
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA WebLogic

Programming WebLogic
JMX Services

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business Control
Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal FrameWork
are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic JMX Services

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server Version 6.1,
Service Pack 3

Programming WebLogic JMX Services iii

Contents

About This Document
Audience... vii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ...x

1. Overview of WebLogic JMX Services
Overview ... 1-1

The WebLogic Server Management System... 1-2

Managed Resources.. 1-3

MBeans... 1-3

MBean Servers ... 1-4

MBean Homes.. 1-4

Administration MBeanHome.. 1-5

WebLogic Server MBeans .. 1-6

Administration MBeans ... 1-6

Configuration MBeans ... 1-7

Runtime MBeans.. 1-7

MBean Naming Conventions ... 1-8

Package Naming Conventions ... 1-9

Quick Reference to WebLogic Server MBeans .. 1-9

Domain MBean .. 1-10

Target MBeans ... 1-11

Server and Kernel MBeans ... 1-11

Cluster MBeans... 1-12

iv Programming WebLogic JMX Services

Deployable Unit MBeans ... 1-13

2. Accessing WebLogic Server MBeans
Overview ... 2-1

Selecting the Client Interface to WebLogic Server MBeans............................. 2-2

MBeanHome Versus MBeanServer ... 2-2

Server MBeanHome Versus Administration MBeanHome 2-3

Obtaining an MBeanHome Using JNDI.. 2-3

Example: Looking Up MBeanHome from an External Client................... 2-4

Example: Looking Up MBeanHome from an Internal Client 2-5

Example: Obtaining MBeanServer from MBeanHome 2-6

Using the Helper Class to Obtain MBeanHome Interfaces 2-7

Accessing MBeans from MBeanHome ... 2-8

Registering Custom MBeans with MBeanServer.. 2-9

Example Custom MBean.. 2-10

Example Client Application ... 2-10

3. Using MBean Notifications
Overview ... 3-1

Making Notifications Available to Outside Clients 3-2

MBean Notification Summary... 3-3

Basic JMX Notifications .. 3-4

WebLogic Server Log Notifications .. 3-4

Using Basic JMX Notifications ... 3-5

Creating a Notification Listener ... 3-5

Registering Notification Listeners with MBeans 3-6

Working with WebLogic Server Log Notifications .. 3-7

Contents of a WebLogicLogNotification ... 3-7

Example Notification Listeners for WebLogic Server Error Messages..... 3-9

4. Monitoring WebLogic Server MBeans
Overview ... 4-1

Setting Up Monitoring... 4-2

Creating a Notification Listener ... 4-2

Instantiating the Listener and Monitor ... 4-3

Sample Monitoring Scenarios ... 4-6

Programming WebLogic JMX Services v

JDBC Monitoring... 4-7

vi Programming WebLogic JMX Services

Programming WebLogic JMX Services vii

About This Document

This document describes how to use the BEA WebLogic Server™ managment APIs
to enhance WebLogic Server to support your applications.

The document is organized as follows:

� Chapter 1, “Overview of WebLogic JMX Services,” describes the WebLogic
Server management interface, and provides overviews of MBeans, the
administrative domain, and server configurations.

� Chapter 2, “Accessing WebLogic Server MBeans,” describes how to access and
use WebLogic Server MBeans from a client application.

� Chapter 3, “Using MBean Notifications,” desribes how to listen and respond to
MBean notifications in a client application.

� Chapter 4, “Monitoring WebLogic Server MBeans,” describes how to monitor
MBean attributes from a monitoring MBean.

Audience

This document is written for independent software vendors (ISVs) and other
developers who are interested in creating custom applications that use BEA WebLogic
Server core technologies. It is assumed that readers have a familiarity with the BEA
WebLogic Server platform and the Java programming language.

viii Programming WebLogic JMX Services

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. The
following BEA WebLogic Server documentation contains information that is relevant
to understanding how to extend WebLogic Server.

� BEA WebLogic Server Documentation (available online):

� Administration Guide

� Programming Guides

� WebLogic Server API

http://www.adobe.com
http://e-docs.bea.com/wls/docs61/adminguide/index.html
http://e-docs.bea.com/wls/docs61/programming.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

Programming WebLogic JMX Services ix

� The Sun Microsystems, Inc. Java site at http://java.sun.com/

For more information about BEA WebLogic Server and Java, refer to the Bibliography
at http://edocs.bea.com/.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://java.sun.com/
mailto:docsupport@bea.com
http://www.bea.com

x Programming WebLogic JMX Services

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

Programming WebLogic JMX Services xi

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

xii Programming WebLogic JMX Services

Programming WebLogic JMX Services 1-1

CHAPTER

1 Overview of WebLogic
JMX Services

The following sections provide an introduction to the WebLogic Server JMX
management framework:

� Overview

� The WebLogic Server Management System

� WebLogic Server MBeans

� Quick Reference to WebLogic Server MBeans

Overview

The WebLogic Server management architecture is based on the Sun Microsystems,
Inc. Java Management Extensions (JMX) specification. BEA has instrumented many
of the APIs and resources available in WebLogic Server, and provides the
JMX-compliant Administration Console to monitor and manage those resources.

All WebLogic Server management functions are accessed using management beans,
or MBeans, which retrieve their values from the WebLogic Server domain
configuration or runtime state. MBeans provide developers with a means to access all
configuration and monitoring information about WebLogic Server programmatically
via the JMX standard API.

1 Overview of WebLogic JMX Services

1-2 Programming WebLogic JMX Services

This guide provides an overview of the WebLogic Server JMX implementation, so that
you can develop applications or management frameworks that monitor and manage
WebLogic Server JMX-manageable resources.

The WebLogic Server Management System

The WebLogic Server management system implements all of the required components
identified in the JMX 1.0 specification. Because a WebLogic Server installation can
include multiple servers, JMX components are necessarily distributed throughout the
installation. The figure below depicts JMX components in a typical WebLogic Server
installation.

The sections that follow provide an overview of each JMX component.

Server 1

MBeanServer
Configuration

Runtime

MBeanHome

Administration

MBeanServer
Administration MBeans

Runtime MBeans

MBeanHome

Server

Administration
MBeanHome

Configuration MBeans

Server 2MBeanHome

MBeans

MBeans

MBeanServer
Configuration

Runtime
MBeans

MBeans

The WebLogic Server Management System

Programming WebLogic JMX Services 1-3

Managed Resources

Managed resources comprise the APIs, services, and applications that are hosted on a
WebLogic Server instance, and which BEA has instrumented for JMX management.
Each managed resource provides one or more MBeans that can be used for monitoring
or modifying the resource.

Instrumented APIs in WebLogic include EJB, JDBC, JMS, JTA, and XML. BEA has
also instrumented WebLogic Server services such as startup classes, shutdown classes,
and security realms. Finally, WebLogic Server provides JMX instrumentation for Web
applications and their respective components, so that you can change an application’s
deployment parameters or monitor its deployment status using the JMX specification.

MBeans

MBeans (managed beans) are the JMX constructs that represent managed resources.
Each managed resource in WebLogic Server (an API, service, or application
component) uses one or more MBeans to provide an interface for modifying or
monitoring the resource.

WebLogic Server MBeans provide all of the standard operations defined in the JMX
specification such as:

� Constructors for instantiating MBeans

� Methods for listing, setting and getting the MBean’s attributes

� Methods for performing additional MBean-specific operations

� Notifications for broadcasting MBean events

In the context of the JMX specification, all WebLogic MBeans are implemented as
standard MBeans—their attributes and operations are specified directly in their
associated interfaces. WebLogic Server defines several distinct types of MBean, to
describe their function within the WebLogic Server management system. See
WebLogic Server MBeans for more information on specific MBean types.

1 Overview of WebLogic JMX Services

1-4 Programming WebLogic JMX Services

MBean Servers

As described in the JMX specification, an MBean server is the principle agent for
accessing MBeans in the management framework. The MBean server acts as a registry
for MBeans. Using the MBean Server, management applications can look up MBeans,
determine MBean attributes and methods, and listen for MBean notifications.

Each server in a WebLogic administration domain contains its own MBean Server.
With the exception of the administration server’s MBean Server, each MBean Server
registers only those MBeans that apply to the local WebLogic Server instance. For
example, an application using the MBean Server for a managed WebLogic Server
instance could monitor a Web application that was deployed on that particular server,
but it could not monitor a Web application deployed on another server in the domain.

Because the administration server is itself a WebLogic Server instance, it also has an
MBean server. The administration server’s MBean server is unique in that it hosts
domain-wide administration MBeans as well as the server’s own configuration and
runtime MBeans.

MBean Homes

The JMX 1.0 specification does not provide guidelines for making the MBean server
interface available to management clients outside of the MBean server’s JVM.
WebLogic Server Version 6.1 makes the MBean server interface available to any client
(local or external to the server’s JVM) via the MBeanHome interface.

An MBeanHome is simply a wrapper around an MBean server interface that can be used
for accessing WebLogic Server MBeans. In most cases, applications can use
MBeanHome in place of the MBean server for managing server resources. Any client
can access management functions by using a simple JNDI lookup to obtain the
MBeanHome of an MBean server.

The MBeanHome interface provides a strongly-typed interface for accessing WebLogic
Server MBean attributes, which generally makes MBeanHome easier to use than MBean
server. For example, once an application has obtained a serverMBean from
MBeanHome, it can call serverMBean.getListenPort() to return an int value of
the server’s listen port. To perform a similar operation using MBean server, the
application would need to first obtain the JMX object name of the serverMBean and

The WebLogic Server Management System

Programming WebLogic JMX Services 1-5

request its ListenPort attribute. The attribute itself would be returned as a generic
object, and the application would need to know that this particular attribute should be
cast into an int value.

MBeanHome can be used only for accessing WebLogic Server MBeans—applications
cannot obtain user-defined MBeans using MBeanHome. Pure JMX applications, or
applications that need to access registered user MBeans, can obtain and use the MBean
server interface by first looking up MBeanHome and invoking getMBeanServer().

As shown in the previous figure, each WebLogic Server instance in an administration
domain has an MBean server and a corresponding MBeanHome. Using these
MBeanHome interfaces, an application can work with configuration and runtime
MBeans for an individual WebLogic Server.

In addition to providing a standard MBeanHome interface (for a server instance’s local
configuration and runtime MBeans), the administration server provides an additional,
domain-wide MBeanHome interface, as described below.

Administration MBeanHome

The WebLogic Server management system utilizes a domain-wide MBeanHome
interface that can access all WebLogic MBeans for all server instances in a
management domain. This includes the administration MBeans for the domain as a
whole, as well as the configuration and runtime MBeans for the administration server
and all managed servers.

Although the domain-wide MBeanHome interface does not have an associated MBean
server, it operates in the same manner as a server-specific MBeanHome. Only the list
of available MBeans differs. The administration MBeanHome accesses another server’s
MBeans using the respective server’s MBeanHome interface, as shown by the dotted
lines in the previous figure.

Applications obtain the domain-wide MBeanHome interface via the WebLogic
administration server. After obtaining the domain-wide MBeanHome, an application
can work with domain-wide administration MBeans or any individual server’s
MBeans by filtering the list of available MBeans in the domain. Accessing WebLogic
Server MBeans explains how to obtain an MBeanHome interface programmatically, and
also provides information about which MBeanHome interface an application should
obtain.

1 Overview of WebLogic JMX Services

1-6 Programming WebLogic JMX Services

WebLogic Server MBeans

WebLogic Server defines three distinct types of MBeans:

� Administration MBeans, which represent domain-wide configuration parameters
read from config.xml.

� Configuration MBeans, which are the per-server copies of administration
MBeans that a server uses to configure itself.

� Runtime MBeans, which represent the run-time state of various WebLogic
Server components and subsystems.

The following sections describe each MBean type.

Administration MBeans

Administration MBeans represent the configured properties of an entire WebLogic
Server administration domain. When you start up the administration server for a
domain, the server creates administration MBeans using the elements and attributes
specified in the domain’s config.xml file.

All administration MBeans are registered automatically when the administration
server starts up. This includes administration MBeans for managed servers that are not
yet running, or that have not yet attached to the administration server.

JMX management applications can modify the administration domain’s config.xml
file indirectly by changing attributes of administration MBeans. Every 5 minutes, the
administration MBean server checks to determine if administration MBeans have been
changed, and writes the changes back to config.xml as necessary.

Changes to administration MBeans are also written back to the config.xml file when
the administration server shuts down, or when MBean attributes are modified by a
WebLogic Server utility such as the Administration Console, weblogic.Admin, or
weblogic.Deploy.

WebLogic Server MBeans

Programming WebLogic JMX Services 1-7

Configuration MBeans

Whereas administration MBeans represent the persistent value of config.xml
elements, configuration MBeans represent the “active” value of those same elements.
It is the active value of the configuration attributes (the configuration MBeans) that
WebLogic Server subsystems use for operation during the life span of the server.

When you start up a WebLogic Server, most of its configuration MBean attributes are
derived from the server’s administration MBeans as registered in the administration
server. For example, a managed server might connect to the administration server and
derive all of its configuration MBeans from the associated administration MBeans.

However, when you start up a WebLogic Server, it is also possible to override
config.xml properties using command-line options. In this case, a server’s
configuration MBean attributes are populated from the override values, rather than the
administration MBean values. Attributes that do not have override values are then
derived via administration MBeans registered in the administration server.

JMX applications can modify configuration MBeans to temporarily affect the
configuration of an active WebLogic Server instance. However, changes to
configuration MBeans are lost when the server reboots or shuts down. To make
permanent changes to a server’s configuration, the application should instead modify
the corresponding resource’s administration MBean, which is automatically persisted
back to the config.xml file. Changes made to an administration MBean are also
propagated to the corresponding configuration MBean, so that the WebLogic Server
subsystems use the newly-configured attribute value.

Runtime MBeans

A runtime MBean represents the run-time transient state of the underlying resource or
subsystem that it represents. Runtime MBeans differ from administration and
configuration MBeans in that their attribute values are not derived or overridden—
rather, they represent the current state of a server resource at a given point in time.

For example, runtime MBeans are used to represent the current number of sockets a
WebLogic Server has opened, or the current state of the server (whether it is running,
suspended, or is about to be shut down).

1 Overview of WebLogic JMX Services

1-8 Programming WebLogic JMX Services

Applications can use runtime MBeans to monitor the resource usage of managed
resources, such as Web applications, and to potentially diagnose performance
bottlenecks.

MBean Naming Conventions

All WebLogic Server MBeans have a name, a type and a domain. These attributes are
reflected in the MBean's JMX Object Name. The Object Name is the unique identifier
for a given MBean across all domains, and has the following structure:

domain name:Name=name,Type=type[,attr=value]...

Name is a unique identifier for a given domain and type of MBean.

Type indicates type of managed resource the MBean exposes. Examples of resource
types include Server, WebComponent or JDBCConnectionPoolRuntime. Type is
also used to distinguish between administration, configuration, and runtime MBeans
by appending the following standard suffixes:

� <no suffix> indicates an Administration MBean

� Config indicates a configuration MBean

� Runtime indicates a runtime MBean

For example, the value of Type for a JDBCConnectionPool MBean is:

� JDBCConnectionPool for an Administration MBean

� JDBCConnectionPoolConfig for a Configuration MBean

� JDBCConnectionPoolRuntime for a runtime MBean

Note that the “MBean” suffix is removed from the MBean interface name to get the
base type of an MBean. In the case of the JDBCConnectionPool MBean, the actual
MBean interface name is JDBCConnectionPoolMBean.

Specific kinds of MBeans have additional attributes in the JMX object name. All
runtime and configuration MBeans have a Location component that uses the name of
the server on which that MBean is located as its value. For example:

mydomain:Name=myServlet,Type=ServletRuntime,Location=myserver

Quick Reference to WebLogic Server MBeans

Programming WebLogic JMX Services 1-9

Any MBean that has a child relationship with a parent MBean has an extra attribute in
its object name to identify the relationship. The format of the attribute is:

TypeOfParentMBean=NameOfParentMBean

In the following example, Server is the type of Parent MBean, and myserver is the
name of the Parent MBean:

mydomain:Name=mylog,Type=Log,Server=myserver

Package Naming Conventions

All interface types for administration and configuration MBeans are located in the
weblogic.management.configuration API.

All interfaces types for runtime MBeans are located in the
weblogic.management.runtime API.

Agent-level interfaces (for example, the MBeanHome and RemoteMBeanServer
interfaces) are located in the weblogic.management API.

Quick Reference to WebLogic Server MBeans

WebLogic Server provides a large number of MBeans used for configuring the server
system as well as applications. In many cases, related MBeans are easily accessed via
a “parent” mbean that provide getter to obtain one or more related MBeans. This
section provides an overview and quick reference to the major categories of WebLogic
Server MBeans to help you better focus your JMX programming efforts.

Note: The WebLogic Server Management API is fully documented online in the
Javadoc. The WebLogic Server Programming Guides provide additional
information about the programming APIs and services modeled by WebLogic
Server MBeans.

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/programming.html

1 Overview of WebLogic JMX Services

1-10 Programming WebLogic JMX Services

Domain MBean

DomainMBean is a high-level WebLogic Server MBean that represents an entire
management domain. Once you have obtained a DomainMBean, you can use its getter
methods to obtain MBeans representing the domain’s log, security, SNMP, and JTA
configuration, as shown in the figure below. Similarly, MBeans such as
SecurityMBean and SNMPAgentMBean provide getters to access MBeans that control
portions of their configuration.

Quick Reference to WebLogic Server MBeans

Programming WebLogic JMX Services 1-11

Target MBeans

Target MBeans represent objects that you can select when deploying applications and
resources in a management domain. These include MBeans that represent WebLogic
Server instances and WebLogic Server clusters.

All Target MBeans implement the
weblogic.management.configuration.TargetMBean interface. This means that
both clusters and servers can be selected as a target for deploying application
components, or as targets for deploying resources such as connection pools.

Server and Kernel MBeans

The ServerMBean, which extends the KernelMBean interface, represents a particular
WebLogic Server instance in a management domain. Applications that obtain the
ServerMBean can conveniently access child MBeans that control the configuration of
the associated server and WebLogic Server Kernel.

1 Overview of WebLogic JMX Services

1-12 Programming WebLogic JMX Services

The figure below depicts the child MBeans that can be obtained via getter methods in
the KernelMBean and ServerMBean interfaces.

Cluster MBeans

Applications can also select a configured WebLogic Server cluster as a target when
deploying Web applications or WebLogic Server resources. ClusterMBean primarily
uses getter and setter methods to configure cluster properties, such as load balancing
algorithms and multicast message properties. ClusterMBean also has a getter method
to return all ServerMBeans that are members of the cluster.

Quick Reference to WebLogic Server MBeans

Programming WebLogic JMX Services 1-13

Deployable Unit MBeans

A large number of WebLogic Server MBeans implement the DeploymentMBean
interface. DeploymentMBean represents any type of web application, web application
component, or WebLogic Server resources that can be deployed to a server or cluster
in the domain.

If you are interested in working with deployable units, first familiarize yourself with
weblogic.management.configuration.DeploymentMBean, as this interface provides
the basic methods used to obtain or add targets, as well as set the deployment order.

Once you are familiar with the basic operations DeploymentMBean, refer to the
individual deployable unit MBeans that implement the interface. MBeans that
represent deployable application components include:

� ComponentMBean

� ConnectorComponentMBean

� EJBComponentMBean

� ShutdownClassMBean

� StartupClassMBean

� VirtualHostMBean

� WebAppComponentMBean

� WebDeploymentMBean

� WebServerMBean

MBeans that represent deployable WebLogic Server resources include:

� JDBCConnectionPoolMBean

� JDBCDataSourceMBean

� JDBCMultiPoolMBean

� JDBCTxDataSourceMBean

� JMSConnectionFactoryMBean

� JMSServerMBean

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/DeploymentMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/ComponentMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/ConnectorComponentMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/EJBComponentMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/ShutdownClassMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/StartupClassMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/VirtualHostMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/WebAppComponentMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/WebDeploymentMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/WebServerMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/JDBCConnectionPoolMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/JDBCDataSourceMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/JDBCMultiPoolMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/JDBCTxDataSourceMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/JMSConnectionFactoryMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/JMSServerMBean.html

1 Overview of WebLogic JMX Services

1-14 Programming WebLogic JMX Services

� MessagingBridgeMBean

� RMCFactoryMBean

� WLECConnectionPoolMBean

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/JMSServerMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/RMCFactoryMBean.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/configuration/WLECConnectionPoolMBean.html

Programming WebLogic JMX Services 2-1

CHAPTER

2 Accessing WebLogic
Server MBeans

The following sections describe how to access WebLogic Server MBeans from a client
application or management framework:

� Overview

� Selecting the Client Interface to WebLogic Server MBeans

� Obtaining an MBeanHome Using JNDI

� Accessing MBeans from MBeanHome

� Registering Custom MBeans with MBeanServer

Overview

As described in The WebLogic Server Management System, two primary agent-level
interfaces provide client access to MBeans: MBeanServer and MBeanHome.

BEA provides MBeanHome as a simple, strongly-typed interface for accessing MBeans
from clients that are either internal or external to the WebLogic Server JVM. If your
application requires pure JMX-compliant access to MBeans, you can also obtain the
MBeanServer interface via MBeanHome.

This section describes the basic procedure for obtaining an MBeanHome and accessing
WebLogic Server MBeans via the MBeanHome interface. See the JMX specification for
more information about accessing MBeans via the MBean server interface.

2 Accessing WebLogic Server MBeans

2-2 Programming WebLogic JMX Services

Selecting the Client Interface to WebLogic
Server MBeans

Each server in a domain contains an MBeanHome (and a corresponding
MBeanServer), which hosts configuration and runtime MBeans on that server. In
addition, the administration server has an administration MBeanHome that provides
access to all MBeans in the entire domain. The particular interface that you choose to
use in your application depends on:

� Whether your application needs to be purely JMX-compliant

� Whether your application needs to access user-defined MBeans

� Whether or not your application works with administration MBeans

� Whether or not your application manages a single WebLogic Server, or multiple
WebLogic Servers

MBeanHome Versus MBeanServer

The MBeanHome interface provides easy access to WebLogic Server MBeans.
However, it does not provide access to user-defined MBeans that may be registered in
the MBeanServer interface. If your application must access user-defined MBeans, it
must do so using the MBeanServer interface.

You may also choose to use the javax.management.MBeanServer interface if your
application must fully comply with the JMX specification. Note, however, that the
MBeanHome interface provides a strongly-typed interface for accessing WebLogic
MBeans, and is generally easier to use than MBeanServer.

Note: All examples in this chapter use MBeanHome as the primary method for
accessing MBeans. For information on using MBeanServer, see the JMX
specification.

Obtaining an MBeanHome Using JNDI

Programming WebLogic JMX Services 2-3

Server MBeanHome Versus Administration MBeanHome

Applications can use individual server MBeanHome interfaces and/or the administration
MBeanHome interface, depending which MBean(s) the application accesses.

If your application needs to manage administration MBeans, you must use the
domain-wide MBeanHome interface on the administration server, because
administration MBeans are not available via the MBeanHome interfaces of managed
servers.

If your application will manage multiple WebLogic Server instances in a domain, it
may be preferable to use the domain-wide MBeanHome interface. The domain-wide
interface allows you to access MBeans from any WebLogic Server in the management
domain, by filtering the JMX object names.

If your application manages only a single WebLogic Server instance in a domain, then
you may want to obtain the local MBeanHome interface for that server, rather than the
domain-wide MBeanHome. Using the local interface saves you the trouble of filtering
MBeans to find those that apply to the single server. Using the local interface also uses
fewer network hops to access MBeans, because you are connecting directly to the
managed server itself.

Obtaining an MBeanHome Using JNDI

The MBeanHome of any server can be obtained from the relevant server’s JNDI tree by
using the MbeanHome.LOCAL_JNDI_NAME constant.

The domain-wide administration MBeanHome is published in the administration
server’s JNDI tree at MBeanHome.ADMIN_JNDI_NAME.

The administration server also publishes an MBeanHome for each server in the domain
in its JNDI tree. This MBeanHome is available from the JNDI tree of the administration
server, and can be accessed using the
MbeanHome.JNDI_NAME+"."+relevantServerName constant.

2 Accessing WebLogic Server MBeans

2-4 Programming WebLogic JMX Services

The javax.management.MBeanServer for an individual server’s MBeanHome can be
obtained by invoking the getMBeanServer() method on that MBeanHome. Note that
the domain-wide MBeanHome does not have a corresponding
javax.management.MBeanServer; calling getMBeanServer() on the
administration MbeanHome returns the MBeanServer of the admninistration server.

Example: Looking Up MBeanHome from an External
Client

The following example shows how an application running in a separate JVM would
look up an MBeanHome interface on the administration server.

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.AuthenticationException;

import javax.naming.CommunicationException;

import javax.naming.NamingException;

import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;

...

public void findExternal(String host,

 int port,

 String password) {

 String url = "t3://" + host +

 ":" + port;

 String username = "system";

 try {

 Environment env = new Environment();

 env.setProviderUrl(url);

 env.setSecurityPrincipal(username);

Obtaining an MBeanHome Using JNDI

Programming WebLogic JMX Services 2-5

 env.setSecurityCredentials(password);

 ctx = env.getInitialContext();

 home = (MBeanHome)ctx.lookup(MBeanHome.JNDI_NAME + "." +

 SERVER_NAME);

 System.out.println(SERVER_NAME +

 " MBeanHome found externally");

 ctx.close();

 } catch (AuthenticationException ae) {

 System.out.println("Authentication Exception: " + ae);

 } catch (CommunicationException ce) {

 System.out.println("Communication Exception: " + ce);

 } catch (NamingException ne) {

 System.out.println("Naming Exception: " + ne);

 }

 }

Example: Looking Up MBeanHome from an Internal
Client

If your client application resides in the same JVM as the administration server (or the
WebLogic Server instance you want to monitor), the JNDI lookup for the MBeanHome
is simpler. The following example shows how an JSP running in the same JVM as the
administration server would look up an MBeanHome.

...

public void findInternal() {

 Environment env = new Environment();

2 Accessing WebLogic Server MBeans

2-6 Programming WebLogic JMX Services

 try {

 ctx = env.getInitialContext();

 home = (MBeanHome)ctx.lookup(MBeanHome.JNDI_NAME + "." +

 SERVER_NAME);

 System.out.println(SERVER_NAME +

 " MBeanHome found internally");

 ctx.close();

 } catch (NamingException ne) {

 System.out.println("Naming Exception: " + ne);

 }

 }

Example: Obtaining MBeanServer from MBeanHome

For applications that need to interact directly with the MBeanServer interface,
MBeanHome provides a simple method to obtain its associated MBeanServer.

...

home = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

RemoteMBeanServer homeServer = (RemoteMBeanServer)home.getMBeanServer();

...

Using the Helper Class to Obtain MBeanHome Interfaces

Programming WebLogic JMX Services 2-7

Using the Helper Class to Obtain
MBeanHome Interfaces

WebLogic Server version 6.1 provides the weblogic.management.Helper class to
further simplify the process of obtaining MBeanHome interfaces in an internal client.
The Helper class provides a methods to obtain the server or administration
MBeanHome.

For example, to obtain both the administration server and local server MBeanHome
using the Helper class:

public void find(String host,

 int port,

 String password) {

String url = "t3://" + host +

 ":" + port;

 try {

 localHome = (MBeanHome)Helper.getMBeanHome("system",

 password,

 url,

 SERVER_NAME);

 adminHome = (MBeanHome)Helper.getAdminMBeanHome("system",

 password,

 url);

 System.out.println("Local and Admin Homes " +

 "found using the Helper class");

 } catch (IllegalArgumentException iae) {

 System.out.println("Illegal Argument Exception: " + iae);

 }

2 Accessing WebLogic Server MBeans

2-8 Programming WebLogic JMX Services

 }

Accessing MBeans from MBeanHome

After obtaining the MBeanHome, you can look up individual MBeans using the methods
described in javax.management.MBeanHome. For example, to look up all MBeans in
the administration MBeanHome and print their JMX object names:

public void displayMBeans() {

 Set allMBeans = home.getAllMBeans();

 System.out.println("Size: " + allMBeans.size());

 for (Iterator itr = allMBeans.iterator(); itr.hasNext();) {

 WebLogicMBean mbean = (WebLogicMBean)itr.next();

 WebLogicObjectName objectName = mbean.getObjectName();

 System.out.println(objectName.getName() +

 " is a(n) " +

 mbean.getType());

 }

 }

You can access individual MBeans by using the MBeanHome.getMBean() methods.
getMBean() has several different method signatures, the simplest of which returns a
WebLogicMBean with the given name and type in the default domain.

MBeanHome provides additional getter methods to obtain specific WebLogic Server
MBean types. For example, to obtain the Server configuration MBean from the
current domain, you can use the getConfigurationMBean() method:

String myBeanType = "ServerConfig";

ConfigurationMBean myServerMBean =

home.getConfigurationMBean(SERVER_NAME, myBeanType);

Registering Custom MBeans with MBeanServer

Programming WebLogic JMX Services 2-9

To obtain a runtime MBean, use the getRuntimeMBean() method. A runtime
MBean is a local MBean that gives runtime information about WebLogic Server and
application components. Unlike other MBeanHome methods, getRuntimeMBean()
returns only runtime MBeans that reside on the current WebLogic Server. If you call
MBeanHome.getRuntimeMBean()on the Administration Server, it does not return
runtime MBeans from Managed Servers. For example, the following code fragment
returns the JDBCConnectionPoolRuntime MBean from the current WebLogic
Server:

String poolName = "requestConnectionPool";

JDBCConnectionPoolRuntimeMBean runtimeMBean =

(JDBCConnectionPoolRuntimeMBean)home.getRuntimeMBean(poolName,

"JDBCConnectionPoolRuntime");

See the Javadocs for weblogic.management.MBeanHome for information about each
of the getter methods available in MBeanHome.

Registering Custom MBeans with
MBeanServer

Because WebLogic Server management services are implemented using JMX, you can
also create your own MBeans and register them with an MBean Server in a WebLogic
Server installation. This allows you to leverage the WebLogic Server MBean Server
implementation to host your own MBeans and make them available to internal and
external clients.

Note that all custom MBeans must be registered and accessed using the
JMX-compliant MBeanServer interface. You cannot use the MBeanHome interface for
custom MBeans, as MBeanHome only makes WebLogic Server MBeans available to
clients. Furthermore, you cannot use BEA utilities such as weblogic.Admin to access
custom MBeans.

The example that follows shows a very basic MBean implementation and a client
application that registers the MBean with the MBean Server on an administration
server. Note, however, that this example does not show all of the requirements (for

2 Accessing WebLogic Server MBeans

2-10 Programming WebLogic JMX Services

example, MBean exception handling) outlined in the JMX specification. For full
details on implementing your own custom MBeans, please refer to the JMX
specification.

Example Custom MBean

For the purposes of this example, the custom MBean consists of a skeleton interface
requiring only a single method implementation:

public interface MyCustomMBean {

int getMyAttribute();

}

Example Client Application

The client application performs the following actions:

� Obtains the MBeanHome of the administration server using the WebLogic Server
Helper class

� Obtains the associated MBean Server interface using MBeanHome

� Registers the custom MBean with the MBean Server

� Obtains the value of a custom MBean attribute

� Unregisters the MBean from the MBean Server

Note that many of the above actions, such as obtaining MBeanHome and MBeanServer,
are discussed earlier in this section. Only the registration and attribute calls differ for
MBeans, because these calls operate directly against the MBean Server interface (and
are full JMX-compliant). Additional information appears within the Java comments.

import weblogic.management.MBeanHome;

import weblogic.management.Helper;

import weblogic.management.RemoteMBeanServer;

import javax.management.*;

Registering Custom MBeans with MBeanServer

Programming WebLogic JMX Services 2-11

import MyCustomMBean;

// The client class implements MyCustomMBean, and the main function obtains

// MBeanHome and MBeanServer; registers the MBean; accesses an attribute value;

// and unregisters itself.

public class MyCustom implements MyCustomMBean, java.io.Serializable {

 public static void main(String[] args)

 // An actual JMX client would handle appropriate exceptions at different points

// in the application. For clarity, this example client only throws exceptions.

 throws Exception {

 // The client obtains the MBeanHome of the administration server using the

// Helper class.

 MBeanHome mbh = Helper.getMBeanHome("system",
"system_password","t3://localhost:7001","examplesserver");

 // The client obtains the MBeanServer interface via MBeanHome.

 RemoteMBeanServer mbs = mbh.getMBeanServer();

 // To use JMX calls against the MBeanServer interface, the client must use

// ObjectNames.

 ObjectName mbo = new ObjectName("user_Domain:Name=x");

 // The client attempts to register the custom MBean with the MBeanServer.

 try {

 mbs.registerMBean((Object)new MyCustom(),mbo);

2 Accessing WebLogic Server MBeans

2-12 Programming WebLogic JMX Services

 } catch(InstanceAlreadyExistsException i) {

 System.out.println("MBean ("+mbo+") allready exists");

 }

 // The client obtains and prints the value of MyAttribute.

 System.out.println("Value of MyAttribute of ("+mbo+")from MBeanServer = "+

 mbs.getAttribute(mbo,"MyAttribute"));

 // The custom MBean is unregistered.

 mbs.unregisterMBean(mbo);

 }

 // The example client implements the MyCustomMBean interface’s single method

// with prinhted output.

 public int getMyAttribute() {

 System.out.println("getMyAttribute invoked.");

 return 999;

 }

}

Programming WebLogic JMX Services 3-1

CHAPTER

3 Using MBean
Notifications

The following sections provide an overview of how to use the various notifications that
can be broadcast from WebLogic Server MBeans:

� Overview

� MBean Notification Summary

� Using Basic JMX Notifications

� Working with WebLogic Server Log Notifications

Overview

All WebLogic Server MBeans implement the
javax.management.NotificationBroadcaster interfaces, which means they can
emit standard JMX notification types.

3 Using MBean Notifications

3-2 Programming WebLogic JMX Services

To observe MBean notifications, you simply implement the NotificationListener
interface in your client application, and register the listener class with the MBeans
whose notifications you want to receive. The figure below shows a basic system to
monitor notifications using a JSP or Servlet.

A listener class can optionally register a NotificationFilter class, which provides
additional control over which notifications the listener receives.

Note: For an complete explanation of JMX notifications and how they work, see the
Sun Microsystems J2EE JMX specification.

Making Notifications Available to Outside Clients

The JMX version 1.0 specification does not describe how to make notifications
available to clients outside the broadcasting MBean’s JVM. WebLogic Server version
6.1 makes notifications available externally via the
weblogic.management.RemoteNotificationListener interface.

MBean

NotificationBroadcaster

JSP

NotificationListener

JVM

http://java.sun.com/products/JavaManagement/index.html

MBean Notification Summary

Programming WebLogic JMX Services 3-3

RemoteNotificationListener extends
javax.management.NotificationListener and java.rmi.Remote, making
MBean notifications available to external clients via RMI. Remote Java clients simply
implement RemoteNotificationListener, rather than NotificationListener,
to accept WebLogic MBean notifications, as shown below.

Registration of the remote Java client listener is accomplished through the standard
JMX addNotificationListener() method.

MBean Notification Summary

WebLogic Server notifications use the standard notification classes identified in the
JMX 1.0 specification. In addition, WebLogic Server provides additional notification
classes and notification helper classes for working with WebLogic Server MBean log
notifications. The following sections summarize the notification types and classes that
JMX applications can use in WebLogic Server.

MBean

NotificationBroadcaster

JSP

NotificationListener

JVM

Java Client

Remote NotificationListener

3 Using MBean Notifications

3-4 Programming WebLogic JMX Services

Basic JMX Notifications

All WebLogic Server MBeans implement the NotificationBroadcaster interface,
and can generate the notification types described in the JMX 1.0 specification. These
notification types include:

� javax.management.AttributeChangeNotification, for notifying when an
MBean attribute value has been changed, and

� javax.management.MbeanServerNotification, for notifications delegated
to the MBean server.

In addition, certain WebLogic Server MBeans support two additional notification
types for attributes that have “add” and “remove” methods:

� weblogic.management.AttributeAddNotification is broadcast when an
attribute’s addAttributeName method is called.

� weblogic.management.AttributeRemoveNotification is broadcast when
an attribute’s removeAttributeName method is called.

WebLogic Server Log Notifications

WebLogic Server provides the LogBroadcasterRuntime MBean, whose sole
responsibility is to broadcast log messages. Client applications that need to listen for
log notifications can simply register with the LogBroadcasterRuntime MBean.

A notification that represents a WebLogic Server log message contains many
additional pieces of information, such as:

� The name of the machine that issued the log message

� The name of the WebLogic Server that issued the log message

� The log message ID number

To help JMX applications extract and use this WebLogic Server log information, BEA
provides the WebLogicLogNotification wrapper class.
WebLogicLogNotification provides simple getter methods to extract parts of the
log message, as well as methods to obtain the transaction ID, user ID, and version
number associated with the message.

Using Basic JMX Notifications

Programming WebLogic JMX Services 3-5

Working with WebLogic Server Log Notifications provides details on using the log
notification supporting classes and interfaces.

Using Basic JMX Notifications

To receive WebLogic MBean notifications, an external client application must:

1. Implement the RemoteNotificationListener interface.

2. Register the listener class implementation with the MBean(s) whose notifications
you want to receive.

The following sections describe these basic steps.

Creating a Notification Listener

The notification listener class is responsible for handling the JMX notifications
broadcast by one or more MBeans. If your JMX application resides outside of the
broadcasting MBean’s JVM, the listener class should implement
weblogic.management.RemoteNotificationListener, supplying a
handleNotification() class to perform actions when notifications are received. An
example implementation follows:

import javax.management.Notification;

import javax.management.NotificationFilter;

import javax.management.NotificationListener;

import javax.management.Notification.*;

...

public class WebLogicLogNotificationListener implements

RemoteNotificationListener {

...

public void handleNotification(Notification notification, Object obj) {

3 Using MBean Notifications

3-6 Programming WebLogic JMX Services

 WebLogicLogNotification wln = (WebLogicLogNotification)notification;

 System.out.println("WebLogicLogNotification");

 System.out.println(" type = " +

 wln.getType());

 System.out.println(" message id = " +

 wln.getMessageId());

 System.out.println(" server name = " +

 wln.getServername());

 System.out.println(" timestamp = " +

 wln.getTimeStamp());

 System.out.println(" message = " +

 wln.getMessage() + "\n");

 }

Registering Notification Listeners with MBeans

Because all WebLogic Server MBeans are notification broadcasters, it is possible to
register a NotificationListener with any available MBean. Registering a
NotificationListener can be accomplished by calling the MBean’s
addNotificationListener() method.

However, in most cases it is preferable to register a listener using the MBean server’s
addNotificationListener() method. Using the
javax.management.MBeanServer interface saves the trouble of looking up a
particular MBean simply for registration purposes. For example, to listener defined in
Creating a Notification Listener registers itself using:

rmbs = home.getMBeanServer();

oname = new WebLogicObjectName("TheLogBroadcaster",

"LogBroadcasterRuntime",

DOMAIN_NAME,

SERVER_NAME);

Working with WebLogic Server Log Notifications

Programming WebLogic JMX Services 3-7

rmbs.addNotificationListener(oname,

listener,

null,

null);

Working with WebLogic Server Log
Notifications

To receive log messages, client applications can use the standard JMX API to register
a notification listener with the WebLogic Server LogBroadcasterRuntimeMBean, as
shown in the previous examples. LogBroadcasterRuntimeMBean is responsible for
generating notifications for log messages generated by a server.

All notifications broadcast by LogBroadcasterRuntimeMBean are of the type
WebLogicLogNotification. There is only one LogBroadcasterRuntimeMBean
per server, named TheLogBroadcaster.

The LogBroadcasterRuntimeMBean can be accessed using the mechanisms
described in Accessing MBeans from MBeanHome.

Contents of a WebLogicLogNotification

All JMX notifications for a WebLogic Server log message contain the following fields:

� Type—the type field to which the log notification is mapped. This field has the
format:

weblogic.logMessage.subSystem.messageID

where subSystem indicates the WebLogic Server subsystem that issued the log
message, and messageID indicates the internal WebLogic Server message ID.

� Time stamp—the time at which the log message causing this notification was
generated by the server.

3 Using MBean Notifications

3-8 Programming WebLogic JMX Services

� Sequence number.

� Message—contains the actual message body of the log message.

� User data—the user data field is not currently used.

All log notifications are of the type WebLogicLogNotification. This helper class
provides getter methods for all individual fields of a log message. Using the
WebLogicLogNotification class, a client application can easily filter log
notifications based on their severity, user ID, subsystem, and other fields.

The following NotificationFilter example uses the WebLogicLogNotification
class to select only messages of a specific message ID (111000) to be sent as
notifications.

import javax.management.Notification;

import javax.management.NotificationFilter;

import javax.management.Notification.*;

....

public class WebLogicLogNotificationFilter implements NotificationFilter,

 java.io.Serializable {

public WebLogicLogNotificationFilter() {

 subsystem = "";

 }

public boolean isNotificationEnabled(Notification notification) {

if (!(notification instanceof WebLogicLogNotification)) {

 return false;

 }

 WebLogicLogNotification wln = (WebLogicLogNotification)notification;

 if (subsystem == null ||

 subsystem.equals("")) {

 return true;

 }

Working with WebLogic Server Log Notifications

Programming WebLogic JMX Services 3-9

StringTokenizer tokens = new StringTokenizer(wln.getType(), ".");

 tokens.nextToken();

 tokens.nextToken();

 return (tokens.nextToken().equals(subsystem));

 }

 public void setSubsystemFilter(String newSubsystem) {

 subsystem = newSubsystem;

 }

}

Example Notification Listeners for WebLogic Server Error
Messages

Client applications can create various custom NotificationListeners that receive
log messages as notifications and perform actions such as:

� E-mailing the WebLogic administrator with critical log messages

� Adding log messages to a datastore

The basic form of the notification listener differs little from the example shown in
Creating a Notification Listener. Simply replace the printed messages in that example
with the necessary JDBC calls or paging operations to perform in response to the
notification.

3 Using MBean Notifications

3-10 Programming WebLogic JMX Services

Programming WebLogic JMX Services 4-1

CHAPTER

4 Monitoring WebLogic
Server MBeans

The following sections provide an overview of how to monitor WebLogic Server
MBean attributes:

� Overview

� Setting Up Monitoring

� Sample Monitoring Scenarios

Overview

A WebLogic Server client can set up monitors to monitor one or more MBean
attributes. The various types of monitors are defined in the JMX documentation for the
package javax.management.monitor. Standard JMX monitors are:

� CounterMonitor, for observing integer attributes

� GaugeMonitor, for observing integer or floating point attributes

� StringMonitor, for observing string attributes

JMX monitors frequently act as notification broadcasters, to indicate when a certain
condition has been met in a monitor. For this reason, monitoring systems generally
include standard notification constructs, such as notification listeners and notification
filters, which are registered with the monitor.

4 Monitoring WebLogic Server MBeans

4-2 Programming WebLogic JMX Services

Setting Up Monitoring

The following is an example of how to set up a counter monitor for receiving JMX
Notifications. Because this example also uses a notification listener to observe the
monitor’s notifications, some of the information builds from the examples in Using
MBean Notifications.

Creating a Notification Listener

The example begins by building a notification listener, named CounterListener, that
will receive notifications emitted from a JMX monitor:

import java.rmi.Remote;

import javax.management.Notification;

import javax.management.monitor.MonitorNotification;

import weblogic.management.RemoteNotificationListener;

public class CounterListener implements RemoteNotificationListener {

 String message;

 public void handleNotification(Notification notification ,Object obj) {

 System.out.println("\njavax.management.Notification");

 System.out.println(" type = " +

 notification.getType());

 System.out.println(" sequenceNumber = " +

 notification.getSequenceNumber());

 System.out.println(" source = " +

 notification.getSource());

 System.out.println(" timestamp = " +

 notification.getTimeStamp() + "\n");

Setting Up Monitoring

Programming WebLogic JMX Services 4-3

 if(notification instanceof MonitorNotification) {

 MonitorNotification monitorNotification =

 (MonitorNotification) notification;

 System.out.println("\njavax.management.monitor.MonitorNotification");

 System.out.println(" observed attr = " +

 monitorNotification.getObservedAttribute());

 System.out.println(" observed obj =" +

 monitorNotification.getObservedObject());

 System.out.println(" trigger value =" +

 monitorNotification.getTrigger() + "\n");

 message = "Mbean: " + monitorNotification.getObservedAttribute() +

 "\n" +

 "Attribute: " + monitorNotification.getObservedObject() +

 "\n" +

 "Trigger Value: " + monitorNotification.getTrigger();

 }

 }

}

Instantiating the Listener and Monitor

The example monitor class instantiates both the listener and monitor object, and
registers the monitor to observe the
ServerSecurityRuntime.InvalidLoginAttemptsTotalCount attribute. This
attribute indicates the number of failed logins to the server

When the invalid login attempts exceed a threshold value, the handleNotification
method is invoked by the notification listener,
CounterListener.handleNotification().

4 Monitoring WebLogic Server MBeans

4-4 Programming WebLogic JMX Services

The sample monitor code is as follows:

import java.rmi.RemoteException;

import java.util.Set;

import java.util.Iterator;

import javax.management.*;

import javax.management.AttributeChangeNotification;

import javax.management.AttributeChangeNotificationFilter;

import javax.management.monitor.CounterMonitor;

import javax.naming.*;

import weblogic.jndi.Environment;

import weblogic.management.*;

import weblogic.management.configuration.ServerMBean;

import weblogic.management.monitor.*;

import weblogic.management.runtime.ServerRuntimeMBean;

public class InvalidLoginMonitor {

 public static void main (String args[]) {

 // make sure there is a password argument

 if (args.length != 3) {

 System.out.println("Usage: java InvalidLoginMonitor " +

 "<system password> " +

 "<domain name> " +

 "<server name>");

 return;

 }

 String url = "t3://localhost:7001";

 String username = "system";

Setting Up Monitoring

Programming WebLogic JMX Services 4-5

 String password = args[0];

 MBeanHome home = null;

 try {

 Environment env = new Environment();

 env.setProviderUrl(url);

 env.setSecurityPrincipal(username);

 env.setSecurityCredentials(password);

 Context ctx = env.getInitialContext();

 home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

 System.out.println("Got the MBeanHome " + home);

 RemoteMBeanServer rmbs = home.getMBeanServer();

 CounterMonitor monitor = new CounterMonitor();

 CounterListener listener = new CounterListener();

 WebLogicObjectName monitorObjectName =

 new WebLogicObjectName("MyCounter",

 "CounterMonitor",

 args[1],

 args[2]);

 WebLogicObjectName securityRtObjectName =

 new WebLogicObjectName("myserver",

 "ServerSecurityRuntime",

 args[1],

 args[2]);

 Long t = new Long(2);

 Long offset = new Long(0);

 monitor.setThreshold((Number)t);

 monitor.setNotify(true);

4 Monitoring WebLogic Server MBeans

4-6 Programming WebLogic JMX Services

 monitor.setOffset((Number)offset);

 monitor.setObservedAttribute("InvalidLoginAttemptsTotalCount");

 monitor.setObservedObject(securityRtObjectName);

 monitor.addNotificationListener(listener, null, null);

 monitor.preRegister(rmbs, monitorObjectName);

 monitor.start();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Note: The above example uses the hard-coded server name, “myserver,” when
creating the WebLogicObjectName. You must pass “myserver” as an
argument when running this example or modify the code to use a different
server name.

Sample Monitoring Scenarios

This section outlines some typical MBean attributes that you might consider
monitoring to observe performance and/or resource usage. For more details on
individual MBean attributes or methods, see the appropriate MBean API
documentation.

http://e-docs.bea.com/wls/docs61/javadocs/index.html
http://e-docs.bea.com/wls/docs61/javadocs/index.html

Sample Monitoring Scenarios

Programming WebLogic JMX Services 4-7

JDBC Monitoring

The JDBCConnectionPoolRuntime MBean maintains several attributes that describe
the connections to a deployed JDBC connection pool. Applications may monitor these
attributes to observe the connection delays and connection failures, as well as
connection leaks. The following table outlines those MBean attributes typically used
for JDBC monitoring.

JDBCConnectionPoolRuntime
MBean Attribute

Typical Monitoring Application

LeakedConnectionCount Notify a listener when the total number of
leaked connections reaches a predefined
threshold. Leaked connections are connections
that have been checked out but never returned to
the connection pool via a close() call; it is
important to monitor the total number of leaked
connections, as a leaked connection cannot be
used to fulfill later connection requests.

ActiveConnectionsCurrentCount Notify a listener when the current number of
active connections to a specified JDBC
connection pool reaches a predefined threshold.

ConnectionDelayTime Notify a listener when the average time to
connect to a connection pool exceeds a
predefined threshold.

FailuresToReconnect Notify a listener when the connection pool fails
to reconnect to its datastore. Applications may
notify a listener when this attribute increments,
or when the attribute reaches a threshold,
depending on the level of acceptable downtime.

4 Monitoring WebLogic Server MBeans

4-8 Programming WebLogic JMX Services

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic JMX Services
	Overview
	The WebLogic Server Management System
	Managed Resources
	MBeans
	MBean Servers
	MBean Homes
	Administration MBeanHome

	WebLogic Server MBeans
	Administration MBeans
	Configuration MBeans
	Runtime MBeans
	MBean Naming Conventions
	Package Naming Conventions

	Quick Reference to WebLogic Server MBeans
	Domain MBean
	Target MBeans
	Server and Kernel MBeans
	Cluster MBeans

	Deployable Unit MBeans

	2 Accessing WebLogic Server MBeans
	Overview
	Selecting the Client Interface to WebLogic Server MBeans
	MBeanHome Versus MBeanServer
	Server MBeanHome Versus Administration MBeanHome

	Obtaining an MBeanHome Using JNDI
	Example: Looking Up MBeanHome from an External Client
	Example: Looking Up MBeanHome from an Internal Client
	Example: Obtaining MBeanServer from MBeanHome

	Using the Helper Class to Obtain MBeanHome Interfaces
	Accessing MBeans from MBeanHome
	Registering Custom MBeans with MBeanServer
	Example Custom MBean
	Example Client Application

	3 Using MBean Notifications
	Overview
	Making Notifications Available to Outside Clients

	MBean Notification Summary
	Basic JMX Notifications
	WebLogic Server Log Notifications

	Using Basic JMX Notifications
	Creating a Notification Listener
	Registering Notification Listeners with MBeans

	Working with WebLogic Server Log Notifications
	Contents of a WebLogicLogNotification
	Example Notification Listeners for WebLogic Server Error Messages

	4 Monitoring WebLogic Server MBeans
	Overview
	Setting Up Monitoring
	Creating a Notification Listener
	Instantiating the Listener and Monitor

	Sample Monitoring Scenarios
	JDBC Monitoring

