BEA WebLogic
|COM

User Guide

BEA WebLogic jCOM Version 6.1
Document Date;: November 1, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document

1.

Introducing BEA WebLogic jCOM
What iS BEA WEDBLOGIC JCOM?.....coverreeeeeeeeeeeeseseeeesse s sesessseesseess s sessenes 1-1
The Java COM CONFHICE......coiiieieieereee e 1-2
[N SUPPOI OF JAVAveieiiiiee e 1-2
[N SUPPOIT OF COM ...ttt st 1-2
The Conflict Between Javaand COM.........coovinrinneneeneseneeenesieseeienens 1-3
WebLogic JCOM’s Solution to the Conflictccccvvvvievievienienie e 1-4
How WeDL 0giC JCOM WOFKS........coiiiiiriiriiieeie e 1-4
WEDLOGIC JCOM FEAUIESvevveiereeeereeeeteeeetesteste e te e e eaeseenenneenens 1-5
WebLogic JCOM Programming Models

WebL0giC jCOM COMPONENES......courueeeriereniereseeeresie e e seeee e seeseeeesesseeresnees 2-1
DEfiNiNG the TEIMS....cuiiiee et 2-2
DCOM MOGE......covieeeirereereieisr e nenas 2-2
NBLVE MOUE.......eceiiieeeee ettt et 2-2
Zero Client INSLAll@tion..........coeieiereieree e 2-3
[L= =71 o 1 o T 2-3
Barly BiNAINGooveieeeeeee et 2-3
WebLogic jCOM Programming MOEIS.cocovireiiiieiieeeeireeeseie s 2-3
DCOM Zero Client Programming MOdelcccovvvievinvvnneerceeeeeeens 2-4
DCOM Late Bound Programming MOdelcccooereiennnncnneeenenen 2-5
DCOM Early Bound Programming Model ... 2-5
DCOM Late Bound Encapsulation Programming Modelcccceeeuene. 2-7
Native Late Bound Programming Modelcccceoirininininieneneniens 2-7
Native Early Bound Programming Modelccccoceiiininiienceeieeeen 2-8

BEA WebL ogic jJCOM User Guide i

iv

3. Programming

Server-Side Programming REQUITEMENTSccevvverereereeereeeeeeeseseseseeseens 31
Client-Side Programming REQUIFEMENLS..........cererererererenieneseeseesie e seseenens 33
DCOM Zero Client Programming Modelcccvvveveveieeirieceecece e, 33
DCOM Late Bound Programming Modelccccovevivvenenienesienese e 34
DCOM Early Bound Programming Model ..., 34
DCOM Late Bound Encapsulation Programming Modelccccceeevenee. 3-6
Native Mode Programming Model...........ccoooriiineieninee e 3-8
Intercepting the Instantiation of Java ObJeCEScccevviiirene e 3-8
Instantiating Java Objects from COM using Constructors..........ccoeeevveeeenne 3-10
Implementing a Singleton Java ObJECtccooeiirireie e 3-10

Deploying your Application

[D1= o0V 00T= 10 @] o)1 0] 1T 4-1
Deploying your APPliCaLIONcvevveeereie e s 4-2
Deploying a DCOM Zero Client Implementation...........ccccevveeeenenccieenn. 4-2
Deploying a DCOM Late Bound Implementationcccevveeeevveneenennn. 4-2
Deploying a DCOM Early Bound Implementation..........cccccoveveevvveeenennn. 4-3
Deploying a DCOM L ate Bound Encapsulation Implementation.............. 4-4
Deploying a Native Mode Implementationccocceeveverevereeneeseeneseenens 4-5
S Y= GO TS (= o 4-6

5. WebLogic jCOM Tools

The regjVim GUI TOOooi i e 7
JVIM MOES......ceirriieriereies st 8
DCOM MOE.......eeetieeiirieierieere ettt en e 8
Native mode (OUL Of PrOCESS)c.eeveruiriirierierieneeie e 9
Native MO iN PrOCESScvccveerrerererreseresterees e seese e sre e sreseees 9
The User Interface of the regivm GUI TOOlocovieeiieninenrenene 10
DCOM Mode Options for the regjvm GUI TOOL........ccccovreeinenieieneienne 11
S 1010 1= 0 [@) oo TN 11
AdVaNCed OPLIONS.couerreeiereee ettt e e 12
Native Mode Options for the regjivm GUI Toolccccoveieeininininicienns 13
Standard OPLiONS......cc.ecvierirerereerre e enens 13
AdVaNCed OPLIONS.c.couereeeeierere et e e 13

BEA WebL ogic jJCOM User Guide

Native Mode in Process Options for the regivm GUI Toolcccceevveeene 14

Standard OPLiONS........covieireriereeieeeeee e s 14
P01V 1 01= o [@ o] (0] 1 ST 15
The regjvmemd Command Line TOOIcocvverieierereciecre e se e 16
The JaVa2Com TOOLccueieiiieeee et e e s 16
LI L= = 11 1o o 19

BEA WebL ogic jJCOM User Guide v

Vi BEA WebL ogic jJCOM User Guide

About This Document

This document introduces BEA WebL ogic jCOM Bridge features and describes the
architecture. The document will concentrate on one direction of the WebL ogic jCOM
bridge: COM clients making calls to Java objects (COM-to-Java). For more
information about Java clients accessing COM components, see the Reference Guide.

The document is organized as follows:

m Chapter 1, “Introducing BEA WebL ogic jCOM,” is an overview of WebL ogic
Server JCOM and its architecture.

m Chapter 2, “WebL ogic JCOM Programming Models,” describes the different
ways in which COM-to-Java communication can be implemented using
WebL ogic jCOM.

m Chapter 3, “Programming,” describes what the programmer hasto do in order to
use WebL ogic jCOM to access Java components from a COM client.

m Chapter 4, “Deploying Your Application,” provides information about the steps
that need to be taken before you can run your application.

m Chapter 5, “WebL ogic JCOM Tools’ describes the most commonly used
WebL ogic jCOM tools.

Audience

This document iswritten for architects, application devel opers and administratorswho
areinterested in using the WebL ogic jCOM feature in WebL ogic Server.

WebL ogic jCOM User Guide vii

http://e-docs.bea.com/wls/docs61/jcomreference/index.html
http://e-docs.bea.com/wls/docs61/jcomreference/index.html

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page http://www.bea.com, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic jCOM. Please
visit http://e-docs.bea.com/wls/docs61.

viii WebL ogic jCOM User Guide

http://www.bea.com
http://www.bea.com
http://www.adobe.com
http://e-docs.bea.com/wls/docs61

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic jJCOM, or if you have problems installing and
running BEA WebL ogic jCOM, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
® Your name, e-mail address, phone number, and fax number

® Your company name and company address

® Your machine type and authorization codes

® The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneoudly.

italics Emphasis and book titles.

WebL ogic jCOM User Guide iX

mailto:docsupport@bea.com
http://www.bea.com

Convention Usage

nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also

indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chnmod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace Variablesin code.

italic Example:
t ext .
String Custoner Nane;

UPPERCASE Device names, environment variables, and logical operators.

TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.
[1] Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several times in the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

WebL ogic jCOM User Guide

Convention Usage

Indicates the omission of items from a code example or from a syntax line.

WebL ogic jCOM User Guide Xi

Xii WebL ogic jCOM User Guide

CHAPTER

1 Introducing BEA
WebL ogic |COM

Thefollowing sections describe how WebL ogic jCOM can expand the accessibility of
WebL ogic Server to COM clients:

What is BEA WebL ogic jCOM?

The Java COM Conflict

WebL ogic jCOM'’s Solution to the Conflict
How WebL ogic jCOM Works

WebL ogic JCOM Features

What is BEA WebLogic jJCOM?

BEA WebLogic jCOM is abi-directional COM-Java bridging tool. Using WebL ogic
jCOM you can access Component Object Model (COM) components as though they
were Java objects, and you can access pure Java objects as though they were COM
Components.

WebL ogic jCOM User Guide 11

1

Introducing BEA WebLogic jCOM

The Java COM Conflict

In Support of Java

One of the reasons why so many companies are using Java, isthat it allows them to
dramatically reduce the costs of software development and deployment, because Java
programs can execute on any platform that supports a standard Java Virtual Machine
(IVM).

Digital UNIX | Open VIS

TV
s =
Microzoft Windows

The principle of developing "pure" Java software is a very important one, and many
software developers are, correctly, extremely concerned about the use of any software
which locks them into a specific platform.

TV
[5veg]|

In Support of COM

1-2

Software Components are a natural evolution of Object Oriented software
development, enabling the isolation of parts of an application into separate
components. Such components can be shared between applications, and since
components are only accessed through arigidly defined interface, their
implementation can be changed without impacting applications which use them.

Microsoft's widely used Component Object Model (COM) defines a binary standard
for component integration, allowing COM components created using Visual BASIC
(for example), to be accessed from an application created using Visual C++.

WebL ogic jCOM User Guide

The Java COM Conflict

An enormous humber of COM Components have been created and are available for
purchase. Indeed, any software which has been recently developed under Microsoft
Windows will almost certainly have been created using components.

Application

COM Component
COM Component
COM Component

e - Remote COM Component

Modern software design under Microsoft Windows practically mandates that an
application be designed using aCOM Component based approach. One of the benefits
of doing soisthat partsof an application'sfunctionality can be made accessibleto other
applications, not only the same host, but also remotely -- using Distributed COM
(DCOM).

The Conflict Between Java and COM

There may be conflict between the desire to create Java software which runsanywhere,
and the need to re-use COM software components.

This conflict often manifests itself in companies where there are two clearly divided
camps -- the Java devel opers, who abhor anything which will limit their pure Java
software to a specific platform, and the Windows devel opers, that are urging the use
and re-use of COM components.

Nevertheless, there is frequently a business need to access existing applications from
new applications developed in pure Java, running in a standard VM. Many of these
existing applications were developed under Microsoft Windows, and because they
were well designed, they expose their functionality to other applications by exposing
COM Components.

WebL ogic jCOM User Guide 1-3

1 introduc ng BEA WebLogic jCOM

WebLogic JCOM'’s Solution to the Conflict

BEA WebL ogic JCOM offers a solution to the conflict by providing a bridge which
alows you the “write once, run anywhere” benefit Java and the benefit of COM
component re-use provides.

Crpen VIE

/-

' Components

JCOM provides authenticated access to local
and remote COM Components from pure Java

Internally WebL ogic JCOM uses a standard platform independent mechanism which
Microsoft has defined for accessing COM Components.

How WebLogic jJCOM Works

WebL ogic jCOM's Java-COM bridging capabilities allow COM access from and to
Java objects that are running on any operating system environment.

1-4 WebL ogic jCOM User Guide

WebLogic jCOM Features

COM devel opers can make callbacksinto Javaobjects. WebL ogic jCOM dynamically
"remote-enables’ any Java object, making al of its public methods and member
variables accessible from COM.

To the Java programmer, WebL ogic jJCOM makes COM components look just like
Java objects, presenting COM properties, methods and events as Java properties,
methods and events.

Any JVM running on any platform

Your Java Objects

(" Pure Java proxies generated by jCOM) No Hative Cade
L

| JCOM pure Java runtime g
$

chom (over TCPAIP)

COM Erterprise Business Objects running under Windows.
(jCOM talks standard DCOM to the COM components)

Figure1-1 WebL ogic jCOM workswith any Java Virtual Machine, on any
platform, and requires no native code.

WebL ogic jCOM's pure Java runtime talks to COM components using Distributed
COM layered over Remote Procedure Calls (RPC), which are themselves layered on
TCP/IP. So at the lowest level WebLogic jCOM uses the totally standard Java
networking classes.

WebLogic JCOM Features

The key features of WebL ogic jCOM can be summarized as follows:

m WebLogic jJCOM provides abi-directional bridge between COM components
and Java. Enterprise Java Beans (EJBs) and Java objects can be accessed from
COM clients; COM components can be accessed from Javaclients.

WebL ogic jCOM User Guide 1-5

1

Introducing BEA WebLogic jCOM

1-6

WebL ogic jCOM hides the existence of the data types accessed by the client,
dynamically mapping between the most appropriate Java objects and COM
components.

WebL ogic jCOM supports both late and early binding.
All JVMs are supported.

The machine running the VM only needs to have the WebL ogic jCOM runtime
(that isonly jJCOM .jar) on it. The JCOM jar file requires no native code, it is
pure Java.

No native code is required on the machine hosting the COM Component.
Internally, WebL ogic JCOM uses the Windows DCOM network protocol to
provide communication between both local and remote COM components and a
pure Java environment. WebL ogic JCOM does, however, support an optional
“native mode” which maximizes performance when running on a Windows
platform.

The WebLogic jCOM Javaruntime (jcom.jar) is approximately 595K in size.

WebL ogic jCOM supports event handling. For example, with WebL ogic jCOM
Java events are accessible from VB using the standard COM event mechanism
and also, Java objects can subscribe to COM compnent events.

WebL ogic jCOM lets you access COM Components from Java using no
authentication, or with the equivalent of Connect level authentication.

WebL ogic jCOM User Guide

CHAPTER

2 WebLogic jCOM
Programming Models

The following sections ook at the different ways in which COM-to-Java
communication can be implemented using WebL ogic jJCOM, along with the
advantages and disadvantages of each implementation:

m WebLogic WebL ogic JCOM Components
m Defining the Terms

m Webl ogic WebL ogic jJCOM Programming Models

WebLogic JCOM Components

BEA WebL ogic jCOM allowsyou to access Java objects (including Java components)
running on any Operating System from COM clients running on Microsoft Windows.

In essence, WebL ogicjCOM isakit which providesyou with the runtime environment
and necessary components to create a Java COM-to-Java bridge. In all the examples
we look at, the bridge is on the same machine as the WebL ogic Server machine.

Thej coM j ar runtimeisrequired to compile and run the bridge. The bridge itself is
aJava process, created by the user, which runsin the background to handle the COM
to Java communication between the client and the server. The bridge,

JCOMBri dge. j ava, provided with the examples serves both as a bridge for the
examples and a base for creating your own bridge.

WebL ogic jCOM User Guide 2-1

2 WebLogic jCOM Programming Models

In addition to the runtime file, WebL ogic jCOM also provides a number of tools and
components which are used for configuring the client and server environments.

Note that the Java Virtual Machine always runs as a separate process to the VB
process, possibly even on another machine. WebL ogic jCOM cannot be used to put a
Java bean inside a VB window, since they are in separate processes.Y ou do however
have accessto all public methods and fields of any public Java class from your Visua
Basic programs.

COM-to-Java communication can be achieved using any of the following
programming models:

DCOM Zero Client Programming Model

DCOM Late Bound Programming Model

DCOM Early Bound Programming Model

DCOM L ate Bound Encapsulation Programming Model
Native Late Bound Programming Model

Native Early Bound Programming Model

Defining the Terms

DCOM Mode

The DCOM (Distributed Component Object M odel) mode uses the Component Object
Model (COM) to support communication among objects on different computers.

Native Mode

Native mode uses native code (DL Ls), which are compiled and optimized specifically
for the local operating system and CPU, resulting in better performance.

2-2 WebL ogic jCOM User Guide

WebLogic jCOM Programming Models

Zero Client Installation

Zero client installation means that you do not have to install any software on the
Windows client machine. There is no deployment overhead.

Late Binding

Late binding is away of providing access to another application’s objects. In late
bound access, no information about the object being accessed is available at compile
time; the objects being accessed are dynamically evaluated at runtime. Thismeansthat
it isnot until you run the program that you find out if the methods and properties you
are accessing actually exist.

Early Binding

Early binding is away of providing access to another application’s objects. Early
bound access provides you with information about the object you are accessing while
you are compiling your program; all objects accessed are evaluated at compile time.
This requires that the server application provide atype library and that the client
application identify the library for loading onto the client system.

WebLogic JCOM Programming Models

COM-to-Java communication can be implemented using either DCOM or Native
mode. Each of these modes provides a choice of programming model.

In all the implementations, the COM client runs on a Microsoft Windows platform.
The Java component runs on a Java™ 2 Platform, Enterprise Edition 1.3 and

WebL ogic Server 6.1. The client and server/bridge can run on the same systemin a
one-system implementation.

WebL ogic jCOM User Guide 2-3

2 WebLogic jCOM Programming Models

DCOM Zero Client Programming Model

2-4

A DCOM zero client installation is easy to implement. No WebL ogic jCOM specific
softwareis required on the client side.

Zero client installation utilizes|ate binding and therefore provides the same flexibility
in terms of changes made to the Java component. However, thisimplementation
requires that the bridge location and port number be hard coded into the COM client,
which meansthat if the bridgelocation is changed, thisreference hasto be regenerated
and changed in the source code.

The DCOM zero client installation is more error prone than the DCOM early bound
implementation.

Relative to the DCOM late bound implementation, DCOM zero client installation
provides again in performance on initialization at runtime.

»| JCOM —| EIB
Excel,...
VM || VM
Windows Operating System

Figure2-1 Runtimeinstallation for atypical DCOM zero client implementation.
For the client to access the Java component:

1. TheWebLogicjCOM bridge location is hardcoded into the client using aobj r ef
moniker string. The obj r ef moniker isgenerated by the user and it encodesthe IP
address and port of the WebL ogic jCOM bridge. Once the bridge connection is
established the client can link a COM abject to an interface in the Java component.

2. Any further referencesin the client to this COM object will use the Java method
asif it wereaCOM method.

For an example of zero client installation implementation see the Zero Client
Installation example installed in the sanpl es/ exanpl es directory of the WebL ogic
jJCOM installation.

WebL ogic jCOM User Guide

WebLogic jCOM Programming Models

DCOM Late Bound Programming Model

DCOM late bound accessis easy toimplement and it isaflexibleimplementation since
objectsreferenced are only eval uated at runtime. Thishowever also meansthat no type
checking can be done at compile time, which makes this implementation more error

prone.
jCcOM __.| EIB
VB, M bridge
EXCBL. .. jCOM L 4| WLS
|| Tools VM IVM
Windows Operating System

Figure2-2 Runtimeinstallation for atypical DCOM latebound implementation.
For the client to access the Java component:

1. Intheclient source code, you link a COM object to an interface in the Java
component. For the client to access the interface, you have to use a WebL ogic
jCOM tooal to register the VM in the Windowsregistry and associate it with the IP
address and port of the WebL ogic jCOM bridge.

2. Any further references in the client to this COM object will use the Java method
asif it werea COM method.

For an example of aDCOM late bound implementation see the Late Bound
Implementation example installed in the sanpl es/ exanpl es directory of the
WebL ogic jCOM installation.

DCOM Early Bound Programming Model

DCOM early bound access is complex to implement. It requires the generation of a
type library and wrappers. Thetype library isrequired on the client side; the wrappers
arerequired on the server side. If the client and user are running on separate machines
the type library and wrappers have to be generated on the same machine and then
copied to the system where they are required.

WebL ogic jCOM User Guide 2-5

2 WebLogic jCOM Programming Models

2-6

Early bound access lacks the flexibility of late bound accessin that any changes made
to the Java component require regeneration of the wrappers and the library. See Late
Bound Encapsulation Programming Model for a hybrid alternative strategy.

Early bound access does provide improved reliability. Compile-time type checking
makes debugging easy and the user has the advantage of being able to browse the type
library.

Relative to the DCOM late bound implementation, the DCOM early bound
implementation provides improved runtime transaction performance, but slower
initialization at runtime.

Excel,... DCOM bridge —
jCoM
Lomey [J [L] Tools TVM || TVM
Windows Operating System

Figure2-3 Runtimeinstallation for atypical DCOM early bound
implementation.

For the client to access the Java component:

1. Inthe client source code, COM objects are declared using a user generated type
library. For the client to access the interface, you have to use a WebL ogic jCOM
tool to register the VM inthe Windows registry and associate it with the IP address
and port of the WebL ogic jJCOM bridge. Thetype library isthen registered on the
client side and linked to the registered VM name.

2. Any further references in the client to this COM object will use the Java method
asif it wereaCOM method.

For an example of a DCOM early bound implementation see the Early Bound
Implementation example installed in the sanpl es/ exanpl es directory of the
WebLogic jCOM installation.

WebL ogic jCOM User Guide

WebLogic jCOM Programming Models

DCOM Late Bound Encapsulation Programming Model

If you have used early binding and plan to alter your Java component interface, or
simply wish to be prepared for the future possibility, it is recommended that you
employ late bound encapsulation. Any changes made to a Java component requiring a
recompilation of the wrappers, will also necessitate creation of a new client-side type
library, since wrappers and type library are interdependent and version specific. This
situation could arise even if the Java component interface changes are irrelevant to a
particular client program. Y ou could therefore be forced to redistribute the new type
library to al client systems accessing the Java component.

When using the late bound encapsulation method, you retain the majority of the
benefits of early bound programming, while implementing a more flexible late bound
design that does not require wrappers or type libraries.

The basic steps described below arefor aVisual Basic client but can be applied to any
programming language:

1. Create atypelibrary and implement the interface of the objects you want to use
inside one or more VB classes.

2. Thisclass can now act as awrapper for communication with the late bound
version of the object.

3. Eliminate the type library once the interface has been established (aslong as it
still exists the implementation will remain early bound).

Native Late Bound Programming Model

Native late bound accessis easy to implement and is a flexible implementation since
objectsreferenced are only eval uated at runtime. Thishowever also meansthat no type
checking can be done at compile time, which makes this implementation more error
prone.

Since native libraries have only been created for Windows, implementing native late
bound access requires that the WebL ogic jJCOM bridge be installed on the client
machine.

Relative to the DCOM late bound implementation, the native late bound
implementation provides alarge gain in performance on initialization at runtime.

WebL ogic jCOM User Guide 2-7

2 WebLogic jCOM Programming Models

VB
’ ocom [,
Excel,... jCOM ——|EJB
s | bridge «I WLS
jCOM S—
L] Tools |/ VM — VM
Windows Operating System

Figure2-4 Runtimeinstallation for atypical native late bound implementation.

For more on implementing native mode see Native Mode in the Reference Guide.

Native Early Bound Programming Model

2-8

Native early bound accessis complex to implement. It requiresthe generation of atype
library and wrappers. The type library is required on the client side; the wrappers are
required on the server side. If the client and user are running on separate machines the
type library and wrappers have to be generated on the same machine and then copied
to the system where they are required.

Early bound access lacks the flexibility of late bound accessin that any changes made
to the Java component require regeneration of the wrappers and the library.

Early bound access does provide improved reliability. Compile-time type checking
makes debugging easy and the user has the advantage of being able to browse the type
library.

Since native libraries have only been created for Windows, implementing native early
bound access requires that the WebL ogic JCOM bridge be installed on the client
machine.

Relative to the DCOM early bound implementation; the native early bound
implementation provides alarge gain in performance on initialization at runtime.

WebL ogic jCOM User Guide

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

WebLogic jCOM Programming Models

Relative to the native late bound implementation, the native early bound
implementation provides slower initiaization at runtime, but adlight gainin
transaction time performance.

VB, L ——
Excel,... E— jCOM ——ﬁ EIR
bridge S—
Type jCOM WLS
Library Tools VM P VM
Windows | Operating System

Figure2-5 Runtimeinstallation for atypical nativeearly bound implementation.

For more on implementing native mode see Native Mode in the Reference Guide.

WebL ogic jCOM User Guide 2-9

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

2 WebLogic jCOM Programming Models

2-10 WebLogic jCOM User Guide

CHAPTER

3 Programming

WebL ogic jCOM uses the Windows Distributed COM (DCOM) network protocol to
provide communication between both local and remote COM components and a pure
Java environment. The following sections describe what the programmer hasto do in
order to use WebL ogic jJCOM to access Java components from a COM client:

m Server-Side Programming Requirements

m Client-Side Programming Reguirements

m |ntercepting the Instantiation of Java Objects

m |nstantiating Java Objects from COM using Constructors

m |mplementing a Singleton Java Object

Server-Side Programming Requirements

The programming requirements on the server side are, for most programming models,
limited to configuration and compiling and activating the bridge. When implementing
an early bound programming model or alate bound encapsul ation programming model
you have to, in addition, generate wrappers and atype library.

The bridge file, JCOVBr i dge. j ava, is provided with the WebL ogic jCOM
installation. Thisfileisused in all the examples provided and can be used as abasefor
creating your own bridge file, should you wish to do this.

To establish the bridge on the server side, the following needsto be done, irrespective
of the programming model being implemented:

1. Start WebL ogic Server.

WebL ogic jCOM User Guide 31

3 Programming

Set the PATH environment variables to point to the root directories of your
WebL ogic Server and JDK 1.3 installations (by running the set Env file).

Ensure that the WebL ogic Server’s listen port (7001 by default) is correctly
specified by editing the following line in the bridge file:

env. put (Cont ext . PROVI DER_URL, "t3://1 ocal host: 7001")

Compile the WebL ogic JCOM bridge file by executing the build script
bui I d. xn . You can do this by running the following command:

ant

Configure the WebL ogic jCOM environment, by setting the PATH environment
variables to point to the root directory of your WebL ogic jCOM installation.

Invoke the bridge on the server side by using the following statement which runs
the bridge file, JCOVBri dge. j ava:

java -cl asspath %CLASSPATHY% - DJCOM DCOM PORT=7050 JCOWBri dge

where 7050 is the port where the WebL ogic jCOM bridge must listen for
client-to-server communications.

The bridge file, JCOVBr i dge. j ava, definesthe WLS TCP/IP address and listen
port and registers the VM name with JNDI.

If you are implementing early binding or late bound encapsulation, the following
additional steps are required:

1

Set up the generation environment needed for the execution of the java2com tool
and compilation of the bridge and wrappers. The CLASSPATH needsto include a
path to the JCOM .jar as well as a path to the Java classes being accessed.

Generate Java wrappers and an IDL file for your Java component with the
j ava2comtool:

java com bea. java2com Main

When this line is executed, the java2com window will pop up. In the Java
Classes & Interfacesfield, you must enter the names of the classes you wish to
use, including the bridge class.

Make sure that the generated classes and JCOMBridge.class file are in your
CLASSPATH, then compile the Java wrapper files:

javac Qutput Directory*.java

32 WebL ogic jCOM User Guide

Client-Side Programming Requirements

Client-Side Programming Requirements

For the programing steps required on the client system, we will look at how to
implement the following programming models:

DCOM Zero Client Programming Model

DCOM Late Bound Programming Model

DCOM Early Bound Programming Model

DCOM Late Bound Encapsulation Programming Model

Native Mode Programming Model

DCOM Zero Client Programming Model

The basic client-side programming steps required to implement aDCOM zero client
programming model are (described below for aVB client accessing an EJB on the
WebL ogic Server):

1

Generate a coded reference to the bridge'slocation (the objref) using the Javaclass
com bea. j com Get JvnMbni ker . Specify as parameters the full name or TCP/IP
address of the server machine and the port where the bridge can be accessed, for
example;

java com bea.j com Get Jvn\bni ker mynachi ne. myconpany. com 7050
or

java com bea.j com Get Jvn\bni ker | ocal host 7050

In the client source code, access the bridge using the following statement which
contains the generated objref:

Set obj Bridge = Get bj ect ("objref:generatedobjref")

Following this, al objects can be requested from the server using JNDI, for
example;

Set obj Hone = obj Bri dge. get ("JVMNane: j ndi nanme of ejb")

WebL ogic jCOM User Guide 33

3 Programming

DCOM Late Bound Programming Model

The basic client-side programming steps required to implement a DCOM late bound
programming model are (described below for aV B client accessing an EJB on the
WebL ogic Server):

1

In the source code for the VB client, first link a COM object to an interface of the
EJB. In this extract from a VB client’s source code, notice the declaration of the
COM version of the EJB’shome interface, obj Hone. This COM abject islinked to
an instance of the EJB’s home interface on the server side.

Di m obj Home As bj ect

Private Sub Form Load()

"Handl e errors

On Error GoTo ErrCut

'Bind the EJB's Honel nterface object via JNDI

Set obj Home = Get Obj ect ("JVMNane: j ndi nane of ejb")

Get Obj ect is getting an object through JNDI lookup on the WebL ogic Server.
The VM (“JvivNanme”) needs to be registered in the registry, as described in
step 3.

Any further references to this object appear to be referring to a COM object, but
arein fact using the Java methods as if they are COM methods.

On the client system use the r egj vmtaool to register the local Java Virtual
Machine by adding the name to the Windows registry and associating it with the
TCP/IP address and client-to-server communications port where WebL ogic
JCOM will listen for incoming WebL ogic jCOM requests. For example:

regj vncmd JVMNane | ocal host [7050]

DCOM Early Bound Programming Model

34

The basic client-side programming steps required to implement aDCOM early bound
programming model are (described below for aV B client accessing an EJB on the
WebL ogic Server):

WebL ogic jCOM User Guide

Client-Side Programming Requirements

. Copy the generated IDL (see Server-Side Programming Requirements above) to
the client system.

. CompiletheIDL fileinto atype library using the Microsoft IDL compiler
midl.exe:

m dl gener at edl DLFi | eNane. i dl

The result of the compilation is atype library of the same name, but with the
extension . t1 b.

. Register the type library and set the VM it will service, for example:
regtlb /unregisterall

regtl b generatedl DLFi | eNane. tl b JVMNanme

Thefirst line above calsregt | b. exe in order to un-register any previously
registered type library versions. The second line then registers the newly
compiled type library and specifies the name of the VM (“JvvNane”) that will
be linked with the type library. The WebL ogic jCOM runtime requires this
information for linking type library defined object calls to the appropriate
wrapper classes.

. Now the client can access the type library. Load the VB project and in the
Projects menu, select Reference. Scroll down until you find the type library and
activate its check box. Click OK.

. Objects are no longer declared “ As Object”, but rather by using the type library:
Di m obj COM As gener at edl DLFi | eNarre. gener at ed cl ass nane

For example, if your fully qualified Javaclassis
exanpl es. ej b. basi c. cont ai ner Managed. Account Home, your generated
class name would be Exanpl eEj bBasi cCont ai ner ManagedAccount Hone.

. To access design time information about the various methods and properties of
the objects, the following is also required:

Di m obj Tenp As bj ect

Di m obj Bri dge As New gener at edl DLFi | eName. COM oWebLogi ¢

Set obj Tenp = Get Obj ect ("JVMNane: j ndi name of ejb")

Set obj Home = obj Bri dge. narrow(obj Tenp, "fully qualified java
cl ass")

WebL ogic jCOM User Guide 35

3 Programming

Notice the obj Tenp object uses a late bound method to obtain a reference to the
EJB object. This|ate bound object is passed to the bridge's "narrow" method,
and is given an early bound object in return.

7. Ontheclient system use ther egj vmtool to register the local Java Virtual
Machine by adding the name to the Windows registry and associating it with the
TCP/IP address and client-to-server communications port where WebL ogic
JCOM will listen for incoming WebL ogic jCOM requests:

regj vhcnmd JVMNane | ocal host [7050]

DCOM Late Bound Encapsulation Programming Model

Using late bound encapsulation allows you to retain the majority of the benefits of
early bound programming, while implementing a more flexible late bound model that
does not require wrappers or type libraries.

For example, if you have aVisual Basic client accessing an EJB, you will need to do
the following:

1. Copy the generated IDL (see Server-Sde Programming Requirements above) to
the client system.

2. Compilethe IDL fileinto atype library using the Microsoft IDL compiler
midl.exe:
m dl generat edl DLFi | eNane. i di
The result of the compilation is atype library of the same name, but with the
extension . t 1 b.

3. Register the type library and set the VM it will service, for example:
regtlb /unregisterall
regtl b generatedl DLFi | eName. tl b JVMNane

Thefirst line above callsregt | b. exe in order to un-register any previously
registered type library versions. The second line then registers the newly
compiled type library and specifies the name of the VM (“JvMNane”) that will
be linked with the type library. The WebL ogic jCOM runtime requires this
information for linking type library defined object cals to the appropriate
wrapper classes.

36 WebL ogic jCOM User Guide

Client-Side Programming Requirements

4. Reference thistype library from within a Visual Basic project, using the
Project->References dialog.

5. Add an empty class module to the project and open its source window.

6. Add amodule level variable of type "Object" that will be used to reference your
EJB.

7. Using the "object” and "procedure” pull-down menus at the top of the class
modul€'s source window, add ad ass_I ni ti al i ze method, and place within
the method the source code required to assign your module level object variable a
reference to your EJB. See DCOM Late Bound Programming Model for the
necessary initialization source.

8. Usethel npl ement s keyword at the top of your class source to implement the
interface of any objects you'll need to access. You can reference your EJB objects
using the name of your type library, followed by adot. (i.e. | npl enent s
gener at edl DLFi | eNane. gener at ed cl ass nane)

For example, if your fully qualified Javaclassis
exanpl es. ej b. basi c. cont ai ner Managed. Account Horre, your gener at ed
cl ass name would be Exanpl eEj bBasi cCont ai ner ManagedAccount Hone.

9. Usethe "object" and "procedure” pull-downs to select all of the methods and
properties from the EJB objects that you'll need to access. This should produce
the skeleton source code for the selected methods and properties.

10. Within these method and property declarations, insert late bound code that
accesses the EJB's methods and properties through the module level object you've
created.

11. Delete the "Implements* entries from the top of your class source, and remove
the type library reference from the Project->References dialog. Your class no
longer depends on the type library (and hence, the wrappers on the server) for
access to the EJB.

Once you have done this, you can instantiate an instance of the class you've created,
and access all of your EJB functionality as though it were early bound. Any changes
to the EJB will not affect your VB project so long asthe interface remains static for the
methods and properties employed in the VB client source.

WebL ogic jCOM User Guide 37

3 Programming

Native Mode Programming Model

In native mode a COM client accesses a Java object running on the same machine as
the client. WebL ogic jCOM uses native code to facilitate the interaction. For more on
native mode see Native Mode in the Reference Guide.

Intercepting the Instantiation of Java
Objects

If youwish to control theinstantiation of Java objects, create a class which implements
thecom bea. j com I nst anci at or interface. Thisinterface has one method, which
looks like this:

public Object instanciate(String javaCd ass) throws
com bea. j com Aut omati onExcepti on;

Pass a reference to your instantiator as a second parameter when calling
Jvm.register(...):

com bea.jcomJvmregi ster("MJvn', nylnstanciator);
The default instantiator used by WebL ogic jCOM looks like this:

public final class Defaultlnstanciator inplenments
com bea.jcom I nstanciator {

public Object instanciate(String javad ass)
throws com bea.j com Aut omati onException {

try {

return C ass. forNane(javad ass). newl nstance();
} catch(Exception e) {

e.printStackTrace();

t hrow new Aut omat i onException(e);

}

}

}

For examplethisisa VB to EJB bridge (based on Sun's INDI Tutorial):

3-8 WebL ogic jCOM User Guide

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

Intercepting the Instantiation of Java Objects

i mport javax.nam ng.*;
i mport java.util.Hashtabl e;
i nport com bea.jcom*;

public class VBtoEJB {

public static void main(String[] args) throws Exception {
Jvmregister("ejb", new Ejblnstanciator());

Thr ead. sl eep(10000000) ;

}

}

class Ejblnstanciator inplenents Instanciator {
Cont ext ctx;

Ej bl nst anci ator () throws Nam ngException {
Hasht abl e env = new Hasht abl e(11);

env. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
“com sun. j ndi .| dap. LdapCt xFact ory");

env. put (Cont ext . PROVI DER_URL, "ldap://... TBS ...");
ctx = new Initial Context(env);
}

public Coject instanciate(String javad ass) throws
Aut omat i onException {
try {

try {
return Cl ass. forNane(j avaCl ass). newl nstance();

} catch(Exception e) {}

return ctx.|ookup(javad ass);

} catch (Throwable t) {

t.printStackTrace();

t hr ow new Aut omat i onExcepti on(new Excepti on("Unexpected: " +t)); }

}
}

If you compiled theabove, andranit on amachine (devel oprent . company. com) like
this:

java - DJCOM DCOM PORT=4321 VBt oEJB

Then on a Windows machine you used the WebL ogic jCOM r egj vimend command
likethis:

regjvntmd ej b devel oprment . conpany. coni 4321]
Then from VB you would then use:
Set nyEjb = Get Obj ect("ej b: cn=0bj ect Narme")

MsgBox nyEj b. someProperty
nyEj b. nyMet hod "a paraneter"

WebL ogic jCOM User Guide 39

3 Programming

Instantiating Java Objects from COM using
Constructors

COM has no concept of constructors. One method is to define a default constructor,
and then define a static member which takes the appropriate parameters and
instantiates the object and returns it:

public class Myd ass {

public MyClass() {}
public MyClass(String pl, int p2, double p3) {

}

public static MyC ass createMyCl ass(String pl, int p2, double p3) {
return new Wd ass(pl, p2, p3);
}

}

Another possibility isto use WebL ogic jCOM'’ sinstantiation interception capability --
when you register the VM you can pass a reference to an object whose class
implements a special JavajCOM interface which is called when you use

Get bj ect ("MyJvm Myd ass") -- you get passed everything after the colon, so
you could actually do: Get Obj ect ("MydJvm MyCdl ass(1, 2, three,

4. 0") andtheninthe interceptor parse the string that is passed in, and invoke the
appropriate constructor.

Implementing a Singleton Java Object

In COM terminology an object isa singleton if there exists only one instance of the
object at any time. Each time you call Createlnstance you obtain areference to the
same object. This ensures that al clients access the same instance.

310 WebLogic jCOM User Guide

Implementing a Singleton Java Object

By controlling the instantiation of Java objects you can implement a singleton Java
object which is accessible from COM clients. Here is an example of what the
instantiator would look like for a class called nySi ngl et onCl ass:

import java.util.*;
i mport com bea.jcom *;

public class COM oJava {

public static void main(String[] args) throws Exception {
try {

Jvmregister("MyJvm d", new

Si ngl et onl nst anci at or (" M/Si ngl et onCl ass"));

while (true) { // wait forever
Thr ead. sl eep(100000) ;

} catch (Exception e) {

System out . println(e.get Message());
e.printStackTrace();

}

}

}

class Singletonlnstanciator inplenents |Instanciator {
String singletond assnane;
static Object singletonoject = null;

Si ngl etonl nstanci ator (String singletond assnane) {

try {
t hi s. si ngl etonCl assnane = si ngl et onCl assnane;
if (singletonObject == null) {

System out. println("Singletonlnstanciator: creating the singleton
[* + singletonCl assname + "]");

/1 initialize the singleton

Cl ass classObject = Cl ass. forName(singl etonC assnane) ;

si ngl et onObj ect = cl assoj ect. newl nst ance();

} catch (Exception e) {

System out . println(e.get Message());
e.printStackTrace();

}

}

public Object instanciate(String javaC ass) throws
Aut omat i onException {

try {
Systemout.printin("instanciate for " + javad ass);

/1 if request is to create the singleton, just return the existing
i nst ance.

WebLogic jCOM User Guide 3-11

3 Programming

i f (javad ass. equal s(singl etonCl assnane)) {
return singletonCbject;

} else {

Cl ass classObj ect = Class. forNanme(javad ass);
return cl assObj ect. newl nstance();

}

catch (Exception e)
{

Systemout.println("Failed to instanciate class " + javaCd ass);
System out . printl n(e.get Message());

e.printStackTrace();

System out. println("Throw ng exception back to caller.");

t hrow new Aut omati onException(e);

}
}
}

And hereis asample W/Si ngl et ond ass implementation:

public class MySingletond ass {
public MySingletonC ass() {
System out. println("MSingl etond ass constructor called.");

}

public int Methodl(int val) {
return val + 1;

}
}

If you compiled both of the above, and ran COMtoJava on a machine
(devel opment.company.com) like this:

java - DICOM DCOM PORT=4321 COM oJava

Then on a Windows machine you used the WebL ogic JCOM r egj virerd command
likethis:

regj vhcmd MyJdvmi d devel opnment . conpany. conf 4321]

Then from VB you would then use:

Set obj MySi ngl etonl = Get Obj ect ("MyJvnl d: nySi ngl et onCl ass")
Set obj MySi ngl eton2 = Get Obj ect ("MyJvnl d: nySi ngl et onCl ass")
MsgBox obj MySi ngl etonl & obj MySi ngl et on2

Which would create two references to the same object.

312 WebLogic jCOM User Guide

CHAPTER

4 Deploying your
Application

The following sections provide information about the steps that need to be taken before you can
run your application:

m Deployment Options
m Deploying your Application

Deployment Options

When using WebL ogic jCOM to access Java objectsfrom aCOM client, there arefive
different deployment scenarios, depending on the implementation used:

m DeployingaDCOM Zero Client Implementation

m Deploying aDCOM Late Bound Implementation

m Deploying aDCOM Early Bound Implementation

m Deploying aDCOM Late Bound Encapsulation Implementation
m Deploying a Native Mode Implementation

In addition, your deployment may be influenced by the use of several WebL ogic
Serversin

m Server Clustering

WebL ogic jCOM User Guide 4-1

4 Deploying your Application

If you chose the appropriate instal lation for the implementation you are using, all the
WebLogic jCOM files required for configuration, deployment and at runtime will
aready beinthe correct location. Y ou may still haveto copy additional user-generated
filesto the correct location.

For more information on deployment when using WebL ogic jCOM for accessing
COM objects from a Java client, see the WebL ogic jJCOM Reference Guide.

Deploying your Application

Deploying a DCOM Zero Client Implementation

A DCOM zero client implementation requires zero deployment on the client system.
Take note, though, that the WebL ogic JCOM bridge is accessed from the client viaa
hardcoded reference to the server'slocation (IP and port). Thisreferenceisintheclient
source code. Should the server location change, this obj ref will have to be
regenerated and inserted into the client source in order for the COM client to be able
to communicate with the server.

The server installation process (typically a server install) will have installed the
WebL ogic jCOM components required on the server at runtime:

m WebLogic JCOM bridge: j com j ar

Once the EJB has been deployed to WebL ogic Server and the server has been
activated, the compiled bridge can be activated. Any changes made to the server’'s
TCP/IP address and listen port must be reflected in the bridge file itself.

For more on how to generate the obj r ef and activate the bridge, see the Zero Client
Installation example in the Programming chapter.

Deploying a DCOM Late Bound Implementation

For aDCOM late bound implementation, the client installation process (typicaly a
client install) will have installed the WebL ogic jJCOM components required on the
client system at runtime:

4-2 WebL ogic jCOM User Guide

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

Deploying your Application

m WebLogic jCOM moniker: Ji nt M. dl |
aswell asthose required for configuring the client:
H regjvm

Before running the application, the VM must be registered using r egj vmor
regj vinend. For more on thetools, r egj vmand r egj vired, seejCOM Tools.

Note: Should the server location change, you will haveto re-register the VM. Before
doing this you have to un-register the old entry because the r egj viend tool does not
overwrite old entries when new entries with identical names are entered. Y ou can
un-register the old entry using the command linetool r egj vired, or by using the GUI
tool r egj vm(both can be found in the j COM bi n directory).

The server installation process (typically a server install) will haveinstalled the
WebL ogic jCOM bridge files required on the server at runtime;

m WebLogic jCOM bridge: j com j ar

Once the EJB has been deployed to WebL ogic Server and the server has been
activated, the compiled bridge can be activated. Any changes made to the server’s
TCP/IP address and listen port must be reflected in the bridge file itself.

For more on how to register the VM and activate the bridge see the Late Bound
I mplementation example in the Programming chapter.

Deploying a DCOM Early Bound Implementation

For aDCOM early bound implementation, the client installation process (typicaly a
client install) will install the WebL ogic jCOM tools required on the client system at
runtime:

m WebLogic jCOM moniker: Ji nt M. dl |
aswell asthose required for configuring the client:
B regtlb

H regjvm

WebL ogic jCOM User Guide 4-3

4 Deploying your Application

You must ensure that the type library generated by thej ava2comtool is on the client
system at runtime and that the CLASSPATH environment variable pointsto the directory
inwhichitisplaced. Thetypelibrary is needed for early binding of the remote object
acquired from the WebL ogic JCOM bridge. Usether egt | b tool to register the type
library on the client. For more about the tools, j ava2comandr egt | b, see JCOM
Tools.

Before running the application, the VM must be registered using r egj vmor
r egj virend. For more on the toolsr egj vmand r egj vinend, see JCOM Tooals.

Note: Should the server location change, you will have to re-register the VM. Before
doing this you have to un-register the old entry because the r egj viend tool does not
overwrite old entries when new entries with identical names are entered. Y ou can
un-register the old entry using the command linetool r egj virend, or by using the GUI
tool r egj vm(both can be found in the j COM bi n directory).

The server installation process (typically a server install) will install the WebL ogic
jCOM bridge files required on the server at runtime:

m WebLogic JCOM bridge: j com j ar

Y ou must ensure that the wrapper classes generated by the j ava2comtool are on the
server system at runtime and that the CLASSPATH environment variable points to the
directory in which they are placed. The wrapper classes enable early bound
communications with the Java objects they were created to encapsul ate.

Once the EJB has been deployed to WebL ogic Server and the server has been
activated, the compiled bridge can be activated. Any changes made to the server’'s
TCP/IP address and listen port must be reflected in the bridge file itself.

For more on how to register the type library and the JVM and activate the bridge see
the Early Bound Implementation example in the Programming chapter of the
WebL ogic jJCOM User Guide.

Deploying a DCOM Late Bound Encapsulation
Implementation

Since late bound encapsulation uses early binding during development and late
binding during runtime, deploying alate bound encapsulation implementation is much
the same as deploying alate bound implementation. To ensure that late binding is

4-4 WebL ogic jCOM User Guide

Deploying your Application

indeed implemented at runtime, you need to be sure that the type library referenced
during development is no longer accessible to the client. Thiswill also render the
wrappers on the server side inaccessible.

For alate bound encapsulation implementation, the client installation process
(typicaly aclient install) will install the WebL ogic jCOM tools required on the client
system at runtime:

m WebLogic jCOM moniker: Ji nt M. dl |
aswell asthose required for configuring the client:
H regjvm

Y ou must ensure that the type library referenced during development is not visible to
the client at runtime, otherwise the implementation will remain early bound.

Before running the application, the VM must be registered using r egj vmor
regj vinend. For more on thetools, r egj vmand r egj vired, seejCOM Tools.

Note: Should the server location change, you will haveto re-register the VM. Before
doing this you have to un-register the old entry because the r egj viend tool does not
overwrite old entries when new entries with identical names are entered. Y ou can
un-register the old entry using the command linetool r egj vired, or by using the GUI
tool r egj vm(both can be found in the j COM bi n directory).

The server installation process (typically a server install) will install the WebL ogic
jCOM bridge files required on the server at runtime:

m WebLogic jCOM bridge: j com j ar

Once the EJB has been deployed to WebL ogic Server and the server has been
activated, the compiled bridge can be activated. Any changes made to the server’s
TCP/IP address and listen port must be reflected in the bridge file itself.

Deploying a Native Mode Implementation

In native mode a COM client accesses a Java object running on the same machine as
the client. WebL ogic jCOM uses native code to facilitate the interaction. For more on
native mode see Native Mode in the Reference Guide.

WebL ogic jCOM User Guide 4-5

http://e-docs.bea.com/wls/docs61/jcomreference/index.html

4 Deploying your Application

Server Clustering

If you are using more than one WLS machine in a server cluster, your deployment
mechanism will likely be affected. In order to maintain fail-over capabilities, it is
recommended that you deploy all WebL ogic JCOM files on the client system (similar
to native mode deployment above). Placing the WebL ogic jJCOM bridge on asingle
WLS machine within your cluster will render your system susceptibleto failure; if the
bridge machinefails you lose all WebL ogic jCOM functionality. Placing the

WebL ogic jCOM bridge on the client system removes this possibility, allowing your
cluster to employ its fail-over capabilities as normal.

4-6 WebL ogic jCOM User Guide

CHAPTER

5 WebLogic jCOM Tools

The following sections describe the most commonly used WebL ogic jCOM toals:
m Theregjvm GUI Tool

m The regjvmcmd Command Line Tool

m Thejava2com Tool

m Theregtlb Tool

The regjvm GUI Tool

WebL ogic jCOM allows languages supporting COM to access Java objects as though
they were COM objects.

To do thisyou need to register (on the COM client machine) areferencetothe VM in
which the Java abjects run. Ther egj vmtool enablesyou to create and manage all the
JVM references on a machine.

Note: Ther egj vmtool does not overwrite old entries when new entries with
identical names are entered. This meansthat if you ever need to change the
hostname or port of the machine with which you wish to communicate, you
have to unregister the old entry. Y ou can do this using the command line tool
regj vinend. exe, or by using the GUI tool r egj vm exe (both can befoundin
the j COM bi n directory).

WebL ogic jCOM User Guide 5-7

5 WebLogic jCOM Tools

JVM modes

A VM may be accessed from COM clients using one of three different modes:

® DCOM mode

m Native mode (out of process)

m Native mode in process

DCOM mode

DCOM mode does not require any native code on the Java server side, which means
your Java code may be located on a Unix machine or any machine with a Java Virtual
Machine installed. When you register the VM on the Windows client machine you

define the name of the server host machine (it may be localhost for local components)

and a port number.

The Java code in the VM must call com.bea.jcom.vm.register("<jvm id>"), where
<jvmid>istheid of the VM asdefined in regjvm. The VM must a so be started with

Client Machine(Windows)

Server Machine (Any
Machine supporting Java)

COM Client
Process

L

DCOM over TCPAP

the JCOM_DCOM_PORT property set to the port defined in regjvm tool for the
specified <jvm id>.

5-8

WebL ogic jCOM User Guide

The regjvm GUI Tool

Native mode (out of process)

Native mode currently only works on the local machine. Other than the VM name no
additional parameters are necessary.

Windows machine

JYM

COM Client
Process

Java
Object

The VM must call com.beajcom.Jvm.register("<jvm id>"), where <jvmid>istheid
of the VM as defined in regjvm. The VM must also be started with the
JCOM_NATIVE_MODE property set.

Native mode in process
Using native mode in process allows the user to actually load the Java object into the

same process as the COM client. Both objects must of course be located on the same
machine.

WebL ogic jCOM User Guide 59

5 WebLogic jCOM Tools

Windows machine

COM Client

Process

The JVM need not call com.bea.jcom.Jvm.register() or be started as an extra process
to the client.

The User Interface of the regjvm GUI Tool

When you run ther egj vmtool, adialog isdisplayed. Thedialog is split into two parts:

m Thetop part isfor selection and management of all JVMs on the current
machine. JVMs may be added, altered or deleted. Before switching to a different
JVM, changes made to the currently selected VM must be saved. It isaso here
that the different VM modes can be selected which then dictates the information
required in the lower half of the window.

m Thelower half of the windows contains the details required for each VM,
according to the mode of the VM. In addition to the VM details thereis an
advanced checkbox which when selected displays advanced options for each
JVM mode.

The meanings of these options are discussed in the following sections.

510 WebLogicjCOM User Guide

The regjvm GUI Tool

DCOM Mode Options for the regjvm GUI Tool

Standard Options

®ivm - J¥M register tool

SMid [l =l savenm | |

& DCOM - pure Java

| Mative made

" Mative mode in process Delete JVh 1

[JWM Details

fHostname jlocalhost Port 11350

' [T Advanced

éelp 1 About l Cloze J

m Hostname (required) - The IP name or |P address where the VM is located.
m Port (required) - The port used to initiate contact with the VM.

WebLogic jCOM User Guide 5-11

5 WebLogic jCOM Tools

Advanced Options

®ivm -I¥Mr

egister tool

MM [ipydym =l Save JvM

g DCOM - pure Java
| Mew Jyh...

 Mative mode

" Mative mode in process Dielete Jvh

1

i JWh Details —

?Hostname 1|oca|host Pt 11350

¥ Advanced

Launch Cammand

10:\bea\idk1 Fhbintjava -clazzpath o \beahwlzerverB. 1 Yjcomblibhjcom. jarc: \pur
| * Nomal Minimized = Masimized Inwisible
Generate Script... j

Hebi Abm]

m | aunch command (optional) - The command to be used if the VM isto be
automatically launched. Typically this would be something like:
c:\bea\jdk131\bin\java -classpath c:\bea\wlserver6.1\jcom\lib\jcom.jar; c:\pure
MyMainClass.

®m L aunch options (optional) - Allows you to specify the initial window state of
the server component.

m Generate Script... (optiona) - Allows the user to generate a registry script
selecting the settings of the VM.

5-12 WebLogic jCOM User Guide

The regjvm GUI Tool

Native Mode Options for the regjvm GUI Tool

Standard Options

®ivm - J¥M register tool _2(__j

?JVMid [Mwvm =l Save Jyl]

" DCOM - pure Java

| Mew Jyh. . 1
' Mative mode

| Mative mode in process Dielete JWM

I D etaily e

[T Advanced

Help 1 About

There are no standard options for this mode.

Advanced Options

®ivm - J¥M register tool

| M hm =l savenm | |

| C DCOM - pure Java

NewdvM.. | |
| ¥ Mative mode
" Mative mode in process Delete JVh J

[JWM Details

¥ Advanced

Launch Command

ic:\bea\idk‘l Fhbintjava -clazzpath o \beahwlzerverB. 1 Yjcomblibhjcom. jarc: \pur

' Momal = Mirimized " Mavimized = Inwisible

Generate Script...]

HE'D J About l Cloze .1-"-“"“.-"

m | aunch command (optional) - see DCOM mode.

WebLogic jCOM User Guide 5-13

5 WebLogic jCOM Tools

®m L aunch options (optional) - see DCOM mode.

m Generate Script... (optional) - see DCOM mode.

Native Mode in Process Options for the regjvm GUI Tool

Standard Options

®ivm - J¥M register tool ; _2(__j

| DM hgdem =l Save Jyh
" DCOM - pure Java

| Mew Jyh. .
" Mative mode

| & Native mode in process Dielete JWM

= I D b~

4l

Juitd j C:\beatjdk 1314 resbintclassichjvm. dil

.

™ Advanced e J B

Help] About J Eluo-s.e j

m JVM (required) - The VM must be specified. Clicking the browse button
allows you to select your own JVM, clicking the Scan button scans your local

machine for JVMs (this may take a few minutes) and inserts them in the listbox
for your selection.

5-14 WebLogic jCOM User Guide

The regjvm GUI Tool

Advanced Options

®ivm - J¥M register tool _2(__j

| M Them =l savedud] 5
" DCOM - pure Java R
| e JyM... |

| @ Mative mode in pracess Dielete v/

" Mative mode

~JWM Details——— T B T e A e e R

Sk]E:\bea\idk‘l31\ire\bin\classic\ivm.dll _:]
| W Advanced Scan l Browse... J
Clazzpath .c:\bea\wlserverB.‘I\icom\lib\icom.iar;c:\pure

Iain Class]

Properties 1pr0p1=value1 -jwmoptiorn W Java?z

Generate Script...]

Hep | Abm;;-mié

m Classpath (optional) - The CLASSPATH for the VM - if thisisleft blank the
CLASSPATH environment variable at runtime is used. Otherwise the contents
are added to the CLASSPATH environment variable.

m Main class (optional) - The name of the class containing a Main method which
you wish to be called.

m Properties (optional) - Any properties which you require to be set. Must have
the following syntax: propl=valuel prop2=value2...

m Java 2 (optional) - When setting properties this must be set when using Java 2
(DK 1.2.x, 1.3.x) and cleared when using 1.1.x.

m Generate Script... (optional) - see DCOM mode.

WebLogic jCOM User Guide 5-15

5 WebLogic jCOM Tools

The regjvmcecmd Command Line Tool

r egj vimend is the command line version of the GUI toal, r egj vm discussed above.
To get asummary of its parameters, run r egj viend without parameters.

In its simplest form, you specify:

® ajvm ID (corresponding to the nameused in
com.bea.jcom.Jvm.register("Jvmid")),

m and the binding that can be used to access the VM, in the form hostname] port],
where hostname is the name of the machine running the VM, and port isthe
TCP/IP port specified when starting the VM by setting the
JCOM_DCOM_PORT property (e.g. java-DJCOM_DCOM_PORT=1234
MyMainClass).

If you no longer need to have the VM registered, or if you wish to change its
registration, you must first un-register it using regjvmemd /unregister Jvmid

The java2com Tool

5-16

Thej ava2comtool analyzes Java classes (using Java's reflection mechanism), and
outputs:

m aCOM Interface Definition Language (IDL) file

m pure JavaDCOM marshalling code (wrappers) used by the WebL ogic jCOM
runtime to facilitate access to the Java objects from COM using vtable (late
binding) access.

The IDL file has to be compiled using Microsoft's M DL tool.
Togeneratethe DL file and thewrappers, start thej ava2comtool using the command:
java com bea. java2com Main

Y ou can run this tool on any platform. Make sure that the WebL ogic jCOM runtime
j COM j ar isinyour CLASSPATH environment variable.

WebL ogic jCOM User Guide

The java2com Tool

Thej ava2comtool displays the following dialog box:

Egajavame - Expose Java metho 1y C :‘l_I;I‘L)_(‘j
Java Classes & Interfaces: !._._..__....._............ _J
Mame of generated IDL File: i

Qutput Directary: i -J

1“ Dump Analysis I_ Auto-Save seftings on Exit

Generate 1 Abouti Closej Save settings .. 1 Load zettings ... 1 Mames i

1

The dialog box has the following fields (any changes to the configuration are
automatically saved when you exit the dialog box):

1

Java Classes & Interfaces

These are the 'root' Java classes and interfaces that you want java2comto
analyze. They must be accessible in your CLASSPATH. WebL ogic jCOM
analyzes these classes, and generates COM |DL definitions and Java DCOM
marshalling code which can be used to access the Java class from COM. It then
performs the same analysis on any classes or interfaces used in parameters or
fieldsinthat class, recursively, until al Java classes and interfaces accessible in
this manner have been analyzed.

Separate the names with spaces. Click on the ... button to display adialog that
lists the classes and lets you add/remove from the list.

Name of Generated IDL File

Thisisthe name of the COM Interface Definition Language (IDL) file which
will be generated. If you specify myj vm then nyj vm i dI will be generated. This
nameis also used for the name of the type library generated when you compile
myj vm i dl using Microsoft's MIDL compiler.

Output Directory

The directory to which j ava2comshould output the files it generates. The
default is the current directory (".").

Dump Analysis
Displaysthe classes that thej ava2comdiscovers, asit discovers them.

Save Settings/Load Settings

Click on the Save Settings button to save the current j ava2comsettings.

WebLogic jCOM User Guide 5-17

5 WebLogic jCOM Tools

5-18

When j ava2comstarts, it checksto see if thereisa j ava2com ser setting file
in the current directory. If present, it loads the settings from that file
automatically.

Names...

Clicking the Names button displays the following dialog box:

E‘%Map Java names to COM names [%]

Java Class fnterace GGG
Member

COM Mame hlank means don't generate) I

Addithis Class Mame map | Addithis MemberHame mag |

Existing name changes

* equals-="" -
* getClass-=""

*hashCode-=""

* notify-=""

* notifyAl - ="

* toString-=""

class java.lang.Class-="

class java.lang.ClassLoader-="

class java.lang.Compiler-="

class javalang.Process-="" =
class java.lang.Runtime-="

class java.lang.Securiteanager-="

class java.lang. StringBuffer-=" LI

Eermoye selented | Close | Cancq&!
L&y

When "*' is selected from the class/interfaces names drop-down list, atext box is
displayed into which you can type the name of a member (field or class) name.
You may specify a corresponding COM name to be used whenever that member
name is encountered in any class or interface being generated. If you leave the
name blank then that Java member will not have a corresponding member
generated in any COM interface.

When a specific COM class name or interface is selected from the
class/interfaces names drop-down list, the set of membersin that class or
interface islisted below it. You may specify a COM name to be used, and by
clicking on Add this Class Name map you map the selected class/interface to the
specified COM name. By clicking on Add this Member Name map you may map
the selected member to the specified COM name.

. Generate button

Generates the wrappers and IDL file.

WebL ogic jCOM User Guide

The regtlb Tool

For each public Javainterface that j ava2comdiscovers, it creates a corresponding
COM interface definition. If the Javainterface name were: com.bea.finance.Bankable,
then the generated COM interface would be named ComBeaFinanceBankabl e, unless
you specify a different name using the 'Names ..." dialog.

For each public Java class that j ava2comdiscovers, it creates a corresponding COM
interface definition. If the Java class name were: com.bea.finance.Account, then the
generated COM interface would be named | ComBeaFinanceAccount, unless you
specify adifferent name using the 'Names...." dialog. In addition if the Java class hasa
public default constructor, then 'java2com' generates a COM class
ComBeaFinanceAccount, unless you specify a different name using the ‘Names ...
dialog.

If aJavaclass can generate Javaevents, then the generated COM classwill have source
interfaces (COM events) corresponding to the events supported by the Java class.

Compile the generated IDL file using Microsoft's MIDL tool. This ships with Visual
C++, and can be downl oaded from the M S web site. The command

m dl prodServ.idl

will produceatypelibrary called pr odSer v. t | b, which can beregistered as described
in the following section.

The regtlb Tool

WebLogicjCOM'sr egt | b tool registersatypelibrary onaCOM Windows client that
wishes to access Java objects using COM's early binding mechanism. r egt | b takes
two parameters. Thefirst is the name of the type library file to be registered. The
second isthe ID of the VM in which the COM classes described in the type library
areto be found:

"% Command Prompt M= 3

D:xJ>regtlh

Syntax: regtlbh typelib jumid

regtlh sunregister typelib
typelib is the type library to be registered-/unregistered
Jumid is a JUM registered using the ‘regjum’ command

WebLogic jCOM User Guide 5-19

5 WebLogic jCOM Tools

5-20

If the type library was generated from an IDL file that was in turn generated by the
WebLogic jCOM | ava2comtool, then ther egt | b command can automatically
determine the Java class name corresponding to each COM classin the type library
(the COM class descriptionsin the type library are of the form:

Java class java.util.Observable (via jCOV)

If the type library was not generated from aj ava2comgenerated IDL file, you will be
prompted to give the name of the Java class which isto be instantiated for each COM
class:

D:v>regtlh atldll.t1bh Hydum

Java class for COM class Apple? com.bea.MyfippleClass

This means that when someone attempts to create an instance of At | di | . Appl e,
WebLogic jCOM will instantiate com bea. MyAppl edl ass inthe VM M/Jvm The
M/Appl ed ass class should implement the Javainterfaces generated by WebL ogic
jCOM'sj ava2comtool fromat | dl | . t| b that are implemented by the COM class
Atldll. Apple.

WebL ogic jCOM User Guide

	Copyright
	About This Document
	1 Introducing BEA WebLogic jCOM
	What is BEA WebLogic jCOM?
	The Java COM Conflict
	In Support of Java
	In Support of COM
	The Conflict Between Java and COM

	WebLogic jCOM’s Solution to the Conflict
	How WebLogic jCOM Works
	WebLogic jCOM Features

	2 WebLogic jCOM Programming Models
	WebLogic jCOM Components
	Defining the Terms
	DCOM Mode
	Native Mode
	Zero Client Installation
	Late Binding
	Early Binding

	WebLogic jCOM Programming Models
	DCOM Zero Client Programming Model
	DCOM Late Bound Programming Model
	DCOM Early Bound Programming Model
	DCOM Late Bound Encapsulation Programming Model
	Native Late Bound Programming Model
	Native Early Bound Programming Model

	3 Programming
	Server-Side Programming Requirements
	Client-Side Programming Requirements
	DCOM Zero Client Programming Model
	DCOM Late Bound Programming Model
	DCOM Early Bound Programming Model
	DCOM Late Bound Encapsulation Programming Model
	Native Mode Programming Model

	Intercepting the Instantiation of Java Objects
	Instantiating Java Objects from COM using Constructors
	Implementing a Singleton Java Object

	4 Deploying your Application
	Deployment Options
	Deploying your Application
	Deploying a DCOM Zero Client Implementation
	Deploying a DCOM Late Bound Implementation
	Deploying a DCOM Early Bound Implementation
	Deploying a DCOM Late Bound Encapsulation Implementation
	Deploying a Native Mode Implementation
	Server Clustering

	5 WebLogic jCOM Tools
	The regjvm GUI Tool
	JVM modes
	DCOM mode
	Native mode (out of process)
	Native mode in process

	The User Interface of the regjvm GUI Tool
	DCOM Mode Options for the regjvm GUI Tool
	Standard Options
	Advanced Options

	Native Mode Options for the regjvm GUI Tool
	Standard Options
	Advanced Options

	Native Mode in Process Options for the regjvm GUI Tool
	Standard Options
	Advanced Options

	The regjvmcmd Command Line Tool
	The java2com Tool
	The regtlb Tool

