BEA WebLogic

Server
and BEA WebLogic Express”

Programming WebLogic JSP

BEA WebLogic Server Version 6.1
Document Date: December 19, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic JSP

Part Number Document Date Software Version

N/A December 19, 2001 BEA WebL ogic Server Version 6.1

Contents

About This Document

1. JSP Overview

WG IS JSP?.....eiiieieteeteee ettt sttt st st s se et 1-1
WebL ogic Implementation Of JSP..........c.cccoveriniine v 1-2
WebL ogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functiondlity 1-3
WebL ogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features.
1-3
WebL ogic Server 6.1 with J2EE 1.2 Certification..........cccccvevevveeenee. 1-3
How JSP Requests Are Handledccovevveviie s 1-3
Additional INfOrmMatioN..........cooieiiieee e 1-4
2. Administering WebLogic JSP
Overview of WebLogic JSP AdMIiNiStration.........ccoeeveieverenieneneeseeresseene e 2-1
Setting JSP Operating Parameters.........coovierereierneeereeesese e 2-2
3. WebLogic JSP Reference
NS 1= LS 3-2
Reserved Words for Implicit ObJECtS........covvvveiivere e 33
Directivesfor WebLogiC JSP ..o 35
Using the page Directive to Set Character Encoding.........cccceveveeverreenns 3-6
Using the taglib DIrECHIVEccvivvicererecce e 3-6
DECIAraIIONS..... ettt ettt st b bbb e e e en 3-6
S ot 1111 £ S 3-7
(0155 o] 3-8
Example of a JSP with HTML and Embedded Java...........cooeoeieieeinienineeneee 39
ACHTONS ...ttt e bbb bbb 3-10

Programming WebL ogic JSP iii

USiNg JAVABEANS IN JSP......cccceiececeeeee et et e e sre e e 3-10

Instantiating the JavaBean ObJECtccooeieeririenireree e 311

Doing Setup Work at JavaBean Instantiationcccceeveveevnierininnns 311

Using the JavaBean ObJECtccccoveirercere e 312
Defining the Scope of a JavaBean Objectccooeieeinienicicncie 312
FOrwarding REQUESES..........coirierierireeeeeese e te s s eee e snens 313
INCIUAING REQUESES ...t 3-13
Securing User-Supplied Datain JSPS.........cccooiirineneniesee e 314
Using aWebL ogic Server Utility Methodccccooeevivievecceceeeenns 3-15

USiNg SESSIONS WIth JSP.......cciiiie e 3-16
Deploying AppletSfrom ISP ... e 3-17
Using the WebL ogic JSP COMPIESccceiirereierreeseee e 3-19
Running JSPC on WindOWS SYSLEIMS........ccoieeieriereeineeieresese s 3-19
JSP COMPITEr SYNEAXeiviiviieeiieeeieee et e 3-19
JSP Compiler OPLtiONS....c..cieeeeeeereriesesie e e e e st se e see e es 3-20
Precompiling JSPS......c.oiiiiiiiee e 3-23
System Properties and JSPS.........ccoiiriieninere e 3-23

Using Custom WebLogic JSP Tags (cache, process, repeat)

Overview of WebLogic CUStOM JSP TagS....c.cvereereeeerereereseeeesreseseseesseneeseens 4-1
Using the WebL ogic Custom Tagsin aWeb Applicationc.ccocevevereenene. 4-2
(O o L= I o R 4-2

Refreshing @ Cache..........cov e 4-3

FIusShing @CaChecouiiiiie e e e 4-3
PrOCESS TAJ . i cteeieee ittt sr e st e be e ab et e e e e s 4-7
LS 0= | = R 4-8

Using WebLogic JSP Form Validation Tags

Overview of WebLogic JSP Form Validation Tags.........ccoeeeerereneenieieeneneenens 51
Validation Tag Attribute REFENENCE........cccoeeeerirre e 5-2
SWEISUMIMEANY ...t s se e 5-2
SWETOIMS bbb 5-4
SWEVAITABIONS ... 5-4
Using WebL ogic JSP Form Validation TagSin aJSP........ccccocvenveneienieneeene. 5-6
Creating HTML Forms Using the <wl:form> Tag........cccceeeveiennininencnnnns 5-8

Programming WebL ogic JSP

Defining @ SiNGIE FOM ..o s e 5-8

Defining MUItiPIE FOIMS......ccoiiieeeeeerie e 5-8
Re-Displaying the Valuesin a Field When Validation Returns Errors...... 5-9
Re-Displaying a Vaue Using the <input> Tag..........cocvevererreeennnnnnns 59
Re-Displaying a Vaue Using the Apache Jakarta <input:text> Tag.. 5-9

Using a Custom Validator Class.........cccvevveeeieeeneniesesee e seeeeeseeseseeenseens 5-10
Extending the CustomizableAdapter Class.........ccoceveeerrceeinerieresenes 5-11
Sample User-Written Validator Class..........cooeerrieeienenienesene e 511
Sample JSP With Validator TagS.......cccovvvererierieseeeseseee e se e seesee e seeneenens 5-12

Using the WebLogic EJB to JSP Integration Tool

Overview of the WebL ogic EJB-t0-JSP Integration Toolcccceeeveveenennenne. 6-2
R Sl @] o7 (o] o TR 6-3
INtErface SOUMCE FIlES......ouieieeee e 6-3
BUild OptioNS Panlc.coiiiriiieeeeeeee et 6-4
JLILCe 18 o] K== 7o) 1o XS 6-5
Using EJB TagS 0N aJSP Page.........cccvveririereeeeeeese e stese e eesee e sesseenesseeneas 6-6
EJB HOME MEhOUS. ...t 6-6
Stateful Session and ENtity BEANS..........ccovvvvevereneeereneeesrese e sees e see e eneees 6-7
Defallt ALITDULEScoveireeieeeeeee e et e s 6-8
Troubleshooting
Debugging Information in the BroOWSENccooviieiiiiiiesene e 7-1
Error 404—NOt FOUNcoooiiriiieiiee s 7-2
Error 500—Internal SErVEr EFTOrccoooeieierenesiereee e 7-2
Error 503—Service Unavailable..........ocooiiiiiiiiiiiie e 7-2
Errors Using the <jsp:plugin> tag......cccccerereerereninse e 7-2
SymptomSiNthe LOg File ..o 7-3
Page Compilation Failed EFTOrS........ccovrinineniniesieie e 7-3

Programming WebL ogic JSP v

Vi

Programming WebL ogic JSP

About This Document

This document describes how to program e-commerce applications by using
JavaServer Pages (JSP) and WebL ogic Server.

The document is organized as follows:

Chapter 1, “JSP Overview,” provides an introduction and reference for the basic
syntax of JSP and information about how to use JSP with WebL ogic Server.

Chapter 2, “Administering WebL ogic JSP,” provides a brief overview of
administration and configuration tasks for WebL ogic JSP.

Chapter 3, “WebL ogic JSP Reference,” provides a reference on writing JSPs.

Chapter 4, “Using Custom WebL ogic JSP Tags (cache, process, repeat),”
discusses the use of three custom JSP tags provided with the WebL ogic Server
distribution: the cache tag, ther epeat tag, and the pr ocess tag.

Chapter 7, “Troubleshooting,” describes several techniques for debugging your
JSPfiles.

Audience

This document is written for application devel opers who want to build e-commerce
applications using JSP and the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

Programming WebL ogic JSP vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

m JSP 1.1 Specification from Sun Microsystems, available at
http://java. sun. coni products/jsp/ downl oad. htmi .

m Programming WebL ogic JSP Tag Extensions at
http://e-docs. bea. com wl s/ docs61/taglib/index. htm.

m Deploying and Configuring Web Applications at
http://e-docs. bea. com w s/ docs61/ adm ngui de/ confi g_web_app. htn

viii Programming WebL ogic JSP

http://www.adobe.com
http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs61/taglib/index.htm
http://e-docs.bea.com/wls/docs61/adminguide/config_web_app.html

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

®m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneoudly.

italics Emphasis and book titles.

Programming WebL ogic JSP iX

mailto:docsupport@bea.com
http://www.bea.com

Convention Usage

nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also

indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chnmod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace Variablesin code.

italic Example:
t ext .
String Custoner Nane;

UPPERCASE Device names, environment variables, and logical operators.

TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.
[1] Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several times in the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Programming WebL ogic JSP

Convention Usage

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic JSP Xi

Xii Programming WebL ogic JSP

CHAPTER

1 JsSpP overview

This document is an introduction and reference for the basic syntax of JavaServer
Pages (JSP). It provides information about how to use JSP with WebL ogic Server. It
is not intended as a comprehensive guide to programming with JSP.

The following sections provide an overview of JSP:
m What IsJSP?

m WebL ogic Implementation of JSP

m How JSP Requests Are Handled

m Additiona Information

What Is JSP?

JavaServer Pages (JSP) is a Sun Microsystems specification for combining Java with
HTML to provide dynamic content for Web pages. When you create dynamic content,
JSPs are more convenient to write than HTTP servlets because they allow you to
embed Java code directly into your HTML pages, in contrast with HTTP servlets, in
which you embed HTML inside Javacode. JSPis part of the Java 2 Enterprise Edition
(J2EE).

JSP enables you to separate the dynamic content of a Web page from its presentation.
It catersto two different types of developers: HTML developers, who are responsible
for the graphical design of the page, and Java devel opers, who handl e the devel opment
of software to create the dynamic content.

Programming WebL ogic JSP 11

1 Jspoverview

Because JSPis part of the J2EE standard, you can deploy JSPs on avariety of
platforms, including WebL ogic Server. In addition, third-party vendors and
application devel opers can provide JavaBean components and define custom JSP tags
that can be referenced from a JSP page to provide dynamic content.

WebLogic Implementation of JSP

BEA WebL ogic JSP supports the JSP 1.1 specification (see

http://java. sun. cont product s/ j sp/ downl oad. ht n) from Sun Microsystems.
JSP 1.1 includes support for defining custom JSP tag extensions. (See Programming
JSP Extensions at http://e-docs.bea.com/wls/docs61/taglib/index.html.)

WebL ogic Server also supports the Servlet 2.2 specification

(http://java. sun. com product s/ servl et/ downl oad. ht m #specs) from Sun
Microsystems, and the proposed final draft of the Servlet 2.3 specification. For more
information, see Servlet 2.3 at

http://e-docs. bea. com wl s/ docs61/ not es/ new. ht nl #ser vl et - webapp.

Note: WebLogic Server version 6.1 supports the JSP 1.2 specification with the
following exceptions:

The jsp:id mechanism has not been implemented
The following feature has not been implemented:

A JAR containing a packaged tag libraries can be dropped into the
WEB-INF/lib directory to make its classes available at request time

The following DTD Elements are not supported:
m The<listener> element in the taglib.tld is not registered with the webapp

m The <example> element in the taglib.tld is not honored.

We still use the older signature of the TaglibraryValidator.validate() method
which returns a String

The Servlet 2.3 and JSP 1.2 specifications are part of the J2EE 1.3
specification. To use these features, please see “WebL ogic Server 6.1 with
J2EE 1.2 and J2EE 1.3 Functionality” on page 3.

1-2 Programming WebL ogic JSP

http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs61/taglib/index.html
http://e-docs.bea.com/wls/docs61/taglib/index.html
http://java.sun.com/products/servlet/download.html#specs
http://e-docs.bea.com/wls/docs61/notes/new.html#servlet-webapp

How JSP Requests Are Handled

WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3
Functionality

BEA WebL ogic Server 6.1 isthe first e-commerce transaction platform to implement
advanced J2EE 1.3 features. To comply with the rules governing J2EE, BEA Systems
provides two separate downloads: one with J2EE 1.3 features enabled, and onethat is
limited to J2EE 1.2 features only. Both downloads offer the same container and differ
only inthe APIsthat are available.

WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features

With this download, WebL ogic Server defaults to running with J2EE 1.3 features
enabled. These features include EJB 2.0, JSP 1.2, Servlet 2.3, and J2EE Connector
Architecture 1.0. When you run WebL ogic Server 6.1 with J2EE 1.3 features enabled,
J2EE 1.2 applications are still fully supported. The J2EE 1.3 feature implementations
use non-final versions of the appropriate API specifications. Therefore, application
code developed for BEA WebL ogic Server 6.1 that uses the new features of J2EE 1.3
may be incompatible with the J2EE 1.3 platform supported in future rel eases of BEA
WebL ogic Server.

WebLogic Server 6.1 with J2EE 1.2 Certification

With this download, WebL ogic Server defaults to running with J2EE 1.3 features
disabled and is fully compliant with the J2EE 1.2 specification and regul ations.

How JSP Requests Are Handled

WebL ogic Server handles JSP requests in the following sequence:
1. A browser requests a page with a. j sp file extension from WebL ogic Server.
2. WebL ogic Server reads the request.

Programming WebL ogic JSP 1-3

1

JSP Overview

3.

4.

Itisalso possibleto invoke the JSP compiler directly without making arequest from a
browser. For details, see“Using the WebL ogic JSP Compiler” on page 3-19. Because
JSP compiler creates a Java servlet asitsfirst step, you can look at the Javafilesit
produces, or even register the generated JspPage servlet classasan HT TP servlet (See

the

ht t

Using the JSP compiler, WebL ogic Server converts the JSP into a servlet class
that implementsthej avax. servl et . j sp. JspPage interface. The JSPfileis
compiled only when the page isfirst requested, or when the JSP file has been
changed. Otherwise, the previously compiled JSP servlet classis re-used, making

subsequent responses much quicker.

The generated JspPage servlet classisinvoked to handle the browser request.

p://e-docs. bea. com w s/ docs61/ servl et/ i ndex. ht m).

Additional Information

1-4

Programmin

JavaServer Pages Tutorial from Sun Microsystems at
http://java. sun. conl products/jsp/docs. htnl

JSP product overview from Sun Microsystems at
http://ww. j ava. sun. coni product s/ j sp/ i ndex. ht m

JSP 1.1 Specification from Sun Microsystems at
http://java. sun. conl products/jsp/ downl oad. ht m

Programming JSP Extensions at
http://e-docs. bea. com w s/ docs61/taglib/index. htmn

Programming WebL ogic HTTP Servlets at
http://e-docs. bea. comw s/ docs61/ servl et/i ndex. ht m

Assembling and Configuring Web Applications at
http://e-docs. bea. comw s/ docs61/ webapp/ i ndex. ht m

g WebL ogic JSP

http://e-docs.bea.com/wls/docs61/servlet/index.html
http://java.sun.com/products/jsp/docs.html
http://www.java.sun.com/products/jsp/index.html
http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs61/taglib/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

CHAPTER

2 Administering
WebLogic JSP

Thefollowing sections provide an overview of administration and configuration tasks
reguired to deploy WebL ogic JavaServer Pages (JSP):

m Overview of WebLogic JSP Administration
m Setting JSP Operating Parameters

For a complete discussion of JSP administration and configuration see Configuring
JSP at

http://e-docs. bea. com W s/ docs61/ webapp/ conponent s. ht nl #confi guri
ng-j sp.

Overview of WebLogic JSP Administration

In keeping with the Java 2 Enterprise Edition standard, JSPs are deployed as part of a
Web Application. A Web Application isagrouping of application components, such as
HTTP servlets, JavaServer Pages (JSP), static HTML pages, images, and other
resources.

In aWeb Application, the components are organized using a standard directory
structure. You can deploy your application using this directory structure or you can
archivethefilesintoasinglefilecalled aWeb Application Archive(. war) and deploy
the. war file. You define information about the resources and operating parameters of

Programming WebL ogic JSP 2-1

http://e-docs.bea.com/wls/docs61/webapp/components.html#configuring-jsp
http://e-docs.bea.com/wls/docs61/webapp/components.html#configuring-jsp

2 Administering WebLogic JSP

Setting

aWeb Application using two deployment descriptors, which areincluded in the files
of the Web Application. For more information, see Assembling and Configuring Web
Applicationsat htt p: / / e- docs. bea. comf W s/ docs61/ webapp/ i ndex. ht n .

The first deployment descriptor, web. xni , is defined in the Servlet 2.2 specification
from Sun Microsystems. It provides a standardized format that describes the Web
Application. The second deployment descriptor, webl ogi c. xnl , isa

WebL ogic-specific depl oyment descriptor that maps resources defined intheweb. xni
file to resources available in WebL ogic Server, defines JSP parameters, and defines
HTTP session parameters. For more information, see “Writing Web Application
Deployment Descriptors’ at

http://e-docs. bea. comw s/ docs61/ webapp/ webappdepl oynent . ht m .

JSPs do not require specific mappings as do HTTP servlets. To deploy JSPsinaWeb
Application, ssmply place them in the root directory (or in a sub-directory of the root)
of the Web Application. No additional registrations are required. Y ou can deploy both
servlets and JSPs in the same Web Application.

JSP Operating Parameters

Parameters that govern the behavior of JSPs are defined in webl ogi c. xni , the
WebL ogic-specific deployment descriptor of your Web Application. For more
information about editing thisfile, see “ Assembling and Configuring Web
Applicationsat htt p: / / e- docs. bea. comf wl s/ docs61/ webapp/ i ndex. ht n

A complete description of JSP propertiesin the WebL ogic-specific deployment
descriptor, including their default valuesis provided in the jsp-descriptor section,
available at

http://e-docs. bea. com wl s/ docs61/ webapp/ webl ogi c_xm . ht ml #j sp- des
criptor.

Parameters set in webl ogi ¢. xnl include:

m conpi | eComrand
m conpil eFl ags
m conpilerclass

® encoding

2-2 Programming WebL ogic JSP

http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

Setting JSP Operating Parameters

keepgener at ed
packagePref i x
pageCheckSeconds
ver bose

wor ki ngDi r

Programming WebL ogic JSP

2-3

2 Administering WebLogic JSP

2-4 Programming WebL ogic JSP

CHAPTER

3

WebLogic JSP
Reference

The following sections provide reference information for writing JavaServer Pages
(JSPs):

JSP Tags

Reserved Words for Implicit Objects
Directives for WebL ogic JSP
Scriptlets

Expressions

Example of a JSP with HTML and Embedded Java
Actions

Securing User-Supplied Data in JSPs
Using Sessions with JSP

Deploying Applets from JSP

Using the WebL ogic JSP Compiler

Programming WebL ogic JSP

3 WebLogic JSP Reference

JSP Tags

The following table describes the basic tags that you can use in a JSP page. Each
shorthand tag has an XML equivalent.

Table 3-1 Basic Tagsfor JSP Pages

JSP Tag

Syntax

Description

Scriptl et

<% j ava_code %
... or usethe XML equivalent:

<jsp:scriptlet>
j ava_code
</jsp:scriptlet>

Embeds Java source code scriptlet
inyour HTML page. The Javacode
is executed and its output is
inserted in sequence with the rest
of the HTML in the page. For
details, see “ Scriptlets’ on page
3-7.

Directive

<vg@dir-type dir-attr %
... or usethe XML equivalent:

<jsp:directive.dir_type
dir_attr />

Directives contain messages to the
application server.

A directive can aso contain
name/value pair attributes in the
format tr =" val ue”, which
provides additional instructions to
the application server. See
“Directivesfor WebLogic JSP” on

page 3-5.

Decl arati ons

<% declaration %
...oruse XML equivalent...

<j sp: decl arati on>
decl arati on;
</j sp: decl arati on>

Declares a variable or method that
can be referenced by other
declarations, scriptlets, or
expressionsin the page. See
“Declarations’ on page 3-6.

Expr essi on

<% expression %
...oruse XML equivalent...
<j sp: expr essi on>
expr essi on

</ expr essi on>

32 Programming WebL ogic JSP

Defines a Java expression that is
evaluated at page request time,
convertedtoa St ri ng, and sent
inline to the output stream of the
JSP response. See “ Expressions’
on page 3-8.

Reserved Words for Implicit Objects

Table 3-1 Basic Tagsfor JSP Pages

JSP Tag Syntax Description
Acti ons <j sp:useBean ... > Provide access to advanced
JSP body isincluded if thebeanis ~ featuresof JSP, and only use XML
instantiated here syntax. These actions are

supported asdefined inthe JISP 1.1

</] sp: useBean> specification. See “Actions’ on

<j sp:setProperty ... >

<}SEZ get Progertz > page 3-10.
<jsp:include ... >

<jsp:forward ... >
<jsp:plugin ... >

Reserved Words for Implicit Objects

JSP reserves words for implicit objects in scriptlets and expressions. These implicit
objects represent Java objects that provide useful methods and information for your
JSP page. WebL ogic JSP implements all implicit objects defined in the JSP 1.1
specification. The JSP API is described in the Javadocs available from the Sun
Microsystems JSP Home Page at

http://ww.java. sun. coni products/jsp/index.htm .

Note: Usetheseimplicit objectsonly within Scri pt | et s or Expr essi ons. Using
these keywords from a method defined in a declaration causes a
translation-time compilation error because such usage causes your page to
reference an undefined variable.

request
request representsthe Ht t pSer vl et Request object. It contains
information about the request from the browser and has several useful
methods for getting cookie, header, and session data.

response
response representsthe Ht t pSer vl et Response object and several useful
methodsfor setting the response sent back to the browser from your JSP page.
Examples of these responses include cookies and other header information.

Programming WebL ogic JSP 33

http://www.java.sun.com/products/jsp/index.html
http://www.java.sun.com/products/jsp/index.html

3 WebLogic JSP Reference

34

out

Warning: You cannot usether esponse. get Wi t er () method fromwithin
a JSP page; if you do, arun-time exception is thrown. Use the out keyword
to send the JSP response back to the browser from within your scriptlet code
whenever possible. The WebL ogic Server implementation of
javax.servlet.jsp.JspWiter uses

j avax. servl et . Servl et Qut put St r eam which implies that you can use
r esponse. get Ser vl et Qut put St r ean() . Keep in mind, however, that this
implementation is specific to WebL ogic Server. To keep your code
maintainable and portable, use the out keyword.

out isaninstanceof j avax. j sp. JspWi t er that has several methods you
can use to send output back to the browser.

If you are using a method that requires an output stream, then Jspwi t er
does not work. Y ou can work around this limitation by supplying a buffered
stream and then writing this stream to out . For example, the following code
shows how to write an exception stack trace to out :

Byt eArrayQut put Stream ostr = new Byt eArrayQut put Strean();
exception.printStackTrace(new PrintWiter(ostr));
out.print(ostr);

pageCont ext

sessi on

pageCont ext representsaj avax. servl et . j sp. PageCont ext object. Itis
aconvenience API for accessing various scoped namespaces and
servlet-related objects, and provides wrapper methods for common
servlet-related functionality.

sessi on representsaj avax. servl et . http. Ht t pSessi on object for the
request. The session directiveis set to true by default, sothesessi onisvalid
by default. The JSP 1.1 specification states that if the session directiveis set
tofal se, then using the sessi on keyword resultsin afatal translation time
error. For more information about using sessions with servlets, see
Programming WebLogic HTTP Serviets at

http://e-docs. bea. com w s/ docs61/ servl et/index. htm .

application

appl i cati on representsaj avax. ser vl et . Ser vl et Cont ext object. Use
it to find information about the servlet engine and the servlet environment.

When forwarding or including requests, you can access the servlet
r equest Di spat cher using the Ser vl et Cont ext , or you can use the JSP

Programming WebL ogic JSP

http://e-docs.bea.com/wls/docs61/servlet/index.html

Directives for WebLogic JSP

f orwar d directive for forwarding requests to other servlets, and the JSP
i ncl ude directive for including output from other servlets.

config
confi g representsaj avax. servl et . Ser vl et Confi g object and provides
access to the servlet instance initialization parameters.

page
page represents the servlet instance generated from this JSP page. It is
synonymous with the Java keyword t hi s when used in your scriptlet code.

To use page, you must cast it to the class type of the servlet that implements
the JSP page, becauseit is defined asan instance of j ava. | ang. Obj ect . By
default, theservlet classis named after the JSPfilename. For convenience, we
recommend that you use the Java keyword t hi s to reference the servlet
instance and get access to initialization parameters, instead of using page.

For more information on the underlying HT TP servlet framework, see the related
developers guide, Programming WebL ogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html.

Directives for WebLogic JSP

Use directives to instruct WebL ogic JSP to perform certain functions or interpret the
JSP page in aparticular way. Y ou can insert a directive anywhere in a JSP page. The
position is generally irrelevant (except for thei ncl ude directive), and you can use
multiple directive tags. A directive consists of a directive type and one or more
attributes of that type.

Y ou can use either of two types of syntax: shorthand or XML.:
m Shorthand:

<v@dir_type dir_attr %
m XML:

<jsp:directive.dir_type dir_attr />

Replace di r _t ype with the directive type, and di r _at t r with alist of one or more
directive attributes for that directive type.

Programming WebL ogic JSP 35

http://e-docs.bea.com/wls/docs61/servlet/index.html

3 WebLogic JSP Reference

There are three types of directivespage, t agl i b, ori ncl ude.

Using the page Directive to Set Character Encoding

To specify acharacter encoding set, use the following directive at the top of the page:
<%@ page content Type="text/htm ; charset=custom encodi ng” %

Replace the cust om encodi ng with a standard HTTP-style character set name (see
http://ww.isi.edu/in-notes/ianal assi gnments/character-sets).

The character set you specify with acont ent Type directive specifiesthe character set
used in the JSP as well as any JSP included in that JSP.

Y ou can specify adefault character encoding by specifyingitinthe WebL ogic-specific
deployment descriptor for your Web Application. For more information, see the
jSp-descriptor section at

http://e-docs. bea. com wl s/ docs61/ webapp/ webl ogi c_xm . ht ml #j sp- des
criptor.

Using the taglib Directive

Useat agl i b directive to declare that your JSP page uses custom JSP tag extensions
that are defined in atag library. For details about writing and using custom JSP tags,
see “Programming WebL ogic JSP Extensions” at
http://e-docs.bea.com/wls/docs6L/taglib/index.html.

Declarations

36

Use declarations to define variables and methods at the class-scope level of the
generated JSP servlet. Declarations made between JSP tags are accessible from other
declarations and scriptletsin your JSP page. For example:

<08
int i=0;

Programming WebL ogic JSP

http://www.isi.edu/in-notes/iana/assignments/character-sets
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor
http://e-docs.bea.com/wls/docs61/taglib/index.html

Scriptlets

String foo= "Hello";
private void bar() {
/1 ...java code here..

}
%

Remember that class-scope objects are shared between multiple threads being
executed in the same instance of a servlet. To guard against sharing violations,
synchronize class scope objects. If you are not confident writing thread-safe code, you
can declare your servlet as not-thread-safe by including the following directive:

<% page i sThreadSaf e="fal se" %

By default, this attributeis set to t r ue. When set to f al se, the generated servlet
implementsthej avax. ser vl et . Si ngl eThr eadMVodel interface, which prevents
multiple threads from running in the same servlet instance. Settingi sThr eadSaf e to
f al se consumes additional memory and can cause performance to degrade.

Scriptlets

JSP scriptlets make up the Javabody of your JSP servlet’ sHTTP response. To include
ascriptlet in your JSP page, use the shorthand or XML scriptlet tags shown here:

Shorthand:
<%
/1 Your Java code goes here
%
XML:
<jsp:scriptlet>
/1 Your Java code goes here
</jsp:scriptlet>
Note the following features of scriptlets:

®m You can have multiple blocks of scriptlet Java code mixed with plain HTML.

Programming WebL ogic JSP 37

3 WebLogic JSP Reference

m You can switch between HTML and Java code anywhere, even within Java
constructs and blocks. In “Example of a JSP with HTML and Embedded Java’
on page 3-9 the example declares a Java loop, switchesto HTML, and then
switches back to Javato close the loop. The HTML within the loop is generated
as output multiple times as the loop iterates.

m You can use the predefined variable out to print HTML text directly to the
servlet output stream from your Java code. Call the pri nt () method to add a
string to the HT TP page response.

Any time you print data that a user has previously supplied, BEA recommends
that you remove any HTML special characters that a user might have entered. If
you do not remove these characters, your Web site could be exploited by
cross-site scripting. See " Securing User-Supplied Datain JSPS’ on page 3-14.

m TheJavatagisaninlinetag; it does not force a new paragraph.

Expressions

3-8

To include an expression in your JSP file, use the following tag:
<U% expr %

Replace expr with a Java expression. When the expression is evaluated, itsst ri ng
representation is placed inline in the HTML response page. It is shorthand for

<% out.print(expr); %

This technique enables you to make your HTML more readable in the JSP page. Note
the use of the expression tag in the example in the next section.

Expressions are often used to return datathat auser has previously supplied. Any time
you print user-supplied data, BEA recommends that you remove any HTML special
characters that a user might have entered. If you do not remove these characters, your
Web site could be exploited by cross-site scripting. See“ Securing User-Supplied Data
in JSPs” on page 3-14.

Programming WebL ogic JSP

Example of a JSP with HTML and Embedded Java

Example of a JSP with HTML and Embedded
Java

The following example shows a JSP with HTML and embedded Java:

<htm >
<head><title>Hello Wrld Test</titl e></head>

<body bgcol or=#ffffff>

<center >

<hl> Hello World Test </hl>

<%

out.print("Java-generated Hello World");
%

<p> This is not Javal

<p><i >M ddl e stuff on page</i>
<p>

<%
for (int i =1; i<=3; i++) {
%
<h2>This is HTM. in a Java loop! <% i % </ h2>
<%

%

</center>
</ body>
</htm >

After the code shown here is compiled, the resulting page is displayed in a browser as
follows:

Programming WebL ogic JSP 39

3 WebLogic JSP Reference

Hello World Test

Java-generated Hello Waorld
This is not Javal

Middle stuff o page

This is HTML in a Java loop! 1
This is HTML in a Java loop! 2
This is HTML in a Java loop! 3

Actions

Y ou use JSP actions to modify, use, or create objects that are reperesented by
JavaBeans. Actions use XML syntax exclusively.

Using JavaBeans in JSP

The<j sp: useBean> action tag allowsyou to instantiate Java objectsthat comply with
the JavaBean specification, and to refer to them from your JSP pages.

To comply with the JavaBean specification, objects need:

m A public constructor that takes no arguments

3-10 Programming WebL ogic JSP

Actions

m A setVariabl e() method for eachvari abl e field

m A getVari abl e() method for eachvari abl e field

Instantiating the JavaBean Object

The <j sp: useBean> tag attempts to retrieve an existing named Java object from a
specific scope and, if the existing object is not found, may attempt to instantiate a new
object and associate it with the name given by thei d attribute. The object isstored in
alocation given by the scope attribute, which determines the availability of the object.
For example, the following tag attempts to retrieve a Java object of type

exanpl es. j sp. Shoppi ngCart from the HTTP session under the namecart .

<j sp:useBean id="cart"
cl ass="exanpl es. j sp. Shoppi ngCart" scope="session"/>

If such an object does not currently exist, the JSP attempts to create a new object, and
storesit in the HTTP session under the name car t . The class should be availablein
the CLASSPATH used to start WebL ogic Server, or in the WEB- | NF/ ¢l asses directory
of the Web Application containing the JSP.

It isgood practiceto use an er r or Page directive with the <j sp: useBean> tag
because there are run-time exceptions that must be caught. If you do not use an
er r or Page directive, the class referenced in the JavaBean cannot be created, an
I nstantiati onExcepti on isthrown, and an error message is returned to the
browser.

You canusethet ype attributeto cast the JavaBean typeto another object or interface,
provided that it isalegal type cast operation within Java. If you use the attribute
without the cl ass attribute, your JavaBean object must already exist in the scope
specified. If itisnot legal, an | nst ant i ati onExcepti on isthrown.

Doing Setup Work at JavaBean Instantiation

The <j sp: useBean> tag syntax has another format that allows you to define a body
of JSP code that is executed when the object isinstantiated. The body is not executed
if the named JavaBean already existsin the specified scope. Thisformat allowsyou to
set up certain properties when the object isfirst created. For example:

<j sp:useBean id="cart" class="exanpl es.] sp. Shoppi ngCart"
scope=sessi on>
Creating the shopping cart now...
<j sp: setProperty nanme="cart"

Programming WebLogicJSP ~ 3-11

WebLogic JSP Reference

property="cartNane" val ue="nusic">
</j sp: useBean>

Note: If you usethet ype attribute without thecl ass attribute, a JavaBean object is
never instantiated, and you should not attempt to use the tag format to include
abody. Instead, use the singletag format. In this case, the JavaBean must exist
in the specified scope, or an | nst ant i at i onExcepti on isthrown. Use an
er r or Page directive to catch the potential exception.

Using the JavaBean Object

After you instantiate the JavaBean object, you can refer toit by itsi d namein the JSP
file asaJavaobject. Y ou can useit within scriptlet tags and expression evaluator tags,
and you can invoke itsset Xxx() or get Xxx() methods using the

<j sp: set Property> and <j sp: get Proper t y> tags, respectively.

Defining the Scope of a JavaBean Object

312

Usethescope attribute to specify theavailability and life-span of the JavaBean object.
The scope can be one of the following:

page
Thisisthe default scope for a JavaBean, which stores the object in the

j avax. servl et. j sp. PageCont ext of the current page. It isavailable only
from the current invocation of this JSP page. It is not available to included
JSP pages, and it is discarded upon completion of this page request.

request
When ther equest scopeis used, the object is stored in the current

Ser vl et Request , and it is avail able to other included JSP pages that are
passed the same request object. The object is discarded when the current
request is completed.

sessi on
Usethe sessi on scope to store the JavaBean object in the HTTP session so

that it can be tracked across several HTTP pages. The referenceto the
JavaBean is stored in the page' s Ht t pSessi on object. Y our JSP pages must
be ableto participatein asession to use thisscope. That is, you must not have
the page directive sessi on settof al se.

Programming WebL ogic JSP

Actions

application
Attheappl i cati on- scopelevel, your JavaBean object is stored in the Web
Application. Use of thisscopeimpliesthat the object is availableto any other
servlet or ISP page running in the same Web Application in which the object
is stored.

For more information about using JavaBeans, see the JSP 1.1 specification at
http://ww. java. sun. com products/jsp/index. htm .

Forwarding Requests

If you are using any type of authentication, a forwarded request made with the

<j sp: f or war d> tag, by default, does not require the user to be re-authenticated. You
can change this behavior to require authentication of aforwarded request by adding the
<check- aut h- on- f or war d/ > element tothe<cont ai ner - descri pt or > element of
the WebL ogi c-specific deployment descriptor, webl ogi c. xmi . For example:

<contai ner-descriptor>
<check-auth-on-forward/>
</container-descriptor>

For information on editing the WebL ogi c-specific deployment descriptor, see Writing
the WebL ogi c-Specific Deployment Descriptor at

http://e-docs. bea. coml W s/ docs61/ webapp/ webappdepl oynment . ht ml #web
| ogi c-xm .

Including Requests

You can usethe <j sp: i ncl ude> tag to include another resourcein a JSP. Thistag
takes two attributes:

page
Use the page attribute to specify the included resource. For example:

<j sp:include page="sonePage.sp”/>

flush
Setting thisboolean attributeto t r ue buffersthe page output and then flushes
the buffer before including the resource.

Programming WebLogicJSP ~ 3-13

http://www.java.sun.com/products/jsp/index.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html#weblogic-xml
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html#weblogic-xml

3 WebLogic JSP Reference

Setting f | ush="f al se” canbeuseful whenthe<j sp: i ncl ude> tagislocated within
another tag on the JSP page and you want the included resource to be processed by the

tag.

Securing User-Supplied Data in JSPs

314

Expressions and scriptlets enable a JSP to receive data from a user and return the user
supplied data. For example, the sample JSP in Listing 3-1 prompts a user to enter a
string, assigns the string to a parameter named user | nput , and then uses the <%
request . get Par amet er (" user | nput ") % expression to return the data to the
browser.

Listing 3-1 Using Expressionsto Return User-Supplied Content

<! DOCTYPE HTML PUBLIC "-//WBC// DTD HTM. 4. 01 Transitional //EN'>
<htm >
<body>
<h1>MWy Sanpl e JSP</hl>
<f orm met hod="CGET" action="nysanple.jsp">
Enter string here:
<i nput type="text" nanme="userlnput" size=50>
<i nput type=submt val ue="Submit">
</ form

<hr >

Qut put fromlast command:
<% request.get Paraneter("userlnput") %
</ body>
</htm >

This ability to return user-supplied data can present a security vulnerability called
cross-site scripting, which can be exploited to steal a user’s security authorization.
For a detailed description of cross-site scripting, refer to “ Understanding Malicious
Content Mitigation for Web Developers’ (a CERT security advisory) at
http://www.cert.org/tech_tips/malicious_code_mitigation.html.

Programming WebL ogic JSP

http://www.cert.org/tech_tips/malicious_code_mitigation.html

Securing User-Supplied Data in JSPs

To remove the security vulnerability, before you return data that a user has supplied,
scan the data for any of the HTML special charactersin Table 3-2. If you find any
special characters, replace them with their HTML entity or character reference.
Replacing the characters prevents the browser from executing the user-supplied data
asHTML.

Table 3-2 HTML Special Charactersthat Must Be Replaced

Replace this special character: With this entity/char acter
reference:
< <
> > ;
(&40;
) &41;
&35;
& &38;

Using a WebLogic Server Utility Method

WebL ogic Server providesthe

webl ogi c. servl et.security. Uils.encodexSS() method to replacethe special
charactersin user-supplied data. To use this method, provide the user-supplied dataas
input. For example,

<% webl ogi c.servlet.security. Uils.encodeXSS(

request . get Paranet er ("user | nput")) %

Programming WebLogicJSP 3-15

3 WebLogic JSP Reference

To securean entire application, you must usetheencodeXSS() method each timeyou
return user-supplied data. While the examplein Listing 3-1 is an obvious location in
which to use the encodeXSS() method, Table 3-3 describes other locations to
consider.

Table 3-3 Codethat Returns User-Supplied Data

Page Type User-Supplied Data Example

Error page Erroneousinput string, invalid URL, An error page that says “user nane is not
username permitted access.”

Status page Username, summary of input from A summary page that asks a user to confirm
previous pages input from previous pages.

Database Data presented from a database A page that displaysalist of database entries

display that have been previoudly entered by a user.

Using Sessions with JSP

Sessions in WebL ogic JSP perform according to the JSP 1.1 specification. The
following suggestions pertain to using sessions:

m Store small objectsin sessions. For example, a session should not be used to

store an EJB, but an EJB primary key instead. Store large amounts of datain a
database. The session should hold only a simple string reference to the data.

When you use sessions with dynamic reloading of servlets or JSP, the objects
stored in the servlet session must be serializable. Serialization is required
because the servlet isreloaded in anew class loader, which resultsin an
incompatibility between any classes loaded previoudly (from the old version of
the servlet) and any classes loaded in the new class loader (for the new version
of the servlet classes). Thisincompatibility causes the servlet to return

Cl assCast Except i on errors.

If session data must be of a user-defined type, the data class should be
serializable. Furthermore, the session should store the serialized representation
of the data object. Serialization should be compatible across versions of the data
class.

3-16 Programming WebL ogic JSP

Deploying Applets from JSP

m |f you need to log out an authenticated user, see the following section in
Programming WebLogic HTTP Servilets: Logging Out and Ending a Session at
http://e-docs. bea. com Wl s/ docs61/ servl et/ progtasks. ht nl #sessi on
end.

Deploying Applets from JSP

Using the JSP provides a convenient way to include the Java Plug-in in a Web page,
by generating HTML that containsthe appropriate client browser tag. The JavaPlug-in
allows you to use a Java Runtime Environment (JRE) supplied by Sun Microsystems
instead of the VM implemented by the client Web browser. This feature avoids
incompatibility problems between your applets and specific types of Web browsers.
The Java Plug-in is available from Sun at

http://java. sun. coni product s/ pl ugi n/.

Because the syntax used by Internet Explorer and Netscape is different, the servlet
codegenerated fromthe<j sp: pl ugi n> action dynamically sensesthetype of browser
client and sends the appropriate <OBJECT> or <EMBED> tagsin the HTML page.

The<j sp: pl ugi n>tag uses many attributes similar to those of the <APPLET> tag, and
some other attributes that allow you to configure the version of the Java Plug-in to be
used. If the applet communicates with the server, the VM running your applet code
must be compatible with the VM running WebL ogic Server.

In the following example, the plug-in action is used to deploy an applet:

<j sp:plugin type="appl et" code="exanpl es. appl ets. PhoneBook1"
codebase="/cl asses/" hei ght="800" w dt h="500"
jreversion="1.1"
nspl ugi nurl =
"http://java. sun. com products/plugin/1.1. 3/plugin-install.htm"
i epluginurl =
"http://java. sun. conf products/plugin/1.1.3/
jinstall-113-w n32. cab#Version=1, 1, 3,0" >

<j sp: par ans>
<param nane="webl ogi c_url" val ue="t3://Il ocal host: 7001" >
<par am nane="pool nanme" val ue="denoPool ">

</j sp: parans>

Programming WebLogicJSP ~ 3-17

http://e-docs.bea.com/wls/docs61/servlet/progtasks.html#sessionend
http://java.sun.com/products/plugin/

3 WebLogic JSP Reference

3-18

<j sp: fal | back>
Sorry, cannot run java applet!!
</jsp:fall back>

</j sp: pl ugi n>

The sample JSP syntax shown here instructs the browser to download the JavaPlug-in
version 1.3.1 (if it has not been downloaded previously), and run the applet identified
by the code attribute from the location specified by codebase.

Thej r ever si on attributeidentifiesthe spec version of the Java Plug-in that the appl et
requiresto operate. The Web browser attemptsto use this version of the Java Plug-in.
If the plug-in is not already installed on the browser, the nspl ugi nurl and

i epl ugi nur| attributes specify URLs where the Java Plug-in can be downl oaded
from the Sun Web site. Once the plug-in isinstalled on the Web browser, it is not
downloaded again.

Because WebL ogic Server uses the Java 1.3.x VM, you must specify the Java Plug-in
version 1.3.x in the <j sp: pl ugi n>tag. To specify the 1.3 VM in the previous
example code, replace the corresponding attribute values with the following:

jreversion="1.3"

nspl ugi nurl =

"http://java. sun. com products/plugin/1. 3/plugin-install.htm"

i epl uginurl =

"http://java. sun.com products/plugin/1.3/jinstall-131-w n32. cab"

The other attributes of the plug-in action correspond with those of the <APPLET> tag.
Y ou specify applet parameters within apair of <par ams> tags, nested within the
<j sp: pl ugi n>and </ j sp: pl ugi n> tags.

The <j sp: f al | back> tags allow you to substitute HTML for browsers that are not
supported by the <j sp: pl ugi n> action. The HTML nested between the <f al | back>
and </ j sp: fal | back> tagsis sent instead of the plug-in syntax.

Programming WebL ogic JSP

Using the WebLogic JSP Compiler

Using the WebLogic JSP Compiler

Because the JSP Servlet automatically calls the WebL ogic JSP compiler to process
your JSP pages, you generally do not need to use the compiler directly. However, in
some situations, such as when you are debugging, accessing the compiler directly is
useful. This section is areference for the compiler.

The WebL ogic JSP compiler parses your JSPfileinto a. j ava file, and then compiles
the generated . j ava file into a Java class, using a standard Java compiler.

Running JSPC on Windows Systems

When you run the JSP compiler on Windows systems, output files names are always
created with lower case names. To prevent thisbehavior, and preserve the case used in
class names, set the system property, webl ogi c. j sp. wi ndows. caseSensi ti ve to
true. Youcan set the property at the command line when compiling a JSP using this
following command:

java - Dwebl ogi c. j sp. wi ndows. caseSensi ti ve=true webl ogic.jspc *.jsp
or include this command in your WebL ogic Server startup scripts:

- Dwebl ogi c. j sp. wi ndows. caseSensi ti ve=true

JSP Compiler Syntax

The JSP compiler works in much the same way that other WebL ogic compilers work
(including the RMI and EJB compilers). To start the JSP compiler, enter the following
command.

$ java webl ogic.jspc -options fil eNane

Replacefi | eNanme with the name of the JSP file that you want to compile. Y ou can
specify any opt i ons before or after thetarget f i | eName. Thefollowing example uses
the - d option to compile nyFi | e. j sp into the destination directory,

webl ogi c/ cl asses:

Programming WebLogicJSP ~ 3-19

3 WebLogic JSP Reference

$ java weblogic.jspc -d /webl ogic/classes nyFile.jsp

Note: If you are precompiling JSPs that are part of aWeb Application and that
reference resources in the Web Application (such as a JSP tag library), you
must usethe - webapp flag to specify thelocation of the Web Application. The
-webapp flag is described in the following listing of JSP compiler options.

JSP Compiler Options

Y ou can use any combination of the following options:

-cl asspath
Add alist (separated by semi-colons on Windows NT/2000 platforms or
colons on UNIX platforms) of directories that make up the desired
CLASSPATH. Include directories containing any classes required by the JSP.
For exampl e (to be entered on one line):
$ java webl ogic.jspc
-classpath javalcl asses. zi p; / webl ogi ¢/ cl asses. zi p
nyFile. JSP

- char set Map
Specifies mapping of IANA or unofficial charset names used in JSP
cont ent Type directives to java charset names. For example:
-charset Map x-sjis=Shift_JIS, x-bi gb=Bi g5

The most common mappings are built into the JSP compiler. Use this option
only if adesired charset mapping is not recognized.

-coment ary
Causes the JSP compiler to include comments from the JSP in the generated
HTML page. If this option is omitted, comments do not appear in the
generated HTML page.

-conpi |l eAl'l
Recursively compiles all JSPsin the current directory, or in the directory
specified with the - webapp flag. (See thelisting for - webapp in thislist of
options.). JSPs in subdirectories are al'so compiled.

-conpi | eFl ags
Passes one or more command-line flags to the compiler. Enclose multiple
flags in quotes, separated by a space. For example:
java webl ogic.jspc -conpileFlags "-g -v" nyFile.jsp

320 Programming WebL ogic JSP

Using the WebLogic JSP Compiler

-conpi l er

Specifies the Java compiler to be used to compile the class file from the
generated Java source code. The default compiler used isj avac. The Java
compiler program should be in your PATH unless you specify the absolute
path to the compiler explicitly.

-conpi l ercl ass

Runs a Java compiler as a Java class and not as a native executable.

-d <dir>

- depend

- debug

Specifies the destination of the compiled output (that is, the classfile). Use
this option as a shortcut for placing the compiled classesin adirectory that is
already in your CLASSPATH.

If apreviously generated classfilefor a JSP hasamore recent date stamp than
the JSP source file, the JSP is not recompiled.

Compile with debugging on.

- deprecation

Warn about the use of deprecated methods in the generated Java source file
when compiling the source fileinto a classfile.

-docroot directory

See - webapp.

-encodi ng defaul t|named character encoding

Valid argumentsinclude (a) def aul t which specifies using the default
character encoding of your JDK, (b) a named character encoding, such as
8859_1. If the- encodi ng flag is not specified, an array of bytesis used.

Instructsthe Java compiler to include debugging information in the classfile.

Displaysalist of all the available flags for the JSP compiler.

Takes alist of optionsthat are passed to your compiler.

When compiling multiple JSPs with a single command, the compiler
continues compiling even if one or more of the JSPs failed to compile.

Programming WebLogicJSP 3-21

3 WebLogic JSP Reference

- keepgener at ed
Keepsthe Javasource codefilesthat are created asanintermediary stepinthe
compilation process. Normally these files are del eted after compilation.

-noTryBl ocks
If a JSP file has numerous or deeply nested custom JSP tags and you receive
aj ava. | ang. Veri f yErr or exception when compiling, use thisflag to
alow the JSPs to compile correctly.

-nowar n
Turns off warning messages from the Java compiler.

Compiles the generated Java source file with optimization turned on. This
option overrides the - g flag.

- package packageNane
Setsthe package namethat i s prepended to the package name of the generated
Java HTTP servlet. Defaultstoj sp_servl et .

-supercl ass cl assnane
Sets the classname of the superclass extended by the generated servlet. The
named superclass must be a derivative of Ht t pSer vl et or
GenericServl et .

-verbose
Passes the ver bose flag to the Java compiler specified with the conpi | er
flag. See the compiler documentation for more information. The default is
off.

-ver boseJavac
Prints messages generated by the designated JSP compiler.

-version
Prints the version of the JSP compiler.

-webapp directory
Name of adirectory containing a Web Application in exploded directory
format. If your JSP contains references to resources in a\Web Application
such asaJSPtag library or other Java classes, the JSP compiler will look for
those resources in this directory. If you omit this flag when compiling a JSP
that requires resources from a Web Application, the compilation will fail.

3-22 Programming WebL ogic JSP

Using the WebLogic JSP Compiler

Precompiling JSPs

Y ou can configure WebL ogic Server to precompile your JSPs when a Web
Application is deployed or re-deployed or when WebL ogic Server starts up by setting
the pr econpi | e parameter to true in the <j sp- descri pt or > element of the

webl ogi c. xm deployment descriptor:

For an exploded webapp, precompilation only occurs on the administration server. For
an archived webapp, precompilation will occur on the administration server and the
managed server once during the first deployment.

For more information on the web. xm deployment descriptor, see Assembling and
Configuring Web Applications at
http://e-docs. bea. com W s/ docs61/ webapp/i ndex. ht m .

Windows NT command length limitations can be overcome using the new
conpi | er cl ass option for WebL ogic JSPs. It can be configured in the weblogic.xml
file.

Thein memory conpi | er cl ass option uses the compiler class used by Sun to
internally compile Javafiles. This does not require creating a new process and thusis
more efficient than compiling each Java file separately using a new process.

The compilerclass can be used by adding the following to weblogic.xml:
<j sp-descri ptor>
<j sp- par ane>
<par am nane>conpi | ercl ass</j sp- par an>
<par am val ue>com sun. t ool s. j avac. Mai n</ par am val ue>
</] sp- par anr

</j sp-descri ptor>

System Properties and JSPs

weblogic.jspc

,weblogic.jsp.windows.caseSensitive is NOT a JSPC option, it is a system property.

Programming WebLogicJSP 3-23

http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

3 WebLogic JSP Reference

Y ou can either call java -Dweblogic.jsp.windows.caseSensitive=true weblogic.jspc
*.jsp or put -Dweblogic.jsp.windows.caseSensitive=true in the start server script.

324 Programming WebL ogic JSP

CHAPTER

4 Using Custom

WebLogic JSP Tags
(cache, process, repeat)

The following sections describe the use of three custom JSP tags—cache, r epeat ,
and pr ocess—provided with the Webl ogic Server distribution:

m Overview of WebL ogic Custom JSP Tags

Using the WebL ogic Custom Tagsin a Web Application

Cache Tag
m Process Tag

Repeat Tag

Overview of WebLogic Custom JSP Tags

BEA provides three specialized JSP tags that you can use in your JSP pages: cache,
repeat , and process. Thesetags are packaged in atag library jar file caled

webl ogi c-t ags. j ar. Thisjar file contains classes for the tags and atag library
descriptor (TLD). To usethesetags, you copy thisjar file to the Web Application that
contains your JSPs and reference the tag library in your JSP.

Programming WebL ogic JSP 4-1

4 Using Custom WebLogic JSP Tags (cache, process, repeat)

Using the WebLogic Custom Tags in a Web
Application

Using the WebL ogic custom tags requires that you include them within a Web
Application. For more information on Web Applications, see Assembling and
Configuring Web Applications at

http://e-docs. bea. com w s/ docs61/ webapp/ i ndex. ht mi .

To use these tags in your JSP:

1. Copy thewebl ogi c-t ags. j ar filefromtheext directory of your WebL ogic

ServerinstallationtotheWEB- | NF/ | i b directory of the Web application containing

the JSPs that will use the WebL ogic Custom Tags.

2. Referencethistag library descriptor in the <t agl i b> element of the Web
Application deployment descriptor, web. xm . For example:
<taglib>
<taglib-uri>webl ogi c-tags.tld</taglib-uri>
<taglib-location>
/ VEB- | NF/ | i b/ webl ogi c-tags.jar
</taglib-Iocation>
</taglib>

For more information, see Writing Web Application Deployment Descriptors at
http://e-docs. bea. com w s/ docs61/ webapp/ webappdepl oynent . ht m .

3. Referencethetag library in your JSP with thet agl i b directive. For example:
<v%@taglib uri="weblogic-tags.tld" prefix="w" %

Cache Tag

4-2

The cache tag enables caching the work that is done within the body of the tag. It
supports both output (transform) data and input (cal culated) data. Output caching

refersto the content generated by the code within the tag. Input caching refersto the
values to which variables are set by the code within the tag. Output caching is useful

Programming WebL ogic JSP

http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html

Cache Tag

when the final form of the content is the important thing to cache. Input caching is
important when the view of the data can vary independently of the data cal cul ated
within the tag.

If oneclient isalready recal culating the contents of acache and another client requests
the same content it does not wait for the completion of the recalculation, instead it
shows whatever information is already in the cache. Thisisto make sure that the web
site does not cometo a halt for all your users because a cache is being recal cul ated.
Additionally, the async attribute means that no one, not even the user that initiates the
cache recal culation waits.

Caches are stored using soft references to prevent the caching system from using too
much system memory.

Refreshing a Cache

Y ou can force therefresh of acache by settingthe _cache_r ef resh objecttot rue in
the scope that you want affected. For example, to refresh a cache at session scope,
specify the following:

<% request.setAttribute("_cache_refresh", "true"); %

If you want all cachesto berefreshed, set the cachetotheappl i cat i on scope. If you
want all the caches for a user to be refreshed, set it in the sessi on scope. If you want
all the cachesin the current request to be refreshed, set the _cache_r ef r esh object
either as a parameter or in the request.

The <wl : cache> tag specifies content that must be updated each time it is displayed.
The statements between the <wl : cache> and </ wi : cache> tags are only executed if
the cache has expired or if any of the values of the key attributes (see the Cache Tag
Attributes table) have changed.

Flushing a Cache

Flushing a cache forces the cached values to be erased; the next time the cacheis
accessed, thevalues are recalculated. To flush acache, set itsf | ush attributetot r ue.
The cache must be named using the nane attribute. If the cache hasthe si ze attribute

Programming WebL ogic JSP 4-3

4 Using Custom WebLogic JSP Tags (cache, process, repeat)

set, all valuesareflushed. If the cache setsthe key attribute but not the si ze attribute,

you can flush a specific cache by specifying itskey along with any other attributes
required to uniquely identify the cache (such as scope or vars).

For example:

1

Define the cache.

<w : cache nanme="dbt abl e" key="paraneter.tabl ename"”
scope="application">

/1 read the table and output it to the page

</wW : cache>

Update the cached table data.

Flush the cache using the f I ush attribute in an empty tag (an empty tag ends
with/ and does not use a closing tag). For example

<w : cache nane="dbt abl e" key="paraneter.tabl enane”
scope="application" flush="true"/>

Table 4-1 Cache Tag Attributes

Attribute

Required Default Value Description

ti meout

no

-1 Cache timeout property. The amount of time, in

seconds, after which the statementswithin the cachetag

arerefreshed. Thisis not proactive; the valueis

refreshed only if it isrequested. If you prefer to use a

unit of time other than seconds, you can specify an

aternate unit by postfixing the value with desired unit:

nms = mlliseconds
seconds (default)
m nut es

hour s

days

ngm

scope

no

appl i cation Specifies the scope in which the datais cached. Valid

scopesinclude: page, request, session,

appl i cati on. Most cacheswill be either sessi on

or appl i cati on scope.

4-4 Programming WebL ogic JSP

Cache Tag

Table 4-1 Cache Tag Attributes

Description

Specifies additional values to be used when evaluating
whether to cache the values contained within the tags.
Thelist of keysis comma-separated. The value of this
attribute is the name of the variable whose value you
wishto useasakey intothe cache. Y ou can additionally
specify ascope by prepending the name of the scopeto
the name. For example:

paraneter. key | page. key | request.key
| application.key | session.key

It defaults to searching through the scopesin the order
shown in the preceding list. Each named key is
available in the cache tag as a scripting variable. A list
of keysis comma-separated.

A unigque name for the cache that allows cachesto be
shared across multiple JSP pages. This same buffer is
used to store the data for all pages using the named
cache. Thisattribute is useful for textually included
pagesthat need cache sharing. If thisattributeisnot set,
aunique name is chosen for the cache.

We recommended that you avoid manually calculating
the name of the tag; the key functionality can be used
equivalently in all cases. The nameis calculated as
webl ogi c. j sp. t ags. CacheTag. plusthe URI
plus a generated number representing the tag in the
page you are caching. If different URIs reach the same
JSP page, the caches are not shared in the default case.
Use named cachesiin this case.

Attribute Required Default Value
key no --
nane no --
si ze no -1 (unlimited)

For cachesthat use keys, the number of entriesallowed.
The default is an unlimited cache of keys. With a
limited number of keysthe tag uses aleast-used system
to order the cache. Changing the value of the size
attribute of a cache that has aready been used does not
change the size of that cache.

Programming WebL ogic JSP 4-5

4 Using Custom WebLogic JSP Tags (cache, process, repeat)

Table 4-1 Cache Tag Attributes

Attribute

Required Default Value Description

vars

no -- In addition to caching the transformed output of the
cache, you can aso cache calculated values within the
block. These variables are specified exactly the same
way asthe cache keys. This type of caching is called
Input caching.

flush

no none When set to true, the cache is flushed. This attribute
must be set in an empty tag (ends with /).

The following examples show how you can use the <wl : cache> tag.

Listing4-1 Examples of Using the cache Tag

<w : cache>

<l--the content between these tags will only be
refreshed on server restart-->

</w : cache>

<w : cache key="request.ticker" tinmeout="1m">

<l--get stock quote for whatever is in the request paraneter ticker
and display it, only update it every mnute-->

</w : cache>

<I--incom ng paraneter value isbn is the nunber used to | ookup the
book in the database-->

<w : cache key="paraneter.isbn" tineout="1d" size="100">
<l--retrieve the book fromthe database and display

the information -- the tag will cache the top 100

nost accessed book descriptions-->

</wW : cache>

<wl : cache tinmeout="15n">

<l--get the new headlines fromthe database every 15 m nutes and
di splay them->

</W : cache>

4-6 Programming WebL ogic JSP

Process Tag

Process Tag

Usethe <wl : process> tag for query parameter-based flow control. By using a
combination of the tag's four attributes, you can selectively execute the statements
between the <wl : process> and </ wl : pr ocess> tags. The process tag may also be
used to declaratively processtheresults of form submissions. By specifying conditions
based on the values of request parameters you can include or not include JSP syntax
on your page.

Table 4-2 Process Tag Attributes

Tag Attribute Required Description

name no Name of aquery parameter.
not nane no Name of aquery parameter.
val ue no Value of aquery parameter.
not val ue no Value of aquery parameter.

The following examples show how you can use the <wl : pr ocess> tag:

Listing 4-2 Examples of Using the processtag:

<w : process not nane="updat e" >
<w : process not nane="del et e">
<l--Only show this if there is no update or del ete paraneter-->
<form action="<% request.get Request URI () %">
<i nput type="text" nane="nane"/>
<i nput type="submit" name="update" val ue="Update"/>
<i nput type="submt" nanme="del ete" val ue="Del ete"/>
</ form
</W : process>
</W : process>

<w : process nanme="update">
<!-- do the update -->
</W : process>

Programming WebL ogic JSP 4-7

4 Using Custom WebLogic JSP Tags (cache, process, repeat)

<w : process nanme="del ete">
<!--do the delete-->
</w : process>

<w : process nane="| ast BookRead" val ue="A Man in Full">

<l--this section of code will be executed if |astBookRead exists
and the value of |astBookRead is "A Man in Full"-->

</w : process>

Repeat Tag

Usethe <wl : r epeat > tag to iterate over many different types of sets, including
Enumerations, Iterators, Collections, Arrays of Objects, Vectors, ResultSets,
ResultSetMetaData, and the keys of a Hashtable. Y ou can also just loop a certain
number of times by using the count attribute. Use the set attribute to specify the type
of Java objects.

Table 4-3 Repeat Tag Attributes

Tag Required Type Description
Attribute

set No Object The set of objects that includes:
Enumerations

Iterators

Collections

Arrays

Vectors

Result Sets

Result Set MetaData
Hashtable keys

count No Int Iterate over first count entriesin the set.

id No String Variable used to store current object being
iterated over.

4-8 Programming WebL ogic JSP

Repeat Tag

Table 4-3 Repeat Tag Attributes

Tag Required Type Description
Attribute
type No String Type of object that results from iterating over

the set you passed in. Defaultsto Coj ect . This

type must be fully qualified.

The following example shows how you can use the <wl : r epeat > tag.

Listing 4-3 Examples of Using the repeat Tag

<w :repeat id="name" set="<% new String[] { "sant, "fred", "ed" }
%" >

<% name %
</W :repeat>
<% Vector v = new Vector(); %
<l--add to the vector-->
<w :repeat id="iten set="<% v.elements() %">
<l--print each el enment-->
</W :repeat>

Programming WebL ogic JSP 4-9

4 Using Custom WebLogic JSP Tags (cache, process, repeat)

4-10 Programming WebL ogic JSP

CHAPTER

5 Using WebLogic JSP
Form Validation Tags

The following sections describe how to use WebL ogic JSP form validation tags:

Overview of WebLogic JSP Form Validation Tags
Validation Tag Attribute Reference

Using WebL ogic JSP Form Validation Tagsin a JSP
Creating HTML Forms Using the <wl:form> Tag
Using a Custom Validator Class

Sample JSP with Validator Tags

Overview of WebLogic JSP Form Validation

Tags

WebL ogic JSP form validation tags provide a convenient way to validate the entries
an end user makesto HTML form text fields generated by JSP pages. Using the
WebL ogic JSP form validation tags prevents unnecessary and repetitive coding of
commonly used validation logic. The validation is performed by several custom JSP
tags that are included with the WebL ogic Server distribution. The tags can

Verify that required fields have been filled in (Requi red Fi el d Val i dator
class).

Programming WebL ogic JSP 51

5 Using WebLogic JSP Form Validation Tags

m Validatethe text in the field against aregular expression (Regul ar
Expressi on Val i dator class).

m Comparetwo fieldsin the form (Conpar e Val i dat or class).

m Perform custom validation by means of a Java class that you write (Cust om
Val i dat or class).

WebL ogic JSP form validation tags include:
® <w :summrary>
m <w:form

m <w :validator>

When avalidation tag determines that datain afield is not been input correctly, the
page is re-displayed and the fields that need to be re-entered are flagged with text or
an image to alert the end user. Once the form is correctly filled out, the end user’s
browser displays a new page specified by the validation tag.

Validation Tag Attribute Reference

This section describes the WebL ogic form validation tags and their attributes. Note
that the prefix used to reference the tag can be defined inthet agl i b directive on your
JSP page. For clarity, thew prefix is used to refer to the WebL ogic form validation
tags throughout this document.

<wl:summary>

<w : summar y> isthe parent tag for validation. Place the opening <wl : sunmar y> tag
beforeany other element or HTML codeinthe JSP. Placetheclosing </ wl : surmar y>
tag anywhere after the closing </ wl : f or n» tag(s).

nane
(Optional) Name of avector variable that holds all validation error messages
generated by the<wl : val i dat or > tags on the JSP page. If you do not define
this attribute, the default value, er r or Vect or , isused. Thetext of the error

Programming WebL ogic JSP

Validation Tag Attribute Reference

messageisdefinedwiththeer r or Message attributeof the<wl : val i dat or >
tag.

To display the valuesin this vector, usethe <wi : err or s/ > tag. To usethe
<w : error s/ > tag, place the tag on the page where you want the output to
appear. For example:

<wl :errors color="red"/>
Alternately, you can use a scriptlet. For example:

<%if (errorVector.size() > 0) {
for (int i=0; i < errorVector.size(); i++) {
out.println((String)errorVector.elenentAt(i));
out.println("
");

}
} %

Whereer r or Vect or isthe name of the vector assigned using the name
attribute of the <wl : summar y> tag.

The nane attribute is required when using multiple forms on a page.

header Text
A variable that contains text that can be displayed on the page. If you only
want this text to appear when when errors occur on the page, you can use a
scriptlet to test for this condition. For example:

<% if(summary.size() >0) {
out. println(header Text);

}
%

Where summar y isthe name of the vector assigned using the nane attribute
of the <wl : summar y> tag.

redi rect Page
URL for the page that is displayed if the form validation does not return
errors. This attribute is not required if you specify aURL intheacti on
attribute of the <wl : f or > tag.

Note: Do not set ther edi r ect Page attributeto the same page containing the
<w : sunmar y> tag—Yyou will create an infinite loop causing a
St ackOver Fl ow exception.

Programming WebL ogic JSP 5-3

5 Using WebLogic JSP Form Validation Tags

<wl:form>

The <w : f or > tag is similar to the HTML <f or n» tag and definesan HTML form
that can be validated using the the WebL ogic JSP form validataion tags. Y ou can
define multiple forms on asingle JSP by uniquely identifying each form using the
name attribute.

net hod
Enter GET or PCST. Functions exactly as the et hod attribute of the HTML
<f or m> tag.

action
URL for the page that is displayed if the form validation does not return
errors. The value of this attribute takes precedence over the value of the
redi r ect Page attribute of the <wl : summar y> tag and is useful if you have
multiple forms on a single JSP page.

Note: Do not set the act i on attribute to the same page containing the
<w : f or m> tag—Yyou will create an infinite loop causing a St ackOver Fl ow
exception.

nane
Functions exactly as the nane attribute of the HTML <f or e tag. Identifies
the form when multiple forms are used on the same page. The nane attribute
isalso useful for JavaScript referencesto aform.

<wl:validator>

5-4

Useoneor more<w : val i dat or > tagsfor each form field. If, for instance, you want
to validate the input against a regular expression and also require that something be
entered into the field you would use two <wl : val i dat or > tags, one using the

Requi r edFi el dval i dat or class and another using the RegExpVal i dat or class.
(Y ou need to use both of these validators because blank values are evaluated by the
Regular Expression Field Validator asvalid.)

error Message
A string that is stored in the vector variable defined by the name attribute of
the <wl : summar y> tag.

Programming WebL ogic JSP

Validation Tag Attribute Reference

expr essi on
When using the RegExpVal i dat or class, the regular expression to be
evaluated.

If you are not using RegExpVal i dat or , you can omit this attribute.

fieldToVval i date
Name of the form field to be validated. The name of the field is defined with

the nane attribute of the HTML <i nput > tag.

val i dat or Cl ass
The name of the Java class that executes the validation logic. Three classes
are provided for your use. Y ou can also create your own custom validator
class. For more information, see “Using a Custom Validator Class’ on
page 5-10.

The available validation classes are:

webl ogi cx. j sp.tags. val i dat ors. Requi redFi el dVal i dat or
Validates that some text has been entered in thefield.

webl ogi cx. j sp.tags. val i dat ors. RegExpVal i dat or
Validates the text in the field using a standard regul ar expression.
Note: A blank valueis evaluated as valid.

webl ogi cx. j sp.tags. val i dat ors. Conpar eVal i dat or
Checksto seeif two fields contain the same string. When using this

class, setthefi el dToval i dat e attribute to the two fields you want
to compare. For example:

fieldTovalidate="field_ 1,field 2"
Note: If both fields are blank, the comparison is evaluated as valid.

nyPackage. nyVal i dat or d ass
Specifies a custom validator class.

Programming WebL ogic JSP 5-5

5 Using WebLogic JSP Form Validation Tags

Using WebLogic JSP Form Validation Tags in

a JSP

5-6

To use avalidation tag in a JSP:

1. Writethe JSP.

a

Enter at agl i b directive to reference the tag library containing the WebL ogic
JSP Form Validation Tags. For example:

<U@taglib uri="tagl" prefix="w" %

Note that the prefix attribute defines the prefix used to reference al tagsin
your JSP page. Although you may set the prefix to any value you like, the
tags referred to in this document using thewl prefix.

Enter the<wl : summary> ... </w : sunmary> tags.

Place the opening <wi : sunmary ... > tag before any HTML code, JSP tag,
scriptlet, or expression on the page.

Place the closing </ wi : summar y> tag anywhere after the </ wl : f or
tag(s).

Define an HTML form using the <wl : f or m> JSP tag that isincluded with the
supplied tag library. For more information, see “<wl:form>" on page 5-4 and
“Creating HTML Forms Using the <wl:form> Tag” on page 5-8. Be sure to
close the form block with the </ W : f or m» tag. You can create multiple forms
on apage if you uniquely define the nane attribute of the <wi : f or m» tag for
each form.

Create the HTML form fields using the HTML <i nput > tag.

Add<w : val i dat or > tags. For the syntax of thetags, see* <wl:validator>" on
page 5-4. Place <wl : val i dat or > tags on the page where you want the error
message or image to appear. If you use multiple forms on the same page, place
the <wi : val i dat or > tag inside the <wl : f or n> block containing the form
fields you want to validate.

The following example shows a validation for arequired field:

Programming WebL ogic JSP

Using WebLogic JSP Form Validation Tags in a JSP

<w : f or m nane="First Forni nmet hod="POST" action="thi sJSP.jsp">

<wl : val i dat or
error Message="Field_1 is required" expression=
fieldTovalidate="field_1"
val i dat or Cl ass=
"webl ogi cx. j sp.tags. val i dat ors. Requi r edFi el dVval i dat or"

>

<inmg src="images/warning.gif">

Field 1 is a required field
</w :val i dator>

<p> <input type="text" name = "field_1"> </p>

<p> <input type="text" name = "field_2"> </p>

<p> <input type="submit" value="Submt FirstForm'> </p>
</w :form

If the user failsto enter avalueinfi el d_1, the pageis redisplayed, showing
awar ni ng. gi f image, followed by thetext (inred) “Field 1 is a
required field,” followed by the blank field for the user to re-enter the
value.

2. Copy thewebl ogi c- vt ags. j ar filefromtheext directory of your WebL ogic
Server installation into the VEB- | NF/ | i b directory of your Web Application. You
may need to create this directory.

3. Configure your Web Application to use the tag library by adding a <t agl i b>
element to theweb. xm deployment descriptor for the Web Application. For
example;
<taglib>

<taglib-uri>tagl</taglib-uri>
<taglib-1ocation>
/ VEB- | NF/ | i b/ webl ogi c-vtags.jar
</taglib-location>
</taglib>

For more information on Web Application deployment descriptors, see Writing
Web Application Deployment Descriptors at
http://e-docs. bea. coml W s/ docs61/ webapp/ webappdepl oynment . ht m .

Programming WebL ogic JSP 5-7

http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html
http://e-docs.bea.com/wls/docs61/webapp/webappdeployment.html

5 Using WebLogic JSP Form Validation Tags

Creating HTML Forms Using the <wl:form>
Tag

This section contains information on creating HTML formsin your JSP page. Y ou use
the <wl : f or > tag to create a single form or multiple forms on a page.

Defining a Single Form

Usethe <w : f or m» tag that is provided in thewebl ogi c- vt ags. j ar tag library: For
example:

<w : f orm net hod="POST" acti on="next Page. jsp">

<p> <input type="text" name ="field_1"> </p>

<p> <input type="text" name ="field_2"> </p>

<p> <input type="submit" value="Submt Form'> </p>
</w:fornme

For information on the syntax of thistag see “<wl:form>" on page 5-4.

Defining Multiple Forms

When using multiple forms on a page, use the nane attributeto identify each form. For
example:

<w : f orm name="Fi r st Fornf net hod="POST" action="thi sJSP. | sp">
<p> <input type="text" name="field 1"> </p>

<p> <input type="text" name="field_2"> </p>

<p> <input type="submt" value="Submt FirstForm'> </p>
</w:fornm

<w : f orm name="SecondFor nf net hod="POST" action="thi sJSP.jsp">
<p> <input type="text" name="field_1"> </p>

<p> <input type="text" name="field_2"> </p>

<p> <input type="submt" val ue="Subnmit SecondForn> </p>
</w:fornpr

5-8 Programming WebL ogic JSP

Creating HTML Forms Using the <wl:form> Tag

Re-Displaying the Values in a Field When Validation
Returns Errors

When the JSP page is re-displayed after the validator tag has found errors, it is useful
to re-display the values that the user already entered, so that the user does not have to
fill out theentireform again. Usetheval ue attribute of the HTML <i nput > tag or use
atag library available from the Apache Jakarta Project. Both procedures are described
next.

Re-Displaying a Value Using the <input> Tag

You canusethej avax. servl et. Servl et Request . get Par anet er () method
together with the val ue attribute of the HTML <i nput > tag to re-display the user’s
input when the page is re-displayed as aresult of failed validation. For example:

<input type="text" nane="field_1"
val ue="<% request.getParaneter("field_1") %" >

To prevent cross-site scripting security vulnerabilities, replace any HTML special
charactersin user-supplied data with HTML entity references. See “ Securing
User-Supplied Datain JSPS’ on page 3-14.

Re-Displaying a Value Using the Apache Jakarta <input:text> Tag

Y ou can also use a JSP tag library available free from the Apache Jakarta Project,
which providesthe <i nput : t ext > tag as areplacement for the HTML <i nput > tag.
For example, the following HTML tag:

<input type="text" nane="field_1">
could be entered using the Apache tag library as:
<input:text name="field_1">

For moreinformation and documentation, download the Input Tag library, available at
http://jakarta. apache. org/taglibs/doc/input-doc/intro.htnl.

To use the Apache tag library in your JSP:

1. Copy thei nput . j ar filefrom the Input Tag Library distribution fileinto the
VEEB- | NF/ | i b directory of your Web Application.

Programming WebL ogic JSP 59

http://jakarta.apache.org/taglibs/doc/input-doc/intro.html

Using WebLogic JSP Form Validation Tags

2. Add thefollowing directive to your JSP:

<U@taglib uri="input" prefix="input" %

3. Addthefollowing entry to theweb. xm deployment descriptor of your Web

Application:

<tagl i b>

<taglib-uri>input</taglib-uri>

<taglib-location> WEB-INF/lib/input.jar</taglib-Iocation>
</taglib>

Using a Custom Validator Class

5-10

To use your own validator class:

1. Write aJavaclassthat extends the

webl ogi cx. j sp. t ags. val i dat or s. Cust om zabl eAdapt er abstract class. For
more information, see “Extending the CustomizableAdapter Class’ on page 5-11.

. Implement theval i dat e() method. In this method:

a. Look up the value of the field you are validating from the Ser vl et Request
object. For example:

String val = req.getParaneter("field_1");

b. Return avalueof t r ue if the field meets the validation criteria

. Compile the validator class and place the compiled . cl ass filein the

VEB- | NF/ ¢l asses directory of your Web Application.

. Useyour validator classin a<w : val i dat or > tag by specifying the class name

intheval i dat or d ass attribute. For example:

<w :validator errorMessage="This field is required"
fiel dToval i date="fiel d_1"
val i dat or Cl ass="nypackage. nyCust onVal i dat or ">

Programming WebL ogic JSP

Using a Custom Validator Class

Extending the CustomizableAdapter Class

The Cust oni zabl eAdapt er classis an abstract class that implements the
Cust omi zabl e interface and provides the following hel per methods:

get Fi el dToVal i dat e()
Returns the name of the field being validated (defined by the
fiel dToVal i dat e attributeinthe <wl : val i dat or > tag)

get Error Message()
Returns the text of the error message defined with the er r or r Message
attribute in the <wl : val i dat or > tag.

get Expressi on()
Returnsthetext of theexpr essi on attribute definedinthe<wl : val i dat or >

tag.
Instead of extending the Cust oni zabl eAdapt er class, you can implement the
Cust omi zabl e interface. For more information, see the Javadocs for
weblogicx.jsp.tags.validators.Customizable at

http://e-docs. bea. coml W s/ docs61/j avadocs/ webl ogi cx/j sp/tags/vali
dat or s/ Cust om zabl e. htmi .

Sample User-Written Validator Class

Listing 5-1 Example of a User-written Validator Class

i mport webl ogi cx.j sp. tags. val i dat ors. Cust om zabl eAdapt er;
public class nyCustomval i dat or extends Custom zabl eAdapt er {

public nmyCustonValidator(){
super () ;

public bool ean validat e(javax. servlet. Servl et Request req)
throws Exception {
String val = req.getParaneter(getFieldToValidate());
/1 perform sone validation |ogic
// if the validation is successful, return true,
/1 otherwi se return fal se

Programming WebLogicJSP ~ 5-11

http://e-docs.bea.com/wls/docs61/javadocs/weblogicx/jsp/tags/validators/Customizable.html

5 Using WebLogic JSP Form Validation Tags

if (true) {
return true;
}

return fal se;

Sample JSP with Validator Tags

5-12

This sample code shows the basic structure of a JSP that uses the WebL ogic JSPform
validationtags. A complete functioning code exampleisalso availableif youinstalled
the exampl es with your WebL ogic Server installation. Instructions for running the
example are available at

sanpl es/ exanpl es/ j sp/ t agext/formval i dati on/ package. ht m , inyour
WebL ogic Server installation.

Listing 5-2 JSP with WebL ogic JSP Form Validation Tags

"tagl" prefix="w" %
"input" prefix="input" %

<U@taglib ur
<U@taglib ur

<w : summrary

nanme="sumrary"

header Text ="<f ont col or=red>Sone fiel ds have not been filled out
correctly. "

redi rect Page="successPage. j sp"
>

<htm >

<head>

<title>Untitled Docunment</title>

<met a http-equiv="Content-Type" content="text/htm;
char set =i so- 8859- 1" >

</ head>

<body bgcol or =" #FFFFFF" >

Programming WebL ogic JSP

Sample JSP with Validator Tags

<% i f(summary.size() >0) {
out.println("<h3>" + headerText + "</ h3>");
} %

<%if (summary.size() > 0) {
out.println("<H2>Error Summary: </ h2>");
for (int i=0; i < summary.size(); i++) {
out.println((String)sunmary.elementAt(i));
out.println("
");
}

} %

<w : form net hod="GET" acti on="successPage. jsp">

User Nanme: <input:text nanme="usernane"/>
<wl : val i dat or
fieldToVval i dat e="user nanme"

val i dat or Cl ass="webl ogi cx. j sp.tags. val i dat ors. Requi r edFi el dVal i da
tor"
error Message="User nane is a required field!"
>
<ing src=images/warning.gif> This is a required field!
</W :val i dat or >

<p>

Password: <i nput type="password" nane="password">
<wl :val i dat or
fieldToVval i dat e="password"

val i dat or Cl ass="webl ogi cx. j sp. tags. val i dat or s. Requi r edFi el dVval i da
tor"
error Message="Password is a required field!"
>
<ing src=images/warning.gif> This is a required field!
</w :val i dat or>

<p>

Re-enter Password: <input type="password" nanme="password2">

<w :val i dator
fieldToVal i dat e="password, passwor d2”
val i dat or G ass="webl ogi cx. j sp.tags. val i dat ors. Conpar eVal i dat or"
error Message="Passwords don't match"

>

Programming WebLogicJSP ~ 5-13

5 Using WebLogic JSP Form Validation Tags

<i mg src=i mages/ warni ng. gi f > Passwords don't match.
</wW :val i dat or >

<p>

<input type="submt" value="Submt Fornmi'> </p>
</w:formm
</w : sumrary>

</ body>
</htm >

5-14 Programming WebL ogic JSP

CHAPTER

6

Using the WebLogic

EJB to JSP Integration
Tool

The following sections describe how to use the WebL ogic EJB-to-JSP integration tool
to create JSP tag libraries that you can use to invoke EJBsin a JavaServer Page (JSP).
This document assumes at least some familiarity with both EJB and JSP.

Overview of the WebL ogic EJB-to-JSP Integration Tool
Basic Operation

Interface Source Files

Build Options Panel

Troubleshooting

Using EJB Tags on a JSP Page

EJB Home Methods

Stateful Session and Entity Beans

Default Attributes

Programming WebL ogic JSP 6-1

6 Using the WebLogic EJB to JSP Integration Tool

Overview of the WebLogic EJB-to-JSP
Integration Tool

6-2

Given an EJB jar file, the WebL ogic EJB-to-JSP integration tool will generate a JSP
tag extension library whose tags are customized for calling the EJB(s) of that jar file.
From the perspective of aclient, an EJB is described by its remote interface. For
example:

public interface Trader extends javax.ejb. EJIBObject {
public TradeResult buy(String stockSynbol, int shares);
public TradeResult sell (String stockSymbol, int shares);

}

For Web Applicationsthat call EJBs, thetypical model istoinvokethe EJB using Java
code from within a JSP scriptlet (<% ... %>). Theresults of the EJB call are then
formatted asHTML and presented to the Web client. Thisapproach is both tediousand
error-prone. The Java code required to invoke an EJB islengthy, evenin the simplest
of cases, and istypically not within the skill set of most Web designersresponsiblefor
HTML presentation.

The EJB-to-JSP tool simplifiesthe EJB invocation process by removing the need for
javacode. Instead, you invoke the EJB isinvoked using aJSPtag library that is custom
generated for that EJB. For example, the methods of the Trader bean above would be
invoked in aJSP like this:

<% taglib uri="/WEB-INF/trader-tags.tld" prefix="trade" %
i nvoki ng trade:

<trade: buy stockSynbol ="BEAS" shares="100"/>
<trade: sel |l stockSymbol =" MSFT" shares="200"/>

The resulting JSP page is cleaner and more intuitive. A tag is (optionally) generated
for each method on the EJB. The tags take attributes that are trandated into the
parametersfor the corresponding EJB method call. The tedious machinery of invoking
the EJB is hidden, encapsulated inside the handler code of the generated tag library.
The generated tag libraries support statel ess and stateful session beans, and entity
beans. The tag usage scenarios for each of these cases are dightly different, and are
described below.

Programming WebL ogic JSP

Basic Operation

Basic Operation

Y ou can run the WebL ogic EJB-to-JSP integration tool in command-line mode using
the following command:

java webl ogi c. servl et. ej b2j sp. Mai n
or graphical mode. For all but the simplest EJBs, the graphical tool is preferable.
Invoke the graphical tool asfollows:

java webl ogi c. servl et. ej b2j sp. gui . Min

Initially, no ejb2jsp project isloaded by the Web Application. Create a new project by
selecting the File -> New menu item, browsing in the file chooser to an EJB jar file,
and selecting it. Onceinitialized, you can modify, save, and rel oad gb2jsp projectsfor
future modification.

The composition of the generated tag library is ssmple: for each method, of each EJB,
inthejar file, aJSP tag is generated, with the same name as the method. Each tag
expects as many attributes as the corresponding method has parameters.

Interface Source Files

When anew EJB jar isloaded, the tool aso tries to find the Java source files for the
home and remote interfaces of your EJB(S). The reason is that, although the tool can
generate tags only by introspecting the EJB classes, it cannot assign meaningful
attribute names to the tags whose corresponding EJB methods take parameters. In the
Trader example in “Overview of the WebL ogic EJB-to-JSP Integration Tool” on
page 2, when the EJB jar isloaded, the toal tries to find a sourcefile called

Trader .java. Thisfileis then parsed and detects that the buy() method takes
parameters called stock Symbol and shar es. The corresponding JSP tag will then have
appropriately named attributes that correspond to the parameters of the buy() method.

Programming WebL ogic JSP 6-3

6 Using the WebLogic EJB to JSP Integration Tool

When anew EJB jar isloaded, the tool operates on the premise that the source
directory isthe same directory where the EJB jar islocated. If that is not the case, the
error is not fatal. After the new project isloaded, under the Project Build Options
panel, you can adjust the EJB Sour ce Path element to reflect the correct directory.

Y ou can then select the File -> Resolve Attributes menu to re-run the resolve process.

When looking for java source files corresponding to an interface class, the tool
searches in both the directory specified, and in a sub-directory implied by the
interface's java package. For example, for my.ejb.Trader, if the directory givenis
C:/src, thetool will look for both C:/src/Trader .java and

C:/src/mylejb/Trader .java.

Access to the source filesis not strictly necessary. Y ou can always modify attribute
names for each tag in a project by using the tool. However, parsing the source files of
the EJB's public interface was devel oped as the quickest way to assign meaningful
attribute names.

Build Options Panel

6-4

Use this panel to set all parameters related to the local file system that are needed to
build the project. Specify the Javacompiler, the Java package of the generated JSP tag
handlers, and whether to keep the generated Java code after a project build, which can
be useful for debugging.

Y ou can aso use this panel to specify the type of tag library output you want. For use
in a J2EE web application, atag library should be packaged one of two ways:. as
separate classfilesand aTag Library Descriptor (.tld) file, or asasingletaglibjar file.
Either output type is chosen with the Output Type pull-down. For development and
testing purposes, DIRECTORY output is recommended, because aWeb Application
in WebL ogic Server must be re-deployed before a jar file can be overwritten.

For either DIRECTORY or JAR, the output |ocations must be chosen appropriately
so that the tag library will be found by aweb application. For example, if you wish to
use the tag library in aweb application rooted in directory C:/mywebapp, then the
DIRECTORY classesfield should be specified as:

C: / nywebapp/ VEEB- | NF/ cl asses
and the DIRECTORY .tld Filefield should be something like:

Programming WebL ogic JSP

Troubleshooting

C. / nywebapp/ VEB- | NF/ trader-ejb. tld

The Sour ce Path, described earlier, is edited in the Build Options pand aswell. The
Extra Classpath field can be used if your tag library depends on other classes not in
the core WebL ogic Server or 2EE API. Typically, nothing will need to be added to
thisfield.

Troubleshooting

Sometimes, aproject failsto build because of errorsor conflicts. This section describes
the reasons for those errors, and how they may be resolved.

m Missing build information One of the necessary fieldsin the Build Options
pand is unspecified, like the java compiler, the code package name, or a
directory where the output can be saved. The missing field(s) must befilled in
before the build can succeed.

m Duplicate tag names When an EJB jar isloaded, the tool records atag for each
method on the EJB, and the tag name is the same as the method name. If the
EJB has overloaded methods (methods with the same name but different
signatures), the tag names conflict. Resolve the conflict by renaming one of the
tags or by disabling one of the tags. To rename atag, navigate to the tag in
question using the tree hierarchy in the left window of the tool. In the tag panel
that appears in the right window, modify the Tag Name field. To disable atag,
navigate to the tag in question using the tree hierarchy in the left window of the
tool. In the tag panel that appears in the right window, deselect the Generate
Tag box. For EJB jars that contain multiple EJBs, you can disable tags for an
entire bean may as well.

m Meaninglessattribute namesarg0, argl... Thiserror occurs when reasonable
attribute names for atag could not be inferred from the EJB's interface source
files. To fix this error, navigate to the tag in question in the project hierarchy
tree. Select each of the attribute tree leaves below the tag, in order. For each
attribute, assign a reasonable name to the Attribute Namefield, in the panel
that appears on the right side of thetool.

m Duplicate attribute names This occurs when a single tag expecting multiple
attributes has two attributes with the same name. Navigate to the attribute(s) in
guestion, and rename attributes so that they are al unique for the tag.

Programming WebL ogic JSP 6-5

6 Using the WebLogic EJB to JSP Integration Tool

Using EJB Tags on a JSP Page

Using the generated EJB tags on a JSP page is simply a matter of declaring the tag
library on the page, and then invoking the tags like any other tag extension:

<% taglib uri="/WEB-INF/trader-ejb.tld"
prefix="trade" %
<trade: buy stockSynbol =" XYZ" shares="100"/>

For EJB methods that have a non-void return type, a special, optional tag attribute
" return", is built-in. When present, the val ue returned from the method is made
available on the page for further processing:

<% taglib uri="/WEB-INF/trader-ejb.tld"
prefix="trade" %
<trade: buy stockSynbol =" XyzZ"
shares="100" _return="tr"/>
<%out.printIn("trade result: " + tr.getShares()); %

For methods that return a primitive numeric type, the return variable is a Java object
appropriate for that type (for example, "int" -> java.lang.Integer, etc).

EJB Home Methods

6-6

EJB 2.0 allows for methods on the EJB home interface that are neither create() or
find() methods. Tags are generated for these home methods as well. To avoid
confusion, the tool prepends " home-" to the tags for each method on an EJB's home,
when a new project isloaded. These methods may be renamed, if desired.

Programming WebL ogic JSP

Stateful Session and Entity Beans

Stateful Session and Entity Beans

Typical usage of a“stateful” bean isto acquire an instance of the bean from the bean's
Home interface, and then to invoke multiple methods on a single bean instance. This
programming model is preserved in the generated tag library aswell. Method tags for
stateful EJB methods are required to be inside atag for the EJB home interface that
correspondsto afind() or create() onthe home. All EJB method tags contained within
the find/create tag operate on the bean instance found or created by the enclosing tag.
If amethod tag for a stateful bean is not enclosed by a find/create tag for its home, a
run-time exception occurs. For example, given the following EJB:

public interface Account Hone extends EJBHome {

public Account create(String accountld, double initialBalance);
public Account findByPrimaryKey(String accountlD);

/* find all accounts wi th bal ance above sone threshold */
public Collection findBi gAccounts(double threshold);

}

public interface Account extends EJBObject {
public String getAccount!D();
publi c doubl e deposit(doubl e anmount);
public doubl e w thdraw doubl e anpunt);
publ i c doubl e bal ance();

}
Correct tag usage might be as follows:

<% taglib uri="/WEB-INF/ account-ejb.tld" prefix="acct" %
<acct: hone-create account| d="103"
initial Bal ance="450.0" _return="newAcct">
<acct: deposit anount="20"/>
<acct: bal ance _return="bal"/>
Your new account bal ance is: <% bal %
</ acct: honme-creat e>

If the"_return" attribute is specified for afind/create tag, a page variable will be
created that refersto the found/created EJB instance. Entity beans finder methods may
also return a collection of EJB instances. Home tags that invoke methods returning a
collection of beans will iterate (repeat) over their tag body, for as many beans as are
returned in the collection. If "_return” is specified, it is set to the current bean in the
iteration:

Programming WebL ogic JSP 6-7

6 Using the WebLogic EJB to JSP Integration Tool

Accounts above $500: </ b>

<acct: hone-findBi gAccounts threshol d="500" _return="acct">
<l i >Account <% acct.getAccountlD() %
has bal ance $<% acct. bal ance() %
</ acct: hone-fi ndBi gAccount s>

The preceding example will display an HTML list of all Account beanswhose balance
isover $500.

Default Attributes

6-8

By default, the tag for each method requires that all of its attributes (method
parameters) be set on each tag instance. However, the tool will also allow "default”
method parameters to be specified, in case they are not given in the JSP tag. Y ou can
specify default attributes/parametersin the Attribute window of the EJB-to-JSP tool.
The parameter default can come from an simple EXPRESSI ON, or if more complex
processing isrequired, adefault METHOD body may be written. For example, inthe
Trader example in “Overview of the WebL ogic EJB-to-JSP Integration Tool” on
page 2, suppose you want the “buy” tag to operate on stock symbol “XYZ" if noneis
specified. In the Attribute panel for the “ stockSymbol” attribute of the “buy” tag, you
set the “ Default Attribute Value” field to EXPRESSION, and enter “XYZ" (quotes
included!) in the Default Expression field. The buy tag then acts as if the
stockSymbol="XY Z" attribute were present, unless some other value is specified.

Or if you want the shares attribute of the "buy" tag to be a random number between
0-100, we would set "Default Attribute Value" to METHOD, and in the Default

M ethod Body area, you write the body of a Java method that returnsint (the expected
type for the "shares' attribute of the "buy" method):

I ong seed = SystemcurrentTineM | lis();
java.util.Randomrand = new java. util.Randon(seed);
int ret = rand. nextlnt();

/* ensure that it is positive...*/

ret = Math. abs(ret);

/* and < 100 */

return ret % 100;

Programming WebL ogic JSP

Default Attributes

Because your default method bodies appear within a JSP tag handler, your code has
access to the pageContext variable. From the JSP PageContext, you can gain access
to the current HttpServletRequest or HitpSession, and use session data or request
parameters to generate default method parameters. For example, to pull the "shares"
parameter for the "buy" method out of a ServletRequest parameter, you could writethe
following code:

Htt pServl et Request req =
(Ht t pSer vl et Request) pageCont ext . get Request () ;
String s = req. getParaneter("shares");
if (s == null) {
/* webapp error handler will redirect to error page
* for this exception
*/
t hrow new BadTr adeException("no #shares specified");
}
int ret = -1;
try {
ret = Integer.parselnt(s);
} catch (Nunber For mat Exception e) {
t hrow new BadTr adeExcepti on("bad #shares: " + s);

}
if (ret <= 0)

t hrow new BadTr adeExcepti on("bad #shares: " + ret);
return ret;

The generated default methods are assumed to throw exceptions. Any exceptions
raised during processing will be handled by the JSP's errorPage, or else by the
registered exception-handling pages of the Web Application.

Programming WebL ogic JSP 6-9

6 Using the WebLogic EJB to JSP Integration Tool

6-10 Programming WebL ogic JSP

CHAPTER

[Troubleshooting

The following sections describe several techniques for debugging your JSP files:
m Debugging Information in the Browser

m SymptomsinthelLogFile

Debugging Information in the Browser

The most useful feature for debugging your JSP pages is the output that is sent to the
browser by default. This output displays the location of the error in the generated
HTTP serviet Javafile, adescription of the error, and the approximate location of the
error codeintheoriginal JSPfile. For example, when acompilationfails, thefollowing
message is displayed in the browser:

Compilation of 'C:\weblogic\myservericlassfiles\examplesijsp_HelloWorld.java' failed:

C:hvweblogichmyservericlassfileshexampleshjsph _HelloWorld.java:73: Undefined
variable, class, or package name: foo

probably occurred due to an error in HelloWorld.jsp line Z1:

foo.har.baz(};

Tue Sep 07 16:48:84 POT 1985

To disable this mechanism, set thever bose attributeto f al se in the jsp-descriptor

element,

http://e-docs. bea. com W s/ docs61/ webapp/ webl ogi c_xml . ht m #j sp- des
cri ptor inthe WebL ogic-specific deployment descriptor of your Web Application.

Programming WebL ogic JSP 7-1

http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

{ Troubleshooting

Error 404—Not Found

Check that you have typed the URL of the JSP file correctly, and that it isrelative to
the root directory of your Web Application.

Error 500—Internal Server Error

Check the WebL ogic Server log file for error messages, and see “ Page Compilation
Failed Errors’ on page 3. Thiserror usually indicates a d asssNot Found exception
has occured during JSP compilation.

Error 503—Service Unavailable

Indicates that WebL ogic Server cannot find the compiler it requires to compile your
JSPs. For moreinformation about defining a JSP compiler, see*jsp-descriptor section,
available at

http://e-docs. bea. com w s/ docs61/ webapp/ webl ogi c_xml . ht Ml #j sp- des
criptor.

Errors Using the <jsp:plugin> tag

If you use the <j sp: pl ugi n> tag in your JSP and the applet fails to load, carefully
check the syntax of thetag. Y ou can check for possible syntax errors by examining the
generated HTML page. If you see<j sp: pl ugi n . .. anywhereinthe page, the syntax
of thetag is not correct.

7-2 Programming WebL ogic JSP

http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

Symptoms in the Log File

Symptoms in the Log File

This section describes JSP-related error messages in the WebL ogic Server log file. As
WebL ogic Server runs, verbose messages are saved in aWebL ogic log file. For more
information about WebL ogic log files, see “Using Log Messages to Manage

WebL ogic Servers’ at

http://e-docs. bea. coml W s/ docs61/ admi ngui de/ | oggi ng. ht m .

Page Compilation Failed Errors

Thefollowing errors may occur if the JSP compiler failsto translate the JSP page into
aJavafile, or if it cannot compile the generated Java file. Check the log file for the
following error messages:

Cr eat eProcess:
This indicates that the Java compiler cannot be found or is not avalid
executable. For information about specifying a Java compiler, see
jsp-descriptor section, available at
http://e-docs. bea. coml W s/ docs61/ webapp/ webl ogi c_xm . ht m #]
sp-descriptor.

Conpi l er failed:
The Java code generated from your JSP page cannot be compiled by the Java
compiler. You can use the JSP compiler independently to inspect and debug
the generated Java code in more detail. For more information see “Using the
WebL ogic JSP Compiler” on page 19.

Undefined variabl e or classnane:
If you are using a custom variable, make sure it is defined before you use it
inascriptlet or defineitin adeclaration. Y ou may seethiserror if you attempt
to use an implicit object from a declaration. Use of implicit objectsin a
declaration is not supported in JSP.

Programming WebL ogic JSP 7-3

http://e-docs.bea.com/wls/docs61/adminguide/logging.html
http://e-docs.bea.com/wls/docs61/adminguide/logging.html
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor
http://e-docs.bea.com/wls/docs61/webapp/weblogic_xml.html#jsp-descriptor

{ Troubleshooting

7-4 Programming WebL ogic JSP

| ndex

A

action 5-4

actions 3-10
administration 2-1
applets 3-17
application 3-4

C

cachetag
attributes 4-4
overview 4-2
caching 4-2
character encoding 3-6
compile 3-19
compiler 7-3
compiling 7-3
config 3-5
configuration 2-2
contentType 3-6
custom tags 4-1
and Web Applications 4-2
cache 4-2
configuration 4-2
process 4-7
custom validator 5-10
customer support contact information ix

D
debugging 7-1

declaration 3-2
declarations 3-6
deployment descriptor 2-2
directive 3-2
contentType 3-6
taglib 3-6
directives 3-5
documentation, where to find it viii

E
encoding 3-6
errors
404 7-2
500 7-2
503 7-2
jsp plugintag 7-2
page compilation 7-3
expression 3-2, 5-5
expressions 3-8

F

fieldToValidate 5-5

form 5-4, 5-8
action 5-4
method 5-4
name 5-4

formtag 5-8

form validation 5-1

Hybrid Templates for FrameMaker 5.5

G
getParameter() 5-9

H

headerText 5-3
HTML

formtag 5-4
HTML forms 5-8
HTTP

requests 1-3

|
input tag 5-9
Apache Jakarta 5-9

J
Java Plugin 3-17
JavaBeans 3-10
JSP administration 2-1, 2-2
JSP compiler

options 3-20

syntax 3-19
JSP configuration 2-2

L
log file 7-3

M
method 5-4

N

name 5-4

out 3-4

-6 Hybrid Templates for FrameMaker 5.5

P
page 3-5
pageContext 3-4
parameters 2-2
plugin 3-17
printing product documentation viii
process tag
atributes 4-7
overview 4-7

R
redirectPage 5-3
re-displaying value from aform 5-9
regular expression validation 5-5
request 3-3, 3-12
reserved words 3-3
application 3-4
config 3-5
out 3-4
page 3-5
pageContext 3-4
request 3-3
response 3-3
session 3-4
response 3-3

S

scope 3-12
application 3-13
page 3-12
session 3-12

scriptlet 3-2

scriptlets 3-7

serializable 3-16

Servlet 2.2 specification 1-2

session 3-4

sessions 3-16

setting up JSP 2-2

summary 5-2

headerText 5-3

name attribute 5-2

redirectPage 5-3
support

technical ix

T
taglib 3-6, 4-2
tags 3-2, 4-1
custom 4-1
declaration 3-2
directive 3-2
scriptlet 3-2
troubleshooting
browser 7-1

\%
validation 5-1
validation tag
form 5-4
validation tags
summary 5-2
validator 5-4
validation tags, using in a JSP 5-6
validator 5-1, 5-4
custom 5-10
errorM essage attribute 5-4
expression attribute 5-5
fieldToValidate 5-5
validatorClass 5-5
validatorClass 5-5
verbose 7-1

W

web application 2-2
web.xml 4-2
weblogic.xml 2-2
wl-form 5-4

wl-summary 5-2

Hybrid Templates for FrameMaker 5.5

	Contents
	1 JSP Overview
	What Is JSP?
	WebLogic Implementation of JSP
	WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality
	WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features
	WebLogic Server 6.1 with J2EE 1.2 Certification

	How JSP Requests Are Handled
	Additional Information

	2 Administering WebLogic JSP
	Overview of WebLogic JSP Administration
	Setting JSP Operating Parameters

	3 WebLogic JSP Reference
	JSP Tags
	Reserved Words for Implicit Objects
	Directives for WebLogic JSP
	Using the page Directive to Set Character Encoding
	Using the taglib Directive

	Declarations
	Scriptlets
	Expressions
	Example of a JSP with HTML and Embedded Java
	Actions
	Using JavaBeans in JSP
	Instantiating the JavaBean Object
	Doing Setup Work at JavaBean Instantiation
	Using the JavaBean Object
	Defining the Scope of a JavaBean Object

	Forwarding Requests
	Including Requests

	Securing User-Supplied Data in JSPs
	Using a WebLogic Server Utility Method

	Using Sessions with JSP
	Deploying Applets from JSP
	Using the WebLogic JSP Compiler
	Running JSPC on Windows Systems
	JSP Compiler Syntax
	JSP Compiler Options
	Precompiling JSPs
	System Properties and JSPs

	4 Using Custom WebLogic JSP Tags (cache, process, repeat)
	Overview of WebLogic Custom JSP Tags
	Using the WebLogic Custom Tags in a Web Application
	Cache Tag
	Refreshing a Cache
	Flushing a Cache

	Process Tag
	Repeat Tag

	5 Using WebLogic JSP Form Validation Tags
	Overview of WebLogic JSP Form Validation Tags
	Validation Tag Attribute Reference
	<wl:summary>
	<wl:form>
	<wl:validator>

	Using WebLogic JSP Form Validation Tags in a JSP
	Creating HTML Forms Using the <wl:form> Tag
	Defining a Single Form
	Defining Multiple Forms
	Re-Displaying the Values in a Field When Validation Returns Errors
	Re-Displaying a Value Using the <input> Tag
	Re-Displaying a Value Using the Apache Jakarta <input:text> Tag

	Using a Custom Validator Class
	Extending the CustomizableAdapter Class
	Sample User-Written Validator Class

	Sample JSP with Validator Tags

	6 Using the WebLogic EJB to JSP Integration Tool
	Overview of the WebLogic EJB-to-JSP Integration Tool
	Basic Operation
	Interface Source Files
	Build Options Panel
	Troubleshooting
	Using EJB Tags on a JSP Page
	EJB Home Methods
	Stateful Session and Entity Beans
	Default Attributes

	7 Troubleshooting
	Debugging Information in the Browser
	Error 404—Not Found
	Error 500—Internal Server Error
	Error 503—Service Unavailable
	Errors Using the <jsp:plugin> tag

	Symptoms in the Log File
	Page Compilation Failed Errors

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

