging your JSP files:

� Debugging Information in the Browser

� Symptoms in the Log File

Debugging Information in the Browser

The most useful feature for debugging your JSP pages is the output that is sent to the
browser by default. This output displays the location of the error in the generated
HTTP servlet Java file, a description of the error, and the approximate location of the
error code in the original JSP file. For example, when a compilation fails, the following
message is displayed in the browser:

To disable this mechanism, set the verbose attribute to false in the jsp-descriptor
element,
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-des

criptor in the WebLogic-specific deployment descriptor of your Web Application.
Programming WebLogic JSP 7-1

http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

7 Troubleshooting
Error 404—Not Found

Check that you have typed the URL of the JSP file correctly, and that it is relative to
the root directory of your Web Application.

Error 500—Internal Server Error

Check the WebLogic Server log file for error messages, and see “Page Compilation
Failed Errors” on page 3. This error usually indicates a ClasssNotFound exception
has occured during JSP compilation.

Error 503—Service Unavailable

Indicates that WebLogic Server cannot find the compiler it requires to compile your
JSPs. For more information about defining a JSP compiler, see “jsp-descriptor section,
available at
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-des

criptor.

Errors Using the <jsp:plugin> tag

If you use the <jsp:plugin> tag in your JSP and the applet fails to load, carefully
check the syntax of the tag. You can check for possible syntax errors by examining the
generated HTML page. If you see <jsp:plugin ... anywhere in the page, the syntax
of the tag is not correct.
7-2 Programming WebLogic JSP

http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

Symptoms in the Log File
Symptoms in the Log File

This section describes JSP-related error messages in the WebLogic Server log file. As
WebLogic Server runs, verbose messages are saved in a WebLogic log file. For more
information about WebLogic log files, see “Using Log Messages to Manage
WebLogic Servers” at
http://e-docs.bea.com/wls/docs61/adminguide/logging.html.

Page Compilation Failed Errors

The following errors may occur if the JSP compiler fails to translate the JSP page into
a Java file, or if it cannot compile the generated Java file. Check the log file for the
following error messages:

CreateProcess: ...

This indicates that the Java compiler cannot be found or is not a valid
executable. For information about specifying a Java compiler, see
jsp-descriptor section, available at
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#j

sp-descriptor.

Compiler failed:

The Java code generated from your JSP page cannot be compiled by the Java
compiler. You can use the JSP compiler independently to inspect and debug
the generated Java code in more detail. For more information see “Using the
WebLogic JSP Compiler” on page 19.

Undefined variable or classname:
If you are using a custom variable, make sure it is defined before you use it
in a scriptlet or define it in a declaration. You may see this error if you attempt
to use an implicit object from a declaration. Use of implicit objects in a
declaration is not supported in JSP.
Programming WebLogic JSP 7-3

http://e-docs.bea.com/wls/docs61/adminguide/logging.html
http://e-docs.bea.com/wls/docs61/adminguide/logging.html
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

7 Troubleshooting
7-4 Programming WebLogic JSP

Index

A
action 5-4
actions 3-10
administration 2-1
applets 3-17
application 3-4

C
cache tag

attributes 4-4
overview 4-2

caching 4-2
character encoding 3-6
compile 3-19
compiler 7-3
compiling 7-3
config 3-5
configuration 2-2
contentType 3-6
custom tags 4-1

and Web Applications 4-2
cache 4-2
configuration 4-2
process 4-7

custom validator 5-10
customer support contact information ix

D
debugging 7-1

declaration 3-2
declarations 3-6
deployment descriptor 2-2
directive 3-2

contentType 3-6
taglib 3-6

directives 3-5
documentation, where to find it viii

E
encoding 3-6
errors

404 7-2
500 7-2
503 7-2
jsp plugin tag 7-2
page compilation 7-3

expression 3-2, 5-5
expressions 3-8

F
fieldToValidate 5-5
form 5-4, 5-8

action 5-4
method 5-4
name 5-4

form tag 5-8
form validation 5-1
Hybrid Templates for FrameMaker 5.5 -5

G
getParameter() 5-9

H
headerText 5-3
HTML

form tag 5-4
HTML forms 5-8
HTTP

requests 1-3

I
input tag 5-9

Apache Jakarta 5-9

J
Java Plugin 3-17
JavaBeans 3-10
JSP administration 2-1, 2-2
JSP compiler

options 3-20
syntax 3-19

JSP configuration 2-2

L
log file 7-3

M
method 5-4

N
name 5-4

O
out 3-4

P
page 3-5
pageContext 3-4
parameters 2-2
plugin 3-17
printing product documentation viii
process tag

attributes 4-7
overview 4-7

R
redirectPage 5-3
re-displaying value from a form 5-9
regular expression validation 5-5
request 3-3, 3-12
reserved words 3-3

application 3-4
config 3-5
out 3-4
page 3-5
pageContext 3-4
request 3-3
response 3-3
session 3-4

response 3-3

S
scope 3-12

application 3-13
page 3-12
session 3-12

scriptlet 3-2
scriptlets 3-7
serializable 3-16
Servlet 2.2 specification 1-2
session 3-4
sessions 3-16
setting up JSP 2-2
summary 5-2
-6 Hybrid Templates for FrameMaker 5.5

headerText 5-3
name attribute 5-2
redirectPage 5-3

support
technical ix

T
taglib 3-6, 4-2
tags 3-2, 4-1

custom 4-1
declaration 3-2
directive 3-2
scriptlet 3-2

troubleshooting
browser 7-1

V
validation 5-1
validation tag

form 5-4
validation tags

summary 5-2
validator 5-4

validation tags, using in a JSP 5-6
validator 5-1, 5-4

custom 5-10
errorMessage attribute 5-4
expression attribute 5-5
fieldToValidate 5-5
validatorClass 5-5

validatorClass 5-5
verbose 7-1

W
web application 2-2
web.xml 4-2
weblogic.xml 2-2
wl-form 5-4

wl-summary 5-2
Hybrid Templates for FrameMaker 5.5 -7

	Contents
	1 JSP Overview
	What Is JSP?
	WebLogic Implementation of JSP
	WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality
	WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features
	WebLogic Server 6.1 with J2EE 1.2 Certification

	How JSP Requests Are Handled
	Additional Information

	2 Administering WebLogic JSP
	Overview of WebLogic JSP Administration
	Setting JSP Operating Parameters

	3 WebLogic JSP Reference
	JSP Tags
	Reserved Words for Implicit Objects
	Directives for WebLogic JSP
	Using the page Directive to Set Character Encoding
	Using the taglib Directive

	Declarations
	Scriptlets
	Expressions
	Example of a JSP with HTML and Embedded Java
	Actions
	Using JavaBeans in JSP
	Instantiating the JavaBean Object
	Doing Setup Work at JavaBean Instantiation
	Using the JavaBean Object
	Defining the Scope of a JavaBean Object

	Forwarding Requests
	Including Requests

	Securing User-Supplied Data in JSPs
	Using a WebLogic Server Utility Method

	Using Sessions with JSP
	Deploying Applets from JSP
	Using the WebLogic JSP Compiler
	Running JSPC on Windows Systems
	JSP Compiler Syntax
	JSP Compiler Options
	Precompiling JSPs
	System Properties and JSPs

	4 Using Custom WebLogic JSP Tags (cache, process, repeat)
	Overview of WebLogic Custom JSP Tags
	Using the WebLogic Custom Tags in a Web Application
	Cache Tag
	Refreshing a Cache
	Flushing a Cache

	Process Tag
	Repeat Tag

	5 Using WebLogic JSP Form Validation Tags
	Overview of WebLogic JSP Form Validation Tags
	Validation Tag Attribute Reference
	<wl:summary>
	<wl:form>
	<wl:validator>

	Using WebLogic JSP Form Validation Tags in a JSP
	Creating HTML Forms Using the <wl:form> Tag
	Defining a Single Form
	Defining Multiple Forms
	Re-Displaying the Values in a Field When Validation Returns Errors
	Re-Displaying a Value Using the <input> Tag
	Re-Displaying a Value Using the Apache Jakarta <input:text> Tag

	Using a Custom Validator Class
	Extending the CustomizableAdapter Class
	Sample User-Written Validator Class

	Sample JSP with Validator Tags

	6 Using the WebLogic EJB to JSP Integration Tool
	Overview of the WebLogic EJB-to-JSP Integration Tool
	Basic Operation
	Interface Source Files
	Build Options Panel
	Troubleshooting
	Using EJB Tags on a JSP Page
	EJB Home Methods
	Stateful Session and Entity Beans
	Default Attributes

	7 Troubleshooting
	Debugging Information in the Browser
	Error 404—Not Found
	Error 500—Internal Server Error
	Error 503—Service Unavailable
	Errors Using the <jsp:plugin> tag

	Symptoms in the Log File
	Page Compilation Failed Errors

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

