
jCOM

B E A W e b L o g i c j C O M V e r s i o n 6 . 1
D o c u m e n t D a t e : N o v e m b e r 1 , 2 0 0 1

BEA WebLogic

User Guide

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document

1. Introducing BEA WebLogic jCOM
What is BEA WebLogic jCOM?... 1-1

The Java COM Conflict... 1-2

In Support of Java .. 1-2

In Support of COM .. 1-2

The Conflict Between Java and COM.. 1-3

WebLogic jCOM’s Solution to the Conflict ... 1-4

How WebLogic jCOM Works... 1-4

WebLogic jCOM Features .. 1-5

2. WebLogic jCOM Programming Models
WebLogic jCOM Components.. 2-1

Defining the Terms.. 2-2

DCOM Mode.. 2-2

Native Mode... 2-2

Zero Client Installation... 2-3

Late Binding... 2-3

Early Binding ... 2-3

WebLogic jCOM Programming Models ... 2-3

DCOM Zero Client Programming Model .. 2-4

DCOM Late Bound Programming Model.. 2-5

DCOM Early Bound Programming Model .. 2-5

DCOM Late Bound Encapsulation Programming Model 2-7

Native Late Bound Programming Model ... 2-7

Native Early Bound Programming Model ... 2-8
BEA WebLogic jCOM User Guide iii

3. Programming
Server-Side Programming Requirements .. 3-1

Client-Side Programming Requirements... 3-3

DCOM Zero Client Programming Model .. 3-3

DCOM Late Bound Programming Model.. 3-4

DCOM Early Bound Programming Model .. 3-4

DCOM Late Bound Encapsulation Programming Model 3-6

Native Mode Programming Model... 3-8

Intercepting the Instantiation of Java Objects ... 3-8

Instantiating Java Objects from COM using Constructors 3-10

Implementing a Singleton Java Object .. 3-10

4. Deploying your Application
Deployment Options.. 4-1

Deploying your Application .. 4-2

Deploying a DCOM Zero Client Implementation...................................... 4-2

Deploying a DCOM Late Bound Implementation 4-2

Deploying a DCOM Early Bound Implementation.................................... 4-3

Deploying a DCOM Late Bound Encapsulation Implementation.............. 4-4

Deploying a Native Mode Implementation .. 4-5

Server Clustering .. 4-6

5. WebLogic jCOM Tools
The regjvm GUI Tool ... 7

JVM modes.. 8

DCOM mode .. 8

Native mode (out of process) ... 9

Native mode in process .. 9

The User Interface of the regjvm GUI Tool.. 10

DCOM Mode Options for the regjvm GUI Tool... 11

Standard Options .. 11

Advanced Options .. 12

Native Mode Options for the regjvm GUI Tool.. 13

Standard Options .. 13

Advanced Options .. 13
iv BEA WebLogic jCOM User Guide

Native Mode in Process Options for the regjvm GUI Tool14

Standard Options...14

Advanced Options...15

The regjvmcmd Command Line Tool ...16

The java2com Tool..16

The regtlb Tool ..19
BEA WebLogic jCOM User Guide v

vi BEA WebLogic jCOM User Guide

About This Document

This document introduces BEA WebLogic jCOM Bridge features and describes the
architecture. The document will concentrate on one direction of the WebLogic jCOM
bridge: COM clients making calls to Java objects (COM-to-Java). For more
information about Java clients accessing COM components, see the Reference Guide.

The document is organized as follows:

� Chapter 1, “Introducing BEA WebLogic jCOM,” is an overview of WebLogic
Server jCOM and its architecture.

� Chapter 2, “WebLogic jCOM Programming Models,” describes the different
ways in which COM-to-Java communication can be implemented using
WebLogic jCOM.

� Chapter 3, “Programming,” describes what the programmer has to do in order to
use WebLogic jCOM to access Java components from a COM client.

� Chapter 4, “Deploying Your Application,” provides information about the steps
that need to be taken before you can run your application.

� Chapter 5, “WebLogic jCOM Tools” describes the most commonly used
WebLogic jCOM tools.

Audience

This document is written for architects, application developers and administrators who
are interested in using the WebLogic jCOM feature in WebLogic Server.
WebLogic jCOM User Guide vii

http://e-docs.bea.com/wls/docs61/jcomreference/index.html
http://e-docs.bea.com/wls/docs61/jcomreference/index.html

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page http://www.bea.com, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic jCOM. Please
visit http://e-docs.bea.com/wls/docs61.
viii WebLogic jCOM User Guide

http://www.bea.com
http://www.bea.com
http://www.adobe.com
http://e-docs.bea.com/wls/docs61

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic jCOM, or if you have problems installing and
running BEA WebLogic jCOM, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
WebLogic jCOM User Guide ix

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
x WebLogic jCOM User Guide

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
WebLogic jCOM User Guide xi

xii WebLogic jCOM User Guide

CHAPTER
1 Introducing BEA
WebLogic jCOM

The following sections describe how WebLogic jCOM can expand the accessibility of
WebLogic Server to COM clients:

� What is BEA WebLogic jCOM?

� The Java COM Conflict

� WebLogic jCOM’s Solution to the Conflict

� How WebLogic jCOM Works

� WebLogic jCOM Features

What is BEA WebLogic jCOM?

BEA WebLogic jCOM is a bi-directional COM-Java bridging tool. Using WebLogic
jCOM you can access Component Object Model (COM) components as though they
were Java objects, and you can access pure Java objects as though they were COM
Components.
WebLogic jCOM User Guide 1-1

1 Introducing BEA WebLogic jCOM
The Java COM Conflict

In Support of Java

One of the reasons why so many companies are using Java, is that it allows them to
dramatically reduce the costs of software development and deployment, because Java
programs can execute on any platform that supports a standard Java Virtual Machine
(JVM).

The principle of developing "pure" Java software is a very important one, and many
software developers are, correctly, extremely concerned about the use of any software
which locks them into a specific platform.

In Support of COM

Software Components are a natural evolution of Object Oriented software
development, enabling the isolation of parts of an application into separate
components. Such components can be shared between applications, and since
components are only accessed through a rigidly defined interface, their
implementation can be changed without impacting applications which use them.

Microsoft's widely used Component Object Model (COM) defines a binary standard
for component integration, allowing COM components created using Visual BASIC
(for example), to be accessed from an application created using Visual C++.
1-2 WebLogic jCOM User Guide

The Java COM Conflict
An enormous number of COM Components have been created and are available for
purchase. Indeed, any software which has been recently developed under Microsoft
Windows will almost certainly have been created using components.

Modern software design under Microsoft Windows practically mandates that an
application be designed using a COM Component based approach. One of the benefits
of doing so is that parts of an application's functionality can be made accessible to other
applications, not only the same host, but also remotely -- using Distributed COM
(DCOM).

The Conflict Between Java and COM

There may be conflict between the desire to create Java software which runs anywhere,
and the need to re-use COM software components.

This conflict often manifests itself in companies where there are two clearly divided
camps -- the Java developers, who abhor anything which will limit their pure Java
software to a specific platform, and the Windows developers, that are urging the use
and re-use of COM components.

Nevertheless, there is frequently a business need to access existing applications from
new applications developed in pure Java, running in a standard JVM. Many of these
existing applications were developed under Microsoft Windows, and because they
were well designed, they expose their functionality to other applications by exposing
COM Components.
WebLogic jCOM User Guide 1-3

1 Introducing BEA WebLogic jCOM
WebLogic jCOM’s Solution to the Conflict

BEA WebLogic jCOM offers a solution to the conflict by providing a bridge which
allows you the “write once, run anywhere” benefit Java and the benefit of COM
component re-use provides.

Internally WebLogic jCOM uses a standard platform independent mechanism which
Microsoft has defined for accessing COM Components.

How WebLogic jCOM Works

WebLogic jCOM's Java-COM bridging capabilities allow COM access from and to
Java objects that are running on any operating system environment.
1-4 WebLogic jCOM User Guide

WebLogic jCOM Features
COM developers can make callbacks into Java objects. WebLogic jCOM dynamically
"remote-enables" any Java object, making all of its public methods and member
variables accessible from COM.

To the Java programmer, WebLogic jCOM makes COM components look just like
Java objects, presenting COM properties, methods and events as Java properties,
methods and events.

Figure 1-1 WebLogic jCOM works with any Java Virtual Machine, on any
platform, and requires no native code.

WebLogic jCOM's pure Java runtime talks to COM components using Distributed
COM layered over Remote Procedure Calls (RPC), which are themselves layered on
TCP/IP. So at the lowest level WebLogic jCOM uses the totally standard Java
networking classes.

WebLogic jCOM Features

The key features of WebLogic jCOM can be summarized as follows:

� WebLogic jCOM provides a bi-directional bridge between COM components
and Java. Enterprise Java Beans (EJBs) and Java objects can be accessed from
COM clients; COM components can be accessed from Java clients.
WebLogic jCOM User Guide 1-5

1 Introducing BEA WebLogic jCOM
� WebLogic jCOM hides the existence of the data types accessed by the client,
dynamically mapping between the most appropriate Java objects and COM
components.

� WebLogic jCOM supports both late and early binding.

� All JVMs are supported.

� The machine running the JVM only needs to have the WebLogic jCOM runtime
(that is only jCOM.jar) on it. The jCOM.jar file requires no native code, it is
pure Java.

� No native code is required on the machine hosting the COM Component.
Internally, WebLogic jCOM uses the Windows DCOM network protocol to
provide communication between both local and remote COM components and a
pure Java environment. WebLogic jCOM does, however, support an optional
“native mode” which maximizes performance when running on a Windows
platform.

� The WebLogic jCOM Java runtime (jcom.jar) is approximately 595K in size.

� WebLogic jCOM supports event handling. For example, with WebLogic jCOM
Java events are accessible from VB using the standard COM event mechanism
and also, Java objects can subscribe to COM compnent events.

� WebLogic jCOM lets you access COM Components from Java using no
authentication, or with the equivalent of Connect level authentication.
1-6 WebLogic jCOM User Guide

CHAPTER
2 WebLogic jCOM
Programming Models

The following sections look at the different ways in which COM-to-Java
communication can be implemented using WebLogic jCOM, along with the
advantages and disadvantages of each implementation:

� WebLogic WebLogic jCOM Components

� Defining the Terms

� WebLogic WebLogic jCOM Programming Models

WebLogic jCOM Components

BEA WebLogic jCOM allows you to access Java objects (including Java components)
running on any Operating System from COM clients running on Microsoft Windows.

In essence, WebLogic jCOM is a kit which provides you with the runtime environment
and necessary components to create a Java COM-to-Java bridge. In all the examples
we look at, the bridge is on the same machine as the WebLogic Server machine.

The jCOM.jar runtime is required to compile and run the bridge. The bridge itself is
a Java process, created by the user, which runs in the background to handle the COM
to Java communication between the client and the server. The bridge,
JCOMBridge.java, provided with the examples serves both as a bridge for the
examples and a base for creating your own bridge.
WebLogic jCOM User Guide 2-1

2 WebLogic jCOM Programming Models
In addition to the runtime file, WebLogic jCOM also provides a number of tools and
components which are used for configuring the client and server environments.

Note that the Java Virtual Machine always runs as a separate process to the VB
process, possibly even on another machine. WebLogic jCOM cannot be used to put a
Java bean inside a VB window, since they are in separate processes.You do however
have access to all public methods and fields of any public Java class from your Visual
Basic programs.

COM-to-Java communication can be achieved using any of the following
programming models:

� DCOM Zero Client Programming Model

� DCOM Late Bound Programming Model

� DCOM Early Bound Programming Model

� DCOM Late Bound Encapsulation Programming Model

� Native Late Bound Programming Model

� Native Early Bound Programming Model

Defining the Terms

DCOM Mode

The DCOM (Distributed Component Object Model) mode uses the Component Object
Model (COM) to support communication among objects on different computers.

Native Mode

Native mode uses native code (DLLs), which are compiled and optimized specifically
for the local operating system and CPU, resulting in better performance.
2-2 WebLogic jCOM User Guide

WebLogic jCOM Programming Models
Zero Client Installation

Zero client installation means that you do not have to install any software on the
Windows client machine. There is no deployment overhead.

Late Binding

Late binding is a way of providing access to another application’s objects. In late
bound access, no information about the object being accessed is available at compile
time; the objects being accessed are dynamically evaluated at runtime. This means that
it is not until you run the program that you find out if the methods and properties you
are accessing actually exist.

Early Binding

Early binding is a way of providing access to another application’s objects. Early
bound access provides you with information about the object you are accessing while
you are compiling your program; all objects accessed are evaluated at compile time.
This requires that the server application provide a type library and that the client
application identify the library for loading onto the client system.

WebLogic jCOM Programming Models

COM-to-Java communication can be implemented using either DCOM or Native
mode. Each of these modes provides a choice of programming model.

In all the implementations, the COM client runs on a Microsoft Windows platform.
The Java component runs on a Java™ 2 Platform, Enterprise Edition 1.3 and
WebLogic Server 6.1. The client and server/bridge can run on the same system in a
one-system implementation.
WebLogic jCOM User Guide 2-3

2 WebLogic jCOM Programming Models
DCOM Zero Client Programming Model

A DCOM zero client installation is easy to implement. No WebLogic jCOM specific
software is required on the client side.

Zero client installation utilizes late binding and therefore provides the same flexibility
in terms of changes made to the Java component. However, this implementation
requires that the bridge location and port number be hard coded into the COM client,
which means that if the bridge location is changed, this reference has to be regenerated
and changed in the source code.

The DCOM zero client installation is more error prone than the DCOM early bound
implementation.

Relative to the DCOM late bound implementation, DCOM zero client installation
provides a gain in performance on initialization at runtime.

Figure 2-1 Runtime installation for a typical DCOM zero client implementation.

For the client to access the Java component:

1. The WebLogic jCOM bridge location is hardcoded into the client using a objref
moniker string. The objref moniker is generated by the user and it encodes the IP
address and port of the WebLogic jCOM bridge. Once the bridge connection is
established the client can link a COM object to an interface in the Java component.

2. Any further references in the client to this COM object will use the Java method
as if it were a COM method.

For an example of zero client installation implementation see the Zero Client
Installation example installed in the samples/examples directory of the WebLogic
jCOM installation.
2-4 WebLogic jCOM User Guide

WebLogic jCOM Programming Models
DCOM Late Bound Programming Model

DCOM late bound access is easy to implement and it is a flexible implementation since
objects referenced are only evaluated at runtime. This however also means that no type
checking can be done at compile time, which makes this implementation more error
prone.

Figure 2-2 Runtime installation for a typical DCOM late bound implementation.

For the client to access the Java component:

1. In the client source code, you link a COM object to an interface in the Java
component. For the client to access the interface, you have to use a WebLogic
jCOM tool to register the JVM in the Windows registry and associate it with the IP
address and port of the WebLogic jCOM bridge.

2. Any further references in the client to this COM object will use the Java method
as if it were a COM method.

For an example of a DCOM late bound implementation see the Late Bound
Implementation example installed in the samples/examples directory of the
WebLogic jCOM installation.

DCOM Early Bound Programming Model

DCOM early bound access is complex to implement. It requires the generation of a
type library and wrappers. The type library is required on the client side; the wrappers
are required on the server side. If the client and user are running on separate machines
the type library and wrappers have to be generated on the same machine and then
copied to the system where they are required.
WebLogic jCOM User Guide 2-5

2 WebLogic jCOM Programming Models
Early bound access lacks the flexibility of late bound access in that any changes made
to the Java component require regeneration of the wrappers and the library. See Late
Bound Encapsulation Programming Model for a hybrid alternative strategy.

Early bound access does provide improved reliability. Compile-time type checking
makes debugging easy and the user has the advantage of being able to browse the type
library.

Relative to the DCOM late bound implementation, the DCOM early bound
implementation provides improved runtime transaction performance, but slower
initialization at runtime.

Figure 2-3 Runtime installation for a typical DCOM early bound
implementation.

For the client to access the Java component:

1. In the client source code, COM objects are declared using a user generated type
library. For the client to access the interface, you have to use a WebLogic jCOM
tool to register the JVM in the Windows registry and associate it with the IP address
and port of the WebLogic jCOM bridge. The type library is then registered on the
client side and linked to the registered JVM name.

2. Any further references in the client to this COM object will use the Java method
as if it were a COM method.

For an example of a DCOM early bound implementation see the Early Bound
Implementation example installed in the samples/examples directory of the
WebLogic jCOM installation.
2-6 WebLogic jCOM User Guide

WebLogic jCOM Programming Models
DCOM Late Bound Encapsulation Programming Model

If you have used early binding and plan to alter your Java component interface, or
simply wish to be prepared for the future possibility, it is recommended that you
employ late bound encapsulation. Any changes made to a Java component requiring a
recompilation of the wrappers, will also necessitate creation of a new client-side type
library, since wrappers and type library are interdependent and version specific. This
situation could arise even if the Java component interface changes are irrelevant to a
particular client program. You could therefore be forced to redistribute the new type
library to all client systems accessing the Java component.

When using the late bound encapsulation method, you retain the majority of the
benefits of early bound programming, while implementing a more flexible late bound
design that does not require wrappers or type libraries.

The basic steps described below are for a Visual Basic client but can be applied to any
programming language:

1. Create a type library and implement the interface of the objects you want to use
inside one or more VB classes.

2. This class can now act as a wrapper for communication with the late bound
version of the object.

3. Eliminate the type library once the interface has been established (as long as it
still exists the implementation will remain early bound).

Native Late Bound Programming Model

Native late bound access is easy to implement and is a flexible implementation since
objects referenced are only evaluated at runtime. This however also means that no type
checking can be done at compile time, which makes this implementation more error
prone.

Since native libraries have only been created for Windows, implementing native late
bound access requires that the WebLogic jCOM bridge be installed on the client
machine.

Relative to the DCOM late bound implementation, the native late bound
implementation provides a large gain in performance on initialization at runtime.
WebLogic jCOM User Guide 2-7

2 WebLogic jCOM Programming Models
Figure 2-4 Runtime installation for a typical native late bound implementation.

For more on implementing native mode see Native Mode in the Reference Guide.

Native Early Bound Programming Model

Native early bound access is complex to implement. It requires the generation of a type
library and wrappers. The type library is required on the client side; the wrappers are
required on the server side. If the client and user are running on separate machines the
type library and wrappers have to be generated on the same machine and then copied
to the system where they are required.

Early bound access lacks the flexibility of late bound access in that any changes made
to the Java component require regeneration of the wrappers and the library.

Early bound access does provide improved reliability. Compile-time type checking
makes debugging easy and the user has the advantage of being able to browse the type
library.

Since native libraries have only been created for Windows, implementing native early
bound access requires that the WebLogic jCOM bridge be installed on the client
machine.

Relative to the DCOM early bound implementation; the native early bound
implementation provides a large gain in performance on initialization at runtime.
2-8 WebLogic jCOM User Guide

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

WebLogic jCOM Programming Models
Relative to the native late bound implementation, the native early bound
implementation provides slower initialization at runtime, but a slight gain in
transaction time performance.

Figure 2-5 Runtime installation for a typical native early bound implementation.

For more on implementing native mode see Native Mode in the Reference Guide.
WebLogic jCOM User Guide 2-9

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

2 WebLogic jCOM Programming Models
2-10 WebLogic jCOM User Guide

CHAPTER
3 Programming

WebLogic jCOM uses the Windows Distributed COM (DCOM) network protocol to
provide communication between both local and remote COM components and a pure
Java environment. The following sections describe what the programmer has to do in
order to use WebLogic jCOM to access Java components from a COM client:

� Server-Side Programming Requirements

� Client-Side Programming Requirements

� Intercepting the Instantiation of Java Objects

� Instantiating Java Objects from COM using Constructors

� Implementing a Singleton Java Object

Server-Side Programming Requirements

The programming requirements on the server side are, for most programming models,
limited to configuration and compiling and activating the bridge. When implementing
an early bound programming model or a late bound encapsulation programming model
you have to, in addition, generate wrappers and a type library.

The bridge file, JCOMBridge.java, is provided with the WebLogic jCOM
installation. This file is used in all the examples provided and can be used as a base for
creating your own bridge file, should you wish to do this.

To establish the bridge on the server side, the following needs to be done, irrespective
of the programming model being implemented:

1. Start WebLogic Server.
WebLogic jCOM User Guide 3-1

3 Programming
2. Set the PATH environment variables to point to the root directories of your
WebLogic Server and JDK 1.3 installations (by running the setEnv file).

3. Ensure that the WebLogic Server’s listen port (7001 by default) is correctly
specified by editing the following line in the bridge file:

env.put(Context.PROVIDER_URL, "t3://localhost:7001")

4. Compile the WebLogic jCOM bridge file by executing the build script
build.xml. You can do this by running the following command:

ant

5. Configure the WebLogic jCOM environment, by setting the PATH environment
variables to point to the root directory of your WebLogic jCOM installation.

6. Invoke the bridge on the server side by using the following statement which runs
the bridge file, JCOMBridge.java:

java -classpath %CLASSPATH% -DJCOM_DCOM_PORT=7050 JCOMBridge

where 7050 is the port where the WebLogic jCOM bridge must listen for
client-to-server communications.

The bridge file, JCOMBridge.java, defines the WLS TCP/IP address and listen
port and registers the JVM name with JNDI.

If you are implementing early binding or late bound encapsulation, the following
additional steps are required:

1. Set up the generation environment needed for the execution of the java2com tool
and compilation of the bridge and wrappers. The CLASSPATH needs to include a
path to the jCOM.jar as well as a path to the Java classes being accessed.

2. Generate Java wrappers and an IDL file for your Java component with the
java2com tool:

java com.bea.java2com.Main

When this line is executed, the java2com window will pop up. In the Java
Classes & Interfaces field, you must enter the names of the classes you wish to
use, including the bridge class.

3. Make sure that the generated classes and JCOMBridge.class file are in your
CLASSPATH, then compile the Java wrapper files:

javac Output Directory*.java
3-2 WebLogic jCOM User Guide

Client-Side Programming Requirements
Client-Side Programming Requirements

For the programing steps required on the client system, we will look at how to
implement the following programming models:

� DCOM Zero Client Programming Model

� DCOM Late Bound Programming Model

� DCOM Early Bound Programming Model

� DCOM Late Bound Encapsulation Programming Model

� Native Mode Programming Model

DCOM Zero Client Programming Model

The basic client-side programming steps required to implement a DCOM zero client
programming model are (described below for a VB client accessing an EJB on the
WebLogic Server):

1. Generate a coded reference to the bridge’s location (the objref) using the Java class
com.bea.jcom.GetJvmMoniker. Specify as parameters the full name or TCP/IP
address of the server machine and the port where the bridge can be accessed, for
example:

java com.bea.jcom.GetJvmMoniker mymachine.mycompany.com 7050

or

java com.bea.jcom.GetJvmMoniker localhost 7050

2. In the client source code, access the bridge using the following statement which
contains the generated objref:

Set objBridge = GetObject("objref:generatedobjref")

3. Following this, all objects can be requested from the server using JNDI, for
example:

Set objHome = objBridge.get("JVMName:jndi name of ejb")
WebLogic jCOM User Guide 3-3

3 Programming
DCOM Late Bound Programming Model

The basic client-side programming steps required to implement a DCOM late bound
programming model are (described below for a VB client accessing an EJB on the
WebLogic Server):

1. In the source code for the VB client, first link a COM object to an interface of the
EJB. In this extract from a VB client’s source code, notice the declaration of the
COM version of the EJB’s home interface, objHome. This COM object is linked to
an instance of the EJB’s home interface on the server side.

Dim objHome As Object

Private Sub Form_Load()

'Handle errors

On Error GoTo ErrOut

'Bind the EJB’s HomeInterface object via JNDI

Set objHome = GetObject("JVMName:jndi name of ejb")

GetObject is getting an object through JNDI lookup on the WebLogic Server.
The JVM (“JVMName”) needs to be registered in the registry, as described in
step 3.

2. Any further references to this object appear to be referring to a COM object, but
are in fact using the Java methods as if they are COM methods.

3. On the client system use the regjvm tool to register the local Java Virtual
Machine by adding the name to the Windows registry and associating it with the
TCP/IP address and client-to-server communications port where WebLogic
jCOM will listen for incoming WebLogic jCOM requests. For example:

regjvmcmd JVMName localhost[7050]

DCOM Early Bound Programming Model

The basic client-side programming steps required to implement a DCOM early bound
programming model are (described below for a VB client accessing an EJB on the
WebLogic Server):
3-4 WebLogic jCOM User Guide

Client-Side Programming Requirements
1. Copy the generated IDL (see Server-Side Programming Requirements above) to
the client system.

2. Compile the IDL file into a type library using the Microsoft IDL compiler
midl.exe:

midl generatedIDLFileName.idl

The result of the compilation is a type library of the same name, but with the
extension .tlb.

3. Register the type library and set the JVM it will service, for example:

regtlb /unregisterall

regtlb generatedIDLFileName.tlb JVMName

The first line above calls regtlb.exe in order to un-register any previously
registered type library versions. The second line then registers the newly
compiled type library and specifies the name of the JVM (“JVMName”) that will
be linked with the type library. The WebLogic jCOM runtime requires this
information for linking type library defined object calls to the appropriate
wrapper classes.

4. Now the client can access the type library. Load the VB project and in the
Projects menu, select Reference. Scroll down until you find the type library and
activate its check box. Click OK.

5. Objects are no longer declared “As Object”, but rather by using the type library:

Dim objCOM As generatedIDLFileName.generated class name

For example, if your fully qualified Java class is
examples.ejb.basic.containerManaged.AccountHome, your generated
class name would be ExampleEjbBasicContainerManagedAccountHome.

6. To access design time information about the various methods and properties of
the objects, the following is also required:

Dim objTemp As Object

Dim objBridge As New generatedIDLFileName.COMtoWebLogic

Set objTemp = GetObject("JVMName:jndi name of ejb")

Set objHome = objBridge.narrow(objTemp,"fully qualified java
class")
WebLogic jCOM User Guide 3-5

3 Programming
Notice the objTemp object uses a late bound method to obtain a reference to the
EJB object. This late bound object is passed to the bridge's "narrow" method,
and is given an early bound object in return.

7. On the client system use the regjvm tool to register the local Java Virtual
Machine by adding the name to the Windows registry and associating it with the
TCP/IP address and client-to-server communications port where WebLogic
jCOM will listen for incoming WebLogic jCOM requests:

regjvmcmd JVMName localhost[7050]

DCOM Late Bound Encapsulation Programming Model

Using late bound encapsulation allows you to retain the majority of the benefits of
early bound programming, while implementing a more flexible late bound model that
does not require wrappers or type libraries.

For example, if you have a Visual Basic client accessing an EJB, you will need to do
the following:

1. Copy the generated IDL (see Server-Side Programming Requirements above) to
the client system.

2. Compile the IDL file into a type library using the Microsoft IDL compiler
midl.exe:

midl generatedIDLFileName.idl

The result of the compilation is a type library of the same name, but with the
extension .tlb.

3. Register the type library and set the JVM it will service, for example:

regtlb /unregisterall

regtlb generatedIDLFileName.tlb JVMName

The first line above calls regtlb.exe in order to un-register any previously
registered type library versions. The second line then registers the newly
compiled type library and specifies the name of the JVM (“JVMName”) that will
be linked with the type library. The WebLogic jCOM runtime requires this
information for linking type library defined object calls to the appropriate
wrapper classes.
3-6 WebLogic jCOM User Guide

Client-Side Programming Requirements
4. Reference this type library from within a Visual Basic project, using the
Project->References dialog.

5. Add an empty class module to the project and open its source window.

6. Add a module level variable of type "Object" that will be used to reference your
EJB.

7. Using the "object" and "procedure" pull-down menus at the top of the class
module's source window, add a Class_Initialize method, and place within
the method the source code required to assign your module level object variable a
reference to your EJB. See DCOM Late Bound Programming Model for the
necessary initialization source.

8. Use the Implements keyword at the top of your class source to implement the
interface of any objects you'll need to access. You can reference your EJB objects
using the name of your type library, followed by a dot. (i.e. Implements
generatedIDLFileName.generated class name)

For example, if your fully qualified Java class is
examples.ejb.basic.containerManaged.AccountHome, your generated
class name would be ExampleEjbBasicContainerManagedAccountHome.

9. Use the "object" and "procedure" pull-downs to select all of the methods and
properties from the EJB objects that you'll need to access. This should produce
the skeleton source code for the selected methods and properties.

10. Within these method and property declarations, insert late bound code that
accesses the EJB's methods and properties through the module level object you've
created.

11. Delete the "Implements" entries from the top of your class source, and remove
the type library reference from the Project->References dialog. Your class no
longer depends on the type library (and hence, the wrappers on the server) for
access to the EJB.

Once you have done this, you can instantiate an instance of the class you've created,
and access all of your EJB functionality as though it were early bound. Any changes
to the EJB will not affect your VB project so long as the interface remains static for the
methods and properties employed in the VB client source.
WebLogic jCOM User Guide 3-7

3 Programming
Native Mode Programming Model

In native mode a COM client accesses a Java object running on the same machine as
the client. WebLogic jCOM uses native code to facilitate the interaction. For more on
native mode see Native Mode in the Reference Guide.

Intercepting the Instantiation of Java
Objects

If you wish to control the instantiation of Java objects, create a class which implements
the com.bea.jcom.Instanciator interface. This interface has one method, which
looks like this:

public Object instanciate(String javaClass) throws
com.bea.jcom.AutomationException;

Pass a reference to your instantiator as a second parameter when calling
Jvm.register(...):

com.bea.jcom.Jvm.register("MyJvm", myInstanciator);

The default instantiator used by WebLogic jCOM looks like this:

public final class DefaultInstanciator implements
com.bea.jcom.Instanciator {
public Object instanciate(String javaClass)
throws com.bea.jcom.AutomationException {
try {
return Class.forName(javaClass).newInstance();
} catch(Exception e) {
e.printStackTrace();
throw new AutomationException(e);
}
}
}

For example this is a VB to EJB bridge (based on Sun's JNDI Tutorial):
3-8 WebLogic jCOM User Guide

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

Intercepting the Instantiation of Java Objects
import javax.naming.*;
import java.util.Hashtable;
import com.bea.jcom.*;

public class VBtoEJB {
public static void main(String[] args) throws Exception {
Jvm.register("ejb", new EjbInstanciator());
Thread.sleep(10000000);
}
}

class EjbInstanciator implements Instanciator {
Context ctx;

EjbInstanciator() throws NamingException {
Hashtable env = new Hashtable(11);
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://... TBS ...");
ctx = new InitialContext(env);
}

public Object instanciate(String javaClass) throws
AutomationException {
try {
try {
return Class.forName(javaClass).newInstance();
} catch(Exception e) {}
return ctx.lookup(javaClass);
} catch (Throwable t) {
t.printStackTrace();
throw new AutomationException(new Exception("Unexpected: " + t)); }
}
}

If you compiled the above, and ran it on a machine (development.company.com) like
this:

java -DJCOM_DCOM_PORT=4321 VBtoEJB

Then on a Windows machine you used the WebLogic jCOM regjvmcmd command
like this:

regjvmcmd ejb development.company.com[4321]

Then from VB you would then use:

Set myEjb = GetObject("ejb:cn=ObjectName")
MsgBox myEjb.someProperty
myEjb.myMethod "a parameter"
WebLogic jCOM User Guide 3-9

3 Programming
Instantiating Java Objects from COM using
Constructors

COM has no concept of constructors. One method is to define a default constructor,
and then define a static member which takes the appropriate parameters and
instantiates the object and returns it:

public class MyClass {
public MyClass() {}
public MyClass(String p1, int p2, double p3) {
...
}

public static MyClass createMyClass(String p1, int p2, double p3) {
return new MyClass(p1, p2, p3);

}
}

Another possibility is to use WebLogic jCOM’s instantiation interception capability --
when you register the JVM you can pass a reference to an object whose class
implements a special Java jCOM interface which is called when you use
GetObject("MyJvm:MyClass") -- you get passed everything after the colon, so
you could actually do: GetObject("MyJvm:MyClass(1, 2, three,
4.0") and then in the interceptor parse the string that is passed in, and invoke the
appropriate constructor.

Implementing a Singleton Java Object

In COM terminology an object is a singleton if there exists only one instance of the
object at any time. Each time you call CreateInstance you obtain a reference to the
same object. This ensures that all clients access the same instance.
3-10 WebLogic jCOM User Guide

Implementing a Singleton Java Object
By controlling the instantiation of Java objects you can implement a singleton Java
object which is accessible from COM clients. Here is an example of what the
instantiator would look like for a class called mySingletonClass:

import java.util.*;
import com.bea.jcom.*;

public class COMtoJava {
public static void main(String[] args) throws Exception {
try {
Jvm.register("MyJvmId", new
SingletonInstanciator("MySingletonClass"));

while (true) { // wait forever
Thread.sleep(100000);
}
} catch (Exception e) {
System.out.println(e.getMessage());
e.printStackTrace();
}
}
}

class SingletonInstanciator implements Instanciator {
String singletonClassname;
static Object singletonObject = null;

SingletonInstanciator(String singletonClassname) {
try {
this.singletonClassname = singletonClassname;
if (singletonObject == null) {
System.out.println("SingletonInstanciator: creating the singleton
[" + singletonClassname + "]");
// initialize the singleton
Class classObject = Class.forName(singletonClassname);
singletonObject = classObject.newInstance();
}
} catch (Exception e) {
System.out.println(e.getMessage());
e.printStackTrace();
}
}

public Object instanciate(String javaClass) throws
AutomationException {
try {
System.out.println("instanciate for " + javaClass);

// if request is to create the singleton, just return the existing
instance.
WebLogic jCOM User Guide 3-11

3 Programming
if (javaClass.equals(singletonClassname)) {
return singletonObject;
} else {
Class classObject = Class.forName(javaClass);
return classObject.newInstance();
}
}
catch (Exception e)
{
System.out.println("Failed to instanciate class " + javaClass);
System.out.println(e.getMessage());
e.printStackTrace();
System.out.println("Throwing exception back to caller.");
throw new AutomationException(e);
}
}
}

And here is a sample MySingletonClass implementation:

public class MySingletonClass {
public MySingletonClass() {
System.out.println("MySingletonClass constructor called.");
}

public int Method1(int val) {
return val + 1;
}
}

If you compiled both of the above, and ran COMtoJava on a machine
(development.company.com) like this:

java -DJCOM_DCOM_PORT=4321 COMtoJava

Then on a Windows machine you used the WebLogic jCOM regjvmcmd command
like this:

regjvmcmd MyJvmId development.company.com[4321]

Then from VB you would then use:

Set objMySingleton1 = GetObject("MyJvmId:mySingletonClass")
Set objMySingleton2 = GetObject("MyJvmId:mySingletonClass")
MsgBox objMySingleton1 & objMySingleton2

Which would create two references to the same object.
3-12 WebLogic jCOM User Guide

CHAPTER
4 Deploying your
Application

The following sections provide information about the steps that need to be taken before you can
run your application:

� Deployment Options

� Deploying your Application

Deployment Options

When using WebLogic jCOM to access Java objects from a COM client, there are five
different deployment scenarios, depending on the implementation used:

� Deploying a DCOM Zero Client Implementation

� Deploying a DCOM Late Bound Implementation

� Deploying a DCOM Early Bound Implementation

� Deploying a DCOM Late Bound Encapsulation Implementation

� Deploying a Native Mode Implementation

In addition, your deployment may be influenced by the use of several WebLogic
Servers in

� Server Clustering
WebLogic jCOM User Guide 4-1

4 Deploying your Application
If you chose the appropriate installation for the implementation you are using, all the
WebLogic jCOM files required for configuration, deployment and at runtime will
already be in the correct location. You may still have to copy additional user-generated
files to the correct location.

For more information on deployment when using WebLogic jCOM for accessing
COM objects from a Java client, see the WebLogic jCOM Reference Guide.

Deploying your Application

Deploying a DCOM Zero Client Implementation

A DCOM zero client implementation requires zero deployment on the client system.
Take note, though, that the WebLogic jCOM bridge is accessed from the client via a
hardcoded reference to the server's location (IP and port). This reference is in the client
source code. Should the server location change, this objref will have to be
regenerated and inserted into the client source in order for the COM client to be able
to communicate with the server.

The server installation process (typically a server install) will have installed the
WebLogic jCOM components required on the server at runtime:

� WebLogic jCOM bridge: jcom.jar

Once the EJB has been deployed to WebLogic Server and the server has been
activated, the compiled bridge can be activated. Any changes made to the server’s
TCP/IP address and listen port must be reflected in the bridge file itself.

For more on how to generate the objref and activate the bridge, see the Zero Client
Installation example in the Programming chapter.

Deploying a DCOM Late Bound Implementation

For a DCOM late bound implementation, the client installation process (typically a
client install) will have installed the WebLogic jCOM components required on the
client system at runtime:
4-2 WebLogic jCOM User Guide

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

Deploying your Application
� WebLogic jCOM moniker: JintMk.dll

as well as those required for configuring the client:

� regjvm

Before running the application, the JVM must be registered using regjvm or
regjvmcmd. For more on the tools, regjvm and regjvmcmd, see jCOM Tools.

Note: Should the server location change, you will have to re-register the JVM. Before
doing this you have to un-register the old entry because the regjvmcmd tool does not
overwrite old entries when new entries with identical names are entered. You can
un-register the old entry using the command line tool regjvmcmd, or by using the GUI
tool regjvm (both can be found in the jCOM\bin directory).

The server installation process (typically a server install) will have installed the
WebLogic jCOM bridge files required on the server at runtime:

� WebLogic jCOM bridge: jcom.jar

Once the EJB has been deployed to WebLogic Server and the server has been
activated, the compiled bridge can be activated. Any changes made to the server’s
TCP/IP address and listen port must be reflected in the bridge file itself.

For more on how to register the JVM and activate the bridge see the Late Bound
Implementation example in the Programming chapter.

Deploying a DCOM Early Bound Implementation

For a DCOM early bound implementation, the client installation process (typically a
client install) will install the WebLogic jCOM tools required on the client system at
runtime:

� WebLogic jCOM moniker: JintMk.dll

as well as those required for configuring the client:

� regtlb

� regjvm
WebLogic jCOM User Guide 4-3

4 Deploying your Application
You must ensure that the type library generated by the java2com tool is on the client
system at runtime and that the CLASSPATH environment variable points to the directory
in which it is placed. The type library is needed for early binding of the remote object
acquired from the WebLogic jCOM bridge. Use the regtlb tool to register the type
library on the client. For more about the tools, java2com and regtlb, see jCOM
Tools.

Before running the application, the JVM must be registered using regjvm or
regjvmcmd. For more on the tools regjvm and regjvmcmd, see jCOM Tools.

Note: Should the server location change, you will have to re-register the JVM. Before
doing this you have to un-register the old entry because the regjvmcmd tool does not
overwrite old entries when new entries with identical names are entered. You can
un-register the old entry using the command line tool regjvmcmd, or by using the GUI
tool regjvm (both can be found in the jCOM\bin directory).

The server installation process (typically a server install) will install the WebLogic
jCOM bridge files required on the server at runtime:

� WebLogic jCOM bridge: jcom.jar

You must ensure that the wrapper classes generated by the java2com tool are on the
server system at runtime and that the CLASSPATH environment variable points to the
directory in which they are placed. The wrapper classes enable early bound
communications with the Java objects they were created to encapsulate.

Once the EJB has been deployed to WebLogic Server and the server has been
activated, the compiled bridge can be activated. Any changes made to the server’s
TCP/IP address and listen port must be reflected in the bridge file itself.

For more on how to register the type library and the JVM and activate the bridge see
the Early Bound Implementation example in the Programming chapter of the
WebLogic jCOM User Guide.

Deploying a DCOM Late Bound Encapsulation
Implementation

Since late bound encapsulation uses early binding during development and late
binding during runtime, deploying a late bound encapsulation implementation is much
the same as deploying a late bound implementation. To ensure that late binding is
4-4 WebLogic jCOM User Guide

Deploying your Application
indeed implemented at runtime, you need to be sure that the type library referenced
during development is no longer accessible to the client. This will also render the
wrappers on the server side inaccessible.

For a late bound encapsulation implementation, the client installation process
(typically a client install) will install the WebLogic jCOM tools required on the client
system at runtime:

� WebLogic jCOM moniker: JintMk.dll

as well as those required for configuring the client:

� regjvm

You must ensure that the type library referenced during development is not visible to
the client at runtime, otherwise the implementation will remain early bound.

Before running the application, the JVM must be registered using regjvm or
regjvmcmd. For more on the tools, regjvm and regjvmcmd, see jCOM Tools.

Note: Should the server location change, you will have to re-register the JVM. Before
doing this you have to un-register the old entry because the regjvmcmd tool does not
overwrite old entries when new entries with identical names are entered. You can
un-register the old entry using the command line tool regjvmcmd, or by using the GUI
tool regjvm (both can be found in the jCOM\bin directory).

The server installation process (typically a server install) will install the WebLogic
jCOM bridge files required on the server at runtime:

� WebLogic jCOM bridge: jcom.jar

Once the EJB has been deployed to WebLogic Server and the server has been
activated, the compiled bridge can be activated. Any changes made to the server’s
TCP/IP address and listen port must be reflected in the bridge file itself.

Deploying a Native Mode Implementation

In native mode a COM client accesses a Java object running on the same machine as
the client. WebLogic jCOM uses native code to facilitate the interaction. For more on
native mode see Native Mode in the Reference Guide.
WebLogic jCOM User Guide 4-5

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

4 Deploying your Application
Server Clustering

If you are using more than one WLS machine in a server cluster, your deployment
mechanism will likely be affected. In order to maintain fail-over capabilities, it is
recommended that you deploy all WebLogic jCOM files on the client system (similar
to native mode deployment above). Placing the WebLogic jCOM bridge on a single
WLS machine within your cluster will render your system susceptible to failure; if the
bridge machine fails you lose all WebLogic jCOM functionality. Placing the
WebLogic jCOM bridge on the client system removes this possibility, allowing your
cluster to employ its fail-over capabilities as normal.
4-6 WebLogic jCOM User Guide

CHAPTER
5 WebLogic jCOM Tools

The following sections describe the most commonly used WebLogic jCOM tools:

� The regjvm GUI Tool

� The regjvmcmd Command Line Tool

� The java2com Tool

� The regtlb Tool

The regjvm GUI Tool

WebLogic jCOM allows languages supporting COM to access Java objects as though
they were COM objects.

To do this you need to register (on the COM client machine) a reference to the JVM in
which the Java objects run. The regjvm tool enables you to create and manage all the
JVM references on a machine.

Note: The regjvm tool does not overwrite old entries when new entries with
identical names are entered. This means that if you ever need to change the
hostname or port of the machine with which you wish to communicate, you
have to unregister the old entry. You can do this using the command line tool
regjvmcmd.exe, or by using the GUI tool regjvm.exe (both can be found in
the jCOM\bin directory).
WebLogic jCOM User Guide 5-7

5 WebLogic jCOM Tools
JVM modes

A JVM may be accessed from COM clients using one of three different modes:

� DCOM mode

� Native mode (out of process)

� Native mode in process

DCOM mode

DCOM mode does not require any native code on the Java server side, which means
your Java code may be located on a Unix machine or any machine with a Java Virtual
Machine installed. When you register the JVM on the Windows client machine you
define the name of the server host machine (it may be localhost for local components)
and a port number.

The Java code in the JVM must call com.bea.jcom.Jvm.register("<jvm id>"), where
<jvm id> is the id of the JVM as defined in regjvm. The JVM must also be started with
the JCOM_DCOM_PORT property set to the port defined in regjvm tool for the
specified <jvm id>.
5-8 WebLogic jCOM User Guide

The regjvm GUI Tool
Native mode (out of process)

Native mode currently only works on the local machine. Other than the JVM name no
additional parameters are necessary.

The JVM must call com.bea.jcom.Jvm.register("<jvm id>"), where <jvm id> is the id
of the JVM as defined in regjvm. The JVM must also be started with the
JCOM_NATIVE_MODE property set.

Native mode in process

Using native mode in process allows the user to actually load the Java object into the
same process as the COM client. Both objects must of course be located on the same
machine.
WebLogic jCOM User Guide 5-9

5 WebLogic jCOM Tools
The JVM need not call com.bea.jcom.Jvm.register() or be started as an extra process
to the client.

The User Interface of the regjvm GUI Tool

When you run the regjvm tool, a dialog is displayed. The dialog is split into two parts:

� The top part is for selection and management of all JVMs on the current
machine. JVMs may be added, altered or deleted. Before switching to a different
JVM, changes made to the currently selected JVM must be saved. It is also here
that the different JVM modes can be selected which then dictates the information
required in the lower half of the window.

� The lower half of the windows contains the details required for each JVM,
according to the mode of the JVM. In addition to the JVM details there is an
advanced checkbox which when selected displays advanced options for each
JVM mode.

The meanings of these options are discussed in the following sections.
5-10 WebLogic jCOM User Guide

The regjvm GUI Tool
DCOM Mode Options for the regjvm GUI Tool

Standard Options

� Hostname (required) - The IP name or IP address where the JVM is located.

� Port (required) - The port used to initiate contact with the JVM.
WebLogic jCOM User Guide 5-11

5 WebLogic jCOM Tools
Advanced Options

� Launch command (optional) - The command to be used if the JVM is to be
automatically launched. Typically this would be something like:
c:\bea\jdk131\bin\java -classpath c:\bea\wlserver6.1\jcom\lib\jcom.jar; c:\pure
MyMainClass.

� Launch options (optional) - Allows you to specify the initial window state of
the server component.

� Generate Script... (optional) - Allows the user to generate a registry script
selecting the settings of the JVM.
5-12 WebLogic jCOM User Guide

The regjvm GUI Tool
Native Mode Options for the regjvm GUI Tool

Standard Options

There are no standard options for this mode.

Advanced Options

� Launch command (optional) - see DCOM mode.
WebLogic jCOM User Guide 5-13

5 WebLogic jCOM Tools
� Launch options (optional) - see DCOM mode.

� Generate Script... (optional) - see DCOM mode.

Native Mode in Process Options for the regjvm GUI Tool

Standard Options

� JVM (required) - The JVM must be specified. Clicking the browse button
allows you to select your own JVM, clicking the Scan button scans your local
machine for JVMs (this may take a few minutes) and inserts them in the listbox
for your selection.
5-14 WebLogic jCOM User Guide

The regjvm GUI Tool
Advanced Options

� Classpath (optional) - The CLASSPATH for the JVM - if this is left blank the
CLASSPATH environment variable at runtime is used. Otherwise the contents
are added to the CLASSPATH environment variable.

� Main class (optional) - The name of the class containing a Main method which
you wish to be called.

� Properties (optional) - Any properties which you require to be set. Must have
the following syntax: prop1=value1 prop2=value2...

� Java 2 (optional) - When setting properties this must be set when using Java 2
(JDK 1.2.x, 1.3.x) and cleared when using 1.1.x.

� Generate Script... (optional) - see DCOM mode.
WebLogic jCOM User Guide 5-15

5 WebLogic jCOM Tools
The regjvmcmd Command Line Tool

regjvmcmd is the command line version of the GUI tool, regjvm, discussed above.
To get a summary of its parameters, run regjvmcmd without parameters.

In its simplest form, you specify:

� a jvm ID (corresponding to the name used in
com.bea.jcom.Jvm.register("JvmId")),

� and the binding that can be used to access the JVM, in the form hostname[port],
where hostname is the name of the machine running the JVM, and port is the
TCP/IP port specified when starting the JVM by setting the
JCOM_DCOM_PORT property (e.g. java -DJCOM_DCOM_PORT=1234
MyMainClass).

If you no longer need to have the JVM registered, or if you wish to change its
registration, you must first un-register it using regjvmcmd /unregister JvmId

The java2com Tool

The java2com tool analyzes Java classes (using Java's reflection mechanism), and
outputs:

� a COM Interface Definition Language (IDL) file

� pure Java DCOM marshalling code (wrappers) used by the WebLogic jCOM
runtime to facilitate access to the Java objects from COM using vtable (late
binding) access.

The IDL file has to be compiled using Microsoft's MIDL tool.

To generate the IDL file and the wrappers, start the java2com tool using the command:

java com.bea.java2com.Main

You can run this tool on any platform. Make sure that the WebLogic jCOM runtime
jCOM.jar is in your CLASSPATH environment variable.
5-16 WebLogic jCOM User Guide

The java2com Tool
The java2com tool displays the following dialog box:

The dialog box has the following fields (any changes to the configuration are
automatically saved when you exit the dialog box):

1. Java Classes & Interfaces

These are the 'root' Java classes and interfaces that you want java2com to
analyze. They must be accessible in your CLASSPATH. WebLogic jCOM
analyzes these classes, and generates COM IDL definitions and Java DCOM
marshalling code which can be used to access the Java class from COM. It then
performs the same analysis on any classes or interfaces used in parameters or
fields in that class, recursively, until all Java classes and interfaces accessible in
this manner have been analyzed.

Separate the names with spaces. Click on the ... button to display a dialog that
lists the classes and lets you add/remove from the list.

2. Name of Generated IDL File

This is the name of the COM Interface Definition Language (IDL) file which
will be generated. If you specify myjvm, then myjvm.idl will be generated. This
name is also used for the name of the type library generated when you compile
myjvm.idl using Microsoft's MIDL compiler.

3. Output Directory

The directory to which java2com should output the files it generates. The
default is the current directory (".").

4. Dump Analysis

Displays the classes that the java2com discovers, as it discovers them.

5. Save Settings/Load Settings

Click on the Save Settings button to save the current java2com settings.
WebLogic jCOM User Guide 5-17

5 WebLogic jCOM Tools
When java2com starts, it checks to see if there is a java2com.ser setting file
in the current directory. If present, it loads the settings from that file
automatically.

6. Names...

Clicking the Names button displays the following dialog box:

When '*' is selected from the class/interfaces names drop-down list, a text box is
displayed into which you can type the name of a member (field or class) name.
You may specify a corresponding COM name to be used whenever that member
name is encountered in any class or interface being generated. If you leave the
name blank then that Java member will not have a corresponding member
generated in any COM interface.

When a specific COM class name or interface is selected from the
class/interfaces names drop-down list, the set of members in that class or
interface is listed below it. You may specify a COM name to be used, and by
clicking on Add this Class Name map you map the selected class/interface to the
specified COM name. By clicking on Add this Member Name map you may map
the selected member to the specified COM name.

7. Generate button

Generates the wrappers and IDL file.
5-18 WebLogic jCOM User Guide

The regtlb Tool
For each public Java interface that java2com discovers, it creates a corresponding
COM interface definition. If the Java interface name were: com.bea.finance.Bankable,
then the generated COM interface would be named ComBeaFinanceBankable, unless
you specify a different name using the 'Names ...' dialog.

For each public Java class that java2com discovers, it creates a corresponding COM
interface definition. If the Java class name were: com.bea.finance.Account, then the
generated COM interface would be named IComBeaFinanceAccount, unless you
specify a different name using the 'Names ...' dialog. In addition if the Java class has a
public default constructor, then 'java2com' generates a COM class
ComBeaFinanceAccount, unless you specify a different name using the 'Names ...'
dialog.

If a Java class can generate Java events, then the generated COM class will have source
interfaces (COM events) corresponding to the events supported by the Java class.

Compile the generated IDL file using Microsoft's MIDL tool. This ships with Visual
C++, and can be downloaded from the MS web site. The command

midl prodServ.idl

will produce a type library called prodServ.tlb, which can be registered as described
in the following section.

The regtlb Tool

WebLogic jCOM's regtlb tool registers a type library on a COM Windows client that
wishes to access Java objects using COM's early binding mechanism. regtlb takes
two parameters. The first is the name of the type library file to be registered. The
second is the ID of the JVM in which the COM classes described in the type library
are to be found:
WebLogic jCOM User Guide 5-19

5 WebLogic jCOM Tools
If the type library was generated from an IDL file that was in turn generated by the
WebLogic jCOM java2com tool, then the regtlb command can automatically
determine the Java class name corresponding to each COM class in the type library
(the COM class descriptions in the type library are of the form:

Java class java.util.Observable (via jCOM))

If the type library was not generated from a java2com generated IDL file, you will be
prompted to give the name of the Java class which is to be instantiated for each COM
class:

This means that when someone attempts to create an instance of Atldll.Apple,
WebLogic jCOM will instantiate com.bea.MyAppleClass in the JVM MyJvm. The
MyAppleClass class should implement the Java interfaces generated by WebLogic
jCOM's java2com tool from atldll.tlb that are implemented by the COM class
Atldll.Apple.
5-20 WebLogic jCOM User Guide

	Copyright
	About This Document
	1 Introducing BEA WebLogic jCOM
	What is BEA WebLogic jCOM?
	The Java COM Conflict
	In Support of Java
	In Support of COM
	The Conflict Between Java and COM

	WebLogic jCOM’s Solution to the Conflict
	How WebLogic jCOM Works
	WebLogic jCOM Features

	2 WebLogic jCOM Programming Models
	WebLogic jCOM Components
	Defining the Terms
	DCOM Mode
	Native Mode
	Zero Client Installation
	Late Binding
	Early Binding

	WebLogic jCOM Programming Models
	DCOM Zero Client Programming Model
	DCOM Late Bound Programming Model
	DCOM Early Bound Programming Model
	DCOM Late Bound Encapsulation Programming Model
	Native Late Bound Programming Model
	Native Early Bound Programming Model

	3 Programming
	Server-Side Programming Requirements
	Client-Side Programming Requirements
	DCOM Zero Client Programming Model
	DCOM Late Bound Programming Model
	DCOM Early Bound Programming Model
	DCOM Late Bound Encapsulation Programming Model
	Native Mode Programming Model

	Intercepting the Instantiation of Java Objects
	Instantiating Java Objects from COM using Constructors
	Implementing a Singleton Java Object

	4 Deploying your Application
	Deployment Options
	Deploying your Application
	Deploying a DCOM Zero Client Implementation
	Deploying a DCOM Late Bound Implementation
	Deploying a DCOM Early Bound Implementation
	Deploying a DCOM Late Bound Encapsulation Implementation
	Deploying a Native Mode Implementation
	Server Clustering

	5 WebLogic jCOM Tools
	The regjvm GUI Tool
	JVM modes
	DCOM mode
	Native mode (out of process)
	Native mode in process

	The User Interface of the regjvm GUI Tool
	DCOM Mode Options for the regjvm GUI Tool
	Standard Options
	Advanced Options

	Native Mode Options for the regjvm GUI Tool
	Standard Options
	Advanced Options

	Native Mode in Process Options for the regjvm GUI Tool
	Standard Options
	Advanced Options

	The regjvmcmd Command Line Tool
	The java2com Tool
	The regtlb Tool

