BEA WebLogic

Server
Using WebLogic Events
(Deprecated)

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only
pursuant to the terms of the BEA SystemsLicense Agreement and may be used
or copied only in accordance with the terms of that agreement. It isagainst the
law to copy the software except as specifically allowed in the agreement. This
document may not, in whole or in part, be copied photocopied, reproduced,
trandated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions
set forth in the BEA Systems License Agreement and in subparagraph (c)(1)
of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and
Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clauseat NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not
represent acommitment on the part of BEA Systems. THE SOFTWARE AND
DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT WARRANTY
OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE ORWRITTEN MATERIAL IN TERMSOF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems,
Inc. How Business Becomes E-Business, BEA WebL ogic E-Business
Patform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic
Process Integrator, BEA WebL ogic Collaborate, BEA WebL ogic Enterprise,
and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with
which they are associated.

BEA WebL ogic Server Administration Guide

Document Edition

Date

Software Version

6.0

December 2000 BEA WebL ogic Server 6.0

Contents

1. Overview of WebLogic Events

WebL0ogiC EVent arChiteCtUre...........oovi e
THE TOPIC TIEE. .ttt st e
Structure of the TOPIC TrEE....ecviiveree e e e
An example of astructured tree.........oveeeerereeeree e

Registering interest in an eVeNt ... s
How the Topic Tree ispopulated..........ccceveveeeerereeir e
How aclient registersinterest in an Event TOPICcoceeeereeeeeenencnienne,
How aclient unregistersinterest in an Event...........ccooevvininenn i

ProCesSiNg @ EVENLceciviiereseseseeseeree e se et e s ere et sree e e nee s
How the Topic Tree iStraversed. ... ieieininie e
How each EventRegistration iS processedcoceveveereeerienenenieneseeens
How events are evaluated by an EventRegistration...........ccccceevvivvennne 10
How the action ProCESS WOFKScociiueririerieriireeie s 11
MOre abDOUL PAraMELENS.........cooiieririere et 11

2. WebLogic Events Objects and Their Classes

Evaluate and ACtion ODJECES........cccvievireccececeses et 34
The EvaluateDef and ActionDef interfaces.........ccoovvveveneienninicncnenen 35
Methods you Will IMPIEMEN..........cccireereeeeeeere e 35

Y= Ll 0] o Tl 0] o 1= ox 36

EventRegiStration ODJECLS.coo it e 38
EVENtMESSAgE ODJECESvi et st s nnens 41

ParamSet and ParamValue ObJECES.........cccveeeieerece e 41
Using ParamSets Efficient]yooeoeeiieeee e 43

Implementing with WebLOgiC EVENES.........ccocveevieieieneseeesieeeseseeese e 45

Writing the EVAlUate ClasS.........ccvvvieveireceeceee e 46

Using WebL ogic Events (Deprecated) iii

Step 1. IMPOrting PACKAGESc.veveeeeeeereeeestesestestes e ese e e sre e seesrenees 46

Step 2. Theregisterlnit() Method............cooooiriiiiini e, 47
Step 3. The evaluate() MEthod..........ccoveeeeeeece e 48
Code for the EvaluateStocks (evaluate) Class........ccoovveverereneeceeesiennseen, 48
WIiting the ACHION ClESScoiiiiiiie e e 50
Step 1. IMPOrting PACKAGESc.vcveeeerereceseseste e e see s ese e e sre e snesrenes 50
Step 2. Theregisterlnit() Method............cooiiiiiiiiniiee e, 50
Step 3. The action() Method ..o 51
Code for the Mail StockInfo (action) Class........ccccveveveviecieniesesereese e 52
Registering interest in an eVeNt ... 53
Step 1. IMPOrting PACKAGEScveerererieeiestere et b e 53
Step 2. Checking the command-line arguments..........ccccvveveveeccevecesenn, 53
Step 3. Processing the command-line arguments...........cocveveecenenccnenennn. 54
Step 4. Obtaining the EventServices factory ... veneeieeeseeeeee, 54
Step 5. Creating and submitting the registrationcccccocevvveecerveccecennn, 55
Code for the RegiSter Class.........cuiiiieriienee e 57
Sending events to the WebL OgIC SEIVEN.......ccoo i 59
Step 1. IMPOrting PACKAGESc.veveeeeerere e se st e s seesrees 59
Step 2. Checking the command-line arguments..........cccoeeienrenencnenenn, 59
Step 3. Processing the command-line arguments...........coevereeeenenccnenennn. 59
Step 4. SUDMILLING EVENES.....c.eieveiiee et 60
Code for the SENdEVENES ClaSScoeeeriiiiriere e 61
Using client-side NOtIfiCatiON...........coirerereeeee e 63
Setting up ACLs for WebL ogic Eventsin the WebLogic Realm....................... 64

iv Using WebL ogic Events (Deprecated)

CHAPTER

1

Overview of WebLogic
Events

WebL ogic Event API provides a lightweight event management system using a
publish/subscribe paradigm. For example, a WebL ogic/JDBC client can submit
(publish) events to a WebL ogic Server. Other clients of the WebL ogic Server can
register interest in (subscribe) to those events. The WebL ogic Server informs
subscribers of new events when they occur.

A client can specify conditions, called an evaluator, that must be satisfied for an event
to be ddlivered to them. Evaluators can prevent unnecessary network traffic.
Evaluators are executed on the WebL ogic Server.

The client also specifies what happens when the event occurs. The Action resulting
from an event can be implemented either on the server or the client side. See
Registering interest in an event later in this document.

Asaservice, WebL ogic Events has accessto all of WebL ogic's other services, like
JDBC, RMI, logging, instrumentation, Workspaces, etc. All of these services are
integrated in WebL ogic. Their APIs share many common aspects that make building
acomplex networked application easier; your application can use several services, al
of which can share access to objects and client resources.

Several WebL ogic Servers can operate together as a WebL ogic Cluster to manage
notifications and registrations, since any WebL ogic Server can publish and subscribe
to events on other servers simultaneously.

WebL ogic Server implements JavaSoft’ s JavaM essaging Service (IMS) specification.
Y ou can use WebL ogic IMS in any application where you can use WebL ogic Events.
WebL ogic JMS offers features not found in WebL ogic Events, such as message
persistence, point-to-point messaging, and guaranteed message delivery sequence.
Since WebLogic IMS is an industry-standard interface, we recommend that you

Using WebL ogic Events (Deprecated) 1-5

WebLogic Event architecture

implement new event-based applications using WebLogic IMS. Y ou may still choose
to use WebL ogic Events in applications that do not require the more sophisticated
features IM S offers. The WebL ogic Events service is small and fast, but limited
compared to IMS. Read more about WeblL ogic IMS in Using WebLogic IMS.

WebLogic Event architecture

The Topic Tree

The Topic Treeisthe chief architectural feature of WebL ogic Events. The Topic Tree
lives on the WebL ogic Server and is populated by all of the Event Topics that clients
have subscribed to. It is the data structure used to remember and process WebL ogic
Events as they are subscribed to and published by WebL ogic Clients.

Structure of the Topic Tree

The tree structure allows event types to be grouped into categories and further
sub-categories, where each branch in the tree represents a sub-category of the event it
branches from. In awell organized Topic Tree, as we move from the root towards the
leaf nodes, the Event Topics become more specific.

The notation used to describe eventsin the treeis similar to the dot-notation of domain
addresses. Each word representsan event at a particular branchinthetree. For example
comms.devices.telephone.ring or comms.devices.telephone.page. This allows clients
to subscribe to a specific Event Topic, using the full event qualifier. This model also
allows aclient to subscribe to ageneral category of Event Topics, by only specifying
interest to a branch level. E.g. comms.devices.tel ephone would listen for any events
pertaining to a telephone.

However, the organization of thetreeisthe responsibility of the client applicationsthat
make up the WebL ogic framework. It isyour responsibility to program your system so
that it organizes the events sensibly, to make the most of this structure.

Using WebL ogic Events (Deprecated) 1-6

http://e-docs.bea.com/wls/docs61/jms/index.html

WebLogic Event architecture

An example of a structured tree

At the top (or root) of every Topic Tree isawildcard topic that essentially denotes
“every kind of event,” which is notated with an asterisk (*). All other topics are
considered to be more specific than the root topic. An application that registersinterest
in the root topic is able evaluate every event that occurs on the WebL ogic Server, in
the Topic Tree.

Figure1-1 WebLogic'sTopic Tree

.f: WeblLogic's Topic Tree

b

bare general

More specific

In the example shown above, there are two major branches of topicsthat descend from
the root, stocks and weather. We build atypica Topic Tree here for registrations of
interest in weather in two California cities, Los Angeles and San Francisco. These
topics would be notated as:

weather.northamerica.us.california.la

and

weather .northamerica.us.california.sf

Using WebL ogic Events (Deprecated) 1-7

WebLogic Event architecture

Registering interest in an event

How the Topic Tree is populated

The Topic Tree is dynamically built inside the WebL ogic Server as clients subscribe
to Event Topics. If aclient subscribesto an Event Topic that doesnot exist inthe Topic
Tree, anew node, and the new branches required to reach that node, are created
automatically. The subscribing client will now receive notice of the new Event
whenever it is published.

How a client registers interest in an Event Topic

A WebL ogic Client must register interest in atopic with the WebL ogic Server in order
to evaluate, and act upon events when they are published. Any WebL ogic Client
application on the network can register interest in any number of Event Topicsviathe
WebL ogic EventRegistration services.

A registration is submitted to the WebL ogic Server usually with the following pieces
of information:

Which event to subscribe to, described by Registration Parameters

m How to Evaluate the event when it occurs, specified viaan Eval uat eDef
object.

m What happens when the event eval uates true, specified viaan Act i onDef
object.

Thisis described later in more detail with code examples. See Registering interest in
an event.
How a client unregisters interest in an Event

A client application can unregister interest in one of two ways:

Use the count property to control when interest is unregistered. There are several
ways that you can control the length of your event registration.

m Cal theEvent Regi strat i on. unregi st er () method.

Using WebL ogic Events (Deprecated) 1-8

WebLogic Event architecture

NOTE: For event registrations where both the eval uat e() andtheacti on()
methods livein the WebL ogic Server, it istheresponsibility of the client to unregister
interest. If theact i on() method livesin the client, then deregistration takes place
automatically when the WebL ogic client disconnects.

Processing an event

This section describes how event propagation works. Understanding thiswill help in
understanding how to use WebL ogic Eventsin your network applications.

How the Topic Tree is traversed

Any application can submit an event to the WebL ogic Server. An event is submitted
with a set of event parameters that qualify its scope. Onceit is submitted, the

WebL ogic Server triesto find an exact match for the specific event in the Topic Tree.
If found, the EventRegistration(s) for that EventTopic are processed (described next).
If no exact match isfound, or no clients have registered interest in that EventTopic,
then the event is considered as not delivered at this point. Next, the Topic Treeis
ascended to the next less-specific EventTopic, and the EventRegistrations there are
processed, and so on, until the top of the topic tree is reached.

How each EventRegistration is processed

Each client that has an interest in a particular EventTopic should have registered an
EventRegistration with that topic. So, each EventTopic in the Topic Tree has alist of
EventRegistrations, which describes how each client isinterested in the EventTopic.
When an EventTopic is matched to an Event, it processes each EventRegistration in
the following way:

m |f the EventTopic is an exact match to the Event, the Event is evaluated by the
EventRegistration. (i.e. the following conditions are skipped)

m However, If thisis aless specific Event Topic than the actual published event.
i.e. itisan Event Topic that is higher up the Topic Tree, then the following
considerations are made.

o If the event was not delivered to a more specific EventTopic successfully, itis
evaluated by the EventRegistration.

Using WebL ogic Events (Deprecated) 1-9

WebLogic Event architecture

o If the event was delivered to amore specific Event Topic, then the si nk flag
of the EventRegistration is considered.

si nk
A registration can be flagged as a sink, which means that it is guaranteed to
receive a chance to evaluate all eventsin which it has registered an interest,
aswell as all events associated with more specific topics below its
registrationin the Topic Tree. (Registering for the root topic (*) with the sink
flag set to true guarantees a chance to evaluate every event submitted to the
WebL ogic Server. If your evaluate method for such aregistration does
nothing but return true, you effectively act upon every event submitted to the
WebL ogic Server.)

If you set aregistration’ssink flag to f al se (the default), your client only
receives notification when that exact event occurs and not when more specific
events below that branch occur. However, there is an exception to thisrule:

Evenwiththesi nk flag settof al se, the EventRegistration evaluatesamore
specific event if that event was not delivered successfully to a more specific
Event Topic. Thiswould happen if no client had registered interest in the
more specific Event Topic at that time. Because a topic does not exist in the
tree until a client has registered interest in it, you should be careful when
evaluating events. Do not assume that setting si nk to f al se ensures your
client only receives events exactly related to that topic.

Because events are evaluated thisway, you can establish EventRegistrations
to catch events that no clients have registered to receive.

How events are evaluated by an EventRegistration

When aclient registersinterest in an event viaan EventRegistration, it must specify an
Evaluate object, that is associated with the EventRegistration. Once an event reaches
amatching registration, the WebL ogic Server callsthe Evaluate object’ seval uat e()
method. The Evaluate class, which implements the interface

webl ogi c. event . eval uat or s. Eval uat eDef , is guaranteed to implement this
method, and is usually a user written class, or one of the default weblogic evaluators.
The Evaluate class must be installed on the server, and must liein the server’s
CLASSPATH.

Using WebL ogic Events (Deprecated) 1-10

WebLogic Event architecture

Theeval uat e() method is passed the parameters that accompany the event. The
custom method may analyzethe event parameters, and return either true or false. When
true, the WebL ogic Server, invokes the Action object’sact i on() method, unless
phase is set to false.
phase
When aclient registersinterest in an topic, it may set the phase, which
negates the logic that triggers the Action. For example, if an application is
interested in when the weather is sunny in San Francisco, the registration will
be asfollows:

eTopic is weather.northamerica.california.sf

eEvaluate parameters are SKYI NDI CATOR="f oggi ness",
| NDI CATORLEVEL="over ", and | NDI CATORVALUE="40%

ePhaseisfase

Now that thelogic isreversed, the client will be notified when it is not foggy
in San Francisco. One would hope this meansiit is sunny!

How the action process works
If the evaluation process succeeds, the action class for that registration is called.

The Action classis a user-written class, which implements the interface
webl ogi c. event . acti ons. Acti onDef . Your action class can perform any action

that can be written in Java. Examples of action classes are the Act i onEmi |,
Acti onUDP, and Act i onNul | included inthewebl ogi c. event . act i ons package.

An Action class may notify the WebL ogic client that i ssued the registration of interest
that the evaluator returned true. See below for an example of client-side notification.

More about parameters
Parameters are used by several objectsin the WebL ogic Server, including:

m Registration management. Administrative parameters, used for registration
management, set limits on how many times the evaluator will be called and other

administrative details.

m Registration of interest. Registration parameters are a set of name=value pairs
that together define the scope of the interest in an event. With these parameters,
the WebL ogic Server can filter eventsto further qualify whether or not an event

Using WebL ogic Events (Deprecated) 1-11

WebLogic Event architecture

should be evaluated. A registration is always submitted to the WebL ogic Server
with a set of registration parameters (that isitself a subset of the registration’s
administrative parameters).

m Event parameters. Event parameters, like Registration parameters, are a set of
name=value pairs that further qualify the event. An event is always submitted to
the WebL ogic Server with a set of event parameters.

A parameter is constructed as a ParamSet object, which may itself be an array of
ParamSets. The value associated with each parameter of a ParamSet is a ParamValue
object, which may itself be an array of ParamValues.

Using WebL ogic Events (Deprecated) 1-12

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-13

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-14

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-15

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-16

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-17

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-18

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-19

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-20

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-21

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-22

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-23

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-24

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-25

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-26

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-27

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-28

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-29

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-30

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-31

WebLogic Event architecture

Using WebL ogic Events (Deprecated) 1-32

CHAPTER

2

WebLogic Events

Objects and Their
Classes

The WebL ogic Events API includes the following packages:

Package weblogic.event.actions
Package webl ogic.event.common
Package webl ogic.event.evaluators

There arefive basic types of objectsin WebL ogic Events:

Evaluate and Action objects. Constructed in the WebL ogic Server at the time of
registration; they store information about how events should be evaluated and
acted upon. These objects are arguments for the registration.

EventTopic objects. An EventTopic is a object that represents a node in the
Topic Tree. It has methods for submitting events to the topic and registering an
interest in the topic. It also allows the user to control the lifetime of the topic.

EventRegistration objects. Store information about the registration; thisincludes
the identity of the registeree, the time of registration, and class information about
Evaluation and Action objects, and are submitted to the WebL ogic Server at
registration time.

EventM essage objects. Encapsulate Events as they are filtered up through the
Topic Tree and are evaluated and acted upon based upon current
EventRegistration(s) at each EventTopic.

Using WebL ogic Events (Deprecated) 2-33

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/actions/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/package-summary.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/evaluators/package-summary.html

Evaluate and Action objects

m Parameter objects. Store specific details about the scope of events, eval uators,
and actions.

Evaluate and Action objects

The packages for webl ogi c. event . eval uat ors. * and
webl ogi c. event . acti ons. * contain classes and interfaces that are used to:

m Write user-defined evaluator and action classes (implementing the EvaluateDef
and ActionDef interfaces)

m Submit objects that instantiate these classes, a ong with registration parameters
and other settings, to the WebL ogic Server at registration time (the Evaluate and
Action classes)

When you register interest in an event, you must also submitthe classnames of an
evaluate object, and an action object as two of thearguments for the
webl ogic.common.EventServices.getEventRegistration()

method. The evaluate class that you write must implement the interface
Eval uat eDef The action class that you write must implement the interface
Act i onDef You can write asingle class that implements both interfaces.

The constructors for these objects take the full package name of the user-written class
and a set of parameters (a ParamSet) as arguments. The evaluate and action classes are
instantiated inside the WebL ogic Server at registration. Since the Java class |oader
does not permit the passing of arguments to the constructors of dynamically loaded
classes, the constructors for these classes must be a default constructor—that is, one
with no arguments. For thisreason, ther egi st er I ni t () method isusedto supply the
registration parametersto the newly constructed evaluate or action objects. This gives
these objects an opportunity to inspect and act upon the eval uate parametersand action
parameters that were submitted with the registration.

Using WebL ogic Events (Deprecated) 2-34

Evaluate and Action objects

The EvaluateDef and ActionDef interfaces

webl ogi c. event . eval uat or s. Eval uat eDef

webl ogi c. event . acti ons. Act i onDef

Each of these packages has an interface: Eval uat eDef and Act i onDef . Other classes
inthese packages, like Eval uat eTr ue and Act i onEnai | , implement the EvaluateDef
and ActionDef interfaces. Y ou should inspect these as examples of how to write your
own Evaluate and Action classes.

Y ouwill use ParamSet objectsto set parametersfor eval uation of and action on events.
These parameters must be known to all the parties interested in them. There are no
fixed relationships between the parameters for events, registrations, evaluators, and
actions, but the developer may build in relationships, depending upon the application.

Here is agood example of how you might build relationships between parameters. In
this case, the parameters of the eval uat e() method must match the parameters of
submitted events, and the parameters for the act i on() method must match the
parameters of aregistration. The topic of interest in weather is San Francisco, and
parameters for the evaluation and the event must match in order for the eval uat e()
method to return true. Likewise, in this example, the action to take when the fogginess
factor hitsa certain low isto send email; consequently, the registration parameters
must supply all the information necessary for the action class to send email. The
ParamSetslikely for this particular event, registration, evaluation, and action might be;

The EvaluateDef and ActionDef interfaces can be implemented by asingle class that
contains both an evaluate() and an action() method. Using a single class hasthe
advantage that both methods can have access to the same variables.

Methods you will implement

publ i ¢ bool ean eval uat e(Event MessageDef event MsQ)
t hrows Par anBSet Excepti on;

public void action(Event MessageDef event MsgQ);

Each of these methods is passed an Object that implements an
Event MessageDef interface. Referencing the Object by the Interface
abstracts us from the details of the implementation of this object. (The

Using WebL ogic Events (Deprecated) 2-35

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/evaluators/EvaluateDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/actions/ActionDef.html

EventTopic objects

underlying object may been aclient or server side implementation). The
Event MessageDef object containsinformation about the event and the event
parameters. Y ou can access these viathe methods defined in the interface.

registerlnit()

Because the Java class |oader does not permit the passing of argumentsto the
congtructors of dynamically loaded classes, the constructor for any user-written class
that implements an interface must be a default constructor, that is, one that takes no
arguments. For thisreason, the registerinit() method is used to supply the registration
parameters (aParamSet object) to the the newly-constructed eval uate or action objects.
This gives these objects an opportunity to inspect and act upon the registration
parameters.

i sLongRunni ng()

This method is deprecated in version 2.5. Users who implement the interfaces for
evaluators and actions no longer need to specify this method. Evaluate and action
methods now run by default in a separate thread that is selected from a pool of threads
in the WebL ogic Server, for faster, more efficient operation.

EventTopic objects

webl ogi c. event . cormon. Event Ser vi cesDef

webl ogi c. event . cormon. Event Topi cDef

As of Release 3.0, WebL ogic Events now supports EventTopics as first-class objects
for use in applications that wish to send and receive event messages. This provides a
simple approach to event-based programming. With an EventTopic object, a

WebL ogic client application can get a subtopic, send an EventM essage, or register an
interest in an event.

Y ou request an EventTopic from the EventServices factory, by caling the
Event Ser vi cesDef . get Event Topi ¢c() method. You can create subtopics with the
Event Topi cDef . get Event Topi ¢() methods. Here isan example:

Using WebL ogic Events (Deprecated) 2-36

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventTopicDef.html

EventTopic objects

Event Topi cDef topic =
t 3services. events(). get Event Topi c(" WEATHER. CA. SF") ;

where t3services is aremote interface obtained from a INDI lookup.

Y ou can aso control the length of the lifetime of an EventTopic, by setting it to
Event Topi cDef . EPHEMERAL Or Event Topi cDef . DURABLE in the

Event Topi cDef . get Event Topi ¢() methods. By requesting the EventTopic “root”
from the EventServices factory and creating subtopics that are DURABLE, you can
exercise more control over the size and shape of the Topic Tree. Hereis an example:

Event Topi cDef topic = t3services.events().
get Event Topi c(" WEATHER. CA. SF",
Event Topi cDef . DURABLE) ;

Y ou can use an EventTopic object to get or create subtopicsin the Topic Tree. The
subtopic can represent more than a single node in the Topic Tree. Just call
get Event Topi c¢() onthe EventTopic itself, as shown here:

Event Topi cDef topic =

t 3servi ces. event s(). get Event Topi c("WEATHER") ;
Event Topi cDef weat her CA t opi c. get Event Topi c(" CA");
Event Topi cDef weat her CASF = topi c. get Event Topi c("SF");
Event Topi cDef weat her NYNY = topic. get Event Topi c(" NY. NY");

Once you have an EventTopic, you can submit EventM essages or EventRegistrations
to the topic. There is more detail on thisin the Implementing with WebL ogic Events
section below. Here are two brief examples. Thefirst registersinterest in aweather
event:

Event Topi cDef topic =
t 3services. events(). get Event Topi c(" WEATHER. CA. SF") ;
Eval uate eval =
new Eval uat e("webl ogi c. event . eval uat or s. Eval uat eTrue");
Action action = new Action(this);
Event Regi strati onDef er = topic.register(eval, action);

The second example submits an EventMessage for the same topic in the Topic Tree:

Event Topi cDef topic =
t 3services. event s() . get Event Topi c(" WEATHER. CA. SF");
Par anSet ps = new Parantet ();
ps. set Par an(" TEMPERATURE", 23);
t opi c. submi t (ps);

Using WebL ogic Events (Deprecated) 2-37

EventRegistration objects

Y ou can also associate an access control list with an EventTopic and control which
users can either submit or receive events. For more on ACLSs, read Setting up ACLs
for WebLogic Eventsin the WebL ogic Realm.

EventRegistration objects

webl ogi c. event . cormon. Event Ser vi cesDef
webl ogi c. event. cormon. Event Regi st rat i onDef

When aclient registersinterest in an event, it is notified when that event occurs. In
order to be able to evaluate and act upon events, you must register an interest in an
event.

You can usethe Event Topi c. regi st er () method (with an Evaluate object and an
Action object) to get an EventRegistration. Thisis the easiest way to register interest
in an event.

Y ou can obtain an interface to an EventRegistration object from the EventServices
factory with the method get Event Regi st rati on() . Then, register interest in the
event as shown here:

Event Regi strati onDef erDef=
t 3services. events().
get Event Regi stration(String topi cNane,
Eval uat e eval uat or,
Action action,
bool ean si nk,
bool ean phase,
int count);

Where t3services is the remote services factory obtained from a
JNDI lookup, and the parameters above are:

Event Regi strat i onDef erDef
The method returnsa Event Regi strati onDef interface object. Again,
thisinterface provides your client accessto all of the methodsin the real
EventRegistration object, which may exist on the server.

Using WebL ogic Events (Deprecated) 2-38

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventRegistrationDef.html

EventRegistration objects

St ri ng topicName
topicName specifies the EventTopic you are interested in as a dot-notation
formatted string that can be parsed (for example,
“weather.northamerica.us.california"). A topic can also be specified as an
array of strings, where each element in the array corresponds to a subtopic
(for example, “weather", “northamerica’, "us', “california'). Each topic is
added to the Topic Tree in the WebL ogic Server dynamically as new
registrations are received. Of coursg, it is necessary for applications that are
registering interest in events to know the topics for which applications will
submit events, and vice versa.

Eval uat e evaluator
An Eval uat e object, which is used to instantiate the user-written evaluate
class for execution on the WebL ogic Server. When constructing your
Evaluate object, you specify thefull package name of your Eval uateDef class,
and a set of evaluation parameters, (ParamSet) that qualify the topic of
interest.

Act i on action
An Action object, which is used to instantiate the user-written action class,
to be invoked when the event is evaluated as true. Y ou construct an Action
object by specifying either:

mThe full package name of your ActionDef class, which will be instantiated and
executed on the server.

mA local instance of an ActionDef object itself, which will beinvoked locally
on the client.

You also specify a set of parameters (ParamSet) that qualify how the action
should be carried out.

bool ean sink
If si nk istrue, the registration will receive notification of every eventin

which it hasregistered interest as well as notification for every event below
the registered topic in the Topic Tree. For example, setting sink to true for a
registration for the topic weather.northamerica.us.california would assure
that this registration gets a chance to evaluate events for topics
weather.northamerica.us.california, aswell as
weather.northamerica.us.california.la and
weather.northamerica.us.california.sf. The default value of sink is true.

Using WebL ogic Events (Deprecated) 2-39

EventRegistration objects

Whensi nk is f al se, theregistration will still receive any event messages
directed at a more specific topic if there are not successfully delivered.

bool ean phase
If phaseissettof al se thelogic of the evaluation is reversed. The default
valueis true. For example, if an evaluator for aweather topic returnstrue
when a“fogginess’ parameter is reported asover a certain value, we can set
phasetof al se, and use the same evaluator to return true if the “fogginess”
is under acertain value.

i nt count
count specifies the number of times aregistration may evaluate an event.
After the count has expired, the registration will automatically be canceled.
If unset, the default is Event Regi st r at i onDef . UNCOUNTED. Another
option added in Release 3.0 isEvent Regi st rat i onDef . ON_DI SCONNECT,
which automatically cancels an event registration when its client
disconnects.

Once you have successfully obtained an interface to the EventRegistrationDef object,
you must register it with the Webl ogic server usingitsr egi st er () method. Thiswill
return a unique identifying number at instantiation time, whether or not the

regi st er () method succeeds. If ther egi st er () method succeeds, the

Event Regi strati onDef . i sRegi st er ed variable is set to true.

The EventRegistration class has accessors (like get Eval uat or ()) to return the
arguments supplied when an EventRegistration object was requested.

Y ou can unregister by calling the unr egi st er () method on the
EventRegistrationDef object. If you do not have accessto the EventRegistration object
you can use the unr egi st er () method of the Event Ser vi cesDef interface,

accessible through:

t3client.event.services().unregister(int reglD);

Wheret3client isyour T3Client object, and regldisthe uniqueidentifier returned when
the EventRegistrationDef object was registered.

After aregistration succeeds, there are internal parameters that are available for the
Action parameters and the Evaluate parameters. They include the following
(depending on the package):

m EVENT_SERVER REG STRATI ON_TI ME
m EVENT_SERVER REG STRATI ON_THREAD

Using WebL ogic Events (Deprecated) 2-40

ParamSet and ParamValue objects

m EVENT_CLI ENT_REG STER Tl ME
m EVENT _CLI ENT_REG STER THREAD
m EVENT CLI ENT_REG STER HOST

EventMessage objects

Events are submitted to the WebL ogic Server as EventM essage objects. The easiest
way to submit an EventMessage is to request an EventTopic from the EventServices
factory with the Event Ser vi cesDef . get Event Topi c() method. Then create a
ParamSet, and submit the EventMessage by calling the Event Topi c. submi t ()
method, which takes a ParamSet as its argument.

Y ou can also request an EventM essage object from the EventServices factory (rather
than constructing the object), with the Event Ser vi cesDef . get Event Message()
method. EventM essages implement the interface Event MessageDef .

Although any application can submit events to the WebL ogic Server, we restrict this
discussion to Java applications that can use Java objects.

Theget Event Message() factory method takestwo arguments: the topic, and a set of
parameters (ParamSet) that qualify the event. To submit an event to the WebL ogic
Server, you request it from the EventServices factory and then call the subni t ()
method on the object. Other methods in the class give you access to the event
parameters and allow you to display details about the event. The EventM essage object
ispassedtotheeval uat e() method by the WebL ogic Server, which makesthe Event
parameters accessible for comparison by the evaluator.

ParamSet and ParamValue objects

Events, registrations, evaluations, and actions al use parameters to qualify scope.
Parameters are handled in the WebL ogic Events by weblogic.common.ParamSet
objects, which contain weblogic.common.ParamV alues. WebL ogic uses ParamSets
and ParamV alues to pass data between clients and servers.

Using WebL ogic Events (Deprecated) 2-41

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/ParamSet.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/ParamValue.html

ParamSet and ParamValue objects

A ParamSet parameter isaname=value pair, like SKYI NDI CATOR="f oggi ness" . The
name of a parameter isits keyname, and all ParamSet contents are accessible by
keyname. For each keyname in a ParamSet, you set a corresponding ParamValue.
(Notethat thevariablesin ParamTypesfor mode, desc, type, and name are not used for
events.)

Constructing a ParamSet of just name=value pairsis asimple operation, but powerful
enough to allow you to set up complex relationships between ParamSets and
ParamValues if necessary. For example, hereis how you would create three
name=value pairsto set evaluation criteriafor an registration of interest in the weather
in San Francisco:

Par anSet eval RegPar ans = new ParanSet () ;

eval RegPar ans. set Par an{ " SKYI NDI CATOR", "foggi ness");
eval RegPar ans. set Par an{ " | NDI CATORLEVEL", "over");
eval RegPar ans. set Par an{ " | NDI CATORVALUE" , "40");

These parameters are used as a constructor for the Evaluate class, which isitself used
as an argument for the EventRegistration. We would also set similar parameters when
we submitted an Event to the WebL ogic Server about the state of weather in San
Francisco, for example:

Par anSet event Parans = new Par anBSet () ;

event Par ans. set Par am(" SKYI NDI CATCR", "f oggi ness");
event Par ans. set Par am(" | NDI CATORLEVEL", "equal s");
event Par ans. set Par am(" | NDI CATORVALUE", "35");

The event parameters are used as an argument for a get Event Message() method.
When an event occurs, the event server passesthe event to the Evaluate method, which
makes the Event parameters available to the Evaluate class. Y ou use the

webl ogi c. event . eval uat ors. Eval uat eDef . regi st er I ni t () method to recall
the registration:

public void registerlnit(ParanSet parans) {
weat her Synbol = parans. get Val ue(" SKYI NDI CATOR") . asString();
weat her Level = parans. get Val ue(" 1 NDI CATORVALUE") . asl nt () ;

}

And then we can compare the Event and Registration parameters like this:

publ i c bool ean eval uat e(Event Message ev) {
Par anSet event Parans = ev. get Paraneters();
i f (eventParans. get Val ue(" SKYI NDI CATOR") . asString()
. equal sl gnor eCase(weat her Synbol))
{

Using WebL ogic Events (Deprecated) 2-42

ParamSet and ParamValue objects

int eventlLevel =

event Par ans. get Val ue(" 1 NDI CATORVALUE") . asl nt () ;
if (eventLevel == weatherlLevel)
return true;

return fal se;

}

With this simpleillustration of how ParamSets are set and retrieved, you also have a
basic outline of how the event registration, event submission, and evaluate processes
inter-operate.

Using ParamSets Efficiently

There are some efficiency considerations when using ParamSets and the objects that
they qualify. It is neither required nor desirable to create a new EventMessage and its
associated ParamSet each time you want to submit an event for a particular topic.

This code snippet, which creates a new ParamSet and EventMessage for each
submission, will generate 100 ParamSets, about 300 ParamV alues (since two
ParamV alues are added automatically by Event Message. subni t ()), 100 events, and
will make 100 ParamV alue lookupsin the ParamSet:

for (int i =0; i < 100; i++) {
ps = new ParanBet ();
Event MessageDef em = t 3. services. events()
. get Event Message(topi c, ps);
ps. set Param(" nunber", i);
em subm t();

}

Itis more efficient to create a ParamSet and an EventM essage asinstance variablesin
the class, and then modify them and resubmit them as necessary. This example will
generate 1 ParamSet, 3 ParamValues, 1 Event, and will make 100 ParamV aluelookups
in the ParamSet:

ps = new Paranfet () ;
Event MessageDef em = t 3. servi ces. events()
. get Event Message(topic, ps);

for (int i =0; i < 100; i++) {
ps. set Param(" nunber", i);
String status = em submt();

}

Using WebL ogic Events (Deprecated) 2-43

ParamSet and ParamValue objects

The most efficient approach isto make areference to the underlying ParamV alue and
set it repeatedly. This example shows how you can use this approach to prevent
multiple ParamValue lookups for the counter “ number";

ps = new ParanBet () ;
Par amval ue num = ps. get Param(" nunber");
Event MessageDef em = t 3. servi ces. events()
. get Event Message(topic, ps);

for (int i =0; i < 100; i++) {
num set (i);
String status = em submt();

}

Thelast code snippet will generate 1 ParamSet, 3 ParamValues, 1 Event, and will make
1 ParamValue lookup in the ParamSet.

Events and ParamSets are serially reusable, but they are not threadsafe, that is, you
can reuse them but not concurrently in multiple threads. To make the same code
snippet multi-thread safe, for example, we would wrap the Event submissionin a
synchronized block:

ps = new ParanBet () ;
Par amval ue num = ps. get Param(" nunber");
Event MessageDef em = t 3. servi ces. events()
. get Event Message(topic, ps);

for (int i =0; i < 100; i++) {
synchroni zed (em {
num set (i) ;
em subm t();

}
}

Note that although you must create the new ParamSet before you request the new
EventM essage (since the ParamSet object is used in the get Event Message()
method), it is not necessary to call the Par antet . set Val ue() method until the
instant before the Event . submi t () method iscalled (or r egi st er () method in the
case of Evaluate and Action constructors). It isonly when submi t () or regi ster ()
is called that the ParamSet is actually examined.

Using WebL ogic Events (Deprecated) 2-44

Implementing with WebLogic Events

Implementing with WebLogic Events

There are two primary implementations of WebL ogic Events: building WebL ogic
Events applications that can register interest in events, which involves writing

eval uat e() and acti on() methods and building ParamSets; and building event
generation into other applications. In these examples, we illustrate this process with
four classes:

1. A classto evaluate events

2. A classto act upon appropriate events

3. A classthat will register interest in an event

4. A classthat will send eventsto the WebL ogic Server

In the example code below, the application allows you to register interest from the
command linein astock and set the price at which you want to buy; then you can send
aseriesof eventsto the event server that puts stock up for bid. When abid that matches
your offer to buy is evaluated in the WebL ogic Server, the action—to send you email
notification—is invoked.

Note that you can implement the EvaluateDef and ActionDef interfaces with asingle
class that has both eval uat e() and acti on() methods.

m Writing the Evaluate class

mStep 1. Importing packages

mStep 2. The registerinit() method

mStep 3. The evaluate() method

mCode for the EvaluateStocks (evaluate) class
m Writing the Action class

mStep 1. Importing packages

mStep 2. The registerinit() method

mStep 3. The action() method

mCode for the MailStockInfo (action) class

Using WebL ogic Events (Deprecated) 2-45

Writing the Evaluate class

m Registering interest in an event
nStep 1. Importing packages
mStep 2. Checking the command-line arguments
mStep 3. Processing the command-line arguments
mStep 4. Obtaining the EventServices factory
mStep 5. Creating and submitting the registration
m Sending events to the WebL ogic Server
mStep 1. Importing packages
mStep 2. Checking the command-line arguments
mStep 3. Processing the command-line arguments
mStep 4. Submitting events
mCode for the SendEvents class

Following the stock exampleis an example that illustrates client-side notification.
Client-side notification allowsthe Action method to be executed onthe T3Client rather
than in the WebL ogic Server.

m Using client-side notification

Writing the Evaluate class

The example application evaluates an event—someone submitting an intent to sell
certain stocks at a particular price—against aregistration of interest in buying certain
stocks at a particular price. The Evaluate class that we write implements the interface
webl ogi c. event . eval uat or s. Eval uat eDef .

Step 1. Importing packages

We import the following packages for all WebL ogic Events classes:

Using WebL ogic Events (Deprecated) 2-46

Writing the Evaluate class

® webl ogi c. common. *; for accessto ParamSets, ParamValues
m webl ogi c. event. common. *; for access to common WebL ogic Events objects

For the Eval uate class, we also import
webl ogi c. event . eval uat or s. Eval uat eDef , which isthe interface this class
implements.

In this class, we also create a class variable “ services’ that defines the WebL ogic
Server servicesthat the application will useto accessthe EventServices object factory.
Theset Servi ces() method is called when the evaluator is executed at runtime.

Step 2. The registerInit() method

Since dynamically loaded classes—both the Evaluate and Action classes are |oaded
dynamically into the WebL ogic Server at registration time — cannot pass arguments
in aconstructor, ther egi st er I ni t () method is used to pass registration parameters
to the newly-constructed Evaluate object. The WebL ogic Server passes the Evaluate
class the ParamSet params that was created for the Eval uate class during the
registration process.

In this case, we are interested in the “SYMBOL" and the “TRIGGERVALUFE”
parameters that accompany the registration of interest. We will compare those
parameters to the parameters of the submitted event in the eval uat e() method.

public void registerlnit(ParanSet parans)
t hr ows Par anSet Excepti on
{

r egSynbol par ans. get Val ue(" SYMBOL"). asString();
regTri gger Val ue par ans. get Val ue(" TRI GGERVALUE") . asInt () ;
System out. println("Synbol / Trigger Value =" +

regSynmbol + "/" +

regTrigger Val ue) ;

}

We print aline to stdout to confirm the registration parameters that we found.

Using WebL ogic Events (Deprecated) 2-47

Writing the Evaluate class

Step 3. The evaluate() method

Theeval uat e() method, put ssimply, compares the parameters set by the registration

of interest in an event to the parameters of the event itself. If it returnstrue, the

WebL ogic Server invokesthe act i on() method to take action on the event.

In this example, we compare the stock SYMBOL of interest with the stock SY MBOL
that is submitted as an event. If the SYMBOL of the event is the one this registration
isinterested in, we go on to check the BID submitted by the event and seeif it matches
the TRIGGERVALUE that was registered as interesting.

publ i c bool ean eval uat e(Event MessageDef ev)

{

t hr ows Par anSet Excepti on

/] Get the event paraneters
Par anSet event Parans = ev. get Paraneters();

/] Conpare the value of the event "SYMBOL" paraneter
/'l to the value set for "SYMBOL" at registration tine
i f (eventParans. getVal ue("SYMBOL") . asString()

. equal sl gnoreCase(regSynbol)) {

int eventVal ue = event Parans. getVal ue("BID").aslnt();
/1 Then determ ne whether the event val ue equal s

/1 the trigger value set at registration tinme
if (eventValue == regTriggerVal ue)

return true,

}

}

return fal se;

That completes the Evaluate class. The full code example follows.

Code for the EvaluateStocks (evaluate) class

package tutorial.event.stocks;

i nport webl ogi c. common. *;
i nport webl ogi c. event. common. *;
i mport webl ogi c. event . eval uat or s. Eval uat eDef ;

public class Eval uateStocks inpl ements Eval uat eDef {

Using WebL ogic Events (Deprecated)

Writing the Evaluate class

String regSynbol ;
i nt regTri gger Val ue;
private bool ean verbose = fal se;

T3Servi cesDef services=null;

/1 Saves the services object
public void setServices(T3Servi cesDef services) {
this.services = services;

}

/] Gets the registration paranmeters we will use
/1l to evaluate events
public void registerlnit(ParanSet parans)
t hr ows Par antSet Excepti on
{

r egSynbol par ans. get Val ue(" SYMBOL"). asString();
regTri gger Val ue par ans. get Val ue(" TRI GGERVALUE") . asInt () ;
System out. println("Synbol/Trigger Value = " +

regSynbol + "/" +

regTrigger Val ue) ;

}

publi c bool ean eval uat e(Event MessageDef ev)
t hr ows Par anSet Excepti on
{

/1 Get the event paraneters
Par anSet event Parans = ev. get Paraneters();

/] Conpare the value of the event "SYMBOL" paraneter
// to the value set for "SYMBOL" at registration tine
i f (eventParans. getVal ue("SYMBOL").asString()

. equal sl gnoreCase(regSynbol)) {

int eventValue = event Parans. getValue("BID").aslnt();
/1 Then determ ne whether the event val ue equal s

/1 the trigger value set at registration tinme
if (eventValue == regTrigger Val ue)

return true,

}

return fal se;

}

Using WebL ogic Events (Deprecated) 2-49

Writing the Action class

Writing the Action class

The action we take when our eval uat e() method returns true isto send email to an
address that we provided during the registration of interest in the event. The Action
class implements the interface webl ogi c. event . acti ons. Act i onDef .

Step 1. Importing packages

Inadditiontowebl ogi c. common. * andwebl ogi c. event . conmon. *, weimport the
interface that we implement: webl ogi c. event . acti ons. Act i onDef .

In this class, we also create a class variable “ services’ that defines the WebL ogic
Server servicesthat the application will useto accessthe EventServices object factory.
Theset Servi ces() method is called when the action is executed.

Step 2. The registerInit() method

Like the Evaluate class, the Action class cannot be constructed with argumentsto its
congtructor sinceit isloaded dynamically into the WebL ogic Server. Consequently,
theregi sterlnit () methodis used to pass Action registration parameters to the
newly-constructed Action object. The WebL ogic Server passes the registration
ParamSet params to the Action class with this method, where we have access to the
parameters interesting for the act i on() method that we will write in the next step.

Inthisexample, weareinterested ininformation about how to send email to the person
who registered interest in an event. We retrieve just the parameters that we need to
send email intheact i on() method, the addressee and the SMTP hostname. Both of
these parameters were required for registration of interest.

public void registerlnit(ParanSet parans) {
smt phost par ams. get Val ue(" SMIPhost ") . toString();
to par ans. get Val ue(" Addressee").toString();

}

Using WebL ogic Events (Deprecated) 2-50

Writing the Action class

Step 3. The action() method

In this example class, the action we take if our evaluator returns true is to notify the
person who registered interest in buying stock that the registered stock is being offered
at the price of interest. We have access to the event parameters, which we can include
in the email message. In this example we also print aline to stout in the WebL ogic
Server that the actionistaking place, and weinclude the addressee and the quoted price
of interest.

We use the sendMai | () method, which takes 5 arguments: an SMTP hostname, the
email address of the sender, the email address of the message recipient, a subject, and
the body of the message. We call the dunp() method on the event itself to produce a
display of the interesting event for inclusion in the email.

public void action(Event MessageDef ev) {

try {
Par amBSet event Parans = ev. get Paraneters();

int eventValue = eventParans. getValue("BID").aslnt();

Systemout.println("*** Miiling stock event to " + to +
' at price: " + eventValue);
Utilities.sendMil (smtphost,
"event s@webl ogi c. cont',
to,
"Stock Event triggered!",

ev.dum());

}
catch (ParanBet Exception e) {
Systemout.printin("No BID price in ParanSet");

}

catch (java.io.lOException ioe) {
Systemout.println("Failed to connect: [" + ioe + "]");

}
}

Finally, we check for ParamSetExceptions if our t r y block fails. We aso catch 10
exceptions, in case there is a problem with sending the email.

This completes the Action class. The full code example follows.

Using WebL ogic Events (Deprecated) 2-51

Writing the Action class

Code for the MailStockinfo (action) class

package tutorial.event. stocks;

i nport webl ogi c. common. *;
i mport webl ogi c. event. acti ons. Acti onDef ;
i nport webl ogi c. event. conmon. *;

public class Miil Stocklnfo inplements ActionDef {

o
’
nan,
1

String sntphost
String to

T3Servi cesDef services = null;

public void setServices(T3ServicesDef services) {
this.services = services;

}

public void registerlnit(ParanSet parans) {

smt phost = parans. get Val ue(" SMIPhost").toString();
to = parans. get Val ue(" Addressee").toString();
}
public void action(Event MessageDef ev) {
try {
Par anmBSet event Parans = ev. get Paraneters();
int eventValue = eventParans. getValue("BID").aslnt();
Systemout.println("*** Miiling stock event to " + to +
" at price: " + eventValue);
Utilities.sendMail (smtphost,
"errors@webl ogi c. cont,
to,
"Stock Event triggered!",
ev.dum());
}

catch (ParanBet Exception e) {
Systemout.printin("No BID price in ParanSet");

}

catch (java.io.lOException ioe) {
Systemout.println("Failed to connect: [" + ioe + "]");

}

}
}

Using WebL ogic Events (Deprecated) 2-52

Registering interest in an event

Registering interest in an event

The classwe write for registration of interest takes arguments from the command line
that it usesto build a set of registration parameters. Then we construct an
EventRegistration using these parameters, as well as the Evaluate and Action objects
that instantiate the Evaluate and Action classes that we have just finished. Finally we
submit the registration.

Step 1. Importing packages

In addition to the packageswebl ogi c. common. * and webl ogi c. event . conmon. *
that areimported for all WebL ogic Events applications, we also import the following
packages for the register class:

m webl ogi c. event. acti ons. * for the Action object used as a constructor for
thisregistration

®m webl ogi c. event. eval uat or s. * for the Evaluate object used as a constructor
for thisregistration

Step 2. Checking the command-line arguments

We pass this registration to the WebL ogic Server via a single command-line, and we
retrieve the arguments for later use. The first step isto check that we have the correct
number of arguments, and, if not, to print out usage information.

if (argv.length I=5> {
System out. printl n("Usage:
+ "java tutorial.event.stocks. Register "
+ "WebLogi cURL STOCKSYMBOL PRI CE SMIPHOST EMAIL");
System out. printl n("Exanpl e:
+ "java tutorial.event.stocks. Register "
+ "t3://local host: 7001 SUNW 75 "
+ "sntp. foo. com denos@ oo. cont') ;
return;

}

Using WebL ogic Events (Deprecated) 2-53

Registering interest in an event

Step 3. Processing the command-line arguments

We use the first command-line argument (the URL of the WebL ogic Server) to create
a T3Client and connect.

T3Cdient t3 = null;

try {
t3 = new T3d ient(argv[0]);

t 3. connect () ;
We use the second and third command-line arguments to build a ParamSet object that
we will use to supply registration parameters to the Evaluate class. These parameters
will be compared against similar parameters of events that are submitted to the

WebL ogic Server.
Par anSet evRegParans = new Parantet () ;
evRegPar ans. set Par am(" SYMBOL", argv[1]);
evRegPar ans. set Par am(" TRI GGERVALUE", argv[2]);

Finally, we use the last two command-line arguments to build a second ParamSet
object that we will use to supply registration parametersto the Action class, in this

case, information for sending email.

Par anSet acRegParans = new Parantet () ;
acRegPar ans. set Par am(" SMIPhost", argv[3]);
acRegPar ans. set Par am(" Addr essee", argv[4]);

Step 4. Obtaining the EventServices factory

All even registration is achieved viathe Event Ser vi cesDef interface, otherwise
known as the WebL ogic EventServices factory. Y ou obtain aremote interface to the
EventServices factory, viathe T3Ser vi cesDef interface, otherwise known asthe
WebL ogic T3Services factory. You look up the T3Services factory in the WebL ogic

JNDI tree using the following code:

T3Servi cesDef t3services;
Hasht abl e env = new Hasht abl e();
env. put (Cont ext . PROVI DER_URL, webl ogic_url);
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY,
webl ogi c.j ndi . W.I ni tial Cont ext Factory. cl ass. get Nane());
Context ctx = new | nitial Context(env);
t 3services = (T3ServicesDef)
ct x. | ookup("webl ogi c. common. T3Ser vi ces");

Using WebL ogic Events (Deprecated) 2-54

Registering interest in an event

ctx.close();

Where webl ogi ¢_ur | isthe URL of your WebL ogic Server. Y ou access the
EventServices factory viathe T3Ser vi ces interface:

Event Servi cesDef event Services = t3services. event();

Y ou application usesthe Event Ser vi cesDef API to accessthe event functionality on
the WebL ogic Server.

Step 5. Creating and submitting the registration

webl ogi c. event . conmon. Event Topi cDef
webl ogi c. event. cormon. Event Regi st rati onDef
webl ogi c. event . acti ons. Act i onDef

webl ogi c. event . eval uat or s. Eval uat eDef

Toregister, you first get an EventTopic (the one in which you wish to register interest)
from the EventServices factory as shown here;

Event Topi cDef topic =
t 3. services. events().get Event Topi c(" STOCKS") ;

Then use the EventTopic to register, by calling Event Topi cDef . regi ster(). It
takes at least two arguments (see below for more arguments for theregi st er ()
method):

m An Evaluate object
m AnAction object

The Evaluate and Action objects you passto ther egi st er () method must each be
constructed with two arguments, the names of the classes we wrote above, and the
ParamSets that we constructed with the command-line arguments in this class.

Event Topi cDef topic =
t 3. services. events().get Event Topi c(" STOCKS") ;
Eval uate eval =
new Eval uate("tutorial.event.stocks. Eval uat eSt ocks",
evRegPar ans) ;
Action action =
new Action("tutorial.event.stocks. Mil Stockl nfo",

Using WebL ogic Events (Deprecated) 2-55

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventTopicDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/common/EventRegistrationDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/actions/ActionDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/event/evaluators/EvaluateDef.html

Registering interest in an event

acRegPar ans) ;
Event Regi strati onDef er = topic.register(eval, action);

Note that you can also construct a new Action object with an Object as an argument—
not the name of aclass. Thisallowsaclient-side program to passin alocal copy of an
Action, which means that when the Eval uate method returnstrue, the Action classwill
be executed on the client, which alowsfor client-side notification, or callbacks. Here
isan example, although it doesn’t bel ong with the classwe' re using in thisexplanation:

Event Topi cDef topic =
t 3. services. events().get Event Topi c(" STOCKS") ;
Eval uate eval =
new Eval uate("tutorial .event.stocks. Eval uat eSt ocks",
evRegPar ans) ;
Action action = new Action(this);
Event Regi strati onDef er = topic.register(eval, action);

Y ou cannot use an Object as an argument for the Evaluate constructor; the Evaluate
object is always executed on the Server.

In addition to the Evaluate and Action objects that are required for each registration,
you can supply other argumentsto ther egi st er () method, including:

m Boolean to indicate whether the topic isasink (default is false)

m Boolean to indicate the topic’s phase, that is, whether Evaluate methods that
return “true” or “false” should be evaluated (default is true)

m Constant to indicate the count, which is the maximum number of events this
registration should receive before automagically unregistering itself (default is
Event Regi st r at i onDef . UNCOUNTED). New in Release 3.0 is the option
Event Regi st rat i onDef . ON_DI SCONNECT indicates that the registration should
be cancelled when the client with a registered interest is disconnected. (If you
are using aclient-side object for the Action, this happens automatically; this
appliesto an event registration for which the Action object islocated on the
WebL ogic Server, and the client is responsible for unregistering when its interest
iscompleted.)

Hereis an example that illustrates setting the sink, phase, and count for an event
registration:

Event Topi cDef topic =
t 3. services. events().get Event Topi c(" STOCKS") ;
Eval uate eval =
new Eval uate("tutorial .event. stocks. Eval uat eSt ocks",
evRegPar ans) ;

Using WebL ogic Events (Deprecated) 2-56

Registering interest in an event

Action action =
new Action("tutorial.event.stocks. Mil Stockl nfo",
acRegPar ans) ;
Event Regi strati onDef er =
topic.register(eval, action, true, false,
Event Regi strati onDef. ON_DI SCONNECT) ;

After we submit thisregistration to the WebL ogic Server, we disconnectinafi nal | y
block.

int regid = er.getlX);
Systemout.println("Registration IDis " + regid);

}
finally {

try {t3.disconnect();} catch (Exception e) {;}
}

That completes the register class. The full code example follows.

Code for the Register class

package tutorial.event. stocks;

i nport webl ogi c. common. *;

i mport webl ogi c. event. acti ons. *;

i nport webl ogi c. event. conmon. *;

i nport webl ogi c. event. eval uators. *;

public class Register {
public static void main(String argv[]) throws Exception {

// Get 5 command-line argunents that will be used for
/] setting registration paraneters
if (argv.length !=5)
{
System out . println("Usage: "
+ "java tutorial.event.stocks. Register "
+ "WebLogi cURL STOCKSYMBOL PRI CE SMIPHOST EMAIL");
System out. println("Exanmple: "
+ "java tutorial.event.stocks. Register "
+ "t3://1ocal host: 7001 SUNW 75 sntp. best.com "
+ "denmos@ oo. cont') ;
return;

}

Using WebL ogic Events (Deprecated) 2-57

Registering interest in an event

/1 Connect to the WebLogic Server using the URL supplied as the
first
/1 command- | i ne argunent
T3dient t3 = null;
try {
t3 = new T3d ient(argv[0]);
t 3. connect ();

/] Create a ParanBSet to be used by the Eval uate nethod as each
/1 Event is received to decide whether the Action net hod shoul d
/1 be called. W take the second and third command-Iine
/1 argunents as val ues.
Par anmSet evRegParans = new Parantet () ;
evRegPar ans. set Par am(" SYMBOL", argv[1]);
evRegPar ans. set Par am(" TRI GGERVALUE", argv[2]);

/] Create another ParanBet to be used by the Action nethod to
/] specify where to send the mail. W take the last two

/1 command-1ine arguments as val ues.

Par anSet acRegParans = new Parantet () ;

acRegPar ans. set Par am(" SMIPhost", argv[3]);

acRegPar ans. set Par an(" Addr essee", argv[4]);

/| Create an Event Topi cDef for the topic "STOCKS", and register
/1l aninterest init with the Eval uateStocks eval uate cl ass and
/1 the ActionEnmail action class.
Event Topi cDef topic =
t 3. services. events().get Event Topi c(" STOCKS") ;
Eval uate eval =
new Eval uate("tutorial.event.stocks. Eval uat eSt ocks",
evRegPar ans) ;
Action action =
new Action("tutorial.event. stocks. Mail Stockl nfo",
acRegPar ans) ;

/1 Submit the EventRegistration to the WbLogi c Server
Event Regi strati onDef er = topic.register(eval, action);
int regid = er.getlX);
Systemout.println("Registration IDis " + regid);

}
finally {

try {t3.disconnect();} catch (Exception e) {;}
}

}
}

Using WebL ogic Events (Deprecated) 2-58

Sending events to the WebLogic Server

Sending events to the WebLogic Server

After we register our interest in an event, we need one more class to submit events to
the WebL ogic Server for evaluation. This example showsasimple class that—like the
register class—takes a series of command-line arguments and uses them to set
parameters for submitting events to the WebL ogic Server.

Step 1. Importing packages

In this class, we import the packages webl ogi ¢. conmon. * and
webl ogi c. event. comrmon. *.

Step 2. Checking the command-line arguments

In this example, we ask the user to supply parameters that qualify the event. Here we
check the number of command-line arguments and supply a usage example if the
numbers do not match up.

if (argv.length = 4) {
System out . println("Usage: "
+ "java tutorial.event.stocks. SendEvents "
+ "WebLogi cURL STOCKSSYMBOL STARTPRI CE ENDPRI CE");
System out. println("Exanmple: "
+ "java tutorial.event.stocks. SendEvents "
+ "t3://1ocal host: 7001 SUNW 75 95");
return;

}

Step 3. Processing the command-line arguments

We use the first argument supplied by the user, the URL of the WebL ogic Server, to
create a T3Client.

T3dient t3 = null;
try {

Using WebL ogic Events (Deprecated) 2-59

Sending events to the WebLogic Server

t3 = new T3d ient(argv[0]);
t 3. connect ();

We use the other command-line arguments as val ues for the ParamSet that we will use
in the constructor for the EventMessage. We supply the lower and upper bounds of a
range of prices at which the stock symbal for this event is selling, and each integer
within that rangeisthen submitted as a separate event to the WebL ogic Server. Instead
of requesting a new EventMessage and constructing a new ParamSet for each event,
we reuse the same objects and reset the parameter for each submission inside aloop.
For more information on increasing the efficiency of your WebL ogic Events code,
check above.

Event Topi cDef topic =

t 3. services. events(). get Event Topi c(" STOCKS") ;
Par anSet event Paraneters = new Paranfet () ;
event Par anet er s. set Param(" SYMBOL", argv[1]);
int open = Integer.parselnt(argv[2]);
int close = Integer.parselnt(argv[3]);

Step 4. Submitting events

We submit the a series of eventswith arange of pricesinside aloop that does nothing
except iterate through the range of prices, reset a parameter, and then submit the event
to the EventTopic.

for (int bid = open; bid < close; bid++) {
event Par anet ers. set Param("BI D', bid);
Systemout.printIn("Injecting price event with BID = " +
bi d) ;
String status = topic.subnit(event Paraneters);
}
}

Finally, we disconnect from the WebL ogic Server.

finally {
try {t3.disconnect();} catch (Exception e) {;}
}
}

This completes the class for submitting events to the WebL ogic Server. The full code
example follows.

Using WebL ogic Events (Deprecated) 2-60

Sending events to the WebLogic Server

Code for the SendEvents class

package tutorial.event. stocks;

i nport webl ogi c. common. *;
i mport webl ogi c. event . conmon. *;

public class SendEvents {

public static void main(String argv[]) throws Exception {

/1 Check the nunmber of command-line arguments
if (argv.length = 4) {
Systemout. println("Usage: "
+ "java tutorial.event.stocks. SendEvents "
+ "WebLogi cURL STOCKSSYMBOL STARTPRI CE ENDPRI CE") ;
System out. println("Exanple: "
+ "java tutorial.event.stocks. SendEvents "
+ "t3://1ocal host: 7001 SUNW 75 95");
return;

}

/] Connect to the WebLogic Server with the URL supplied as the
/1 first command-|ine argunent.
T3dient t3 = null;
try {
t3 = new T3d ient(argv[0]);
t 3. connect () ;

/1 Bid up the stock to the point where it will make our Eval uate
/1 nmethod return true and call our Action nethod. Note that in
/1 order to change the event parameters, we do not need to
/] create a new event nor create a new ParanBSet; just set the

// values and subnmit the event. Al so note that we use the
/] same topic "STOCKS" and the same paraneter nane "SYMBOL"
/1 when we submit the event as when we registered an interest
/1 in this event.
Par anmBSet event Paraneters = new Parantet ();
Event Topi cDef topic =

t 3. services. events().get Event Topi c(" STOCKS") ;

/1 Use the second command-1ine arg for the val ue of the " STOCKS"
/] paraneter.
event Par anet ers. set Par an(" SYMBOL", argv[1]);

I/l Use the last two command-1line args for the begin and end
/] prices for the event.

Using WebL ogic Events (Deprecated) 2-61

2 WebLogic Events Objects and Their Classes

int open
int close

= I nteger.parselnt(argv[2]);

= Integer.parselnt(argv[3]);

for (int bid = open; bid < close; bid++) {
event Par anet ers. set Paranm("BI D', bid);

Systemout.printin("Injecting price event with BID = " +
bi d) ;
String status = topic.submt(eventParaneters);
}
}
finally {
try {t3.disconnect();} catch (Exception e) {;}
}
}
}

Hereisa copy of the email message received when this example was run:

Topi ¢c: STOCKS

Regi strati on:

Topi c : STOCKS

I D 111

FI ags : +Si nk+Phase: true

Eval uate:tutorial . event. st ocks. Eval uat eSt ocks

Eval uat e Parans:

EVENT_CLI ENT_REG STER _TI ME = Tue Sep 03 20:09: 07 1996
SYMBOL = SUNW

TRI GGERVALUE = 75

EVENT_CLI ENT_REGQ STER_HOST = bi gbox/ 107. 4. 192. 255
EVENT_CLI ENT_REG STER THREAD = mai n

EVENT_SERVER _REG STRATI ON_THREAD = Execut eThr ead
EVENT_SERVER REG STRATION_TIME = Tue Sep 03 20:09:10 1996

Action :tutorial.event.stocks. Mail Stocklnfo

Action Parans:

EVENT_CLI ENT_REQ STER_TI ME = Tue Sep 03 20:09: 07 1996
SMrPhost = snt p. nyhost.com

Addr essee = abc@ryhost.com

EVENT_CLI ENT_REGQ STER_HOST = bi ghox/ 107. 4. 192. 255
EVENT_CLI ENT_REGQ STER_THREAD = nai n

EVENT_SERVER _REG STRATI ON_THREAD = Execut eThr ead
EVENT_SERVER_REQ STRATI ON_TI ME = Tue Sep 03 20:09: 10 1996

Count : UNCOUNTED

Event Message Paraneters:

SYMBOL = SUNW

BID = 75

EVENT_SERVER SUBM T_THREAD = Execut eThr ead

2-62 Using WebL ogic Events (Deprecated)

Using client-side notification

EVENT_SERVER SUBM T_TI ME = Tue Sep 03 20:09:28 1996

Using client-side notification

Y ou may want the Action to be executed in the client rather than in the WebL ogic
Server. Client-side natification allows a T3Client, when registering interest in an
event, to specify an Action object with its registration that isrun in thelocal VM.
Rather than constructing the Action object with a String that is the full package name
of aclasson the WebL ogic Server, the Action object is constructed with areferenceto
a(local) object that implementswebl ogi c. event . acti ons. Act i onDef .

Hereis an example of a T3Client’ sregistration of interest in an event that illustrates
how the Action abject is constructed for client-side notification. The Action object for
thisregistration is areference to an object “clientSideNotify” (which implements
webl ogi c. event . acti ons. Acti onDef) that isinstantiated in the client and whose
acti on() methodiscalled eachtimetheeval uat e() method (alwaysexecutedinthe
WebL ogic Server) of the Evaluate class succeeds.

T3Cient t3 = new T3d ient("t3://1ocal host:7001");
t 3. connect ();

Action action = new Action(new clientSideNotify());
Eval uate eval =
new Eval uat e("webl ogi c. event. eval uat ors. Eval uat eTrue");

try {
Event Topi cDef topic =
t 3. services. events().get Event Topi c(" STOCKS") ;
Event Regi strati onDef er =
topic.register(eval, action,

true, // sink
true, // phase
Event Regi strati onDef . UNCOUNTED) ;

int localreglD = er.getlX);
}

Note that you do not have to specify a different object; you can specify “this’ asthe
object to receive notification.

Using WebL ogic Events (Deprecated) 2-63

2 WebLogic Events Objects and Their Classes

There is asimple example of client-side notification in
tutorial/event/clientside/clientl.java.

Setting up ACLs for WebLogic Events in the
WebLogic Realm

2-64

WebL ogic controls accessto internal resourceslike eventsthrough ACLs set up in the
WebL ogic Realm Entriesfor ACLsin the WebL ogic Realm are listed as propertiesin
thewebl ogi c. properti es file.

Y ou can set the Permissions "submit” and “receive” for events by entering a property
in the propertiesfile. The receive permission has a dual purpose, sincethe ACL also
controls registration and filters events from subordinate topics.

The ACL name “weblogic.event” controls accessto all event services. Setting the
Permissions “ submit” and “receive’ for the ACL name “weblogic.event” to
“everyone” allows anyone to submit and receive events, unless a more specific
Permission has been set.

Notethat if you create an ACL for aparticular object that has multiple permissions (in
this case “submit” and “receive"), you must create an ACL for each permission. Even
amore general ACL will not supply the permissions.

For example, if you create a general ACL to set the permissions for event receipt for
the high-level topic “weather.northamerica’ that allows everyoneto receive eventsfor
that topic, and then you create an ACL that permits only joe and bill to submit events
for the topic “weather.northamerica.us', no one will be able to receive events for that
topic unless you create an ACL for it, in spite of the ACL that gives everyone
permission to receive event notification for amore general topic. If you createan ACL
for permissions on any action for the topic "weather.northamerica.us,” you must
specify users every permission for that topic.

If this ACL is not set, everyone is allowed to submit and received events.

Using WebL ogic Events (Deprecated)

Setting up ACLs for WebLogic Events in the WebLogic Realm

Example:

webl ogi c. al | ow. recei ve. webl ogi c. event . weat her . us=ever yonewebl ogi c
.all ow. submit.webl ogi c. event . weat her. us=weat her W r ewebl ogi c. al | ow
.recei ve. webl ogi c. event . weat her. us. ca. sf =bi | | ¢, sam donwebl ogi c. al

| ow. submi t. webl ogi c. event . weat her. us. ca. sf =weat herWre

Note that both “submit” Permissions are required in this scenario. Because a specific
Permission has been set to allow event notification for the subtopic “ weather.us.ca.sf”

toonly 3 users, aspecific Permission for “submit” for that topic must also be set, or no
one will be able to submit events for the subtopic.

Using WebL ogic Events (Deprecated) 2-65

	Copyright
	1 Overview of WebLogic Events
	WebLogic Event architecture
	The Topic Tree
	Structure of the Topic Tree
	An example of a structured tree
	Registering interest in an event
	How the Topic Tree is populated
	How a client registers interest in an Event Topic
	How a client unregisters interest in an Event

	Processing an event
	How the Topic Tree is traversed
	How each EventRegistration is processed
	How events are evaluated by an EventRegistration
	How the action process works
	More about parameters

	2 WebLogic Events Objects and Their Classes
	Evaluate and Action objects
	The EvaluateDef and ActionDef interfaces
	Methods you will implement

	EventTopic objects
	EventRegistration objects
	EventMessage objects

	ParamSet and ParamValue objects
	Using ParamSets Efficiently

	Implementing with WebLogic Events
	Writing the Evaluate class
	Step 1. Importing packages
	Step 2. The registerInit() method
	Step 3. The evaluate() method
	Code for the EvaluateStocks (evaluate) class

	Writing the Action class
	Step 1. Importing packages
	Step 2. The registerInit() method
	Step 3. The action() method
	Code for the MailStockInfo (action) class

	Registering interest in an event
	Step 1. Importing packages
	Step 2. Checking the command-line arguments
	Step 3. Processing the command-line arguments
	Step 4. Obtaining the EventServices factory
	Step 5. Creating and submitting the registration
	Code for the Register class

	Sending events to the WebLogic Server
	Step 1. Importing packages
	Step 2. Checking the command-line arguments
	Step 3. Processing the command-line arguments
	Step 4. Submitting events
	Code for the SendEvents class

	Using client-side notification
	Setting up ACLs for WebLogic Events in the WebLogic Realm

