
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : A u g u s t 5 , 2 0 0 4

BEA WebLogic

Programming
WebLogic JDBC

and BEA WebLogic Express™

Copyright

Copyright © 2001–2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic JDBC

Part Number Document Date Software Version

N/A August 5, 2004 BEA WebLogic Server 6.1

Contents

About This Document
Audience... xii

e-docs Web Site.. xii

How to Print the Document.. xii

Related Information... xiii

Contact Us! .. xiii

Documentation Conventions ... xiv

1. Introduction to WebLogic JDBC
Overview of JDBC .. 1-2

Overview of JDBC Drivers ... 1-2

Types of JDBC Drivers .. 1-2

Table of Drivers ... 1-3

Description of JDBC Drivers .. 1-4

WebLogic Server JDBC Two-Tier Drivers ... 1-4

WebLogic jDriver for Oracle .. 1-4

WebLogic jDriver for Microsoft SQL Server..................................... 1-4

WebLogic jDriver for Informix .. 1-4

WebLogic Server JDBC Multitier Drivers... 1-5

WebLogic Pool Driver .. 1-5

WebLogic RMI Driver.. 1-5

WebLogic JTS Driver ... 1-5

Third-Party Drivers .. 1-5

Cloudscape .. 1-6

Sybase jConnect Driver .. 1-6

Oracle Thin Driver .. 1-6

Overview of Connection Pools.. 1-6
Programming WebLogic JDBC iii

Using Connection Pools with Server-side Applications 1-8

Using Connection Pools with Client-side Applications 1-8

Overview of MultiPools .. 1-8

Choosing the MultiPool Algorithm.. 1-8

Overview of Clustered JDBC .. 1-9

Overview of DataSources .. 1-9

JDBC API .. 1-10

WebLogic JDBC Interface Definitions .. 1-10

JDBC 2.0 ... 1-11

Limitations.. 1-11

Platforms.. 1-12

2. Administration and Configuration for WebLogic JDBC
Configuring JDBC... 2-2

Configuring Connection Pools ... 2-2

Configuring MultiPools.. 2-2

Configuring DataSources and TxDataSources... 2-3

Monitoring JDBC Connectivity... 2-3

3. Performance Tuning Your JDBC Application
Overview of JDBC Performance ... 3-1

WebLogic Performance-Enhancing Features .. 3-1

How Connection Pools Enhance Performance... 3-2

Caching Data .. 3-2

 Designing Your Application for Best Performance.. 3-3

1. Process as Much Data as Possible Inside the Database.......................... 3-3

2. Use Built-in DBMS Set-based Processing ... 3-4

3. Make Your Queries Smart.. 3-4

4. Make Transactions Single-batch .. 3-6

5. Never Have a DBMS Transaction Span User Input 3-7

6. Use In-place Updates.. 3-8

7. Keep Operational Data Sets Small ... 3-8

8. Use Pipelining and Parallelism... 3-8

4. Configuring WebLogic JDBC Features
Using Connection Pools .. 4-1
iv Programming WebLogic JDBC

Advantages to Using Connection Pools ... 4-1

Connection Pool Fail-Over Requirements ... 4-2

Creating a Connection Pool at Startup ... 4-2

Connection Pool Attributes ... 4-3

Notes About Refreshing Connections in a JDBC Connection Pool ... 4-5

Permissions... 4-6

Connection Pool Limitation ... 4-7

Creating a Connection Pool Dynamically ... 4-8

Properties .. 4-8

Dynamic Connection Pool Sample Code ... 4-10

Import Packages .. 4-10

Use JNDI to Retrieve the JdbcServices Object................................. 4-11

Set the Properties .. 4-11

 Create the Dynamic Pool .. 4-12

Retrieve the Pool Handle .. 4-12

Managing Connection Pools ... 4-13

Retrieving Information About a Pool.. 4-14

Disabling a Connection Pool... 4-14

Shrinking a Connection Pool .. 4-15

Shutting Down a Connection Pool.. 4-15

Resetting a Pool .. 4-15

Using MultiPools... 4-16

Choosing the MultiPool Algorithm.. 4-17

High Availability .. 4-18

Load Balancing ... 4-18

MultiPool Fail-Over Limitations and Requirements................................ 4-18

Guidelines to Setting Wait for Connection Times 4-19

Messages and Error Conditions.. 4-19

Exceptions... 4-19

Capacity Issues.. 4-20

Configuring and Using DataSources ... 4-20

Importing Packages to Access DataSource Objects................................. 4-21

Obtaining a Client Connection Using a DataSource................................ 4-21

Code Examples ... 4-22
Programming WebLogic JDBC v

5. Using WebLogic Multitier JDBC Drivers
Overview of WebLogic Multitier Drivers ... 5-1

Using the WebLogic RMI Driver .. 5-2

Limitations When Using the WebLogic RMI Driver................................. 5-2

Setting Up WebLogic Server to Use the WebLogic RMI Driver 5-3

Setting Up the Client to Use the WebLogic Server.................................... 5-3

Import the Following Packages... 5-3

Obtain the Client Connection.. 5-3

Using a JNDI Lookup to Obtain the Connection 5-4

Using Only the WebLogic RMI Driver to Obtain the Connection 5-5

Row Caching with the WebLogic RMI Driver .. 5-5

Important Limitations to Using Row Caching with the WebLogic RMI
Driver ... 5-6

Using the WebLogic JTS Driver ... 5-7

Implementing with the JTS Driver ... 5-8

 Using the WebLogic Pool Driver ... 5-10

6. Using Third-Party Drivers with WebLogic Server
Overview of Third-Party JDBC Drivers.. 6-1

Limitations.. 6-2

Setting the Environment for Your Third-Party Driver 6-2

CLASSPATH for Third-Party Driver on Windows............................ 6-2

CLASSPATH for Third-Party Driver on UNIX 6-3

Updating Oracle Thin Driver.. 6-3

Using the Oracle 10g Thin Driver... 6-3

Package Change for Oracle Thin Driver 9.x and 10g 6-4

Updating Sybase jConnect Driver .. 6-5

Installing and Using the IBM Informix JDBC Driver................................ 6-5

Connection Pool Attributes when using the IBM Informix JDBC Driver
6-6

Programming Notes for the IBM Informix JDBC Driver 6-8

Getting a Connection with Your Third-Party Driver... 6-8

Using Connection Pools with a Third-Party Driver 6-9

Creating the Connection Pool and DataSource 6-9

Using a JNDI Lookup to Obtain the Connection 6-9
vi Programming WebLogic JDBC

Getting a Physical Connection from a Connection Pool.......................... 6-10

Code Sample for Getting a Physical Connection.............................. 6-11

Limitations for Using a Physical Connection 6-13

Obtaining a Direct (Non-pooled) JDBC Connection 6-14

Obtaining a Direct Connection Using the Oracle Thin Driver 6-14

Obtaining a Direct Connection Using the Sybase jConnect Driver.. 6-14

Oracle Thin Driver Extensions.. 6-15

Sample Code for Accessing Oracle Extensions to JDBC Interfaces 6-16

Import Packages to Access Oracle Extensions 6-16

Establish the Connection... 6-16

Retrieve the Default Row Prefetch Value... 6-17

Sample Code for Accessing Oracle Blob/Clob Interfaces 6-17

Import Packages to Access Blob and Clob Extensions..................... 6-18

Query to Select Blob Locator from the DBMS................................. 6-18

Declare the WebLogic Server java.sql Objects 6-18

Begin SQL Exception Block... 6-18

Updating a CLOB Value Using a Prepared Statement 6-19

Tables of Oracle Interfaces .. 6-20

Oracle Extensions and Supported Methods 6-20

Oracle Blob/Clob Extensions and Supported Methods..................... 6-27

7. Using dbKona
Introduction to dbKona.. 7-1

dbKona in a Multitier Configuration .. 7-2

How dbKona and a JDBC Driver Interact .. 7-2

How dbKona and WebLogic Events Can interact 7-3

The dbKona Architecture ... 7-3

The dbKona API.. 7-4

The dbKona API Reference ... 7-4

The dbKona Objects and Their Classes ... 7-4

Data Container Objects in dbKona ... 7-5

DataSet .. 7-5

QueryDataSet .. 7-6

TableDataSet ... 7-7

EventfulTableDataSet (Deprecated) ... 7-9
Programming WebLogic JDBC vii

Record ... 7-10

Value ... 7-11

Data Description Objects in dbKona... 7-12

Schema .. 7-12

Column.. 7-13

KeyDef .. 7-13

SelectStmt.. 7-14

Miscellaneous Objects in dbKona... 7-14

Exceptions ... 7-15

Constants ... 7-15

Entity Relationships... 7-15

Inheritance Relationships .. 7-15

Possession Relationships... 7-16

Implementing with dbKona ... 7-16

Accessing a DBMS with dbKona... 7-16

Step 1. Importing packages ... 7-17

Step 2. Setting Properties for Making a Connection......................... 7-17

Step 3. Making a Connection to the DBMS...................................... 7-17

Preparing a Query, Retrieving, and Displaying Data 7-18

Step 1. Setting Parameters for Data Retrieval................................... 7-18

Step 2. Creating a DataSet for the Query Results 7-19

Step 3. Fetching the Results .. 7-20

Step 4. Examining a TableDataSet’s Schema 7-21

Step 5. Examining the Data with htmlKona...................................... 7-21

Step 6. Displaying the Results with htmlKona 7-22

Step 7. Closing the DataSet and the Connection............................... 7-22

Using a SelectStmt Object to Form a Query .. 7-25

Step 1. Setting SelectStmt Parameters .. 7-25

Step 2. Using QBE to Refine the Parameters.................................... 7-26

Modifying DBMS Data with a SQL Statement.. 7-26

Step 1. Writing SQL Statements ... 7-26

Step 1. Writing SQL statements.. 7-27

Step 2. Executing Each SQL Statement .. 7-27

Step 3. Displaying the Results with htmlKona 7-27

Modifying DBMS Data with a KeyDef.. 7-31
viii Programming WebLogic JDBC

Step 1. Creating a KeyDef and Building Its Attributes..................... 7-31

Step 2. Creating a TableDataSet with a KeyDef............................... 7-31

Step 3. Inserting a Record into the TableDataSet 7-32

Step 4. Updating a Record in the TableDataSet................................ 7-32

Step 5. Deleting a Record from the TableDataSet 7-33

Step 6. More on Saving the TableDataSet .. 7-33

Checking Record Status Before Saving .. 7-33

Step 7. Verifying the changes ... 7-34

Code Summary.. 7-35

Using a JDBC PreparedStatement with dbKona...................................... 7-36

Using Stored Procedures with dbKona .. 7-37

Step 1. Creating a Stored Procedure ... 7-38

Step 2. Setting parameters... 7-38

Step 3. Examining the Results .. 7-38

Using Byte Arrays for Images and Audio.. 7-39

Step 1. Retrieving and Displaying Image Data................................. 7-39

Step 2. Inserting an Image into a Database....................................... 7-40

Using dbKona for Oracle Sequences ... 7-40

Constructing a dbKona Sequence Object.. 7-40

Creating and Destroying Sequences on an Oracle Server from dbKona ..
7-41

Using a Sequence .. 7-41

Code Summary.. 7-41

8. Testing JDBC Connections and Troubleshooting
Testing Connections .. 8-1

Validating a DBMS Connection from the Command Line 8-1

How to Test a Two-Tier Connection from the Command Line 8-2

Syntax.. 8-2

Arguments... 8-2

Examples ... 8-3

How to Validate a Multitier WebLogic JDBC Connection from the Command
Line .. 8-4

Syntax.. 8-4

Arguments... 8-4
Programming WebLogic JDBC ix

Examples ... 8-5

Troubleshooting JDBC .. 8-7

Troubleshooting JDBC Connections.. 8-7

UNIX Users... 8-7

WinNT... 8-7

SEGVs with JDBC and Oracle Databases... 8-7

Out-of-Memory Errors ... 8-8

Codeset Support.. 8-9

Other Problems with Oracle on UNIX .. 8-9

Thread-related Problems on UNIX ... 8-9

Closing JDBC Objects.. 8-10

Abandoning JDBC Objects ... 8-11

Troubleshooting Problems with Shared Libraries on UNIX 8-12

WebLogic jDriver for Oracle ... 8-12

Solaris .. 8-12

HP-UX.. 8-13

Incorrectly Set File Permissions.. 8-13

Incorrect SHLIB_PATH ... 8-13
x Programming WebLogic JDBC

About This Document

This document describes how to use JDBC services with WebLogic Server™.

The document is organized as follows:

� Chapter 1, “Introduction to WebLogic JDBC,” introduces the JDBC components
and JDBC API.

� Chapter 2, “Administration and Configuration for WebLogic JDBC,” describes
how to administer JDBC in the WebLogic Server and describes the
Administration Console.

� Chapter 3, “Performance Tuning Your JDBC Application,” describes how to
obtain the best performance from JDBC applications.

� Chapter 4, “Configuring WebLogic JDBC Features,” describes how to use JDBC
components with WebLogic Server Java applications.

� Chapter 5, “Using WebLogic Multitier JDBC Drivers,” describes how to set up
your WebLogic RMI driver and JDBC clients to use with WebLogic Server.

� Chapter 6, “Using Third-Party Drivers with WebLogic Server,” describes how to
set up and use third-party drivers with WebLogic Server.

� Chapter 7, “Using dbKona,” describes the dbKona classes that provide
high-level database connectivity to Java applications.

� Chapter 8, “Testing JDBC Connections and Troubleshooting,” describes
troubleshooting tips when using JDBC with WebLogic Server.
Programming WebLogic JDBC xi

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems, Inc. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
xii Programming WebLogic JDBC

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
Programming WebLogic JDBC xiii

mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
xiv Programming WebLogic JDBC

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic JDBC xv

xvi Programming WebLogic JDBC

CHAPTER
1 Introduction to
WebLogic JDBC

The following sections introduce the JDBC components and JDBC API:

� “Overview of JDBC” on page 1-2

� “Overview of JDBC Drivers” on page 1-2

� “Description of JDBC Drivers” on page 1-4

� “Overview of Connection Pools” on page 1-6

� “Overview of MultiPools” on page 1-8

� “Overview of Clustered JDBC” on page 1-9

� “Overview of DataSources” on page 1-9

� “JDBC API” on page 1-10

� “JDBC 2.0” on page 1-11

� “Platforms” on page 1-12
Programming WebLogic JDBC 1-1

1 Introduction to WebLogic JDBC
Overview of JDBC

JDBC is a Java API for executing SQL statements. The API consists of a set of classes
and interfaces written in the Java programming language. JDBC provides a standard
API for tool/database developers and makes it possible to write database applications
using a pure Java API.

JDBC is a low-level interface, which means that it is used to invoke (or call) SQL
commands directly. In addition, JDBC is a base upon which to build higher-level
interfaces and tools, such as JMS and EJB.

Overview of JDBC Drivers

JDBC drivers implement the interfaces and classes of the JDBC API. BEA provides a
variety of options for database access using the JDBC API specification. These options
include two-tier JDBC drivers, including WebLogic jDrivers for the Oracle, Microsoft
SQL Server, and Informix database management systems (DBMS), and multitier
drivers that work with WebLogic Server as an intermediary between a client
application and the DBMS.

Types of JDBC Drivers

WebLogic Server uses the following types of JDBC drivers that work in conjunction
with each other to provide database access:

� Two-tier drivers that provide database access directly between a java application
and the database. WebLogic Server uses a DBMS vendor-specific JDBC driver
to connect to a back-end database, such as the WebLogic jDrivers for Oracle,
Informix and Microsoft SQL Server.

� Multitier drivers that provide vendor-neutral database access. A Java client
application can use a multitier driver to access any database configured in
WebLogic server. BEA offers three multitier drivers—RMI, Pool, and JTS.
1-2 Programming WebLogic JDBC

Overview of JDBC Drivers
The middle tier architecture allows you to manage database resources centrally in
WebLogic Server. The vendor-neutral multitier JDBC drivers makes it easier to adapt
purchased components to your DBMS environment and to write more portable code.

Table of Drivers

The following table summarizes the drivers that WebLogic Server uses.

Table 1-1 JDBC Drivers

Driver
Tier

Type and
Name of Driver

Database
Connectivity

Documentation Sources

Two-tier
(non-XA)

Type 2 (native .dll):

� WebLogic jDriver for Oracle

� Third-party drivers

Type 4 (all Java)

� WebLogic jDrivers for
Informix and Microsoft SQL
Server

� Third-party drivers,
including:
Oracle Thin
Sybase jConnect DB2
Informix JDBC

Between WebLogic
Server and DBMS.

Programming WebLogic JDBC
(this document)

Administration Guide, “Managing
JDBC Connectivity”

Installing and Using WebLogic
jDriver for Oracle

Installing and Using WebLogic
jDriver for Informix

Installing and Using WebLogic
jDriver for Microsoft SQL Server

Two-tier

(XA)

Type 2 (native .dll)

� WebLogic jDriver for Oracle
XA

Between WebLogic
Server and DBMS in
distributed transactions.

Programming WebLogic JTA

Administration Guide, “Managing
JDBC Connectivity”

Multitier Type 3

� RMI Driver

� Pool Driver

� JTS

Between client and
WebLogic Server. The
RMI driver replaces the
deprecated t3 driver. The
JTS driver is used in
distributed transactions.
The Pool and JTS drivers
are server-side only.

Programming WebLogic JDBC
(this document)
Programming WebLogic JDBC 1-3

http://e-docs.bea.com/wls/docs61/jdbc/index.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/oracle/index.html
http://e-docs.bea.com/wls/docs61/informix4/index.html
http://e-docs.bea.com/wls/docs61/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs61/jta/index.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/jdbc/index.html

1 Introduction to WebLogic JDBC
Description of JDBC Drivers

The following sections describe in detail the JDBC drivers introduced in Table 1-1
JDBC Drivers.

WebLogic Server JDBC Two-Tier Drivers

The following sections describe Type 2 and Type 4 BEA two-tier drivers used with
WebLogic Server to connect to the vendor-specific DBMS.

WebLogic jDriver for Oracle

BEA’s Type 2 JDBC driver for Oracle, WebLogic jDriver for Oracle, is included with
the WebLogic Server distribution. This driver requires an Oracle client installation.
The WebLogic jDriver for Oracle XA driver extends the WebLogic jDriver for Oracle
for distributed transactions. For additional information, see Installing and Using
WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs61oracle/index.html.

WebLogic jDriver for Microsoft SQL Server

BEA’s WebLogic jDriver for Microsoft SQL Server, included in the WebLogic Server
6.1 distribution, is a pure-Java, Type 4 JDBC driver that provides connectivity to
Microsoft SQL Server. For more information, see Installing and Using WebLogic
jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs61/mssqlserver4/index.html.

WebLogic jDriver for Informix

BEA’s WebLogic jDriver for Informix, included in the WebLogic Server 6.1
distribution, is a pure-Java, Type 4 JDBC driver that provides connectivity to the
Informix DBMS. For more information, see Installing and Using WebLogic jDriver
for Informix at http://e-docs.bea.com/wls/docs61/informix4/index.html.
1-4 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/oracle/index.html
http://e-docs.bea.com/wls/docs61/oracle/index.html
http://e-docs.bea.com/wls/docs61/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs61/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs61/informix4/index.html
http://e-docs.bea.com/wls/docs61/informix4/index.html

Description of JDBC Drivers
WebLogic Server JDBC Multitier Drivers

The following sections describe the WebLogic multitier JDBC drivers that provide
database access to the client. For more information on these drivers, see Using
WebLogic Multitier Drivers in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs61/jdbc/rmidriver.html.

WebLogic Pool Driver

The WebLogic Pool driver enables utilization of connection pools from server-side
applications such as HTTP servlets or EJBs.

WebLogic RMI Driver

The WebLogic RMI driver is a multitier, Type 3, Java Data Base Connectivity (JDBC)
driver that runs in WebLogic Server and can be used with any two-tier JDBC driver to
provide database access. Additionally, when configured in a cluster of WebLogic
Servers, the WebLogic RMI driver can be used for clustered JDBC, allowing JDBC
clients the benefits of load balancing and failover provided by WebLogic Clusters.

WebLogic JTS Driver

The WebLogic JTS driver is a multitier, Type 3, JDBC driver used in distributed
transactions across multiple servers with one database instance. The JTS driver is more
efficient than the WebLogic jDriver for Oracle XA driver when working with only one
database instance because it avoids two-phase commit.

Third-Party Drivers

WebLogic Server works with third-party JDBC drivers that offer the following
functionality:

� Are thread-safe

� Are EJB accessible; can implement transaction calls in JDBC
Programming WebLogic JDBC 1-5

http://e-docs.bea.com/wls/docs61/jdbc/rmidriver.html
http://e-docs.bea.com/wls/docs61/jdbc/rmidriver.html

1 Introduction to WebLogic JDBC
In addition, WebLogic Server multitier drivers only support JDBC API and third-party
drivers that provide functionality beyond non-standard JDBC calls.

Cloudscape

An evaluation copy of this pure-Java DBMS from Cloudscape is included with your
WebLogic Server distribution. A JDBC driver to access the Cloudscape DBMS is also
included. This DBMS is used extensively in the code examples that are also included
in the distribution. You may use this DBMS for testing and development if you do not
have another DBMS available. There are limitations on the quantity of data that may
be stored using this evaluation version.

For additional information, see Using the Cloudscape Database with WebLogic.

Sybase jConnect Driver

The two-tier Sybase jConnect Type 4 driver is bundled with your WebLogic Server
distribution. This driver is provided for your use without charge. For information on
using this driver with WebLogic Server, see “Using Third-Party Drivers with
WebLogic Server” on page 6-1.

Oracle Thin Driver

The two-tier Oracle Thin Type 4 driver provides connectivity from WebLogic Server
to Oracle DBMS. For information on using this driver with WebLogic Server, see
“Using Third-Party Drivers with WebLogic Server” on page 6-1.

Overview of Connection Pools

Multitier drivers use WebLogic Server to access connection pools that provide
ready-to-use pools of connections to your DBMS. Since these database connections
are already established when the connection pool starts up, the overhead of
establishing database connections is eliminated. You can utilize connection pools from
server-side applications such as HTTP servlets or EJBs using the WebLogic Pool
1-6 Programming WebLogic JDBC

Overview of Connection Pools
driver or from stand-alone Java client applications using the WebLogic RMI driver.
This section provides an introduction to connection pools. For more detailed
information, see “Using Connection Pools” on page 4-1.

Connection pools require a two-tier JDBC driver to make the connection from
WebLogic Server to the DBMS. This two-tier driver can be one of the WebLogic
jDrivers or a third-party JDBC driver, such as the Sybase jConnect driver, which is
bundled with the WebLogic distribution. The following table summarizes the
advantages to using connection pools.

Table 1-2 Advantages to Using Connection Pools

Connection Pools Provide
These Advantages. . .

With This Functionality . . .

Save time, low overhead Making a DBMS connection is very slow. With
connection pools, connections are established and
available to users. The alternative is for application
code to make its own JDBC connections as needed.
A DBMS runs faster with dedicated connections than
if it has to handle incoming connection attempts at
run time.

Manage DBMS users Allows you to manage the number of concurrent
DBMS on your system. This is important if you have
a licensing limitation for DBMS connections, or a
resource concern.

Your application does not need to know of or
transmit the DBMS username, password and DBMS
location.

Allow use of the DBMS
persistence option

If you use the DBMS persistence option with some
APIs like EJBs, pools are mandatory so WebLogic
Server controls the JDBC connection. This ensures
your EJB transactions are committed or rolled back
correctly and completely.
Programming WebLogic JDBC 1-7

1 Introduction to WebLogic JDBC
Using Connection Pools with Server-side Applications

For database access from server-side applications, such as HTTP servlets, use the
WebLogic Pool driver. For two-phase commit transactions, use the WebLogic Server
JDBC/XA driver, WebLogic jDriver for Oracle/XA. For transactions distributed
across multiple servers with one database instance, use the JTS driver. You can also
access connection pools using the Java Naming and Directory Interface (JNDI) and a
DataSource object.

Using Connection Pools with Client-side Applications

BEA offers the RMI driver for client-side, multitier JDBC. The RMI driver has the
advantage of providing a standards-based approach using the Java 2 Enterprise Edition
(J2EE) specifications. For new deployments, BEA recommends that you use the RMI
driver, because the t3 client services are deprecated in this release.

The WebLogic RMI driver is a Type 3, multitier JDBC driver that uses RMI and a
DataSource object to create database connections. This driver also provides for
clustered JDBC, leveraging the load balancing and failover features of WebLogic
Clusters. DataSource objects may be defined to enable transactional support or not.

Overview of MultiPools

JDBC MultiPools provide the option of choosing either the high availability or load
balancing algorithm to enhance database connectivity. MultiPools are a “pool of
pools” that allow a configurable algorithm for choosing among its list of pools, the
pool that will be selected to provide the connection. For more information, see “Using
MultiPools” on page 4-16.

Choosing the MultiPool Algorithm

You have the option of setting up a MultiPool in either of these ways:
1-8 Programming WebLogic JDBC

Overview of Clustered JDBC
� High availability, in which the connection pools are set up as an ordered list and
used sequentially.

� Load balancing, in which all listed pools are accessed using a round-robin
scheme.

Overview of Clustered JDBC

WebLogic Server allows you to cluster JDBC objects, including data sources,
connection pools, and multipools, to improve the availability of cluster-hosted
applications. Each JDBC object you configure for your cluster must exist on each
managed server in the cluster—when you configure the JDBC objects, target them to
the cluster.

For more information about JDBC objects in a cluster, see “JDBC Connections” in
Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs61/cluster/overview.html#jdbc.

Overview of DataSources

DataSource objects provide a way for JDBC clients to obtain a DBMS connection. A
DataSource is an interface between the client program and the connection pool. Each
data source requires a separate DataSource object, which may be implemented as a
DataSource class that supports either connection pooling or distributed transactions.
For more information, see “Configuring and Using DataSources” on page 4-20.
Programming WebLogic JDBC 1-9

http://e-docs.bea.com/wls/docs61/cluster/overview.html#jdbc

1 Introduction to WebLogic JDBC
JDBC API

To create a JDBC application, use the java.sql API. The API allows you to create the
class objects necessary to establish a connection with a data source, send queries and
update statements to the data source, and process the results.

WebLogic JDBC Interface Definitions

The following table lists JDBC interfaces frequently used with WebLogic Server. For
a complete description of all JDBC interfaces, see the java.sql or weblogic.jdbc
Javadoc.

JDBC Interface Description

Driver Sets up a connection between a driver and a database, and
also gives information about the driver or information
about making a connection to the database.The interface
that every driver class must implement.

DataSource Represents a particular DBMS or other data source. Used
to establish a connection with a data source.

Statement Sends simple SQL statements, with no parameters, to a
database.

PreparedStatement Inherits from Statement. Used to execute a pre-compiled
SQL statement with or without IN parameters.

CallableStatement Inherits from PreparedStatement. Used to execute a call to
a database stored procedure; adds methods for dealing
with OUT parameters.

ResultSet Contains the results of executing an SQL query. It
contains the rows that satisfy the conditions of the query.

ResultSetMetaData Provides information about the types and properties of the
columns in a ResultSet object.
1-10 Programming WebLogic JDBC

http://java.sun.com/products//jdk/1.2/docs/api/java/sql/package-summary.html

JDBC 2.0
For information about these interfaces when using WebLogic jDriver for Oracle, see
Installing and Using WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs61/oracle/index.html.

JDBC 2.0

WebLogic Server uses JDK 1.3, which supports JDBC 2.0.

Limitations

Please be aware of the following limitations:

� You cannot use Batch updates (addBatch()) with the callableStatement or
preparedStatement SQL statements when using the RMI driver in
conjunction with the WebLogic jDriver for Oracle or third-party 2-Tier drivers.

DataBaseMetaData Provides information about a database as a whole. Returns
either single values or a result set.

Clob A built-in type that stores a Character Large Object as a
column value in a row of a database table.

Blob A built-in type that stores a Binary Large Object as a
column value in a row of a database table.

JDBC Interface Description
Programming WebLogic JDBC 1-11

http://e-docs.bea.com/wls/docs61/oracle/index.html

1 Introduction to WebLogic JDBC
Platforms

Supported platforms vary by vendor-specific DBMSs and drivers. For current
information, see BEA WebLogic Server Platform Support at
http://e-docs.bea.com/wls/certifications/certs_610/index.html.
1-12 Programming WebLogic JDBC

http://e-docs.bea.com/wls/certifications/certs_610/index.html

CHAPTER
2 Administration and
Configuration for
WebLogic JDBC

This section provides an overview of the JDBC administrative tasks related to BEA
WebLogic Server.

� “Configuring JDBC” on page 2-2

� “Monitoring JDBC Connectivity” on page 2-3

For additional information, see

� Managing JDBC Connectivity in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html. Describes how to use
the Administration Console and command-line interface to configure and
manage connectivity.

� Administration Console Online Help at
http://e-docs.bea.com/wls/docs61/ConsoleHelp/index.html. Describes how to use
the Administration Console to set specific configuration tasks.

� “Configuring WebLogic JDBC Features” on page 4-1. Describes how to use the
JDBC API to configure connectivity.
Programming WebLogic JDBC 2-1

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/index.html

2 Administration and Configuration for WebLogic JDBC
Configuring JDBC

The WebLogic Console provides the interface you use to enable, configure, and
monitor features of the WebLogic Server, including JDBC. To invoke the
Administration Console, refer to the procedures described in Configuring WebLogic
Servers and Clusters in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/config.html. The attributes define the
JDBC environment that includes:

� Connection Pools

� MultiPools

� DataSources

Configuring Connection Pools

You use the Administration Console to configure a connection pool, which includes
defining the attributes and connection parameters, cloning pools, and assigning
connection pools to a server or domain. For more information regarding connection
pools, see “Using Connection Pools” on page 4-1 and for configuring for database
connectivity, see Managing JDBC Connectivity in the Administration Guide.

Configuring MultiPools

You define, or name, a MultiPool in the Administration Console and then determine
which of the previously defined connection pools will constitute a specific MultiPool.
All of the connections in a particular connection pool are identical, that is, they are
attached to a single database with the same user, password and connection properties.
With MultiPools, however, the connection pools within a MultiPool may be associated
with different DBMSs. You have the option of setting the search methodology by
selecting either the load balancing or the high availability algorithm behavior.

For more information regarding uses for MultiPools, see “Using MultiPools” on page
4-16 and for configuring for database connectivity, see Managing JDBC Connectivity
in the Administration Guide.
2-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/adminguide/config.html
http://e-docs.bea.com/wls/docs61/adminguide/config.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html

Monitoring JDBC Connectivity
Configuring DataSources and TxDataSources

As with Connection Pools and MultiPools, you create the DataSource objects in the
Administration Console. Data Source objects can be defined with (TxDataSource) or
without (DataSource) transaction services. You configure Connection Pools and
MultiPools before you define the DataSource pool name attribute. For DataSource
objects in local and distributed transactions, see Managing JDBC Connectivity in the
Administration Guide and “Configuring WebLogic JDBC Features” on page 4-1.

Monitoring JDBC Connectivity

The Administration Console provides tables and statistics to enable monitoring the
connectivity parameters for each of the subcomponents—Connection Pools,
MultiPools, DataSources, and TxDataSources.

You can also access statistics for connection pools programmatically through the
JDBCConnectionPoolRuntimeMBean; see WebLogic Server Partner’s Guide at
http://e-docs.bea.com/wls/docs61/isv/index.html and the WebLogic
Javadoc. This MBean is the same API that populates the statistics in the
Administration Console. Read more about monitoring connectivity in the Monitoring
a WebLogic Domain and Managing JDBC Connectivity sections of the Administration
Guide at http://e-docs.bea.com/wls/docs61/adminguide/index.html.

For information about using MBeans, see Programming WebLogic JMX Services at
http://e-docs.bea.com/wls/docs61/jmx/index.html.
Programming WebLogic JDBC 2-3

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/isv/index.html
http://e-docs.bea.com/wls/docs61/adminguide/monitoring.html
http://e-docs.bea.com/wls/docs61/adminguide/monitoring.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/jmx/index.html

2 Administration and Configuration for WebLogic JDBC
2-4 Programming WebLogic JDBC

CHAPTER
3 Performance Tuning
Your JDBC Application

The following sections explain how to get the most out of your applications:

� “Overview of JDBC Performance” on page 3-1

� “WebLogic Performance-Enhancing Features” on page 3-1

� “Designing Your Application for Best Performance” on page 3-3

Overview of JDBC Performance

The concepts involved with Java, JDBC, and DBMS processing are new to many
programmers. As Java becomes more widely used, database access and database
applications will become increasingly easy to implement. This document provides
some tips on how to obtain the best performance from JDBC applications.

WebLogic Performance-Enhancing Features

WebLogic has several features that enhance performance for JDBC applications.
Programming WebLogic JDBC 3-1

3 Performance Tuning Your JDBC Application
How Connection Pools Enhance Performance

Establishing a JDBC connection with a DBMS can be very slow. If your application
requires database connections that are repeatedly opened and closed, this can become
a significant performance issue. WebLogic connection pools offer an efficient solution
to this problem.

When WebLogic Server starts, connections from the connection pools are opened and
are available to all clients. When a client closes a connection from a connection pool,
the connection is returned to the pool and becomes available for other clients; the
connection itself is not closed. There is little cost to opening and closing pool
connections.

How many connections should you create in the pool? A connection pool can grow and
shrink according to configured parameters, between a minimum and a maximum
number of connections. The best performance will always be when the connection pool
has as many connections as there are concurrent users.

Caching Data

DBMS access uses considerable resources. If your program accesses frequently used
data that can be shared among applications or can persist between connections, you can
cach the data by using the following:

� Read-Only Entity Beans at
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html

� JNDI in a Clustered Environment at
http://e-docs.bea.com/wls/docs61/jndi/jndi.html
3-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs61/jndi/jndi.html

Designing Your Application for Best Performance
 Designing Your Application for Best
Performance

The large majority of the performance to be gained or lost in a DBMS application is
not in the application language, but in how the application is designed. The number and
location of clients, size and structure of DBMS tables and indexes, and the number and
types of queries all affect application performance.

Below are general hints that apply to all DBMSs. It is also important to be familiar with
the performance documentation of the specific DBMS that you use in your application.

1. Process as Much Data as Possible Inside the Database

Most serious performance problems in DBMS applications come from moving raw
data around needlessly, whether it is across the network or just in and out of cache in
the DBMS. A good method for minimizing this waste is to put your logic where the
data is—in the DBMS, not in the client —even if the client is running on the same box
as the DBMS. In fact, for some DBMSs a fat client and a fat DBMS sharing one CPU
is a performance disaster.

Most DBMSs provide stored procedures, an ideal tool for putting your logic where
your data is. There is a significant difference in performance between a client that calls
a stored procedure to update 10 rows, and another client that fetches those rows, alters
them, and sends update statements to save the changes to the DBMS.

You should also review the DBMS documentation on managing cache memory in the
DBMS. Some DBMSs (Sybase, for example) provide the means to partition the virtual
memory allotted to the DBMS, and to guarantee certain objects exclusive use of some
fixed areas of cache. This means that an important table or index can be read once from
disk and remain available to all clients without having to access the disk again.
Programming WebLogic JDBC 3-3

3 Performance Tuning Your JDBC Application
2. Use Built-in DBMS Set-based Processing

SQL is a set processing language. DBMSs are designed from the ground up to do
set-based processing. Accessing a database one row at a time is, without exception,
slower than set-based processing and, on some DBMSs is poorly implemented. For
example, it will always be faster to update each of four tables one at a time for all the
hundred employees represented in the tables than to alter each table 100 times, once
for each employee.

Understanding set-based methodology can be very useful. Many complicated
processes that were originally thought too complex to do any other way but
row-at-a-time have been rewritten using set-based processing, resulting in improved
performance. For example, a major payroll application was converted from a huge
slow COBOL application to four stored procedures running in series, and what took
hours on a multi-CPU machine now takes fifteen minutes with many fewer resources
used.

3. Make Your Queries Smart

Frequently customers ask how to tell how many rows will be coming back in a given
result set. This is a valid question, but there is no easy answer. The only way to find
out without fetching all the rows is by issuing the same query using the count keyword:

 SELECT count(*) from myTable, yourTable where ...

This returns the number of rows the original query would have returned. The actual
count may change when the query is issued if there has been any other DBMS activity
which alters the relevant data.

You should be aware, however, that this is a resource-intensive operation. Depending
on the original query, the DBMS will have to perform nearly as much work to count
the rows as it will to send them.

Your application should tailor its queries to be as specific as possible about what data
it actually wants. Tricks include first selecting into temporary tables, returning only the
count, and then sending a refined second query to return only a subset of the rows in
the temporary table.
3-4 Programming WebLogic JDBC

Designing Your Application for Best Performance
Learning to select only the data you really want at the client is crucial. Some
applications ported from ISAM (a pre-relational database architecture) will
unnecessarily send a query selecting all the rows in a table when only the first few rows
are really wanted. Some applications use a 'sort by' clause to get the rows they want to
come back first. Database queries like this cause unnecessary degradation of
performance.

Proper use of SQL can avoid these performance problems. For example, if you only
want data about the top 3 earners on the payroll, the proper way to make this query is
with a correlated subquery. Table 3-1 shows the entire table returned by the SQL
statement

select * from payroll

Here a correlated subquery

select p.name, p.salary from payroll p

where 3 >= (select count(*) from payroll pp

where pp.salary >= p.salary);

returns a much smaller result, shown in Table 3-2.

Table 3-1 Full Results Returned

Name Salary

Joe 10

Mikes 20

Sam 30

Tom 40

Jan 50

Ann 60

Sue 70

Hal 80

May 80
Programming WebLogic JDBC 3-5

3 Performance Tuning Your JDBC Application
This query returns only 3 rows, with the name and salary of the top 3 earners. It scans
through the payroll table, and for every row, it goes through the whole payroll table
again in an inner loop to see how many salaries are higher than the current row of the
outer scan. This may look complicated, but DBMSs are designed to use SQL
efficiently for this type of operation.

4. Make Transactions Single-batch

Whenever possible, collect a set of data operations and submit an update transaction in
one statement in the form:

 BEGIN TRANSACTION

 UPDATE TABLE1...

 INSERT INTO TABLE2

 DELETE TABLE3

 COMMIT

This approach results in better performance than using separate statements and
commits. Even with conditional logic and temporary tables in the batch, it is preferable
because the DBMS will obtain all the locks necessary on the various rows and tables,
and will use them and release them in one step. Using separate statements and commits
results in many more client-to-DBMS transmissions and holds the locks in the DBMS
for much longer. These locks will block out other clients from accessing this data, and,
depending on whether different updates can alter tables in different orders, may cause
deadlocks.

Table 3-2 Results from Subquery

Name Salary

Sue 70

Hal 80

May 80
3-6 Programming WebLogic JDBC

Designing Your Application for Best Performance
Warning: If any individual statement in the above transaction might fail, due, for
instance, to violating a unique key constraint, you should put in conditional SQL logic
to detect any statement failure and rollback the transaction rather than commit. If, in
the above example, the insert failed, most DBMSs will send back an error message
about the failed insert, but will behave as if you got the message between the second
and third statement, and decided to commit anyway! Microsoft SQL Server has a nice
connection option enabled by executing the SQL set xact_abort on, which
automatically rolls back the transaction if any statement fails.

5. Never Have a DBMS Transaction Span User Input

If an application sends a 'BEGIN TRAN' and some SQL which locks rows or tables for
an update, do not write your application so that it must wait on the user to press a key
before committing the transaction. That user may go to lunch first and lock up a whole
DBMS table until the user returns.

If user input is needed to form or complete a transaction, use optimistic locking.
Briefly, optimistic locking employs timestamps and triggers (some DBMSs will
generate these automatically with tables set up for it) in queries and updates. Queries
select data with timestamp values and prepare a transaction based on that data, without
locking the data in a transaction.

When an update transaction is finally defined by the user input, it is sent as a single
submission that includes timestamped safeguards to make sure the data is the same as
originally fetched. A successful transaction will automatically update the relevant
timestamps for changed data. If any interceding update from another client has altered
any of the data on which the current transaction is based, the timestamps will have
changed, and the current transaction will be rejected. Most of the time, no relevant data
has been changed so transactions usually succeed. When one a transaction fails, the
application can refetch the updated data to present to the user to reform the transaction
if desired.

Refer to your DBMS documents for a full description of this technique.
Programming WebLogic JDBC 3-7

3 Performance Tuning Your JDBC Application
6. Use In-place Updates

Changing a data row in place is much faster than moving a row, which may be required
if the update requires more space than the table design can accommodate. If you design
your rows to have the space they need initially, updates will be faster. The trade-off is
that your table may require more disk space but may run faster. Since disk space is
cheap, using a little more of it can be a worthwhile investment to improve
performance.

7. Keep Operational Data Sets Small

Some applications store operational data in the same table as historical data. Over time
and with accumulation of this historical data, all operational queries have to read
through lots of useless (on a day-to-day basis) data to get to the more current data.
Move non-current data to other tables and do joins to these tables for the rarer historical
queries. If this can't be done, index and cluster your table so that the most frequently
used data is logically and physically localized.

8. Use Pipelining and Parallelism

DBMSs are designed to work best when very busy with lots of different things to do.
The worst way to use a DBMS is as dumb file storage for one big single-threaded
application. If you can design your application and data to support lots of parallel
processes working on easily distinguished subsets of the work, your application will
be much faster. If there are multiple steps to processing, try to design your application
so that subsequent steps can start working on the portion of data that any prior process
has finished, instead of having to wait until the prior process is complete. This may not
always be possible, but you can dramatically improve performance by designing your
program with this in mind.
3-8 Programming WebLogic JDBC

CHAPTER
4 Configuring WebLogic
JDBC Features

The following sections describe how to program the JDBC connectivity components:

� “Using Connection Pools” on page 4-1

� “Using MultiPools” on page 4-16

� “Configuring and Using DataSources” on page 4-20

Using Connection Pools

A connection pool is a named group of identical JDBC connections to a database that
are created when the connection pool is registered, usually when starting up WebLogic
Server. Your application “borrows” a connection from the pool, uses it, then returns it
to the pool by closing it. Also see “Overview of Connection Pools” on page 1-6.

Advantages to Using Connection Pools

Connection Pools provide numerous performance and application design advantages:

� Using Connection Pools is far more efficient than creating a new connection for
each client each time they need to access the database.
Programming WebLogic JDBC 4-1

4 Configuring WebLogic JDBC Features
� You do not need to hard-code details such as the DBMS password in your
application.

� You can limit the number of connections to your DBMS. This can be useful for
managing licensing restrictions on the number of connections to your DBMS.

� You can change the DBMS you are using without changing your application
code.

The attributes for configuring a connection pool are defined in the Administration
Console Online Help. There is also an API that you can use to programmatically create
connection pools in a running WebLogic Server; see “Creating a Connection Pool
Dynamically” on page 4-8. You can also use the command line; see the Web Logic
Server Command-Line Interface Reference in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/cli.html.

Connection Pool Fail-Over Requirements

WebLogic Server cannot provide fail-over for connections that fail while being used
by an application. Any failure while using a connection requires that you restart the
transaction and provide code to handle such a failure.

Creating a Connection Pool at Startup

You set attributes in the in the Administration Console to create a startup (static)
connection pool. The WebLogic Server opens JDBC connections to the database
during the startup process and adds the connections to the pool.

Here is a list with descriptions of the connection pool attributes. For more information
see “Managing JDBC Connectivity” in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html and the
Administration Console Online Help at
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbcconnectionpool.h

tml.
4-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/adminguide/cli.html
http://e-docs.bea.com/wls/docs61/adminguide/cli.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbcconnectionpool.html

Using Connection Pools
Connection Pool Attributes

Name
(Required) Name of the connection pool. You use the name to access a JDBC
Connection from this pool.

URL
(Required) URL of the JDBC 2-tier driver for the connection between the
WebLogic Server and the DBMS. You can use one of the WebLogic jDrivers
or another JDBC driver that you have tested in a 2-tier environment. Check
the documentation for the JDBC driver you choose to find the URL.

Driver Class Name
(Required) Full package name of the JDBC 2-tier driver class for the
connection between the WebLogic Server and the DBMS. Check the
documentation for the JDBC driver to find the full pathname.

Properties
(Required) The properties for connecting to the database, such as username,
server, and open string for XA connections. For the database password, use
the Password property. For the password in the open string, use the Open
String Password attribute.

The properties are defined by, and processed by, the two-tier JDBC driver
that you use. Check the documentation for the JDBC driver to find the
properties required to connect to your DBMS.

Password

(Optional) The database password passed to the 2-tier JDBC driver when
creating physical database connections. This value overrides any database
password defined in the Properties attribute (as a name/value pair). The value
is stored in an encrypted form in the config.xml file.

Open String Password

(Optional) The password is used in the open string for creating an XA
physical database connection. This value overrides the password in the open
string defined in the Properties attribute. The value is stored in an encrypted
form in the config.xml file.

Login Delay Seconds
(Optional) Number of seconds to wait between each attempt to open a
connection to the database. Some database servers can't handle multiple
Programming WebLogic JDBC 4-3

4 Configuring WebLogic JDBC Features
requests for connections in rapid succession. This property allows you to
build in a small delay to let the database server catch up.

Initial Capacity
(Optional) The initial size of the pool. If this value is unset, the default is the
value you set for CapacityIncrement.

Maximum Capacity
(Required) The maximum size of the pool.

Capacity Increment
The size by which the pool's capacity is enlarged. Initial Capacity and
Capacity Increment work somewhat like a Java Vector, which has an initial
allocation (its "capacity") and is increased in increments as necessary
(capacityIncrement), up to the pool Maximum Capacity. The default value
is 1.

Allow Shrinking
(Optional) Whether this connection pool should be allowed to shrink back to
its initial capacity, after expanding to meet increased demand. Set Shrink
Period if this property is set to true, or it will default to 15 minutes. Note
that Allow Shrinking is set by default to false, for backwards compatibility.

Shrink Period
(Optional) The number of minutes to wait before shrinking a connection pool
that has incrementally increased to meet demand. The default shrink period is
15 minutes and the minimum is 1 minute.

Note: If you set a value for this attribute when AllowShrinking is set to false,
WebLogic Server ignores the false setting and allows shrinking according
to the value in ShrinkPeriodMins.

Test Table Name
(Required only if you set Refresh Period, Test Reserved Connections, or
Test Released Connections.) The name of a table in the database that is used
to test the viability of connections in the connection pool. The query select
count(*) from Test Table Name is used to test a connection. The Test
Table Name must exist and be accessible to the database user for the
connection. Most database servers optimize this SQL to avoid a table scan,
but it is still a good idea to set Test Table Name to the name of a table that
is known to have few rows, or even no rows.
4-4 Programming WebLogic JDBC

Using Connection Pools
Refresh Period
(Optional) This property, together with the Test Table Name property,
enables autorefresh of connections in the pools. At a specified interval, each
unused connection in the connection pool is tested by executing a simple SQL
query on the connection. If the test fails, the connection's resources are
dropped and a new connection is created to replace the failed connection. The
default value is 0.
To enable autorefresh, set Refresh Period to the number of minutes between
connection test cycles—a value greater than or equal to 0. If you set an invalid
Refresh Period value, the value defaults to 5 minutes. Set Test Table Name
to the name of an existing database table to use for the test (required).

Also see “Notes About Refreshing Connections in a JDBC Connection Pool.”

Test Reserved Connections
(Optional) When set to true, the WebLogic Server tests a connection after
removing it from the pool and before giving it to the client. The test adds a
small delay in serving the client's request for a connection from the pool, but
ensures that the client receives a working connection (assuming that the
DBMS is available and accessible). The Test Table Name parameter must be
set to use this feature.

When using a connection pool in a MultiPool with the High Availability
algorithm, you must set this attribute to true so that the MultiPool can
determine when to fail over to the next connection pool in the list. See
“MultiPool Fail-Over Limitations and Requirements” on page 4-18.

Test Released Connections
(Optional) When set to true, the WebLogic Server tests a connection before
returning it to the connection pool. If all connections in the pool are already
in use and a client is waiting for a connection, the client's wait will be slightly
longer while the connection is tested. The Test Table Name parameter must
be set to use this feature.

Notes About Refreshing Connections in a JDBC Connection Pool

When the refresh process finds a bad database connection that it cannot replace, the
process stops its current cycle. It does not delete remaining broken connections from
the connection pool. They remain in the connection pool until they can be replaced by
new connections. This behavior was designed to avoid degrading performance by
using system cycles to refresh database connections when the DBMS is inaccessible.
Programming WebLogic JDBC 4-5

4 Configuring WebLogic JDBC Features
The refresh process cannot test or refresh connections currently being used by
application code. It will only test connections that are not currently reserved. Thus a
refresh cycle, even if it is able to replace any bad connections it finds, may never test
all connections in the connection pool if applications are requesting connections.

Because the refresh process can only test connections not in use, it’s possible that some
connections will never be tested. A client will always run the risk of getting a broken
connection unless testConnsOnReserve is enabled. In fact, even if the connection is
tested before being given to an application, the connection could go bad immediately
after the successful test.

Permissions

Set the permissions for creating dynamic connection pools in the Administration
Console.You associate an ACL with a dynamic connection pool when you create the
connection pool. The ACL and connection pool are not required to have the same
name, and more than one connection pool can make use of a single ACL. If you do not
specify an ACL, the “system” user is the default administrative user for the pool and
any user can use a connection from the pool.

If you define an ACL for connection pools, access is restricted to exactly what is
defined in the ACL. For example, before you have any ACLs for connection pools in
your fileRealm.properties file, everyone has unrestricted access to all connection
pools in your domain. However, if you add the following line to the file, access
becomes very restricted:

acl.reset.weblogic.jdbc.connectionPool=Administrators

This line grants reset privileges to Administrators on all connection pools and it
prohibits all other actions by all other users. By adding an ACL, file realm protection
for connection pools is activated. WebLogic Server enforces the ACLs defined in
fileRealm.properties and only allows access specifically granted in the file. If
your intent in adding the ACL was to restrict resets only on connection pools, you must
specifically grant privileges for other actions to everyone or to specific roles or users.
For example:

acl.reserve.weblogic.jdbc.connectionPool=everyone
acl.shrink.weblogic.jdbc.connectionPool=everyone
acl.admin.weblogic.jdbc.connectionPool=everyone
4-6 Programming WebLogic JDBC

Using Connection Pools
Table 4-1 lists the ACLs that you can use in fileRealm.properties to secure
connection pools.

For information on how to modify ACLs, see Defining ACLs in the Managing Security
section of the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html.

Connection Pool Limitation

When using connection pools, it is possible to execute DBMS-specific SQL code that
will alter the database connection properties and that WebLogic Server and the JDBC
driver will not be unaware of. When the connection is returned to the connection pool,
the characteristics of the connection may not be set back to a valid state. For example,
with a Sybase DBMS, if you use a statement such as set rowcount 3 select *
from y, the connection will only ever return a maximum of 3 rows. When the
connection is returned to the connection pool and then reused, the client will still only
get 3 rows returned, even if the table they are selecting against has 500 rows. In most

Table 4-1 File Realm JDBC ACLs

Use this ACL. . . To Restrict. . .

reserve.weblogic.jdbc.connectionPool[.poo
lname]

Reserving connections in a
connection pool.

reset.weblogic.jdbc.connectionPool[.pooln
ame]

Resetting all the connections
in a connection pool by
shutting down and
reestablishing all allocated
connections.

shrink.weblogic.jdbc.connectionPool[.pool
name]

Shrinking the connection pool
to its original size (number of
connections).

admin.weblogic.jdbc.connectionPool[.pooln
ame]

Enabling, disabling, and
shutting down the connection
pool.

admin.weblogic.jdbc.connectionPoolcreate Creation of connection pools.
Programming WebLogic JDBC 4-7

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html

4 Configuring WebLogic JDBC Features
cases, there is standard (non-DBMS–specific) SQL code that can accomplish the same
result and for which WebLogic Server or the JDBC driver will reset the connection. In
this example, you could use setMaxRows() instead of set rowcount.

If you use DBMS-specific SQL code that alters the connection, you must set the
connection back to an acceptable state before returning it to the connection pool.

Creating a Connection Pool Dynamically

A JNDI-based API allows you to create a connection pool from within a Java
application. With this API, you can create a connection pool in a WebLogic Server that
is already running. Access to dynamic connection pools requires a JTS or Pool driver.

Dynamic pools can be temporarily disabled, which suspends communication with the
database server through any connection in the pool. When a disabled pool is enabled,
the state of each connection is the same as when the pool was disabled; clients can
continue their database operations right where they left off.

Properties

To define a specific property for your connection pool, be sure that you duplicate the
key’s exact spelling and case. You pair these types (keys) along with their values,
shown in the table below, in a java.utils.Properties object that is used when
creating the pool.

Table 4-2 Connection Pool Properties

Property Type Description Sample Property Value

poolName Required. Unique name of pool. myPool

aclName Required. Identifies the different
access lists within
fileRealm.properties in the
server config directory. Paired name
must be dynaPool.

dynaPool

props Database connection properties;
typically in the format “database
login name; server network id”.

user=scott;
server=ora817
4-8 Programming WebLogic JDBC

Using Connection Pools
password Optional. Database password passed
to the 2-tier JDBC driver when
creating physical database
connections. This value overrides any
database password defined in props
(as a name/value pair).

The value is stored in an encrypted
form in the config.xml.

tiger

xapassword Optional. Password is used in the
open string for creating an XA
physical database connection. This
value overrides the password in the
open string defined in props.

The value is stored in an encrypted
form in the config.xml.

secret

initialCapacity Initial number of connections in a
pool. If this property is defined and a
positive number > 0, WebLogic
Server creates these connections at
boot time. Default is 0; cannot exceed
maxCapacity.

1

maxCapacity Maximum number of connections
allowed in the pool. Default is 1; if
defined, maxCapacity should be =>1.

10

capacityIncrement Number of connections that can be
added at one time. Default = 0.

1

allowShrinking Indicates whether or not the pool can
shrink when connections are detected
to not be in use.
Default = true.

True

shrinkPeriodMins Interval between shrinking. If
allowShrinking = True, then
default = 15 minutes.

5

Table 4-2 Connection Pool Properties

Property Type Description Sample Property Value
Programming WebLogic JDBC 4-9

4 Configuring WebLogic JDBC Features
Dynamic Connection Pool Sample Code

The following sample code shows how to create a connection pool programmatically.

Note: The following code samples cannot be used in a clustered environment. As a
work-around, you can create connection pools and data sources in the
Administration Console as described in the Administration Console Online
Help, and target the connection pools and data sources to a cluster.

Import Packages

Import the following packages:

driver Required. Name of JDBC driver.
Only local (non-XA) drivers can
participate.

weblogic.jdbc.oci.Driv
er

url Required. URL of the JDBC driver. jdbc:weblogic:oracle

testConnectionsOnReserve Indicates reserved test connections.
Default = False.

true

testConnectionsOnRelease Indicates test connections when they
are released. Default = False.

true

testTableName Database table used when testing
connections; must be present for tests
to succeed. Required if
testConnectionsOnReserve,
testConnectionsOnRelease,
or refreshPeriod is defined.

myTestTable

refreshPeriod Interval between connection testing. 1

loginDelaySecs Seconds between each login attempt.
Default = 0.

1

Table 4-2 Connection Pool Properties

Property Type Description Sample Property Value
4-10 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbcconnectionpool.html

Using Connection Pools
import java.util.Properties
import weblogic.common.*;
import weblogic.jdbc.common.JdbcServices;
import weblogic.jdbc.common.Pool;

Use JNDI to Retrieve the JdbcServices Object

The object reference allows you to access all the methods needed to create the dynamic
pool. First, get an initial JNDI context to the WebLogic JNDI provider, and then look
up “weblogic.jdbc.common.JdbcServices.”

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
// URL for the WebLogic Server
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, “Fred”);
env.put(Context.SECURITY_CREDENTIALS, “secret”);

Context ctx = new InitialContext(env);

// Look up weblogic.jdbc.JdbcServices
weblogic.jdbc.common.JdbcServices jdbc =
 (weblogic.jdbc.common.JdbcServices)
 ctx.lookup("weblogic.jdbc.JdbcServices");

Set the Properties

Set up the java.utils.properties object that defines the attributes of your pool. See
Table 4-2 Connection Pool Properties in “Properties” on page 4-8

Once you have loaded weblogic.jdbc.JdbcServices, you pass the
weblogic.jdbc.common.JdbcServices.createPool() method a Properties
object that describes the pool. The Properties object contains the same properties you
use to create a connection pool in the Administration Console, except that the
“aclName” property is specific to dynamic connection pools.

The following example creates a connection pool named “eng2” for the DEMO Oracle
database. The connections log into the database as user “SCOTT” with password
“tiger.” When the pool is created, one database connection is opened. A maximum of
ten connections can be created on this pool. The “aclName” property specifies that the
connection pool will use the “dynapool”.
Programming WebLogic JDBC 4-11

4 Configuring WebLogic JDBC Features
String thePoolName = “eng2”;
Properties poolProps = null;
Pool myPool = null;
weblogic.jdbc.common.Pool pool = null

poolProps = new Properties();

 // Set properties for the ConnectionPool.
poolProps.put("poolName", thePoolName);
poolProps.put("url", "jdbc:weblogic:oracle");
poolProps.put("driver", "weblogic.jdbc.oci.Driver");
poolProps.put("props", "user=scott;password=tiger;server=demo");
poolProps.put("password", "tiger");
poolProps.put("initialCapacity", "1");
poolProps.put("maxCapacity", "10");
poolProps.put("capacityIncrement", "1");
poolProps.put("aclName", "weblogic.jdbc.connectionPool.dynapool");
poolProps.put("allowShrinking", "true");
poolProps.put("shrinkPeriodMins", "5");
poolProps.put("refreshPeriod", "10");
poolProps.put("testConnectionsOnReserve", "true");
poolProps.put("testConnectionsOnRelease", "false");
poolProps.put("testTableName", "dual");
poolProps.put("loginDelaySecs", "1");

 Create the Dynamic Pool

Create the pool by passing in the newly defined Properties object to the JdbcServices
object previously retrieved from JNDI. An exception is thrown if there is a problem
creating the pool, such as a new pool with the same name as an existing pool.

// create our pool

 try {

 myJdbc.createPool(poolProps);
 } catch (Exception e) {
 System.out.println(thePoolName
 + " can't be created ..");
 System.exit(666);
 }

Retrieve the Pool Handle

Retrieve the pool handle from the newly created pool.You use the pool handle to
manipulate the pool during the course of the application.
4-12 Programming WebLogic JDBC

Using Connection Pools
 weblogic.jdbc.common.Pool myPool = null;

 // get our pool, we would like to do something with it...

 try {

 theNewPool = myJdbc.getPool(thePoolName);

 } catch (Exception e) {
 System.out.println("Cannot retrieve pool: "
 + thePoolName);
 System.exit(666);

 }

Managing Connection Pools

The weblogic.jdbc.common.Pool and weblogic.jdbc.common.JdbcServices
interfaces provide methods to manage connection pools and obtain information about
them. Methods are provided for:

� Retrieving information about a pool

� Disabling a connection pool, which prevents clients from obtaining a connection
from it

� Enabling a disabled pool

� Shrinking a pool, which releases unused connections until the pool has reached
the minimum specified pool size

� Refreshing a pool, which closes and reopens its connections

� Shutting down a pool
Programming WebLogic JDBC 4-13

4 Configuring WebLogic JDBC Features
Retrieving Information About a Pool

weblogic.jdbc.common.JdbcServices.poolExists()

weblogic.jdbc.common.Pool.getProperties()

The poolExists() method tests whether a connection pool with a specified name
exists in the WebLogic Server. You can use this method to determine whether a
dynamic connection pool has already been created or to ensure that you select a unique
name for a dynamic connection pool you want to create.

The getProperties() method retrieves the properties for a connection pool.

Disabling a Connection Pool

weblogic.jdbc.common.Pool.disableDroppingUsers()

weblogic.jdbc.common.Pool.disableFreezingUsers()

weblogic.jdbc.common.pool.enable()

You can temporarily disable a connection pool, preventing any clients from obtaining
a connection from the pool. Only the “system” user or users granted “admin”
permission by an ACL associated with a connection pool can disable or enable the
pool.

After you call disableFreezingUsers(), clients that currently have a connection
from the pool are suspended. Attempts to communicate with the database server throw
an exception. Clients can, however, close their connections while the connection pool
is disabled; the connections are then returned to the pool and cannot be reserved by
another client until the pool is enabled.

Use disableDroppingUsers() to not only disable the connection pool, but to
destroy the client’s JDBC connection to the pool. Any transaction on the connection is
rolled back and the connection is returned to the connection pool. The client’s JDBC
connection context is no longer valid.

When a pool is enabled after it has been disabled with disableFreezingUsers(),
the JDBC connection states for each in-use connection are exactly as they were when
the connection pool was disabled; clients can continue JDBC operations exactly where
they left off.

You can also use the disable_pool and enable_pool commands of the
weblogic.Admin class to disable and enable a pool.
4-14 Programming WebLogic JDBC

Using Connection Pools
Shrinking a Connection Pool

weblogic.jdbc.common.Pool.shrink()

A connection pool has a set of properties that define the initial and maximum number
of connections in the pool (initialCapacity and maxCapacity), and the number of
connections added to the pool when all connections are in use (capacityIncrement).
When the pool reaches its maximum capacity, the maximum number of connections
are opened, and they remain opened unless you shrink the pool.

You may want to drop some connections from the connection pool when a peak usage
period has ended, freeing up resources on the WebLogic Server and DBMS.

Shutting Down a Connection Pool

weblogic.jdbc.common.Pool.shutdownSoft()

weblogic.jdbc.common.Pool.shutdownHard()

These methods destroy a connection pool. Connections are closed and removed from
the pool and the pool dies when it has no remaining connections. Only the “system”
user or users granted “admin” permission by an ACL associated with a connection pool
can destroy the pool.

The shutdownSoft() method waits for connections to be returned to the pool before
closing them.

The shutdownHard() method kills all connections immediately. Clients using
connections from the pool get exceptions if they attempt to use a connection after
shutdownHard() is called.

You can also use the destroy_pool command of the weblogic.Admin class to
destroy a pool.

Resetting a Pool

weblogic.jdbc.common.Pool.reset()

You can configure a connection pool to test its connections either periodically, or
every time a connection is reserved or released. Allowing the WebLogic Server to
automatically maintain the integrity of pool connections should prevent most DBMS
Programming WebLogic JDBC 4-15

4 Configuring WebLogic JDBC Features
connection problems. In addition, WebLogic provides methods you can call from an
application to refresh all connections in the pool or a single connection you have
reserved from the pool.

The weblogic.jdbc.common.Pool.reset() method closes and reopens all
allocated connections in a connection pool. This may be necessary after the DBMS has
been restarted, for example. Often when one connection in a connection pool has
failed, all of the connections in the pool are bad.

Use any of the following methods to reset a connection pool:

� The Administration Console.

� The weblogic.Admin command (as a user with administrative privileges) to
reset a connection pool. Here is the pattern:

$ java weblogic.Admin WebLogicURL RESET_POOL poolName system passwd

You might use this method from the command line on an infrequent basis. There
are more efficient programmatic ways that are also discussed here.

� The reset() method from the weblogic.common.Pool interface in your client
application.

The last case requires the most work for you, but also gives you flexibility. To
reset a pool using the reset() method:

a. In a try block, test a connection from the connection pool with a SQL statement
that is guaranteed to succeed under any circumstances so long as there is a
working connection to the DBMS. An example is the SQL statement “select 1
from dual” which is guaranteed to succeed for an Oracle DBMS.

b. Catch the SQLException.

c. Call the reset() method in the catch block.

Using MultiPools

A MultiPool is a “pool of pools.” MultiPools contain a configurable algorithm for
determining the connection pool from which a connection is returned to an application:
either high availability or connection pool load balancing.
4-16 Programming WebLogic JDBC

Using MultiPools
MultiPools differ from connection pools in that all the connections in a particular
connection pool are created identically with a single database, single user, and the
same connection attributes. However, the connection pools within a MultiPool may be
associated with different users or DBMSs.

Figure 4-1 MultiPool Architecture

Note that although a Multipool can return connections from multiple databases or with
different users, WebLogic Server does not provide any means to integrate or handle
the contents of disparate databases. Your application or DBMS environment must
handle the synchronization or data integration so that your application will work
transparently and successfully when it receives a connection from any of the
underlying connection pools.

Choosing the MultiPool Algorithm

Before you set up a MultiPool, you need to determine the primary purpose of the
MultiPool—high availability or load balancing. You can choose the algorithm that
corresponds with your requirements.
Programming WebLogic JDBC 4-17

4 Configuring WebLogic JDBC Features
High Availability

The High Availability algorithm provides an ordered list of connection pools.
Normally, every connection request to this kind of MultiPool is served by the first pool
in the list. If the first pool loses connectivity to the database, then a connection is
sought sequentially from the next pool on the list.

Notes: You must set TestConnectionsOnReserve=true for the connection pools
within the MultiPool so that the MultiPool can determine when to fail over to
the next connection pool in the list.

If all connections in a connection pool are being used, a MultiPool with the
High Availability algorithm will not attempt to provide a connection from the
next pool in the list. This is by design so that you can set the capacity for a
connection pool. MultiPool fail-over takes effect only if loss of database
connectivity has occurred. To avoid this situation, you should increase the
maximum number of connections in the connection pool.

Load Balancing

Connection requests to a load balancing MultiPool are served from any connection
pool in the list. Pools are added without any attached ordering and are accessed using
a round-robin scheme. When switching connections, the connection pool just after the
last pool accessed is selected.

MultiPool Fail-Over Limitations and Requirements

WebLogic Server provides the High Availability algorithm for MultiPools so that if a
connection pool fails (for example, if the database management system crashes), your
system can continue to operate.

Connection pools rely on the TestConnectionsOnReserve feature to know when
database connectivity is lost. Connections are not automatically tested before being
reserved by an application. You must set TestConnectionsOnReserve=true for the
connection pools within the MultiPool. After turning on this feature, WebLogic Server
will test each connection before returning it to an application, which is crucial to the
High Availability algorithm operation. With the High Availability algorithm, the
MultiPool uses the results from testing connections on reserve to determine when to
4-18 Programming WebLogic JDBC

Using MultiPools
fail over to the next connection pool in the MultiPool. After a test failure, the
connection pool attempts to recreate the connection. If that attempt fails, the MultiPool
fails over to the next connection pool.

It is possible for a connection to fail after being reserved, in which case your
application must handle the failure. WebLogic Server cannot provide fail-over for
connections that fail while being used by an application. Any failure while using a
connection requires that you restart the transaction and provide code to handle such a
failure.

Guidelines to Setting Wait for Connection Times

Setting wait for connection times is a property of the connection attempt. If you are
familiar with setting waiting time to pool connections, the wait for connection property
applies to every connection tapped in a given connection attempt.

You can add any connection pool to a MultiPool. However, you optimize your
resources depending on how you set the wait for connection time when you configure
your connection pools.

Messages and Error Conditions

Users may request information regarding the connection pool from which the
connection originated.

Exceptions

Exceptions are posted to the JDBC log under these circumstances:

� At boot time, when a connection pool is added to a MultiPool.

� Whenever there is a switch to a new connection pool within the MultiPool,
either during load balancing or high availability.
Programming WebLogic JDBC 4-19

4 Configuring WebLogic JDBC Features
Capacity Issues

In a high availability scenario, the fact that the first pool in the list is busy does not
trigger an attempt to get a connection from the next pool in the list.

Configuring and Using DataSources

As with Connection Pools and MultiPools, you can create DataSource objects in the
Administration Console or using the WebLogic Management API. DataSource objects
can be defined with or without transaction services. You configure connection pools
and MultiPools before you define the pool name attribute for a DataSource.

DataSource objects, along with the JNDI, provide access to connection pools for
database connectivity. Each DataSource can refer to one connection pool or MultiPool.
However, you can define multiple DataSources that use a single connection pool. This
allows you to define both transaction and non-transaction-enabled DataSource objects
that share the same database.

WebLogic Server supports two types of DataSource objects:

� DataSources (for local transactions only)

� TxDataSources (for distributed transactions)

If your application meets any of the following criteria, you should use a TxDataSource
in WebLogic Server:

� Uses the Java Transaction API (JTA)

� Uses the WebLogic Server EJB container to manage transactions

� Includes multiple database updates during a single transaction.

For more information about when to use a TxDataSource and how to configure a
TxDataSource, see JDBC Configuration Guidelines for Connection Pools, MultiPools,
and DataSources in the Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#jdbc002.
4-20 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#jdbc002
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#jdbc002

Configuring and Using DataSources
If you want applications to use a DataSource to get a database connection from a
connection pool (the preferred method), you should define the DataSource in the
Administration Console before running your application. For instructions to create a
DataSource, see the Administration Console Online Help at
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbcdatasource.html.
For instructions to create a TxDataSource, see the Administration Console Online
Help at
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbctxdatasource.htm

l.

Importing Packages to Access DataSource Objects

To use the DataSource objects, import the following classes in your client code:

import java.sql.*;
import java.util.*;
import javax.naming.*;

Obtaining a Client Connection Using a DataSource

To obtain a connection from a JDBC client, use a Java Naming and Directory Interface
(JDNI) lookup to locate the DataSource object, as shown in this code fragment:

Context ctx = null;
 Hashtable ht = new Hashtable();
 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 ht.put(Context.PROVIDER_URL,
 "t3://hostname:port");

 try {
 ctx = new InitialContext(ht);
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myJtsDataSource");
 java.sql.Connection conn = ds.getConnection();

// You can now use the conn object to create
// Statements and retrieve result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();
Programming WebLogic JDBC 4-21

http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbcdatasource.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbctxdatasource.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/jdbctxdatasource.html

4 Configuring WebLogic JDBC Features
// Close the statement and connection objects when you are finished:

 stmt.close();
 conn.close();
 }
 catch (NamingException e) {
 // a failure occurred
 }
 finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred
 }
 }

(Substitute the correct hostname and port number for your WebLogic Server.)

Note: The code above uses one of several available procedures for obtaining a JNDI
context. For more information on JNDI, see Programming WebLogic JNDI
at http://e-docs.bea.com/wls/docs61/jndi/index.html.

Code Examples

See the DataSource code example in the samples/examples/jdbc/datasource
directory of your WebLogic Server installation.
4-22 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/jndi/index.html

CHAPTER
5 Using WebLogic
Multitier JDBC Drivers

The following sections describe how to use multitier JDBC drivers with WebLogic
Server:

� “Overview of WebLogic Multitier Drivers” on page 5-1

� “Using the WebLogic RMI Driver” on page 5-2

� “Using the WebLogic JTS Driver” on page 5-7

� “Using the WebLogic Pool Driver” on page 5-10

Overview of WebLogic Multitier Drivers

You can access multitier drivers in the following ways:

� New applications. BEA recommends using DataSource objects for new
applications. DataSource objects, along with the JNDI, provide access to
connection pools for database connectivity. Each data source requires a separate
DataSource object, which may be implemented as a DataSource class that
supports either connection pooling, or distributed transactions. For more
information, see “Configuring WebLogic JDBC Features” on page 4-1.

� Existing applications. For existing applications that use the JDBC 1.x API, refer
to the following sections.
Programming WebLogic JDBC 5-1

5 Using WebLogic Multitier JDBC Drivers
Using the WebLogic RMI Driver

The WebLogic RMI driver is a multitier, Type 3, JDBC driver that runs in WebLogic
Server, used with:

� Two-tier JDBC drivers, including drivers in the WebLogic jDriver family, to
provide database access for local transactions

� Two-tier JDBC XA drivers, including the WebLogic jDriver for Oracle/XA, for
distributed transactions. For additional information, see “Oracle Thin Driver
Extensions” on page 6-15, regarding information about using Oracle Thin Driver
8.1.7.

The BEA WebLogic RMI driver operates with WebLogic Server. The DBMS
connection is made by means of the WebLogic Server, a DataSource object, and a
connection pool operating in WebLogic Server.

The DataSource object provides access to RMI driver connections. The connection
parameters are set in the Administration Console. This connection pool is in turn
configured for two-tier JDBC access to a DBMS.

RMI driver clients make their connection to the DBMS by looking up this DataSource
object. This lookup is accomplished by using a Java Naming and Directory Service
(JNDI) lookup, or by directly calling the WebLogic Server which performs the JNDI
lookup on behalf of the client.

The RMI driver replaces the functionality of both the WebLogic t3 driver (deprecated
in the last release) and the Pool driver, and uses the Java standard Remote Method
Invocation (RMI) to connect to WebLogic Server rather than the proprietary t3
protocol.

Since the details of the RMI implementation are taken care of automatically by the
driver, a knowledge of RMI is not required to use the WebLogic JDBC/RMI driver.

Limitations When Using the WebLogic RMI Driver

Please be aware of the following:
5-2 Programming WebLogic JDBC

Using the WebLogic RMI Driver
� You cannot use Batch updates (addBatch()) with the callableStatement or
preparedStatement SQL statements when using the RMI driver in
conjunction with the WebLogic jDriver for Oracle or compliant third-party
2-Tier drivers.

Setting Up WebLogic Server to Use the WebLogic RMI
Driver

RMI drivers are accessible only through DataSource objects, which are created in the
Administration Console.

Setting Up the Client to Use the WebLogic Server

The following code samples shows how to obtain and use the connection.

Import the Following Packages

javax.sql.DataSource
java.sql.*
java.util.*
javax.naming.*

Obtain the Client Connection

WebLogic JDBC/RMI client obtains its connection to a DBMS from the DataSource
object that was defined in the Administration Console. There are two ways the client
can obtain a DataSource object:

� Using a JNDI lookup. This is the preferred and most direct procedure.

� Passing the DataSource name to the RMI driver with the
Driver.connect()method. In this case, the WebLogic Server performs the
JNDI look up on behalf of the client.
Programming WebLogic JDBC 5-3

5 Using WebLogic Multitier JDBC Drivers
Using a JNDI Lookup to Obtain the Connection

To access the WebLogic RMI driver using JNDI, obtain a Context from the JNDI tree
by looking up the name of your DataSource object. For example, to access a
DataSource called “myDataSource” that is defined in Administration Console:

Context ctx = null;
 Hashtable ht = new Hashtable();
 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 ht.put(Context.PROVIDER_URL,
 "t3://hostname:port");

 try {
 ctx = new InitialContext(ht);
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");
 java.sql.Connection conn = ds.getConnection();

 // You can now use the conn object to create
 // a Statement object to execute
 // SQL statements and process result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();

 // Do not forget to close the statement and connection objects
 // when you are finished:

 stmt.close();
 conn.close();
 }
 catch (NamingException e) {
 // a failure occurred
 }
 finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred
 }
 }

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI
lookup. There are other ways to perform a JNDI look up. For more information, see
Programming WebLogic JNDI at http://e-docs.bea.com/wls/docs61/jndi/index.html.
5-4 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/jndi/index.html

Using the WebLogic RMI Driver
Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed
look up and also that the context is closed in a finally block.

Using Only the WebLogic RMI Driver to Obtain the Connection

You can also access the WebLogic Server using the Driver.connect() method, in
which case the JDBC/RMI driver performs the JNDI lookup. To access the WebLogic
Server, pass the parameters defining the URL of your WebLogic Server and the name
of the DataSource object to the Driver.connect() method. For example, to access a
DataSource called “myDataSource” as defined in the Administration Console:

java.sql.Driver myDriver = (java.sql.Driver)
 Class.forName("weblogic.jdbc.rmi.Driver").newInstance();

String url ="jdbc:weblogic:rmi";

java.util.Properties props = new java.util.Properties();
props.put("weblogic.server.url", "t3://hostname:port");
props.put("weblogic.jdbc.datasource", "myDataSource");

java.sql.Connection conn = myDriver.connect(url, props);

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)

You can also define the following properties which will be used to set the JNDI user
information:

� weblogic.user—specifies a username

� weblogic.credential—specifies the password for the weblogic.user.

Row Caching with the WebLogic RMI Driver

Row caching is a WebLogic Server JDBC feature that improves the performance of
your application. Normally, when a client calls ResultSet.next(), WebLogic
fetches a single row from the DBMS and transmits them to the client JVM. With row
caching enabled, a single call to ResultSet.next() retrieves multiple DBMS rows,
and caches them in client memory. By reducing the number of trips across the wire to
retrieve data, row caching improves performance.
Programming WebLogic JDBC 5-5

5 Using WebLogic Multitier JDBC Drivers
Note: WebLogic Server will not perform row caching when the client and WebLogic
Server are in the same JVM.

You can enable and disable row caching and set the number of rows fetched per
ResultSet.next() call with the Data Source attributes Row Prefetch Enabled and
Row Prefetch Size, respectively. You set Data Source attributes via the Administration
Console.

Important Limitations to Using Row Caching with the WebLogic RMI Driver

Keep the following limitations in mind if you intend to implement row caching with
the RMI driver:

� WebLogic Server will only perform row caching on if the result set type is both
TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

� Certain data types in a result set may disable caching for that result set. These
include the following:

� LONGVARCHAR/LONGVARBINARY

� NULL

� BLOB/CLOB

� ARRAY

� REF

� STRUCT

� JAVA_OBJECT

� Certain ResultSet methods are not supported if row caching is enabled and
active for that result set. Most pertain to streaming data, scrollable result sets or
data types not supported for row caching. These include the following:

� getAsciiStream()

� getUnicodeStream()

� getBinaryStream()

� getCharacterStream()

� isBeforeLast()

� isAfterLast()

� isFirst()
5-6 Programming WebLogic JDBC

Using the WebLogic JTS Driver
� isLast()

� getRow()

� getObject (Map)

� getRef()

� getBlob()/getClob()

� getArray()

� getDate()

� getTime()

� getTimestamp()

Using the WebLogic JTS Driver

The Java Transaction Services or JTS driver is a server-side Java Database
Connectivity (JDBC) driver that provides access to both connection pools and SQL
transactions from applications running in WebLogic Server. Connections to a database
are made from a connection pool and use a two-tier JDBC driver running in WebLogic
Server to connect to the Database Management System (DBMS) on behalf of your
application.

Once a transaction is begun, all of the database operations in a execute thread that get
their connection from the same connection pool will share the same connection from
that pool. These operations may be made through services such as Enterprise
JavaBeans (EJB), or Java Messaging Service (JMS), or by directly sending SQL
statements using standard JDBC calls. All of these operations will, by default, share
the same connection and participate in the same transaction.When the transaction is
committed or rolled back, the connection will be returned to the pool.

Although Java clients may not register the JTS driver themselves, they may participate
in transactions via Remote Method Invocation (RMI). You can begin a transaction in
a thread on a client and then have the client call a remote RMI object. The database
operations executed by the remote object will become part of the transaction that was
begun on the client. When the remote object is returned back to the calling client, you
can then commit or roll back the transaction. The database operations executed by the
remote objects must all use the same connection pool to be part of the same transaction.
Programming WebLogic JDBC 5-7

5 Using WebLogic Multitier JDBC Drivers
When you select Enable Two Phase Commit (enableTwoPhaseCommit = true) for
a Tx Data Source with a non-XA JDBC driver, WebLogic Server uses the JTS driver
internally to enable the non-XA resource to emulate two-phase commit (2PC) and
participate in global transactions. For more information about enabling non-XA
resources to participate in global transactions and how the JTS driver is used, see
“Configuring Non-XA JDBC Drivers for Distributed Transactions” in the
Administration Guide.

Implementing with the JTS Driver

To use the JTS driver, you must first use the Administration Console to create a
connection pool in WebLogic Server. For more information, see Connection Pools in
Managing JDBC Connectivity in Administration Guide.

This explanation demonstrates creating and using a JTS transaction from a server-side
application and uses a connection pool named “myConnectionPool.”

1. Import the following classes:

import javax.transaction.UserTransaction;
import java.sql.*;
import javax.naming.*;
import java.util.*;
import weblogic.jndi.*;

2. Establish the transaction by using the UserTransaction class. This class can be
looked up in the Java Naming and Directory Service (JNDI). The
UserTransaction class controls the transaction on the current execute thread.
Note that this class does not represent the transaction itself. The actual context for
the transaction is associated with the current execute thread.

Context ctx = null;
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the correct hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, “Fred”);
env.put(Context.SECURITY_CREDENTIALS, “secret”);

5-8 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html#confignonXA
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html

Using the WebLogic JTS Driver
ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
 ctx.lookup("javax.transaction.UserTransaction");

3. Start a transaction on the current thread:

tx.begin();

4. Load the JTS driver:

Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.jts.Driver").newInstance();

5. Get a connection from the connection pool:

Properties props = new Properties();
props.put("connectionPoolID", "myConnectionPool");

conn = myDriver.connect("jdbc:weblogic:jts", props);

6. Execute your database operations. These operations may be made by any service
that uses a database connection. These include EJB, JMS, or standard JDBC
statements. If these operations use the JTS driver to access the same connection
pool as the transaction begun in step 3, they will participate in that transaction.

If the additional database operations using the JTS driver use a different
connection pool than the one specified in step 5, an exception will be thrown
when you try to commit or roll back the transaction.

7. Close your connection objects. Note that closing the connections does not
commit the transaction nor return the connection to the pool:

conn.close();

8. Execute any other database operations. If these operations are made by
connecting to the same connection pool, the operations will use the same
connection from the pool and become part of the same UserTransaction as all
of the other operations in this thread.

9. Complete the transaction by either committing the transaction or rolling it back.
The JTS driver will commit all the transactions on all connection objects in the
current thread and return the connection to the pool.

tx.commit();

// or:

tx.rollback();
Programming WebLogic JDBC 5-9

5 Using WebLogic Multitier JDBC Drivers
 Using the WebLogic Pool Driver

The WebLogic Pool driver enables utilization of connection pools from server-side
applications such as HTTP servlets or EJBs. For information on using the Pool driver,
see Accessing Databases in Programming Tasks in Programming WebLogic HTTP
Servlets.
5-10 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/servlet/progtasks.html

CHAPTER
6 Using Third-Party
Drivers with WebLogic
Server

The following sections describe how to set up and use third-party JDBC drivers:

� “Overview of Third-Party JDBC Drivers” on page 6-1

� “Limitations” on page 6-2

� “Getting a Connection with Your Third-Party Driver” on page 6-8

� “Oracle Thin Driver Extensions” on page 6-15

Overview of Third-Party JDBC Drivers

WebLogic Server works with third-party JDBC drivers that offer the following
functionality:

� Are thread-safe

� Are EJB accessible; can implement transaction calls in JDBC

This section describes how to set up and use the following third-party two-tier, Type 4
drivers with WebLogic Server:

� Oracle Thin Driver
Programming WebLogic JDBC 6-1

6 Using Third-Party Drivers with WebLogic Server
� Sybase jConnect Driver

The Sybase jConnect Driver (versions 4.2/5.2 and 5.5) and Oracle Thin Driver (version
9.2.0) are bundled with your WebLogic Server distribution; the weblogic.jar file
contains the Oracle Thin Driver and Sybase jConnect classes. Additional information
about these Oracle and Sybase drivers is available at their respective Web sites.

Note: With the release of WebLogic Server 6.1 Service Pack 4, the version of the
Oracle Thin Driver bundled in weblogic.jar is version 9.2.0. Previous releases
of WebLogic Server 6.1 included the 8.1.7 version of the Oracle Thin Driver.

Limitations

Please be aware of the following:

� You cannot use Batch updates (addBatch()) with the callableStatement or
preparedStatement SQL statements when using the RMI driver in
conjunction with 2-Tier drivers.

Setting the Environment for Your Third-Party Driver

If you use a third-party JDBC driver other than the Oracle Thin Driver or Sybase
jConnect Driver included in weblogic.jar, you must add the path for the JDBC
driver classes to your CLASSPATH. The following topics describe how to set your
CLASSPATH for Windows and UNIX when using a third-party JDBC driver.

CLASSPATH for Third-Party Driver on Windows

Add the path to JDBC driver classes and to weblogic.jar to your CLASSPATH as
follows:

set CLASSPATH=DRIVER_CLASSES;WL_HOME\lib\weblogic.jar;%CLASSPATH%

Where DRIVER_CLASSES is the path to the JDBC driver classes and WL_HOME is the
directory where you installed WebLogic Server.
6-2 Programming WebLogic JDBC

Overview of Third-Party JDBC Drivers
CLASSPATH for Third-Party Driver on UNIX

Add the path to JDBC driver classes and to weblogic.jar to your CLASSPATH as
follows:

export CLASSPATH=DRIVER_CLASSES:WL_HOME/lib/weblogic.jar:
$CLASSPATH

Where DRIVER_CLASSES is the path to the JDBC driver classes and WL_HOME is the
directory where you installed WebLogic Server.

Updating Oracle Thin Driver

To update the Oracle Thin Driver bundled with WebLogic Server, you must add the
path for the new driver classes to your CLASSPATH in front of the path to
weblogic.jar. For example:

set CLASSPATH=%ORACLE_HOME%\jdbc\lib\classes12.zip;

%WL_HOME%\lib\weblogic.jar;%CLASSPATH% (Windows)

Or

export CLASSPATH=$ORACLE_HOME/jdbc/lib/classes12.zip:

$WL_HOME/lib/weblogic.jar:$CLASSPATH (UNIX)

Use this procedure for updates to Oracle Thin Driver version 9.2.0 bundled in
weblogic.jar or to use a new version of the driver.

The Oracle Thin Driver is included with the Oracle DBMS software. You can also
download driver updates from the Oracle Web site at
http://otn.oracle.com/software/content.html.

Using the Oracle 10g Thin Driver

The Oracle 10g Thin driver is installed with WebLogic Server 6.1 Service Pack 7 (and
later service packs) in the WL_HOME\lib\oracle\10g folder. BEA provides the 10g
driver so that you can optionally use it with WebLogic Server. However, the Oracle
9.2.0 Thin driver remains the default version of the driver. The 9.2.0 version is
included in weblogic.jar and is included in your CLASSPATH when you run the
server.
Programming WebLogic JDBC 6-3

http://otn.oracle.com/software/content.html
http://otn.oracle.com/software/content.html

6 Using Third-Party Drivers with WebLogic Server
To use the Oracle10g Thin driver, you must add the driver classes to your CLASSPATH
in front of weblogic.jar, preferably in your scripts to start WebLogic Server. For
example, in the WL_HOME\config\mydomain\startWeblogic.cmd (.sh on UNIX),
change the following line:

set CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar

To this:

set CLASSPATH=.;WL_HOME\lib\oracle\10g\classes12.zip;
.\lib\weblogic_sp.jar;.\lib\weblogic.jar

Note: Line break added for readability.

In this example, WL_HOME is the directory in which WebLogic Server is installed,
typically C:\bea\wlserver6.1.

Note: Oracle removed some methods and classes from the 10g Thin driver that were
in previous versions of the driver. If you use any of the extension methods that
were removed, you will see errors in your application.

Package Change for Oracle Thin Driver 9.x and 10g

For Oracle 8.x and previous releases, the package that contained the Oracle Thin driver
was oracle.jdbc.driver. When configuring a JDBC connection pool that uses the
Oracle 8.1.7 Thin driver, you specify the DriverName (Driver Classname) as
oracle.jdbc.driver.OracleDriver. For Oracle 9.x and 10g, the package that
contains the Oracle Thin driver is oracle.jdbc. When configuring a JDBC
connection pool that uses the Oracle 9.x or 10g Thin driver, you specify the
DriverName (Driver Classname) as oracle.jdbc.OracleDriver. You can use the
oracle.jdbc.driver package and the oracle.jdbc.driver.OracleDriver
class with the 9.x and 10g drivers, but Oracle may not make future feature
enhancements to that class.

See the Oracle documentation for more details about the Oracle Thin driver.

Note: The package change does not apply to the XA version of the driver. For the
XA version of the Oracle Thin driver, use
oracle.jdbc.xa.client.OracleXADataSource as the DriverName
(Driver Classname) in a JDBC connection pool.
6-4 Programming WebLogic JDBC

Overview of Third-Party JDBC Drivers
Updating Sybase jConnect Driver

To update the Sybase jConnect Driver bundled with WebLogic Server, you must add
the path for the jConnect driver to your CLASSPATH in front of the path to
weblogic.jar. For example:

set CLASSPATH=%SYBASE_HOME%\jConnect-5_5\classes\jconn2.jar;

%WL_HOME%\lib\weblogic.jar;%CLASSPATH% (Windows)

Or

export CLASSPATH=$SYBASE_HOME/jConnect-5_5/classes/jconn2.jar:

$WL_HOME/lib/weblogic.jar:$CLASSPATH (UNIX)

The Sybase jConnect Driver (jConnect.jar) is included with the Sybase DBMS
software. You can also download driver updates from the Sybase Web site at
http://www.sybase.com/products/eaimiddleware/jconnectforjdbc.

Installing and Using the IBM Informix JDBC Driver

If you want to use Weblogic Server with an Informix database, BEA recommends that
you use the IBM Informix JDBC driver, available from the IBM Web site at
http://www.informix.com/evaluate/. The IBM Informix JDBC driver is
available to use for free without support. You may have to register with IBM to
download the product. Download the driver from the JDBC/EMBEDDED SQLJ
section, and follow the instructions in the install.txt file included in the
downloaded zip file to install the driver.

After you download and install the driver, follow these steps to prepare to use the
driver with WebLogic Server:

1. Copy ifxjdbc.jar and ifxjdbcx.jar files from INFORMIX_INSTALL\lib and
paste it in WL_HOME\server\lib folder, where:

INFORMIX_INSTALL is the root directory where you installed the Informix JDBC
driver, and

WL_HOME is the folder where you installed WebLogic Server, typically
c:\bea\wlserver6.1.
Programming WebLogic JDBC 6-5

http://www.sybase.com/products/eaimiddleware/jconnectforjdbc
http://www.sybase.com/products/eaimiddleware/jconnectforjdbc

6 Using Third-Party Drivers with WebLogic Server
2. Add the path to ifxjdbc.jar and ifxjdbcx.jar to your CLASSPATH. For
example:

set
CLASSPATH=%WL_HOME%\server\lib\ifxjdbc.jar;%WL_HOME%\server\lib
\ifxjdbcx.jar;%CLASSPATH%

You can also add the path for the driver files to the set CLASSPATH statement in
your start script for WebLogic Server.

Connection Pool Attributes when using the IBM Informix JDBC Driver

Use the attributes as described in Table 6-1 and Table 6-2 when creating a connection
pool that uses the IBM Informix JDBC driver.

An entry in the config.xml file may look like the following:

Table 6-1 Non-XA Connection Pool Attributes Using the Informix JDBC Driver

Attribute Value

URL jdbc:informix-sqli:dbserver_name_or_ip:port/
dbname:informixserver=ifx_server_name

Driver Class Name com.informix.jdbc.IfxDriver

Properties user=username

url=jdbc:informix-sqli:dbserver_name_or_ip:po
rt/dbname:informixserver=ifx_server_name

portNumber=1543

databaseName=dbname

ifxIFXHOST=ifx_server_name

serverName=dbserver_name_or_ip

Password password

Login Delay Seconds 1

Target serverName
6-6 Programming WebLogic JDBC

Overview of Third-Party JDBC Drivers
 <JDBCConnectionPool
 DriverName="com.informix.jdbc.IfxDriver"
 InitialCapacity="3"
 LoginDelaySeconds="1"
 MaxCapacity="10"
 Name="ifxPool"
 Password="xxxxxxx"
 Properties="informixserver=ifxserver;user=informix"
 Targets="examplesServer"
 URL="jdbc:informix-sqli:ifxserver:1543"
 />

Note: In the Properties string, there is a space between portNumber and =.

An entry in the config.xml file may look like the following:

 <JDBCConnectionPool CapacityIncrement="2"
 DriverName="com.informix.jdbcx.IfxXADataSource"

Table 6-2 XA Connection Pool Attributes Using the Informix JDBC Driver

Attribute Value

URL leave blank

Driver Class Name com.informix.jdbcx.IfxXADataSource

Properties user=username

url=jdbc:informix-sqli://dbserver_name_or_ip:
port_num/dbname:informixserver=dbserver_name_
or_ip

password=password

portNumber =port_num;

databaseName=dbname

serverName=dbserver_name

ifxIFXHOST=dbserver_name_or_ip

Password leave blank

Supports Local
Transaction

true

Target serverName
Programming WebLogic JDBC 6-7

6 Using Third-Party Drivers with WebLogic Server
 InitialCapacity="2" MaxCapacity="10"
 Name="informixXAPool"
 Properties="user=informix;url=jdbc:informix-sqli:
 //111.11.11.11:1543/db1:informixserver=lcsol15;
 password=informix;portNumber =1543;databaseName=db1;
 serverName=dbserver1;ifxIFXHOST=111.11.11.11"
 SupportsLocalTransaction="true" Targets="examplesServer"
 TestConnectionsOnReserve="true" TestTableName="emp"/>

Note: If you create the connection pool using the Administration Console, you may
need to stop and restart the server before the connection pool will deploy
properly on the target server. This is a known issue.

Programming Notes for the IBM Informix JDBC Driver

Consider the following limitations when using the IBM Informix JDBC driver:

� Always call resultset.close() and statement.close() methods to
indicate to the driver that you are done with the statement/resultset. Otherwise,
your program may not release all its resources on the database server.

� Batch updates fail if you attempt to insert rows with TEXT or BYTE columns
unless the IFX_USEPUT environment variable is set to 1.

� If the Java program sets autocommit mode to true during a transaction, IBM
Informix JDBC Driver commits the current transaction if the JDK is version 1.4
and later, otherwise the driver rolls back the current transaction before enabling
autocommit.

Getting a Connection with Your Third-Party
Driver

The following topics describe two ways to get a connection using a third-party, Type
4 driver, such as the Oracle Thin Driver and Sybase jConnect Driver. BEA
recommends you use connection pools, data sources, and JNDI Lookup to establish
your connection. As an alternative, you can get a simple connection directly between
the Java client and the database.
6-8 Programming WebLogic JDBC

Getting a Connection with Your Third-Party Driver
Using Connection Pools with a Third-Party Driver

First, you create the connection pool and data source using the Administration
Console, then establish a connection using a JNDI Lookup.

Creating the Connection Pool and DataSource

See Managing JDBC Connectivity in the Administration Guide for information on
how to use the Administration Console to:

� Create a JDBC Connection Pool

� Create a JDBC DataSource

Using a JNDI Lookup to Obtain the Connection

To access the driver using JNDI, obtain a Context from the JNDI tree by providing the
URL of your server, and then use that context object to perform a lookup using the
DataSource Name.

For example, to access a DataSource called “myDataSource” that is defined in the
Administration Console:

Context ctx = null;
 Hashtable ht = new Hashtable();
 ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 ht.put(Context.PROVIDER_URL,
 "t3://hostname:port");

 try {
 ctx = new InitialContext(ht);
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");
 java.sql.Connection conn = ds.getConnection();

 // You can now use the conn object to create
 // a Statement object to execute
 // SQL statements and process result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();
Programming WebLogic JDBC 6-9

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html

6 Using Third-Party Drivers with WebLogic Server
 // Do not forget to close the statement and connection objects
 // when you are finished:

 stmt.close();
 conn.close();
 }
 catch (NamingException e) {
 // a failure occurred
 }
 finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred
 }
 }

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI
lookup. There are other ways to perform a JNDI look up. For more information, see
Programming WebLogic JNDI at
http://e-docs.bea.com/wls/docs61/jndi/index.html.

Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed
look up and also that the context is closed in a finally block.

Getting a Physical Connection from a Connection Pool

When you get a connection from a connection pool, WebLogic Server provides a
logical connection rather than a physical connection so that WebLogic Server can
manage the connection with the connection pool. This is necessary to enable
connection pool features and to maintain the quality of connections provided to
applications. In some cases, you may want to use a physical connection, such as if you
need to pass the connection to a DBMS vendor-specific method that requires the
vendor’s connection class. WebLogic Server includes the getVendorConnection()
method in the weblogic.jdbc.extensions.WLConnection interface that you can
use to get the underlying physical connection from a logical connection. See the
WebLogic Javadocs at
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jdbc/extension

s/WLConnection.html.
6-10 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/jndi/index.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/jdbc/extensions/WLConnection.html

Getting a Connection with Your Third-Party Driver
Note: BEA strongly discourages using a physical connection instead of a logical
connection from a connection pool. See “Limitations for Using a Physical
Connection” on page 6-13.

You should only use the physical database connection for vendor-specific needs. Your
code should continue to make most JDBC calls to the logical connection.

When you are finished with the connection, you should close the logical connection.
Do not close the physical connection in your code.

Whenever a physical database connection is exposed to application code, the
connection pool cannot guarantee that the next user of that connection will be the only
user with access to it. Therefore, when the logical connection is closed, WebLogic
Server returns the logical connection to the connection pool, but discards the
underlying physical connection and opens a new physical connection for the logical
connection in the pool. This is safe, but it is also slow. It is possible that every request
to the connection pool will entail making a new database connection.

Code Sample for Getting a Physical Connection

To get a physical database connection, you first get a connection from a connection
pool as described in “Using a JNDI Lookup to Obtain the Connection” on page 6-9,
then do one of the following:

� Cast the connection as a WLConnection and call getVendorConnection().

� Implicitly pass the physical connection (using the getVendorConnection()
method) within a method that requires the physical connection.

For example:

//Import this additional class and any vendor packages
//you may need.
import weblogic.jdbc.extensions.WLConnection
.
.
.
myJdbcMethod()
{

 // Connections from a connection pool should always be
 // method-level variables, never class or instance methods.
 Connection conn = null;
Programming WebLogic JDBC 6-11

6 Using Third-Party Drivers with WebLogic Server
 try {
 ctx = new InitialContext(ht);
 // Look up the data source on the JNDI tree and request
 // a connection.
 javax.sql.DataSource ds
 = (javax.sql.DataSource) ctx.lookup ("myDataSource");

 // Always get a pooled connection in a try block where it is
 // used completely and is closed if necessary in the finally
 // block.
 conn = ds.getConnection();

 // You can now cast the conn object to a WLConnection
 // interface and then get the underlying physical connection.

 java.sql.Connection vendorConn =
 ((WLConnection)conn).getVendorConnection();
 // do not close vendorConn

 // You could also cast the vendorConn object to a vendor
 // interface, such as:
 // oracle.jdbc.OracleConnection vendorConn = (OracleConnection)
 // ((WLConnection)conn).getVendorConnection();

 // If you have a vendor-specific method that requires the
 // physical connection, it is best not to obtain or retain
 // the physical connection, but simply pass it implicitly
 // where needed, eg:

//vendor.special.methodNeedingConnection(((WLConnection)conn)).ge
tVendorConnection());

 // As soon as you are finished with vendor-specific calls,
 // nullify the reference to the connection.
 // Do not keep it or close it.
 // Never use the vendor connection for generic JDBC.
 // Use the logical (pooled) connection for standard JDBC.
 vendorConn = null;

 ... do all the JDBC needed for the whole method...

 // close the logical (pooled) connection to return it to
 // the connection pool, and nullify the reference.
 conn.close();
 conn = null;
 }

 catch (Exception e)
 {
 // Handle the exception.
6-12 Programming WebLogic JDBC

Getting a Connection with Your Third-Party Driver
 }
 finally
 {
 // For safety, check whether the logical (pooled) connection
 // was closed.
 // Always close the logical (pooled) connection as the
 // first step in the finally block.

 if (conn != null) try {conn.close();} catch (Exception ignore){}
 }
}

Limitations for Using a Physical Connection

BEA strongly discourages using a physical connection instead of a logical connection
from a connection pool. However, if you must use a physical connection, for example,
to create a STRUCT, consider the following costs and limitations:

� The physical connection can be used in server-side code only.

� When you use a physical connection, you lose all of the connection management
benefits that WebLogic Server offers, including error handling, statement
caching, and so forth.

� You should use the physical connection only for the vendor-specific methods or
classes that require it. Do not use the physical connection for generic JDBC,
such as creating statements or transactional calls.

� The connection is not reused. When you close the connection, the physical
connection is closed and the connection pool creates a new connection to replace
the one passed as a physical connection. Because the connection is not reused,
there is a performance loss when using a physical connection because of the
following:

� The physical connection is replaced with a new database connection in the
connection pool, which uses resources on both the application server and the
database server.

� The statement cache for the original connection is closed and a new cache is
opened for the new connection. Therefore, the performance gains from using
the statement cache are lost.
Programming WebLogic JDBC 6-13

6 Using Third-Party Drivers with WebLogic Server
Obtaining a Direct (Non-pooled) JDBC Connection

This simple example shows you how to establish a connection directly between the
your Java code running on WebLogic Server and the database. Use
driver.connect() to set your direct connection. Do not use DriverManager to get a
JDBC connection because the DriverManager methods are overly synchronized for a
multi-threaded application, and can cause WebLogic Server to become single-threaded
or to lock up.

The following example shows how to get a direct connection using a third-party driver.

Obtaining a Direct Connection Using the Oracle Thin Driver

The following example shows how to set a direct connection using the Oracle Thin
Driver:

� Instantiate the driver:

// ThinDriver driver
driver = (Driver)Class.forName
 ("oracle.jdbc.driver.OracleDriver").newInstance();

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");

� Make the connection:

// Thin driver connection
con = driver.connect
 ("jdbc:oracle:thin:@myHost.mydomain.com:1521:DEMO", props);

Obtaining a Direct Connection Using the Sybase jConnect Driver

The following example shows how to set a direct connection using the Sybase
jConnect Driver:

� Instantiate the driver:

// Sybase jConnect driver
driver = (Driver)Class.forName
 (“com.sybase.jdbc.SybDriver”).newInstance()
6-14 Programming WebLogic JDBC

Oracle Thin Driver Extensions
Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");

� Make the connection:

// Sybase jConnect
con = driver.connect
 ("jdbc:sybase:Tds:myDB@myhost:myport), props);

Oracle Thin Driver Extensions

BEA supports the following extensions to the Oracle Thin Driver for use with the RMI,
JTS and Pool drivers:

Oracle Standard Extensions

� OracleConnection

� OracleStatement

� OracleResultSet

� OraclePreparedStatement

� OracleCallableStatement

Oracle Blobs and Clobs

� OracleThinBlob

� OracleThinClob

The following sections provide code samples for Oracle extensions and tables of
supported methods. For more information, please refer to the Oracle documentation.
Programming WebLogic JDBC 6-15

6 Using Third-Party Drivers with WebLogic Server
Sample Code for Accessing Oracle Extensions to JDBC
Interfaces

The following code examples show how to access the WebLogic Oracle extensions to
standard JDBC interfaces. The following example uses the OracleConnection and
OracleStatement extensions. You can use the syntax of this example for the
OracleResultSet, OraclePreparedStatement and OracleCallableStatement interfaces,
when using methods supported by WebLogic Server. For supported methods, see
“Tables of Oracle Interfaces” on page 6-20.

For examples showing how to access the OracleThinBlob and OracleThinClob
interfaces, see “Oracle Blob/Clob Extensions and Supported Methods” on page 6-27.

Import Packages to Access Oracle Extensions

Import the Oracle interfaces used in this example. The OracleConnection and Oracle
Statement interfaces are counterparts to oracle.jdbc.OracleConnection and
oracle.jdbc.OracleStatement and can be used in the same way as the Oracle interfaces
when using the methods supported by WebLogic Server.

import java.sql.*;
import java.util.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import weblogic.jdbc.vendor.oracle.OracleConnection;
import weblogic.jdbc.vendor.oracle.OracleStatement;

Establish the Connection

Establish the connection using JNDI, DataSource and connection pool objects. For
information, see “Using a JNDI Lookup to Obtain the Connection” on page 6-9.

// Get a valid DataSource object for a connection pool.
// Here we assume that getDataSource() takes
// care of those details.
javax.sql.DataSource ds = getDataSource(args);

// get a java.sql.Connection object from the DataSource
java.sql.Connection conn = ds.getConnection();
6-16 Programming WebLogic JDBC

Oracle Thin Driver Extensions
Retrieve the Default Row Prefetch Value

The following code fragment shows how to use the Oracle Row Prefetch method
available through the Oracle Thin Driver.

// Cast to OracleConnection and retrieve the
// default row prefetch value for this connection.

int default_prefetch =
 ((OracleConnection)conn).getDefaultRowPrefetch();

System.out.println("Default row prefetch
 is " + default_prefetch);

java.sql.Statement stmt = conn.createStatement();

// Cast to OracleStatement and set the row prefetch
// value for this statement. Note that this
// prefetch value applies to the connection between
 // WebLogic Server and the database.
 ((OracleStatement)stmt).setRowPrefetch(20);

 // Perform a normal sql query and process the results...
 String query = "select empno,ename from emp";
 java.sql.ResultSet rs = stmt.executeQuery(query);

 while(rs.next()) {
 java.math.BigDecimal empno = rs.getBigDecimal(1);
 String ename = rs.getString(2);
 System.out.println(empno + "\t" + ename);
 }

 rs.close();
 stmt.close();

 conn.close();
 conn = null;
 }

Sample Code for Accessing Oracle Blob/Clob Interfaces

This section contains sample code that demonstrates how to access the
OracleThinBlob interface. You can use the syntax of this example for the
OracleThinBlob interface, when using methods supported by WebLogic Server. See
“Tables of Oracle Interfaces” on page 6-20.
Programming WebLogic JDBC 6-17

6 Using Third-Party Drivers with WebLogic Server
Note: When working with Blobs and Clobs (referred to as “LOBs”), you must take
transaction boundaries into account; for example, direct all read/writes to a
particular LOB within a transaction. For additional information, refer to
Oracle documentation about “LOB Locators and Transaction Boundaries” at
the Oracle Web site at http://www.oracle.com.

Import Packages to Access Blob and Clob Extensions

Include the WebLogic Server Oracle Blob with the imported classes:

import weblogic.jdbc.vendor.oracle.OracleThinBlob;

Query to Select Blob Locator from the DBMS

The Blob Locator, or handle, is a reference to an Oracle Thin Driver Blob:

String selectBlob = "select blobCol from myTable where blobKey =
666"

Declare the WebLogic Server java.sql Objects

The following code presumes the Connection is already established:

ResultSet rs = null;
Statement myStatement = null;
java.sql.Blob myRegularBlob = null;
java.io.OutputStream os = null;

Begin SQL Exception Block

In this try catch block, you get the Blob locator and access the Oracle Blob extension.

try {

 // get our Blob locator..

 myStatement = myConnect.createStatement();
 rs = myStatement.executeQuery(selectBlob);
 while (rs.next()) {
 myRegularBlob = rs.getBlob("blobCol");

}

6-18 Programming WebLogic JDBC

http://www.oracle.com

Oracle Thin Driver Extensions
 // Access the underlying Oracle extension functionality for
 // writing. Cast to the OracleThinBlob interface to access
 // the Oracle method.

 os = ((OracleThinBlob)myRegularBlob).getBinaryOutputStream();

 } catch (SQLException sqe) {
 System.out.println("ERROR(general SQE): " +
 sqe.getMessage());
 }

Once you cast to the Oracle.ThinBlob interface, you can access the
BEA supported methods.

Updating a CLOB Value Using a Prepared Statement

If you use a prepared statement to update a CLOB and the new value is shorter than
the previous value, the CLOB will retain the characters that were not specifically
replaced during the update. For example, if the current value of a CLOB is
abcdefghij and you update the CLOB using a prepared statement with zxyw, the
value in the CLOB is updated to zxywefghij. To correct values updated with a
prepared statement, you should use the dbms_lob.trim procedure to remove the
excess characters left after the update. See the Oracle documentation for more
information about the dbms_lob.trim procedure.
Programming WebLogic JDBC 6-19

6 Using Third-Party Drivers with WebLogic Server
Tables of Oracle Interfaces

The following tables list the Oracle interfaces.

Oracle Extensions and Supported Methods

The following tables describe the Oracle interfaces and supported methods you use
with the Oracle Thin Driver to extend java.sql.* interfaces. See “Oracle Blob/Clob
Extensions and Supported Methods” on page 6-27 for the Blob/Clob interfaces.
6-20 Programming WebLogic JDBC

Oracle Thin Driver Extensions
Table 6-3 OracleConnection Interface

Extends Method Signature

OracleConnection
extends
java.sql.Connection

boolean getAutoClose()
throws java.sql.SQLException;

void setAutoClose(boolean on) throws
java.sql.SQLException;

String getDatabaseProductVersion()
throws java.sql.SQLException;

String getProtocolType() throws
java.sql.SQLException;

String getURL() throws java.sql.SQLException;

String getUserName()
throws java.sql.SQLException;

boolean getBigEndian()
throws java.sql.SQLException;

boolean getDefaultAutoRefetch() throws
java.sql.SQLException;

boolean getIncludeSynonyms()
throws java.sql.SQLException;

boolean getRemarksReporting()
throws java.sql.SQLException;

boolean getReportRemarks()
throws java.sql.SQLException;

boolean getRestrictGetTables()
throws java.sql.SQLException;

boolean getUsingXAFlag()
throws java.sql.SQLException;

boolean getXAErrorFlag()
throws java.sql.SQLException;
Programming WebLogic JDBC 6-21

6 Using Third-Party Drivers with WebLogic Server
OracleConnection
extends
java.sql.Connection

(continued)

byte[] getFDO(boolean b)
throws java.sql.SQLException;

int getDefaultExecuteBatch() throws
java.sql.SQLException;

int getDefaultRowPrefetch()
throws java.sql.SQLException;

int getStmtCacheSize()
throws java.sql.SQLException;

java.util.Properties getDBAccessProperties()
throws java.sql.SQLException;

short getDbCsId() throws java.sql.SQLException;

short getJdbcCsId() throws java.sql.SQLException;

short getStructAttrCsId()
throws java.sql.SQLException;

short getVersionNumber()
throws java.sql.SQLException;

void archive(int i, int j, String s)
throws java.sql.SQLException;

void close_statements()
throws java.sql.SQLException;

void initUserName() throws java.sql.SQLException;

void logicalClose() throws java.sql.SQLException;

void needLine() throws java.sql.SQLException;

void printState() throws java.sql.SQLException;

void registerSQLType(String s, String t)
throws java.sql.SQLException;

void releaseLine() throws java.sql.SQLException;

Table 6-3 OracleConnection Interface

Extends Method Signature
6-22 Programming WebLogic JDBC

Oracle Thin Driver Extensions
OracleConnection
extends
java.sql.Connection

(continued)

void removeAllDescriptor()
throws java.sql.SQLException;

//this is Sun’s spelling

void removeDecriptor(String s)
throws java.sql.SQLException;

void setDefaultAutoRefetch(boolean b)
throws java.sql.SQLException;

void setDefaultExecuteBatch(int i)
throws java.sql.SQLException;

void setDefaultRowPrefetch(int i)
throws java.sql.SQLException;

void setFDO(byte[] b)
throws java.sql.SQLException;

void setIncludeSynonyms(boolean b)
throws java.sql.SQLException;

void setPhysicalStatus(boolean b)
throws java.sql.SQLException;

void setRemarksReporting(boolean b)
throws java.sql.SQLException;

void setRestrictGetTables(boolean b)
throws java.sql.SQLException;

void setStmtCacheSize(int i)
throws java.sql.SQLException;

void setStmtCacheSize(int i, boolean b)
throws java.sql.SQLException;

void setUsingXAFlag(boolean b)
throws java.sql.SQLException;

void setXAErrorFlag(boolean b)
throws java.sql.SQLException;

void shutdown(int i)
throws java.sql.SQLException;

void startup(String s, int i)
 throws java.sql.SQLException;

Table 6-3 OracleConnection Interface

Extends Method Signature
Programming WebLogic JDBC 6-23

6 Using Third-Party Drivers with WebLogic Server
Note: The following method was removed in Service Pack 04:

� isCompatibleTo816()

Table 6-4 OracleStatement Interface

Extends Method Signature

OracleStatement
extends
java.sql.statement

String getOriginalSql()
throws java.sql.SQLException;

String getRevisedSql()
throws java.sql.SQLException;

boolean getAutoRefetch()
throws java.sql.SQLException;

boolean is_value_null(boolean b, int i)
throws java.sql.SQLException;

byte getSqlKind()
throws java.sql.SQLException;

int creationState()
throws java.sql.SQLException;

int getRowPrefetch()
throws java.sql.SQLException;

int sendBatch()
throws java.sql.SQLException;

void clearDefines()
throws java.sql.SQLException;

void defineColumnType(int i, int j)
throws java.sql.SQLException;

void defineColumnType(int i, int j, String s)
throws java.sql.SQLException;
6-24 Programming WebLogic JDBC

Oracle Thin Driver Extensions
Note: The following methods were removed in Service Pack 04:

� getWaitOption()

� setWaitOption(int i)

� setAutoRollback(int i)

� getAutoRollback()

OracleStatement
extends
java.sql.statement

(continued)

void defineColumnType(int i, int j, int k)
throws java.sql.SQLException;

void describe() throws java.sql.SQLException;

void notify_close_rset() throws
java.sql.SQLException;

void setAutoRefetch(boolean b)
throws java.sql.SQLException;

void setRowPrefetch(int i)
 throws java.sql.SQLException;

Table 6-4 OracleStatement Interface

Extends Method Signature

Table 6-5 OracleResultSet Interface

Extends Method Signature

OracleResultSet
extends
java.sql.ResultSet

boolean getAutoRefetch() throws java.sql.SQLException;

 int getFirstUserColumnIndex() throws
java.sql.SQLException;

 void closeStatementOnClose() throws
java.sql.SQLException;

 void setAutoRefetch(boolean b) throws
java.sql.SQLException;

 java.sql.ResultSet getCursor(int n) throws
java.sql.SQLException;
Programming WebLogic JDBC 6-25

6 Using Third-Party Drivers with WebLogic Server
Note: The following method was removed in Service Pack 04:

� getCURSOR(String s)

.

Table 6-6 OracleCallableStatement Interface

Extends Method Signature

OracleCallableState
ment
extends java.sql.
 CallableStatement

void clearParameters()
throws java.sql.SQLException;

void registerIndexTableOutParameter(int i,
 int j, int k, int l)

throws java.sql.SQLException;

void registerOutParameter
(int i, int j, int k, int l)
throws java.sql.SQLException;

java.sql.ResultSet getCursor(int i)
throws java.sql.SQLException;

java.io.InputStream getAsciiStream(int i)
throws java.sql.SQLException;

java.io.InputStream getBinaryStream(int i)
throws java.sql.SQLException;

java.io.InputStream getUnicodeStream(int i)
 throws java.sql.SQLException;
6-26 Programming WebLogic JDBC

Oracle Thin Driver Extensions
.

Oracle Blob/Clob Extensions and Supported Methods

The following tables list the extensions to the java.sql.* interfaces.

Table 6-7 OraclePreparedStatement Interface

Extends Method Signature

OraclePreparedState
ment
extends
OracleStatement and
java.sql.
PreparedStatement

int getExecuteBatch()
throws java.sql.SQLException;

void defineParameterType(int i, int j, int k)
throws java.sql.SQLException;

void setDisableStmtCaching(boolean b)
throws java.sql.SQLException;

void setExecuteBatch(int i)
throws java.sql.SQLException;

void setFixedCHAR(int i, String s)
throws java.sql.SQLException;

void setInternalBytes(int i, byte[] b, int j)
 throws java.sql.SQLException;

Table 6-8 OracleThinBlob Interface

Extends Method Signature

OracleThinBlob
extends
java.sql.Blob

int getBufferSize()throws java.sql.Exception

int getChunkSize()throws java.sql.Exception

int putBytes(long, int, byte[])throws java.sql.Exception

int getBinaryOutputStream()throws java.sql.Exception
Programming WebLogic JDBC 6-27

6 Using Third-Party Drivers with WebLogic Server

Table 6-9 OracleThinClob Interface

Extends Method Signature

OracleThinClob
extends
java.sql.Clob

public OutputStream getAsciiOutputStream()
throws java.sql.Exception;

public Writer getCharacterOutputStream()
throws java.sql.Exception;

public int getBufferSize() throws java.sql.Exception;

public int getChunkSize() throws java.sql.Exception;

public char[] getChars(long l, int i)
throws java.sql.Exception;

public int putChars(long start, char myChars[])
throws java.sql.Exception;

public int putString(long l, String s)
 throws java.sql.Exception;
6-28 Programming WebLogic JDBC

CHAPTER
7 Using dbKona

The following sections describe the dbKona classes that provide high-level database
connectivity to Java applications:

� “Introduction to dbKona” on page 7-1

� “The dbKona API” on page 7-4

� “Entity Relationships” on page 7-15

� “Implementing with dbKona” on page 7-16

Introduction to dbKona

The dbKona classes provide a set of high-level database connectivity objects that give
Java applications and applets access to databases. dbKona sits on top of the JDBC API
and works with the WebLogic JDBC drivers, or with any other JDBC-compliant
driver.

The dbKona classes provides a higher level of abstraction than JDBC, which deals
with low-level details of managing data. The dbKona classes offer objects that allow
the programmer to view and modify database data in a high-level, vendor-independent
way. A Java application that uses dbKona objects does not need vendor-specific
knowledge about DBMS table structure or field types to retrieve, insert, modify,
delete, or otherwise use data from a database.
Programming WebLogic JDBC 7-1

7 Using dbKona
dbKona in a Multitier Configuration

dbKona may also be used in a multitier JDBC implementation consisting of WebLogic
Server and a multitier driver; this configuration requires no client-side libraries. In a
multitier configuration,WebLogic JDBC acts as an access method to the WebLogic
multitier framework. WebLogic uses a single JDBC driver, for example, WebLogic
jDriver for Oracle, to communicate from the WebLogic Server to the DBMS.

dbKona is a natural choice for writing database access programs in a multitier
environment, since with its objects you may write database applications that are
completely vendor independent. dbKona and WebLogic's multitier framework is
particularly suited for applications that want to retrieve data from several
heterogeneous databases for transparent presentation to the user.

For more information on WebLogic and the WebLogic JDBC Server, see
Programming WebLogic JDBC at http://e-docs.bea.com/wls/docs61jdbc/index.html.

How dbKona and a JDBC Driver Interact

dbKona depends upon a JDBC driver to provide and maintain a connection to a
DBMS. In order to use dbKona, you must have installed a JDBC driver.

� If you are using the WebLogic jDriver for Oracle native JDBC driver, you
should install the appropriate WebLogic-supplied .dll, .sl, or .so for your
operating system, as described in Installing and Using WebLogic jDriver for
Oracle at http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html.

� If you are using a non-WebLogic JDBC driver, you should refer to the
documentation for that JDBC driver.

JavaSoft’s JDBC is a set of interfaces that BEA has implemented to create its jDriver
JDBC drivers. BEA’s JDBC drivers are JDBC implementations of database-specific
drivers for Oracle, Informix, and Microsoft SQL Server. Using database-specific
drivers with dbKona offers the programmer access to all of the functionality of each
specific database, as well as improved performance.

Although the underlying foundation of dbKona uses JDBC for database transactions,
dbKona provides the programmer with higher-level, more convenient access to the
database.
7-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/jdbc/index.html
http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html
http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html

Introduction to dbKona
How dbKona and WebLogic Events Can interact

The dbKona package contains some “eventful” classes that send and receive events
(within WebLogic), using WebLogic events when data is updated locally or in the
DBMS.

The dbKona Architecture

dbKona uses a high level of abstraction to describe and manipulate data that resides in
a database. Classes in dbKona create and manage objects that retrieve and modify data.
An application can use dbKona objects in a consistent way without any knowledge of
how a particular vendor stores or processes data.

At the core of dbKona’s architecture is the concept of a DataSet. A DataSet contains
the results of a query. DataSets allow client-side management of query results. The
programmer can control the entire query result rather than dealing with a single record
at a time.

A DataSet contains Records, and each Record contains one or more Value objects.
A Record is comparable to a database row, and a Value can be compared to a database
cell. Value objects “know” their internal data type as stored in the DBMS, but the
programmer can treat Value objects in a consistent way without having to worry about
vendor-specific internal data types.

Methods from the DataSet class (and its subclasses TableDataSet and
QueryDataSet) provide a high-level, flexible way to navigate through and manipulate
the results of a query. Changes made to a TableDataSet can be saved to the DBMS;
dbKona maintains knowledge of which records have changed and makes a selective
save, which reduces network traffic and DBMS overhead.

dbKona also uses other objects, like SelectStmt and KeyDef to shield the
programmer from vendor-specific SQL. By using methods in these class, the
programmer can have dbKona construct the appropriate SQL, which reduces syntax
errors and does not require a knowledge of vendor-specific SQL. On the other hand,
dbKona also allows the programmer to pass SQL to the DBMS if desired.
Programming WebLogic JDBC 7-3

7 Using dbKona
The dbKona API

The following sections describe the dbKona API.

The dbKona API Reference

Package weblogic.db.jdbc
 Package weblogic.db.jdbc.oracle (Oracle-specific extensions)

Class java.lang.Object
 Class weblogic.db.jdbc.Column
 (implements weblogic.common.internal.Serializable)
 Class weblogic.db.jdbc.DataSet
 (implements weblogic.common.internal.Serializable)
 Class weblogic.db.jdbc.QueryDataSet
 Class weblogic.db.jdbc.TableDataSet
 Class weblogic.db.jdbc.EventfulTableDataSet
 (implements weblogic.event.actions.ActionDef)
 Class weblogic.db.jdbc.Enums
 Class weblogic.db.jdbc.KeyDef
 Class weblogic.db.jdbc.Record
 Class weblogic.db.jdbc.EventfulRecord
 (implements weblogic.common.internal.Serializable)
 Class weblogic.db.jdbc.Schema
 (implements weblogic.common.internal.Serializable)
 Class weblogic.db.jdbc.SelectStmt
 Class weblogic.db.jdbc.oracle.Sequence
 Class java.lang.Throwable
 Class java.lang.Exception
 Class weblogic.db.jdbc.DataSetException

 Class weblogic.db.jdbc.Value

The dbKona Objects and Their Classes

Objects in dbKona fall into three categories:

� Data container objects hold data retrieved from or bound for a database, or they
contain other objects that hold data. Data container objects are always associated
7-4 Programming WebLogic JDBC

The dbKona API
with a set of data description objects and a set of session objects. TableDataSet
and Record objects are examples of data container objects.

� Data description objects contain the metadata about data objects, that is, a
description of how the data is structured and typed, and parameters for its
retrieval from the remote DBMS. Every data object or its container is associated
with a set of data description objects. Schema and SelectStmt objects are
examples data description objects.

� Miscellaneous objects store information about errors, provide symbolic
constants, etc.

These broad categories of objects depend upon each other in application building. In a
general way, every data object has a set of descriptive objects associated with it.

Data Container Objects in dbKona

There are three basic objects that act as data containers: a DataSet (or one of its
subclasses, QueryDataSet or TableDataSet) contains Records. A Record contains
Values.

� DataSet

� QueryDataset

� TableDataSet

� EventfulTableDataSet (Deprecated)

� Record

� Value

DataSet

The dbKona package uses the concept of a DataSet to cache records retrieved from a
DBMS server. It is roughly equivalent to a table in SQL. The DataSet class has two
subclasses, QueryDataSet and TableDataSet.

In the multitier model using the WebLogic Server, DataSets can be saved (cached) on
the WebLogic Server.

� A DataSet is constructed as a QueryDataSet or a TableDataSet to hold the
results of a query or a stored procedure.
Programming WebLogic JDBC 7-5

7 Using dbKona
� A DataSet’s retrieval parameters are defined by a SQL statement, or by the
dbKona abstraction for SQL statements, a SelectStmt object.

� A Dataset is populated with Records, which contain Values. Records that are
accessible by index position (0-origined).

� A DataSet is described by and bound to a Schema, which stores information in
its attributes, like column name, data type, size, and order of each database
column represented in the DataSet. Column names in a Schema are accessible
by index position (1-origined).

The DataSet class (see weblogic.db.jdbc.DataSet) is the abstract parent class for
QueryDataSet and TableDataSet.

QueryDataSet

A QueryDataSet makes the results of an SQL query available as a collection of
Records that are accessible by index position (0-origined). Unlike the case with a
TableDataSet, changes and additions to a QueryDataSet cannot be saved into the
database.

There are two functional differences between a QueryDataSet and a TableDataSet.
First, changes made to a TableDataSet can be saved to a database; you can make
changes to Records in a QueryDataSet, but those changes cannot be saved. Second,
you can retrieve data into a QueryDataSet from more than one table.

� A QueryDataSet is constructed in the context of a java.sql.Connection or with
a java.sql.ResultSet; that is, you pass the Connection object as an
argument to the QueryDataSet constructor. A QueryDataSet’s data retrieval
is specified by a SQL query and/or by a SelectStmt object.

� A QueryDataSet is populated with Records (accessible by 0-origined index),
which contain Values (accessible by 1-origined index).

� A QueryDataSet is described by a Schema, which stores information about the
QueryDataSet’s attributes. Attributes include name, data type, size, and order
of each database column represented in the QueryDataSet.

The QueryDataSet class (see weblogic.db.jdbc.QueryDataSet) has methods for
constructing, saving, and retrieving a QueryDataSet. You can specify any SQL for a
QueryDataSet, including SQL for joins. The superclass DataSet contains methods for
managing record caching details.
7-6 Programming WebLogic JDBC

The dbKona API
TableDataSet

The functional difference between a TableDataSet and a QueryDataSet is that
changes made to a TableDataSet can be saved to a database. With a TableDataSet,
you can update values in Records, add new Records, and mark Records for deletion;
finally, you can save changes to a database, using the save() methods in either the
TableDataSet class to save an entire TableDataSet, or in the Record class to save
a single record. Additionally, the data retrieved into a TableDataSet is, by definition,
from a single database table; you cannot perform joins on database tables to retrieve
data for a TableDataSet.

If you intend to save updates or deletes to a database, you must construct the
TableDataSet with a KeyDef object that specifies a unique key for forming the
WHERE clauses in an UPDATE or DELETE statement. A KeyDef is not necessary if only
inserts take place, since an insert operation does not require a WHERE clause. The
KeyDef key must not contain columns that are filled or altered by the DBMS, since
dbKona must have a known value for the key column to construct a correct WHERE
clause.

You can also qualify a TableDataSet with an arbitrary string that is used to construct
the tail of the SQL statement. When you are using dbKona with an Oracle database,
for example, you can qualify the TableDataSet with the string “for UPDATE” to place
a lock on the records that are retrieved by the query.

A TableDataSet can be constructed with a KeyDef, a dbKona object used for setting
a unique key for saving updates and deletes to the DBMS. If you are working with an
Oracle database, you can set the TableDataSet’s KeyDef to “ROWID,” which is a
unique key inherent in each table. Then construct the TableDataSet with a set of
attributes that includes “ROWID.”

� A TableDataSet is constructed in the context of a java.sql.Connection
object; that is, you pass the Connection object as an argument to the
TableDataSet constructor. Its data retrieval is specified by the name of a
DBMS table. If you intend to save updates and deletes, you must supply a
KeyDef object when the TableDataSet is constructed. You may refine a query
with the where() and order() methods to set WHERE and ORDER BY clauses
after the TableDataSet is created.

� A TableDataSet has a default SelectStmt object associated with it that can be
used to take advantage of Query-by-example functionality.

� A TableDataSet is populated with Records (accessible by 0-origined index),
which contain Values (accessible by 1-origined index).
Programming WebLogic JDBC 7-7

7 Using dbKona
� A TableDataSet’s attributes are described by a Schema, which stores
information about the TableDataSet’s attributes, like column name, data type,
size, and order of the database columns represented in the TableDataSet.

� TableDataSets can be cached on a WebLogic JDBC Server.

� The setRefreshOnSave() method sets the TableDataSet so that any record
inserted or updated during a save is also immediately refreshed from the DBMS.
Set this flag if your TableDataSet has columns altered by the DBMS, such as
the Microsoft SQL Server IDENTITY column or a column modified by an insert
or update trigger.

� The Refresh() methods refresh records in the TableDataSet that would be
saved in the database, that is, records that you have changed in the
TableDataSet. Any changes you have made to a record are lost and the record
is marked clean. Records you have marked for delete are not refreshed. A record
you have added to the TableDataSet raises an exception stating that there is no
DBMS representation of the row from which to refresh.

� The saveWithoutStatusUpdate() methods save TableDataSet records to the
DBMS without updating the save status of the records in the TableDataSet.
Use these methods to save TableDataSet records within a transaction. If the
transaction is rolled back, the records in the TableDataSet are consistent with
the database and the transaction can be retried. After the transaction is
committed, call updateStatus() to update the save status of records in the
TableDataSet. Once you have saved a record with
saveWithoutStatusUpdate(), you cannot modify it until you call
updateStatus() on the record.

� The TableDataSet.setOptimisticLockingCol() method allows you to
designate a single column in the TableDataSet as an optimistic locking
column. Applications use this column to detect whether another user has
changed the row since it was read from the database. dbKona assumes the
DBMS updates the column whenever the row is changed, so it does not update
this column from the value in the TableDataSet. It uses the column in the
WHERE clause of an UPDATE statement when you save the record or the
TableDataSet. If another user has modified the record, dbKona’s update fails;
you can retrieve the new values for the record using Record.refresh(), make
your changes to the record, and try to save the record again.

The TableDataSet class (see weblogic.db.jdbc.TableDataSet) has methods for:

� Constructing a TableDataSet
7-8 Programming WebLogic JDBC

The dbKona API
� Setting its WHERE and ORDER BY clauses

� Getting its KeyDef

� Getting its associated JDBC ResultSet

� Getting its SelectStmt

� Getting its associated DBMS table name

� Saving its changes to a database

� Refreshing its records from the DBMS

� Getting other information about it

The superclass DataSet contains methods for managing record caching.

EventfulTableDataSet (Deprecated)

An EventfulTableDataSet, for use within WebLogic, is a TableDataSet that
sends and receives events when its data is updated locally or in the DBMS.
EventfulTableDataSet implements weblogic.event.actions.ActionDef,
which is the interface implemented by all Action classes in WebLogic Events. The
action() method of an EventfulTableDataSet updates the DBMS and notifies all
other EventfulTableDataSets for the same DBMS table of the change. (You can
read more about WebLogic Events in the White Paper and the Developer’s Guide for
WebLogic Events, also deprecated.)

When an EventfulRecord in an EventfulTableDataSet changes, it sends an
EventMessage to the WebLogic Server with a ParamSet that contains the row that
changed as well as the changed data, for the topic WEBLOGIC.[tablename], where the
tablename is the name of the table associated with an EventfulTableDataSet.
EventfulTableDataSet takes action on the received, evaluated event to update its
own copy of the record that changed.

An EventfulTableDataSet is constructed in the context of a java.sql.Connection
object, as an argument to the constructor. You must also supply a t3 Client object, a
KeyDef to be used for inserts, updates, and deletes, and the name of the DBMS table.

� Like a TableDataSet, an EventfulTableDataSet has a default SelectStmt
object associated with it that can be used to take advantage of Query-by-example
functionality.
Programming WebLogic JDBC 7-9

7 Using dbKona
� An EventfulTableDataSet is populated with EventfulRecords (accessible
by a 0-origined index). Like Records, EventfulRecords contain Values
(accessible by a 1-origined index).

� An EventfulTableDataSet’s attributes are described by its Schema, in the
same way as a TableDataSet.

For example, an EventfulTableDataSet might be used by a warehouse inventory
system to automagically update many views of a table. Here is how it works. Each
warehouse employee’s client application creates an EventfulTableDataSet from
the “stock” table and displays those records in a Java application. Employees doing
different jobs might have different displays, but all of the client applications are using
an EventfulTableDataSet of the “stock” table. Because a TableDataSet is
“eventful,” each record in the data set has registered an interest in itself automatically.
The WebLogic Topic Tree has a registration of interest for all the records; for each
client, there is a registration of interest in each record in the TableDataSet.

When a user changes a record, the DBMS is updated with the new record. At the same
time, an EventMessage (embedded with the changed Record itself) is automatically
sent to the WebLogic Server. Each client using an EventfulTableDataSet of the
“stock” table receives an event notification that has embedded in it the changed
Record. The EventfulTableDataSet for each client accepts the changed Record and
updates the GUI.

Record

Records are created as part of a DataSet. You can also construct Records manually
in the context of a DataSet and its Schema, or the Schema of an SQL table known to
an active Database session.

Records in a TableDataSet may be saved to the database individually with the
save() method in the Record class, or corporately with the save() method in the
TableDataSet class.

� Records are constructed when a DataSet is created and its query is executed. A
Record may also be added to an existing DataSet with the
DataSet.addRecord() method or with a Record constructor (after the
DataSet’s fetchRecords() method has been called to get its Schema).

� A Record contains a collection of Values. Records are accessible by a
0-origined index position. Values within a Record are accessible by 1-origined
index position.
7-10 Programming WebLogic JDBC

The dbKona API
� A Record is described by the Schema of its parent DataSet. The Schema
associated with a Record holds information about the name, data type, size, and
order of each field in the Record.

The Record class (see weblogic.db.jdbc.Record) has methods for:

� Constructing a Record object

� Determining its parent DataSet and Schema

� Determining the number of columns in it

� Determining its save or update status

� Determining the SQL string used to save or update a Record to the database

� Getting and setting its Values

� Returning the value of each of its columns as a formatted string

Value

A Value object has an internal type, which is defined by the Schema of its parent
DataSet. A Value object can be assigned a value with a data type other than its
internal type, if the assignment is legal. A Value object can also return the value of a
data type other than its internal data type, if the request is legal.

The Value object acts to shield the application from the details of manipulating
vendor-specific data types. The Value object “knows” its data type, but all Value
objects can be manipulated within a Java application with the same methods, no matter
the internal data type.

� Values are created when Records are created.

� The internal data type of a Value object may be among the following:

� Boolean

� Byte

� Byte[]

� Date

� Double-precision

� Floating-point

� Integer
Programming WebLogic JDBC 7-11

7 Using dbKona
� Long

� Numeric

� Short

� String

� Time

� Timestamp

� NULL

 These types are mapped to the JDBC types listed in java.sql.Types.

� Values are described by the Schema associated with its parent DataSet.

The Value class (see weblogic.db.jdbc.Value) has methods for getting and setting
the data and data type of a Value object.

Data Description Objects in dbKona

Data description objects contain metadata; that is, information about data structure,
how data are stored on and retrieved from the DBMS, whether and how data can be
updated. Some of the data description objects that dbKona uses are implementations
of the JDBC interface; a brief description and how to use these is provided here.

� Schema

� Column

� KeyDef

� SelectStmt

Schema

When you instantiate a DataSet, you implicitly create the Schema that describes it,
and when you fetch its Records, its Schema is updated.

� A Schema is constructed automatically when a DataSet is instantiated.

� A DataSet’s attributes (and therefore, attributes of QueryDataSets and
TableDataSets, and their associated Records) are defined by a Schema, as are
the attributes of a Table.

� Schema attributes are described as a collection of Column objects.
7-12 Programming WebLogic JDBC

The dbKona API
The Schema class (see weblogic.db.jdbc.Schema) has methods for:

� Adding and returning the Columns associated with the Schema

� Determining the number of columns in a Schema

� Determining the (1-origined) index position of a particular column name in the
Schema

Column

Schema is created.

The Column class (see weblogic.db.jdbc.Column) has methods for:

� Setting the Column to a particular data type

� Determining the data type of a Column

� Determining the database-specific data type of a Column

� Determining the name, scale, precision, and storage length of a Column

� Determining whether NULL values are allowed in the native DBMS column

� Determining if the Column is read-only and/or searchable

KeyDef

“WHERE attribute1 = value1 and attribute2 = value2,” and so on, to uniquely
identify and manipulate a particular database record. The attributes in a KeyDef should
correspond to unique key in the database table.

The KeyDef object with no attributes is constructed in the KeyDef class. Use the
addAttrib() method to build the attributes of the KeyDef, and then use the KeyDef
as an argument in the constructor for a TableDataSet. Once the KeyDef is associated
with a DataSet, you cannot add anymore attributes to it.

When you are working with an Oracle database, you can add the attribute “ROWID,”
which is an inherently unique key associated with each table, to be used for inserts and
deletes with a TableDataSet.

The KeyDef class (see weblogic.db.jdbc.KeyDef) has methods for:
Programming WebLogic JDBC 7-13

7 Using dbKona
� Adding attributes

� Determining the number of attributes in it

� Determining if it has an attribute that corresponds to a particular column name
or index position.

SelectStmt

A SelectStmt object is constructed in the SelectStmt class. Then add clauses to the
SelectStmt with methods in the SelectStmt class, and use the resulting
SelectStmt object as an argument when you create a QueryDataSet. A
TableDataSet also has a default SelectStmt associated with it that can be used to
further refine data retrieval after the TableDataSet has been created.

Methods in the SelectStmt class (see weblogic.db.jdbc.SelectStmt) correspond to the
clauses in a SQL statement, which include:

� Field (and an alias)

� From

� Group

� Having

� Order by

� Unique

� Where

There is also full support for setting and adding Query-by-example clauses. Note that
with the from() method, you can specify a string that includes an alias, in the format
“<i>tableName alias</i>”. With the field() method, you can use a string after
the format “<i>tableAlias.attribute</i>” as an argument. You are not limited
to a single table name when constructing a SelectStmt object, although its usage may
dictate whether or not a join is useful. A SelectStmt object associated with a
QueryDataSet can join one or more tables, whereas a TableDataSet cannot, since it
is by definition limited to the data in a single table.

Miscellaneous Objects in dbKona

Other miscellaneous objects in dbKona include Exceptions and Constants.

� Exceptions
7-14 Programming WebLogic JDBC

Entity Relationships
� Constants

Exceptions

� DataSetException

� LicenseException

� java.sql.SQLException

In general, DataSetExceptions occur when there is a problem with a DataSet,
including errors generated from stored procedures, or when there is an internal I/O
error.

java.sql.SqlExceptions are thrown when there is a problem building an SQL
statement or executing it on the DBMS server.

Constants

The Enums class contains constants for the following:

� Trigger states

� Vendor-specific database types

� INSERT, UPDATE, and DELETE database operations

The java.sql.Types class contains constants for data types.

Entity Relationships

Inheritance Relationships

The following describes important descendancy relationships between dbKona
classes. One class is subclassed:

DataSet

DataSet is the abstract base class for QueryDataSet and TableDataSet.

Other dbKona objects descend from DbObject.
Programming WebLogic JDBC 7-15

7 Using dbKona
Most dbKona Exceptions, including DataSetException and LicenseException,
are subclassed from java.lang.Exception and
weblogic.db.jdbc.DataSetException. LicenseException is subclassed from
RuntimeException.

Possession Relationships

Each dbKona object may have other objects associated with it that further define its
structure. These relationships are described as follows.

DataSet

A DataSet has Records, each of which has Values. A DataSet has a Schema that
defines its structure, which is made up of one or more Columns. A DataSet may have
a SelectStmt that sets parameters for data retrieval.

TableDataSet

A TableDataSet has a KeyDef for updates and deletes by key.

Schema

A Schema has Columns that define its structure.

Implementing with dbKona

The following sections describe a set of working examples that illustrate several steps
to building a simple Java application that retrieves and displays data from a remote
DBMS.

Accessing a DBMS with dbKona

The following steps describe how to use dbKona to access a DBMS.
7-16 Programming WebLogic JDBC

Implementing with dbKona
Step 1. Importing packages

Applications that use dbKona need access to java.sql and weblogic.db.jdbc (the
WebLogic dbKona package), plus any other Java classes that you will use. In the
following case, we also import the Properties class from java.util, used during the
login process, and the weblogic.html package.

 import java.sql.*;
 import weblogic.db.jdbc.*;
 import weblogic.html.*;
 import java.util.Properties;

Note that you do not import the package for your JDBC driver. The JDBC driver is
established during the connection phase. For version 2.0 and later, you do not import
weblogic.db.common, weblogic.db.server, or weblogic.db.t3client.

Step 2. Setting Properties for Making a Connection

The following code example is a method for creating the Properties object that will be
used later in this tutorial to make a connection to an Oracle DBMS. Each property is
set with a double-quote-enclosed string.

public class tutor {

 public static void main(String argv[])
 throws DataSetException, java.sql.SQLException,
 java.io.IOException, ClassNotFoundException
 {
 Properties props = new java.util.Properties();
 props.put(“user", “scott");
 props.put(“password", “tiger");
 props.put(“server", “DEMO");
 (continued below)

The Properties object will be used as an argument to create a Connection. The
JDBC Connection object will become an important context for other database
operations.

Step 3. Making a Connection to the DBMS

A Connection object is created by loading the JDBC driver class with the
Class.forName() method, and then calling the java.sql.myDriver.connect()
constructor, which takes two arguments, the URL of the JDBC driver to be used and a
java.util.Properties object.
Programming WebLogic JDBC 7-17

7 Using dbKona
You can see how to create the Properties object, props, in step 2.

 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle", props);
 conn.setAutoCommit(false);

The Connection conn becomes an argument for other actions that involve the DBMS,
for instance creating DataSets to hold query results. For details about connecting to
a DBMS, see the developers guide for your your driver.

Connections, DataSets (and, if you use them, JDBC ResultSets), and
Statements should be closed with the close() method when you have finished
working with them. Note in the code examples that follow that each of these is
explicitly closed.

Note: The default mode of java.sql.Connection sets autocommit to true. Oracle
will perform much faster if you set autocommit to false, as shown above.

Note: DriverManager.getConnection() is a synchronized method, which can
cause your application to hang in certain situations. For this reason, BEA
recommends that you use the Driver.connect() method instead of
DriverManager.getConnection()

Preparing a Query, Retrieving, and Displaying Data

The following steps describe how to prepare a query, and retrieve and display data.

Step 1. Setting Parameters for Data Retrieval

In dbKona, there are several ways to set parameters—to compose the SQL statement
and set its scope—for retrieving data. Here we show how dbKona can interact at a very
basic level with any JDBC driver, by taking the results of a JDBC ResultSet and
creating a DataSet. In this example, we use a Statement object to execute a SQL
statement. A Statement object is created with a method from the JDBC Connection
class, and then the ResultSet is created by executing the Statement.

 Statement stmt = conn.createStatement();
 stmt.execute("SELECT * from empdemo");
 ResultSet rs = stmt.getResultSet();
7-18 Programming WebLogic JDBC

Implementing with dbKona
You can use the results of a query executed with a Statement object to instantiate a
QueryDataSet. This QueryDataSet is constructed with a JDBC ResultSet:

 Statement stmt = conn.createStatement();
 stmt.execute("SELECT * from empdemo");
 ResultSet rs = stmt.getResultSet();
 QueryDataset ds = new QueryDataSet(rs);

Using the results from the execution of a JDBC Statement is only one way to create
a DataSet. It requires knowledge of SQL, and it doesn’t give you much control over
the results of your query: basically, you can iterate through the records with the JDBC
next() method. With dbKona, you do not have to know much about SQL to retrieve
records; you can use methods in dbKona to set up your query, and once you have
created a DataSet with your records, you have a much finer control over manipulating
the records.

Step 2. Creating a DataSet for the Query Results

Instead of requiring you to compose an SQL statement, dbKona lets you use methods
to set certain parts of the statement. You create a DataSet (either a TableDataSet or
a QueryDataSet) for the results of the query.

For example, the simplest data retrieval in dbKona is into a TableDataSet. Creating
a TableDataSet requires just a Connection object and the name of the DBMS table
that you want to retrieve, as in this example that retrieves the Employee table (alias
“empdemo"):

 TableDataSet tds = new TableDataSet(conn, "empdemo");

A TableDataSet can be constructed with a subset of the attributes (columns) in a
DBMS table. If you want to retrieve just a few columns from a very large table,
specifying those columns is more efficient than retrieving the entire table. To do this,
pass a list of table attributes as a string in the constructor. For example:

 TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
dept");

Use a TableDataSet if you want to be able to save changes to the DBMS, or if you
do not plan to do a join of one or more tables to retrieve data; otherwise, use a
QueryDataSet. In this example, we use the QueryDataSet constructor that takes two
arguments: a Connection object and a string that is the SQL:

 QueryDataSet qds = new QueryDataSet(conn, "select * from
empdemo");
Programming WebLogic JDBC 7-19

7 Using dbKona
You do not actually begin receiving data until you call the fetchRecords() method
in the DataSet class. After you create a DataSet, you can continue to refine its data
parameters. For instance, we could refine the selection of records to be retrieved in the
TableDataSet with the where() method, which adds a WHERE clause to the SQL that
dbKona composes. The following retrieves just one record from the Employee table
by using the where() method to create a WHERE clause:

 TableDataSet tds = new TableDataSet(conn, "empdemo");
 tds.where("empno = 8000");

Step 3. Fetching the Results

When you are statisfied with the data paramaters, call the fetchRecords() method
from the DataSet class, as shown in this example:

 TableDataset tds = new TableDataSet(conn, "empdemo", "empno,
 dept");
 tds.where("empno = 8000");
 tds.fetchRecords();

The fetchRecords() method can take arguments to fetch a certain number of
records, or to fetch records starting with a particular record. In the following example,
we fetch no more than the first 20 records and discard the rest with the
clearRecords() method:

 TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
 dept");
 tds.where("empno > 8000");
 tds.fetchRecords(20)
 .clearRecords();

When dealing with very large query results, you may prefer to fetch a few records at a
time, process them, and then clear the DataSet before the next fetch. Use the
clearRecords() method from the DataSet class to clear the TableDataSet
between fetches, as illustrated here:

 TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
 dept");
 tds.where("empno > 2000");
 while (!tds.allRecordsRetrieved()) {
 tds.fetchRecords(100);
 // Process the hundred records . . .
 tds.clearRecords();
 }
7-20 Programming WebLogic JDBC

Implementing with dbKona
You can also reuse a DataSet with a method that was added in release 2.5.3. This
method, DataSet.releaseRecords(), closes the DataSet and releases all the
Records but does not nullify them. You can reuse the DataSet to generate new
records, yet any records from the first use still held by the application remain readable.

Step 4. Examining a TableDataSet’s Schema

Here is a simple example of how you can examine the Schema information for a
TableDataSet. The toString() method in the Schema class displays a
newline-delimited list of the name, type, length, precision, scale, and null-allowable
attributes of the columns in the table queried for a TableDataSet tds:

 Schema sch = tds.schema();
 System.out.println(sch.toString());

If you use a Statement object to create a query, you should close the Statement after
you have completed the query and fetched its results:

 stmt.close();

Step 5. Examining the Data with htmlKona

The following example shows how you might use an htmlKona UnorderedList to
examine the data. This example uses DataSet.getRecord() and
Record.getValue() to examine each record in a for loop. This finds the name, ID,
and salary of the employee making the most money from the records retrieved in the
QueryDataSet we created in step 2:

 // (Creation of Database session object and QueryDataSet qds)
 UnorderedList ul = new UnorderedList();

 String name = "";
 String id = "";
 String salstr = "";
 int sal = 0;
 for (int i = 0; i < qds.size(); i++) {
 // Get a record
 Record rec = qds.getRecord(i);
 int tmp = rec.getValue("Emp Salary").asInt();
 // Add the salary amount to the htmlKona ListElement
 ul.addElement(new ListItem("$" + tmp));
 // Compare this salary to the maximum salary we have found so far
 if (tmp > sal) {
 // If this salary is a new max, save away the employee's info
Programming WebLogic JDBC 7-21

7 Using dbKona
 sal = tmp;
 name = rec.getValue("Emp Name").asString();
 id = rec.getValue("Emp ID").asString();
 salstr = rec.getValue("Emp Salary").asString();
 }

Step 6. Displaying the Results with htmlKona

htmlKona provides a convenient way to display dynamic data like that produced by the
above example. The following example shows how you might construct a page on the
fly for displaying the results of your query:

 HtmlPage hp = new HtmlPage();
 hp.getHead()
 .addElement(new TitleElement("Highest Paid Employee"));
 hp.getBodyElement()
 .setAttribute(BodyElement.bgColor, HtmlColor.white);
 hp.getBody()
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query String: ", +2))
 .addElement(stmt.toString())
 .addElement(MarkupElement.HorizontalLine)
 .addElement("I examined the values: ")
 .addElement(ul)
 .addElement(MarkupElement.HorizontalLine)
 .addElement("Max salary of those employees examined is: ")
 .addElement(MarkupElement.Break)
 .addElement("Name: ")
 .addElement(new BoldElement(name))
 .addElement(MarkupElement.Break)
 .addElement("ID: ")
 .addElement(new BoldElement(id))
 .addElement(MarkupElement.Break)
 .addElement("Salary: ")
 .addElement(new BoldElement(salstr))
 .addElement(MarkupElement.HorizontalLine);

 hp.output();

Step 7. Closing the DataSet and the Connection

 qds.close();
 tds.close();

It is also important to close the Connection to the DBMS. This code should appear at
the end of all of your database operations in a finally block, as in this example:
7-22 Programming WebLogic JDBC

Implementing with dbKona
 try {
 // Do your work
 }
 catch (Exception mye) {
 // Catch and handle exceptions
 }
 finally {
 try {conn.close();}
 catch (Exception e) {
 // Deal with any exceptions
 }
 }

Code summary

import java.sql.*;
import weblogic.db.jdbc.*;
import weblogic.html.*;
import java.util.Properties;

public class tutor {

 public static void main(String[] argv)
 throws java.io.IOException, DataSetException,
 java.sql.SQLException, HtmlException,
 ClassNotFoundException
 {
 Connection conn = null;
 try {
 Properties props = new java.util.Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("server", "DEMO");

 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle",
 props);
 conn.setAutoCommit(false);

 // Create a TableDataSet to add 10 records
 TableDataSet tds = new TableDataSet(conn, "empdemo");
 for (int i = 0; i < 10; i++) {
 Record rec = tds.addRecord();
 rec.setValue("empno", i)
 .setValue("ename", "person " + i)
 .setValue("esalary", 2000 + (i * 10));
Programming WebLogic JDBC 7-23

7 Using dbKona
 }

 // Save the data and close the TableDataSet
 tds.save();
 tds.close();

 // Create a QueryDataSet to retrieve the additions to the table
 Statement stmt = conn.createStatement();
 stmt.execute("SELECT * from empdemo");

 QueryDataSet qds = new QueryDataSet(stmt.getResultSet());
 qds.fetchRecords();

 // Use the data from the QueryDataSet
 UnorderedList ul = new UnorderedList();

 String name = "";
 String id = "";
 String salstr = "";
 int sal = 0;
 for (int i = 0; i < qds.size(); i++) {
 Record rec = qds.getRecord(i);
 int tmp = rec.getValue("Emp Salary").asInt();
 ul.addElement(new ListItem("$" + tmp));
 if (tmp > sal) {
 sal = tmp;
 name = rec.getValue("Emp Name").asString();
 id = rec.getValue("Emp ID").asString();
 salstr = rec.getValue("Emp Salary").asString();
 }
 }

 // Use an htmlKona page to display the data retrieved, and the
 // statements used to retrieve it
 HtmlPage hp = new HtmlPage();
 hp.getHead()
 .addElement(new TitleElement("Highest Paid Employee"));
 hp.getBodyElement()
 .setAttribute(BodyElement.bgColor, HtmlColor.white);
 hp.getBody()
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query String: ", +2))
 .addElement(stmt.toString())
 .addElement(MarkupElement.HorizontalLine)
 .addElement("I examined the values: ")
 .addElement(ul)
 .addElement(MarkupElement.HorizontalLine)
 .addElement("Max salary of those employees examined is: ")
 .addElement(MarkupElement.Break)
7-24 Programming WebLogic JDBC

Implementing with dbKona
 .addElement("Name: ")
 .addElement(new BoldElement(name))
 .addElement(MarkupElement.Break)
 .addElement("ID: ")
 .addElement(new BoldElement(id))
 .addElement(MarkupElement.Break)
 .addElement("Salary: ")
 .addElement(new BoldElement(salstr))
 .addElement(MarkupElement.HorizontalLine);

 hp.output();

 // Close QueryDataSet
 qds.close();
 }
 catch (Exception e) {
 // Deal with any exceptions
 }
 finally {
 // Close the connection
 try {conn.close();}
 catch (Exception mye) {
 // Deal with any exceptions
 }
 }
 }
}

Note that we closed each Statement and DataSet after use, and that we closed the
Connection in a finally block.

Using a SelectStmt Object to Form a Query

The following steps describe how to form a query using a SelectStmt
object.

Step 1. Setting SelectStmt Parameters

When you create a TableDataSet, it is associated with an empty SelectStmt that
you can then modify to form a query. In this example, we have already created a
connection conn. Here is how you access a TableDataSet’s SelectStmt:

 TableDataSet tds = new TableDataSet(conn, "empdemo");
 SelectStmt sql = tds.selectStmt();
Programming WebLogic JDBC 7-25

7 Using dbKona
Now set the parameters for the SelectStmt object. In the example, the first argument
for each field is the attribute name and the second is the alias. This query will retrieve
information about all employees who make less than $2000:

 sql.field("empno", "Emp ID")
 .field("ename", "Emp Name")
 .field("sal", "Emp Salary")
 .from("empdemo")
 .where("sal < 2000")
 .order("empno");

Step 2. Using QBE to Refine the Parameters

The SelectStmt object also gives you Query-by-example functionality.
Query-by-example, or QBE, forms parameters for data retrieval using a set of phrases
that follow the format column operator value. For example, "empno = 8000” is a
Query-by-example phrase that can select all the rows in one or more tables where the
field employee number ("empno", alias “Emp ID") equals 8000.

We can further define the parameters for data selection by using the setQbe() and
addQbe() methods in the SelectStmt class, as is shown here. These methods allow
you to use vendor-specific QBE syntax in constructing a select statement:

 sql.setQbe("ename", "MURPHY")
 .addUnquotedQbe("empno", "8000");

When you have finished, use the fetchRecords() method to populate the DataSet,
as we did in the second tutorial.

Modifying DBMS Data with a SQL Statement

The following steps describe how to modify DBMS data with a SQL statement.

Step 1. Writing SQL Statements

When you retrieve data that you expect to modify, and if you want to save those
modifications into the remote DBMS, you should retrieve data into a TableDataSet.
Changes made to QueryDataSets cannot be saved.

As with most dbKona operations, you should begin by creating the Properties and
Driver objects, and then instantiating a Connection.
7-26 Programming WebLogic JDBC

Implementing with dbKona
Step 1. Writing SQL statements

 String insert = "insert into empdemo(empno, " +
 "ename, job, deptno) values " +
 "(8000, 'MURPHY', 'SALESMAN', 10)";

The second statement changes Murphy’s name to Smith, and changes his job status
from Salesman to Manager:

 String update = "update empdemo set ename = 'SMITH', " +
 "job = 'MANAGER' " +
 "where empno = 8000";

The third statement deletes this record from the database:

 String delete = "delete from empdemo where empno = 8000";

Step 2. Executing Each SQL Statement

First, save a snapshot of the table into a TableDataSet. Later we’ll examine each
TableDataSet to verify that the execute operation produced the expected results.
Notice that TableDataSets are instantiated with the results of an executed query.

 Statement stmt1 = conn.createStatement();
 stmt1.execute(insert);

 TableDataSet ds1 = new TableDataSet(conn, "emp");
 ds1.where("empno = 8000");
 ds1.fetchRecords();

The methods associated with TableDataSet allow you to specify a SQL WHERE clause
and a SQL ORDER BY clause and to set and add to a QBE statement. We use the
TableDataSet in this example to requery the database table “emp” after each
statement is executed to see the results of the execute() method. With the “where”
clause, we narrow down the records in the table to just employee number 8000.

Repeat the execute() method for the update and delete statements and capture the
results into two more TableDataSets, ds2 and ds3.

Step 3. Displaying the Results with htmlKona

 ServletPage hp = new ServletPage();
 hp.getHead()
 .addElement(new TitleElement("Modifying data with SQL"));
 hp.getBody()
Programming WebLogic JDBC 7-27

7 Using dbKona
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new TableElement(tds))
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query results afer INSERT", 2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(insert))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds1))
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query results after UPDATE", 2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(update))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds2))
 .addElement(MarkupElement.HorizontalLine)
 .addElement(new HeadingElement("Query results after DELETE", 2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(delete))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds3))
 .addElement(MarkupElement.HorizontalLine);
 hp.output();

Code summary

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;
import java.util.*;
import weblogic.db.jdbc.*;
import weblogic.html.*;

public class InsertUpdateDelete extends HttpServlet {

 public synchronized void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException
 {
 Connection conn = null;
 try {
 res.setStatus(HttpServletResponse.SC_OK);
 res.setContentType("text/html");

 Properties props = new java.util.Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("server", "DEMO");
7-28 Programming WebLogic JDBC

Implementing with dbKona
 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle",
 props);
 conn.setAutoCommit(false);

 // Create a TableDataSet with a SelectStmt
 TableDataSet tds = new TableDataSet(conn, "empdemo");
 SelectStmt sql = tds.selectStmt();
 sql.field("empno", "Emp ID")
 .field("ename", "Emp Name")
 .field("sal", "Emp Salary")
 .from("empdemo")
 .where("sal < 2000")
 .order("empno");
 sql.setQbe("ename", "MURPHY")
 .addUnquotedQbe("empno", "8000");
 tds.fetchRecords();

 String insert = "insert into empdemo(empno, " +
 "ename, job, deptno) values " +
 "(8000, 'MURPHY', 'SALESMAN', 10)";

 // Create a statement and execute it
 Statement stmt1 = conn.createStatement();
 stmt1.execute(insert);
 stmt1.close();

 // Verify results
 TableDataSet ds1 = new TableDataSet(conn, "empdemo");
 ds1.where("empno = 8000");
 ds1.fetchRecords();

 // Create a statement and execute it
 String update = "update empdemo set ename = 'SMITH', " +
 "job = 'MANAGER' " +
 "where empno = 8000";
 Statement stmt2 = conn.createStatement();
 stmt2.execute(insert);
 stmt2.close();

 // Verify results
 TableDataSet ds2 = new TableDataSet(conn, "empdemo");
 ds2.where("empno = 8000");
 ds2.fetchRecords();

 // Create a statement and execute it
 String delete = "delete from empdemo where empno = 8000";
Programming WebLogic JDBC 7-29

7 Using dbKona
 Statement stmt3 = conn.createStatement();
 stmt3.execute(insert);
 stmt3.close();

 // Verify results
 TableDataSet ds3 = new TableDataSet(conn, "empdemo");
 ds3.where("empno = 8000");
 ds3.fetchRecords();

 // Create a servlet page to display the results
 ServletPage hp = new ServletPage();
 hp.getHead()
 .addElement(new TitleElement("Modifying data with SQL"));
 hp.getBody()
 .addElement(MarkupElement.HorizontalRule)
 .addElement(new HeadingElement("Original table", 2))
 .addElement(new TableElement(tds))
 .addElement(MarkupElement.HorizontalRule)
 .addElement(new HeadingElement("Query results afer INSERT",
2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(insert))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds1))
 .addElement(MarkupElement.HorizontalRule)
 .addElement(new HeadingElement("Query results after UPDATE",
2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(update))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds2))
 .addElement(MarkupElement.HorizontalRule)
 .addElement(new HeadingElement("Query results after DELETE",
2))
 .addElement(new HeadingElement("SQL: ", 3))
 .addElement(new LiteralElement(delete))
 .addElement(new HeadingElement("Result: ", 3))
 .addElement(new LiteralElement(ds3))
 .addElement(MarkupElement.HorizontalRule);

 hp.output();

 tds.close();
 ds1.close();
 ds2.close();
 ds3.close();
 }
 catch (Exception e) {
 // Handle the exception
7-30 Programming WebLogic JDBC

Implementing with dbKona
 }
 // Always close the connection in a finally block
 finally {
 conn.close();
 }
 }
}

Modifying DBMS Data with a KeyDef

Use a KeyDef object to establish keys for deleting and inserting data into the remote
DBMS. A KeyDef acts as an equality statement in updates and deletes after the pattern
WHERE KeyDef attribute1 = value1 and KeyDef attribute2 = value2, and
so on.

The first step is to create a connection to the DBMS. In this example, we use the
Connection object conn created in the first tutorial. The database table we use in this
example is the Employee table ("empdemo"), with fields empno, ename, job, and
deptno. The query we execute retrieves the full contents of the table empdemo.

Step 1. Creating a KeyDef and Building Its Attributes

The KeyDef object we create for inserts and deletes in this tutorial has one attribute,
the empno column in the database. Creating a KeyDef with this attribute will set a key
after the pattern WHERE empno = and the particular value assigned to empno for each
record to be saved.

A KeyDef is created and built in the KeyDef class, as shown in this example:

 KeyDef key = new KeyDef().addAttrib("empno");

If you are working with an Oracle database, you can construct the KeyDef with the
attribute “ROWID,” to do inserts and deletes on this Oracle key, as in this example:

 KeyDef key = new KeyDef().addAttrib("ROWID");

Step 2. Creating a TableDataSet with a KeyDef

In this example, we create a TableDataSet with the results of our query. We use the
TableDataSet constructor that takes a Connection object, a DBMS table name, and a
KeyDef as its arguments:
Programming WebLogic JDBC 7-31

7 Using dbKona
 TableDataSet tds = new TableDataSet(conn, "empdemo", key);

The KeyDef becomes the reference for all changes that we will make to the data. Each
time we save the TableDataSet, we change data in the database (according to the
limits set on SQL UPDATE, INSERT, and DELETE operations) based on the value of the
KeyDef attribute, which in this example is the employee number ("empno").

If you are working with an Oracle database and have added the attribute ROWID to the
KeyDef, you can construct a TableDataSet for inserts and deletes like this:

 KeyDef key = new KeyDef().addAttrib("ROWID");
 TableDataSet tds =
 new TableDataSet(conn, "empdemo", "ROWID, dept", key);
 tds.where("empno < 100");
 tds.fetchRecords();

Step 3. Inserting a Record into the TableDataSet

You can create a new Record object in the context of the TableDataSet to which it
is to be added with the addRecord() method from the TableDataSet class. Once you
have added the record, you can set the values for each of its fields with the
setValue() method from the Record class. You must set at least one value in a new
Record if you intend to save it into the database: the KeyDef field:

 Record newrec = tds.addRecord();
 newrec.setValue("empno", 8000)
 .setValue("ename", "MURPHY")
 .setValue("job", "SALESMAN")
 .setValue("deptno", 10);
 String insert = newrec.getSaveString();
 tds.save();

The getSaveString() method in the Record class returns the SQL string (a SQL
UPDATE, DELETE, or INSERT statement) used to save a Record to the database. We
saved this string into an object that we can display later to examine exactly how the
insert operation was carried out.

Step 4. Updating a Record in the TableDataSet

You also use the setValue() method to update a Record. In the following example,
we'll make a change to the record we created in the previous step:

 newrec.setValue("ename", "SMITH")
 .setValue("job", "MANAGER");
7-32 Programming WebLogic JDBC

Implementing with dbKona
 String update = newrec.getSaveString();
 tds.save();

Step 5. Deleting a Record from the TableDataSet

You can mark a record in a TableDataSet for deletion with the markToBeDeleted()
method (or unmark it with the unmarkToBeDeleted() method) in the Record class.
For instance, deleting the record we just created would be accomplished by marking
the record for deletion, as shown here:

 newrec.markToBeDeleted();
 String delete = newrec.getSaveString();
 tds.save();

Records marked for deletion are not removed from a TableDataSet until you save()
it, or until you execute the removeDeletedRecords() method in the TableDataSet
class.

Records that have been removed from the TableDataSet but not yet deleted from the
database (by the removeDeletedRecords() method) fall into a zombie state. You
can determine whether a record is a zombie by testing it with the isAZombie() method
in the Record class, as shown here:

 if (!newrec.isAZombie()) {
 . . .
 }

Step 6. More on Saving the TableDataSet

Saving a Record or a TableDataset will effectively save the data to the database.
dbKona performs selective changes, that is, only data that has changed is saved.
Inserting, updating, and deleting records in the TableDataSet affects only the data in
the TableDataSet until you use the Record.save() or TableDataSet.save()
method.

Checking Record Status Before Saving

Several methods from the Record class return information about the state of a Record
that you may want to know before a save() operation. Some of these are:
Programming WebLogic JDBC 7-33

7 Using dbKona
needsToBeSaved() and recordIsClean()
Use the needsToBeSaved() method to determine whether a Record needs
to be saved, that is, whether it has been changed since it was retrieved or last
saved. The recordIsClean() method determines whether any of the
Values in a Record need to be saved. This method just determines whether
a Record is dirty, no matter whether the scheduled database action is insert,
update, or delete. Regardless of the type (insert/update/delete), the
needsToBeSaved() method will return false after a save() operation.

valueIsClean(int)
Determines whether the Value at a particular index position in the Record
needs to be saved. This method takes the index position of a Value as its
argument.

toBeSavedWith...()
You can check how a Record will be saved with a particular SQL action with
the methods toBeSavedWithDelete(), toBeSavedWithInsert(), and
toBeSavedWithUpdate() methods. The semantics of these methods equate
to the answer to the question, “If this row is or becomes dirty, what action will
be taken when the TableDataSet is saved?”

If you want to know whether a row will participate in a save to the DBMS, use the
isClean() and the needsToBeSaved() methods.

When you make modifications to a Record or TableDataSet, use the save() method
from either class to save the changes to the database. In the previous steps, we saved
the TableDataSet after each transaction as shown below:

 tds.save();

Step 7. Verifying the changes

Here is the sample code for fetching just a single record, which is an efficient way to
verify single-record changes. In this example, we use a TableDataSet with a
query-by-example (QBE) clause to fetch just the record we’re interested in:

 TableDataSet tds2 = new TableDataSet(conn, "empdemo");
 tds2.where("empno = 8000")
 .fetchRecords();

As a final step, we can display the query results after each step and the strings
“insert”, “update”, and “delete” that we created after each save(). Refer to the
code summary in the previous tutorial to use htmlKona for displaying the results.
7-34 Programming WebLogic JDBC

Implementing with dbKona
When you have finished with the DataSets, close each one with the close() method:

 tds.close();
 tds2.close();

Code Summary

Here is a code example that uses some of the concepts covered in this section:

package tutorial.dbkona;

import weblogic.db.jdbc.*;
import java.sql.*;
import java.util.Properties;

public class rowid {

 public static void main(String[] argv)
 throws Exception
 {
 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle:DEMO",
 "scott",
 "tiger");

 // Here we insert 100 records.
 TableDataSet ts1 = new TableDataSet(conn, "empdemo");
 for (int i = 1; i <= 100; i++) {
 Record rec = ts1.addRecord();
 rec.setValue("empid", i)
 .setValue("name", "Person " + i)
 .setValue("dept", i);
 }

 // Save new records. dbKona does selective saves, that is,
 // it saves only those records in the TableDataSet that have
 // changed to cut down on network traffic and server calls.
 System.out.println("Inserting " + ts1.size() + " records.");
 ts1.save();
 // Close the DataSet now that we're finished with it.
 ts1.close();

 // Define a KeyDef for updates and deletes.
 // ROWID is an Oracle specific field which can act as a
 // primary key for updates and deletes
 KeyDef key = new KeyDef().addAttrib("ROWID");
Programming WebLogic JDBC 7-35

7 Using dbKona
 // Update the 100 records we originally added.
 TableDataSet ts2 =
 new TableDataSet(conn, "empdemo", "ROWID, dept", key);
 ts2.where("empid <= 100");
 ts2.fetchRecords();

 for (int i = 1; i <= ts2.size(); i++) {
 Record rec = ts2.getRecord(i);
 rec.setValue("dept", i + rec.getValue("dept").asInt());
 }

 // Save the updated records.
 System.out.println("Update " + ts2.size() + " records.");
 ts2.save();

 // Delete the same 100 records.
 ts2.reset();
 ts2.fetchRecords();

 for (int i = 0; i < ts2.size(); i++) {
 Record rec = ts2.getRecord(i);
 rec.markToBeDeleted();
 }

 // Delete records from server.
 System.out.println("Delete " + ts2.size() + " records.");
 ts2.save();

 // You should always close DataSets, ResultSets, and
 // Statements when you have finished working with them.
 ts2.close();

 // Finally, make sure you close the connection.
 conn.close();
 }
}

Using a JDBC PreparedStatement with dbKona

Part of the convenience of dbKona is that you do not need to know much about how to
write vendor-specific SQL, since dbKona will compose syntactically correct SQL for
you. In some cases, however, you may want to use a JDBC PreparedStatement
object with dbKona.
7-36 Programming WebLogic JDBC

Implementing with dbKona
A JDBC PreparedStatement is used to precompile a SQL statement that will be used
multiple times. You can clear the parameters for a PreparedStatement with a call to
PreparedStatement.clearParameters().

A PreparedStatment object is constructed with the preparedStatement() method
in the JDBC Connection class (the object used as conn in all of these examples). In
this example, we create a PreparedStatement and then execute it within a loop. This
statement has three IN parameters, employee id, name, and department. This will add
100 employees to the table:

 String inssql = "insert into empdemo(empid, " +
 "name, dept) values (?, ?, ?)";
 PreparedStatement pstmt = conn.prepareStatement(inssql);

 for (int i = 1; i <= 100; i++) {
 pstmt.setInt(1, i);
 pstmt.setString(2, "Person" + i);
 pstmt.setInt(3, i);
 pstmt.executeUpdate();
 }

 pstmt.close();

You should always close a Statement or PreparedStatement object when you have
finished working with it.

You can accomplish the same task with dbKona without worrying about the SQL. Use
a KeyDef to set fields for update or delete. Check the tutorial “Modifying DBMS Data
with a KeyDef” on page 7-31 for details.

Using Stored Procedures with dbKona

Access to the functionality of procedures and functions stored on a remote machine
that can carry out specific, often system-independent or vendor-independent tasks
extends the power of dbKona. Using stored procedures and functions requires an
understanding of how requests are passed back and forth between the dbKona Java
application and the remote machine. Executing a stored procedure or function changes
the value of a supplied parameter. The execution of a stored procedure or function also
returns a value that indicates its success or failure.

The first step, as in any dbKona application, is to connect to the DBMS. The example
code uses the same Connection object, conn, that we created in the first tutorial topic.
Programming WebLogic JDBC 7-37

7 Using dbKona
Step 1. Creating a Stored Procedure

We use a JDBC Statement object to create a stored procedure by executing a call to
CREATE on the DBMS. In this example, parameter “field1” is declared as an input
and output parameter of type integer:

 Statement stmtl = conn.createStatement();
 stmtl.execute("CREATE OR REPLACE PROCEDURE proc_squareInt " +
 "(field1 IN OUT INTEGER, " +
 " field2 OUT INTEGER) IS " +
 "BEGIN field1 := field1 * field1; " +
 "field2 := field1 * 3; " +
 "END proc_squareInt;");
 stmtl.close();

Step 2. Setting parameters

prepareCall() method in the JDBC Connection class.

In this example, we use the setInt() method to set the first parameter to the integer
“3”. Then we register the second parameter as an OUT parameter of type
java.sql.Types.INTEGER. Finally, we execute the stored procedure:

 CallableStatement cstmt =
 conn.prepareCall("BEGIN proc_squareInt(?, ?): END;");
 cstmt.setInt(1, 3);
 cstmt.registerOutParameter(2, java.sql.Types.INTEGER);
 cstmt.execute();

Note that Oracle does not natively support binding to “?” values in a SQL statement.
Instead it uses “:1”, “:2”, etc. We allow you to use either in your SQL.

Step 3. Examining the Results

Let’s use the simplest method and print the results to the screen:

 System.out.println(cstmt.getInt(1));
 System.out.println(cstmt.getInt(2));
 cstmt.close();
7-38 Programming WebLogic JDBC

Implementing with dbKona
Using Byte Arrays for Images and Audio

You can store and retrieve binary large object files from a database with a byte array.
Being able to handle large database data like image and sound files is necessary for
multimedia applications, which often manage data in a database.

You will probably also find htmlKona useful, which will make it easy to integrate
database data retrieved with dbKona into an HTML environment. The example code
that we use in this tutorial depends on htmlKona.

Step 1. Retrieving and Displaying Image Data

In this example, we use server-side Java running on a Netscape server posted from an
htmlKona form to retrieve the name of the image that the user wants to view. With that
image name, we query the contents of a database table called “imagetable” and get
the first record of the results. You will notice that we use a SelectStmt object to
construct a SQL query by QBE.

After we retrieve the image record, we set the HTML page type to the image type and
then retrieve the image data as an array of bytes (byte[]) into an htmlKona
ImagePage, which will display the image in a browser:

 if (iname != null) {
 // Retrieve the image from the database
 TableDataSet tds = new TableDataSet(conn, "imagetable");
 tds.selectStmt().setQbe("name", iname);
 tds.fetchRecords();

 Record rec = tds.getRecord(0);

 this.returnNormalResponse("image/" +
 rec.getValue("type").asString());

 ImagePage hp = new ImagePage(rec.getValue("data").asBytes());
 hp.output(getOutputStream());
 }
Programming WebLogic JDBC 7-39

7 Using dbKona
Step 2. Inserting an Image into a Database

We can also use dbKona to insert image files into a database. Here is a snippet of code
that adds two images as type array objects to a database by adding a Record for each
image to a TableDataSet, setting the Values of the Record, and then saving the
TableDataSet:

 TableDataSet tds = new TableDataSet(conn, "imagetable");
 Record rec = tds.addRecord();
 rec.setValue("name", "vars")
 .setValue("type", "gif")
 .setValue("data", "c:/html/api/images/variables.gif");

 rec = tds.addRecord();
 rec.setValue("name", "excepts")
 .setValue("type", "jpeg")
 .setValue("data", "c:/html/api/images/exception-index.jpg");

 tds.save();
 tds.close();

Using dbKona for Oracle Sequences

dbKona provides a wrapper—a Sequence object—to access the functionality of
Oracle sequences. An Oracle sequence is created in dbKona by supplying the starting
number and increment interval for the sequence.

The following sections describe how to use dbKona for Oracle sequences.

Constructing a dbKona Sequence Object

You construct a Sequence object with a JDBC Connection and the name of a sequence
that already exists on an Oracle server. Here is an example:

 Sequence seq = new Sequence(conn, "mysequence");
7-40 Programming WebLogic JDBC

Implementing with dbKona
Creating and Destroying Sequences on an Oracle Server from dbKona

If the Oracle sequence does not exist, you can create it from dbKona with the
Sequence.create() method, which takes four arguments: a JDBC Connection, a
name for the sequence to be created, an increment interval, and a starting point. Here
is an example that creates an Oracle sequence “mysequence” beginning at 1000 and
increasing in increments of 1:

 Sequence.create(conn, "mysequence", 1, 1000);

You can drop an Oracle sequence from dbKona, also, as in this example:

 Sequence.drop(conn, "mysequence");

Using a Sequence

Once you have created a Sequence object, you can use it to generate autoincrementing
ints, for example, to set an autoincrementing key as you add records to a table. Use
the nextValue() method to return an int that is the next increment in the Sequence.
For example:

 TableDataSet tds = new TableDataSet(conn, "empdemo");
 for (int i = 1; i <= 10; i++) {
 Record rec = tds.addRecord();
 rec.setValue("empno", seq.nextValue());
 }

You can check the current value of a Sequence with the currentValue() method, but
only after you have called the nextValue() method at least once:

 System.out.println("Records 1000-" + seq.currentValue() + "
added.");

Code Summary

Here is a working code example that illustrates how to use concepts discussed in this
section. First, we attempt to drop a sequence named “testseq” from the Oracle
server; this insures that we do not get an error when we try to create a sequence if one
already exists by that name. Then we create a sequence on the server, and use its name
to create a dbKona Sequence object:

package tutorial.dbkona;

import weblogic.db.jdbc.*;
Programming WebLogic JDBC 7-41

7 Using dbKona
import weblogic.db.jdbc.oracle.*;
import java.sql.*;
import java.util.Properties;

public class sequences {

 public static void main(String[] argv)
 throws Exception
 {
 Connection conn = null;
 Driver myDriver = (Driver)
 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 conn =
 myDriver.connect("jdbc:weblogic:oracle:DEMO",
 "scott",
 "tiger");

 // Drop the sequence if it already exists on the server.
 try {Sequence.drop(conn, "testseq");} catch (Exception e) {;}

 // Create a new sequence on the server.
 Sequence.create(conn, "testseq", 1, 1);

 Sequence seq = new Sequence(conn, "testseq");

 // Print out the next value in the sequence in a loop.
 for (int i = 1; i <= 10; i++) {
 System.out.println(seq.nextValue());
 }

 System.out.println(seq.currentValue());

 // Drop the sequence from the server
 // and close the Sequence object.
 Sequence.drop(conn, "testseq");
 seq.close();

 // Finally, close the connection.
 conn.close();
 }
}

7-42 Programming WebLogic JDBC

CHAPTER
8 Testing JDBC
Connections and
Troubleshooting

The following sections describe how to test JDBC connections and provide
troubleshooting tips:

� “Testing Connections” on page 8-1

� “Troubleshooting JDBC” on page 8-7

� “SEGVs with JDBC and Oracle Databases” on page 8-7

� “Troubleshooting Problems with Shared Libraries on UNIX” on page 8-12

Testing Connections

The following sections describe how to test connections.

Validating a DBMS Connection from the Command Line

BEA provides utilities that you can use to test two-tier and three-tier JDBC database
connections after you install WebLogic two-tier drivers, WebLogic Server, or
WebLogic JDBC.
Programming WebLogic JDBC 8-1

8 Testing JDBC Connections and Troubleshooting
How to Test a Two-Tier Connection from the Command
Line

To use the utils.dbping utility, you must complete the installation of your JDBC
driver. Make sure you have completed the following:

� For Type 2 JDBC drivers, such as WebLogic jDriver for Oracle, set your PATH
(Windows NT) or shared/load library path (UNIX) to include both your
DBMS-supplied client installation and the BEA-supplied native libraries.

� For all drivers, include the classes of your JDBC driver in your CLASSPATH.

� Installation instructions for the BEA WebLogic jDriver JDBC drivers are
available at:

� Installing WebLogic jDriver for Oracle

� Installing WebLogic jDriver for Microsoft SQL Server

� Installing WebLogic jDriver for Informix

Use the utils.dbping utility to confirm that you can make a connection between
Java and your database. The dbping utility is only for testing a two-tier connection,
using a WebLogic two-tier JDBC driver like WebLogic jDriver for Oracle.

Syntax

 $ java utils.dbping DBMS user password DB

Arguments

DBMS

Use: ORACLE, MSSQLSERVER4, or INFORMIX4

user

Valid username for database login. Use the same values and format that you use with
isql for SQL Server, sqlplus for Oracle, or DBACCESS for Informix.
8-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html
http://e-docs.bea.com/wls/docs61/mssqlserver4/install_jmsq4.html
http://e-docs.bea.com/wls/docs61/informix4/install_jinf4.html

Testing Connections
password

Valid password for the user. Use the same values and format that you use with isql,
sqlplus, or DBACCESS.

DB

Name of the database. The format varies depending on the database and version. Use
the same values and format that you use with isql, sqlplus, or DBACCESS. Type 4
drivers, such as MSSQLServer4 and Informix4, need additional information to locate
the server since they cannot access the environment.

Examples

Oracle

Connect to Oracle from Java with WebLogic jDriver for Oracle using the same values
that you use with sqlplus.

If you are not using SQLNet (and you have ORACLE_HOME and ORACLE_SID defined),
follow this example:

 $ java utils.dbping ORACLE scott tiger

If you are using SQLNet V2, follow this example:

 $ java utils.dbping ORACLE scott tiger TNS_alias

where TNS_alias is an alias defined in your local tnsnames.ora file.

Microsoft SQL Server (Type 4 driver)

To connect to Microsoft SQL Server from Java with WebLogic jDriver for Microsoft
SQL Server, you use the same values for user and password that you use with isql.
To specify the SQL Server, however, you supply the name of the computer running the
SQL Server and the TCP/IP port the SQL Server is listening on. To log into a SQL
Server running on a computer named mars listening on port 1433, enter:

 $ java utils.dbping MSSQLSERVER4 sa secret mars:1433
Programming WebLogic JDBC 8-3

8 Testing JDBC Connections and Troubleshooting
You could omit ":1433" in this example since 1433 is the default port number for
Microsoft SQL Server. By default, a Microsoft SQL Server may not be listening for
TCP/IP connections. Your DBA can configure it to do so.

Informix (Type 4 driver)

Connect to Informix from Java with WebLogic jDriver for Informix using the same
values that you use with DBACCESS. The order of arguments follows the pattern:

 $ java utils.dbping INFORMIX user pass db@server:port

As shown in this example:

 $ java utils.dbping INFORMIX bill secret stores@myserver:8543

How to Validate a Multitier WebLogic JDBC Connection
from the Command Line

Use the utils.t3dbping utility to confirm that you can make a multitier database
connection using a WebLogic Server. The t3dbping utility is only for testing a
multitier connection, after you have verified that you have a working two-tier
connection, and after you have started WebLogic.

If the two-tier JDBC driver is a WebLogic jDriver, you should test the two-tier
connection with utils.dbping. Otherwise, see the documentation for the two-tier
JDBC driver to find out how to test that connection before you test the multitier
connection.

Syntax

 $ java utils.t3dbping URL user password DB driver_class driver_URL

Arguments

URL

URL of the WebLogic Server.
8-4 Programming WebLogic JDBC

Testing Connections
username

Valid username for the DBMS.

password

Valid password for that user.

DB

Name of the database. Use the same values and format that are shown above for testing
a two-tier connection.

driver_class

Class name of the JDBC driver between WebLogic and the DBMS. For instance, if you
are using WebLogic jDriver for Oracle on the server side, the driver class name is
weblogic.jdbc.oci.Driver. Note that the class name of the driver is in
dot-notation format.

driver_URL

URL of the JDBC driver between WebLogic and the DBMS. For instance, if you are
using WebLogic jDriver for Oracle on the server side, the URL of the driver is
jdbc:weblogic:oracle. Note that the URL of the driver is colon-separated.

Examples

These examples are displayed on multiple lines for readability. Each example should
be entered as a single command.

Oracle

Here is an example of how to ping the Oracle DBMS DEMO20 running on the server
bigbox, on the same host as WebLogic, which is listening on port 7001:

 $ java utils.t3dbping // command

 t3://bigbox:7001 // WebLogic URL

 scott tiger // user password
Programming WebLogic JDBC 8-5

8 Testing JDBC Connections and Troubleshooting
 DEMO20 // DB

 weblogic.jdbc.oci.Driver // driver class

 jdbc:weblogic:oracle // driver URL

DB2 with AS/400 Type 4 JDBC driver

This example shows how to ping an AS/400 DB2 database from a workstation
command shell using the IBM AS/400 Type 4 JDBC driver:

 $ java utils.t3dbping // command

 t3://as400box:7001 // WebLogic URL

 scott tiger // user password

 DEMO // database

 com.ibm.as400.access.AS400JDBCDriver // driver class

 jdbc:as400://as400box // driver URL

WebLogic jDriver for Microsoft SQL Server (Type 4 JDBC driver)

This example shows how to ping a Microsoft SQL Server database using WebLogic
jDriver for Microsoft SQL Server:

 $ java utils.t3dbping // command

 t3://localhost:7001 // WebLogic URL

 sa // user name

 abcd // password

 hostname // database@hostname:port
 //(optional if specified
 // as part of the URL)

 weblogic.jdbc.mssqlserver4.Driver // driver class

 jdbc:weblogic:mssqlserver4:pubs@localhost:1433

 // driver URL:database@hostname:port
 //(optional if used in the database parameter)
8-6 Programming WebLogic JDBC

Troubleshooting JDBC
Troubleshooting JDBC

The following sections provide troubleshooting tips.

Troubleshooting JDBC Connections

If you are testing a connection to WebLogic, check the WebLogic log. By default, the
log is kept in a file called weblogic.log in the weblogic/myserver directory.

UNIX Users

If you encounter a problem trying to load native_login, use truss to determine the
source of the problem. For example, to run tutorial.example3, enter:

 $ truss -f -t open -s\!all java tutorial.example3

WinNT

If you get an error message that indicates that the .dll failed to load, make sure your
PATH includes the 32-bit database-related .dlls.

SEGVs with JDBC and Oracle Databases

Several conditions can cause segmentation violation errors (SEGVs) or hangs when
you use JDBC and an Oracle database.

� You must upgrade to the current client libraries, as specified in BEA WebLogic
Server Platform Support at
http://e-docs.bea.com/wls/certifications/certs_610/index.html.

� You may be using WebLogic classes with a mismatched version of the .dll,
.sl, or .so for WebLogic jDriver for Oracle. You must always use the .dll,
Programming WebLogic JDBC 8-7

http://e-docs.bea.com/wls/certifications/certs_610/index.html
http://e-docs.bea.com/wls/certifications/certs_610/index.html

8 Testing JDBC Connections and Troubleshooting
.so, or .sl file that was shipped with a particular version of the WebLogic
distribution.

� You may have exhausted the available connections in a connection pool. Make
sure that your program calls the close() method on the connection after you
are finished with it. If you need more connections, increase the size of the pool.

� If the Oracle server and WebLogic are running on the same host, and you are
using an IPC connection to Oracle, the version of your client libraries must
match the version of your server. Note that when server and client are on the
same host, sqlnet will by default, attempt to make an IPC connection. You can
prevent this by specifying "automatic_ipc"=off in your sqlnet.ora file.

� Your ORACLE_HOME environment variable may not be set correctly. You must
set ORACLE_HOME correctly so that the OCI libraries can locate needed resource
files.

Out-of-Memory Errors

A common cause of out-of-memory errors is failing to close ResultSets. The error
message is usually similar to the following:

 Run-time exception error; current exception: xalloc

 No handler for exception

When using array fetches, the native layer allocates memory in C, not in Java, so Java
garbage collection does not immediately clean up the memory. The only way to release
the memory is to close the ResultSet. (You can minimize this memory usage for better
performance.)

To avoid out-of-memory errors, make sure that your program logic closes all
ResultSets in all cases. To test whether failing to close ResultSets is causing the
out-of-memory errors, minimize the size of the array fetches so that the amount of C
memory allocated for selects is small. You can do this by setting the
weblogic.oci.cacheRows property (a JDBC connection property) to a small
number. For example,

 Properties props = new java.util.Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
8-8 Programming WebLogic JDBC

SEGVs with JDBC and Oracle Databases
 props.put("server", "DEMO");
 props.put("weblogic.oci.cacheRows", "1");

Driver d =
(Driver)Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn = d.connect("jdbc:weblogic:oracle", props);

If the out of memory errors cease, it is likely that ResultSets are not being closed
somewhere in your code. For more information, see Closing JDBC Objects.

Codeset Support

WebLogic supports Oracle codesets with the following consideration:

� If your NLS_LANG environment variable is not set, or if it is set to either
US7ASCII or WE8ISO8859-1, the driver always operates in 8859-1.

For more information, see Codeset Support in Using WebLogic jDriver for Oracle.

Other Problems with Oracle on UNIX

Check the threading model you are using. Green threads can conflict with the kernel
threads used by OCI. When using Oracle drivers, WebLogic recommends that you use
native threads. You can specify this by adding the -native flag when you start Java.

Thread-related Problems on UNIX

On UNIX, two threading models are available: green threads and native threads. For
more information, read about the JDK for the Solaris operating environment on the
Sun Web site at http://www.java.sun.com.

You can determine what type of threads you are using by checking the environment
variable called THREADS_TYPE. If this variable is not set, you can check the shell script
in your Java installation bin directory.
Programming WebLogic JDBC 8-9

http://e-docs.bea.com/wls/docs61/oracle/API_joci.html

8 Testing JDBC Connections and Troubleshooting
Some of the problems are related to the implementation of threads in the JVM for each
operating system. Not all JVMs handle operating-system specific threading issues
equally well. Here are some hints to avoid thread-related problems:

� If you are using Oracle drivers, use native threads.

� If you are using HP UNIX, upgrade to version 11.x, because there are
compatibility issues with the JVM in earlier versions, such as HP UX 10.20.

� On HP UNIX, the new JDK does not append the green-threads library to the
SHLIB_PATH. The current JDK can not find the shared library (.sl) unless the
library is in the path defined by SHLIB_PATH. To check the current value of
SHLIB_PATH, at the command line type:

$ echo $SHLIB_PATH

Use the set or setenv command (depending on your shell) to append the
WebLogic shared library to the path defined by the symbol SHLIB_PATH. For the
shared library to be recognized in a location that is not part of your
SHLIB_PATH, you will need to contact your system administrator.

Closing JDBC Objects

WebLogic also recommends—and good programming practice dictates—that you
always close JDBC objects, like Connections, Statements, and ResultSets, in a finally
block to make sure that your program executes efficiently. Here is a general example:

try {

Driver d =
(Driver)Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn = d.connect("jdbc:weblogic:oracle:myserver",
 "scott", "tiger");

 Statement stmt = conn.createStatement();
 stmt.execute("select * from emp");
 ResultSet rs = stmt.getResultSet();
 // do work

 }

 catch (Exception e) {

 // deal with any exceptions appropriate
8-10 Programming WebLogic JDBC

SEGVs with JDBC and Oracle Databases
 }

 finally {

 try {rs.close();}
 catch (Exception rse) {}
 try {stmt.close();}
 catch (Exception sse) {}
 try {conn.close();
 catch (Exception cse) {}

 }

Abandoning JDBC Objects

You should also avoid the following practice, which creates abandoned JDBC objects:

//Do not do this.
stmt.executeQuery();
rs = stmt.getResultSet();

//Do this instead
rs = stmt.executeQuery();

The first line in this example creates a result set that is lost and can be garbage collected
immediately.

Behavior for the second line varies depending on which service pack of WebLogic
Server you are running. Before WebLogic Server 6.1SP5, the server would return a
clone of the original object, which was still subject to garbage collection. After 6.1SP5,
WebLogic Server returns the original object and does not garbage collect the object
until it is no longer used.
Programming WebLogic JDBC 8-11

8 Testing JDBC Connections and Troubleshooting
Troubleshooting Problems with Shared
Libraries on UNIX

When you install a native two-tier JDBC driver, configure WebLogic Server to use
performance packs, or set up BEA WebLogic Server as a Web server on UNIX, you
install shared libraries or shared objects (distributed with the WebLogic software) on
your system. This document describes problems you may encounter and suggests
solutions for them.

The operating system loader looks for the libraries in different locations. How the
loader works differs across the different flavors of UNIX. The following sections
describe Solaris and HP-UX.

WebLogic jDriver for Oracle

Use the procedures for setting your shared libraries as described in this document. The
actual path you specify will depend on your Oracle client version, your Oracle Server
version and other factors. For details, see Installing WebLogic jDriver for Oracle.

Solaris

To find out which dynamic libraries are being used by an executable you can run the
ldd command for the application. If the output of this command indicates that libraries
are not found, then add the location of the libraries to the LD_LIBRARY_PATH
environment variable as follows (for C or Bash shells):

setenv LD_LIBRARY_PATH weblogic_directory/lib/solaris/oci817_8

Once you do this, ld should no longer complain about missing libraries.
8-12 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html

Troubleshooting Problems with Shared Libraries on UNIX
HP-UX

Incorrectly Set File Permissions

The shared library problem you are most likely to encounter after installing WebLogic
on an HP-UX system is incorrectly set file permissions. After installing WebLogic,
make sure that the shared library permissions are set correctly with the chmod
command. Here is an example to set the correct permissions for HP-UX 11.0:

% cd weblogic_directory/lib/hpux11/oci817_8

% chmod 755 *.sl

If you encounter problems loading shared libraries after you set the file permissions,
there could be a problem locating the libraries. First, make sure that the
weblogic_directory/lib/hpux11 is in the SHLIB_PATH environment variable:

% echo $SHLIB_PATH

If the directory is not listed, add it:

setenv SHLIB_PATH weblogic_directory/lib/hpux11:$SHLIB_PATH

Alternatively, copy (or link) the .sl files from the WebLogic distribution to a directory
that is already in the SHLIB_PATH variable.

If you still have problems, use the chatr command to specify that the application
should search directories in the SHLIB_PATH environment variable. The +s
enabled option sets an application to search the SHLIB_PATH variable. Here is an
example of this command, run on the WebLogic jDriver for Oracle shared library for
HP-UX 11.0:

cd weblogic_directory/lib/hpux11

chatr +s enable libweblogicoci37.sl

Check the chatr man page for more information on this command.

Incorrect SHLIB_PATH

You may also encounter a shared library problem if you do not include the proper paths
in your SHLIB_PATH when using Oracle 9. SHLIB_PATH should include the path to
the driver (oci901_8) and the path to the vendor-supplied libraries (lib32). For
example, your path may look like:
Programming WebLogic JDBC 8-13

8 Testing JDBC Connections and Troubleshooting
export SHLIB_PATH=
$WL_HOME/lib/hpux11/oci901_8:ORACLE/lib32:$SHLIB_PATH

Note also that your path cannot include the path to the Oracle 8.1.7 libraries, or clashes
will occur. For more instructions, see Setting Up the Environment for Using WebLogic
jDriver for Oracle at
http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html.
8-14 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html
http://e-docs.bea.com/wls/docs61/oracle/install_jdbc.html

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	1. Introduction to WebLogic JDBC
	2. Administration and Configuration for WebLogic JDBC
	3. Performance Tuning Your JDBC Application
	4. Configuring WebLogic JDBC Features
	5. Using WebLogic Multitier JDBC Drivers
	6. Using Third-Party Drivers with WebLogic Server
	7. Using dbKona
	8. Testing JDBC Connections and Troubleshooting
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic JDBC
	Overview of JDBC
	Overview of JDBC Drivers
	Types of JDBC Drivers
	Table of Drivers
	Table 1�1 JDBC Drivers

	Description of JDBC Drivers
	WebLogic Server JDBC Two-Tier Drivers
	WebLogic jDriver for Oracle
	WebLogic jDriver for Microsoft SQL Server
	WebLogic jDriver for Informix

	WebLogic Server JDBC Multitier Drivers
	WebLogic Pool Driver
	WebLogic RMI Driver
	WebLogic JTS Driver

	Third-Party Drivers
	Cloudscape
	Sybase jConnect Driver
	Oracle Thin Driver

	Overview of Connection Pools
	Table 1�2 Advantages to Using Connection Pools
	Using Connection Pools with Server-side Applications
	Using Connection Pools with Client-side Applications

	Overview of MultiPools
	Choosing the MultiPool Algorithm

	Overview of Clustered JDBC
	Overview of DataSources
	JDBC API
	WebLogic JDBC Interface Definitions

	JDBC 2.0
	Limitations

	Platforms

	2 Administration and Configuration for WebLogic JDBC
	Configuring JDBC
	Configuring Connection Pools
	Configuring MultiPools
	Configuring DataSources and TxDataSources

	Monitoring JDBC Connectivity

	3 Performance Tuning Your JDBC Application
	Overview of JDBC Performance
	WebLogic Performance-Enhancing Features
	How Connection Pools Enhance Performance
	Caching Data

	Designing Your Application for Best Performance
	1. Process as Much Data as Possible Inside the Database
	2. Use Built-in DBMS Set-based Processing
	3. Make Your Queries Smart
	Table 3�1 Full Results Returned
	Table 3�2 Results from Subquery

	4. Make Transactions Single-batch
	5. Never Have a DBMS Transaction Span User Input
	6. Use In-place Updates
	7. Keep Operational Data Sets Small
	8. Use Pipelining and Parallelism

	4 Configuring WebLogic JDBC Features
	Using Connection Pools
	Advantages to Using Connection Pools
	Connection Pool Fail-Over Requirements
	Creating a Connection Pool at Startup
	Connection Pool Attributes
	Name
	URL
	Driver Class Name
	Properties
	Password
	Open String Password
	Login Delay Seconds
	Initial Capacity
	Maximum Capacity
	Capacity Increment
	Allow Shrinking
	Shrink Period
	Test Table Name
	Refresh Period
	Test Reserved Connections
	Test Released Connections

	Notes About Refreshing Connections in a JDBC Connection Pool

	Permissions
	Table 4�1 File Realm JDBC ACLs

	Connection Pool Limitation
	Creating a Connection Pool Dynamically
	Properties
	Table 4�2 Connection Pool Properties

	Dynamic Connection Pool Sample Code
	Import Packages
	Use JNDI to Retrieve the JdbcServices Object
	Set the Properties
	Create the Dynamic Pool
	Retrieve the Pool Handle

	Managing Connection Pools
	Retrieving Information About a Pool
	weblogic.jdbc.common.JdbcServices.poolExists()
	weblogic.jdbc.common.Pool.getProperties()

	Disabling a Connection Pool
	weblogic.jdbc.common.Pool.disableDroppingUsers()
	weblogic.jdbc.common.Pool.disableFreezingUsers()
	weblogic.jdbc.common.pool.enable()

	Shrinking a Connection Pool
	weblogic.jdbc.common.Pool.shrink()

	Shutting Down a Connection Pool
	weblogic.jdbc.common.Pool.shutdownSoft()
	weblogic.jdbc.common.Pool.shutdownHard()

	Resetting a Pool
	weblogic.jdbc.common.Pool.reset()
	a. In a try block, test a connection from the connection pool with a SQL statement that is guaran...
	b. Catch the SQLException.
	c. Call the reset() method in the catch block.

	Using MultiPools
	Figure 4�1 MultiPool Architecture
	Choosing the MultiPool Algorithm
	High Availability
	Notes: You must set TestConnectionsOnReserve=true for the connection pools within the MultiPool s...

	Load Balancing

	MultiPool Fail-Over Limitations and Requirements
	Guidelines to Setting Wait for Connection Times
	Messages and Error Conditions
	Exceptions
	Capacity Issues

	Configuring and Using DataSources
	Importing Packages to Access DataSource Objects
	Obtaining a Client Connection Using a DataSource
	Code Examples

	5 Using WebLogic Multitier JDBC Drivers
	Overview of WebLogic Multitier Drivers
	Using the WebLogic RMI Driver
	Limitations When Using the WebLogic RMI Driver
	Setting Up WebLogic Server to Use the WebLogic RMI Driver
	Setting Up the Client to Use the WebLogic Server
	Import the Following Packages
	Obtain the Client Connection
	Using a JNDI Lookup to Obtain the Connection
	Using Only the WebLogic RMI Driver to Obtain the Connection

	Row Caching with the WebLogic RMI Driver
	Important Limitations to Using Row Caching with the WebLogic RMI Driver

	Using the WebLogic JTS Driver
	Implementing with the JTS Driver
	1. Import the following classes:
	2. Establish the transaction by using the UserTransaction class. This class can be looked up in t...
	3. Start a transaction on the current thread:
	4. Load the JTS driver:
	5. Get a connection from the connection pool:
	6. Execute your database operations. These operations may be made by any service that uses a data...
	7. Close your connection objects. Note that closing the connections does not commit the transacti...
	8. Execute any other database operations. If these operations are made by connecting to the same ...
	9. Complete the transaction by either committing the transaction or rolling it back. The JTS driv...

	Using the WebLogic Pool Driver

	6 Using Third-Party Drivers with WebLogic Server
	Overview of Third-Party JDBC Drivers
	Limitations
	Setting the Environment for Your Third-Party Driver
	CLASSPATH for Third-Party Driver on Windows
	CLASSPATH for Third-Party Driver on UNIX

	Updating Oracle Thin Driver
	Using the Oracle 10g Thin Driver
	Package Change for Oracle Thin Driver 9.x and 10g

	Updating Sybase jConnect Driver
	Installing and Using the IBM Informix JDBC Driver
	1. Copy ifxjdbc.jar and ifxjdbcx.jar files from INFORMIX_INSTALL\lib and paste it in WL_HOME\serv...
	2. Add the path to ifxjdbc.jar and ifxjdbcx.jar to your CLASSPATH. For example:
	Connection Pool Attributes when using the IBM Informix JDBC Driver
	Table 6�1 Non-XA Connection Pool Attributes Using the Informix JDBC Driver
	Table 6�2 XA Connection Pool Attributes Using the Informix JDBC Driver

	Programming Notes for the IBM Informix JDBC Driver

	Getting a Connection with Your Third-Party Driver
	Using Connection Pools with a Third-Party Driver
	Creating the Connection Pool and DataSource
	Using a JNDI Lookup to Obtain the Connection

	Getting a Physical Connection from a Connection Pool
	Code Sample for Getting a Physical Connection
	Limitations for Using a Physical Connection

	Obtaining a Direct (Non-pooled) JDBC Connection
	Obtaining a Direct Connection Using the Oracle Thin Driver
	Obtaining a Direct Connection Using the Sybase jConnect Driver

	Oracle Thin Driver Extensions
	Sample Code for Accessing Oracle Extensions to JDBC Interfaces
	Import Packages to Access Oracle Extensions
	Establish the Connection
	Retrieve the Default Row Prefetch Value

	Sample Code for Accessing Oracle Blob/Clob Interfaces
	Import Packages to Access Blob and Clob Extensions
	Query to Select Blob Locator from the DBMS
	Declare the WebLogic Server java.sql Objects
	Begin SQL Exception Block
	Updating a CLOB Value Using a Prepared Statement

	Tables of Oracle Interfaces
	Oracle Extensions and Supported Methods
	Table 6�3 OracleConnection Interface
	Table 6�4 OracleStatement Interface
	Table 6�5 OracleResultSet Interface
	Table 6�6 OracleCallableStatement Interface
	Table 6�7 OraclePreparedStatement Interface

	Oracle Blob/Clob Extensions and Supported Methods
	Table 6�8 OracleThinBlob Interface
	Table 6�9 OracleThinClob Interface

	7 Using dbKona
	Introduction to dbKona
	dbKona in a Multitier Configuration
	How dbKona and a JDBC Driver Interact
	How dbKona and WebLogic Events Can interact
	The dbKona Architecture

	The dbKona API
	The dbKona API Reference
	The dbKona Objects and Their Classes
	Data Container Objects in dbKona
	DataSet
	QueryDataSet
	TableDataSet
	EventfulTableDataSet (Deprecated)
	Record
	Value
	Data Description Objects in dbKona
	Schema
	Column
	KeyDef
	SelectStmt
	Miscellaneous Objects in dbKona
	Exceptions
	Constants

	Entity Relationships
	Inheritance Relationships
	Possession Relationships
	DataSet
	TableDataSet
	Schema

	Implementing with dbKona
	Accessing a DBMS with dbKona
	Step 1. Importing packages
	Step 2. Setting Properties for Making a Connection
	Step 3. Making a Connection to the DBMS

	Preparing a Query, Retrieving, and Displaying Data
	Step 1. Setting Parameters for Data Retrieval
	Step 2. Creating a DataSet for the Query Results
	Step 3. Fetching the Results
	Step 4. Examining a TableDataSet’s Schema
	Step 5. Examining the Data with htmlKona
	Step 6. Displaying the Results with htmlKona
	Step 7. Closing the DataSet and the Connection

	Using a SelectStmt Object to Form a Query
	Step 1. Setting SelectStmt Parameters
	Step 2. Using QBE to Refine the Parameters

	Modifying DBMS Data with a SQL Statement
	Step 1. Writing SQL Statements
	Step 1. Writing SQL statements
	Step 2. Executing Each SQL Statement
	Step 3. Displaying the Results with htmlKona

	Modifying DBMS Data with a KeyDef
	Step 1. Creating a KeyDef and Building Its Attributes
	Step 2. Creating a TableDataSet with a KeyDef
	Step 3. Inserting a Record into the TableDataSet
	Step 4. Updating a Record in the TableDataSet
	Step 5. Deleting a Record from the TableDataSet
	Step 6. More on Saving the TableDataSet
	Checking Record Status Before Saving
	needsToBeSaved() and recordIsClean()
	valueIsClean(int)
	toBeSavedWith...()

	Step 7. Verifying the changes
	Code Summary

	Using a JDBC PreparedStatement with dbKona
	Using Stored Procedures with dbKona
	Step 1. Creating a Stored Procedure
	Step 2. Setting parameters
	Step 3. Examining the Results

	Using Byte Arrays for Images and Audio
	Step 1. Retrieving and Displaying Image Data
	Step 2. Inserting an Image into a Database

	Using dbKona for Oracle Sequences
	Constructing a dbKona Sequence Object
	Creating and Destroying Sequences on an Oracle Server from dbKona
	Using a Sequence
	Code Summary

	8 Testing JDBC Connections and Troubleshooting
	Testing Connections
	Validating a DBMS Connection from the Command Line
	How to Test a Two-Tier Connection from the Command Line
	Syntax
	Arguments
	DBMS
	user
	password
	DB

	Examples
	Oracle
	Microsoft SQL Server (Type 4 driver)
	Informix (Type 4 driver)

	How to Validate a Multitier WebLogic JDBC Connection from the Command Line
	Syntax
	Arguments
	URL
	username
	password
	DB
	driver_class
	driver_URL

	Examples
	Oracle
	DB2 with AS/400 Type 4 JDBC driver
	WebLogic jDriver for Microsoft SQL Server (Type 4 JDBC driver)

	Troubleshooting JDBC
	Troubleshooting JDBC Connections
	UNIX Users
	WinNT

	SEGVs with JDBC and Oracle Databases
	Out-of-Memory Errors
	Codeset Support
	Other Problems with Oracle on UNIX
	Thread-related Problems on UNIX
	Closing JDBC Objects
	Abandoning JDBC Objects

	Troubleshooting Problems with Shared Libraries on UNIX
	WebLogic jDriver for Oracle
	Solaris
	HP-UX
	Incorrectly Set File Permissions
	Incorrect SHLIB_PATH

