
WebLogic Server
Using WebLogic

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : M a r c h 6 , 2 0 0 1

BEA

Server Clusters

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Using WebLogic Server Clusters

Part Number Document Date Software Version

N/A March 6, 2001 BEA WebLogic Server Version 6.0

Contents

About This Document
Audience..x

e-docs Web Site...x

How to Print the Document...x

Related Information..xi

Contact Us!...xi

Documentation Conventions ...xii

1. Introduction to WebLogic Server Clustering
What Is a Product Version: Cluster? .. 1-1

What Services Are Clustered?... 1-2

HTTP Session States .. 1-2

EJBs and RMI objects.. 1-3

JDBC Connections ... 1-3

JMS .. 1-3

Non-clustered Services and APIs... 1-3

New Cluster Features in WebLogic Server Version 6.0 1-4

Integrated Support for Load Balancing Hardware 1-4

Stateful session EJB Clustering ... 1-4

Clustered JMS .. 1-5

HTTP Session State Replication Changes ... 1-5

Administration Changes in WebLogic Server Version 6.0............................... 1-5

Multicast Message Changes... 1-6

Homogeneous Deployment.. 1-6

Administration Server Configuration... 1-6
Using WebLogic Server Clusters iii

2. Cluster Features and Infrastructure
Overview ... 2-1

Server Communication in a Cluster .. 2-2

One-to-Many Communication Using IP Multicast 2-2

Implications for Cluster Planning and Configuration 2-3

Peer-to-Peer Communication Using IP Sockets... 2-5

Pure-Java Versus Native Socket Reader Implementations 2-6

Configuring Native Sockets .. 2-7

Configuring Reader Threads for Java Socket Implementation........... 2-7

Client Communication via Sockets .. 2-10

Cluster-Wide JNDI Naming Service ... 2-10

Creating the Cluster-Wide JNDI Tree.. 2-11

Handling JNDI Naming Conflicts.. 2-13

Homogeneous Deployment... 2-14

Updating the JNDI Tree ... 2-14

Client Interaction with the Cluster-wide JNDI Tree 2-15

Load Balancing of Clustered Services .. 2-15

Load Balancing for HTTP Session States .. 2-15

Load Balancing for Clustered Objects ... 2-16

Round-Robin (Default) ... 2-16

Weight-Based.. 2-16

Random ... 2-17

Using Parameter-based Routing for Clustered Objects............................ 2-17

Failover Support for Clustered Services.. 2-18

How WebLogic Server Detects Failures.. 2-18

Failure Detection Using IP Sockets .. 2-18

The WebLogic Server “Heartbeat” ... 2-18

Failover for Clustered Servlets and JSPs ... 2-19

Failover for Clustered Objects ... 2-19

Idempotent Objects ... 2-19

Other Failover Exceptions .. 2-20

3. Understanding HTTP Session State Replication
Overview ... 3-1

Requirements for HTTP Session State Replication... 3-2
iv Using WebLogic Server Clusters

Proxy Requirements ... 3-2

Load Balancer Requirements ... 3-3

Session Requirements .. 3-3

Session Data Must Be Serializable ... 3-3

Use setAttribute() to Change Session State .. 3-3

Consider Serialization Overhead for Session Objects 3-3

Applications Using Frames Must Coordinate Session Access 3-4

Configuring In-Memory HTTP Replication in a Cluster 3-4

Using Replication Groups ... 3-5

Accessing Clustered Servlets and JSPs Using a Proxy 3-7

Using URL Re-writing to Track Session Replicas 3-9

Proxy Failover Procedure... 3-9

Accessing Clustered Servlets and JSPs with Load Balancing Hardware........ 3-10

Failover with Load Balancing Hardware ... 3-11

4. Understanding Object Clustering
Overview ... 4-1

Replica-aware Stubs .. 4-2

Clustered EJBs .. 4-2

EJB Home Stubs .. 4-3

Stateless EJBs .. 4-3

Stateful EJBs .. 4-3

Entity EJBs... 4-3

Clustered RMI Objects.. 4-4

Stateful Session Bean Replication... 4-4

Replicating EJB State Changes.. 4-5

Failover for Stateful Session EJBs... 4-6

Optimization for Collocated Objects... 4-7

Transactional Collocation .. 4-9

5. Planning WebLogic Server Clusters
Overview ... 5-1

Capacity Planning .. 5-2

WebLogic Servers on Multi-CPU machines 5-2

Definition of Terms.. 5-2
Using WebLogic Server Clusters v

Web Application “Tiers” .. 5-3

De-Militarized Zone (DMZ) ... 5-3

Load Balancer ... 5-4

Proxy Plug-In .. 5-4

Recommended Basic Cluster... 5-4

Planning By Dividing Application Tiers... 5-6

Recommended Multi-tier Architecture.. 5-7

Physical Hardware and Software Layers ... 5-8

Web/Presentation Layer .. 5-8

Object Layer.. 5-8

Benefits of Multi-tier Architecture... 5-8

Load Balancing for Clustered Object Calls .. 5-9

Configuration Notes for Multi-tier Architecture...................................... 5-11

Limitations of Multi-tier Architecture.. 5-11

Firewall Restrictions ... 5-12

Recommended Proxy Architectures .. 5-12

Two-tier Proxy Architecture .. 5-12

Physical Hardware and Software Layers .. 5-13

Multi-tier Proxy Architecture... 5-14

Proxy Architecture Trade-offs ... 5-15

Proxy Plug-in Versus Load Balancer ... 5-16

Administration Server for Cluster Architectures... 5-17

Security Options for Cluster Architectures ... 5-18

Basic Firewall for Proxy Architectures .. 5-18

DMZ with Basic Firewall Configurations .. 5-20

Combining Firewall with Load Balancer.. 5-20

Expanding the Firewall for Internal Clients...................................... 5-21

Additional Security for Shared Databases ... 5-23

DMZ with Two Firewall Configuration.. 5-23

Firewall Considerations for Clusters ... 5-25

6. Administering WebLogic Clusters
Overview ... 6-2

Plan Your Cluster Architecture ... 6-2

Obtain a Cluster License ... 6-3
vi Using WebLogic Server Clusters

Obtain Network Addresses.. 6-3

WebLogic Server DNS names ... 6-3

Administration Server IP address .. 6-4

Cluster Multicast Address .. 6-4

Cluster DNS Name... 6-4

Cluster Address List.. 6-5

Install WebLogic Server.. 6-5

Define Machine Names... 6-6

Create WebLogic Server Instances ... 6-7

Create a New Cluster... 6-8

Configure Replication Groups .. 6-8

Configure Load Balancing Hardware (Optional).. 6-9

Using Active Cookie Persistence... 6-10

Using Passive Cookie Persistence.. 6-10

Configure Proxy Plug-ins (Optional) .. 6-11

Deploy Web Applications and EJBs ... 6-11

Starting a WebLogic Server Cluster.. 6-11

A. Troubleshooting Common Problems
Applying Service Packs ..A-1

Collecting Diagnostic Information..A-2

Providing Diagnostics to BEA Technical SupportA-3

Addressing Common Problems...A-3

Tuning Connection Timeouts...A-4

Server Fails to Join a Cluster ...A-4

B. The WebLogic Cluster API
How to Use the API ..B-1
Using WebLogic Server Clusters vii

viii Using WebLogic Server Clusters

About This Document

This document describes BEA WebLogic Server™ Clusters, and provides an
introduction to developing clusters with WebLogic Server 6.0.

The document is organized as follows:

� Chapter 1, “Introduction to WebLogic Server Clustering,” introduces WebLogic
Server Cluster concepts, and summarizes the changes to clustering in WebLogic
Server 6.0.

� Chapter 2, “Cluster Features and Infrastructure,” describes the basic features that
a cluster provides for HTTP sessions and clustered objects.

� Chapter 3, “Understanding HTTP Session State Replication,” explains how a
WebLogic Server cluster replicates HTTP session states in memory to provide
automatic load balancing and failover.

� Chapter 4, “Understanding Object Clustering,” describes how WebLogic Server
provides load balancing and failover for clustered EJBs and RMI objects.

� Chapter 5, “Planning WebLogic Server Clusters,” describes common issues to
consider before deploying one or more WebLogic Server clusters. This chapter
also presents recommended cluster architectures for common web applications.

� Chapter 6, “Administering WebLogic Clusters,” introduces WebLogic Server
Cluster administration, including information on how to set up and run a
WebLogic Server Cluster.

� Appendix A, “Troubleshooting Common Problems,” provides a checklist to
assist you in resolving cluster problems.

� Appendix B, “The WebLogic Cluster API,” introduces the cluster API for RMI
objects and offers information on development using the API.
Introduction to BEA WebLogic Server ix

Audience

This document is written for application developers and administrators who are
interested in deploying Web-based applications onto one or more clusters. It is
assumed that readers have a familiarity with HTTP, HTML coding, and Java
programming (servlets, JSP, or EJB development).

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.
x Introduction to BEA WebLogic Server

Related Information

� The WebLogic Server EJB Container section of the Programming WebLogic
Enterprise JavaBeans manual at
http://e-docs.bea.com/wls/docs60/ejb/EJB_environment.html

� Programming WebLogic HTTP Servlets
http://e-docs.bea.com/wls/docs60/servlet/index.html

� Deploying and Configuring Web Applications section of the WebLogic Server
Administration Guide at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

Contact Us!

Your feedback on the BEA WebLogic Server documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your comments
will be reviewed directly by the BEA professionals who create and update the
WebLogic Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Server 6.0 release.

If you have any questions about this version of BEA WebLogic Server, or if you have
problems installing and running BEA WebLogic Server, contact BEA Customer
Support through BEA WebSupport at http://www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes
Introduction to BEA WebLogic Server xi

http://e-docs.bea.com/wls/docs60/ejb/EJB_environment.htm
http://e-docs.bea.com/wls/docs60/servlet/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
mailto:docsupport@bea.com
http://www.bea.com

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr
xii Introduction to BEA WebLogic Server

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Introduction to BEA WebLogic Server xiii

xiv Introduction to BEA WebLogic Server

What Is a Product Version: Cluster?
1 Introduction to
WebLogic Server
Clustering

This topic includes the following sections:

� What Is a Product Version: Cluster?

� What Services Are Clustered?

� New Cluster Features in WebLogic Server Version 6.0

What Is a Product Version: Cluster?

A WebLogic Server cluster is a group of servers that work together to provide a more
scalable, more reliable application platform than a single server. A cluster appears to
its clients as a single server but is in fact a group of servers acting as one. A cluster
provides two key features above a single server:

� Scalability: The capacity of a cluster is not limited to a single server or a single
machine. New servers can be added to the cluster dynamically to increase
capacity. If more hardware is needed, a new server on a new machine can be
added. If a single server cannot fully utilize an existing machine, additional
servers can be added to that machine.
Introduction to BEA WebLogic Server 1-1

1 Introduction to WebLogic Server Clustering
� High-Availability: A cluster uses the redundancy of multiple servers to insulate
clients from failures. The same service can be provided on multiple servers in
the cluster. If one server fails, another can take over. The ability to failover from
a failed server to a functioning server increases the availability of the application
to clients.

WebLogic Server clusters are designed to bring scalability and high availability to
J2EE applications. They provide these features in a way that is transparent to the
application writer and to clients. It is important, however, for application programmers
and administrators to understand the issues inherent in clustering in order to maximize
the scalability and availability of their applications.

What Services Are Clustered?

A clustered service is an API or interface that is available on multiple servers in the
cluster. HTTP session state clustering and object clustering are the two primary cluster
services that WebLogic Server provides. These services are introduced below and are
described in more detail in Understanding HTTP Session State Replication and
Understanding Object Clustering.

WebLogic Server also provides cluster support for JMS destinations and JDBC
connections, as described in the sections that follow.

HTTP Session States

WebLogic Server provides clustering support for servlets and JSPs by replicating the
HTTP session state of clients that access clustered servlets and JSPs. To benefit from
HTTP session state clustering, you must ensure that the session state is persistent,
either by configure in-memory replication, filesystem persistence, or JDBC
persistence. Understanding HTTP Session State Replication describes in-memory
replication for clustered servlet and JSPs. See Making Sessions Persistent in
Programming WebLogic HTTP Servlets for more information about file persistence
and JDBC persistence.
1-2 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/servlet/progtasks.html#sessionpersistence
http://e-docs.bea.com/wls/docs60/servlet/index.html

What Services Are Clustered?
EJBs and RMI objects

Load balancing and failover for EJBs and RMI objects is handled using special,
replica-aware stubs, which can locate instances of the object throughout the cluster.
You create replica-aware stubs for EJBs and RMI objects by specifying the appropriate
deployment descriptors or providing command-line options to rmic. When you deploy
a clustered object, you deploy it to all the server instances in the cluster (homogeneous
deployment). Understanding Object Clustering describes object clustering in more
detail.

JDBC Connections

WebLogic Server provides limited load balancing support for managing JDBC
connections in a cluster. If you create an identical JDBC DataSource in each clustered
WebLogic Server instance and configure those DataSources to use different
connection pools, the cluster can support load balancing for JDBC connections. Note,
however, that WebLogic Server provides no special load balancing policies for
accessing connection pools. If one of your connection pools runs out of JDBC
connections, the load balancing algorithm may still direct connection requests to the
empty pool.

JMS

Although JMS destinations (message Queues and Topics) are each managed by a
single WebLogic Server instance, connection factories, which clients use to establish
a connection to a destination, they can be deployed on multiple servers in a cluster.
Distributing destinations and connection factories throughout a cluster gives
administrators the ability to manually balance the load for JMS services.

Non-clustered Services and APIs

Several APIs and internal services cannot be clustered in WebLogic Server version
6.0. These include:
Introduction to BEA WebLogic Server 1-3

1 Introduction to WebLogic Server Clustering
� File services

� Time services

� WebLogic Events (deprecated in WebLogic Server 6.0)

� Workspaces (deprecated in WebLogic Server 6.0)

� ZAC

You can still use these services on individual WebLogic Server instances in a cluster.
However, the services do not make use of load balancing or failover features.

New Cluster Features in WebLogic Server
Version 6.0

WebLogic Server version 6.0 introduces the following new features and improvements
when configured as a cluster of server instances.

Integrated Support for Load Balancing Hardware

WebLogic Server now supports load balancing and failover for clustered servlets and
JSPs when clients connect directly to a cluster via supported load balancing hardware.
Clustered systems are no longer required to proxy HTTP requests to a cluster using the
HttpClusterServlet or WebLogic Server proxy plug-ins. Understanding HTTP
Session State Replication describes this in more detail.

Stateful session EJB Clustering

WebLogic Server now supports clustering the EJBObject for stateful session EJB
instances (as well as the EJBHome object). WebLogic Server replicates the state of
stateful session EJBs in memory, in a manner similar to HTTP session state replication.
See Understanding Object Clustering for more information.
1-4 Introduction to BEA WebLogic Server

Administration Changes in WebLogic Server Version 6.0
Clustered JMS

WebLogic Server now supports distributing JMS destinations and connection factories
throughout a cluster; JMS Queues and Topics are still managed by individual
WebLogic Server instances in the cluster.

HTTP Session State Replication Changes

WebLogic Server version 6.0 introduces a more robust mechanism for replicating
servlet session states across clustered server instances. As with previous server
versions, WebLogic Server maintains two copies of the servlet session state (a primary
and secondary) on different server instances in the cluster. Version 6.0 improves the
replication system by:

� Providing administrative control over where WebLogic Server creates session
state replicas.

� Enabling clients to failover to a secondary session state regardless of where in
the WebLogic Server cluster those clients connect.

These changes provide more opportunities for addressing failover scenarios, and also
make it possible for WebLogic Server to operate directly in conjunction with load
balancing hardware. See Understanding HTTP Session State Replication for more
information.

Administration Changes in WebLogic Server
Version 6.0

The following changes affect the way you administer clusters in WebLogic Server 6.0.
Introduction to BEA WebLogic Server 1-5

1 Introduction to WebLogic Server Clustering
Multicast Message Changes

Multiple WebLogic Server version 6.0 clusters can now “share” a single multicast
address without causing broadcast message conflicts. You do not need to assign a
dedicated multicast address for each cluster.

You should still ensure that no other applications utilize the WebLogic Server
multicast address. When other applications broadcast on the cluster multicast address,
all servers in the cluster must deserialize those messages to determine that they are not
cluster-related messages. This introduces unnecessary overhead, and may cause
servers to miss actual cluster broadcast messages.

Homogeneous Deployment

WebLogic Server version 6.0 supports only homogeneous deployment of clustered
objects. If an object is compiled as clusterable (if it has a replica-aware stub), you must
deploy the object to all members of the cluster.

Non-clustered objects (EJBs and RMI classes) may deployed to individual servers in
the cluster.

Administration Server Configuration

You perform all configuration for a WebLogic Server 6.0 cluster using the
Administration Console. The Administration Console stores all configuration
information for the cluster in a single XML configuration file. The Administration
Console also manages deployment of objects and web applications to members of the
cluster.

For general information about configuring WebLogic Server 6.0, see the
Administration Guide. See Administering WebLogic Clusters for specific instructions
about using the Administration Console to configure a cluster.
1-6 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/adminguide/overview.html
http://e-docs.bea.com/wls/docs60/adminguide/index.html

Overview
2 Cluster Features and
Infrastructure

This topic includes the following sections:

� Overview

� Server Communication in a Cluster

� Cluster-Wide JNDI Naming Service

� Load Balancing of Clustered Services

� Failover Support for Clustered Services

Overview

The following sections describe the infrastructure that a WebLogic Server cluster uses
to support clustered objects and HTTP session states. The sections also describe the
common features—load balancing and failover—that are available to APIs and
services running in a WebLogic Server cluster. Understanding these topics is
important for planning and configuring a WebLogic Server cluster that meets the needs
of your web application.
Introduction to BEA WebLogic Server 2-1

2 Cluster Features and Infrastructure
Server Communication in a Cluster

WebLogic Server instances in a cluster communicate with one another using two
basic network technologies:

� IP multicast, which broadcasts all one-to-many communications among
clustered WebLogic Server instances.

� IP sockets, which act as the conduits for peer-to-peer communication
between clustered server instances.

The way in which WebLogic Server uses IP multicast and socket communication has
a direct implication on the way you plan and configure your cluster.

One-to-Many Communication Using IP Multicast

IP multicast is a simple broadcast technology that enables multiple applications to
“subscribe” to a given IP address and port number and listen for messages. A multicast
address is an IP address in the range from 224.0.0.0 to 239.255.255.255.

IP multicast provides a simple method to broadcast messages to applications, but it
does not guarantee that messages are actually received. If an application’s local
multicast buffer is full, new multicast messages cannot be written to the buffer and the
application is not notified as to when messages are “dropped.” Because of this
limitation, WebLogic Servers account for the possibility that they may occasionally
miss messages that were broadcast over IP multicast.

WebLogic Server uses IP multicast for all one-to-many communication among server
instances in a cluster. This includes:

� Cluster-wide JNDI updates—all servers use multicast to announce the
availability of clustered objects that are deployed or removed locally. Servers
monitor these announcements so that they can update their local JNDI tree to
reflect current deployments of clustered objects. See Cluster-Wide JNDI Naming
Service for more details.

� Cluster “heartbeats—” WebLogic Server uses multicast to broadcast regular
“heartbeat” messages that advertise the availability of individual server instances
in a cluster. All servers in the cluster listen to heartbeat messages as a way to
2-2 Introduction to BEA WebLogic Server

Server Communication in a Cluster
determine when a server has failed. (Clustered servers also monitor IP sockets as
a more immediate method of determining when a server has failed.) See Failover
Support for Clustered Services for more information.

Implications for Cluster Planning and Configuration

Because multicast controls critical functions related to detecting failures and
maintaining the cluster-wide JNDI tree, it is important that neither the cluster
configuration nor the basic network topology interfere with multicast communication.
Always consider the following rules when configuring or planning a WebLogic Server
cluster.

Multicast Requirements for WAN Clustering

For most deployments, limiting clustered servers to a single subnet ensures that
multicast messages are reliably transmitted. In special cases, however, you may want
to distribute a WebLogic Server cluster across subnets in a Wide Area Network
(WAN). This may be desirable to increase redundancy in a clustered deployment, or
to distribute clustered instances over a larger geographical area.

If you choose to distribute a cluster over a WAN (or across multiple subnets), you must
plan and configure your network topology to ensure that multicast messages are
reliably transmitted to all servers in the cluster. Specifically, your network must meet
the following requirements:

� The network must fully support IP multicast packet propagation. In other words,
all routers and other tunneling technologies must be configured to propagate
multicast messages to clustered instances.

� The network latency must be sufficiently small as to ensure that most multicast
messages reach their final destination in 200 to 300 milliseconds.

� The multicast Time To Live (TTL) value must be high enough to ensure that
routers do not discard multicast packets before they reach their final destination.

Note: Distributing a WebLogic Server cluster over a WAN may require network
facilities in addition to the multicast requirements described above. For
example, you may want to configure load balancing hardware to ensure that
client requests are directed to servers in the most efficient manner (to avoid
unnecessary network hops).
Introduction to BEA WebLogic Server 2-3

2 Cluster Features and Infrastructure
To configure the multicast TTL for a cluster, change the Multicast TTL value in the
WebLogic Server administration console. This sets the number of network hops a
multicast message makes before the packet can be discarded. The config.xml excerpt
below shows a cluster with a Multicast TTL value of three. This value ensures that the
cluster’s multicast messages can pass through three routers before being discarded:

<Cluster

Name="testcluster"

ClusterAddress="wanclust"

MulticastAddress="wanclust-multi"

MulticastTTL="3"

/>

Firewalls Can Break Multicast Communication

Although it may be possible to tunnel multicast traffic through a firewall, this practice
is not recommended for WebLogic Server clusters. Each WebLogic Server cluster
should be treated as a logical unit that provides one or more distinct services to clients
of a web application. Such a logical unit should not be split between different security
zones. Furthermore, any technologies that can potentially delay or interrupt IP traffic
can prove disruptive to a WebLogic Server cluster by generating false failures due to
missed heartbeats.

Use an Exclusive Multicast Address for WebLogic Server Clusters

Although multiple WebLogic Server clusters can share a single IP multicast address
and port number, other applications should not broadcast or subscribe to the same
address. “Sharing” a multicast address with other applications forces clustered servers
to process unnecessary messages, introducing overhead to the system.

Sharing a multicast address may also overload the IP multicast buffer and delay
transmission of WebLogic Server heartbeat messages. Such delays can potentially
result in a WebLogic Server instance being marked as failed, simply because its
heartbeat messages were not received in a timely manner.

For these reasons, assign a dedicated multicast address for use by WebLogic Server
clusters, and ensure that the address can support the broadcast traffic of all clusters that
use the address.
2-4 Introduction to BEA WebLogic Server

Server Communication in a Cluster
If Multicast Storms Occur

If server instances in a cluster do not process incoming messages on a timely basis,
increased network traffic, including NAK messages and heartbeat re-transmissions,
can result. The repeated transmission of multicast packets on a network is referred to
as a multicast storm, and can stress the network and attached stations, potentially
causing end-stations to hang or fail. Increasing the size of the multicast buffers can
improve the rate at which announcements are transmitted and received, and prevent
multicast storms.

If multicast storms occur because server instances in a cluster are not processing
incoming messages on a timely basis, you can increase the size of multicast buffers.

TCP/IP kernel parameters can be configured with the UNIX ndd utility. The
udp_max_buf parameter controls the size of send and receive buffers (in bytes) for a
UDP socket. The appropriate value for udp_max_buf varies from deployment to
deployment. If you are experiencing multicast storms, increase the value of
udp_max_buf by 32K, and evaluate the effect of this change.

Do not change udp_max_buf unless necessary. Before changing udp_max_buf, read
the Sun warning in the “UDP Parameters with Additional Cautions” section in the
“TCP/IP Tunable Parameters” chapter in Solaris Tunable Parameters Reference
Manual at http://docs.sun.com/?p=/doc/806-6779/6jfmsfr7o&.

Peer-to-Peer Communication Using IP Sockets

While one-to-many communication among clustered servers takes place using
multicast, peer-to-peer communication between WebLogic Server instances uses IP
sockets. IP sockets provide a simple, high-performance mechanism for transferring
messages and data between two applications. WebLogic Server instances in a cluster
may use IP sockets for:

� Accessing non-clustered objects that reside on a remote server instance in the
cluster.

� Replicating HTTP session states and stateful session EJB states between a
primary and secondary server for high availability.

� Accessing clustered objects that reside on a remote server instance. (This
generally occurs only in a multi-tier cluster architecture, as described in
Recommended Multi-tier Architecture.)
Introduction to BEA WebLogic Server 2-5

2 Cluster Features and Infrastructure
Note: The use of IP sockets in WebLogic Server actually extends beyond the cluster
scenario—all RMI communication takes place using sockets, for example,
when a remote Java client application accesses a remote object.

Proper socket configuration is crucial to the performance of a WebLogic Server
cluster. Two factors determine the efficiency of socket communications in WebLogic
Server:

� Whether the server’s host system uses a native or a pure-Java socket reader
implementation.

� For systems that use Java socket readers, whether or not the server is configured
to use enough socket reader threads.

Pure-Java Versus Native Socket Reader Implementations

Although the pure-Java implementation of socket reader threads provides a reliable
and portable method of peer-to-peer communication, it does not provide the best
performance for heavy-duty socket usage in a WebLogic Server cluster. With
pure-Java socket readers, threads must actively poll all opened sockets to determine if
they contain data to read. In other words, socket reader threads are always “busy”
polling sockets, even if the sockets have no data to read.

This problem is magnified when a server has more open sockets than it has socket
reader threads. In this case, each reader thread must poll more than one open socket,
waiting for a timeout condition to determine that the socket is inactive. After a timeout,
the thread moves to another waiting socket, as shown below.

When the number of opened sockets outnumbers the available socket reader threads,
active sockets may go unserviced until an available reader thread polls them.

1 2 3 4 5 6

Poll ReadPoll
Socket Reader Thread

Socket

Active Socket
2-6 Introduction to BEA WebLogic Server

Server Communication in a Cluster
For best socket performance, always configure the WebLogic Server host machine to
use the native socket reader implementation for your operating system, rather than the
pure-Java implementation. Native socket readers use far more efficient techniques to
determine if there is data to read on a socket. With a native socket reader
implementation, reader threads do not need to poll inactive sockets—they service only
active sockets, and they are immediately notified (via an interrupt) when a given socket
becomes active.

Configuring Native Sockets

To use native socket reader threads with WebLogic Server:

1. Open the Administration Console.

2. Select the Servers node.

3. Select the server to configure.

4. Select the Tuning tab.

5. Check the Enable Native IO box.

6. Apply the changes.

Note: Applets cannot make use of native socket reader implementations, and
therefore have limited efficiency in socket communication.

Configuring Reader Threads for Java Socket Implementation

If you do use the pure-Java socket reader implementation, you can still improve the
performance of socket communication by configuring the proper number of socket
reader threads. For best performance, the number of socket reader threads in
WebLogic Server should equal the potential maximum number of opened sockets.
This avoids “sharing” a reader thread with more than one socket, and ensures that
socket data is read immediately.
Introduction to BEA WebLogic Server 2-7

2 Cluster Features and Infrastructure
Determining Potential Socket Usage

Each WebLogic Server instance can potentially open a socket for every other server
instance in the cluster. However, the actual maximum number of sockets used at a
given time is determined by the configuration of your cluster. In practice, clustered
systems generally do not open a socket for every other server instance, due to the way
in which clustered services are deployed.

For example, if your cluster uses in-memory HTTP session state replication, and you
deploy only clustered objects to all WebLogic Server instances, each server potentially
opens a maximum of only two sockets, as shown below.

The two sockets in the above example are used to replicate HTTP session states
between primary and secondary servers. Sockets are not required for accessing
clustered objects, due to the collocation optimizations that WebLogic Server uses to
access those objects. In this configuration, the default socket reader thread
configuration is sufficient.

JDBC

EJB
JSP

Servlet

JDBC

EJB
JSP

Servlet

JDBC

EJB
JSP

Servlet

JDBC

EJB
JSP

Servlet

A

B

C

D

Potential IP Socket
2-8 Introduction to BEA WebLogic Server

./object.html#colocation

Server Communication in a Cluster
If you pin non-clustered RMI objects to particular servers, the potential maximum
number sockets increases, because server instances may need to open additional
sockets to access the pinned object. (This potential can only be released if a remote
server actually looks up the pinned object.) The figure below shows the potential affect
of deploying a non-clustered RMI object to Server A.

In this example, each server can potentially open a maximum of three sockets at a
given time, to accommodate HTTP session state replication and to access the pinned
RMI object on Server A.

Note: Additional sockets may also be required for servlet clusters in a multi-tier
cluster architecture, as described in Recommended Multi-tier Architecture.

Setting the Number of Reader Threads

By default, WebLogic Server creates three socket reader threads upon booting. If you
determine that your cluster system may utilize more than three sockets during peak
periods, increase the number of socket reader threads using these instructions:

JDBC

EJB
JSP

Servlet

JDBC

EJB
JSP

Servlet

JDBC

EJB
JSP

Servlet

JDBC

EJB
JSP

Servlet

A

B

C

D

Potential IP Socket

“Pinned” RMI
Introduction to BEA WebLogic Server 2-9

2 Cluster Features and Infrastructure
1. Open the Administration Console.

2. Select the Servers node.

3. Select the server to configure.

4. Select the Tuning tab.

5. Edit the percentage of Java reader threads in the Socket Readers attribute field.
The number of Java socket readers is computed as a percentage of the number of
total execute threads (as shown in the Execute Threads attribute field).

6. Apply the changes.

Client Communication via Sockets

Java client applications in WebLogic Server version 6.0 can potentially open more IP
sockets than clients of previous WebLogic Server versions, even when clients connect
through a firewall. Whereas in versions 4.5 and 5.1 java clients connecting to a cluster
through a firewall utilized a single socket, WebLogic Server version 6.0 imposes no
such restrictions. If clients make requests of multiple server instances in a cluster
(either explicitly or by accessing “pinned” objects), the client opens individual sockets
to each server.

Because Java clients can potentially open multiple sockets to a WebLogic Server
cluster, it is important to configure enough socket reader threads, as described in
Configuring Reader Threads for Java Socket Implementation.

Note: Browser-based clients and Applets connecting to a WebLogic Server version
6.0 cluster use only a single IP socket.

Cluster-Wide JNDI Naming Service

Clients of an individual WebLogic Server access objects and services by using a
JNDI-compliant naming service. The JNDI naming service contains a list of the public
services that the server offers, organized in a “tree” structure. A WebLogic Server
2-10 Introduction to BEA WebLogic Server

Cluster-Wide JNDI Naming Service
offers a new service by binding into the JNDI tree a name that represents the service.
Clients obtain the service by connecting to the server and looking up the bound name
of the service.

Server instances in a cluster utilize a cluster-wide JNDI tree. A cluster-wide JNDI tree
is similar to a single server JNDI tree, insofar as the tree contains a list of available
services. In addition to storing the names of local services, however, the cluster-wide
JNDI tree stores the services offered by clustered objects (EJBs and RMI classes) from
other servers in the cluster.

Each WebLogic Server instance in a cluster creates and maintains a local copy of the
logical cluster-wide JNDI tree. By understanding how the cluster-wide naming tree is
maintained, you can better diagnose naming conflicts that may occur in a clustered
environment.

Creating the Cluster-Wide JNDI Tree

Each WebLogic Server in a cluster builds and maintains its own local copy of the
cluster-wide JNDI tree, which lists the services offered by all members of the cluster.
Creating a cluster-wide JNDI tree begins with the local JNDI tree bindings of each
server instance. As a server boots (or as new services are dynamically deployed to a
running server), the server first binds the implementations of those services to the local
JNDI tree. The implementation is bound into the JNDI tree only if no other service of
the same name exists.

Once the server successfully binds a service into the local JNDI tree, additional steps
are taken for clustered objects that use replica-aware stubs. After binding a clustered
object’s implementation into the local JNDI tree, the server sends the object’s stub to
other members of the cluster. Other members of the cluster monitor the multicast
address to detect when remote servers offer new services.
Introduction to BEA WebLogic Server 2-11

2 Cluster Features and Infrastructure
The example above shows a snapshot of the JNDI binding process. Server A has
successfully bound an implementation of clustered Object X into its local JNDI tree.
Because object X is clustered, it offers this service to all other members of the cluster.
Server C is still in the process of binding an implementation of Object C.

Other servers in the cluster listening to the multicast address observe that Server A
offers a new service for clustered object, X. These servers update their local JNDI trees
to include the new service.

Updating the local JNDI bindings occurs in one of two ways:

� If the clustered service is not yet bound in the local JNDI tree, the server binds a
new replica-aware stub into the local tree that indicates the availability of Object
X on Server A. Servers B and D would update their local JNDI trees in this
manner, because the clustered object is not yet deployed on those servers.

� If the server already has a binding for the cluster-aware service, it updates its
local JNDI tree to indicate that a replica of the service is also available on Server
A. Server C would update its JNDI tree in this manner, because it will already
have a binding for the clustered object X.

BA

CD

“Service offered
on server A”

Multicast
IP

A

Object X

C

Object X
2-12 Introduction to BEA WebLogic Server

Cluster-Wide JNDI Naming Service
In this manner, each server in the cluster creates its own copy of a cluster-wide JNDI
tree. The same process would be used when Server C announces that object X has been
bound into its local JNDI tree. After all broadcast messages are received, each server
in the cluster would have identical to indicate availability of the object on servers A
and C, as shown below.

Note: In an actual cluster system, Object X would be deployed homogeneously, and
an implementation would be available on all four servers.

Handling JNDI Naming Conflicts

Simple JNDI naming conflicts occur when a server attempts to bind a non-clustered
service that uses the same name as a non-clustered service already bound in the JNDI
tree. Cluster-level JNDI conflicts occur when a server attempts to bind a clustered
object that uses the name of a non-clustered object already bound in the JNDI tree.

WebLogic Server detects simple naming conflicts (of non-clustered services) when
those services are bound to the local JNDI tree. Cluster-level JNDI conflicts may occur
when new services are advertised over multicast. For example, if you deploy a pinned
RMI object on one server in the cluster, you cannot deploy a replica-aware version of
the same object on another server instance.

BA

CD Multicast
IP

A, C

Object X

A, C

Object X

A, C

Object X

A, C

Object X
Introduction to BEA WebLogic Server 2-13

2 Cluster Features and Infrastructure
If two servers in a cluster attempt to bind different clustered objects using the same
name, both will succeed in binding the object locally. However, each server will refuse
to bind the other server’s replica-aware stub in to the JNDI tree, due to the JNDI
naming conflict. A conflict of this type would remain until one of the two servers was
shut down, or until one of the servers undeployed the clustered object. This same
conflict could also occur if both servers attempt to deploy a pinned object with the
same name.

Homogeneous Deployment

To avoid cluster-level JNDI conflicts, you must deploy all replica-aware objects to all
WebLogic Server instances in a cluster (homogeneous deployment). Having
unbalanced deployments across WebLogic Server instances increases the chance of
JNDI naming conflicts during startup or redeployment. It can also lead to unbalanced
processing loads in the cluster.

If you must pin specific RMI objects or EJBs to individual servers, make sure you do
not replicate the object’s bindings across the cluster.

Updating the JNDI Tree

If a clustered object is removed (undeployed from a server), updates to the JNDI tree
are handled similar to the way in which new services are added. The WebLogic Server
on which the service was undeployed broadcasts a message indicating that it no longer
provides the service. Again, other servers in the cluster that observe the multicast
message update their local copies of the JNDI tree to indicate that the service is no
longer available on the server that undeployed the object.

Once the client has obtained a replica-aware stub, the server instances in the cluster
may continue adding and removing host servers for the clustered objects, as described
in Updating the JNDI Tree. As the information in the JNDI tree changes, the client’s
stub may also be updated. Subsequent RMI requests contain update information as
necessary to ensure that the client stub remains up-to-date.
2-14 Introduction to BEA WebLogic Server

Load Balancing of Clustered Services
Client Interaction with the Cluster-wide JNDI Tree

Clients that connect to a WebLogic Server cluster and look up a clustered object obtain
a replica-aware stub for the object. This stub contains the list of available server
instances that host implementations of the object. The stub also contains the load
balancing logic for distributing the load among its host servers. (Understanding Object
Clustering provides more details about replica-aware stubs for EJBs and RMI classes.)

Load Balancing of Clustered Services

In order for a cluster to be scalable, it must ensure that each server is fully utilized. The
standard technique for accomplishing this is load balancing. The basic idea behind load
balancing is that by distributing the load proportionally among all the servers in the
cluster, the servers can each run at full capacity. The trick to load-balancing is coming
up with a technique that is simple yet sufficient. If all servers in the cluster are the same
power and offer the same services, it is possible to use a very simple algorithm that
requires no knowledge of the servers. If the servers vary in power or in the kind of
services they deploy, the algorithm must take into account these differences.

Load Balancing for HTTP Session States

Load balancing for servlet and JSP HTTP session states can be accomplished either by
using separate load balancing hardware or by using the built-in load balancing
capabilities of a WebLogic proxy plug-in.

For clusters that utilize a bank of web servers and WebLogic proxy plug-ins, the proxy
plug-ins provide only a round-robin algorithm for distributing requests to servlets and
JSPs in a cluster. This load balancing method is described below in Round-Robin
(Default).

Clusters that utilize a hardware load balancing solution can utilize any load balancing
algorithms supported by the hardware. These may include advanced load-based
balancing strategies that monitor the utilization of individual machines.
Introduction to BEA WebLogic Server 2-15

2 Cluster Features and Infrastructure
Load Balancing for Clustered Objects

WebLogic Server clusters support several algorithms for load balancing clustered
objects. The particular algorithm you choose is maintained within the replica-aware
stub obtained for the clustered object. Configurable algorithms for load balancing
clustered objects are:

� Round-robin

� Weight-based

� Random

Round-Robin (Default)

WebLogic Server uses the round-robin algorithm as the default load balancing strategy
for clustered object stubs when no algorithm is specified. Round-robin is the only load
balancing strategy used by WebLogic proxy plug-ins for HTTP session state
clustering.

The round-robin algorithm cycles through a list of WebLogic Server instances in order.
For clustered objects, the server list consists of WebLogic Server instances that host
the clustered object. For proxy plug-ins, the list consists of all WebLogic Servers that
host the clustered servlet or JSP.

The advantages of this algorithm are that it is simple, cheap and very predictable. The
primary disadvantage is that there is some chance of convoying. Convoying occurs
when one server is significantly slower than the others. Because replica-aware stubs or
proxy plug-ins access the servers in the same order, one slow server can cause requests
to “synchronize” on the server, then follow other servers in order for future requests.

Weight-Based

The weight-based algorithm applies only to object clustering. The algorithm improves
on the round-robin algorithm by taking into account a pre-assigned weight for each
server. Each server in the cluster is assigned a weight in the range (1-100) using the
Cluster Weight field in the WebLogic Server administration console. This is a
declaration of what proportion of the load the server will bear relative to other servers.
If all servers have either the default weight (100) or the same weight, they will each
bear an equal proportion of the load. If one server has weight 50 and all other servers
2-16 Introduction to BEA WebLogic Server

Load Balancing of Clustered Services
have weight 100, the 50-weight server will bear half as much as any other server. This
algorithm makes it possible to apply the advantages of the round-robin algorithm to
clusters that are not homogeneous.

If you use the weight-based algorithm, you should spend some time to accurately
determine the relative weights to assign to each server instance. Factors that could
affect a server’s assigned weight include:

� The processing capacity of the server’s hardware in relationship to other servers
(for example, the number and performance of CPUs dedicated to WebLogic
Server).

� The number of non-clustered (“pinned”) objects each server hosts.

If you change the specified weight of a server and reboot it, the new weighting
information is propagated throughout the cluster via the replica-aware stubs. See
Cluster-Wide JNDI Naming Service for more information.

Random

This algorithm applies only to object clustering. The algorithm chooses the next
replica at random. This will tend to distribute calls evenly among the replicas. It is only
recommended in a clusters where each server has the same power and hosts the same
services. The advantages are that it is simple and relatively cheap. The primary
disadvantage is that there is a small cost to generating a random number on every
request, and there is a slight probability that the load will not be evenly balanced over
a small number or runs.

Using Parameter-based Routing for Clustered Objects

It is also possible to gain finer grain control over load balancing. Any clustered object
can be assigned a CallRouter. This is a class that is called before each invocation
with the parameters of the call. The CallRouter is free to examine the parameters and
return the name server to which the call should be routed. See The WebLogic Cluster
API for information about creating custom CallRouter classes.
Introduction to BEA WebLogic Server 2-17

http://e-docs.bea.com/wls/docs60/cluster/api.html
http://e-docs.bea.com/wls/docs60/cluster/api.html

2 Cluster Features and Infrastructure
Failover Support for Clustered Services

In order for a cluster to provide high availability it must be able to recover from service
failures. This section describes how WebLogic Server detect failures in a cluster, and
provides an overview of how failover works for replicated HTTP session states and
clustered objects.

How WebLogic Server Detects Failures

WebLogic Server instances in a cluster detect failures of their peer server instances by
monitoring:

� Socket connections to a peer server

� Regular server “heartbeat” messages

Failure Detection Using IP Sockets

WebLogic Servers monitor the use of IP sockets between peer server instances as an
immediate method of detecting failures. If a server connects to one of its peers in a
cluster and begins transmitting data over a socket, an unexpected closure of that socket
causes the peer server to be marked as “failed,” and its associated services are removed
from the JNDI naming tree.

The WebLogic Server “Heartbeat”

If clustered server instances do not have opened sockets for peer-to-peer
communication, failed servers may also be detected via the WebLogic Server
“heartbeat.” All server instances in a cluster use multicast to broadcast regular server
“heartbeat” messages to other members of the cluster. Each server heartbeat contains
data that uniquely identifies the server that sends the message. Servers broadcast their
heartbeat messages at regular intervals of 10 seconds. In turn, each server in a cluster
monitors the multicast address to ensure that all peer servers’ heartbeat messages are
being sent.
2-18 Introduction to BEA WebLogic Server

Failover Support for Clustered Services
If a server monitoring the multicast address misses three heartbeats from a peer server
(i.e., if it does not receive a heartbeat from the server for 30 seconds or longer), the
monitoring server marks the peer server as “failed.” It then updates its local JNDI tree,
if necessary, to retract the services that were hosted on the failed server.

In this way, servers can detect failures even if they have no sockets open for
peer-to-peer communication.

Failover for Clustered Servlets and JSPs

For clusters that utilize web servers with WebLogic proxy plug-ins, the proxy plug-in
handles failover transparently to the client. If a given server fails, the plug-in locates
the replicated HTTP session state on a secondary server and redirects the client’s
request accordingly.

For clusters that use a supported hardware load balancing solution, the load balancing
hardware simply redirects client requests to any available server in the WebLogic
Server cluster. The cluster itself obtains the replica of the client’s HTTP session state
from a secondary server in the cluster.

Understanding HTTP Session State Replication describes the fail over procedure for
replicated HTTP session states in more detail.

Failover for Clustered Objects

For clustered objects, failover is accomplished using the object’s replica-aware stub.
When a client makes a call through a replica-aware stub to a service that fails, the stub
detects the failure and retries the call on another replica.

Idempotent Objects

With clustered objects, automatic failover generally occurs only in cases where there
the object is idempotent. An object is idempotent if any method can be called multiple
times with no different effect than calling the method once. This is always true for
methods that have no permanent side effects. Methods that do have side effects have
to be written specially with idempotence in mind.
Introduction to BEA WebLogic Server 2-19

2 Cluster Features and Infrastructure
Consider a shopping cart service call addItem() that adds an item to a shopping cart.
Suppose client C invokes this call on a replica on server S1. After S1 receives the call,
but before it successfully returns to C, S1 crashes. At this point the item has been added
to the shopping cart, but the replica-aware stub has received an exception. If the stub
were to retry the method on server S2, the item would be added a second time to the
shopping cart. Because of this, replica-aware stubs will not, by default, attempt to retry
a method that fails after the request is sent but before it returns. This behavior can be
overridden by marking a service idempotent.

Other Failover Exceptions

Even if a clustered object is not idempotent, WebLogic Server performs automatic
failover in the case of a ConnectException or MarshalException. Either of these
exceptions indicates that the object could not have been modified, and therefore there
is no danger of causing data inconsistency by failing over to another instance.
2-20 Introduction to BEA WebLogic Server

Overview
3 Understanding HTTP
Session State
Replication

This topic includes the following sections:

� Overview

� Requirements for HTTP Session State Replication

� Configuring In-Memory HTTP Replication in a Cluster

� Using Replication Groups

� Accessing Clustered Servlets and JSPs Using a Proxy

� Accessing Clustered Servlets and JSPs with Load Balancing Hardware

Overview

To support automatic failover for servlet and JSP HTTP session states, WebLogic
Server replicates the session state object in memory. This process creates a primary
session state, which resides on the WebLogic Server to which the client first connects
and a secondary replica of the session state on another WebLogic Server instance in
Introduction to BEA WebLogic Server 3-1

3 Understanding HTTP Session State Replication
the cluster. The replica is always kept up-to-date so that it may be used if the server
that hosts the servlet fails. The process of copying a state from one instance to another
is called in-memory replication.

Note: WebLogic Server also provides the ability to maintain the HTTP session state
of a servlet or JSP using file-based or JDBC-based persistence. For more
information on these persistence mechanisms, see Making Sessions Persistent
in Programming WebLogic HTTP Servlets.

Requirements for HTTP Session State
Replication

To utilize in-memory replication for HTTP session states, you must access the
WebLogic Server cluster using either:

� Load balancing hardware, or

� A collection of web servers with WebLogic proxy plug-ins (configured
identically)

Proxy Requirements

The WebLogic proxy plug-ins maintain a list of WebLogic Server instances that host
a clustered servlet or JSP, and forward HTTP requests to those instances using a simple
round-robin strategy. The proxy also provides the logic required to locate the replica
of a client’s HTTP session state if a WebLogic Server instance should fail.

Supported web server and proxy software includes:

� WebLogic Server with the HttpClusterServlet

� Netscape Enterprise Server with the Netscape (proxy) plug-in

� Apache with the Apache Server (proxy) plug-in

� Microsoft Internet Information Server with the Microsoft-IIS (proxy) plug-in
3-2 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/servlet/progtasks.html#sessionpersistence
http://e-docs.bea.com/wls/docs60/servlet/index.html
../adminguide/nsapi.html
../adminguide/apache.html
../adminguide/isapi.html

Requirements for HTTP Session State Replication
Load Balancer Requirements

If you choose to use load balancing hardware instead of a proxy plug-in, you must use
hardware that supports SSL persistence and passive cookie persistence. Passive cookie
persistence enables WebLogic Server to write cookies (containing information about
the location of replicated HTTP session states) through the load balancer to the client.
The load balancer, in turn, interprets an identifier in the client’s cookie to maintain the
relationship between the client and the primary WebLogic Server hosting the HTTP
session state.

See Configure Load Balancing Hardware (Optional) for details on setting up supported
load balancing solutions with WebLogic Server.

Session Requirements

When developing servlets or JSPs that you will deploy in a clustered environment,
keep in mind the following requirements.

Session Data Must Be Serializable

In order to support in-memory replication for HTTP session states, all servlet and JSP
session data must be serializable. If the servlet or JSP uses a combination of
serializable and non-serializable objects, WebLogic Server does not replicate the
session state of the non-serializable objects.

Use setAttribute() to Change Session State

Servlets must use either setAttribute() or removeAttribute() to change the
session object. If you use other set methods to change objects within the session,
WebLogic Server does not replicate those changes.

Consider Serialization Overhead for Session Objects

Serializing session data introduces some overhead for replicating the session state. The
overhead increases as the size of serialized objects grows. If you plan to create very
large objects in the session, first test the performance of your servlets to ensure that
performance is acceptable.
Introduction to BEA WebLogic Server 3-3

../adminguide/isapi.html

3 Understanding HTTP Session State Replication
Applications Using Frames Must Coordinate Session Access

If you are designing a web application that utilizes multiple frames, keep in mind that
there is no synchronization of requests made by frames in a given frameset. For
example, it is possible for multiple frames in a frameset to create multiple sessions on
behalf of the client application, even though the client should logically create only a
single session.

In a clustered environment, poor coordination of frame requests can cause unexpected
application behavior. For example, multiple frame requests can “reset” the
application’s association with a clustered instance, because the proxy plug-in treats
each request independently. It is also possible for an application to corrupt session data
by modifying the same session attribute via multiple frames in a frameset.

To avoid unexpected application behavior, always use careful planning when
accessing session data with frames. You can apply one of the following general rules
to avoid common problems:

� In a given frameset, ensure that only one frame creates and modifies session
data.

� Always create the session in a frame of the first frameset your application uses
(for example, create the session in the first HTML page that is visited). After the
session has been created, access the session data only in framesets other than the
first frameset.

Configuring In-Memory HTTP Replication in
a Cluster

To use in-memory HTTP session state replication across instances of a WebLogic
Server cluster, set the property PersistentStoreType to replicated in the Web
Application deployment descriptor, web.xml. For information about additional
properties that affect all session persistence types, see Configuring Session
Persistence.
3-4 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-persistence
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-persistence

Using Replication Groups
Using Replication Groups

By default, WebLogic Server attempts to create session state replicas on a different
machine than the one hosting the primary session state. WebLogic Server version 6.0
enables you to further control where secondary states are placed using replication
groups. A replication group is simply a preferred list of clustered instances to be used
for storing session state replicas.

Using the WebLogic Server administration console, you can define unique machine
names that will host individual server instances. These machine names can be
associated with new WebLogic Server instances to identify where the servers reside in
your system. Machine names are generally used to indicate servers that run on
multihomed machines. For example, you would assign the same machine name to all
server instances that run on the same multihomed machine, or the same server
hardware.

If you do not use a multihomed machine, or you do not run multiple WebLogic Server
instances on a single piece of hardware, you do not need to specify WebLogic Server
machine names. Servers without an associated machine name are automatically treated
as though they reside on separate, physical hardware. See Define Machine Names for
detailed instructions on setting machine names.

When you configure a clustered server instance, you can also assign the server
membership within a replication group, as well as the preferred secondary replication
group to be considered for hosting replicas of the primary HTTP session states created
on the server.

When a client attaches to a server in the cluster and creates a primary session state, the
server hosting the primary state ranks other servers in the cluster to determine which
server should host the secondary. Server ranks are assigned using a combination of the
server’s location (whether or not it resides on the same machine as the primary server)
and its participation in the primary server’s preferred replication group. The following
table shows the relative ranking of servers in a cluster.

Server
Rank

Server Resides on a
Different Machine?

Server Is a Member of Preferred
Replication Group?

1 Yes Yes

2 No Yes
Introduction to BEA WebLogic Server 3-5

3 Understanding HTTP Session State Replication
Using the ranking rules above, the primary WebLogic Server ranks other members of
the cluster and chooses the highest-ranked server to host the secondary session state.
For example, the following figure shows replication groups configured to account for
distinct geographic locations.

In this example, servers A, B, and C are members of the replication group
“Headquarters” and use the preferred secondary replication group “Crosstown.”
Conversely, servers X, Y, and Z are members of the “Crosstown” group and use the
preferred secondary replication group “Headquarters.” Servers A, B, and X reside on
the same machine, “sardina.”

If a client connects to server A and creates an HTTP session state, servers Y and Z are
most likely to host the replica of this state, since they reside on separate machines and
are members of server A’s preferred secondary group. Server X holds the next-highest
ranking because it is also a member of the preferred replication group (even though it
resides on the same machine as the primary.) Server C holds the third-highest ranking

3 Yes No

4 No No

Server
Rank

Server Resides on a
Different Machine?

Server Is a Member of Preferred
Replication Group?

X

Y

Z

Crosstown

B

sardina

Headquarters

C

A

B

3-6 Introduction to BEA WebLogic Server

Accessing Clustered Servlets and JSPs Using a Proxy
since it resides on a separate machine but is not a member of the preferred secondary
group. Server B holds the lowest ranking, because it resides on the same machine as
server A (and could potentially fail along with A if there is a hardware failure) and it
is not a member of the preferred secondary group.

To define machine names for clustered WebLogic Server instances, use the
instructions in Define Machine Names. To configure a server’s membership in a
replication group, or to assign a server’s preferred secondary replication group, use the
instructions in Configure Replication Groups.

Accessing Clustered Servlets and JSPs Using
a Proxy

The following figure depicts a client accessing a servlet hosted in a two-tier cluster
architecture. This example uses a single WebLogic Server to serve static HTTP
requests only; all servlet requests are forwarded to the WebLogic Server via the
HttpClusterServlet.
Introduction to BEA WebLogic Server 3-7

3 Understanding HTTP Session State Replication
Note: The discussion that follows also applies if you use a third-party web server and
WebLogic proxy plug-in, rather than WebLogic Server and the
HttpClusterServlet.

When the HTTP client requests the servlet, the HttpClusterServlet proxies the
request to the WebLogic Server cluster. The HttpClusterServlet maintains the list
of all servers in the cluster, as well as the load balancing logic to use when accessing
the cluster. In the above example, the HttpClusterServlet routes the client request
to the servlet hosted on WebLogic Server A. WebLogic Server A becomes the primary
server hosting the client’s servlet session.

To provide failover services for the servlet, the primary server replicates the client’s
servlet session state to a secondary WebLogic Server in the cluster. This ensures that
a replica of the session state exists even if the primary server fails (for example, due to
a network failure). In the example above, Server B is selected as the secondary.

Primary State

Servlet

Servlet

WebLogic Server
Cluster

Client

Servlet

A

B

C

Secondary State

HttpClusterServlet

HTTP Server

Cookie

Primary: A
Secondary: B
3-8 Introduction to BEA WebLogic Server

Accessing Clustered Servlets and JSPs Using a Proxy
The servlet page is returned to the client through the HttpClusterServlet, and the
client browser is instructed to write a cookie that lists the primary and secondary
locations of the servlet session state. If the client browser does not support cookies,
WebLogic Server can use URL rewriting instead.

Using URL Re-writing to Track Session Replicas

In its default configuration, WebLogic Server uses client-side cookies to keep track of
the primary and secondary server that host the client’s servlet session state. If client
browsers have disabled cookie usage, WebLogic Server can also keep track of primary
and secondary servers using URL rewriting. With URL rewriting, both locations of the
client session state are embedded into the URLs passed between the client and proxy
server. To support this feature, you must ensure that URL rewriting is enabled on the
WebLogic Server cluster. See Configuring Session Cookies for more information.

Proxy Failover Procedure

Should the primary server fail, the HttpClusterServlet uses the client’s cookie
information to determine the location of the secondary WebLogic Server that hosts the
replica of the session state. The HttpClusterServlet automatically redirects the
client’s next HTTP request to the secondary server, and failover is transparent to the
client.

After the failure, WebLogic Server B becomes the primary server hosting the servlet
session state, and a new secondary is created (Server C in the example above). In the
HTTP response, the proxy updates the client’s cookie to reflect the new primary and
secondary servers, to account for the possibility of subsequent failovers.

In a two-server cluster, the client would transparently fail over to the server hosting the
secondary session state. However, replication of the client’s session state would not
continue unless another WebLogic Server became available and joined the cluster. For
example, if the original primary server was restarted or reconnected to the network, it
would be used to host the secondary session state.
Introduction to BEA WebLogic Server 3-9

../adminguide/config_web_app.html#100676

3 Understanding HTTP Session State Replication
Accessing Clustered Servlets and JSPs with
Load Balancing Hardware

To support direct client access via load balancing hardware, the WebLogic Server
replication system enables clients to use secondary session states regardless of the
server to which the client fails over. WebLogic Server version 6.0 continues to use
client-side cookies or URL rewriting to record primary and secondary server locations.
However, this information is used only as a history of the servlet session state location;
when accessing a cluster via load balancing hardware, clients do not use the cookie
information to actively locate a server after a failure. The following steps describe the
connection and failover procedure when using HTTP session state replications with
load balancing hardware.

When the client of a web application requests a servlet using a public IP address:

Primary State

Servlet

Servlet

WebLogic Server
Cluster

Client

Servlet

A

B

C

Secondary State

Cookie

Primary: A
Secondary: B

L
o

a
d

B
a

la
n

c
e

r

3-10 Introduction to BEA WebLogic Server

Accessing Clustered Servlets and JSPs with Load Balancing Hardware
1. The client’s connection request is routed to a WebLogic Server cluster via load
balancing hardware. The load balancer uses its configured policies and directs the
client request to WebLogic Server A.

2. WebLogic Server A acts as the primary host of the clients servlet session state. It
uses the ranking system described in Using Replication Groups to select a server
to host the replica of the session state. In the example above, WebLogic Server B
is selected to host the replica.

3. The client is instructed to record the location of WebLogic Servers A and B in a
local cookie. If the client does not allow cookies, the record of the primary and
secondary servers can be recorded in the URL returned to the client via URL
rewriting.

Note: You must enable WebLogic Server URL rewriting capabilities to support
clients that disallow cookies. See Using URL Rewriting for more information.

4. As the client makes further requests to the cluster, the load balancer uses an
identifier in the client-side cookie to ensure that those requests continue to go to
WebLogic Server A (rather than being load-balanced to another server in the
cluster). This ensures that the client remains associated with the server hosting
the primary session object for the life of the session.

Failover with Load Balancing Hardware

Should Server A fail during the course of the client’s session, the client’s next
connection request to Server A also fails.
Introduction to BEA WebLogic Server 3-11

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#urlrewriting

3 Understanding HTTP Session State Replication
In response to the connection failure:

1. The load balancing hardware uses its configured policies to direct the request to an
available WebLogic Server in the cluster. In the above example, assume that the
load balancer routes the client’s request to WebLogic Server C after WebLogic
Server A fails.

2. When the client connects to WebLogic Server C, the server uses the information
in the client’s cookie (or the information in the HTTP request if URL rewriting is
used) to acquire the session state replica on WebLogic Server B. The failover
process remains completely transparent to the client.

3. WebLogic Server C becomes the new host for the client’s primary session state,
and WebLogic Server B continues to host the session state replica. This new
information about the primary and secondary host is again updated in the client’s
cookie, or via URL rewriting.

Primary State

Servlet

Servlet

WebLogic Server
Cluster

Client

Servlet

A

B

C

Secondary State

Cookie

Primary: C
Secondary: B

L
o

a
d

B
a

la
n

c
e

r

Primary State
3-12 Introduction to BEA WebLogic Server

Overview
4 Understanding Object
Clustering

This topic includes the following sections:

� Overview

� Replica-aware Stubs

� Clustered EJBs

� Clustered RMI Objects

� Stateful Session Bean Replication

� Optimization for Collocated Objects

Overview

If an object is clustered, instances of the object are deployed on all WebLogic Servers
in the cluster. The client has a choice about which instance of the object to call. Each
instance of the object is referred to as a replica.

The key technology that underpins clustered objects in WebLogic Server is the
replica-aware stub. When you compile an EJB that supports clustering (as defined in
its deployment descriptor) ejbc passes the EJB’s interfaces through the rmic compiler
to generate replica-aware stubs for the bean. For RMI objects, you generate
replica-aware stubs explicitly using command-line options to rmic, as described in
WebLogic RMI Compiler.
Introduction to BEA WebLogic Server 4-1

../rmi/index.html

4 Understanding Object Clustering
Replica-aware Stubs

A replica-aware stub appears to the caller as a normal RMI stub. Instead of
representing a single object, however, the stub represents a collection of replicas. The
replica-aware stub contains the logic required to locate an EJB or RMI class on any
WebLogic Server instance on which the object is deployed. When you deploy a
cluster-aware EJB or RMI object, its implementation is bound into the JNDI tree. As
described in Cluster-Wide JNDI Naming Service, clustered WebLogic Server
instances have the capability to update the JNDI tree to list all servers on which the
object is available. When a client accesses a clustered object, the implementation is
replaced by a replica-aware stub, which is sent to the client.

The stub contains the load balancing algorithm (or the call routing class) used to load
balance method calls to the object. On each call, the stub can employ its load algorithm
to choose which replica to call. This provides load balancing across the cluster in a way
that is transparent to the caller. If a failure occurs during the call, the stub intercepts the
exception and retries the call on another replica. This provides a failover that is also
transparent to the caller.

Clustered EJBs

EJBs differ from plain RMI objects in that each EJB can potentially generate two
different replica-aware stubs: one for the EJBHome interface and one for the
EJBObject interface. This means that EJBs can potentially realize the benefits of load
balancing and failover on two levels:

� When a client looks up an EJB object using the EJBHome stub

� When a client makes method calls against the EJB using the EJBObject stub

The following sections provide an overview of the capabilities of different EJBs. See
EJBs in WebLogic Server Clusters for a detailed explanation of the clustering behavior
for different EJB types.
4-2 Introduction to BEA WebLogic Server

../ejb/EJB_environment.html#container_cluster

Clustered EJBs
EJB Home Stubs

All bean homes can be clustered. When a bean is deployed on a server, its home is
bound into the cluster-wide naming service. Because homes can be clustered, each
server can bind an instance of the home under the same name. When a client looks up
this home, it gets a replica-aware stub that has a reference to the home on each server
that deployed the bean. When create() or find() is called, the replica-aware stub
routes the call to one of the replicas. The home replica receives the find() results or
creates an instance of the bean on this server.

Stateless EJBs

When a home creates a stateless bean, it returns a replica-aware EJBObject stub that
can route to any server on which the bean is deployed. Because a stateless bean holds
no state on behalf of the client, the stub is free to route any call to any server that hosts
the bean. Also, because the bean is clustered, the stub can automatically fail over in the
event of a failure. The stub does not automatically treat the bean as idempotent, so it
will not recover automatically from all failures. If the bean has been written with
idempotent methods, this can be noted in the deployment descriptor and automatic
failover will be enabled in all cases.

Stateful EJBs

As with all EJBs, clustered stateful session EJBs utilize a replica-aware EJBHome stub.
If you use stateful session EJB replication, the EJB also utilizes a replica-aware
EJBObject stub that maintains the location of the EJB’s primary and secondary states.
The state of the EJB is maintained using a replication scheme similar to that used for
HTTP session states. See Stateful Session Bean Replication for more information.

Entity EJBs

There are two types of entity beans to consider: read-write entities and read-only
entities.
Introduction to BEA WebLogic Server 4-3

4 Understanding Object Clustering
When a home finds or creates a read-write entity bean, it obtains an instance on the
local server and returns a stub pinned to that server. Load balancing and failover occur
only at the home level. Because it is possible for multiple instances of the entity bean
to exist in the cluster, each instance must read from the database before each
transaction and write on each commit.

When a home finds or creates a read-only entity bean, it returns a replica-aware stub.
This stub load balances on every call but does not automatically fail over in the event
of a recoverable call failure. Read-only beans are also cached on every server to avoid
database reads.

For more information about using EJBs in a cluster, please read The WebLogic Server
EJB Container.

Clustered RMI Objects

WebLogic RMI provides special extensions for building clustered remote objects.
These are the extensions used to build the replica-aware stubs described in the EJB
section. For more information about using RMI in WebLogic Server Clusters, see
Using WebLogic RMI.

Stateful Session Bean Replication

WebLogic Server version 6.0 replicates the state of stateful session EJBs similar to the
way in which it replicates HTTP session states. When a client creates the EJBObject
stub, the point-of-contact WebLogic Server instance automatically selects a secondary
server instance to host the replicated state of the EJB. Secondary server instances are
selected using the same rules defined in Understanding HTTP Session State
Replication.

The client receives a replica-aware stub that lists the location of the primary and
secondary servers in the cluster that host the EJB’s state. The following figure shows
a client accessing a clustered stateful session EJB.
4-4 Introduction to BEA WebLogic Server

../ejb/EJB_environment.html
../ejb/EJB_environment.html
../rmi/index.html

Stateful Session Bean Replication
The primary server hosts the actual instance of the EJB that the client interacts with.
The secondary server hosts only the replicated state of the EJB, which consumes a
small amount of memory. The secondary sever does not create an actual instance of
the EJB unless a failover occurs. This ensures minimal resource usage on the
secondary server; you do not need to configure additional EJB resources to account for
replicated EJB states.

Replicating EJB State Changes

As the client makes changes to the state of the EJB, state differences are replicated to
the secondary server instance. For EJBs that are involved in a transaction, replication
occurs immediately after the transaction commits. For EJBs that are not involved in a
transaction, replication occurs after each method invocation.

Instance of

State of Object ‘A’

WebLogic Server
Cluster

Client

A

B

C

Object “A” Stub

Primary State:

Secondary State:

A

B

Object ‘A’
Introduction to BEA WebLogic Server 4-5

4 Understanding Object Clustering
In both cases, only the actual changes to the EJB’s state are replicated to the secondary
server. This ensures that there is minimal overhead associated with the replication
process.

Note: The actual state of a stateful EJB is non-transactional, as described in the EJB
specification. Although it is unlikely, there is a possibility that the current state
of the EJB can be lost. For example, if a client commits a transaction involving
the EJB and there is a failure of the primary server before the state change is
replicated, the client will fail over to the previously-stored state of the EJB.

If it is critical to preserve the state of your EJB in all possible failover
scenarios, use an entity EJB rather than a stateful session EJB.

Failover for Stateful Session EJBs

Should the primary server fail, the client’s EJB stub automatically redirects further
requests to the secondary WebLogic Server instance. At this point, the secondary
server creates a new EJB instance using the replicated state data, and processing
continues on the secondary server.

After a failover, WebLogic Server chooses a new secondary server to replicate EJB
session states (if another server is available in the cluster). The location of the new
primary and secondary server instances is automatically updated in the client’s
replica-aware stub on the next method invocation, as shown below.
4-6 Introduction to BEA WebLogic Server

Optimization for Collocated Objects
Optimization for Collocated Objects

Although a replica-aware stub contains the load-balancing logic for a clustered object,
WebLogic Server does not always perform load balancing for an object’s method calls.
In most cases, it is more efficient to use a replica that is collocated with the stub itself,
rather than using an replica that resides on a remote server. The figure below details
this situation.

Instance of

State of Object ‘A’

WebLogic Server
Cluster

Client

A

B

C

Object “A” Stub
Primary State:

Primary State:
B

Object ‘A’

Secondary State:
C

A

Instance of
Object ‘A’
Introduction to BEA WebLogic Server 4-7

4 Understanding Object Clustering
In the above example, a client connects to a servlet hosted by the first WebLogic
Server instance in the cluster. In response to client activity, the servlet obtains a
replica-aware stub for Object A. Because a replica of Object A is also available on the
same server, the object is said to be collocated with the client’s stub.

WebLogic Server always uses the local, collocated copy of Object A, rather than
distributing the client’s calls to other replicas of Object A in the cluster. It is more
efficient to use the local copy, because doing so avoids the network overhead of
establishing peer connections to other servers in the cluster.

This optimization is often overlooked when planning WebLogic Server clusters. The
collocation optimization is also frequently confusing for administrators or developers
who expect or require load balancing on each method call. In single-cluster web
architectures, this optimization overrides any load balancing logic inherent in the
replica-aware stub.

Objects
A
B
C

Servlet

Objects
A
B
C

Servlet
Database

Objects

WebLogic Server
Cluster

Client
A
B
C

Servlet

Stub
4-8 Introduction to BEA WebLogic Server

Optimization for Collocated Objects
If you require load balancing on each method call to a clustered object, see Planning
WebLogic Server Clusters for information about how to plan your WebLogic Server
cluster accordingly.

Transactional Collocation

As an extension to the basic collocation strategy, WebLogic Server also attempts to
collocate clustered objects that are enlisted as part of the same transaction. When a
client creates a UserTransaction object, WebLogic Server attempts to use object
replicas that are collocated with the transaction. This optimization is depicted in the
figure below.

In this example, a client attaches to the first WebLogic Server instance in the cluster
and obtains a UserTransaction object. After beginning a new transaction, the client
looks up Objects A and B to do the work of the transaction. In this situation WebLogic

Objects
A
B
C

Servlet

Objects
A
B
C

Servlet
Database

Objects

WebLogic Server
Cluster

Client
A
B
C

Servlet

User
Xact
Introduction to BEA WebLogic Server 4-9

4 Understanding Object Clustering
Server always attempts to use replicas of A and B that reside on the same server as the
UserTransaction object, regardless of the load balancing strategies in the stubs for
A and B.

This transactional collocation strategy is even more important than the basic
optimization described in Optimization for Collocated Objects. If remote replicas of A
and B were used, added network overhead would be incurred for the duration of the
transaction, because the peer connections for A and B would be locked until the
transaction committed. Furthermore, WebLogic Server would need to employ a
multi-tiered JDBC connection to commit the transaction, incurring even further
network overhead.

By collocating clustered objects in a transactional context, WebLogic Server reduces
the network load for accessing the individual objects. The server also can make use of
a single-tiered JDBC connection, rather than a multi-tiered connection, to do the work
of the transaction.
4-10 Introduction to BEA WebLogic Server

CHAPTER
5 Planning WebLogic
Server Clusters

This topic contains the following sections:

� Overview

� Recommended Basic Cluster

� Planning By Dividing Application Tiers

� Recommended Multi-tier Architecture

� Recommended Proxy Architectures

� Administration Server for Cluster Architectures

� Security Options for Cluster Architectures

� Firewall Considerations for Clusters

Overview

This section describes common issues to consider before deploying one or more
WebLogic Server clusters. You should read this document along with the Introduction
to WebLogic Server Clustering and Administering WebLogic Clusters sections to
become familiar with how WebLogic Server clusters operate.
Introduction to BEA WebLogic Server 5-1

5 Planning WebLogic Server Clusters
This section also presents recommended cluster architectures for WebLogic Server
version 6.0. You should examine each recommended architecture to determine which
configuration best meets the needs of your web application.

Capacity Planning

This document focuses on planning the network topology of your clustered system. It
describes how to organize one or more WebLogic Server clusters in relation to load
balancers, firewalls, and web servers, to fully utilize load balancing and failover
features for your web application. Although this kind of planning directly influences
the capacity of your cluster system, this document does not focus on traditional
capacity planning topics. After determining the layout of your cluster system, you
should perform rigorous testing using software such as LoadRunner from Mercury
Interactive to simulate heavy client usage. By testing your system under heavy loads,
you can determine where you may need to add servers or server hardware to support
real-world client loads.

WebLogic Servers on Multi-CPU machines

BEA WebLogic Server has no built-in limit for the number of server instances that can
reside in a cluster. Large, multi-processor servers such as Sun Microsystems, Inc. Sun
Enterprise 10000, therefore, can host very large clusters or multiple clusters.

In most cases, WebLogic Server clusters scale best when deployed with two to three
WebLogic Server instance per CPU. However, as with all capacity planning, you
should test the actual deployment with your target web applications to determine the
optimal number and distribution of server instances.

Definition of Terms

This document uses the following terms to describe the parts of a clustered system.
5-2 Introduction to BEA WebLogic Server

Overview
Web Application “Tiers”

A web application is divided into several “tiers” that describe the logical services the
application provides. Keep in mind that not all web applications are alike, and
therefore your application may not utilize all of the tiers described below. Also keep
in mind that the tiers represent logical divisions of an application’s services, and not
necessarily physical divisions between hardware or software components. In some
cases, a single machine running a single WebLogic Server instance can provide all of
the tiers described below.

Web Tier

The web tier provides static content (for example, simple HTML pages) to clients of a
web application. The web tier is generally the first point of contact between external
clients and the web application. A simple web application may have a web tier that
consists of one or more machines running WebLogic Express, Apache, Netscape
Enterprise Server, or Microsoft Internet Information Server.

Presentation Tier

The presentation tier provides dynamic content (for example, servlets or Java Server
Pages) to clients of a web application. A cluster of WebLogic Server instances that
hosts servlets and/or JSPs comprises the presentation tier of a web application. If the
cluster also serves static HTML pages for your application, it encompasses both the
web tier and the presentation tier.

Object Tier

The object tier provides Java objects (for example, Enterprise JavaBeans or RMI
classes) and their associated business logic to a web application. A WebLogic Server
cluster that hosts EJBs provides an object tier.

De-Militarized Zone (DMZ)

The De-Militarized Zone (DMZ) is a logical collection of hardware and services that
is made available to outside, untrusted sources. In most web applications, a bank of
web servers resides in the DMZ to allow browser-based clients access to static HTML
content.
Introduction to BEA WebLogic Server 5-3

5 Planning WebLogic Server Clusters
The DMZ may provide security against outside attacks to hardware and software.
However, because the DMZ is available to untrusted sources, it is less secure than an
internal system. For example, internal systems may be protected by a firewall that
denies all outside access. The DMZ may be protected by a firewall that hides access to
individual machines, applications, or port numbers, but it still permits access to those
services from untrusted clients.

Load Balancer

In this document, the term load balancer describes any technology that distributes
client connection requests to one or more distinct IP addresses. For example, a simple
web application may use the DNS round-robin algorithm as a load balancer. Larger
applications generally use hardware-based load balancing solutions such as those from
Alteon WebSystems, which may also provide firewall-like security capabilities.

Proxy Plug-In

A proxy plug-in is a WebLogic Server extension to Apache, Netscape Enterprise
Server, or Microsoft Internet Information Server that accesses clustered servlets
provided by a WebLogic Server cluster. The proxy plug-in contains the load balancing
logic for accessing servlets and JSPs in a WebLogic Server cluster. Proxy plug-ins also
contain the logic for accessing the replica of a client’s session state if the primary
WebLogic Server hosting their session state fails.

Recommended Basic Cluster

The basic recommended cluster architecture combines all web application tiers and
places the related services (static HTTP, presentation logic, and objects) into a single
cluster of WebLogic Server 6.0 instances. This architecture is shown in the figure
below.
5-4 Introduction to BEA WebLogic Server

Recommended Basic Cluster
The basic architecture has several strengths:

� Easy administration: Because a single cluster hosts static HTTP pages, servlets,
and EJBs, you can configure the entire web application and deploy/undeploy
objects using the administration console. You do not need to maintain a separate
bank of web servers (and configure WebLogic Server proxy plug-ins) to benefit
from clustered servlets.

� Flexible load balancing: Using load balancing hardware directly in front of the
WebLogic Server cluster enables you to use advanced load balancing policies for
accessing both HTML and servlet content. For example, you may configure your
load balancer to detect current server loads and direct client requests
appropriately.

� Robust security: Placing a firewall in front of your load balancing hardware
enables you to set up a De-Militarized Zone (DMZ) for your web application
using minimal firewall policies.

Database

JDBC

EJBHTTP
JSP

Servlet

JDBC

EJB
HTTP
JSP

Servlet

JDBC

EJB
HTTP
JSP

Servlet

F
ir

e
w

a
ll

WebLogic Server
Cluster

U
n

tr
u

s
te

d

Load
Balancer

(“combined-tier”)
Introduction to BEA WebLogic Server 5-5

5 Planning WebLogic Server Clusters
Planning By Dividing Application Tiers

The basic cluster architecture uses a single cluster of WebLogic Server instances to
provide all tiers of the web application: web tier, presentation tier, and object tier. In
this “combined-tier” cluster, untrusted connections (HTTP and Java clients) have a
single interface to the WebLogic Server cluster via load balancing hardware. Although
the basic architecture is simplified, it meets the needs of many potential web
applications.

However, two key features of a clustered web application—load balancing and
failover capabilities—can be introduced only at the interfaces between web application
tiers. When those tiers are combined on a single hardware/software platform, as in the
basic cluster architecture, the opportunities for introducing load balancing and failover
capabilities to your system are reduced.

Because most load balancing and failover occurs between clients and the cluster itself,
the basic cluster architecture meets the clustering needs of most web applications.
However, combined-tier clusters provide no opportunity for load balancing method
calls to clustered EJBs. Because clustered objects are deployed on all WebLogic
Server instances in the cluster, each object instance is available locally to each server.
WebLogic Server optimizes method calls to clustered EJBs by always selecting the
local object instance, rather than distributing requests to remote objects and incurring
additional network overhead.

This collocation strategy is, in most cases, more efficient than load balancing each
method request to a different server. However, if the processing load to individual
servers becomes unbalanced, it may eventually become more efficient to submit
method calls to remote objects rather than process methods locally.

To utilize load balancing for method calls to clustered EJBs, you must split the
presentation and object tiers of the web application onto separate physical clusters.
This is described in Recommended Multi-tier Architecture below.
5-6 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/cluster/object.html#colocation

Recommended Multi-tier Architecture
Recommended Multi-tier Architecture

The recommended multi-tier architecture uses two separate WebLogic Server clusters:
one to serve static HTTP content and clustered servlets, and one to serve clustered
EJBs. The multi-tier cluster is recommended for web applications that:

� Require load balancing for method calls to clustered EJBs.

� Require more flexibility for balancing the load between servers that provide
HTTP content and servers that provide clustered objects.

� Require higher availability (fewer single points of failure).

The following figure depicts the recommended multi-tier architecture.

Database

JDBC

EJB

WebLogic Server
Cluster

JDBC

EJB

JDBC

EJB

U
n

tr
u

s
te

d

HTTP
JSP

Servlet

WebLogic Server
Cluster

HTTP
JSP

Servlet

HTTP
JSP

Servlet

F
ir

e
w

a
ll

Load
Balancer

(object tier)(web, presentation
tiers)
Introduction to BEA WebLogic Server 5-7

5 Planning WebLogic Server Clusters
Physical Hardware and Software Layers

The advanced recommended configuration contains two physical layers of hardware
and software, which comprise the logical tiers of the application itself: the web tier,
presentation tier, and object tier.

Web/Presentation Layer

The web/presentation layer consists of a cluster of WebLogic Server instances
dedicated to hosting static HTTP pages, servlets, and JSPs. This servlet cluster does
not host clustered objects. Instead, servlets in the presentation tier cluster act as clients
for clustered objects, which reside on an separate WebLogic Server cluster in the
object layer.

Object Layer

The object layer consists of a cluster of WebLogic Server instances that hosts only
clustered objects—EJBs and RMI objects as necessary for the web application. By
hosting the object tier on a dedicated cluster, you lose the default collocation
optimization for accessing clustered objects described in Understanding Object
Clustering. However, you gain the ability to load balance on each method call to
certain clustered objects, as described below.

Benefits of Multi-tier Architecture

The multi-tier architecture provides most of the benefits of the Recommended Basic
Cluster, and also introduces these strengths:

� Load Balancing EJB Methods: By hosting servlets and EJBs on separate
clusters, servlet method calls to EJBs can be load balanced across multiple
servers. This process is described in detail in Load Balancing for Clustered
Object Calls below.

� Improved Server Load Balancing: Separating the presentation and object tiers
onto separate clusters provides more options for distributing the load of the web
application. For example, if the application accesses HTTP and servlet content
more often than EJB content, you can use a large number of WebLogic Server
5-8 Introduction to BEA WebLogic Server

Recommended Multi-tier Architecture
instances in the presentation tier cluster to concentrate access to a smaller
number of servers hosting EJBs.

� Higher Availability: By utilizing additional WebLogic Server instances, the
multi-tier architecture has fewer points of failure than the basic cluster
architecture. For example, if a WebLogic Server that hosts EJBs fails, the HTTP-
and servlet-hosting capacity of the web application is not affected.

� Improved Security Options: By separating the presentation and object tiers
onto separate clusters, you can use a firewall policy that places only the
servlet/JSP cluster in the DMZ. Servers hosting clustered objects can be further
protected by denying direct access from untrusted clients. See Security Options
for Cluster Architectures for more information.

Load Balancing for Clustered Object Calls

WebLogic Server’s collocation optimization for clustered objects relies on having a
clustered object (the EJB or RMI class) hosted on the same server instance as the
replica-aware stub that calls the object.

The net effect of isolating the object tier is that no client (HTTP client, Java client, or
servlet) ever acquires a replica-aware stub on the same server that hosts the clustered
object. Because of this, WebLogic Server cannot use its s collocation optimization, and
servlet calls to clustered objects are automatically load balanced according to the logic
contained in the replica-aware stub. The following figure depicts a client accessing a
clustered EJB instance in the multi-tier architecture.
Introduction to BEA WebLogic Server 5-9

http://e-docs.bea.com/wls/docs60/cluster/object.html#colocation

5 Planning WebLogic Server Clusters
Tracing the path of the client connection, you can see the implication of isolating the
object tier onto separate hardware and software:

1. An HTTP client connects to one of several WebLogic Server instances in the
web/servlet cluster, going through a load balancer to reach the initial server.

2. The client accesses a servlet hosted on the WebLogic Server cluster.

3. The servlet acts as a client to clustered objects required by the web application. In
the example above, the servlet accesses a read-only entity EJB.

The servlet looks up the entity bean on the WebLogic Server cluster that hosts
clustered objects. The servlet obtains a replica-aware stub for the entity bean,
which lists the addresses of all servers that host the bean, as well as the load
balancing logic for accessing the bean’s methods.

4. When the servlet accesses the bean’s methods, it uses the load-balancing logic
present in the bean’s stub. In the example above, multiple method calls are
directed using the round-robin algorithm for load balancing.

Database

Web/Servlet
Cluster

Object
Cluster

EJB

EJB

EJB

S
tu

b

JDBC

JDBC

JDBC

Load
Balancer

C
li

e
n

t
HTTP
JSP

Servlet

HTTP
JSP

Servlet

HTTP
JSP

Servlet
5-10 Introduction to BEA WebLogic Server

Recommended Multi-tier Architecture
In this example, if the same WebLogic Server cluster hosted both servlets and EJBs (as
in the Recommended Basic Cluster), WebLogic Server would not load balance method
calls to the EJB. Instead, the servlet would simply invoke methods on the EJB instance
hosted on the local server. Using the local EJB instance is more efficient than making
remote method calls to an EJB on another server. However, the multi-tier architecture
enables remote EJB access for applications that require load balancing for EJB method
calls.

Configuration Notes for Multi-tier Architecture

Because the multi-tier architecture provides load balancing for clustered object calls,
the system generally utilizes more IP sockets than a combined-tier architecture. In
particular, during peak socket usage, each WebLogic Server in the cluster that hosts
servlets and JSPs may potentially use a maximum of:

� Two sockets for replicating HTTP session states between primary and secondary
servers, plus

� One socket for each WebLogic Server in the EJB cluster, for accessing remote
objects

For example, in the figure shown under Recommended Multi-tier Architecture, each
server in the servlet/JSP cluster could open a maximum of five sockets. If you use a
pure-Java sockets implementation with the multi-tier architecture, ensure that you
configure enough socket reader threads to accommodate the maximum potential
socket usage. See Configuring Reader Threads for Java Socket Implementation for
more details.

Limitations of Multi-tier Architecture

Because the advanced configuration cannot optimize object calls using the collocation
strategy, the web application incurs network overhead for all method calls to clustered
objects. This overhead may be acceptable, however, if your web application requires
any of the benefits described in Benefits of Multi-tier Architecture.
Introduction to BEA WebLogic Server 5-11

5 Planning WebLogic Server Clusters
For example, if your web clients make heavy use of servlets and JSPs but access a
relatively small set of clustered objects, the multi-tier architecture enables you to
concentrate the load of servlets and object appropriately. You may configure a servlet
cluster of ten WebLogic Server instances and an object cluster of three WebLogic
Server instances, while still fully utilizing each server’s processing power.

Firewall Restrictions

If you place a firewall between the servlet cluster and object cluster in a multi-tier
architecture, you must bind all servers in the object cluster to public DNS names, rather
than IP addresses. Binding those servers with IP addresses can cause address
translation problems and prevent the servlet cluster from accessing individual server
instances.

Recommended Proxy Architectures

You can also configure WebLogic Server version 6.0 clusters to operate alongside
existing web servers. In this architecture, a bank of web servers provides static HTTP
content for the web application, using a WebLogic proxy plug-in or
HttpClusterServlet to direct servlet and JSP requests to a cluster.

Two-tier Proxy Architecture

The two-tier proxy architecture is similar to the Recommended Basic Cluster, except
that static HTTP servers are hosted on a bank of web servers.
5-12 Introduction to BEA WebLogic Server

Recommended Proxy Architectures
Physical Hardware and Software Layers

The two-tier proxy architecture contains two physical layers of hardware and software.

Web Layer

The proxy architecture utilizes a layer of hardware and software dedicated to the task
of providing the application’s web tier. This physical web layer can consist of one or
more identically-configured machines that host one of the following application
combinations:

� WebLogic Server with the HttpClusterServlet

� Apache with the WebLogic Server Apache proxy plug-in

� Netscape Enterprise Server with the WebLogic Server NSAPI proxy plug-in

DMZ

Database

C
li

e
n

ts

JDBC

EJBJSP
Servlet

Servlet/Object
Cluster

Web Servers

HTTP Server

Proxy Plug-inF
ir

e
w

a
ll

HTTP Server

Proxy Plug-in

HTTP Server

Proxy Plug-in
JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

(web tier)
(presentation,
object tiers)
Introduction to BEA WebLogic Server 5-13

../adminguide/apache.html

5 Planning WebLogic Server Clusters
� Microsoft Internet Information Server with the WebLogic Server Microsoft-IIS
proxy plug-in

Regardless of which web server software you select, keep in mind that the physical tier
of web servers should provide only static web pages. Dynamic content—servlets and
JSPs—are proxied via the proxy plug-in or HttpClusterServlet to a WebLogic
Server cluster that hosts servlets and JSPs for the presentation tier.

Servlet/Object Layer

The recommended two-tier proxy architecture hosts the presentation and object tiers
on a cluster of WebLogic Server instances. This cluster can be deployed either on a
multihomed machine or on multiple separate machines.

The Servlet/Object layer differs from the combined-tier cluster described in
Recommended Basic Cluster in that it does not provide static HTTP content to
application clients.

Multi-tier Proxy Architecture

You can also use a bank of web servers as the front-end to a pair of WebLogic Server
clusters that host the presentation and object tiers. This architecture is shown in the
figure below.
5-14 Introduction to BEA WebLogic Server

../adminguide/isapi.html
../adminguide/isapi.html

Recommended Proxy Architectures
This architecture provides the same benefits (and the same limitations) as the
Recommended Multi-tier Architecture. It differs only insofar as the web tier is placed
on a separate bank of web servers that utilize WebLogic proxy plug-ins.

Proxy Architecture Trade-offs

Using standalone web servers and proxy plug-ins provides the following advantages:

C
li

e
n

ts

JSP
Servlet

Servlet
Cluster

Object
Cluster

JSP
Servlet

JSP
Servlet

EJB

EJB

EJB
F

ir
e

w
a

ll

DMZ

Database

HTTP Server

Web Servers

Proxy Plug-in

HTTP Server

Proxy Plug-in

HTTP Server

Proxy Plug-in

(web tier)
(presentation

tier)
(object tier)
Introduction to BEA WebLogic Server 5-15

5 Planning WebLogic Server Clusters
� Utilize Existing Hardware: If you already have a web application architecture
that provides static HTTP content to clients, you can easily integrate existing
web servers with one or more WebLogic Server clusters to provide dynamic
HTTP and clustered objects.

� Familiar Firewall Policies: Using a web server proxy at the front-end of your
web application enables you to use familiar firewall policies to define your
DMZ. In general, you can continue placing the web servers in your DMZ while
disallowing direct connections to the remaining WebLogic Server clusters in the
architecture. The figures above depict this DMZ policy.

� Multiple-Cluster Proxying: You can also use proxy architectures to forward
requests directly to two separate WebLogic Server clusters. This is accomplished
by configuring the WebLogic proxy plug-in to forward different directory
requests or extensions to designated clusters.

Using standalone web servers and proxy plug-ins limits your web application in the
following ways:

� Additional administration: The web servers in the proxy architecture must be
configured using third-party utilities, and do not appear within the WebLogic
Server administrative domain. You must also install and configure WebLogic
proxy plug-ins to the web servers in order to benefit from clustered servlet
access and failover.

� Limited Load Balancing Options: When you use proxy plug-ins or the
HttpClusterServlet to access clustered servlets, the load balancing algorithm
is limited to a simple round-robin strategy.

Proxy Plug-in Versus Load Balancer

Using a load balancer directly with a WebLogic Server cluster provides several
benefits over proxying servlet requests. First, using WebLogic Server with a load
balancer requires no additional administration for client setup—you do not need to set
up and maintain a separate layer of HTTP servers, and you do not need to install and
configure one or more proxy plug-ins. Removing the web proxy layer also reduces the
number of network connections required to access the cluster.
5-16 Introduction to BEA WebLogic Server

Administration Server for Cluster Architectures
Using load balancing hardware provides more flexibility for defining load balancing
algorithms that suit the capabilities of your system. You can use any load balancing
strategy (for example, load-based policies) that your load balancing hardware
supports. With proxy plug-ins or the HttpClusterServlet, you are limited to a
simple round-robin algorithm for clustered servlet requests.

Administration Server for Cluster
Architectures

To start up WebLogic Server instances that participate in a cluster, each server must
be able to connect to the administration server that stores configuration information for
the cluster itself. For security purposes, the administration server should reside within
the same DMZ as the WebLogic Server cluster.

In WebLogic Server version 6.0, the administration server maintains the configuration
information for all server instances that participate in the cluster. The config.xml file
that resides on the administration server provides a single repository for all clustered
instances (and other managed instances) in the administration server’s domain. You do
not create a separate configuration file for each server in the cluster, as with previous
WebLogic Server versions.

The administration server must be available in order for clustered WebLogic Server
instances to start up. Note, however, that once a cluster is running, a failure of the
administration server does not affect ongoing cluster operation.

Notes: The administration server need not participate in your cluster. You can use an
“independent” administration server that is not part of the cluster to manage
both the cluster and other servers in the administration domain. If the
administration server is not part of the cluster, ensure that the administration
server’s IP address is not included in the cluster-wide DNS name.

All WebLogic Server instances in a cluster must reside within the same
administration domain.
Introduction to BEA WebLogic Server 5-17

5 Planning WebLogic Server Clusters
Security Options for Cluster Architectures

The boundaries between physical hardware/software layers in the recommended
configurations provide potential points for defining your web application’s
De-Militarized Zone (DMZ). However, not all boundaries can support a physical
firewall, and certain boundaries can support only a subset of typical firewall policies.

The sections that follow describe several common ways of defining your DMZ to
create varying levels of application security.

Basic Firewall for Proxy Architectures

The basic firewall configuration uses a single firewall between untrusted clients and
the web server layer, and it can be used with either the combined-tier or multi-tier
cluster architectures.
5-18 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/cluster/planning.html#recbasic
http://e-docs.bea.com/wls/docs60/cluster/planning.html#recmulti

Security Options for Cluster Architectures
In the above configuration, the single firewall can use any combination of policies
(application-level restrictions, NAT, IP masquerading) to filter access to three HTTP
servers. The most important role for the firewall is to deny direct access to any other
servers in the system. In other words, the servlet layer, the object layer, and the
database itself must not be accessible from untrusted clients.

Note that you can place the physical firewall either in front of or behind the web servers
in the DMZ. Placing the firewall in front of the web servers simplifies your firewall
policies, because you need only permit access to the web servers and deny access to all
other systems.

Database

U
n

tr
u

s
te

d

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

Servlet/Object
Cluster

HTTP Server

Web Layer

Proxy Plug-in

HTTP Server

Proxy Plug-in

HTTP Server

Proxy Plug-in

F
ir

e
w

a
ll

DMZ
Introduction to BEA WebLogic Server 5-19

5 Planning WebLogic Server Clusters
Note: If you place the firewall between the three web servers and the WebLogic
Server cluster, you must bind all server instances using publicly-listed DNS
names, rather than IP addresses. Doing so ensures that the proxy plug-ins can
freely connect to each server in the cluster and not encounter address
translation errors as described in Firewall Considerations for Clusters.

DMZ with Basic Firewall Configurations

By denying access to all but the web server layer, the basic firewall configuration
creates a small-footprint DMZ that includes only three web servers. However, a more
conservative DMZ definition might take into account the possibility that a malicious
client may gain access to servers hosting the presentation and object tiers.

For example, assume that a hacker gains access to one of the machines hosting a web
server. Depending on the level of access, the hacker may then be able to gain
information about the proxied servers that the web server accesses for dynamic
content.

If you choose to define your DMZ more conservatively, you can place additional
firewalls using the information in Additional Security for Shared Databases.

Combining Firewall with Load Balancer

If you use load balancing hardware with a recommended cluster configuration, you
must decide how to deploy the hardware in relationship to the basic firewall. Although
many hardware solutions provide security features in addition to load balancing
services, most sites rely on a firewall as the first line of defense for their web
applications. In general, firewalls provide the most well-tested and familiar security
solution for restricting web traffic, and should be used in front of load balancing
hardware, as shown below.
5-20 Introduction to BEA WebLogic Server

Security Options for Cluster Architectures
The above setup places the load balancer within the DMZ along with the web tier.
Using a firewall in this configuration can simplify security policy administration,
because the firewall need only limit access to the load balancer. This setup can also
simplify administration for sites that support internal clients to the web application, as
described below.

Expanding the Firewall for Internal Clients

If you support internal clients that require direct access your web application (for
example, remote machines that run proprietary Java applications), you can expand the
basic firewall configuration to allow restricted access to the presentation tier. The way
in which you expand access to the application depends on whether you treat the remote
clients as trusted or untrusted connections.

Database

U
n

tr
u

s
te

d
HTTP Server

Web Layer

Proxy Plug-in

HTTP Server

Proxy Plug-in

HTTP Server

Proxy Plug-in

Firewall

HTTP Server

Proxy Plug-inLoad
Balancer

D
M

Z

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

Servlet/Object
Cluster
Introduction to BEA WebLogic Server 5-21

5 Planning WebLogic Server Clusters
If you use a Virtual Private Network (VPN) to support remote clients, the clients may
be treated as trusted connections and can connect directly to the presentation tier going
through a firewall. This configuration is shown below.

If you do not use a VPN, all connections to the web application (even those from
remote sites using proprietary client applications) should be treated as untrusted
connections. In this case, you can modify the firewall policy to permit
application-level connections to WebLogic Servers hosting the presentation tier, as
shown below.

Database

U
n

tr
u

s
te

d

HTTP Server

Web Layer

Proxy Plug-in

HTTP Server

Proxy Plug-in

HTTP Server

Proxy Plug-in

Firewall

HTTP Server

Proxy Plug-in

Load
Balancer

D
M

Z

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

Servlet/Object
Cluster

Trusted
(internal)
5-22 Introduction to BEA WebLogic Server

Security Options for Cluster Architectures
Additional Security for Shared Databases

If you use a single database that supports both internal data and data for
externally-available web applications, you should consider placing a hard boundary
between the object layer that accesses your database. Doing so simply reinforces the
DMZ boundaries described in Basic Firewall for Proxy Architectures by adding an
additional firewall.

DMZ with Two Firewall Configuration

The following configuration places an additional firewall in front of a database server
that is shared by the web application and internal (trusted) clients. This configuration
provides additional security in the unlikely event that the first firewall is breached, and

Database

U
n

tr
u

s
te

d
HTTP Server

Web Layer

Proxy Plug-in

HTTP Server

Proxy Plug-in

HTTP Server

Proxy Plug-in

Firewall

HTTP Server

Proxy Plug-in

Load
Balancer

D
M

Z

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

Servlet/Object
Cluster

Trusted
Introduction to BEA WebLogic Server 5-23

5 Planning WebLogic Server Clusters
a hacker ultimately gains access to servers hosting the object tier. Note that this
circumstance should be extremely unlikely in a production environment—your site
should have the capability to detect and stop a malicious break-in long before a hacker
gains access to machines in the object layer.

In the above configuration, the boundary between the object tier and the database is
hardened using an additional firewall. The firewall maintains a strict application-level
policy that denies access to all connections except JDBC connections from WebLogic
Servers hosting the object tier.

Database

U
n

tr
u

s
te

d

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

JDBC

EJBJSP
Servlet

Servlet/Object
Cluster

HTTP Server

Web Layer

Proxy Plug-in

HTTP Server

Proxy Plug-in

HTTP Server

Proxy Plug-in

F
ir

e
w

a
ll

DMZ

Firewall

Trusted Clients
5-24 Introduction to BEA WebLogic Server

Firewall Considerations for Clusters
Firewall Considerations for Clusters

In any cluster architecture that utilizes one or more firewalls, it is critical to identify all
WebLogic Server instances using publicly-available DNS names, rather than IP
addresses. Using DNS names avoid problems associated with address translation
policies used to mask internal IP addresses from untrusted clients.

The following figure describes the potential problem with using IP addresses to
identify WebLogic Server instances. In this figure, the firewall translates external IP
requests for the subnet “xxx” to internal IP addresses having the subnet “yyy.”

The following steps describe the connection process and potential point of failure:

1. The client initiates contact with the WebLogic Server cluster by requesting a
connection to the first server at 205.20.xxx.100:7001. The firewall translates this
address and connects the client to the internal IP address of 205.20.yyy.100:7001.

JDBC

EJB
HTTP
JSP

Servlet

JDBC

EJBHTTP
JSP

Servlet

JDBC

EJB
HTTP
JSP

Servlet

F
ir

e
w

a
ll

WebLogic Server
Cluster

205.20.xxx.100:7001
205.20.yyy.1

00:7001

205.20.yyy.3
00:7001

205.20.yyy.300:7001

205.20.yyy.300:7001

C
li

e
n

t

Object C at

Request Object C at

C

Introduction to BEA WebLogic Server 5-25

5 Planning WebLogic Server Clusters
2. The client performs a JNDI lookup of a pinned object “C” that resides on the
third WebLogic Server instance in the cluster. The stub for object “C” contains
the internal IP address of the server hosting the object, 205.20.yyy.300:7001.

3. When the client attempts to instantiate object “C,” it requests a connection to the
server hosting the object using IP address 205.20.yyy.300:7001. The firewall
denies this connection, because the client has requested a restricted, internal IP
address, rather than the publicly-available address of the server.

If there was no translation between external and internal IP addresses, the firewall
would pose no problems to the client in the above scenario. However, most security
policies involve hiding (and denying access to) internal IP addresses.

To avoid problems in all cases, bind WebLogic Server instances to DNS names and
use the same DNS names both inside and outside of the firewall.

An alternative to using DNS names is to use identical IP addresses inside and outside
of the firewall. However, publicizing IP addresses is not recommended as it may
compromise the security of the web application.
5-26 Introduction to BEA WebLogic Server

6 Administering
WebLogic Clusters

This topic contains the following sections:

� Overview

� Plan Your Cluster Architecture

� Obtain a Cluster License

� Obtain Network Addresses

� Install WebLogic Server

� Define Machine Names

� Create WebLogic Server Instances

� Create a New Cluster

� Configure Replication Groups

� Configure Load Balancing Hardware (Optional)

� Configure Proxy Plug-ins (Optional)

� Deploy Web Applications and EJBs

� Starting a WebLogic Server Cluster
Introduction to BEA WebLogic Server 6-1

6 Administering WebLogic Clusters
Overview

Follow these steps to configure a cluster using WebLogic Server version 6.0:

1. Plan Your Cluster Architecture.

2. Obtain a Cluster License.

3. Obtain Network Addresses.

4. Install WebLogic Server.

5. Define Machine Names.

6. Create WebLogic Server Instances.

7. Create a New Cluster.

8. Configure Replication Groups.

9. Configure Load Balancing Hardware (Optional) or Configure Proxy Plug-ins
(Optional).

10. Deploy Web Applications and EJBs.

Plan Your Cluster Architecture

Read through the Planning WebLogic Server Clusters section to determine the
clustered architecture that best suits your web application. The sections that follow
focus on the recommended architectures described in that section.

If you want to set up a cluster that utilizes a layer of HTTP servers, you will need to
configure those server systems as well as install the corresponding WebLogic Server
proxy plug-ins. See the BEA WebLogic Server Administration Guide for instructions.
6-2 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/adminguide/index.html

Obtain a Cluster License
Obtain a Cluster License

To use WebLogic Server in a clustered configuration, you must have a special cluster
license. Contact your BEA representative for information on obtaining a cluster
license.

Obtain Network Addresses

Before you begin configuring a WebLogic Server cluster, obtain the IP addresses or
DNS names described below.

WebLogic Server DNS names

Each WebLogic Server in the cluster requires a unique IP address or DNS name. To
avoid address translation errors, you should bind individual servers to DNS names
rather than IP addresses if:

� Clients will connect to the cluster through a firewall, or

� You are placing a firewall between a servlet cluster and EJB cluster

The DNS names must be the same both inside and outside the firewall, to avoid
translation errors. An alternative to using DNS names is to use identical IP addresses
both inside and outside of the firewall. However, publicizing IP addresses is not
recommended as it may compromise the security of the web application.

Note: If you bind server instances to DNS names, do not use a DNS name that is the
same as a Windows NT machine that hosts one or more servers. If you bind a
server to the machine’s DNS name, requests may go to the wrong address.
Introduction to BEA WebLogic Server 6-3

6 Administering WebLogic Clusters
Administration Server IP address

All WebLogic Server instances in the same cluster utilize the same administration
server for configuration and monitoring. When you start individual servers that join a
cluster, you must specify the administration server to use.

If you have not already done so, obtains the name and IP address of the administration
server you will use for the cluster.

Cluster Multicast Address

Multiple WebLogic Server version 6.0 clusters can share a dedicated IP multicast
address. It is important that no other applications utilize the cluster’s multicast.

If you are setting up the Recommended Multi-tier Architecture with a firewall between
the clusters, you will need two dedicated multicast addresses: one for the presentation
(servlet) cluster and one for the object cluster. Using two multicast addresses ensures
that the firewall does not interfere with cluster communication.

Cluster DNS Name

In a production environment, client applications should access the cluster using a DNS
name that contains the IP addresses or DNS names of each WebLogic Server instance
in the cluster. Create a new DNS name for your cluster using the addresses you
obtained in WebLogic Server DNS names.

When clients obtain an initial JNDI context by supplying the cluster DNS name,
weblogic.jndi.WLInitialContextFactory obtains the list of all addresses that
are mapped to the DNS name. This list is cached within WebLogic Server, and new
initial context requests are fulfilled using addresses in the cached list with a
round-robin algorithm. If a server in the cached list is unavailable, it is removed from
the list. The address list is refreshed from the DNS service only if WebLogic Server is
unable to reach any address in its cache.

Using a cached list of addresses avoids certain problems with relying on DNS
round-robin alone. For example, DNS round-robin continues using all addresses that
have been mapped to the domain name, regardless of whether or not the addresses are
6-4 Introduction to BEA WebLogic Server

Install WebLogic Server
reachable. By caching the address list, WebLogic Server can remove addresses that are
unreachable, so that connection failures aren’t repeated with new initial context
requests.

Cluster Address List

If you will be using the cluster only for development and testing, you can instead
connect to the cluster using explicit IP addresses. For example, you can provide a
comma-separated list of IP addresses where you would normally use a single IP
address:

192.168.0.50,192.168.0.51,192.168.0.52:7001

Note: Using a comma-separated list is only recommended for developmental use.
For actual client applications, use either a dedicated DNS name or load
balancing hardware to connect to the cluster.

Install WebLogic Server

If you have not already done so, install the WebLogic Server 6.0 product. For
multihomed cluster installations, you can install a single WebLogic Server distribution
under the /bea directory to use for all clustered instances. For remote, networked
machines, perform the installation on each WebLogic Server host.

Installations for clustered WebLogic Server instances must also have a valid cluster
license. See Obtain a Cluster License for more details.

Note: Do not use a shared filesystem and a single installation to run multiple
WebLogic Server instances on separate machines. Using a shared filesystem
introduces a single point of contention for the cluster. All servers must
compete to access the filesystem (and possibly to write individual log files).
Moreover, should the shared filesystem fail, you may be unable to start
clustered servers.
Introduction to BEA WebLogic Server 6-5

6 Administering WebLogic Clusters
Define Machine Names

WebLogic Server version 6.0 uses configured machine names to determine whether or
not two server instances reside on the same physical hardware. Machine names are
generally used with multihomed machines that host WebLogic Server instances. If you
do not define machine names for such installations, each instance is treated as if it
reside on separate physical hardware. This can negatively affect the selection of
servers to host secondary HTTP session state replicas, as described in Using
Replication Groups.

Before creating new WebLogic Server instances, use the following instructions to
define the names of individual machines that will host the server instances:

1. Boot the administration server for your system. See Administration Server for
more information.

2. Start the administration console using the instructions in Starting the
Administration Console.

3. Select the Machines node.

4. Select Create a new Machine... to define a Windows NT machine, or select
Create a new UNIX Machine...

5. Type in a unique name for the new machine in the Name attribute field.

6. Click Create to create the new machine definition.

7. If you wish to configure other attributes for a new UNIX server, refer to the
online help for the administration console.

8. Repeat these steps for each machine that will host one or more WebLogic Server
instances in the cluster.
6-6 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/adminguide/config.html#config_009

Create WebLogic Server Instances
Create WebLogic Server Instances

Before servers can join a cluster, you must create new definitions for each server
instance using the WebLogic Server administration console. Follow these steps:

1. Boot the administration server for your system. See Administration Server for
more information.

2. Start the administration console using the instructions in Starting the
Administration Console.

3. Select the Servers node.

4. Select Create a new Server...

5. Type in values for the following attribute fields:

� Name: Enter a name to use for this server in the Administration Console.
You will use this name in the startup command to indicate which server you
are booting.

� Listen Port: Enter the port number used to connect to this server. All servers
in a given cluster must use the same port number.

� Listen Address: Enter the DNS name or IP address to bind to this server.

6. For the Machine attribute, select the machine on which the new server resides.
The Machine attribute lists all machine names that you created in Define
Machine Names.

7. Click Create to create the new server configuration.

8. If you wish to configure other attributes of the new server, refer to Server
Configuration Tasks.

9. Repeat these steps for each WebLogic Server that will participate in the cluster.
Introduction to BEA WebLogic Server 6-7

http://e-docs.bea.com/wls/docs60/adminguide/config.html#config_009
http://e-docs.bea.com/wls/docs60/adminguide/config.html#config_006
http://e-docs.bea.com/wls/docs60/adminguide/config.html#config_006

6 Administering WebLogic Clusters
Create a New Cluster

After you have created the individual WebLogic Server instances, follow these steps
to configure a new cluster:

1. Open the Administration Console.

2. Select the Clusters node.

3. Select Create a new Cluster...

4. Type in values for the following attribute fields:

� Name: Enter the name to use for this cluster in the Administration Console.
You will use this name to assign membership to the cluster and configure
other cluster attributes.

� Cluster Address: Enter the DNS name (containing the IP addresses or DNS
names of all individual WebLogic Server instances in the cluster) to use for
the cluster.

� Default Load Algorithm: Type in the default load algorithm to use for this
cluster, or accept the default.

5. Click Create to create the new cluster configuration.

6. Select the Multicast tab.

7. Type in the cluster’s multicast address in the Multicast Address attribute field.

8. Apply the changes.

Configure Replication Groups

If your cluster will host servlets or stateful session EJBs, you may want to create
replication groups of WebLogic Server instances to host the session state replicas. To
do so, follow the instructions in Cluster Configuration Tasks to determine which
servers should participate in each replication group, and to determine each server’s
preferred replication group.
6-8 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/adminguide/config.html#config_005

Configure Load Balancing Hardware (Optional)
To configure replication groups for a WebLogic Server instance:

1. Open the Administration Console.

2. Select the Servers node.

3. Select the server to configure.

4. Select the Cluster tab.

5. Type in values for the following attribute fields:

� Replication Group: Enter the replication group name to which this server
belongs.

� Preferred Secondary Group: Enter the name of the replication group you
would like to use to host replicated HTTP session states for this server.

6. Apply the changes.

Configure Load Balancing Hardware
(Optional)

If you are using a hardware load balancing solution with HTTP session state
replication, you must configure your load balancer to support WebLogic Server
session cookies. The configuration steps depend on the type of persistence cookie
persistence mechanism used on the load balancing hardware. The following table
shows possible configurations.

Persistence Type

Active Cookie Persistence Passive Cookie Persistence

Load Balancer
Overwrites
Cookie

Load Balancer Inserts
Additional Cookie

Not supported No configuration required Specify offset and differentiator
Introduction to BEA WebLogic Server 6-9

6 Administering WebLogic Clusters
Using Active Cookie Persistence

WebLogic Server clusters doe not support active cookie persistence mechanisms that
overwrite or in any way modify the WebLogic HTTP session cookie.

If the load balancer’s active cookie persistence mechanism works by adding its own
cookie to the client session, no additional configuration is required to use the load
balancer with a WebLogic Server cluster.

Using Passive Cookie Persistence

If a load balancer uses passive cookie persistence, it can use a differentiator string in
the WebLogic session cookie to associate a client with the server hosting its primary
HTTP session state. The basic format of a cookie written for HTTP session state
replication is:

To configure your load balancer, identify the differentiator by specifying its offset (53
bytes) and length (19 bytes) on the load balancing hardware.

Note: The default session ID length is 52 bytes. If you change the ID length in the
<session-descriptor> element, make sure you specify the correct offset value
when configuring your load balancer. The correct offset equals the ID length
plus 1 byte for the delimiter character.

Session ID Delimiter

(52 Bytes) (1 Byte)

Differentiator . . .
6-10 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor

Configure Proxy Plug-ins (Optional)
Configure Proxy Plug-ins (Optional)

If you are using web servers with WebLogic proxy plug-ins (or the
HttpClusterServlet) to access the cluster, use the instructions in the
Administration Guide to configure your proxy software. Keep in mind that all web
servers that proxy requests to the cluster must be configured identically.

Deploy Web Applications and EJBs

Use the instructions in Deploying and Configuring Web Applications to deploy your
web application and/or EJBs to the cluster. When you select a target for the application
or EJB make sure you use the cluster name you specified in Create a New Cluster,
rather than individual WebLogic Server instances in the cluster. Using the cluster name
ensures that the application or EJB is deployed homogeneously throughout the cluster.

Clustered objects in WebLogic Server version 6.0 must be deployed homogeneously.
If the object contains a replica-aware stub, use the Administration Console to deploy
it using the cluster name. Otherwise, deploy non replica-aware (“pinned”) objects only
to individual servers.

The Administration Console automates deploying replica-aware objects to clusters.
When you deploy an application or object to a cluster, the Administration Console
automatically deploys it to all members of the cluster (whether they are local to the
Administration Server machine or they reside on remote machines).

Starting a WebLogic Server Cluster

To start a WebLogic Server instance that participates in a cluster, you use the same
procedure as you would for starting any managed server. You simply identify the
administration server the instance should use. All configuration information for the
server is obtained from the config.xml file associated with the administration server.
Introduction to BEA WebLogic Server 6-11

http://e-docs.bea.com/wls/docs60/adminguide/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

6 Administering WebLogic Clusters
The basic process for starting up a cluster is:

1. Start the administration console for the domain in which the cluster resides. See
Administration Server for more information.

2. Start individual, clustered servers instances as managed WebLogic Servers. For
example:

% java -ms64m -mx64m -classpath $CLASSPATH
-Dweblogic.Domain=mydomain -Dweblogic.Name=clusterServer1
-Djava.security.policy==/bea/weblogic600/lib/weblogic.policy
-Dweblogic.management.server=192.168.0.101:7001
-Dweblogic.management.username=system
-Dweblogic.management.password=systemPassword weblogic.Server

The server’s cluster configuration is stored by the administration server, so you
do not need to explicitly include address binding or multicast information in the
command line. You do, however, need to specify:

� weblogic.Name, to identify the clustered instance you want to start.

� weblogic.management.server, to identify the host and port number of the
administration server that stores the clustered instance’s configuration.

� weblogic.management.username, to specify a username to connect to the
administration server.

� weblogic.management.password, to specify the user’s password.

See Starting a WebLogic Managed Server for more details.
6-12 Introduction to BEA WebLogic Server

http://e-docs.bea.com/wls/docs60/adminguide/config.html#config_009
http://e-docs.bea.com/wls/docs60/adminguide/startstop.html#StartingManagedServer

Applying Service Packs
A Troubleshooting
Common Problems

This topic contains the following sections:

� Applying Service Packs

� Collecting Diagnostic Information

� Addressing Common Problems

Applying Service Packs

If you experience cluster-related problems with WebLogic Server, try applying the
latest service pack for your release before contacting BEA Technical Support. The
latest service packs may address cluster-related problems. This is especially true for
problems related to cluster deadlocking scenarios in early versions of WebLogic
Server 4.5 and 5.1.

See WebLogic Server Updates for more information about obtaining and installing
WebLogic Server service packs.
Introduction to BEA WebLogic Server A-1

http://commerce.beasys.com/downloads/weblogic_server.jsp#wlsupdates

A Troubleshooting Common Problems
Collecting Diagnostic Information

Before contacting BEA Technical Support for help with cluster-related problems,
follow the steps in this section to collect the required diagnostic information for your
system. The primary diagnostic information for cluster-related problems is a log file
that contains multiple thread dumps (if applicable) from the clustered server. This log
file can be helpful in diagnosing a variety of cluster-related problems, but it is
especially important for addressing problems related to cluster “freezes” and
deadlocks.

Note: If you experience a cluster problem that involves a deadlock between server
instances or otherwise causes your cluster to “hang,” a log file that contains
multiple thread dumps is a prerequisite for diagnosing your problem.

To create the required log file, follow these steps:

1. Remove or back up any log files you may currently have. In practice you should
create a new log file each time you boot a WebLogic Server instance, rather than
append new sessions to a historical log file.

2. Turn on verbose Garbage Collection (GC) output for your Java VM when you
start WebLogic Server. See the next step for an example command-line.

3. Redirect both the standard error and standard output to a log file. Doing so places
thread dump information in the proper context with WebLogic Server
informational and error messages, and provides a more useful log for diagnostic
purposes. For example:

% java -ms64m -mx64m -verbosegc -classpath $CLASSPATH
-Dweblogic.domain=mydomain -Dweblogic.Name=clusterServer1
-Djava.security.policy==/bea/weblogic600/lib/weblogic.policy
-Dweblogic.admin.host=192.168.0.101:7001
-Dweblogic.management.username=system
-Dweblogic.management.password=systemPassword weblogic.Server >>
logfile.txt

4. Continue running the WebLogic Server cluster until you have reproduced the
problem.
A-2 Introduction to BEA WebLogic Server

Addressing Common Problems
5. For server hangs, use kill -3 or <Ctrl>-<Break> to create the necessary
threads dumps for diagnosing your problem. Make sure the log file contains
multiple thread dumps on each server, with distinct intervals between thread
dumps.

Providing Diagnostics to BEA Technical Support

After you have created a diagnostic log file (with thread dumps, if applicable), use the
following guidelines when providing information to your BEA Technical Support
representative:

1. Compress the log file using an operating system compression utility:

% tar czf logfile.tar logfile.txt

2. Append the compressed log file to an e-mail message to your Technical Support
representative.

Note: Always include the compressed log file as an attachment to the message. Do
not cut and paste the log file into the body of the e-mail.

3. If the compressed log file is too large to attach to an e-mail message, you can use
the BEA Customer Support FTP site.

Addressing Common Problems

The following sections provide solutions to common cluster-related problems. They
also provide information for how to diagnose non-specific problems, such as poor
cluster performance.
Introduction to BEA WebLogic Server A-3

A Troubleshooting Common Problems
Tuning Connection Timeouts

WebLogic proxy plug-ins do not use connection pooling to access clusters in the
presentation tier. If you use a two-tier cluster, each request that a proxy plug-in makes
to the servlet/JSP cluster opens an IP socket. After the client closes the socket, the
socket remains open on the WebLogic Server for the configured timeout period.

On most systems, the default timeout period is too long to support the numerous, brief
socket connections used by clients of a web application. If you have a large number of
users accessing your cluster via a proxy plug-in, you may find that the system
frequently has a large number of open (but inactive) sockets waiting to timeout.

The timeout period for sockets is determined by the IP implementation of your
operating system. There are no WebLogic Server-specific configuration parameters
that affect socket timeouts. To reduce the length of time that inactive client sockets
remain opened, reduce the IP timeout value for the operating system that hosts the
WebLogic Server cluster. The applicable configuration parameters are:

� TIME_WAIT for SunOs

� tcp_time_wait_interval for Windows NT

Server Fails to Join a Cluster

There are several reasons why a WebLogic Server does not join a cluster on startup,
including general network availability and WebLogic-specific configuration
problems. Use this checklist to check your configuration and startup process.

1. Check your command-line parameters for typos, misspellings, etc.

2. Verify that there are no physical problems with your network connection.
Network connections can be verified using the dbping utilities discussed in
Testing Connections.

3. Verify that no other application is using the cluster multicast address.

4. Run the utils.MulticastTest utility to verify that multicast is working.

Other items which require troubleshooting include general configuration errors and
communications errors, such as:
A-4 Introduction to BEA WebLogic Server

Addressing Common Problems
1. Incompatible version numbers. All WebLogic Servers in the cluster must be the
same version. If a server attempts to join a cluster with a WebLogic Server whose
version does not match the other servers in the cluster, an error message will be
generated.

2. Unable to find a license for clustering. Your WebLogic license does not
include the clustering feature. Contact your sales representative.

3. Unable to send service announcement. This could indicate a general network
problem, or a misconfigured DNS. Clustered servers communicate among
themselves over multicast and must share the same (exclusive) multicast address.

4. Cannot set default clusterAddress properties value. This could mean that
another server with the same IP address has already joined the cluster. Check to
make sure you do not have duplicate IP addresses assigned to multiple machines.

5. Unable to create a multicast socket for clustering, Multicast socket send
error, or Multicast socket receive error. These communications errors are most
likely caused by an incorrect or bad multicast address.

Note that each operating system has specific configuration requirements for
configuring multicast; you should check your operating system documentation
for help in correcting this error.
Introduction to BEA WebLogic Server A-5

A Troubleshooting Common Problems
A-6 Introduction to BEA WebLogic Server

How to Use the API
B The WebLogic
Cluster API

This topic contains the following sections:

� How to Use the API

How to Use the API

The WebLogic Cluster public API is contained in a single interface,
weblogic.rmi.extensions.CallRouter.

Class java.lang.Object
Interface weblogic.rmi.extensions.CallRouter

(extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to
enable parameter-based routing. Run rmic on the service implementation using these
options (to be entered on one line):

$ java weblogic.rmic -clusterable -callRouter
<callRouterClass> <remoteObjectClass>

The call router is called by the clusterable stub each time a remote method is invoked.
The router is responsible for returning the name of the server to which the call should
be routed.
Introduction to BEA WebLogic Server B-1

B The WebLogic Cluster API
Each server in the cluster is uniquely identified by its name as defined with the
WebLogic Server administration console. These are the names that the method router
must use for identifying servers.

Example: Consider the ExampleImpl class which implements a remote interface
Example, with one method foo:

public class ExampleImpl implements Example {
public void foo(String arg) { return arg; }

}

This CallRouter implementation ExampleRouter ensures that all foo calls with
‘arg’ < “n” go to server1 (or server3 if server1 is unreachable) and that all calls with
‘arg’ >= “n” go to server2 (or server3 if server2 is unreachable).

public class ExampleRouter implements CallRouter {
private static final String[] aToM = { "server1", "server3" };
private static final String[] nToZ = { "server2", "server3" };

public String[] getServerList(Method m, Object[] params) {
if (m.GetName().equals("foo")) {
if (((String)params[0]).charAt(0) < 'n') {
return aToM;

} else {
return nToZ;

}
} else {
return null;

}
}

}

This rmic call associates the ExampleRouter with ExampleImpl to enable
parameter-based routing:

$ rmic -clusterable -callRouter ExampleRouter ExampleImpl
B-2 Introduction to BEA WebLogic Server

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Introduction to WebLogic Server Clustering
	2. Cluster Features and Infrastructure
	3. Understanding HTTP Session State Replication
	4. Understanding Object Clustering
	5. Planning WebLogic Server Clusters
	6. Administering WebLogic Clusters
	A. Troubleshooting Common Problems
	B. The WebLogic Cluster API

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic Server Clustering
	What Is a Product Version: Cluster?
	What Services Are Clustered?
	HTTP Session States
	EJBs and RMI objects
	JDBC Connections
	JMS
	Non-clustered Services and APIs

	New Cluster Features in WebLogic Server Version 6.0
	Integrated Support for Load Balancing Hardware
	Stateful session EJB Clustering
	Clustered JMS
	HTTP Session State Replication Changes

	Administration Changes in WebLogic Server Version 6.0
	Multicast Message Changes
	Homogeneous Deployment
	Administration Server Configuration

	2 Cluster Features and Infrastructure
	Overview
	Server Communication in a Cluster
	One-to-Many Communication Using IP Multicast
	Implications for Cluster Planning and Configuration
	Multicast Requirements for WAN Clustering
	Firewalls Can Break Multicast Communication
	Use an Exclusive Multicast Address for WebLogic Server Clusters
	If Multicast Storms Occur

	Peer-to-Peer Communication Using IP Sockets
	Pure-Java Versus Native Socket Reader Implementations
	Configuring Native Sockets
	1. Open the Administration Console.
	2. Select the Servers node.
	3. Select the server to configure.
	4. Select the Tuning tab.
	5. Check the Enable Native IO box.
	6. Apply the changes.

	Configuring Reader Threads for Java Socket Implementation
	Determining Potential Socket Usage
	Setting the Number of Reader Threads
	1. Open the Administration Console.
	2. Select the Servers node.
	3. Select the server to configure.
	4. Select the Tuning tab.
	5. Edit the percentage of Java reader threads in the Socket Readers attribute field. The number o...
	6. Apply the changes.

	Client Communication via Sockets

	Cluster-Wide JNDI Naming Service
	Creating the Cluster-Wide JNDI Tree
	Handling JNDI Naming Conflicts
	Homogeneous Deployment

	Updating the JNDI Tree
	Client Interaction with the Cluster-wide JNDI Tree

	Load Balancing of Clustered Services
	Load Balancing for HTTP Session States
	Load Balancing for Clustered Objects
	Round-Robin (Default)
	Weight-Based
	Random

	Using Parameter-based Routing for Clustered Objects

	Failover Support for Clustered Services
	How WebLogic Server Detects Failures
	Failure Detection Using IP Sockets
	The WebLogic Server “Heartbeat”

	Failover for Clustered Servlets and JSPs
	Failover for Clustered Objects
	Idempotent Objects
	Other Failover Exceptions

	3 Understanding HTTP Session State Replication
	Overview
	Requirements for HTTP Session State Replication
	Proxy Requirements
	Load Balancer Requirements
	Session Requirements
	Session Data Must Be Serializable
	Use setAttribute() to Change Session State
	Consider Serialization Overhead for Session Objects
	Applications Using Frames Must Coordinate Session Access

	Configuring In-Memory HTTP Replication in a Cluster
	Using Replication Groups
	Accessing Clustered Servlets and JSPs Using a Proxy
	Using URL Re-writing to Track Session Replicas
	Proxy Failover Procedure

	Accessing Clustered Servlets and JSPs with Load Balancing Hardware
	1. The client’s connection request is routed to a WebLogic Server cluster via load balancing hard...
	2. WebLogic Server A acts as the primary host of the clients servlet session state. It uses the r...
	3. The client is instructed to record the location of WebLogic Servers A and B in a local cookie....
	4. As the client makes further requests to the cluster, the load balancer uses an identifier in t...
	Failover with Load Balancing Hardware
	1. The load balancing hardware uses its configured policies to direct the request to an available...
	2. When the client connects to WebLogic Server C, the server uses the information in the client’s...
	3. WebLogic Server C becomes the new host for the client’s primary session state, and WebLogic Se...

	4 Understanding Object Clustering
	Overview
	Replica-aware Stubs
	Clustered EJBs
	EJB Home Stubs
	Stateless EJBs
	Stateful EJBs
	Entity EJBs

	Clustered RMI Objects
	Stateful Session Bean Replication
	Replicating EJB State Changes
	Failover for Stateful Session EJBs

	Optimization for Collocated Objects
	Transactional Collocation

	5 Planning WebLogic Server Clusters
	Overview
	Capacity Planning
	WebLogic Servers on Multi-CPU machines

	Definition of Terms
	Web Application “Tiers”
	Web Tier
	Presentation Tier
	Object Tier

	De-Militarized Zone (DMZ)
	Load Balancer
	Proxy Plug-In

	Recommended Basic Cluster
	Planning By Dividing Application Tiers
	Recommended Multi-tier Architecture
	Physical Hardware and Software Layers
	Web/Presentation Layer
	Object Layer

	Benefits of Multi-tier Architecture
	Load Balancing for Clustered Object Calls
	1. An HTTP client connects to one of several WebLogic Server instances in the web/servlet cluster...
	2. The client accesses a servlet hosted on the WebLogic Server cluster.
	3. The servlet acts as a client to clustered objects required by the web application. In the exam...
	4. When the servlet accesses the bean’s methods, it uses the load-balancing logic present in the ...

	Configuration Notes for Multi-tier Architecture
	Limitations of Multi-tier Architecture
	Firewall Restrictions

	Recommended Proxy Architectures
	Two-tier Proxy Architecture
	Physical Hardware and Software Layers
	Web Layer
	Servlet/Object Layer

	Multi-tier Proxy Architecture
	Proxy Architecture Trade-offs
	Proxy Plug-in Versus Load Balancer

	Administration Server for Cluster Architectures
	Notes: The administration server need not participate in your cluster. You can use an “independen...

	Security Options for Cluster Architectures
	Basic Firewall for Proxy Architectures
	DMZ with Basic Firewall Configurations
	Combining Firewall with Load Balancer
	Expanding the Firewall for Internal Clients

	Additional Security for Shared Databases
	DMZ with Two Firewall Configuration

	Firewall Considerations for Clusters
	1. The client initiates contact with the WebLogic Server cluster by requesting a connection to th...
	2. The client performs a JNDI lookup of a pinned object “C” that resides on the third WebLogic Se...
	3. When the client attempts to instantiate object “C,” it requests a connection to the server hos...

	6 Administering WebLogic Clusters
	Overview
	1. Plan Your Cluster Architecture.
	2. Obtain a Cluster License.
	3. Obtain Network Addresses.
	4. Install WebLogic Server.
	5. Define Machine Names.
	6. Create WebLogic Server Instances.
	7. Create a New Cluster.
	8. Configure Replication Groups.
	9. Configure Load Balancing Hardware (Optional) or Configure Proxy Plug-ins (Optional).
	10. Deploy Web Applications and EJBs.

	Plan Your Cluster Architecture
	Obtain a Cluster License
	Obtain Network Addresses
	WebLogic Server DNS names
	Administration Server IP address
	Cluster Multicast Address
	Cluster DNS Name
	Cluster Address List

	Install WebLogic Server
	Define Machine Names
	1. Boot the administration server for your system. See Administration Server for more information.
	2. Start the administration console using the instructions in Starting the Administration Console.
	3. Select the Machines node.
	4. Select Create a new Machine... to define a Windows NT machine, or select Create a new UNIX Mac...
	5. Type in a unique name for the new machine in the Name attribute field.
	6. Click Create to create the new machine definition.
	7. If you wish to configure other attributes for a new UNIX server, refer to the online help for ...
	8. Repeat these steps for each machine that will host one or more WebLogic Server instances in th...

	Create WebLogic Server Instances
	1. Boot the administration server for your system. See Administration Server for more information.
	2. Start the administration console using the instructions in Starting the Administration Console.
	3. Select the Servers node.
	4. Select Create a new Server...
	5. Type in values for the following attribute fields:
	6. For the Machine attribute, select the machine on which the new server resides. The Machine att...
	7. Click Create to create the new server configuration.
	8. If you wish to configure other attributes of the new server, refer to Server Configuration Tasks.
	9. Repeat these steps for each WebLogic Server that will participate in the cluster.

	Create a New Cluster
	1. Open the Administration Console.
	2. Select the Clusters node.
	3. Select Create a new Cluster...
	4. Type in values for the following attribute fields:
	5. Click Create to create the new cluster configuration.
	6. Select the Multicast tab.
	7. Type in the cluster’s multicast address in the Multicast Address attribute field.
	8. Apply the changes.

	Configure Replication Groups
	1. Open the Administration Console.
	2. Select the Servers node.
	3. Select the server to configure.
	4. Select the Cluster tab.
	5. Type in values for the following attribute fields:
	6. Apply the changes.

	Configure Load Balancing Hardware (Optional)
	Using Active Cookie Persistence
	Using Passive Cookie Persistence

	Configure Proxy Plug-ins (Optional)
	Deploy Web Applications and EJBs
	Starting a WebLogic Server Cluster
	1. Start the administration console for the domain in which the cluster resides. See Administrati...
	2. Start individual, clustered servers instances as managed WebLogic Servers. For example:

	A Troubleshooting Common Problems
	Applying Service Packs
	Collecting Diagnostic Information
	1. Remove or back up any log files you may currently have. In practice you should create a new lo...
	2. Turn on verbose Garbage Collection (GC) output for your Java VM when you start WebLogic Server...
	3. Redirect both the standard error and standard output to a log file. Doing so places thread dum...
	4. Continue running the WebLogic Server cluster until you have reproduced the problem.
	5. For server hangs, use kill -3 or <Ctrl>-<Break> to create the necessary threads dumps for diag...
	Providing Diagnostics to BEA Technical Support
	1. Compress the log file using an operating system compression utility:
	2. Append the compressed log file to an e-mail message to your Technical Support representative.
	3. If the compressed log file is too large to attach to an e-mail message, you can use the BEA Cu...

	Addressing Common Problems
	Tuning Connection Timeouts
	Server Fails to Join a Cluster
	1. Check your command-line parameters for typos, misspellings, etc.
	2. Verify that there are no physical problems with your network connection. Network connections c...
	3. Verify that no other application is using the cluster multicast address.
	4. Run the utils.MulticastTest utility to verify that multicast is working.
	1. Incompatible version numbers. All WebLogic Servers in the cluster must be the same version. If...
	2. Unable to find a license for clustering. Your WebLogic license does not include the clustering...
	3. Unable to send service announcement. This could indicate a general network problem, or a misco...
	4. Cannot set default clusterAddress properties value. This could mean that another server with t...
	5. Unable to create a multicast socket for clustering, Multicast socket send error, or Multicast ...

	B The WebLogic Cluster API
	How to Use the API

