
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA WebLogic

Programming WebLogic JMS

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic JMS

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience..x

e-docs Web Site...x

How to Print the Document...x

Related Information... xi

Contact Us! .. xi

Documentation Conventions .. xii

1. Introduction to WebLogic JMS
What Is JMS? .. 1-1

WebLogic JMS Features ... 1-2

WebLogic JMS Architecture... 1-4

Major Components... 1-5

Clustering Features... 1-5

WebLogic JMS Extensions ... 1-7

2. WebLogic JMS Fundamentals
Messaging Models... 2-2

Point-to-Point Messaging... 2-2

Publish/Subscribe Messaging... 2-3

Message Persistence... 2-4

WebLogic JMS Classes... 2-5

ConnectionFactory .. 2-6

Connection... 2-8

Session... 2-9

Non-transacted Session .. 2-9

Transacted Session ... 2-12
Programming WebLogic JMS iii

Destination... 2-12

MessageProducer and MessageConsumer... 2-13

Message ... 2-15

Message Header Fields... 2-15

Message Property Fields... 2-19

Message Body .. 2-20

ServerSessionPoolFactory ... 2-21

ServerSessionPool ... 2-21

ServerSession... 2-22

ConnectionConsumer .. 2-22

3. Managing WebLogic JMS
Configuring WebLogic JMS ... 3-2

Configuring WebLogic JMS Clustering.. 3-3

How JMS Clustering Works... 3-3

Monitoring WebLogic JMS... 3-5

Recovering from a WebLogic Server Failure.. 3-5

4. Developing a WebLogic JMS Application
Application Development Flow... 4-2

Importing Required Packages.. 4-3

Setting Up a JMS Application ... 4-4

Step 1: Look Up a Connection Factory in JNDI .. 4-6

Step 2: Create a Connection Using the Connection Factory 4-7

Step 3: Create a Session Using the Connection.. 4-8

Step 4: Look Up a Destination (Queue or Topic)..................................... 4-10

Step 5: Create Message Producers and Message Consumers Using the
Session and Destinations... 4-11

Step 6a: Create the Message Object (Message Producers) 4-16

Step 6b: Optionally Register an Asynchronous Message Listener (Message
Consumers).. 4-17

Step 7: Start the Connection ... 4-18

Example: Setting Up a PTP Application .. 4-18

Example: Setting Up a Pub/Sub Application ... 4-21

Sending Messages.. 4-24

Step 1: Create a Message Object .. 4-24
iv Programming WebLogic JMS

Step 2: Define a Message ... 4-24

Step 3: Send the Message to a Destination .. 4-25

Dynamically Configuring Message Producer Configuration Attributes.. 4-29

Example: Sending Messages Within a PTP Application 4-30

Example: Sending Messages Within a Pub/Sub Application................... 4-30

Receiving Messages .. 4-31

Receiving Messages Asynchronously .. 4-32

Receiving Messages Synchronously .. 4-33

Recovering Received Messages ... 4-35

Acknowledging Received Messages ... 4-35

Releasing Object Resources .. 4-37

Managing Rolled Back, Recovered, or Expired Messages 4-38

Setting a Redelivery Delay for Messages .. 4-38

Setting a Redelivery Limit for Messages ... 4-40

Passive Message Expiration Policy.. 4-41

Setting Message Delivery Times... 4-41

Setting a Delivery Time on Producers ... 4-41

Setting a Delivery Time on Messages.. 4-42

Overriding a Delivery Time ... 4-43

Interaction with the Time-to-Live Value ... 4-47

Managing Connections.. 4-48

Defining a Connection Exception Listener .. 4-48

Accessing Connection Metadata .. 4-49

Starting, Stopping, and Closing a Connection ... 4-50

Managing Sessions .. 4-51

Defining a Session Exception Listener .. 4-52

Closing a Session ... 4-53

Creating Destinations Dynamically... 4-54

Using the JMSHelper Class Methods... 4-54

Using Temporary Destinations... 4-56

Setting Up Durable Subscriptions ... 4-58

Defining the Client ID.. 4-58

Creating Subscribers for a Durable Subscription..................................... 4-60

Deleting Durable Subscriptions ... 4-61

Modifying Durable Subscriptions .. 4-61
Programming WebLogic JMS v

Setting and Browsing Message Header and Property Fields........................... 4-62

Setting Message Header Fields .. 4-62

Setting Message Property Fields .. 4-65

Browsing Header and Property Fields.. 4-69

Filtering Messages ... 4-70

Defining Message Selectors Using SQL Statements................................ 4-71

Defining XML Message Selectors Using XML Selector Method 4-72

Displaying Message Selectors.. 4-73

Indexing Topic Subscriber Message Selectors To Optimize Performance
4-73

Defining Server Session Pools .. 4-75

Step 1: Look Up Server Session Pool Factory in JNDI............................ 4-78

Step 2: Create a Server Session Pool Using the Server Session Pool Factory
4-78

Step 3: Create a Connection Consumer.. 4-80

Example: Setting Up a PTP Client Server Session Pool 4-82

Example: Setting Up a Pub/Sub Client Server Session Pool 4-84

Using Multicasting .. 4-87

Step 1: Set Up the JMS Application, Creating Multicast Session and Topic
Subscriber.. 4-90

Step 2: Set Up the Message Listener.. 4-91

Dynamically Configuring Multicasting Configuration Attributes 4-92

Example: Multicast TTL .. 4-93

5. Using Transactions with WebLogic JMS
Overview of Transactions.. 5-2

Using JMS Transacted Sessions .. 5-3

Step 1: Set Up JMS Application, Creating Transacted Session 5-4

Step 2: Perform Desired Operations... 5-5

Step 3: Commit or Roll Back the JMS Transacted Session 5-5

Using JTA User Transactions.. 5-6

Step 1: Set Up JMS Application, Creating Non-Transacted Session......... 5-7

Step 2: Look Up User Transaction in JNDI ... 5-8

Step 3: Start the JTA User Transaction .. 5-8

Step 4: Perform Desired Operations... 5-8

Step 5: Commit or Roll Back the JTA User Transaction 5-9
vi Programming WebLogic JMS

Asynchronous Messaging Within JTA User Transactions Using Message Driven
Beans .. 5-9

Example: JMS and EJB in a JTA User Transaction.. 5-10

6. Migrating WebLogic JMS Applications
Existing Feature Functionality Changes.. 6-1

Migrating Existing Applications ... 6-8

Before You Begin... 6-8

Migration Steps for 4.5 and 5.1 Applications to 6.x 6-9

Migration Steps for 6.0 Applications to 6.1 ... 6-11

Deleting JDBC Database Stores.. 6-12

A. Configuration Checklists
Server Clusters.. A-2

JTA User Transactions ... A-2

JMS Transactions ... A-2

Message Delivery ... A-3

Asynchronous Message Delivery ... A-3

Persistent Messages .. A-4

Concurrent Message Processing... A-4

Multicasting.. A-5

Durable Subscriptions .. A-5

Destination Sort Order.. A-6

Temporary Destinations ... A-6

Thresholds and Quotas ... A-6

B. JDBC Database Utility
Overview ...B-1

About JMS Stores..B-1

Regenerating JDBC Stores ..B-2

Index
Programming WebLogic JMS vii

viii Programming WebLogic JMS

About This Document

This document explains how to use the BEA WebLogic Server™ platform to
implement the Java™ Messaging Service (JMS) API for accessing enterprise
messaging systems.

The document is organized as follows:

� Chapter 1, “Introduction to WebLogic JMS,” provides an overview of WebLogic
Java Message Service (JMS).

� Chapter 2, “WebLogic JMS Fundamentals,” describes WebLogic JMS
components and features.

� Chapter 3, “Managing WebLogic JMS,” provides an overview of configuring
and monitoring WebLogic JMS.

� Chapter 4, “Developing a WebLogic JMS Application,” describes how to
develop a WebLogic JMS application.

� Chapter 5, “Using Transactions with WebLogic JMS,” describes how to use
transactions with WebLogic JMS.

� Chapter 6, “Migrating WebLogic JMS Applications,” describes how to migrate
WebLogic JMS applications.

� Appendix A, “Configuration Checklists,” provides monitoring checklists for
various WebLogic JMS features.

� Appendix B, “JDBC Database Utility,” describes how to use the the JDBC
database utility to generate new JDBC stores and delete existing ones.
Programming WebLogic JMS ix

Audience

This document is written for application developers who want to design, develop,
configure, and manage JMS applications using the Java 2 Platform, Enterprise Edition
(J2EE) from Sun Microsystems. It is assumed that readers know JMS, JNDI (Java
Naming and Directory Interface), the Java programming language, the Enterprise
JavaBeans™ (EJB™), and Java Transaction API (JTA) of the J2EE specification.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation. Or you can go directly to the
WebLogic Server Product Documentation page at http://e-docs.bea.com/wls/docs61.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
x Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61
http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. For
more information on JMS, access the JMS Javadoc and the JMS API – Errata, supplied
on the Sun Microsystems Javasoft Web site at the follow locations:

http://www.java.sun.com/products/jms/javadoc-102a/index.html

http://www.java.sun.com/products/jms/errata_051801.html

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
Programming WebLogic JMS xi

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://www.java.sun.com/products/jms/errata_051801.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
xii Programming WebLogic JMS

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic JMS xiii

xiv Programming WebLogic JMS

CHAPTER
1 Introduction to
WebLogic JMS

The following sections provide an overview of the Java Message Service (JMS) for
WebLogic Server:

� What Is JMS?

� WebLogic JMS Features

� WebLogic JMS Architecture

� WebLogic JMS Extensions

What Is JMS?

An enterprise messaging system, also referred to as Message-Oriented Middleware
(MOM), enables applications to communicate with one another through the exchange
of messages. A message is a request, report, and/or event that contains information
needed to coordinate communication between different applications. A message
provides a level of abstraction, allowing you to separate the details about the
destination system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging
systems. Specifically, JMS:

� Enables Java applications sharing a messaging system to exchange messages.
Programming WebLogic JMS 1-1

1 Introduction to WebLogic JMS
� Simplifies application development by providing a standard interface for
creating, sending, and receiving messages.

The following figure illustrates WebLogic JMS messaging.

Figure 1-1 WebLogic JMS Messaging

As illustrated in the figure, WebLogic JMS accepts messages from producer
applications and delivers them to consumer applications.

WebLogic JMS Features

WebLogic JMS provides a full implementation of the JMS API. Specifically,
WebLogic JMS:

� Provides a single, unified messaging API.

� Implements the JavaSoft JMS specification version 1.0.2.

� Supports clustering.

� Supports messaging for applications that span different operating systems and
machine architectures.

� Can be configured by setting attributes from the WebLogic Administration
Console and/or using the JMS API to override values.

� Allows interoperability between JMS applications and other resource managers
(primarily databases) using the Java Transaction API (JTA) transactions. JMS
applications can participate in transactions with other Java APIs that use JTA.

� Supports messages containing Extensible Markup Language (XML).
1-2 Programming WebLogic JMS

http://www.javasoft.com/products/jms/docs.html

WebLogic JMS Features
� Supports multicasting allowing the delivery of messages to a select group of
hosts using an IP multicast address.

� May use either a database or a file for persistent message storage.

� Can be used with other BEA WebLogic Server™ APIs and facilities, such as
Enterprise Java Beans (EJB), JDBC connection pools, servlets, and RMI.
Programming WebLogic JMS 1-3

1 Introduction to WebLogic JMS
WebLogic JMS Architecture

The following figure illustrates the WebLogic JMS architecture.

Figure 1-2 WebLogic JMS Architecture
1-4 Programming WebLogic JMS

WebLogic JMS Architecture
Major Components

The major components of the WebLogic JMS Server architecture, as illustrated in the
figure “WebLogic JMS Architecture” on page 1-4, include:

� WebLogic JMS servers implementing the messaging facility

� Client applications

� JNDI (Java Naming and Directory Interface), which provides a server lookup
facility

� Persistent stores (file or database) for storing persistent data

Clustering Features

The WebLogic JMS architecture implements clustering of multiple JMS servers by
supporting cluster-wide, transparent access to destinations from any server in the
cluster. Although WebLogic Server supports distributing JMS destinations and
connection factories throughout a cluster, JMS topics and queues are still managed by
individual WebLogic Server instances in the cluster.

For more information about configuring clustering for WebLogic JMS, see
“Configuring WebLogic JMS Clustering” on page 3-3. For detailed information about
WebLogic clustering, see Using WebLogic Server Clusters.

The advantages of clustering include the following:

� Load balancing of destinations across multiple servers in the cluster

A system administrator can establish load balancing of destinations across
multiple servers in the cluster by configuring multiple JMS servers and using
targets to assign them to the defined WebLogic Servers. Each JMS server is
deployed on exactly one WebLogic Server and handles requests for a set of
destinations.

Note: Load balancing is not dynamic. During the configuration phase, the system
administrator defines load balancing by specifying targets for JMS servers.
Programming WebLogic JMS 1-5

http://e-docs.bea.com/wls/docs61/cluster/index.html

1 Introduction to WebLogic JMS
� Cluster-wide, transparent access to destinations from any server in the cluster

A system administrator can establish cluster-wide, transparent access to
destinations from any server in the cluster by configuring multiple connection
factories and using targets to assign them to WebLogic Servers. Each connection
factory can be deployed on multiple WebLogic Servers.

The application uses the Java Naming and Directory Interface (JNDI) to look up
a connection factory and create a connection to establish communication with a
JMS server. Each JMS server handles requests for a set of destinations. Requests
for destinations not handled by a JMS server are forwarded to the appropriate
server.

Connection factories are described in more detail in “WebLogic JMS
Fundamentals” on page 2-1.

� Scalability

Scalability is provided by:

� Load balancing of destinations across multiple servers in the cluster, as
described previously.

� Distribution of application load across multiple JMS servers via connection
factories, thus reducing the load on any single JMS server and enabling
session concentration by routing connections to specific servers.

� Optional multicast support, reducing the number of messages required to be
delivered by a JMS server. The JMS server forwards only a single copy of a
message to each host group associated with a multicast IP address, regardless
of the number of applications that have subscribed.

Note: Automatic failover is not supported by WebLogic JMS for this release. For
information about performing a manual failover, refer to “Recovering from a
WebLogic Server Failure” on page 3-5.
1-6 Programming WebLogic JMS

WebLogic JMS Extensions
WebLogic JMS Extensions

In addition to the API specified by the JavaSoft JMS specification version 1.0.2,
WebLogic JMS provides a public API, weblogic.jms.extensions, which includes
classes and methods for the extensions described in the following table.

Table 1-1 WebLogic JMS Extensions

Extension For more information. . .

Create XML messages Refer to “Step 6a: Create the Message Object (Message
Producers)” on page 4-16

Define a session exception listener Refer to “Defining a Session Exception Listener” on page 4-52

Set or display the maximum number of
pre-fetched asynchronous messages allowed
on the session

Refer to “Dynamically Configuring Multicasting Configuration
Attributes” on page 4-92

Set or display the multicast session overrun
policy that is applied when the message
maximum is reached

Refer to “Dynamically Configuring Multicasting Configuration
Attributes” on page 4-92

Dynamically create permanent queues or
topics

Refer to “Using the JMSHelper Class Methods” on page 4-54

Convert between WebLogic JMS 6.0 and
pre-6.0 JMSMessageID formats

Refer to “Setting Message Header Fields” on page 4-62

Set a redelivery delay for messages Refer to “Setting a Redelivery Delay for Messages” on page 4-38

Set a message delivery time for producers Refer to “Setting a Delivery Time on Producers” on page 4-41

Set a delivery time for messages Refer to “Setting a Delivery Time on Messages” on page 4-42

Set a scheduled delivery time for messages Refer to “Setting a Scheduled Time-to-Deliver Override” on page
4-43
Programming WebLogic JMS 1-7

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/package-summary.html

1 Introduction to WebLogic JMS
This API also supports NO_ACKNOWLEDGE and MULTICAST_NO_ACKNOWLEDGE
acknowledge modes, and extended exceptions, including throwing an exception:

� To the session exception listener (if set), when one of its consumers has been
closed by the server as a result of a server failure, or administrative intervention.

� From a multicast session when the number of messages received by the session
but not yet delivered to the messages listener, exceeds the maximum number of
messages allowed for that session.

� From a multicast consumer when it detects a sequence gap (message received
out of sequence) in the data stream.
1-8 Programming WebLogic JMS

CHAPTER
2 WebLogic JMS
Fundamentals

The following sections describe WebLogic JMS components and features:

� Messaging Models

� WebLogic JMS Classes

� ConnectionFactory

� Connection

� Session

� Destination

� MessageProducer and MessageConsumer

� ServerSessionPoolFactory

� ServerSessionPool

� ServerSession

� ConnectionConsumer

Note: For more information on the JMS classes described in this section, access the
latest JMS Javadoc, including the latest JMS API Errata, which is supplied on
the Sun Microsystems Java Web site at the following locations:

http://www.javasoft.com/products/jms/Javadoc-102a/index.html

and

http://www.javasoft.com/products/jms/errata_051801.html
Programming WebLogic JMS 2-1

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://www.java.sun.com/products/jms/errata_051801.html

2 WebLogic JMS Fundamentals
Messaging Models

JMS supports two messaging models: point-to-point (PTP) and publish/subscribe
(Pub/sub). The messaging models are very similar, except for the following
differences:

� PTP messaging model enables the delivery of a message to exactly one recipient.

� Pub/sub messaging model enables the delivery of a message to multiple
recipients.

Each model is implemented with classes that extend common base classes. For
example, the PTP class javax.jms.Queue and the Pub/sub class javax.jms.Topic
both extend the class javax.jms.Destination.

Each message model is described in detail in the following sections.

Note: The terms producer and consumer are used as generic descriptions of
applications that send and receive messages, respectively, in either messaging
model. For each specific messaging model, however, unique terms specific to
that model are used when referring to producers and consumers.

Point-to-Point Messaging

The point-to-point (PTP) messaging model enables one application to send a message
to another. PTP messaging applications send and receive messages using named
queues. A queue sender (producer) sends a message to a specific queue. A queue
receiver (consumer) receives messages from a specific queue.

The following figure illustrates PTP messaging.
2-2 Programming WebLogic JMS

http://www.java.sun.com/products/jms/errata_051801.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Queue.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Topic.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Destination.html

Messaging Models
Figure 2-1 Point-to-Point (PTP) Messaging

Multiple queue senders and queue receivers can be associated with a single queue, but
an individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, WebLogic JMS
determines which one will receive the next message on a first come, first serve basis.
If no queue receivers are listening on the queue, messages remain in the queue until a
queue receiver attaches to the queue.

Publish/Subscribe Messaging

The publish/subscribe (Pub/sub) messaging model enables an application to send a
message to multiple applications. Pub/sub messaging applications send and receive
messages by subscribing to a topic. A topic publisher (producer) sends messages to a
specific topic. A topic subscriber (consumer) retrieves messages from a specific topic.

The following figure illustrates Pub/sub messaging.
Programming WebLogic JMS 2-3

2 WebLogic JMS Fundamentals
Figure 2-2 Publish/Subscribe (Pub/Sub) Messaging

Unlike with the PTP messaging model, the Pub/sub messaging model allows multiple
topic subscribers to receive the same message. JMS retains the message until all topic
subscribers have received it.

The Pub/sub messaging model supports durable subscribers, allowing you to assign a
name to a topic subscriber and associate it with a user or application. For more
information about durable subscribers, see “Setting Up Durable Subscriptions” on
page 4-58.

Message Persistence

As per the “Message Delivery Mode” section of the JMS Specification, messages can
be specified as persistent or non-persistent:

� A persistent message is guaranteed to be delivered once-and-only-once. This
means a message cannot be lost and cannot be delivered twice. It is not
considered sent until it has been safely written to a file or database. WebLogic
JMS writes persistent messages to a persistent backing store (disk-base file or
JDBC-accessible database) assigned to each JMS server during configuration.

� Non-persistent messages are not stored. They are guaranteed to be delivered
at-most-once, unless there is a system failure, in which case messages may be
lost. If a connection is closed or recovered, all non-persistent messages that have
2-4 Programming WebLogic JMS

http://java.sun.com/products/jms/docs.html

WebLogic JMS Classes
not yet been acknowledged will be redelivered. Once a non-persistent message is
acknowledged, it will not be redelivered.

WebLogic JMS Classes

To create a JMS applications, use the javax.jms API. The API allows you to create
the class objects necessary to connect to the JMS, and send and receive messages. JMS
class interfaces are created as subclasses to provide queue- and topic-specific versions
of the common parent classes.

The following table lists the JMS classes described in more detail in subsequent
sections. For a complete description of all JMS classes, see the javax.jms,
weblogic.jms.ServerSessionPoolFactory, or weblogic.jms.extensions
Javadoc.

Table 2-1 JMS Classes

JMS Class Description

ConnectionFactory Encapsulates connection configuration information. A
connection factory is used to create connections. You look
up a connection factory using JNDI.

Connection Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Session Defines a serial order for the messages produced and
consumed.

Destination Identifies a queue or topic, encapsulating the address of a
specific provider. Queue and topic destinations manage
the messages delivered from the PTP and Pub/sub
messaging models, respectively.

MessageProducer and
MessageConsumer

Provides the interface for sending and receiving
messages. Message producers send messages to a queue
or topic. Message consumers receive messages from a
queue or topic.

Message Encapsulates information to be sent or received.
Programming WebLogic JMS 2-5

http://www.javasoft.com/products/jms/javadoc-102a/index.html
http://www.javasoft.com/products/jms/javadoc-102a/index.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/package-summary.html

2 WebLogic JMS Fundamentals
For information about configuring JMS objects, see “Managing WebLogic JMS” on
page 3-1. The procedure for setting up a JMS application is presented in “Setting Up a
JMS Application” on page 4-4.

ConnectionFactory

A ConnectionFactory object encapsulates connection configuration information,
and enables JMS applications to create a Connection. A system administrator
configures connection factories to create connections with predefined attributes.

A system administrator defines and configures one or more connection factories, and
the WebLogic Server adds them to the JNDI space during startup. The application then
retrieves a connection factory using WebLogic JNDI.

The system administrator can also establish cluster-wide, transparent access to
destinations from any server in the cluster by configuring multiple connection factories
and using targets to assign them to WebLogic Servers. Each connection factory can be
deployed on multiple WebLogic Servers. For more information on JMS clustering,
refer to “Configuring WebLogic JMS Clustering” on page 3-3.

ServerSessionPoolFacto

ry1
Encapsulates configuration information for a
server-managed pool of message consumers. The server
session pool factory is used to create server session pools.

ServerSessionPool1 Provides a pool of server sessions that can be used to
process messages concurrently for connection consumers.

ServerSession1 Associates a thread with a JMS session.

ConnectionConsumer1 Specifies a consumer that retrieves server sessions to
process messages concurrently.

1 Supports an optional JMS interface for processing multiple messages concurrently.

Table 2-1 JMS Classes (Continued)

JMS Class Description
2-6 Programming WebLogic JMS

ConnectionFactory
WebLogic JMS defines one default connection factory. It can be looked up using the
JNDI name, weblogic.jms.ConnectionFactory. You only need to define a
connection factory if the one provided by WebLogic JMS is not suitable for your
application. For information on configuring connection factories, see “Managing
JMS” in the Administration Guide.

Notes: For backwards compatibility, WebLogic JMS still supports two deprecated
default connection factories. The JNDI names for these factories are:
javax.jms.QueueConnectionFactory and
javax.jms.TopicConnectionFactory.

For information on migrating to a new default or user-defined connection
factory from a deprecated connection factory, refer to “Migrating WebLogic
JMS Applications” on page 6-1.

The ConnectionFactory class does not define methods; however, its subclasses
define methods for the respective messaging models. A connection factory supports
concurrent use, enabling multiple threads to access the object simultaneously.

The following table describes the ConnectionFactory subclasses.

To learn how to use the ConnectionFactory class within an application, see
“Developing a WebLogic JMS Application” on page 4-1, or the
javax.jms.ConnectionFactory Javadoc.

Table 2-2 ConnectionFactory Subclasses

Subclass. . . In Messaging
Model. . .

Is Used to Create. . .

QueueConnectionFactory PTP QueueConnection to a JMS PTP provider.

TopicConnectionFactory Pub/sub TopicConnection to a JMS Pub/sub provider.
Programming WebLogic JMS 2-7

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionFactory.html

2 WebLogic JMS Fundamentals

Connection

A Connection object represents an open communication channel between an
application and the messaging system, and is used to create a Session for producing
and consuming messages. A connection creates server-side and client-side objects that
manage the messaging activity between an application and JMS. A connection may
also provide user authentication.

A Connection is created by a ConnectionFactory, obtained through a JNDI
lookup.

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish a single connection for all messaging. In
the WebLogic Server, JMS traffic is multiplexed with other WebLogic services on the
client connection to the server. No additional TCP/IP connections are created for JMS.
Servlets and other server-side objects may also obtain JMS Connections.

By default, a connection is created in stopped mode. For information about how and
when to start a stopped connection, see “Starting, Stopping, and Closing a Connection”
on page 4-50.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

The following table describes the Connection subclasses.

To learn how to use the Connection class within an application, see “Developing a
WebLogic JMS Application” on page 4-1, or the javax.jms.Connection Javadoc.

Table 2-3 Connection Subclasses

Subclass. . . In Messaging
Model. . .

Is Used to Create. . .

QueueConnection PTP QueueSessions, and consists of a connection to a JMS PTP
provider created by QueueConnectionFactory.

TopicConnection Pub/sub TopicSessions, and consists of a connection to a JMS Pub/sub
provider created by TopicConnectionFactory.
2-8 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Connection.html

Session

.
Session

A Session object defines a serial order for the messages produced and consumed, and
can create multiple message producers and message consumers. The same thread can
be used for producing and consuming messages. If an application wants to have a
separate thread for producing and consuming messages, the application should create
a separate session for each function.

A Session is created by the Connection.

Note: A session and its message producers and consumers can only be accessed by
one thread at a time. Their behavior is undefined if multiple threads access
them simultaneously.

The following table describes the Session subclasses.

To learn how to use the Session class within an application, see “Developing a
WebLogic JMS Application” on page 4-1, or the javax.jms.Session and
weblogic.jms.extensions.WLSession javadocs.

Non-transacted Session

In a non-transacted session, the application creating the session selects one of the five
acknowledge modes defined in the following table.

Table 2-4 Session Subclasses

Subclass. . . In Messaging
Model. . .

Provides a Context for. . .

QueueSession PTP Producing and consuming messages for a JMS PTP provider.
Created by QueueConnection.

TopicSession Pub/sub Producing and consuming messages for a JMS Pub/sub provider
Created by TopicConnection.
Programming WebLogic JMS 2-9

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Session.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/WLSession.html

2 WebLogic JMS Fundamentals
Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The Session object acknowledges receipt of a message once the
receiving application method has returned from processing it.

CLIENT_ACKNOWLEDGE The Session object relies on the application to call an acknowledge
method on a received message. Once the method is called, the session
acknowledges all messages received since the last acknowledge.

This mode allows an application to receive, process, and acknowledge a
batch of messages with one call.

Note: In the Administration Console, if the Acknowledge Policy
attribute on the connection factory is set to Previous, but you
want to acknowledge all received messages for a given session,
then use the last message to invoke the acknowledge method.
For more information on the Acknowledge Policy attribute, see
“JMS Connection Factories” in the Administration
Console Online Help.

DUPS_OK_ACKNOWLEDGE The Session object acknowledges receipt of a message once the
receiving application method has returned from processing it; duplicate
acknowledges are permitted.

This mode is most efficient in terms of resource usage.

Note: You should avoid using this mode if your application cannot
handle duplicate messages. Duplicate messages may be sent if
an initial attempt to deliver a message fails.

NO_ACKNOWLEDGE No acknowledge is required. Messages sent to a NO_ACKNOWLEDGE
session are immediately deleted from the server. Messages received in
this mode are not recovered, and as a result messages may be lost and/or
duplicate message may be delivered if an initial attempt to deliver a
message fails.

This mode is supported for applications that do not require the quality of
service provided by session acknowledge, and that do not want to incur
the associated overhead.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may be
sent if an initial attempt to deliver a message fails.
2-10 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html

Session
MULTICAST_NO_ACKNOWLEDGE Multicast mode with no acknowledge required.

Messages sent to a MULTICAST_NO_ACKNOWLEDGE session share the
same characteristics as NO_ACKNOWLEDGE mode, described previously.

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service provided by
session acknowledge. For more information on multicasting, see “Using
Multicasting” on page 4-87.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may be
sent if an initial attempt to deliver a message fails.

Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions (Continued)

Acknowledge Mode Description
Programming WebLogic JMS 2-11

2 WebLogic JMS Fundamentals
Transacted Session

In a transacted session, only one transaction is active at any given time. Any messages
sent or received during a transaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an
application commits a transaction, all the messages that the application received during
the transaction are acknowledged by the messaging system and messages it sent are
accepted for delivery. If an application rolls back a transaction, the messages that the
application received during the transaction are not acknowledged and messages it sent
are discarded.

JMS can participate in distributed transactions with other Java services, such as EJB,
that use the Java Transaction API (JTA). Transacted sessions do not support this
capability as the transaction is restricted to accessing the messages associated with that
session. For more information about using JMS with JTA, see “Using JTA User
Transactions” on page 5-6.

Destination

A Destination object can be either a queue or topic, encapsulating the address syntax
for a specific provider. The JMS specification does not define a standard address
syntax due to the variations in syntax between providers.

Similar to a connection factory, an administrator defines and configures the destination
and the WebLogic Server adds it to the JNDI space during startup. Applications can
also create temporary destinations that exist only for the duration of the JMS
connection in which they are created.

On the client side, Queue and Topic objects are handles to the object on the server.
Their methods only return their names. To access them for messaging, you create
message producers and consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously.
2-12 Programming WebLogic JMS

MessageProducer and MessageConsumer

JMS Queues and Topics extend javax.jms.Destination. The following table
describes the Destination subclasses.

Note: An application has the option of browsing queues by creating a
QueueBrowser object in its queue session. This object produces a snapshot of
the messages in the queue at the time the queue browser is created. The
application can view the messages in the queue, but the messages are not
considered read and are not removed from the queue. For more information
about browsing queues, see “Browsing Header and Property Fields” on page
4-69.

To learn how to use the Destination class within an application, see “Developing a
WebLogic JMS Application” on page 4-1, or the javax.jms.Destination Javadoc.

MessageProducer and MessageConsumer

A MessageProducer object sends messages to a queue or topic. A MessageConsumer
object receives messages from a queue or topic. Message producers and consumers
operate independently of one another. Message producers generate and send messages
regardless of whether a message consumer has been created and is waiting for a
message, and vice versa.

Table 2-6 Destination Subclasses

Subclass. . . In Messaging
Model. . .

Manages Messages for. . .

Queue PTP JMS PTP provider.

TemporaryQueue PTP JMS PTP provider, and exists for the duration of the JMS
connection in which the messages are created. A temporary queue
can be consumed only by the queue connection that created it.

Topic Pub/sub JMS Pub/sub provider.

TemporaryTopic Pub/sub JMS PTP provider, and exists for the duration of the JMS
connection in which the messages are created. A temporary topic
can be consumed only by the topic connection that created it.
Programming WebLogic JMS 2-13

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Destination.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Destination.html

2 WebLogic JMS Fundamentals

he

the

the
A Session creates the MessageProducers and MessageConsumers that are attached
to queues and topics.

The message sender and receiver objects are created as subclasses of the
MessageProducer and MessageConsumer classes. The following table describes the
MessageProducer and MessageConsumer subclasses.

The PTP model, as shown in the figure “Point-to-Point (PTP) Messaging” on page 2-3,
allows multiple sessions to receive messages from the same queue. However, a
message can only be delivered to one queue receiver. When there are multiple queue
receivers, WebLogic JMS defines the next queue receiver that will receive a message
on a first-come, first-serve basis.

The Pub/sub model, as shown in the figure “Publish/Subscribe (Pub/Sub) Messaging”
on page 2-4, allows messages to be delivered to multiple topic subscribers. Topic
subscribers can be durable or non-durable, as described in “Setting Up Durable
Subscriptions” on page 4-58.

An application can use the same JMS connection to both publish and subscribe to a
single topic. Because topic messages are delivered to all subscribers, an application
can receive messages it has published itself. To prevent clients from receiving
messages that they publish, a JMS application can set a noLocal attribute on the topic
subscriber, as described in “Step 5: Create Message Producers and Message
Consumers Using the Session and Destinations” on page 4-11.

Table 2-7 MessageProducer and MessageConsumer Subclasses

Subclass. . . In Messaging
Model. . .

Performs the Following Function. . .

QueueSender PTP Sends messages for a JMS PTP provider.

QueueReceiver PTP Receives messages for a JMS PTP provider, and exists until t
JMS connection in which the messages are created is closed.

TopicPublisher Pub/sub Sends messages for a JMS Pub/sub provider.

TopicSubscriber Pub/sub Receives messages for a JMS Pub/sub provider, and exists for
duration of the JMS connection in which the messages are
created. Message destinations must be bound explicitly using
appropriate JNDI interface.
2-14 Programming WebLogic JMS

Message
To learn how to use the MessageProducer and MessageConsumer classes within an
application, see “Setting Up a JMS Application” on page 4-4, or the
javax.jms.MessageProducer and javax.jms.MessageConsumer javadocs.

Message

A Message object encapsulates the information exchanged by applications. This
information includes three components: a set of standard header fields, a set of
application-specific properties, and a message body. The following sections describe
these components.

Message Header Fields

Every JMS message contains a standard set of header fields that is included by default
and available to message consumers. Some fields can be set by the message producers.

For information about setting message header fields, see “Setting and Browsing
Message Header and Property Fields” on page 4-62, or to the javax.jms.Message
Javadoc.
Programming WebLogic JMS 2-15

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageProducer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageConsumer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

2 WebLogic JMS Fundamentals
The following table describes the fields in the message headers and shows how values
are defined for each field.

Table 2-8 Message Header Fields

Field Description Defined by

JMSCorrelationID Specifies one of the following: a WebLogic JMSMessageID
(described later in this table), an application-specific string, or a
byte[] array. The JMSCorrelationID is used to correlate
messages.

There are two common applications for this field.

The first application is to link messages by setting up a
request/response scheme, as follows:

1. When an application sends a message, it stores the
JMSMessageID value assigned to it.

2. When an application receives the message, it copies the
JMSMessageID into the JMSCorrelationID field of a
response message that it sends back to the sending application.

The second application is to use the JMSCorrelationID field
to carry any String you choose, enabling a series of messages to be
linked with some application-determined value.

All JMSMessageIDs start with an ID: prefix. If you use the
JMSCorrelationID for some other application-specific string,
it must not begin with the ID: prefix.

Application
2-16 Programming WebLogic JMS

Message
JMSDeliveryMode Specifies PERSISTENT or NON_PERSISTENT messaging.

When a persistent message is sent, WebLogic JMS stores it in the
JMS file or JDBC database. The send() operation is not
considered successful until delivery of the message can be
guaranteed. A persistent message is guaranteed to be delivered at
least once.

WebLogic JMS does not store non-persistent messages in the JMS
database. This mode of operation provides the lowest overhead.
They are guaranteed to be delivered at least once unless there is a
system failure, in which case messages may be lost. If a
connection is closed or recovered, all non-persistent messages that
have not yet been acknowledged will be redelivered. Once a
non-persistent message is acknowledged, it will not be
redelivered.

When a message is sent, this value is ignored. When the message
is received, it contains the delivery mode specified by the sending
method.

send() method

JMSDeliveryTime Defines the earliest absolute time at which a message can be
delivered to a consumer. This field can be used to sort messages in
a destination and to select messages. For purposes of data type
conversion, the JMSDeliveryTime is a long integer.

send() method

JMSDestination Specifies the destination (queue or topic) to which the message is
to be delivered. The application’s message producer sets the value
of this field when the message is sent.

When a message is sent, this value is ignored. When a message is
received, its destination value must be equivalent to the value
assigned when it was sent.

send() method

JMSExpiration Specifies the expiration, or time-to-live value, for a message.

WebLogic JMS calculates the JMSExpiration value as the sum
of the application’s time-to-live and the current GMT. If the
application specifies time-to-live as 0, JMSExpiration is set to
0, which means the message never expires.

WebLogic JMS removes expired messages from the system to
prevent their delivery.

send() method

Table 2-8 Message Header Fields (Continued)

Field Description Defined by
Programming WebLogic JMS 2-17

2 WebLogic JMS Fundamentals
JMSMessageID Contains a string value that uniquely identifies each message sent
by a JMS Provider.

All JMSMessageIDs start with an ID: prefix.

When a message is sent, this value is ignored. When the message
is received, it contains a provider-assigned value.

send() method

JMSPriority Specifies the priority level. This field is set before a message is
sent.

JMS defines ten priority levels, 0 to 9, 0 being the lowest priority.
Levels 0-4 indicate gradations of normal priority, and level 5-9
indicate gradations of expedited priority.

When the message is received, it contains the value specified by
the method sending the message.

You can sort destinations by priority by configuring a destination
key, as described in Managing JMS in the Administration Guide.

send() method

JMSRedelivered Specifies a flag set when a message is redelivered because no
acknowledge was received. This flag is of interest to a receiving
application only.

If set, the flag indicates that JMS may have delivered the message
previously because one of the following is true:

� The application has already received the message, but did not
acknowledge it.

� The session's recover() method was called to restart the
session beginning after the last acknowledged message. For
more information about the recover() method, see
“Recovering Received Messages” on page 4-35.

WebLogic JMS

Table 2-8 Message Header Fields (Continued)

Field Description Defined by
2-18 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/adminguide/jms.html

Message
Message Property Fields

The property fields of a message contain header fields added by the sending
application. The properties are standard Java name/value pairs. Property names must
conform to the message selector syntax specifications defined in the
javax.jms.Message Javadoc. The following values are valid: boolean, byte, double,
float, int, long, short, and String.

JMSReplyTo Specifies a queue or topic to which reply messages should be sent.
This field is set by the sending application before the message is
sent.

This feature can be used with the JMSCorrelationID header
field to coordinate request/response messages.

Simply setting the JMSReplyTo field does not guarantee a
response; it enables the receiving application to respond, if it so
chooses.

You may set the JMSReplyTo to null, which may have a
semantic meaning to the receiving application, such as a
notification event.

Application

JMSTimestamp Contains the time at which the message was sent. WebLogic JMS
writes the timestamp in the message when it accepts the message
for delivery, not when the application sends the message.

When the message is received, it contains the timestamp.

The value stored in the field is a Java millis time value.

WebLogic JMS

JMSType Specifies the message type identifier (String) set by the sending
application.

The JMS specification allows some flexibility with this field in
order to accommodate diverse JMS providers. Some messaging
systems allow application-specific message types to be used. For
such systems, the JMSType field could be used to hold a message
type ID that provides access to the stored type definitions.

WebLogic JMS does not restrict the use of this field.

Application

Table 2-8 Message Header Fields (Continued)

Field Description Defined by
Programming WebLogic JMS 2-19

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

2 WebLogic JMS Fundamentals
Although message property fields may be used for application-specific purposes, JMS
provides them primarily for use in message selectors. For more information about
message selectors, see “Filtering Messages” on page 4-70.

For information about setting message property fields, see “Setting and Browsing
Message Header and Property Fields” on page 4-62, or to the javax.jms.Message
Javadoc.

Message Body

A message body contains the content being delivered from producer to consumer.

The following table describes the types of messages defined by JMS. All message
types extend javax.jms.Message, which consists of message headers and properties,
but no message body.

Table 2-9 JMS Message Types

Type Description

javax.jms.BytesMessage Stream of uninterpreted bytes, which must be understood by the sender and
receiver. The access methods for this message type are stream-oriented
readers and writers based on java.io.DataInputStream and
java.io.DataOutputStream.

javax.jms.MapMessage Set of name/value pairs in which the names are strings and the values are
Java primitive types. Pairs can be read sequentially or randomly, by
specifying a name.

javax.jms.ObjectMessage Single serializable Java object.

javax.jms.StreamMessage Similar to a BytesMessage, except that only Java primitive types are written
to or read from the stream.

javax.jms.TextMessage Single String. The TextMessage can also contain XML content.

weblogic.jms.extensions.
XMLMessage

XML content. Use of the XMLMessage type facilitates message filtering,
which is more complex when performed on XML content shipped in a
TextMessage.
2-20 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/BytesMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MapMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ObjectMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/StreamMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TextMessage.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/XMLMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

ServerSessionPoolFactory
For more information, see the javax.jms.Message Javadoc. For more information
about the access methods and, if applicable, the conversion charts associated with a
particular message type, see the Javadoc for that message type.

ServerSessionPoolFactory

A server session pool is a WebLogic-specific JMS feature that enables you to process
messages concurrently. A server session pool factory is used to create a server-side
ServerSessionPool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.ServerSessionPoolFactory:<name>, where <name> specifies the
name of the JMS server to which the session pool is created. The WebLogic Server
adds the default server session pool factory to the JNDI space during startup and the
application subsequently retrieves the server session pool factory using WebLogic
JNDI.

To learn how to use the server session pool factory within an application, see “Defining
Server Session Pools” on page 4-75, or the
weblogic.jms.ServerSessionPoolFactory Javadoc.

ServerSessionPool

A ServerSessionPool application server object provides a pool of server sessions
that connection consumers can retrieve in order to process messages concurrently.

A ServerSessionPool is created by the ServerSessionPoolFactory object
obtained through a JNDI lookup.

To learn how to use the server session pool within an application, see “Defining Server
Session Pools” on page 4-75, or the javax.jms.ServerSessionPool Javadoc.
Programming WebLogic JMS 2-21

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ServerSessionPool.html

2 WebLogic JMS Fundamentals
ServerSession

A ServerSession application server object enables you to associate a thread with a
JMS session by providing a context for creating, sending, and receiving messages.

A ServerSession is created by a ServerSessionPool object.

To learn how to use the server session within an application, see “Defining Server
Session Pools” on page 4-75, or the javax.jms.ServerSession Javadoc.

ConnectionConsumer

A ConnectionConsumer object uses a server session to process received messages. If
message traffic is heavy, the connection consumer can load each server session with
multiple messages to minimize thread context switching.

A ConnectionConsumer is created by a Connection object.

To learn how to use the connection consumers within an application, see “Defining
Server Session Pools” on page 4-75, or the javax.jms.ConnectionConsumer
Javadoc.

Note: Connection consumer listeners run on the same JVM as the server.
2-22 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ServerSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html

CHAPTER
3 Managing WebLogic
JMS

The Administration Console provides the interface that you can use to enable,
configure, and monitor the features of the WebLogic Server, including JMS. To invoke
the Administration Console, refer the procedures described in Administration Guide.

The following sections provide an overview of configuring and monitoring WebLogic
JMS:

� Configuring WebLogic JMS

� Configuring WebLogic JMS Clustering

� Monitoring WebLogic JMS

� Recovering from a WebLogic Server Failure
Programming WebLogic JMS 3-1

http://e-docs.bea.com/wls/docs61/adminguide/index.html

3 Managing WebLogic JMS
Configuring WebLogic JMS

Using the Administration Console, you define configuration attributes to:

� Enable JMS.

� Create JMS servers.

� Create and/or customize values for JMS servers, connection factories,
destinations (queues and topics), destination templates, destination sort ordering
(using destination keys), persistent stores, session pools, and connection
consumers.

� Set up custom JMS applications.

� Define thresholds and quotas.

� Enable any desired JMS features, such as server clustering (see the next section),
concurrent message processing, and persistent messaging.

WebLogic JMS provides default values for some configuration attributes; you must
provide values for all others. If you specify an invalid value for any configuration
attribute, or if you fail to specify a value for an attribute for which a default does not
exist, the WebLogic Server will not boot JMS when you restart it. A sample JMS
configuration is provided with the product.

When migrating from a previous release, the configuration information will be
converted automatically, as described in “Migrating Existing Applications” on page
6-8.

Note: Appendix A, “Configuration Checklists,” provides checklists that enable you
to view the attribute requirements and/or options for supporting various JMS
features.
3-2 Programming WebLogic JMS

Configuring WebLogic JMS Clustering
Configuring WebLogic JMS Clustering

A WebLogic Server cluster is a group of servers that work together to provide a more
scalable, more reliable application platform than a single server. A cluster appears to
its clients as a single server but is in fact a group of servers acting as one. A cluster
provides two key features above a single server:

� Scalability—servers can be added to the cluster dynamically to increase capacity.

� High-availability—redundancy of multiple servers insulates applications from
failures.

A clustered service is an API or interface that is available on multiple servers in the
cluster.

For more information about starting WebLogic clusters and its features and benefits,
see “Configuring WebLogic Servers and Clusters” in Using WebLogic Server Clusters.

How JMS Clustering Works

You can establish cluster-wide, transparent access to destinations from any server in
the cluster by configuring multiple connection factories and using targets to assign
them to server instances. Each connection factory must be uniquely named, however
to be successfully deployed on multiple servers. The administrator can configure
multiple JMS servers on the various nodes in the cluster—as long as the JMS servers
are uniquely named—and can then assign JMS destinations to the various JMS servers.

The application uses the Java Naming and Directory Interface (JNDI) to look up a
connection factory and create a connection to establish communication with a JMS
server. Each JMS server handles requests for a set of destinations. Requests for
destinations not handled by a JMS server are forwarded to the appropriate WebLogic
Server.
Programming WebLogic JMS 3-3

http://e-docs.bea.com/wls/docs61/cluster/setup.html

3 Managing WebLogic JMS
JMS Clustering Requirements

The following guidelines apply when configuring WebLogic JMS to work in a
clustered environment in a single WebLogic domain or in a multi-domain
environment.

� All WebLogic Servers that JMS clients contact must have unique server names.

� All JMS connection factories targeted to servers in a cluster must be uniquely
named.

� All JMS servers targeted to nodes in the cluster must be uniquely named.

� If persistent messaging is required, all JMS stores must be uniquely named.

Configuration Steps

In order to use WebLogic JMS in a clustered environment, you must:

1. Administer WebLogic clusters as described in “Configuring WebLogic Servers
and Clusters” in Using WebLogic Server Clusters.

2. Identify server targets for JMS servers and for connection factories using the
Administration Console:

� For JMS servers, you can identify a single-server target.

� For connection factories, you can identify either a single-server target or a
cluster target, which are WebLogic Server instances that are associated with a
connection factory to support clustering.

For more information about these configuration attributes, see “Configuring JMS
Servers” or “Configuring Connection Factories” in the Administration Guide.

Note: You cannot deploy the same destination on more than one JMS server. In
addition, you cannot deploy a JMS server on more than one WebLogic
Server.

Note: Automatic failover is not supported by WebLogic JMS for this release. For
information about performing a manual failover, refer to “Recovering from a
WebLogic Server Failure” on page 3-5.
3-4 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/cluster/setup.html
http://e-docs.bea.com/wls/docs61/cluster/setup.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html#jms_servers_config
http://e-docs.bea.com/wls/docs61/adminguide/jms.html#jms_servers_config
http://e-docs.bea.com/wls/docs61/adminguide/jms.html#jms_connection_factories_config

Monitoring WebLogic JMS
Monitoring WebLogic JMS

Statistics are provided for the following JMS objects: JMS servers, connections,
sessions, destinations, durable subscribers, message producers, message consumers,
and server session pools. You can monitor JMS statistics using the Administration
Console.

JMS statistics continue to increment as long as the server is running. Statistics can only
be reset when the server is rebooted.

For more information on configuring and monitoring WebLogic JMS, see “Managing
JMS” in the Administration Guide.

Once WebLogic JMS has been configured, applications can begin sending and
receiving messages through the JMS API, as described in “Developing a WebLogic
JMS Application” on page 4-1.

Recovering from a WebLogic Server Failure

The procedures for recovering from a WebLogic Server failure, and performing a
manual failover, including programming considerations, are described in detail in
“Managing JMS” in the Administration Guide.
Programming WebLogic JMS 3-5

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

3 Managing WebLogic JMS
3-6 Programming WebLogic JMS

CHAPTER
4 Developing a WebLogic
JMS Application

The following sections describe how to develop a WebLogic JMS application:

� Application Development Flow

� Importing Required Packages

� Setting Up a JMS Application

� Sending Messages

� Receiving Messages

� Acknowledging Received Messages

� Releasing Object Resources

� Managing Rolled Back, Recovered, or Expired Messages

� Setting Message Delivery Times

� Managing Connections

� Managing Sessions

� Using Temporary Destinations

� Setting Up Durable Subscriptions

� Setting and Browsing Message Header and Property Fields

� Filtering Messages

� Defining Server Session Pools
Programming WebLogic JMS 4-1

4 Developing a WebLogic JMS Application
� Using Multicasting

Note: For more information about the JMS classes described in this section, access
the JMS Javadoc supplied on the Sun Microsystems’ Java web site at the
following location: http://java.sun.com/products/jms/docs.html

Application Development Flow

When developing a WebLogic JMS application, you must perform the steps identified
in the following figure.

Figure 4-1 WebLogic JMS Application Development Flow—Required Steps

In addition to the application development steps defined in the previous figure, you can
also optionally perform any of the following steps during your design development:

� Manage connection and session processing

� Create destinations dynamically

� Create durable subscriptions

� Manage message processing by setting and browsing message header and
property fields, filtering messages, and/or processing messages concurrently

� Use multicasting
4-2 Programming WebLogic JMS

http://www.java.sun.com/products/jms/docs.html

Importing Required Packages
� Use JMS within transactions (described in “Using Transactions with WebLogic
JMS” on page 5-1)

Except where noted, all application development steps are described in the following
sections.

Importing Required Packages

The following table lists the packages that are commonly used by WebLogic JMS
applications.

Table 4-1 WebLogic JMS Packages

Package Description

javax.jms JMS API. This package is always used by WebLogic
JMS applications.

java.util Utility API, such as date and time facilities.

java.io System input and output API.

javax.naming

weblogic.jndi

JNDI packages required for server and destination
lookups.

javax.transaction.UserTransaction JTA API required for JTA user transaction support.

weblogic.jms.ServerSessionPoolFactory WebLogic JMS public API for use with server session
pools, an optional application server facility described
in the JMS specification.

weblogic.jms.extensions WebLogic-specific JMS public API that provides
additional classes and methods, as described in
“WebLogic JMS Extensions” on page 1-7.
Programming WebLogic JMS 4-3

http://www.javasoft.com/products/jms/javadoc-102a/index.html
http://java.sun.com/j2se/1.3/docs/api/java/util/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/java/io/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jndi/package-summary.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/package-summary.html

4 Developing a WebLogic JMS Application
Include the following package import statements at the beginning of your program:

import javax.jms.*;
import java.util.*;
import java.io.*;
import javax.naming.*;
import javax.transaction.*;

If you implement a server session pool application, also include the following class on
your import list:

import weblogic.jms.ServerSessionPoolFactory;

If you want to utilize any of the WebLogic JMS extension classes described in the
previous table, also include the following statement on your import list:

import weblogic.jms.extensions.*;

Setting Up a JMS Application

Before you can send and receive messages, you must set up a JMS application. The
following figure illustrates the steps required to set up a JMS application.
4-4 Programming WebLogic JMS

Setting Up a JMS Application
Figure 4-2 Setting Up a JMS Application
Programming WebLogic JMS 4-5

4 Developing a WebLogic JMS Application
The setup steps are described in the following sections. Detailed examples of setting
up a Point-to-Point (PTP) and Publish/Subscribe (Pub/Sub) application are also
provided. The examples are excerpted from the examples.jms package provided with
WebLogic Server in the samples/examples directory.

Before proceeding, ensure that the system administrator responsible for configuring
WebLogic Server has configured the required JMS features, including the connection
factories, JMS servers, and destinations. For more information, see “Managing JMS”
in the Administration Guide.

For more information about the JMS classes and methods described in these sections,
see “WebLogic JMS Classes” on page 2-5, or the javax.jms, or the
weblogic.jms.ServerSessionPoolFactory, or the weblogic.jms.extensions
Javadoc.

For information about setting up transacted applications and JTA user transactions, see
“Using Transactions with WebLogic JMS” on page 5-1.

Step 1: Look Up a Connection Factory in JNDI

Before you can look up a connection factory, it must be defined as part of the
configuration information. WebLogic JMS provides one default connection factory,
that is included as part of the configuration by default. The WebLogic JMS system
administrator may add or update connection factories during configuration. For
information on configuring connection factories and the defaults that are available, see
“Managing JMS” in the Administration Guide.

Once the connection factory has been defined, you can look it up by first establishing
a JNDI context (context) using the NamingManager.InitialContext() method.
For any application other than a servlet application, you must pass an environment
used to create the initial context. For more information, see the
NamingManager.InitialContext() Javadoc.

Once the context is defined, to look up a connection factory in JNDI, execute one of
the following commands, for PTP or Pub/Sub messaging, respectively:

QueueConnectionFactory queueConnectionFactory =
 (QueueConnectionFactory) context.lookup(CF_name);

TopicConnectionFactory topicConnectionFactory =
 (TopicConnectionFactory) context.lookup(CF_name);
4-6 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/index.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()

Setting Up a JMS Application
The CF_name argument specifies the connection factory name defined during
configuration.

For more information about the ConnectionFactory class, see “ConnectionFactory”
on page 2-6 or the javax.jms.ConnectionFactory Javadoc.

Step 2: Create a Connection Using the Connection Factory

You can create a connection for accessing a queue or topic using the
ConnectionFactory methods described in the following sections.

For more information about the Connection class, see “Connection” on page 2-8 or
the javax.jms.Connection Javadoc.

Create a Queue Connection

The QueueConnectionFactory provides the following two methods for creating a
queue connection:

public QueueConnection createQueueConnection(
) throws JMSException

public QueueConnection createQueueConnection(
 String userName,
 String password
) throws JMSException

The first method creates a QueueConnection; the second method creates a
QueueConnection using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in “Step 7: Start the Connection” on page 4-18.

For more information about the QueueConnectionFactory class methods, see the
javax.jms.QueueConnectionFactory Javadoc. For more information about the
QueueConnection class, see the javax.jms.QueueConnection Javadoc.
Programming WebLogic JMS 4-7

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Connection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueConnectionFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueConnection.html

4 Developing a WebLogic JMS Application
Create a Topic Connection

The TopicConnectionFactory provides the following two methods for creating a
topic connection:

public TopicConnection createTopicConnection(
) throws JMSException

public TopicConnection createTopicConnection(
 String userName,
 String password
) throws JMSException

The first method creates a TopicConnection; the second method creates a
TopicConnection using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in “Step 7: Start the Connection” on page 4-18.

For more information about the TopicConnectionFactory class methods, see the
javax.jms.TopicConnectionFactory Javadoc. For more information about the
TopicConnection class, see the javax.jms.TopicConnection Javadoc.

Step 3: Create a Session Using the Connection

You can create one or more sessions for accessing a queue or topic using the
Connection methods described in the following sections.

Note: A session and its message producers and consumers can only be accessed by
one thread at a time. Their behavior is undefined if multiple threads access
them simultaneously.

For more information about the Session class, see “Session” on page 2-9 or the
javax.jms.Session Javadoc.
4-8 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicConnectionFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Session.html

Setting Up a JMS Application
Create a Queue Session

The QueueConnection class defines the following method for creating a queue
session:

public QueueSession createQueueSession(
 boolean transacted,
 int acknowledgeMode
) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted
(true) or non-transacted (false), and an integer that indicates the acknowledge mode
for non-transacted sessions, as described in “Acknowledge Modes Used for
Non-Transacted Sessions” on page 2-10. The acknowledgeMode attribute is ignored
for transacted sessions. In this case, messages are acknowledged when the transaction
is committed using the commit() method.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc. For more information about the
QueueSession class, see the javax.jms.QueueSession Javadoc.

Create a Topic Session

The TopicConnection class defines the following method for creating a topic
session:

public TopicSession createTopicSession(
 boolean transacted,
 int acknowledgeMode
) throws JMSException

You must specify a boolean argument indicating whether the session will be transacted
(true) or non-transacted (false), and an integer that indicates the acknowledge mode
for non-transacted sessions, as described in “Acknowledge Modes Used for
Non-Transacted Sessions” on page 2-10. The acknowledgeMode attribute is ignored
for transacted sessions. In this case, messages are acknowledged when the transaction
is committed using the commit() method.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc. For more information about the
TopicSession class, see the javax.jms.TopicSession Javadoc.
Programming WebLogic JMS 4-9

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicSession.html

4 Developing a WebLogic JMS Application
Step 4: Look Up a Destination (Queue or Topic)

Before you can look up a destination, the destination must be configured by the
WebLogic JMS system administrator, as described in “Managing JMS” in the
Administration Guide.

Once the destination has been configured, you can look up a destination by
establishing a JNDI context (context), which has already been accomplished in “Step
1: Look Up a Connection Factory in JNDI” on page 4-6, and executing one of the
following commands, for PTP or Pub/Sub messaging, respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the destination name defined during configuration.

If you do not use a JNDI namespace, you can use the following QueueSession or
TopicSession method to reference a queue or topic, respectively:

public Queue createQueue(
 String queueName
) throws JMSException

public Topic createTopic(
 String topicName
) throws JMSException

The syntax for the queueName and/or topicName string is
JMS_Server_Name/Destination_Name (for example,
myjmsserver/mydestination). To view source code that uses this syntax, refer to
the findqueue() example in “Creating Destinations Dynamically” on page 4-54.

Note: The createQueue() and createTopic() methods do not create
destinations dynamically; they create only references to destinations that
already exist. For information about creating destinations dynamically, see
“Creating Destinations Dynamically” on page 4-54.

For more information about these methods, see the javax.jms.QueueSession and
javax.jms.TopicSession Javadoc, respectively.

Once the destination has been defined, you can use the following Queue or Topic
method to access the queue or topic name, respectively:
4-10 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicSession.html

Setting Up a JMS Application
public String getQueueName(
) throws JMSException

public String getTopicName(
) throws JMSException

To ensure that the queue and topic names are returned in printable format, use the
toString() method.

For more information about the Destination class, see “Destination” on page 2-12
or the javax.jms.Destination Javadoc.

Server Affinity When Looking Up Destinations

The createTopic() and createQueue() methods also allow a
“JMS_Server_Name./Destination_Name” syntax to indicate server affinity when
looking up destinations. This way when a destination is locally deployed in the same
JVM as the connection factory, the connection factory will only return names matching
local destinations. If the name is not on the local JVM an exception is thrown, even
though the same name might be deployed on a different JVM.

An application might use this convention to avoid hard-coding the server name when
using the createTopic() and createQueue() methods so that the code can be reused on
different JMS servers without requiring any changes.

Step 5: Create Message Producers and Message
Consumers Using the Session and Destinations

You can create message producers and message consumers by passing the destination
reference to the Session methods described in the following sections.

Note: Each consumer receives its own local copy of a message. Once received, you
can modify the header field values; however, the message properties and
message body are read only. (Attempting to modify the message properties or
body at this point will generate a MessageNotWriteableException.) You
can modify the message body by executing the corresponding message type’s
clearbody() method to clear the existing contents and enable write
permission.
Programming WebLogic JMS 4-11

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Destination.html

4 Developing a WebLogic JMS Application
For more information about the MessageProducer and MessageConsumer classes,
see “MessageProducer and MessageConsumer” on page 2-13, or the
javax.jms.MessageProducer and javax.jms.MessageConsumer Javadocs,
respectively.
4-12 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageProducer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageConsumer.html

Setting Up a JMS Application
Create QueueSenders and QueueReceivers

The QueueSession object defines the following methods for creating queue senders
and receivers:

public QueueSender createSender(
 Queue queue
) throws JMSException

public QueueReceiver createReceiver(
 Queue queue
) throws JMSException

public QueueReceiver createReceiver(
 Queue queue,
 String messageSelector
) throws JMSException

You must specify the queue object for the queue sender or receiver being created. You
may also specify a message selector for filtering messages. Message selectors are
described in more detail in “Filtering Messages” on page 4-70.

If you pass a value of null to the createSender() method, you create an anonymous
producer. In this case, you must specify the queue name when sending messages, as
described in “Sending Messages” on page 4-24.

Once the queue sender or receiver has been created, you can access the queue name
associated with the queue sender or receiver using the following QueueSender or
QueueReceiver method:

public Queue getQueue(
) throws JMSException

For more information about the QueueSession class methods, see the
javax.jms.QueueSession Javadoc. For more information about the QueueSender
and QueueReceiver classes, see the javax.jms.QueueSender and
javax.jms.QueueReceiver Javadocs, respectively.
Programming WebLogic JMS 4-13

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSender.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueReceiver.html

4 Developing a WebLogic JMS Application
Create TopicPublishers and TopicSubscribers

The TopicSession object defines the following methods for creating topic publishers
and topic subscribers:

public TopicPublisher createPublisher(
 Topic topic
) throws JMSException

public TopicSubscriber createSubscriber(
 Topic topic
) throws JMSException

public TopicSubscriber createSubscriber(
 Topic topic,
 String messageSelector,
 boolean noLocal
) throws JMSException

Note: The methods described in this section create non-durable subscribers.
Non-durable topic subscribers only receive messages sent while they are
active. For information about the methods used to create durable subscriptions
enabling messages to be retained until all messages are delivered to a durable
subscriber, see “Setting Up Durable Subscriptions” on page 4-58. In this case,
durable subscribers only receive messages that are published after the
subscriber has subscribed.

You must specify the topic object for the publisher or subscriber being created. You
may also specify a message selector for filtering messages and noLocal flag
(described later in this section). Message selectors are described in more detail in
“Filtering Messages” on page 4-70.

If you pass a value of null to the createPublisher() method, you create an
anonymous producer. In this case, you must specify the topic name when sending
messages, as described in “Sending Messages” on page 4-24.

An application can have a JMS connection that it uses to both publish and subscribe to
the same topic. Because topic messages are delivered to all subscribers, the application
can receive messages it has published itself. To prevent this behavior, a JMS
application can set a noLocal flag to true.

Once the topic publisher or subscriber has been created, you can access the topic name
associated with the topic publisher or subscriber using the following TopicPublisher
or TopicSubscriber method:
4-14 Programming WebLogic JMS

Setting Up a JMS Application
Topic getTopic(
) throws JMSException

In addition, you can access the noLocal variable setting associated with the topic
subscriber using the following TopicSubscriber method:

boolean getNoLocal(
) throws JMSException

For more information about the TopicSession class methods, see the
javax.jms.TopicSession Javadoc. For more information about the
TopicPublisher and TopicSubscriber classes, see the
javax.jms.TopicPublisher and javax.jms.TopicSubscriber Javadocs,
respectively.
Programming WebLogic JMS 4-15

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicPublisher.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicSubscriber.html

4 Developing a WebLogic JMS Application
Step 6a: Create the Message Object (Message Producers)

Note: This step applies to message producers only.

To create the message object, use one of the following Session or WLSession class
methods:

� Session Methods

Note: These methods are inherited by both the QueueSession and
TopicSession subclasses.

public BytesMessage createBytesMessage(
) throws JMSException

public MapMessage createMapMessage(
) throws JMSException

public Message createMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
 Serializable object
) throws JMSException

public StreamMessage createStreamMessage(
) throws JMSException

public TextMessage createTextMessage(
) throws JMSException

public TextMessage createTextMessage(
 String text
) throws JMSException

� WLSession Method

public XMLMessage createXMLMessage(
 String text
) throws JMSException

For more information about the Session and WLSession class methods, see the
javax.jms.Session and weblogic.jms.extensions.WLSession Javadocs,
respectively. For more information about the Message class and its methods, see
“Message” on page 2-15, or the javax.jms.Message Javadoc.
4-16 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Session.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/WLSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

Setting Up a JMS Application
Step 6b: Optionally Register an Asynchronous Message
Listener (Message Consumers)

Note: This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message
listener by performing the following steps:

1. Implement the javax.jms.MessageListener interface, which includes an
onMessage() method.

Note: For an example of the onMessage() method interface, see “Example:
Setting Up a PTP Application” on page 4-18.

If you wish to issue the close() method within an onMessage() method
call, the system administrator must select the Allow Close In OnMessage
check box when configuring the connection factory. For more information
on configuring JMS, see “Managing JMS” in the Administration Guide.

2. Set the message listener using the following MessageConsumer method, passing
the listener information as an argument:

public void setMessageListener(
 MessageListener listener
) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as
described in “Defining a Session Exception Listener” on page 4-52.

You can unset a message listener by calling the MessageListener() method with a
value of null.

Once a message listener has been defined, you can access it by calling the following
MessageConsumer method:

public MessageListener getMessageListener(
) throws JMSException

Note: WebLogic JMS guarantees that multiple onMessage() calls for the same
session will not be executed simultaneously.
Programming WebLogic JMS 4-17

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageListener.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

4 Developing a WebLogic JMS Application
If a message consumer is closed by an administrator or as the result of a server failure,
a ConsumerClosedException is delivered to the session exception listener, if one has
been defined. In this way, a new message consumer can be created, if necessary. For
information about defining a session exception listener, see “Defining a Session
Exception Listener” on page 4-52.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer
class methods, see “MessageProducer and MessageConsumer” on page 2-13 or the
javax.jms.MessageConsumer Javadoc.

Step 7: Start the Connection

You start the connection using the Connection class start() method.

For additional information about starting, stopping, and closing a connection, see
“Starting, Stopping, and Closing a Connection” on page 4-50 or the
javax.jms.Connection Javadoc.

Example: Setting Up a PTP Application

The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the samples/examples/jms/queue
directory. The init() method shows how to set up and start a QueueSession for a
JMS application. The following shows the init() method, with comments describing
each setup step.

Define the required variables, including the JNDI context, JMS connection factory,
and queue static variables.

public final static String JNDI_FACTORY=
"weblogic.jndi.WLInitialContextFactory";

public final static String JMS_FACTORY=
"weblogic.examples.jms.QueueConnectionFactory";

public final static String
 QUEUE="weblogic.examples.jms.exampleQueue";

private QueueConnectionFactory qconFactory;
private QueueConnection qcon;
private QueueSession qsession;
4-18 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageConsumer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Connection.html

Setting Up a JMS Application
private QueueSender qsender;
private Queue queue;
private TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
.
.
.

private static InitialContext getInitialContext(
 String url
) throws NamingException
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);
 return new InitialContext(env);
}

Note: When setting up the JNDI initial context for a servlet, use the following
method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx object
is the JNDI initial context passed in by the main() method.

public void init(
 Context ctx,
 String queueName
) throws NamingException, JMSException
{

Step 1 Look up a connection factory in JNDI.

 qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2 Create a connection using the connection factory.

 qcon = qconFactory.createQueueConnection();

Step 3 Create a session using the connection. The following code defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about transacted sessions and acknowledge modes, see “Session” on
page 2-9.

 qsession = qcon.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
Programming WebLogic JMS 4-19

4 Developing a WebLogic JMS Application
Step 4 Look up a destination (queue) in JNDI.

 queue = (Queue) ctx.lookup(queueName);

Step 5 Create a reference to a message producer (queue sender) using the session and
destination (queue).

 qsender = qsession.createSender(queue);

Step 6 Create the message object.

 msg = qsession.createTextMessage();

Step 7 Start the connection.

 qcon.start();
}

The init() method for the examples.jms.queue.QueueReceive example is
similar to the QueueSend init() method shown previously, with the one exception.
Steps 5 and 6 would be replaced by the following code, respectively:

qreceiver = qsession.createReceiver(queue);
qreceiver.setMessageListener(this);

In the first line, instead of calling the createSender() method to create a reference
to the queue sender, the application calls the createReceiver() method to create the
queue receiver.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the queue session, it is passed to the
examples.jms.QueueReceive.onMessage() method. The following code excerpt
shows the onMessage() interface from the QueueReceive example:

public void onMessage(Message msg)
{
 try {

String msgText;
if (msg instanceof TextMessage) {

 msgText = ((TextMessage)msg).getText();
} else { // If it is not a TextMessage...
 msgText = msg.toString();
}

System.out.println("Message Received: "+ msgText);

if (msgText.equalsIgnoreCase("quit")) {
 synchronized(this) {
4-20 Programming WebLogic JMS

Setting Up a JMS Application
 quit = true;
this.notifyAll(); // Notify main thread to quit

 }
}

 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
}

The onMessage() method processes messages received through the queue receiver.
The method verifies that the message is a TextMessage and, if it is, prints the text of
the message. If onMessage() receives a different message type, it uses the message's
toString() method to display the message contents.

Note: It is good practice to verify that the received message is the type expected by
the handler method.

For more information about the JMS classes used in this example, see “WebLogic JMS
Classes” on page 2-5 or the javax.jms Javadoc.

Example: Setting Up a Pub/Sub Application

The following example is excerpted from the examples.jms.topic.TopicSend
example, provided with WebLogic Server in the samples/examples/jms/topic
directory. The init() method shows how to set up and start a topic session for a JMS
application. The following shows the init() method, with comments describing each
setup step.

Define the required variables, including the JNDI context, JMS connection factory,
and topic static variables.

public final static String JNDI_FACTORY=
"weblogic.jndi.WLInitialContextFactory";

public final static String JMS_FACTORY=
"weblogic.examples.jms.TopicConnectionFactory";

public final static String
TOPIC="weblogic.examples.jms.exampleTopic";

protected TopicConnectionFactory tconFactory;
protected TopicConnection tcon;
protected TopicSession tsession;
protected TopicPublisher tpublisher;
protected Topic topic;
protected TextMessage msg;
Programming WebLogic JMS 4-21

http://www.javasoft.com/products/jms/javadoc-102a/index.html

4 Developing a WebLogic JMS Application
Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
.
.
.

private static InitialContext getInitialContext(
 String url
) throws NamingException
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);
 return new InitialContext(env);
}

Note: When setting up the JNDI initial context for a servlet, use the following
method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx object
is the JNDI initial context passed in by the main() method.

public void init(
 Context ctx,
 String topicName
) throws NamingException, JMSException
{

Step 1 Look up a connection factory using JNDI.

 tconFactory =
 (TopicConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2 Create a connection using the connection factory.

 tcon = tconFactory.createTopicConnection();

Step 3 Create a session using the connection. The following defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about setting session transaction and acknowledge modes, see
“Session” on page 2-9.

 tsession = tcon.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
4-22 Programming WebLogic JMS

Setting Up a JMS Application
Step 4 Look up the destination (topic) using JNDI.

 topic = (Topic) ctx.lookup(topicName);

Step 5 Create a reference to a message producer (topic publisher) using the session and
destination (topic).

 tpublisher = tsession.createPublisher(topic);

Step 6 Create the message object.

 msg = tsession.createTextMessage();

Step 7 Start the connection.

 tcon.start();
 }

The init() method for the examples.jms.topic.TopicReceive example is
similar to the TopicSend init() method shown previously with on exception. Steps
5 and 6 would be replaced by the following code, respectively:

tsubscriber = tsession.createSubscriber(topic);
tsubscriber.setMessageListener(this);

In the first line, instead of calling the createPublisher() method to create a
reference to the topic publisher, the application calls the createSubscriber()
method to create the topic subscriber.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the topic session, it is passed to the
examples.jms.TopicSubscribe.onMessage() method. The onMessage()
interface for the TopicReceive example is the same as the QueueReceive
onMessage() interface, as described in “Example: Setting Up a PTP Application” on
page 4-18.

For more information about the JMS classes used in this example, see “WebLogic JMS
Classes” on page 2-5 or the javax.jms Javadoc.
Programming WebLogic JMS 4-23

http://www.javasoft.com/products/jms/javadoc-102a/index.html

4 Developing a WebLogic JMS Application
Sending Messages

Once you have set up the JMS application as described in “Setting Up a JMS
Application” on page 4-4, you can send messages. To send a message, you must
perform the following steps:

1. Create a message object.

2. Define a message.

3. Send the message to a destination.

For more information about the JMS classes for sending messages and the message
types, see the javax.jms.Message Javadoc. For information about receiving
messages, see “Receiving Messages” on page 4-31.

Step 1: Create a Message Object

This step has already been accomplished as part of the client setup procedure, as
described in “Step 6a: Create the Message Object (Message Producers)” on page 4-16.

Step 2: Define a Message

This step may have been accomplished when setting up an application, as described in
“Step 6a: Create the Message Object (Message Producers)” on page 4-16. Whether or
not this step has already been accomplished depends on the method that was called to
create the message object. For example, for TextMessage and ObjectMessage types,
when you create a message object, you have the option of defining the message when
you create the message object.

If a value has been specified and you do not wish to change it, you can proceed to step
3.
4-24 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

Sending Messages
If a value has not been specified or if you wish to change an existing value, you can
define a value using the appropriate set method. For example, the method for defining
the text of a TextMessage is as follows:

public void setText(
 String string
) throws JMSException

Note: Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void clearBody(
) throws JMSException

For more information about the methods used to define messages, see the
javax.jms.Session Javadoc.

Step 3: Send the Message to a Destination

You can send a message to a destination using a message producer—queue sender
(PTP) or topic publisher (Pub/Sub)—and the methods described in the following
sections. The Destination and MessageProducer objects were created when you
set up the application, as described in “Setting Up a JMS Application” on page 4-4.

Note: If multiple topic subscribers are defined for the same topic, each subscriber
will receive its own local copy of a message. Once received, you can modify
the header field values; however, the message properties and message body are
read only. You can modify the message body by executing the corresponding
message type’s clearbody() method to clear the existing contents and enable
write permission.

For more information about the MessageProducer class, see “MessageProducer and
MessageConsumer” on page 2-13 or the javax.jms.MessageProducer Javadoc.
Programming WebLogic JMS 4-25

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Session.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageProducer.html

4 Developing a WebLogic JMS Application
Send a Message Using Queue Sender

You can send messages using the following QueueSender methods:

public void send(
 Message message
) throws JMSException

public void send(
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive
) throws JMSException

public void send(
 Queue queue,
 Message message
) throws JMSException

public void send(
 Queue queue,
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive
) throws JMSException

You must specify a message. You may also specify the queue name (for anonymous
message producers), delivery mode (DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT), priority (0-9), and time-to-live (in milliseconds).
If not specified, the delivery mode, priority, and time-to-live attributes are set to one
of the following:

� Connection factory or destination override configuration attributes defined for
the producer, as described “Managing JMS” in the Administration Guide.

� Values specified using the message producer’s set methods, as described in
“Dynamically Configuring Message Producer Configuration Attributes” on page
4-29.

Note: WebLogic JMS also provides a proprietary TimeToDeliver attribute (that is,
birth time), as described in “Dynamically Configuring Message Producer
Configuration Attributes” on page 4-29.

If you define the delivery mode as PERSISTENT, you should configure a backing store
for the destination, as described in “Managing JMS” in the Administration Guide.
4-26 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

Sending Messages
Note: If no backing store is configured, then the delivery mode is changed to
NON_PERSISTENT and messages are not written to the persistent store.

If the queue sender is an anonymous producer (that is, if when the queue was created,
the name was set to null), then you must specify the queue name (using one of the last
two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see “Create QueueSenders and QueueReceivers” on
page 4-13.

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

QueueSender.send(message, DeliveryMode.PERSISTENT, 4, 3600000);

For additional information about the QueueSender class methods, see the
javax.jms.QueueSender Javadoc.

Send a Message Using TopicPublisher

You can send messages using the following TopicPublisher methods:

public void publish(
 Message message
) throws JMSException

public void publish(
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive
) throws JMSException

public void publish(
 Topic topic,
 Message message
) throws JMSException

public void publish(
 Topic topic,
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive
) throws JMSException
Programming WebLogic JMS 4-27

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSender.html

4 Developing a WebLogic JMS Application
You must provide a message. You may also specify the topic name, delivery mode
(DeliveryMode.PERSISTENT or DeliveryMode.NON_PERSISTENT), priority (0-9),
and time-to-live (in milliseconds). If not specified, the delivery mode, priority, and
time-to-live attributes are set to one of the following:

� Connection factory or destination override configuration attributes defined for
the producer, as described “Managing JMS” in the Administration Guide.

� Values specified using the message producer’s set methods, as described in
“Dynamically Configuring Message Producer Configuration Attributes” on page
4-29.

Note: WebLogic JMS also provides a proprietary TimeToDeliver attribute (that is,
birth time), as described in “Dynamically Configuring Message Producer
Configuration Attributes” on page 4-29.

If you define the delivery mode as PERSISTENT, you should configure a backing store,
as described in “Managing JMS” in the Administration Guide.

Note: If no backing store is configured, then the delivery mode is changed to
NON_PERSISTENT and no messages are stored.

If the topic publisher is an anonymous producer (that is, if when the topic was created,
the name was set to null), then you must specify the topic name (using either of the last
two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see “Create TopicPublishers and TopicSubscribers”
on page 4-14.

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

TopicPublisher.publish(message, DeliveryMode.PERSISTENT,
 4,3600000);

For more information about the TopicPublisher class methods, see the
javax.jms.TopicPublisher Javadoc.
4-28 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicPublisher.html

Sending Messages
Dynamically Configuring Message Producer
Configuration Attributes

As described in the previous section, when sending a message, you can optionally
specify the delivery mode, timeout, time-to-live, and time-to-deliver values. If not
specified, the delivery mode, priority, time-to-live, and time-to-deliver attributes are
set to the connection factory or destination override configuration attributes defined
for the producer, as described “Managing JMS” in the Administration Guide.

Alternatively, you can set the delivery mode, timeout, and time-to-live values
dynamically using the message producers set methods to override the configured
values.

The following table lists the message producer set and get methods for each
dynamically configurable attribute.

Note: The delivery mode, timeout, time-to-live, time-to-deliver attribute settings can
be overridden by the destination using the Delivery Mode Override, Priority
Override, Time To Live Override, and Time To Deliver Override destination
configuration attributes, as described in Administration Console Online Help.

Table 4-2 Message Producer Set and Get Methods

Attribute Set Method Get Method

Delivery Mode public void setDeliveryMode(
 int deliveryMode
) throws JMSException

public int getDeliveryMode(
) throws JMSException

Priority public void setPriority(
 int defaultPriority
) throws JMSException

public int getPriority(
) throws JMSException

Time-To-Live public void setTimeToLive(
 long timeToLive
) throws JMSException

public long getTimeToLive(
) throws JMSException

Time-To-Deliver public void setTimeToDeliver(
 long timeToDeliver
) throws JMSException

public long getTimeToDeliver(
) throws JMSException
Programming WebLogic JMS 4-29

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/index.html

4 Developing a WebLogic JMS Application
Note: JMS defines optional MessageProducer methods for disabling the message
ID and timestamp information. However, these methods are ignored by
WebLogic JMS.

For more information about the MessageProducer class methods, see the
javax.jms.MessageProducer Javadoc.

Example: Sending Messages Within a PTP Application

The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the samples/examples/jms/queue
directory. The example shows the code required to create a TextMessage, set the text
of the message, and send the message to a queue.

msg = qsession.createTextMessage();
.
.
.

public void send(
 String message
) throws JMSException
{
 msg.setText(message);
 qsender.send(msg);
}

For more information about the QueueSender class and methods, see the
javax.jms.QueueSender Javadoc.

Example: Sending Messages Within a Pub/Sub
Application

The following example is excerpted from the examples.jms.topic.TopicSend
example, provided with WebLogic Server in the samples/examples/jms/topic
directory. It shows the code required to create a TextMessage, set the text of the
message, and send the message to a topic.
4-30 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageProducer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSender.html

Receiving Messages
msg = tsession.createTextMessage();
.
.
.

public void send(
 String message
) throws JMSException
{
 msg.setText(message);
 tpublisher.publish(msg);
}

For more information about the TopicPublisher class and methods, see the
javax.jms.TopicPublisher Javadoc.

Receiving Messages

Once you have set up the JMS application as described in “Setting Up a JMS
Application” on page 4-4, you can receive messages.

To receive a message, you must create the receiver object and specify whether you
want to receive messages asynchronously or synchronously, as described in the
following sections.

The order in which messages are received can be controlled by the following:

� Message delivery attributes (delivery mode and sorting criteria) defined during
configuration, as described in “Managing JMS” in the Administration Guide, or
as part of the send() method, as described in “Sending Messages” on page
4-24.

� Destination sort order set using destination keys, as described in “Managing
JMS” in the Administration Guide.

Once received, you can modify the header field values; however, the message
properties and message body are read-only. You can modify the message body by
executing the corresponding message type’s clearbody() method to clear the
existing contents and enable write permission.
Programming WebLogic JMS 4-31

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicPublisher.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

4 Developing a WebLogic JMS Application
For more information about the JMS classes for receiving messages and the message
types, see the javax.jms.Message Javadoc. For information about sending
messages, see “Sending Messages” on page 4-24.

Receiving Messages Asynchronously

This procedure is described within the context of setting up the application. For more
information, see “Step 6b: Optionally Register an Asynchronous Message Listener
(Message Consumers)” on page 4-17.

Note: You can control the maximum number of messages that may exist for an
asynchronous consumer and that have not yet been passed to the message
listener by setting the Messages Maximum attribute when configuring the
connection factory.

Asynchronous Message Pipeline

If messages are produced faster than asynchronous message listeners (consumers) can
consume them, a JMS server will push multiple unconsumed messages in a batch to
another session with available asynchronous message listeners. These in-flight
messages are sometimes referred to as the message pipeline, or in some JMS vendors
as the message backlog. The pipeline or backlog size is the number of messages that
have accumulated on an asynchronous consumer, but which have not been passed to a
message listener.

Configuring a Message Pipeline

You can control a client’s maximum pipeline size by configuring the Messages
Maximum attribute on the client’s connection factory, which is defined as the
“maximum number of messages that can exist for an asynchronous consumer and that
have not yet been passed to the message listener”. The default setting is 10.

For more information on configuring a JMS connection factory, see “Managing JMS”
in the Administration Guide.

Behavior of Pipelined Messages

Once a message pipeline is configured, it will exhibit the following behavior:
4-32 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

Receiving Messages
� Statistics — JMS monitoring statistics reports backlogged messages in a
message pipeline as pending (for queues and durable subscribers) until they are
either committed or acknowledged.

� Performance — Increasing the Messages Maximum pipeline size may improve
performance for high-throughput applications. Note that a larger pipeline will
increase client memory usage, as the pending pipelined messages accumulate on
the client JVM before the asynchronous consumer’s listener is called.

� Sorting — Messages in an asynchronous consumer’s pipeline are not sorted
according to the consumer destination’s configured sort order; instead, they
remain in the order in which they are pushed from the JMS server. For example,
if a destination is configured to sort by priority, high priority messages will not
jump ahead of low priority messages that have already been pushed into an
asynchronous consumer’s pipeline.

Notes: The Messages Maximum pipeline size setting on the connection factory is not
related to the Messages Maximum quota settings on JMS servers and
destinations.

Pipelined messages are sometimes aggregated into a single message on the
network transport. If the messages are sufficiently large, the aggregate size of
the data written may exceed the maximum value for the transport, which may
cause undesirable behavior. For example, the t3 protocol sets a default
maximum message size of 10,000,000 bytes, and is configurable on the server
with the MaxT3MessageSize attribute. This means that if ten 2 megabyte
messages are pipelined, the t3 limit may be exceeded.

Receiving Messages Synchronously

To receive messages synchronously, use the following MessageConsumer methods:

public Message receive(
) throws JMSException

public Message receive(
 long timeout
) throws JMSException

public Message receiveNoWait(
) throws JMSException
Programming WebLogic JMS 4-33

4 Developing a WebLogic JMS Application
In each case, the application receives the next message produced. If you call the
receive() method with no arguments, the call blocks indefinitely until a message is
produced or the application is closed. Alternatively, you can pass a timeout value to
specify how long to wait for a message. If you call the receive() method with a value
of 0, the call blocks indefinitely. The receiveNoWait() method receives the next
message if one is available, or returns null; in this case, the call does not block.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer
class methods, see the javax.jms.MessageConsumer Javadoc.

Example: Receiving Messages Synchronously Within a PTP Application

The following example is excerpted from the examples.jms.queue.QueueReceive
example, provided with WebLogic Server in the samples/examples/jms/queue
directory. Rather than set a message listener, you would call qreceiver.receive()
for each message. For example:

qreceiver = qsession.createReceiver(queue);
qreceiver.receive();

The first line creates the queue receiver on the queue. The second line executes a
receive() method. The receive() method blocks and waits for a message.

Example: Receiving Messages Synchronously Within a Pub/Sub Application

The following example is excerpted from the examples.jms.topic.TopicReceive
example, provided with WebLogic Server in the samples/examples/jms/topic
directory. Rather than set a message listener, you would call
tsubscriber.receive() for each message.

For example:

tsubscriber = tsession.createSubscriber(topic);
Message msg = tsubscriber.receive();
msg.acknowledge();

The first line creates the topic subscriber on the topic. The second line executes a
receive() method. The receive() method blocks and waits for a message.
4-34 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageConsumer.html

Acknowledging Received Messages
Recovering Received Messages

Note: This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE, as described in
“Acknowledge Modes Used for Non-Transacted Sessions” on page 2-10.
Synchronously received AUTO_ACKNOWLEDGE messages may not be
received; they have already been acknowledged.

An application can request that JMS redeliver messages (unacknowledge them) using
the following method:

public void recover(
) throws JMSException

The recover() method performs the following steps:

� Stops message delivery for the session

� Tags all messages that have not been acknowledged (but may have been
delivered) as redelivered

� Resumes sending messages starting from the first unacknowledged message for
that session

Messages in queues are not necessarily redelivered in the same order that they were
originally delivered, nor to the same queue consumers.

Acknowledging Received Messages

Note: This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE, as described in
“Acknowledge Modes Used for Non-Transacted Sessions” on page 2-10.

To acknowledge a received message, use the following Message method:

public void acknowledge(
) throws JMSException
Programming WebLogic JMS 4-35

4 Developing a WebLogic JMS Application
The acknowledge() method acknowledges the current message and all previous
messages received since the last client acknowledge. Messages that are not
acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE. Otherwise, the method is ignored.
4-36 Programming WebLogic JMS

Releasing Object Resources
Releasing Object Resources

When you have finished using the connection, session, message producer or consumer,
connection consumer, or queue browser created on behalf of a JMS application, you
should explicitly close them to release the resources.

Enter the close() method to close JMS objects, as follows:

public void close(
) throws JMSException

When closing an object:

� The call blocks until the method call completes and any outstanding
synchronous applications are cancelled.

� All associated sub-objects are also closed. For example, when closing a session,
all associated message producers and consumers are also closed. When closing a
connection, all associated sessions are also closed.

For more information about the impact of the close() method for each object, see the
appropriate javax.jms Javadoc. In addition, for more information about the
connection or Session close() method, see “Starting, Stopping, and Closing a
Connection” on page 4-50 or “Closing a Session” on page 4-53, respectively.

The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the samples/examples/jms/queue
directory. This example shows the code required to close the message consumer,
session, and connection objects.

public void close(
) throws JMSException
{
 qreceiver.close();
 qsession.close();
 qcon.close();
}

In the QueueSend example, the close() method is called at the end of main() to
close objects and free resources.
Programming WebLogic JMS 4-37

http://www.javasoft.com/products/jms/javadoc-102a/index.html

4 Developing a WebLogic JMS Application
Managing Rolled Back, Recovered, or
Expired Messages

The following sections describe how to manage rolled back or recovered messages:

� Setting a Redelivery Delay for Messages

� Setting a Redelivery Limit for Messages

� Passive Message Expiration Policy

Setting a Redelivery Delay for Messages

You can delay the redelivery of messages when a temporary, external condition
prevents an application from properly handling a message. This allows an application
to temporarily inhibit the receipt of “poison” messages that it cannot currently handle.
When a message is rolled back or recovered, the redelivery delay is the amount of time
a message is put aside before an attempt is made to redeliver the message.

If JMS immediately redelivers the message, the error condition may not be resolved
and the application may still not be able to handle the message. However, if an
application is configured for a redelivery delay, then when it rolls back or recovers a
message, the message is set aside until the redelivery delay has passed, at which point
the messages are made available for redelivery—as long as the error condition has
already been resolved.

All messages consumed and subsequently rolled back or recovered by a session
receive the redelivery delay for that session at the time of rollback or recovery.
Messages consumed by multiple sessions as part of a single user transaction will
receive different redelivery delays as a function of the session that consumed the
individual messages. Messages that are left unacknowledged or uncommitted by a
client, either intentionally or as a result of a failure, are not assigned a redelivery delay.
4-38 Programming WebLogic JMS

Managing Rolled Back, Recovered, or Expired Messages
Setting a Redelivery Delay

A session inherits the redelivery delay from its connection factory when the session is
created. The RedeliveryDelay attribute of a connection factory is configured using
the Administration Console. For more information, see “JMS Connection Factories”
in the Administration Console Online Help.

The application that creates the session can then override the connection factory setting
using WebLogic-specific extensions to the javax.jms.Session interface. The
session attribute is dynamic and can be changed at any time. Changing the session
redelivery delay affects all messages consumed and rolled back (or recovered) by that
session after the change.

The method for setting the redelivery delay on a session is provided through the
weblogic.jms.extensions.WLSession interface, which is an extension to the
javax.jms.Session interface. To define a redelivery delay for a session, use the
following methods:

public void setRedeliveryDelay(
 long redeliveryDelay
) throws JMSException;

public long getRedeliveryDelay(
) throws JMSException;

For more information on the WLSession class, refer to the
weblogic.jms.extensions.WLSession Javadoc.

Overriding the Redelivery Delay on a Destination

Regardless of what redelivery delay is set on the session, the destination where a
message is being rolled back or recovered can override the setting. The redelivery
delay override applied to the redelivery of a message is the one in effect at the time a
message is rolled back or recovered.

The RedeliveryDelayOverride attribute of a destination is configured using the
Administration Console. For more information, see “JMS Destinations” in the
Administration Console Online Help.
Programming WebLogic JMS 4-39

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsdestination.html

4 Developing a WebLogic JMS Application
Setting a Redelivery Limit for Messages

You can specify a limit on the number of times that WebLogic JMS will attempt to
redeliver a message to an application. Once WebLogic JMS fails to redeliver a
message to a destination for a specific number of times, the message can be redirected
to an error destination that is associated to the message destination. If no error
destination is configured, then the message is silently deleted.

Configuring a Message Redelivery Limit

When a destination’s attempts to redeliver a message to a consumer reaches a specified
redelivery limit, then the destination deems the message undeliverable. The
RedeliveryLimit attribute is set on a destination and is configurable using the
Administration Console. For more information, see “ JMS Destinations” in the
Administration Console Online Help.

Configuring an Error Destination for Undelivered Messages

If an error destination is configured for undelivered messages, then when a message
has been deemed undeliverable, the message will be redirected to a specified error
destination. The error destination can be either a queue or a topic, and it must be
configured on the same JMS server as the destination for which it is defined. If no error
destination is configured, then undelivered messages are silently deleted.

The ErrorDestination attribute is configured using the Administration Console.
For more information, see “ JMS Destinations” in the Administration Console Online
Help.

If a message redelivery attempt has already reached its specified redelivery limit, but
its error destination has also reached its maximum quota, then the message is deemed
undeliverable and is dropped. Non-persistent messages are deleted, while persistent
messages remain in the store and will reappear in their originating destination (not the
error destination) when the server is restarted. In either case, a log message is
generated. To prevent the log file from becoming clogged, the log message is only
generated once per error destination every five minutes, until the error condition is
resolved.
4-40 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsdestination.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsdestination.html

Setting Message Delivery Times
Passive Message Expiration Policy

WebLogic JMS has a passive message expiration policy, in that it does not actively
search for or remove expired messages from the system. As such, expired messages
are only deleted from the system when:

� The messages are about to be consumed

� The JMS server is rebooted

You should be aware that since no active searches are made for expired messages, they
can accumulate on the system and strain system resources.

Setting Message Delivery Times

You can schedule message deliveries to an application for specific times in the future.
Message deliveries can be deferred for short periods of time (such as seconds or
minutes) or for long stretches of time (for example, hours later for batch processing).
You can also specify a relative delivery time (in milliseconds), which will then be
computed into an absolute delivery time for a message. Until that delivery time, the
message is essentially invisible until it is delivered, allowing you to schedule work at
a particular time in the future.

Messages are not sent on a recurring basis; they are sent only once. In order to send
messages on a recurring basis, a received scheduled message must be sent back to its
original destination. Typically, the receive, the send, and any associated work should
be under the same transaction to ensure exactly-once semantics.

Setting a Delivery Time on Producers

Support for setting and getting a time-to-deliver on an individual producer is provided
through the weblogic.jms.extensions.WLMessageProducer interface, which is
an extension to the javax.jms.MessageProducer interface. To define a
time-to-deliver on an individual producer, use the following methods:
Programming WebLogic JMS 4-41

4 Developing a WebLogic JMS Application
public void setTimeToDeliver(
 long timeToDeliver
) throws JMSException;

public long getTimeToDeliver(
) throws JMSException;

For more information on the WLMessageProducer class, refer to the
weblogic.jms.extensions.WLMessageProducer Javadoc.

Setting a Delivery Time on Messages

Note: The message methods described here are similar to other JMS message
methods that are set via the producer. Specifically, the setting of the delivery
time is reserved for JMS providers. An application can set the value on a
message, but the producer will override it when the message is sent or
published.

The DeliveryTime is a JMS message header field that defines the earliest absolute
time at which the message can be delivered. That is, the message is held by the
messaging system and is not given to any consumers until that time.

As a JMS header field, the DeliveryTime can be used to sort messages in a
destination or to select messages. For purposes of data type conversion, the delivery
time is stored as a long integer.

The support for setting and getting the delivery time on a message is provided through
the weblogic.jms.extensions.WLMessage interface, which is an extension to the
javax.jms.Message interface. To define a delivery time on a message, use the
following methods:

public void setJMSDeliveryTime(
 long deliveryTime
) throws JMSException;

public long getJMSDeliveryTime(
) throws JMSException;

For more information on the WLMessage class, refer to the
weblogic.jms.extensions.WLMessage Javadoc.
4-42 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/WLMessageProducer.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/WLMessage.html

Setting Message Delivery Times
Overriding a Delivery Time

When a producer is created it inherits its TimeToDeliver attribute, expressed in
milliseconds, from the connection factory used to create the connection that the
producer is a part of. Regardless of what time-to-deliver is set on the producer, the
destination to which a message is being sent or published can override the setting. An
administrator can set the TimeToDeliverOverride attribute on a destination in either
a relative or scheduled string format.

Setting a Relative Time-to-Deliver Override

A relative TimeToDeliverOverride is a String specified as an integer, and is
configurable using the Administration Console. For more information, see“ JMS
Destinations” in the Administration Console Online Help

Setting a Scheduled Time-to-Deliver Override

A scheduled TimeToDeliverOverride can also be specified using the
weblogic.jms.extensions.schedule class, which provides methods that take a
schedule and return the next scheduled time for delivering messages. A cron-like string
is used to define the schedule. The format is defined by the following BNF syntax:

schedule := millisecond second minute hour dayOfMonth month
 dayOfWeek

The BNF syntax for specifying the second field is as follows:

second := * | secondList
secondList := secondItem [, secondList]
secondItem := secondValue | secondRange
SecondRange := secondValue - secondValue

Similar BNF statements for milliseconds, minute, hour, day-of-month, month, and
day-of-week can be derived from the second syntax. The values for each field are
defined as non-negative integers in the following ranges:

milliSecondValue := 0-999
milliSecondValue := 0-999
secondValue := 0-59
minuteValue := 0-59
hourValue := 0-23
Programming WebLogic JMS 4-43

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsdestination.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsdestination.html

4 Developing a WebLogic JMS Application
dayOfMonthValue := 1-31
monthValue := 1-12
dayOfWeekValue := 1-7

Note: These values equate to the same ranges that the java.util.Calendar class
uses, except for monthValue. The java.util.Calendar range for
monthValue is 0-11, rather than 1-12.

Using this syntax, each field can be represented as a range of values indicating all times
between the two times. For example, 2-6 in the dayOfWeek field indicates Monday
through Friday, inclusive. Each field can also be specified as a comma-separated list.
For instance, a minute field of 0,15,30,45 means every quarter hour on the quarter
hour. Lastly, each field can be defined as both a set of individual values and ranges of
values. For example, an hour field of 9-17,0 indicates between the hours of 9 A.M.
and 5 P.M., and on the hour of midnight.

Additional semantics are as follows:

� If multiple schedules are supplied (using a semi-colon (;) as the separator), the
next scheduled time for the set is determined using the schedule that returns the
soonest value. One use for this is for specifying schedules that change based on
the day of the week (see the final example below).

� A value of 1 (one) for the dayOfWeek equates to Sunday.

� A value of * means every time for that field. For instance, a * in the Month field
means every month. A * in the Hour field means every hour.

� A value of l or last (not case sensitive) indicates the greatest possible value for
a field.

� If a day-of-month is specified that exceeds the normal maximum for a month,
then the normal maximum for that month will be specified. For example, if it is
February during a leap year and 31 was specified, then the scheduler will
schedule as if 29 was specified instead. This means that setting the month field
to 31 always indicates the last day of the month.

� If milliseconds are specified, they are rounded down to the nearest 50th of a
second. The values are 0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded
to 0-39 and 50-999 gets rounded to 39-999.
4-44 Programming WebLogic JMS

Setting Message Delivery Times
Note: When a Calendar is not supplied as a method parameter to one of the static
methods in this class, the calendar used is a
java.util.GregorianCalendar with a default java.util.TimeZone and
a default java.util.Locale.

JMS Schedule Interface

The weblogic.jms.extensions.schedule class has methods that will return the
next scheduled time that matches the recurring time expression. This expression uses
the same syntax as the TimeToDeliverOverride. The time returned in milliseconds
can be relative or absolute.

For more information on the WLSession class, refer to the
weblogic.jms.extensions.Schedule Javadoc.

You can define the next scheduled time after the given time using the following
method:

public static Calendar nextScheduledTime(
 String schedule,
 Calendar calendar
) throws ParseException {

Table 4-3 Example Time-to-Deliver Schedules

Example Description

0 0 0,30 * * * * Exact next nearest half-hour

* * 0,30 4-5 * * * Anytime in the first minute of the half hours in the 4 A.M. and 5
A.M. hours

* * * 9-16 * * * Between 9 A.M. and 5 P.M. (9:00.00 A.M. to 4:59.59 P.M.)

* * * * 8-14 * 2 The second Tuesday of the month

* * * 13-16 * * 0 Between 1 P.M. and 5 P.M. on Sunday

* * * * * 31 * The last day of the month

* * * * 15 4 1 The next time April 15th occurs on a Sunday

0 0 0 1 * * 2-6;0 0 0 2 * * 1,7 1 A.M. on weekdays; 2 A.M. on weekends
Programming WebLogic JMS 4-45

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/Schedule.html

4 Developing a WebLogic JMS Application
You can define the next scheduled time after the current time using the following
method:

public static Calendar nextScheduledTime(
 String schedule,
) throws ParseException {
4-46 Programming WebLogic JMS

Setting Message Delivery Times
You can define the next scheduled time after the given time in absolute milliseconds
using the following method:

public static long nextScheduledTimeInMillis(
 String schedule,
 long timeInMillis
) throws ParseException

You can define the next scheduled time after the given time in relative milliseconds
using the following method:

public static long nextScheduledTimeInMillisRelative(
 String schedule,
 long timeInMillis
) throws ParseException {

You can define the next scheduled time after the current time in relative milliseconds
using the following method:

public static long nextScheduledTimeInMillisRelative(
 String schedule
) throws ParseException {

Interaction with the Time-to-Live Value

If the specified time-to-live value (JMSExpiration) is less than or equal to the
specified time-to-deliver value, then the message delivery succeeds. However, the
message is then silently expired.
Programming WebLogic JMS 4-47

4 Developing a WebLogic JMS Application
Managing Connections

The following sections describe how to manage connections:

� Defining a Connection Exception Listener

� Accessing Connection Metadata

� Starting, Stopping, and Closing a Connection

Defining a Connection Exception Listener

An exception listener asynchronously notifies an application whenever a problem
occurs with a connection. This mechanism is particularly useful for a connection
waiting to consume messages that might not be notified otherwise.

Note: The purpose of an exception listener is not to monitor all exceptions thrown by
a connection, but to deliver those exceptions that would not be otherwise be
delivered.

You can define an exception listener for a connection using the following Connection
method:

public void setExceptionListener(
 ExceptionListener listener
) throws JMSException

You must specify an ExceptionListener object for the connection.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a connection using the following ExceptionListener
method:

public void onException(
 JMSException exception
)

The JMS Provider specifies the exception that describes the problem when calling the
method.
4-48 Programming WebLogic JMS

Managing Connections
You can access the exception listener for a connection using the following Connection
method:

public ExceptionListener getExceptionListener(
) throws JMSException

Accessing Connection Metadata

You can access the metadata associated with a specific connection using the following
Connection method:

public ConnectionMetaData getMetaData(
) throws JMSException

This method returns a ConnectionMetaData object that enables you to access JMS
metadata. The following table lists the various type of JMS metadata and the get
methods that you can use to access them.

Table 4-4 Connection Metadata Get Methods

JMS Metadata Get Method

Version public String getJMSVersion(
) throws JMSException

Major version public int getJMSMajorVersion(
) throws JMSException

Minor version public int getJMSMinorVersion(
) throws JMSException

Provider name public String getJMSProviderName(
) throws JMSException

Provider version public String getProviderVersion(
) throws JMSException

Provider major version public int getProviderMajorVersion(
) throws JMSException

Provider minor version public int getProviderMinorVersion(
) throws JMSException

JMSX property names public Enumeration getJMSXPropertyNames(
) throws JMSException
Programming WebLogic JMS 4-49

4 Developing a WebLogic JMS Application
For more information about the ConnectionMetaData class, see the
javax.jms.ConnectionMetaData Javadoc.

Starting, Stopping, and Closing a Connection

To control the flow of messages, you can start and stop a connection temporarily using
the start() and stop() methods, respectively, as follows.

The start() and stop() method details are as follows:

public void start(
) throws JMSException

public void stop(
) throws JMSException

A newly created connection is stopped—no messages are received until the connection
is started. Typically, other JMS objects are set up to handle messages before the
connection is started, as described in “Setting Up a JMS Application” on page 4-4.
Messages may be produced on a stopped connection, but cannot be delivered to a
stopped connection.

Once started, you can stop a connection using the stop() method. This method
performs the following steps:

� Pauses the delivery of all messages. No applications waiting to receive messages
will return until the connection is restarted or the time-to-live value associated
with the message is reached.

� Waits until all message listeners that are currently processing messages have
completed.

Typically, a JMS Provider allocates a significant amount of resources when it creates
a connection. When a connection is no longer being used, you should close it to free
up resources. A connection can be closed using the following method:

public void close(
) throws JMSException
4-50 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionMetaData.html

Managing Sessions
This method performs the following steps to execute an orderly shutdown:

� Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

� Waits until all message listeners that are currently processing messages have
completed.

� Rolls back in-process transactions on its transacted sessions (unless such
transactions are part of an external JTA user transaction). For more information
about JTA user transactions, see “Using JTA User Transactions” on page 5-6.

� Does not force an acknowledge of client-acknowledged sessions. By not forcing
an acknowledge, no messages are lost for queues and durable subscriptions that
require reliable processing.

When you close a connection, all associated objects are also closed. You can continue
to use the message objects created or received via the connection, except the received
message’s acknowledge() method. Closing a closed connection has no effect.

Note: Attempting to acknowledge a received message from a closed connection’s
session throws an IllegalStateException.

Managing Sessions

The following sections describe how to manage sessions, including:

� Defining a Session Exception Listener

� Closing a Session
Programming WebLogic JMS 4-51

4 Developing a WebLogic JMS Application
Defining a Session Exception Listener

An exception listener asynchronously notifies a client in the event a problem occurs
with a session. This is particularly useful for a session waiting to consume messages
that might not be notified otherwise.

Note: The purpose of an exception listener is not to monitor all exceptions thrown by
a session, only to deliver those exceptions that would otherwise be
undelivered.

You can define an exception listener for a session using the following WLSession
method:

public void setExceptionListener(
 ExceptionListener listener
) throws JMSException

You must specify an ExceptionListener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a session using the following ExceptionListener
method:

public void onException(
 JMSException exception
)

The JMS Provider specifies the exception encountered that describes the problem
when calling the method.

You can access the exception listener for a session using the following WLSession
method:

public ExceptionListener getExceptionListener(
) throws JMSException

Note: Because there can only be one thread per session, an exception listener and
message listener (used for asynchronous message delivery) cannot execute
simultaneously. Consequently, if a message listener is executing at the time a
problem occurs, execution of the exception listener is blocked until the
message listener completes its execution. For more information about message
listeners, see “Receiving Messages Asynchronously” on page 4-32.
4-52 Programming WebLogic JMS

Managing Sessions
Closing a Session

As with connections, a JMS Provider allocates a significant amount of resources when
it creates a session. When a session is no longer being used, it is recommended that it
be closed to free up resources. A session can be closed using the following Session
method:

public void close(
) throws JMSException

Note: The close() method is the only Session method that can be invoked from a
thread that is separate from the session thread.

This method performs the following steps to execute an orderly shutdown:

� Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

� Waits until all message listeners that are currently processing messages have
completed.

� Rolls back in-process transactions (unless such transactions are part of external
JTA user transaction). For more information about JTA user transactions, see
“Using JTA User Transactions” on page 5-6.

� Does not force an acknowledge of client acknowledged sessions, ensuring that
no messages are lost for queues and durable subscriptions that require reliable
processing.

When you close a session, all associated producers and consumers are also closed.

Note: If you wish to issue the close() method within an onMessage() method call,
the system administrator must select the Allow Close In OnMessage check
box when configuring the connection factory. For more information, see “
JMS Connection Factories” in the Administration Console Online Help.
Programming WebLogic JMS 4-53

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html

4 Developing a WebLogic JMS Application
Creating Destinations Dynamically

You can create destinations dynamically using:

� weblogic.jms.extensions.JMSHelper class methods

� Temporary destinations

The associated procedures for creating dynamic destinations are described in the
following sections.

Using the JMSHelper Class Methods

You can dynamically submit an asynchronous request to create a queue or topic,
respectively, using the following JMSHelper methods:

static public void createPermanentQueueAsync(
 Context ctx,
 String jmsServerName,
 String queueName,
 String jndiName
) throws JMSException

static public void createPermanentTopicAsync(
 Context ctx,
 String jmsServerName,
 String topicName,
 String jndiName
) throws JMSException

You must specify the JNDI initial context, name of the JMS server to be associated
with the destination, name of the destination (queue or topic), and name used to look
up the destination within the JNDI namespace.

Each method updates the following:

� Configuration file associated with the specified domain to include the
dynamically created destination

� JNDI namespace to advertise the destination
4-54 Programming WebLogic JMS

Creating Destinations Dynamically
Note: Either method call can fail without throwing an exception. In addition, a
thrown exception does not necessarily indicate that the method call failed.

The time required to create the destination on the JMS server and propagate the
information to the JNDI namespace can be significant. The propagation delay
increases if the environment contains multiple servers. It is recommended that you test
for the existence of the queue or topic, respectively, using the session createQueue()
or createTopic() method, rather than perform a JNDI lookup. By doing so, you can
avoid some of the propagation-specific delay.

For example, the following method, findQueue(), attempts to access a dynamically
created queue, and if unsuccessful, sleeps for a specified interval before retrying. A
maximum retry count is established to prevent an infinite loop.

private static Queue findQueue (
 QueueSession queueSession,
 String jmsServerName,
 String queueName,
 int retryCount,
 long retryInterval
) throws JMSException
{
 String wlsQueueName = jmsServerName + “/” + queueName;
 String command = “QueueSession.createQueue(“ +

wlsQueueName + “)”;
 long startTimeMillis = System.currentTimeMillis();
 for (int i=retryCount; i>=0; i--) {

try {
 System.out.println(“Trying “ + command);
 Queue queue = queueSession.createQueue(wlsQueueName);
 System.out.println(command + “succeeded after “ +
 (retryCount - i + 1) + “ tries in “ +
 (System.currentTimeMillis() - startTimeMillis) +
 “ millis.”);
 return queue;
} catch (JMSException je) {
 if (retryCount == 0) throw je;
}
try {
 System.out.println(command + “> failed, pausing “ +
 retryInterval + “ millis.”);
 Thread.sleep(retryInterval);
} catch (InterruptedException ignore) {}

 }
 throw new JMSException(“out of retries”);
}

Programming WebLogic JMS 4-55

4 Developing a WebLogic JMS Application
You can then call the findQueue() method after the JMSHelper class method call to
retrieve the dynamically created queue once it becomes available. For example:

JMSHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,
 queueName, jndiName);
Queue queue = findQueue(qsess, jmsServerName, queueName,
 retry_count, retry_interval);

For more information on the JMSHelper class, refer to the
weblogic.jms.extensions.JMSHelper Javadoc.

Using Temporary Destinations

Temporary destinations enable an application to create a destination, as required,
without the system administration overhead associated with configuring and creating
a server-defined destination.

The WebLogic JMS server can use the JMSReplyTo header field to return a response
to the application. The application may optionally set the JMSReplyTo header field of
its messages to its temporary destination name to advertise the temporary destination
that it is using to other applications.

Temporary destinations exist only for the duration of the current connection, unless
they are removed using the delete() method, described in “Deleting a Temporary
Destination” on page 4-57.

Because messages are never available if the server is restarted, all PERSISTENT
messages are silently made NON_PERSISTENT. As a result, temporary destinations are
not suitable for business logic that must survive a restart.

Note: Before creating a temporary destination (queue or topic), you must use the
Adminstration Console to configure the JMS server to use temporary
destinations. This is done by using the JMS server’s Temporary Template
attribute to select a JMS template that is configured in the same domain. For
more information about configuring a JMS server, see “JMS Server” in the
Administration Console Online Help.

The following sections describe how to create a temporary queue (PTP) or temporary
topic (Pub/Sub).
4-56 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/JMSHelper.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsserver.html

Creating Destinations Dynamically
Creating a Temporary Queue

You can create a temporary queue using the following QueueSession method:

public TemporaryQueue createTemporaryQueue(
) throws JMSException

For example, to create a reference to a TemporaryQueue that will exist only for the
duration of the current connection, use the following method call:

QueueSender = Session.createTemporaryQueue();

Creating a Temporary Topic

You can create a temporary topic using the following TopicSession method:

public TemporaryTopic createTemporaryTopic(
) throws JMSException

For example, to create a reference to a temporary topic that will exist only for the
duration of the current connection, use the following method call:

TopicPublisher = Session.createTemporaryTopic();

Deleting a Temporary Destination

When you finish using a temporary destination, you can delete it (to release associated
resources) using the following TemporaryQueue or TemporaryTopic method:

public void delete(
) throws JMSException
Programming WebLogic JMS 4-57

4 Developing a WebLogic JMS Application
Setting Up Durable Subscriptions

WebLogic JMS supports durable and non-durable subscriptions.

For durable subscriptions, WebLogic JMS stores a message in a file or database until
the message has been delivered to the subscribers or has expired, even if those
subscribers are not active at the time that the message is delivered. A subscriber is
considered active if the Java object that represents it exists. Durable subscriptions are
supported for Pub/Sub messaging only.

For non-durable subscriptions, WebLogic JMS delivers messages only to applications
with an active session. Messages sent to a topic while an application is not listening are
never delivered to that application. In other words, non-durable subscriptions last only
as long as their subscriber objects. By default, subscribers are non-durable.

The following sections describe:

� Defining the Client ID

� Creating Subscribers for a Durable Subscription

� Deleting Durable Subscriptions

� Modifying Durable Subscriptions

Defining the Client ID

To support durable subscriptions, a client identifier (client ID) must be defined for the
connection.

Note: The JMS client ID is not necessarily equivalent to the WebLogic Server
username, that is, a name used to authenticate a user in the WebLogic security
realm. You can, of course, set the JMS client ID to the WebLogic Server
username, if it is appropriate for your JMS application.
4-58 Programming WebLogic JMS

Setting Up Durable Subscriptions
The client ID can be supplied in two ways:

� The preferred method, according to the JMS specification, is to configure the
connection factory with the client ID. For WebLogic JMS, this means adding a
separate connection factory definition during configuration for each client ID.
Applications then look up their own topic connection factories in JNDI and use
them to create connections containing their own client IDs. For more
information about configuring a connection factory with a client ID, see “JMS
Connection Factories” in the Administration Console Online Help.

� Alternatively, an application can set its client ID in the connection after the
connection is created by calling the following connection method:

public void setClientID(
 String clientID
) throws JMSException

You must specify a unique client ID. If you use this alternative approach, you
can use the default connection factory (if it is acceptable for your application)
and avoid the need to modify the configuration information. However,
applications with durable subscriptions must ensure that they call
setClientID() immediately after creating their topic connection. For
information on the default connection factory, see “Managing JMS” in the
Administration Guide.

If a client ID is already defined for the connection, an
IllegalStateException is thrown. If the specified client ID is already defined
for another connection, an InvalidClientIDException is thrown.

Note: When specifying the client ID using the setClientID() method, there is
a risk that a duplicate client ID may be specified without throwing an
exception. For example, if the client IDs for two separate connections are
set simultaneously to the same value, a race condition may occur and the
same value may be assigned to both connections. You can avoid this risk
of duplication by specifying the client ID during configuration.

To display a client ID and test whether or not a client ID has already been
defined, use the following Connection method:

public String getClientID(
) throws JMSException

Note: Support for durable subscriptions is a feature unique to the Pub/Sub messaging
model, so client IDs are used only with topic connections; queue connections
also contain client IDs, but JMS does not use them.
Programming WebLogic JMS 4-59

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

4 Developing a WebLogic JMS Application
Durable subscriptions should not be created for a temporary topic, because a
temporary topic is designed to exist only for the duration of the current
connection.

Creating Subscribers for a Durable Subscription

You can create subscribers for a durable subscription using the following
TopicSession methods:

public TopicSubscriber createDurableSubscriber(
 Topic topic,
 String name
) throws JMSException

public TopicSubscriber createDurableSubscriber(
 Topic topic,
 String name,
 String messageSelector,
 boolean noLocal
) throws JMSException

You must specify the name of the topic for which you are creating a subscriber, and
the name of the durable subscription. You may also specify a message selector for
filtering messages and a noLocal flag (described later in this section). Message
selectors are described in more detail in “Filtering Messages” on page 4-70. If you do
not specify a messageSelector, by default all messages are searched.

An application can use a JMS connection to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, an application can
receive messages it has published itself. To prevent this, a JMS application can set a
noLocal flag to true. The noLocal value defaults to false.

The durable subscription name must be unique per client ID. For information on
defining the client ID for the connection, see “Defining the Client ID” on page 4-58.

Only one session can define a subscriber for a particular durable subscription at any
given time. Multiple subscribers can access the durable subscription, but not at the
same time. Durable subscriptions are stored within the file or database.
4-60 Programming WebLogic JMS

Setting Up Durable Subscriptions
Deleting Durable Subscriptions

To delete a durable subscription, you use the following TopicSession method:

public void unsubscribe(
 String name
) throws JMSException

You must specify the name of the durable subscription to be deleted.

You cannot delete a durable subscription if any of the following are true:

� A TopicSubscriber is still active on the session.

� A message received by the durable subscription is part of a transaction or has
not yet been acknowledged in the session.

Note: For WebLogic Server version 6.1 or later, a run-time MBean has been added
for managing durable subscriptions. This feature allows you to monitor and
delete durable subscriptions from the Administration Console. For
information on managing durable subscribers from the Administration
Console, see “Managing JMS” in the Administration Guide.

Modifying Durable Subscriptions

To modify a durable subscription, perform the following steps:

1. Optionally, delete the durable subscription, as described in “Deleting Durable
Subscriptions” on page 4-61.

This step is optional. If not explicitly performed, the deletion will be executed
implicitly when the durable subscription is recreated in the next step.

2. Use the methods described in “Creating Subscribers for a Durable Subscription”
on page 4-60 to recreate a durable subscription of the same name, but specifying
a different topic name, message selector, or noLocal value.

The durable subscription is recreated based on the new values.

Note: When recreating a durable subscription, be careful to avoid creating a durable
subscription with a duplicate name. For example, if you attempt to delete a
durable subscription from a JMS server that is unavailable, the delete call fails.
Programming WebLogic JMS 4-61

http://e-docs.bea.com/wls/docs61/adminguide/jms.html

4 Developing a WebLogic JMS Application
If you subsequently create a durable subscription with the same name on a
different JMS server, you may experience unexpected results when the first
JMS server becomes available. Because the original durable subscription has
not been deleted, when the first JMS server again becomes available, there will
be two durable subscriptions with duplicate names.

Setting and Browsing Message Header and
Property Fields

WebLogic JMS provides a set of standard header fields that you can define to identify
and route messages. In addition, property fields enable you to include
application-specific header fields within a message, extending the standard set. You
can use the message header and property fields to convey information between
communicating processes.

The primary reason for including data in a property field rather than in the message
body is to support message filtering via message selectors. Data in the message body
cannot be accessed via message selectors. For example, suppose you use a property
field to assign high priority to a message. You can then design a message consumer
containing a message selector that accesses this property field and selects only
messages of expedited priority. For more information about selectors, see “Filtering
Messages” on page 4-70.

Setting Message Header Fields

JMS messages contain a standard set of header fields that are always transmitted with
the message. They are available to message consumers that receive messages, and
some fields can be set by the message producers that send messages. Once a message
is received, its header field values can be modified.

For a description of the standard messages header fields, see “Message Header Fields”
on page 2-15.
4-62 Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields
The following table lists the Message class set and get methods for each of the
supported data types.

Note: In some cases, the send() method overrides the header field value set using
the set() method, as indicated in the following table.

Table 4-5 Message Header Set and Get Methods

Header Field Set Method Get Method

JMSCorrelationID public void setJMSCorrelationID(
 String correlationID
) throws JMSException

public String
getJMSCorrelationID(
) throws JMSException

public byte[]
getJMSCorrelationIDAsBytes(
) throws JMSException

JMSDestination1 public void setJMSDestination(
 Destination destination
) throws JMSException

public Destination
getJMSDestination(
) throws JMSException

JMSDeliveryMode1 public void setJMSDeliveryMode(
 int deliveryMode
) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

JMSDeliveryTime1 public void setJMSDeliveryTime(
 long deliveryTime
) throws JMSException

public long getJMSDeliveryTime(
) throws JMSException

JMSDeliveryMode1 public void setJMSDeliveryMode(
 int deliveryMode
) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException
Programming WebLogic JMS 4-63

4 Developing a WebLogic JMS Application
JMSMessageID1 public void setJMSMessageID(
 String id
) throws JMSException

In addition to the set method, the
weblogic.jms.extensions.JMSHel
per class provides the following methods
to convert between pre-WebLogic JMS 6.0
and 6.1 JMSMessageID formats:
public void oldJMSMessageIDToNew(
 String id,
 long timeStamp
) throws JMSException

public void newJMSMessageIDToOld(
 String id,
 long timeStamp
) throws JMSException

public String getJMSMessageID(
) throws JMSException

JMSPriority1 public void setJMSPriority(
 int priority
) throws JMSException

public int getJMSPriority(
) throws JMSException

JMSRedelivered1 public void setJMSRedelivered(
 boolean redelivered
) throws JMSException

public boolean getJMSRedelivered(
) throws JMSException

JMSReplyTo public void setJMSReplyTo(
 Destination replyTo
) throws JMSException

public Destination getJMSReplyTo(
) throws JMSException

JMSTimeStamp1 public void setJMSTimeStamp(
 long timestamp
) throws JMSException

public long getJMSTimeStamp(
) throws JMSException

JMSType public void setJMSType(
 String type
) throws JMSException

public String getJMSType(
) throws JMSException

1. The corresponding set() method has no impact on the message header field when the send() method is
executed. If set, this header field value will be overridden during the send() operation.

Table 4-5 Message Header Set and Get Methods (Continued)

Header Field Set Method Get Method
4-64 Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields
The examples.jms.sender.SenderServlet example, provided with WebLogic
Server in the samples/examples/jms/sender directory, shows how to set header
fields in messages that you send and how to display message header fields after they
are sent.

For example, the following code, which appears after the send() method, displays the
message ID that was assigned to the message by WebLogic JMS:

System.out.println("Sent message " +
msg.getJMSMessageID() + " to " +
msg.getJMSDestination());

Setting Message Property Fields

To set a property field, call the appropriate set method and specify the property name
and value. To read a property field, call the appropriate get method and specify the
property name.

The sending application can set properties in the message, and the receiving
application can subsequently view them. The receiving application cannot change the
properties without first clearing them using the following clearProperties()
method:

public void clearProperties(
) throws JMSException
Programming WebLogic JMS 4-65

4 Developing a WebLogic JMS Application
This method does not clear the message header fields or body.

Note: The JMSX property name prefix is reserved for JMS. The connection metadata
contains a list of JMSX properties, which can be accessed as an enumerated
list using the getJMSXPropertyNames() method. For more information, see
“Accessing Connection Metadata” on page 4-49.

The JMS_ property name prefix is reserved for provider-specific properties; it
is not intended for use with standard JMS messaging.

The property field can be set to any of the following types: boolean, byte, double, float,
int, long, short, or string. The following table lists the Message class set and get
methods for each of the supported data types.

Table 4-6 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method

boolean public void setBooleanProperty(
 String name,
 boolean value
) throws JMSException

public boolean
getBooleanProperty(
 String name
) throws JMSException

byte public void setByteProperty(
 String name,
 byte value
) throws JMSException

public byte getByteProperty(
 String name
) throws JMSException

double public void setDoubleProperty(
 String name,
 double value
) throws JMSException

public double getDoubleProperty(
 String name
) throws JMSException

float public void setFloatProperty(
 String name,
 float value
) throws JMSException

public float getFloatProperty(
 String name
) throws JMSException

int public void setIntProperty(
 String name,
 int value
) throws JMSException

public int getIntProperty(
 String name
) throws JMSException
4-66 Programming WebLogic JMS

Setting and Browsing Message Header and Property Fields
In addition to the set and get methods described in the previous table, you can use the
setObjectProperty() and getObjectProperty() methods to use the objectified
primitive values of the property type. When the objectified value is used, the property
type can be determined at execution time rather than during the compilation. The valid
object types are boolean, byte, double, float, int, long, short, and string.

You can access all property field names using the following Message method:

public Enumeration getPropertyNames(
) throws JMSException

This method returns all property field names as an enumeration. You can then retrieve
the value of each property field by passing the property field name to the appropriate
get method, as described in the previous table, based on the property field data type.

long public void setLongProperty(
 String name,
 long value) throws
JMSException

public long getLongProperty(
 String name
) throws JMSException

short public void setShortProperty(
 String name,
 short value
) throws JMSException

public short getShortProperty(
 String name
) throws JMSException

String public void setStringProperty(
 String name,
 String value
) throws JMSException

public String getStringProperty(
 String name
) throws JMSException

Table 4-6 Message Property Set and Get Methods for Data Types (Continued)

Data Type Set Method Get Method
Programming WebLogic JMS 4-67

4 Developing a WebLogic JMS Application
The following table is a conversion chart for message properties. It allows you to
identify the type that can be read based on the type that has been written.

You can test whether or not a property value has been set using the following Message
method:

public boolean propertyExists(
 String name
) throws JMSException

You specify a property name and the method returns a boolean value indicating
whether or not the property exists.

For example, the following code sets two String properties and an int property:

msg.setStringProperty("User", user);
msg.setStringProperty("Category", category);
msg.setIntProperty("Rating", rating);

For more information about message property fields, see “Message Property Fields”
on page 2-19 or the javax.jms.Message Javadoc.

Table 4-7 Message Property Conversion Chart

Property
Written As. . .

Can Be Read As. . .

boolean byte double float int long short String

boolean X X

byte X X X X X

double X X

float X X X

int X X X

long X X

Object X X X X X X X X

short X X X X

String X X X X X X X X
4-68 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

Setting and Browsing Message Header and Property Fields
Browsing Header and Property Fields

Note: Only queue message header and property fields can be browsed. You cannot
browse topic message header and property fields.

You can browse the header and property fields of messages on a queue using the
following QueueSession methods:

public QueueBrowser createBrowser(
 Queue queue
) throws JMSException

public QueueBrowser createBrowser(
 Queue queue,
 String messageSelector
) throws JMSException

You must specify the queue that you wish to browse. You may also specify a message
selector to filter messages that you are browsing. Message selectors are described in
more detail in “Filtering Messages” on page 4-70.

Once you have defined a queue, you can access the queue name and message selector
associated with a queue browser using the following QueueBrowser methods:

public Queue getQueue(
) throws JMSException

public String getMessageSelector(
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the
following QueueBrowser method:

public Enumeration getEnumeration(
) throws JMSException

The examples.jms.queue.QueueBrowser example, provided with WebLogic
Server in the samples/examples/jms/queue directory, shows how to access the
header fields of received messages.

For example, the following code line is an excerpt from the QueueBrowser example
and creates the QueueBrowser object:

qbrowser = qsession.createBrowser(queue);
Programming WebLogic JMS 4-69

4 Developing a WebLogic JMS Application
The following provides an excerpt from the displayQueue() method defined in the
QueueBrowser example. In this example, the QueueBrowser object is used to obtain
an enumeration that is subsequently used to scan the queue’s messages.

 public void displayQueue(
) throws JMSException
 {
 Enumeration e = qbrowser.getEnumeration();
 Message m = null;

 if (! e.hasMoreElements()) {
 System.out.println("There are no messages on this queue.");
 } else {

 System.out.println("Queued JMS Messages: ");
 while (e.hasMoreElements()) {
 m = (Message) e.nextElement();
 System.out.println("Message ID " + m.getJMSMessageID() +
 " delivered " + new Date(m.getJMSTimestamp())
 " to " + m.getJMSDestination());
 }
 }

When a queue browser is no longer being used, you should close it to free up resources.
For more information, see “Releasing Object Resources” on page 4-37.

For more information about the QueueBrowser class, see the
javax.jms.QueueBrowser Javadoc.

Filtering Messages

In many cases, an application does not need to be notified of every message that is
delivered to it. Message selectors can be used to filter unwanted messages, and
subsequently improve performance by minimizing their impact on network traffic.

Message selectors operate as follows:

� The sending application sets message header or property fields to describe or
classify a message in a standardized way.

� The receiving applications specify a simple query string to filter the messages
that they want to receive.
4-70 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueBrowser.html

Filtering Messages
Because message selectors cannot reference the contents (body) of a message, some
information may be duplicated in the message property fields (except in the case of
XML messages).

You specify a selector when creating a queue receiver or topic subscriber, as an
argument to the QueueSession.createReceiver() or
TopicSession.createSubscriber() methods, respectively. For information about
creating queue receivers and topic subscribers, see “Step 5: Create Message Producers
and Message Consumers Using the Session and Destinations” on page 4-11.

The following sections describe how to define a message selector using SQL
statements and XML selector methods, and how to update message selectors. For more
information about setting header and property fields, see “Setting and Browsing
Message Header and Property Fields” on page 4-62 and “Setting Message Property
Fields” on page 4-65, respectively.

Defining Message Selectors Using SQL Statements

A message selector is a boolean expression. It consists of a String with a syntax similar
to the where clause of an SQL select statement.

The following excerpts provide examples of selector expressions.

salary > 64000 and dept in ('eng','qa')

(product like 'WebLogic%' or product like '%T3')
and version > 3.0

hireyear between 1990 and 1992
or fireyear is not null

fireyear - hireyear > 4

The following example shows how to set a selector when creating a queue receiver that
filters out messages with a priority lower than 6.

String selector = "JMSPriority >= 6";
qsession.createReceiver(queue, selector);

The following example shows how to set the same selector when creating a topic
subscriber.

String selector = "JMSPriority >= 6";
qsession.createSubscriber(topic, selector);
Programming WebLogic JMS 4-71

4 Developing a WebLogic JMS Application
For more information about the message selector syntax, see the javax.jms.Message
Javadoc.

Defining XML Message Selectors Using XML Selector
Method

For XML message types, in addition to using the SQL selector expressions described
in the previous section to define message selectors, you can use the following method:

String JMS_BEA_SELECT(String type, String expression)

JMS_BEA_SELECT is a built-in function in WebLogic JMS SQL syntax. You specify
the syntax type, which for this release must be set to xpath (XML Path Language), and
an XPath expression. The XML path language is defined in the XML Path Language
(XPath) document, which is available at the XML Path Language Web site at:
http://www.w3.org/TR/xpath

Note: Pay careful attention to your XML message syntax, since malformed XML
messages (for example, a missing end tag) will not match any XML selector.

The methods return a null value under the following circumstances:

� The message does not parse.

� The message parses, but the element is not present.

� If a message parses and the element is present, but the message contains no
value (for example, <order></order>).

For example, consider the following XML excerpt:

<order>
<item>

<id>007</id>
<name>Hand-held Power Drill</name>
<description>Compact, assorted colors.</description>
<price>$34.99</price>

</item>
<item>

<id>123</id>
<name>Mitre Saw</name>
<description>Three blades sizes.</description>
<price>$69.99</price>
4-72 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html
http://www.w3.org/TR/xpath

Filtering Messages
</item>
<item>

<id>66</id>
<name>Socket Wrench Set</name>
<description>Set of 10.</description>
<price>$19.99</price>

</item>
</order>

The following example shows how to retrieve the name of the second item in the
previous example. This method call returns the string, Mitre Saw.

String sel = "JMS_BEA_SELECT(‘xpath’,
‘/order/item[2]/name/text()’) = ‘Mitre Saw’”;

Pay careful attention to the use of double and single quotes and spaces. Note the use of
single quotes around xpath, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous
example. This method call returns the string, 66.

String sel = "JMS_BEA_SELECT(‘xpath’,
‘/order/item[3]/id/text()’) = ‘66’”;

Displaying Message Selectors

You can use the following MessageConsumer method to display a message selector:

public String getMessageSelector(
) throws JMSException

This method returns either the currently defined message selector or null if a message
selector is not defined.

Indexing Topic Subscriber Message Selectors To Optimize
Performance

For a certain class of applications, WebLogic JMS can significantly optimize topic
subscriber message selectors by indexing them. These applications typically have a
large number of subscribers, each with a unique identifier (like a user name), and they
need to be able to quickly send a message to a single subscriber, or to a list of
Programming WebLogic JMS 4-73

4 Developing a WebLogic JMS Application
subscribers. A typical example is an instant messaging application where each
subscriber corresponds to a different user, and each message contains a list of one or
more target users.

To activate optimized subscriber message selectors, subscribers must use the
following syntax for their selectors:

"identifier IS NOT NULL"

where identifier is an arbitrary string that is not a predefined JMS message property
(e.g., neither JMSCorrelationID nor JMSType). Multiple subscribers can share the
same identifier.

WebLogic JMS uses this exact message selector syntax as a hint to build internal
subscriber indexes. Message selectors that do not follow the syntax, or that include
additional OR and AND clauses, are still honored, but do not activate the optimization.

Once subscribers have registered using this message selector syntax, a message
published to the topic can target specific subscribers by including one or more
identifiers in the message’s user properties, as illustrated in the following example:

// Set up a named subscriber, where "wilma" is the name of
// the subscriber and subscriberSession is a JMS TopicSession.
// Note that the selector syntax used activates the optimization.

TopicSubscriber topicSubscriber =
 subscriberSession.createSubscriber(
 (Topic)context.lookup("IMTopic"),
 "Wilma IS NOT NULL",
 /* noLocal= */ true);

// Send a message to subscribers "Fred" and "Wilma",
// where publisherSession is a JMS TopicSession. Subscribers
// with message selector expressions "Wilma IS NOT NULL"
// or "Fred IS NOT NULL" will receive this message.

TopicPublisher topicPublisher =
 publisherSession.createPublisher(
 (Topic)context.lookup("IMTopic");

TextMessage msg =
 publisherSession.createTextMessage("Hi there!");
msg.setBooleanProperty("Fred", true);
msg.setBooleanProperty("Wilma", true);

topicPublisher.publish(msg);
4-74 Programming WebLogic JMS

Defining Server Session Pools
Notes:

The optimized message selector and message syntax is based on the standard
JMS API; therefore, applications that use this syntax will also work on
versions of WebLogic JMS that do not have optimized message selectors, as
well as on non-WebLogic JMS products. However, these versions will not
perform as well as versions that include this enhancement.

The message selector optimization will have no effect on applications that use
the MULTICAST_NO_ACKNOWLEDGE acknowledge mode. These applications
have no need no need for the enhancement anyway, since the message
selection occurs on the client side rather than the server side.

Defining Server Session Pools

WebLogic JMS implements an optional JMS facility for defining a server-managed
pool of server sessions. This facility enables an application to process messages
concurrently.

The server session pool:

� Receives messages from a destination and passes them to a server-side message
listener that you provide to process messages. The message listener class
provides an onMessage() method that processes a message.

� Processes messages in parallel by managing a pool of JMS sessions, each of
which executes a single-threaded onMessage() method.

The following figure illustrates the server session pool facility, and the relationship
between the application and the application server components.
Programming WebLogic JMS 4-75

4 Developing a WebLogic JMS Application
Figure 4-3 Server Session Pool Facility

As illustrated in the figure, the application provides a single-threaded message listener.
The connection consumer, implemented by JMS on the application server, performs
the following tasks to process one or more messages:

1. Gets a server session from the server session pool.

2. Gets the server session’s session.

3. Loads the session with one or more messages.

4. Starts the server session to consume messages.

5. Releases the server session back to pool when finished processing messages.
4-76 Programming WebLogic JMS

Defining Server Session Pools
The following figure illustrates the steps required to prepare for concurrent message
processing.

Figure 4-4 Preparing for Concurrent Message Processing

Note: When you create a server session pool (step 2), WebLogic Server first tests the
weblogic.allow.create.jms.ServerSessionPool ACL to ensure the
user has create permission. This permission is granted to everyone, by default.
You can update this property to restrict the permission to a set of users and
groups or you can delete the property to disable the server session pool feature.
For more information about configuring ACLs, see “Managing Security” in
the Administration Guide.

Applications can use other application server providers’ session pool
implementations within this flow. Server session pools can also be
implemented using Message Driven Beans. For information on using message
driven beans to implement server session pools, see Using WebLogic EJB.

If the session pool and connection consumer were defined during
configuration, you can skip this section. For more information on configuring
server session pools and connection consumers, see Managing JMS in the
Administration Guide.

Currently, WebLogic JMS does not support the optional
TopicConnection.createDurableConnectionConsumer() operation.
For more information on this advanced JMS operation, refer to Sun
Microsystems’ JMS Specification.
Programming WebLogic JMS 4-77

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://www.javasoft.com/products/jms/docs.html
http://www.javasoft.com/products/jms/docs.html

4 Developing a WebLogic JMS Application
Step 1: Look Up Server Session Pool Factory in JNDI

You use a server session pool factory to create a server session pool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.ServerSessionPoolFactory:<name>, where <name> specifies the
name of the JMS server to which the session pool is created.

Once it has been configured, you can look up a server session pool factory by first
establishing a JNDI context (context) using the
NamingManager.InitialContext() method. For any application other than a
servlet application, you must pass an environment used to create the initial context. For
more information, see the NamingManager.InitialContext() Javadoc.

Once the context is defined, to look up a server session pool factory in JNDI use the
following code:

factory = (ServerSessionPoolFactory) context.lookup(<ssp_name>);

The <ssp_name> specifies a qualified or non-qualified server session pool factory
name.

For more information about server session pool factories, see
“ServerSessionPoolFactory” on page 2-21 or the
weblogic.jms.ServerSessionPoolFactory Javadoc.

Step 2: Create a Server Session Pool Using the Server
Session Pool Factory

You can create a server session pool for use by queue (PTP) or topic (Pub/Sub)
connection consumers, using the ServerSessionPoolFactory methods described in
the following sections.

For more information about server session pools, see “ServerSessionPool” on page
2-21 or the javax.jms.ServerSessionPool Javadoc.
4-78 Programming WebLogic JMS

http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ServerSessionPool.html

Defining Server Session Pools
Create a Server Session Pool for Queue Connection Consumers

The ServerSessionPoolFactory provides the following method for creating a
server session pool for queue connection consumers:

public ServerSessionPool getServerSessionPool(
 QueueConnection connection,
 int maxSessions,
 boolean transacted,
 int ackMode,
 String listenerClassName
) throws JMSException

You must specify the queue connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3), whether or not the sessions are transacted, the
acknowledge mode (applicable for non-transacted sessions only), and the message
listener class that is instantiated and used to receive and process messages
concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.ServerSessionPoolFactory Javadoc. For more information about
the ConnectionConsumer class, see the javax.jms.ConnectionConsumer
Javadoc.

Create a Server Session Pool for Topic Connection Consumers

The ServerSessionPoolFactory provides the following method for creating a
server session pool for topic connection consumers:

public ServerSessionPool getServerSessionPool(
 TopicConnection connection,
 int maxSessions,
 boolean transacted,
 int ackMode,
 String listenerClassName
) throws JMSException

You must specify the topic connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection (to be
created in step 3), whether or not the sessions are transacted, the acknowledge mode
(applicable for non-transacted sessions only), and the message listener class that is
instantiated and used to receive and process messages concurrently.
Programming WebLogic JMS 4-79

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html

4 Developing a WebLogic JMS Application
For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.ServerSessionPoolFactory Javadoc. For more information about
the ConnectionConsumer class, see the javax.jms.ConnectionConsumer
Javadoc.

Step 3: Create a Connection Consumer

You can create a connection consumer for retrieving server sessions and processing
messages concurrently using one of the following methods:

� Configuring the server session pool and connection consumer during the
configuration, as described in the “Managing JMS” in the Administration Guide

� Including in your application the Connection methods described in the following
sections

For more information about the ConnectionConsumer class, see
“ConnectionConsumer” on page 2-22 or the javax.jms.ConnectionConsumer
Javadoc.

Create a Connection Consumer for Queues

The QueueConnection provides the following method for creating connection
consumers for queues:

public ConnectionConsumer createConnectionConsumer(
 Queue queue,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

You must specify the name of the associated queue, the message selector for filtering
messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session
simultaneously. For information about message selectors, see “Filtering Messages” on
page 4-70.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc. For more information about the
ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.
4-80 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html

Defining Server Session Pools
Create a Connection Consumer for Topics

The TopicConnection provides the following two methods for creating
ConnectionConsumers for topics:

public ConnectionConsumer createConnectionConsumer(
 Topic topic,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

public ConnectionConsumer createDurableConnectionConsumer(
 Topic topic,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

For each method, you must specify the name of the associated topic, the message
selector for filtering messages, the associated server session pool for accessing server
sessions, and the maximum number of messages that can be assigned to the server
session simultaneously. For information about message selectors, see “Filtering
Messages” on page 4-70.

Each method creates a connection consumer; but, the second method also creates a
durable connection consumer for use with durable subscribers. For more information
about durable subscribers, see “Setting Up Durable Subscriptions” on page 4-58.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc. For more information about the
ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc.
Programming WebLogic JMS 4-81

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html

4 Developing a WebLogic JMS Application
Example: Setting Up a PTP Client Server Session Pool

The following example illustrates how to set up a server session pool for a JMS client.
The startup() method is similar to the init() method in the
examples.jms.queue.QueueSend example, as described in “Example: Setting Up a
PTP Application” on page 4-18. This method also sets up the server session pool.

The following illustrates the startup() method, with comments highlighting each
setup step.

Include the following package on the import list to implement a server session pool
application:

import weblogic.jms.ServerSessionPoolFactory

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION_POOL_FACTORY=
"weblogic.jms.ServerSessionPoolFactory:examplesJMSServer";

private QueueConnectionFactory qconFactory;
private QueueConnection qcon;
private QueueSession qsession;
private QueueSender qsender;
private Queue queue;
private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;
private ConnectionConsumer consumer;
4-82 Programming WebLogic JMS

Defining Server Session Pools
Create the required JMS objects.

public String startup(
 String name,
 Hashtable args
) throws Exception

{
 String connectionFactory = (String)args.get("connectionFactory");
 String queueName = (String)args.get("queue");
 if (connectionFactory == null || queueName == null) {
 throw new
IllegalArgumentException("connectionFactory="+connectionFactory+
 ", queueName="+queueName);
 }
 Context ctx = new InitialContext();
 qconFactory = (QueueConnectionFactory)

ctx.lookup(connectionFactory);
 qcon =qconFactory.createQueueConnection();
 qsession = qcon.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
 queue = (Queue) ctx.lookup(queueName);
 qcon.start();

Step 1 Look up the server session pool factory in JNDI.

 sessionPoolFactory = (ServerSessionPoolFactory)
 ctx.lookup(SESSION_POOL_FACTORY);

Step 2 Create a server session pool using the server session pool factory, as follows:

 sessionPool = sessionPoolFactory.getServerSessionPool(qcon, 5,
 false, Session.AUTO_ACKNOWLEDGE,
 examples.jms.startup.MsgListener);

The code defines the following:

� qcon as the queue connection associated with the server session pool

� 5 as the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

� Sessions will be non-transacted (false)

� AUTO_ACKNOWLEDGE as the acknowledge mode

� The examples.jms.startup.MsgListener will be used as the message
listener that is instantiated and used to receive and process messages
concurrently.
Programming WebLogic JMS 4-83

4 Developing a WebLogic JMS Application
Step 3 Create a connection consumer, as follows:

 consumer = qcon.createConnectionConsumer(queue, “TRUE”,
sessionPool, 10);

The code defines the following:

� queue as the associated queue

� TRUE as the message selector for filtering messages

� sessionPool as the associated server session pool for accessing server sessions

� 10 as the maximum number of messages that can be assigned to the server
session simultaneously

For more information about the JMS classes used in this example, see “WebLogic JMS
Classes” on page 2-5 or the javax.jms Javadoc.

Example: Setting Up a Pub/Sub Client Server Session
Pool

The following example illustrates how to set up a server session pool for a JMS client.
The startup() method is similar to the init() method in the
examples.jms.topic.TopicSend example, as described in “Example: Setting Up a
Pub/Sub Application” on page 4-21. It also sets up the server session pool.

The following illustrates startup() method, with comments highlighting each setup
step.

Include the following package on the import list to implement a server session pool
application:

import weblogic.jms.ServerSessionPoolFactory
4-84 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/index.html

Defining Server Session Pools
Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION_POOL_FACTORY=
"weblogic.jms.ServerSessionPoolFactory:examplesJMSServer";

private TopicConnectionFactory tconFactory;
private TopicConnection tcon;
private TopicSession tsession;
private TopicSender tsender;
private Topic topic;
private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;
private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(
 String name,
 Hashtable args
) throws Exception

{
 String connectionFactory = (String)args.get("connectionFactory");
 String topicName = (String)args.get("topic");
 if (connectionFactory == null || topicName == null) {
 throw new
IllegalArgumentException("connectionFactory="+connectionFactory+
 ", topicName="+topicName);
 }
 Context ctx = new InitialContext();
 tconFactory = (TopicConnectionFactory)

ctx.lookup(connectionFactory);
 tcon = tconFactory.createTopicConnection();
 tsession = tcon.createTopicSession(false,

Session.AUTO_ACKNOWLEDGE);
 topic = (Topic) ctx.lookup(topicName);
 tcon.start();

Step 1 Look up the server session pool factory in JNDI.

 sessionPoolFactory = (ServerSessionPoolFactory)
 ctx.lookup(SESSION_POOL_FACTORY);

Step 2 Create a server session pool using the server session pool factory, as follows:

 sessionPool = sessionPoolFactory.getServerSessionPool(tcon, 5,
 false, Session.AUTO_ACKNOWLEDGE,
 examples.jms.startup.MsgListener);
Programming WebLogic JMS 4-85

4 Developing a WebLogic JMS Application
The code defines the following:

� tcon as the topic connection associated with the server session pool

� 5 as the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

� Sessions will be non-transacted (false)

� AUTO_ACKNOWLEDGE as the acknowledge mode

� The examples.jms.startup.MsgListener will be used as the message
listener that is instantiated and used to receive and process messages
concurrently.

Step 3 Create a connection consumer, as follows:

 consumer = tcon.createConnectionConsumer(topic, “TRUE”,
sessionPool, 10);

The code defines the following:

� topic as the associated topic

� TRUE as the message selector for filtering messages

� sessionPool as the associated server session pool for accessing server sessions

� 10 as the maximum number of messages that can be assigned to the server
session simultaneously

For more information about the JMS classes used in this example, see “WebLogic JMS
Classes” on page 2-5 or the javax.jms Javadoc.
4-86 Programming WebLogic JMS

http://www.javasoft.com/products/jms/javadoc-102a/index.html

Using Multicasting
Using Multicasting

Multicasting enables the delivery of messages to a select group of hosts that
subsequently forward the messages to subscribers.

The benefits of multicasting include:

� Near real-time delivery of messages to host group.

� High scalability due to the reduction in the amount of resources required by the
JMS server to deliver messages to subscribers.

The limitations of multicasting include:

� Multicast messages are not guaranteed to be delivered to all members of the host
group. For messages requiring reliable delivery and recovery, you should not use
multicasting.

� For interoperability with different versions of WebLogic Server, clients cannot
have an earlier release of WebLogic Server installed than the host. They must all
have at least the same version or higher.

For an example of when multicasting might be useful, consider a stock ticker. When
accessing stock quotes, timely delivery is more important than reliability. When
accessing the stock information in real-time, if all or a portion of the contents is not
delivered, the client can simply request the information to be resent. Clients would not
want to have the information recovered, in this case, as by the time it is redelivered, it
would be out-of-date.

The following figure illustrates the steps required to set up multicasting.

Figure 4-5 Setting Up Multicasting
Programming WebLogic JMS 4-87

4 Developing a WebLogic JMS Application
Note: Multicasting is only supported for the Pub/Sub messaging model, and only for
non-durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.
4-88 Programming WebLogic JMS

Using Multicasting
Before setting up multicasting, the connection factory and destination must be
configured to support multicasting, as follows:

� For each connection factory, the system administrator configures the maximum
number of outstanding messages that can exist on a multicast session and
whether the most recent or oldest messages are discarded in the event the
maximum is reached. If the message maximum is reached, a
DataOverrunException is thrown, and messages are automatically discarded.
These attributes are also dynamically configurable, as described in “Dynamically
Configuring Multicasting Configuration Attributes” on page 4-92.

� For each destination, the multicast IP address, port, and time-to-live attributes
are specified. To better understand the time-to-live attribute setting, see
“Example: Multicast TTL” on page 4-93.

Note: It is strongly recommended that you seek the advice of your network
administrator when configuring the multicast IP address, port, and time-to-live
attributes to ensure that the appropriate values are set.

For more information on the multicasting configuration attributes, see the
Administration Console Online Help. The multicast configuration attributes are also
summarized in Appendix A, “Configuration Checklists.”
Programming WebLogic JMS 4-89

http://e-docs.bea.com/wls/docs61/ConsoleHelp/index.html

4 Developing a WebLogic JMS Application
Step 1: Set Up the JMS Application, Creating Multicast
Session and Topic Subscriber

Set up the JMS application as described in “Setting Up a JMS Application” on page
4-4, however, when creating sessions, as described in “Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session would like to receive multicast
messages by setting the acknowledgeMode value to MULTICAST_NO_ACKNOWLEDGE.

Note: Multicasting is only supported for the Pub/Sub messaging model for
non-durable subscribers. An attempt to create a durable subscriber on a
multicast session will cause a JMSException to be thrown.

For example, the following method illustrates how to create a multicast session for the
Pub/Sub messaging model.

tsession = tcon.createTopicSession(
 false,
 WLSession.MULTICAST_NO_ACKNOWLEDGE
);

Note: On the client side, each multicasting session requires one dedicated thread to
retrieve messages off the socket. Therefore, you should increase the JMS
client-side thread pool size to adjust for this. For more information on
adjusting the thread pool size, see the “Tuning Thread Pools and EJB Pools”
section in the “WebLogic JMS Performance Guide” white paper, which
discusses tuning JMS client-side thread pools.

In addition, create a topic subscriber, as described in “Create TopicPublishers and
TopicSubscribers” on page 4-14.

For example, the following code illustrates how to create a topic subscriber:

tsubscriber = tsession.createSubscriber(myTopic);

Note: The createSubscriber() method fails if the specified destination is not
configured to support multicasting.
4-90 Programming WebLogic JMS

http://dev2dev.bea.com/technologies/jms/index.jsp

Using Multicasting
Step 2: Set Up the Message Listener

Multicast topic subscribers can only receive messages asynchronously. If you attempt
to receive synchronous messages on a multicast session, a JMSException is thrown.

Set up the message listener for the topic subscriber, as described in “Receiving
Messages Asynchronously” on page 4-32.

For example, the following code illustrates how to establish a message listener:

tsubscriber.setMessageListener(this);

When receiving messages, WebLogic JMS tracks the order in which messages are sent
by the destinations. If a multicast subscriber’s message listener receives the messages
out of sequence, resulting in one or more messages being skipped, a
SequenceGapException will be delivered to the ExceptionListener for the
session(s) present. If a skipped message is subsequently delivered, it will be discarded.
For example, in the following figure, the subscriber is receiving messages from two
destinations simultaneously.

Figure 4-6 Multicasting Sequence Gap

Upon receiving the “4” message from Destination 1, a SequenceGapException is
thrown to notify the application that a message was received out of sequence. If
subsequently received, the “3” message will be discarded.

Note: The larger the messages being exchanged, the greater the risk of encountering
a SequenceGapException.
Programming WebLogic JMS 4-91

4 Developing a WebLogic JMS Application
Dynamically Configuring Multicasting Configuration
Attributes

During configuration, for each connection factory the system administrator configures
the following information to support multicasting:

� Messages maximum specifying the maximum number of outstanding messages
that can exist on a multicast session.

� Overrun policy specifying whether recent or older messages are discarded in the
event the messages maximum is reached.

If the messages maximum is reached, a DataOverrunException is thrown and
messages are automatically discarded based on the overrun policy.

Alternatively, you can set the messages maximum and overrun policy using the
Session set methods.

The following table lists the Session set and get methods for each dynamically
configurable attribute.

Note: The values set using the set methods take precedence over the configured
values.

For more information about these Session class methods, see the
weblogic.jms.extensions.WLSession Javadoc. For more information on these
multicast configuration attributes, see “JMS Destinations” in the Administration
Console Online Help.

Table 4-8 Message Producer Set and Get Methods

Attribute Set Method Get Method

Messages
Maximum

public void setMessagesMaximum(
 int messagesMaximum
) throws JMSException

public int getMessagesMaximum(
) throws JMSException

Overrun Policy public void setOverrunPolicy (
 int overrunPolicy
) throws JMSException

public int getOverrunPolicy(
) throws JMSException
4-92 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsdestination.html

Using Multicasting
Example: Multicast TTL

Note: The following example is a very simplified illustration of how the Multicast
TTL (time-to-live) destination configuration attribute impacts the delivery of
messages across routers. It is strongly advised that you seek the assistance of
your network administrator when configuring the multicast TTL attribute to
ensure that the appropriate value is set.

The Multicast TTL is independent of the message time-to-live.

The following example illustrates how the Multicast TTL destination configuration
attribute impacts the delivery of messages across routers. For more information on the
multicast configuration attributes, see “JMS Destinations” in the Administration
Console Online Help.

Consider the following network diagram.

Figure 4-7 Multicast TTL Example

In the figure, the network consists of three subnets: Subnet A containing the multicast
publisher, and Subnets B and C each containing one multicast subscriber.
Programming WebLogic JMS 4-93

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsdestination.html

4 Developing a WebLogic JMS Application
If the Multicast TTL attribute is set to 0 (indicating that the messages cannot traverse
any routers and are delivered on the current subnet only), when the multicast publisher
on Subnet A publishes a message, the message will not be delivered to any of the
multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one
router), when the multicast publisher on Subnet A publishes a message, the multicast
subscriber on Subnet B will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can
traverse two routers), when the multicast publisher on Subnet A publishes a message,
the multicast subscribers on Subnets B and C will receive the message.
4-94 Programming WebLogic JMS

CHAPTER
5 Using Transactions
with WebLogic JMS

The following sections describe how to use transactions with WebLogic JMS:

� Overview of Transactions

� Using JMS Transacted Sessions

� Using JTA User Transactions

� Asynchronous Messaging Within JTA User Transactions Using Message Driven
Beans

� Example: JMS and EJB in a JTA User Transaction

Note: For more information about the JMS classes described in this section, access
the JMS Javadoc, including the latest JMS API Errata, supplied on the Sun
Microsystems Java Web site at the following locations:

http://www.javasoft.com/products/jms/Javadoc-102a/index.html

and

http://www.javasoft.com/products/jms/errata_051801.html
Programming WebLogic JMS 5-1

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://www.java.sun.com/products/jms/errata_051801.html

5 Using Transactions with WebLogic JMS
Overview of Transactions

A transaction enables an application to coordinate a group of messages for production
and consumption, treating messages sent or received as an atomic unit.

When an application commits a transaction, all of the messages it received within the
transaction are removed from the messaging system and the messages it sent within the
transaction are actually delivered. If the application rolls back the transaction, the
messages it received within the transaction are returned to the messaging system and
messages it sent are discarded.

When a topic subscriber rolls back a received message, the message is redelivered to
that subscriber. When a queue receiver rolls back a received message, the message is
redelivered to the queue, not the consumer, so that another consumer on that queue
may receive the message.

For example, when shopping online, you select items and store them in an online
shopping cart. Each ordered item is stored as part of the transaction, but your credit
card is not charged until you confirm the order by checking out. At any time, you can
cancel your order and empty your cart, rolling back all orders within the current
transaction.

There are three ways to use transactions with JMS:

� If you are using only JMS in your transactions, you can create a JMS transacted
session.

� If you are mixing other operations, such as EJB, with JMS operations, you
should use a Java Transaction API (JTA) user transaction in a non-transacted
JMS session.

� Use message driven beans.

To enable multiple JMS servers in the same JTA user transaction, or to combine JMS
operations with non-JMS operations (such as EJB), the two-phase commit license is
required. For more information, see “Using JTA User Transactions” on page 5-6.

The following sections explain how to use a JMS transacted session and JTA user
transaction.
5-2 Programming WebLogic JMS

http://www.java.sun.com/products/jms/errata_051801.html

Using JMS Transacted Sessions
Note: When using transactions, it is recommended that you define a session
exception listener to handle any problems that occur before a transaction is
committed or rolled back, as described in “Defining a Session Exception
Listener” on page 4-52.

If the acknowledge() method is called within a transaction, it is ignored. If
the recover() method is called within a transaction, a JMSException is
thrown.

Using JMS Transacted Sessions

A JMS transacted session supports transactions that are located within the session. A
JMS transacted session’s transaction will not have any effects outside of the session.
For example, rolling back a session will roll back all sends and receives on that session,
but will not roll back any database updates. JTA user transactions are ignored by JMS
transacted sessions.

Transactions in JMS transacted sessions are started implicitly, after the first occurrence
of a send or receive operation, and chained together—whenever you commit or roll
back a transaction, another transaction automatically begins.

Before using a JMS transacted session, the system administrator should adjust the
connection factory (Transaction Timeout) and/or session pool (Transaction) attributes,
as necessary for the application development environment, as described in Managing
JMS in the Administration Guide.
Programming WebLogic JMS 5-3

http://e-docs.bea.com/wls/docs61/adminguide/jms.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

5 Using Transactions with WebLogic JMS
The following figure illustrates the steps required to set up and use a JMS transacted
session.

Figure 5-1 Setting Up and Using a JMS Transacted Session

Step 1: Set Up JMS Application, Creating Transacted
Session

Set up the JMS application as described in “Setting Up a JMS Application” on page
4-4, however, when creating sessions, as described in “Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session is to be transacted by setting the
transacted boolean value to true.

For example, the following methods illustrate how to create a transacted session for the
PTP and Pub/sub messaging models, respectively:

 qsession = qcon.createQueueSession(
 true,
 Session.AUTO_ACKNOWLEDGE
);

 tsession = tcon.createTopicSession(
 true,
 Session.AUTO_ACKNOWLEDGE
);
5-4 Programming WebLogic JMS

Using JMS Transacted Sessions
Once defined, you can determine whether or not a session is transacted using the
following session method:

 public boolean getTransacted(
) throws JMSException

Note: The acknowledge value is ignored for transacted sessions.

Step 2: Perform Desired Operations

Perform the desired operations assoicated with the current transaction.

Step 3: Commit or Roll Back the JMS Transacted Session

Once you have performed the desired operations, execute one of the following
methods to commit or roll back the transaction.

To commit the transaction, execute the following method:

 public void commit(
) throws JMSException

The commit() method commits all messages sent or received during the current
transaction. Sent messages are made visible, while received messages are removed
from the messaging system.

To roll back the transaction, execute the following method:

 public void rollback(
) throws JMSException

The rollback() method cancels any messages sent during the current transaction and
returns any messages received to the messaging system.

If either the commit() or rollback() methods are issued outside of a JMS transacted
session, a IllegalStateException is thrown.
Programming WebLogic JMS 5-5

5 Using Transactions with WebLogic JMS
Using JTA User Transactions

The Java Transaction API (JTA) supports transactions across multiple data resources.
JTA is implemented as part of WebLogic Server and provides a standard Java interface
for implementing transaction management.

You program your JTA user transaction applications using the
javax.transaction.UserTransaction object to begin, commit, and roll back the
transactions. When mixing JMS and EJB within a JTA user transaction, you can also
start the transaction from the EJB, as described in Programming WebLogic JTA.

You can start a JTA user transaction after a transacted session has been started;
however, the JTA transaction will be ignored by the session and vice versa.

WebLogic Server supports the two-phase commit protocol (2PC), enabling an
application to coordinate a single JTA transaction across two or more resource
managers. It guarantees data integrity by ensuring that transactional updates are
committed in all of the participating resource managers, or are fully rolled back out of
all the resource managers, reverting to the state prior to the start of the transaction.

Note: A separate 2PC transaction license is required to support this protocol. For
transaction migration considerations related to 2PC, see “Migrating WebLogic
JMS Applications” on page 6-1.

Before using a JTA transacted session, the system administrator must configure the
connection factories to support JTA user transactions by selecting the User
Transactions Enabled check box, as described in Managing JMS in the Administration
Guide.

The following figure illustrates the steps required to set up and use a JTA user
transaction.
5-6 Programming WebLogic JMS

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs61/jta/index.html
http://e-docs.bea.com/wls/docs61/adminguide/jms.html

Using JTA User Transactions
Figure 5-2 Setting Up and Using a JTA User Transaction

Step 1: Set Up JMS Application, Creating Non-Transacted
Session

Set up the JMS application as described in “Setting Up a JMS Application” on page
4-4, however, when creating sessions, as described in “Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session is to be non-transacted by setting
the transacted boolean value to false.
Programming WebLogic JMS 5-7

5 Using Transactions with WebLogic JMS
For example, the following methods illustrate how to create a non-transacted session
for the PTP and Pub/sub messaging models, respectively.

 qsession = qcon.createQueueSession(
 false,
 Session.AUTO_ACKNOWLEDGE
);

 tsession = tcon.createTopicSession(
 false,
 Session.AUTO_ACKNOWLEDGE
);

Note: When a user transaction is active, the acknowledge mode is ignored.

Step 2: Look Up User Transaction in JNDI

The application uses JNDI to return an object reference to the UserTransaction
object for the WebLogic Server domain.

You can look up the UserTransaction object by establishing a JNDI context
(context) and executing the following code, for example:

UserTransaction xact =
ctx.lookup(“javax.transaction.UserTransaction”);

Step 3: Start the JTA User Transaction

Start the JTA user transaction using the UserTransaction.begin() method. For
example:

xact.begin();

Step 4: Perform Desired Operations

Perform the desired operations associated with the current transaction.
5-8 Programming WebLogic JMS

Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans
Step 5: Commit or Roll Back the JTA User Transaction

Once you have performed the desired operations, execute one of the following
methods to commit or roll back the JTA user transaction.

To commit the transaction, execute the following method:

 xact.commit();

The commit() method causes WebLogic Server to call the Transaction Manager to
complete the transaction, and commit all operations performed during the current
transaction. The Transaction Manager is responsible for coordinating with the resource
managers to update any databases.

To roll back the transaction, execute the following method:

 xact.rollback();

The rollback() method causes WebLogic Server to call the Transaction Manager to
cancel the transaction, and roll back all operations performed during the current
transactions.

Once you call the commit() or rollback() method, you can optionally start another
transaction by calling xact.begin().

Asynchronous Messaging Within JTA User
Transactions Using Message Driven Beans

Because JMS cannot determine which, if any, transaction to use for an asynchronously
delivered message, JMS asynchronous message delivery is not supported within JTA
user transactions.

However, message driven beans provide an alternative approach. A message driven
bean can automatically begin a user transaction just prior to message delivery.

For information on using message driven beans to simulate asynchronous message
delivery, see Programming WebLogic EJB.
Programming WebLogic JMS 5-9

http://e-docs.bea.com/wls/docs61/ejb/index.html

5 Using Transactions with WebLogic JMS
Example: JMS and EJB in a JTA User
Transaction

The following example shows how to set up an application for mixed EJB and JMS
operations in a JTA user transaction by looking up a
javax.transaction.UserTransaction using JNDI, and beginning and then
committing a JTA user transaction. In order for this example to run, the User
Transactions Enabled check box must be selected when the system administrator
configures the connection factory.

Note: In addition to this simple JTA User Transaction example, refer to the example
provided with WebLogic JTA, located in the
samples/examples/jta/jmsjdcb directory

Import the appropriate packages, including the
javax.transaction.UserTransaction package.

import java.io.*;
import java.util.*;
import javax.transaction.UserTransaction;
import javax.naming.*;
import javax.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA_USER_XACT=
"javax.transaction.UserTransaction";
.
.
.

5-10 Programming WebLogic JMS

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html

Example: JMS and EJB in a JTA User Transaction
Step 1 Set up the JMS application, creating a non-transacted session. For more information
on setting up the JMS application, refer to “Setting Up a JMS Application” on page
4-4.

//JMS application setup steps including, for example:

 qsession = qcon.createQueueSession(false,
 Session.CLIENT_ACKNOWLEDGE);

Step 2 Look up the UserTransaction using JNDI.

UserTransaction xact = (UserTransaction)
 ctx.lookup(JTA_USER_XACT);

Step 3 Start the JTA user transaction.

xact.begin();

Step 4 Perform the desired operations.

// Perform some JMS and EJB operations here.

Step 5 Commit the JTA user transaction.

xact.commit()
Programming WebLogic JMS 5-11

5 Using Transactions with WebLogic JMS
5-12 Programming WebLogic JMS

CHAPTER
6 Migrating WebLogic
JMS Applications

The following sections describe how to migrate WebLogic JMS applications:

� Existing Feature Functionality Changes

� Migrating Existing Applications

� Deleting JDBC Database Stores

Existing Feature Functionality Changes

Changes in existing feature functionality have been made in order to comply with the
JavaSoft JMS Specification version 1.0.2. and the latest JMS API – Errata. Therefore,
you should check feature functionality changes in the following tables before
beginning any migration procedures:

� Existing Feature 5.1 to 6.0 Functionality Changes

� Existing 6.0 to 6.1 Feature Functionality Changes

The following table lists the changes in existing feature functionality from WebLogic
Server version 5.1, and also indicates any code changes that might be required as a
result. For additional information pertaining to the version 1.0.2 change history, see
Chapter 11, “Change History,” of the JavaSoft JMS Specification version 1.0.2.
Programming WebLogic JMS 6-1

http://www.java.sun.com/products/jms/docs.html
http://www.java.sun.com/products/jms/errata_051801.html
http://www.java.sun.com/products/jms/docs.html

6 Migrating WebLogic JMS Applications
Table 6-1 Existing Feature 5.1 to 6.0 Functionality Changes

Category Description Code Modification

Connection
Factories

Two default connection factories have been
deprecated. The JNDI names for these
factories are:

� javax.jms.QueueConnectionFactory

� javax.jms.TopicConnectionFactory

For backwards compatibility, the JNDI names for
these two connection factories are still defined and
supported.

WebLogic JMS 6.x defines one default connection
factory. It can be looked up using the JNDI
name,
weblogic.jms.ConnectionFactory. You
can also specify user-defined connection factories
using the Administration Console.

Note: Using the default connection factory, you
have no control over the WebLogic
server on which the connection factory
may be deployed. If you would like to
target a particular WebLogic Server,
create a new connection factory and
specify the appropriate WebLogic Server
target(s).

It is recommended that existing code that use
the deprecated classes be modified to use a
new default or user-defined connection
factory class.

For example, if your code specified the
following constant using the default queue
connection factory:

public final static String
JMS_FACTORY=”javax.jms.QueueCon
nectionFactory”

You should modify the constant to use a new
user-defined connection factory, for
example:

public final static String
JMS_FACTORY=”weblogic.jms.Queue
ConnectionFactory”

For true backwards compatibility with
previous releases, you should ensure that you
select the Allow Close In onMessage and
User Transactions Enabled check boxes
when configuring the connection factory.

For more information about defining
connection factories, see “JMS Connection
Factories” in the Administration Console
Online Help.

In order to instantiate the default connection
factory on a particular WebLogic Server, you must
select the Enable Default JMS Connection
Factories check box when configuring the
WebLogic Server.

None required. This is a configuration
requirement. For more information, see
“Server” in the Administration Console
Online Help.

Connections When closing a connection, the call blocks until
outstanding synchronous calls and asynchronous
listeners have completed.

None required.

Sessions When closing a session, the call blocks until
outstanding synchronous calls and asynchronous
listeners have completed.

None required.
6-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/server.html

Existing Feature Functionality Changes
Message
Consumers

If multiple topic subscribers are defined in the
same session for the same topic, each consumer
will receive its own copy of a message.

None required.

When closing a message consumer, the call blocks
until the method call completes and any
outstanding synchronous applications are
cancelled.

None required.

In order to comply with the JMS specification, if
the close() method is called from within an
onMessage() method, the application will hang
unless the Allow Close In OnMessage check box
is selected when configuring the connection
factory. If the acknowledge mode is
AUTO_ACKNOWLEDGE, the current message will
still be automatically acknowledged.

None required. This is a configuration
requirement. For more information, see
“JMS Connection Factories” in the
Administration Console Online Help.

Message
Header Field

The JMSMessageID header field format has
changed.

If you wish to access existing messages using
the JMSMessageID, you may need to run
one of the following
weblogic.jms.extensions.JMSHelp
er methods to convert between WebLogic
pre-JMS 5.1 and JMS 6.x JMSMessageID
formats.

To convert from pre-5.1 to 6.x
JMSMessageID format:

public void
oldJMSMessageIDToNew(
 String id,
 long timeStamp
) throws JMSException

To convert from 6.1 to pre- 6.1
JMSMessageID format:

public void
newJMSMessageIDToOld(
 String id,
 long timeStamp
) throws JMSException

Table 6-1 Existing Feature 5.1 to 6.0 Functionality Changes (Continued)

Category Description Code Modification
Programming WebLogic JMS 6-3

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html

6 Migrating WebLogic JMS Applications
Destinations The createQueue() and createTopic()
methods do not create destinations dynamically,
only references to destinations that already exist
given the vendor-specific destination name.

Update any portion of code that uses
createQueue() or createTopic() to
dynamically create destinations using the
following JMSHelper class methods,
respectively:
createPermanentQueueAsync() and
createPermanentTopicAsync().

For example, if your code used the following
method to dynamically create a queue:

queue=qsession.createQueue(queu
eName);

You should modify the code to dynamically
create a queue, as described in the sample
findQueue() method in “Using the
JMSHelper Class Methods” on page 4-54.

For more information on the JMSHelper
classes, see “Creating Destinations
Dynamically” on page 4-54.

When creating temporary destinations, you must
specify a temporary template.

None required. This is a configuration
requirement. For more information, see
“JMS Templates” in the Administration
Console Online Help.

You must be the owner of the connection in order
to create a message consumer for that temporary
destination.

When creating a message consumer on a
temporary destination, ensure that you are the
owner of the connection.

Durable
Subscribers

You no longer need to manually create JDBC
tables for durable subscribers. They are created
automatically.

None required.

There is no limit on the number of durable
subscribers that can be created.

None required.

When defining a client ID programatically, it must
be defined immediately after creating a
connection. Otherwise, an exception will be
thrown and you will be unable to make any other
JMS calls on that connection.

Ensure that the setClientID() method is
issued immediately after creating the
connection. For more information, refer to
“Defining the Client ID” on page 4-58.

Table 6-1 Existing Feature 5.1 to 6.0 Functionality Changes (Continued)

Category Description Code Modification
6-4 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmstemplate.html

Existing Feature Functionality Changes
Session Pools Session pool factories, session pools, referenced
connection factories, referenced destinations, and
associated connection consumers must all be
targeted on the same JMS server.

Ensure that all objects are targeted on the
same JMS server.

The SessionPoolManager and
ConnectionConsumerManager interfaces
that were published as part of the WebLogic JMS
version 5.1 Javadoc have been removed from the
version 6.0 and 6.1 Javadoc, as they are system
interfaces and should not be used within client
applications.

If used, remove any references to these
objects from the client application.

Transactions To combine JMS and EJB database calls within
the same transaction, a two-phase commit (2PC)
license is required. In previous releases of
WebLogic Server, it was possible to combine
them by using the same database connection pool.

None required.

Recovering or rolling back received queue
messages makes them available to all consumers
on the queue. In previous releases of WebLogic
Server, rolled back messages were only available
to the session that rolled back the message, until
that session was closed.

None required.

Table 6-1 Existing Feature 5.1 to 6.0 Functionality Changes (Continued)

Category Description Code Modification
Programming WebLogic JMS 6-5

6 Migrating WebLogic JMS Applications
The following table lists the changes in existing feature functionality from WebLogic
Server version 6.0, and also indicates any code changes that might be required as a
result. For additional information pertaining to the version 1.0.2 change history, see
Chapter 11, “Change History,” of the JavaSoft JMS Specification version 1.0.2

Table 6-2 Existing 6.0 to 6.1 Feature Functionality Changes

Category Description Code Modification

Connection
Factories

For the Acknowledge Policy attribute in the
Administration Console, the new default value of
All is a work-around to accommodate a change in
the JavaSoft JMS Specification. This new
default setting represents a change from prior
versions of JMS, which internally defaulted to
Previous, and which did not appear as an option
in the Administration Console.

As the message acknowledge policy for the
connection factory, the Acknowledge Policy
attribute only applies to implementations that use
the CLIENT_ACKNOWLEDGE mode for a
non-transacted session.

� All — acknowledge all messages ever
received by a given session, regardless of
which message calls the acknowledge method.

� Previous — acknowledge all messages
received by a given session, but only up to and
including the message that calls the
acknowledge method.

For more information on message acknowledge
modes, refer to “Non-transacted Session” on page
2-9.

Note: For connection factories used by MDBs
(message-driven beans), always set the
Acknowledge Policy field to Previous.
Although the default MDB connection
factory already does this, foreign
connection factories may not.

If you want to acknowledge only previously
received messages, up to and including the
message that calls the acknowledge method,
change the default Acknowledge Policy
setting from All to Previous via the JMS
Connection Factories tab in the
Administration Console.
6-6 Programming WebLogic JMS

http://www.java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsconnectionfactory.html
http://www.java.sun.com/products/jms/docs.html

Existing Feature Functionality Changes
Destinations In WLS version 6.0, the JMS documentation
correctly specifies values of default, true, and
false for the StoreEnabled attribute of the
JMSDestinationMBean, even though the
software allowed for mixed case characters.
version 6.1, however, requires all lowercase
characters for the StoreEnabled settings.

None required. This is a configuration
requirement. For more information, see
“JMS Templates” in the Administration
Console Online Help.

Session Pools In WebLogic Server 6.0 SP2 or higher, for the
QueueConnection and TopicConnection
classes, the MaxMessages argument in the
createConnectionConsumer method now
requires a specific value for the amount of
messages to be reserved on the server.

Therefore, MaxMessages will be parsed as
follows:

-1 – The same as the default value, which is 10.

>0 – Positive integers require no conversion.

 0 – An invalid value that will generate a
JMSException.

<-1 – An invalid value that will generate a
JMSException.

In the createConnectionConsumer
method, ensure that the value of the
MaxMessages argument is set to either -1
(the default) or a positive integer.

Table 6-2 Existing 6.0 to 6.1 Feature Functionality Changes (Continued)

Category Description Code Modification
Programming WebLogic JMS 6-7

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmstemplate.html

6 Migrating WebLogic JMS Applications
Migrating Existing Applications

WebLogic Server 6.1 supports the JavaSoft JMS Specification version 1.0.2. and the
latest JMS API – Errata. In order to use your existing JMS applications, you must first
confirm your version of WebLogic server, and then perform the appropriate migration
procedures provided in this section.

Before You Begin

Before beginning the migration procedure, you should check the following list to
confirm whether migration is support for your version of WebLogic Server JMS, and
to find out whether special migration rules apply to that release:

� Version 4.5 — Migration is supported only for SP14. Customers running all
service packs should contact BEA Support.

� Version 5.1 — Customers running with SP07 or SP08 should contact BEA
Support before migrating existing JDBC stores to versions 6.0 or 6.1.

� In order to migrate object messages, the object classes need to be in the
version 6.0 or higher server classpath.

� For destinations that are not configured in release 6.0 or higher, the migrated
messages will be dropped and the event will be logged.

� Version 6.0 — Migration to version 6.1 or higher is supported for all service
packs. However, administrators should read about the change to the
Acknowledge Policy attribute default.

� For the Acknowledge Policy attribute in the WebLogic JMS version 6.1
Connection Factory, the default value of All is a work around to
accommodate a change in the JavaSoft JMS Specification. For more
information, refer to the Connection Factory category in the “Existing 6.0 to
6.1 Feature Functionality Changes” on page 6-6.
6-8 Programming WebLogic JMS

http://www.java.sun.com/products/jms/docs.html
http://www.java.sun.com/products/jms/errata_051801.html
http://www.java.sun.com/products/jms/docs.html

Migrating Existing Applications
Migration Steps for 4.5 and 5.1 Applications to 6.x

Before you can use an existing WebLogic JMS 6.x application, you must migrate the
WebLogic Server versions 4.5 and 5.1 configuration and message data as follows:

1. Properly shut down the old version of WebLogic Server before beginning the
migration process.

Warning: Abruptly stopping the old version of WebLogic Server while
messaging is still in process may cause problems during migration.
Processing should be inactive before shutting down the old server and
beginning the migration to WebLogic Server version 6.x.

2. Upgrade the WebLogic Server environment, as described in Installing WebLogic
Server.

3. Migrate configuration information using the configuration conversion facility.

During the configuration migration, the following default queue and topic
connection factories are enabled:

� javax.jms.QueueConnectionFactory

� javax.jms.TopicConnectionFactory

� weblogic.jms.ConnectionFactory

The first two connection factories are deprecated, but they are still defined and
usable for backwards compatibility. For information on the new default
connection factory, see the table “Existing Feature 5.1 to 6.0 Functionality
Changes” on page 6-2.

The JMS administrator will need to review the resulting configuration to ensure
that the conversion meets the needs of the application. In this case, all of the
JMS attributes will be mapped to a single node, as in version 5.1.

Note: In versions 6.0 or higher, JMS queues are defined during configuration,
and no longer saved within database tables. Message data and durable
subscriptions are stored either in two JDBC tables or via a directory within
the file system.
Programming WebLogic JMS 6-9

http://e-docs.bea.com/wls/docs61/install/index.html
http://e-docs.bea.com/wls/docs61/install/index.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/conversion.html

6 Migrating WebLogic JMS Applications
4. Prepare for automatic migration of existing JDBC database stores.

a. Make a backup of the existing JDBC database.

b. Ensure that the migrated configuration information (see step 2) contains a
JDBC database store with exactly the same attributes as the existing store, and
that the new JMS servers that use the store define the same destinations and
corresponding destination attributes as the existing JMS servers.

c. If the new JDBC database store already exists, ensure that it is empty.

The new JDBC database store will be created during the automatic
migration, if required.

d. Ensure that there is twice the amount of disk space required by the JDBC
database store available on the system.

Both the existing and new database information will exist on disk while the
migration is performed, doubling the space requirements. Once migration is
complete, you can delete the old JDBC database stores, as described in
“Deleting JDBC Database Stores” on page 6-12.

5. Update any existing code, as required, to reflect the feature functionality changes
described in “Existing Feature 5.1 to 6.0 Functionality Changes” on page 6-2.

6. Start up the WebLogic Server and the existing JDBC database stores will be
migrated automatically.

Note: If the automatic migration fails for any reason, the automatic migration
will be re-attempted the next time the WebLogic Server boots.
6-10 Programming WebLogic JMS

Migrating Existing Applications
Migration Steps for 6.0 Applications to 6.1

Before you can use an existing WebLogic JMS 6.x application, you must migrate the
WebLogic Server version 6.0 configuration and message data as follows

1. Check the connection factory configuration for version 6.0. You may need to
modify programs that call the new 6.1 default connection factory so that they load
one of the following connection factories:

� One of the version 6.0 default connection factories.

� A custom connection factory.

2. Properly shut down the version 6.0 WebLogic Server before beginning the
migration process.

Warning: Abruptly stopping the old version of WebLogic Server while
messaging is still in process may cause problems during migration.
Processing should be inactive before shutting down the old server and
beginning the migration to WebLogic Server version 6.x.

3. Upgrade the WebLogic Server environment, as described in Installing WebLogic
Server.

4. Update any existing code, as required, to reflect the feature functionality changes
described in “Existing 6.0 to 6.1 Feature Functionality Changes” on page 6-6.

Warning: Before starting the 6.1 WebLogic Server, you may want to backup your
version 6.0 stores. This is because version 6.0 servers cannot use 6.1
stores, and any attempts to do so may cause data corruption.

5. Start up the version 6.1 WebLogic Server. The 6.1 server will continue to use the
previous version 6.0 stores.
Programming WebLogic JMS 6-11

http://e-docs.bea.com/wls/docs61/install/index.html
http://e-docs.bea.com/wls/docs61/install/index.html

6 Migrating WebLogic JMS Applications
Deleting JDBC Database Stores

Once the migration is complete, the old JDBC database tables should be removed
using the utils.Schema utility, described in detail in Appendix B, “JDBC Database
Utility.”

During migration, a DDL file is generated and stored in the local working directory.
The DDL file is named drop_<jmsServerName>_oldtables.ddl, where
<jmsServerName> specifies the name of the JMS server. To delete the JDBC database
stores, you pass the resulting DDL file as an argument to the utils.Schema utility.

For example, to delete the old JDBC database store from a JMS server named
MyJMSServer, execute the following command:

java utils.Schema jdbc:weblogic:oracle weblogic.jdbc.oci.Driver -s server -u
user1 -p foobar -verbose drop_MyJMSServer_oldtables.ddl

For more information on the utils.Schema utility, see Appendix B, “JDBC Database
Utility.”
6-12 Programming WebLogic JMS

CHAPTER
A Configuration
Checklists

The following sections provide monitoring checklists for various WebLogic JMS
features:

� Server Clusters

� JTA User Transactions

� JMS Transactions

� Message Delivery

� Asynchronous Message Delivery

� Persistent Messages

� Concurrent Message Processing

� Multicasting

� Durable Subscriptions

� Destination Sort Order

� Temporary Destinations

� Thresholds and Quotas

For more information on setting the configuration attributes, refer to the
Administration Guide. For detailed descriptions of each of the configuration attributes,
refer to the Administration Console Online Help.
Programming WebLogic JMS A-1

http://e-docs.bea.com/wls/docs61/adminguide/index.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/index.html

A Configuration Checklists
Server Clusters

To support server clusters, configure the following:

� WebLogic Server targets under the Targets tab on the Connection Factories node

� WebLogic Server targets under the Targets tab on the JMS Servers node

JTA User Transactions

To support JTA user transactions, configure the following:

� Connection factory JTA user transaction mode by selecting the User
Transactions Enabled check box under the Configuration—Transactions tab on
the Connection Factories node

JMS Transactions

To support JMS transacted sessions, configure the following:

� Connection factory transaction timeout value by setting the Transaction Timeout
attribute under the Configuration—Transactions tab on the Connection Factories
node

� Session pool transaction mode by selecting the Transacted check box under the
Configuration tab on the Session Pools node
A-2 Programming WebLogic JMS

Message Delivery
Message Delivery

To define message delivery attributes, configure the following:

� Connection factory priority, time-to-live, time-to-deliver, and delivery mode
attributes under the Configuration—General tab on the Connection Factories
node

� Destination priority, time-to-live, time-to-deliver, and delivery mode override
attributes under the Configuration—Overrides tab on the Destinations node

� Destination redelivery delay, redelivery limit, and error destination attributes
under the Configuration—Redelivery tab on the Destinations node

Note: These settings can also be set dynamically by the message producer when
sending a message or using the set methods, as described in “Sending
Messages” on page 4-24.

The destination configuration attributes take precedence over all other
settings.

Asynchronous Message Delivery

To define the maximum number of messages that may exist for an asynchronous
session and that have not yet been passed to the message listener, configure the
following:

� Message maximum attribute under the Configuration—General tab on the
Connection Factories node
Programming WebLogic JMS A-3

A Configuration Checklists
Persistent Messages

Note: Topic destinations are persistent if, and only if they have durable
subscriptions. For more information about durable subscriptions, see “Setting
Up Durable Subscriptions” on page 4-58.

To support persistent messaging, configure the following:

� Create a file or JDBC store using the Stores node

� JMS server backing store by setting the Store attribute under the
Configuration—General tab on the JMS Servers node

Note: No two JMS servers can use the same backing store.

� Default message delivery mode by setting one of the following attributes to
PERSISTENT or NON_PERSISTENT:

� Default Delivery Mode attribute under the Configurations—General tab on
the Connection Factories node

� Delivery Mode Override attribute under the Configurations—Overrides tab
on the Destination node

Note: You can also specify persistent as the delivery mode when sending
messages, as described in “Sending Messages” on page 4-24.

Concurrent Message Processing

To support concurrent message processing, configure the following:

� Server session pool attributes under the Configuration tab on the Session Pools
node

� Connection consumer attributes under the Configuration tab on the Connection
Consumers node
A-4 Programming WebLogic JMS

Multicasting
Note: Server session pool factories, used for concurrent message processing, are not
configurable. WebLogic JMS defines one ServerSessionPoolFactory object,
by default: weblogic.jms.ServerSessionPoolFactory:<name>, where
<name> specifies the name of the JMS server on which the session pool is
created. For more information about using server session pool factories, refer
to “Defining Server Session Pools” on page 4-75.

Multicasting

Note: Multicasting applies to topics only.

To configure multicasting on a topic, configure the following:

� Multicast address, multicast port, and multicast time-to-live (TTL) under the
Configuration—Multicast tab on the Destination node

� Maximum number of outstanding messages by setting the Messages Maximum
attribute under the Configuration—General tab on the Connection Factories node

� Overrun policy used when the number of outstanding messages reaches the
Messages Maximum value by setting the Overrun Policy attribute under the
Configuration—General tab on the Connection Factories node

Durable Subscriptions

To support durable subscriptions, optionally configure the following:

� Client identifier (client ID) that can be used for clients with durable
subscriptions by setting the ClientID attribute under the Configuration—General
tab on the Connection Factories node

Note: Alternatively, clients can set the client ID in the connection after the
connection is created, as described in “Setting Up Durable Subscriptions” on
page 4-58.
Programming WebLogic JMS A-5

A Configuration Checklists
Destination Sort Order

To support destination sort order, configure the following:

� Key attributes under the Configuration tab on Destination Keys node

� Destination Keys under Configuration—General tab on Destinations node

Temporary Destinations

To support temporary destinations (queue or topic), configure the following:

� A JMS template for the JMS server (in the same domain) under the
Configuration—General tab on the Templates node

� A JMS template to be used by the JMS server for temporary destinations by
setting the Temporary Template attribute for the JMS server under the
Configuration—General tab on the JMS Servers node

Thresholds and Quotas

To configure thresholds and quotas, configure the following:

� Message and byte thresholds and quotas (maximum number, and high and low
thresholds) under the Configurations—Thresholds tab on the JMS Server node

� Message and byte thresholds and quotas (maximum number, and high and low
thresholds) under the Configurations—Thresholds tab on the Destination node

� Maximum number of sessions that can be retrieved from a session pool by
setting the Sessions Maximum attribute under the Configurations tab on the
Session Pools node
A-6 Programming WebLogic JMS

Thresholds and Quotas
� Maximum number of messages that can be accumulated by a connection
consumer by setting the Messages Maximum attribute under the Configuration
tab of the Consumers node
Programming WebLogic JMS A-7

A Configuration Checklists
A-8 Programming WebLogic JMS

APPENDIX
B JDBC Database Utility

The following sections describe WebLogic JMS stores and how to use the JDBC
database utility to regenerate existing JDBC database stores:

� Overview

� About JMS Stores

� Regenerating JDBC Stores

Overview

The JDBC utils.Schema utility allows you to regenerate new JDBC stores by
deleting the existing versions. Running this utility is usually not necessary, since JMS
automatically creates these stores for you. However, if your existing JDBC database
stores somehow become corrupted, you can regenerate them using the utils.Schema
utility.

Caution: Use caution when running the utils.Schema command as it will delete
all existing database tables and then recreate new ones.

About JMS Stores

The JMS database contains two system tables that are generated automatically and are
used internally by JMS, as follows:
Programming WebLogic JMS B-1

B JDBC Database Utility
� <prefix>JMSStore

� <prefix>JMSState

The prefix name uniquely identifies JMS tables in the backing store. Specifying unique
prefixes allows multiple stores to exist in the same database. The prefix is configured
via the Administration Console when configuring the JDBC store. A prefix is
prepended to table names when:

� The DBMS requires fully qualified names.

� You must differentiate between JMS tables for two WebLogic servers, enabling
multiple tables to be stored on a single DBMS.

The prefix should be specified using the following format, which will result in a
valid table name when prepended to the JMS table name:

[[catalog.]schema.]prefix

Note: No two JMS stores should be allowed to use the same database tables, as this
will result in data corruption.

For instructions on creating and configuring a store, see “JMS File Stores” and “JMS
JDBC Stores” for information about file and JDBC database stores, respectively, in the
Administration Console Online Help.

Regenerating JDBC Stores

The utils.Schema utility is a Java program that takes command line arguments to
specify the following:

� JDBC driver

� Database connection information

� Name of a file containing the SQL Data Definition Language (DDL) commands
(terminated by semicolons) that create the database tables

By convention, the DDL file has a .ddl extension. DDL files are provided for
Cloudscape, Sybase, Oracle, MS SQL Server, and IBM DB2 databases.
B-2 Programming WebLogic JMS

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsfilestore.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsjdbcstore.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jmsjdbcstore.html

Regenerating JDBC Stores
To execute utils.Schema, your CLASSPATH must contain the weblogic.jar file.

Enter the utils.Schema command, as follows:

java utils.Schema url JDBC_driver [options] DDL_file

The following table lists the utils.Schema command-line arguments.

For example, the following command recreates the JMS tables in an Oracle server
named DEMO, with the username user1 and password foobar:

java utils.Schema jdbc:weblogic:oracle:DEMO \
 weblogic.jdbc.oci.Driver -u user1 -p foobar -verbose \
 weblogic/classes/jms/ddl/jms_oracle.ddl

Table 6-3 utils.Schema Command-Line Arguments

Argument Description

url Database connection URL. This value must be a colon-separated
URL as defined by the JDBC specification.

JDBC_driver Full package name of the JDBC Driver class.

options Optional command options.

If required by the database, you can specify:

� The username and password as follows:
-u <username> -p <password>

� The Domain Name Server (DNS) name of the JDBC
database server as follows:
 -s <dbserver>

You can also specify the -verbose option, which causes
utils.Schema to echo SQL commands as they are executed.

DDL_file The full pathname of a text file containing the SQL commands
that you wish to execute. An SQL command can span several
lines and is terminated with a semicolon (;). Lines beginning
with pound signs (#) are comments.

The weblogic/jms/ddl directory within the
weblogic.jar file contains JMS DDL files for Cloudscape,
Sybase, Oracle, MS SQL Server, Times Ten, and IBM DB2
databases, which contain the SQL commands that create the
JMS database tables. To use a different database, copy and edit
any one of these DDL files.
Programming WebLogic JMS B-3

B JDBC Database Utility
With the Cloudscape database, no username or password is required. However, the
Cloudscape JDBC driver uses the cloudscape.system.home system property to find
the directory containing its database files. You must supply the value for this property
with the -D Java command option. In addition, you must specify the Cloudscape
classes in your CLASSPATH, which exists in
weblogic/samples/eval/cloudscape/lib.

For example, the following command creates the JMS tables in a Cloudscape server:

java
-Dcloudscape.system.home=/weblogic/samples/eval/cloudscape/data
 utils.Schema jdbc:cloudscape:demoPool;create=true
 COM.cloudscape.core.JDBCDriver -verbose
 weblogic/classes/jms/ddl/jms_cloudscape.ddl

The Cloudscape JDBC URL specifies the demo database, which is included with the
WebLogic JMS examples. For the examples, the JMS tables have already been created
in this database.
B-4 Programming WebLogic JMS

Index

A
Acknowledge message 4-35
Acknowledge modes 2-9
Anonymous producer 4-27, 4-28
Application development flow

acknowledging received messages 4-35
importing required packages 4-3
receiving messages 4-31
releasing object resources 4-37
sending messages 4-24
setting up 4-4
steps 4-2

Application setup
creating a connection 4-7
creating a session 4-8
creating message consumers 4-11
creating message object 4-16
creating message producers 4-11
example

PTP 4-18
Pub/sub 4-21

looking up connection factory 4-6
looking up destination 4-10
receiving messages asynchronously 4-17
registering asynchronous message

listener 4-17
starting the connection 4-18
steps 4-4

Asynchronous message, receiving 4-17, 4-32
Automatic failover 3-4

B
Bytes message

creating 4-16

C
Client ID

defining 4-58
displaying 4-59

Close
connection 4-50
session 4-53

Clusters
configuration checklist A-2
configuring 3-3

Concurrent processing 4-75
Configuration

checklists A-1
clustered JMS 3-3
JMS 3-2

Connection
closing 4-50
creating 4-7
definition of 2-8
exception listener 4-48
managing 4-48
metadata 4-49
starting 4-18, 4-50
stopping 4-50

Connection consumer
definition of 2-22
Programming WebLogic JMS I-1

queue 4-80
topic 4-81

Connection factory
definition of 2-6
looking up 4-6

customer support contact information xi

D
Delivery mode 4-26, 4-28, 4-29
Delivery time

overriding
on destinations 4-43
relative time-to-deliver 4-43
schedule interface 4-45
scheduled time-to-deliver syntax

4-43
scheduling overview 4-41
setting on messages 4-42
setting on producer 4-41

Destination
creating dynamically 4-54
definition of 2-12
looking up 4-10
sort order 4-31
temporary 4-56

documentation, where to find it x
Durable subscription

client ID 4-58
creating 4-60
deleting 4-61
modifying 4-61
setting up 4-58

E
Error destination for undelivered messages

4-40
Error recovery

connection 4-48
session 4-52

Examples
browse queue 4-70
closing resources 4-37
JMS and EJB in JTA user transaction

5-10
message filtering 4-72
multicast session 4-93
receiving messages synchronously

PTP 4-34
Pub/sub 4-34

sending messages
PTP 4-30
Pub/sub 4-30

server session pool
PTP 4-82
Pub/sub 4-84

setting message header field 4-65
setting up

PTP 4-18
Pub/sub 4-21

Exception listener
connection 4-48
session 4-52

Existing feature functionality changes 6-1

F
Failover procedures 3-5
Failure, server 3-5
Filter message

definition 4-70
example 4-72
SQL statement 4-71
XML selector 4-72

H
Header fields

browsing 4-69
definition of 2-15
displaying 4-62
I-2 Programming WebLogic JMS

setting 4-62

J
JDBC store

automatic migration 6-10
database utility B-1

JMS
architecture 1-4

clustering features 1-5
major components 1-5

classes 2-5
configuring 3-2
configuring clusters 3-3
existing feature functionality changes

6-1
features 1-2
monitoring 3-5

JMS transacted sessions
commiting or rolling back 5-5
configuration checklist A-2
creating 5-4
displaying 5-5
executing operations 5-5

JMSCorrelationID header field
definition of 2-16
displaying 4-63
setting 4-63

JMSDeliveryMode header field
definition of 2-17
displaying 4-63

JMSDeliveryTime header field
definition of 2-17
displaying 4-63

JMSDestination header field
definition of 2-17
displaying 4-63

JMSExpiration header field
definition of 2-17

JMSHelper class methods 4-54
JMSMessageID header field

definition of 2-18
displaying 4-64

JMSPriority header field
definition of 2-18
displaying 4-64

JMSRedelivered header field
definition of 2-18
displaying 4-64

JMSReplyTo header field
definition of 2-19
displaying 4-64
setting 4-64

JMSTimestamp header field
definition of 2-19
displaying 4-64
setting 4-64

JMSType header field
definition of 2-19
displaying 4-64
setting 4-64

JTA user transaction
committing or rolling back 5-9
configuration checklist A-2
creating non-transacted session 5-7
example 5-10
looking up user transaction in JNDI 5-8
performing desired operations 5-8
starting 5-8

M
Map message

creating 4-16
Message

acknowledging 4-35
body 2-20
creating object 4-16, 4-24
defining content 4-24
definition of 2-15
delivery

configuration checklists A-3
Programming WebLogic JMS I-3

mode 4-26, 4-28, 4-29
times, setting 4-41

filtering
definition 4-70
SQL message selector 4-71
XML message selector 4-72

header fields
browsing 4-69
definition of 2-15
displaying 4-62
setting 4-62

managing
rolled back and recovered 4-38

persistence
configuration checklist A-4
definition of 2-4

priority 4-26, 4-28, 4-29
property fields

browsing 4-69
clearing 4-65
conversion chart 4-68
definition of 2-19
displaying 4-65
displaying all 4-67
setting 4-65

receiving
asynchronous 4-17, 4-32
order control 4-31
synchronous 4-33

recovering 4-35
redelivery delay 4-38
redelivery limit 4-40
sending 4-24
server session pools 4-75
setting delivery times 4-41
time-to-deliver 4-29, 4-43
time-to-live 4-26, 4-28, 4-29
types

definition of 2-20
displaying 4-66
setting 4-16, 4-66

Message consumer
creating 4-11
definition of 2-13

Message driven beans 5-9
Message listener, registering 4-17
Message producer

creating 4-11
creating dynamically 4-29
definition of 2-13

Message selector
defining

SQL 4-71
XML 4-72

displaying 4-73
example 4-72

Messaging models
point-to-point 2-2
publish/subscribe 2-3

Metadata, connection 4-49
Migration procedures 6-8

steps for 4.5 and 5.1 applications to 6.x
6-9

steps for 6.0 applications to 6.1 6-11
Monitor JMS 3-5
Multicast session

creating 4-90
creating topic subscriber 4-90
definition 4-87
dynamically configuring 4-92
example 4-93
messages maximum 4-92
overrun policy 4-92
prerequisites 4-89
setting up message listener 4-91

N
Non-durable subscription 4-58
I-4 Programming WebLogic JMS

O
Object message

creating 4-16
Overriding

delivery time
overview 4-43
relative time-to-deliver 4-43
schedule interface 4-45
scheduled time-to-deliver syntax

4-43
redelivery delay 4-39

P
Packages, required 4-3
Persistent message

configuration checklist A-4
definition of 2-4

Point-to-point messaging
definition of 2-2
example

receiving messages synchronously
4-34

sending messages 4-30
server session pool 4-84
setting up application 4-18

printing product documentation x
Priority, message 4-26, 4-28, 4-29
Property fields

browsing 4-69
clearing 4-65
conversion chart 4-68
displaying 4-65
displaying all 4-67
setting 4-65

Publish/subscribe messaging
definition of 2-3
example

receiving messages synchronously
4-34

sending messages 4-30

setting up application 4-21

Q
Queue

creating 4-10
creating dynamically 4-54
definition of 2-13
displaying 4-11, 4-13
temporary

creating 4-57
definition of 2-13
deleting 4-57

Queue connection
creating 4-7
definition of 2-8

Queue connection factory
creating queue connection 4-7
definition of 2-7
looking up 4-6

Queue receiver
creating 4-13
definition of 2-14
receiving messages 4-33

Queue sender
creating 4-13
definition of 2-14
sending message 4-26

Queue session
creating 4-9
definition of 2-9

R
Receive message

asynchronous 4-17, 4-32
order 4-31
synchronous 4-33

Recover from system failure 3-5
Recover message 4-35, 4-38
Redeliver message 4-35
Programming WebLogic JMS I-5

Redelivery delay
overriding on destination 4-39
overview 4-38
setting for messages 4-39

Redelivery limit
configuring error destination 4-40
configuring limit 4-40
overview 4-40

Release object resources 4-37
Request/response, support of 2-16
Resources, releasing 4-37
Rolled back messages

managing 4-38
redelivery delay 4-38
redelivery limit 4-40

S
Send messages 4-24
Server failure recovery 3-5
Server session

definition of 2-22
retrieving 4-80

Server session pool
ACL 4-77
creating

queue connection consumers 4-79
topic connection consumers 4-79

definition of 2-21
setting up 4-75

Server session pool factory
creating a server session pool 4-78
definition of 2-21
looking up 4-78

Session
acknowledge modes 2-9
closing 4-53
creating 4-8
definition of 2-9
exception listener 4-52
managing 4-51

non-transacted 2-9
transacted 2-12

SQL message selectors 4-71
Start connection 4-18, 4-50
Stop connection 4-50
Stream message

creating 4-16
support

technical xi
Synchronous receive 4-33

T
Temporary destination

configuring server A-6
creating

queue 4-57
topic 4-57

deleting 4-57
Temporary queue

creating 4-57
definition of 2-13
deleting 4-57

Temporary topic
creating 4-57
definition of 2-13
deleting 4-57

Time-to-deliver 4-29, 4-47
Time-to-live 4-26, 4-28, 4-29, 4-47
Topic

creating 4-10
creating dynamically 4-54
definition of 2-13
displaying 4-11, 4-15
displaying NoLocal variable 4-15
JMSHelper class methods 4-54
temporary

creating 4-57
definition of 2-13
deleting 4-57

Topic connection
I-6 Programming WebLogic JMS

creating 4-8
definition of 2-8

Topic connection factory
creating topic connection 4-8
definition of 2-7
looking up 4-6

Topic publisher
creating 4-14
definition of 2-14
sending messages 4-27

Topic session
creating 4-9
definition of 2-9

Topic subscriber
creating 4-14
definition of 2-14
durable 4-58

Transactions 5-1
JMS transacted sessions. See JMS

transacted sessions
JTA user transaction. See JTA user

transaction

U
utils.Schema utility 6-12, B-1

X
XML message

class 2-20
creating 4-16
selector 4-72
Programming WebLogic JMS I-7

	Copyright
	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic JMS
	What Is JMS?
	WebLogic JMS Features
	WebLogic JMS Architecture
	Major Components
	Clustering Features

	WebLogic JMS Extensions

	2 WebLogic JMS Fundamentals
	Messaging Models
	Point-to-Point Messaging
	Publish/Subscribe Messaging
	Message Persistence

	WebLogic JMS Classes
	ConnectionFactory
	Connection
	Session
	Non-transacted Session
	Transacted Session

	Destination
	MessageProducer and MessageConsumer
	Message
	Message Header Fields
	Message Property Fields
	Message Body

	ServerSessionPoolFactory
	ServerSessionPool
	ServerSession
	ConnectionConsumer

	3 Managing WebLogic JMS
	Configuring WebLogic JMS
	Configuring WebLogic JMS Clustering
	How JMS Clustering Works

	Monitoring WebLogic JMS
	Recovering from a WebLogic Server Failure

	4 Developing a WebLogic JMS Application
	Application Development Flow
	Importing Required Packages
	Setting Up a JMS Application
	Step 1: Look Up a Connection Factory in JNDI
	Step 2: Create a Connection Using the Connection Factory
	Step 3: Create a Session Using the Connection
	Step 4: Look Up a Destination (Queue or Topic)
	Step 5: Create Message Producers and Message Consumers Using the Session and Destinations
	Step 6a: Create the Message Object (Message Producers)
	Step 6b: Optionally Register an Asynchronous Message Listener (Message Consumers)
	Step 7: Start the Connection
	Example: Setting Up a PTP Application
	Example: Setting Up a Pub/Sub Application

	Sending Messages
	Step 1: Create a Message Object
	Step 2: Define a Message
	Step 3: Send the Message to a Destination
	Dynamically Configuring Message Producer Configuration Attributes
	Example: Sending Messages Within a PTP Application
	Example: Sending Messages Within a Pub/Sub Application

	Receiving Messages
	Receiving Messages Asynchronously
	Receiving Messages Synchronously
	Recovering Received Messages

	Acknowledging Received Messages
	Releasing Object Resources
	Managing Rolled Back, Recovered, or Expired Messages
	Setting a Redelivery Delay for Messages
	Setting a Redelivery Limit for Messages
	Passive Message Expiration Policy

	Setting Message Delivery Times
	Setting a Delivery Time on Producers
	Setting a Delivery Time on Messages
	Overriding a Delivery Time
	Interaction with the Time-to-Live Value

	Managing Connections
	Defining a Connection Exception Listener
	Accessing Connection Metadata
	Starting, Stopping, and Closing a Connection

	Managing Sessions
	Defining a Session Exception Listener
	Closing a Session

	Creating Destinations Dynamically
	Using the JMSHelper Class Methods
	Using Temporary Destinations

	Setting Up Durable Subscriptions
	Defining the Client ID
	Creating Subscribers for a Durable Subscription
	Deleting Durable Subscriptions
	Modifying Durable Subscriptions

	Setting and Browsing Message Header and Property Fields
	Setting Message Header Fields
	Setting Message Property Fields
	Browsing Header and Property Fields

	Filtering Messages
	Defining Message Selectors Using SQL Statements
	Defining XML Message Selectors Using XML Selector Method
	Displaying Message Selectors
	Indexing Topic Subscriber Message Selectors To Optimize Performance

	Defining Server Session Pools
	Step 1: Look Up Server Session Pool Factory in JNDI
	Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	Step 3: Create a Connection Consumer
	Example: Setting Up a PTP Client Server Session Pool
	Example: Setting Up a Pub/Sub Client Server Session Pool

	Using Multicasting
	Step 1: Set Up the JMS Application, Creating Multicast Session and Topic Subscriber
	Step 2: Set Up the Message Listener
	Dynamically Configuring Multicasting Configuration Attributes
	Example: Multicast TTL

	5 Using Transactions with WebLogic JMS
	Overview of Transactions
	Using JMS Transacted Sessions
	Step 1: Set Up JMS Application, Creating Transacted Session
	Step 2: Perform Desired Operations
	Step 3: Commit or Roll Back the JMS Transacted Session

	Using JTA User Transactions
	Step 1: Set Up JMS Application, Creating Non-Transacted Session
	Step 2: Look Up User Transaction in JNDI
	Step 3: Start the JTA User Transaction
	Step 4: Perform Desired Operations
	Step 5: Commit or Roll Back the JTA User Transaction

	Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans
	Example: JMS and EJB in a JTA User Transaction

	6 Migrating WebLogic JMS Applications
	Existing Feature Functionality Changes
	Migrating Existing Applications
	Before You Begin
	Migration Steps for 4.5 and 5.1 Applications to 6.x
	Migration Steps for 6.0 Applications to 6.1

	Deleting JDBC Database Stores

	A Configuration Checklists
	Server Clusters
	JTA User Transactions
	JMS Transactions
	Message Delivery
	Asynchronous Message Delivery
	Persistent Messages
	Concurrent Message Processing
	Multicasting
	Durable Subscriptions
	Destination Sort Order
	Temporary Destinations
	Thresholds and Quotas

	B JDBC Database Utility
	Overview
	About JMS Stores
	Regenerating JDBC Stores

	Index

