
WebLogic Server

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : J u l y 5 , 2 0 0 1

BEA

Administration Guide

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

BEA WebLogic Server Administration Guide

Document Date Software Version

July 6, 2001 BEA WebLogic Server Version 6.0

WebLogic Server Administration Guide iii

Contents

About This Document
Audience.. xviii

e-docs Web Site... xix

How to Print the Document... xix

Contact Us! .. xix

Documentation Conventions ...xx

1. Overview of WebLogic Server Management
Domains, the Administration Server and Managed Servers 1-2

Starting the Administration Console ... 1-3

Runtime and Configuration Objects.. 1-4

Central Point of Access to Log Messages ... 1-6

2. Starting and Stopping WebLogic Servers
WebLogic Administration Server and WebLogic Managed Servers 2-2

Startup Error Messages .. 2-2

Starting the WebLogic Administration Server .. 2-3

Use of Passwords When Starting the WebLogic Server 2-3

Starting the WebLogic Administration Server from the Start Menu 2-4

Starting and Stopping the WebLogic Server as a Windows Service 2-4

Starting the WebLogic Administration Server from the Command Line .. 2-5

Setting the Classpath Option... 2-7

Starting the Administration Server Using a Script..................................... 2-8

Restarting the Administration Server when Managed Servers are Running....
2-8

Restarting the Administration Server on the Same Machine 2-9

Restarting the Administration Server on Another Machine................ 2-9

iv WebLogic Server Administration Guide

Adding a WebLogic Managed Server to the Domain 2-10

Starting a WebLogic Managed Server... 2-11

Starting the WebLogic Managed Servers Using Scripts 2-13

Migrating from Earlier Versions of WebLogic Server.................................... 2-14

Stopping WebLogic Servers from the Administration Console 2-15

Shutting Down a Server from the Command Line................................... 2-16

Suspending and Resuming a Managed Server .. 2-16

Setting up the WebLogic Server as a Windows Service 2-17

Removing WebLogic Server as a Windows Service................................ 2-17

Changing Passwords for a Server Installed as a Windows Service.......... 2-18

The WebLogic Windows Service Progam (beasvc.exe) 2-18

Registering Startup and Shutdown Classes ... 2-20

3. Configuring WebLogic Servers and Clusters
Overview of Server and Cluster Configuration ... 3-1

Role of the Administration Server... 3-2

Starting the Administration Console ... 3-4

How Dynamic Configuration Works... 3-4

Planning A Cluster Configuration ... 3-5

Server Configuration Tasks ... 3-6

Cluster Configuration Tasks .. 3-10

Creating a New Domain .. 3-11

4. Monitoring a WebLogic Domain
Overview of Monitoring .. 4-1

Monitoring Servers .. 4-2

Shutting down or Suspending a Server ... 4-3

Performance .. 4-3

Cluster Data... 4-4

Server Security .. 4-5

JMS.. 4-5

JTA.. 4-5

Monitoring JDBC Connection Pools ... 4-5

Summary of Monitoring Pages in the Administration Console 4-6

WebLogic Server Administration Guide v

5. Using Log Messages to Manage WebLogic Servers
Overview of Logging Subsystem .. 5-1

Local Server Log Files .. 5-4

Startup Log... 5-5

Client Logging.. 5-5

Log File Format.. 5-5

Message Attributes .. 5-6

Message Catalog.. 5-7

Message Severity... 5-8

Debug Messages... 5-9

Browsing Log Files ... 5-9

Viewing the Logs ... 5-10

Creating Domain Log Filters... 5-10

6. Deploying Applications
Dynamic Deployment.. 6-1

Enabling or Disabling Auto-Deployment .. 6-2

Dynamic Deployment of Applications in Expanded Directory Format..... 6-3

Dynamic Undeployment or Redeployment of Applications 6-3

Dynamic Redeployment of Exploded Applications............................ 6-3

Using the Administration Console to Deploy Applications 6-4

7. Configuring WebLogic Server Web Components
Overview ... 7-2

HTTP Parameters .. 7-2

Configuring the Listen Port ... 7-3

Web Applications .. 7-4

Web Applications and Clustering .. 7-4

Designating a Default Web Application .. 7-4

Configuring Virtual Hosting.. 7-6

Virtual Hosting and the Default Web Application..................................... 7-6

Setting Up a Virtual Host ... 7-7

Setting Up HTTP Access Logs.. 7-9

Log Rotation... 7-9

Setting Up HTTP Access Logs by Using the Administration Console...... 7-9

vi WebLogic Server Administration Guide

Common Log Format ... 7-10

Setting Up HTTP Access Logs by Using Extended Log Format............. 7-11

Creating the Fields Directive... 7-12

Supported Field identifiers .. 7-12

Creating Custom Field Identifiers ... 7-14

Preventing POST Denial-of-Service Attacks .. 7-18

Setting Up WebLogic Server for HTTP Tunneling... 7-19

Configuring the HTTP Tunneling Connection... 7-20

Connecting to WebLogic Server from the Client..................................... 7-21

Using Native I/O for Serving Static Files (Windows Only)............................ 7-21

8. Deploying and Configuring Web Applications
Overview ... 8-2

Steps to Deploy a Web Application .. 8-3

Directory Structure .. 8-5

Deploying and Redeploying Web Applications .. 8-6

Modifying Components of a Web Application .. 8-6

Components in .war Format .. 8-6

Components in Exploded Directory Format 8-7

Redeploying a Web Application .. 8-7

Deploying Web Applications as Part of an Enterprise Application 8-8

URIs and Web Applications .. 8-9

Configuring Servlets.. 8-10

Servlet Mapping ... 8-10

Servlet Initialization Parameters... 8-13

Configuring JSP... 8-13

Configuring JSP Tag Libraries .. 8-14

Configuring Welcome Pages ... 8-15

Setting Up a Default Servlet .. 8-16

How WebLogic Server Resolves HTTP Requests .. 8-17

Customizing HTTP Error Responses .. 8-20

Using CGI with WebLogic Server .. 8-20

Configuring WebLogic Server to use CGI... 8-20

Requesting a CGI Script ... 8-22

Serving Resources from the CLASSPATH with the ClasspathServlet 8-22

WebLogic Server Administration Guide vii

Proxying Requests to Another HTTP Server .. 8-23

Setting Up a Proxy to a Secondary HTTP Server 8-23

Sample Deployment Descriptor for the Proxy Servlet............................. 8-24

Proxying Requests to a WebLogic Cluster.. 8-25

Setting Up the HttpClusterServlet.. 8-26

Sample Deployment Descriptor for the HttpClusterServlet..................... 8-28

Configuring Security in Web Applications ... 8-29

Setting Up Authentication for Web Applications 8-30

Multiple Web Applications, Cookies, and Authentication 8-31

Restricting Access to Resources in a Web Application 8-32

Using Users and Roles Programmatically in Servlets.............................. 8-34

Configuring External Resources in a Web Application 8-35

Referencing EJBs in a Web Application ... 8-36

Setting Up Session Management .. 8-37

HTTP Session Properties ... 8-37

Session Timeout ... 8-38

Configuring Session Cookies ... 8-38

Using Longer-lived Cookies .. 8-39

Configuring Session Persistence ... 8-39

Common Properties.. 8-40

Using Memory-based, Single-server, Non-replicated Persistent Storage 8-41

Using File-based Persistent Storage .. 8-41

Using a Database for Persistent Storage .. 8-41

Using URL Rewriting.. 8-43

Coding Guidelines for URL Rewriting .. 8-44

URL Rewriting and Wireless Access Protocol (WAP) 8-44

Using Character Sets and POST Data ... 8-45

9. Installing and Configuring the Apache HTTP Server Plug-In
Overview ... 9-2

Keep-Alive Connections in Apache ... 9-2

Proxying Requests.. 9-2

Platform Support ... 9-3

Installing the Apache HTTP Server Plug-In ... 9-3

Configuring the Apache HTTP Server Plug-In ... 9-6

viii WebLogic Server Administration Guide

Editing the httpd.conf File.. 9-6

Notes on Editing the httpd.conf File... 9-8

Using SSL With the Apache Plug-In... 9-8

Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic
Server .. 9-9

Issues with SSL-Apache Configuration ... 9-9

Connection Errors and Clustering Failover ... 9-11

Connection Failures.. 9-11

Failover with a Single, Non-Clustered WebLogic Server........................ 9-11

The Dynamic Server List.. 9-12

Failover, Cookies, and HTTP Sessions .. 9-12

Template for the httpd.conf File .. 9-14

Sample Configuration Files ... 9-14

Example Using WebLogic Clusters ... 9-15

Example Using Multiple WebLogic Clusters... 9-15

Example Without WebLogic Clusters.. 9-15

Example Configuring IP-Based Virtual Hosting...................................... 9-16

Example Configuring Name-Based Virtual Hosting With a Single IP Address
9-16

10. Installing and Configuring the Microsoft Internet Information
Server (ISAPI) Plug-In

Overview of the Microsoft Internet Information Server Plug-In..................... 10-2

Connection Pooling and Keep-Alive.. 10-2

Proxying Requests .. 10-2

Platform Support.. 10-3

Installing the Microsoft Internet Information Server Plug-In.......................... 10-3

Creating ACLs through IIS.. 10-6

Sample iisproxy.ini File .. 10-7

Using SSL with the Microsoft Internet Information Server Plug-In 10-7

Proxying Servlets From IIS to WebLogic Server.. 10-8

Testing the Installation .. 10-9

Connection Errors and Clustering Failover ... 10-11

Connection Failures.. 10-11

Failover with a Single, Non-Clustered WebLogic Server...................... 10-11

WebLogic Server Administration Guide ix

The Dynamic Server List ... 10-12

Failover, Cookies, and HTTP Sessions .. 10-12

11. Installing and Configuring the Netscape Enterprise Server
Plug-In (NSAPI)

Overview of the Netscape Enterprise Server Plug-In...................................... 11-2

Connection Pooling and Keep-Alive... 11-3

Proxying Requests ... 11-3

Installing and Configuring the Netscape Enterprise Server Plug-In 11-3

Modifying the obj.conf File... 11-5

Using SSL with the NSAPI Plug-In .. 11-9

Connection Errors and Clustering Failover... 11-11

Connection Failures.. 11-11

Failover with a Single, Non-Clustered WebLogic Server...................... 11-11

The Dynamic Server List ... 11-12

Failover, Cookies, and HTTP Sessions .. 11-12

Failover Behavior When Using Firewalls and Load Directors 11-14

Sample obj.conf file (not using a WebLogic Cluster) 11-15

Sample obj.conf file (using a WebLogic Cluster) ... 11-17

12. Managing Security
Overview of Configuring Security .. 12-2

Setting Up the Java Security Manager .. 12-3

Changing the System Password... 12-4

Specifying a Security Realm ... 12-5

Configuring the Caching Realm... 12-6

Configuring the LDAP Security Realm ... 12-11

Configuring the Windows NT Security Realm 12-16

Configuring the UNIX Security Realm.. 12-18

Configuring the RDBMS Security Realm.. 12-20

Installing a Custom Security Realm... 12-21

Testing an Alternate Security Realm or a Custom Security Realm 12-22

Migrating Security Realms... 12-23

Defining Users... 12-24

Defining Groups .. 12-25

x WebLogic Server Administration Guide

Defining a Group for a Virtual Host.. 12-26

Defining ACLs .. 12-27

Configuring the SSL Protocol ... 12-29

Requesting a Private Key and Digital Certificate................................... 12-29

Storing Private Keys and Digital Certificates .. 12-33

Defining Trusted Certificate Authorities.. 12-34

Defining Fields for the SSL Protocol ... 12-35

Configuring Mutual Authentication .. 12-38

Configuring RMI over IIOP over SSL .. 12-38

Protecting Passwords ... 12-39

Installing an Audit Provider .. 12-42

Installing a Connection Filter .. 12-42

Configuring Security Context Propagation ... 12-43

13. Managing Transactions
Overview of Transaction Management ... 13-1

Configuring Transactions .. 13-2

Monitoring and Logging Transactions .. 13-4

Moving a Server to Another Machine ... 13-4

14. Managing JDBC Connectivity
Overview of JDBC Administration ... 14-1

About the Administrative Console .. 14-2

About the Command-Line Interface... 14-2

About the JDBC API .. 14-2

Related Information.. 14-2

Administration and Management .. 14-3

JDBC and WebLogic jDrivers .. 14-3

Transactions (JTA) .. 14-3
JDBC Components—Connection Pools, Data Sources, and MultiPools 14-4

Connection Pools.. 14-4

MultiPools .. 14-4

Data Sources... 14-5

JDBC Configuration Guidelines for Connection Pools, MultiPools and
DataSources.. 14-5

WebLogic Server Administration Guide xi

Overview of JDBC Configuration ... 14-6

Drivers Supported for Local Transactions .. 14-7

Drivers Supported for Distributed Transactions 14-7

Configuring JDBC Drivers... 14-7

Configuring JDBC Drivers for Local Transactions 14-8

Configuring XA JDBC Drivers for Distributed Transactions 14-11

WebLogic jDriver for Oracle/XA Data Source Properties 14-14

Configuring Non-XA JDBC Drivers for Distributed Transactions 14-17

Setting and Managing JDBC Connection Pools, MultiPools, and DataSources.....
14-19

JDBC Configuration and Assignment ... 14-19

JDBC Configurations for Servers or Clusters................................. 14-21

Configuring JDBC Connectivity Using the Administration Console.......
14-21

JDBC Configuration Tasks Using the Command-Line Interface ... 14-23

Managing and Monitoring Connectivity .. 14-23

JDBC Management Using the Administration Console 14-23

JDBC Management Using the Command-Line Interface 14-25

15. Managing JMS
Configuring JMS ... 15-1

Configuring Connection Factories ... 15-3

Configuring Templates... 15-4

Configuring Destination Keys.. 15-5

Configuring Stores ... 15-6

About JMS Stores ... 15-7

Recommended JDBC Connection Pool Settings for JMS Stores 15-7

Configuring JMS Servers ... 15-8

Configuring Destinations ... 15-8

Configuring Session Pools ... 15-9

Configuring Connection Consumers.. 15-11

Monitoring JMS... 15-11

Recovering From a WebLogic Server Failure... 15-12

Restarting or Replacing the WebLogic Server....................................... 15-12

Programming Considerations... 15-14

xii WebLogic Server Administration Guide

16. Managing JNDI
Loading Objects in the JNDI Tree... 16-1

Viewing the JNDI Tree.. 16-1

17. Managing WebLogic Server Licenses
Installing a WebLogic License .. 17-1

Using Evaluation Licenses .. 17-1

Updating a License .. 17-2

A. Using the WebLogic Server Java Utilities
AppletArchiver... A-3

Syntax... A-3

Conversion ... A-4

der2pem.. A-5

Syntax... A-5

Example.. A-5

dbping... A-7

Syntax... A-7

deploy ... A-9

Syntax... A-9

Arguments .. A-9

Options ... A-10

Examples .. A-11

getProperty ... A-13

Syntax... A-13

Example.. A-13

logToZip... A-14

Syntax... A-14

Examples .. A-14

MulticastTest .. A-15

Syntax... A-15

Example.. A-16

myip.. A-17

Syntax... A-17

Example.. A-17

WebLogic Server Administration Guide xiii

pem2der.. A-18

Syntax... A-18

Example ... A-18

Schema ... A-19

Syntax... A-19

Example ... A-19

showLicenses ... A-21

Syntax... A-21

Example ... A-21

system... A-22

Syntax... A-22

Example ... A-22

t3dbping ... A-23

Syntax... A-23

verboseToZip .. A-24

Syntax... A-24

UNIX Example .. A-24

NT Example ... A-24

version.. A-25

Syntax... A-25

Example ... A-25

writeLicense ... A-26

Syntax... A-26

Examples .. A-26

B. WebLogic Server Command-Line Interface Reference
About the Command-Line Interface..B-1

Before You Begin...B-2

Using WebLogic Server Commands ...B-2

Syntax..B-2

Arguments...B-3

WebLogic Server Administration Command Reference...................................B-3

CANCEL_SHUTDOWN..B-6

Syntax..B-6

Example ..B-6

xiv WebLogic Server Administration Guide

CONNECT... B-7

Syntax... B-7

Example.. B-7

HELP.. B-8

Syntax... B-8

Example.. B-8

LICENSES ... B-9

Syntax... B-9

Example.. B-9

LIST ... B-10

Syntax... B-10

Example.. B-10

LOCK... B-11

Syntax... B-11

Example.. B-11

PING... B-12

Syntax... B-12

Example.. B-12

SERVERLOG .. B-13

Syntax... B-13

Example.. B-13

SHUTDOWN... B-14

Syntax... B-14

Example.. B-14

THREAD_DUMP .. B-15

Syntax... B-15

UNLOCK ... B-16

Syntax... B-16

Example.. B-16

VERSION... B-17

Syntax... B-17

Example.. B-17

WebLogic Server Connection Pools Administration Command Reference... B-18

CREATE_POOL.. B-20

Syntax... B-20

WebLogic Server Administration Guide xv

Example ..B-21

DESTROY_POOL..B-23

Syntax..B-23

Example ..B-23

DISABLE_POOL ...B-24

Syntax..B-24

Example ..B-24

ENABLE_POOL ..B-25

Syntax..B-25

Example ..B-25

EXISTS_POOL...B-26

Syntax..B-26

Example ..B-26

RESET_POOL..B-27

Syntax..B-27

Example ..B-27

Mbean Management Command Reference ...B-28

CREATE ...B-29

Syntax..B-29

Example ..B-29

DELETE..B-30

Syntax..B-30

Example ..B-30

GET...B-31

Syntax..B-31

Example ..B-32

INVOKE ...B-33

Syntax..B-33

Example ..B-33

SET..B-34

Syntax..B-34

C. Parameters for Web Server Plug-ins
Overview ...C-1

General Parameters for Web Server Plug-Ins ...C-2

xvi WebLogic Server Administration Guide

SSL Parameters for Web Server Plug-Ins .. C-11

Index

Administration Guide xvii

About This Document

This document explains the management subsystem provided for configuring and
monitoring your WebLogic Server implementation. It covers the following topics:

� Chapter 1, “Overview of WebLogic Server Management,” describes the
architecture of the WebLogic Server management subsystem.

� Chapter 2, “Starting and Stopping WebLogic Servers,” explains the procedures
for starting and stopping WebLogic Servers.

� Chapter 3, “Configuring WebLogic Servers and Clusters,” explains the facilities
provided for configuring resources in a WebLogic Server domain.

� Chapter 4, “Monitoring a WebLogic Domain,” describes the facilities that are
provided by WebLogic Server for monitoring the resources that make up a
WebLogic Server domain.

� Chapter 5, “Using Log Messages to Manage WebLogic Servers,” describes the
use of the WebLogic Server local log and the domain-wide log for managing a
WebLogic Server domain.

� Chapter 6, “Deploying Applications,” describes installation of applications on
the WebLogic Server and the deploying of application components.

� Chapter 7, “Configuring WebLogic Server Web Components,” explains the use
of of WebLogic Server as a Web Server.

� Chapter 8, “Deploying and Configuring Web Applications,” explains deploying
and configuring of Web applications.

� Chapter 9, “Installing and Configuring the Apache HTTP Server Plug-In,”
explains how to install and configure the WebLogic Server Apache plug-in.

xviii Administration Guide

� Chapter 10, “Installing and Configuring the Microsoft Internet Information
Server (ISAPI) Plug-In,” explains how to install and conifgure the WebLogic
Server plug-in for the Microsoft Internet Information Server.

� Chapter 11, “Installing and Configuring the Netscape Enterprise Server Plug-In
(NSAPI),” explains how to to install and configure the Netscape Enterprise
Server proxy plug-in.

� Chapter 12, “Managing Security,” discusses WebLogic Server security resources
and how to manage them.

� Chapter 13, “Managing Transactions,” explains how to manage the Java
Transaction subsystem within a WebLogic Server domain.

� Chapter 14, “Managing JDBC Connectivity,” discusses the management of Java
Database Connectivity (JDBC) resources within a WebLogic Server domain.

� Chapter 15, “Managing JMS,” discusses the management of Java Message
Service within a WebLogic Server domain.

� Chapter 16, “Managing JNDI,” discusses how to use the WebLogic JNDI
naming tree, including viewing and editing objects on the JNDI naming tree and
binding objects to the JNDI tree.

� Chapter 17, “Managing WebLogic Server Licenses,” describes how to update
your BEA license.

� Appendix A, “Using the WebLogic Server Java Utilities,” describes a number of
utilities that are provided for developers and system administrators.

� Appendix B, “WebLogic Server Command-Line Interface Reference,” describes
the syntax and usage of the command-line interface for managing a WebLogic
Server domain.

Audience

This document is intended mainly for system administrators who will be managing the
WebLogic Server application platform and its various subsystems.

Administration Guide xix

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

xx Administration Guide

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

Administration Guide xxi

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

xxii Administration Guide

Administration Guide 1-1

CHAPTER

1 Overview of WebLogic
Server Management

This section describes the tools available to manage WebLogic Server. This includes
the following topics:

� Domains, the Administration Server and Managed Servers

� Starting the Administration Console

� Runtime and Configuration Objects

� Central Point of Access to Log Messages

Your implementation of BEA WebLogic Server software provides a set of
interrelated resources for users. Managing these resources includes such tasks as
starting and stopping servers, balancing the load on servers or connection pools,
selecting and monitoring the configuration of resources, detecting and correcting
problems, monitoring and evaluating system performance, and deploying Web
applications, Enterprise Javabeans (EJBs) or other resources.

The main tool that WebLogic provides to accomplish these tasks is a robust,
Web-based Administration Console. The Administration Console is your window into
the WebLogic Administration Service. The Administration Service, implementation
of Sun’s Java Management Extension (JMX) standard, provides the facilities for
managing WebLogic resources.

Through the Administration Console you can configure attributes of resources, deploy
applications or components, monitor resource usage (such as server load or Java
Virtual Machine memory usage or database connection pool load), view log messages,
shutdown servers, or perform other management actions.

1 Overview of WebLogic Server Management

1-2 Administration Guide

Domains, the Administration Server and
Managed Servers

An inter-related set of WebLogic Server resources managed as a unit is called a
domain. A domain includes one or more WebLogic Servers, and may include
WebLogic Server clusters.

The configuration for a domain is defined in Extensible Markup Language (XML).
Persistent storage for the domain’s configuration is provided by a single XML
configuration file install_dir/config/domain_name/config.xml (where
install_dir is the directory under which the WebLogic Server software has been
installed).

A domain is a self-contained administrative unit. If an application is deployed in a
domain, components of that application cannot be deployed on servers that are not a
part of that domain. When a cluster is contained in a domain, all of its servers must be
a part of that domain as well.

A WebLogic Server running the Administration Service is called an Administration
Server. The Administration Service provides the central point of control for
configuring and monitoring the entire domain. The Administration Server must be
running in order to perform any management operation on that domain.

In a configuration with multiple WebLogic Servers, only one server is the
Administration Server; the other servers are called Managed Servers. Each WebLogic
Managed Server obtains its configuration at startup from the Administration Server.

The same class, weblogic.Server, may be started as either the Administration
Server for a domain or as a WebLogic Managed Server. A WebLogic Server not
started as a Managed Server is an Administration Server.

In a typical configuration for a production system, the applications and components
with your business logic would be deployed across Managed Servers and the role of
the Administration Server would be that of configuring and monitoring the Managed
Servers.

Starting the Administration Console

Administration Guide 1-3

A domain is active if the Administration Server was started using that configuration.
While the Administration Server is running, only the Administration Server can
modify the configuration file. The Administration Console and the command-line
administration utility provide windows into the Administration Server which enable
you to modify the domain configuration.

Additional non-active configurations may reside in the configuration repository, and
you can edit them using the Administration Console. The configuration repository
consists of a series of subdirectories (at least one) under the /config directory. Each
domain is defined in a distinct config.xml file residing in a subdirectory with the
same name as the domain. To access non-active configurations, follow the Domain
Configurations link on the Administration Console Welcome page when you start
the Console.

Starting the Administration Console

The Administration Console is a Web application that uses Java Server Pages (JSPs)
to access the management resources in the Administration Server.

After starting the Administration Server (see Starting and Stopping WebLogic
Servers), you can start the Administration Console by directing your browser to the
following URL:

http://hostname:port/console

The value of hostname is the name or IP address of the Administration Server and
port is the address of the port on which the Administration Server is listening for
requests (7001 by default). If you started the Administration Server using Secure
Socket Layer (SSL), you must add s after http as follows:

https://hostname:port/console

If you have your browser configured to send HTTP requests to a proxy server, then you
may need to configure your browser to not send Administration Server HTTP requests
to the proxy. If the Administration Server is on the same machine as the browser, then
you would want to ensure that requests sent to localhost or 127.0.0.1 or both are
not sent to the proxy.

1 Overview of WebLogic Server Management

1-4 Administration Guide

The left pane in the Administration Console contains a hierarchical tree for navigating
to tables of data, configuration pages and monitoring pages, or accessing logs. By
selecting (that is, left mouse clicking) an item in the domain tree, you can display a
table of data for resources of a particular type (such as WebLogic Servers) or
configuration and monitoring pages for a selected resource. The top-level nodes in the
domain tree are containers. If leaf nodes are present in those containers, you can click
on the plus sign at the left to expand the tree to access the leaf nodes.

The entity tables — tables of data about resources of a particular type — can be
customized by adding or subtracting columns that display values for attributes. You
can customize a table by following the Customize this table link at the top of the
table. Each column in the table corresponds to an attribute that has been selected for
inclusion in the table.

When started, the Administration Console prompts for a password. The first time the
Administration Console is started, you can use the user name and password under
which the Administration Server was started. You can use the Administration Console
to create a list of users with administration privileges. Once designated, these users can
also perform administrative tasks via the Administration Console.

Runtime and Configuration Objects

The Administration Server is populated with JavaBean-like objects called
Management Beans (MBeans), which are based on Sun’s Java Management Extension
(JMX) standard. These objects provide management access to domain resources.

The Administration Server contains both configuration MBeans and run-time MBeans.
Configuration MBeans provide both SET (write) and GET (read) access to
configuration attributes.

Run-time MBeans provide a snapshot of information about domain resources, such as
current HTTP sessions or the load on a JDBC connection pool. When a particular
resource in the domain (such as a Web application) is instantiated, an MBean instance
is created which collects information about that resource.

When you access the monitoring page for particular resources in the Administration
Console, the Administration Server performs a GET operation to retrieve the current
attribute values.

Runtime and Configuration Objects

Administration Guide 1-5

Figure 1-1 WebLogic Server Management Subsystem

The Administration Service allows you to change the configuration attributes of
domain resources dynamically, that is, while the WebLogic Servers are running. For
many attributes, you do not need to restart the servers for your change to take effect.
In that case, a change in configuration is reflected in both the current run-time value of
the attribute as well as the persistently stored value in the configuration file. (For more
information about configuring WebLogic Servers, see Configuring WebLogic Servers
and Clusters.)

1 Overview of WebLogic Server Management

1-6 Administration Guide

In addition to the Web-based Administration Console, WebLogic Server provides a
command-line utility for accessing configuration and monitoring attributes of domain
resources. This tool is provided for those who want to create scripts to automate system
management. (See WebLogic Server Command-Line Interface Reference.)

Central Point of Access to Log Messages

The Administration Server also provides central access to critical system messages
from all the servers via the domain log. JMX provides a facility for forwarding
messages to entities that subscribe for specified messages. Subscriber entities specify
which messages to forward by providing a filter that selects messages of interest. A
message forwarded to other network entities on the initiative of a local WebLogic
Server is called a notification. JMX notifications are used to forward critical log
messages from all WebLogic Servers in the domain to the Administration Server.
When a WebLogic Managed Server starts, the Administration Server registers to
receive critical log messages. Such messages are stored in the domain log. A single
domain log filter is registered with each WebLogic Server by the Administration
Server to select the messages to be forwarded. You can change the domain log filter,
view the domain log, and view the local server logs using the Administration Console.
(For details, see Using Log Messages to Manage WebLogic Servers.)

Administration Guide 2-1

CHAPTER

2 Starting and Stopping
WebLogic Servers

This section discusses the following topics:

� WebLogic Administration Server and WebLogic Managed Servers

� Starting the WebLogic Administration Server

� Adding a WebLogic Managed Server to the Domain

� Starting a WebLogic Managed Server

� Migrating from Earlier Versions of WebLogic Server

� Stopping WebLogic Servers from the Administration Console

� Suspending and Resuming a Managed Server

� Setting up the WebLogic Server as a Windows Service

� Registering Startup and Shutdown Classes

2 Starting and Stopping WebLogic Servers

2-2 Administration Guide

WebLogic Administration Server and
WebLogic Managed Servers

A WebLogic domain may consist of one or more WebLogic Servers. One (and no
more than one) of these WebLogic Servers must be the Administration Server for the
domain. Additional WebLogic Servers in the domain are managed servers. The same
executable may be started as either a WebLogic Administration Server or as a
WebLogic Managed Server.

Being the Administration Server is the default role for a WebLogic Server. Therefore,
if there is only one WebLogic Server in a domain, that server is the Administration
Server. In a multi-server domain, a WebLogic Server becomes a Managed Server only
if it is instructed to obtain its configuration from a running Administration Server when
started.

The Administration Server controls access to the configuration for a WebLogic
domain and provides other management services such as monitoring and log message
browsing. The Administration Server serves up the Administration Console which
provides user access to the management services offered by the Administration Server.

When a WebLogic Managed Server is started, it obtains its configuration from the
Administration Server. For this reason, booting a multi-server WebLogic domain is a
two-step procedure: First you start the Administration Server, and then you start the
Managed Servers.

Note: The Managed Servers must be the same WebLogic version as the
Administration Server.

Startup Error Messages

When a WebLogic Server is starting, the normal logging subsystem is not yet available
for logging. Accordingly, any errors encountered during startup are logged to stdout

and to a special startup log, servername-startup.log (where servername is the
name of the server). If startup is successful, the last message in this log points to the

Starting the WebLogic Administration Server

Administration Guide 2-3

location of the local server log file where normal logging occurs. For more information
on the WebLogic Server logging subsystem, see Using Log Messages to Manage
WebLogic Servers.

Starting the WebLogic Administration
Server

There are several ways in which the WebLogic Administration Server can be started:

� From the command line

The command to start the WebLogic Server can be either typed in a command
shell manually or it can be placed in a script to avoid retyping the command
each time the server is started. For information on the sample scripts provided
see Starting the WebLogic Managed Servers Using Scripts.

� From the Start Menu (Windows only)

� A WebLogic Server installed as a Windows service will start automatically when
the computer is rebooted.

Use of Passwords When Starting the WebLogic Server

During installation you are asked to specify a password that will be required when the
server is started. If you use start scripts to start an Administration Server or a Managed
Server, you can include the password as a command-line argument (See Starting the
WebLogic Administration Server from the Command Line.) If you start the server
using a script without the password specified as a command-line argument, you will
be prompted to enter the password if there is no password.ini file.

2 Starting and Stopping WebLogic Servers

2-4 Administration Guide

Starting the WebLogic Administration Server from the
Start Menu

If you installed WebLogic Server on Windows with the BEA Installation program, you
can use the WebLogic Server shortcut on the Windows Start menu to start the
WebLogic Administration Server. Select:

Start→Programs→BEA WebLogic E-Business Platform→Weblogic Server
Version→Start Default Server

where version is the WebLogic Server software version number.

Invoking the WebLogic Server from the Start menu executes the start script
startWeblogic.cmd (which is located in install_dir/config/domain_name

where domain_name is the name of the domain and install_dir is the directory
where you installed the WebLogic Server software).

Starting and Stopping the WebLogic Server as a
Windows Service

When installed as a Windows service, the WebLogic Server starts automatically when
you boot the Windows computer. The WebLogic Server is started by executing the
Windows start script startWeblogic.cmd. A WebLogic Server started this way is
started as an Administration Server. See Starting the WebLogic Administration Server
from the Command Line.

To run the WebLogic Server as a Windows service, you must have installed it as such.
For information on installing and removing the WebLogic Server as a Windows
service, see Setting up the WebLogic Server as a Windows Service.

You can also stop and start the WebLogic Server easily from the Service Control
Panel.

1. Select Start→Settings→Control Panel.

2. Double-click the Services Control Panel to open it.

Starting the WebLogic Administration Server

Administration Guide 2-5

3. In the Services Control Panel, scroll to the end to find WebLogic Server. If
WebLogic is Started, you will have the option to Stop it when you select it, by
clicking the Stop button to the right. If WebLogic is Stopped, the Start button will
be available.

You can make the Windows service Automatic, Manual, or Disabled by clicking the
Startup button and selecting a mode.

Starting the WebLogic Administration Server from the
Command Line

The WebLogic Server is a Java class file, and like any Java application, you can start
it with the java command. The arguments needed to start the WebLogic Server from
the command line can be quite lengthy and typing it out whenever you need to start the
server can be tedious. To make sure that your startup commands are accurate, BEA
Systems recommends that you incorporate the command into a script that you can use
whenever you want to start a WebLogic Server.

The following arguments are required when starting the WebLogic Administration
Server from the java command line:

� Specify the minimum and maximum values for Java heap memory.

For example, you may want to start the server with a default allocation of 64
megabytes of Java heap memory to the WebLogic Server. To do so, you can start
the server with the java -ms64m and -mx64m options.

These values assigned to these parameters can dramatically affect the
performance of your WebLogic Server and are provided here only as general
defaults. In a production environment you should carefully consider the correct
memory heap size to use for your applications and environment.

� Set the java -classpath option.

The minimum content for this option is described under Setting the Classpath
Option.

� Specify the name of the server.

The domain configuration specifies configuration by server name. To specify the
name of the server on the command line, use the following argument:

2 Starting and Stopping WebLogic Servers

2-6 Administration Guide

-Dweblogic.Name=servername

The default value is myserver.

� Provide user password.

The default user is system and the required password is the password specified
during installation. To enter the password, include the following argument:

-Dweblogic.management.password=password

� Specify the WebLogic root directory if you do not start the WebLogic Server
from the WebLogic root directory.

The WebLogic root directory contains the security resources for the domain and
the Configuration Repository (a directory named \config). You can specify the
location of the root directory on the command line with the following argument:

-Dweblogic.RootDirectory=path

where path is the path to the root directory. If you do not specify this attribute
on the command line, the current directory is used to set the runtime value of
this attribute.

� Specify the location of the bea.home directory:

-Dbea.home=root_install_dir

where root_install_dir is the root directory under which you installed the BEA
WebLogic Server software.

� If you generated a password-protected private key, you need to pass the server
the private key password at startup so that the server can decrypt the PKCS
private key file. To pass the private key password to the server on startup,
include the following argument on the command line:

-Dweblogic.pkpassword=pkpassword

where pkpassword is the private key password.

Password-protected private keys are generated when the Private Key Password
field is specified in the Certificate Request Generator servlet. For more
information, see Chapter 12, “Managing Security.”

� You can specify the name of the domain configuration when starting the
Administration Server by using the following argument on the command line:

-Dweblogic.Domain=domain_name

Starting the WebLogic Administration Server

Administration Guide 2-7

where domain_name is the name of the domain. This will also be the
subdirectory which has the configuration file that will be used to boot the
domain.

The configuration repository consists of the domains under the /config
directory. The configuration repository may contain a variety of possible domain
configurations. Each such domain is located under a separate subdirectory, with
the subdirectory name being the name of that domain. When you specify
domain_name you are thus specifying this subdirectory name. The subdirectory
thus specified contains the XML configuration file (config.xml) and the
security resources for that domain (see example below). The file config.xml
specifies the configuration for that domain.

The domain configuration with which the Administration Server is started
becomes the active domain. Only one domain can be active.

� You can also specify values for WebLogic configuration attributes on the
command line. These values become the runtime value for that attribute, and any
value stored in the persistent configuration is ignored. The format for setting a
runtime value for a WebLogic attribute on the command line is:

-Dweblogic.attribute=value

Setting the Classpath Option

The following must be included as arguments to the -classpath option on the java
command line:

� /weblogic/lib/weblogic_sp.jar

� /weblogic/lib/weblogic.jar

� WebLogic Server comes with a trial version of an all-Java database management
system (DBMS) called Cloudscape. If you will be using this DBMS, then you
will need to include the following in the classpath:
/weblogic/samples/eval/cloudscape/lib/cloudscape.jar

� If you will be using WebLogic Enterprise Connectivity, you will need to include
the following:
/weblogic/lib/poolorb.jar

where weblogic is the directory where you installed WebLogic Server.

2 Starting and Stopping WebLogic Servers

2-8 Administration Guide

Starting the Administration Server Using a Script

Sample scripts are provided with the WebLogic distribution that you can use to start
WebLogic Servers. You will need to modify these scripts to fit your environment and
applications. Separate scripts are provided for starting the Administration Server and
the Managed Server. The scripts for starting the Administration Server are called
startWebLogic.sh (UNIX) and startWeblogic.cmd (Windows). These scripts
are located in the configuration subdirectory for your domain.

To use the supplied scripts:

� Pay close attention to classpath settings and directory names.

� Change the value of the variable JAVA_HOME to the location of your JDK.

� UNIX users must change the permissions of the sample UNIX script to make the
file executable. For example:

chmod +x startAdminWebLogic.sh

Restarting the Administration Server when Managed
Servers are Running

For a typical production system it is recommended that the applications containing
your critical business logic be deployed on Managed Servers. In such a scenario, the
role of the Administration Server is that of configuring and monitoring the Managed
Servers. If the Administration Server should become unavailable in such a
configuration, the applications running on the Managed Servers can continue to
process client requests.

When the Administration Server is started, it makes a copy of the configuration file
that was used to boot the active domain. This is saved in the file

install_dir/config/domain_name/config.xml.booted

where install_dir is the directory where you installed the WebLogic Server
software and domain_name is the name of the domain. The Administration Server
creates the config.xml.booted file only after it has successfully completed its
startup sequence and is ready to process requests.

Starting the WebLogic Administration Server

Administration Guide 2-9

You should make a copy of this file so that you have a working configuration file that
you can revert to if you need to back out of changes made to the active configuration
from the Administration Console.

If the Administration Server goes down while Managed Servers continue to run, you
do not need to restart the Managed Servers to recover management of the domain. The
procedure for recovering management of an active domain depends upon whether you
can restart the Administration Server on the same machine it was running on when the
domain was started.

Restarting the Administration Server on the Same Machine

If you restart the WebLogic Administration Server while Managed Servers continue to
run, the Administration Server can detect the presence of the running Managed Servers
if you instruct the Administration Server to perform a discovery. To instruct the
Administration Server to do a discovery of Managed Servers, enter the following
argument on the command line when starting the Administration Server:

-Dweblogic.management.discover=true

The default value of this attribute is false. The configuration directory for the domain
contains a file running-managed-servers.xml which is a list of the Managed
Servers that the Administration Server knows about. When the Administration Server
is instructed to perform discovery upon startup, it uses this list to check for the
presence of running Managed Servers.

Restart of the Administration Server does not update the runtime configuration of the
Managed Servers to take account of any changes made to attributes that can only be
configured statically. WebLogic Servers must be restarted to take account of changes
to static configuration attributes. Discovery of the Managed Servers does enable the
Administration Server to monitor the Managed Servers or make runtime changes in
attributes that can be configured dynamically.

Restarting the Administration Server on Another Machine

If a machine crash prevents you from restarting the Administration Server on the same
machine, you can recover management of the running Managed Servers as follows:

1. Assign to another computer the same host name as the former Administration
Server machine.

2 Starting and Stopping WebLogic Servers

2-10 Administration Guide

2. Install the WebLogic Server software on the new administration machine (if this
has not already been done).

3. The /config directory (the configuration repository) used to start the
Administration Server on the machine being replaced needs to be made available
to the new machine. The /config directory could be copied from backup media
or made available via NFS mount, for example. This includes the configuration
file (config.xml) used to boot the active domain as well as applications and
components installed in the /applications directory for that domain.

4. Restart the Administration Server on the new machine with the addition of the
following argument on the command line:

-Dweblogic.management.discover=true

This argument will force the Administration Server to detect the presence of the
Managed Servers that are running.

Adding a WebLogic Managed Server to the
Domain

Before you can run a WebLogic Server as a managed server, you must first create an
entry for that server in the configuration for the domain. To do this, do the following:

1. Start the Administration Server for the domain.

2. Invoke the Administration Console by pointing your browser at
http://hostname:port/console, where hostname is the name of the
machine where the Administration Server is running and port is the listen port
number that you have configured for the Administration Server (default is 7001).

3. Create an entry for the server machine (Machines→Create a new machine) (if it
is different than the Administration Server machine) and the new server
(Servers→Create a new server).

For more information on configuring servers, see Configuring WebLogic Servers and
Clusters.

Starting a WebLogic Managed Server

Administration Guide 2-11

Starting a WebLogic Managed Server

Once you have added WebLogic Managed Servers to your configuration (see Adding
a WebLogic Managed Server to the Domain), you can start the Managed Servers from
the java command line. The command to start the WebLogic Server can be either
typed in a command shell manually or it can be placed in a script to avoid retyping the
command each time the server is started. For information on the sample scripts
provided see Starting the WebLogic Managed Servers Using Scripts.

The main way in which the startup parameters for a Managed Server differ from an
Administration Server is that you need to provide an argument that identifies the
location of the Administration Server from which the Managed Server requests its
configuration. A WebLogic Server started without this parameter runs as an
Administration Server.

The following are required when starting a WebLogic Managed Server:

� Specify the minimum and maximum of Java heap memory.

For example, you may want to start the server with a default allocation of 64
megabytes of Java heap memory to the WebLogic Server. To do so, you can start
the server with the java -ms64m and -mx64m options.

These values assigned to these parameters can dramatically affect the
performance of your WebLogic Server and are provided here only as general
defaults. In a production environment you should carefully consider the correct
memory heap size to use for your applications and environment.

� Set the java -classpath option.

The minimum content for this option is described under Setting the Classpath
Option.

� Specify the name of the server.

When a WebLogic Managed Server requests its configuration information from
the Administration Server, it identifies itself to the Administration Server by
server name. This enables the Administration Server to respond with the
appropriate configuration for that WebLogic Server. For this reason, you must
also set the server name when starting a managed server. This can be specified
by adding the following argument to the command line when starting the
WebLogic Managed Server:

2 Starting and Stopping WebLogic Servers

2-12 Administration Guide

-Dweblogic.Name=servername

� Provide the password for the system user.

Only the system user can start a Managed Server. To specify the password for
the system user, you can include the following argument:

-Dweblogic.management.password=password

For information about use of passwords, see Use of Passwords When Starting
the WebLogic Server.

Note: Because system is the default value for the
-Dweblogic.management.username argument, you do not need to
specify it when starting a Managed Server.

� Specify the location of the bea.home directory:

-Dbea.home=root_install_dir

where root_install_dir is the root directory under which you installed the BEA
WebLogic Server software.

� If you want to start the server with Secure Socket Layer (SSL) protocol, you
need to pass the server the private key password at startup so that the server can
decrypt the SSL private key file. To pass the SSL private key password to the
server on startup, include the following argument on the command line:

-Dweblogic.pkpassword=pkpassword

where pkpassword is the SLL private key password.

� Specify the host name and listen port of the WebLogic Administration Server

When starting a managed server, it is necessary to specify the host name and
listen port of the Administration Server from which the managed server is to
request its configuration. This can be specified by adding the following
argument to the command line when starting the managed server:

-Dweblogic.management.server=host:port

or

-Dweblogic.management.server=http://host:port

where host is the name or IP address of the machine where the Administration
Server is running and port is the Administration Server's listen port. By default
the Administration Server's listen port is 7001.

Starting a WebLogic Managed Server

Administration Guide 2-13

If you are using Secure Socket Layer (SSL) for communication with the
Administration Server, the Administration Server must be specified as:

-Dweblogic.management.server=https://host:port

To use SSL protocol in communication between the Managed Servers and the
Administration Server, you need to enable SSL on the Administration Server.
For details on how to set this up, see Managing Security.

Note: Any WebLogic Server that is started without specifying the location of the
Administration Server is started as an Administration Server.

Note: Because the Managed Server receives its configuration from the
Administration Server, the Administration Server specified must be in the
same domain as the Managed Server.

� You can also specify values for WebLogic configuration attributes on the
command line. Attribute values set this way become the runtime value for that
attribute, and any value stored in the persistent configuration is ignored. The
format for setting a runtime value for a WebLogic attribute on the command line
is:

-Dweblogic.attribute=value

Starting the WebLogic Managed Servers Using Scripts

Sample scripts are provided with the WebLogic distribution that you can use to start
WebLogic Servers. You will need to modify these scripts to fit your environment and
applications. Separate scripts are provided for starting the Administration Server and
the Managed Server. The scripts to start Managed Servers are called
startManagedWebLogic.sh (UNIX) and startManagedWebLogic.cmd

(Windows). These scripts are located in the configuration subdirectory for your
domain.

To use the supplied scripts:

� Pay close attention to classpath settings and directory names.

� Change the value of the variable JAVA_HOME to the location of your JDK.

� UNIX users must change the permissions of the sample UNIX script to make the
file executable. For example:

chmod +x startManagedWebLogic.sh

2 Starting and Stopping WebLogic Servers

2-14 Administration Guide

There are two ways to start the Managed Server using the script:

� If you set the value of the environment variables SERVER_NAME and ADMIN_URL,
you do not need to provide these as arguments when invoking the start script.
SERVER_NAME should be set to the name of the WebLogic Managed Server that
you wish to start. ADMIN_URL should be set to point to the host (host name or IP
address) and port number where the Administration Server is listening for
requests (default is 7001). For example:

set SERVER_NAME=bigguy
set ADMIN_URL=peach:7001
startManagedWebLogic

� You can invoke the start script and pass the name of the Managed Server and the
URL for Administration Server on the command line:

startManagedWebLogic server_name admin:url

where server_name is the name of the Managed Server you are starting and
admin_url is either http://host:port or https://host:port where host
is the host name (or IP address) of the Administration Server and port is the
port number for the Administration Server.

Migrating from Earlier Versions of WebLogic
Server

If you have WebLogic Server startup scripts that you used with a previous release of
the product, you will need to modify them to work with this release. The following are
the main changes from previous releases:

� Dynamic class loading has changed.

Previous releases of WebLogic Server had two separate Java classpath settings
on the command line:

� The Java system classpath

� A special WebLogic classpath

The WebLogic classpath property was used to facilitate dynamic class loading.
In this release, the WebLogic classpath property has been eliminated and the

Stopping WebLogic Servers from the Administration Console

Administration Guide 2-15

Java system classpath setting has changed. Scripts used with previous releases
will need to be modified accordingly. In this release, dynamic loading of classes
needed for Java 2 applications is the responsibility of those applications, and
specifying the location of the compiled classes is accomplished via the
Extensible Markup Language (XML) descriptors in the files comprising the
application.

See Setting the Classpath Option for information on setting the Java system
classpath.

� It is no longer necessary to specify the location of the license file or the policy
file on the command line.

� The distinction between an Administration Server and Managed Servers is new
to this release. You will need to add the URL to point a WebLogic Server to a
running Administration Server if you want to start it as a Managed Server.

� See Starting the WebLogic Administration Server from the Command Line and
Starting a WebLogic Managed Server for a complete list of the required
arguments.

� New start scripts, startManagedWebLogic.cmd (Windows) and
startManagedWebLogic.sh (UNIX, are provided for starting WebLogic
Managed Servers. The startWebLogic.sh (UNIX) and startWebLogic.cmd

(Windows) scripts are now for use in starting the WebLogic Administration
Server.

Stopping WebLogic Servers from the
Administration Console

To shutdown an individual WebLogic Server:

� In the Administration Console domain tree (in the left pane), select the server
you want to shutdown.

� On the Monitoring→General tab page, select the Shutdown this server link.

2 Starting and Stopping WebLogic Servers

2-16 Administration Guide

Shutting Down a Server from the Command Line

You can also shut down a WebLogic Server from the command line with the following
command:

java weblogic.Admin -url host:port SHUTDOWN -username adminname
-password password

where:

host is the name or IP address of the machine where the WebLogic Server is
running.

port is the WebLogic Server’s listen port (default is 7001).

adminname designates a user that has administrator privileges for the target
WebLogic Server. Default is system.

password is the password for adminname.

Suspending and Resuming a Managed
Server

The Administration Console allows you to suspend a WebLogic Managed Server.
When a Managed Server is suspended, it will only accept requests from the
Administration Server. A typical use for this feature would be in a situation where a
WebLogic Server is running as a “hot” backup for another server. The backup server
may be kept in a suspended state until you want it to start processing requests.

Note: Suspending the WebLogic Server only suspends server response to HTTP
requests. Java applications or RMI invocations are not suspended.

To suspend an individual WebLogic Managed Server:

� In the Administration Console domain tree (in the left pane), select the server
you want to suspend.

� On the Monitoring→General tab page, select the Suspend this server link.

Setting up the WebLogic Server as a Windows Service

Administration Guide 2-17

To instruct a Managed Server to resume processing requests from clients:

� In the Administration Console domain tree (in the left pane), select the server
you want to resume processing client requests.

� On the Monitoring→General tab page, select the Resume this server link.

Setting up the WebLogic Server as a
Windows Service

You can run the WebLogic Server as a Windows service. When installed as a Windows
service, the WebLogic Server starts automatically when you boot the Windows
computer. A WebLogic Server is started this way by invoking the start script
startWeblogic.cmd. Whether the WebLogic Server is started as an Administration
Server or as a Managed Server depends upon the parameters in the java command
invoking the WebLogic Server. See Starting a WebLogic Managed Server and Starting
the WebLogic Administration Server from the Command Line.

To setup the WebLogic Server to run as a Windows service or to reconfigure it so it is
no longer a Windows service, you must have administrator-level privileges. To install
the WebLogic Server as a Windows service, do the following:

1. Navigate to the weblogic\config\mydomain directory (where weblogic is the
directory where WebLogic Server was installed and mydomain is the subdirectory
with your domain’s configuration).

2. Execute the script installNTService.cmd.

Removing WebLogic Server as a Windows Service

To remove the WebLogic Server as a Windows service, do the following:

1. Navigate to the weblogic\config\mydomain directory (where weblogic is the
directory where WebLogic Server was installed and mydomain is the subdirectory
with your domain’s configuration).

2 Starting and Stopping WebLogic Servers

2-18 Administration Guide

2. Execute the script uninstallNTService.cmd.

You can also uninstall the WebLogic Server as a Windows service from the Windows
Start menu.

Changing Passwords for a Server Installed as a Windows
Service

If you install the Default Server as a Windows service, the system password that you
entered during installation of the WebLogic software is used when creating the service.
If this password is later changed, you must do the following:

1. Uninstall the WebLogic Server as a Windows service using the
uninstallNTService.cmd script (located in the directory
install_dir/config/domain_namewhere install_dir is the directory where
you installed the product).

2. The installNTservice.cmd script contains the following command:

rem *** Install the service
“C:\bea\wlserver6.0\bin\beasvc” -install -svcname:myserver
-javahome:”C:\bea\jdk130” -execdir:”C:\bea\wlserver6.0”
-extrapath:”C\bea\wlserver6.0\bin” -cmdline:
%CMDLINE%

You must append the following to the command:

-password:”your_password”

where your_password is the new password.

3. Execute the modified installNTservice.cmd script. This will create a new
service with the updated password.

The WebLogic Windows Service Progam (beasvc.exe)

The scripts for installing and removing a WebLogic Server as a Windows service
invoke the WebLogic Windows Service program, beasvc.exe. Multiple instances of
WebLogic Server can be installed or removed as a Windows service using
beasvc.exe.

Setting up the WebLogic Server as a Windows Service

Administration Guide 2-19

All configurations for multiple services are stored in the Windows Registry using a
different service name and under a server-specific hive at:

HKEY_LOCAL_MACHINE\SYSTEM\Current\ControlSet\Services

When you start the service, the Windows registry entries are picked up and the JVM is
initialized and started. Since each service that is installed is independent of the others,
you can install multiple instances of WebLogic Server to run as a Windows service,
provided that each service is given a unique name.

The following options are available with beasvc.exe:

–install

Install the specified service.

–remove

Remove the specified service.

–svcname: service_name

The user-specified name of the service to be installed or removed.

–cmdline: java_cmdline_parameters

The java command-line parameters to be used when starting the WebLogic
Server as a Windows service.

–javahome: java_directory

Root directory of the Java installation. The start command will be formed by
appending \bin\java to java_directory.

–execdir: base_dir

Directory where this startup command will be executed.

–extrapath: additional_env_settings

Additional path settings that will be prepended to the path applicable to this
command execution.

–help

Prints out the usage for the beasvc.exe command.

Win32 systems have a 2K limitation on the length of the command line. If the classpath
setting for the Windows service startup is very long, the 2K limitation could be
exceeded. With the 1.2 or later version of the Sun Microsystems JVM, you can specify
a file that contains the classpath using the @ option. You could use this option with
beasvc.exe as in the following example:

beasvc –install –svcname:myservice -classpath:@C:\temp\myclasspath.txt

2 Starting and Stopping WebLogic Servers

2-20 Administration Guide

Registering Startup and Shutdown Classes

WebLogic provides a mechanism for performing tasks whenever a WebLogic Server
starts up or gracefully shuts down. A startup class is a Java program that is
automatically loaded and executed when a WebLogic Server is started or restarted.
Startup classes are loaded and executed only after all other server initialization tasks
have completed.

Shutdown classes work the same way as startup classes. A shutdown class is
automatically loaded and executed when the WebLogic Server is shut down either
from the Administration Console or using the weblogic.admin shutdown command.

In order for your WebLogic Servers to use startup or shutdown classes, it is necessary
to register these classes, which you can do from the Administration Console.

You can register a startup or shutdown class by doing the following:

1. Access the Startup & Shutdown table from the domain tree (in the left pane) in the
Administration Console. This table provides options for creating entries for
shutdown or startup classes in the domain configuration.

2. Provide the class name and necessary arguments, if any, on the Configuration tab
page for the startup or shutdown class you are adding.

See the Administration Console online help for more information on:

� Startup classes

� Shutdown classes

http://e-docs.bea.com/wls/docs60/ConsoleHelp/startupclass.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/shutdownclass.html

Administration Guide 3-1

CHAPTER

3 Configuring WebLogic
Servers and Clusters

This section discusses the following topics:

� Overview of Server and Cluster Configuration

� Role of the Administration Server

� Starting the Administration Console

� How Dynamic Configuration Works

� Planning A Cluster Configuration

� Server Configuration Tasks

� Cluster Configuration Tasks

� Creating a New Domain

Overview of Server and Cluster
Configuration

The persistent configuration for a domain of WebLogic Servers and clusters is stored
in an XML configuration file. You can modify this file in three ways:

3 Configuring WebLogic Servers and Clusters

3-2 Administration Guide

� Through the Administration Console, BEA’s graphical user interface (GUI) for
managing and monitoring a domain configuration. This is intended as the main
way to modify or monitor the domain configuration.

� By writing a program to modify the configuration attributes, based on the
configuration Application Programmatic Interface (API) provided with
WebLogic Server.

� By running the WebLogic Server command-line utility for accessing
configuration attributes of domain resources. This is provided for those who
want to create scripts to automate domain management.

Role of the Administration Server

IWhichever method you choose, the Administration Server must be running when you
modify your domain configuration.

The Administration Server is the WebLogic Server on which the Administration
Service runs. The Administration Service provides the functionality for WebLogic
Server, and manages the configuration for an entire domain.

By default an instance of WebLogic Server is treated as an Administration Server.
When the Administration Server starts, it loads the configuration files, which are
stored, by default, in a directory called config under the WEBLOGIC_HOME directory.
The config directory has a sub-directory for each domain that is available to the
Administration Server. The actual configuration file resides inside the domain-specific
directory and is calledconfig.xml. By default, when an Administration Server starts,
it looks for configuration file (config.xml) under the default domain directory, which
is named -mydomain.

Each time the Administration Server is successfully started, a back up configuration
file named config.xml.booted is created in the domain specific directory.In the
unlikely event that the config.xml file should become corrupted during the lifetime
of the server, it is possible to revert to this previously known, good configuration.

A domain may consist of only one WebLogic Server, which operates as the
Administration Server.

http://e-docs.bea.com/wls/docs60/adminguide/cli.html

Role of the Administration Server

Administration Guide 3-3

A typical production environment contains an Administration Server and multiple
WebLogic Servers. When you start the servers in such a domain, the Administration
Server is started first. As each additional server is started, it is instructed to contact the
Administration Server for its configuration information. In this way, the
Administration Server operates as the central control entity for the configuration of the
entire domain. No more than one Administration Server can be active in a domain.
Only the Administration Server can modify the configuration files when it is running.

3 Configuring WebLogic Servers and Clusters

3-4 Administration Guide

Figure 3-1 WebLogic Server Configuration

Starting the Administration Console

The main point of access to the Administration Server is through the Administration
Console. To open the Administration Console, complete the following procedure:

http://host:port/console

In this URL, host is the host name or IP address of the machine on which the
Administration Server is running and port is the address of the port at which the
Administration Server is listening for requests (by default, 7001).

The system prompts you to enter a user ID and password. Enter your UserID and
password. The system performs an authentication and authorization check: it
verifies the user ID and password against the user database.

If you are authorized to work with the console, then the console is displayed in
the access mode that the system administrator originally assigned to you: either
ReadOnly or Read/Write

How Dynamic Configuration Works

WebLogic Server allows you to change the configuration attributes of domain
resources dynamically, that is, while servers are running. In most cases you do not need
to restart WebLogic Server for your changes to take effect. When an attribute is
reconfigured, the new value is immediately reflected in both the current run-time value
of the attribute and the persistent value stored in the XML configuration file.

There are exceptions, however. If, for example, you change a WebLogic Server’s
listen port, the new address will not be used until the next time you start the affected
server. In that case, if you modify the value, you are changing the persistent value
stored in the XML file and the current run-time configuration value for the attribute
may differ from that persistently stored value. The Administration Console indicates

Planning A Cluster Configuration

Administration Guide 3-5

if the persistent and runtime values for a configuration attribute are not the same using
an icon which changes to an alert when the server needs to be restarted for changes to

take effect.

The console does a validation check on each attribute that users change. The errors that
are supported are out-of-range errors and datatype mismatch errors. In both cases, an
error popup displays telling the user that an error has occurred.

Once the Administration Console has been started, if another process captures the
Listen Port assigned to the Administration Server, you should remove the process that
has captured the server. If you are not able to remove the process that has captured the
Listen Port assigned to the Administration Server, you must edit the Config.XML file
to change the assigned Listen Port. For information about editing the Config.XML file,
please see the Configuration Reference.

Planning A Cluster Configuration

When planning a cluster configuration, keep in mind the following constraints on the
networking environment and the cluster configuration.

1. The machine(s) you will be using as WebLogic hosts for the cluster must have
permanently assigned, static IP addresses. You cannot use dynamically-assigned IP
addresses in a clustering environment. If the servers are behind a firewall and the
clients are in front of the firewall, each server must have a public static IP address
that can be reached by the clients.

2. All WebLogic Servers in a cluster must be located on the same local area network
(LAN) and must be reachable via IP multicast.

3. All servers in a cluster must be running the same version of WebLogic Server.

Configure the Servers in your cluster to support the particular mix of services that you
are offering.

� For EJBs that are using JDBC connections, all the servers that deploy a
particular EJB must have the same deployment and persistence configuration.
This means configuring the same JDBC connection pool on each server.

3 Configuring WebLogic Servers and Clusters

3-6 Administration Guide

� Every machine that hosts servlets must maintain the same list of servlets with
identical ACLs (access control lists).

� If your client application uses JDBC connection pools directly, you must
create identical connection pools (with identical ACLs) on each WebLogic
Server. This means that it must be possible to create any connection pool in
use on all machines in the cluster. If, for example, you configure a pool of
connections to a Microsoft SQL Server database on an NT server running
WebLogic, you cannot use this connection pool in a cluster that contains any
non-Windows machines (that is, any machines that cannot support a
Microsoft SQL Server connection).

� Other configuration details may differ for various members in the cluster.
You might, for example, configure a Solaris server to process more login
requests than a small NT workstation. Such differences are acceptable. Thus,
in the example given here, the performance-specific attributes of individual
cluster members may be configured with different values, so long as the
service configuration for all members is identical.In practice, this often
results in WebLogic Servers in the cluster being identically configured in all
areas to do with WebLogic services, class files, and external resources (such
as databases).

Server Configuration Tasks

Server configuration tasks that can be accomplished from the Administration Console
include:

� Configuring an individual server using the Server node of the Administration
Console. The attributes that can be changed using this node include the Server
Name, the ListenPort, and the IP Address.

� Cloning an individual server using the Server node of the Administration
Console. The individual server is cloned, maintaining the attribute values in the
original server and the name of the new server is set on the Configuration
portion of the Server node.

� Deleting a server using the Server node of the Administration Console. Click the
delete icon for the server you want to delete. A dialog will appear asking you to

http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#create_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#clone_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#delete_server

Server Configuration Tasks

Administration Guide 3-7

confirm the deletion of the server. Click Yes to confirm your decision to delete
the server.

� Viewing a server log using the Server node of the Administration Console. Click
the server you want to monitor. Click the Monitoring tab. Click the View
Server Log link and monitor the server log in the right hand pane of the
Administration Console.

� Viewing a server JNDI tree using the Server node of the Administration
Console. Click the server you want to monitor. Click the Monitoring tab. Click
the View JNDI Tree link and view the tree in the right hand pane of the
Administration Console.

� Viewing server execute queues using the Server node of the Administration
Console. Click the server you want to monitor. Click the Execute Queues link
and view the table in the right hand pane of the Administration Console.

� Viewing server execute threads using the Server node of the Administration
Console.Click the server you want to monitor. Click the Execute Queues link
and view the table in the right hand pane of the Administration Console.

� Viewing server sockets using the Server node of the Administration Console.
Click the server you want to monitor. Click the View Sockets link and view the
table in the right hand pane of the Administration Console.

� Viewing server connections using the Server node of the Administration
Console. Click the server you want to monitor. Click the View Connections
link and view the table in the right hand pane of the Administration Console.

� Forcing garbage collection on a server using the Server node of the
Administration Console. Click the server you want to monitor. Click the JVM
tab. Click the Force Garbage Collection link. A dialog will appear to confirm
that garbage collection has taken place.

� Monitoring server security using the Server node of the Administration Console.
Click the server you want to monitor. Click the Monitoring tab. Click the
Security tab. The security information will be displayed.

� Viewing server version using the Server node of the Administration Console.
Click the server you want to monitor. Click the Version tab. The version data
for this server will be displayed.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#view_server_log
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#view_server_jndi_tree
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#view_server_execute_queues
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#view_server_execute_threads
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#view_server_sockets
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#view_server_connections
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#force_garbage_collection_on_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#monitor_server_security
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#view_server_version

3 Configuring WebLogic Servers and Clusters

3-8 Administration Guide

� Monitoring server clusters using the Server node of the Administration Console.
Click the server you want to monitor. Click the Cluster tab. The cluster data for
this server will be displayed.

� Deploying EJBs on a server using the Server node of the Administration
Console. Click the server on which you want to deploy EJBs. Click the EJB
you want to deploy and use the move control to move it to the Chosen column.
Click Apply to save your selections.

� Monitoring all EJB deployments on a server using the Server node of the
Administration Console. Click the server on which you want to monitor EJBs.
Click the Monitor All EJB Deployments link to display the EJB Deployments
table.

� Deploying web application components on a server using the Server node of the
Administration Console. Click the server on which you want to deploy web
applications. Click the web application you want to deploy and use the move
control to move it to the Chosen column. Click Apply to save your selections.

� Monitoring all web application components on a server using the Server node of
the Administration Console. Click the server on which you want to monitor web
applications. Click the Monitor All Web Applications link to display the Web
Application Deployments table.

� Deploy startup and shutdown classes on a server using the Server node of the
Administration Console. Click the server on which you want to deploy startup
classes. Click the startup class you want to deploy and use the move control to
move it to the Chosen column. Click Apply to save your selections. Use the
same process to deploy shutdown classes using the Shutdown Class control.

� Assigning web servers to a server using the Server node of the Administration
Console. Click a server for web-application deployment. A dialog displays in
the right-hand pane showing the tabs associated with this instance. Click one or
more web applications in the Available column that you want to deploy on the
server and use the mover control to move the web application you selected to the
Chosen column. Click Apply to save your assignments.

� Assigning JDBC connection pools to a server using the Server node of the
Administration Console. Click a server for web-server assignment. Click one or
more JDBC connection pools in the Available column that you want to assign to
the server and use the mover control to move the JDBC connection pools you
selected to the Chosen column. Click Apply to save your assignments.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#monitor_server_clusters
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#deploy_ejbs_on_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#monitor_ejb_deployments_on_a_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#deploy_web_app_components_on_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#monitor_web_app_components_on_a_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#deploy_startup_shutdown_classes_on_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#assign_web_servers_to_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#assign_jdbc_conn_pools_to_a_server

Server Configuration Tasks

Administration Guide 3-9

� Monitoring all JDBC connection pools on a server using the Server node of the
Administration Console. Click a server for JDBC connection-pool monitoring.
Click the Monitor All JDBC Connection Pools on This Server text link. The
JDBC connection pools table displays in the right-hand pane showing all the
connection pools assigned to this server.

� Assigning WLEC connection pools to a server using the Server node of the
Administration Console. Click a server for WLEC connection-pool assignment.
Click one or more WLEC connection pools in the Available column that you
want to assign to the server and use the mover control to move the WLEC
connection pools you selected to the Chosen column.

� Monitoring all WLEC connection pools on a server using the Server node of the
Administration Console. Click a server for WLEC connection-pool monitoring.
Click the Monitor All WLEC Connection Pools on This Server text link on the
WLEC tab. The WLEC Connection Pools table displays in the right-hand pane
showing all the connection pools assigned to this server.

� Assigning JMS servers, connection factories, and destinations to a server using
the Server node of the Administration Console. Click a server for JMS
assignments. Click one or more JMS servers in the Available column that you
want to assign to the server. Click the mover control to move the JMS servers
you selected to the Chosen column. Repeat using the JMS Connection Factories
and JMS Destinations controls to assign connection factories and destinations t

� Assigning XML registries to a server using the Server node of the
Administration Console. Click a sever for XML registry assignment. Click a
registry from the XML Registry drop-down list box. Click Apply to save your
selection.

� Assigning mail sessions to a server using the Server node of the Administration
Console. Click a server for mail session assignment. Click one or more mail
sessions in the Available column that you want to assign to the server. Use the
mover control to move the mail sessions you selected to the Chosen column.
Click Apply to save your selections.

� Assigning File T3s to a server using the Server node of the Administration
Console. Click a server for file T3 assignment. Click one or more file T3s in the
Available column that you want to assign to the server. Use the mover control to
move the file T3s you selected to the Chosen column. Click Apply to save your
selections.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#monitor_jdbc_conn_pools_on_a_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#assign_wlec_connection_pools_to_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#monitor_wlec_conn_pools_on_a_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#jms_servers_conn_factories_destin_to_a_server_assign
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#assign_xml_registries_to_a_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#assign_mail_sessions_to_a_server
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#assign_file_t3s_to_server

3 Configuring WebLogic Servers and Clusters

3-10 Administration Guide

Cluster Configuration Tasks

Cluster configuration tasks that can be accomplished from the Administration Console
include:

� Configuring a cluster of servers using the Cluster node of the Administration
Console. The attributes that can be changed using this node include the Cluster
Name, the Cluster ListenPort, and the names of the servers in the cluster.

� Cloning a cluster of servers using the Cluster node of the Administration
Console. The cluster is cloned, maintaining the attribute values and individual
servers in the original cluster and the name of the new cluster is set on the
Configuration portion of the Server node.

� Monitoring servers in a cluster using the Cluster node of the Administration
Console. Click a cluster for server monitoring. Click the Monitor Server
Participation in This Cluster text link. The server table displays in the right-hand
pane showing all the servers assigned to this cluster.

� Assigning servers to a cluster using the Cluster node of the Administration
Console. Click a cluster for server assignment. Click one or more servers in the
Available column that you want to assign to the cluster. Use the mover control
to move the servers you selected to the Chosen column. Click Apply to save
your selections.

� Deleting a cluster using the Cluster node of the Administration Console. Click
the Delete icon in the row of the cluster you want to delete. A dialog displays in
the right-hand pane asking you to confirm your deletion request. Click Yes to
confirm your decision to delete the cluster.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/cluster.html#create_cluster
http://e-docs.bea.com/wls/docs60/ConsoleHelp/cluster.html#clone_cluster
http://e-docs.bea.com/wls/docs60/ConsoleHelp/cluster.html#monitor_server_part_in_a_cluster
http://e-docs.bea.com/wls/docs60/ConsoleHelp/cluster.html#assign_servers_to_cluster
http://e-docs.bea.com/wls/docs60/ConsoleHelp/cluster.html#delete_cluster

Creating a New Domain

Administration Guide 3-11

Creating a New Domain

This section describes how to create a new domain. The configuration information for
all of the WebLogic administrative domains reside in the configuration repository,
which is located under the /config directory. Each domain has a separate
subdirectory under the /config directory. The name of the subdirectory for a domain
must be the name of that domain.

When you first install WebLogic Server software, it is recommended that you create a
zip file that has a copy of the default /mydomain configuration directory. You should
keep a copy of this zip file as a backup that you can use for creating new domains. This
subdirectory contains components that are required for a working configuration, such
as a fileRealm.properties file and a configuration file.

To create a new domain, do the following:

1. Start the Administration Server under an existing domain such as the default
mydomain.

2. Invoke the Administration Console by pointing your browser to:

http://hostname:port/console

where hostname is the name of the machine where you started the
Administration Server and port is the Administration Server’s listen port
(default is 7001).

3. Select mydomain→Create or edit other domains.

This displays the domains table.

4. Select Default→Create a new Domain.

Enter the name of the new domain and click Create.

5. Select the new domain from the list of domains at left to make that the current
domain.

6. Now you will need to create an Administration Server entry for the new domain:

a. Select Servers→Create a new Server.

b. Enter the name of the new Administration Server and click Create.

3 Configuring WebLogic Servers and Clusters

3-12 Administration Guide

7. The Administration Console will have created a new subdirectory with the name
of your domain and a configuration file, config.xml, under that subdirectory.
Now you need to create an \applications subdirectory in that domain
directory. You can create an \applications subdirectory in a command shell or,
on Windows, by using Explorer.

8. Next, copy the Administration Console application to the new \applications

directory that you just created. To do this, copy the file console.war from the
\applications directory under mydomain to the new \applications

directory.

9. The default mydomain directory contains start scripts for starting the WeLogic
Server. For Windows installations, these are startWebLogic.cmd and
startManagedWebLogic.cmd. For UNIX installations, these are
startWebLogic.sh and startManagedWebLogic.sh. Copy these start scripts
to the new domain directory.

10. You will need to edit the start scripts in a text editor. By default, the name of the
domain is set as:

-Dweblogic.Domain=mydomain

Replace mydomain with the name of the new domain.

By default the name of the Administration Server is set as:

-Dweblogic.Name=MyServer

Replace MyServer with the name of the new Administration Server.

11. At the end of the start script there is a cd command:

cd config\mydomain

Replace mydomain with the subdirectory name of the new domain. There is also
a line in the start script that reads:

echo startWebLogic.cmd must be run from the config\mydomain
directory.

Replace mydomain here with the name of the new domain.

12. Copy SerializedSystemIni.dat and fileRealm.properties from the
default mydomain directory to your new domain directory. Do not boot the new
Administration Server before copying these files.

Creating a New Domain

Administration Guide 3-13

13. If you created a password.ini file during installation, you must also copy the
password.ini file from the default mydomain directory to the directory for your
new domain.

Once you have completed this procedure, you can start the Administration Server for
your new domain.

3 Configuring WebLogic Servers and Clusters

3-14 Administration Guide

Administration Guide 4-1

CHAPTER

4 Monitoring a WebLogic
Domain

This section explains how to monitor your WebLogic domain, including:

� Overview of Monitoring

� Monitoring Servers

� Monitoring JDBC Connection Pools

� Summary of Monitoring Pages in the Administration Console

Overview of Monitoring

The tool for monitoring the health and performance of your WebLogic domain is the
Administration Console. The Administration Console allows you to view status and
statistics for WebLogic resources such as servers, HTTP, the JTA subsystem, JNDI,
security, CORBA connection pools, EJB, JDBC, and JMS.

Monitoring information is presented in the right pane of the Administration Console.
You access a page by selecting a container or subsystem, or a particular entity under a
container, on the hierarchical domain tree, in the left pane.

The Administration Console provides three types of page that contain monitoring
information:

� Monitoring tab pages for a particular entity (such as an instance of a JDBC
Connection Pool or a particular server’s performance)

4 Monitoring a WebLogic Domain

4-2 Administration Guide

� Tables of data about all entities of a particular type (such as the WebLogic
Servers table)

� Views of the domain log and of the local server logs. For information about log
messages, see Using Log Messages to Manage WebLogic Servers.

The Administration Console obtains information about domain resources from the
Administration Server. The Administration Server, in turn, is populated with
Management Beans (MBeans), based on Sun’s Java Management Extension (JMX)
standard, which provides the scheme for management access to domain resources.

The Administration Server contains both configuration MBeans, which control the
domain’s configuration, and run-time MBeans. Run-time MBeans provide a snapshot
of information about domain resources, such as JVM memory usage or the status of
WebLogic Servers. When a particular resource in the domain (such as a Web
application) is instantiated, an MBean instance is created which collects information
about that particular resource.

When you access a monitoring page for particular resources in the Administration
Console, the Administration Server performs a GET operation to retrieve the current
attribute values.

The following sections describe some of the monitoring pages that are useful for
managing a WebLogic domain. These pages have been selected simply to illustrate the
facilities provided by the Administration Console.

Monitoring Servers

The servers table and the monitoring tab pages for individual servers enable you to
monitor WebLogic Servers. The servers table provides a summary of the status of all
servers in your domain. If only a small subset of the log messages from the server are
forwarded to the domain log, accessing the local server log may be useful for
troubleshooting or researching events.

For more information about the log files and the logging subsystem, see Using Log
Messages to Manage WebLogic Servers.

Monitoring Servers

Administration Guide 4-3

You can access monitoring data for each WebLogic server from the monitoring tabs
for that server. The Logging tab provides access to the local log for the server (that is,
the log on the machine where the server is running).

The Monitoring→General tab page indicates the current status and provides access to
the JNDI tree, the Execute Queues table, the Active Sockets table, and the Connections
table. The Execute Queues table provides performance information such as the oldest
pending request and the number of requests currently pending.

Shutting down or Suspending a Server

The Monitoring→General tab also enables you to shut down or suspend a server. If a
server is suspended, it accepts requests only from the Administration Server. Client
requests are ignored.

Performance

The Monitoring→Performance tab graphs real-time data on JVM memory heap usage,
request throughput, and waiting requests. This tab page also enables you to force the
JVM to perform garbage collection on the memory heap.

4 Monitoring a WebLogic Domain

4-4 Administration Guide

Figure 4-1 Service Performance Graphs

The Java heap is a repository for Java objects (live and dead). Normally you do not
need to perform garbage collection manually because the JVM does this automatically.
When the JVM begins to run out of memory, it halts all execution and uses a garbage
collection algorithm to free up space no longer used by Java applications.

On the other hand, developers debugging applications may have occasion to force
garbage collection manually. Manual garbage collection may be useful, for example,
if they are testing for memory leaks that rapidly consume JVM memory.

Cluster Data

The Monitoring→Cluster tab provides information about the cluster that the selected
server is a participant in (such as the number of servers in the cluster that are currently
alive).

Monitoring JDBC Connection Pools

Administration Guide 4-5

Server Security

The Monitoring→Security tab provides statistics about invalid login attempts and
locked and unlocked users.

JMS

The Monitoring→JMS tab provides statistics on JMS servers and connections. This
page also provides links to the tables of active JMS connections and active JMS
servers, which monitor such attributes as total current sessions.

JTA

The Monitoring→JTA tab provides statistics on the Java Transactions subsystem such
as total transactions and total rollbacks. The page provides links to tables that list
transactions by resource and name, and a table of in-flight transactions.

Monitoring JDBC Connection Pools

Java Database Connectivity (JDBC) subsystem resources can also be monitored via
the Administration Console. The Monitoring tab for a JDBC connection pool allows
you to access a table listing statistics for the instances of that pool. As with other entity
tables in the Administration Console, you can customize the table to select which
attributes you want to be displayed.

A number of these attributes provide important information for managing client
database access.

The Waiters High field indicates the highest number of clients waiting for a connection
at one time. The Waiters field tells you how many clients are currently waiting for a
connection. The Connections High field indicates the highest number of connections
that have occurred at one time. The Wait Seconds High field tells you the longest
duration a client has had to wait for a database connection. These attributes allow you
to gauge the effectiveness of the current configuration is in responding to client
requests.

4 Monitoring a WebLogic Domain

4-6 Administration Guide

If the Connections High field value is close to the value of the Maximum Capacity field
(set on the Configuration Connections tab), you might consider increasing the value of
Maximum Capacity (the maximum number of concurrent connections). If the value in
the Waiters High field indicates that clients are subject to a long wait for database
access, then you might want to increase the size of the pool.

The value in the Shrink Period field is the length of time the JDBC subsystem waits
before shrinking the pool from the maximum. When the subsystem shrinks the pool,
database connections are destroyed. Creating a database connection consumes
resources and can be time-consuming. If your system has intermittent bursts of client
requests, a short shrink period might mean that database connections are being
recreated continually, which may degrade performance.

Summary of Monitoring Pages in the
Administration Console

|The following table lists all tables and monitoring tab pages available in the
Administration Console.

Table 4-1 Summary of Monitoring Pages in the Administration Console

Page Path to Page Monitoring Data

Monitoring Tab Pages

General Server
Information

servername→Monitoring→General State and activation time

Server
Performance

servername→Monitoring→
Performance

Real-time graphs of request throughput, JVM
memory usage, and waiting requests

Cluster Statistics servername→Monitoring→Cluster Statistics about clusters such as the number of
alive servers and sent and received fragments.

Server Security servername→Monitoring→Security Number of invalid login attempts, total locked
and unlocked users, and other security statistics

Summary of Monitoring Pages in the Administration Console

Administration Guide 4-7

Server Version
Information

servername→Monitoring→Version JDK, WebLogic, and operating system versions

Cluster Clusters→clustername→Monitoring Information about participating servers

Entity Tables

Servers Servers Server-specific data, such as memory usage,
startup time, state, cluster participation, invalid
login attempts, heap status, sockets counts, and
total restarts

Execute Queues servername→Monitoring→General→M
onitor Execute Queues on this server

Information about serviced and pending
requests and other attributes

Execute Sockets servername→Monitoring→General→M
onitor Active Sockets on this server

Protocol and other attributes of active sockets

Connections servername→Monitoring→General→
Monitor Connections on this server

Connect time, remote address, bytes sent and
received and other attributes of connections

Clusters Clusters Data such as default load algorithm and
multicast address

Transactions By
Name

servername→Monitoring→JTA→
Monitor Transactions by Name on this
server

Data about transactions organized by name

Transactions By
Resource

servername→Monitoring→JTA→
Monitor Transactions by Resource on this
server

Data about transactions organized by resource

Active
Transactions

servername→Monitoring→JTA→
Monitor In-flight Transactions on this
server

Data about in-flight transactions on this server

Machines Machines Address and other attributes of machines

Applications Applications List of applications

EJB
Deployments

Deployments→EJB URL, application name, and other attributes for
each EJB

Table 4-1 Summary of Monitoring Pages in the Administration Console

Page Path to Page Monitoring Data

4 Monitoring a WebLogic Domain

4-8 Administration Guide

Web
Applications

Deployments→Web Applications Data such as URL and default servlet for each
Web application

Active Web
Applications

Deployments→Web
Applications→appname→Monitoring→
Monitor all instances of appname

Data about deployed copies of this Web
application

Web Application
Servlets

Deployments→Web
Applications→appname→Monitoring→
Monitor all servlets for this Web
Application

Statistics for the selected Web application, such
as maximum pool capacity and execution time

Startup and
Shutdown
Classes

Deployments→Startup & Shutdown List of registered startup and shutdown classes

JDBC
Connection
Pools

Services→JDBC→Connection Pools Initial capacity, capacity increment and other
attributes of JCBC Connection Pools

JDBC
Multipools

Services→JDBC→Multipools Load balancing and other attributes of JDBC
Multipools

JDBC Data
Sources

Services→JDBC→Data Sources Pool name, JNDI name and other attributes of
JDBC data sources

JDBC Tx Data
Sources

Services→JDBC→Tx Data Sources Pool name, JNDI name and other attributes of
JDBC Tx data sources

JMS Connection
Factories

Services→JMS →Connection Factories JNDI name, client ID, default priority and other
attributes of JMS connection factories

JMS Templates Services→JMS→Templates Data about JMS templates

JMS Destination
Keys

Services→JMS→Destination Keys Key type and other attributes of JMS destination
keys

JMS Stores Services→JMS→Stores Descriptions of JMS stores

JMS Servers Services→JMS→Servers Data about JMS servers

Table 4-1 Summary of Monitoring Pages in the Administration Console

Page Path to Page Monitoring Data

Summary of Monitoring Pages in the Administration Console

Administration Guide 4-9

Active JMS
Services

Services→JMS→Servers→Monitor all
Active JMS Services

High water mark of connections and other data
about active JMS services

Active JMS
Servers

Services→JMS→Servers→Monitor all
instances

Statistics about sessions, messages pending, and
other data

Active JMS
Destinations

Services→JMS→Servers→Monitor all
Active JMS Destinations

Consumers, messages received and other
attributes of active JMS destinations

Active JMS
Session Pools

Services→JMS→Servers→Monitoring

→Monitor all Active JMS Session Pools

High water mark of consumers and other
monitoring data

JMS
Destinations

Services→JMS→jmsservername→
Destinations

JNDI name and other data

JMS Session
Pools

Services→JMS→jmsservername→
Session Pools

Acknowledge mode, maximum sessions, and
other attributes of JMS session pools

XML Registries Services→XML→XML Registries Lists of DocumentBuilderFactories and
SAXParserFactories

WLEC
Connection
Pools

Services→WLEC→WLEC Connection
Pools

WebLogic Enterprise (WLE) domain name,
failover addresses, maximum and minimum
pool size, and other information

Jolt Connection
Pools

Services→Jolt Failover addresses, maximum and minimum
pool size and other attributes of Jolt connection
pools

Active Jolt
Connection
Pools

Services→Jolt→
joltconnectionpoolname→
Monitoring→Monitor all active pools

Maximum capacity, current connections, and
other data about instances of a Jolt connection
pool

Virtual Hosts Services→Virtual Hosts Format, logfile name and other attributes of
virtual hosts

Mail Sessions Services→Mail Name and properties of mail sessions

File T3 Services→File T3 Name and path of files

Users Security→Users List of users

Table 4-1 Summary of Monitoring Pages in the Administration Console

Page Path to Page Monitoring Data

4 Monitoring a WebLogic Domain

4-10 Administration Guide

Groups Security→Groups List of groups

Access Control
Lists

Security→ACLs List of ACLs

Caching Realms Security→Caching Realms Lists caching realms

Realms Security→Realms Describes realms

Domain Log
Filters

Domain Log Filters Servers on which the filter is registered and
attributes used for filtering log messages

Table 4-1 Summary of Monitoring Pages in the Administration Console

Page Path to Page Monitoring Data

Administration Guide 5-1

CHAPTER

5 Using Log Messages to
Manage WebLogic
Servers

This section includes the following topics:

� Overview of Logging Subsystem

� Local Server Log Files

� Message Attributes

� Message Catalog

� Message Severity

� Browsing Log Files

� Creating Domain Log Filters

Overview of Logging Subsystem

Log messages are a useful tool for managing systems. They allow you to detect
problems, track down the source of a fault, and track system performance. Log
messages generated by the WebLogic Server software are stored in two locations:

5 Using Log Messages to Manage WebLogic Servers

5-2 Administration Guide

� WebLogic Server component subsystems generate messages that are logged to a
local file, that is, a file that resides on the machine where the server is running.
If there are multiple servers on a machine, each server has its own log file.
Applications deployed on your WebLogic Servers may also log messages to the
server’s local log file.

� In addition, a subset of messages logged locally are stored in a central
domain-wide log file maintained by the Administration Server.

Java Management Extension (JMX) facilities, embedded in the WebLogic Server, are
used to transmit log messages from WebLogic Servers to the Administration Server.
A message forwarded to other entities on the initiative of a local WebLogic Server is
called a notification in JMX terminology.

When a WebLogic server starts, the Administration Server’s message handler registers
with that server to receive log messages. At the time of registration, a user-modifiable
filter is provided that is used by the local server to select the messages to be forwarded
to the Administration Server. These messages are collected in the domain log.

By default, only the most important log messages (as determined by Message Severity)
are forwarded from the local servers to the domain log. The domain log gives you an
overall view of the entire domain while focusing on just the most critical messages.

If you want to modify the filter, to receive a different subset of logged messages from
a local server, you can do so dynamically, using the Administration Console. You do
not need to restart the local server for your changes to take effect. (See Creating
Domain Log Filters.)

Developers can also build custom message handlers that can register with a WebLogic
Server to receive log messages via JMX notifications.

Overview of Logging Subsystem

Administration Guide 5-3

Figure 5-1 WebLogic Server Logging Subsystem

5 Using Log Messages to Manage WebLogic Servers

5-4 Administration Guide

Local Server Log Files

In previous versions of WebLogic Server, a new log file is created once the log file
reaches a maximum log file size. This type of automatic log file creation is called log
rotation. In the current release, you have the option of basing log file rotation either on
size or on time. To configure rotation, open the Administration Console and do the
following:

1. In the left pane, select a server.

2. In the right pane, select Configuration→Logging.

3. In the Rotation Type field, select either time or size.

If the value in this field is none, no log rotation occurs. If you base log file
rotation on time, a new log file is created once the specified time interval (File
Time Span) has elapsed.

By default, the local server log file is called servername.log (where servername is
the name of the server) and is created in the directory where you started the WebLogic
Server. You can set the file name also on the Configuration→Logging page for the
server.

You can specify the maximum number of rotated files that can accummulate by setting
an appropriate value for the File Count field. Once the number of log files reaches
this number, the oldest log file is deleted each time a log file rotation occurs. The
rotated log files are numbered in order of creation filenamennnnn, where filename
is the name configured for the log file. For example: weblogic.log00007.

The local server log always has all the messages that have been logged.

Configuring logging by the local server also includes the ability to specify which
messages are logged to stdout. You can exclude messages of lower severity by
specifying the lowest severity to be logged. You can also enable or disable logging of
debug messages to stdout.

Local Server Log Files

Administration Guide 5-5

Startup Log

When a WebLogic Server is starting, if any errors occur before initialization is
complete, these errors are logged to stdout and to a local server startup log file called
weblogic-startup.log. If startup is successful, the last message in this log points
to the location of the local server log file where normal logging occurs.

Client Logging

Java clients that use the WebLogic logging facility may also generate log messages.
However, messages logged by clients are not forwarded to the domain log. You
configure logging properties of a client by entering the appropriate argument on the
command line:

-Dweblogic.log.attribute=value

where attribute is any LogMBean attribute. By default, logging to a log file is turned
off for clients and messages are logged to stdout. You can turn on logging to a file
and set the file name by using the following argument on the command line:

-Dweblogic.log.FileName=logfilename

where logfilename is the name of the log file.

The following command-line arguments can also be used for client logging:

-Dweblogic.StdoutEnabled=boolean

-Dweblogic.StdoutDebugEnabled=boolean

-Dweblogic.StdoutSeverityLevel = [64 | 32 | 16 | 8 | 4 | 2 | 1]

where boolean is either true or false.

Log File Format

The first line of each message in a log file begins with #### followed by the message
header. The message header provides the run-time context of the message. Each
attribute of the message is contained between angle brackets.

5 Using Log Messages to Manage WebLogic Servers

5-6 Administration Guide

Lines following the message body are only present for messages logging an exception
and display the stack trace for the exception. If a message is not logged within the
context of a transaction, the angle brackets (separators) for Transaction ID are present
even though no Transaction ID is present.

The following is an example of a log message:

####<Jun 2, 2000 10:23:02 AM PDT> <Info> <SSL> <bigbox> <myServer>
<SSLListenThread> <harry> <> <004500> <Using exportable strength SSL>

In this example, the message attributes are: Timestamp, Severity, Subsystem, Machine
Name, Server Name, Thread ID, User ID, Transaction ID, Message ID, and Message
Text.

Note: Log messages logged by clients do not have the attributes Server Name or
Thread ID.

Note: The character encoding used in writing the log files is the default character
encoding of the host system.

Message Attributes

Each log message saved in a server log file the attributes listed in the following table
may be defined. The Message Id may also associate the message with additional
attributes (such as Probable Cause and Recommended Action) contained in the
Message Catalog.

Attribute Description

Timestamp The time and date when the message originated, in a format that
is specific to the locale.

Severity Indicates the degree of impact or seriousness of the event reported
by the message. See Message Severity.

Subsystem This attribute denotes the particular subsystem of WebLogic
Server that was the source of the message. For example, EJB,
RMI, JMS.

Message Catalog

Administration Guide 5-7

Message Catalog

In addition to the information contained in a log message, messages generated by
WebLogic Server system components (or possibly by user-written code) include
additional pre-defined or canned information that is stored in a message catalog. The
additional attributes stored in the message catalog are described below.

Server Name
Machine Name
Thread ID
Transaction ID

These four attributes identify the origins of the message.
Transaction ID is present only for messages logged within the
context of a transaction. Note: Server Name and Thread ID are
not present in log messages generated by a Java client and logged
to a client log.

User ID The user from the security context when the message was
generated.

Message ID A unique six-digit identifier. Message IDs through 499999 are
reserved for WebLogic Server system messages.

Message Text For WebLogic Server messages, this contains the Short
Description as defined in the system message catalog. (See
Message Catalog.) For other messages, this is text defined by the
developer of the program.

Attribute Description

Attribute Description

Message Body This is a short textual description of the condition being
reported. This is the same as Message Text in the message.

Message Detail A more detailed description of the condition that the
message is reporting.

Probable Cause An explanation as to why the message was logged. The
probable cause of the condition the message is reporting.

Recommended
Action

A recommendation for action by the administrator to
resolve or avoid the condition reported in the message.

5 Using Log Messages to Manage WebLogic Servers

5-8 Administration Guide

You can access these additional message attributes from log views in the
Administration Console.

Message Severity

WebLogic Server log messages have an attribute called severity which reflects the
importance or potential impact on users of the event or condition reported in the
message.

Defined severities are described below. Severities are listed in order of severity with
Emergency being the highest severity.

Severity
Forwarded to Domain
Log by Default? Meaning

Informational No Used for reporting normal operations.

Warning No A suspicious operation or configuration has
occurred but it may not have an impact on
normal operation.

Error Yes A user error has occurred. The system or
application is able to handle the error with no
interruption, and limited degradation, of
service.

Notice Yes A warning message: A suspicious operation
or configuration has occurred which may not
affect the normal operation of the server.

Critical Yes A system or service error has occurred. The
system is able to recover but there might be a
momentary loss, or permanent degradation,
of service.

Browsing Log Files

Administration Guide 5-9

Debug Messages

Messages with a severity of debug are a special case. Debug messages are not
forwarded to the domain log. Debug messages may contain detailed information about
an application or the server. These messages should only occur when the application
is running in debug mode.

Browsing Log Files

The log browsing capabilities of the Administration Console allow you to do the
following:

� View the local log file of any server.

� View the domain-wide log file.

When viewing either the domain log or the local server log, you can:

� Select log messages to be viewed based on the time of occurrence, user ID,
subsystem, message severity, or the message short description.

� View messages as they are logged, or search for past log messages.

Alert Yes A particular service is in an unusable state
while other parts of the system continue to
function. Automatic recovery is not possible;
the immediate attention of the administrator
is needed to resolve the problem.

Emergency Yes The server is in an unusable state. This
severity indicates a severe system failure or
panic.

Severity
Forwarded to Domain
Log by Default? Meaning

5 Using Log Messages to Manage WebLogic Servers

5-10 Administration Guide

� Select the log message attributes to be displayed in the Administration Console
and the order in which the attributes are displayed.

Viewing the Logs

You can access both the domain log and the local server log files from the
Administration Console. How to do these tasks is discussed in the Console online help:

� Viewing the Domain Log

� Viewing the Local Server Log

Creating Domain Log Filters

The log messages forwarded by WebLogic Servers to the domain log are, by default,
a subset of messages logged locally. You can configure a log filter that selects log
messages for forwarding based on message severity, subsystem, or user ID. (Debug
messages are a special case and are not forwarded to the domain log.) You can create
or modify domain log filters from the domain log filters table. The domain log filters
table is accessible from the domain monitoring tab page. See the Administration
Console online help for more information on creating domain log filers.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/domain.html#domain_log_view
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html#view_server_log
http://e-docs.bea.com/wls/docs60/ConsoleHelp/domainlogfilter.html

Administration Guide 6-1

CHAPTER

6 Deploying
Applications

This section discusses installation and deployment of applications and application
components on WebLogic Server. The topics include:

� Dynamic Deployment

� Using the Administration Console to Deploy Applications

Dynamic Deployment

If auto-deployment is enabled for the target WebLogic Server domain, when an
application is copied into the /config/domain_name/applications directory of
the WebLogic Administration Server, if the Administration Server is running it detects
the presence of the new application and deploys it automatically on the Administration
Server. (The subdirectory domain_name is the name of the WebLogic Server domain
in which you are deploying this application.) This technique for deploying an
application is called dynamic deployment and is recommended only for use while you
are developing applications. Dynamic deployment is not recommended for use in a
production environment. If WebLogic Server is not running when you copy the
application to the /applications directory, the application is deployed the next time
the WebLogic Server is started.

By default, auto-deployment is enabled. If you have auto-deployment disabled, you
can still deploy an application or application component manually via the
Administration Console. This technique is called static deployment.

6 Deploying Applications

6-2 Administration Guide

Enabling or Disabling Auto-Deployment

To determine whether you have auto-deployment enabled, invoke the Administration
Console and go to the domain applications settings page
(Configuration→Applications) for the domain. This page allows you to enable or
disable auto-deployment and to set the interval (in milliseconds) at which the
WebLogic Server checks for new applications in the \applications subdirectory.
Figure 6-1 shows this page for the examples demonstration server.

By default, the Administration Server checks every three seconds for changes in the
\applications directory when auto-deployment is enabled.

Note: Auto-deployment is a method for quickly deploying an application on the
Administration Server. It is recommended that this method be used only in a
development environment for testing an application. Use of auto-deployment
in a production environment or for deployment of components on Managed
Servers is not recommended.

Figure 6-1 Domain Applications Settings Page

Dynamic Deployment

Administration Guide 6-3

Dynamic Deployment of Applications in Expanded
Directory Format

An application or application component can be dynamically deployed either in
expanded directory format or as packaged in an Enterprise Application Archive (EAR)
file, a Web Application Archive (WAR) file, or a Java Archive (JAR) file.

To dynamically deploy an application in exploded format, do the following:

1. Make sure the directory name created for the exploded application is the same as
the Context Path of the application.

2. Copy this subdirectory under /config/domain_name/applications, where
domain_name is the name of the target domain where the application is to be
deployed. This will automatically deploy the application if auto-deploy is
enabled.

Dynamic Undeployment or Redeployment of
Applications

An application or application component can be dynamically redeployed while the
server is running. This may be useful if you want to update a deployed application or
application component without stopping and restarting the WebLogic Administration
Server. To dynamically redeploy a JAR, WAR or EAR file, simply copy the new
version of the file over the existing file in the /applications directory.

This feature is useful for developers who can simply add the copy to the
/applications directory as the last step in their makefile, and the server will then be
updated.

Dynamic Redeployment of Exploded Applications

You can also dynamically redeploy applications or application components that have
been deployed in exploded format. When an application has been deployed in
exploded format, the Administration Server periodically looks for a file named
REDEPLOY in the WEB-INF directory. If the timestamp on this file changes, the
Administration Server redeploys the exploded directory.

6 Deploying Applications

6-4 Administration Guide

If you want to update files in an exploded application directory, do the following:

1. When you first deploy the exploded application, create an empty file named
REDEPLOY in the WEB-INF directory.

2. To update the exploded application, copy the updated files over the existing files
in that directory.

3. After copying the new files, touch the REDEPLOY file in the exploded directory to
alter its timestamp.

When the Administration Server detects the changed timestamp, it redeploys the
contents of the exploded directory.

Using the Administration Console to Deploy
Applications

You can use the Administration Console to install and deploy an application or
application components (such as EJB and JSP JAR files) and deploy instances of
application components on target WebLogic Servers. There are several steps to carry
out this task:

1. Install the application (or application component) in the
/config/domain_name/applications directory on the Administration Server
(where domain_name is the name of the domain).

Use the Install an Application page in the Administration Console to copy a
J2EE application (EAR file), Web application (WAR file), or EJB or JSP (JAR
file) to the /config/domain_name/applications directory on the
Administration Server. There is a link to the Install an Application page from the
applications table (see Figure 6-2), Web applications table and EJB deployments
table. Access these tables by selecting the appropriate container in the tree in the
left pane.

Installing an application (or application component) via the Administration
Console also creates entries for that application and application components in
the configuration file for the domain (/config/domain_name/config.xml).
The Administration Server also generates JMX Management Beans (MBeans)

http://e-docs.bea.com/wls/docs60/ConsoleHelp/application.html

Using the Administration Console to Deploy Applications

Administration Guide 6-5

that enable configuration and monitoring of the application and application
components.

Figure 6-2 Applications Table for Petstore Demonstration Server

2. Deploy the application or application components.

There are two ways to do deployment depending upon whether you have
auto-deployment enabled:

� If auto-deployment is enabled, the application is automatically deployed on
the Administration Server once it is copied to the
/config/domain_name/applications directory on the Administration
Server.

� If auto-deployment is disabled, an installed application is deployed only if
you specify that it is to be deployed on the Configuration tab page for that
application.

3. Deploy instances of application components (Web application components or
EJBs) on Managed Servers.

Once your application is installed on the Administration Server (in the
/config/domain_name/applications directory), you can deploy components
of the application to WebLogic Managed Servers.

Select application components to be deployed on a server by accessing the
Deployments→EJB (see Figure 6-3) or Deployments→Web Applications tab
pages for that server.

6 Deploying Applications

6-6 Administration Guide

Alternatively, you can select target servers for deployment of an application
component via the Targets tab page for that component.

Figure 6-3 Deployment→EJB Tab Page for a Server

If you deploy application components (such as EJBs or WAR files) to Managed
Servers in a cluster, you must ensure that the same application components are
deployed on all servers in the cluster. To do this, you would select the cluster as the
target for the deployment.

When an application or application component (such as an EAR or WAR file, or EJB
JAR files) is deployed to a particular WebLogic Server, the files are copied to a
directory .wl_temp_do_not_delete_servername under
/config/domain_name/applications on the target WebLogic Server. The
WebLogic Administration Service invokes a file distribution servlet to copy the files
to the target server.

WebLogic Server Administration Guide 7-1

CHAPTER

7 Configuring WebLogic
Server Web
Components

This section discusses how to configure Web components. The following topics are
covered:

� “Overview” on page 7-2

� “HTTP Parameters” on page 7-2

� “Configuring the Listen Port” on page 7-3

� “Web Applications” on page 7-4

� “Configuring Virtual Hosting” on page 7-6

� “Setting Up HTTP Access Logs” on page 7-9

� “Preventing POST Denial-of-Service Attacks” on page 7-18

� “Setting Up WebLogic Server for HTTP Tunneling” on page 7-19

� “Using Native I/O for Serving Static Files (Windows Only)” on page 7-21

7 Configuring WebLogic Server Web Components

7-2 WebLogic Server Administration Guide

Overview

In addition to its ability to host dynamic Java-based distributed applications,
WebLogic Server is also a fully functional Web server that can handle high volume
Web sites, serving static files such as HTML files and image files as well as servlets
and JavaServer Pages (JSP). WebLogic Server supports the HTTP 1.1 standard.

HTTP Parameters

You can configure the following HTTP operating parameters using the Administration
Console for each instance of WebLogic Server (or for each virtual host):

Default Web Application
The default Web Application attempts to respond to requests that were not
resolvable by any other deployed Web Application. Resources in the default
Web Application are accessed with a URI that does not include the context
path (the context path of a Web Application is usually the name of the Web
Application).

Post Timeout Seconds
The time (in seconds) that WebLogic Server waits between receiving chunks
of data sent using the HTTP POST method. Used to prevent denial-of-service
attacks that attempt to overload the server using the POST method.

Max Post Time
Limits the total amount of time that WebLogic Server spends receiving POST

data.

Max Post Size
Limits the number of bytes of data received in a POST from a single request.
If this limit is triggered, a MaxPostSizeExceeded exception is thrown.

Enable Keep Alive
Enables or disables persistent HTTP connections. If the browser is using
HTTP 1.1, keep alive is always used.

Configuring the Listen Port

WebLogic Server Administration Guide 7-3

Connection timeout
The number of seconds that WebLogic Server waits before closing an
inactive HTTP connection.

HTTPS Duration
The number of seconds that WebLogic Server waits before closing an
inactive HTTPS (Secure Socket Layer or SSL) connection.

HTTP Access Logging
You can enable or disable the generation of HTTP access logs. You can also
set parameters for when and how the access log is rotated. For more
information, see “Setting Up HTTP Access Logs” on page 7-9.

For detailed information on setting these attributes, see Virtual Host at
http://e-docs.bea.com/wls/docs60/ConsoleHelp/virtualhost.html.

Configuring the Listen Port

You can specify the port that each WebLogic Server listens on for HTTP requests.
Although you can specify any valid port number, if you specify port 80, you can omit
the port number from the HTTP request used to access resources in your Web
Application. For example, if you define port 80 as the listen port, you can use the form
http://hostname/myfile.html instead of
http://hostname:portnumber/myfile.html.

You define a separate listen port for regular and secure (using SSL) requests. You
define the regular listen port on the Servers node in the Administration Console, under
the Configuration/General tab, and you define the SSL listen port under the
Configuration/SSL tab.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/virtualhost.html

7 Configuring WebLogic Server Web Components

7-4 WebLogic Server Administration Guide

Web Applications

HTTP and Web services are deployed according to the Servlet 2.2 specification from
Sun Microsystems, which describes the use of Web Applications as a standardized way
of grouping together the components of a Web-based application. These components
include JSP pages, HTTP servlets, and static resources such as HTML pages or image
files. In addition, a Web Application can access external resources such as EJBs and
JSP tag libraries. Each server can host any number of Web Applications. You normally
use the name of the Web Application as part of the URI you use to request resources
form the Web Application.

For more information, see “Deploying and Configuring Web Applications” on
page 8-1.

Web Applications and Clustering

Web Applications can be deployed in a cluster of WebLogic Servers. When a user
requests a resource from a Web Application, the request is routed to one of the servers
of the cluster that host the Web Application. If an application uses a session object,
then sessions must be replicated across the nodes of the cluster. Several methods of
replicating sessions are provided.

For more information, see Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs60/cluster/index.html.

Designating a Default Web Application

Every server and virtual host in your domain has a special type of Web Application,
called a default Web Application. The default Web Application responds to any HTTP
request that cannot be resolved to another deployed Web Application. In contrast to all
other Web Applications, the default Web Application does not use the Web
Application name as part of the URI. Any Web Application targeted to a server or
virtual host can be declared as the default Web Application. (Targeting a Web
Application is discussed later in this section. For more information about virtual hosts,
see “Configuring Virtual Hosting” on page 7-6)

http://e-docs.bea.com/wls/docs60/cluster/index.html

Web Applications

WebLogic Server Administration Guide 7-5

If you do not declare a default Web Application, WebLogic Server creates a default
Web Application for each server or virtual host when you start WebLogic Server. The
default Web Application is named DefaultWebApp_servername, where
servername is the name of the server you started, or in the case of a virtual host,
DefaultWebApp_virtualHostName.

If you declare a default Web Application that fails to deploy correctly, an error is
logged and the user will receive an HTTP 400 error message.

For example, if your Web Application is called shopping, you would use the
following URI to access a JSP called cart.jsp from the Web Application:

http://host:port/shopping/cart.jsp

If, however, you declared shopping as the default Web Application, you would access
cart.jsp with the following URI:

http://host:port/cart.jsp

(Where host is the host name of the machine running WebLogic Server and port is
the port number where the WebLogic Server is listening for requests.)

To designate a default Web Application for a server or virtual host, use the
Administration Console:

1. In the left-hand pane, click the Web Application node

2. Select your Web Application

3. In the right-hand pane, click the Targets tab.

4. Select the Servers tab and move the server (or virtual host) to the chosen column.
(You can also target all the servers in a cluster by selecting the Clusters tab and
moving the cluster to the Chosen column.)

5. Click Apply

6. Click the Servers (or virtual host) node in the left-hand pane.

7. Select the appropriate server or virtual host.

8. In the right-hand pane, click the General tab

9. Select the HTTP tab.

10. Select a Web Application from the drop-down list labeled Default Web
Application.

7 Configuring WebLogic Server Web Components

7-6 WebLogic Server Administration Guide

11. Click Apply.

12. If you are declaring a default Web Application for one or more managed servers,
repeat these procedures for each managed server.

Configuring Virtual Hosting

Virtual hosting allows you to define host names that servers or clusters respond to.
When you use virtual hosting you use DNS to specify one or more host names that map
to the IP address of a WebLogic Server or cluster and you specify which Web
Applications are served by the virtual host. When used in a cluster, load balancing
allows the most efficient use of your hardware, even if one of the DNS host names
processes more requests than the others.

For example, you can specify that a Web Application called books responds to
requests for the virtual host name www.books.com., and that these requests are
targeted to WebLogic Servers A,B and C, while a Web Application called cars

responds to the virtual host name www.autos.com and these requests are targeted to
WebLogic Servers D and E. You can configure a variety of combinations of virtual
host, WebLogic Servers, clusters and Web Applications, depending on your
application and Web server requirements.

For each virtual host that you define you can also separately define HTTP parameters
and HTTP access logs. The HTTP parameters and access logs set for a virtual host
override those set for a server. You may specify any number of virtual hosts.

You activate virtual hosting by targeting the virtual host to a server or cluster of
servers. Virtual hosting targeted to a cluster will be applied to all servers in the cluster.

Virtual Hosting and the Default Web Application

You can also designate a default Web Application for each virtual host. The default
Web Application for a virtual host responds to all requests that cannot be resolved to
other Web Applications deployed on same server or cluster as the virtual host.

Configuring Virtual Hosting

WebLogic Server Administration Guide 7-7

Unlike other Web Applications, a default Web Application does not use the Web
Application name (also called the context path) as part of the URI used to access
resources in the default Web Application.

For example, if you defined virtual host name www.mystore.com and targeted it to a
server on which you deployed a Web Application called shopping. you would access
a JSP called cart.jsp from the shopping Web Application with the following URI:

http://www.mystore.com/shopping/cart.jsp

If, however, you declared shopping as the default Web Application for the virtual host
www.mystore.com, you would access cart.jsp with the following URI:

http://www.mystore.com/cart.jsp

For more information, see “How WebLogic Server Resolves HTTP Requests” on
page 8-17.

Setting Up a Virtual Host

To define a virtual host, use the Administration Console:

1. Create a new Virtual Host.

a. Click on Services in the left pane. The node expands and displays a list of
services.

b. Click on the virtual hosts node. If any virtual hosts are defined, the node
expands and displays a list of virtual hosts.

c. Click on Create a New Virtual Host in the right-hand pane.

d. Enter a name to represent this virtual host.

e. Enter the virtual host names, one per line. Only requests matching one of these
virtual host names will be handled by the WebLogic Server or cluster targeted
by this virtual host.

f. (optional) Assign a default Web Application to this virtual host.

g. Click Create.

2. Define logging and HTTP parameters:

7 Configuring WebLogic Server Web Components

7-8 WebLogic Server Administration Guide

a. (optional) Click on the Logging tab and fill in HTTP access log attributes (For
more information, see “Setting Up HTTP Access Logs” on page 7-9.)

b. Select the HTTP tab and fill in the HTTP Parameters.

3. Define the servers that will respond to this virtual host.

a. Select the Targets tab.

b. Select the Servers tab. You will see a list of available servers.

c. Select a server in the available column and use the right arrow button to move
the server to the chosen column.

4. Define the clusters that will respond to this virtual host (optional). You must have
previously defined a WebLogic Cluster. For more information, see Using
WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs60/cluster/index.html.

a. Select the Targets tab.

b. Select the Clusters tab. You will see a list of available servers.

c. Select a cluster in the available column and use the right arrow button to move
the cluster to the chosen column. The virtual host is targeted on all of the servers
of the cluster.

5. Target Web Applications to the virtual host.

a. Click the Web Applications node in the left-hand panel.

b. Select the Web Application you want to target.

c. Select the Targets tab in the right-hand panel.

d. Select the Virtual Hosts tab.

e. Select Virtual Host in the available column and use the right arrow button to
move the Virtual Host to the chosen column.

http://e-docs.bea.com/wls/docs60/cluster/index.html
http://e-docs.bea.com/wls/docs60/cluster/index.html

Setting Up HTTP Access Logs

WebLogic Server Administration Guide 7-9

Setting Up HTTP Access Logs

WebLogic Server can keep a log of all HTTP transactions in a text file, in either
common log format or extended log format. Common log format is the default, and
follows a standard convention. Extended log format allows you to customize the
information that is recorded. You can set the attributes that define the behavior of
HTTP access logs for each server or for each virtual host that you define.

Log Rotation

You can also choose to rotate the log file based on either the size of the file or after a
specified amount of time has passed. When either one of these two criteria are met, the
current access log file is closed and a new access log file is started. If you do not
configure log rotation, the HTTP access log file grows indefinitely. The name of the
access log file includes a numeric portion that is incremented upon each rotation.
Separate HTTP Access logs are kept for each Web Server you have defined.

Setting Up HTTP Access Logs by Using the Administration
Console

To set up HTTP access logs use the Administration Console at
http://e-docs.bea.com/wls/docs60/ConsoleHelp/virtualhost.html:

1. If you have set up virtual hosting:

a. Select the services node in the left-hand pane.

b. Select the virtual hosts node. The node expands and displays a list of virtual
hosts.

c. Select a virtual host.

If you have not set up virtual hosting:

a. Select the servers node in the left-hand pane. The node expands and displays a
list of servers.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/virtualhost.html

7 Configuring WebLogic Server Web Components

7-10 WebLogic Server Administration Guide

b. Select a server.

c. Select the Logging tab.

d. Select the HTTP tab.

2. Check the Enable Logging box.

3. Enter values for your Log File Name.

4. Select Common or Extended from the drop down list labeled Format.

5. Select Rotation type of By Size or By Date.

� By Size: Rotates the log when it exceeds the value entered into the Log
Buffer Size parameter.

� By Date: Rotates the log after the number of minutes specified with the
Rotation Period parameter.

6. If you have selected Size as the Rotation Type, set the log buffer size to the
maximum number of bytes you want your log file to hold.

7. Set the Flush Every parameter to the number of seconds after which the access
log writes out log entries.

8. If you have selected Date as the Rotation Type, set the Rotation time to the first
date when you want the log file to rotate. (Effective only if Rotation Type is set to
date.) Enter the date using the java.text.SimpleDateFormat,
MM-dd-yyyy-k:mm:ss. See the javadocs for the
java.text.SimpleDateFormat class for more details.

9. If you have selected Date as the Rotation Type, set the Rotation Period to the
number of minutes after which the log file will rotate.

Common Log Format

The default format for logged HTTP information is the common log format at
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-

format. This standard format follows the pattern:

host RFC931 auth_user [day/month/year:hour:minute:second
UTC_offset] "request" status bytes

http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

Setting Up HTTP Access Logs

WebLogic Server Administration Guide 7-11

where:

host

Either the DNS name or the IP number of the remote client

RFC931

Any information returned by IDENTD for the remote client; WebLogic
Server does not support user identification

auth_user

If remote client user sent a userid for authentication, the user name; otherwise
“-”

day/month/year:hour:minute:second UTC_offset

Day, calendar month, year and time of day (24-hour format) with the hours
difference between local time and GMT, enclosed in square brackets

"request"

First line of the HTTP request submitted by the remote client enclosed in
double quotes

status

HTTP status code returned by the server, if available; otherwise “-”

bytes

Number of bytes listed as the content-length in the HTTP header, not
including the HTTP header, if known; otherwise “-”

Setting Up HTTP Access Logs by Using Extended Log
Format

WebLogic Server also supports extended log file format, version 1.0, as defined by the
W3C. This is an emerging standard, and WebLogic Server follows the draft
specification from W3C at www.w3.org/TR/WD-logfile.html. The current
definitive reference may be found from the W3C Technical Reports and Publications
page at www.w3.org/pub/WWW/TR.

The extended log format allows you to specify the type and order of information
recorded about each HTTP communication. To enable the extended log format, set the
Format attribute on the HTTP tab in the Administration Console to Extended. (See
step 4. in “Setting Up HTTP Access Logs by Using the Administration Console” on
page 7-10).

http://www.w3.org/TR/WD-logfile.html
http://www.w3.org/TR/WD-logfile.html
http://www.w3.org/pub/WWW/TR
http://www.w3.org/pub/WWW/TR

7 Configuring WebLogic Server Web Components

7-12 WebLogic Server Administration Guide

You specify what information should be recorded in the log file with directives,
included in the actual log file itself. A directive begins on a new line and starts with a
sign. If the log file does not exist, a new log file is created with default directives.
However, if the log file already exists when the server starts, it must contain legal
directives at the head of the file.

Creating the Fields Directive

The first line of your log file must contain a directive stating the version number of the
log file format. You must also include a Fields directive near the beginning of the
file:

#Version: 1.0
#Fields: xxxx xxxx xxxx ...

Where each xxxx describes the data fields to be recorded. Field types are specified as
either simple identifiers, or may take a prefix-identifier format, as defined in the W3C
specification. Here is an example:

#Fields: date time cs-method cs-uri

This identifier instructs the server to record the date and time of the transaction, the
request method that the client used, and the URI of the request for each HTTP access.
Each field is separated by white space, and each record is written to a new line,
appended to the log file.

Note: The #Fields directive must be followed by a new line in the log file, so that the
first log message is not appended to the same line.

Supported Field identifiers

The following identifiers are supported, and do not require a prefix.

date

Date at which transaction completed, field has type <date>, as defined in the
W3C specification.

time

Time at which transaction completed, field has type <time>, as defined in the
W3C specification.

Setting Up HTTP Access Logs

WebLogic Server Administration Guide 7-13

time-taken

Time taken for transaction to complete in seconds, field has type <fixed>, as
defined in the W3C specification.

bytes

Number of bytes transferred, field has type <integer>

Note that the cached field defined in the W3C specification is not supported in
WebLogic Server.

The following identifiers require prefixes, and cannot be used alone. The supported
prefix combinations are explained individually.

IP address related fields:
These fields give the IP address and port of either the requesting client, or the
responding server. This field has type <address>, as defined in the W3C
specification. The supported prefixes are:

c-ip

The IP address of the client.

s-ip

The IP address of the server.

DNS related fields
These fields give the domain names of the client or the server. This field has
type <name>, as defined in the W3C specification. The supported prefixes
are:

c-dns

The domain name of the requesting client

s-dns

The domain name of the requested server

sc-status

Status code of the response, for example (404) indicating a “File not found”
status. This field has type <integer>, as defined in the W3C specification.

sc-comment

The comment returned with status code, for instance “File not found”. This
field has type <text>.

7 Configuring WebLogic Server Web Components

7-14 WebLogic Server Administration Guide

cs-method

The request method, for example GET or POST. This field has type <name>,
as defined in the W3C specification.

cs-uri

The full requested URI. This field has type <uri>, as defined in the W3C
specification.

cs-uri-stem

Only the stem portion of URI (omitting query). This field has type <uri>, as
defined in the W3C specification.

cs-uri-query

Only the query portion of the URI. This field has type <uri>, as defined in the
W3C specification.

Creating Custom Field Identifiers

You can also create user-defined fields for inclusion in an HTTP access log file that
uses the extended log format. To create a custom field you identify the field in the ELF
log file using the Fields directive and then you create a matching Java class that
generates the desired output. You can create a separate Java class for each field, or the
Java class can output multiple fields. A sample of the Java source for such a class is
included in this document. See “Java Class for Creating a Custom ELF Field” on
page 7-18.

To create a custom field:

1. Include the field name in the Fields directive, using the form:

X-myCustomField.

Where myCustomField is a fully-qualified class name.

For more information on the Fields directive, see “Creating the Fields
Directive” on page 7-12.

2. Create a Java class with the same fully-qualified class name as the custom field
you defined with the Fields directive (for example myCustomField). This class
defines the information you want logged in your custom field. The Java class
must implement the following interface:

weblogic.servlet.logging.CustomELFLogger

Setting Up HTTP Access Logs

WebLogic Server Administration Guide 7-15

In your Java class, you must implement the logField() method, which takes a
HttpAccountingInfo object and FormatStringBuffer object as its
arguments:

� Use the HttpAccountingInfo object to access HTTP request and response
data that you can output in your custom field. Getter methods are provided to
access this information. For a complete listing of these get methods, see “Get
methods of the HttpAccountingInfo Object” on page 7-15.

� Use the FormatStringBuffer class to create the contents of your custom
field. Methods are provided to create suitable output. For more information
on these methods, see the Javadocs for FormatStringBuffer (see
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/servlet/l

ogging/FormatStringBuffer.html)

3. Compile the Java class and add the class to the CLASSPATH statement used to start
WebLogic Server. You will probably need to modify the CLASSPATH statements
in the scripts that you use to start WebLogic Server.

Note: Do not place this class inside of a Web Application or Enterprise
Application in exploded or jar format.

4. Configure WebLogic Server to use the extended log format. For more
information, see “Setting Up HTTP Access Logs by Using Extended Log
Format” on page 7-11.

Note: When writing the Java class that defines your custom field, you should not
execute any code that is likely to slow down the system (For instance,
accessing a DBMS or executing significant I/O or networking calls.)
Remember, an HTTP access log file entry is created for every HTTP request.

Note: If you want to output more than one field, delimit the fields with a tab
character. For more information on delimiting fields and other ELF formatting
issues, see Extended Log Format at
http://www.w3.org/TR/WD-logfile-960221.html.

Get methods of the HttpAccountingInfo Object

The following methods return various data regarding the HTTP request. These
methods are similar to various methods of javax.servlet.ServletRequest,
javax.servlet.http.Http.ServletRequest, and
javax.servlet.http.HttpServletResponse.

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/servlet/logging/FormatStringBuffer.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/servlet/logging/FormatStringBuffer.html
http://www.w3.org/TR/WD-logfile-960221.html

7 Configuring WebLogic Server Web Components

7-16 WebLogic Server Administration Guide

For details on these methods see the corresponding methods in the Java interfaces
listed in the following table, or refer to the specific information contained in the table.

Table 7-1 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Where to find information on the methods

Object getAttribute(String name); javax.servlet.ServletRequest

Enumeration getAttributeNames(); javax.servlet.ServletRequest

String getCharacterEncoding(); javax.servlet.ServletRequest

int getResponseContentLength(); javax.servlet.ServletResponse.
setContentLength()

(this method gets the content length of the response, as set
with the setContentLength() method)

String getContentType(); javax.servlet.ServletRequest

Locale getLocale(); javax.servlet.ServletRequest

Enumeration getLocales(); javax.servlet.ServletRequest

String getParameter(String name); javax.servlet.ServletRequest

Enumeration getParameterNames(); javax.servlet.ServletRequest

String[] getParameterValues(String
name);

javax.servlet.ServletRequest

String getProtocol(); javax.servlet.ServletRequest

String getRemoteAddr(); javax.servlet.ServletRequest

String getRemoteHost(); javax.servlet.ServletRequest

String getScheme(); javax.servlet.ServletRequest

String getServerName(); javax.servlet.ServletRequest

int getServerPort(); javax.servlet.ServletRequest

boolean isSecure(); javax.servlet.ServletRequest

String getAuthType(); javax.servlet.http.Http.ServletRequest

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html

Setting Up HTTP Access Logs

WebLogic Server Administration Guide 7-17

String getContextPath(); javax.servlet.http.Http.ServletRequest

Cookie[] getCookies(); javax.servlet.http.Http.ServletRequest

long getDateHeader(String name); javax.servlet.http.Http.ServletRequest

String getHeader(String name); javax.servlet.http.Http.ServletRequest

Enumeration getHeaderNames(); javax.servlet.http.Http.ServletRequest

Enumeration getHeaders(String name); javax.servlet.http.Http.ServletRequest

int getIntHeader(String name); javax.servlet.http.Http.ServletRequest

String getMethod(); javax.servlet.http.Http.ServletRequest

String getPathInfo(); javax.servlet.http.Http.ServletRequest

String getPathTranslated(); javax.servlet.http.Http.ServletRequest

String getQueryString(); javax.servlet.http.Http.ServletRequest

String getRemoteUser(); javax.servlet.http.Http.ServletRequest

String getRequestURI(); javax.servlet.http.Http.ServletRequest

String getRequestedSessionId(); javax.servlet.http.Http.ServletRequest

String getServletPath(); javax.servlet.http.Http.ServletRequest

Principal getUserPrincipal(); javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromCookie();

javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromURL();

javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromUrl();

javax.servlet.http.Http.ServletRequest

boolean isRequestedSessionIdValid(); javax.servlet.http.Http.ServletRequest

String getFirstLine(); Returns the first line of the HTTP request, for example:

GET /index.html HTTP/1.0

Table 7-1 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Where to find information on the methods

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html

7 Configuring WebLogic Server Web Components

7-18 WebLogic Server Administration Guide

Listing 7-1 Java Class for Creating a Custom ELF Field

import weblogic.servlet.logging.CustomELFLogger;
import weblogic.servlet.logging.FormatStringBuffer;
import weblogic.servlet.logging.HttpAccountingInfo;

/* This example outputs the User-Agent field into a
custom field called MyCustomField
*/

public class MyCustomField implements CustomELFLogger{

public void logField(HttpAccountingInfo metrics,
FormatStringBuffer buff) {
buff.appendValueOrDash(metrics.getHeader("User-Agent"));
}

}
}

Preventing POST Denial-of-Service Attacks

A Denial-of-Service attack is a malicious attempt to overload a server with phony
requests. One common type of attack is to send huge amounts of data in an HTTP POST

method. You can set three attributes in WebLogic Server that help prevent this type of
attack. These attributes are set in the console, under Servers or virtual hosts. If you
define these attributes for a virtual host, the values set for the virtual host override
those set under Servers.

long getInvokeTime(); Returns the length of time it took for the service method
of a servlet to write data back to the client.

int getResponseStatusCode(); javax.servlet.http.HttpServletResponse

String
getResponseHeader(String name);

javax.servlet.http.HttpServletResponse

Table 7-1 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Where to find information on the methods

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html

Setting Up WebLogic Server for HTTP Tunneling

WebLogic Server Administration Guide 7-19

PostTimeoutSecs

You can limit the amount of time that WebLogic Server waits between
receiving chunks of data in an HTTP POST.

MaxPostTimeSecs

Limits the total amount of time that WebLogic Server spends receiving post
data. If this limit is triggered, a PostTimeoutException is thrown and the
following message is sent to the server log:

Post time exceeded MaxPostTimeSecs.

MaxPostSize

Limits the number of bytes of data received in a POST from a single request.
If this limit is triggered, a MaxPostSizeExceeded exception is thrown and
the following message is sent to the server log:

POST size exceeded the parameter MaxPostSize.

An HTTP error code 413 (Request Entity Too Large) is sent back to the client.

If the client is in listening mode, it gets these messages. If the client is not in
listening mode, the connection is broken.

Setting Up WebLogic Server for HTTP
Tunneling

HTTP tunneling provides a way to simulate a statefull socket connection between
WebLogic Server and a Java client when your only option is to use the HTTP protocol.
It is generally used to tunnel through an HTTP port in a security firewall. HTTP is a
stateless protocol, but WebLogic Server provides tunneling functionality to make the
connection appear to be a regular T3Connection. However, you can expect some
performance loss in comparison to a normal socket connection.

7 Configuring WebLogic Server Web Components

7-20 WebLogic Server Administration Guide

Configuring the HTTP Tunneling Connection

Under the HTTP protocol, a client may only make a request, and then accept a reply
from a server. The server may not voluntarily communicate with the client, and the
protocol is stateless, meaning that a continuous two-way connection is not possible.

WebLogic HTTP tunneling simulates a T3Connection via the HTTP protocol,
overcoming these limitations. There are two attributes that you can configure in the
Administration Console to tune a tunneled connection for performance. You access
these attributes in the Servers section, under the Tuning Tab located under the
Configuration tab. It is advised that you leave them at their default settings unless you
experience connection problems. These properties are used by the server to determine
whether the client connection is still valid, or whether the client is still alive.

Enable Tunneling

Enables or disables HTTP tunneling. HTTP tunneling is disabled by default.

Tunneling Ping

When an HTTP tunnel connection is setup, the client automatically sends a
request to the server, so that the server may volunteer a response to the client.
The client may also include instructions in a request, but this behavior
happens regardless of whether the client application needs to communicate
with the server. If the server does not respond (as part of the application code)
to the client request within the number of seconds set in this attribute, it does
so anyway. The client accepts the response and automatically sends another
request immediately.

Default is 45 seconds; valid range is 20 to 900 seconds.

Tunneling Timeout

If the number of seconds set in this attribute have elapsed since the client last
sent a request to the server (in response to a reply), then the server regards the
client as dead, and terminates the HTTP tunnel connection. The server checks
the elapsed time at the interval specified by this attribute, when it would
otherwise respond to the client’s request.

Default is 40 seconds; valid range is 10 to 900 seconds.

Using Native I/O for Serving Static Files (Windows Only)

WebLogic Server Administration Guide 7-21

Connecting to WebLogic Server from the Client

When your client requests a connection with WebLogic Server, all you need to do in
order to use HTTP tunneling is specify the HTTP protocol in the URL. For example:

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "http://wlhost:80");
Context ctx = new InitialContext(env);

On the client side, a special tag is appended to the http protocol, so that WebLogic
Server knows this is a tunneling connection, instead of a regular HTTP request. Your
application code does not need to do any extra work to make this happen.

The client must specify the port in the URL, even if the port is 80. You can set up your
WebLogic Server to listen for HTTP requests on any port, although the most common
choice is port 80 since requests to port 80 are customarily allowed through a firewall.

You specify the listen port for WebLogic Server in the Administration Console under
the “Servers” node, under the “Network” tab.

Using Native I/O for Serving Static Files
(Windows Only)

When running WebLogic Server on Windows NT/2000 you can specify that
WebLogic Server use the native operating system call TransmitFile instead of using
Java methods to serve static files such as HTML files, text files, and image files. Using
native I/O can provide performance improvements when serving larger static files.

To use native I/O, add two parameters to the web.xml deployment descriptor of a Web
Application containing the files to be served using native I/O. The first parameter,
weblogic.http.nativeIOEnabled should be set to TRUE to enable native I/O file
serving. The second parameter, weblogic.http.minimumNativeFileSize sets the
minimum file size for using native I/O. If the file being served is larger than this value,
native I/O is used. If you do not specify this parameter, a value of 400 bytes is used.

7 Configuring WebLogic Server Web Components

7-22 WebLogic Server Administration Guide

Generally, native I/O provides greater performance gains when serving larger files;
however, as the load on the machine running WebLogic Server increases, these gains
diminish. You may need to experiment to find the correct value for
weblogic.http.minimumNativeFileSize.

The following example shows the complete entries that should be added to the
web.xml deployment descriptor. These entries must be placed in the web.xml file after
the <distributable> element and before <servlet> element.

<context-param>
<param-name>weblogic.http.nativeIOEnabled</param-name>
<param-value>TRUE</param-value>

</context-param>

<context-param>
<param-name>weblogic.http.minimumNativeFileSize</param-name>
<param-value>500</param-value>

</context-param>

For more information on writing deployment descriptors see Writing Web Application
Deployment Descriptors at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html.

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html

WebLogic Server Administration Guide 8-1

�������

8 Deploying and
Configuring Web
Applications

The following sections describes how to configure and deploy Web Applications:

� “Overview” on page 8-2

� “Steps to Deploy a Web Application” on page 8-3

� “Directory Structure” on page 8-5

� “Deploying and Redeploying Web Applications” on page 8-6

� “URIs and Web Applications” on page 8-9

� “Configuring Servlets” on page 8-10

� “Configuring JSP” on page 8-13

� “Configuring JSP Tag Libraries” on page 8-14

� “Configuring Welcome Pages” on page 8-15

� “Setting Up a Default Servlet” on page 8-16

� “How WebLogic Server Resolves HTTP Requests” on page 8-17

� “Customizing HTTP Error Responses” on page 8-20

� “Using CGI with WebLogic Server” on page 8-20

8 Deploying and Configuring Web Applications

8-2 WebLogic Server Administration Guide

� “Serving Resources from the CLASSPATH with the ClasspathServlet” on
page 8-22

� “Proxying Requests to Another HTTP Server” on page 8-23

� “Proxying Requests to a WebLogic Cluster” on page 8-25

� “Configuring Security in Web Applications” on page 8-29

� “Configuring External Resources in a Web Application” on page 8-35

� “Referencing EJBs in a Web Application” on page 8-36

� “Setting Up Session Management” on page 8-37

� “Configuring Session Persistence” on page 8-39

� “Using URL Rewriting” on page 8-43

� “Using Character Sets and POST Data” on page 8-45

Overview

A Web Application contains an application’s resources such as servlets, JavaServer
Pages (JSP), JSP tag libraries, and static resources such as HTML pages and image
files. A Web Application can also define links to resources outside of the application
such as Enterprise JavaBeans (EJB). Web Applications use a standard J2EE
deployment descriptor in conjunction with a WebLogic-specific deployment
descriptor to define the resources and their operating parameters.

JSP pages and HTTP servlets can access all services and APIs available in WebLogic
Server. These services include EJBs, database connections via Java Database
Connectivity (JDBC), JavaMessaging Service (JMS), XML, and more.

Web Applications use a standard directory structure defined in the J2EE specification
and can be deployed as a collection of files that use this directory structure (this type
of deployment is called exploded directory format) or as an archived file called a .war
file. Deploying a Web Application in exploded directory format is recommended
primarily for use while developing your application. Deploying a Web Application as
a .war file is recommended primarily for production environments.

Steps to Deploy a Web Application

WebLogic Server Administration Guide 8-3

Steps to Deploy a Web Application

To deploy a Web Application:

1. Arrange the resources (servlets, JSPs, static files, and deployment descriptors) in
the prescribed directory format. For more information, see “Directory Structure”
on page 8-5.

2. Write the Web Application deployment descriptor (web.xml). In this step you
register servlets, define servlet initialization parameters, register JSP tag libraries,
define security constraints, and define other Web Application parameters.
(Information on the various components of Web Applications is included
throughout this document.)

For detailed instructions, see Writing the Web Application Deployment
Descriptor at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.h

tml#web-xml.

3. Create the WebLogic-Specific Deployment Descriptor (weblogic.xml). In this
step you define JSP properties, JNDI mappings, security role mappings, and
HTTP session parameters. If you do not need to define any of the attributes
defined in this file, you do not need to create the file.

For detailed instructions on creating the WebLogic-specific deployment
descriptor, see “Writing the WebLogic-Specific Deployment Descriptor” at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#weblog
ic-xml.

4. Archive the files in the above directory structure into a .war file. Only use
archiving when the Web Application is ready for deployment in a production
environment. (During development you may find it more convenient to update
individual components of your Web Application by developing your application
in exploded directory format.) To create a .war archive, use this command line
from the root directory containing your Web Application:

jar cv0f myWebApp.war .

This command creates a Web Application archive file called myWebApp.war.

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#web-xml
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#web-xml
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#weblogic-xml

8 Deploying and Configuring Web Applications

8-4 WebLogic Server Administration Guide

5. Deploy the Web Application on Weblogic Server in one of two ways: using the
Administration Console or by copying the Web Application into the applications
directory of your domain.

To deploy a Web Application in archived war format using the Administration
Console (you cannot deploy a Web Application in exploded directory format
using this procedure):

a. Select the Web Applications node in the left pane.

b. Click Install a New Web Application.

c. Browse to the location in your file system of the .war file.

d. Click Upload.

This procedure creates a new entry in the config.xml file containing the
configuration for your Web Application and copies your Web Application to
an internal location.

To deploy a Web Application (in either archived or exploded format) by
copying:

a. Copy a .war file or the top-level directory containing a Web Application in
exploded directory format into the mydomain/config/applications
directory of your WebLogic Server distribution. (Where mydomain is the name
of your domain.) As soon as the copy is complete, WebLogic Server
automatically deploys the Web Application.

b. (optional) Use the Administration Console to configure the Web Application.
Once you change any attributes (see step 6., below) for the Web Application,
the configuration is written to the config.xml file and the Web Application
will be statically deployed the next time you restart WebLogic Server. If you do
not use the Administration Console, your Web Application is still deployed
automatically every time you start WebLogic Server, even though
configuration information has not been saved to the config.xml file.

Note: If you deploy your Web Application in expanded form, read
“Modifying Components of a Web Application” on page 8-6.

Note: If you modify any component of a .war file in its original location in
your file system, you must redeploy your.war file by uploading it again
from the Administration Console.

6. Assign deployment attributes for your Web Application:

Directory Structure

WebLogic Server Administration Guide 8-5

a. Open the Administration Console

b. Select the Web Applications node.

c. Select your Web Application.

d. Assign your Web Application to a WebLogic Server, cluster, or Virtual Host.

e. Select the File tab and define the appropriate attributes.

Directory Structure

You develop your Web Application within a specified directory structure so that it can
be archived and deployed on WebLogic Server, or another Servlet 2.2 compliant
server. All servlets, classes, static files, and other resources belonging to a Web
Application are organized under a directory hierarchy. The root of this hierarchy
defines the document root of your Web Application. All files under this root directory
can be served to the client, except for files under the special directories WEB-INF and
META-INF located in the root directory. Name the root directory with the name of your
Web Application.This name will be used to resolve requests for components of the
Web Application.

Private files should be located in the WEB-INF directory, under the root directory. All
files under WEB-INF are private, and are not served to a client.

WebApplicationName/

Place your static files, such as HTML files and JSP files in this directory (or
a subdirectory). This directory is the document root of your Web Application.

/WEB-INF/web.xml

The Web Application deployment descriptor that configures the
Web Application.

/WEB-INF/weblogic.xml

The WebLogic-specific deployment descriptor file that defines how
named resources in the web.xml file are mapped to resources
residing elsewhere in WebLogic Server. This file is also used to
define JSP and HTTP session attributes.

8 Deploying and Configuring Web Applications

8-6 WebLogic Server Administration Guide

/WEB-INF/classes

Contains server-side classes such as HTTP servlets and utility
classes.

/WEB-INF/lib

Contains .jar files used by the Web Application.

Deploying and Redeploying Web
Applications

The procedure you use to deploy or redeploy a Web Application depend on whether
the Web Application is deployed in exploded or archived format. When you modify a
component of a Web Application you must also redeploy the Web Application on
WebLogic Server in order to serve the modified component. These procedures are
discussed in this section.

Modifying Components of a Web Application

When you modify any component of a Web Application (such as a servlet class,
HTML file, JSP file, or one of the deployment descriptors), the new version of the
component cannot be served by Weblogic Server until you redeploy the Web
Application. The procedure used for redeployment depends on whether the Web
Application is deployed as an archived .war file or deployed in exploded directory
format.

Components in .war Format

When you edit a component of a Web Application that is deployed as a war file, you
will need to re-jar the archive and then upload the .war file again.by using one of the
procedures described in step 5. on page 8-4.

Deploying and Redeploying Web Applications

WebLogic Server Administration Guide 8-7

Components in Exploded Directory Format

When you edit a component of a Web Application that is deployed in the exploded
directory format, keep in mind that WebLogic Server updates components differently:

JSP files
JSP files are redeployed based on the setting of the pageCheckSeconds
attribute that you define in the WebLogic-specific deployment descriptor,
weblogic.xml, of your Web Application. The attribute defines the time
interval at which WebLogic Server checks JSP files to see if they have been
modified. If set to 0, pages are checked on every request. If set to -1, page
checking and recompiling is disabled.

Note: JSP files are redeployed automatically only to the administration
server. If you want JSPs redeployed to managed servers targeted by the Web
Application, you must redeploy the Web Application. For more information,
see “Redeploying a Web Application” on page 8-7.

Servlets
Servlets are redeployed based on the setting of the Reload Period attribute
that you define in the Administration Console. Set this attribute by selecting
your Web Application and then selecting the Configuration/Files tab. The
attribute defines the time interval at which WebLogic Server checks servlet
classes to see if they have been modified. If set to 0, servlet classes are
checked on every request. If set to -1, WebLogic Server does not check to see
if the classes have been modified.

HTML and other static files
If you modify an HTML or other static file, such as an image file or text file,
you must redeploy the Web Application in order for the changes to be
recognized by WebLogic Server. Use one of the procedures below to
redeploy the Web Application.

Redeploying a Web Application

Use one of the following three procedures to redeploy a Web Application:

� Use the Administration Console:

a. Select the Web Application node.

8 Deploying and Configuring Web Applications

8-8 WebLogic Server Administration Guide

b. Select the Web Application you want to redeploy.

c. Uncheck the Deployed box in the right-hand pane.

d. Click Apply.

e. Check the Deployed box in the right-hand pane.

f. Click Apply.

� Modify the REDEPLOY file:

a. Create a sub-directory called WEB-INF, under the root directory of your Web
Application.

b. Create an empty text file called REDEPLOY and save it in the WEB-INF directory.

c. To redeploy the Web Application, modify the REDEPLOY file by opening it,
modifying the contents (adding a space character is the easiest way to do this),
and then saving the file. Alternately, on UNIX machines, you can use the touch
command on the REDEPLOY file.

� Re-copy a war into the applications directory (applies only to dynamic
deployment). See step 5. on page 8-4.

Note: Redeploying a Web Application also redeploys the Web Application to all
managed servers targeted by this Web Application.

Deploying Web Applications as Part of an Enterprise
Application

You can deploy a Web Application as part of an Enterprise Application. An Enterprise
Application is a J2EE deployment unit that bundles together Web Applications, EJBs,
and Resource Adaptors into a single deployable unit. (For more information on
Enterprise Applications, see Packaging Components and Applications at
http://e-docs.bea.com/wls/docs60/programming/packaging.html.) If you
deploy a Web Application as part of an Enterprise Application, you can specify a string
that is used in place of the actual name of the Web Application when WebLogic Server
resolves a request for the Web Application. You specify the new name with the
<context-root> element in the application.xml deployment descriptor for the

http://e-docs.bea.com/wls/docs60/programming/packaging.html

URIs and Web Applications

WebLogic Server Administration Guide 8-9

Enterprise Application. For more information, see Client Application Deployment
Descriptor Elements at
http://e-docs.bea.com/wls/docs60/programming/app_xml.html.

For example, for a Web Application called oranges, you would typically request a
resource from the oranges Web Application with a URL like:

http://host:port/oranges/catalog.jsp.

If the oranges Web Application is packaged in an Enterprise Application, you can
specify a value for the <context-root> as shown in the following example:

<module>
<web>

<web-uri>oranges.war</web-uri>
<context-root>fruit</context-root>

</web>
</module>

You would then use the following URL to access the same resource from the oranges
Web Application:

http://host:port/fruit/catalog.jsp

URIs and Web Applications

You construct the URL used to access a Web Application from a client by using the
following pattern:

http://hoststring/ContextPath/servletPath/pathInfo

Where

hoststring

is either a host name that is mapped to a virtual host or
hostname:portNumber

ContextPath

is the name of your Web Application

servletPath

is a servlet that is mapped to the servletPath

http://e-docs.bea.com/wls/docs60/programming/app_xml.html
http://e-docs.bea.com/wls/docs60/programming/app_xml.html

8 Deploying and Configuring Web Applications

8-10 WebLogic Server Administration Guide

pathInfo

is the remaining portion of the URL, typically a file name.

If you are using virtual hosting, you can substitute the virtual host name for the
hoststring portion of the URL.

For additional information, see How WebLogic Server Resolves HTTP Requests on
page 8-17.

Configuring Servlets

Servlets are registered and configured as a part of a Web Application. To register a
servlet, you add several entries to the Web Application deployment descriptor. The
first entry, under the <servlet> element defines a name for the servlet and the
compiled class that executes the servlet. This element also contains definitions for
initialization parameters and security roles for the servlet.The second entry, under the
<servlet-mapping> element defines the URL pattern that calls this servlet.

For complete instructions on editing the Web Application deployment descriptor, see:

� Configuring Web Applications, Deploy Servlets at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.h
tml#servlet

� Configuring Web Applications, Map a Servlet to a URL at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.h
tml#servlet-mapping

Servlet Mapping

Servlet mapping controls how you access a servlet. The following examples
demonstrate some of the ways you can use servlet mapping in your Web Application.
In the examples, a set of servlet configurations and mappings (from the web.xml
deployment descriptor) is followed by a table (see “url-patterns and Servlet
Invocation” on page 8-12) showing the URLs used to invoke these servlets.

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#servlet
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#servlet-mapping

Configuring Servlets

WebLogic Server Administration Guide 8-11

Listing 8-1 Servlet Mapping Example

<servlet>
<servlet-name>watermelon</servlet-name>
<servlet-class>myservlets.watermelon</servlet-class>

</servlet>

<servlet>
<servlet-name>garden</servlet-name>
<servlet-class>myservlets.garden</servlet-class>

</servlet>

<servlet>
<servlet-name>list</servlet-name>
<servlet-class>myservlets.list</servlet-class>

</servlet>

<servlet>
<servlet-name>kiwi</servlet-name>
<servlet-class>myservlets.kiwi</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>watermelon</servlet-name>
<url-pattern>/fruit/summer/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>garden</servlet-name>
<url-pattern>/seeds/*</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>list</servlet-name>
<url-pattern>/seedlist</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>kiwi</servlet-name>
<url-pattern>*.abc</url-pattern>

</servlet-mapping>

8 Deploying and Configuring Web Applications

8-12 WebLogic Server Administration Guide

Table 8-1 url-patterns and Servlet Invocation

URL Servlet
Invoked

http://host:port/mywebapp/fruit/summer/index.html watermelon

http://host:port/mywebapp/fruit/summer/index.abc watermelon

http://host:port/mywebapp/seedlist list

http://host:port/mywebapp/seedlist/index.html The default
servlet, if
configured, or an
HTTP 404 file
not found error
message

If the mapping
for the list
servlet had been
/seedlist*,
the list servlet
would be
invoked.

http://host:port/mywebapp/seedlist/pear.abc kiwi

If the mapping
for the list
servlet had been
/seedlist*,
the list servlet
would be
invoked.

http://host:port/mywebapp/seeds garden

http://host:port/mywebapp/seeds/index.html garden

http://host:port/mywebapp/index.abc kiwi

Configuring JSP

WebLogic Server Administration Guide 8-13

Servlet Initialization Parameters

You define initialization parameters for servlets in the Web Application deployment
descriptor, in the <init-param> element of the <servlet> element, using
<param-name> and <param-value> tags. For example:

Listing 8-2 Example of Configuring Servlet Initialization Parameters

<servlet>
<servlet-name>HelloWorld2</servlet-name>
<servlet-class>examples.servlets.HelloWorld2</servlet-class>

<init-param>
<param-name>greeting</param-name>
<param-value>Welcome</param-value>

</init-param>

<init-param>
<param-name>person</param-name>
<param-value>WebLogic Developer</param-value>

</init-param>
</servlet>
</servlet>

For more information on editing the Web Application deployment descriptor, see
Writing Web Applications Deployment Descriptors at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.htm

l.

Configuring JSP

You deploy JavaServer Pages (JSP) files by placing them in the root (or in a
subdirectory below the root) of a Web Application. Additional JSP configuration
parameters are defined in the <jsp-descriptor> element of the WebLogic-specific
deployment descriptor, weblogic.xml. These parameters define the following
functionality:

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html

8 Deploying and Configuring Web Applications

8-14 WebLogic Server Administration Guide

� Options for the JSP compiler.

� Debugging.

� How often WebLogic Server checks for updated JSPs that need to be
recompiled.

� Character encoding

For a complete description of these parameters, see JSP Parameter Names and Values
at
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#js

p-parameters.

For instructions on editing the weblogic.xml file, see Creating the
WebLogic-Specific Deployment Descriptor at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.htm

l#weblogic-xml.

Configuring JSP Tag Libraries

Weblogic Server, in accordance with the Servlet 2.2 specification provides the ability
to create and use custom JSP tags. Custom JSP tags are Java classes that can be called
from within a JSP page. To create custom JSP tags, you place them in a tag library and
define their behavior in a tag library descriptor (TLD) file. This TLD must be made
available to the Web Application containing the JSP by defining it in the Web
Application deployment descriptor. It is a good idea to place the TLD file in the
WEB-INF directory of your Web Application, because that directory is never available
publicly.

In the Web Application deployment descriptor, you define a URI pattern for the tag
library. This URI pattern must match the value in the taglib directive in your JSP pages.
You also define the location of the TLD. For example, if the taglib directive in the JSP
page is:

<%@ taglib uri="myTaglib" prefix="taglib" %>

and the TLD is located in the WEB-INF directory of your Web Application, you would
create the following entry in the Web Application deployment descriptor:

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#jsp-parameters
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#weblogic-xml
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#weblogic-xml

Configuring Welcome Pages

WebLogic Server Administration Guide 8-15

<taglib>
<taglib-uri>myTaglib</taglib-uri>
<tablig-location>WEB-INF/myTLD.tld</taglib-location>

</taglib>

For more information on creating custom JSP tag libraries, see Programming JSP Tag
Extensions at http://e-docs.bea.com/wls/docs60/jsp/index.html.

WebLogic Server also includes several custom JSP tags that you can use in your
applications. These tags perform caching, facilitate query parameter-based flow
control, and facilitate iterations over sets of objects. For more information, see Using
Custom WebLogic JSP Tags at
http://e-docs.bea.com/wls/docs60/taglib/customtags.html.

Configuring Welcome Pages

WebLogic Server allows you to set a page that is served by default if the requested
URL is a directory. This feature can make your site easier to use, because the user can
type a URL without giving a specific filename.

Welcome pages are defined at the Web Application level. If your Server is hosting
multiple Web Applications, you need to define welcome pages separately for each
Web Application.

To define Welcome pages, edit the Web Application deployment descriptor,
web.xml. For more information, see Welcome Files at
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#welcome

-files.

If you do not define Welcome Pages, WebLogic Server looks for the following files in
the following order and serves the first one it finds:

1. index.html

2. index.htm

3. index.jsp

For more information, see How WebLogic Server Resolves HTTP Requests on page
8-17.

http://e-docs.bea.com/wls/docs60/taglib/index.html
http://e-docs.bea.com/wls/docs60/taglib/index.html
http://e-docs.bea.com/wls/docs60/jsp/customtags.html
http://e-docs.bea.com/wls/docs60/jsp/customtags.html
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#welcome-files

8 Deploying and Configuring Web Applications

8-16 WebLogic Server Administration Guide

Setting Up a Default Servlet

Each Web Application has a default servlet. This default servlet can be a servlet that
you specify, or, if you do not specify a default servlet, WebLogic Server uses an
internal servlet called the FileServlet as the default servlet. For more information
on the FileServlet see How WebLogic Server Resolves HTTP Requests on page
8-17.

You can register any servlet as the default servlet. Writing your own default servlet
allows you to use your own logic to decide how to handle a request that falls back to
the default servlet.

Setting up a default servlet replaces the FileServlet and should be done carefully
because the FileServlet is used to serve most files, such as text files, HTML file,
image files, and more. If you expect your default servlet to serve such files, you will
need to write that functionality into your default servlet.

To set up a user-defined default servlet:

1. Define your servlet as described in Configuring Servlets on page 8-10.

2. Map your default servlet with a url-pattern of “/”. This will cause your default
servlet to respond to all types of files except for those with extensions of *.htm
or *.html, which are internally mapped to the FileServlet.

If you also want your default servlet to respond to files ending in *.htm or
*.html, then you must map those extensions to your default servlet, in addition
to mapping “/”. For instructions on mapping servlets, see Configuring Servlets
on page 8-10.

3. If you still want the FileServlet to serve files with other extensions, map those
file extensions to the FileServlet (in addition to the mappings for your default
servlet). For example, if you want the FileServlet to serve gif files, map
*.gif to the FileServlet.

How WebLogic Server Resolves HTTP Requests

WebLogic Server Administration Guide 8-17

How WebLogic Server Resolves HTTP
Requests

When WebLogic Server receives an HTTP request, it resolves the request by parsing
the various parts of the URL and using that information to determine which Web
Application and or server should handle the request. The examples below various
combinations of requests for Web Applications, virtual hosts, servlets, JSPs and static
files and the resulting response.

Note: If you package your Web Application as part of an Enterprise Application you
can provide an alternate name for a Web Application that is used to resolve
requests to the Web Application. For more information, see “Deploying Web
Applications as Part of an Enterprise Application” on page 8-8.

The table below provides some sample URLs and the file that is served by WebLogic
Server. The Index Directories Checked column refers to the Index Directories attribute
that controls whether or not a directory listing is served if no file is specifically
requested. You set Index Directories using the Administration Console, on the Web
Applications node, under the Configuration/Files tab.

Table 8-2 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

http://host:port/apples no Welcome file* defined in
the apples Web
Application.

http://host:port/apples yes Directory listing of the top
level directory of the
apples Web Application.

8 Deploying and Configuring Web Applications

8-18 WebLogic Server Administration Guide

http://host:port/oranges/naval does not
matter

Servlet mapped with
<url-pattern> of
/naval in the oranges
Web Application.

There are additional
considerations for servlet
mappings. For more
information, see
“Configuring Servlets” on
page 8-10.

http://host:port/naval does not
matter

Servlet mapped with
<url-pattern> of
/naval in the oranges
Web Application and
oranges is defined as the
default Web Application.

For more information, see
“Configuring Servlets” on
page 8-10.

http://host:port/apples/pie.jsp does not
matter

pie.jsp, from the
top-level directory of the
apples Web Application.

http://host:port yes Directory listing of the top
level directory of the
default Web Application

http://host:port no Welcome file* from the
default Web Application.

http://host:port/apples/myfile.html does not
matter

myfile.html, from the
top level directory of the
apples Web Application.

http://host:port/myfile.html does not
matter

myfile.html, from the
top level directory of the
default Web Application.

Table 8-2 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

How WebLogic Server Resolves HTTP Requests

WebLogic Server Administration Guide 8-19

* For more information, see “Configuring Welcome Pages” on page 8-15.

http://host:port/apples/images/red.gif does not
matter

red.gif, from the images
subdirectory of the
top-level directory of the
apples Web Application.

http://host:port/myFile.html

Where myfile.html does not exist in the apples Web
Application and a default servlet has not been defined.

does not
matter

Error 404

For more information, see
“Customizing HTTP Error
Responses” on page 8-20.

http://www.fruit.com/ no Welcome file* from the
default Web Application
for a virtual host with a host
name of
www.fruit.com.

http://www.fruit.com/ yes Directory listing of the top
level directory of the
defaultWeb Application
for a virtual host with a host
name of
www.fruit.com.

http://www.fruit.com/oranges/myfile.html does not
matter

myfile.html, from the
orangesWeb Application
that is targeted to a virtual
host with host name
www.fruit.com.

Table 8-2 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

8 Deploying and Configuring Web Applications

8-20 WebLogic Server Administration Guide

Customizing HTTP Error Responses

You can configure WebLogic Server to respond with your own custom Web pages or
other HTTP resources when particular HTTP errors or Java exceptions occur, instead
of responding with the standard WebLogic Server error response pages.

You define custom error pages in the <error-page> element of the Web Application
deployment descriptor (web.xml). For more information on error pages, see error-page
Element at
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#error-page.

Using CGI with WebLogic Server

WebLogic Server provides functionality to support your legacy Common Gateway
Interface (CGI) scripts. For new projects, we suggest you use HTTP servlets or
JavaServer Pages.

WebLogic Server supports all CGI scripts via an internal WebLogic servlet called the
CGIServlet. To use CGI, register the CGIServlet in the Web Application
deployment descriptor (see “Example Entries to Be Included in the Web Application
Deployment Descriptor when Registering the CGIServlet” on page 8-21). For more
information, see Configuring Servlets on page 8-10.

Configuring WebLogic Server to use CGI

To configure CGI in WebLogic Server:

1. Declare the CGIServlet in your Web Application by using the <servlet> and
<servlet-mapping> elements. The class name for the CGIServlet is
weblogic.servlet.CGIServlet.

2. Register the following initialization parameters for the CGIServlet by defining
the following <init-param> elements:

http://e-docs.bea.com/wls/docs60/programming/web_xml.html#error-page
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#error-page

Using CGI with WebLogic Server

WebLogic Server Administration Guide 8-21

cgiDir

The path to the directory containing your CGI scripts. You can
specify multiple directories, separated by a “;” (Windows) or a “:”
(Unix). If you do not specify cgiDir, the directory defaults to a
directory named cgi-bin under the Web Application root.

extension mapping

Maps a file extension to the interpreter or executable that runs the
script. If the script does not require an executable, this initialization
parameter may be omitted.

The <param-name> for extension mappings must begin with an
asterisk followed by a dot, followed by the file extension, for
example, *.pl.

The <param-value> contains the path to the interpreter or
executable that runs the script You can create multiple mappings by
creating a separate <init-param> element for each mapping.

Listing 8-3 Example Entries to Be Included in the Web Application Deployment
Descriptor when Registering the CGIServlet

<servlet>
<servlet-name>CGIServlet</servlet-name>
<servlet-class>weblogic.servlet.CGIServlet</servlet-class>
<init-param>
<param-name>cgiDir</param-name>
<param-value>
/bea/wlserver6.0/config/mydomain/applications/myWebApp/cgi-bin

</param-value>
</init-param>

<init-param>
<param-name>*.pl</param-name>
<param-value>/bin/perl.exe</param-value>

</init-param>
</servlet>

...

<servlet-mapping>
<servlet-name>CGIServlet</servlet-name>
<url-pattern>/cgi-bin/*</url-pattern>

</servlet-mapping>

8 Deploying and Configuring Web Applications

8-22 WebLogic Server Administration Guide

Requesting a CGI Script

The URL used to request a perl script must follow the pattern:

http://host:port/myWebApp/cgi-bin/myscript.pl

Where

host:port

Is the host name and port number of WebLogic Server

cgi-bin

is the url-pattern name mapped to the CGIServlet,

myWebApp

is the name of your Web Application

myscript.pl

is the name of the Perl script that is located in the directory specified by the
cgiDir initialization parameter.

Serving Resources from the CLASSPATH
with the ClasspathServlet

If you need to serve classes or other resources from the system CLASSPATH, or from
the WEB-INF/classes directory of a Web Application, you can use a special servlet
called the ClasspathServlet. The ClasspathServlet is useful for applications
that use applets or RMI clients and require access to server-side classes. The
ClasspathServlet is implicitly registered and available from any application.

There are two ways that you can use the ClasspathServlet:

� To serve a resource from the system CLASSPATH, call the resource with a URL
such as:

http://server:port/classes/my/resource/myClass.class

Proxying Requests to Another HTTP Server

WebLogic Server Administration Guide 8-23

� To serve a resource from the WEB-INF/classes directory of a Web Application,
call the resource with a URL such as:

http://server:port/myWebApp/classes/my/resource/myClass.class

In this case, the resource is located in the following directory, relative to the root
of the Web Application:

WEB-INF/classes/my/resource/myClass.class

Warning: Since the ClasspathServlet serves any resource located in the system
CLASSPATH, do not place resources that should not be publicly available
in the system CLASSPATH.

Proxying Requests to Another HTTP Server

When you use WebLogic Server as your primary Web server, you may also want to
configure WebLogic Server to pass on, or proxy, certain requests to a secondary HTTP
server, such as Netscape Enterprise Server, Apache, Microsoft Internet Information
Server, or another instance of WebLogic Server. Any request that gets proxied is
redirected to a specific URL.You can even proxy to another Web server on a different
machine.You proxy requests based on the URL of the incoming request.

The HttpProxyServlet (provided as part of the distribution) takes an HTTP request,
redirects it to the proxy URL, and sends the response to the client's browser back
through WebLogic Server. To use the proxy, you must configure it in a Web
Application and deploy that Web Application on the WebLogic Server that is
redirecting requests.

Setting Up a Proxy to a Secondary HTTP Server

To set up a proxy to a secondary HTTP server:

1. Register the proxy servlet in your Web Application deployment descriptor (see
“Sample web.xml for Use with ProxyServlet” on page 8-24). The Web
Application must be the default Web Application of the Server that is responding
to requests. The class name for the proxy servlet is
weblogic.t3.srvr.HttpProxyServlet. For more information see Deploying

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

8 Deploying and Configuring Web Applications

8-24 WebLogic Server Administration Guide

and Configuring Web Applications at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

.

2. Define an initialization parameter for the ProxyServlet with a <param-name>
of redirectURL and a <param-value> containing the URL of the server to
which proxied requests should be directed.

3. Map the ProxyServlet to a <url-pattern>. Specifically, map the file
extensions you wish to proxy, for example *.jsp, or *.html. Use the
<servlet-mapping> element in the web.xml Web Application deployment
descriptor.

If you set the <url-pattern> to “/”, then any request that cannot be resolved
by WebLogic Server is proxied to the remote server. However, you must also
specifically map the following extensions: *.jsp, *.html, and *.html if you
want to proxy files ending with those extensions.

4. Deploy the Web Application on the WebLogic Server that redirects incoming
requests.

Sample Deployment Descriptor for the Proxy Servlet

The following is an sample of a Web Applications deployment descriptor for using the
Proxy Servlet.

Listing 8-4 Sample web.xml for Use with ProxyServlet

<! DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.
//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd";>

<web-app>

<servlet>
<servlet-name>ProxyServlet</servlet-name>
<servlet-class>weblogic.t3.srvr.HttpProxyServlet</servlet-class

>

<init-param>
<param-name>redirectURL</param-name>
<param-value>

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

Proxying Requests to a WebLogic Cluster

WebLogic Server Administration Guide 8-25

http://tehama:7001
</param-value>

</init-param>

</servlet>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>ProxyServlet</servlet-name>
<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

Proxying Requests to a WebLogic Cluster

The HttpClusterServlet (provided with the WebLogic Server distribution) proxies
requests from a WebLogic Server to other WebLogic Servers in a WebLogic Cluster.
The HttpClusterServlet provides load balancing and failover for the proxied
HTTP requests. For additional information on servlets and WebLogic Clusters, see
Understanding HTTP Session State Replication at
http://e-docs.bea.com/wls/docs60/cluster/servlet.html.

http://e-docs.bea.com/wls/docs60/cluster/servlet.html

8 Deploying and Configuring Web Applications

8-26 WebLogic Server Administration Guide

Setting Up the HttpClusterServlet

To set up the HttpClusterServlet:

1. Configure the WebLogic Server instance that will proxy requests to a cluster of
WebLogic Servers. Use the WebLogic Server Administration Console (for
information on using the Administration Console see
http://e-docs.bea.com/wls/docs60/adminguide/index.html).

a. Create a new Web Application in your domain.

b. Create a new Server in the domain, or use the default.

c. Assign the Web Application you created in step a as the default Web
Application for the Server that you just created.

2. Register the HttpClusterServlet in the Web Application deployment
descriptor for the Web Application you created in step 1. (See the “Sample
Deployment Descriptor for the HttpClusterServlet” on page 8-28.) The Web
Application must be the default Web Application of the Server that is responding
to requests. For more information see “Designating a Default Web Application”
on page 7-4.

The class name for the HttpClusterServlet is
weblogic.servlet.internal.HttpClusterServlet. A Sample
Deployment Descriptor for the HttpClusterServlet is included below.

3. Define the appropriate initialization parameters for the HttpClusterServlet.
You define initialization parameters with the <init-param> element in the
web.xml Web Application deployment descriptor. You must define the
defaultServers parameter, and, where appropriate, additional parameters as
described in Table 8-3 “HttpClusterServlet Parameters” on page 8-27:

4. Map the proxy servlet to a <url-pattern>. Specifically, map the file extensions
you want to proxy, for example *.jsp, or *.html.

If you set the url-pattern to “/”, then any request that cannot be resolved by
WebLogic Server is proxied to the remote server. However, you must also
specifically map the following extensions: *.jsp, *.html, and *.html, if you
want to proxy files ending with those extensions.

http://e-docs.bea.com/wls/docs60/adminguide/index.html

Proxying Requests to a WebLogic Cluster

WebLogic Server Administration Guide 8-27

Another way to set up the url-pattern is to map a url-pattern such as /foo and
then set the pathTrim parameter to foo, which removes foo from the proxied
URL.

Table 8-3 HttpClusterServlet Parameters

<param-name> <param-value> Default
Value

defaultServers (Required) A list of host names and port
numbers of the servers to which you are
proxying requests in the form:

host1:HTTP_Port:HTTPS_Port|
host2:HTTP_Port:HTTPS_Port

(Where host1 and host2 are the host names
of servers in the cluster, HTTP_Port is the port
where the host is listening for HTTP requests,
and HTTPS_Port is the port where the host is
litening for HTTP SSL requests.)

Separate each host with the | character.

If you set the secureProxy parameter to ON
(see the secureProxy entry) The HTTPS port
uses SSL between the WebLogic Server
running HttpClusterServlet and the
WebLogic Servers in the cluster. You must
always define an HTTPS port, even if you have
set secureProxy to OFF.

None

secureProxy ON/OFF. If set to ON, enables SSL between the
HttpClusterServlet and the member of a
WebLogic Server cluster.

OFF

DebugConfigInfo ON/OFF. If set to on, you can query the
HttpClusterServlet for debugging
information by adding a request parameter of
?_WebLogicBridgeConfig to any request.
For security reasons, it is recommended that
you set this parameter to OFF in a production
environment.

OFF

8 Deploying and Configuring Web Applications

8-28 WebLogic Server Administration Guide

Sample Deployment Descriptor for the
HttpClusterServlet

The following is a sample of a Web Applications deployment descriptor, web.xml, for
using the HttpClusterServlet:

Listing 8-5 Sample web.xml for Use with HttpClusterServlet

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.
//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd";>

<web-app>

<servlet>
<servlet-name>HttpClusterServlet</servlet-name>

<servlet-class>
weblogic.servlet.internal.HttpClusterServlet

</servlet-class>

connectionTimeout The amount of time, in seconds, that a socket
waits in between reading chunks of data. If the
timeout expires, a
java.io.InterruptedIOException is
thrown

0 = infinite
timeout.

numOfRetries Number of timesHttpClusterServletwill
attempt to retry a failed connection.

5

pathTrim String to be trimmed from the beginning of the
original URI.

None

trimExt The file extension to be trimmed from the end of
the URI.

None

pathPrepend String to be prepended to the beginning of the
original URL, after pathTrim has been
trimmed, and before the request is forwarded to
a WebLogic Server cluster member.

None

Configuring Security in Web Applications

WebLogic Server Administration Guide 8-29

<init-param>
<param-name>defaultServers</param-name>
<param-value>

myserver1:7736:7737|myserver2:7736:7737|myserver:7736:7737
</param-value>

</init-param>

<init-param>
<param-name>DebugConfigInfo</param-name>
<param-value>ON</param-value>

</init-param>

</servlet>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.htm</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*.html</url-pattern>

</servlet-mapping>

</web-app>

Configuring Security in Web Applications

You can secure a Web Application by using authentication, by restricting access to
certain resources in the Web Application, or by using security calls in your servlet
code. Several types of security realms can be used. Security realms are discussed in the

8 Deploying and Configuring Web Applications

8-30 WebLogic Server Administration Guide

document Security Fundamentals at
http://e-docs.bea.com/wls/docs60/security/concepts.html. Note that a
security realm is shared across multiple virtual hosts.

Setting Up Authentication for Web Applications

You define Authentication for Web Applications in the Web Application deployment
descriptor using the <login-config> element. In this element you define the security
realm containing the user credentials, the method of authentication, and the location of
resources for authentication. For information on setting up a security realm, see
Security Fundamentals at
http://e-docs.bea.com/wls/docs60/security/concepts.html.

To set up authentication for Web Applications:

1. Choose an authentication method. The available options are:

BASIC

Basic authentication uses the Web Browser to display a
username/password dialog box. This username and password is
authenticated against the realm.

FORM

Form-based authentication requires that you return an HTML form
containing the username and password. The fields returned from the
form elements must be: j_username and j_password, and the
action attribute must be j_security_check. Here is an example of
the HTML coding for using FORM authentication:

<form method=”POST” action=”j_security_check”>

<input type=”text” name=”j_username”>
<input type=”password” name=”j_password”>

</form>

The resource used to generate the HTML form may be an HTML
page, a JSP, or a servlet. You define this resource with the
<form-login-page> element.

The HTTP session object is created when the login page is served.
Therefore, the session.isNew() method will return FALSE when
called from pages served after successful authentication.

http://e-docs.bea.com/wls/docs60/security/concepts.html
http://e-docs.bea.com/wls/docs60/security/concepts.html

Configuring Security in Web Applications

WebLogic Server Administration Guide 8-31

CLIENT-CERT

Uses client certificates to authenticate the request. For more
information, see Configuring the SSL Protocol at
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.

html#cnfgsec015.

2. If you choose FORM authentication, also define the location of the resource used
to generate the HTML page and a resource that responds to a failed
authentication. For instructions on configuring form authentication see
<login-config> at
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#login

-config.

3. Define the realm used for authentication. If you do not specify a particular realm,
the realm defined with the Auth Realm Name field on the Web Application→
Configuration→Other tab of the Administration Console is used. For more
information, see <login-config> at
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#login

-config.

Multiple Web Applications, Cookies, and Authentication

By default, WebLogic Server assigns the same cookie name (JSESSIONID) to all Web
Applications. When you use any type of authentication, all Web Applications that use
the same cookie name use a single sign-on for authentication. Once a user is
authenticated, that authentication will be valid for requests to any Web Application
that uses the same cookie name. The user will not be prompted again for
authentication.

If you want to require separate authentication for a Web Application, you can specify
a unique cookie name for the Web Application. Specify the cookie name using the
CookieName parameter, defined in the WebLogic-specific deployment descriptor
weblogic.xml, in the <session-descriptor> element. For more information, see
session-descriptor element at
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descript
or.

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec015
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#login-config
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#login-config
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor

8 Deploying and Configuring Web Applications

8-32 WebLogic Server Administration Guide

Restricting Access to Resources in a Web Application

You can apply security constraints to specified resources (servlets, JSPs, or HTML
pages) in your Web Application.To apply security constraints, you

1. Define a role that is mapped to one or more principals in a security realm. You
define roles with the <security-role> element (see
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#security-role) in
the Web Application deployment descriptor. You then map these roles to principals
in your realm with the <security-role-assignment> element (see
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#security-role
-assignment) in the WebLogic-specific deployment descriptor, weblogic.xml.

2. Define which resources in the Web Application the security constraint applies to
using the <url-pattern> element that is nested inside the
<web-resource-collection> element. The <url-pattern> can refer to either
a directory, filename or a <servlet-mapping>.

To apply the security constraint to the entire Web Application, use the following
<url-pattern>:

<url-pattern>/*</url-pattern>

3. Define the HTTP method (GET or POST) that the security constraint applies to
using the <http-method> element that is nested inside the
<web-resource-collection> element.

4. Define whether or not SSL should be used for communication between client and
server using the <transport-guarantee> element nested inside of the
<user-data-constraint> method.

Listing 8-6 Sample of Restricting Resources:

web.xml entries:

<security-constraint>
<web-resource-collection>

<web-resource-name>SecureOrdersEast</web-resource-name>
<description>

Security constraint for resources in the orders/east
directory

http://e-docs.bea.com/wls/docs60/programming/web_xml.html#security-role
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#security-role-assignment

Configuring Security in Web Applications

WebLogic Server Administration Guide 8-33

</description>
<url-pattern>/orders/east/*</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<description>constraint for east coast
sales</description>

<role-name>east</role-name>
<role-name>manager</role-name>

</auth-constraint>
<user-data-constraint>

<description>SSL not required</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>

...

<security-role>
<description>east coast sales</description>
<role-name>east</role-name>

</security-role>

<security-role>
<description>managers</description>
<role-name>manager</role-name>

</security-role>

weblogic.xml entries:

<security-role-assignment>
<role-name>east</role-name>
<principal-name>tom</principal-name>
<principal-name>jane</principal-name>
<principal-name>javier</principal-name>
<principal-name>maria</principal-name>

</security-role-assignment>
<security-role-assignment>

<role-name> manager </role-name>
<principal-name>peter</principal-name>
<principal-name>georgia</principal-name>

</security-role-assignment>

8 Deploying and Configuring Web Applications

8-34 WebLogic Server Administration Guide

Using Users and Roles Programmatically in Servlets

You can write your servlets to programmatically access users and roles in your servlet
code using the method
javax.servlet.http.HttpServletRequest.isUserInRole(String role).
The string role is mapped to the name supplied in the <role-name> element nested
inside the <security-role-ref> element of a <servlet> declaration in the Web
Application deployment descriptor. The <role-link> element maps to a
<role-name> defined in the <security-role> element of the Web Application
deployment descriptor.

For example:

Listing 8-7 Example of Security Role Mapping

Servlet code:
isUserInRole("manager");

web.xml entries:

<servlet>
. . .

<role-name>manager</role-name>
<role-link>mgr</role-link>

. . .
</servlet>

<security-role>
<role-name>mgr</role-name>

</security-role>

weblogic.xml entries:

<security-role-assignment>
<role-name>mgr</role-name>
<principal-name>al</principal-name>
<principal-name>george</principal-name>
<principal-name>ralph</principal-name>

</security-role-ref>

Configuring External Resources in a Web Application

WebLogic Server Administration Guide 8-35

Configuring External Resources in a Web
Application

When accessing external resources, such as a DataSource from a Web Application via
JNDI, you can map the JNDI name you look up in your code to the actual JNDI name
as bound in the JNDI tree. This mapping is made using both the web.xml and
weblogic.xml deployment descriptors and allows you to change these resources
without changing your application code. You provide a name that is used in your Java
code, the name of the resource as bound in the JNDI tree, and the Java type of the
resource, and you indicate whether security for the resource is handled
programmatically by the servlet or from the credentials associated with the HTTP
request.

To configure external resources:

1. Enter the resource name in the deployment descriptor as you use it in your code,
the Java type, and the security authorization type. For instructions on making
deployment descriptor entries, see Reference external resources at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.h

tml#resource-ref.

2. Map the resource name to the JNDI name. For instructions on making
deployment descriptor entries, see Map external resources at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.h
tml#

resource-description.

This example assumes that you have defined a data source called
accountDataSource. For more information, see JDBC Data Sources at
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html.

Listing 8-8 Example of Using a DataSource

Servlet code:
javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup

("myDataSource");

web.xml entries:

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#resource-description
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#resource-description
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html

8 Deploying and Configuring Web Applications

8-36 WebLogic Server Administration Guide

<resource-ref>
. . .

<res-ref-name>myDataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>CONTAINER</res-auth>

. . .
</resource-ref>

weblogic.xml entries:

<resource-description>
<res-ref-name>myDataSource</res-ref-name>
<jndi-name>accountDataSource</jndi-name>

</resource-description>

Referencing EJBs in a Web Application

You reference EJBs in a Web Application by giving them a name in the Web
Application deployment descriptor that is mapped to the JNDI name for the EJB that
is defined in the weblogic-ejb-jar.xml file deployment descriptor.

To configure EJBs for use in a Web Application:

1. Enter the EJB reference name you use to look up the EJB in your code, the Java
class name, and the class name of the home and remote interfaces of the EJB in the
<ejb-ref> element of the Web Application deployment descriptor. For
instructions on making deployment descriptor entries, see Reference EJB resources
at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.h

tml#ejb-ref.

2. Map the reference name in <ejb-reference-description> element of the
WebLogic-specific deployment descriptor, weblogic.xml, to the JNDI name
defined in the weblogic-ejb-jar.xml file. For instructions on making
deployment descriptor entries, see Map EJB resources at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.h
tml#

ejb-reference-description.

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#ejb-ref
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#ejb-reference-description

Setting Up Session Management

WebLogic Server Administration Guide 8-37

If the Web Application is part of an Enterprise Application Archive (.ear file),
you can reference an EJB by the name used in the .ear with the <ejb-link>
element.

Setting Up Session Management

WebLogic Server is set up to handle session tracking by default. You need not set any
of these properties to use session tracking. However, configuring how WebLogic
Server manages sessions is a key part of tuning your application for best performance.
Tuning depends upon factors such as:

� How many users you expect to hit the servlet

� How many concurrent users hit the servlet

� How long each session lasts

� How much data you expect to store for each user

HTTP Session Properties

You configure WebLogic Server session tracking with properties in the
WebLogic-specific deployment descriptor, weblogic.xml file. For instructions on
editing the WebLogic-specific deployment descriptor, see Define Session Parameters
at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.htm

l#session-descriptor.

A complete list of session attributes is available at
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#se

ssion-descriptor.

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#session-descriptor
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor

8 Deploying and Configuring Web Applications

8-38 WebLogic Server Administration Guide

Session Timeout

You can specify an interval of time after which HTTP sessions expire. When a session
expires, all data stored in the session is discarded. You can set the interval in one of
two ways:

� Set the TimeoutSecs attribute in the <session-descriptor> element (see
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#

session-descriptor) of the WebLogic-specific deployment descriptor,
weblogic.xml. This value is set in seconds.

� Set the <session-timeout> (see
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#web_x

ml_session-config) element in the Web Application deployment descriptor,
web.xml. This value is set in minutes and overrides any value set in the
TimeoutSecs attribute in the <session-descriptor> element of the
WebLogic-specific deployment descriptor, weblogic.xml

Configuring Session Cookies

WebLogic Server uses cookies for session management when supported by the client
browser.

The cookies that WebLogic Server uses to track sessions are set as transient by default
and do not out-live the life of the browser. When a user quits the browser, the cookies
are lost and the session lifetime is regarded as over. This behavior is in the spirit of
session usage and it is recommended that you use sessions in this way.

It is possible to configure many aspects of the cookies used to track sessions with
attributes that are defined in the WebLogic-specific deployment descriptor,
weblogic.xml. A complete list of session and cookie-related attributes is available at
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#se

ssion-descriptor.

For instructions on editing the WebLogic-specific deployment descriptor, see Define
Session Parameters at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.htm

l#session-descriptor.

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#web_xml_session-config
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#session-descriptor
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#session-descriptor

Configuring Session Persistence

WebLogic Server Administration Guide 8-39

Using Longer-lived Cookies

For longer-lived client-side user data, your application should create and set its own
cookies on the browser via the HTTP servlet API, and should not attempt to use the
cookies associated with the HTTP session. Your application might use cookies to
auto-login a user from a particular machine, in which case you would set a new cookie
to last for a long time. Remember that the cookie can only be sent from that client
machine. Your application should store data on the server if it must be accessed by the
user from multiple locations.

You cannot directly connect the age of a browser cookie with the length of a session.
If a cookie expires before its associated session, that session becomes orphaned. If a
session expires before its associated cookie, the servlet is not be able to find a session.
At that point, a new session is assigned when the getSession()method is called. You
should only make transient use of sessions.

Configuring Session Persistence

There are four different implementations of session persistence:

� Memory (single-server, non-replicated)

� File system persistence

� JDBC persistence

� In-memory replication (across a cluster)

The first three are covered here; in-memory replication is covered in Understanding
HTTP Session State Replication (at
http://e-docs.bea.com/wls/docs60/cluster/servlet.html).

For file, JDBC, and in-memory replication, you need to set additional attributes,
including PersistentStoreType. Each method has its own set of properties as
shown below.

http://e-docs.bea.com/wls/docs60/cluster/servlet.html
http://e-docs.bea.com/wls/docs60/cluster/servlet.html

8 Deploying and Configuring Web Applications

8-40 WebLogic Server Administration Guide

Common Properties

You can configure the number of sessions that are held in memory by setting the
following attributes in the WebLogic-specific deployment descriptor, weblogic.xml.
These attributes are only applicable if you are using session persistence:

CacheSize

Limits the number of cached sessions that can be active in memory at any one
time. If you are expecting high volumes of simultaneous active sessions, you
do not want these sessions to soak up the RAM of your server since this may
cause performance problems swapping to and from virtual memory. When
the cache is full, the least recently used sessions are stored in the persistent
store and recalled automatically when required. If you do not use persistence,
this property is ignored, and there is no soft limit to the number of sessions
allowed in main memory. By default, the number of cached sessions is 1024.
The minimum is 16, and maximum is Integer.MAX_VALUE. An empty
session uses less than 100 bytes, but grows as data is added to it.

SwapIntervalSecs

The interval the server waits between purging the least recently used sessions
from the cache to the persistent store, when the cacheEntries limit has been
reached.

If unset, this property defaults to 10 seconds; minimum is 1 second, and
maximum is 604800 (1 week).

InvalidationIntervalSecs

Sets the time, in seconds, that WebLogic Server waits between doing
house-cleaning checks for timed-out and invalid sessions, and deleting the
old sessions and freeing up memory. Set this parameter to a value less than
the value set for the <session-timeout> element. Use this parameter to
tune WebLogic Server for best performance on high traffic sites.

The minimum value is every second (1). The maximum value is once a week
(604,800 seconds). If unset, the parameter defaults to 60 seconds.

You set <session-timeout> in the <session-config> element (see
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#w

eb_xml_session-config) of the Web Application deployment descriptor
web.xml.

http://e-docs.bea.com/wls/docs60/programming/web_xml.html#web_xml_session-config

Configuring Session Persistence

WebLogic Server Administration Guide 8-41

Using Memory-based, Single-server, Non-replicated
Persistent Storage

To use memory-based, single-server, non-replicated persistent storage, set the property
PersistentStoreType to memory. When you use memory-based storage all session
information is stored in memory and is lost when you stop and restart WebLogic
Server.

Using File-based Persistent Storage

For file-based persistent storage for sessions:

1. Set the PersistentStoreType to file.

2. Set the directory where WebLogic Server stores the sessions. For more
information, on setting this directory, see PersistentStoreDir at
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#

PersistentStoreDir.

If you do not explicitly set a value for this attribute, a temporary directory is
created for you by WebLogic Server.

If you are using file-based persistence in a cluster, you must explicitly set this
attribute to a shared directory that is accessible to all the servers in a cluster. You
must create this directory yourself.

Using a Database for Persistent Storage

For JDBC-based persistent storage for sessions:

1. Set JDBC as the persistent store method by setting the attribute
PersistentStoreType to jdbc.

2. Set a JDBC connection pool to be used for persistence storage with the
PersistentStorePool attribute. Use the name of a connection pool that is
defined in the WebLogic Server Administration Console.

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#PersistentStoreDir

8 Deploying and Configuring Web Applications

8-42 WebLogic Server Administration Guide

For more details on setting up a database connection pool, see Managing JDBC
Connectivity at
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html.

3. Set an ACL for the connection that corresponds to the users that have permission.
For more details on setting up a database connection, see Managing JDBC
Connectivity at
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html.

4. Set up a database table named wl_servlet_sessions for JDBC-based
persistence. The connection pool that connects to the database needs to have
read/write access for this table. The following table shows the Column names and
data types you should use when creating this table.

Table 8-4 wl_servlet_sessions table

Column name Type

wl_id Variable-width alphanumeric column, up to 100
characters; for example, Oracle VARCHAR2(100).
The primary key must be set as follows:

wl_id + wl_context_path.

wl_context_path Variable-width alphanumeric column, up to 100
characters; for example, Oracle VARCHAR2(100).
This column is used as part of the primary key. (See the
wl_id column description.)

wl_is_new Single char column; for example, Oracle CHAR(1)

wl_create_time Numeric column, 20 digits; for example, Oracle
NUMBER(20)

wl_is_valid Single char column; for example, Oracle CHAR(1)

wl_session_values Large binary column; for example, Oracle LONG RAW

wl_access_time Numeric column, 20 digits; for example, NUMBER(20)

wl_max_inactive_interval Integer column; for example, Oracle Integer.
Number of seconds between client requests before the
session is invalidated. A negative time value indicates
that the session should never timeout.

http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html

Using URL Rewriting

WebLogic Server Administration Guide 8-43

If you are using an Oracle DBMS, you can use the following SQL statement to create
the wl_servlet_sessions table:

create table wl_servlet_sessions
(wl_id VARCHAR2(100) NOT NULL,

wl_context_path VARCHAR2(100) NOT NULL,
wl_is_new CHAR(1),
wl_create_time NUMBER(20),
wl_is_valid CHAR(1),
wl_session_values LONG RAW,
wl_access_time NUMBER(20),
wl_max_inactive_interval INTEGER,

PRIMARY KEY (wl_id, wl_context_path));

You can modify the proceeding SQL statement for use with your DBMS.

Note: You can configure a maximum duration that the JDBC session persistence
should wait for a JDBC connection from the connection pool before failing to
load the session data with the JDBCConnectionTimeoutSecs (see
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.h

tml#JDBCConnectionTimeoutSecs) attribute.

Using URL Rewriting

In some situations, a browser may not accept cookies, which makes session tracking
using cookies impossible. URL rewriting is a solution to this situation that can be
substituted automatically when WebLogic Server detects that the browser does not
accept cookies. URL rewriting involves encoding the session ID into the hyper-links
on the Web pages that your servlet sends back to the browser. When the user
subsequently clicks these links, WebLogic Server extracts the ID from the URL
address and finds the appropriate HttpSession when your servlet calls the
getSession() method.

To enable URL rewriting in WebLogic Server, set the URLRewritingEnabled (see
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#UR
LRewritingEnabled) attribute in the WebLogic-specific deployment descriptor,
weblogic.xml, under the <session-descriptor> element. to true. (The default
value for this attribute is true.)

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#JDBCConnectionTimeoutSecs
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#URLRewritingEnabled

8 Deploying and Configuring Web Applications

8-44 WebLogic Server Administration Guide

Coding Guidelines for URL Rewriting

There are some general guidelines for how your code should handle URLs in order to
support URL rewriting.

� Avoid writing a URL straight to the output stream, as shown here:

out.println("catalog");

Instead, use the HttpServletResponse.encodeURL() method, for example:

out.println("<a href=\"”
+ response.encodeURL(“myshop/catalog.jsp”)
+ “\">catalog");

Calling the encodeURL() method determines if the URL needs to be rewritten,
and if so, it rewrites it, by including the session ID in the URL. The session ID
is appended to the URL and begins with a semicolon.

� In addition to URLs that are returned as a response to WebLogic Server, also
encode URLs that send redirects. For example:

if (session.isNew())
response.sendRedirect

(response.encodeRedirectUrl(welcomeURL));

WebLogic Server uses URL rewriting when a session is new, even if the browser
does accept cookies, because the server cannot tell if a browser accepts cookies
in the first visit of a session.

� Your servlet can determine if a given session ID was received from a cookie by
checking the Boolean returned from the
HttpServletRequest.isRequestedSessionIdFromCookie() method. Your
application may respond appropriately, or simply rely on URL rewriting by
WebLogic Server.

URL Rewriting and Wireless Access Protocol (WAP)

If you are writing a WAP application, you must use URL rewriting because the WAP
protocol does not support cookies. In addition, some WAP devices have a
128-character limit on the length of a URL (including parameters), which limits the
amount of data that can be transmitted using URL rewriting. To allow more space for
parameters, you can limit the size of the session ID that is randomly generated by

Using Character Sets and POST Data

WebLogic Server Administration Guide 8-45

WebLogic Server by specifying the number of bytes with the IDLength (see
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#ID
Length) attribute.

Using Character Sets and POST Data

You can set the character set that is used when processing data from a form that uses
the POST method. To inform the application that processes the form data that a
particular character set is in use, you add specific “signal” characters to the URL used
to process the form data (specified with the action attribute of the <form> tag) and
then map those characters to an encoding in the Web Application deployment
descriptor, web.xml. POST data is normally read as ASCII unless specified using the
following procedure.

To process POST data in a non-ASCII character set:

1. Create an entry in the Web Application deployment descriptor, web.xml, within a
<context-param> element. This entry should come after the <distributable>
element and before the <servlet> element in the web.xml file. In this entry, the
<param-name> always includes the class name
weblogic.httpd.inputCharset, followed by a period, followed by the signal
string. The <param-value> contains the name of the HTTP character set. In the
following example, the string /rus/jo* is mapped to the windows-1251 character
set:

<context-param>
<param-name>weblogic.httpd.inputCharset./rus/jo*</param-name>
<param-value>windows-1251</param-value>

</context-param>

2. Code the HTML form to use the signal string when sending the form data. For
example:

<form action="http://some.host.com/myWebApp/rus/jo/index.html">
...

</form>

Place the signal string after the Web Application name (also called the context
path—myWebApp— in this case) and before the remaining portion of the URL.

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#IDLength

8 Deploying and Configuring Web Applications

8-46 WebLogic Server Administration Guide

For more information on the Web Application deployment descriptor, see Define
Context Parameters at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.htm

l#context-param.

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#context-param
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html#context-param

Administration Guide 9-1

CHAPTER

9 Installing and
Configuring the
Apache HTTP Server
Plug-In

The following sections describe how to install and configure the Apache HTTP Server
Plug-In:

� “Overview” on page 9-2

� “Platform Support” on page 9-3

� “Installing the Apache HTTP Server Plug-In” on page 9-3

� “Configuring the Apache HTTP Server Plug-In” on page 9-6

� “Using SSL With the Apache Plug-In” on page 9-8

� “Issues with SSL-Apache Configuration” on page 9-9

� “Template for the httpd.conf File” on page 9-14

� “Sample Configuration Files” on page 9-14

� “Connection Errors and Clustering Failover” on page 9-11

9 Installing and Configuring the Apache HTTP Server Plug-In

9-2 Administration Guide

Overview

The Apache HTTP Server Plug-In allows requests to be proxied from an Apache
HTTP Server to WebLogic Server. The plug-in enhances an Apache installation by
allowing WebLogic Server to handle those requests that require the dynamic
functionality of WebLogic Server.

The plug-in is intended for use in an environment where an Apache Server serves static
pages, and another part of the document tree (dynamic pages best generated by HTTP
Servlets or JavaServer Pages) is delegated to WebLogic Server, which may be
operating in a different process, possibly on a different host. To the end user — the
browser — the HTTP requests delegated to WebLogic Server still appear to be coming
from the same source.

The HTTP-tunneling can also operate through the plug-in, providing non-browser
clients access to WebLogic Server services.

The Apache HTTP Server Plug-In operates as an Apache module within an Apache
HTTP Server. An Apache module is loaded by Apache Server at startup, and then
certain HTTP requests are delegated to it. Apache modules are similar to HTTP
servlets, except that an Apache module is written in code native to the platform.

Keep-Alive Connections in Apache

The Apache HTTP Server Plug-In creates a socket for each request and closes the
socket after reading the response. Because Apache HTTP Server is multiprocessed,
connection pooling and keep-alive connections between WebLogic Server and
theApache HTTP Server Plug-In cannot be supported.

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests either based on the URL of the request (or a portion
of the URL). This is called proxying by path. You can also proxy request based on the
MIME type of the requested file. You can also use a combination of both methods. If

Platform Support

Administration Guide 9-3

a request matches both criteria, the request is proxied by path. You can also specify
additional parameters for each of these types of requests that define additional
behavior of the plug-in. For more information, see “Configuring the Apache HTTP
Server Plug-In” on page 9-6.

Platform Support

The Apache HTTP Server Plug-In is supported on Linux, Solaris and HPUX11
platforms. For information on support for specific versions of Apache, see the BEA
WebLogic Server Platform Support Page at
http://e-docs.bea.com/wls/platforms/index.html#apach.

Installing the Apache HTTP Server Plug-In

You install the Apache HTTP Server Plug-In as an Apache module along with your
Apache HTTP Server installation. To install the Apache HTTP Server Plug-In:

1. Locate the shared object file for your platform.

The Apache plug-in is distributed as a shared object (.so) for use on Solaris,
Linux, and HPUX11 platforms. Each shared object file is distributed as separate
versions, depending on the platform, whether or not SSL is to be used between
the client and Apache, and the encryption strength for SSL (regular or 128 bit).
The shared object files are located in the following directories of your WebLogic
Server installation:

Solaris
lib/solaris

Linux
lib/linux

HPUX11
lib/hpux11

http://e-docs.bea.com/wls/platforms/index.html#apach
http://e-docs.bea.com/wls/platforms/index.html#apach

9 Installing and Configuring the Apache HTTP Server Plug-In

9-4 Administration Guide

Choose the appropriate shared object from the following table.:

2. Enable the shared object.

The Apache HTTP Server Plug-In will be installed as an Apache Dynamic
Shared Object (DSO). DSO support in Apache is based on a module named
mod_so.c that must be enabled before mod_wl.so is loaded. If you installed
Apache using the supplied script, mod_so.c should already be enabled. To
verify that mod_so.c is enabled, execute the following command:

APACHE_HOME/bin/httpd -l

(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

This command lists all of the enabled modules. If mod_so.c is not listed, build
your Apache HTTP Server from the source code, making sure that the following
options are configured:

Apache
Version

Regular Strength
Encryption

128-bit
Encryption

Standard
Apache,

Version 1.x

mod_wl.so mod_wl128.so

Apache w/
SSL/EAPI
Version 1.x

(Stronghold,
modssl etc).

mod_wl_ssl.so mod_wl128_ssl.so

Apache + Raven
Version 1.x

Required
because Raven
applies frontpage
patches that
makes the
plug-in
incompatible
with the standard
shared object.

mod_wl_ssl_raven.so mod_wl128_ssl_raven.so

Installing the Apache HTTP Server Plug-In

Administration Guide 9-5

...
--enable-module=so
--enable-rule=SHARED_CORE
...

3. Install the Apache HTTP Server Plug-In with a support program called apxs

(APache eXtenSion) that builds DSO-based modules outside of the Apache
source tree, and adds the following line to the httpd.conf file:

AddModule mod_so.c

In your WebLogic Server installation, use a command shell to navigate to the
directory that contains the shared object for your platform and activate the
weblogic_module by issuing this command (note that you must have Perl
installed to run this Perl script):

perl APACHE_HOME/bin/apxs –i –a –n weblogic mod_wl.so

This command copies the mod_wl.so file to the APACHE_HOME/libexec
directory. It also adds two lines of instructions for weblogic_module to the
httpd.conf file and activates the module. Make sure that the following lines
were added to your APACHE_HOME/conf/httpd.conf file:

LoadModule weblogic_module
AddModule mod_weblogic.c

4. Verify the syntax of the APACHE_HOME/conf/httpd.conf file with the
following command:

APACHE_HOME/bin/apachect1 configtest

The output of this command indicates any errors in your httpd.conf file.

5. Configure any additional parameters in the Apache httpd.conf configuration
file as described in the section “Configuring the Apache HTTP Server Plug-In”
on page 9-6. The httpd.conf file allows you to customize the behavior of the
Apache HTTP Server Plug-In.

6. Start Weblogic Server.

7. Start (or restart if you have changed the configuration) Apache HTTP Server.

8. Test the Apache plug-in by opening a browser and setting the URL to the Apache
Server + “/weblogic/”, which should bring up the default WebLogic Server
HTML page, welcome file, or default servlet, as defined for the default Web
Application on WebLogic Server. For example:

http://myApacheserver.com/weblogic/

9 Installing and Configuring the Apache HTTP Server Plug-In

9-6 Administration Guide

Configuring the Apache HTTP Server Plug-In

After you install the plug-in (see “Installing the Apache HTTP Server Plug-In” on page
9-3), edit the httpd.conf file to configure the Apache plug-in. Editing the
httpd.conf file informs the Apache web server that it should load the native library
for the plug-in as an Apache module and also describes which requests should be
handled by the module.

Editing the httpd.conf File

To edit the httpd.conf file to configure the Apache HTTP Server Plug-In:

1. Open the httpd.conf file. The file is located at
APACHE_HOME/conf/httpd.conf (where APACHE_HOME is the root directory of
your Apache installation).

2. Verify that the following two lines were added to the httpd.conf file when you
ran the apxs utility:

LoadModule weblogic_module libexec/mod_wl.so
AddModule mod_weblogic.c

3. Add an IfModule block that defines one of the following:

For a non-clustered WebLogic Server:
The WebLogicHost and WebLogicPort parameters.

For a cluster of WebLogic Servers:
The WebLogicCluster parameter.

For example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001

</IfModule>

4. If you want to proxy requests by MIME type, also add a MatchExpression line
to the IfModule block. (You can also proxy requests by path. Proxying by path
takes precedence over proxying by MIME type. If you only want to proxy
requests by path, skip to step)

Configuring the Apache HTTP Server Plug-In

Administration Guide 9-7

For example, the following IfModule block for a non-clustered WebLogic
Server specifies that all files with MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp

</IfModule>

You can also use multiple MatchExpressions, for example:

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

If you are proxying requests by MIME type to a cluster of WebLogic Servers,
use the WebLogicCluster parameter instead of the WebLogicHost and
WebLogicPort parameters. For example:

<IfModule mod_weblogic.c>
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
MatchExpression *.jsp
MatchExpression *.xyz

</IfModule>

5. If you want to proxy requests by path, use the Location block and the
SetHandler statement. SetHandler specifies the handler for the Apache HTTP
Server Plug-In module. For example the following Location block proxies all
requests containing the /weblogic in the URL:

<Location /weblogic>
SetHandler weblogic-handler

</Location>

6. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in “General
Parameters for Web Server Plug-Ins” on page C-2. To modify the behavior of
your Apache HTTP Server Plug-In, define these parameters either:

� in a Location block, for parameters that apply to proxying by path, or

� in an IfModule block, for parameters that apply to proxying by MIME type.

9 Installing and Configuring the Apache HTTP Server Plug-In

9-8 Administration Guide

Notes on Editing the httpd.conf File

� As an alternative to the procedure in “Editing the httpd.conf File” on page 9-6,
You can define parameters in a separate file called weblogic.conf file that is
included in the IfModule block. Using this included file may help modularize
your configuration.For example

<IfModule mod_weblogic.c>
Config file for WebLogic Server that defines the parameters
Include conf/weblogic.conf

</IfModule>

Note: Defining parameters in an included file is not supported when using SSL
between Apache HTTP Server Plug-In and WebLogic Server.

� Each parameter should be entered on a new line. Do not put an ‘=’ between the
parameter and its value. For example:

PARAM_1 value1
PARAM_2 value2
PARAM_3 value3

� If a request matches both a MIME type specified in a MatchExpression in an
IfModule block and a path specified in a Location block, the behavior
specified by the Location block takes precedence.

� If you define the CookieName parameter, you must define it in an IfModule

block.

Using SSL With the Apache Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between the Apache HTTP Server Plug-In and WebLogic Server. The SSL protocol
provides confidentiality and integrity to the data passed between the Apache HTTP
Server Plug-In and WebLogic Server. In addition, the SSL protocol allows the plug-in
to authenticate itself to WebLogic Server to ensure that information is passed to a
trusted principal.

Using SSL With the Apache Plug-In

Administration Guide 9-9

The Apache HTTP Server Plug-In does not use the transport protocol (http or https)
specified in the HTTP request (usually by the browser) to determine whether or not the
SSL protocol is used to protect the connection between the Apache HTTP Server
Plug-In and WebLogic Server.

Configuring SSL Between the Apache HTTP Server
Plug-In and WebLogic Server

To use the SSL protocol between Apache HTTP Server Plug-In and WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see “Configuring the
SSL Protocol” on page 12-29.

2. Configure the WebLogic Server SSL listen port. For more information, see
“Configuring the Listen Port” on page 7-3.

3. Set the WebLogicPort parameter in the httpd.conf file to the listen port
configured in step 2.

4. Set the SecureProxy parameter in the httpd.conf file to ON.

5. Set any additional parameters in the httpd.conf file that define information
about the SSL connection. For a complete list of parameters, see “SSL
Parameters for Web Server Plug-Ins” on page C-11.

Issues with SSL-Apache Configuration

Two known issues arise when you configure the Apache plug-in to use SSL:

� The PathTrim (see page C-3) parameter must be configured inside the
<Location> tag.

The following configuration is incorrect:

<Location /weblogic>
SetHandler weblogic-handler
</Location>

<IfModule mod_weblogic.c>
WebLogicHost localhost

9 Installing and Configuring the Apache HTTP Server Plug-In

9-10 Administration Guide

WebLogicPort 7001
PathTrim /weblogic
</IfModule>

The following configuration is the correct setup:

<Location /weblogic>
SetHandler weblogic-handler
PathTrim /weblogic

</Location>

� The Include directive does not work with Apache SSL. You must configure all
parameters directly in the httpd.conf file. Do not use the following
configuration when using SSL:

<IfModule mod_weblogic.c>
MatchExpression *.jsp
Include weblogic.conf

</IfModule>

Connection Errors and Clustering Failover

Administration Guide 9-11

Connection Errors and Clustering Failover

When the Apache HTTP Server Plug-In attempts to connect to WebLogic Server, the
plug-in uses several configuration parameters to determine how long to wait for
connections to the WebLogic Server host and, after a connection is established, how
long the plug-in waits for a response. If the plug-in cannot connect or does not receive
a response, the plug-in will attempt to connect and send the request to other WebLogic
Servers in the cluster. If the connection fails or there is no response from any
WebLogic Server in the cluster, an error message is sent.

Figure 9-1 “Connection Failover” on page 9-13 demonstrates how the plug-in handles
failover.

Connection Failures

Failure of the host to respond to a connection request could indicate possible problems
with the host machine, networking problems, or other server failures.

Failure of WebLogic Server to respond, could indicate that WebLogic Server is not
running or is unavailable, a hung server, a database problem, or other application
failure.

Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server the same logic described here
applies, except that the plug-in only attempts to connect to the server defined with the
WebLogicHost parameter. If the attempt fails, an HTTP 503 error message is
returned. The plug-in continues trying to connect to WebLogic Server until
ConnectTimeoutSecs is exceeded.

9 Installing and Configuring the Apache HTTP Server Plug-In

9-12 Administration Guide

The Dynamic Server List

When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the
plug-in uses that list as a starting point for load balancing among the members of the
cluster. After the first request is routed to one of these servers, a dynamic server list is
returned containing an updated list of servers in the cluster. The updated list adds any
new servers in the cluster and deletes any that are no longer part of the cluster or that
have failed to respond to requests. This list is updated automatically with the HTTP
response when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions

When a request contains a session information stored in a cookie, in the POST data, or
by URL encoding, the session ID contains a reference to the specific server in which
the session was originally established (called the primary server) and a reference to an
additional server where the original session is replicated (called the secondary server).
A request containing a cookie attempts to connect to the primary server If that attempt
fails, the request is routed to the secondary server. If both the primary and secondary
servers fail, the session is lost and the plug-in attempts to make a fresh connection to
another server in the dynamic cluster list. For more information see Figure 9-1
“Connection Failover” on page 9-13.

Connection Errors and Clustering Failover

Administration Guide 9-13

Figure 9-1 Connection Failover

*The Maximum number of retries allowed in the red loop is equal to

ConnectTimeoutSecs ÷ ConnectRetrySecs.

9 Installing and Configuring the Apache HTTP Server Plug-In

9-14 Administration Guide

Template for the httpd.conf File

This section contains a sample httpd.conf file. You can use this sample as a template
that you can modify to suit your environment and server. Lines beginning with # are
comments. Note that Apache HTTP Server is not case sensitive, and that the
LoadModule and AddModule lines are automatically added by the apxs utility.

##

APACHE-HOME/conf/httpd.conf file
##

LoadModule weblogic_module libexec/mod_wl.so

AddModule mod_weblogic.c

<Location /weblogic>
SetHandler weblogic-handler
PathTrim /weblogic
ErrorPage http://myerrorpage1.mydomain.com

</Location>

<Location /servletimages>
SetHandler weblogic-handler
PathTrim /something
ErrorPage http://myerrorpage1.mydomain.com

</Location>

<IfModule mod_weblogic.c>
MatchExpression *.jsp
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
ErrorPage http://myerrorpage.mydomain.com

</IfModule>

Sample Configuration Files

Instead of defining parameters in the location block of your httpd.conf file, if
you prefer, you can use a weblogic.conf file that is loaded by the IfModule in the
httpd.conf file. The following examples may be used as templates that you can
modify to suit your environment and server. Lines beginning with ‘#’ are comments.

Sample Configuration Files

Administration Guide 9-15

Example Using WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks. (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
ErrorPage http://myerrorpage.mydomain.com
MatchExpression *.jsp

</IfModule>
##

Example Using Multiple WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=7001|Debug=ON
MatchExpression *.html WebLogicCluster=myHost1:7282,myHost2:7283|ErrorPage=

http://www.xyz.com/error.html
</IfModule>

Example Without WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
WebLogicHost myweblogic.server.com
WebLogicPort 7001
MatchExpression *.jsp

</IfModule>

9 Installing and Configuring the Apache HTTP Server Plug-In

9-16 Administration Guide

Example Configuring IP-Based Virtual Hosting

NameVirtualHost 172.17.8.1
<VirtualHost goldengate.domain1.com>
WebLogicCluster tehama1:4736,tehama2:4736,tehama:4736
PathTrim /x1
ConnectTimeoutSecs 30
</VirtualHost>
<VirtualHost goldengate.domain2.com>
WeblogicCluster green1:4736,green2:4736,green3:4736
PathTrim /y1
ConnectTimeoutSecs 20
</VirtualHost>

Example Configuring Name-Based Virtual Hosting With a
Single IP Address

<VirtualHost 162.99.55.208>
ServerName myserver.mydomain.com
<Location / >

SetHandler weblogic-handler
WebLogicCluster 162.99.55.71:7001,162.99.55.72:7001
Idempotent ON
Debug ON
DebugConfigInfo ON

</Location>
</VirtualHost>

<VirtualHost 162.99.55.208>
ServerName myserver.mydomain.com
<Location / >

SetHandler weblogic-handler
WebLogicHost russell
WebLogicPort 7001
Debug ON
DebugConfigInfo ON

</Location>
</VirtualHost>

Administration Guide 10-1

CHAPTER

10 Installing and
Configuring the
Microsoft Internet
Information Server
(ISAPI) Plug-In

This following sections describes how to install and configure the Microsoft Internet
Information Server Plug-In. The following topics are covered:

� “Overview of the Microsoft Internet Information Server Plug-In” on page 10-2

� “Installing the Microsoft Internet Information Server Plug-In” on page 10-3

� “Sample iisproxy.ini File” on page 10-7

� “Using SSL with the Microsoft Internet Information Server Plug-In” on page
10-7

� “Proxying Servlets From IIS to WebLogic Server” on page 10-8

� “Testing the Installation” on page 10-9

� “Connection Errors and Clustering Failover” on page 10-11

10 Installing and Configuring the Microsoft Internet Information Server (ISAPI) Plug-In

10-2 Administration Guide

Overview of the Microsoft Internet
Information Server Plug-In

The Microsoft Internet Information Server Plug-In allows requests to be proxied from
a Microsoft Internet Information Server (IIS) to WebLogic Server. The plug-in
enhances an IIS installation by allowing WebLogic Server to handle those requests that
require the dynamic functionality of WebLogic Server.

The Microsoft Internet Information Server Plug-In is intended for use in an
environment where the Internet Information Server (IIS) serves static pages such as
HTML pages, while dynamic pages such as HTTP Servlets or JavaServer Pages are
served by WebLogic Server. The WebLogic Server may be operating in a different
process, possibly on a different host. To the end user—the browser—the HTTP
requests delegated to WebLogic Server still appear to be coming from IIS. The
HTTP-tunneling facility of the WebLogic client-server protocol also operates through
the plug-in, providing access to all WebLogic Server services.

Connection Pooling and Keep-Alive

The Microsoft Internet Information Server Plug-In improves performance by using a
re-usable pool of connections from the plug-in to WebLogic Server. The plug-in
implements HTTP 1.1 keep-alive connections between the plug-in and WebLogic
Server by re-using the same connection in the pool for subsequent requests from the
same client. If the connection is inactive for more than 30 seconds, (or a user-defined
amount of time) the connection is closed and returned to the pool.

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests either based on the URL of the request (or a portion
of the URL). This is called proxying by path. You can also proxy request based on the
MIME type of the requested file. You can also use a combination of both methods. If
a request matches both criteria, the request is proxied by path. You can also specify

Platform Support

Administration Guide 10-3

additional parameters for each of these types of requests that define additional
behavior of the plug-in. For more information, see “Installing the Microsoft Internet
Information Server Plug-In” on page 10-3.

Platform Support

For the latest information on operating system and IIS version compatibility with the
Microsoft Internet Information Server Plug-In, see the platform support page at
http://e-docs.bea.com/wls/platforms/index.html#iis.

Installing the Microsoft Internet
Information Server Plug-In

To install the Microsoft Internet Information Server Plug-In:

1. Copy the iisproxy.dll file from the /bin directory of your WebLogic Server
installation into a convenient directory that is accessible by IIS. This directory must
also contain the iisproxy.ini file.

2. Start the IIS Internet Service Manager by selecting it from the Microsoft IIS Start
menu.

3. In the left panel of the Service Manager, select your website (the default is
“Default Web Site”).

4. Click the “Play” arrow in the toolbar to start.

5. Open the properties for the selected website by holding the right mouse button
down over the website selection in the left panel.

6. In the Properties panel, select the Home Directory tab, and click the
Configuration button in the Applications Settings section.

7. Configure proxying by file type:

http://e-docs.bea.com/wls/platforms/index.html#iis

10 Installing and Configuring the Microsoft Internet Information Server (ISAPI) Plug-In

10-4 Administration Guide

a. On the App Mappings tab, click the Add button to add file types and configure
them to be proxied to WebLogic Server.

b. In the dialog box, browse to find the “iisproxy.dll” file.

c. Set the Extension to the type of file that you want to proxy to WebLogic Server.

d. Select the “Script engine” check box.

e. Deselect the “Check that file exists” check box.

f. Set the Method exclusions as needed to create a secure installation.

g. When you finish, click the OK button to save the configuration. Repeat this
process for each file type you want to proxy to WebLogic.

h. When you finish configuring file types, click the OK button to close the
Properties panel.

Note: Any path information you add to the URL after the server and port is passed
directly to WebLogic Server. For example, if you request a file from IIS with
the URL:

http://myiis.com/jspfiles/myfile.jsp

it is proxied to WebLogic Server with a URL such as

http://mywebLogic:7001/jspfiles/myfile.jsp

8. Create the iisproxy.ini file.

The iisproxy.ini file contains name=value pairs that define configuration
parameters for the plug-in. The parameters are listed in “General Parameters for
Web Server Plug-Ins” on page C-2.

Note: Changes in the parameters will not go into effect until you restart the “IIS
Admin Service” (Under services, in the control panel).

BEA recommends that you locate the iisproxy.ini file in the same directory
that contains the iisproxy.dll file. You can also use other locations. If you
place the file elsewhere, note that WebLogic Server searches for iisproxy.ini
in the following directories, in the following order:

a. The same directory where iisproxy.dll is located.

Installing the Microsoft Internet Information Server Plug-In

Administration Guide 10-5

b. The home directory of the most recent version of WebLogic Server that is
referenced in the Windows Registry. If WebLogic Server does not find the
iisproxy.ini file there, it continues looking in the Windows Registry for
older versions of WebLogic Server and looks for the iisproxy.ini file in the
home directories of those installations.

c. c:\weblogic

9. Define the WebLogic Server host and port number to which the Microsoft
Internet Information Server Plug-In proxies requests. Depending on your
configuration, there are two ways to define the host and port:

� If you are proxying requests to a single WebLogic Server, define the
WebLogicHost and WebLogicPort parameters in the iisproxy.ini
file. For example:

WebLogicHost=localhost
WebLogicPort=7001

� If you are proxying requests to a cluster of WebLogic Servers, define the
WebLogicCluster parameter in the iisproxy.ini file. For example:

WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001

10. Configure proxying by path. In addition to proxying by file type you can
configure the Microsoft Internet Information Server Plug-In to serve files based
on their path by specifying some additional parameters in the iisproxy.ini
file. Proxying by path takes precedence over proxying by MIME type.

To configure proxying by path:

a. Place the iisforward.dll file in the same directory as the iisproxy.dll file
and add the iisforward.dll file as a filter service in IIS (WebSite Properties
→ ISAPI Filters tab → Add the iisforward dll).

b. Register .wlforward as a special file type to be handled by iisproxy.dll.

c. Define the property WlForwardPath in iisproxy.ini. WlForwardPath
defines the path that is proxied to WebLogic Server, for example:
WlForwardPath=/weblogic.

d. Set the PathTrim parameter to trim off the WlForwardPath when necessary.
For example, using

WlForwardPath=/weblogic
PathTrim=/weblogic

10 Installing and Configuring the Microsoft Internet Information Server (ISAPI) Plug-In

10-6 Administration Guide

trims a request from IIS to Weblogic Server. Therefore,
/weblogic/session is changed to /session.

e. If you want requests that do not contain extra path information (in other words,
requests containing only a host name), set the DefaultFileName parameter
to the name of the welcome page of the Web Application to which the request
is being proxied. The value of this parameter is appended to the URL.

f. If you need to debug your application, set the Debug=ON” parameter in
iisproxy.ini. A c:\tmp\iisforward.log is generated containing a log of
the plug-in’s activity that you can use for debugging purposes.

11. Set any additional parameters in the iisproxy.ini file. A complete list of
parameters is available in the appendix “General Parameters for Web Server
Plug-Ins” on page C-2.

12. If you are proxying servlets from IIS to WebLogic Server and you are not
proxying by path, please read the section “Proxying Servlets From IIS to
WebLogic Server” on page 10-8.

Creating ACLs through IIS

ACLs will not work through the Microsoft Internet Information Server Plug-In if the
Authorization header is not passed by IIS. Use the following information to ensure that
the Authorization header is passed by IIS.

When using Basic Authentication, the user is logged on with local log-on rights. To
enable the use of Basic Authentication, grant each user account the Log On Locally
user right on the IIS server. Note the following two problems that may result from
Basic Authentication's use of local logon.

� If the user does not have local log-on rights, Basic Authentication will not work
even if the FrontPage, IIS, and Windows NT configurations appear to be correct.

� A user who has local log-on rights and who can obtain physical access to the
host computer running IIS will be permitted to start an interactive session at the
console.

To enable Basic Authentication, in the Directory Security tab of the console, ensure
that the Allow Anonymous option is "on" and all other options are "off".

Sample iisproxy.ini File

Administration Guide 10-7

Sample iisproxy.ini File

Here is a sample iisproxy.ini file for use with a single, non-clustered WebLogic
Server. Comment lines are denoted with the “#” character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.

WebLogicHost=localhost
WebLogicPort=7001
ConnectTimeoutSecs=20
ConnectRetrySecs=2

Here is a sample iisproxy.ini file with clustered WebLogic Servers. Comment lines
are denoted with the “#” character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.

WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001
ConnectTimeoutSecs=20
ConnectRetrySecs=2

Note: If you are using SSL between the plug-in and WebLogic Server the port
number should be defined as the SSL listen port.

Using SSL with the Microsoft Internet
Information Server Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between the WebLogic Server proxy plug-in and the Microsoft Internet Information
Server. The SSL protocol provides confidentiality and integrity to the data passed
between the Microsoft Internet Information Server Plug-In and WebLogic Server. In
addition, the SSL protocol allows the WebLogic Server proxy plug-in to authenticate
itself to the Microsoft Internet Information Server to ensure that information is passed
to a trusted principal.

10 Installing and Configuring the Microsoft Internet Information Server (ISAPI) Plug-In

10-8 Administration Guide

The Microsoft Internet Information Server Plug-In does not use the transport protocol
(http or https) to determine whether or not the SSL protocol will be used to protect
the connection between the proxy plug-in and the Microsoft Internet Information
Server. In order to use the SSL protocol with the Microsoft Internet Information Server
Plug-In, configure the WebLogic Server receiving the proxied requests to use the SSL
protocol. The port on the WebLogic Server that is configured for secure SSL
communication is used by the WebLogic Server proxy plug-in to communicate with
the Microsoft Internet Information Server.

To use the SSL protocol between Microsoft Internet Information Server Plug-In and
WebLogic Server:

1. Configure WebLogic Server for SSL. For more information, see “Configuring the
SSL Protocol” on page 12-29.

2. Configure the WebLogic Server SSL listen port. For more information, see
“Configuring the Listen Port” on page 7-3.

3. Set the WebLogicPort parameter in the iisproxy.ini file to the listen port
configured in step 2.

4. Set the SecureProxy parameter in the iisproxy.ini file to ON.

5. Set additional parameters in the iisproxy.ini file that define the SSL
connection. For a complete list of parameters, see “SSL Parameters for Web
Server Plug-Ins” on page C-11.

For example:

WebLogicHost=myweblogic.com
WebLogicPort=7002
SecureProxy=ON

Proxying Servlets From IIS to WebLogic
Server

Servlets may be proxied by path if the iisforward.dll is registered as a filter. You
would then invoke your servlet with a URL similar to the following:

Testing the Installation

Administration Guide 10-9

http://weblogic:7001/weblogic/myServlet

To proxy servlets if iisforward.dll is not registered as a filter, you must configure
proxying by file type.To proxy servlets by file type:

1. Register an arbitrary file type (extension) with IIS to proxy the request to the
WebLogic Server, as described on page 10-3. in step 7. under “Installing the
Microsoft Internet Information Server Plug-In”.

2. Register your servlet in the appropriate Web Application. For more information
on registering servlets, see Configuring Servlets at
http://e-docs.bea.com/wls/docs60/programming.html#configuring-s

ervlets.

3. Invoke your servlet with a URL formed according to this pattern:

http://www.myserver.com/virtualName/anyfile.ext

where virtualName is the URL pattern defined in the <servlet-mapping>
element of the Web Application deployment descriptor (web.xml) for this
servlet. and ext is a file type (extension) registered with IIS for proxying to
WebLogic Server. The anyfile part of the URL is ignored in this context.

Note:

� If the image links called from the servlet are part of the Web Application,
you must also proxy the requests for the images to WebLogic Server by
registering the appropriate file types (probably .gif and .jpg) with IIS. You
can, however, choose to serve these images directly from IIS if desired.

� If the servlet being proxied has links that call other servlets, then these links
must also be proxied to WebLogic Server, conforming to the pattern shown
above.

Testing the Installation

After you install and configure the Microsoft Internet Information Server Plug-In,
follow these steps for deployment and testing:

1. Make sure WebLogic Server and IIS are running.

2. Save a JSP file into the document root of the default Web Application.

http://e-docs.bea.com/wls/docs60/programming.html#configuring-servlets

10 Installing and Configuring the Microsoft Internet Information Server (ISAPI) Plug-In

10-10 Administration Guide

3. Open a browser and set the URL to the IIS + filename.jsp as shown in this
example:

http://myii.server.com/filename.jsp

If filename.jsp is displayed in your browser, the plug-in is functioning.

Connection Errors and Clustering Failover

Administration Guide 10-11

Connection Errors and Clustering Failover

When the Microsoft Internet Information Server Plug-In attempts to connect to
WebLogic Server, the plug-in uses several configuration parameters to determine how
long to wait for connections to the WebLogic Server host and, after a connection is
established, how long the plug-in waits for a response. If the plug-in cannot connect or
does not receive a response, the plug-in will attempt to connect and send the request to
other WebLogic Servers in the cluster. If the connection fails or there is no response
from any WebLogic Server in the cluster, an error message is sent.

Figure 10-1 “Connection Failover” on page 10-13 demonstrates how the plug-in
handles failover.

Connection Failures

Failure of the host to respond to a connection request could indicate possible problems
with the host machine, networking problems, or other server failures.

Failure of WebLogic Server to respond, could indicate that WebLogic Server is not
running or is unavailable, a hung server, a database problem, or other application
failure.

Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server the same logic described here
applies, except that the plug-in only attempts to connect to the server defined with the
WebLogicHost parameter. If the attempt fails, an HTTP 503 error message is
returned. The plug-in continues trying to connect to WebLogic Server until
ConnectTimeoutSecs is exceeded.

10 Installing and Configuring the Microsoft Internet Information Server (ISAPI) Plug-In

10-12 Administration Guide

The Dynamic Server List

When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the
plug-in uses that list as a starting point for load balancing among the members of the
cluster. After the first request is routed to one of these servers, a dynamic server list is
returned containing an updated list of servers in the cluster. The updated list adds any
new servers in the cluster and deletes any that are no longer part of the cluster or that
have failed to respond to requests. This list is updated automatically with the HTTP
response when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions

When a request contains a session information stored in a cookie, in the POST data, or
by URL encoding, the session ID contains a reference to the specific server in which
the session was originally established (called the primary server) and a reference to an
additional server where the original session is replicated (called the secondary server).
A request containing a cookie attempts to connect to the primary server If that attempt
fails, the request is routed to the secondary server. If both the primary and secondary
servers fail, the session is lost and the plug-in attempts to make a fresh connection to
another server in the dynamic cluster list. For more information see Figure 10-1
“Connection Failover” on page 10-13.

Connection Errors and Clustering Failover

Administration Guide 10-13

Figure 10-1 Connection Failover

*The Maximum number of retries allowed in the red loop is equal to

ConnectTimeoutSecs ÷ ConnectRetrySecs.

10 Installing and Configuring the Microsoft Internet Information Server (ISAPI) Plug-In

10-14 Administration Guide

Administration Guide 11-1

CHAPTER

11 Installing and
Configuring the
Netscape Enterprise
Server Plug-In (NSAPI)

The following sections describe how to install and configure the Netscape Enterprise
Server Plug-In (NES) proxy plug-in:

� “Overview of the Netscape Enterprise Server Plug-In” on page 11-2

� “Installing and Configuring the Netscape Enterprise Server Plug-In” on page
11-3

� “Using SSL with the NSAPI Plug-In” on page 11-9

� “Connection Errors and Clustering Failover” on page 11-11

� “Failover Behavior When Using Firewalls and Load Directors” on page 11-14

� “Sample obj.conf file (not using a WebLogic Cluster)” on page 11-15

� “Sample obj.conf file (using a WebLogic Cluster)” on page 11-17

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-2 Administration Guide

Overview of the Netscape Enterprise Server
Plug-In

The Netscape Enterprise Server Plug-In enables requests to be proxied from Netscape
Enterprise Server (NES, also called iPlanet) to WebLogic Server. The plug-in
enhances an NES installation by allowing WebLogic Server to handle those requests
that require the dynamic functionality of WebLogic Server.

The Netscape Enterprise Server Plug-In is designed for an environment where
Netscape Enterprise Server serves static pages, and a Weblogic Server (operating in a
different process, possibly on a different host or hosts) is delegated to serve dynamic
pages, such as JSPs or pages generated by HTTP Servlets. The connection between
WebLogic Server and the Netscape Enterprise Server Plug-In is made using clear text
or Secure Sockets Layer (SSL). To the end user—the browser—the HTTP requests
delegated to WebLogic Server appear to come from the same source as the static pages.
Additionally, the HTTP-tunneling facility of the WebLogic Server can operate through
the Netscape Enterprise Server Plug-In, providing access to all WebLogic Server
services (not just dynamic pages).

The Netscape Enterprise Server Plug-In operates as an NSAPI module (see
http://home.netscape.com/servers/index.html) within a Netscape
Enterprise Server. The NSAPI module is loaded by NES at startup, and then certain
HTTP requests are delegated to it. NSAPI is similar to an HTTP (Java) servlet, except
that a NSAPI module is written in code native to the platform.

For more information on supported versions of Netscape Enterprise Server and iPlanet
servers, see the BEA WebLogic Server Platform Support Page at
http://e-docs.bea.com/wls/platforms/index.html#plugin.

http://home.netscape.com/servers/index.html
http://e-docs.bea.com/wls/platforms/index.html#plugin

Connection Pooling and Keep-Alive

Administration Guide 11-3

Connection Pooling and Keep-Alive

The WebLogic Server NSAPI plug-in provides efficient performance by using a
re-usable pool of connections from the plug-in to WebLogic Server. The NSAPI
plug-in automatically implements “keep-alive” connections between the plug-in and
WebLogic Server. If a connection is inactive for more than 30 seconds or a
user-defined amount of time, the connection is closed.

Proxying Requests

The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests either based on the URL of the request (or a portion
of the URL). This is called proxying by path. You can also proxy request based on the
MIME type of the requested file. You can also use a combination of both methods. If
a request matches both criteria, the request is proxied by path. You can also specify
additional parameters for each of these types of requests that define additional
behavior of the plug-in. For more information, see the next section.

Installing and Configuring the Netscape
Enterprise Server Plug-In

To install and configure the Netscape Enterprise Server Plug-In:

1. Copy the library.

The WebLogic NSAPI plug-in module is distributed as a shared object (.so) on
UNIX platforms and as a dynamic-link library (.dll) on Windows. These files
are respectively located in the /lib or /bin directories of your WebLogic
Server distribution.

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-4 Administration Guide

Choose the appropriate library file for your environment from the BEA
WebLogic Server Platform Support Page at
http://e-docs.bea.com/wls/platforms/index.html#plugin.. and copy
that file into the file system where NES is located.

2. Modify the obj.conf file. The obj.conf file defines which requests are proxied
to WebLogic Server and other configuration information. For details see
“Modifying the obj.conf File” on page 11-5.

3. If you are proxying requests by MIME type:

a. Add the appropriate lines to the obj.conf file. For more information, see
“Modifying the obj.conf File” on page 11-5.

b. Add any new MIME types referenced in the obj.conf file to the MIME.types
file. You can add MIME types by using the Netscape server console or by
editing the MIME.types file directly.

To directly edit the MIME.types file, open the file for edit and type the
following line:

type=text/jsp exts=jsp

Note: For NES 4.0 (iPlanet), instead of adding the MIME type for JSPs,
change the existing MIME type from

magnus-internal/jsp

to

text/jsp.

To use the Netscape console, select Manage Preferences→ Mime Types, and
make the additions or edits.

4. Deploy and test the Netscape Enterprise Server Plug-In

a. Start WebLogic Server.

b. Start Netscape Enterprise Server. If NES is already running, you must either
restart it or apply the new settings from the console in order for the new settings
to take effect.

c. To test the Netscape Enterprise Server Plug-In, open a browser and set the URL
to the Enterprise Server + /weblogic/, which should bring up the default
WebLogic Server HTML page, welcome file, or default servlet, as defined for
the default Web Application on WebLogic Server, as shown in this example:

http://e-docs.bea.com/wls/platforms/index.html#plugin
http://e-docs.bea.com/wls/platforms/index.html#plugin

Modifying the obj.conf File

Administration Guide 11-5

http://myenterprise.server.com/weblogic/

Modifying the obj.conf File

To use the Netscape Enterprise Server Plug-In, you must make several modifications
to the NES obj.conf file. These modifications specify how requests are proxied to
WebLogic Server. You can proxy requests by URL or by MIME type. The procedure
for each is described later in this section.

The Netscape obj.conf file is very strict about the placement of text. To avoid
problems, note the following regarding the obj.conf file:

� Eliminate extraneous leading and trailing white space. Extra white space can
cause your Netscape server to fail.

� If you must enter more characters than you can fit on one line, place a backslash
(\) at the end of that line and continue typing on the following line. The
backslash directly appends the end of the first line to the beginning of the
following line. If a space is necessary between the words that end the first line
and begin the second line, be certain to use one space, either at the end of the
first line (before the backslash), or at the beginning of the second line.

� Do not split attributes across multiple lines. (For example, all servers in a cluster
must be listed in the same line, following WebLogicCluster).

� If a required parameter is missing from the configuration, when the object is
invoked it issues an HTML error that notes the missing parameter from the
configuration.

To configure the obj.conf file:

1. Locate and open obj.conf.

The obj.conf file for your NES instance is in the following location:

NETSCAPE_HOME/https-INSTANCE_NAME/config/obj.conf

Where NETSCAPE_HOME is the root directory of the NES installation, and
INSTANCE_NAME is the particular “instance” or server configuration that you are
using. For example, on a UNIX machine called myunixmachine, the obj.conf
file would be found here:

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-6 Administration Guide

/usr/local/netscape/enterprise-351/
https-myunixmachine/config/obj.conf

2. Instruct NES to load the native library as an NSAPI module

Add the following lines to the beginning of the obj.conf file. These lines
instruct NES to load the native library (the .so or .dll file) as an NSAPI
module:

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/SHARED_LIBRARY
Init fn="wl_init"

Where SHARED_LIBRARY is the shared object or dll (for example
libproxy.so) that you installed in step 1. under “Installing and Configuring the
Netscape Enterprise Server Plug-In” on page 11-3. The function
“load-modules” tags the shared library for loading when NES starts up. The
values “wl_proxy” and “wl_init” identify the functions that the Netscape
Enterprise Server Plug-In executes.

3. If you want to proxy requests by URL, (Also called proxying by path. If you
want to proxy requests by MIME type, see step 4.) create a separate <Object>
tag for each URL that you want to proxy and define the PathTrim parameter.
Proxying by path supersedes proxying by MIME type. The following is an
example of an <Object> tag that proxies a request containing the string
/weblogic/.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"
</Object>

To create an <Object> tag to proxy requests by URL:

a. Specify a name for this object (optional) inside the opening <Object> tag
using the name attribute. The name attribute is informational only and is not
used by the Netscape Enterprise Server Plug-In. For example

<Object name=myObject ...>

b. Specify the URL to be proxied within the <Object> tag, using the ppath
attribute. For example:

<Object name=myObject ppath="*/weblogic/*>

The value of the ppath attribute can be any string that identifies requests
intended for Weblogic Server. When you use a ppath, every request that
contains that path is redirected. For example, a ppath of “*/weblogic/*”

Modifying the obj.conf File

Administration Guide 11-7

redirects every request that begins “http://enterprise.com/weblogic”
to the Netscape Enterprise Server Plug-In, which sends the request to the
specified Weblogic host or cluster.

c. Add the Service directive within the <Object> and </Object> tags. In the
Service directive you can specify any valid parameters as name=value pairs.
Separate multiple name=value pairs with one and only one space. For example:

Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"

For a complete list of parameters, see “General Parameters for Web Server
Plug-Ins” on page C-2. You must specify the following parameters:

For a non-clustered WebLogic Server:
The WebLogicHost and WebLogicPort parameters.

For a cluster of WebLogic Server:
The WebLogicCluster parameter.

The Service directive should always begin with Service fn=wl_proxy,
followed by valid name=value pairs of parameters.

Here is an example of the object definitions for two separate ppaths that
identify requests to be sent to different instances of WebLogic Server.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myserver.com\
WebLogicPort=7001 PathTrim="/weblogic"
</Object>

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy WebLogicHost=otherserver.com\
WebLogicPort=7008
</Object>

Note: Parameters that are not required, such as PathTrim, can be used to
further configure the way the ppath is passed through the Netscape
Enterprise Server Plug-In. For a complete list of plug-in parameters, see
“General Parameters for Web Server Plug-Ins” on page C-2.

4. If you want to proxy by MIME type, the MIME type must be listed in the
MIME.types file. For instructions on modifying this file, see step 3. under
“Installing and Configuring the Netscape Enterprise Server Plug-In” on page
11-3.

All requests with a designated MIME type extension (for example, .jsp) can be
proxied to the WebLogic Server, regardless of the URL.

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-8 Administration Guide

To proxy all requests of a certain file type to WebLogic Server:

a. Add a Service directive to the existing default Object definition. (<Object
name=default ...>).

For example, to proxy all JSPs to a WebLogic Server, the following Service

directive should be added after the last line that begins with:

NameTrans fn=....

and before the line that begins with:

PathCheck.

Service method="(GET|HEAD|POST|PUT)" type=text/jsp
fn=wl_proxy\
WebLogicHost=192.1.1.4 WebLogicPort=7001
PathPrepend=/jspfiles

This Service directive proxies all files with the .jsp extension to the
designated WebLogic Server, where they are served with a URL like this:

http://WebLogic:7001/jspfiles/myfile.jsp

The value of the PathPrepend parameter should correspond to the context
root of a Web Application that is deployed on the WebLogic Server or cluster
to which requests are proxied.

After adding entries for the Netscape Enterprise Server Plug-In, the default
Object definition will be similar to the following example, with the
additions shown in bold:

<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"
NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp\
fn=wl_proxy WebLogicHost=localhost WebLogicPort=7001\
PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap\

Using SSL with the NSAPI Plug-In

Administration Guide 11-9

fn=imagemap
Service method=(GET|HEAD) \
type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) \
type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

b. Add a similar Service statement to the default object definition for all other
MIME types that you want to proxy to WebLogic Server.

5. If you want to enable HTTP-tunneling (optional):

Add the following object definition to the obj.conf file, substituting the
WebLogic Server host name and the WebLogic Server port number, or the name
of a WebLogic Cluster that you wish to handle HTTP tunneling requests.

<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicHost=192.192.1.4\
WebLogicPort=7001
</Object>

Using SSL with the NSAPI Plug-In

You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between the Netscape Enterprise Server Plug-In, and WebLogic Server. The SSL
protocol provides confidentiality and integrity to the data passed between the Netscape
Enterprise Server Plug-In and WebLogic Server. In addition, the SSL protocol allows
the WebLogic Server proxy plug-in to authenticate itself to the Netscape Enterprise
Server to ensure that information is passed to a trusted principal.

The WebLogic Server proxy plug-in does not use the transport protocol (http or
https) specified in the HTTP request (usually by the browser) to determine whether
or not the SSL protocol will be used to protect the connection between the Netscape
Enterprise Server Plug-In and WebLogic Server.

To use the SSL protocol between Netscape Enterprise Server Plug-In and WebLogic
Server:

1. Configure WebLogic Server for SSL. For more information, see “Configuring the
SSL Protocol” on page 12-29.

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-10 Administration Guide

2. Configure the WebLogic Server SSL listen port. For more information, see
“Configuring the Listen Port” on page 7-3.

3. Set the WebLogicPort parameter in the Service directive in the obj.conf file
to the listen port configured in step 2.

4. Set the SecureProxy parameter in the Service directive in the obj.conf file
file to ON.

5. Set additional parameters in the Service directive in the obj.conf file that
define information about the SSL connection. For a complete list of parameters,
see “SSL Parameters for Web Server Plug-Ins” on page C-11.

Connection Errors and Clustering Failover

Administration Guide 11-11

Connection Errors and Clustering Failover

When the Netscape Enterprise Server Plug-In attempts to connect to WebLogic Server,
the plug-in uses several configuration parameters to determine how long to wait for
connections to the WebLogic Server host and, after a connection is established, how
long the plug-in waits for a response. If the plug-in cannot connect or does not receive
a response, the plug-in will attempt to connect and send the request to other WebLogic
Servers in the cluster. If the connection fails or there is no response from any
WebLogic Server in the cluster, an error message is sent.

Figure 11-1 “Connection Failover” on page 11-13 demonstrates how the plug-in
handles failover.

Connection Failures

Failure of the host to respond to a connection request could indicate possible problems
with the host machine, networking problems, or other server failures.

Failure of WebLogic Server to respond, could indicate that WebLogic Server is not
running or is unavailable, a hung server, a database problem, or other application
failure.

Failover with a Single, Non-Clustered WebLogic Server

If you are running only a single WebLogic Server the same logic described here
applies, except that the plug-in only attempts to connect to the server defined with the
WebLogicHost parameter. If the attempt fails, an HTTP 503 error message is
returned. The plug-in continues trying to connect to WebLogic Server until
ConnectTimeoutSecs is exceeded.

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-12 Administration Guide

The Dynamic Server List

When you specify a list of WebLogic Servers in the WebLogicCluster parameter, the
plug-in uses that list as a starting point for load balancing among the members of the
cluster. After the first request is routed to one of these servers, a dynamic server list is
returned containing an updated list of servers in the cluster. The updated list adds any
new servers in the cluster and deletes any that are no longer part of the cluster or that
have failed to respond to requests. This list is updated automatically with the HTTP
response when a change in the cluster occurs.

Failover, Cookies, and HTTP Sessions

When a request contains a session information stored in a cookie, in the POST data, or
by URL encoding, the session ID contains a reference to the specific server in which
the session was originally established (called the primary server) and a reference to an
additional server where the original session is replicated (called the secondary server).
A request containing a cookie attempts to connect to the primary server If that attempt
fails, the request is routed to the secondary server. If both the primary and secondary
servers fail, the session is lost and the plug-in attempts to make a fresh connection to
another server in the dynamic cluster list. For more information see Figure 11-1
“Connection Failover” on page 11-13.

Connection Errors and Clustering Failover

Administration Guide 11-13

Figure 11-1 Connection Failover

*The Maximum number of retries allowed in the red loop is equal to

ConnectTimeoutSecs ÷ ConnectRetrySecs.

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-14 Administration Guide

Failover Behavior When Using Firewalls and
Load Directors

In most configurations, the Netscape Enterprise Server Plug-In sends a request to the
primary instance of a cluster. When that instance is unavailable, the request fails over
to the secondary instance. However, in some configurations that use combinations of
firewalls and load-directors, any one of the servers (firewall or load-directors) can
accept the request and return a successful connection while the primary instance of
WebLogic Server is unavailable. After attempting to direct the request to the primary
instance of WebLogic Server (which is unavailable), the request is returned to the
plug-in as “connection reset”.

Requests running through combinations of firewalls (with or without load-directors)
are handled by WebLogic Server. In other words, responses of connection reset

fail over to a secondary instance of WebLogic Server. Because responses of
connection reset fail over in these configurations, servlets must be idempotent.
Otherwise duplicate processing of transactions may result.

Sample obj.conf file (not using a WebLogic Cluster)

Administration Guide 11-15

Sample obj.conf file (not using a WebLogic
Cluster)

Below is an example of lines which should be added to the obj.conf file if you are
not using a cluster. You can use this example as a template that you can modify to suit
your environment and server. Lines beginning with’#’ are comments.

Note: Make sure that you do not include any extraneous white space in the obj.conf
file. Copying and pasting from the samples below sometimes adds extra white
space, which can create problems when reading the file.

You can read the full documentation on Enterprise Server configuration files in the
Netscape Enterprise Server Plug-In documentation.

------------- BEGIN SAMPLE OBJ.CONF CONFIGURATION ---------
(no cluster)

The following line locates the NSAPI library for loading at
startup, and identifies which functions within the library are
NSAPI functions. Verify the path to the library (the value
of the shlib=<...> parameter) and that the file is
readable, or the server fails to start.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/libproxy.so
Init fn="wl_init"

Configure which types of HTTP requests should be handled by the
NSAPI module (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.

Here we configure the NSAPI module to pass requests for
"/weblogic" to a WebLogic Server listening at port 7001 on
the host myweblogic.server.com.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy WebLogicHost=myweblogic.server.com\
WebLogicPort=7001 PathTrim="/weblogic"
</Object>

Here we configure the plug-in so that requests that
match "/servletimages/" is handled by the
plug-in/WebLogic.

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-16 Administration Guide

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy WebLogicHost=192.192.1.4 WebLogicPort=7001
</Object>

This Object directive works by file extension rather than
request path. To use this configuration, you must also add
a line to the mime.types file:
#
type=text/jsp exts=jsp
#
This configuration means that any file with the extension
".jsp" are proxied to WebLogic. Then you must add the
Service line for this extension to the Object "default",
which should already exist in your obj.conf file:

<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"
NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicHost=localhost WebLogicPort=7001 PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap\
fn=imagemap
Service method=(GET|HEAD) \
type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

The following directive enables HTTP-tunneling of the
WebLogic protocol through the NSAPI plug-in.

<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicHost=192.192.1.4 WebLogicPort=7001
</Object>

#
------------- END SAMPLE OBJ.CONF CONFIGURATION ---------

Sample obj.conf file (using a WebLogic Cluster)

Administration Guide 11-17

Sample obj.conf file (using a WebLogic
Cluster)

Below is an example of lines which should be added to obj.conf if you are using a
WebLogic Server cluster. You can use this example as a template that you can modify
to suit your environment and server. Lines beginning with # are comments.

Note: Make sure that you do not include any extraneous white space in the obj.conf
file. Copying and pasting from the samples below sometimes adds extra white
space, which can create problems when reading the file.

For more information, see the full documentation on Enterprise Server configuration
files from Netscape.

------------- BEGIN SAMPLE OBJ.CONF CONFIGURATION ---------
(using a WebLogic Cluster)
#
The following line locates the NSAPI library for loading at
startup, and identifies which functions within the library are
NSAPI functions. Verify the path to the library (the value
of the shlib=<...> parameter) and that the file is
readable, or the server fails to start.

Init fn="load-modules" funcs="wl_proxy,wl_init"\
shlib=/usr/local/netscape/plugins/libproxy.so
Init fn="wl_init"

Configure which types of HTTP requests should be handled by the
NSAPI module (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.

Here we configure the NSAPI module to pass requests for
"/weblogic" to a cluster of WebLogic Servers.

<Object name="weblogic" ppath="*/weblogic/*">
Service fn=wl_proxy \
WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,\
theirweblogic.com:7001" PathTrim="/weblogic"
</Object>

Here we configure the plug-in so that requests that
match "/servletimages/" are handled by the
plug-in/WebLogic.

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-18 Administration Guide

<Object name="si" ppath="*/servletimages/*">
Service fn=wl_proxy \
WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,\
theirweblogic.com:7001"
</Object>

This Object directive works by file extension rather than
request path. To use this configuration, you must also add
a line to the mime.types file:
#
type=text/jsp exts=jsp
#
This configuration means that any file with the extension
".jsp" is proxied to WebLogic. Then you must add the
Service line for this extension to the Object "default",
which should already exist in your obj.conf file:

<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons\
dir="c:/Netscape/SuiteSpot/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir=\
"c:/Netscape/SuiteSpot/manual/https/ug"
NameTrans fn=document-root root="c:/Netscape/SuiteSpot/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy\
WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,\
theirweblogic.com:7001",PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap\
fn=imagemap
Service method=(GET|HEAD) \
type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>

The following directive enables HTTP-tunneling of the
WebLogic protocol through the NSAPI plug-in.

<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl_proxy WebLogicCluster="myweblogic.com:7001,\
yourweblogic.com:7001,theirweblogic.com:7001"
</Object>

Sample obj.conf file (using a WebLogic Cluster)

Administration Guide 11-19

#
------------- END SAMPLE OBJ.CONF CONFIGURATION ---------

11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)

11-20 Administration Guide

Administration Guide 12-1

CHAPTER

12 Managing Security

This section discusses the following topics:

� Overview of Configuring Security

� Setting Up the Java Security Manager

� Changing the System Password

� Specifying a Security Realm

� Defining Users

� Defining Groups

� Defining a Group for a Virtual Host

� Defining ACLs

� Configuring the SSL Protocol

� Configuring Mutual Authentication

� Configuring RMI over IIOP over SSL

� Protecting Passwords

� Installing an Audit Provider

� Installing a Connection Filter

� Configuring Security Context Propagation

12 Managing Security

12-2 Administration Guide

Overview of Configuring Security

Implementing security in a WebLogic Server deployment largely consists of
configuring fields that define the security policy for that deployment. WebLogic
Server provides an Administration Console to help you define the security policy for
your deployment. Using the Administration Console, specify security-specific values
for the following elements of your deployment:

� Realms

� Users and Groups

� Access Control Lists (ACLs) and permissions for WebLogic Server resources

� SSL protocol

� Mutual authentication

� Audit providers

� Custom filters

� Security context propagation

Because security features are closely related, it is difficult to determine where to start
when configuring security. In fact, defining security for your WebLogic Server
deployment may be an iterative process. Although more than one sequence of steps
may work, we recommend the following procedure:

1. Change the system password to protect your WebLogic Server deployment.

2. Specify a security realm. By default, WebLogic Server is installed with the File
realm in place. However, you may prefer an alternate security realm or a custom
security realm.

3. Define Users for the security realm. You can organize Users further by
implementing Groups in the security realm.

4. Define ACLs and permissions for the resources in your WebLogic Server
deployment.

Setting Up the Java Security Manager

Administration Guide 12-3

5. Protect the network connection between clients and WebLogic Server by
implementing the SSL protocol. When SSL is implemented, WebLogic Server
uses its digital certificate, issued by a trusted certificate authority, to authenticate
clients. This step is an optional but we recommend it.

6. Further protect your WebLogic Server deployment by implementing mutual
authentication. When mutual authentication is implemented, WebLogic Server
must authenticate itself to the client and then the client in turn, must authenticate
itself to WebLogic Server. Again, this step is an optional but we recommend it.

This section describes these configuration steps and the fields you set in the
Administration Console. For a complete description of WebLogic Server security
features, see Introduction to WebLogic Security and Security Fundamentals.

For information about setting the security fields in the Administration Console and
detailed descriptions of each field, see the Administration Console Online Help.

For information about assigning security roles to WebLogic EJBs, see WebLogic
Server 6.0 Deployment Properties.

For information about security in WebLogic web applications, see Deploying and
Configuring Web Applications.

Setting Up the Java Security Manager

When you run WebLogic Server under Java 2 (JDK 1.3), WebLogic Server uses the
Java Security Manager to control access to WebLogic Server resources. The Java
Security Manager requires a security policy file to set up the permissions. The
WebLogic Server distribution includes a security policy file called weblogic.policy
that contains a set of default permissions. With this file you can start WebLogic Server
without first creating your own security policy file.

Edit the following lines in the weblogic.policy file, replacing the location of the
directory in which you installed WebLogic Server.

grant codebase “file:./c:/weblogic/-”{
permission java.io.FilePermission “c:${/}weblogic${/}-”, ...

Once you make these changes, we recommend that you take the following steps:

http://e-docs.bea.com/wls/docs60/security/intro.html
http://e-docs.bea.com/wls/docs60/security/concepts.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs60/ejb/reference.html
http://e-docs.bea.com/wls/docs60/ejb/reference.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

12 Managing Security

12-4 Administration Guide

� Make a backup copy of the weblogic.policy file and put it in a secure place.

� Set the permissions on the weblogic.policy file protections such that the
administrator of the WebLogic Server deployment has write and read privileges
and no other users have any privileges.

Set the java.security.manager and java.security.policy properties on the
Java command line when you start WebLogic Server. These properties perform the
following functions:

� The java.security.manager property specifies that a security policy will be
used by the Java Virtual Machine (JVM). You do not need to specify any
arguments to this property.

� The java.security.policy property specifies the location of the security
policy file to be used by the JVM. The argument to this property is the fully
qualified file name of the weblogic.policy file.

For example:

$ java ... -Djava.security.manager\
-Djava.security.policy==c:/weblogic/weblogic.policy

Changing the System Password

During installation you specify a password for the system User. The specified
password is associated with the system User in WebLogic Server and is stored in the
fileRealm.properties file in the \wlserver6.0\config\mydomain directory.
The specified password corresponds to the Administration server for the domain and
all the managed servers associated with that Administration server.

The password is encrypted and is further protected when WebLogic Server applies a
hash to it. To improve security, we recommend frequently changing the system
password that was set during installation.

To change the system password, do the following:

1. Open the Users window in the Administration Console.

2. Enter system in the User field.

Specifying a Security Realm

Administration Guide 12-5

3. Enter a new password in the Password field.

4. Confirm the password.

When using an Administration Server and managed servers in a domain, the managed
server must always use the password for the Administration Server in the domain.
Always change the password for the Administration Server through the Administration
Console. The new password is propagated to all the managed server in the domain.
Remember the system password for a domain must match across all the servers in the
domain.

Note: The Petstore and the ExampleServer domains still store the system password
in a password.ini file. When using these domains, modify the system
password by modifying the password information in the password.ini file.

Specifying a Security Realm

By default WebLogic Server is installed with the File realm in place. Before using the
File realm, you need to define several fields that govern the use of the File realm. You
set these fields on the Filerealm tab in the Security window of the Administration
Console.

The following table describes each field on the Filerealm tab.

Table 12-1 File Realm Fields

Field Description

Max Users Specifies the maximum number of Users to be used with the File
realm. The File realm is intended to be used with 10,000 or fewer
Users. The minimum value for this field is 1 and the maximum value
is 10,000. The default is 1,000.

Max Groups Specifies the maximum number of Groups to be used with the File
realm. The minimum value for this field is 1 and the maximum value
is 10,000. The default is 1,000.

12 Managing Security

12-6 Administration Guide

If for any reason, fileRealm.properties is corrupted or destroyed, you must
reconfigure all the security information for WebLogic Server. Therefore, we
recommend that you take the following steps:

� Make a backup copy of the fileRealm.properties file and put it in a secure
place.

� Set the permissions on the fileRealm.properties file protections such that
the administrator of the WebLogic Server deployment has write and read
privileges and no other users have any privileges.

Note: You should also make a backup copy of the SerializedSystemIni.dat file
for the File realm. For more information about the
SerializedSystemIni.dat file, see Protecting Passwords

If, instead of the File realm, you want to use one of the alternate security realms
provided by WebLogic Server or a custom security realm, set the fields for the desired
realm and reboot WebLogic Server.

For more information about security realms in WebLogic Server, see Security Realms.

Configuring the Caching Realm

Note: All configuration instructions are based on the use of the Administration
Console.

The Caching realm works with the File realm, alternate security realms, or custom
security realms to fulfill client requests with the proper authentication and
authorization. The Caching realm stores the results of both successful and unsuccessful
realm lookups. It manages separate caches for Users, Groups, permissions, ACLs, and
authentication requests. The Caching realm improves the performance of WebLogic
Server by caching lookups, reducing the number of calls into other security realms. For
more information about security realms in WebLogic Server, see Security Realms.

Max ACLs Specifies the maximum number of ACLs to be used with the File
realm. The minimum value for this field is 1 and the maximum value
is 10,000. The default is 1,000.

Field Description

http://e-docs.bea.com/wls/docs60/security/concepts.html
http://e-docs.bea.com/wls/docs60/security/concepts.html

Specifying a Security Realm

Administration Guide 12-7

The Caching realm is installed automatically when you install WebLogic Server: the
cache is set up to delegate to the other security realms but caching is not enabled. You
have to enable caching through the Administration Console.

When you enable caching, the Caching realm saves the results of a realm lookup in its
cache. Lookup results remain in the cache until either the specified number of seconds
defined for the time-to-live (TTL) fields has passed (the lookup result has expired) or
the cache has filled. When the cache is full, new lookup results replace the oldest
cached results. The TTL fields determine how long a cached object is valid. The higher
you set these fields, the less often the Caching realm calls the secondary security realm.
Reducing the frequency of such calls improves the performance. The trade-off is that
changes to the underlying security realm are not recognized until the cached object
expires.

Note: When you obtain an object from a security realm, the object reflects a snapshot
of the object. To update the object, you must call the object’s get() method
again. For example, the membership of a Group is set when the Group is
retrieved from the security realm with a call to the getgroup() method. To
update the members of the Group, you must call the getgroup() method
again.

By default, the Caching realm operates on the assumption that the secondary security
realm is case-sensitive. In a case-sensitive security realm, the owners of usernames
bill and Bill, for example are treated as two distinct Users. The Windows NT
Security realm and the LDAP Security realm are examples of security realms that are
not case-sensitive. If you are using a security realm that is not case-sensitive, you must
disable the CacheCaseSensitive field. When this field is set, the Caching realm
converts usernames to lowercase so that WebLogic Server gives correct results for the
security realm when it performs case-sensitive comparisons. When defining or
referencing Users or Groups in a case-sensitive security realm, type usernames in
lowercase.

Configuring the Caching realm involves enabling various types of caches (such as
ACL, Authentication, Group, and Permission) and defining how each cache operates.
To do these tasks, define values for the field shown on the General tab in the Caching
Realm Configuration window. To save your changes, click the Apply button. When
you have finished defining the fields, reboot WebLogic Server.

The following table describes each field on the General tab.

Table 12-2 Caching Realm Fields

12 Managing Security

12-8 Administration Guide

To enable and configure the ACL cache, define values for the fields shown on the ACL
tab in the Caching Realm Configuration window. To save your changes, click the
Apply button. When you have finished defining the fields, reboot WebLogic Server.

The following table describes each field on the ACL tab.

Field Description

Name Displays the active security realm. This field
can not be changed.

Basic Realm The name of the class for the alternate
security realm or custom security realm being
used with the Caching realm.

Case Sensitive Cache Defines whether the specified security realm
is case-sensitive. By default, this field is
enabled: the realm is case-sensitive. To use a
realm that is not case-sensitive (such as the
Windows NT and LDAP security realms),
you must disable this field.

Table 12-3 ACL Cache Fields

Field Description

Enable ACL Cache Option for enabling the ACL cache.

ACL Cache Size The maximum number of ACL lookups to
cache. The default is 211. This field should
be a prime number for best lookup
performance.

ACL Cache Positive TTL The number of seconds to retain the results
of a successful lookup. The default is 60
seconds.

ACL Cache Negative TTL The number of seconds to retain the results
of an unsuccessful lookup. The default is
10 seconds.

Specifying a Security Realm

Administration Guide 12-9

To enable and configure the Authentication cache, define values for the fields shown
on the Authentication tab in the Caching Realm Configuration window. To save your
changes, click the Apply button. When you have finished defining the fields, reboot
WebLogic Server.

The following table describes each field on the Authentication tab.

To enable and configure the Group cache, define values for the fields shown on the
Groups tab in the Caching Realm Configuration window. To save your changes, click
the Apply button. When you have finished defining the fields, reboot WebLogic
Server.

The following table describes each field on the Group tab.

Table 12-4 Authentication Cache Fields

Field Description

Enable Authentication Cache Option for enabling the Authentication
cache.

Authentication Cache Size The maximum number of Authenticate
requests to cache. The default is 211. This
field should be a prime number for best
lookup performance.

Authentication Cache TTLPositive The number of seconds to retain the results
of a successful lookup. The default is 60
seconds.

Authentication Cache TTLNegative The number of seconds to retain the results
of an unsuccessful lookup. The default is
10 seconds.

Table 12-5 Group Cache Fields

Field Description

Group Cache Enable Option for enabling the Group cache.

Group Cache Size The maximum number of Group lookups
to cache. The default is 211. This field
should be a prime number for best lookup
performance.

12 Managing Security

12-10 Administration Guide

To enable and configure the User cache, define values for the fields shown on the User
tab in the Caching Realm Configuration window. To save your changes, click the
Apply button. When you have finished defining the fields, reboot WebLogic Server.

The following table describes each field on the User tab.

Group Cache TTLPositive The number of seconds to retain the results
of a successful lookup. The default is 60
seconds.

Group Cache TTLNegative The number of seconds to retain the results
of an unsuccessful lookup. The default is
10 seconds.

Group Membership Cache TTL The number of seconds to store the
members of a group before updating it.
The default is 10 seconds.

Table 12-6 User Cache Fields

Field Description

Enable User Cache Option for enabling the User cache.

User Cache Size The maximum number of User lookups to
cache. The default is 211.This field should
be a prime number for best lookup
performance.

User Cache TTLPositive The number of seconds to retain the results
of a successful lookup. The default is 60
seconds.

User Cache TTLNegative The number of seconds to retain the results
of an unsuccessful lookup. The default is
10 seconds.

Table 12-5 Group Cache Fields

Field Description

Specifying a Security Realm

Administration Guide 12-11

To enable and configure the Permission cache, define values for the field shown on the
Permission tab in the Caching Realm Configuration window. To save your changes,
click the Apply button. When you have finished defining the fields, reboot WebLogic
Server.

The following table describes each field on the Permission tab.

Configuring the LDAP Security Realm

Note: The LDAP security realm has been rewritten to provide improved
performance and configurability. BEA recommends upgrading your
WebLogic Server 6.0 installation to Service Pack 1.0 to take advantage of this
functionality. WebLogic Server 6.0 Service Pack 1.0 is available from the
BEA Systems Download page on the Web.

The LDAP Security realm provides authentication through a Lightweight Directory
Access Protocol (LDAP) server. This server allows you to manage all the users for
your organization in one place: the LDAP directory. The LDAP Security realm
currently supports Netscape Directory Server, Microsoft Site Server, and Novell NDS.

Table 12-7 Permission Cache Fields

Field Description

Enable Permission Cache Option for enabling the Permission cache.

Permission Cache Size The maximum number of Permission
lookups to cache. The default is 211.This
field should be a prime number for best
lookup performance.

Permission Cache TTLPositive The number of seconds to retain the results
of a successful lookup. The default is 60
seconds.

Permission Cache TTLNegative The number of seconds to retain the results
of an unsuccessful lookup. The default is
10 seconds.

12 Managing Security

12-12 Administration Guide

Configuring the LDAP Security realm involves defining fields that enable the LDAP
Security realm in WebLogic Server to communicate with the LDAP server and fields
that describe how Users and Groups are stored in the LDAP directory.

Before you can use the LDAP Security realm, you need to enable the Caching Realm
and enter the class name of the LDAP Security realm in the Basic Realm field.

To use the LDAP Security realm instead of the File realm, go to the Security→Realms
node in the left pane of the Administration Console. In the right pane of the
Administration Console, click the Create a New LDAP Realm link.

To specify the name of the LDAP Security realm and the name of the class that
contains the LDAP Security realm define values for the fields shown on the General
tab in the LDAP Realm Create window. To save your changes, click the Apply button.
When you have finished defining the fields, reboot WebLogic Server.

The following table describes each field n the General tab.

To enable communication between the LDAP server and WebLogic Server define
values for the fields shown on the LDAP tab in the LDAP Realm Create window. To
save your changes, click the Apply button. When you have finished defining the fields,
reboot WebLogic Server.

The following table describes each field on the General tab.

Table 12-8 LDAP Security Realm Fields on the General Tab

Field Description

Name The name of the LDAP Security realm such as
AccountingRealm

Realm Class Name The name of the Java class that contains the LDAP
Security realm. The Java class should be included in
the CLASSPATH of WebLogic Server.

Specifying a Security Realm

Administration Guide 12-13

To specify how Users are stored in the LDAP directory define the fields shown on the
Users tab in the LDAP Realm Create window. To save your changes, click the Apply
button. When you have finished defining the fields, reboot WebLogic Server.

Table 12-9 LDAP Security Realm Fields on the LDAP Tab

Field Description

LDAPURL The location of the LDAP server. Change the URL
to the name of the computer on which the LDAP
server is running and the number of the port at
which it is listening. If you want WebLogic Server
to connect to the LDAP server using the SSL
protocol, use the LDAP server’s SSL port in the
URL.

Principal The distinguished name (DN) of the LDAP User
used by WebLogic Server to connect to the LDAP
server. This user must be able to list LDAP Users
and Groups.

Credential The password that authenticates the LDAP User,
as defined in the Principal field.

Enable SSL Option for enabling the use of the SSL protocol to
protect communications between the LDAP server
and WebLogic Server. Keep in mind the following
guidelines:

� Disable this field if the LDAP server is not
configured to use the SSL protocol.

� If you set the UserAuthentication field to
external, this field must be enabled.

AuthProtocol The type of authentication used to authenticate the
LDAP server. Set this field to one of the following
values:

� None for no authentication

� Simple for password authentication

� CRAM-MD5 for certificate authentication

Netscape Directory Server supports CRAM-MD5.
Microsoft Site Server and Novell NDS support
Simple.

12 Managing Security

12-14 Administration Guide

The following table describes each field on the Users tab.

To specify how Groups are stored in the LDAP directory, assign values to the fields
shown on the Groups tab in the LDAP Realm Create window. To save your changes,
click the Apply button. When you have finished defining the fields, reboot WebLogic
Server.

The following table describes each field on the Groups tab.

Table 12-10 LDAP Security Realm Fields on the Users Tab

Field Description

User Authentication Determines the method for authenticating Users.
Set this field to one of the following values:

� Local specifies that the LDAP Security
realm retrieves user data, including the
password from the LDAP Directory server,
and checks the password in WebLogic Server.
The Local setting is appropriate for Netscape
Directory Server and Microsoft Site Server.

� External specifies that the LDAP Security
realm authenticates a User by attempting to
bind to the LDAP Directory server with the
username and password supplied by the
WebLogic Server client. If you choose the
External setting, you must also use the SSL
protocol. The External setting is
appropriate for Novell NDS.

� Bind

User Password Attribute The password of the LDAP User.

User DN A list of attributes that, when combined with the
attributes in the User Name Attribute field,
uniquely identifies an LDAP User.

User Name Attribute The login name of the LDAP User. The value of
this field can be the common name of an LDAP
User but usually it is an abbreviated string, such as
the User ID.

Specifying a Security Realm

Administration Guide 12-15

If you have enabled caching, the Caching realm caches Users and Groups internally to
avoid frequent lookups in the LDAP directory. Each object in the Users and Groups
caches has a TTL field that you set when you configure the Caching realm. If you make
changes in the LDAP directory, those changes are not reflected in the LDAP Security
realm until the cached object expires or is flushed from the cache. The default TTL is
60 seconds for unsuccessful lookups and 10 seconds for successful lookups. Unless
you change the TTL fields for the User and Group caches, changes in the LDAP
directory should be reflected in the LDAP Security realm in 60 seconds.

If some server-side code has performed a lookup in the LDAP Security realm, such as
a getUser() call on the LDAP Security realm, the object returned by the realm cannot
be released until the code releases it. Therefore, a User authenticated by WebLogic
Server remains valid as long as the connection persists, even if you delete the user from
the LDAP directory.

Table 12-11 LDAP Security Realm Field on the Groups Tab

Field Description

Group DN The list of attributes that, combined with the Group
Name Attribute field, uniquely identifies a Group in
the LDAP directory.

Group Name Attribute The name of a Group in the LDAP directory. It is
usually a common name.

Group Is Context This Boolean checkbox specifies how Group
membership is recorded in the LDAP directory.

� Check this checkbox if each Group entry
contains one User. By default, the field is
enabled.

� Uncheck this checkbox if there is one Group
entry containing an attribute for each Group
member.

Group Username Attribute The name of the LDAP attribute that contains a
Group member in a Group entry.

12 Managing Security

12-16 Administration Guide

Configuring the Windows NT Security Realm

The Windows NT Security realm uses account information defined for a Windows NT
domain to authenticate Users and Groups. You can view Users and Groups in the
Windows NT Security realm through the Administration Console, but you must
manage Users and Groups through the facilities provided by Windows NT.

The Windows NT Security realm provides authentication (Users and Groups) but not
authorization (ACLs). The system User defined in WebLogic Server must also be
declared in the Windows NT domain. On a Windows NT platform, WebLogic Server
must be run under the system User account, and clients must supply the system User
password to authenticate successfully. When you define the system User account in
Windows NT, make sure the owner of the account has administrative privileges and
can read security-related information from the Windows NT Domain controller.

To use the Windows NT Security realm, you must run WebLogic Server as a Windows
NT Service on a computer in the Windows NT domain. You do not have to run
WebLogic Server on a domain controller.

Because WebLogic Server reads ACLs from the fileRealm.properties file at
startup time, you must restart WebLogic Server after you change an ACL. If you use
Groups with your ACLs, you can reduce the frequency with which you must restart
WebLogic Server. Changing the members of a Windows NT Group allows you to
manage individual Users’ access to WebLogic Server resources dynamically.

Before you can use the Windows NT Security realm, you need to enable the Caching
Realm and enter the class name of the Windows NT Security realm in the Basic Realm
field.

To use the Windows NT Security realm instead of the File realm, go to the
Security→Realms node in the left pane of the Administration Console. In the right
pane of the Administration Console, click the Create a New NT Realm link.

Configuring the Windows NT Security realm involves setting fields that define a name
for the realm and the computer on which the Windows NT domain is running. To
specify a realm name and computer, you must define values for the fields shown the
NT Realm Create window of the Administration Console. To save your changes, click
the Apply button. When you have finished defining the fields, reboot WebLogic
Server.

The following table describes each field in the NT Realm Configuration window.

Specifying a Security Realm

Administration Guide 12-17

Once you have configured the Windows NT Security realm in the Administration
Console, you need to define the system User in Windows NT:

1. Use the Administrator account to log on to the Windows NT domain you are using
with WebLogic Server.

2. Go to Programs→Administrative Tools.

3. Select User Manager.

4. Define the system User.

5. Check the Show Advanced User Rights option.

6. Select the Act as part of the operating system option from the Rights
pull-down menu.

7. Check the Add button.

8. Make sure the Windows NT PATH environment variable includes the
\wlserver6.0\bin directory. (WebLogic Server loads the W1ntrealm.dll from
this directory.)

Table 12-12 Windows NT Security Realm Fields

Field Description

Name The name of the Windows NT Security realm, such as,
AccountingRealm

Realm Class Name The name of the Java class that implements the
Windows NT Security realm. The Java class needs to
be in the CLASSPATH of WebLogic Server.

Primary Domain The host and port number of the computer where Users
and Groups are defined for the Windows NT domain. If
you enter multiple host and port numbers, use a comma
delineated list.

12 Managing Security

12-18 Administration Guide

Configuring the UNIX Security Realm

The UNIX Security realm executes a small native program, wlauth, to look up Users
and Groups and to authenticate Users on the basis of their UNIX login names and
passwords. On some platforms, wlauth uses PAM (Pluggable Authentication
Modules) which allows you to configure authentication services in the operating
system without altering applications that use the service. On platforms for which PAM
is not available, wlauth uses the standard login mechanism, including shadow
passwords, where supported.

Because WebLogic Server reads ACLs from the fileRealm.properties file at
startup time, you must restart WebLogic Server after you change an ACL. If you use
Groups with your ACLs, you can reduce the frequency with which you must restart
WebLogic Server. Changing the members of a UNIX Group allows you to manage
individual Users’ access to WebLogic Server resources dynamically.

The wlauth program runs setuid root. You need root permissions to modify the
ownership and file attributes on the wlauth program and to set up the PAM
configuration file for wlauth.

Perform the following steps to configure the UNIX Security realm:

1. If WebLogic Server is installed on a network drive, copy the wlauth file to a file
system on the computer that executes WebLogic Server, for example, the
/usr/sbin directory. The wlauth file is in the weblogic/lib/arch directory,
where arch is the name of your platform.

2. As the root user, run the following commands to change the wlauth owner and
permissions:

chown root wlauth
chmod +xs wlauth

3. On PAM platforms (Solaris and Linux), set up the PAM configuration for
wlauth.

Solaris—Add the following lines to your /etc/pam.conf file:

Setup for WebLogic authentication on Solaris machines
#
wlauth auth required /usr/lib/security/pam_unix.so.1
wlauth password required /usr/lib/security/pam_unix.so.1
wlauth account required /usr/lib/security/pam_unix.so.1

Linux—Create a file called /etc/pam.d/wlauth containing the following:

Specifying a Security Realm

Administration Guide 12-19

#%PAM-1.0
#
File name:
/etc/pam.d/wlauth
#
If you do not use shadow passwords, delete "shadow".
auth required /lib/security/pam_pwdb.so shadow
account required /lib/security/pam_pwdb.so

Note: Omit shadow if you are not using shadow passwords.

To use the UNIX Security realm instead of the File realm, go to the Security→Realms
node in the left pane of the Administration Console. In the right pane of the
Administration Console, click the Create a New UNIX Realm link.

Before you can use the UNIX Security realm, you need to enable the Caching Realm
and enter the class name of the UNIX Security realm in the Basic Realm field.

Configuring the UNIX Security realm involves setting fields that define a name for the
realm and the program that provides authentication services for the UNIX Security
realm.To define these names, specify values for the fields on the UNIX Realm Create
window of the Administration Console. To save your changes, click the Apply button.
When you have finished defining the fields, reboot WebLogic Server.

The following table describes each field in the UNIX Realm Create window.

If wlauth is not in the WebLogic Server class path or if you have given the program
a name other than wlauth, you must add a Java command-line property when you start
WebLogic Server. Edit the script you use to start WebLogic Server and add the
following option after the java command:

Table 12-13 UNIX Security Realm Fields

Field Description

Name The name of the UNIX Security realm, such as,
AccountingRealm

Realm Class Name The name of the WebLogic class that implements the
UNIX Security realm. The Java class needs to be in the
CLASSPATH of WebLogic Server.

AuthProgram The name of the program used to authenticate users in
the UNIX security realm. In most cases, the name of the
program is wlauth.

12 Managing Security

12-20 Administration Guide

-Dweblogic.security.unixrealm.authProgram=wlauth_prog

Replace wlauth_prog with the name of the wlauth program, including the full path
if the program is not in the search path. Start WebLogic Server. If the wlauth program
is in the WebLogic Server path and is named wlauth, this step is not needed.

Configuring the RDBMS Security Realm

The RDBMS Security realm is a BEA-provided custom security realm that stores
Users, Groups and ACLs in a relational database. The RDBMS Security realm can be
managed through the Administration Console.

To use the RDBMS Security realm instead of the File realm, go to the
Security→Realms node in the left pane of the Administration Console. In the right
pane of the Administration Console, click the Create a New RDBMS Realm link.

Before you can use the RDBMS Security realm, you need to enable the Caching Realm
and enter the class name of the RDBMS Security realm in the Basic Realm field.

Configuring the RDBMS Security realm involves setting fields that define the JDBC
driver being used to connect to the database and defining the schema used to store
Users, Groups, and ACLs in the database.

To define these fields, you must specify values for the fields shown on three tabs of the
RDBMS Realm Create window: the General tab, the Database tab, and the Schema tab.
The following table describes each field that you must set on the General tab.

The following table describes the fields you must set on the Database tab.

Table 12-14 RDBMS Security Realm Fields on the General Tab

Field Description

Name The name of the RDBMS Security realm, such
as, AccountingRealm

Realm Class The name of the WebLogic class that
implements the RDBMS Security realm. The
Java class needs to be in the CLASSPATH of
WebLogic Server.

Specifying a Security Realm

Administration Guide 12-21

The Schema properties used to define the Users, Groups, and ACLs stored in the
database are listed on the Schema tab. When you finish defining values for the
necessary fields on each of the three tabs, save your changes by clicking the Apply
button. Then reboot WebLogic Server.

Installing a Custom Security Realm

You can create a custom security realm that draws from an existing store of Users such
as directory server on the network. To use a custom security realm, you create an
implementation of the weblogic.security.acl.AbstractListableRealm
interface or the weblogic.security.acl.AbstractManageableRealm interface
and then use the Administration Console to install your implementation.

To install a custom security realm, go to the Security→Realms node in the left pane of
the Administration Console. In the right pane of the Administration Console, click the
Create a New Custom Realm link.

Before you can use a custom security realm, you need to enable the Caching Realm
and enter the class name of the custom security realm in the Basic Realm field.

Configuring a custom security realm involves setting fields that define a name for the
realm and the interface that implements the realm, and specifying information that
defines how the Users, Groups, and optionally ACLs are stored in the custom security

Table 12-15 RDBMS Security Realm Fields on the Database Tab

Field Description

Driver The full class name of the JDBC driver. This
class name must be in the CLASSPATH of
WebLogic Server.

URL The URL for the database you are using with the
RDBMS realm, as specified by your JDBC
driver documentation.

User Name The default user name for the database.

Password The password for the default user of the
database.

12 Managing Security

12-22 Administration Guide

realm. To define this information, you must specify values for the fields of the Custom
Realm Create window of the Administration Console. To save your changes, click the
Apply button. When you have finished defining the fields, reboot WebLogic Server.

The following table describes the fields you must set on the Custom Security Realm
Create window.

For information about writing a custom security realm, see Writing a Custom Security
Realm.

Testing an Alternate Security Realm or a Custom Security
Realm

If you have started WebLogic Server with an alternate or a custom security realm,
perform the following steps to ensure the realm is working properly:

1. Start the Administration Console. The Administration Console displays all the
Users, Groups, and ACLs known in the security realm.

2. Use the Administration Console to add an ACL for the HelloWorld example
servlet. Give a User and a Group in your security realm access to the HelloWorld
example servlet. Select a Group that does not include the specified User.

3. Restart WebLogic Server and load the HelloWorld servlet with an ACL using the
following URL:

http://localhost:portnumber/helloWorld

Table 12-16 Custom Security Realm Fields

Field Description

Name The name of the Custom Security realm, such as,
AccountingRealm

Realm Class Name The name of the WebLogic class that implements the
Custom Security realm. The Java class needs to be in
the CLASSPATH of WebLogic Server.

Configuration Data The information needed to connect to the security store.

http://e-docs.bea.com/wls/docs60/security/prog.html
http://e-docs.bea.com/wls/docs60/security/prog.html

Specifying a Security Realm

Administration Guide 12-23

Try entering the username and password for a User who is not included in the
ACL you added for the servlet. You should get a message telling you that you
are not authorized to do so.

Try entering the username and password of a User who is included in the ACL,
either as an individual User or as a member of the Group. The servlet should
load and display the Hello World message.

Migrating Security Realms

WebLogic Server 6.0 provides a new management architecture for security realms.
The management architecture implemented through MBeans allows you to manage
security realms through the Administration Console. If you have a security realm from
a previous release of WebLogic Server, use the following information to migrate to the
new architecture:

� If you are using the Windows NT, UNIX, or LDAP security realms, use the
Convert WebLogic Properties option in the Administration Console to convert
the security realm to the new architecture. Note that you can view Users,
Groups, and ACLs in a Windows NT, UNIX, or LDAP security realm in the
Administration Console, however, you still need to use the tools in the Windows
NT, UNIX, or LDAP environments to manage Users and Groups.

� If you are using a custom security realm, follow the steps in “Installing a
Custom Security Realm” to specify information about how the Users, Groups,
and optionally ACLs are stored in your custom security realm.

� The Delegating security realm is no longer support in WebLogic Server 6.0. If
you are using the Delegating security realm, you will have to use another type of
security realm to store Users, Groups, and ACLs.

� If you are using the RDBMS security realm, use one of the following options to
convert the security realm:

� If you did not change the source for the RDBMS security realm, follow the
steps in “Configuring the RDBMS Security Realm” to instantiate a new class
for your existing RDBMS security realm and define information about the
JDBC driver being used to connect to the database and the schema used by
the security realm. In this case, you are creating a MBean in WebLogic
Server 6.0 for the RDBMS security realm.

12 Managing Security

12-24 Administration Guide

� If you customized the RDBMS security realm, convert your source to use the
MBeans. Use the code example in the
\samples\examples\security\rdbmsrealm directory as a guide to
converting your RDBMS security realm. Once you have converted your
RDBMS security realm to MBeans, follow the instructions in“Configuring
the RDBMS Security Realm” to define information about the JDBC driver
being used to connect to the database and the schema used by the security
realm.

Defining Users

Note: This section explains how to add Users to the File realm. If you are using an
alternate security realm, you must use the management tools provided in that
realm to define a User.

Users are entities that can be authenticated in a WebLogic Server security realm. A
User can be a person or a software entity, such as a Java client. Each User is given a
unique identity within a WebLogic Server security realm. As a system administrator
you must guarantee that no two Users in the same security realm are identical.

Defining Users in a security realm involves specifying a unique name and password
for each User that will access resources in the WebLogic Server security realm in the
Users window of the Administration Console.

The following table describes the fields in the Users window.

Table 12-17 User Fields

Field Description

Name The name of a User, that is, an entity that will
access WebLogic Server resources. Names are
case-sensitive.

Password The password for the User. The password must
contain a minimum of 8 characters in length.
Passwords are case-sensitive.

Defining Groups

Administration Guide 12-25

The File realm has two special users, system and guest:

� The system User is the administrative user who controls system-level
WebLogic Server operations, such as starting and stopping servers, and locking
and unlocking resources. The system User is defined during the WebLogic
Server installation procedure.

� The guest User is automatically provided by WebLogic Server. When
authorization is not required, WebLogic Server assigns the guest identity to a
client this giving the client access to any resources that are available to the
guest user. A client can log in as the guest User by entering guest as the
username and guest as the password when prompted by a Web browser or by
supplying the guest username and password in a Java client.

The system and guest Users are like other Users in a WebLogic Server security
realm:

� To access WebLogic Server resources, they must have appropriate ACLs.

� To execute an operation on a WebLogic Server resource, they must provide a
username and password (or digital certificate).

To improve the security of your WebLogic Server deployment, we recommend
disabling the guest User. To do so, check the Guest Disabled option on the
General tab in the Security window in the Administration Console. When you disable
the guestUser, the guestUser is not deleted rather it just becomes unavailable so that
no one can log on as the guest User.

To delete Users, enter the name of the User in the Remove These Users list box and
click Remove.

For more information about Users and the access control model in WebLogic Server,
see Introduction to WebLogic Security and Security Fundamentals.

Defining Groups

Note: This section explains how to add Groups to the File realm. If you are using an
alternate security realm, you need to use the management tools provided in
that realm to define a Group.

http://e-docs.bea.com/wls/docs60/security/intro.html
http://e-docs.bea.com/wls/docs60/security/concepts.html

12 Managing Security

12-26 Administration Guide

A Group represents a set of Users who usually have something in common, such as
working in the same department in a company. Groups are used primarily to manage
a number of Users in an efficient manner. When a Group is granted a permission in an
ACL, all members of the Group effectively receive that permission.

You can register a Group with the WebLogic Server security realm by performing the
following steps:

1. Setting the Name field in the Groups window of the Administration Console.

2. Clicking the Create button.

3. Entering Users in the Add User field.

4. Clicking the Update Group button when you finish adding Users.

The File realm has one built-in Group: everyone. All Users defined in the defined
security realm are automatically members of the everyone Group.

To delete Groups, enter the name of the Group in the Remove These Groups list box
and click Remove.

For more information about Groups and the access control model in WebLogic Server,
see Introduction to WebLogic Security and Security Fundamentals.

Defining a Group for a Virtual Host

In WebLogic Server, virtual hosts that require authentication are represented in a
security realm as a group. All the users of the virtual host are defined first as users of
the security realm for a particular WebLogic Server and then defined as members of
the group that represents the virtual host.

http://e-docs.bea.com/wls/docs60/security/intro.html
http://e-docs.bea.com/wls/docs60/security/concepts.html

Defining ACLs

Administration Guide 12-27

Defining ACLs

Users access resources in a WebLogic Server security realm. Whether or not a User
can access a resource is determined by the access control lists ACLs for that resource.
An ACL defines the permissions by which a User can interact with the resource. To
define ACLs, you create an ACL for a resource, specify the permission for the resource
and then grant the permission to a specified set of Users and Groups.

Each WebLogic Server resource has one or more permissions that can be granted. The
following table summarizes the functions for various WebLogic Server resources for
which permissions can be restricted with an ACL.

Table 12-18 ACLs for WebLogic Server Resources

For this WebLogic Server
resource...

This ACL... Grants Permission
for these functions...

WebLogic Servers weblogic.server

weblogic.server.servername

boot

Note: Only the
system user
can start a
Managed
Server.

Command-line Administration
Tools

weblogic.admin shutdown,
lockserver

unlockserver

WebLogic Events weblogic.servlet.topicName send

receive

WebLogic servlets weblogic.servlet.servletName execute

WebLogic JDBC connection
pools

weblogic.jdbc.connectionPool.pooln
ame

reserve

reset

shrink

WebLogic Passwords weblogic.passwordpolicy unlockuser

12 Managing Security

12-28 Administration Guide

To create ACLs for a WebLogic Server resource, open the Administration Console and
perform the following steps:

1. Specify the name of WebLogic Server resource that you want to protect with an
ACL.

For example, create an ACL for a JDBC connection pool named demopool.

2. Specify a permission for the resource.

You can either create separate ACLs for each permission available for a resource
or one ACL that grants all the permissions for a resource. For example, you can
create three ACLs for the JDBC connection pool, demopool: one with reserve

permission, one with reset permission, and one with shrink permission. Or
you can create one ACL with reserve, reset, and shrink permissions.

3. Specify Users or Groups that have the specified permission to the resource.

When creating ACLs for resources in WebLogic Server you need to use the syntax in
Table 12-18 to refer to the resource. For example, the JDBC connection pool named
demopool would be specified as weblogic.jdbc.connectionPool.demopool.

Before you can boot a WebLogic Server, you need to give permission to the boot the
server to a set of Users. This security measure prevents unauthorized Users from
booting WebLogic Server.

WebLogic JMS destinations weblogic.jms.topic.topicName

weblogic.jms.queue.queueName

send, receive

WebLogic JNDI contexts weblogic.jndi.path lookup

modify

list

Table 12-18 ACLs for WebLogic Server Resources

For this WebLogic Server
resource...

This ACL... Grants Permission
for these functions...

Configuring the SSL Protocol

Administration Guide 12-29

Configuring the SSL Protocol

The Secure Sockets Layer (SSL) protocol provides secure connections by allowing
two applications connecting over a network connection to authenticate the other’s
identity and by encrypting the data exchanged between the applications. The SSL
protocol provides server authentication and optionally client authentication,
confidentiality, and data integrity.

To configure the SSL protocol, perform the following steps:

1. Obtain a private key and digital certificate for WebLogic Server. You need a digital
certificate and private key for each WebLogic Server that will use the SSL protocol.

2. Store the private key and digital certificate for WebLogic Server.

3. Through the Administration Console, set fields for the SSL protocol and the
private key, digital certificate, and certificate authorities trusted by WebLogic
Server. These fields are defined on a per-server basis; you must define them on
any WebLogic Server that will use the SSL protocol.

The following sections describe these steps in detail.

For a complete description of the SSL Protocol, see Introduction to WebLogic Security
and Security Fundamentals.

Requesting a Private Key and Digital Certificate

To acquire a digital certificate from a certificate authority, you must submit your
request in a particular format called a Certificate Signature Request (CSR). WebLogic
Server includes a Certificate Request Generator servlet that creates a CSR. The
Certificate Request Generator servlet collects information from you and generates a
private key file and a certificate request file. You can then submit the CSR to a
certificate authority such as VeriSign or Entrust.net. Before you can use the Certificate
Request Generator servlet, WebLogic Server must be installed and running.

To generate a CSR, perform the following steps:

http://e-docs.bea.com/wls/docs60/security/intro.html
http://e-docs.bea.com/wls/docs60/security/concepts.html

12 Managing Security

12-30 Administration Guide

1. Start the Certificate Request Generator servlet. The .war file for the servlet is
located in the \wlserver6.0\config\mydomain\applications directory. The
.war file is automatically installed when you start WebLogic Server.

2. In a Web browser, enter the URL for the Certificate Request Generator servlet as
follows:

https://hostname:port/Certificate

The components of this URL are defined as follows:

� hostname is the DNS name of the machine running WebLogic Server.

� port is the number of the port at which WebLogic Server listens for SSL
connections. The default is 7002.

For example, if WebLogic Server is running on a machine named ogre and it
is configured to listen for SSL communications at the default port 7002 to
run the Certificate Request Generator servlet, you must enter the following
URL in your Web browser:

https://ogre:7002/certificate

3. The Certificate Request Generator servlet loads a form in your web browser.
Complete the form displayed in your browser, using the information in the
following table:

Table 12-19 Fields on the Certificate Request Generator Form

Field Description

Country code The two-letter ISO code for your country. The code for the
United States is US.

Organizational unit name The name of your division, department, or other operational
unit of your organization.

Organization name The name of your organization. The certificate authority may
require any host names entered in this field belong to a domain
registered to this organization.

E-mail address The e-mail address of the administrator. The digital certificate
is mail to this e-mail address.

Configuring the SSL Protocol

Administration Guide 12-31

Full host name The fully-qualified name of the WebLogic Server on which the
digital certificate will be installed. This name is the one used
for DNS lookups of the WebLogic Server, for example,
node.mydomain.com. Web browsers compare the host
name in the URL to the name in the digital certificate. If you
change the host name later, you must request a new digital
certificate.

Locality name (city) The name of your city or town. If you operate with a license
granted by a city, this field is required; you must enter the name
of the city that granted your license.

State name The name of the State or Province in which your organization
operates if your organization is in the United States or Canada,
respectively. Do not abbreviate.

Private Key Password The password used to encrypt the private key.

Enter a password in this field if you want to use a protected key
with WebLogic Server. If you choose to use a protected key,
you are prompted for this password whenever the key is used.
If you specify a password, you get a PKCS-8 encrypted private
key. BEA recommends using a password to protect private
keys.

If you do not want to use a protected key, leave this field blank.

To use protected private keys, enable the Use Encrytped Keys
field on the SSL tab of the Server window in the
Administration Console.

Random String A string of characters to be used by the encryption algorithm.
You do not have to remember this string in the future. It adds
an external factor to the encryption algorithm, making it more
difficult for anyone to break the encryption. For this reason,
enter a string that is not likely to be guessed. BEA strongly
recommends a long string with a good mixture of uppercase
and lowercase letters, digits, spaces, and punctuation
characters; these long, mixed strings contribute to more secure
encryption.

Table 12-19 Fields on the Certificate Request Generator Form

Field Description

12 Managing Security

12-32 Administration Guide

4. Click the Generate Request button.

The Certificate Request Generator servlet displays messages informing you if
any required fields are empty or if any fields contain invalid values. Click the
Back button in your browser and correct any errors.

When all fields have been accepted, the Certificate Request Generator servlet
generates the following files in the startup directory of your WebLogic Server:

� www_mydomain_com-key.der—The private key file. The name of this file
should go into the Server Key File Name field on the SSL tab in the
Administration Console.

� www_mydomain_com-request.dem—The certificate request file, in binary
format.

� www_mydomain_com-request.pem—The CSR file that you submit to the
certificate authority. It contains the same data as the .dem file but is encoded
in ASCII so that you can copy it into email or paste it into a Web form.

5. Select a certificate authority and follow the instructions on that authority’s web
site to purchase a digital certificate.

� VeriSign, Inc. offers two options for WebLogic Server: Global Site Services
which features strong 128-bit encryption for domestic and export Web
browsers, and Secure Site Services, which offers 128-bit encryption for
domestic Web browsers and 40-bit encryption for export Web browsers.

� Entrust.net digital certificates offer 128-bit encryption for domestic browser
versions and 40-bit encryption for export browser versions.

6. When you are instructed to select a server type, choose BEA WebLogic Server

to ensure that you receive a digital certificate that is compatible with WebLogic
Server.

Strength The length (in bits) of the keys to be generated. The longer the
key, the more difficult it is for someone to break the encryption.

If you have the domestic version of WebLogic Server, you can
choose 512-, 768-, or 1024-bit keys. We recommend the
1024-bit key.

Table 12-19 Fields on the Certificate Request Generator Form

Field Description

http://www.verisign.com
http://www.entrust.net

Configuring the SSL Protocol

Administration Guide 12-33

7. When you receive your digital certificate from the certificate authority, you need
to store it in the \wlserver6.0\config\mydomain directory.

Note: If you obtain a private key file from a source other than the Certificate Request
Generator servlet, verify that the private key file is in PKCS#5/PKCS#8 PEM
format.

8. Configure WebLogic Server to use the SSL protocol, you need to enter the
following information on the SSL tab in the Server Configuration window:

� In the Server Certificate File Name field, enter the full directory location and
name of the digital certificate for WebLogic Server.

� In the Trusted CA File Name field, enter the full directory location and name
of the digital certificate for the certificate authority who signed the digital
certificate of WebLogic Server.

� In the Server Key File Name field, enter the full directory location and name
of the private key file for WebLogic Server.

For more information about configuring the SSL protocol, see Defining Fields
for the SSL Protocol.

9. Use the following command-line option to start WebLogic Server.

-Dweblogic.management.pkpassword=password

where password is the password defined when requesting the digital certificate.

Storing Private Keys and Digital Certificates

Once you have a private key and digital certificate, copy the private key file generated
by the Certificate Request Generator servlet and the digital certificate you received
from the certificate authority into the \wlserver6.0\config\mydomain directory.

Private key files and digital certificates are generated in either PEM or Definite
Encoding Rules (DER) format. The filename extension identifies the format of the
digital certificate file.

A PEM (.pem) format private key file begins and ends with the following lines,
respectively:

-----BEGIN ENCRYPTED PRIVATE KEY-----

12 Managing Security

12-34 Administration Guide

-----END ENCRYPTED PRIVATE KEY-----

A PEM(.pem) format digital certificate begins and ends with the following lines,
respectively:

-----BEGIN CERTIFICATE-----

-----END CERTIFICATE-----

Note: Your digital certificate may be one of several digital certificates in the file,
each of which is bounded by the BEGIN CERTIFICATE and END CERTIFICATE

lines. Typically, the digital certificate file for a WebLogic Server is in one file,
with either a .pem or .der extension, and the WebLogic Server certificate
chain is in another file. Two files are used because different WebLogic Servers
may share the same certificate chain.

The first digital certificate in the certificate authority file is the first digital
certificate in the WebLogic Server’s certificate chain. The next certificates in
the file are the next digital certificates in the certificate chain. The last
certificate in the file is a self-signed digital certificate that ends the certificate
chain.

A DER (.der) format file contains binary data. WebLogic Server requires that the file
extension match the contents of the certificate file so be sure to save the file you receive
from your certificate authority with the correct file extension.

Assign protections to the private key file and digital certificates so that only the
system User of WebLogic Server has read privileges and all other users have no
privileges to access the private key file or digital certificate. If you are creating a file
with the digital certificates of multiple certificate authorities or a file that contains a
certificate chain, you must use PEM format. WebLogic Server provides a tool to for
converting DER-format files to PEM format, and visa versa. For more information, see
WebLogic Utilities.

Defining Trusted Certificate Authorities

When establishing an SSL connection, WebLogic Server checks the identity of the
certificate authority against a list of trusted certificate authorities to ensure the
certificate authority currently being used is trusted.

http://e-docs.bea.com/wls/docs60/adminguide/utils.html

Configuring the SSL Protocol

Administration Guide 12-35

Copy the root certificate of the certificate authority into the
\wlserver6.0\config\mydomain directory of your WebLogic Server and set the
fields described in Defining Fields for the SSL Protocol.

If you want to use a certificate chain, append the additional PEM-encoded digital
certificates to the digital certificate of the certificate authority that issued the digital
certificate for WebLogic Server. The last digital certificate in the file should be a
digital certificate that is self-signed (that is, the rootCA certificate).

If you want to use mutual authentication, take the root certificates for the certificate
authorities you want to accept and include them to the trusted CA file.

Defining Fields for the SSL Protocol

To define fields for the SSL protocol, perform the following steps:

1. Open the Administration Console.

2. Open the Server Configuration window.

3. Select the SSL tab. Define the fields on this tab by entering values and checking
the required checkboxes. (For details, see the following table.)

4. Click the Apply button to save your changes.

5. Reboot WebLogic Server.

The following table describes each field on the SSL tab of the Server Configuration
window.

Note: Remember if you are using a PKCS-8 protected private key, you need to
specify the password for the private key on the command line when you start
WebLogic Server.

Table 12-20 SSL Protocol Fields

Field Description

Enabled Checkbox that enables the use of the SSL protocol. By
default, this field is enabled.

12 Managing Security

12-36 Administration Guide

SSL Listen Port The number of the dedicated port on which WebLogic
Server listens for SSL connections. The default is 7002.

Server Key File Name The full directory location and name of the private key file
for WebLogic Server. The file extension (.DER or .PEM)
indicates the method that should be used by WebLogic
Server to read the contents of the file.

Server Certificate File Name The full directory location and name of the digital certificate
file for WebLogic Server. The file extension (.DER or
.PEM) indicates the method that should be used by
WebLogic Server to read the contents of the file.

Server Certificate Chain File
Name

The full directory location of the rest of the digital
certificates for WebLogic Server. The file extension (.DER
or .PEM) indicates the method that should be used by
WebLogic Server to read the contents of the file.

Client Certificate Enforced Checkbox that enables mutual authentication.

Trusted CA File Name The name of the file that contains the digital certificate for
the certificate authority(s) trusted by WebLogic Server. This
file specified in this field can contain a single digital
certificate or multiple digital certificates for certificate
authorities. The file extension (.DER or .PEM) tells
WebLogic Server how to read the contents of the file

CertAuthenticator The name of the Java class that implements the
CertAuthenticator interface. For more information about
using the
weblogic.security.acl.CertAuthenticator
interface, see Mapping a Digital Certificate to a WebLogic
User.

Use Java Checkbox that enables the use of native Java libraries.
WebLogic Server provides a pure-Java implementation of
the SSL protocol: native Java libraries enhance the
performance for SSL operations on the Solaris, Windows
NT, and IBM AIX platforms. By default, this field is not
enabled.

Table 12-20 SSL Protocol Fields

Field Description

http://e-docs.bea.com/wls/docs60/security/prog.html
http://e-docs.bea.com/wls/docs60/security/prog.html

Configuring the SSL Protocol

Administration Guide 12-37

Use Encrypted Keys Field that specifies that the private key for the WebLogic
Server has been encyrpted with a password. The default is
false.

Handler Enabled Field that specifies whether or not WebLogic Server rejects
SSL connections that fail client authentication for one of the
following reasons:

� The requested client digital certificate was not furnished.

� The client did not submit a digital certificate

� The digital certificate from the client was not issued by
a certificate authority specified by the Trusted CA
Filename field.

By default, the SSL Handler allows one WebLogic Server to
make outgoing SSL connections to another WebLogic
Server. For example, an EJB in WebLogic Server may open
an HTTPS stream on another Web server. With the
HandlerEnabled field enabled, the WebLogic Server
acts as a client in an SSL connection. By default this field is
enabled.

Disable this field only if you want to provide your own
implementation for outgoing SSL connections.

Note: The SSL Handler has no effect on the ability of
WebLogic Server to manage incoming SSL
connections.

Export Key Lifespan The number of times WebLogic Server uses an exportable
key between a domestic server and an exportable client
before generating a new one. The more secure you want
WebLogic Server to be the fewer times the key should be
used before a new one is generated. The default is to use it
500 times.

Login Timeout Millis The number of milliseconds that WebLogic Server should
wait for an SSL connection before timing out. The default
value is 25,000 milliseconds. SSL connections take longer to
negotiate than regular connections. If clients are connecting
over the Internet, raise the default number to accommodate
additional network latency.

Table 12-20 SSL Protocol Fields

Field Description

12 Managing Security

12-38 Administration Guide

Configuring Mutual Authentication

When WebLogic Server is configured for mutual authentication, clients are required to
present their digital certificates to WebLogic Server which validates digital certificates
against a list of trusted certificate authorities.

To configure your WebLogic Server for the SSL protocol and certificate
authentication, complete the procedure in Configuring the SSL Protocol section.

Copy the root certificates for the certificate authorities to be used by WebLogic Server
to the \wlserver6.0\config\mydomain directory. During mutual authentication,
clients are required to present a digital certificate issued by one of these trusted
certificate authorities.

To configure mutual authentication, check the Client Certificate Enforced option on
the SSL tab in the Server Configuration window of the Administration Console. By
default, this option is not enabled.

Configuring RMI over IIOP over SSL

The SSL protocol can be used to protect IIOP connections to RMI remote objects. The
SSL protocol secures connections through authentication and encrypts the data
exchanged between objects. To use the SSL protocol to protect IIOP over RMI
connections, do the following:

1. Configure WebLogic Server to use the SSL protocol. For more information, see
Configuring the SSL Protocol

Certificate Cache Size The number of digital certificates that are tokenized and
stored by WebLogic Server. The default is 3. For more
information, see Using Mutual Authentication with Applets.

Table 12-20 SSL Protocol Fields

Field Description

http://e-docs.bea.com/wls/docs60/security/prog.html

Protecting Passwords

Administration Guide 12-39

2. Configure the client Object Request Broker (ORB) to use the SSL protocol. Refer
to the product documentation for your client ORB for information about
configuring the SSL protocol.

3. Use the host2ior utility to print the WebLogic Server IOR to the console. The
host2ior utility prints two versions of the IOR, one for SSL connections and
one for non-SSL connections. The header of the IOR specifies whether or not the
IOR can be used for SSL connections.

4. Use the SSL IOR when obtaining the initial reference to the CosNaming service
that accesses the WebLogic Server JNDI tree.

For more information about using RMI over IIOP, see Programming WebLogic IIOP
over RMI.

Protecting Passwords

It is important to protect the passwords that are used to access resources in WebLogic
Server. In the past, usernames and passwords were stored in clear text in a WebLogic
Server security realm. Now WebLogic Server hashes all passwords. When WebLogic
Server receives a client request, the password presented by the client is hashed and
WebLogic Server compares it to the already hashed password for matching.

Each filerealm.properties file has an associated SerializedSystemIni.dat

file that is used to hash the passwords. During installation, the
SerializedSystemIni.dat file is put in the \wlserver6.0\config\mydomain

directory. If for any reason the SerializedSystemIni.dat file is corrupted or
destroyed, you must reconfigure WebLogic Server.

We recommend that you take the following steps:

� Make a backup copy of the SerializedSystemIni.dat file and put it in the
same location as a copy of its associated filerealm.properties file.

� Set the permissions on the SerializedSystemIni.dat file protections such
that the administrator of the WebLogic Server deployment has write and read
privileges and no other users have any privileges.

http://e-docs.bea.com/wls/docs60/rmi_iiop/index.html
http://e-docs.bea.com/wls/docs60/rmi_iiop/index.html

12 Managing Security

12-40 Administration Guide

If you already have a weblogic.properties file and you want to hash the passwords
in the file, use the Convert weblogic.properties option on the main window in
the Administration Console to convert the weblogic.properties file to a
config.xml file. Once the file is converted, all existing passwords are protected.

Password guessing is a common type of security attack.In this type of attack, a hacker
attempts to log in to a computer using various combinations of usernames and
passwords. WebLogic Server has strengthened its protection against password
guessing by providing a set of fields designed to protect passwords.

To protect the passwords in your WebLogic Server deployment, you must perform the
following steps:

1. Open the Administration Console.

2. Open the Security Configuration window.

3. Select the Passwords tab. Define the desired fields on this tab by entering values
at the appropriate prompts and checking the required checkboxes. (For details,
see the following table).

4. Click the Apply button to save your choices.

5. Reboot WebLogic Server.

The following table describes each field on the Passwords tab of the Security
Configuration window.

Table 12-21 Password Protection Fields

Field Description

Minimum Password Length Number of characters required in a password.
Passwords must contain a minimum of 8
characters. The default is 8.

Lockout Enabled Checkbox that requests the locking of a user
account when an invalid attempt it made to log in
to that account. By default, this field is enabled.

Protecting Passwords

Administration Guide 12-41

Lockout Threshold The number of failed password entries for a user
that can be tried to log in to a user account before
that account is locked. Any subsequent attempts to
access the account (even if the username/password
combination is correct) raise a Security exception;
the account remains locked until it is explicitly
unlocked by the system administrator or another
login attempt is made after the lockout duration
period ends. Note that invalid login attempts must
be made within a span defined by the Lockout
Reset Duration field. The default is 5.

Lockout Duration The number of minutes that a user’s account
remains inaccessible after being locked in
response to several invalid login attempts within
the amount of time specified by the Lockout
Reset Duration field. The default is 30
minutes. In order to unlock a user account, you
need to have the unlockuser permission for the
weblogic.passwordpolicy.

Lockout Reset Duration The number of minutes within which invalid login
attempts must occur in order for the user’s account
to be locked.

An account is locked if the number of invalid login
attempts defined in the Lockout Threshold
field happens within the amount of time defined
by this field. For example, if the value in this field
is five minutes and three invalid login attempts are
made within a six-minute interval, then the
account is not locked. If five invalid login attempts
are made within a five-minute period, however,
then the account is locked.

The default is 5 minutes.

Lockout Cache Size Specifies the intended cache size of unused and
invalid login attempts. The default is 5.

Table 12-21 Password Protection Fields

Field Description

12 Managing Security

12-42 Administration Guide

Installing an Audit Provider

WebLogic Server allows you to create an audit provider to receive and process
notifications of security events such as authentication requests, failed or successful
authorization attempts, and receipt of invalid digital certificates.

To use an audit provider, you create an implementation of the
weblogic.security.audit.AuditProvider interface. Then use the
Administration Console to install and activate your implementation.

To install an audit provider, enter the name of your implementation of the
AuditProvider class in the Audit Provider Class field on the Security Configuration
window. Reboot WebLogic Server.

For more information about writing an audit provider, see Auditing Security Events.
For an example of creating a connection filter, see the LogAuditProvider example
in the \samples\examples\security directory of the WebLogic Server installation.

Installing a Connection Filter

You can create connection filters that allow you to reject or accept client connections
based on a client’s origin and protocol. After the client connects, and before any work
is performed on its behalf, WebLogic Server passes the client’s IP number and port,
protocol (HTTP, HTTPS, T3, T3S, or IIOP), and WebLogic Server port number to the
connection filter. By examining this information, you can choose to allow the
connection or throw a FilterException to terminate it.

To use a connection filter, you must first create an implementation of the
weblogic.security.net.ConnectionFilter interface. Then use the
Administration Console to install your implementation.

To install a connection filter, enter the name of your implementation of the
weblogic.security.net.ConnectionFilter interface, in the Connection Filter
field on the General tab of the Security Configuration window in the Administration
Console. Reboot WebLogic Server.

http://e-docs.bea.com/wls/docs60/security/prog.html

Configuring Security Context Propagation

Administration Guide 12-43

For information about writing a connection filter, see Filtering Network Connections.
For an example of creating a connection filter, see the SimpleConnectionFilter
example in the \samples\examples\security directory of the WebLogic Server
installation..

Configuring Security Context Propagation

Security context propagation enables Java applications running in a WebLogic Server
environment to access objects and operations in BEA WebLogic Enterprise (WLE)
domains. The BEA WebLogic Enterprise Connectivity (WLEC) component of
WebLogic Server provides the security context propagation capability.

When security context propagation is used, the security identity of a User defined in a
WebLogic Server security realm is propagated as part of the service context of an
Internet Inter-ORB Protocol (IIOP) request sent to the WLE domain over a network
connection that is part of a WLEC connection pool. Each network connection in the
WLEC connection pool has been authenticated using a defined User identity.

To use security context propagation, create a WLEC connection pool for each WLE
domain you want to access from WebLogic Server. WebLogic Server populates each
WLEC connection pool with IIOP connections. Java applications in a WebLogic
Server environment obtain IIOP connections from a WLEC connection pool and use
those connections to call objects and invoke operations in WLE domains.

Before using security context propagation, add WLE_HOME/lib/wleorb.jar and
WLE_HOME/lib/wlepool.jar to the CLASSPATH variable in the
startAdminWebLogic.sh or startAdminWebLogic.cmd file.

For more information, see Using WLEC.

The steps for implementing security context propagation are as follows:

1. Create a new WLEC connection pool for the purpose of security context
propagation. To create a WLEC connection pool, go to the Services→WLEC node
in the left pane of the Administration Console. In the right pane of the
Administration Console, click the Create a new WLEC Connection Pool link.
Define the fields in the following table:

http://e-docs.bea.com/wls/docs60/security/prog.html
http://e-docs.bea.com/wls/docs60/wlec/index.html

12 Managing Security

12-44 Administration Guide

2. Click the Create button.

Table 12-22 WLEC Connection Pool Fields on the General Tab

Field Description

Name The name of the WLEC connection pool. The name
must be unique for each WLEC connection pool.

Primary Addresses A list of addresses for IIOP Listener/Handlers that can
be used to establish a connection between the WLEC
connection pool and the WLE domain. The format of
each address is //hostname:port.

The addresses must match the ISL addresses defined in
the UBBCONFIG file. Multiple addresses are seperated
by semicolons. For example: //main1.com:1024;
//main2.com:1044.

To configure the WLEC connection pool to use the SSL
protocol, use the corbalocs prefix with the address
of the IIOP Listener/Handler. For example:
corbalocs://hostname:port.

Failover Addresses A list of addresses for IIOP Listener/Handlers that are
used if connections cannot be established with the
addresses defined in the Primary Addresses field.
Multiple addresses are separated by semicolons. This
field is optional.

Domain The name of the WLE domain to which this WLEC
connection pool connects. You can have only one
WLEC connection pool per WLE domain. The domain
name must match the domainid parameter in the
RESOURCES section of the UBBCONFIG file for the
WLE domain.

Minimum Pool Size The number of IIOP connections to be added to the
WLEC connection pool when WebLogic Server starts.
The default is 1.

Maximum Pool Size The maximum number of IIOP connections that can be
made from the WLEC connection pool. The default is
1.

Configuring Security Context Propagation

Administration Guide 12-45

3. Propagate the security context for a User in a WebLogic Server security realm to
a WLE domain. To do so, define the fields on the Security tab in the Connection
Pool Configuration window. The following table describes these fields.

Table 12-23 WLEC Connection Pool Fields on the Security Tab

Field Description

User Name A WLE user name. This field is required only
when the security level in the WLE domain is
USER_AUTH, ACL or MANDATORY_ACL.

User Password The password for the User defined in the User
Name field. This field is required only when you
define the User Name field.

User Role The WLE user role. This field is required when the
security level in the WLE domain is APP_PW,
USER_AUTH, ACL, or MANDATORY_ACL.

Application Password The WLE application password. This field is
required when the security level in the WLE
domain is APP_PW, USER_AUTH, ACL, or
MANDATORY_ACL.

Minimum Encryption Level The minimum SSL encryption level used between
the WLE domain and WebLogic Server. The
possible values are 0, 40, 56, and 128. The default
is 40. Zero (0) indicates that the data is signed but
not sealed. 40, 56, and 128 specify the length, in
bits, of the encryption key. If this minimum level
of encryption is not met, the SSL connection
between WLE and WebLogic Server fails.

Maximum Encryption Level The maximum SSL encryption level used between
the WLE domain and WebLogic Server. The
possible values are 0, 40, 56, and 128. The default
is the maximum level allowed by the Encryption
Package kit license. Zero (0) indicates that the data
is signed but not sealed. 40, 56, and 128 specify
the length, in bits, of the encryption key. If this
minimum level of encryption is not met, the SSL
connection between WLE and WebLogic Server
fails.

12 Managing Security

12-46 Administration Guide

4. To save your changes, click the Apply button and reboot WebLogic Server.

5. Run the tpusradd command to define the WebLogic Server User as an
authorized User in the WebLogic Enterprise domain.

6. Set the -E option of the ISL command to configure the IIOP Listener/Handler to
detect and utilize the propagated security context from the WebLogic Server
realm. The -E option of the ISL command requires you to specify a principal
name. The principal name defines the principal used by the WLEC connection
pool to log in to the WebLogic Enterprise domain. The principal name should
match the name defined in the User Name field when creating a WLEC
connection pool.

Using certificate authentication between the WebLogic Server environment and the
WebLogic Enterprise environment implies performing a new SSL handshake when
establishing a connection from the WebLogic Server environment to a CORBA object,
RMI object, or EJB in a WebLogic Enterprise environment is initiated. To support
multiple client requests over the same SSL network connection, you must set up
certificate authentication so that it operates as follows:

1. Obtain a digital certificate for the principal and put the private key in the
TUXDIR/udataobj/security/keys directory of WebLogic Enterprise.

2. Use the tpusradd command to define the principal as a WebLogic Enterprise
user.

3. Define the IIOP Listener/Handler in the UBBCONFIG file with the -E option to
indicate the principal is to be used for authentication.

Enable Certificate Authentication Checkbox that enables the use of certificate
authentication.

By default certificate authentication is disabled.

Enable Security Context Check this checkbox to pass the security context
of the WebLogic Server User passed to the WLE
domain.

By default, security context is disabled.

Table 12-23 WLEC Connection Pool Fields on the Security Tab

Field Description

Configuring Security Context Propagation

Administration Guide 12-47

4. Define the principal name in the User Name field when creating a WLEC
Connection pool in the Administration Console of WebLogic Server.

5. Obtain a digital certificate for the IIOP Listener/Handler.

6. Specify the digital certificate in the SEC_PRINCIPAL_NAME option of the ISL
command and use the -S option to indicate that a secure port should be used for
communication between the WebLogic Enterprise domain and the WebLogic
Server security realm.

For more information about the UBBCONFIG file, see Creating a Configuration File in
the WLE documentation.

For more information about the corbalocs prefix, see Understanding the Address
Formats of the Bootstrap Object in the WLE documentation.

For information about WLE security levels, see Defining a Security Level in the WLE
documentation.

http://e-docs.bea.com/wle/admin/creconfg.htm
http://e-docs.bea.com/wle/security/writewle.htm
http://e-docs.bea.com/wle/security/writewle.htm
http://e-docs.bea.com/wle/security/secur.htm

12 Managing Security

12-48 Administration Guide

Administration Guide 13-1

CHAPTER

13 Managing Transactions

The following topics are discussed:

� Overview of Transaction Management

� Configuring Transactions

� Monitoring and Logging Transactions

� Moving a Server to Another Machine

This section provides guidelines for configuring and managing transactions through
the Administration Console. For information on configuring JDBC connection pools
to allow JDBC drivers to participate in distributed transactions, see “Managing JDBC
Connectivity” in the Administration Guide.

Overview of Transaction Management

The Administration Console provides an interface to the tools that allow you to enable
and configure WebLogic Server features, including the JavaTransaction API (JTA).
To invoke the Administration Console, see the procedures provided in Configuring
WebLogic Servers and Clusters. The configuration process involves specifying values
for attributes. These attributes define various aspects of the transaction environment,
including the following:

� Transaction time-outs and limits

� Transaction manager behavior

� Transaction log file prefix

http://e-docs.bea.com/wls/docs60/adminguide/config.html
http://e-docs.bea.com/wls/docs60/adminguide/config.html

13 Managing Transactions

13-2 Administration Guide

Before configuring your transaction environment, you should be familiar with the
J2EE components that can participate in transactions, such as EJBs, JDBC, and JMS.

� EJBs (Enterprise JavaBeans) use JTA for transactions support. Several
deployment descriptors relate to transaction handling. For more information
about programming with EJBs and JTA, see Programming WebLogic Enterprise
JavaBeans.

� JDBC (Java Database Connectivity) provides standard interfaces for accessing
relational database systems from Java. JTA provides transaction support on
connections retrieved using a JDBC driver and transaction data source. For more
information about programming with JDBC and JTA, see Programming
WebLogic JDBC.

� JMS (Java Messaging Service) uses JTA to support transactions across multiple
data resources. WebLogic JMS is an XA-compliant resource manager. For more
information about programming with JMS and JTA, see Programming WebLogic
JMS.

For more information about configuring J2EE components, see the applicable sections
of this document and the Administration Console online help.

Configuring Transactions

The Administration Console provides default values for all JTA configuration
attributes. If you specify an invalid value for any configuration attribute, the WebLogic
Server does not boot when you restart it.

Configuration settings for JTA are applicable at the domain level. This means that
configuration attribute settings apply to all servers within a domain. Monitoring and
logging tasks for JTA are performed at the server level.

Once you have configured WebLogic JTA and any transaction participants, the system
can perform transactions using the JTA API and the WebLogic JTA extensions.

You can configure any transaction attributes before running applications (static
configuration) or, with one exception, at application run time (dynamic configuration).
The TransactionLogFilePrefix attribute must be set before running applications.

To configure transaction attributes, complete the following procedure:

Configuring Transactions

Administration Guide 13-3

1. Start the Administration Console.

2. Select the domain node in the left pane. The Configuration tab for the domain is
displayed by default.

3. Click the JTA tab.

4. For each attribute, specify a value or, if available, accept the default value.

5. Click Apply to store new attribute values.

6. Ensure that the Transaction Log File Prefix attribute is set when you
configure the server. For more information on setting the logging attribute, see
“Monitoring and Logging Transactions.”.

Table 13-1 briefly describes the transaction attributes available with WebLogic
Server. For detailed information about attributes, and valid and default values for them,
see the Domain topic in the Administration Console online help.

Table 13-1 Transaction Attributes

Attribute Description

Timeout Seconds The time, in seconds, a transaction may be active
before the system forces a rollback.

Abandon Timeout Seconds The maximum time, in seconds, that a transaction
coordinator persists in attempting to complete a
transaction.

Before Completion
Iteration Limit

The number of beforeCompletion callbacks that
are processed before the system forces a rollback.

Max Transactions The maximum number of transactions that may be
active on a particular server at one time.

Max Unique Name Statistics The maximum number of unique transaction names
that may be tracked by a server at one time.

Forget Heuristics A Boolean value specifying whether the transaction
manager should instruct a resource to forget any
transaction with a heuristic outcome.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/domain.html

13 Managing Transactions

13-4 Administration Guide

Monitoring and Logging Transactions

The Administration Console allows you to monitor transactions and to specify the
transaction log file prefix. Monitoring and logging tasks are performed at the server
level. Transaction statistics are displayed for a specific server and each server has a
transaction log file.

To display transaction statistics and to set the prefix for the transaction log files,
complete the following procedure:

1. Start the Administration Console.

2. Click the server node in the left pane.

3. Select a specific server in the left pane.

4. Click the Monitoring tab.

5. Click the JTA tab. Totals for transaction statistics are displayed in the JTA dialog.
(You can also click the monitoring text links to monitor transactions by resource
or by name, or to monitor all active transactions.)

6. Click the Logging tab.

7. Click the JTA tab.

8. Enter a transaction log file prefix then click on Apply to save the attribute setting.

For detailed information on monitoring and logging values and attributes, see the
Server topic in the Administration Console online help.

Moving a Server to Another Machine

When an applications server is moved to another machine, it must be able to locate the
transaction log files on the new disk. For this reason, we recommend moving the
transaction log files to the new machine before starting the server there. By doing so

http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html

Moving a Server to Another Machine

Administration Guide 13-5

you can ensure that recovery runs properly. If the pathname is different on the new
machine, update the TransactionLogFilePrefix attribute with the new path before
starting the server.

When migrating transaction logs after a server failure, make all transaction log files
available on the new machine before starting the server there. You can accomplish this
by storing transaction log files on a dual-ported disk available to both machines. As in
the case of a planned migration, update the TransactionLogFilePrefix attribute
with the new path before starting the server if the pathname is different on the new
machine. It is important to ensure that all transaction log files are available on the new
machine before the server is started there. Otherwise, transactions in the process of
being committed at the time of a crash might not be resolved correctly, resulting in
application data inconsistencies.

13 Managing Transactions

13-6 Administration Guide

Administration Guide 14-1

CHAPTER

14 Managing JDBC
Connectivity

The following sections provide guidelines for configuring and managing database
connectivity through the JDBC components—Data Sources, Connection Pools and
MultiPools—for both local and distributed transactions:

� “Overview of JDBC Administration” on page 14-1

� “JDBC Components—Connection Pools, Data Sources, and MultiPools” on page
14-4

� “JDBC Configuration Guidelines for Connection Pools, MultiPools and
DataSources” on page 14-5

� “Setting and Managing JDBC Connection Pools, MultiPools, and DataSources”
on page 14-19

Overview of JDBC Administration

The Administration Console provides an interface to the tools that allow you to
configure and manage WebLogic Server features, including JDBC (database
connectivity with Java). For most JDBC administrative functions, which include
creating, managing and monitoring connectivity, systems administrators use the
Administrative Console or the command-line interface. Application developers may
want to use the JDBC API.

Frequently performed tasks to set and manage connectivity include:

14 Managing JDBC Connectivity

14-2 Administration Guide

� Defining the attributes that govern JDBC connectivity between WebLogic Server
and your database management system

� Managing established connectivity

� Monitoring established connectivity

About the Administrative Console

Your primary way to set and manage JDBC connectivity is through the Administration
Console. Using the Administration Console, you set connectivity statically prior to
starting the server. For more information, see “Starting the Administration Console”
on page 1-3.

In addition to setting connectivity, the Administration Console allows you to manage
and monitor established connectivity.

About the Command-Line Interface

The command-line interface provides a way to dynamically create and manage
Connection Pools. For information on how to use the command-line interface, see
“WebLogic Server Command-Line Interface Reference” on page B-1.

About the JDBC API

For information on setting and managing connectivity programatically, see
Programming WebLogic JDBC at http://e-docs.bea.com/wls/docs60/jdbc/index.html.

Related Information

The JDBC drivers, used locally and in distributed transactions, interface with many
WebLogic Server components and information appears in several documents. For
example, information about JDBC drivers is included in the documentation sets for
JDBC, JTA and WebLogic jDrivers.

http://e-docs.bea.com/wls/docs60/jdbc/index.html

Overview of JDBC Administration

Administration Guide 14-3

Here is a list of additional resources for JDBC, JTA and Administration:

Administration and Management

� For instructions on opening the Administration Console, refer to “Configuring
WebLogic Servers and Clusters” on page 3-1.

� For a complete list of the JDBC attributes, see JDBC Connection Pool, JDBC
Data Sources, JDBC MultiPools, and JDBC Transaction Data Sources in the
WebLogic Administration Console Online Help at
http://e-docs.bea.com/wls/docs60/ConsoleHelp/index.html.

� For information about using the command-line interface, see “WebLogic Server
Command-Line Interface Reference” on page B-1.

JDBC and WebLogic jDrivers

The following documentation is written primarily for application developers. Systems
Administrators may want to read the introductory material as a supplement to the
material in this document.

� For information on the JDBC API, see Programming WebLogic JDBC. The
“Introduction to WebLogic JDBC” section provides a concise overview of JDBC
and JDBC drivers.

� For information on using the WebLogic jDrivers, see Installing and Using
WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs60/oracle/index.html, Installing and Using
WebLogic jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html, or Installing and
Using WebLogic jDriver for Informix at
http://e-docs.bea.com/wls/docs60/informix4/index.html.

Transactions (JTA)

� For information on managing JTA, see “Managing Transactions” on page 13-1.

The following documentation is written primarily for application developers. Systems
Administrators may want to read the following as supplements to the material in this
section.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcmultipool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbctxdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs60/jdbc/index.html
http://e-docs.bea.com/wls/docs60/jdbc/intro.html
http://e-docs.bea.com/wls/docs60/oracle/index.html
http://e-docs.bea.com/wls/docs60/oracle/index.html
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs60/informix4/index.html
http://e-docs.bea.com/wls/docs60/informix4/index.html

14 Managing JDBC Connectivity

14-4 Administration Guide

� For information on distributed transactions, see Programming WebLogic JTA at
http://e-docs.bea.com/wls/docs60/jta/index.html.

� For information on using the WebLogic jDriver for Oracle/XA, see "Using
WebLogic jDriver for Oracle/XA in Distributed Transactions" in Installing and
Using WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs60/oracle/trxjdbcx.html.

JDBC Components—Connection Pools, Data
Sources, and MultiPools

The following sections provide a brief overview of the JDBC connectivity
components—Connection Pools, MultiPools, and Data Sources:

Connection Pools

A Connection Pool contains named groups of JDBC connections that are created when
the Connection Pool is registered, usually when starting up WebLogic Server. Your
application borrows a connection from the pool, uses it, then returns it to the pool by
closing it. Read more about Connection Pools in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/programming.html#programming006.

All of the settings you make with the Administration Console are static; that is, all
settings are made before WebLogic Server starts. You can create dynamic Connection
Pools—after the server starts—using the command line (see “WebLogic Server
Command-Line Interface Reference” on page B-1) or programatically using the API
(see Creating a Dynamic Connection Pool in Programming WebLogic JDBC).

MultiPools

Used in local (non distributed) transactions on single-server WebLogic Server
configurations, MultiPools aid in either:

http://e-docs.bea.com/wls/docs60/jta/index.html
http://e-docs.bea.com/wls/docs60/oracle/trxjdbcx.html
http://e-docs.bea.com/wls/docs60/oracle/trxjdbcx.html
http://e-docs.bea.com/wls/docs60/jdbc/programming.html#programming006
http://e-docs.bea.com/wls/docs60/jdbc/programming.html#dynamic_conn_pool

JDBC Configuration Guidelines for Connection Pools, MultiPools and DataSources

Administration Guide 14-5

� Load Balancing—pools are added without any attached ordering and are
accessed using a round-robin scheme. When switching connections, the
Connection Pool just after the last pool accessed is selected.

� High Availability—set up pools as an ordered list that determines the order in
which Connection Pool switching occurs. For example, the first pool on the list
is selected, then the second, etc.

All of the connections in a particular Connection Pool are identical; that is, they are
attached to a single database. The Connection Pools within a MultiPool may, however,
be associated with different DBMS. Read more about MultiPools in Programming
WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/programming.html#programming008.

Data Sources

A Data Source object enables JDBC clients to obtain a DBMS connection. Each Data
Source object points to a Connection Pool or MultiPool. Data Source objects can be
defined with or without JTA, which provides support for distributed transactions. Read
more about Data Sources in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/programming.html#programming001.

Note: Tx Data Sources cannot point to MultiPools, only Connection Pools, because
MultiPools are not supported in distributed transactions.

JDBC Configuration Guidelines for
Connection Pools, MultiPools and
DataSources

This section describes JDBC configuration guidelines for local and distributed
transactions.

http://e-docs.bea.com/wls/docs60/jdbc/programming.html#programming008
http://e-docs.bea.com/wls/docs60/jdbc/programming.html#programming001

14 Managing JDBC Connectivity

14-6 Administration Guide

Overview of JDBC Configuration

To set up JDBC connectivity, you configure Connection Pools, Data Source objects
(always recommended, but optional in some cases), and MultiPools (optional) by
defining attributes in the Administration Console and, for dynamic connection pools,
at the command line. There are three types of transactions:

� Local—non-distributed transaction

� Distributed with XA Driver—two-phase commit

� Distributed with non-XA Driver—single resource manager and single database
instance

The following table describes how to use these objects in local and distributed
transactions:

Table 14-1 Summary of JDBC Configuration Guidelines

Descriptio
n/Object

Local Transactions Distributed
Transactions
XA Driver

Distributed
Transactions
Non-XA Driver

JDBC driver � WebLogic jDriver
for Oracle, Microsoft
SQL Server, and
Informix.

� Compliant
third-party drivers.

� WebLogic
jDriver for
Oracle/XA.

� Compliant
third-party
drivers.

� WebLogic jDriver for
Oracle, Microsoft
SQL Server, and
Informix.

� Compliant third-party
drivers.

Data Source Data Source object
recommended. (If there is
no Data Source, use the
JDBC API.)

Tx Data Source
required.

Tx Data Source required.

Setenable two-phase
commit=true if more
than one resource. See
“Configuring Non-XA
JDBC Drivers for
Distributed Transactions”
on page 14-17.

Connection
Pool

Requires Data Source
object when configuring
in the Administration
Console.

Requires TXData
Source.

Requires TXData Source.

JDBC Configuration Guidelines for Connection Pools, MultiPools and DataSources

Administration Guide 14-7

Note: Distributed transactions use the WebLogic jDriver for Oracle/XA, the
transaction mode for WebLogic jDriver for Oracle.

Drivers Supported for Local Transactions

� JDBC 2.0 drivers that support the JDBC Core 2.0 API (java.sql), including
the WebLogic jDrivers for Oracle, Microsoft SQL Server, and Informix. The
API allows you to create the class objects necessary to establish a connection
with a data source, send queries and update statements to the data source, and
process the results.

Drivers Supported for Distributed Transactions

� Any JDBC 2.0 driver that supports JDBC 2.0 distributed transactions standard
extension interfaces (javax.sql.XADataSource, javax.sql.XAConnection,
javax.transaction.xa.XAResource), including the WebLogic jDriver for
Oracle/XA.

� Any JDBC driver that supports JDBC 2.0 Core API but does not support JDBC
2.0 distributed transactions standard extension interfaces. Only one non-XA
JDBC driver at a time can participate in a distributed transaction. See
“Configuring Non-XA JDBC Drivers for Distributed Transactions” on page
14-17.

Configuring JDBC Drivers

This section explains how to configure drivers for local and distributed transactions.

MultiPool Connection Pool and
Data Source required.
Used in single-server
configurations only.

Not supported in
distributed
transactions.

Not supported in
distributed transactions.

Table 14-1 Summary of JDBC Configuration Guidelines

Descriptio
n/Object

Local Transactions Distributed
Transactions
XA Driver

Distributed
Transactions
Non-XA Driver

14 Managing JDBC Connectivity

14-8 Administration Guide

Configuring JDBC Drivers for Local Transactions

To configure JDBC drivers for local transactions, set up the JDBC Connection Pool as
follows:

� Specify the Driver Classname attribute as the name of the class supporting the
java.sql.Driver interface.

� Specify the data properties. These properties are passed to the specific Driver
as driver properties.

For more information on WebLogic two-tier JDBC drivers, refer to the BEA
documentation for the specific driver you are using: Installing and Using WebLogic
jDriver for Oracle at http://e-docs.bea.com/wls/docs60/oracle/index.html, Installing
and Using WebLogic jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html, or Installing and Using
WebLogic jDriver for Informix at
http://e-docs.bea.com/wls/docs60/informix4/index.html. If you are using a third-party
driver, refer to Using Third-Party JDBC XA Drivers with WebLogic Server in
Programming WebLogic JTA at
http://e-docs.bea.com/wls/docs60/jta/thirdpartytx.html and the vendor-specific
documentation. The following tables show sample JDBC Connection Pool and Data
Source configurations using the WebLogic jDrivers.

The following table shows a sample Connection Pool configuration using the
WebLogic jDriver for Oracle.

Table 14-2 WebLogic jDriver for Oracle: Connection Pool Configuration

Attribute Name Attribute Value

Name myConnectionPool

Targets myserver

DriverClassname weblogic.jdbc.oci.Driver

Initial Capacity 0

MaxCapacity 5

CapacityIncrement 1

Properties user=scott;server=localdb

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/oracle/index.html
http://e-docs.bea.com/wls/docs60/oracle/index.html
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs60/informix4/index.html
http://e-docs.bea.com/wls/docs60/informix4/index.html
http://e-docs.bea.com/wls/docs60/jta/thirdpartytx.html

JDBC Configuration Guidelines for Connection Pools, MultiPools and DataSources

Administration Guide 14-9

The following table shows a sample Data Source configuration using the WebLogic
jDriver for Oracle.

The following table shows a sample Connection Pool configuration using the
WebLogic jDriver for Microsoft SQL Server.

Table 14-3 WebLogic jDriver for Oracle: Data Source Configuration

Attribute Name Attribute Value

Name myDataSource

Targets myserver

JNDIName myconnection

PoolName myConnectionPool

Table 14-4 WebLogic jDriver for Microsoft SQL Server: Connection Pool
Configuration

Attribute Name Attribute Value

Name myConnectionPool

Targets myserver

DriverClassname weblogic.jdbc.mssqlserver4.Driver

Initial Capacity 0

MaxCapacity 5

CapacityIncrement 1

Properties user=sa;password=secret;db=pubs;server=
myHost:1433;appname=MyApplication;hostn
ame=myhostName

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html

14 Managing JDBC Connectivity

14-10 Administration Guide

The following table shows a sample Data Source configuration using the WebLogic
jDriver for Microsoft SQL Server.

The following table shows a sample Connection Pool configuration using the
WebLogic jDriver for Informix.

Table 14-5 WebLogic jDriver for Microsoft SQL Server: Data Source
Configuration

Attribute Name Attribute Value

Name myDataSource

Targets myserver

JNDIName myconnection

PoolName myConnectionPool

Table 14-6 WebLogic jDriver for Informix: Connection Pool Configuration

Attribute Name Attribute Value

Name myConnectionPool

Targets myserver

DriverClassname weblogic.jdbc.informix4.Driver

Initial Capacity 0

MaxCapacity 5

CapacityIncrement 1

Properties user=informix;password=secret;server=my
DBHost;port=1493;db=myDB

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html

JDBC Configuration Guidelines for Connection Pools, MultiPools and DataSources

Administration Guide 14-11

The following table shows a sample Data Source configuration using the WebLogic
jDriver for Informix.

Configuring XA JDBC Drivers for Distributed Transactions

To allow XA JDBC drivers to participate in distributed transactions, configure the
JDBC Connection Pool as follows:

� Specify the Driver Classname attribute as the name of the class supporting the
javax.sql.XADataSource interface.

� Make sure that the database properties are specified. These properties are passed
to the specified XADataSource as data source properties. For more information
on data source properties for the WebLogic jDriver for Oracle, see “WebLogic
jDriver for Oracle/XA Data Source Properties.” For information about data
source properties for third-party drivers, see the vendor documentation.

The following attributes are an example of a JDBC Connection Pool configuration
using the WebLogic jDriver for Oracle in XA mode.

Table 14-7 WebLogic jDriver for Informix: Data Source Configuration

Attribute Name Attribute Value

Name myDataSource

Targets myserver

JNDIName myconnection

PoolName myConnectionPool

Table 14-8 WebLogic jDriver for Oracle/XA: Connection Pool Configuration

Attribute Name Attribute Value

Name fundsXferAppPool

Targets myserver

DriverClassname weblogic.jdbc.oci.xa.XADataSource

Initial Capacity 0

MaxCapacity 5

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html

14 Managing JDBC Connectivity

14-12 Administration Guide

The following attributes are an example of a Tx Data Source configuration using the
WebLogic jDriver for Oracle in XA mode.

You can also configure the JDBC Connection Pool to use a third-party vendor’s driver
in XA mode. In such cases, the data source properties are set via reflection on the
XADataSource instance using the JavaBeans design pattern. In other words, for
property abc, the XADataSource instance must support get and set methods with the
names getAbc and setAbc, respectively.

The following attributes are an example of a JDBC Connection Pool configuration
using the Oracle Thin Driver.

CapacityIncrement 1

Properties user=scott;password=tiger;server=localdb

Table 14-9 WebLogic jDriver for Oracle/XA: Tx Data Source

Attribute Name Attribute Value

Name fundsXferData Source

Targets myserver

JNDIName myapp.fundsXfer

PoolName fundsXferAppPool

Table 14-10 Oracle Thin Driver: Connection Pool Configuration

Attribute Name Attribute Value

Name jtaXAPool

Targets myserver,server1

DriverClassname oracle.jdbc.xa.client.OracleXADataSource

Initial Capacity 1

Table 14-8 WebLogic jDriver for Oracle/XA: Connection Pool Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbctxdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html

JDBC Configuration Guidelines for Connection Pools, MultiPools and DataSources

Administration Guide 14-13

The following attributes are an example of a Tx Data Source configuration using the
Oracle Thin Driver.

Configure the JDBC Connection Pool for use with a Cloudscape driver as follows.

MaxCapacity 20

CapacityIncrement 2

Properties user=scott;password=tiger;
url=jdbc:oracle:thin:@baybridge:1521:bay81
7

Table 14-11 Oracle Thin Driver: Tx Data Source Configuration

Attribute Name Attribute Value

Name jtaXADS

Targets myserver,server1

JNDIName jtaXADS

PoolName jtaXAPool

Table 14-12 Cloudscape: Connection Pool Configuration

Attribute Name Attribute Value

Name jtaXAPool

Targets myserver,server1

DriverClassname COM.cloudscape.core.XADataSource

Initial Capacity 1

MaxCapacity 10

CapacityIncrement 2

Table 14-10 Oracle Thin Driver: Connection Pool Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbctxdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html

14 Managing JDBC Connectivity

14-14 Administration Guide

Configure the Tx Data Source for use with a Cloudscape driver as follows.

WebLogic jDriver for Oracle/XA Data Source Properties

Table 14-14 lists the data source properties supported by the WebLogic jDriver for
Oracle. The JDBC 2.0 column indicates whether a specific data source property is a
JDBC 2.0 standard data source property (Y) or a WebLogic Server extension to JDBC
(N).

Properties databaseName=CloudscapeDB

SupportsLocalTransaction true

Table 14-13 Cloudscape: Tx Data Source Configuration

Attribute Name Attribute Value

Name jtaZADS

Targets myserver,myserver1

JNDIName JTAXADS

PoolName jtaXAPool

Table 14-12 Cloudscape: Connection Pool Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbctxdatasource.html

JDBC Configuration Guidelines for Connection Pools, MultiPools and DataSources

Administration Guide 14-15

The Optional column indicates whether a particular data source property is optional or
not. Properties marked with Y* are mapped to the corresponding fields of the Oracle
xa_open string (value of the openString property) as listed in Table 14-14. If they
are not specified, their default values are taken from the openString property. If they
are specified, their values should match those specified in the openString property.
If the properties do not match, a SQLException is thrown when you attempt to make
an XA connection.

Mandatory properties marked with N* are also mapped to the corresponding fields of
the Oracle xa_open string. Specify these properties when specifying the Oracle
xa_open string. If they are not specified or if they are specified but do not match, an
SQLException is thrown when you attempt to make an XA connection.

Property Names marked with ** are supported, but not used, by WebLogic Server.

Table 14-14 Data Source Properties for WebLogic jDriver for Oracle/XA

Property Name Type Description JDB
C 2.0

Op-
tional

Default
Value

databaseName** String Name of a particular
database on a server.

Y Y None

dataSourceName String A data source name;
used to name an
underlying
XADataSource.

Y Y Connection
Pool Name

description String Description of this
data source.

Y Y None

networkProtocol** String Network protocol
used to communicate
with the server.

Y Y None

password String A database password. Y N* None

portNumber** Int Port number at which
a server is listening
for requests.

Y Y None

roleName** String The initial SQL role
name.

Y Y None

14 Managing JDBC Connectivity

14-16 Administration Guide

Table 14-15 lists the mapping between Oracle’s xa_open string fields and data source
properties.

Note also that users must specify Threads=true in Oracle’s xa_open string. For
complete description of Oracle’s xa_open string fields, see your Oracle
documentation.

serverName String Database server
name.

Y Y* None

user String User’s account name. Y N* None

openString String Oracle’s XA open
string.

N Y None

oracleXATrace String Indicates whether
XA tracing output is
enabled. If enabled
(true), a file with a
name in the form of
xa_poolnamedat
e.trc is placed in
the directory in
which the server is
started.

N Y true

Table 14-15 Mapping of xa_open String Names to JDBC Data Source Properties

Oracle xa_open String Field
Name

JDBC 2.0 Data Source Attribute Optional

acc user, password N

sqlnet ServerName

Table 14-14 Data Source Properties for WebLogic jDriver for Oracle/XA

Property Name Type Description JDB
C 2.0

Op-
tional

Default
Value

JDBC Configuration Guidelines for Connection Pools, MultiPools and DataSources

Administration Guide 14-17

Configuring Non-XA JDBC Drivers for Distributed Transactions

When configuring the JDBC Connection Pool to allow non-XA JDBC drivers to
participate with other resources in distributed transactions, specify the Enable
Two-Phase Commit attribute for the JDBC Tx Data Source. (This parameter is ignored
by resources that support the XAResource interface.) Note that only one non-XA
connection pool at a time may participate in a distributed transaction.

Non-XA Driver/Single Resource

If you are using only one non-XA driver and it is the only resource in the transaction,
leave the Enable Two-Phase Commit option unselected in the Console (accept the
default enableTwoPhaseCommit = false). In this case, the Transaction Manager
performs a one-phase optimization.

Non-XA Driver/Multiple Resources

If you are using one non-XA JDBC driver with other XA resources, select Enable
Two-Phase Commit in the Console (enableTwoPhaseCommit = true).

When enableTwoPhaseCommit is set to true, the non-XA JDBC resource always
returns XA_OK during the XAResource.prepare() method call. The resource
attempts to commit or roll back its local transaction in response to subsequent
XAResource.commit() or XAResource.rollback() calls. If the resource commit
or rollback fails, a heuristic error results. Application data may be left in an
inconsistent state as a result of a heuristic failure.

When Enable Two-Phase Commit is not selected in the Console
(enableTwoPhaseCommit is set to false), the non-XA JDBC resource causes
XAResource.prepare() to fail. This mechanism ensures that there is only one
participant in the transaction, as commit() throws a SystemException in this case.
When there is only one resource participating in a transaction, the one phase
optimization bypasses XAResource.prepare(), and the transaction commits
successfully in most instances.

14 Managing JDBC Connectivity

14-18 Administration Guide

The following shows configuration attributes for a sample JDBC Connection Pool
using a non-XA JDBC driver.

The following table shows configuration attributes for a sample Tx Data Source using
a non-XA JDBC driver.

Table 14-16 WebLogic jDriver for Oracle: Connection Pool Configuration

Attribute Name Attribute Value

Name fundsXferAppPool

Targets myserver

DriverClassname weblogic.jdbc.oci.Driver

Initial Capacity 0

MaxCapacity 5

CapacityIncrement 1

Properties jdbc:weblogic:oracle

Table 14-17 WebLogic j Driver for Oracle: Tx Data Source Configuration

Attribute Name Attribute Value

Name fundsXferDataSource

Targets myserver,server1

JNDIName myapp.fundsXfer

PoolName fundsXferAppPool

EnableTwoPhaseCommit true

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbctxdatasource.html

Setting and Managing JDBC Connection Pools, MultiPools, and DataSources

Administration Guide 14-19

Setting and Managing JDBC Connection
Pools, MultiPools, and DataSources

The following sections discuss how to set database connectivity

� Statically, before the server starts, in the Administration Console, and

� Dynamically, after WebLogic Server has started, using the command-line
interface.

Once connectivity is established, you use either the Administration Console or
command-line interface to manage and monitor connectivity. See Table 14-19 for
descriptions of the configuration tasks and links to the Administration Console Online
Help.

JDBC Configuration and Assignment

Using the Administration Console, you statically set connectivity by specifying
attributes and database properties for the JDBC components—Connection Pools, Data
Sources, and MultiPools. See “Configuring JDBC Connectivity Using the
Administration Console” on page 14-21.

Data Sources are associated with Connection Pools or MultiPools ("pool")—each Data
Source is commonly associated with a specific pool. The associated Data Source and
pool are then assigned to the same target—either the same server or related
server/cluster. You cannot assign a Data Source to one server, then the Connection
Pool to another.

14 Managing JDBC Connectivity

14-20 Administration Guide

Refer to the following table for more information.

(You can assign more than one Data Source to a pool, but there is no practical purpose
for this.) You can assign these Data Source/pool combinations to more than one server
or cluster, but they must be assigned in combination. For example, you can’t assign a
DataSource to Managed Server A if its associated Connection Pool is assigned only to
Server B.

You can configure dynamic Connection Pools (after the server starts) using the
command-line interface. See “JDBC Configuration Tasks Using the Command-Line
Interface” on page 14-23. You can also configure dynamic Connection Pools
programatically using the API (see Creating a Dynamic Connection Pool in
Programming WebLogic JDBC).

Table 14-18 Configuration and Assignment Scenarios

Scenario
#

Associate. . . Assign Target
Description

1 Data Source A with
Connection Pool A

1. Data Source A to Managed
Server 1, and

2. Connection Pool A to
Managed Server 1.

Data Source and
Connection Pool
assigned to the
same target.

2 Data Source B with
Connection Pool B

1. Data Source B to Cluster X,
then

2. Connection Pool B to
Managed Server 2 in Cluster
X.

Data Source and
Connection
assigned to
related
server/cluster
targets.

3 Data Source C with

Connection Pool C

� Data Source A and
Connection Pool A to
Managed Server 1.

- AND -

� Data Source a to Cluster X;
then assign Connection Pool
A to Managed Server 2 in
Cluster X.

Data Source and
Connection Pool
assigned as a unit
to two different
targets.

http://e-docs.bea.com/wls/docs60/jdbc/programming.html#dynamic_conn_pool

Setting and Managing JDBC Connection Pools, MultiPools, and DataSources

Administration Guide 14-21

JDBC Configurations for Servers or Clusters

Once you configure and associate the Data Source and Connection Pool (or
MultiPool), you then assign each object to the same server or server/cluster. Some
common scenarios are as follows:

� In a cluster, assign the Data Source to the cluster, and assign the associated
Connection Pool to each managed server in the cluster.

� In a single server configuration, assign each Data Source and its associated
Connection Pool to the server.

� If you are using a MultiPool, assign the Connection Pools to the MultiPool; then
assign the Data Source and all Connection Pools and the MultiPool to the server.

See “Configuring JDBC Connectivity Using the Administration Console” on page
14-21 for a description of the tasks you perform.

Configuring JDBC Connectivity Using the Administration Console

The Administration Console allows you to configure, manage, and monitor JDBC
connectivity. To display the tabs that you use to perform these tasks, complete the
following procedure:

1. Start the Administration Console.

2. Locate the Services node in the left pane, then expand the JDBC node.

3. Select the tab specific to the component you want to configure or manage—
Connection Pools, MultiPools, Data Source, or Tx Data Source.

4. Follow the instructions in the Online Help. For links to the Online Help, see
Table 14-19.

14 Managing JDBC Connectivity

14-22 Administration Guide

The following table shows the connectivity tasks, listed in typical order in which you
perform them. You may change the order; just remember you must configure an object
before associating or assigning it.

Table 14-19 JDBC Configuration Tasks

Task #
JDBC
Component/ Task

Description

1 Configure a
Connection Pool

On the Configuration tabs, you set the attributes for the
Connection Pool, such as Name, URL, and database
Properties.

2 Clone a Connection
Pool (Optional)

This task copies a Connection Pool. On the Configuration
tabs, you change Name of pool to a unique name; and
accept or change the remaining attributes. This a useful
feature when you want to have identical pool
configurations with different names. For example, you
may want to have each database administrator use a
certain pool to track individual changes to a database.

3 Configure a
MultiPool (Optional)

On the MultiPool tabs, you set the attributes for the name
and algorithm type, either High Availability or Load
Balancing. On the Pool tab, you assign the Connection
Pools to this MultiPool.

4 Configure a Data
Source (and
Associate with a
Pool)

Using the Data Source tab, set the attributes for the Data
Source, including the Name, JNDI Name, and Pool Name
(this associates, or assigns, the Data Source with a specific
pool—Connection Pool or MultiPool.)

5 Configure a Tx Data
Source (and
Associate with a
Connection Pool)

Using the Tx Data Source tab, set the attributes for the Tx
Data Source, including the Name, JNDI Name, and
Connection Pool Name (this associates, or assigns, the
Data Source with a specific pool).

Note: Do not associate a Tx Data Source with a
MultiPool; MultiPools are not supported in
distributed transactions.

6 Assign a Connection
Pool to the
Servers/Clusters

Using the Target tab, you assign the Connection Pool to
one or more Servers or Clusters. See Table 16-18
Association and Assigninment Scenarios.

7 Assign the MultiPool
to Servers or Clusters

Using the Target tab, you assign the configured MultiPool
to Servers or Clusters.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcmultipool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbctxdatasource.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcmultipool.html

Setting and Managing JDBC Connection Pools, MultiPools, and DataSources

Administration Guide 14-23

JDBC Configuration Tasks Using the Command-Line Interface

The following table shows what methods you use to create a dynamic Connection
Pool.

For more information, see “WebLogic Server Command-Line Interface Reference” on
page B-1, and “Creating a Dynamic Connection Pool” in Programming WebLogic
JDBC.

Managing and Monitoring Connectivity

Managing connectivity includes enabling, disabling, and deleting the JDBC
components once they have been established.

JDBC Management Using the Administration Console

To manage and monitor JDBC connectivity, refer to the following table:

Table 14-20 Setting Connectivity—Dynamic

If you want to . . . Then use the . . .

Create a dynamic
Connection Pool

� Command line—“CREATE_POOL” on page B-20, or

� API—see "Configuring WebLogic JDBC Features" in
Programming WebLogic JDBC

Table 14-21 JDBC Management Tasks

If you want to . . . Do this . . . in the Administration Console

Reassign a Connection Pool
to a Different Server or
Cluster

Using the instructions in Assign a Connection Pool to the
Servers/Clusters, on the Target tab deselect the target
(move target from Chosen to Available) and assign a new
target.

Reassign a MultiPool to a
Different Cluster

Using the instructions in Assign the MultiPool to Servers
or Clusters, on the Target tab deselect the target (move
target from Chosen to Available) and assign a new target.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcmultipool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcmultipool.html
http://e-docs.bea.com/wls/docs60/jdbc/programming.html#dynamic_conn_pool

14 Managing JDBC Connectivity

14-24 Administration Guide

Delete a Connection Pool See Delete a Connection Pool in the Online Help.

Delete a MultiPool 1. Select the MultiPools node in the left pane. The
MultiPools table displays in the right pane showing all
the MultiPools defined in your domain.

2. Click the Delete icon in the row of the MultiPool you
want to delete. A dialog displays in the right pane
asking you to confirm your deletion request.

3. Click Yes to delete the MultiPools. The MultiPool
icon under the MultiPools node is deleted.

Delete a Data Source 1. Select the Data Sources node in the left pane. The Data
Sources table displays in the right pane showing all the
Data Sources defined in your domain.

2. Click the Delete icon in the row of the Data Source you
want to delete. A dialog displays in the right pane
asking you to confirm your deletion request.

3. Click Yes to delete the Data Source. The Data Source
icon under the DataSources node is deleted.

Monitor a Connection Pool 1. Select the pool in the left pane.

2. Select the Monitoring tab in the right pane, then select
the Monitor All Active Pools link.

Modify an Attribute for a
Connection Pool, MultiPool,
or DataSource

1. Select the JDBC object—Connection Pool, MultiPool,
or DataSource—in the left pane.

2. Select the Target tab in the right pane, and unassign the
object from each server (move the object from the
Chosen column to the Available column.) Then click
Apply. This stops the JDBC object—Connection Pool,
MultiPool, or DataSource—on the corresponding
server(s).

3. Select the tab you want to modify and change the
attribute.

4. Select the Target tab and reassign the object to the
server(s).This starts the JDBC object—Connection
Pool, MultiPool, or DataSource—on the
corresponding server(s).

Table 14-21 JDBC Management Tasks

If you want to . . . Do this . . . in the Administration Console

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html

Setting and Managing JDBC Connection Pools, MultiPools, and DataSources

Administration Guide 14-25

JDBC Management Using the Command-Line Interface

The following table describes the Connection Pool management using the
command-line interface. Select the command for more information.

For information on using the Connection Pool commands, see “WebLogic Server
Command-Line Interface Reference” on page B-1.

Table 14-22 Managing Connection Pools with the Command-Line Interface

If you want to . . . Then use this command . . .

Disable a Connection Pool “DISABLE_POOL” on page B-24

Enable a Connection Pool
that has been disabled

“ENABLE_POOL” on page B-25

Delete a Connection Pool “DESTROY_POOL” on page B-23

Confirm if a Connection
Pool was created

“EXISTS_POOL” on page B-26

Reset a Connection Pool “RESET_POOL” on page B-27

14 Managing JDBC Connectivity

14-26 Administration Guide

WebLogic Server Administration Guide 15-1

CHAPTER

15 Managing JMS

This section explains how to manage WebLogic JMS, describing the following topics:

� Configuring JMS

� Monitoring JMS

� Recovering From a WebLogic Server Failure

Configuring JMS

Using the Administration Console, you define configuration attributes to:

� Enable JMS.

� Create JMS servers.

� Create and/or customize values for JMS servers, connection factories,
destinations (queues and topics), destination templates, destination keys, backing
stores, session pools, and connection consumers.

� Set up custom JMS applications.

� Define thresholds and quotas.

� Enable any desired JMS features, such as server clustering (see the next section),
concurrent message processing, destination sort ordering, and persistent
messaging.

15 Managing JMS

15-2 WebLogic Server Administration Guide

WebLogic JMS provides default values for some configuration attributes; you must
provide values for all others. If you specify an invalid value for any configuration
attribute, or if you fail to specify a value for an attribute for which a default does not
exist, the WebLogic Server will not boot JMS when you restart it. A sample JMS
configuration is provided with the product.

When migrating from a previous release, the configuration information will be
converted automatically, as described in “Migrating Existing Applications” in
Programming WebLogic JMS.

To configure WebLogic JMS attributes, perform the following steps:

1. Start the Administration Console.

2. Select the JMS button under Services in the left pane to expand the list.

3. Follow the procedures described in the following sections, or in the
Administration Console Online Help, to create and configure the JMS objects.

Once WebLogic JMS is configured, applications can begin sending and receiving
messages using the JMS API. For more information about developing WebLogic JMS
applications, see “Developing a WebLogic JMS Application” in Programming
WebLogic JMS.

Note: To assist with your WebLogic JMS configuration planning, Programming
WebLogic JMS provides configuration checklists that enable you to view the
attribute requirements and/or options that support various JMS features.

http://e-docs.bea.com/wls/docs60/jms/migrat.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs60/jms/implement.html
http://e-docs.bea.com/wls/docs60/jms/appa.html

Configuring JMS

WebLogic Server Administration Guide 15-3

Configuring Connection Factories

Connection factories are objects that enable JMS clients to create JMS connections. A
connection factory supports concurrent use, enabling multiple threads to access the
object simultaneously. You define and configure one or more connection factories to
create connections with predefined attributes. WebLogic Server adds them to the JNDI
space during startup, and the application then retrieves a connection factory using
WebLogic JNDI.

You can establish cluster-wide, transparent access to destinations from any server in
the cluster by configuring multiple connection factories and using targets to assign
them to WebLogic Servers. Each connection factory can be deployed on multiple
WebLogic Servers. For more information on JMS clustering, refer to “WebLogic JMS
Fundamentals”in Programming WebLogic JMS.

To configure connection factories, use the Connection Factories node in the
Administration Console to define the following:

� Configuration attributes including:

� Name of the connection factory

� Name for accessing the connection factory within the JNDI namespace

� Client identifier (client ID) that can be used for clients with durable
subscribers. For more information about durable subscribers, see
“Developing a WebLogic JMS Application” in Programming WebLogic
JMS.

� Default message delivery attributes (that is, priority, time-to-live, and mode)

� Maximum number of outstanding messages that may exist for an
asynchronous session and the overrun policy, (that is, the action to be taken,
for multicast sessions, when this maximum is reached).

� Whether or not the close() method is allowed to be called from the
onMessage() method.

� Transaction attributes (transaction time-out and whether or not JTA user
transactions are allowed)

� Targets (WebLogic Servers) that are associated with a connection factory to
support clustering. Targets enable you to limit the set of servers, groups, and/or
clusters on which a connection factory may be deployed.

http://e-docs.bea.com/wls/docs60/jms/fund.html
http://e-docs.bea.com/wls/docs60/jms/fund.html
http://e-docs.bea.com/wls/docs60/jms/implement.html

15 Managing JMS

15-4 WebLogic Server Administration Guide

WebLogic JMS defines one connection factory, by default:
weblogic.jms.ConnectionFactory. All configuration attributes are set to their
default values for this default connection factory, as described in “JMS Connection
Factories” in the Administration Console Online Help.

If the default connection factory definition is appropriate for your application, you do
not need to configure any additional connection factories for your application.

Note: Using the default connection factory, you have no control over the JMS server
on which the connection factory may be deployed. If you would like to target
a particular JMS server, create a new connection factory and specify the
appropriate JMS server target(s).

For instructions on creating and configuring a connection factory, see “JMS
Connection Factories” in the Administration Console Online Help.

Some connection factory attributes are dynamically configurable. When dynamic
attributes are modified at run time, the new values become effective for new
connections only, and do not affect the behavior of existing connections.

Configuring Templates

Templates provide an efficient way to define multiple destinations with similar
attribute settings. Templates offer the following benefits:

� You do not need to re-enter every attribute setting each time you define a new
destination; you can use the template and override any setting to which you want
to assign a new value.

� You can modify shared attribute settings dynamically simply by modifying the
template.

To define the destination template configuration attributes, use the Templates node in
the Administration Console. The configurable attributes for a destination template are
the same as those configured for a destination. These configuration attributes are
inherited by the destinations that use them, with the following exceptions:

� If the destination that is using a template specifies an override value for an
attribute, the override value is used.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html

Configuring JMS

WebLogic Server Administration Guide 15-5

� The Name attribute is not inherited by the destination. This name is valid for the
template only. All destinations must explicitly define a unique name.

� The JNDI Name, Enable Store, and Template attributes are not defined for
destination templates.

� The Multicast attributes are not defined for destination templates because they
apply only to topics.

Any attributes that are not explicitly defined for a destination are assigned default
values. If no default value exists, then you must be sure to specify a value within the
destination template or as a destination attribute override. If you do not do so, the
configuration information remains incomplete, the WebLogic JMS configuration fails,
and the WebLogic JMS does not boot.

For instructions on creating and configuring a template, see “JMS Templates” in the
Administration Console Online Help.

Configuring Destination Keys

Destination keys are used to define the sort order for a specific destination.

To create a destination key, use the Destination Keys node in the Administration
Console and define the following configuration attributes:

� Name of the destination key

� Property name on which to sort

� Expected key type

� Direction in which to sort (ascending or descending)

For instructions on creating and configuring a destination key, see “JMS Destination
Keys” in the Administration Console Online Help.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmstemplate.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsdestinationkey.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsdestinationkey.html

15 Managing JMS

15-6 WebLogic Server Administration Guide

Configuring Stores

The backing store consists of a file or database that is used for persistent messaging.

Through the use of JDBC, JMS enables you to store persistent messages in a database,
which is accessed through a designated JDBC connection pool. The JMS database can
be any database that is accessible through a JDBC driver. WebLogic supports and
provides JDBC drivers for the following databases:

� Cloudscape

� Informix

� Microsoft SQL (MSSQL) Server (Versions 6.5 and 7)

� Oracle (Version 8.1.6)

� Sybase (Version 12)

Optionally, you can restrict the access control list (ACL) for the JDBC connection
pool. If you restrict this ACL, you must include the WebLogic system user and any user
who sends JMS messages in the list. For more information, see “Managing Security”
in the Administration Guide.

Note: The JMS examples are set up to work with the Cloudscape Java database. An
evaluation version of Cloudscape is included with WebLogic Server and a
demoPool database is provided.

To create a file or database store, use the Stores node in the Administration Console
and define the following configuration attributes:

� Name of the backing store

� (For a file store) Directory within which file stores will be saved

� (For a JDBC database store) JDBC connection pool and database table name
prefix for use with multiple instances

Warning: You cannot configure a XA connection pool with a JDBC database store.

Note: JMS backing stores can increase the amount of memory required during
initialization of a WebLogic Server as the number of stored messages
increases. If initialization fails due to insufficient memory when you are

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html

Configuring JMS

WebLogic Server Administration Guide 15-7

rebooting a WebLogic Server, increase the heap size of the Java Virtual
Machine (JVM) proportionally to the number of messages that are currently
stored in the JMS backing store. Try rebooting again.

About JMS Stores

The JMS database contains two system tables that are generated automatically and are
used internally by JMS, as follows:

� <prefix>JMSStore

� <prefix>JMSState

The prefix name uniquely identifies JMS tables in the backing store. Specifying unique
prefixes allows multiple stores to exist in the same database. The prefix is configured
via the Administration Console when configuring the JDBC store. A prefix is
prepended to table names when the DBMS requires fully qualified names, or when you
must differentiate between JMS tables for two WebLogic servers, enabling multiple
tables to be stored on a single DBMS.

The prefix should be specified using the following format, which will result in a
valid table name when prepended to the JMS table name:

[[catalog.]schema.]prefix

Warning: No two JMS stores should be allowed to use the same database tables, as
this will result in data corruption.

For instructions on creating and configuring a store, see “JMS File Stores” and “JMS
JDBC Stores” for information about file and JDBC database stores, respectively, in the
Administration Console Online Help.

Recommended JDBC Connection Pool Settings for JMS Stores

For implementations using a JDBC store, if the DBMS should shut down and then
come back online, WebLogic JMS will not be able to access the store until WebLogic
Server is shutdown and restarted. To avoid this situation, you should configure the
following attributes on the JDBC Connection Pool associated with the JMS store:

TestConnectionsOnReserve=”true”
TestTableName=”[[[catalog.]schema.]prefix]JMSState”

Otherwise, if the JDBC resource goes down and comes back up, JMS cannot re-use it
until the WebLogic Server is shutdown and restarted.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsfilestore.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsjdbcstore.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsjdbcstore.html

15 Managing JMS

15-8 WebLogic Server Administration Guide

Configuring JMS Servers

A JMS server manages connections and message requests on behalf of clients.

To create a JMS server, use the Servers node in the Administration Console and define
the following:

� Configuration attributes including:

� Name of the JMS server.

� Backing store (file or JDBC database) required for persistent messaging. If
you do not assign a backing store for a JMS server, persistent messaging is
not supported on that server.

� Template that is used to create all temporary destinations, including
temporary queues and temporary topics.

� Thresholds and quotas for messages and bytes (maximum number, and high
and low thresholds).

� Targets (WebLogic Servers) that are associated with a JMS server to support
clustering. Targets enable you to limit the set of servers, groups, and/or clusters
on which the JMS server may be deployed.

Note: The deployment of a JMS server differs from that of a connection factory or
template. A JMS server is deployed on a single server. A connection factory
or template can be instantiated on multiple servers simultaneously.

For instructions on creating and configuring a JMS server, see “JMS Servers” in the
Administration Console Online Help.

Configuring Destinations

A destination identifies a queue or topic. Once you have defined a JMS server, you can
configure its destinations. You can configure one or more destinations for each JMS
server.

You can configure destinations explicitly or by configuring a destination template that
can be used to define multiple destinations with similar attribute settings, as described
in “Configuring Templates” on page 15-4.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsserver.html

Configuring JMS

WebLogic Server Administration Guide 15-9

To configure destinations explicitly, use the Destinations node in the Administration
Console, and define the following configuration attributes:

� Name and type (queue or topic) of the destination

� Name for accessing the destination within the JNDI namespace

� Whether or not a store is enabled for storing persistent messages

� Template used for creating destinations

� Keys used to define the sort order for a specific destination

� Thresholds and quotas for messages and bytes (maximum number, and high and
low thresholds)

� Message attributes that can be overridden (such as priority, time-to-live, and
delivery mode)

� Multicasting attributes, including multicast address, port, and time-to-live (for
topics only)

For instructions on creating and configuring a destination, see “JMS Destinations” in
the Administration Console Online Help.

Some destination attributes are dynamically configurable. When attributes are
modified at run time, only incoming messages are affected; stored messages are not
affected.

Configuring Session Pools

Server session pools enable an application to process messages concurrently. Once you
have defined a JMS server, you have the option of configuring its server session pools.
You can configure one or more session pools for each JMS server.

To configure server session pools, use the Session Pools node in the Administration
Console and define the following configuration attributes:

� Name of the server session pool

� Connection factory with which the server session pool is associated and is used
to create sessions

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsdestination.html

15 Managing JMS

15-10 WebLogic Server Administration Guide

� Message listener class used to receive and process messages concurrently

� Transaction attributes (acknowledge mode and whether or not the session pool
creates transacted sessions)

� Maximum number of concurrent sessions

For instructions on creating and configuring a session pool, see “JMS Session Pools”
in the Administration Console Online Help.

Some session pool attributes are dynamically configurable, but the new values do not
take effect until the session pools are restarted.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmssessionpool.html

Monitoring JMS

WebLogic Server Administration Guide 15-11

Configuring Connection Consumers

Connection consumers retrieve server sessions and process messages. Once you have
defined a session pool, you have the option of configuring its connection consumers.
You can configure one or more connection consumers for each session pool.

To configure connection consumers, use the Session Pools node in the Administration
Console to define the following configuration attributes:

� Name of the connection consumer

� Maximum number of messages that can be accumulated by the connection
consumer

� JMS selector expression used to filter messages. For information about defining
selectors, see “Developing a WebLogic JMS Application” in Programming
WebLogic JMS.

� Destination on which the connection consumer will listen.

To create and configure a connection consumer, and for detailed information about
each of the connection consumer configuration attributes, see “JMS Connection
Consumers” in the Administration Console Online Help.

Monitoring JMS

Statistics are provided for the following JMS objects: JMS servers, connections,
sessions, destinations, message producers, message consumers, and server session
pools. You can monitor JMS statistics using the Administration Console.

JMS statistics continue to increment as long as the server is running. Statistics can be
reset only when the server is rebooted.

To view JMS monitoring information, perform the following steps:

1. Start the Administration Console.

2. Select the JMS node under Services, in the left pane, to expand the list of JMS
services.

http://e-docs.bea.com/wls/docs60/jms/implement.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionconsumer.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionconsumer.html

15 Managing JMS

15-12 WebLogic Server Administration Guide

3. Select the JMS Server node under JMS in the left pane.

The JMS Servers information is displayed in the right pane.

4. Select the JMS server that you want to monitor from the JMS server list or, from
the JMS Servers displayed in the right pane.

The specified JMS server information is displayed in the right pane.

5. Select the Monitoring tab to display the monitoring data.

For detailed information about the information being monitored, see the
Administration Console Online Help.

Recovering From a WebLogic Server Failure

The following sections describe how to restart or replace a WebLogic Server in the
event of a system failure, and provide programming considerations for gracefully
terminating an application following such an event.

Restarting or Replacing the WebLogic Server

In the event that a WebLogic Server fails, there are three methods that you can use to
perform a system recovery:

� Restart the failed server

� Start up a new server using the same IP address as the failed server

� Start up a new server using a different IP address than the failed server

To restart the failed server or start up a new server using the same IP address as the
failed server, boot the server and start the server processes, as described in Starting and
Stopping WebLogic Servers in the Administration Guide.

To start up a new server using a different IP address than the failed server:

1. Update the Domain Name Service (DNS) so that the server alias references the new
IP address.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html

Recovering From a WebLogic Server Failure

WebLogic Server Administration Guide 15-13

2. Boot the server and start the server processes, as described in Starting and
Stopping WebLogic Servers in the Administration Guide.

3. Optionally perform one or more of the following tasks

Note: JMS backing stores can increase the amount of memory required during
initialization of a WebLogic Server as the number of stored messages
increases. When rebooting a WebLogic Server, if initialization fails due to
insufficient memory, increase the heap size of the Java Virtual Machine (JVM)
proportionally to the number of messages that are currently stored in the JMS
backing store and try the reboot again.

If your application uses. . . Perform the following task. . .

Persistent messaging—JDBC Store � If the JDBC database store physically exists on the failed server,
migrate the database to a new server and ensure that the JDBC
connection pool URL attribute reflects the appropriate location
reference.

� If the JDBC database does not physically exist on the failed server,
access to the database has not been impacted, and no changes are
required.

Persistent messaging—File Store Migrate the file to the new server, ensuring that the pathname within the
WebLogic Server home directory is the same as it was on the original
server.

Transactions Migrate the transaction log to the new server by copying all files named
<servername>*.tlog. This can be accomplished by storing the
transaction log files on a dual-ported disk that can be mounted on either
machine, or by manually copying the files.

If the files are located in a different directory on the new server, update
that server’s TransactionLogFilePrefix server configuration
attribute before starting the new server.

Note: If migrating following a system crash, it is very important that
the transaction log files be available when the server is re-started
at its new location. Otherwise, transactions in the process of
being committed at that time of the crash might not be resolved
correctly, resulting in data inconsistencies.

All uncommitted transactions will be rolled back.

http://e-docs.bea.com/wls/docs60/adminguide/startstop.html
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html

15 Managing JMS

15-14 WebLogic Server Administration Guide

Programming Considerations

You may want to program your application to terminate gracefully in the event of a
WebLogic Server failure. For example:

If a WebLogic Server Fails
and...

Then...

You are connected to the failed
WebLogic Server

A JMSException will be delivered to the connection exception
listener. You must restart the application once the server is restarted or
replaced.

You are not connected to the failed
WebLogic Server

You must re-establish everything once the server is restarted or replaced.

A JMS Server is targeted on the failed
WebLogic Server

A ConsumerClosedException will be delivered to the session
exception listener. You must re-establish any message consumers that
may have been lost.

Administration Guide 16-1

CHAPTER

16 Managing JNDI

This section discusses the following topics:

� Loading Objects in the JNDI Tree

� Viewing the JNDI Tree

Loading Objects in the JNDI Tree

Before you can access an object using WebLogic JNDI, you must load the object in the
WebLogic Server JNDI tree. The Administration Console in WebLogic Server allows
you to load J2EE services in WebLogic Server in the JNDI tree. WebLogic Server
EJBs, RMI, JMS, JDBC, and Mail objects can be loaded in the JNDI tree.

To load an object in the JNDI tree, choose a name under which you want the object to
be loaded to the JNDI tree and enter it in the JNDI Name field when you create the
object.

Viewing the JNDI Tree

From time to time you may find it useful to view the objects in the WebLogic Server
JNDI tree. To view the JNDI tree, click the View JNDI Tree link on the Monitoring
tab for your WebLogic Server deployment.

16 Managing JNDI

16-2 Administration Guide

Starting and Stopping WebLogic Servers 17-1

CHAPTER

17 Managing WebLogic
Server Licenses

Your WebLogic Server requires a valid license to run. The following sections tells you
how to install and update WebLogic licenses:

� Installing a WebLogic License

� Updating a License

Installing a WebLogic License

Using Evaluation Licenses

An evaluation copy of WebLogic Server is enabled for 30 days so you can start using
WebLogic Server immediately. To use WebLogic Server beyond the 30-day
evaluation period, you will need to contact your salesperson about further evaluation
or purchasing a license for each IP address on which you intend to use WebLogic
Server. All WebLogic Server evaluation products are licensed for use on a single
server with access allowed from up to 3 unique client IP addresses.

If you downloaded WebLogic Server from the BEA website, your evaluation license
is included with the distribution. The WebLogic Server installation program allows
you to specify the location of the BEA home directory, and installs a BEA license file,
license.bea, in that directory.

17 Managing WebLogic Server Licenses

17-2 Starting and Stopping WebLogic Servers

Updating a License

You will need to update the BEA license file if one of the following is true:

� You have purchased additional BEA software.

� You obtain a new distribution that includes new products.

� You have applied for and received an extension of your 30-day evaluation
license.

In either of these cases, you will receive a license update file by email as an attachment.
To update your BEA license file, do the following:

1. Save the license update file under a name other than license.bea in the BEA
home directory.

2. Make sure that java (Java 2) is in your path. To add the JDK to your path, enter
one of the following commands:

� set PATH=.\jdk130\bin;%PATH% (Windows systems)

� set PATH=./jdk130/bin:$PATH (UNIX systems)

3. In a command shell, enter the following command in the BEA home directory:

UpdateLicense license_update_file

where license_update_file is the name under which you saved the license
update file that you received via email. Running this command updates the
license.bea file.

4. Save a copy of your license.bea file in a safe place outside the WebLogic
distribution. Although no one else can use your license file, you should save this
information in a place protected from either malicious or innocent tampering.

Administration Guide A-1

APPENDIX

A Using the WebLogic
Server Java Utilities

WebLogic Server provides several Java programs that simplify installation and
configuration tasks, provide services, and offer convenient shortcuts. This section
describes each Java utility provided with WebLogic Server. The command-line syntax
is specified for all utilities and, for some, examples are provided. The following
utilities are documented:

� AppletArchiver

� Conversion

� der2pem

� dbping

� deploy

� getProperty

� logToZip

� MulticastTest

� myip

� pem2der

� Schema

� showLicenses

� system

� t3dbping

� verboseToZip

� version

A Using the WebLogic Server Java Utilities

A-2 Administration Guide

� writeLicense

To use these utilities you must correctly set your CLASSPATH. For more information,

see “Setting the Classpath Option.”

http://e-docs.bea.com/wls/docs60/adminguide/startstop.html#1026802

Administration Guide A-3

AppletArchiver

The AppletArchiver utility runs an applet in a separate frame, keeps a record of all
of the downloaded classes and resources used by the applet, and packages these into
either a .jar file or a .cab file. (The cabarc utility is available from Microsoft.)

Syntax

$ java utils.applet.archiver.AppletArchiver URL filename

Argument Definition

URL URL for the applet

filename Local filename that is the destination for the .jar/.cab archive

http://e-docs.bea.com/wls/docs60/adminguide/startstop.html#1026802

A Using the WebLogic Server Java Utilities

A-4 Administration Guide

Conversion

If you have used an earlier version of WebLogic Server, you must convert your
weblogic.properties files. Instructions for converting your files using a
conversion script are available in the Administration Console Online Help section
called “Conversion.”

http://e-docs.bea.com/wls/docs60/ConsoleHelp/conversion.html

Administration Guide A-5

der2pem

The der2pem utility converts an X509 certificate from DER format to PEM format.
The .pem file is written in the same directory as the source .der file.

Syntax

$ java utils.der2pem derFile [headerFile] [footerFile]

Example

$ java utils.der2pem graceland_org.der
Decoding
..
..

Argument Description

derFile The name of the file to convert. The file name must end with a .der
extension, and must contain a valid certificate in .der format.

headerFile The header to place in the PEM file. The default header is “-----BEGIN
CERTIFICATE-----”.

Use a header file if the DER file being converted is a private key file, and
create the header file containing one of the following:

� “-----BEGIN RSA PRIVATE KEY-----” for an unencrypted private
key

� “-----BEGIN ENCRYPTED PRIVATE KEY-----” for an encrypted
private key.

Note: There must be a new line at the end of the header line in the file.

footerFile The header to place in the PEM file. The default header is “-----END
CERTIFICATE-----”.

Use a footer file if the DER file being converted is a private key file, and
create the footer file containing one of the following in the header:

� “-----END RSA PRIVATE KEY-----” for an unencrypted private key

� “-----END ENCRYPTED PRIVATE KEY-----” for an encrypted
private key

Note: There must be a new line at the end of the header line in the file.

http://e-docs.bea.com/wls/docs60/ConsoleHelp/conversion.html

A Using the WebLogic Server Java Utilities

A-6 Administration Guide

..

..

..

Administration Guide A-7

dbping

The dbping command-line utility tests the connection between a DBMS and your
client machine via a two-tier WebLogic jDriver.

Syntax

$ java -Dbea.home=WebLogicHome utils.dbping DBMS user password DB

Argument Definition

WebLogicHome The directory containing your WebLogic Server license
(license.bea). For example, d:\beaHome\. Required only if
using a BEA-supplied JDBC driver.

DBMS Choose one of the following for your JDBC driver:

WebLogic jDriver for Microsoft SQL Server:
MSSQLSERVER4

WebLogic jDriver for Oracle:
ORACLE

WebLogic jDriver for Informix:
INFORMIX4

Oracle Thin Driver:
ORACLE_THIN

Sybase JConnect driver:
JCONNECT

user Valid username for login. Use the same values you use with isql
or sqlplus.

password Valid password for the user. Use the same values you use withisql
or sqlplus.

A Using the WebLogic Server Java Utilities

A-8 Administration Guide

DB Name of the database. Use the following format, depending on
which JDBC driver you use:

WebLogic jDriver for Microsoft SQL Server:
DBNAME@HOST:PORT

WebLogic jDriver for Oracle:
DBNAME

WebLogic jDriver for Informix:
DBNAME@HOST:PORT

Oracle Thin Driver:
HOST:PORT:DBNAME

Sybase JConnect driver: JCONNECT:
HOST:PORT:DBNAME

Where:

� HOST is the name of the machine hosting the DBMS,

� PORT is port on the database host where the DBMS is listening
for connections, and

� DBNAME is the name of a database on the DBMS. (For Oracle,
this is the name of a DBMS defined in the tnsnames.ora
file.)s

Argument Definition

Administration Guide A-9

deploy

The deploy utility gets a J2EE application from an archive file (.jar, .war, or .ear)
and deploys the J2EE application to a running WebLogic Server. For additional
information, see Deploying and Configuring Web Applications in the WebLogic
Server Administration Guide, and the programming guide, Developing WebLogic
Server Applications.

Syntax

$ java weblogic.deploy [options] [list|deploy|undeploy|update]
password {application} {source}

Arguments

Argument Description

applications Required. Idenitfies the name of the application. The application name
can be specified at deployment time, either with the deployment or
console utilities.

deploy Optional. Deploys a J2EE application .jar, .war, or .ear file to the
specified server.

list Optional. Lists all applications in the specified WebLogic Server.

password Required. Specifies the system password for the WebLogic Server.

source Required. Specifies the exact location of the application archive file
(.jar, .war, or .ear) , or the path to the top level of an application
directory.

undeploy Optional. Removes an existing application from the specified server.

update Optional. Re-deploys an application in the specified server.

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/programming/index.html
http://e-docs.bea.com/wls/docs60/programming/index.html

A Using the WebLogic Server Java Utilities

A-10 Administration Guide

Options

Option Definition

-component componentname:target1,
target2

Component to be deployed on various
targets, must be specified as:
componentname:target1,target2

where componentname is the name of
the .jar or .war file without the
extension. This option can be specified
multiple times for any number of
components (.jar or .war). An .ear
file cannot be deployed. Each of its
components must be deployed separately
using this option.

-debug Prints detailed debugging information to
stdout during the deployment process.

-help Prints a list of all options available for the
deploy utility.

-host host Specifies the host name of the WebLogic
Server to use for deploying the J2EE
application (.jar, .war, .ear). If you
do not specify this option, the deploy
utility attempts to connect using the host
name localhost.

-port port Specifies the port number of the WebLogic
Server to use for deploying the J2EE
application .jar, .war, or .ear file.

Note: If you do not specify the -port
option, deploy connects uses a
default of 7001.

-url url Specifies the URL of a Weblogic Server.
The default is localhost:7001.

-username username Name of the user with which a connection
will be made. The default is system.

-version Prints the version of the deploy utility.

Administration Guide A-11

Examples

The deploy utility is useful for various purposes, including the following:

� Viewing a Deployed J2EE Application

� Deploying a New J2EE Application

� Removing a Deployed J2EE Application

� Updating a Deployed J2EE Application

Viewing a Deployed J2EE Application

To view an application that is deployed on a local WebLogic Server, enter the
following command:

% java weblogic.deploy list password

The value of password is the password for the WebLogic Server system account.

To list a deployed application on a remote server, specify the port and host options,
as follows:

% java weblogic.deploy -port port_number -host host_name list password

Deploying a New J2EE Application

To deploy a J2EE application file (.jar, .war, or .ear) or application directory that
is not deployed to WebLogic Server, enter the following command:

% java weblogic.deploy -port port_number -host host_name
deploy password application source

The values are as follows:

� application is the string you want to assign to this Application.

� source is the full pathname of the J2EE application file (.jar,.war,.ear) you
want to deploy, or the full pathname of the application directory.

For example:

% java weblogic.deploy -port 7001 -host localhost deploy weblogicpwd Basic_example
c:\mysamples\ejb\basic\BasicStatefulTraderBean.jar

A Using the WebLogic Server Java Utilities

A-12 Administration Guide

Note: The J2EE application file (.jar,.war,.ear) copied to the applications
directory of the Administration Server is renamed with the name of the
application. Therefore, in the previous example, the name of the application
archive . . ./config/mydomain/applications directory is changed
from BasicStatefulTraderBean.jar to Basic_example.jar.

Removing a Deployed J2EE Application

To remove a deployed J2EE application, you need only reference the assigned
application name, as shown in the following example:

% java weblogic.deploy -port 7001 -host localhost undeploy
weblogicpwd Basic_example

Note: Removing a J2EE application does not remove the application from
WebLogic Server. You cannot re-use the application name with the deploy
utility. You can re-use the application name to update the deployment, as
described in the following section.

Updating a Deployed J2EE Application

To update a J2EE application, use the update argument and specify the name of the
active J2EE application as follows:

% java weblogic.deploy -port 7001 -host localhost update
weblogicpwd Basic_example
c:\updatesample\ejb\basic\BasicStatefulTraderBean.jar

To update a specific component on one or more servers, enter the following command:

% java weblogic.deploy -port 7001 -host localhost –component
BasicStatefulTraderBean.jar:sampleserver,exampleserver update
weblogicpwd Basic_example
c:\updatesample\ejb\basic\BasicStatefulTraderBean.jar

Administration Guide A-13

getProperty

The getProperty utility gives you details about your Java setup and your system. It
takes no arguments.

Syntax

$ java utils.getProperty

Example

$ java utils.getProperty
-- listing properties --
user.language=en
java.home=c:\java11\bin\..
awt.toolkit=sun.awt.windows.WToolkit
file.encoding.pkg=sun.io
java.version=1.1_Final
file.separator=\
line.separator=
user.region=US
file.encoding=8859_1
java.vendor=Sun Microsystems Inc.
user.timezone=PST
user.name=mary
os.arch=x86
os.name=Windows NT
java.vendor.url=http://www.sun.com/
user.dir=C:\weblogic
java.class.path=c:\weblogic\classes;c:\java\lib\cla...
java.class.version=45.3
os.version=4.0
path.separator=;
user.home=C:\

A Using the WebLogic Server Java Utilities

A-14 Administration Guide

logToZip

The logToZip utility searches an HTTP server log file in common log format, finds
the Java classes loaded into it by the server, and creates an uncompressed .zip file that
contains those Java classes. It is executed from the document root directory of your
HTTP server.

To use this utility, you must have access to the log files created by the HTTP server.

Syntax

$ java utils.logToZip logfile codebase zipfile

Examples

The following example shows how a .zip file is created for an applet that resides in
the document root itself, that is, with no code base:

$ cd /HTTP/Serv/docs
$ java utils.logToZip /HTTP/Serv/logs/access "" app2.zip

The following example shows how a .zip file is created for an applet that resides in a
subdirectory of the document root:

C:\>cd \HTTP\Serv
C:\HTTP\Serv>java utils.logToZip \logs\applets\classes app3.zip

Argument Definition

logfile Required. Fully-qualified pathname of the log file.

codebase Required. Code base for the applet, or "" if there is no code base. By
concatenating the code base with the full package name of the applet, you
get the full pathname of the applet (relative to the HTTP document root).

zipfile Required. Name of the .zip file to create. The resulting .zip file is
created in the directory in which you run the program. The pathname for
the specified file can be relative or absolute. In the examples, a relative
pathname is given, so the .zip file is created in the current directory.

Administration Guide A-15

MulticastTest

The MulticastTest utility helps you debug multicast problems when configuring a
WebLogic Cluster. The utility sends out multicast packets and returns information
about how effectively multicast is working on your network. Specifically,
MulticastTest displays the following types of information via standard out:

1. A confirmation and sequence ID for each message sent out by this server.

2. The sequence and sender ID of each message received from any clustered server,
including this server.

3. A missed-sequenced warning when a message is received out of sequence.

4. A missed-message warning when an expected message is not received.

To use MulticastTest, start one copy of the utility on each node on which you want
to test multicast traffic.

Warning: Do NOT run the MulticastTest utility by specifying the same multicast
address (the -a parameter) as that of a currently running WebLogic
Cluster. The utility is intended to verify that multicast is functioning
properly before starting your clustered WebLogic Servers.

For information about setting up multicast, see the configuration documentation for the
operating system/hardware of the WebLogic Server host. For more information about
configuring a cluster, see Using WebLogic ServerClusters.

Syntax

$ java utils.MulticastTest -n name -a address [-p portnumber]
[-t timeout] [-s send]

Argument Definition

-n name Required. A name that identifies the sender of the sequenced
messages. Use a different name for each test process you start.

-a address Required. The multicast address on which: (a) the sequenced
messages should be broadcast; and (b) the servers in the clusters are
communicating with each other. (The default for any cluster for
which a multicast address is not set is 237.0.0.1.)

http://e-docs.bea.com/wls/docs60/cluster/index.html

A Using the WebLogic Server Java Utilities

A-16 Administration Guide

Example

$ java utils.MulticastTest -N server100 -A 237.155.155.1
Set up to send and receive on Multicast on Address 237.155.155.1 on
port 7001
Will send a sequenced message under the name server100 every 2
seconds.
Received message 506 from server100
Received message 533 from server200

I (server100) sent message num 507
Received message 507 from server100
Received message 534 from server200

I (server100) sent message num 508
Received message 508 from server100
Received message 535 from server200

I (server100) sent message num 509
Received message 509 from server100
Received message 536 from server200

I (server100) sent message num 510
Received message 510 from server100
Received message 537 from server200

I (server100) sent message num 511
Received message 511 from server100
Received message 538 from server200

I (server100) sent message num 512
Received message 512 from server100
Received message 539 from server200

I (server100) sent message num 513
Received message 513 from server100

-p portnumber Optional. The multicast port on which all the servers in the cluster
are communicating. (The multicast port is the same as the listen port
set for WebLogic Server, which defaults to 7001 if unset.)

-t timeout Optional. Idle timeout, in seconds, if no multicast messages are
received. If unset, the default is 600 seconds (10 minutes). If a
timeout is exceeded, a positive confirmation of the timeout is sent to
stdout.

-s send Optional. Interval, in seconds, between sends. If unset, the default is
2 seconds. A positive confirmation of each message sent out is sent
to stdout.

Argument Definition

Administration Guide A-17

myip

The myip utility returns the IP address of the host.

Syntax

$ java utils.myip

Example

$ java utils.myip
Host toyboat.toybox.com is assigned IP address: 192.0.0.1

A Using the WebLogic Server Java Utilities

A-18 Administration Guide

pem2der

The pem2der utility converts an X509 certificate from PEM format to DER format.
The .der file is written in the same directory as the source .pem file.

Syntax

$ java utils.pem2der pemFile

Example

$ java utils.pem2der graceland_org.pem
Decoding
..
..
..
..
..

Argument Description

pemFile The name of the file to be converted. The filename must end with a
.pem extension, and it must contain a valid certificate in .pem
format.

Administration Guide A-19

Schema

The Schema utility lets you upload SQL statements to a database using the WebLogic
JDBC drivers. For additional information about database connections, see
Programming WebLogic JDBC.

Syntax

$ java utils.Schema driverURL driverClass [-u username]
[-p password] [-verbose SQLfile]

Example

The following code shows a sample Schema command line:

$ java utils.Schema "jdbc:cloudscape:demo;create=true"
COM.cloudscape.core.JDBCDriver
-verbose examples/utils/ddl/demo.ddl

The following code shows a sample .ddl file:

DROP TABLE ejbAccounts;
CREATE TABLE ejbAccounts
(id varchar(15),
bal float,
type varchar(15));

DROP TABLE idGenerator;
CREATE TABLE idGenerator

Argument Definition

driverURL Required. URL for the JDBC driver.

driverClass Required. Pathname of the JDBC driver class.

-u username Optional. Valid username.

-p password Optional. Valid password for the user.

-verbose Optional. Prints SQL statements and database messages.

SQLfile Required when the -verbose argument is used. Text file with SQL
statements.

http://e-docs.bea.com/wls/docs60/jdbc/index.html

A Using the WebLogic Server Java Utilities

A-20 Administration Guide

(tablename varchar(32),
maxkey int);

Administration Guide A-21

showLicenses

The showLicenses utility displays license information about BEA products installed
in this machine.

Syntax

$ java -Dbea.home=license_location utils.showLicenses

Example

$ java -Dbea.home=d:\bea utils.showLicense

Argument Description

license_location The fully qualified name of the directory where the
license.bea file exists.

A Using the WebLogic Server Java Utilities

A-22 Administration Guide

system

The system utility displays basic information about your computer’s operating
environment, including the manufacturer and version of your JDK, your CLASSPATH,
and details about your operating system.

Syntax

$ java utils.system

Example

$ java utils.system
* * * * * * * java.version * * * * * * *
1.1.6

* * * * * * * java.vendor * * * * * * *
Sun Microsystems Inc.

* * * * * * * java.class.path * * * * * * *
\java\lib\classes.zip;\weblogic\classes;
\weblogic\lib\weblogicaux.jar;\weblogic\license
...

* * * * * * * os.name * * * * * * *
Windows NT

* * * * * * * os.arch * * * * * * *
x86

* * * * * * * os.version * * * * * * *
4.0

Administration Guide A-23

t3dbping

The t3dbping utility tests a WebLogic JDBC connection to a DBMS via any two-tier
JDBC driver. You must have access to a WebLogic Server and a DBMS to use this
utility.

Syntax

$ java utils.t3dbping WebLogicURL username password DBMS
driverClass driverURL

Argument Definition

WebLogicURL Required. URL of the WebLogic Server.

username Required. Valid username of DBMS user.

password Required. Valid password of DBMS user.

DBMS Required. Database name.

driverClass Required. Full package name of the WebLogic Server two-tier
driver.

driverURL Required. URL of the WebLogic Server two-tier driver.

A Using the WebLogic Server Java Utilities

A-24 Administration Guide

 verboseToZip

When executed from the document root directory of your HTTP server,
verboseToZip takes the standard output from a Java application run in verbose mode,
finds the Java classes referenced, and creates an uncompressed .zip file that contains
those Java classes.

Syntax

$ java utils.verboseToZip inputFile zipFileToCreate

UNIX Example

$ java -verbose myapplication > & classList.tmp
$ java utils.verboseToZip classList.tmp app2.zip

NT Example

$ java -verbose myapplication > classList.tmp
$ java utils.verboseToZip classList.tmp app3.zip

Argument Definition

inputFile Required. Temporary file that contains the output of the application
running in verbose mode.

zipFileToCreate Required. Name of the .zip file to be created. The resulting .zip
file is be created in the directory in which you run the program.

Administration Guide A-25

version

The version utility displays version information about your installed WebLogic
Server via stdout.

Syntax

$ java weblogic.version

Example

$ java weblogic.version
WebLogic Build: 4.0.1 04/05/1999 22:02:11 #41864

A Using the WebLogic Server Java Utilities

A-26 Administration Guide

writeLicense

The writeLicense utility writes information about all your WebLogic licenses in a
file called writeLicense.txt, located in the current directory. This file can then be
emailed, for example, to WebLogic technical support.

Syntax

$ java utils.writeLicense -nowrite -Dweblogic.system.home=path

Examples

$ java utils.writeLicense -nowrite

Example of UNIX Output

* * * * * * System properties * * * * * *

* * * * * * * java.version * * * * * * *
1.1.7

* * * * * * * java.vendor * * * * * * *
Sun Microsystems Inc.

* * * * * * * java.class.path * * * * * * *
c:\weblogic\classes;c:\weblogic\lib\weblogicaux.jar;
c:\java117\lib\classes.zip;c:\weblogic\license
...

Argument Definition

-nowrite Required. Sends the output to stdout instead of
writeLicense.txt.

-Dweblogic.system.home Required. Sets WebLogic system home (the root
directory of your WebLogic Server installation).

Note: This argument is required unless you are
running writeLicense from your
WebLogic system home.

Administration Guide A-27

Example of Windows NT Output

* * * * * * * os.name * * * * * * *
Windows NT

* * * * * * * os.arch * * * * * * *
x86

* * * * * * * os.version * * * * * * *
4.0

* * * * * * IP * * * * * *
Host myserver is assigned IP address: 192.1.1.0

* * * * * * Location of WebLogic license files * * * * * *
No WebLogicLicense.class found

No license.bea license found in
weblogic.system.home or current directory

Found in the classpath: c:/weblogic/license/license.bea
Last Modified: 06/02/1999 at 12:32:12

* * * * * * Valid license keys * * * * * *
Contents:
Product Name : WebLogic
IP Address : 192.1.1.0-255
Expiration Date: never
Units : unlimited
key : b2fcf3a8b8d6839d4a252b1781513b9
...

* * * * * * All license keys * * * * * *
Contents:
Product Name : WebLogic
IP Address : 192.1.1.0-255
Expiration Date: never
Units : unlimited
key : b2fcf3a8b8d6839d4a252b1781513b9
...

* * * * * * WebLogic version * * * * * *
WebLogic Build: 4.0.x xx/xx/1999 10:34:35 #xxxxx

A Using the WebLogic Server Java Utilities

A-28 Administration Guide

Administration Guide B-1

APPENDIX

B WebLogic Server
Command-Line
Interface Reference

The following sections describe the WebLogic Server command-line interface:

� “About the Command-Line Interface” on page B-1

� “Using WebLogic Server Commands” on page B-2

� “WebLogic Server Administration Command Reference” on page B-3

� “Mbean Management Command Reference” on page B-28

About the Command-Line Interface

As an alternative to the Administration Console, WebLogic Server offers a
command-line interface to its administration tools, as well as to many configuration
and run-time Mbean properties.

Use the command-line interface if:

� You want to create scripts for administration and management efficiency.

� You cannot access the Administration Console through a browser.

� You prefer using the command-line interface over a graphical user interface.

B WebLogic Server Command-Line Interface Reference

B-2 Administration Guide

Before You Begin

The examples in this document are based on the following assumptions:

� WebLogic Server is installed in the c:/weblogic directory.

� The JDK is located in the c:/java directory.

� You have started WebLogic Server from the directory in which it was installed.

Before you can run WebLogic Server commands, you must do the following:

1. Install and configure the WebLogic Server software, as described in the WebLogic
Server Installation Guide. See
http://e-docs.bea.com/wls/docs60/install/index.html.

2. Set CLASSPATH correctly. See “Setting the Classpath Option” at
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html#Sett

ingClasspath.

3. Enable the command-line interface by performing one of the following steps:

��Start the server from the directory in which it was installed.

��If you are not starting the server from its installation directory, enter the
following command, replacing c:/weblogic with the name of the directory
in which the WebLogic Server software is installed:

-Dweblogic.system.home=c:/weblogic

Using WebLogic Server Commands

This section presents the syntax and required arguments for using WebLogic Server
commands. WebLogic Server commands are not case-sensitive.

Syntax

java weblogic.Admin [–url URL] [-username username]
[-password password] COMMAND arguments

http://e-docs.bea.com/wls/docs60/install/index.html
http://e-docs.bea.com/wls/docs60/install/index.html
http://e-docs.bea.com/wls/docs60/install/index.html
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html#SettingClasspath

WebLogic Server Administration Command Reference

Administration Guide B-3

Arguments

The following arguments are required by many WebLogic Server commands.

An administrator must have the appropriate access control permissions to run
commands used to manage run-time Mbeans.

See the following sections:

� “WebLogic Server Administration Command Reference” on page B-3

� “Mbean Management Command Reference” on page B-28

WebLogic Server Administration Command
Reference

Table B-1 presents an overview of WebLogic Server administration commands. The
following sections describe command syntax and arguments, and provide an example
for each command.

Argument Definition

URL The URL of the WebLogic Server host including the number of the TCP port
at which WebLogic Server is listening for client requests. The format is
hostname:port. The default is localhost:7001.

Note: The URL used with a server command always refers to the
WebLogic Server, while the URL used with run-time and
configuration Mbean commands always refers to a specific
Administration server.

username Optional. Username to be authenticated so commands can be executed.
Default is guest.

password Optional. Password to be authenticated so commands can be executed.
Default is guest.

B WebLogic Server Command-Line Interface Reference

B-4 Administration Guide

Table B-1 WebLogic Server Administration Commands Overview

Task Command Description

Cancel shut down a
WebLogic Server

CANCEL_SHUTD
OWN

Cancels the SHUTDOWN command for the WebLogic Server that
is specified in the URL.

See “CANCEL_SHUTDOWN” on page B-6.

Connect to WebLogic
Server

CONNECT Makes the specified number of connections to the WebLogic Server
and returns two numbers representing the total time for each round
trip and the average amount of time (in milliseconds) that each
connection is maintained.

See “CONNECT” on page B-7.

Get Help for one or
more commands

HELP Provides syntax and usage information for all WebLogic Server
commands (by default) or for a single command if a command value
is specified on the HELP command line.

See “HELP” on page B-8.

View WebLogic
Server licenses

LICENSES Lists the licenses for all the WebLogic Server instances installed on
a specific server.

See “LICENSES” on page B-9.

List JNDI naming tree
node bindings

LIST Lists the bindings of a node in the JNDI naming tree.

See “LIST” on page B-10.

Lock WebLogic
Server

LOCK Locks a WebLogic Server against non-privileged logins. Any
subsequent login attempt initiates a security exception which may
contain an optional string message.

See “LOCK” on page B-11.

Verify WebLogic
Server listening ports

PING Sends a message to verify that a WebLogic Server is listening on a
port, and is ready to accept WebLogic client requests.

See “PING” on page B-12.

Viewing server log
files

SERVERLOG Displays the server log file generated on a specific server.

See “SERVERLOG” on page B-13.

Shut down a
WebLogic Server

SHUTDOWN Shuts down the WebLogic Server that is specified in the URL.

See “SHUTDOWN” on page B-14.

View threads THREAD_DUMP Provides a real-time snapshot of the WebLogic Server threads that
are currently running.

See “THREAD_DUMP” on page B-15.

WebLogic Server Administration Command Reference

Administration Guide B-5

Unlock a WebLogic
Server

UNLOCK Unlocks the specified WebLogic Server after a LOCK operation.

See “UNLOCK” on page B-16.

View WebLogic
Server version

VERSION Displays the version of the WebLogic Server software that is
running on the machine specified by the value of URL.

See “VERSION” on page B-17.

Table B-1 WebLogic Server Administration Commands Overview (Continued)

Task Command Description

B WebLogic Server Command-Line Interface Reference

B-6 Administration Guide

CANCEL_SHUTDOWN

The CANCEL_SHUTDOWN command cancels the SHUTDOWN command for a
specified WebLogic Server.

When you use the SHUT_DOWN command, you can specify a delay (in seconds).
An administrator may cancel the shutdown command during the delay period. Be
aware that the SHUTDOWN command disables logins, and they remain disabled even
after cancelling the shutdown. Use the UNLOCK command to re-enable logins.

See “SHUTDOWN” on page B-14 and “UNLOCK” on page B-16.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] CANCEL_SHUTDOWN

Example

In the following example, a system user named systemwith a password of gumby1234
requests to cancel the shutdown of the WebLogic Server listening on port 7001 on
machine localhost:

java weblogic.Admin -url t3://localhost:7001 -username system
-password gumby1234 CANCEL_SHUTDOWN

WebLogic Server Administration Command Reference

Administration Guide B-7

CONNECT

Makes the specified number of connections to the WebLogic Server and returns two
numbers representing the total time for each round trip and the average amount of time
(in milliseconds) that each connection is maintained.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] CONNECT count

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the CONNECT command to establish 25 connections to a server named
localhost and return information about those connections:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 CONNECT 25

Argument Definition

count Number of connections to be made.

B WebLogic Server Command-Line Interface Reference

B-8 Administration Guide

HELP

Provides syntax and usage information for all WebLogic Server commands (by
default) or for a single command if a command value is specified on the HELP
command line.

Syntax

java weblogic.Admin HELP [COMMAND]

Example

In the following example, information about using the PING command is requested:

java weblogic.Admin HELP PING

The HELP command returns the following to stdout:

Usage: weblogic.Admin [-url url] [-username username]
[-password password] <COMMAND> <ARGUMENTS>

PING <count> <bytes>

WebLogic Server Administration Command Reference

Administration Guide B-9

LICENSES

Lists the licenses for all WebLogic Server instances installed on the specified server.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] LICENSES

Example

In the following example, an administrator using the default username (guest) and
default password (guest) requests the license information for a WebLogic Server
running on port 7001 of machine localhost:

java weblogic.Admin -url localhost:7001 -username guest
-password guest LICENSES

B WebLogic Server Command-Line Interface Reference

B-10 Administration Guide

LIST

Lists the bindings of a node in the JNDI naming tree.

Syntax

java weblogic.Admin [-username username] [-password password]
LIST context

Example

In this example, user adminuser, who has a password of gumby1234, requests a list
of the node bindings in weblogic.ejb:

java weblogic.Admin -username adminuser -password gumby1234
LIST weblogic.ejb

Argument Definition

context Required. The JNDI context for lookup, for example, weblogic,
weblogic.ejb, javax.

WebLogic Server Administration Command Reference

Administration Guide B-11

LOCK

Locks a WebLogic Server against non-privileged logins. Any subsequent login
attempt initiates a security exception which may contain an optional string message.

Note: This command is privileged. It requires the password for the WebLogic Server
administrative user.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] LOCK “string_message”

Example

In the following example, a WebLogic Server is locked.

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234
LOCK "Sorry, WebLogic Server is temporarily out of service."

Any application that subsequently tries to log into the locked server with a
non-privileged username and password receives the specified message: Sorry,
WebLogic Server is temporarily out of service.

Argument Definition

“string_message” Optional. Message, in double quotes, to be supplied in the security
exception that is thrown if a non-privileged user attempts to log in
while the WebLogic Server is locked.

B WebLogic Server Command-Line Interface Reference

B-12 Administration Guide

PING

Sends a message to verify that a WebLogic Server is listening on a port, and is ready
to accept WebLogic client requests.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] PING [round_trips] [message_length]

Example

In the following example, the command checks a WebLogic Server running on port
7001 of machine localhost ten (10) times.

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 PING 10

Argument Definition

round_trips Optional. Number of pings.

message_length Optional. Size of the packet to be sent in each ping. Requests for
pings with packets larger than 10 MB throw exceptions.

WebLogic Server Administration Command Reference

Administration Guide B-13

SERVERLOG

Displays the log file generated on a specific server.

� If you do not specify a URL, the server log for the Administration Server is
displayed by default.

� If you specify a server URL, you can retrieve a log for a non-Administration
Server.

� If you omit the starttime and endtime arguments, a running display of the
entire server log is started.

Syntax

java.weblogic.Admin [-url URL] [-username username]
[-password password] SERVERLOG [[starttime]|[endtime]]

Example

In the following example, a request is made for a running display of the log for the
server listening on port 7001 on machine localhost.

java weblogic.Admin -url localhost:7001
SERVERLOG “2001/12/01 14:00” “2001/12/01 16:00”

The request specifies that the running display should begin at 2:00 p.m. on December
1, 2001, and end at 4:00 p.m. on December 1, 2001.

Argument Definition

starttime Optional. Earliest time at which messages are to be displayed. If not
specified, messages display starts, by default, when the SERVERLOG
command is executed. The date format is yyyy/mm/dd. Time is
indicated using a 24-hour clock. The start date and time are entered inside
quotation marks, in the following format: “yyyy/mm/dd hh:mm”

endtime Optional. Latest time at which messages are to be displayed. If not
specified, the default is the time at which the SERVERLOG command is
executed. The date format is yyyy/mm/dd. Time is indicated using a
24-hour clock. The end date and time are entered inside quotation marks,
in the following format: “yyyy/mm/dd hh:mm”

B WebLogic Server Command-Line Interface Reference

B-14 Administration Guide

SHUTDOWN

Shuts down the WebLogic Server that is specified in the URL.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] SHUTDOWN [seconds] [“lockMessage”]

Example

In the following example, a user with the adminuser username and an administrative
password of gumby1234 shuts down a WebLogic Server that is listening on port 7001
of machine localhost:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 SHUTDOWN 300 “Server localhost is shutting
down.”

After the command is issued, an interval of five minutes (300 seconds) elapses. Then
the command shuts down the specified server and sends the following message to
stdout:

Server localhost is shutting down.

Argument Definition

seconds Optional. Number of seconds allowed to elapse between the invoking
of this command and the shutdown of the server.

“lockMessage” Optional. Message, in double quotes, to be supplied in the message that
is sent if a user tries to log in while the WebLogic Server is locked.

WebLogic Server Administration Command Reference

Administration Guide B-15

THREAD_DUMP

Provides a real-time snapshot of the WebLogic Server threads that are currently
running.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] THREAD_DUMP

B WebLogic Server Command-Line Interface Reference

B-16 Administration Guide

UNLOCK

Unlocks the specified WebLogic Server after a LOCK operation.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] UNLOCK

Example

In the following example, an administrator named adminuser with a password of
gumby1234 requests the unlocking of the WebLogic Server listening on port 7001 on
machine localhost:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 UNLOCK

Argument Definition

username Required. A valid administrative username must be supplied to use this
command.

password Required. A valid administrative password must be supplied to use this
command.

WebLogic Server Administration Command Reference

Administration Guide B-17

VERSION

Displays the version of the WebLogic Server software that is running on the machine
specified by the value of URL.

Syntax

java weblogic.Admin -url URL -username username
-password password VERSION

Example

In the following example, a user requests the version of the WebLogic Server running
on port 7001 on machine localhost:

java weblogic.Admin -url localhost:7001 -username guest
-password guest VERSION

Note: In this example, the default value of both the username and password

arguments, guest, is used.

B WebLogic Server Command-Line Interface Reference

B-18 Administration Guide

WebLogic Server Connection Pools
Administration Command Reference

Table B-2 presents an overview of WebLogic Server administration commands for
connection pools. The following sections describe command syntax and arguments,
and provide an example for each command.

For additional information about connection pools see Programming WebLogic JDBC
at http://e-docs.bea.com/wls/docs60/jdbc/index.html and Managing
JDBC Connectivity in the Administration Guide at
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html.

Table B-2 WebLogic Server Administration Commands Overview—Connection Pools

Task Command Description

Create a Dynamic
Connection Pool

CREATE_POOL Allows creation of connection pool while WebLogic Server is
running. Note that dynamically created connection pools cannot be
used with DataSources or TxDataSources.

See “CREATE_POOL” on page B-20

Destroy a Connection
Pool

DESTROY_POOL Connections are closed and removed from the pool and the pool dies
when it has no remaining connections. Only the “system” user or
users granted “admin” permission by an ACL associated with a
connection pool can destroy the pool.

See “DESTROY_POOL” on page B-23.

Disable a Connection
Pool

DISABLE_POOL You can temporarily disable a connection pool, preventing any
clients from obtaining a connection from the pool. Only the
“system” user or users granted “admin” permission by an ACL
associated with a connection pool can disable or enable the pool.

See “DISABLE_POOL” on page B-24.

Enable a Connection
Pool

ENABLE_POOL When a pool is enabled after it has been disabled, the JDBC
connection states for each in-use connection are exactly as they were
when the connection pool was disabled; clients can continue JDBC
operations exactly where they left off.

See “ENABLE_POOL” on page B-25.

http://e-docs.bea.com/wls/docs60/jdbc/index.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-19

Determine if a
Connection Pool
Exists

EXISTS_POOL Tests whether a connection pool with a specified name exists in the
WebLogic Server. You can use this command to determine whether
a dynamic connection pool has already been created or to ensure that
you select a unique name for a dynamic connection pool you want
to create.

See “EXISTS_POOL” on page B-26.

Resets a Connection
Pool

RESET_POOL Closes and reopens all allocated connections in a connection pool.
This may be necessary after the DBMS has been restarted, for
example. Often when one connection in a connection pool has
failed, all of the connections in the pool are bad.

See “RESET_POOL” on page B-27.

Table B-2 WebLogic Server Administration Commands Overview—Connection Pools

Task Command Description

B WebLogic Server Command-Line Interface Reference

B-20 Administration Guide

CREATE_POOL

Allows creation of connection pool while WebLogic Server is running. For more information,
see “Creating a Connection Pool Dynamically” in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/programming.html#dynamic_co
nn_pool.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] CREATE_POOL poolName aclName=aclX,
props=myProps,initialCapacity=1,maxCapacity=1,
capacityIncrement=1,allowShrinking=true,shrinkPeriodMins=15,
driver=myDriver,url=myURL

Argument Definition

poolName Required. Unique name of pool.

aclName Required. Identifies the different access lists within
fileRealm.properties in the server config directory.
Paired name must be dynaPool.

props Database connection properties; typically in the format
“database login name; database password; server network id”.

initialCapacity Initial number of connections in a pool. If this property is
defined and a positive number > 0, WebLogic Server creates
these connections at boot time. Default is 1; cannot exceed
maxCapacity.

maxCapacity Maximum number of connections allowed in the pool. Default
is 1; if defined, maxCapacity should be =>1.

capacityIncrement Number of connections that can be added at one time. Default
= 1.

allowShrinking Indicates whether or not the pool can shrink when connections
are detected to not be in use.
Default = true.

shrinkPeriodMins Required. Interval between shrinking. Units in minutes.
Minimum = 1.If allowShrinking = True, then default =
15 minutes.

http://e-docs.bea.com/wls/docs60/jdbc/programming.html#dynamic_conn_pool

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-21

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the CREATE_POOL command to create a dynamic connection pool:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 CREATE_POOL myPool

java weblogic.Admin -url t3://forest:7901 -username system
-password gumby1234 CREATE_POOL dynapool6 "aclName=someAcl,
allowShrinking=true,shrinkPeriodMins=10,
url=jdbc:weblogic:oracle,driver=weblogic.jdbc.oci.Driver,

driver Required. Name of JDBC driver. Only local (non-XA) drivers
can participate.

url Required. URL of the JDBC driver.

testConnsOnReserve Indicates reserved test connections. Default = False.

testConnsOnRelease Indicates test connections when they are released. Default =
False.

testTableName Database table used when testing connections; must be present
for tests to succeed. Required if either testConnOnReserve or
testConOnRelease are defined.

refreshPeriod Sets the connection refresh interval. Every unused connection
will be tested using TestTableName. Connections that do not
pass the test will be closed and reopened in an attempt to
reestablish a valid physical database connection. If
TestTableName is not set then the test will not be performed.

loginDelaySecs The number of seconds to delay before creating each physical
database connection. This delay takes place both during initial
pool creation and during the lifetime of the pool whenever a
physical database connection is created. Some database servers
cannot handle multiple requests for connections in rapid
succession. This property allows you to build in a small delay
to let the database server catch up. This delay takes place both
during initial pool creation and during the lifetime of the pool
whenever a physical database connection is created.

Argument Definition

B WebLogic Server Command-Line Interface Reference

B-22 Administration Guide

initialCapacity=2,maxCapacity=8,
props=user=SCOTT;password=tiger;server=bay816"

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-23

DESTROY_POOL

Connections are closed and removed from the pool and the pool dies when it has no
remaining connections. Only the “system” user or users granted “admin” permission
by an ACL associated with a connection pool can destroy the pool.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] DESTROY_POOL poolName [true|false]

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the DESTROY_POOL command temporarily freeze the active pool
connections:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 DESTROY_POOL myPool false

Argument Definition

poolName Required. Unique name of pool.

false

(soft shutdown)

Soft shutdown waits for connections to be returned to the pool
before closing them.

true

(default—hard
shutdown)

Hard shutdown kills all connections immediately. Clients using
connections from the pool get exceptions if they attempt to use a
connection after a hard shutdown.

B WebLogic Server Command-Line Interface Reference

B-24 Administration Guide

DISABLE_POOL

You can temporarily disable a connection pool, preventing any clients from obtaining
a connection from the pool. Only the “system” user or users granted “admin”
permission by an ACL associated with a connection pool can disable or enable the
pool.

You have to options for disabling a pool. 1) Freezing the connections in a pool that you
later plan to enable, and 2) destroy the connections.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] DISABLE_POOL poolName [true|false]

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the DISABLE_POOL command to freeze a connection that is to be
enabled later:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 DISABLE_POOL myPool false

Argument Definition

poolName Name of the connection pool

false

(disables and
suspends)

Disables the connection pool, and suspends clients that currently
have a connection. Attempts to communicate with the database
server throw an exception. Clients can, however, close their
connections while the connection pool is disabled; the connections
are then returned to the pool and cannot be reserved by another client
until the pool is enabled.

true

(default—
disables and
destroys)

Disables the connection pool, and destroys the client’s JDBC
connection to the pool. Any transaction on the connection is rolled
back and the connection is returned to the connection pool.

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-25

ENABLE_POOL

When a pool is enabled, the JDBC connection states for each in-use connection are
exactly as they were when the connection pool was disabled; clients can continue
JDBC operations exactly where they left off.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] ENABLE_POOL poolName

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the ENABLE_POOL command to reestablish connections that have
been disabled (frozen):

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 ENABLE_POOL myPool

Argument Definition

poolName Name of the connection pool.

B WebLogic Server Command-Line Interface Reference

B-26 Administration Guide

EXISTS_POOL

Tests whether a connection pool with a specified name exists in the WebLogic Server.
You can use this method to determine whether a dynamic connection pool has already
been created or to ensure that you select a unique name for a dynamic connection pool
you want to create.

Syntax

java weblogic.Admin [-url URL] [-username username]
[-password password] EXISTS_POOL poolName

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the EXISTS_POOL command to determine wether or not a pool with a
specific name exists:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 EXISTS_POOL myPool

Argument Definition

poolName Name of connection pool.

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-27

RESET_POOL

This command resets the connections in a registered connection pool.

This is a privileged command. You must supply the password for the WebLogic Server
administrative user to use this command. You must know the name of the connection
pool, which is an entry in the config.xml file.

Syntax

java weblogic.Admin URL RESET_POOL poolName system password

Example

This command refreshes the connection pool registered as "eng" for the WebLogic
Server listening on port 7001 of the host xyz.com.

java weblogic.Admin t3://xyz.com:7001 RESET_POOL eng system gumby

Argument Definition

URL The URL of the WebLogic Server host and port number of the TCP port at
which WebLogic is listening for client requests; use
"t3://host:port."

poolName Name of a connection pool as it is registered in the WebLogic Server's
config.xml file.

password Administrative password for the user "system". You must supply the
username "system" and the administrative password to use this Admin

command.

B WebLogic Server Command-Line Interface Reference

B-28 Administration Guide

Mbean Management Command Reference

Table B-3 presents an overview of the Mbean management commands. The following
sections describe command syntax and arguments, and provide an example for each
command.

Table B-3 Mbean Management Command Overview

Task Command(s) Description

Create configuration
Mbeans

CREATE Creates an instance of a configuration Mbean. Returns OK to
stdout when successful. This command cannot be used for
run-time Mbeans.

See “CREATE” on page B-29.

Delete configuration
Mbeans

DELETE Deletes a configuration Mbean. Returns OK in stdout when
successful. This command cannot be used for run-time Mbeans.

See “DELETE” on page B-30.

View run-time Mbean
attributes

GET Displays run-time Mbean attributes.

See “GET” on page B-31.

Invoke run-time
Mbeans

INVOKE Invokes methods that are not designed to get or set attributes. This
command can call only run-time Mbeans.

See “INVOKE” on page B-33.

View run-time metrics
and statistics

INVOKE

GET

Run the INVOKE and GET commands to view run-time metrics and
statistics. These commands can call only run-time Mbeans.

See “INVOKE” on page B-33, and “GET” on page B-31.

Set configuration
Mbean attributes

SET Sets the specified attribute values for the named configuration
Mbean. Returns OK on stdout when successful. This command
cannot be used for run-time Mbeans.

See “SET” on page B-34.

Mbean Management Command Reference

Administration Guide B-29

CREATE

Creates an instance of a configuration Mbean. Returns OK to stdout when successful.
This command cannot be used for run-time Mbeans. The Mbean instance is saved in
the config.xml file or the security realm, depending on where the changes have been
made.

Note: When you create Mbeans, configuration objects are also created.

For more information about creating Mbeans, see Developing WebLogic Server
Applications, at
http://e-docs.bea.com/wls/docs60/programming/index.html.

Syntax

java weblogic.Admin [–url URL] [-username username]
[-password password] CREATE –name name –type mbean_type
[–domain domain_name]

java weblogic.Admin [–url URL] [-username username]
[-password password] CREATE –mbean mbean_name

Example

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 CREATE -mbean
“mydomain:Type=Server,Name=acctServer”

Argument Definition

name Required. The name you choose for the Mbean that you are creating.

mbean_type Required. When creating attributes for multiple objects of the same
type.

mbean_name Required. Fully qualified name of an Mbean, in the following format:
“domain:Type=type,Name=name”

Type specifies a type of object grouping and Name specifies the Mbean
name.

domain_name Optional. Name of the domain; for example, mydomain. If
domain_name is not specified, the default domain name is used.

http://e-docs.bea.com/wls/docs60/programming/index.html

B WebLogic Server Command-Line Interface Reference

B-30 Administration Guide

DELETE

Deletes a configuration Mbean. Returns OK in stdoutwhen successful. This command
cannot be used for run-time Mbeans.

Note: When you delete Mbeans, configuration objects are also deleted.

For more information about deleting Mbeans, see Developing WebLogic Server
Applications, at
http://e-docs.bea.com/wls/docs60/programming/index.html.

Syntax

java weblogic.Admin [–url URL] [-username username] [-password
password] DELETE {–type mbean_type|–mbean mbean_name}

Example

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 DELETE -mbean
“mydomain:Type:Server,Name=AcctServer”

Arguments Definition

mbean_type Required. When deleting attributes for multiple objects of the same
type.

mbean_name Required. Fully qualified name of an Mbean, in the following format:
“domain:Type=type,Name=name”

Type specifies a type of object grouping, and Name specifies the
Mbean name.

http://e-docs.bea.com/wls/docs60/programming/index.html

Mbean Management Command Reference

Administration Guide B-31

GET

Displays run-time Mbean attributes. You can request a list of attributes for multiple
objects of the same type by requesting attributes for the following:

� All Mbeans that belong to the same Mbean type:

GET {-pretty} -type mbean_type

� A specific Mbean:

GET {-pretty} -mbean mbean_name

The name of each of the specified Mbeans is included in the output. If -pretty is
specified, each attribute name-value pair is displayed on a new line.

The GET command can only call run-time Mbeans.

The name-value pair for each attribute is specified within curly brackets. This format
facilitates scripting by simplifying the parsing of the output.

The name of the Mbean is included in the output as follows:

{mbeanname mbean_name {property1 value} {property2 value}. . .}
{mbeanname mbean_name {property1 value} {property2 value} . . .}
. . .

If -pretty is specified, each attribute name-value pair is displayed on a new line. The
name of each of the specified Mbeans is also included in the output, which is displayed
as follows:

mbeanname: mbean_name
property1: value
property2: value
.
.
.
mbeanname: mbean_name
property1: value
property2: value

Syntax

java weblogic.Admin [–url URL] [-username username] [-password
password] GET {-pretty} {–type mbean_type|–mbean mbean_name}
[–property property1] [–property property2]...

B WebLogic Server Command-Line Interface Reference

B-32 Administration Guide

Example

In the following example, a user requests a display of the Mbean attributes for a server
named localhost, which is listening on port 7001:

java weblogic.Admin -url localhost:7001 GET -pretty -type Server

Argument Definition

mbean_type Required. When getting attributes for multiple objects of the same type,
output includes the name of the Mbean.

mbean_name Fully qualified name of an Mbean, in the following format:
“domain:Type=type,Location:location,Name=name”

Type specifies a type of object grouping, Location specifies the
location of the Mbean, and Name supplies the Mbean name.

pretty Optional. Produces well-formatted output.

property Optional. The name of the Mbean attribute or attributes to be listed.

Note: If an attribute is not specified using this argument, all attributes
are displayed.

Mbean Management Command Reference

Administration Guide B-33

INVOKE

Invokes the specified method (including arguments) on the specified Mbean. This
command can call only run-time Mbeans. Use this command to invoke methods that
do not get or set Mbean attributes.

Syntax

java weblogic.Admin [–url URL] [-username username] [-password
password] INVOKE {–type mbean_type|–mbean mbean_name} –method
methodname [argument . . .]

Example

The following example invokes an administration Mbean named admin_one using the
method getAttributeStringValue:

java weblogic.Admin -username system -password gumby1234 INVOKE
-mbean mydomain:Name=admin_one,Type=Administrator
-method getAttributeStringValue PhoneNumber

Arguments Definition

mbean_type Required when invoking attributes for multiple objects of the same type, and must include the
fully qualified name of the Mbean, as follows:

“domain:Name:name,Type=type,Application=application”

mbean_name Required. Fully qualified name of an Mbean, as follows:
“domain:Type=type,Location=location,Name=name”

where:

� Type specifies the type of object grouping

� Location specifies the location of the Mbean

� Name is the Mbean name

When the argument is a String array, the arguments must be passed in the following format:

“String1;String2;. . . ”

methodname Required. Name of the method to be invoked. Following the method name, the user can
specify arguments to be passed to the method call, as follows:

“domain:Name=name,Type=type”

B WebLogic Server Command-Line Interface Reference

B-34 Administration Guide

SET

Sets the specified attribute values for the named configuration Mbean. Returns OK on
stdout when successful. This command cannot be used for run-time Mbeans.

New values are saved to the config.xml file or the security realm, depending on
where the new values have been defined.

Syntax

java weblogic.Admin [–url URL] [-username username]
[-password password] SET {–type mbean_type|–mbean mbean_name}
–property property1 property1_value
[-property property2 property2_value] . . .

Argument Definition

mbean_type Required when invoking properties for multiple objects of the same type, and must
include the fully qualified name of the Mbean, as follows:

“domain:Name:name,Type=type,Application=application”

mbean_name Required. Must include the fully qualified name of an Mbean, in the following format:

“domain:Name=name,Location:location,Type=type”

where:

� Name is the Mbean name

� Location specifies the location of the Mbean

� Type specifies the type of object grouping

property Required. The name of the attribute property to be set.

property _value Required. The value to be set with the attribute property.

� When the argument is an Mbean array, the arguments must be passed in the
following format:

“domain:Name=name,Type=type;domain:Name=name,Type=type”

� When the argument is a String array, the arguments must be passed in the following
format:

“String1;String2;. . . ”

� When setting the attribute properties for a JDBC Connection Pool, you must pass
the arguments in the following format:

“user:username;password:password;server:servername”

Mbean Management Command Reference

Administration Guide B-35

B WebLogic Server Command-Line Interface Reference

B-36 Administration Guide

Administration Guide C-1

APPENDIX

C Parameters for Web
Server Plug-ins

This foloowing sections describe the parameters that you use to configure the Apache,
Netscape, and Microsoft IIS Web server plug-ins:

� “Overview” on page C-1

� “General Parameters for Web Server Plug-Ins” on page C-2

� “SSL Parameters for Web Server Plug-Ins” on page C-11

Overview

You enter the parameters for each Web Server Plug-in special configuration files. Each
Web Server has a different name for this configuration file and different rules for
formatting the file. For details, see the following sections on each plug-in:

� “Installing and Configuring the Apache HTTP Server Plug-In” on page 9-1

� “Installing and Configuring the Microsoft Internet Information Server (ISAPI)
Plug-In” on page 10-1

� “Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)” on
page 11-1

Enter Web server plug-ins parameters as described in the following table.

C Parameters for Web Server Plug-ins

C-2 Administration Guide

General Parameters for Web Server Plug-Ins

Note: Parameters are case sensitive.

Parameter Default Description

WebLogicHost

(Required when proxying to a
single WebLogic Server.)

none WebLogic Server host (or virtual host name as defined in a Web
Server running in WebLogic Server) to which HTTP requests
should be forwarded.

If you are using a WebLogic cluster, use the
WebLogicCluster parameter instead of WebLogicHost.

WebLogicPort

(Required when proxying to a
single WebLogic Server.)

none Port at which the WebLogic Server host is listening for
WebLogic connection requests. (If you are using SSL between
the plug-in and WebLogic Server, set this parameter to the SSL
listen port (see “Configuring the Listen Port” on page 7-3) and
set the SecureProxy parameter to ON).

If you are using a WebLogic Cluster, use the
WebLogicCluster parameter instead of WebLogicPort.

General Parameters for Web Server Plug-Ins

Administration Guide C-3

WebLogicCluster

(Required when proxying to a
cluster of WebLogic Servers.)

none List of WebLogic Servers that can be used in a cluster for
load-balancing. The cluster list is a comma-delimited list of
host:port entries. For example:

WebLogicCluster myweblogic.com:7001,
yourweblogic.com:7001,theirweblogic.com:7001

If you are using SSL between the plug-in and WebLogic Server,
set the port number to the SSL listen port (see “Configuring the
Listen Port” on page 7-3) and set the SecureProxy parameter
to ON.

Use WebLogicCluster instead of the WebLogicHost and
WebLogicPort parameters. WebLogic Server looks first for
the WebLogicCluster parameter. If not found, it looks for
and uses WebLogicHost and WebLogicPort.

The plug-in does a simple round-robin between all available
cluster members. The cluster list specified in this property is a
starting point for the dynamic cluster list that the server and
plug-in maintain. WebLogic Server and the plug-in work
together to update the cluster list automatically with new, failed,
and recovered cluster members.

You can disable the use of the dynamic cluster list by setting the
DynamicServerList parameter to OFF (Microsoft Internet
Information Server only).

The plug-in directs HTTP requests containing a cookie,
URL-encoded session, or a session stored in the POST data to
the server in the cluster that originally created the cookie.

PathTrim null String trimmed by the plug-in from the beginning of the original
URL, before the request is forwarded to WebLogic Server. For
example, if the URL

http://myWeb.server.com/weblogic/foo

is passed to the plug-in for parsing and if PathTrim has been
set to strip off /weblogic before handing the URL to
WebLogic Server, the URL forwarded to WebLogic Server is:

http://myweblogic.server.com:7001/foo

PathPrepend null String that the plug-in prependeds to the beginning of the
original URL, after PathTrim has been trimmed, and before
the request is forwarded to WebLogic Server.

Parameter Default Description

C Parameters for Web Server Plug-ins

C-4 Administration Guide

ConnectTimeoutSecs 10 Maximum time in seconds that the plug-in should attempt to
connect to the WebLogic Server host. Make the value greater
than ConnectRetrySecs. If ConnectTimeoutSecs
expires without a successful connection, even after the
appropriate retries (see ConnectRetrySecs), an HTTP
503/Service Unavailable response is sent to the client.

You can customize the error response by using the ErrorPage
parameter.

ConnectRetrySecs 2 Interval in seconds that the plug-in should sleep between
attempts to connect to the WebLogic Server host (or all of the
servers in a cluster). Make this number less than the
ConnectTimeoutSecs. The number of times the plug-in tries
to connect before returning an HTTP 503/Service
Unavailable response to the client is calculated by dividing
ConnectTimeoutSecs by ConnectRetrySecs.

To specify no retries, set ConnectRetrySecs equal to
ConnectTimeoutSecs. However, the plug-in attempts to
connect at least twice.

You can customize the error response by using the ErrorPage
parameter.

Parameter Default Description

General Parameters for Web Server Plug-Ins

Administration Guide C-5

Debug OFF Sets the type of logging performed for debugging operations. It
is not advisable to switch on these debugging options in
production systems.

The debugging information is written to the
/tmp/wlproxy.log file on UNIX systems and
c:\tmp\wlproxy.log on Windows NT/2000 systems.

You can set any of the following logging options (the
HFC,HTW,HFW, and HTC options may be set in combination by
entering them separated by commas, for example “HFC,HTW”):

ON

The plug-in logs only informational and error
messages.

OFF

No debugging information is logged.

HFC

The plug-in logs headers from the client,
informational, and error messages.

HTW

The plug-in logs headers sent to WebLogic
Server, informational messages, and error
messages.

HFW

The plug-in logs headers sent from WebLogic
Server, informational messages, and error
messages.

HTC

The plug-in logs headers sent to the client,
informational messages, and error messages.

ALL

The plug-in logs headers sent to and from the
client, headers sent to and from WebLogic
Server, information messages, and error
messages.

Parameter Default Description

C Parameters for Web Server Plug-ins

C-6 Administration Guide

DebugConfigInfo OFF Enables the special query parameter
“__WebLogicBridgeConfig”. Use it to get details about
configuration parameters from the plug-in.

For example, if you enable “__WebLogicBridgeConfig”
by setting DebugConfigInfo and then send a request that
includes the query string?__WebLogicBridgeConfig, then
the plug-in gathers the configuration information and run-time
statistics and returns the information to the browser. The plug-in
does not connect to the WebLogic Server in this case.

This parameter is strictly for debugging and the format of the
output message can change with releases. For security purposes,
keep this parameter turned OFF in production systems.

StatPath

(Not available for the Microsoft
Internet Information Server
Plug-In)

false If set to true, the plug-in checks the existence and permissions
of the translated path (“Proxy-Path-Translated”) of the request
before forwarding the request to WebLogic Server.

If the file does not exist, an HTTP 404 File Not Found
response is returned to the client. If the file exists but is not
world-readable, an HTTP 403/Forbidden response is
returned to the client. In either case, the default mechanism for
the Web server to handle these responses fulfills the body of the
response. This option is useful if both the WebLogic Server Web
Application and the Web server have the same document root.

You can customize the error response by using the ErrorPage
parameter.

ErrorPage none You can create your own error page that is displayed when your
Web server is unable to forward requests to WebLogic Server.

You can set this parameter in one of two ways:

� As a relative URI (file name). Depending on how you
configure proxying (by MIME type or path) the request for
the error page might be proxied to the WebLogic Server that
is not responding. For this reason it is probablay more useful
to specify an absolute URL.

� As an absolute URL (recommended). Using an absolute
URL to the error page will always proxy the request to the
correct resource on your Web server or another WebLogic
Server. For example:
http://host:port/myWebApp/ErrorPage.html.

Parameter Default Description

General Parameters for Web Server Plug-Ins

Administration Guide C-7

HungServerRecoverSecs 300 Defines the amount of time the plug-in waits for a response to a
request from WebLogic Server. The plug-in waits for
HungServerRecoverSecs for the server to respond and then
declares that server dead, and fails over to the next server. The
value should be set to a very large value. If the value is less than
the time the servlets take to process, then you may see
unexpected results.

Minimum value: 10

Idempotent ON When set to ON and if the servers do not respond within
HungServerRecoverSecs, the plug-ins fail over to the
next server. For more information on fail over, see the section
titled “Connection Errors and Clustering Failover” in the
documentation for the plug-in

If set to “OFF” the plug-ins do not fail over. If you are using the
Netscape Enterprise Server Plug-In, or Apache HTTP Server
you can set this parameter differently for different URLs or
MIME types.

CookieName JSESSIO
NID

If you change the name of the WebLogic Server session cookie
in the WebLogic Server Web Application, you need to change
the CookieName parameter in the plug-in to the same value.
The name of the WebLogic session cookie is set in the
WebLogic-specific deployment descriptor, in the
<session-descriptor> (see
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.
html#session-descriptor) element.

Parameter Default Description

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor

C Parameters for Web Server Plug-ins

C-8 Administration Guide

DefaultFileName none The plug-in performs the following steps:

1. Trims the path specified with the PathTrim parameter.

2. If the URI is “/” the plug-in appends the value of
DefaultFileName.

3. Prepends the value specified with PathPrepend.

This procedure prevents redirects from WebLogic Server.

Set the DefaultFileName to the default welcome page of the
Web Application in WebLogic Server to which requests are
being proxied. For example, If the DefaultFileName is set to
welcome.html, and PathTrim is set to /weblogic, an
HTTP request like
“http://somehost/weblogic” becomes
“http://somehost/welcome.html”.

For this parameter to function, the same file must be specified as
a welcome file in all the Web Applications to which requests are
directed. For more information, see “Configuring Welcome
Pages” in the Administration Guide.

Note for the Apache plug-in using Stronghold or Raven: Do
not define the DefaultFileName parameter in an IFmodule
block. Instead, define it in a Location block.

MaxPostSize -1 Maximum allowable size of POST data, in bytes. If the
content-length exceeds MaxPostSize, the plug-in returns an
error message. If set to -1, the size of POST data is not checked.
This is useful for preventing denial-of-service attacks that
attempt to overload the server with POST data.

Parameter Default Description

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_pages

General Parameters for Web Server Plug-Ins

Administration Guide C-9

MatchExpression

(Apache HTTP Server only)

none When proxying by MIME type, set the filename pattern inside
of an IfModule block using the MatchExpression
parameter.

Example when proxying by MIME type:

<IfModule mod_weblogic.c>
MatchExpression *.jsp
WebLogicHost=myHost|paramName=value

</IfModule>

Example when proxying by path:

<IfModule mod_weblogic.c>
MatchExpression /weblogic
WebLogicHost=myHost|paramName=value

</IfModule>

FileCaching ON When set to ON, and the size of the POST data in a request is
greater than 2048 bytes, the POST data is stored on disk in a
temporary file and forwarded to WebLogic Server in chunks of
8192 bytes. Setting FileCaching to ON, however, can cause a
problem with the progress bar displayed by a browser that
indicates the progress of a download. The browser shows that
the download has completed even though the file is still being
transferred.

When set to OFF and size of the POST data in a request is greater
than 2048 bytes, the POST data is stored in memory and sent to
WebLogic Server in chunks of 8192 bytes. Setting to OFF
causes problems if the server goes down while processing the
request because the plug-in is not able to fail over.

WlForwardPath

(Microsoft Internet Information
Server only)

null If WlForwardPath is set to "/" all requests are proxied. To
forward any requests starting with a particular string, set
WlForwardPath to the string. For example, setting
WlForwardPath to/weblogic forwards all requests starting
with /weblogic to Weblogic Server.

This parameter is required if you are proxying by path. You can
set multiple strings by separating the strings with commas. For
example: WlForwardPath=/weblogic,/bea.

Parameter Default Description

C Parameters for Web Server Plug-ins

C-10 Administration Guide

MaxSkips

(Microsoft Internet Information
Server only)

10 Valid only if DynamicServerList is set to OFF.

If a WebLogic Server listed in either the WebLogicCluster
parameter or a dynamic cluster list returned from WebLogic
Server fails, the failed server is marked as “bad” and the plug-in
attempts to connect to the next server in the list.

MaxSkips sets the number of attempts after which the plug-in
will retry the server marked as “bad”.

DynamicServerList

(Microsoft Internet Information
Server only

ON When set to OFF, the plug-in ignores the dynamic cluster list
used for load balancing requests proxied from the plug-in and
only uses the static list specified with the WebLogicCluster
parameter. Normally this parameter should remain set to ON.

There are some implications for setting this parameter to OFF:

� If one or more servers in the static list fails, the plug-in could
waste time trying to connect to a dead server, resulting in
decreased performance.

� If you add a new server to the cluster, the plug-in can not
proxy requests to the new server unless you re-define this
parameter. WebLogic Server automatically adds new
servers to the dynamic server list when they become part of
the cluster.

Parameter Default Description

SSL Parameters for Web Server Plug-Ins

Administration Guide C-11

SSL Parameters for Web Server Plug-Ins

Note: Parameters are case sensitive.

Parameter Default Description

SecureProxy OFF Set this parameter to ON to enable the use of the SSL protocol for all
communication between the WebLogic Server proxy plug-in and
WebLogic Server. Remember to configure a port on the
corresponding WebLogic Server for the SSL protocol before defining
this parameter.

This parameter may be set at two levels,: in the configuration for the
main server and, if you have defined any virtual hosts, in the
configuration for the virtual host. The configuration for the virtual
host inherits the SSL configuration from the configuration of the main
server if the setting is not overridden in the configuration for the
virtual host.

TrustedCAFile none Name of the file that contains the digital certificates for the trusted
certificate authorities for the WebLogic Server proxy plug-in. This
parameter is required if the SecureProxy parameter is set to ON.

The filename must include the full directory path of the file.

RequireSSLHostMatch true Determines whether the host name to which the WebLogic Server
proxy plug-in is connecting must match the Subject Distinguished
Name field in the digital certificate of the WebLogic Server to which
the proxy plug-in is connecting.

SSLHostMatchOID 22 The ASN.1 Object ID (OID) that identifies which field in the Subject
Distinguished Name of the peer digital certificate is to be used to
perform the host match comparison. The default for this parameter
corresponds to the CommonName field of the Subject Distinguished
Name. Common OID values are:

� Sur Name—23

� Common Name—22

� Email—13

� Organizational Unit—30

� Organization—29

� Locality—26

C Parameters for Web Server Plug-ins

C-12 Administration Guide

Document Templates for FrameMaker 5.5 I-1

Index

A
access logs 7-9
ADMIN_URL environment variable 2-14
Administration commands, overview B-4,

B-18
Administration Console

customizing tables in 1-4
pages for monitoring 4-6
starting 1-3
stopping WebLogic Servers from 2-15
using to deploy applications 6-4

Administration Server 3-2
discovery of Managed Servers 2-9
restarting 2-8
role in monitoring domain 4-2
specifying classpath when starting 2-7
starting 2-3
starting from command line 2-5
starting with a script 2-8
what it is 1-2

Apache plug-in 9-1
and clusters 9-15
and SSL 9-9
and virtual hosting 9-16
httpd.conf file 9-6
installing 9-3
parameters 9-7
proxying requests 9-7
sample httpd.conf file 9-14

application components
deploying 6-5

authentication
and multiple web applications,and

cookies 8-31
basic 8-30
client certificates 8-31
form-based 8-30

auto-deployment 6-1
default frequency to check applications

directory 6-2
enabling 6-2

B
Backing stores, JMS 15-6, 15-7
beasvc.exe 2-18

C
CANCEL_SHUTDOWN, WebLogic Server

command B-6
CGI 8-20
classpath

specifying when starting WebLogic
Server 2-7

Cluster Configuration Tasks 3-10
Command-line interface

administration commands overview B-4,
B-18

command syntax and arguments B-2
enabling B-2
Mbean management commands

overview B-28

I-2 Document Templates for FrameMaker 5.5

common log format 7-9
config.xml 1-2
config.xml.booted 2-8
Configuration

Apache plug-in 9-7
HTTP parameters 7-2
JMS

backing stores 15-6
connection factories 15-3
destination keys 15-5
destinations 15-8
overview 15-1
servers 15-8
session pools 15-9
templates 15-4

JSP 8-13
JSP tag libraries 8-14
Microsoft-IIS (proxy) plug-in 10-4
servlets 8-10

configuration attributes
specifying at startup 2-7

configuration directory
structure of 2-7

configuration file, backup of 2-9
CONNECT, WebLogic Server command B-7
Connection factories, JMS 15-3
Connection Pool Administration commands,

overview B-18
Connection timeout 7-3
ConnectionRetrySecs C-4
ConnectionTimeoutSecs C-4
console

See Administration Console 1-3
cookies 8-38

authentication 8-31
URL rewriting 8-43

CREATE, WebLogic Server command B-29
CREATE_POOL, WebLogic Server

command B-20
Creating Mbeans, CREATE command B-29
customer support contact information xix

D
Debug C-5
DebugConfigInfo C-6
default servlet 8-16
default Web Application 7-4

and Virtual Hosting 7-6
DefaultFileName C-8
DELETE, WebLogic Server command B-30
Deleting Mbeans, DELETE command B-30
denial of service attacks, preventing 7-18
deploying

application components 6-5
Web Application 8-3

deploying applications 6-1
deployment, dynamic

of applications in expanded format 6-3
deployment, static 6-4
Destination keys, JMS 15-5
Destinations, JMS 15-8
DESTROY_POOL, WebLogic Server

command B-23
DISABLE_POOL, WebLogic Server

command B-24
discovery of Managed Servers 2-9
document root 8-5
documentation, where to find it xix
domain

monitoring 4-1
what it is 1-2

domain log 1-6
changing filter 5-10

domain name
specifying at startup 2-6

domains, nonactive
editing 1-3

Dynamic Configuration 3-4
dynamic deployment 6-1
DynamicServerList C-10

Document Templates for FrameMaker 5.5 I-3

E
EJB

and Web Applications 8-36
Enable Keep Alive 7-2
ENABLE_POOL, WebLogic Server

command B-25
error pages 8-20
ErrorPage C-6
evaluation license 17-1
EXISTS_POOL, WebLogic Server

command B-26
extended log format 7-9

F
Failover procedures, JMS 15-12
Failure, server 15-12
FileCaching C-9

G
garbage collection, forcing 4-3
GET, WebLogic Server command B-31
Getting help for a WebLogic Server

command B-8
Getting Mbean information, GET command

B-31

H
HELP, WebLogic Server command B-8
HTTP access logs 7-3, 7-9

common log format 7-10
extended log format 7-11
Log Rotation 7-9
setting up 7-9

HTTP parameters 7-2
HTTP requests 8-17
HTTP sessions 8-37
HTTP tunneling 7-19

client connection 7-21

configuring 7-20
HttpClusterServlet 8-25

sample deployment descriptor 8-28
HTTPS Duration 7-3
HungServerRecoverSecs C-7

I
I/O 7-21
Idempotent C-7
init params 8-13
in-memory replication 8-39
INVOKE, WebLogic Server command B-33

J
jar command

Web Applications 8-3
Java heap memory

specifying minimum and maximum 2-5
Java Management Extension

See JMX 1-1
JDBC connection pools

managing 4-5
monitoring 4-5

JDK_HOME setting in scripts 2-8, 2-13
JMS

configuring
backing stores 15-6
connection factories 15-3
destination keys 15-5
destinations 15-8
overview 15-1
servers 15-8
session pools 15-9
templates 15-4

failover procedures 15-12
monitoring 15-11
recovering from a WebLogic Server

Failure 15-12
JMS servers 15-8

I-4 Document Templates for FrameMaker 5.5

JMX notifications
use in logging 1-6

JMX, use in management system 1-1
JNDI naming tree

list node bindings B-10
JSP

configuration 8-13
tag libraries 8-14

K
keys

license 17-2

L
license

evaluation 17-1
keys 17-2
updating 17-2

LICENSES, WebLogic Server command B-9
LIST, WebLogic Server command B-10
listen port 7-3
Listening ports, verify B-12
LOCK, WebLogic Server command B-11
log files

browsing 5-9
Log Message Attributes

See Message Attributes 5-6
log, startup 5-5

M
Managed Server

adding configuration entry for 2-10
what it is 1-2

managed server
specifying URL for Administration

Server when starting 2-12
starting 2-11
suspending and resuming 2-16

managed servers
starting with scripts 2-13

Management Beas
See MBeans 1-4

management subsystem
diagram of 1-4

management subsystem, overview of 1-1
MatchExpression C-9
Max post Size 7-2
Max Post Time 7-2
MaxPostSize 7-19, C-8
MaxPostTimeSecs 7-19
MaxSkips C-10
Mbean management commands, overview

B-28
MBeans

runtine and configuration 1-4
Message Attribues

Server Name 5-7
Message Attributes

Machine Name 5-7
Message Body 5-7
Message Detail 5-7
Message Id 5-7
Probable Cause 5-7
Recommended Action 5-7
Severity 5-6
Subsystem 5-6
Thread Id 5-7
Timestamp 5-6
Transaction Id 5-7
User Id 5-7

message catalog 5-7
Microsoft-IIS (proxy) plug-in

Configuration 10-4
proxying requests 10-3
proxying servlets 10-8
testing 10-9

Monitoring
JMS 15-11

monitoring

Document Templates for FrameMaker 5.5 I-5

a WebLogic domain 4-1
how it works 4-2
JDBC connection pools 4-5
pages in Administration Console for 4-6
pages in Console for 4-6
types of Console page for 4-1

N
native I/O 7-21
Netscape (proxy) Plug-in 11-2

and clustering 11-14
MIME types 11-4
obj.conf file 11-5
sample obj.conf file 11-15

O
Overview 3-1

P
passwords

use when starting WebLogic Server 2-3
PathPrepend C-3
PathTrim C-3
persistence for sessions 8-39
PING, WebLogic Server command B-12
Planning A Cluster Configuration 3-5
POST method 7-18
Post Timeout Seconds 7-2
PostTimeoutSecs 7-19
printing product documentation xix
Probable Cause 5-7
proxying requests 8-23

Apache plug-in 9-7
Microsoft-IIS (proxy) plug-in 10-3

proxying requests to a cluster 8-25
ProxyServlet 8-23

sample deployment descriptor 8-24

R
Recommended Action 5-7
RequireSSLHostMatch C-11
RESET_POOL, WebLogic Server command

B-27
Resetting connection pools, RESET_POOL

command B-27
resources, WebLogic

monitoring of 4-1
resuming a Managed Server 2-16
rotation, for log files 5-4
running-managed-servers.xml 2-9

S
scripts

setting JDK_HOME 2-8, 2-13
SecureProxy C-11
security

applying programatically in servlet 8-34
authentication 8-30
client certificates 8-31
constraints 8-32
Web Applications 8-29

Server Configuration Tasks 3-6
Server failure recovery, JMS 15-12
server name

specifying at startup 2-5
Server session pools, JMS 15-9
SERVER_NAME environment variable 2-14
SERVERLOG, WebLogic Server command

B-13
servlet

configuration 8-10
default servlet 8-16
initialization parameters 8-13
mapping 8-10
modifying 8-7
url-pattern 8-10

session persistence
file-based 8-41

I-6 Document Templates for FrameMaker 5.5

JDBC (database) 8-41
single server 8-41

Session Timeout 8-38
sessions 8-37

cookies 8-38
persistence 8-39
Session Timeout attribute 8-38
setting up 8-37
URL rewriting 8-43
URL rewriting and WAP 8-44

SET, WebLogic Server command B-34
Setting attribute values, SET command B-34
shutdown classes

registering 2-20
SHUTDOWN, WebLogic Server command

B-14
SSLHostMatchOID C-11
starting Administration Server 2-3
Starting the Administration Console 3-4
starting WebLogic Server

as Windows Service 2-4
startup classes

registering 2-20
startup log 5-5
startup scripts

migrating from earlier versions of
WebLogic Server 2-14

startup scripts for Administration Server 2-8
startup scripts for Managed Servers 2-13
static deployment 6-4
StatPath C-6
stopping WebLogic Servers 2-15
support

technical xix
suspending a Managed Server 2-16
system home directory, WebLogic

specifying at startup 2-6

T
Templates, JMS 15-4

THREAD_DUMP, WebLogic Server
command B-15

Threads, view running B-15
TransmitFile 7-21
TrustedCAFile C-11
tunneling 7-19

U
UNLOCK, WebLogic Server command B-16
URL resolution 8-17
URL rewriting 8-43

V
Verify WebLogic Server listening ports B-12
VERSION, WebLogic Server command

B-17
Viewing server log files, SERVERLOG

command B-13
Virtual Hosting 7-6

and Apache plug-in 9-16
default Web Application 7-6
setting up 7-7

W
WAP 8-44
Web Application 7-4

configuring EJB 8-36
configuring external resources 8-35
default servlet 8-16
default Web Application 7-4
deploying 8-3
directory structure 8-5
document root 8-5
error page 8-20
jar file 8-3
modifying components of 8-6
modifying HTML files 8-7
modifying JSP files 8-7

Document Templates for FrameMaker 5.5 I-7

modifying servlets 8-7
redeploying 8-7
security 8-29
security constraint 8-32
URI 8-9
URL 8-17
war file 8-3

WEB-INF directory 8-5
WebLogic Server

licenses, viewing B-9
migrating from earlier versions 2-14
monitoring 4-2
shutting down from command line 2-16
specifying user name of at startup 2-6
starting 2-3

WebLogic Server commands
administration commands overview B-4,

B-18
CANCEL_SHUTDOWN B-6
CONNECT B-7
connection pool commands overview

B-18
CREATE B-29
CREATE_POOL B-20
DELETE B-30
DESTROY_POOL B-23
DISABLE_POOL B-24
ENABLE_POOL B-25
enabling command-line interface B-2
EXISTS_POOL B-26
GET B-31
HELP B-8
INVOKE B-33
LICENSES B-9
LIST B-10
LOCK B-11
Mbean management commands

overview B-28
PING B-12
RESET_POOL B-27
SERVERLOG B-13

SET B-34
SHUTDOWN B-14
syntax and arguments B-2
THREAD_DUMP B-15
UNLOCK B-16
VERSION B-17

WebLogicCluster C-3
WebLogicHost C-2
WebLogicPort C-2
welcome pages 8-15
Windows Service

starting WebLogic Server as 2-4
Windows service

removing WebLogic Server as 2-17
WLForwardPath C-9

	Copyright
	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Server Management
	Domains, the Administration Server and Managed Servers
	Starting the Administration Console
	Runtime and Configuration Objects
	Central Point of Access to Log Messages

	2 Starting and Stopping WebLogic Servers
	WebLogic Administration Server and WebLogic Managed Servers
	Startup Error Messages

	Starting the WebLogic Administration Server
	Use of Passwords When Starting the WebLogic Server
	Starting the WebLogic Administration Server from the Start Menu
	Starting and Stopping the WebLogic Server as a Windows Service
	Starting the WebLogic Administration Server from the Command Line
	Setting the Classpath Option

	Starting the Administration Server Using a Script
	Restarting the Administration Server when Managed Servers are Running
	Restarting the Administration Server on the Same Machine
	Restarting the Administration Server on Another Machine

	Adding a WebLogic Managed Server to the Domain
	Starting a WebLogic Managed Server
	Starting the WebLogic Managed Servers Using Scripts

	Migrating from Earlier Versions of WebLogic Server
	Stopping WebLogic Servers from the Administration Console
	Shutting Down a Server from the Command Line

	Suspending and Resuming a Managed Server
	Setting up the WebLogic Server as a Windows Service
	Removing WebLogic Server as a Windows Service
	Changing Passwords for a Server Installed as a Windows Service
	The WebLogic Windows Service Progam (beasvc.exe)

	Registering Startup and Shutdown Classes

	3 Configuring WebLogic Servers and Clusters
	Overview of Server and Cluster Configuration
	Role of the Administration Server
	Starting the Administration Console
	How Dynamic Configuration Works
	Planning A Cluster Configuration
	Server Configuration Tasks
	Cluster Configuration Tasks
	Creating a New Domain

	4 Monitoring a WebLogic Domain
	Overview of Monitoring
	Monitoring Servers
	Shutting down or Suspending a Server
	Performance
	Cluster Data
	Server Security
	JMS
	JTA

	Monitoring JDBC Connection Pools
	Summary of Monitoring Pages in the Administration Console

	5 Using Log Messages to Manage WebLogic Servers
	Overview of Logging Subsystem
	Local Server Log Files
	Startup Log
	Client Logging
	Log File Format

	Message Attributes
	Message Catalog
	Message Severity
	Debug Messages

	Browsing Log Files
	Viewing the Logs

	Creating Domain Log Filters

	6 Deploying Applications
	Dynamic Deployment
	Enabling or Disabling Auto-Deployment
	Dynamic Deployment of Applications in Expanded Directory Format
	Dynamic Undeployment or Redeployment of Applications
	Dynamic Redeployment of Exploded Applications

	Using the Administration Console to Deploy Applications

	7 Configuring WebLogic Server Web Components
	Overview
	HTTP Parameters
	Configuring the Listen Port
	Web Applications
	Web Applications and Clustering
	Designating a Default Web Application

	Configuring Virtual Hosting
	Virtual Hosting and the Default Web Application
	Setting Up a Virtual Host

	Setting Up HTTP Access Logs
	Log Rotation
	Setting Up HTTP Access Logs by Using the Administration Console
	Common Log Format
	Setting Up HTTP Access Logs by Using Extended Log Format
	Creating the Fields Directive
	Supported Field identifiers
	Creating Custom Field Identifiers

	Preventing POST Denial-of-Service Attacks
	Setting Up WebLogic Server for HTTP Tunneling
	Configuring the HTTP Tunneling Connection
	Connecting to WebLogic Server from the Client

	Using Native I/O for Serving Static Files (Windows Only)

	8 Deploying and Configuring Web Applications
	Overview
	Steps to Deploy a Web Application
	Directory Structure
	Deploying and Redeploying Web Applications
	Modifying Components of a Web Application
	Components in .war Format
	Components in Exploded Directory Format

	Redeploying a Web Application
	Deploying Web Applications as Part of an Enterprise Application

	URIs and Web Applications
	Configuring Servlets
	Servlet Mapping
	Servlet Initialization Parameters

	Configuring JSP
	Configuring JSP Tag Libraries
	Configuring Welcome Pages
	Setting Up a Default Servlet
	How WebLogic Server Resolves HTTP Requests
	Customizing HTTP Error Responses
	Using CGI with WebLogic Server
	Configuring WebLogic Server to use CGI
	Requesting a CGI Script

	Serving Resources from the CLASSPATH with the ClasspathServlet
	Proxying Requests to Another HTTP Server
	Setting Up a Proxy to a Secondary HTTP Server
	Sample Deployment Descriptor for the Proxy Servlet

	Proxying Requests to a WebLogic Cluster
	Setting Up the HttpClusterServlet
	Sample Deployment Descriptor for the HttpClusterServlet

	Configuring Security in Web Applications
	Setting Up Authentication for Web Applications
	Multiple Web Applications, Cookies, and Authentication
	Restricting Access to Resources in a Web Application
	Using Users and Roles Programmatically in Servlets

	Configuring External Resources in a Web Application
	Referencing EJBs in a Web Application
	Setting Up Session Management
	HTTP Session Properties
	Session Timeout
	Configuring Session Cookies
	Using Longer-lived Cookies

	Configuring Session Persistence
	Common Properties
	Using Memory-based, Single-server, Non-replicated Persistent Storage
	Using File-based Persistent Storage
	Using a Database for Persistent Storage

	Using URL Rewriting
	Coding Guidelines for URL Rewriting
	URL Rewriting and Wireless Access Protocol (WAP)

	Using Character Sets and POST Data

	9 Installing and Configuring the Apache HTTP Server Plug-In
	Overview
	Keep-Alive Connections in Apache
	Proxying Requests

	Platform Support
	Installing the Apache HTTP Server Plug-In
	Configuring the Apache HTTP Server Plug-In
	Editing the httpd.conf File
	Notes on Editing the httpd.conf File

	Using SSL With the Apache Plug-In
	Configuring SSL Between the Apache HTTP Server Plug-In and WebLogic Server
	Issues with SSL-Apache Configuration

	Connection Errors and Clustering Failover
	Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	Template for the httpd.conf File
	Sample Configuration Files
	Example Using WebLogic Clusters
	Example Using Multiple WebLogic Clusters
	Example Without WebLogic Clusters
	Example Configuring IP-Based Virtual Hosting
	Example Configuring Name-Based Virtual Hosting With a Single IP Address

	10 Installing and Configuring the Microsoft Internet Information Server (ISAPI) Plug-In
	Overview of the Microsoft Internet Information Server Plug-In
	Connection Pooling and Keep-Alive
	Proxying Requests

	Platform Support
	Installing the Microsoft Internet Information Server Plug-In
	Creating ACLs through IIS
	Sample iisproxy.ini File
	Using SSL with the Microsoft Internet Information Server Plug-In
	Proxying Servlets From IIS to WebLogic Server
	Testing the Installation
	Connection Errors and Clustering Failover
	Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	11 Installing and Configuring the Netscape Enterprise Server Plug-In (NSAPI)
	Overview of the Netscape Enterprise Server Plug-In
	Connection Pooling and Keep-Alive
	Proxying Requests
	Installing and Configuring the Netscape Enterprise Server Plug-In
	Modifying the obj.conf File
	Using SSL with the NSAPI Plug-In
	Connection Errors and Clustering Failover
	Connection Failures
	Failover with a Single, Non-Clustered WebLogic Server
	The Dynamic Server List
	Failover, Cookies, and HTTP Sessions

	Failover Behavior When Using Firewalls and Load Directors
	Sample obj.conf file (not using a WebLogic Cluster)
	Sample obj.conf file (using a WebLogic Cluster)

	12 Managing Security
	Overview of Configuring Security
	Setting Up the Java Security Manager
	Changing the System Password
	Specifying a Security Realm
	Configuring the Caching Realm
	Configuring the LDAP Security Realm
	Configuring the Windows NT Security Realm
	Configuring the UNIX Security Realm
	Configuring the RDBMS Security Realm
	Installing a Custom Security Realm
	Testing an Alternate Security Realm or a Custom Security Realm
	Migrating Security Realms

	Defining Users
	Defining Groups
	Defining a Group for a Virtual Host
	Defining ACLs
	Configuring the SSL Protocol
	Requesting a Private Key and Digital Certificate
	Storing Private Keys and Digital Certificates
	Defining Trusted Certificate Authorities
	Defining Fields for the SSL Protocol

	Configuring Mutual Authentication
	Configuring RMI over IIOP over SSL
	Protecting Passwords
	Installing an Audit Provider
	Installing a Connection Filter
	Configuring Security Context Propagation

	13 Managing Transactions
	Overview of Transaction Management
	Configuring Transactions
	Monitoring and Logging Transactions
	Moving a Server to Another Machine

	14 Managing JDBC Connectivity
	Overview of JDBC Administration
	About the Administrative Console
	About the Command-Line Interface
	About the JDBC API
	Related Information
	Administration and Management
	JDBC and WebLogic jDrivers
	Transactions (JTA)

	JDBC Components—Connection Pools, Data Sources, and MultiPools
	Connection Pools
	MultiPools
	Data Sources

	JDBC Configuration Guidelines for Connection Pools, MultiPools and DataSources
	Overview of JDBC Configuration
	Drivers Supported for Local Transactions
	Drivers Supported for Distributed Transactions

	Configuring JDBC Drivers
	Configuring JDBC Drivers for Local Transactions
	Configuring XA JDBC Drivers for Distributed Transactions
	WebLogic jDriver for Oracle/XA Data Source Properties
	Configuring Non-XA JDBC Drivers for Distributed Transactions

	Setting and Managing JDBC Connection Pools, MultiPools, and DataSources
	JDBC Configuration and Assignment
	JDBC Configurations for Servers or Clusters
	Configuring JDBC Connectivity Using the Administration Console
	JDBC Configuration Tasks Using the Command-Line Interface

	Managing and Monitoring Connectivity
	JDBC Management Using the Administration Console
	JDBC Management Using the Command-Line Interface

	15 Managing JMS
	Configuring JMS
	Configuring Connection Factories
	Configuring Templates
	Configuring Destination Keys
	Configuring Stores
	About JMS Stores
	Recommended JDBC Connection Pool Settings for JMS Stores

	Configuring JMS Servers
	Configuring Destinations
	Configuring Session Pools
	Configuring Connection Consumers

	Monitoring JMS
	Recovering From a WebLogic Server Failure
	Restarting or Replacing the WebLogic Server
	Programming Considerations

	16 Managing JNDI
	Loading Objects in the JNDI Tree
	Viewing the JNDI Tree

	17 Managing WebLogic Server Licenses
	Installing a WebLogic License
	Using Evaluation Licenses

	Updating a License

	A Using the WebLogic Server Java Utilities
	AppletArchiver
	Syntax
	Conversion
	der2pem
	Syntax
	Example
	dbping
	Syntax
	deploy
	Syntax
	Arguments
	Options
	Examples
	getProperty
	Syntax
	Example
	logToZip
	Syntax
	Examples
	MulticastTest
	Syntax
	Example
	myip
	Syntax
	Example
	pem2der
	Syntax
	Example
	Schema
	Syntax
	Example
	showLicenses
	Syntax
	Example
	system
	Syntax
	Example
	t3dbping
	Syntax
	verboseToZip
	Syntax
	UNIX Example
	NT Example
	version
	Syntax
	Example
	writeLicense
	Syntax
	Examples

	B WebLogic Server Command-Line Interface Reference
	About the Command-Line Interface
	Before You Begin

	Using WebLogic Server Commands
	Syntax
	Arguments

	WebLogic Server Administration Command Reference
	CANCEL_SHUTDOWN
	Syntax
	Example
	CONNECT
	Syntax
	Example
	HELP
	Syntax
	Example
	LICENSES
	Syntax
	Example
	LIST
	Syntax
	Example
	LOCK
	Syntax
	Example
	PING
	Syntax
	Example
	SERVERLOG
	Syntax
	Example
	SHUTDOWN
	Syntax
	Example
	THREAD_DUMP
	Syntax
	UNLOCK
	Syntax
	Example
	VERSION
	Syntax
	Example

	WebLogic Server Connection Pools Administration Command Reference
	CREATE_POOL
	Syntax
	Example
	DESTROY_POOL
	Syntax
	Example
	DISABLE_POOL
	Syntax
	Example
	ENABLE_POOL
	Syntax
	Example
	EXISTS_POOL
	Syntax
	Example
	RESET_POOL
	Syntax
	Example

	Mbean Management Command Reference
	CREATE
	Syntax
	Example
	DELETE
	Syntax
	Example
	GET
	Syntax
	Example
	INVOKE
	Syntax
	Example
	SET
	Syntax

	C Parameters for Web Server Plug-ins
	Overview
	General Parameters for Web Server Plug-Ins
	SSL Parameters for Web Server Plug-Ins

	Index

