
WebLogic Server
Programming 

B E A  W e b L o g i c  S e r v e r  6 . 0
D o c u m e n t  D a t e :  M a r c h  2 0 ,  2 0 0 1

BEA 

WebLogic JDBC 



Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Programming WebLogic JDBC

Part Number Document Date Software Version

N/A March 20, 2001 BEA WebLogic Server Version 6.0



Contents

Restricted Rights Legend................................................................ ii

Trademarks or Service Marks......................................................... ii

About This Document
Audience............................................................................................................. xii

e-docs Web Site.................................................................................................. xii

How to Print the Document................................................................................ xii

Related Information........................................................................................... xiii

Contact Us! ........................................................................................................ xiii

Documentation Conventions ............................................................................. xiv

1. Introduction to WebLogic JDBC
Overview of JDBC ............................................................................................ 1-2

Overview of JDBC Drivers ............................................................................... 1-2

Types of JDBC Drivers .............................................................................. 1-2

Table of Drivers ......................................................................................... 1-3

Description of JDBC Drivers ............................................................................ 1-4

WebLogic Server JDBC Two-Tier Drivers ............................................... 1-4

WebLogic jDriver for Oracle .............................................................. 1-4

WebLogic jDriver for Microsoft SQL Server..................................... 1-4

WebLogic jDriver for Informix .......................................................... 1-4

WebLogic Server JDBC Multitier Drivers................................................. 1-5

WebLogic Pool Driver ........................................................................ 1-5

WebLogic RMI Driver........................................................................ 1-5

WebLogic JTS Driver ......................................................................... 1-5

Third-Party Drivers .................................................................................... 1-5

Cloudscape .......................................................................................... 1-6
Programming WebLogic JDBC -iii



Sybase jConnect Driver....................................................................... 1-6

Oracle Thin Driver .............................................................................. 1-6

Overview of Connection Pools.......................................................................... 1-6

Using Connection Pools with Server-side Applications ............................ 1-7

Using Connection Pools with Client-side Applications ............................. 1-8

Overview of MultiPools .................................................................................... 1-8

Choosing the MultiPool Algorithm............................................................ 1-8

Overview of Clustered JDBC ............................................................................ 1-9

Overview of DataSources .................................................................................. 1-9

JDBC API .......................................................................................................... 1-9

WebLogic JDBC Class Definitions.......................................................... 1-10

JDBC 2.0 ......................................................................................................... 1-11

Limitations................................................................................................ 1-11

Platforms.......................................................................................................... 1-11

2. Administration and Configuration for WebLogic JDBC
Configuring JDBC............................................................................................. 2-1

Configuring Connection Pools ................................................................... 2-2

Configuring MultiPools.............................................................................. 2-2

Configuring DataSources ........................................................................... 2-2

Monitoring JDBC Connectivity......................................................................... 2-3

3. Performance Tuning Your JDBC Application
Overview of JDBC Performance ....................................................................... 3-1

WebLogic Performance-Enhancing Features .................................................... 3-1

How Connection Pools Enhance Performance........................................... 3-2

Caching Data .............................................................................................. 3-2

Designing Your Application For Best Performance......................................... 3-3

1. Process as Much Data as Possible Inside the Database.......................... 3-3

2. Use Built-in DBMS Set-based Processing ............................................. 3-4

3. Make Your Queries Smart...................................................................... 3-4

4. Make Transactions Single-batch ............................................................ 3-6

5. Never Have a DBMS Transaction Span User Input ............................... 3-7

6. Use In-place Updates.............................................................................. 3-8

7. Keep Operational Data Sets Small ......................................................... 3-8
-iv Programming WebLogic JDBC



8. Use Pipelining and Parallelism .............................................................. 3-8

4. Configuring WebLogic JDBC Features
Using DataSources ............................................................................................ 4-1

DataSource Import Statements................................................................... 4-1

Setting Up WebLogic Server to Use a DataSource.................................... 4-2

Obtaining a Client Connection Using a DataSource.................................. 4-2

Code Examples........................................................................................... 4-3

Using Connection Pools .................................................................................... 4-3

Creating a Connection Pool at Startup ....................................................... 4-4

Properties ............................................................................................ 4-4

Creating a Connection Pool Dynamically .................................................. 4-6

Managing Connection Pools ..................................................................... 4-8

Retrieving information About a Pool.................................................. 4-8

Disabling a Connection Pool............................................................... 4-9

Shrinking a Connection Pool .............................................................. 4-9

Shutting Down a Connection Pool.................................................... 4-10

Resetting a Pool ................................................................................ 4-10

Using MultiPools............................................................................................. 4-11

MultiPool Features ................................................................................... 4-11

Choosing the MultiPool Algorithm.......................................................... 4-12

Backup Pool ...................................................................................... 4-12

Load Balancing ................................................................................. 4-12

Guidelines to Setting Wait For Connection Times .................................. 4-12

Messages and Error Conditions................................................................ 4-13

SQL Warnings................................................................................... 4-13

Capacity Issues.................................................................................. 4-13

5. Using WebLogic Multitier JDBC Drivers
Overview of WebLogic Multitier Drivers......................................................... 5-1

Using the WebLogic RMI Driver...................................................................... 5-2

Limitations When Using the WebLogic RMI Driver................................. 5-2

Setting up WebLogic Server to Use the WebLogic RMI Driver ............... 5-3

Setting up the Client to Use the WebLogic Server .................................... 5-3

Import the Following Packages: ......................................................... 5-3
Programming WebLogic JDBC -v



Obtain the Client Connection.............................................................. 5-3

Using a JNDI Lookup to Obtain the Connection ................................ 5-4

Using Only the WebLogic RMI Driver to Obtain the Connection ..... 5-5

Using the WebLogic JTS Driver ....................................................................... 5-5

Implementing with the JTS Driver ............................................................. 5-6

Using the WebLogic Pool Driver ..................................................................... 5-8

6. Using Third-Party Drivers with WebLogic Server
Overview of Third-Party JDBC Drivers............................................................ 6-1

Using the Third-Party Drivers ........................................................................... 6-2

Limitations.................................................................................................. 6-2

Setting the Environment for Your Third-Party Driver ...................................... 6-2

CLASSPATH for Third-Party Driver on Windows NT...................... 6-3

CLASSPATH for Third-Party Driver on Unix ................................... 6-3

Getting a Connection with Your Third-Party Driver......................................... 6-3

Using Connection Pools With a Third-Party Driver .................................. 6-3

Create the Connection Pool and DataSource ...................................... 6-3

Using a JNDI Lookup to Obtain the Connection ................................ 6-4

Setting a Direct Connection........................................................................ 6-5

Create the Connection Pool................................................................. 6-5

Setting a Direct Connection Using the Oracle Thin Driver ................ 6-5

Setting a Direct Connection Using the Sybase jConnect Driver......... 6-6

7. Migrating JDBC
T3 API Deprecated ............................................................................................ 7-1

JDBC Package Name Change ........................................................................... 7-1

8. Using dbKona
Introduction to dbKona...................................................................................... 8-1

dbKona in a Multitier Configuration................................................... 8-1

How dbKona and a JDBC Driver interact........................................... 8-2

How dbKona and WebLogic Events Can interact .............................. 8-2

The dbKona Architecture ........................................................................... 8-2

The dbKona API ................................................................................................ 8-3

The dbKona API Reference........................................................................ 8-3

The dbKona Objects and Their Classes...................................................... 8-4
-vi Programming WebLogic JDBC



Data Container Objects in dbKona ..................................................... 8-5

DataSet ................................................................................................ 8-5

QueryDataSet ...................................................................................... 8-6

TableDataSet ....................................................................................... 8-6

EventfulTableDataSet ......................................................................... 8-9

Record ............................................................................................... 8-10

Value ................................................................................................. 8-11

Data Description Objects In dbKona ................................................ 8-12

Schema .............................................................................................. 8-12

Column.............................................................................................. 8-13

KeyDef .............................................................................................. 8-13

SelectStmt ......................................................................................... 8-14

Miscellaneous Objects in dbKona..................................................... 8-14

Exceptions......................................................................................... 8-14

Constants ........................................................................................... 8-15

Entity Relationships......................................................................................... 8-15

Inheritance Relationships .................................................................. 8-15

Possession Relationships................................................................... 8-16

Implementing With dbKona ............................................................................ 8-16

Accessing a DBMS With dbKona............................................................ 8-16

Step 1. Importing packages ............................................................... 8-16

Step 2. Setting Properties For Making a Connection........................ 8-17

Step 3. Making a Connection to the DBMS...................................... 8-17

Preparing a Query, Retrieving, and Displaying Data............................... 8-18

Step 1. Setting Parameters for Data Retrieval................................... 8-18

Step 2. Creating a DataSet for the Query Results ............................. 8-19

Step 3. Fetching the Results .............................................................. 8-20

Step 4. Examining a TableDataSet’s Schema................................... 8-21

Step 5. Examining the Data with htmlKona ..................................... 8-21

Step 6. Displaying the Results with htmlKona ................................. 8-22

Step 7. Closing the DataSet and the Connection .............................. 8-22

Using a SelectStmt Object To Form a Query........................................... 8-25

Step 1. Setting SelectStmt Parameters .............................................. 8-25

Step 2. Using QBE to Refine the Parameters.................................... 8-26

Modifying DBMS Data With a SQL Statement....................................... 8-26
Programming WebLogic JDBC -vii



Step 1. Writing SQL Statements ....................................................... 8-26

Step 2. Executing Each SQL Statement ............................................ 8-27

Step 3. Displaying the Results with htmlKona ................................. 8-27

Modifying DBMS Data With a KeyDef................................................... 8-31

Step 1. Creating a KeyDef and Building Its Attributes..................... 8-31

Step 2. Creating a TableDataSet with a KeyDef............................... 8-31

Step 3. Inserting a Record into the TableDataSet ............................. 8-32

Step 4. Updating a Record In the TableDataSet................................ 8-32

Step 5. Deleting a Record from the TableDataSet ............................ 8-33

Step 6. More on Saving the TableDataSet ........................................ 8-33

Step 7. Verifying the changes ........................................................... 8-34

Code Summary.................................................................................. 8-35

Using a JDBC PreparedStatement with dbKona...................................... 8-36

Using Stored Procedures With dbKona.................................................... 8-37

Step 1. Creating a Stored Procedure.................................................. 8-38

Step 2. Examining the Results........................................................... 8-38

Using Byte Arrays For Images and Audio ............................................... 8-39

Step 1. Retrieving and Displaying Image Data ................................. 8-39

Step 2. Inserting An Image Into a Database...................................... 8-40

Using dbKona For Oracle Sequences....................................................... 8-40

Constructing a dbKona Sequence Object.......................................... 8-40

Creating and Destroying Sequences on an Oracle Server from dbKona .
8-41

Using a Sequence .............................................................................. 8-41

Code Summary.................................................................................. 8-41

9. Testing JDBC Connections and Troubleshooting
Testing Connections .......................................................................................... 9-1

Validating a DBMS Connection from the Command Line ........................ 9-1

Troubleshooting JDBC ...................................................................................... 9-8

Troubleshooting JDBC Connections.......................................................... 9-8

UNIX users.......................................................................................... 9-8

WinNT................................................................................................. 9-8

SEGVs with JDBC and Oracle Databases......................................................... 9-8

Out-of-Memory Errors ............................................................................... 9-9
-viii Programming WebLogic JDBC



Codeset Support ....................................................................................... 9-10

Other Problems with Oracle on UNIX..................................................... 9-10

Thread-related Problems on UNIX .......................................................... 9-10

Closing JDBC Objects ............................................................................. 9-11

Troubleshooting Problems with Shared Libraries on UNIX........................... 9-12

WebLogic jDriver for Oracle ................................................................... 9-13

Solaris....................................................................................................... 9-13

HP-UX...................................................................................................... 9-13
Programming WebLogic JDBC -ix



-x Programming WebLogic JDBC



About This Document

This document describes how to use JDBC services with WebLogic Server™.

The document is organized as follows:

� Chapter 1, “Introduction to WebLogic JDBC,” introduces the JDBC components
and JDBC API.

� Chapter 2, “Administration and Configuration for WebLogic JDBC,” describes
how to administer JDBC in the WebLogic Server and describes the
Administration Console.

� Chapter 3, “Performance Tuning Your JDBC Application,” describes how to
obtain the best performance from JDBC applications.

� Chapter 4, “Configuring WebLogic JDBC Features,” describes how to use JDBC
components with WebLogic Server Java applications.

� Chapter 5, “Using WebLogic Multitier JDBC Drivers,” describes how to set up
your WebLogic RMI driver and JDBC clients to use with WebLogic Server.

� Chapter 6, “Using Third-Party Drivers with WebLogic Server,” describes how to
set up third-party drivers to use with WebLogic Server.

� Chapter 7, “Migrating JDBC,” defines migration and upgrade issues specific to
JDBC.

� Chapter 8, “Using dbKona,” describes the dbKona classes that provide
high-level database connectivity to Java applications.

� Chapter 9, “Testing JDBC Connections and Troubleshooting,” describes
troubleshooting tips when using JDBC with WebLogic Server.
Programming WebLogic JDBC xi



Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
xii Programming WebLogic JDBC

http://www.adobe.com


Related Information 

The BEA corporate Web site provides all documentation for WebLogic Server.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
Programming WebLogic JDBC xiii

mailto:docsupport@bea.com
http://www.bea.com


Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and filenames and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[ ] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
xiv Programming WebLogic JDBC



| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic JDBC xv



xvi Programming WebLogic JDBC



CHAPTER
1 Introduction to 
WebLogic JDBC

This topic includes the following sections:

� Overview of JDBC

� Overview of JDBC Drivers

� Description of JDBC Drivers

� Overview of Connection Pools

� Overview of MultiPools

� Overview of Clustered JDBC

� Overview of DataSources

� JDBC API

� JDBC 2.0

� Platforms
Programming WebLogic JDBC 1-1



1 Introduction to WebLogic JDBC
Overview of JDBC

JDBC is a Java API for executing SQL statements. The API consists of a set of classes
and interfaces written in the Java programming language. JDBC provides a standard
API for tool/database developers and makes it possible to write database applications
using a pure Java API.

JDBC is a low-level interface, which means that it is used to invoke (or call) SQL
commands directly. In addition, JDBC is a base upon which to build higher-level
interfaces and tools, such as JMS and EJB.

Overview of JDBC Drivers

JDBC drivers implement the interfaces and classes of the JDBC API. BEA provides a
variety of options for database access using the JDBC API specification. These options
include two-tier JDBC drivers, including WebLogic jDrivers for the Oracle, Microsoft
SQL Server, and Informix database management systems (DBMS), and multitier
drivers that work with WebLogic Server as an intermediary between a client
application and the DBMS.

Types of JDBC Drivers

WebLogic Server uses the following types of JDBC drivers that work in conjunction
with each other to provide database access:

� Two-tier drivers that provide database access directly between a java application
and the database. WebLogic Server uses a DBMS vendor-specific JDBC driver
to connect to a back-end database, such as the WebLogic jDrivers for Oracle,
Informix and Microsoft SQL Server.

� Multitier drivers that provide vendor-neutral database access. A Java client
application can use a multitier driver to access any database configured in
WebLogic server. BEA offers three multitier drivers—RMI, Pool, and JTS.
1-2 Programming WebLogic JDBC



Overview of JDBC Drivers
The middle tier architecture allows you to manage database resources centrally in
WebLogic Server. The vendor-neutral multitier JDBC drivers makes it easier to adapt
purchased components to your DBMS environment and to write more portable code.

Table of Drivers

The following table summarizes the drivers that WebLogic Server uses.

Table 1-1 JDBC Drivers

Driver
Tier

Type and
Name of Driver

Database
Connectivity

Documentation Sources

Two-tier
(non-XA)

Type 2 (native .dll):

� WebLogic jDriver for Oracle

� Third-party drivers

Type 4 (all Java)

� WebLogic jDrivers for
Informix and Microsoft SQL
Server

� Third-party drivers,
including:
Oracle Thin
Sybase jConnect DB2
Informix JDBC

Between WebLogic
Server and DBMS

Programming WebLogic JDBC

Administration Guide, “Managing
JDBC Connectivity”

Two-tier

(XA)

Type 2 (native .dll)

� WebLogic jDriver for Oracle
XA

Between WebLogic
Server and DBMS in
distributed transactions.

Programming WebLogic JTA

Administration Guide,”Managing
JDBC Connectivity”

Multitier Type 3

� RMI Driver

� Pool Driver

� JTS

Between client and
WebLogic Server. The
RMI driver replaces the
deprecated t3 driver. The
JTS driver is used in
distributed transactions.

Programming WebLogic JDBC
Programming WebLogic JDBC 1-3



1 Introduction to WebLogic JDBC
Description of JDBC Drivers

The following sections describe in detail the JDBC drivers introduced in Table 1-1
JDBC Drivers.

WebLogic Server JDBC Two-Tier Drivers

The following section describes Type 2 BEA drivers used with WebLogic Server to
connect to the vendor-specific DBMS:

WebLogic jDriver for Oracle

BEA’s Type 2 JDBC driver for Oracle, WebLogic jDriver for Oracle, is included with
the WebLogic Server distribution. This driver requires an Oracle client installation.
The WebLogic jDriver for Oracle XA driver extends the WebLogic jDriver for Oracle
for distributed transactions. For additional information, see Installing and Using
WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs60oracle/index.html.

WebLogic jDriver for Microsoft SQL Server

BEA’s WebLogic jDriver for Microsoft SQL Server, included in the WebLogic Server
Version 6.0 distribution, is a pure-java, Type 4 JDBC driver that provides connectivity
to Microsoft SQL Server. For more information, see Installing and Using WebLogic
jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html.

WebLogic jDriver for Informix

BEA’s WebLogic jDriver for Informix, included in the WebLogic Server Version 6.0
distribution, is a pure-java, two-tier, Type 4 JDBC driver that provides connectivity to
the Informix DBMS. You can download this driver from the BEA web site. For more
information, see Installing and Using WebLogic jDriver for Informix at
http://e-docs.bea.com/wls/docs60/informix4/index.html.
1-4 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs60/oracle/index.html
http://e-docs.bea.com/wls/docs60/oracle/index.html
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs60/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs60/informix4/index.html


Description of JDBC Drivers
WebLogic Server JDBC Multitier Drivers

The following sections describe the WebLogic multitier JDBC drivers that provide
database access to the client. For more information on these drivers, see Using
WebLogic Multitier Drivers in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs60/jdbc/rmidriver.html.

WebLogic Pool Driver

The WebLogic Pool driver enables utilization of connection pools from server-side
applications such as HTTP servlets or EJBs.

WebLogic RMI Driver

The WebLogic RMI driver is a multitier, Type 3, Java Data Base Connectivity (JDBC)
driver that runs in WebLogic Server and can be used with any two-tier JDBC driver to
provide database access. Additionally, when configured in a cluster of WebLogic
Servers, the WebLogic RMI driver can be used for clustered JDBC, allowing JDBC
clients the benefits of load balancing and fail-over provided by WebLogic Clusters.

WebLogic JTS Driver

The WebLogic JTS driver is a multitier, Type 3, JDBC driver used in distributed
transactions across multiple servers with one database instance. The JTS driver is more
efficient than the WebLogic jDriver for Oracle XA driver when working with only one
database instance because it avoids two-phase commit.

Third-Party Drivers

WebLogic Server works with third-party JDBC drivers that offer the following
functionality:

� Are thread-safe

� Are EJB accessible; can implement transaction calls in JDBC
Programming WebLogic JDBC 1-5

http://e-docs.bea.com/wls/docs60/jdbc/rmidriver.html
http://e-docs.bea.com/wls/docs60/jdbc/rmidriver.html


1 Introduction to WebLogic JDBC
In addition, WebLogic Server multitier drivers only support JDBC API and third-party
drivers that provide functionality beyond non-standard JDBC calls.

Cloudscape

An evaluation copy of this pure-java DBMS from Cloudscape is included with your
WebLogic Server distribution. A JDBC driver to access the Cloudscape DBMS is also
included. This DBMS is used extensively in the code examples that are also included
in the distribution. You may use this DBMS for testing and development if you do not
have another DBMS available. There are limitations on the quantity of data that may
be stored using this evaluation version.

For additional information, see Using the Cloudscape Database with WebLogic.

Sybase jConnect Driver

The two-tier Sybase jConnect Type 4 driver is bundled with your WebLogic Server
distribution. This driver is provided for your use without charge. For information on
using this driver with WebLogic Server, see “Using Third-Party Drivers with
WebLogic Server” on page 6-1 of Programming WebLogic JDBC.

Oracle Thin Driver

The two-tier Oracle Thin Type 4 driver provides connectivity from WebLogic Server
to Oracle DBMS. For information on using this driver with WebLogic Server, see
“Using Third-Party Drivers with WebLogic Server” on page 6-1 of Programming
WebLogic JDBC.

Overview of Connection Pools

Multitier drivers use WebLogic Server to access connection pools that provide
ready-to-use pools of connections to your DBMS. Since these database connections
are already established when the connection pool starts up, the overhead of
establishing database connections is eliminated. You can utilize connection pools from
server-side applications such as HTTP servlets or EJBs using the WebLogic Pool
driver or from stand-alone Java client applications using the WebLogic RMI driver.
1-6 Programming WebLogic JDBC



Overview of Connection Pools
Connection pools require a two-tier JDBC driver to make the connection from
WebLogic Server to the DBMS. This two-tier driver can be one of the WebLogic
jDrivers or a third-party JDBC driver, such as the Sybase jConnect driver, which is
bundled with the WebLogic distribution.The following table summarizes the
advantages to using connection pools.

Using Connection Pools with Server-side Applications

Use the following guidelines for selecting a driver:

� For database access from server-side applications, such as HTTP servlets, use
the WebLogic Pool driver.

Table 1-2 Advantages to Using Connection Pools

Connection pools provide
these advantages. . .

With this functionality . . .

save time, low overhead Making a DMBS connection is very slow. With
connection pools, connections are established and
available to users. The alternative is for application
code to make its own JDBC connections as needed.
A DBMS runs faster with dedicated
connections than if it has to handle incoming
connection attempts at runtime.

manage DMBS users Allows you to manage the number of concurrent
DBMS on your system. This is important if you have
a licensing limitation for DBMS connections, or a
resource concern.

Your application does not need to know of or
transmit the DMBS user name, password and DMBS
location.

allow use of the DBMS
persistence option

If you use the DBMS persistence option with some
APIs like EJBs, pools are mandatory so WebLogic
Server controls the JDBC connection. This ensures
your EJB transactions are committed or rolled back
correctly and completely.
Programming WebLogic JDBC 1-7



1 Introduction to WebLogic JDBC
� For two-phase commit transactions, with more than one resource manager and
database instance, use the WebLogic jDriver for Oracle/XA.

� For two-phase commit transactions, with only one resource manager and
database instance, use the JTS driver.

Using Connection Pools with Client-side Applications

BEA offers the RMI driver for client-side, multitier JDBC. The RMI driver has the
advantage of providing a standards-based approach using the Java Two Enterprise
Edition (J2EE) specifications. For new deployments, BEA recommends that you use
the RMI driver, because the t3 client services are deprecated in this release.

The WebLogic RMI driver is a Type 3, multitier JDBC driver that uses RMI and a
DataSource object to create database connections. This driver also provides for
clustered JDBC, leveraging the load balancing and failover features of WebLogic
Clusters. DataSource objects may be defined to enable transactional support or not.

Overview of MultiPools

Relevant only in single-server configurations, JDBC Multipools provide backup pools
and load balancing to enhance database connectivity. MultiPools are a “pool of pools”
that allow a configurable algorithm for choosing among its list of pools, the pool that
will be selected to provide the connection. MultiPools do not apply to multiple-server
configurations.

Choosing the MultiPool Algorithm

You have the option of setting up a MultiPool in either of these ways:

� Backup Pools, in which the connection pools are set up as an ordered list and
used sequentially.
1-8 Programming WebLogic JDBC



Overview of Clustered JDBC
� Load Balancing, in which all listed pools are accessed using a round-robin
scheme.

Overview of Clustered JDBC 

Relevant only in multitier configurations, clustered JDBC allows external JDBC
clients to reconnect and restart their JDBC connection without changing the
connection parameters, in case a serving cluster member fails. Clustered JDBC
requires DataSource Objects and the WebLogic RMI driver to connect to the DBMS.
DataSource objects are defined for each WebLogic Server using the Administration
Console.

Overview of DataSources

DataSource objects provide a way for JDBC clients to obtain a DBMS connection. A
DataSource is an interface between the client program and the connection pool. Each
data source requires a separate DataSource object, which may be implemented as a
DataSource class that supports either connection pooling or distributed transactions.

JDBC API

To create a JDBC application, use the java.sql API. The API allows you to create the
class objects necessary to establish a connection with a data source, send queries and
update statements to the data source, and process the results.
Programming WebLogic JDBC 1-9



1 Introduction to WebLogic JDBC
WebLogic JDBC Class Definitions

The following table lists JDBC classes frequently used with WebLogic Server. For a
complete description of all JDBC classes, see the java.sql or weblogic.jdbc
javadoc.

JDBC Class Description

Driver Sets up a connection between a driver and a database, and
also gives information about the driver or information
about making a connection to the database.The interface
that every driver class must implement.

DataSource Represents a particular DBMS or other data source. Used
to establish a connection with a data source.

Statement Sends simple SQL statements, with no parameters, to a
database.

PreparedStatement Inherits from Statement. Used to execute a pre-compiled
SQL statement with or without IN parameters.

CallableStatement Inherits from PreparedStatement. Used to execute a call to
a database stored procedure; adds methods for dealing
with OUT parameters.

ResultSet Contains the results of executing an SQL query. It
contains the rows that satisfy the conditions of the query.

ResultSetMetaData Provides information about the types and properties of the
columns in a ResultSet object.

DataBaseMetaData Provides information about a database as a whole. Returns
either single values or a result set.

Clobs A built-in type that stores a Character Large Object as a
column value in a row of a database table.

Blobs A built-in type that stores a Binary Large Object as a
column value in a row of a database table.
1-10 Programming WebLogic JDBC

http://java.sun.com/products//jdk/1.2/docs/api/java/sql/package-summary.html


JDBC 2.0
For information about these classes when using WebLogic jDriver for Oracle, see
Installing and Using WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs60/oracle/index.html.

JDBC 2.0

WebLogic Server uses JDK 1.3, which supports JDBC 2.0. See Limitations for
functionality that WebLogic Server does not support.

Limitations

Please be aware of the following limitations:

� You cannot use Batch updates (addBatch()) with the callableStatement or

preparedStatement SQL statements when using the RMI driver in
conjunction with the WebLogic jDriver for Oracle or third-party 2-Tier drivers.

� You cannot use BLOBs and CLOBs when using the RMI driver in conjunction
with the WebLogic jDriver for Oracle or third-party 2-Tier drivers. BLOBs and
CLOBs are not serializable and, therefore, are not supported with the JDBC RMI
Driver used with WebLogic 6.0.

Platforms

Supported platforms vary by vendor-specific DBMSs and drivers. For current
information, see BEA WebLogic Server Platform Support at
http://e-docs.bea.com/wls/platforms/index.html.
Programming WebLogic JDBC 1-11

http://e-docs.bea.com/wls/docs60/oracle/index.html
http://e-docs.bea.com/wls/docs60/oracle/index.html
http://e-docs.bea.com/wls/platforms/index.html


1 Introduction to WebLogic JDBC
1-12 Programming WebLogic JDBC



CHAPTER
2 Administration and 
Configuration for 
WebLogic JDBC

This topic includes the following sections:

� Configuring JDBC

� Monitoring JDBC Connectivity

This section provides an overview of the JDBC administrative tasks related to BEA
WebLogic Server. For general information on configuration tasks, see Managing
JDBC Connectivity in the Administration Guide. For information on specific
configuration attributes and procedures, see the JDBC topic in WebLogic Console
Online Help.

Before attempting to configure any JDBC drivers, be sure that the JDBC driver classes
or zip files are in the WebLogic Server classpath for those drivers.

Configuring JDBC

The WebLogic Console provides the interface you use to enable, configure, and
monitor features of the WebLogic Server, including JDBC. To invoke the
Administration Console, refer to the procedures described Configuring WebLogic
Servers and Clusters. The attributes define the JDBC environment that includes:
Programming WebLogic JDBC 2-1



2 Administration and Configuration for WebLogic JDBC
� Connection Pools

� MultiPools

� DataSources

Configuring Connection Pools

Before starting WebLogic Server, you use the Administration Console to configure the
connection pool, which includes defining the attributes and connection parameters,
cloning pools, and assigning connection pools to a server or domain.

Configuring MultiPools

You define, or name, a MultiPool in the Administration Console and then determine
which of the previously defined connection pools will constitute a specific MultiPool.
All of the connections in a particular connection pool are identical, that is, they are
attached to a single database with the same user, password and connection properties.
With MultiPools, however, the connection pools within a MultiPool may be associated
with different DBMSs. You have the option of setting the search methodology by
selecting either the back-up pool or the high availability algorithm behavior.

Configuring DataSources

As with Connection Pools and MultiPools, you create the DataSource objects in the
Administration Console. DataSource objects can be defined with or without
transaction services. For DataSource objects with transaction services, see Managing
JTA in the Administration Guide.
2-2 Programming WebLogic JDBC



Monitoring JDBC Connectivity
Monitoring JDBC Connectivity

The Administration Console provides tables and statistics to enable monitoring the
connectivity parameters for each of the sub-components, Connection Pools,
MultiPools and DataSources.
Programming WebLogic JDBC 2-3



2 Administration and Configuration for WebLogic JDBC
2-4 Programming WebLogic JDBC



CHAPTER
3 Performance Tuning 
Your JDBC Application

The following topics explain how to get the most out of your applications:

� Overview of JDBC Performance

� WebLogic Performance-Enhancing Features

� Designing Your Application For Best Performance

Overview of JDBC Performance

The concepts involved with Java, JDBC, and DBMS processing are new to many
programmers. As Java becomes more widely used, database access and database
applications will become increasingly easy to implement. This document provides
some tips on how to obtain the best performance from JDBC applications.

WebLogic Performance-Enhancing Features 

WebLogic has several features that enhance performance for JDBC applications.
Programming WebLogic JDBC 3-1



3 Performance Tuning Your JDBC Application
How Connection Pools Enhance Performance

Establishing a JDBC connection with a DBMS can be very slow. If your application
requires database connections that are repeatedly opened and closed, this can become
a significant performance issue. WebLogic connection pools offer an efficient solution
to this problem.

When WebLogic Server starts, connections from the connection pools are opened and
are available to all clients. When a client closes a connection from a connection pool,
the connection is returned to the pool and becomes available for other clients; the
connection itself is not closed. There is little cost to opening and closing pool
connections.

How many connections should you create in the pool? A connection pool can grow and
shrink according to configured parameters, between a minimum and a maximum
number of connections. The best performance will always be when the connection pool
has as many connections as there are concurrent users.

Caching Data 

DBMS access uses considerable resources. If your program accesses frequently used
data that can be shared among applications or can persist between connections, you can
cach the data by using the following:

� Read-Only Entity Beans at
http://e-docs.bea.com/wls/docs60/ejb/EJB_environment.html

� JNDI in a Clustered Environment at
http://e-docs.bea.com/wls/docs60/jndi/jndi.html
3-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs60/jndi/jndi.html


Designing Your Application For Best Performance
 Designing Your Application For Best 
Performance 

The large majority of the performance to be gained or lost in a DBMS application is
not in the application language, but in how the application is designed. The number and
location of clients, size and structure of DBMS tables and indexes, and the number and
types of queries all affect application performance.

Below are general hints that apply to all DBMSs. It is also important to be familiar with
the performance documentation of the specific DBMS that you use in your application.

1. Process as Much Data as Possible Inside the Database 

Most serious performance problems in DBMS applications come from moving raw
data around needlessly, whether it is across the network or just in and out of cache in
the DBMS. A good method for minimizing this waste is to put your logic where the
data is -- in the DBMS, not in the client -- even if the client is running on the same box
as the DBMS. In fact, for some DBMSs a fat client and a fat DBMS sharing one CPU
is a performance disaster.

Most DBMSs provide stored procedures, an ideal tool for putting your logic where
your data is. There is a significant difference in performance between a client that calls
a stored procedure to update 10 rows, and another client that fetches those rows, alters
them, and sends update statements to save the changes to the DBMS.

You should also review the DBMS documentation on managing cache memory in the
DBMS. Some DBMSs (Sybase, for example) provide the means to partition the virtual
memory allotted to the DBMS, and to guarantee certain objects exclusive use of some
fixed areas of cache. This means that an important table or index can be read once from
disk and remain available to all clients without having to access the disk again.
Programming WebLogic JDBC 3-3



3 Performance Tuning Your JDBC Application
2. Use Built-in DBMS Set-based Processing 

SQL is a set processing language. DBMSs are designed from the ground up to do
set-based processing. Accessing a database one row at a time is, without exception,
slower than set-based processing and, on some DBMSs is poorly implemented. For
example, it will always be faster to update each of four tables one at a time for all the
hundred employees represented in the tables than to alter each table 100 times, once
for each employee.

Understanding set-based methodology can be very useful. Many complicated
processes that were originally thought too complex to do any other way but
row-at-a-time have been rewritten using set-based processing, resulting in improved
performance. For example, a major payroll application was converted from a huge
slow COBOL application to four stored procedures running in series, and what took
hours on a multi-CPU machine now takes fifteen minutes with many fewer resources
used.

3. Make Your Queries Smart 

Frequently customers ask how to tell how many rows will be coming back in a given
result set. This is a valid question, but there is no easy answer. The only way to find
out without fetching all the rows is by issuing the same query using the count keyword:

SELECT count(*) from myTable, yourTable where ...

This returns the number of rows the original query would have returned. The actual
count may change when the query is issued if there has been any other DBMS activity
which alters the relevant data.

You should be aware, however, that this is a resource-intensive operation. Depending
on the original query, the DBMS will have to perform nearly as much work to count
the rows as it will to send them.

Your application should tailor its queries to be as specific as possible about what data
it actually wants. Tricks include first selecting into temporary tables, returning only the
count, and then sending a refined second query to return only a subset of the rows in
the temporary table.
3-4 Programming WebLogic JDBC



Designing Your Application For Best Performance
Learning to select only the data you really want at the client is crucial. Some
applications ported from ISAM will unnecessarily send a query selecting all the rows
in a table when only the first few rows are really wanted. Some applications use a 'sort
by' clause to get the rows they want to come back first. Database queries like this cause
unnecessary degradation of performance.

Proper use of SQL can avoid these performance problems. For example, if you only
want data about the top 3 earners on the payroll, the proper way to make this query is
with a correlated subquery. First, here is the entire table returned by the SQL statement

select * from payroll

Here a correlated subquery

select p.name, p.salary from payroll p

where 3 >= (select count(*) from payroll pp

where pp.salary >= p.salary);

returns a much smaller result:

Table 3-1 Full Results Returned

Name Salary

Joe 10

Mikes 20

Sam 30

Tom 40

Jan 50

Ann 60

Sue 70

Hal 80

May 80
Programming WebLogic JDBC 3-5



3 Performance Tuning Your JDBC Application
This query returns only 3 rows, with the name and salary of the top 3 earners. It scans
through the payroll table, and for every row, it goes through the whole payroll table
again in an inner loop to see how many salaries are higher than the current row of the
outer scan. This may look complicated, but DBMSs are designed to use SQL
efficiently for this type of operation.

4. Make Transactions Single-batch 

Whenever possible, collect a set of data operations and submit an update transaction in
one statement in the form:

BEGIN TRANSACTION

UPDATE TABLE1...

INSERT INTO TABLE2

DELETE TABLE3

COMMIT

This approach results in better performance than using separate statements and
commits. Even with conditional logic and temporary tables in the batch, it is preferable
because the DBMS will obtain all the locks necessary on the various rows and tables,
and will use them and release them in one step. Using separate statements and commits
results in many more client-to-DBMS transmissions and holds the locks in the DBMS
for much longer. These locks will block out other clients from accessing this data, and,
depending on whether different updates can alter tables in different orders, may cause
deadlocks.

Table 3-2 Results from Subquery

Name Salary

Sue 70

Hal 80

May 80
3-6 Programming WebLogic JDBC



Designing Your Application For Best Performance
Warning: If any individual statement in the above transaction might fail, due, for
instance, to violating a unique key constraint, you should put in conditional SQL logic
to detect any statement failure and rollback the transaction rather than commit. If, in
the above example, the insert failed, most DBMSs will send back an error message
about the failed insert, but will behave as if you got the message between the second
and third statement, and decided to commit anyway! Microsoft SQL Server has a nice
connection option enabled by executing the SQL set xact_abort on, which
automatically rolls back the transaction if any statement fails.

5. Never Have a DBMS Transaction Span User Input 

If an application sends a 'BEGIN TRAN' and some SQL which locks rows or tables for
an update, do not write your application so that it must wait on the user to press a key
before committing the transaction. That user may go to lunch first and lock up a whole
DBMS table until he comes back.

If user input is needed to form or complete a transaction, use optimistic locking.
Briefly, optimistic locking employs timestamps and triggers (some DBMSs will
generate these automatically with tables set up for it) in queries and updates. Queries
select data with timestamp values and prepare a transaction based on that data, without
locking the data in a transaction.

When an update transaction is finally defined by the user input, it is sent as a single
submission that includes timestamped safeguards to make sure the data is the same as
originally fetched. A successful transaction will automatically update the relevant
timestamps for changed data. If any interceding update from another client has altered
any of the data on which the current transaction is based, the timestamps will have
changed, and the current transaction will be rejected. Most of the time, no relevant data
has been changed so transactions usually succeed. When one a transaction fails, the
application can refetch the updated data to present to the user to reform the transaction
if desired.

Refer to your DBMS documents for a full description of this technique.
Programming WebLogic JDBC 3-7



3 Performance Tuning Your JDBC Application
6. Use In-place Updates 

Changing a data row in place is much faster than moving a row, which may be required
if the update requires more space than the table design can accommodate. If you design
your rows to have the space they need initially, updates will be faster. The trade-off is
that your table may require more disk space but may run faster. Since disk space is
cheap, using a little more of it can be a worthwhile investment to improve
performance.

7. Keep Operational Data Sets Small 

Some applications store operational data in the same table as historical data. Over time
and with accumulation of this historical data, all operational queries have to read
through lots of useless (on a day-to-day basis) data to get to the more current data.
Move non-current data to other tables and do joins to these tables for the rarer historical
queries. If this can't be done, index and cluster your table so that the most frequently
used data is logically and physically localized.

8. Use Pipelining and Parallelism 

DBMSs are designed to work best when very busy with lots of different things to do.
The worst way to use a DBMS is as dumb file storage for one big single-threaded
application. If you can design your application and data to support lots of parallel
processes working on easily distinguished subsets of the work, your application will
be much faster. If there are multiple steps to processing, try to design your application
so that subsequent steps can start working on the portion of data that any prior process
has finished, instead of having to wait until the prior process is complete. This may not
always be possible, but you can dramatically improve performance by designing your
program with this in mind.
3-8 Programming WebLogic JDBC



CHAPTER
4 Configuring WebLogic 
JDBC Features

This section covers the following JDBC connectivity topics:

� Using DataSources

� Using Connection Pools

� Using MultiPools

Using DataSources

DataSource objects, along with the JNDI, provide access to connection pools for
database connectivity. Each data source requires a separate DataSource object, which
may be implemented as a DataSource class that supports either:

� connection pooling, or

� distributed transactions.

DataSource Import Statements

To use the DataSource objects, import the following classes in your client code:
Programming WebLogic JDBC 4-1



4 Configuring WebLogic JDBC Features
import java.sql.*;
import java.util.*;
import javax.naming.*;

Setting Up WebLogic Server to Use a DataSource

Define the DataSource in the Administration Console. You can define multiple
DataSources that use a single connection pool. This allows you to define both
transaction and non-transaction-enabled DataSource objects that share the same
database.

Obtaining a Client Connection Using a DataSource

To obtain a connection from a JDBC client, use a Java Naming and Directory Interface
(JDNI) look up to locate the DataSource object, as shown in this code fragment:

Context ctx = null;
Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL,

"t3://hostname:port");

try {
ctx = new InitialContext(ht);
javax.sql.DataSource ds
= (javax.sql.DataSource) ctx.lookup ("myJtsDataSource");

java.sql.Connection conn = ds.getConnection();

// You can now use the conn object to create
// Statements and retrieve result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();

// Close the statement and connection objects when you are finished:

stmt.close();
conn.close();

}
catch (NamingException e) {

// a failure occurred
4-2 Programming WebLogic JDBC



Using Connection Pools
}
finally {

try {ctx.close();}
catch (Exception e) {
// a failure occurred

}
}

(Substitute the correct hostname and port number for your WebLogic Server.

Note: The code above use one of several available procedures for obtaining a JNDI
context. For more information on JNDI, see Programming WebLogic JNDI.

Code Examples

See the DataSource code example in the samples/examples/jdbc/datasource
directory of your WebLogic Server installation.

Using Connection Pools

A connection pool is a named group of identical JDBC connections to a database that
are created when the connection pool is registered, usually when starting up WebLogic
Server. Your application “borrows” a connection from the pool, uses it, then returns it
to the pool by closing it. Connection Pools provide numerous performance and
application design advantages:

� Using Connection Pools is far more efficient than creating a new connection for
each client each time they need to access the database.

� You do not need to hard-code details such as the DBMS password in your
application.

� You can limit the number of connections to your DBMS. This can be useful for
managing licensing restrictions on the number of connections to your DBMS.

� You can change the DBMS you are using without changing your application
code.
Programming WebLogic JDBC 4-3



4 Configuring WebLogic JDBC Features
The . There is also an API that you can use to programmatically create connection
pools in a running WebLogic Server.

Creating a Connection Pool at Startup

A startup connection pool is created in the Administration Console. For more
information see Managing JDBC Connectivity in the Administration Guide. The
WebLogic Server opens JDBC connections to the database during the startup process
and adds the connections to the pool.

Properties

To define a specific property for your connection pool, be sure that you duplicate the
exact spelling and case of the property type. You pair these types (keys) along with
their values, shown in the table below, in a java.utilis.Properties object that is
used when creating the pool.

Table 4-1 Connection Pool Properties

Property Type Description Property Value

poolName Required. Unique name of pool. myPool

aclName Required. Identifies the different
access lists within
fileRealm.properties in
the server config directory. Paired
name must be dynaPool.

dynaPool

props Database connection properties;
typically in the format “database
login name; database password;
server network id”.

user=scott;password=tiger;
server=bay816

initialCapacity Initial number of connections in a
pool. If this property is defined and
a positive number > 0, WebLogic
Server creates these connections at
boot time. Default is 0; cannot
exceed maxCapacity.

1

4-4 Programming WebLogic JDBC



Using Connection Pools
maxCapacity Maximum number of connections
allowed in the pool. Default is 1; if
defined, maxCapacity should be
=>1.

10

capacityIncrement Number of connections that can be
added at one time. Default = 0.

1

allowShrinking Indicates whether or not the pool
can shrink when connections are
detected to not be in use.
Default = true.

True

shrinkPeriodMins Interval between shrinking. If
allowShrinking = True,
then default = 15 minutes.

5

driver Required. Name of JDBC drive.
Only local (non-XA) drivers can
participate.

weblogic.jdbc.oci.Driver

url Required. URL of the JDBC
driver.

jdbc:weblogic:oracle

testConnsOnReserve Indicates reserved test
connections. Default = False.

true

testConnsOnRelease Indicates test connections when
they are released. Default = False.

true

testTableName Database table used when testing
connections; must be present for
tests to succeed. Required if either
testConnOnReserve or
testConOnRelease are defined.

myTestTable

refreshPeriod Interval between connection
testing. Must be non-zero if either
testConnOnReserve or
testConOnRelease are defined.

1

Table 4-1 Connection Pool Properties

Property Type Description Property Value
Programming WebLogic JDBC 4-5



4 Configuring WebLogic JDBC Features
Creating a Connection Pool Dynamically 

A JNDI-based API allows you to create a connection pool from within a Java
application. With this API, you can create a connection pool in a WebLogic Server that
is already running.

Dynamic pools can be temporarily disabled, which suspends communication with the
database server through any connection in the pool. When a disabled pool is enabled,
the state of each connection is the same as when the pool was disabled; clients can
continue their database operations right where they left off.

Permissions for creating dynamic connection pools are set in the Administration
Console. For more information see, Managing Security in the Administration
Guide.You can also create ACLs for dynamic connection pools.

You associate an ACL with a dynamic connection pool when you create the connection
pool. The ACL and connection pool are not required to have the same name, and more
than one connection pool can make use of a single ACL. If you do not specify an ACL,
the “system” user is the default administrative user for the pool and any user can use a
connection from the pool.

To create a dynamic connection pool in a Java application, you get an initial JNDI
context to the WebLogic JNDI provider, and then look up
“weblogic.jdbc.common.JdbcServices.” This example shows how this is done:

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

// URL for the WebLogic Server
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, “Fred”);
env.put(Context.SECURITY_CREDENTIALS, “secret”);

Context ctx = new InitialContext(env);

loginDelaySecs Seconds between each login
attempt. Default = 0.

1

Table 4-1 Connection Pool Properties

Property Type Description Property Value
4-6 Programming WebLogic JDBC



Using Connection Pools
// Look up weblogic.jdbc.JdbcServices
weblogic.jdbc.common.JdbcServices jdbc =
(weblogic.jdbc.common.JdbcServices)
ctx.lookup("weblogic.jdbc.JdbcServices");

Once you have loaded weblogic.jdbc.JdbcServices, you pass the
weblogic.jdbc.common.JdbcServices.createPool() method a Properties
object that describes the pool. The Properties object contains the same properties you
use to create a connection pool in the Administration Console, except that the
“aclName” property is specific to dynamic connection pools.

The following example creates a connection pool named “eng2” for the DEMO Oracle
database. The connections log into the database as user “SCOTT” with password
“tiger.” When the pool is created, one database connection is opened. A maximum of
ten connections can be created on this pool. The “aclName” property specifies that the
connection pool will use the “dynapool”.

weblogic.jdbc.common.Pool pool = null;

try {
// Set properties for the Connection Pool.

Properties poolProps = new Properties();

poolProps.put("poolName", "eng2");
poolProps.put("url", "jdbc:weblogic:oracle");
poolProps.put("driver", "weblogic.jdbc.oci.Driver");
poolProps.put("initialCapacity", "1");
poolProps.put("maxCapacity", "10");
poolProps.put("props", "user=SCOTT;

password=tiger;server=DEMO");
poolProps.put("aclName", "dynapool"); // the ACL to use

// Creation fails if there is an existing pool
// with the same name.
jdbc.createPool(poolProps);

}
catch (Exception e) {

system.out.Println("Error creating connection pool eng2.");
}
finally { // close the JNDI context

ctx.close();
}

Programming WebLogic JDBC 4-7



4 Configuring WebLogic JDBC Features
Managing Connection Pools 

The weblogic.jdbc.common.Pool and weblogic.jdbc.common.JdbcServices

interfaces provide methods to manage connection pools and obtain information about
them. Methods are provided for:

� Retrieving information about a pool

� Disabling a connection pool, which prevents clients from obtaining a connection
from it

� Enabling a disabled pool

� Shrinking a pool, which releases unused connections until the pool has reached
the minimum specified pool size

� Refreshing a pool, which closes and reopens its connections

� Shutting down a pool

Retrieving information About a Pool

weblogic.jdbc.common.JdbcServices.poolExists()

weblogic.jdbc.common.Pool.getProperties()

The poolExists() method tests whether a connection pool with a specified name
exists in the WebLogic Server. You can use this method to determine whether a
dynamic connection pool has already been created or to ensure that you select a unique
name for a dynamic connection pool you want to create.

The getProperties() method retrieves the properties for a connection pool.
4-8 Programming WebLogic JDBC



Using Connection Pools
Disabling a Connection Pool

weblogic.jdbc.common.Pool.disableDroppingUsers()

weblogic.jdbc.common.Pool.disableFreezingUsers()

weblogic.jdbc.common.pool.enable()

You can temporarily disable a connection pool, preventing any clients from obtaining
a connection from the pool. Only the “system” user or users granted “admin”
permission by an ACL associated with a connection pool can disable or enable the
pool.

After you call disableFreezingUsers(), clients that currently have a connection
from the pool are suspended. Attempts to communicate with the database server throw
an exception. Clients can, however, close their connections while the connection pool
is disabled; the connections are then returned to the pool and cannot be reserved by
another client until the pool is enabled.

Use disableDroppingUsers() to not only disable the connection pool, but to
destroy the client’s JDBC connection to the pool. Any transaction on the connection is
rolled back and the connection is returned to the connection pool. The client’s JDBC
connection context is no longer valid.

When a pool is enabled after it has been disabled with disableFreezingUsers(),
the JDBC connection states for each in-use connection are exactly as they were when
the connection pool was disabled; clients can continue JDBC operations exactly where
they left off.

You can also use the disable_pool and enable_pool commands of the
weblogic.Admin class to disable and enable a pool.

Shrinking a Connection Pool

weblogic.jdbc.common.Pool.shrink()

A connection pool has a set of properties that define the initial and maximum number
of connections in the pool (initialCapacity and maxCapacity), and the number of
connections added to the pool when all connections are in use (capacityIncrement).
When the pool reaches its maximum capacity, the maximum number of connections
are opened, and they remain opened unless you shrink the pool.

You may want to drop some connections from the connection pool when a peak usage
period has ended, freeing up resources on the WebLogic Server and DBMS.
Programming WebLogic JDBC 4-9



4 Configuring WebLogic JDBC Features
Shutting Down a Connection Pool

weblogic.jdbc.common.Pool.shutdownSoft()

weblogic.jdbc.common.Pool.shutdownHard()

These methods destroy a connection pool. Connections are closed and removed from
the pool and the pool dies when it has no remaining connections. Only the “system”
user or users granted “admin” permission by an ACL associated with a connection pool
can destroy the pool.

The shutdownSoft() method waits for connections to be returned to the pool before
closing them.

The shutdownHard() method kills all connections immediately. Clients using
connections from the pool get exceptions if they attempt to use a connection after
shutdownHard() is called.

You can also use the destroy_pool command of the weblogic.Admin class to
destroy a pool.

Resetting a Pool

weblogic.jdbc.common.Pool.reset()

You can configure a connection pool to test its connections either periodically, or
every time a connection is reserved or released. Allowing the WebLogic Server to
automatically maintain the integrity of pool connections should prevent most DBMS
connection problems. In addition, WebLogic provides methods you can call from an
application to refresh all connections in the pool or a single connection you have
reserved from the pool.

The weblogic.jdbc.common.Pool.reset() method closes and reopens all
allocated connections in a connection pool. This may be necessary after the DBMS has
been restarted, for example. Often when one connection in a connection pool has
failed, all of the connections in the pool are bad.

Use any of the following methods to reset a connection pool:

� Through the Administration Console.

� You can use the weblogic.Admin command (as a user with administrative
privileges) to reset a connection pool, as an administrator. Here is the pattern:
4-10 Programming WebLogic JDBC



Using MultiPools
$ java weblogic.Admin WebLogicURL RESET_POOL poolName system passwd

You might use this method from the command line on an infrequent basis. There
are more efficient programmatic ways that are also discussed here.

� You can use the reset() method from the JdbcServicesDef interface in your
client application.

The last case requires the most work for you, but also gives you flexibility. Here
how to reset a pool using the reset() method:

a. In a try block, test a connection from the connection pool with a SQL statement
that is guaranteed to succeed under any circumstances so long as there is a
working connection to the DBMS. An example is the SQL statement “select 1
from dual” which is guaranteed to succeed for an Oracle DBMS.

b. Catch the SQLException.

c. Call the reset() method in the catch block.

Using MultiPools

If you are using a single WebLogic Server configuration, consider using JDBC
MultiPools for either backup pools or connection pool load balancing. JDBC
Multipools, a new feature in WebLogic Server Version 6.0, are lists of connection
pools used in single WebLogic Server configurations. A MultiPool is a “pool of
pools.” MultiPools contain a configurable algorithm for choosing among its pools, the
connection that is returned to the user.

MultiPool Features

MultiPools are single-server, static lists of connection pools. All the connections in a
particular connection pool are created identically with a single database, single user,
and the same connection attributes; that is, they are attached to a single database.
However, the connection pools within a MultiPool may be associated with different
users or DBMSs.
Programming WebLogic JDBC 4-11



4 Configuring WebLogic JDBC Features
Choosing the MultiPool Algorithm

Before you set up a MultiPool, you need to determine the primary purpose of the
MultiPool--backup pool capability or load balancing. You can choose the algorithm
that corresponds with your requirements:

Note: Capacity is not a failover reason, because users have the right to set capacity.
MultiPools take effect only if loss of database connectivity has occurred.

Backup Pool 

A backup MultiPool is an ordered list of connection pools. Normally, every connection
request to this kind of MultiPool is served by the first pool in the list. If a database
connection via that pool fails, then a connection is sought sequentially from the next
pool on the list.

Load Balancing

Connection requests to a load balancing MultiPool are served from any connection
pool in the list. The pool that is tapped by a connection request is chosen round-robin
from a list of pools.

Guidelines to Setting Wait For Connection Times

Setting wait for connection times is a property of the connection attempt. If you are
familiar with setting waiting time to pool connections, the wait for connection property
applies to every connection tapped in a given connection attempt.

You can add any connection pool to a MultiPool. However, you optimize your
resources depending on how you set the wait for connection time when you configure
your connection pools.
4-12 Programming WebLogic JDBC



Using MultiPools
Messages and Error Conditions

Users may request information regarding the connection pool from which the
connection originated.

SQL Warnings

SQL Warnings are posted to the JDBC log under these circumstances:

� At boot time, when a connection pool is added to a MultiPool

� Whenever there is a switch to a new connection pool within the MultiPool,
either during load balancing or high availability.

Capacity Issues

In a backup pool scenario, the fact that the first pool in the list is busy does not trigger
an attempt to get a connection from a backup pool.
Programming WebLogic JDBC 4-13



4 Configuring WebLogic JDBC Features
4-14 Programming WebLogic JDBC



CHAPTER
5 Using WebLogic 
Multitier JDBC Drivers

The following topics describe how to use multitier JDBC drivers with WebLogic
Server:

� Overview of WebLogic Multitier Drivers

� Using the WebLogic RMI Driver

� Using the WebLogic JTS Driver

� Using the WebLogic Pool Driver

Overview of WebLogic Multitier Drivers

You can access multitier drivers in the following ways:

� New applications. BEA recommends using DataSource objects for new
applications. DataSource objects, along with the JNDI, provide access to
connection pools for database connectivity. Each data source requires a separate
DataSource object, which may be implemented as a DataSource class that
supports either connection pooling, or distributed transactions. For more
information, see Configuring WebLogic JDBC Features

� Existing applications. For existing applications that use the JDBC 1.x API, refer
to the following sections.
Programming WebLogic JDBC 5-1



5 Using WebLogic Multitier JDBC Drivers
Using the WebLogic RMI Driver

The WebLogic RMI driver is a multitier, Type 3, JDBC driver that runs in WebLogic
Server, used with:

� Two-tier JDBC drivers, including drivers in the WebLogic jDriver family, to
provide database access for local transactions

� Two-tier JDBC XA drivers, including the WebLogic jDriver for Oracle/XA, for
distributed transactions

The BEA WebLogic RMI driver operates with WebLogic Server. The DBMS
connection is made by means of the WebLogic Server, a DataSource object, and a
connection pool operating in WebLogic Server.

The DataSource object provides access to RMI driver connections. The connection
parameters are set in the Administration Console. This connection pool is in turn
configured for two-tier JDBC access to a DBMS.

RMI driver clients make their connection to the DBMS by looking up this DataSource
object. This look up is accomplished by using a Java Naming and Directory Service
(JNDI) lookup, or by directly calling the WebLogic Server which performs the JNDI
lookup on behalf of the client.

The RMI driver replaces the functionality of both the WebLogic t3 driver (deprecated
in this release) and the Pool driver, and uses the Java standard Remote Method
Invocation (RMI) to connect to WebLogic Server rather than the proprietary t3
protocol.

Since the details of the RMI implementation are taken care of automatically by the
driver, a knowledge of RMI is not required to use the WebLogic JDBC/RMI driver.

Limitations When Using the WebLogic RMI Driver

Please be aware of the following limitations:

� You cannot use Batch updates (addBatch()) with the callableStatement or

preparedStatement SQL statements when using the RMI driver in
conjunction with the WebLogic jDriver for Oracle or third-party 2-Tier drivers.
5-2 Programming WebLogic JDBC



Using the WebLogic RMI Driver
� You cannot use BLOBs and CLOBs when using the RMI driver in conjunction
with the WebLogic jDriver for Oracle or third-party 2-Tier drivers. BLOBs and
CLOBs are not serializable and, therefore, are not supported with the JDBC RMI
Driver used with WebLogic 6.0.

Setting up WebLogic Server to Use the WebLogic RMI 
Driver

RMI drivers are accessible only through DataSource objects, which are created in the
Administration Console.

Setting up the Client to Use the WebLogic Server

The following steps tell you how to obtain and use the connection.

Import the Following Packages:

javax.sql.DataSource

java.sql.*

java.util.*

javax.naming.*

Obtain the Client Connection

WebLogic JDBC/RMI client obtains its connection to a DBMS from the DataSource
object that was defined in the Administration Console. There are two ways the client
can obtain a DataSource object:

� Using a JNDI lookup. This is the preferred and most direct procedure.

� Passing the DataSource name to the RMI driver with the
Driver.connect()method. In this case, the WebLogic Server performs the
JNDI look up on behalf of the client.
Programming WebLogic JDBC 5-3



5 Using WebLogic Multitier JDBC Drivers
Using a JNDI Lookup to Obtain the Connection

To access the WebLogic RMI driver using JNDI, obtain a Context from the JNDI tree
by looking up the name of your DataSource object. For example, to access a
DataSource called “myDataSource” that is defined in Administration Console:

Context ctx = null;
Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL,

"t3://hostname:port");

try {
ctx = new InitialContext(ht);
javax.sql.DataSource ds
= (javax.sql.DataSource) ctx.lookup ("myDataSource");

java.sql.Connection conn = ds.getConnection();

// You can now use the conn object to create
// a Statement object to execute
// SQL statements and process result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();

// Do not forget to close the statement and connection objects
// when you are finished:

stmt.close();
conn.close();

}
catch (NamingException e) {

// a failure occurred
}
finally {

try {ctx.close();}
catch (Exception e) {
// a failure occurred

}
}

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI
lookup. There are other ways to perform a JNDI look up. For more information, see
Programming WebLogic JNDI at http://e-docs.bea.com/wls/docs60/jndi/index.html.
5-4 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs60/jndi/index.html


Using the WebLogic JTS Driver
Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed
look up and also that the context is closed in a finally block.

Using Only the WebLogic RMI Driver to Obtain the Connection

You can also access the WebLogic Server using the Driver.connect() method, in
which case the JDBC/RMI driver performs the JNDI lookup. To access the WebLogic
Server, pass the parameters defining the URL of your WebLogic Server and the name
of the DataSource object to the Driver.connect() method. For example, to access a
DataSource called “myDataSource” as defined in the Administration Console:

java.sql.Driver myDriver = (java.sql.Driver)
Class.forName("weblogic.jdbc.rmi.Driver").newInstance();

String url ="jdbc:weblogic:rmi";

java.util.Properties props = new java.util.Properties();
props.put("weblogic.server.url", "t3://hostname:port");
props.put("weblogic.jdbc.datasource", "myDataSource");

java.sql.Connection conn = myDriver.connect(url, props);

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)

You can also define the following properties which will be used to set the JNDI user
information:

� weblogic.user — specifies a user name

� weblogic.credential — specifies the password for the weblogic.user.

Using the WebLogic JTS Driver

The Java Transaction Services or JTS driver is a server-side Java Database
Connectivity (JDBC) driver that provides access to both connection pools and SQL
transactions from applications running in WebLogic Server. Connections to a database
are made from a connection pool and use a two-tier JDBC driver running in WebLogic
Server to connect to the Database Management System (DBMS) on behalf of your
application.
Programming WebLogic JDBC 5-5



5 Using WebLogic Multitier JDBC Drivers
Once a transaction is begun, all of the database operations in a execute thread that get
their connection from the same connection pool will share the same connection from
that pool. These operations may be made through services such as Enterprise
JavaBeans (EJB), or Java Messaging Service (JMS), or by directly sending SQL
statements using standard JDBC calls. All of these operations will, by default, share
the same connection and participate in the same transaction.When the transaction is
committed or rolled back, the connection will be returned to the pool.

Although Java clients may not register the JTS driver themselves, they may participate
in transactions via Remote Method Invocation (RMI). You can begin a transaction in
a thread on a client and then have the client call a remote RMI object. The database
operations executed by the remote object will become part of the transaction that was
begun on the client. When the remote object is returned back to the calling client, you
can then commit or roll back the transaction. The database operations executed by the
remote objects must all use the same connection pool to be part of the same transaction.

Implementing with the JTS Driver

To use the JTS driver, you must first use the Administration Console to create a
connection pool in WebLogic Server. For more information, see Connection Pools in
Managing JDBC Connectivity in Administration Guide.

This explanation demonstrates creating and using a JTS transaction from a server-side
application and uses a connection pool named “myConnectionPool.”

1. Import the following classes:

import javax.transaction.UserTransaction;
import java.sql.*;
import javax.naming.*;
import java.util.*;
import weblogic.jndi.*;

2. Establish the transaction by using the UserTransaction class. This class can be
looked up in the Java Naming and Directory Service (JNDI). The
UserTransaction class controls the transaction on the current execute thread.
Note that this class does not represent the transaction itself. The actual context for
the transaction is associated with the current execute thread.

Context ctx = null;
Hashtable env = new Hashtable();
5-6 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html


Using the WebLogic JTS Driver
env.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

// Parameters for the WebLogic Server.
// Substitute the corect hostname, port number
// user name, and password for your environment:
env.put(Context.PROVIDER_URL, "t3://localhost:7001");
env.put(Context.SECURITY_PRINCIPAL, “Fred”);
env.put(Context.SECURITY_CREDENTIALS, “secret”);

ctx = new InitialContext(env);

UserTransaction tx = (UserTransaction)
ctx.lookup("javax.transaction.UserTransaction");

3. Start a transaction on the current thread:

tx.begin();

4. Load the JTS driver

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.jts.Driver").newInstance();

5. Get a connection from the connection pool.

Properties props = new Properties();
props.put("connectionPoolID", "myConnectionPool");

conn = myDriver.connect("jdbc:weblogic:jts", props);

6. Execute your database operations. These operations may be made by any service
that uses a database connection. These include EJB, JMS, or standard JDBC
statements. If these operations use the JTS driver to access the same connection
pool as the transaction begun in step number 3, they will participate in that
transaction.

If the additional database operations using the JTS driver use a different
connection pool than the one specified in step 5, an exception will be thrown
when you try to commit or rollback the transaction.

7. Close your connection objects. Note that closing the connections does not
commit the transaction nor return the connection to the pool:

conn.close();
Programming WebLogic JDBC 5-7



5 Using WebLogic Multitier JDBC Drivers
8. Execute any other database operations. If these operations are made by
connecting to the same connection pool, the operations will use the same
connection from the pool and become part of the same UserTransaction as all
of the other operations in this thread.

9. Complete the transaction by either committing the transaction or rolling it back.
The JTS driver will commit all the transactions on all connection objects in the
current thread and return the connection to the pool.

tx.commit();

// or:

tx.rollback();

 Using the WebLogic Pool Driver

The WebLogic Pool driver enables utilization of connection pools from server-side
applications such as HTTP servlets or EJBs. For information on using the Pool driver,
see Accessing Databases in Programming Tasks of Programming WebLogic HTTP
Servlets.
5-8 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs60/servlet/progtasks.html


CHAPTER
6 Using Third-Party 
Drivers with WebLogic 
Server

This topic discusses these sections regarding third-party JDBC drivers:

� Overview of Third-Party JDBC Drivers

� Using the Third-Party Drivers

� Setting the Environment for Your Third-Party Driver

� Getting a Connection with Your Third-Party Driver

Overview of Third-Party JDBC Drivers

WebLogic Server works with third-party JDBC drivers that offer the following
functionality:

� Are thread-safe

� Are EJB accessible; can implement transaction calls in JDBC

In addition, WebLogic Server multitier drivers only support the JDBC API and do not
support additional functionality. For example, calls to proprietary Oracle methods are
not currently supported, but are planned in a future release.
Programming WebLogic JDBC 6-1



6 Using Third-Party Drivers with WebLogic Server
Using the Third-Party Drivers

This section describes how to set up and use the following third-party two-tier, Type 4
drivers with WebLogic Server:

� Oracle Thin Driver 816

� Sybase jConnect Driver

These drivers are bundled with your WebLogic Server distribution; the
weblogic.jar file contains the Oracle Thin Driver and Sybase jConnect classes. If
you want to use the Oracle Thin Driver 817, it is available as a download from Oracle.
Additional information about these Oracle and Sybase drivers is available at their
respective Web sites.

Limitations

Please be aware of the following limitations:

� You cannot use Batch updates (addBatch()) with the callableStatement or

preparedStatement SQL statements when using the RMI driver in
conjunction with 2-Tier drivers.

� You cannot use BLOBs and CLOBs when using the RMI driver in conjunction
with 2-Tier drivers. BLOBs and CLOBs are not serializable and, therefore, are
not supported with the JDBC RMI Driver used with WebLogic 6.0.

Setting the Environment for Your 
Third-Party Driver

The following topics describe how to set your CLASSPATH for Windows NT and
Unix for the Oracle Thin Driver and Sybase jConnect Driver.
6-2 Programming WebLogic JDBC



Getting a Connection with Your Third-Party Driver
CLASSPATH for Third-Party Driver on Windows NT

Set your CLASSPATH, pre-pending the weblogic.jar file, as follows:

set CLASSPATH=c:\bea\weblogic6.0\lib\weblogic.jar;%CLASSPATH%

Where c:\bea\weblogic6.0 is the directory where you installed WebLogic Server.

CLASSPATH for Third-Party Driver on Unix

Set your CLASSPATH, pre-pending the weblogic.jar file, as follows:

export CLASSPATH=/bea/weblogic6.0/lib/weblogic.jar;$CLASSPATH

Where /bea/weblogic6.0 is the directory where you installed WebLogic Server.

Getting a Connection with Your Third-Party 
Driver

The following topics describe two ways to get a connection using a third-party, Type
4 driver, such as the Oracle Thin Driver and Sybase jConnect Driver. BEA
recommends you use connection pools, data sources, and JNDI Lookup to establish
your connection. As an alternative, you can get a simple connection directly between
the Java client and the database.

Using Connection Pools With a Third-Party Driver

First, you create the connection pool and data source using the Administration
Console, then establish the connection using a JNDI Lookup.

Create the Connection Pool and DataSource

See Managing JDBC Connectivity in the Administration Guide for information on
how to use the Administration Console to:
Programming WebLogic JDBC 6-3

http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html


6 Using Third-Party Drivers with WebLogic Server
� Create a JDBC Connection Pool

� Create a JDBC DataSource

Using a JNDI Lookup to Obtain the Connection

To access the driver using JNDI, obtain a Context from the JNDI tree by providing the
URL of your server, and then use that context object to perform a lookup using the
DataSource Name.

For example, to access a DataSource called “myDataSource” that is defined in
Administration Console:

Context ctx = null;
Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL,

"t3://hostname:port");

try {
ctx = new InitialContext(ht);
javax.sql.DataSource ds
= (javax.sql.DataSource) ctx.lookup ("myDataSource");

java.sql.Connection conn = ds.getConnection();

// You can now use the conn object to create
// a Statement object to execute
// SQL statements and process result sets:

Statement stmt = conn.createStatement();
stmt.execute("select * from someTable");
ResultSet rs = stmt.getResultSet();

// Do not forget to close the statement and connection objects
// when you are finished:

stmt.close();
conn.close();

}
catch (NamingException e) {

// a failure occurred
}
finally {

try {ctx.close();}
catch (Exception e) {
// a failure occurred
6-4 Programming WebLogic JDBC



Getting a Connection with Your Third-Party Driver
}
}

(Where hostname is the name of the machine running your WebLogic Server and
port is the port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the JNDI
lookup. There are other ways to perform a JNDI look up. For more information, see
Programming WebLogic JNDI at http://e-docs.bea.com/wls/docs60/jndi/index.html.

Notice that the JNDI lookup is wrapped in a try/catch block in order to catch a failed
look up and also that the context is closed in a finally block.

Setting a Direct Connection

This simple example shows you how to establish a connection directly between the
java client and the database.

Create the Connection Pool 

Using the Administration Console, do the following:

� Create the Connection Pool

Setting a Direct Connection Using the Oracle Thin Driver

The following example shows how to set a direct connection using the Oracle Thin
Driver.

In the code:

� Set the following properties

Properties props = new Properties();
props.setProperty("user", "scott");
props.setProperty("password", "tiger");
Driver driver = null;
Connection con = null;

� Instantiate the driver:
Programming WebLogic JDBC 6-5

http://e-docs.bea.com/wls/docs60/jndi/index.html


6 Using Third-Party Drivers with WebLogic Server
// ThinDriver driver
driver = (Driver)Class.forName
("oracle.jdbc.driver.OracleDriver").newInstance();

� Make the connection:

// Thin driver connection
con = driver.connect
("jdbc:oracle:thin:@myHost.mydomain.com:1521:DEMO", props);

Setting a Direct Connection Using the Sybase jConnect Driver

The following example shows how to set a direct connection using the Sybase
jConnect Driver.

In the code:

� Set the following properties

Properties props = new Properties();
props.setProperty("user", "myuser");
props.setProperty("password", "mypass");
Driver driver = null;
Connection con = null;

� Instantiate the driver

// Sybase jConnect driver
driver = (Driver)Class.forName
(“com.sybase.jdbc.SybDriver”).newInstance()

� Make the connection

// Sybase jConnect
con = driver.connect

("jdbc:sybase:Tds:myDB@myhost:myport), props);
6-6 Programming WebLogic JDBC



CHAPTER
7 Migrating JDBC

T3 API Deprecated

� The T3 API is being deprecated in WebLogic Server Version 6.0; use the RMI
JDBC driver in its place. (Applies to migrating from WebLogic Server 4.6 also.)

JDBC Package Name Change

� The weblogic.jdbc20.* packages are being replaced with weblogic.jdbc.*

packages. All WebLogic JDBC drivers are now compliant with JDBC 2.0.
Programming WebLogic JDBC 7-1



7 Migrating JDBC
7-2 Programming WebLogic JDBC



CHAPTER
8 Using dbKona

Introduction to dbKona

The dbKona classes provide a set of high-level database connectivity objects that give
Java applications and applets access to databases. dbKona sits on top of the JDBC API
and works with the WebLogic JDBC drivers, or with any other JDBC-compliant
driver.

The dbKona classes provides a higher level of abstraction than JDBC, which deals
with low-level details of managing data. The dbKona classes offer objects that allow
the programmer to view and modify database data in a high-level, vendor-independent
way. A Java application that uses dbKona objects does not need vendor-specific
knowledge about DBMS table structure or field types to retrieve, insert, modify,
delete, or otherwise use data from a database.

dbKona in a Multitier Configuration 

dbKona may also be used in a multitier JDBC implementation consisting of WebLogic
Server and a multitier driver; this configuration requires no client-side libraries. In a
multitier configuration,WebLogic JDBC acts as an access method to the WebLogic
multitier framework. WebLogic uses a single JDBC driver, for example, WebLogic
jDriver for Oracle, to communicate from the WebLogic Server to the DBMS.

dbKona is a natural choice for writing database access programs in a multitier
environment, since with its objects you may write database applications that are
completely vendor independent. dbKona and WebLogic's multitier framework is
particularly suited for applications that want to retrieve data from several
heterogeneous databases for transparent presentation to the user.
Programming WebLogic JDBC 8-1



8 Using dbKona
For more information on WebLogic and the WebLogic JDBC Server, see
Programming WebLogic JDBC at http://e-docs.bea.com/wls/docs60jdbc/index.html.

How dbKona and a JDBC Driver interact 

dbKona depends upon a JDBC driver to provide and maintain a connection to a
DBMS. In order to use dbKona, you must have installed a JDBC driver.

� If you are using the WebLogic jDriver for Oracle native JDBC driver, you
should install the appropriate WebLogic-supplied .dll, .sl, or .so for your
operating system, as described in Installing and Using WebLogic jDriver for
Oracle. at http://e-docs.bea.com/wls/docs60/oracle/install_jdbc.html.

� If you are using a non-WebLogic JDBC driver, you should refer to the
documentation for that JDBC driver.

JavaSoft’s JDBC is a set of interfaces that BEA has implemented to create its jDriver
JDBC drivers. BEA’s JDBC drivers are JDBC implementations of database-specific
drivers for Oracle, Informix, and Microsoft SQL Server. Using database-specific
drivers with dbKona offers the programmer access to all of the functionality of each
specific database, as well as improved performance.

Although the underlying foundation of dbKona uses JDBC for database transactions,
dbKona provides the programmer with higher-level, more convenient access to the
database.

How dbKona and WebLogic Events Can interact 

The dbKona package contains some “eventful” classes that send and receive events
(within WebLogic), using WebLogic events when data is updated locally or in the
DBMS. Check the EventfulTableDataSet examples in the weblogic/examples
directory in the distribution.

The dbKona Architecture 

dbKona uses a high level of abstraction to describe and manipulate data that resides in
a database. Classes in dbKona create and manage objects that retrieve and modify data.
An application can use dbKona objects in a consistent way without any knowledge of
how a particular vendor stores or processes data.
8-2 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs60/jdbc/index.html
http://e-docs.bea.com/wls/docs60/oracle/install_jdbc.html


The dbKona API
At the core of dbKona’s architecture is the concept of a DataSet. A DataSet contains
the results of a query. DataSets allow client-side management of query results. The
programmer can control the entire query result rather than dealing with a single record
at a time.

A DataSet contains Records, and each Record contains one or more Value objects.
A Record is comparable to a database row, and a Value can be compared to a database
cell. Value objects “know” their internal data type as stored in the DBMS, but the
programmer can treat Value objects in a consistent way without having to worry about
vendor-specific internal data types.

Methods from the DataSet class (and its subclasses TableDataSet and
QueryDataSet) provide a high-level, flexible way to navigate through and manipulate
the results of a query. Changes made to a TableDataSet can be saved to the DBMS;
dbKona maintains knowledge of which records have changed and makes a selective
save, which reduces network traffic and DBMS overhead.

dbKona also uses other objects, like SelectStmt and KeyDef to shield the
programmer from vendor-specific SQL. By using methods in these class, the
programmer can have dbKona construct the appropriate SQL, which reduces syntax
errors and does not require a knowledge of vendor-specific SQL. On the other hand,
dbKona also allows the programmer to pass SQL to the DBMS if desired.

The dbKona API 

The following sections describe the dbKona API.

The dbKona API Reference 

Package weblogic.db.jdbc
Package weblogic.db.jdbc.oracle (Oracle-specific extensions)

Class java.lang.Object
Class weblogic.db.jdbc.Column
(implements weblogic.common.internal.Serializable)
Class weblogic.db.jdbc.DataSet
(implements weblogic.common.internal.Serializable)
Programming WebLogic JDBC 8-3



8 Using dbKona
Class weblogic.db.jdbc.QueryDataSet
Class weblogic.db.jdbc.TableDataSet

Class weblogic.db.jdbc.EventfulTableDataSet
(implements weblogic.event.actions.ActionDef)

Class weblogic.db.jdbc.Enums
Class weblogic.db.jdbc.KeyDef
Class weblogic.db.jdbc.Record

Class weblogic.db.jdbc.EventfulRecord
(implements weblogic.common.internal.Serializable)

Class weblogic.db.jdbc.Schema
(implements weblogic.common.internal.Serializable)
Class weblogic.db.jdbc.SelectStmt
Class weblogic.db.jdbc.oracle.Sequence
Class java.lang.Throwable

Class java.lang.Exception
Class weblogic.db.jdbc.DataSetException

Class weblogic.db.jdbc.Value

The dbKona Objects and Their Classes 

Objects in dbKona fall into three categories:

� Data container objects hold data retrieved from or bound for a database, or they
contain other objects that hold data. Data container objects are always associated
with a set of data description objects and a set of session objects. TableDataSet
and Record objects are examples of data container objects.

� Data description objects contain the metadata about data objects, that is, a
description of how the data is structured and typed, and parameters for its
retrieval from the remote DBMS. Every data object or its container is associated
with a set of data description objects. Schema and SelectStmt objects are
examples data description objects.

� Miscellaneous objects store information about errors, provide symbolic
constants, etc.

These broad categories of objects depend upon each other in application building. In a
general way, every data object has a set of descriptive objects associated with it.
8-4 Programming WebLogic JDBC



The dbKona API
Data Container Objects in dbKona  

There are three basic objects that act as data containers: a DataSet (or one of its
subclasses, QueryDataSet or TableDataSet) contains Records. A Record contains
Values.

� DataSet

� QueryDataset

� TableDataSet

� EventfulTableDataSet

� Record

� Value

DataSet 

The dbKona package uses the concept of a DataSet to cache records retrieved from a
DBMS server. It is roughly equivalent to a table in SQL. The DataSet class has two
subclasses, QueryDataSet and TableDataSet.

In the multitier model using the WebLogic Server, DataSets can be saved (cached) on
the WebLogic Server.

� A DataSet is constructed as a QueryDataSet or a TableDataSet to hold the
results of a query or a stored procedure.

� A DataSet’s retrieval parameters are defined by a SQL statement, or by the
dbKona abstraction for SQL statements, a SelectStmt object.

� A Dataset is populated with Records, which contain Values. Records are
accessible by index position (0-origined).

� A DataSet is described by and bound to a Schema, which stores information its
attributes, like column name, data type, size, and order of each database column
represented in the DataSet. Column names in a Schema are accessible by index
position (1-origined).

The DataSet class (see weblogic.db.jdbc.DataSet) is the abstract parent class for
QueryDataSet and TableDataSet.
Programming WebLogic JDBC 8-5



8 Using dbKona
QueryDataSet 

A QueryDataSet makes the results of an SQL query available as a collection of
Records that are accessible by index position (0-origined). Unlike the case with a
TableDataSet, changes and additions to a QueryDataSet cannot be saved into the
database.

There are two functional differences between a QueryDataSet and a TableDataSet:
First, changes made to a TableDataSet can be saved to a database; you can make
changes to Records in a QueryDataSet, but those changes cannot be saved. Second,
you can retrieve data into a QueryDataSet from more than one table.

� A QueryDataSet is constructed in the context of a java.sql.Connection or with
a java.sql.ResultSet; that is, you pass the Connection object as an
argument to the QueryDataSet constructor. A QueryDataSet’s data retrieval
is specified by a SQL query and/or by a SelectStmt object.

� A QueryDataSet is populated with Records (accessible by 0-origined index),
which contain Values (accessible by 1-origined index).

� A QueryDataSet is described by a Schema, which stores information about the
QueryDataSet’s attributes. Attributes include name, data type, size, and order
of each database column represented in the QueryDataSet.

The QueryDataSet class (see weblogic.db.jdbc.QueryDataSet) has methods for
constructing, saving, and retrieving a QueryDataSet. You can specify any SQL for a
QueryDataSet, including SQL for joins. The superclass DataSet contains methods for
managing record caching details.

TableDataSet 

The functional difference between a TableDataSet and a QueryDataSet is that
changes made to a TableDataSet can be saved to a database. With a TableDataSet,
you can update values in Records, add new Records, and mark Records for deletion;
finally, you can save changes to a database, using the save() methods in either the
TableDataSet class to save an entire TableDataSet, or in the Record class to save
a single record. Additionally, the data retrieved into a TableDataSet is, by definition,
from a single database table; you cannot perform joins on database tables to retrieve
data for a TableDataSet.
8-6 Programming WebLogic JDBC



The dbKona API
If you intend to save updates or deletes to a database, you must construct the
TableDataSet with a KeyDef object that specifies a unique key for forming the
WHERE clauses in an UPDATE or DELETE statement. A KeyDef is not necessary if only
inserts take place, since an insert operation does not require a WHERE clause. The
KeyDef key must not contain columns that are filled or altered by the DBMS, since
dbKona must have a known value for the key column to construct a correct WHERE
clause.

You can also qualify a TableDataSet with an arbitrary string that is used to construct
the tail of the SQL statement. When you are using dbKona with an Oracle database,
for example, you can qualify the TableDataSetwith the string “for UPDATE” to place
a lock on the records that are retrieved by the query.

A TableDataSet can be constructed with a KeyDef, a dbKona object used for setting
a unique key for saving updates and deletes to the DBMS. If you are working with an
Oracle database, you can set the TableDataSet’s KeyDef to “ROWID,” which is a
unique key inherent in each table. Then construct the TableDataSet with a set of
attributes that includes “ROWID.”

� A TableDataSet is constructed in the context of a java.sql.Connection
object; that is, you pass the Connection object as an argument to the
TableDataSet constructor. Its data retrieval is specified by the name of a
DBMS table. If you intend to save updates and deletes, you must supply a
KeyDef object when the TableDataSet is constructed. You may refine a query
with the where() and order() methods to set WHERE and ORDER BY clauses
after the TableDataSet is created.

� A TableDataSet has a default SelectStmt object associated with it that can be
used to take advantage of Query-by-example functionality.

� A TableDataSet is populated with Records (accessible by 0-origined index),
which contain Values (accessible by 1-origined index).

� A TableDataSet’s attributes are described by a Schema, which stores
information about the TableDataSet’s attributes, like column name, data type,
size, and order of the database columns represented in the TableDataSet.

� TableDataSets can be cached on a WebLogic JDBC Server.

� The setRefreshOnSave() method sets the TableDataSet so that any record
inserted or updated during a save is also immediately refreshed from the DBMS.
Set this flag if your TableDataSet has columns altered by the DBMS, such as
Programming WebLogic JDBC 8-7



8 Using dbKona
the Microsoft SQL Server IDENTITY column or a column modified by an insert
or update trigger.

� The Refresh() methods refresh records in the TableDataSet that would be
saved in the database, that is, records that you have changed in the
TableDataSet. Any changes you have made to a record are lost and the record
is marked clean. Records you have marked for delete are not refreshed. A record
you have added to the TableDataSet raises an exception stating that there is no
DBMS representation of the row from which to refresh.

� The saveWithoutStatusUpdate() methods save TableDataSet records to the
DBMS without updating the save status of the records in the TableDataSet.
Use these methods to save TableDataSet records within a transaction. If the
transaction is rolled back, the records in the TableDataSet are consistent with
the database and the transaction can be retried. After the transaction is
committed, call updateStatus() to update the save status of records in the
TableDataSet. Once you have saved a record with
saveWithoutStatusUpdate(), you cannot modify it until you call
updateStatus() on the record.

� The TableDataSet.setOptimisticLockingCol() method allows you to
designate a single column in the TableDataSet as an optimistic locking
column. Applications use this column to detect whether another user has
changed the row since it was read from the database. dbKona assumes the
DBMS updates the column whenever the row is changed, so it does not update
this column from the value in the TableDataSet. It uses the column in the
WHERE clause of an UPDATE statement when you save the record or the
TableDataSet. If another user has modified the record, dbKona’s update fails;
you can retrieve the new values for the record using Record.refresh(), make
your changes to the record, and try to save the record again.

The TableDataSet class (see weblogic.db.jdbc.TableDataSet) has methods for:

� Constructing a TableDataSet

� Setting its WHERE and ORDER BY clauses

� Getting its KeyDef

� Getting its associated JDBC ResultSet

� Getting its SelectStmt

� Getting its associated DBMS table name
8-8 Programming WebLogic JDBC



The dbKona API
� Saving its changes to a database

� Refreshing its records from the DBMS

� Getting other information about it

The superclass DataSet contains methods for managing record caching.

EventfulTableDataSet 

An EventfulTableDataSet, for use within WebLogic, is a TableDataSet that
sends and receives events when its data is updated locally or in the DBMS.
EventfulTableDataSet implements weblogic.event.actions.ActionDef,
which is the interface implemented by all Action classes in WebLogic Events. The
action() method of an EventfulTableDataSet updates the DBMS and notifies all
other EventfulTableDataSets for the same DBMS table of the change. (You can
read more about WebLogic Events in the whitepaper and the Developers Guide for
WebLogic Events.)

When an EventfulRecord in an EventfulTableDataSet changes, it sends an
EventMessage to the WebLogic Server with a ParamSet that contains the row that
changed as well as the changed data, for the topic WEBLOGIC.[tablename], where the
tablename is the name of the table associated with an EventfulTableDataSet.
EventfulTableDataSet takes action on the received, evaluated event to update its
own copy of the record that changed.

An EventfulTableDataSet is constructed in the context of a java.sql.Connection
object, as an argument to the constructor. You must also supply a T3Client object, a
KeyDef to be used for inserts, updates, and deletes, and the name of the DBMS table.

� Like a TableDataSet, an EventfulTableDataSet has a default SelectStmt

object associated with it that can be used to take advantage of
Query-by-example functionality.

� An EventfulTableDataSet is populated with EventfulRecords (accessible
by a 0-origined index). Like Records, EventfulRecords contain Values
(accessible by a 1-origined index).

� An EventfulTableDataSet’s attributes are described by its Schema, in the
same way as a TableDataSet.
Programming WebLogic JDBC 8-9



8 Using dbKona
For example, an EventfulTableDataSet might be used by a warehouse inventory
system to automagically update many views of a table. Here is how it works. Each
warehouse employee’s client app creates an EventfulTableDataSet from the
“stock” table and displays those records in a Java application. Employees doing
different jobs might have different displays, but all of the client applications are using
an EventfulTableDataSet of the “stock” table. Because a TableDataSet is
"eventful,” each record in the data set has registered an interest in itself automatically.
The WebLogic Topic Tree has a registration of interest for all the records; for each
client, there is a registration of interest in each record in the TableDataSet.

When a user changes a record, the DBMS is updated with the new record. At the same
time, an EventMessage (embedded with the changed Record itself) is automatically
sent to the WebLogic Server. Each client using an EventfulTableDataSet of the
“stock” table receives an event notification that has embedded in it the changed
Record. The EventfulTableDataSet for each client accepts the changed Record and
updates the GUI.

Record 

Records are created as part of a DataSet. You can also construct Records manually
in the context of a DataSet and its Schema, or the Schema of an SQL table known to
an active Database session.

Records in a TableDataSet may be saved to the database individually with the
save() method in the Record class, or corporately with the save() method in the
TableDataSet class.

� Records are constructed when a DataSet is created and its query is executed.
A Record may also be added to an existing DataSet with the
DataSet.addRecord() method or with a Record constructor (after the
DataSet’s fetchRecords() method has been called to get its Schema).

� A Record contains a collection of Values. Records are accessible by
0-origined index position. Values within a Record are accessible by 1-origined
index position.

� A Record is described by the Schema of its parent DataSet. The Schema
associated with a Record holds information about the name, data type, size, and
order of each field in the Record.

The Record class (see weblogic.db.jdbc.Record) has methods for:

� Constructing a Record object
8-10 Programming WebLogic JDBC



The dbKona API
� Determining its parent DataSet and Schema

� Determining the number of columns in it

� Determining its save or update status

� Determining the SQL string used to save or update a Record to the database

� Getting and setting its Values

� Returning the value of each of its columns as a formatted string

Value 

A Value object has an internal type, which is defined by the Schema of its parent
DataSet. A Value object can be assigned a value with a data type other than its
internal type, if the assignment is legal. A Value object can also return the value of a
data type other than its internal data type, if the request is legal.

The Value object acts to shield the application from the details of manipulating
vendor-specific data types. The Value object “knows” its data type, but all Value
objects can be manipulated within a Java application with the same methods, no matter
the internal data type.

� Values are created when Records are created.

� The internal data type of a Value object may be among the following:

Boolean

� Byte

� Byte[]

� Date

� Double-precision

� Floating-point

� Integer

� Long

� Numeric

� Short

� String

� Time
Programming WebLogic JDBC 8-11



8 Using dbKona
� Timestamp

� NULL

These types are mapped to the JDBC types listed in java.sql.Types.

� Values are described by the Schema associated with its parent DataSet.

The Value class (see weblogic.db.jdbc.Value) has methods for getting and setting
the data and data type of a Value object.

Data Description Objects In dbKona 

Data description objects contain metadata; that is, information about data structure,
how data are stored on and retrieved from the DBMS, whether and how data can be
updated. Some of the data description objects that dbKona uses are implementations
of the JDBC interface; a brief description and how to use these is provided here.

� Schema

� Column

� KeyDef

� SelectStmt

Schema 

When you instantiate a DataSet, you implicitly create the Schema that describes it,
and when you fetch its Records, its Schema is updated.

� A Schema is constructed automatically when a DataSet is instantiated.

� A DataSet’s attributes (and therefore, attributes of QueryDataSets and
TableDataSets, and their associated Records) are defined by a Schema, as are
the attributes of a Table.

� Schema attributes are described as a collection of Column objects.

The Schema class (see weblogic.db.jdbc.Schema) has methods for:

� Adding and returning the Columns associated with the Schema

� Determining the number of columns in a Schema
8-12 Programming WebLogic JDBC



The dbKona API
� Determining the (1-origined) index position of a particular column name in the
Schema

Column 

Schema is created.

The Column class (see weblogic.db.jdbc.Column) has methods for:

� Setting the Column to a particular data type

� Determining the data type of a Column

� Determining the database-specific data type of a Column

� Determining the name, scale, precision, and storage length of a Column

� Determining whether NULL values are allowed in the native DBMS column

� Determining if the Column is read-only and/or searchable

KeyDef 

"WHERE attribute1 = value1 and attribute2 = value2,” and so on, to uniquely
identify and manipulate a particular database record. The attributes in a KeyDef should
correspond to unique key in the database table.

The KeyDef object with no attributes is constructed in the KeyDef class. Use the
addAttrib() method to build the attributes of the KeyDef, and then use the KeyDef
as an argument in the constructor for a TableDataSet. Once the KeyDef is associated
with a DataSet, you can’t add any more attributes to it.

When you are working with an Oracle database, you can add the attribute “ROWID,”
which is an inherently unique key associated with each table, to be used for inserts and
deletes with a TableDataSet.

The KeyDef class (see weblogic.db.jdbc.KeyDef) has methods for:

� Adding attributes

� Determining the number of attributes in it

� Determining if it has an attribute that corresponds to a particular column name
or index position.
Programming WebLogic JDBC 8-13



8 Using dbKona
SelectStmt 

A SelectStmt object is constructed in the SelectStmt class. Then add clauses to the
SelectStmt with methods in the SelectStmt class, and use the resulting
SelectStmt object as an argument when you create a QueryDataSet. A
TableDataSet also has a default SelectStmt associated with it that can be used to
further refine data retrieval after the TableDataSet has been created.

Methods in the SelectStmt class (see weblogic.db.jdbc.SelectStmt) correspond to the
clauses in a SQL statement, which include:

� Field (and an alias)

� From

� Group

� Having

� Order by

� Unique

� Where

There is also full support for setting and adding Query-by-example clauses. Note that
with the from() method, you can specify a string that includes an alias, in the format
“<i>tableName alias</i>". With the field() method, you can use a string after
the format “<i>tableAlias.attribute</i>” as an argument. You are not limited
to a single table name when constructing a SelectStmt object, although its usage may
dictate whether or not a join is useful. A SelectStmt object associated with a
QueryDataSet can join one or more tables, whereas a TableDataSet cannot, since it
is by definition limited to the data in a single table.

Miscellaneous Objects in dbKona 

Other miscellaneous objects in dbKona include Exceptions and Constants.

� Exceptions

� Constants

Exceptions 

� DataSetException

� LicenseException
8-14 Programming WebLogic JDBC



Entity Relationships
� java.sql.SQLException

In general, DataSetExceptions occur when there is a problem with a DataSet,
including errors generated from stored procedures, or when there is an internal IO
error.

java.sql.SqlExceptions are thrown when there is a problem building an SQL
statement or executing it on the DBMS server.

Constants 

The Enums class contains constants for the following:

� Trigger states

� Vendor-specific database types

� INSERT, UPDATE, and DELETE database operations

The java.sql.Types class contains constants for data types.

Entity Relationships 

Inheritance Relationships 

The following illustrations show important descendancy relationships between
dbKona classes. One class is subclassed:

DataSet

DataSet is the abstract base class for QueryDataSet and TableDataSet.

Other dbKona objects descend from DbObject.

Most dbKona Exceptions, including DataSetException and LicenseException,
are subclassed from java.lang.Exception and
weblogic.db.jdbc.DataSetException. LicenseException is subclassed from
RuntimeException.
Programming WebLogic JDBC 8-15



8 Using dbKona
Possession Relationships 

Each dbKona object may have other objects associated with it that further define its
structure. The following illustrations show these relationships.

DataSet

A DataSet has Records, each of which has Values. A DataSet has a Schema
that defines its structure, which is made up of one or more Columns. A
DataSet may have a SelectStmt that sets parameters for data retrieval.

TableDataSet

A TableDataSet has a KeyDef for updates and deletes by key.

Schema
A Schema has Columns that define its structure.

Implementing With dbKona  

The following sections describe a set of working examples that illustrate several steps
to building a simple Java application that retrieves and displays data from a remote
DBMS.

Accessing a DBMS With dbKona

The following steps describe how to use dbKona to access a DBMS.

Step 1. Importing packages 

Applications that use dbKona need access to java.sql and weblogic.db.jdbc (the
WebLogic dbKona package), plus any other Java classes that you will use. In the
following case, we also import the Properties class from java.util, used during the
login process, and the weblogic.html package.

import java.sql.*;
import weblogic.db.jdbc.*;
import weblogic.html.*;
import java.util.Properties;
8-16 Programming WebLogic JDBC



Implementing With dbKona
Note that you do not import the package for your JDBC driver. The JDBC driver is
established during the connection phase. For version 2.0 and later, you do not import
weblogic.db.common, weblogic.db.server, or weblogic.db.t3client.

Step 2. Setting Properties For Making a Connection 

The following code example is a method for creating the Properties object that will be
used later in this tutorial to make a connection to an Oracle DBMS. Each property is
set with a double-quote-enclosed string.

public class tutor {

public static void main(String argv[])
throws DataSetException, java.sql.SQLException,
java.io.IOException, ClassNotFoundException

{
Properties props = new java.util.Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");
(continued below)

The Properties object will be used as an argument to create a Connection. The
JDBC Connection object will become an important context for other database
operations.

Step 3. Making a Connection to the DBMS 

A Connection object is created by loading the JDBC driver class with the
Class.forName() method, and then calling the java.sql.myDriver.connect()
constructor, which takes two arguments, the URL of the JDBC driver to be used and a
java.util.Properties object.

You can see how to create the Properties object, props, in step 2.

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.oci.Driver").newInstance();
conn =

myDriver.connect("jdbc:weblogic:oracle", props);
conn.setAutoCommit(false);

The Connection conn becomes an argument for other actions that involve the DBMS,
for instance creating DataSets to hold query results. For details about connecting to
a DBMS, see the developers guide for your your driver.
Programming WebLogic JDBC 8-17



8 Using dbKona
Connections, DataSets (and, if you use them, JDBC ResultSets), and
Statements should be closed with the close() method when you have finished
working with them. Note in the code examples that follow that each of these is
explicitly closed.

Note: The default mode of java.sql.Connection sets autocommit to true. Oracle
will perform much faster if you set autocommit to false, as shown above.

Note: DriverManager.getConnection() is a synchronized method, which can
cause your application to hang in certain situations. For this reason, BEA
recommends that you use the Driver.connect() method instead of
DriverManager.getConnection()

Preparing a Query, Retrieving, and Displaying Data  

The following steps describe how to prepare a query, and retrieve and display
data.

Step 1. Setting Parameters for Data Retrieval

In dbKona, there are several ways to set parameters—to compose the SQL statement
and set its scope—for retrieving data. Here we show how dbKona can interact at a very
basic level with any JDBC driver, by taking the results of a JDBC ResultSet and
creating a DataSet. In this example, we use a Statement object to execute a SQL
statement. A Statement object is created with a method from the JDBC Connection

class, and then the ResultSet is created by executing the Statement.

Statement stmt = conn.createStatement();
stmt.execute("SELECT * from empdemo");
ResultSet rs = stmt.getResultSet();

You can use the results of a query executed with a Statement object to instantiate a
QueryDataSet. This QueryDataSet is constructed with a JDBC ResultSet:

Statement stmt = conn.createStatement();
stmt.execute("SELECT * from empdemo");
ResultSet rs = stmt.getResultSet();
QueryDataset ds = new QueryDataSet(rs);
8-18 Programming WebLogic JDBC



Implementing With dbKona
Using the results from the execution of a JDBC Statement is only one way to create
a DataSet. It requires knowledge of SQL, and it doesn’t give you much control over
the results of your query: basically, you can iterate through the records with the JDBC
next() method. With dbKona, you do not have to know much about SQL to retrieve
records; you can use methods in dbKona to set up your query, and once you have
created a DataSetwith your records, you have a much finer control over manipulating
the records.

Step 2. Creating a DataSet for the Query Results 

Instead of requiring you to compose an SQL statement, dbKona lets you use methods
to set certain parts of the statement. You create a DataSet (either a TableDataSet or
a QueryDataSet) for the results of the query.

For example, the simplest data retrieval in dbKona is into a TableDataSet. Creating
a TableDataSet requires just a Connection object and the name of the DBMS table
that you want to retrieve, as in this example that retrieves the Employee table (alias
“empdemo"):

TableDataSet tds = new TableDataSet(conn, "empdemo");

A TableDataSet can be constructed with a subset of the attributes (columns) in a
DBMS table. If you want to retrieve just a few columns from a very large table,
specifying those columns is more efficient than retrieving the entire table. To do this,
pass a list of table attributes as a string in the constructor. For example:

TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
dept");

Use a TableDataSet if you want to be able to save changes to the DBMS, or if you
do not plan to do a join of one or more tables to retrieve data; otherwise, use a
QueryDataSet. In this example, we use the QueryDataSet constructor that takes two
arguments: a Connection object and a string that is the SQL:

QueryDataSet qds = new QueryDataSet(conn, "select * from
empdemo");

You do not actually begin receiving data until you call the fetchRecords() method
in the DataSet class. After you create a DataSet, you can continue to refine its data
parameters. For instance, we could refine the selection of records to be retrieved in the
TableDataSet with the where() method, which adds a WHERE clause to the SQL that
dbKona composes. The following retrieves just one record from the Employee table
by using the where() method to create a WHERE clause.
Programming WebLogic JDBC 8-19



8 Using dbKona
TableDataSet tds = new TableDataSet(conn, "empdemo");
tds.where("empno = 8000");

Step 3. Fetching the Results 

When you are statisfied with the data paramaters, call the fetchRecords() method
from the DataSet class, as shown in this example:

TableDataset tds = new TableDataSet(conn, "empdemo", "empno,
dept");
tds.where("empno = 8000");
tds.fetchRecords();

The fetchRecords() method can take arguments to fetch a certain number of
records, or to fetch records starting with a particular record. In the following example,
we fetch no more than the first 20 records and discard the rest with the
clearRecords() method.

TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
dept");
tds.where("empno > 8000");
tds.fetchRecords(20)

.clearRecords();

When dealing with very large query results, you may prefer to fetch a few records at a
time, process them, and then clear the DataSet before the next fetch. Use the
clearRecords() method from the DataSet class to clear the TableDataSet
between fetches, as illustrated here.

TableDataSet tds = new TableDataSet(conn, "empdemo", "empno,
dept");
tds.where("empno > 2000");
while (!tds.allRecordsRetrieved()) {

tds.fetchRecords(100);
// Process the hundred records . . .
tds.clearRecords();

}

You can also reuse a DataSet with a method that was added in release 2.5.3. This
method, DataSet.releaseRecords(), closes the DataSet and releases all the
Records but does not nullify them. You can reuse the DataSet to generate new
records, yet any records from the first use still held by the application remain readable.
8-20 Programming WebLogic JDBC



Implementing With dbKona
Step 4. Examining a TableDataSet’s Schema 

Here is a simple example of how you can examine the Schema information for a
TableDataSet. The toString() method in the Schema class displays a
newline-delimited list of the name, type, length, precision, scale, and null-allowable
attributes of the columns in the table queried for a TableDataSet tds.

Schema sch = tds.schema();
System.out.println(sch.toString());

If you use a Statement object to create a query, you should close the Statement after
you have completed the query and fetched its results.

stmt.close();

Step 5. Examining the Data with htmlKona 

The following example shows how you might use an htmlKona UnorderedList to
examine the data. This example uses DataSet.getRecord() and
Record.getValue() to examine each record in a for loop. This finds the name, ID,
and salary of the employee making the most money from the records retrieved in the
QueryDataSet we created in step 2.

// (Creation of Database session object and QueryDataSet qds)
UnorderedList ul = new UnorderedList();

String name = "";
String id = "";
String salstr = "";
int sal = 0;
for (int i = 0; i < qds.size(); i++) {

// Get a record
Record rec = qds.getRecord(i);
int tmp = rec.getValue("Emp Salary").asInt();
// Add the salary amount to the htmlKona ListElement
ul.addElement(new ListItem("$" + tmp));
// Compare this salary to the maximum salary we have found so far
if (tmp > sal) {
// If this salary is a new max, save away the employee's info
sal = tmp;
name = rec.getValue("Emp Name").asString();
id = rec.getValue("Emp ID").asString();
salstr = rec.getValue("Emp Salary").asString();

}

Programming WebLogic JDBC 8-21



8 Using dbKona
Step 6. Displaying the Results with htmlKona 

htmlKona provides a convenient way to display dynamic data like that produced by the
above example. The following example shows how you might construct a page on the
fly for displaying the results of your query.

HtmlPage hp = new HtmlPage();
hp.getHead()

.addElement(new TitleElement("Highest Paid Employee"));
hp.getBodyElement()

.setAttribute(BodyElement.bgColor, HtmlColor.white);
hp.getBody()

.addElement(MarkupElement.HorizontalLine)

.addElement(new HeadingElement("Query String: ", +2))

.addElement(stmt.toString())

.addElement(MarkupElement.HorizontalLine)

.addElement("I examined the values: ")

.addElement(ul)

.addElement(MarkupElement.HorizontalLine)

.addElement("Max salary of those employees examined is: ")

.addElement(MarkupElement.Break)

.addElement("Name: ")

.addElement(new BoldElement(name))

.addElement(MarkupElement.Break)

.addElement("ID: ")

.addElement(new BoldElement(id))

.addElement(MarkupElement.Break)

.addElement("Salary: ")

.addElement(new BoldElement(salstr))

.addElement(MarkupElement.HorizontalLine);

hp.output();

Step 7. Closing the DataSet and the Connection 

qds.close();
tds.close();

It is also important to close the Connection to the DBMS. This code should appear at
the end of all of your database operations in a finally block, as in this example:

try {
// Do your work
}
catch (Exception mye) {
// Catch and handle exceptions
}

8-22 Programming WebLogic JDBC



Implementing With dbKona
finally {
try {conn.close();}
catch (Exception e) {
// Deal with any exceptions

}
}

Code summary

import java.sql.*;
import weblogic.db.jdbc.*;
import weblogic.html.*;
import java.util.Properties;

public class tutor {

public static void main(String[] argv)
throws java.io.IOException, DataSetException,
java.sql.SQLException, HtmlException,
ClassNotFoundException

{
Connection conn = null;
try {

Properties props = new java.util.Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.oci.Driver").newInstance();
conn =
myDriver.connect("jdbc:weblogic:oracle",

props);
conn.setAutoCommit(false);

// Create a TableDataSet to add 10 records
TableDataSet tds = new TableDataSet(conn, "empdemo");
for (int i = 0; i < 10; i++) {
Record rec = tds.addRecord();
rec.setValue("empno", i)

.setValue("ename", "person " + i)

.setValue("esalary", 2000 + (i * 10));
}

// Save the data and close the TableDataSet
tds.save();
tds.close();
Programming WebLogic JDBC 8-23



8 Using dbKona
// Create a QueryDataSet to retrieve the additions to the table
Statement stmt = conn.createStatement();
stmt.execute("SELECT * from empdemo");

QueryDataSet qds = new QueryDataSet(stmt.getResultSet());
qds.fetchRecords();

// Use the data from the QueryDataSet
UnorderedList ul = new UnorderedList();

String name = "";
String id = "";
String salstr = "";
int sal = 0;
for (int i = 0; i < qds.size(); i++) {
Record rec = qds.getRecord(i);
int tmp = rec.getValue("Emp Salary").asInt();
ul.addElement(new ListItem("$" + tmp));
if (tmp > sal) {
sal = tmp;
name = rec.getValue("Emp Name").asString();
id = rec.getValue("Emp ID").asString();
salstr = rec.getValue("Emp Salary").asString();

}
}

// Use an htmlKona page to display the data retrieved, and the
// statements used to retrieve it
HtmlPage hp = new HtmlPage();
hp.getHead()
.addElement(new TitleElement("Highest Paid Employee"));

hp.getBodyElement()
.setAttribute(BodyElement.bgColor, HtmlColor.white);

hp.getBody()
.addElement(MarkupElement.HorizontalLine)
.addElement(new HeadingElement("Query String: ", +2))
.addElement(stmt.toString())
.addElement(MarkupElement.HorizontalLine)
.addElement("I examined the values: ")
.addElement(ul)
.addElement(MarkupElement.HorizontalLine)
.addElement("Max salary of those employees examined is: ")
.addElement(MarkupElement.Break)
.addElement("Name: ")
.addElement(new BoldElement(name))
.addElement(MarkupElement.Break)
.addElement("ID: ")
.addElement(new BoldElement(id))
.addElement(MarkupElement.Break)
8-24 Programming WebLogic JDBC



Implementing With dbKona
.addElement("Salary: ")

.addElement(new BoldElement(salstr))

.addElement(MarkupElement.HorizontalLine);

hp.output();

// Close QueryDataSet
qds.close();
}
catch (Exception e) {
// Deal with any exceptions

}
finally {
// Close the connection
try {conn.close();}
catch (Exception mye) {
// Deal with any exceptions

}
}

}
}

Note that we closed each Statement and DataSet after use, and that we closed the
Connection in a finally block.

Using a SelectStmt Object To Form a Query  

The following steps describe how to form a query using a SelectStmt
object.

Step 1. Setting SelectStmt Parameters 

When you create a TableDataSet, it is associated with an empty SelectStmt that
you can then modify to form a query. In this example, we have already created a
connection conn. Here is how you access a TableDataSet’s SelectStmt:

TableDataSet tds = new TableDataSet(conn, "empdemo");
SelectStmt sql = tds.selectStmt();

Now set the parameters for the SelectStmt object. In the example, the first argument
for each field is the attribute name and the second is the alias. This query will retrieve
information about all employees who make less than $2000.
Programming WebLogic JDBC 8-25



8 Using dbKona
sql.field("empno", "Emp ID")
.field("ename", "Emp Name")
.field("sal", "Emp Salary")
.from("empdemo")
.where("sal < 2000")
.order("empno");

Step 2. Using QBE to Refine the Parameters 

The SelectStmt object also gives you Query-by-example functionality.
Query-by-example, or QBE, forms parameters for data retrieval using a set of phrases
that follow the format column operator value. For example, "empno = 8000” is a
Query-by-example phrase that can select all the rows in one or more tables where the
field employee number ("empno", alias “Emp ID") equals 8000.

We can further define the parameters for data selection by using the setQbe() and
addQbe() methods in the SelectStmt class, as is shown here. These methods allow
you to use vendor-specific QBE syntax in constructing a select statement.

sql.setQbe("ename", "MURPHY")
.addUnquotedQbe("empno", "8000");

When you have finished, use the fetchRecords() method to populate the DataSet,
as we did in the second tutorial.

Modifying DBMS Data With a SQL Statement  

The following steps describe how to modify DBMS data with a SQL statement.

Step 1. Writing SQL Statements

When you retrieve data that you expect to modify, and if you want to save those
modifications into the remote DBMS, you should retrieve data into a TableDataSet.
Changes made to QueryDataSets cannot be saved.

As with most dbKona operations, you should begin by creating the Properties and
Driver objects, and then instantiating a Connection. Step 1. Writing SQL statements

"empdemo” table.
8-26 Programming WebLogic JDBC



Implementing With dbKona
String insert = "insert into empdemo(empno, " +
"ename, job, deptno) values " +
"(8000, 'MURPHY', 'SALESMAN', 10)";

The second statement changes Murphy’s name to Smith, and changes his job status
from Salesman to Manager.

String update = "update empdemo set ename = 'SMITH', " +
"job = 'MANAGER' " +
"where empno = 8000";

The third statement deletes this record from the database.

String delete = "delete from empdemo where empno = 8000";

Step 2. Executing Each SQL Statement 

First, save a snapshot of the table into a TableDataSet. Later we’ll examine each
TableDataSet to verify that the execute operation produced the expected results.
Notice that TableDataSets are instantiated with the results of an executed query.

Statement stmt1 = conn.createStatement();
stmt1.execute(insert);

TableDataSet ds1 = new TableDataSet(conn, "emp");
ds1.where("empno = 8000");
ds1.fetchRecords();

The methods associated with TableDataSet allow you to specify a SQL WHERE clause
and a SQL ORDER BY clause and to set and add to a QBE statement. We use the
TableDataSet in this example to requery the database table “emp” after each
statement is executed to see the results of the execute() method. With the “where”
clause, we narrow down the records in the table to just employee number 8000.

Repeat the execute() method for the update and delete statements and capture the
results into two more TableDataSets, ds2 and ds3.

Step 3. Displaying the Results with htmlKona 

ServletPage hp = new ServletPage();
hp.getHead()

.addElement(new TitleElement("Modifying data with SQL"));
hp.getBody()

.addElement(MarkupElement.HorizontalLine)

.addElement(new TableElement(tds))
Programming WebLogic JDBC 8-27



8 Using dbKona
.addElement(MarkupElement.HorizontalLine)
.addElement(new HeadingElement("Query results afer INSERT", 2))
.addElement(new HeadingElement("SQL: ", 3))
.addElement(new LiteralElement(insert))
.addElement(new HeadingElement("Result: ", 3))
.addElement(new LiteralElement(ds1))
.addElement(MarkupElement.HorizontalLine)
.addElement(new HeadingElement("Query results after UPDATE", 2))
.addElement(new HeadingElement("SQL: ", 3))
.addElement(new LiteralElement(update))
.addElement(new HeadingElement("Result: ", 3))
.addElement(new LiteralElement(ds2))
.addElement(MarkupElement.HorizontalLine)
.addElement(new HeadingElement("Query results after DELETE", 2))
.addElement(new HeadingElement("SQL: ", 3))
.addElement(new LiteralElement(delete))
.addElement(new HeadingElement("Result: ", 3))
.addElement(new LiteralElement(ds3))
.addElement(MarkupElement.HorizontalLine);

hp.output();

Code summary

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;
import java.util.*;
import weblogic.db.jdbc.*;
import weblogic.html.*;

public class InsertUpdateDelete extends HttpServlet {

public synchronized void service(HttpServletRequest req,
HttpServletResponse res)

throws IOException
{

Connection conn = null;
try {
res.setStatus(HttpServletResponse.SC_OK);
res.setContentType("text/html");

Properties props = new java.util.Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");

Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.oci.Driver").newInstance();
8-28 Programming WebLogic JDBC



Implementing With dbKona
conn =
myDriver.connect("jdbc:weblogic:oracle",

props);
conn.setAutoCommit(false);

// Create a TableDataSet with a SelectStmt
TableDataSet tds = new TableDataSet(conn, "empdemo");
SelectStmt sql = tds.selectStmt();
sql.field("empno", "Emp ID")

.field("ename", "Emp Name")

.field("sal", "Emp Salary")

.from("empdemo")

.where("sal < 2000")

.order("empno");
sql.setQbe("ename", "MURPHY")

.addUnquotedQbe("empno", "8000");
tds.fetchRecords();

String insert = "insert into empdemo(empno, " +
"ename, job, deptno) values " +
"(8000, 'MURPHY', 'SALESMAN', 10)";

// Create a statement and execute it
Statement stmt1 = conn.createStatement();
stmt1.execute(insert);
stmt1.close();

// Verify results
TableDataSet ds1 = new TableDataSet(conn, "empdemo");
ds1.where("empno = 8000");
ds1.fetchRecords();

// Create a statement and execute it
String update = "update empdemo set ename = 'SMITH', " +

"job = 'MANAGER' " +
"where empno = 8000";

Statement stmt2 = conn.createStatement();
stmt2.execute(insert);
stmt2.close();

// Verify results
TableDataSet ds2 = new TableDataSet(conn, "empdemo");
ds2.where("empno = 8000");
ds2.fetchRecords();

// Create a statement and execute it
String delete = "delete from empdemo where empno = 8000";
Statement stmt3 = conn.createStatement();
stmt3.execute(insert);
Programming WebLogic JDBC 8-29



8 Using dbKona
stmt3.close();

// Verify results
TableDataSet ds3 = new TableDataSet(conn, "empdemo");
ds3.where("empno = 8000");
ds3.fetchRecords();

// Create a servlet page to display the results
ServletPage hp = new ServletPage();
hp.getHead()
.addElement(new TitleElement("Modifying data with SQL"));

hp.getBody()
.addElement(MarkupElement.HorizontalRule)
.addElement(new HeadingElement("Original table", 2))
.addElement(new TableElement(tds))
.addElement(MarkupElement.HorizontalRule)

.addElement(new HeadingElement("Query results afer INSERT",
2))

.addElement(new HeadingElement("SQL: ", 3))

.addElement(new LiteralElement(insert))

.addElement(new HeadingElement("Result: ", 3))

.addElement(new LiteralElement(ds1))

.addElement(MarkupElement.HorizontalRule)
.addElement(new HeadingElement("Query results after UPDATE",

2))
.addElement(new HeadingElement("SQL: ", 3))
.addElement(new LiteralElement(update))
.addElement(new HeadingElement("Result: ", 3))
.addElement(new LiteralElement(ds2))
.addElement(MarkupElement.HorizontalRule)

.addElement(new HeadingElement("Query results after DELETE",
2))

.addElement(new HeadingElement("SQL: ", 3))

.addElement(new LiteralElement(delete))

.addElement(new HeadingElement("Result: ", 3))

.addElement(new LiteralElement(ds3))

.addElement(MarkupElement.HorizontalRule);

hp.output();

tds.close();
ds1.close();
ds2.close();
ds3.close();

}
catch (Exception e) {
// Handle the exception

}
// Always close the connection in a finally block
8-30 Programming WebLogic JDBC



Implementing With dbKona
finally {
conn.close();

}
}

}

Modifying DBMS Data With a KeyDef  

Use a KeyDef object to establish keys for deleting and inserting data into the remote
DBMS. A KeyDef acts as an equality statement in updates and deletes after the pattern
“WHERE KeyDef attribute1 = value1 and KeyDef attribute2 = value2", and
so on.

The first step is to create a connection to the DBMS. In this example, we use the
Connection object conn created in the first tutorial. The database table we use in this
example is the Employee table ("empdemo"), with fields empno, ename, job, and
deptno. The query we execute retrieves the full contents of the table “empdemo".

Step 1. Creating a KeyDef and Building Its Attributes 

The KeyDef object we create for inserts and deletes in this tutorial has one attribute,
the "empno” column in the database. Creating a KeyDef with this attribute will set a
key after the pattern “WHERE empno = “ and the particular value assigned to “empno”
for each record to be saved.

A KeyDef is created and built in the KeyDef class, as shown in this example.

KeyDef key = new KeyDef().addAttrib("empno");

If you are working with an Oracle database, you can construct the KeyDef with the
attribute “ROWID,” to do inserts and deletes on this Oracle key, as in this example:

KeyDef key = new KeyDef().addAttrib("ROWID");

Step 2. Creating a TableDataSet with a KeyDef

In this example, we create a TableDataSet with the results of our query. We use the
TableDataSet constructor that takes a Connection object, a DBMS table name, and a
KeyDef as its arguments.

TableDataSet tds = new TableDataSet(conn, "empdemo", key);
Programming WebLogic JDBC 8-31



8 Using dbKona
The KeyDef becomes the reference for all changes that we will make to the data. Each
time we save the TableDataSet, we change data in the database (according to the
limits set on SQL UPDATE, INSERT, and DELETE operations) based on the value of the
KeyDef attribute, which in this example is the employee number ("empno").

If you are working with an Oracle database and have added the attribute "ROWID” to
the KeyDef, you can construct a TableDataSet for inserts and deletes like this:

KeyDef key = new KeyDef().addAttrib("ROWID");
TableDataSet tds =

new TableDataSet(conn, "empdemo", "ROWID, dept", key);
tds.where("empno < 100");
tds.fetchRecords();

Step 3. Inserting a Record into the TableDataSet 

You can create a new Record object in the context of the TableDataSet to which it
is to be added with the addRecord()method from the TableDataSet class. Once you
have added the record, you can set the values for each of its fields with the
setValue() method from the Record class. You must set at least one value in a new
Record if you intend to save it into the database: the KeyDef field.

Record newrec = tds.addRecord();
newrec.setValue("empno", 8000)

.setValue("ename", "MURPHY")

.setValue("job", "SALESMAN")

.setValue("deptno", 10);
String insert = newrec.getSaveString();
tds.save();

The getSaveString() method in the Record class returns the SQL string (a SQL
UPDATE, DELETE, or INSERT statement) used to save a Record to the database. We
have save this string into an object that we can display later to examine exactly how
the insert operation was carried out.

Step 4. Updating a Record In the TableDataSet 

You also use the setValue() method to update a Record. In the following example,
we'll make a change to the record we created in the previous step.

newrec.setValue("ename", "SMITH")
.setValue("job", "MANAGER");

String update = newrec.getSaveString();
tds.save();
8-32 Programming WebLogic JDBC



Implementing With dbKona
Step 5. Deleting a Record from the TableDataSet 

You can mark a record in a TableDataSet for deletion with the
markToBeDeleted() method (or unmark it with the unmarkToBeDeleted()
method) in the Record class. For instance, deleting the record we just created would
be accomplished by marking the record for deletion, as shown here.

newrec.markToBeDeleted();
String delete = newrec.getSaveString();
tds.save();

Records marked for deletion are not removed from a TableDataSet until you save()

it, or until you execute the removeDeletedRecords()method in the TableDataSet
class.

Records that have been removed from the TableDataSet but not yet deleted from the
database (by the removeDeletedRecords() method) fall into a zombie state. You
can determine whether a record is a zombie by testing it with the isAZombie()method
in the Record class, as shown.

if (!newrec.isAZombie()) {
. . .
}

Step 6. More on Saving the TableDataSet 

Saving a Record or a TableDataset will effectively save the data to the database.
dbKona performs selective changes, that is, only data that has changed is saved.
Inserting, updating, and deleting records in the TableDataSet affects only the data in
the TableDataSet until you use the Record.save() or TableDataSet.save()
method.

Checking Record Status Before Saving.

Several methods from the Record class return information about the state of a Record
that you may want to know before a save() operation. Some of these are:

needsToBeSaved() and recordIsClean()

Use the needsToBeSaved() method to determine whether a Record needs
to be saved, that is, whether it has been changed since it was retrieved or last
saved. The recordIsClean() method determines whether any of the
Values in a Record need to be saved. This method just determines whether
a Record is dirty, no matter whether the scheduled database action is insert,
Programming WebLogic JDBC 8-33



8 Using dbKona
update, or delete. Regardless of the type (insert/update/delete), the
needsToBeSaved() method will return false after a save() operation.

valueIsClean(int)

Determines whether the Value at a particular index position in the Record
needs to be saved. This method takes the index position of a Value as its
argument.

toBeSavedWith...()

You can check how a Record will be saved with a particular SQL action with
the methods toBeSavedWithDelete(), toBeSavedWithInsert(), and
toBeSavedWithUpdate() methods. The semantics of these methods equate
to the answer to the question, "If this row is or becomes dirty, what action will
be taken when the TableDataSet is saved?”

If you want to know whether a row will participate in a save to the DBMS, use the
isClean() and the needsToBeSaved() methods.

When you make modifications to a Record or TableDataSet, use the save()method
from either class to save the changes to the database. In the previous steps, we saved
the TableDataSet after each transaction as shown below.

tds.save();

Step 7. Verifying the changes 

Here is the sample code for fetching just a single record, which is an efficient way to
verify single-record changes. In this example, we use a TableDataSet with a
query-by-example (QBE) clause to fetch just the record we’re interested in.

TableDataSet tds2 = new TableDataSet(conn, "empdemo");
tds2.where("empno = 8000")

.fetchRecords();

As a final step, we can display the query results after each step and the strings
“insert", “update", and “delete” that we created after each save(). Refer to the
code summary in the previous tutorial to use htmlKona for displaying the results.

When you have finished with the DataSets, close each one with the close()method.

tds.close();
tds2.close();
8-34 Programming WebLogic JDBC



Implementing With dbKona
Code Summary 

Here is a code example that uses some of the concepts covered in this topic.

package tutorial.dbkona;

import weblogic.db.jdbc.*;
import java.sql.*;
import java.util.Properties;

public class rowid {

public static void main(String[] argv)
throws Exception

{
Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.oci.Driver").newInstance();
conn =
myDriver.connect("jdbc:weblogic:oracle:DEMO",

"scott",
"tiger");

// Here we insert 100 records.
TableDataSet ts1 = new TableDataSet(conn, "empdemo");
for (int i = 1; i <= 100; i++) {
Record rec = ts1.addRecord();
rec.setValue("empid", i)

.setValue("name", "Person " + i)

.setValue("dept", i);
}

// Save new records. dbKona does selective saves, that is,
// it saves only those records in the TableDataSet that have
// changed to cut down on network traffic and server calls.
System.out.println("Inserting " + ts1.size() + " records.");
ts1.save();
// Close the DataSet now that we're finished with it.
ts1.close();

// Define a KeyDef for updates and deletes.
// ROWID is an Oracle specific field which can act as a
// primary key for updates and deletes
KeyDef key = new KeyDef().addAttrib("ROWID");

// Update the 100 records we originally added.
TableDataSet ts2 =
new TableDataSet(conn, "empdemo", "ROWID, dept", key);

ts2.where("empid <= 100");
Programming WebLogic JDBC 8-35



8 Using dbKona
ts2.fetchRecords();

for (int i = 1; i <= ts2.size(); i++) {
Record rec = ts2.getRecord(i);
rec.setValue("dept", i + rec.getValue("dept").asInt());

}

// Save the updated records.
System.out.println("Update " + ts2.size() + " records.");
ts2.save();

// Delete the same 100 records.
ts2.reset();
ts2.fetchRecords();

for (int i = 0; i < ts2.size(); i++) {
Record rec = ts2.getRecord(i);
rec.markToBeDeleted();

}

// Delete records from server.
System.out.println("Delete " + ts2.size() + " records.");
ts2.save();

// You should always close DataSets, ResultSets, and
// Statements when you have finished working with them.
ts2.close();

// Finally, make sure you close the connection.
conn.close();

}
}

Using a JDBC PreparedStatement with dbKona  

Part of the convenience of dbKona is that you do not need to know much about how to
write vendor-specific SQL, since dbKona will compose syntactically correct SQL for
you. In some cases, however, you may want to use a JDBC PreparedStatement

object with dbKona.

A JDBC PreparedStatement is used to precompile a SQL statement that will be used
multiple times. You can clear the parameters for a PreparedStatement with a call to
PreparedStatement.clearParameters().
8-36 Programming WebLogic JDBC



Implementing With dbKona
A PreparedStatment object is constructed with the preparedStatement()method
in the JDBC Connection class (the object used as conn in all of these examples). In
this example, we create a PreparedStatement and then execute it within a loop. This
statement has three IN parameters, employee id, name, and department. This will add
100 employees to the table.

String inssql = "insert into empdemo(empid, " +
"name, dept) values (?, ?, ?)";

PreparedStatement pstmt = conn.prepareStatement(inssql);

for (int i = 1; i <= 100; i++) {
pstmt.setInt(1, i);
pstmt.setString(2, "Person" + i);
pstmt.setInt(3, i);
pstmt.executeUpdate();

}

pstmt.close();

You should always close a Statement or PreparedStatement object when you have
finished working with it.

You can accomplish the same task with dbKona without worrying about the SQL. Use
a KeyDef to set fields for update or delete. Check the tutorial Modifying DBMS data
with a KeyDef for details.

Using Stored Procedures With dbKona  

Access to the functionality of procedures and functions stored on a remote machine
that can carry out specific, often system-independent or vendor-independent tasks
extends the power of dbKona. Using stored procedures and functions requires an
understanding of how requests are passed back and forth between the dbKona Java
application and the remote machine. Executing a stored procedure or function changes
the value of a supplied parameter. The execution of a stored procedure or function also
returns a value that indicates its success or failure.

The first step, as in any dbKona application, is to connect to the DBMS. The example
code uses the same Connection object, conn, that we created in the first tutorial topic.
Programming WebLogic JDBC 8-37



8 Using dbKona
Step 1. Creating a Stored Procedure 

We use a JDBC Statement object to create a stored procedure by executing a call to
CREATE on the DBMS. In this example, parameter “field1” is declared as an input
and output parameter of type integer.

Statement stmtl = conn.createStatement();
stmtl.execute("CREATE OR REPLACE PROCEDURE proc_squareInt " +

"(field1 IN OUT INTEGER, " +
" field2 OUT INTEGER) IS " +
"BEGIN field1 := field1 * field1; " +
"field2 := field1 * 3; " +
"END proc_squareInt;");

stmtl.close();

Step 2. Setting parameters

prepareCall() method in the JDBC Connection class.

In this example, we use the setInt() method to set the first parameter to the integer
“3". Then we register the second parameter as an OUT parameter of type
java.sql.Types.INTEGER. Finally, we execute the stored procedure.

CallableStatement cstmt =
conn.prepareCall("BEGIN proc_squareInt(?, ?): END;");

cstmt.setInt(1, 3);
cstmt.registerOutParameter(2, java.sql.Types.INTEGER);
cstmt.execute();

Note that Oracle does not natively support binding to “?” values in a SQL statement.
Instead it uses “:1", “:2", etc. We allow you to use either in your SQL.

Step 2. Examining the Results 

Let’s use the simplest method and print the results to the screen.

System.out.println(cstmt.getInt(1));
System.out.println(cstmt.getInt(2));
cstmt.close();
8-38 Programming WebLogic JDBC



Implementing With dbKona
Using Byte Arrays For Images and Audio  

You can store and retrieve binary large object files from a database with a byte array.
Being able to handle large database data like image and sound files is necessary for
multimedia applications, which often manage data in a database.

You will probably also find htmlKona useful, which will make it easy to integrate
database data retrieved with dbKona into an HTML environment. The example code
that we use in this tutorial depends on htmlKona.

Step 1. Retrieving and Displaying Image Data 

In this example, we use server-side Java running on a Netscape server posted from an
htmlKona form to retrieve the name of the image that the user wants to view. With that
image name, we query the contents of a database table called “imagetable” and get
the first record of the results. You will notice that we use a SelectStmt object to
construct a SQL query by QBE.

After we retrieve the image record, we set the HTML page type to the image type and
then retrieve the image data as an array of bytes (byte[]) into an htmlKona
ImagePage, which will display the image in a browser.

if (iname != null) {
// Retrieve the image from the database
TableDataSet tds = new TableDataSet(conn, "imagetable");
tds.selectStmt().setQbe("name", iname);
tds.fetchRecords();

Record rec = tds.getRecord(0);

this.returnNormalResponse("image/" +
rec.getValue("type").asString());

ImagePage hp = new ImagePage(rec.getValue("data").asBytes());
hp.output(getOutputStream());

}

For the full working example, look at Displaying an image stored in a database on the
htmlKona Examples page.
Programming WebLogic JDBC 8-39



8 Using dbKona
Step 2. Inserting An Image Into a Database 

We can also use dbKona to insert image files into a database. Here is a snippet of code
that adds two images as type array objects to a database by adding a Record for each
image to a TableDataSet, setting the Values of the Record, and then saving the
TableDataSet.

TableDataSet tds = new TableDataSet(conn, "imagetable");
Record rec = tds.addRecord();
rec.setValue("name", "vars")

.setValue("type", "gif")

.setValue("data", "c:/html/api/images/variables.gif");

rec = tds.addRecord();
rec.setValue("name", "excepts")

.setValue("type", "jpeg")

.setValue("data", "c:/html/api/images/exception-index.jpg");

tds.save();
tds.close();

Using dbKona For Oracle Sequences  

dbKona provides a wrapper—a Sequence object—to access the functionality of
Oracle sequences. An Oracle sequence is created in dbKona by supplying the starting
number and increment interval for the sequence.

The following sections describe how to use dbKona for Oracle sequences.

Constructing a dbKona Sequence Object 

You construct a Sequence object with a JDBC Connection and the name of a sequence
that already exists on an Oracle server. Here is an example:

Sequence seq = new Sequence(conn, "mysequence");
8-40 Programming WebLogic JDBC



Implementing With dbKona
Creating and Destroying Sequences on an Oracle Server from dbKona 

If the Oracle sequence does not exist, you can create it from dbKona with the
Sequence.create() method, which takes four arguments: a JDBC Connection, a
name for the sequence to be created, an increment interval, and a starting point. Here
is an example that creates an Oracle sequence “mysequence” beginning at 1000 and
increasing in increments of 1:

Sequence.create(conn, "mysequence", 1, 1000);

You can drop an Oracle sequence from dbKona, also, as in this example:

Sequence.drop(conn, "mysequence");

Using a Sequence 

Once you have created a Sequence object, you can use it to generate autoincrementing
ints, for example, to set an autoincrementing key as you add records to a table. Use
the nextValue() method to return an int that is the next increment in the Sequence.
For example:

TableDataSet tds = new TableDataSet(conn, "empdemo");
for (int i = 1; i <= 10; i++) {

Record rec = tds.addRecord();
rec.setValue("empno", seq.nextValue());

}

You can check the current value of a Sequence with the currentValue()method, but
only after you have called the nextValue() method at least once.

System.out.println("Records 1000-" + seq.currentValue() + "
added.");

Code Summary 

Here is a working code example that illustrates how to use concepts discussed in this
section. First, we attempt to drop a sequence named “testseq” from the Oracle
server; this insures that we do not get an error when we try to create a sequence if one
already exists by that name. Then we create a sequence on the server, and use its name
to create a dbKona Sequence object.

package tutorial.dbkona;

import weblogic.db.jdbc.*;
Programming WebLogic JDBC 8-41



8 Using dbKona
import weblogic.db.jdbc.oracle.*;
import java.sql.*;
import java.util.Properties;

public class sequences {

public static void main(String[] argv)
throws Exception

{
Connection conn = null;
Driver myDriver = (Driver)
Class.forName("weblogic.jdbc.oci.Driver").newInstance();
conn =
myDriver.connect("jdbc:weblogic:oracle:DEMO",

"scott",
"tiger");

// Drop the sequence if it already exists on the server.
try {Sequence.drop(conn, "testseq");} catch (Exception e) {;}

// Create a new sequence on the server.
Sequence.create(conn, "testseq", 1, 1);

Sequence seq = new Sequence(conn, "testseq");

// Print out the next value in the sequence in a loop.
for (int i = 1; i <= 10; i++) {
System.out.println(seq.nextValue());

}

System.out.println(seq.currentValue());

// Drop the sequence from the server
// and close the Sequence object.
Sequence.drop(conn, "testseq");
seq.close();

// Finally, close the connection.
conn.close();

}
}

8-42 Programming WebLogic JDBC



CHAPTER
9 Testing JDBC 
Connections and 
Troubleshooting

This section describes how to test JDBC connections and provides troubleshooting
tips:

Testing Connections

The following sections describe how to test connections

Validating a DBMS Connection from the Command Line 

BEA provides utilities that you can use to test two-tier and three-tier JDBC database
connections after you install WebLogic two-tier drivers, WebLogic Server, or
WebLogic JDBC.

How to Test a Two-Tier Connection from
the Command Line
To use the utils.dbping utility, you must complete the installation of
Programming WebLogic JDBC 9-1



9 Testing JDBC Connections and Troubleshooting
your JDBC driver. Make sure you have completed the following:

• For Type-2 JDBC drivers, such as WebLogic jDriver for Ora-
cle, set your PATH (Windows NT) or shared/load library path
(Unix) to include both your DBMS-supplied client installation
and the BEA-supplied native libraries.

² For all drivers, include the classes of your JDBC driver in your
CLASSPATH.

Installation instructions for the BEA WebLogic jDriver JDBC drivers
are available at:

² Installing WebLogic jDriver for Oracle

² Installing WebLogic jDriver for Microsoft SQL Server

² Installing WebLogic jDriver for Informix

Use the utils.dbping utility to confirm that you can make a connec-
tion between Java and your database. The dbping utility is only for test-
ing a two-tier connection, using a WebLogic two-tier JDBC driver like
WebLogic jDriver for Oracle.

Syntax
$ java utils.dbping DBMS user password DB

Arguments

DBMS

Use: ORACLE, MSSQLSERVER4, or INFORMIX4

user

Valid username for database login. Use the same values and format
that you use with isql for SQL Server, sqlplus for Oracle, or DBAC-
CESS for Informix.

password
9-2 Programming WebLogic JDBC



Testing Connections
Valid password for the user. Use the same values and format that
you use with isql, sqlplus, or DBACCESS.

DB

Name of the database. The format varies depending on the database
and version. Use the same values and format that you use with isql,
sqlplus, or DBACCESS. Type 4 drivers, such as MSSQLServer4
and Informix4, need additional information to locate the server
since they cannot access the environment.

Examples

Oracle

Connect to Oracle from Java with WebLogic jDriver for Oracle using
the same values that you use with sqlplus.

If you are not using SQLNet (and you have ORACLE_HOME and
ORACLE_SID defined), follow this example:

$ java utils.dbping ORACLE scott tiger

If you are using SQLNet V2, follow this example:

$ java utils.dbping ORACLE scott tiger TNS_alias

where TNS_alias is an alias defined in your local tnsnames.ora
file.

Microsoft SQL Server (Type 4 driver)

To connect to Microsoft SQL Server from Java with WebLogic jDriver
for Microsoft SQL Server, you use the same values for user and pass-
word that you use with isql. To specify the SQL Server, however, you
supply the name of the computer running the SQL Server and the
TCP/IP port the SQL Server is listening on. To log into a SQL Server
running on a computer named mars listening on port 1433, type:

$ java utils.dbping MSSQLSERVER4 sa secret mars:1433
Programming WebLogic JDBC 9-3



9 Testing JDBC Connections and Troubleshooting
You could omit ":1433" in this example since 1433 is the default port
number for Microsoft SQL Server.

Informix (Type 4 driver)

Connect to Informix from Java with WebLogic jDriver for Informix
using the same values that you use with DBACCESS. The order of
arguments follows the pattern:

$ java utils.dbping INFORMIX user pass db@server:port

As shown in this example:

$ java utils.dbping INFORMIX bill secret stores@myser-

ver:8543

How to Validate a Multitier WebLogic
JDBC Connection from the Command
Line
Use the utils.t3dbping utility to confirm that you can make a multitier
database connection using a WebLogic Server. The t3dbping utility is
only for testing a multitier connection, after you have verified that you
have a working two-tier connection, and after you have started
WebLogic.
9-4 Programming WebLogic JDBC



Testing Connections
If the two-tier JDBC driver is a WebLogic jDriver, you should test the
two-tier connection with utils.dbping. Otherwise, see the documenta-
tion for the two-tier JDBC driver to find out how to test that connection
before you test the multitier connection.

Syntax
$ java utils.t3dbping URL user password DB driver_class

driver_URL

Arguments

URL

URL of the WebLogic Server. For more information on constructing a
WebLogic URL, check Running and maintaining the WebLogic
Server.

username

Valid username for the DBMS.

password

Valid password for that user.

DB

Name of the database. Use the same values and format that are shown
above for testing a two-tier connection.

driver_class

Class name of the JDBC driver between WebLogic and the DBMS.
For instance, if you are using WebLogic jDriver for Oracle on the
server side, the driver class name is weblogic.jdbc.oci.Driver.
Note that the class name of the driver is in dot-notation format.

driver_URL

URL of the JDBC driver between WebLogic and the DBMS. For
instance, if you are using WebLogic jDriver for Oracle on the
Programming WebLogic JDBC 9-5



9 Testing JDBC Connections and Troubleshooting
server side, the URL of the driver is jdbc:weblogic:oracle. Note
that the URL of the driver is colon-separated.

Examples

These examples are displayed on multiple lines for readability. Each
example should be entered as a single command.

Oracle

Here is an example of how to ping the Oracle DBMS DEMO20 run-
ning on the server bigbox, on the same host as WebLogic, which is lis-
tening on port 7001:

$ java utils.t3dbping // command

t3://bigbox:7001 // WebLogic URL

scott tiger // user password

DEMO20 // DB

weblogic.jdbc.oci.Driver // driver class

jdbc:weblogic:oracle // driver URL

Oracle with ODBC

This example shows how to ping an Oracle database using the
JDBC-ODBC bridge:

$ java utils.t3dbping // command

t3://bigbox:7001 // WebLogic URL

scott tiger // user password

"" // DB

sun.jdbc.odbc.JdbcOdbcDriver // driver class

jdbc:odbc:VISIORA73 // driver URL

DB2 with AS/400 Type 4 JDBC driver

This example shows how to ping an AS/400 DB2 database from a
workstation command shell using the IBM AS/400 Type 4 JDBC
9-6 Programming WebLogic JDBC



Testing Connections
driver:

$ java utils.t3dbping // command

t3://as400box:7001 // WebLogic

URL

scott tiger // user pass-

word

DEMO // database

com.ibm.as400.access.AS400JDBCDriver // driver

class

jdbc:as400://as400box // driver URL

WebLogic jDriver for Microsoft SQL Server (Type 4 JDBC driver)

This example shows how to ping a Microsoft SQL Server database
using WebLogic jDriver for Microsoft SQL Server:

$ java utils.t3dbping // command

t3://localhost:7001 // WebLogic URL

sa // user name

abcd // password

database // database@host-

name:port

(optional if spec-

ified as part of the URL)

weblogic.jdbc.mssqlserver4.Driver // driver class

jdbc:weblogic:mssqlserver4:pubs@localhost:1433

// driver URL:data-

base@hostname:port

(optional if used

in the database parameter)

For information on other WebLogic commands, see Running and main-
taining the WebLogic Server.
Programming WebLogic JDBC 9-7



9 Testing JDBC Connections and Troubleshooting
Troubleshooting JDBC

The following sections provide troubleshooting tips.

Troubleshooting JDBC Connections

If you are testing a connection to WebLogic, check the WebLogic log. By default, the
log is kept in a file called weblogic.log in the weblogic/myserver directory.

UNIX users 

If you encounter a problem trying to load native_login, use truss to determine the
source of the problem. For example, to run tutorial.example3, type:

$ truss -f -t open -s\!all java tutorial.example3

WinNT

If you get an error message that indicates that the .dll failed to load, make sure your
PATH includes the 32-bit database-related .dlls.

SEGVs with JDBC and Oracle Databases

Several conditions can cause segmentation violation errors (SEGVs) or hangs when
you use JDBC and an Oracle database.

� You must upgrade to the current client libraries, as specified in BEA WebLogic
Server Platform Support at http://e-docs.bea.com/wls/platforms/index.html.

� You may be using WebLogic classes with a mismatched version of the .dll,
.sl, or .so for WebLogic jDriver for Oracle. For example, when you install
version 6.0 of WebLogic, you must upgrade your WebLogic jDriver for Oracle
9-8 Programming WebLogic JDBC

http://e-docs.bea.com/wls/platforms/index.html
http://e-docs.bea.com/wls/platforms/index.html


SEGVs with JDBC and Oracle Databases
native library to version 3.0. You must always use the .dll, .so, or .sl
file that was shipped with a particular version of the WebLogic distribution.

� You may have exhausted the available connections in a connecction pool. Make
sure that your program calls the close() method on the connection after you
are finished with it. If you need more connections, increase the size of the pool.

� If the Oracle server and WebLogic are running on the same host, and you are
using an IPC connection to Oracle, the version of your client libraries must
match the version of your server. Note that when server and client are on the
same host, sqlnet will by default, attempt to make an IPC connection. You can
prevent this by specifying "automatic_ipc"=off in your sqlnet.ora
file.

� Your ORACLE_HOME environment variable may not be set correctly. You must
set ORACLE_HOME correctly so that the OCI libraries can locate needed
resource files.

Out-of-Memory Errors

A common cause of out-of-memory errors is failing to close ResultSets. The error
message is usually similiar to the following:

Run-time exception error; current exception: xalloc

No handler for exception

When using array fetches, the native layer allocates memory in C, not in Java, so Java
garbage collection does not immediately clean up the memory. The only way to release
the memory is to close the ResultSet. (You can minimize this memory usage for better
performance.)

To avoid out-of-memory errors, make sure that your program logic closes any
ResultSets in all cases. To test whether failing to close ResultSets is causing the
out-of-memory errors, minimize the size of the array fetches so that the amount of C
memory allocated for selects is small. You can do this by setting the
weblogic.oci.cacheRows property (a JDBC connection property) to a small
number. For example,

Properties props = new java.util.Properties();

props.put("user", "scott");
Programming WebLogic JDBC 9-9



9 Testing JDBC Connections and Troubleshooting
props.put("password", "tiger");

props.put("server", "DEMO" );

props.put("weblogic.oci.cacheRows", "1" );

Driver d =
(Driver)Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn = d.connect("jdbc:weblogic:oracle", props);

If the out of memory errors cease, it is likely that ResultSets are not being closed
somewhere in your code. For more information, see Closing JDBC Objects.

Codeset Support

WebLogic supports Oracle codesets with the following considerations:

� If your NLS_LANG environment variable is not set, or if it is set to either
US7ASCII or WE8ISO8859-1, the driver always operates in 8859-1.

For more information, see Codeset Support in Using WebLogic jDriver for Oracle.

Other Problems with Oracle on UNIX 

Check the threading model you are using. Green threads can conflict with the kernel
threads used by OCI. When using Oracle drivers, WebLogic recommends that you use
native threads. You can specify this by adding the -native flag when you start Java.

Thread-related Problems on UNIX 

On UNIX, two threading models are available: green threads and native threads. For
more information, see JDK for the Solaris Operating Environment on the JavaSoft
Web site at
http://www.javasoft.com/products/jdk/1.1/solaris-product-comparison.html#threadin
g.
9-10 Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs60/oracle/API_joci.html
http://www.javasoft.com/products/jdk/1.1/solaris-product-comparison.html#threading


SEGVs with JDBC and Oracle Databases
You can determine what type of threads you are using by checking the environment
variable called THREADS_TYPE. If this variable is not set, you can check the shell
script in your Java installation bin directory.

Some of the problems are related to the implementation of threads in the JVM for each
operating system. Not all JVMs handle operating-system specific threading issues
equally well. Here are some hints to avoid thread-related problems:

� If you are using Oracle drivers, use native threads.

� If you are using HP UNIX, upgrade to version 11.x, because there are
compatibility issues with the JVM in earlier versions, such as HP UX 10.20.

� On HP UNIX, the new JDK does not append the green-threads library to the
SHLIB_PATH. The current JDK can not find the shared library (.sl) unless the
library is in the path defined by SHLIB_PATH. To check the current value of
SHLIB_PATH, at the command line type:

$ echo $SHLIB_PATH

Use the set or setenv command (depending on your shell) to append the
WebLogic shared library to the path defined by the symbol SHLIB_PATH. For
the shared library to be recognized in a location that is not part of your
SHLIB_PATH, you will need to contact your system administrator.

Closing JDBC Objects

WebLogic also recommends -- and good programming practice dictates -- that you
always close JDBC objects, like Connections, Statements, and ResultSets, in a finally
block to make sure that your program executes efficiently. Here is a general example:

try {

Driver d =

(Driver)Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Connection conn = d.connect("jdbc:weblogic:oracle:myserver",

"scott",

"tiger");

Statement stmt = conn.createStatement();
Programming WebLogic JDBC 9-11



9 Testing JDBC Connections and Troubleshooting
stmt.execute("select * from emp");

ResultSet rs = stmt.getResultSet();

// do work

}

catch (Exception e) {

// deal with any exceptions appropriate

}

finally {

try {rs.close();}

catch (Exception rse) {}

try {stmt.close();}

catch (Exception sse) {}

try {conn.close();

catch (Exception cse) {}

}

Troubleshooting Problems with Shared 
Libraries on UNIX 

When you install a native two-tier JDBC driver, configure WebLogic Server to use
performance packs, or set up BEA WebLogic Server as a Web server on UNIX, you
install shared libraries or shared objects (distributed with the WebLogic software) on
your system. This document describes problems you may encounter and suggests
solutions for them.

The operating system loader looks for the libraries in different locations. How the
loader works differs across the different flavors of UNIX. The following sections
describe Solaris and HP-UX.
9-12 Programming WebLogic JDBC



Troubleshooting Problems with Shared Libraries on UNIX
WebLogic jDriver for Oracle

Use the procedures for setting your shared libraries as described in this document. The
actual path you specify will depend on your Oracle client version, your Oracle Server
version and other factors. For details, see Setting your path and client libraries in
Installing WebLogic jDriver for Oracle.

Solaris 

To find out which dynamic libraries are being used by an executable you can run the
ldd command for the application. If the output of this command indicates that
libraries are not found, then add the location of the libraries to the
LD_LIBRARY_PATH environment variable as follows (for C or Bash shells):

# setenv LD_LIBRARY_PATH weblogic_directory/lib/solaris/oci805_8

Once you do this, ldd should no longer complain about missing libraries.

HP-UX 

The shared library problem you are most likely to encounter after installing WebLogic
on an HP-UX system is incorrectly set file permissions. After installing WebLogic,
make sure that the shared library permissions are set correctly with the chmod
command. Here is an example to set the correct permissions for HP-UX 11.0:

% cd weblogic_directory/lib/hpux11/oci805_8

% chmod 755 *.sl

If you encounter problems loading shared libraries after you set the file permissions,
there could be a problem locating the libraries. First, make sure that the
weblogic_directory/lib/hpux11 is in the SHLIB_PATH environment
variable:

% echo $SHLIB_PATH

If the directory is not listed, add it:

# setenv SHLIB__PATH weblogic_directory/lib/hpux11:$SHLIB_PATH
Programming WebLogic JDBC 9-13

http://e-docs.bea.com/wls/docs60/oracle/install_jdbc.html


9 Testing JDBC Connections and Troubleshooting
Alternatively, copy (or link) the .sl files from the WebLogic distribution to a directory
that is already in the SHLIB_PATH variable.

If you still have problems, use the chatr command to specify that the application
should search directories in the SHLIB_PATH environment variable. The +s
enabled option sets an application to search the SHLIB_PATH variable. Here is an
example of this command, run on the WebLogic jDriver for Oracle shared library for
HP-UX 11.0:

# cd weblogic_directory/lib/hpux11

# chatr +s enable libweblogicoci33.sl

Check the chatr man page for more information on this command.
9-14 Programming WebLogic JDBC


	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	1. Introduction to WebLogic JDBC
	2. Administration and Configuration for WebLogic JDBC
	3. Performance Tuning Your JDBC Application
	4. Configuring WebLogic JDBC Features
	5. Using WebLogic Multitier JDBC Drivers
	6. Using Third-Party Drivers with WebLogic Server
	7. Migrating JDBC
	8. Using dbKona
	9. Testing JDBC Connections and Troubleshooting
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions


	1 Introduction to WebLogic JDBC
	Overview of JDBC
	Overview of JDBC Drivers
	Types of JDBC Drivers
	Table of Drivers
	Table 1�1 JDBC Drivers


	Description of JDBC Drivers
	WebLogic Server JDBC Two-Tier Drivers
	WebLogic jDriver for Oracle
	WebLogic jDriver for Microsoft SQL Server
	WebLogic jDriver for Informix

	WebLogic Server JDBC Multitier Drivers
	WebLogic Pool Driver
	WebLogic RMI Driver
	WebLogic JTS Driver

	Third-Party Drivers
	Cloudscape
	Sybase jConnect Driver
	Oracle Thin Driver


	Overview of Connection Pools
	Table 1�2 Advantages to Using Connection Pools
	Using Connection Pools with Server-side Applications
	Using Connection Pools with Client-side Applications

	Overview of MultiPools
	Choosing the MultiPool Algorithm

	Overview of Clustered JDBC
	Overview of DataSources
	JDBC API
	WebLogic JDBC Class Definitions

	JDBC 2.0
	Limitations

	Platforms

	2 Administration and Configuration for WebLogic JDBC
	Configuring JDBC
	Configuring Connection Pools
	Configuring MultiPools
	Configuring DataSources

	Monitoring JDBC Connectivity

	3 Performance Tuning Your JDBC Application
	Overview of JDBC Performance
	WebLogic Performance-Enhancing Features
	How Connection Pools Enhance Performance
	Caching Data

	Designing Your Application For Best Performance
	1. Process as Much Data as Possible Inside the Database
	2. Use Built-in DBMS Set-based Processing
	3. Make Your Queries Smart
	Table 3�1 Full Results Returned
	Table 3�2 Results from Subquery

	4. Make Transactions Single-batch
	5. Never Have a DBMS Transaction Span User Input
	6. Use In-place Updates
	7. Keep Operational Data Sets Small
	8. Use Pipelining and Parallelism


	4 Configuring WebLogic JDBC Features
	Using DataSources
	DataSource Import Statements
	Setting Up WebLogic Server to Use a DataSource
	Obtaining a Client Connection Using a DataSource
	Code Examples

	Using Connection Pools
	Creating a Connection Pool at Startup
	Properties
	Table 4�1 Connection Pool Properties


	Creating a Connection Pool Dynamically
	Managing Connection Pools
	Retrieving information About a Pool
	weblogic.jdbc.common.JdbcServices.poolExists()
	weblogic.jdbc.common.Pool.getProperties()

	Disabling a Connection Pool
	weblogic.jdbc.common.Pool.disableDroppingUsers()
	weblogic.jdbc.common.Pool.disableFreezingUsers()
	weblogic.jdbc.common.pool.enable()

	Shrinking a Connection Pool
	weblogic.jdbc.common.Pool.shrink()

	Shutting Down a Connection Pool
	weblogic.jdbc.common.Pool.shutdownSoft()
	weblogic.jdbc.common.Pool.shutdownHard()

	Resetting a Pool
	weblogic.jdbc.common.Pool.reset()
	a. In a try block, test a connection from the connection pool with a SQL statement that is guaran...
	b. Catch the SQLException.
	c. Call the reset() method in the catch block.




	Using MultiPools
	MultiPool Features
	Choosing the MultiPool Algorithm
	Backup Pool
	Load Balancing

	Guidelines to Setting Wait For Connection Times
	Messages and Error Conditions
	SQL Warnings
	Capacity Issues



	5 Using WebLogic Multitier JDBC Drivers
	Overview of WebLogic Multitier Drivers
	Using the WebLogic RMI Driver
	Limitations When Using the WebLogic RMI Driver
	Setting up WebLogic Server to Use the WebLogic RMI Driver
	Setting up the Client to Use the WebLogic Server
	Import the Following Packages:
	Obtain the Client Connection
	Using a JNDI Lookup to Obtain the Connection
	Using Only the WebLogic RMI Driver to Obtain the Connection


	Using the WebLogic JTS Driver
	Implementing with the JTS Driver
	1. Import the following classes:
	2. Establish the transaction by using the UserTransaction class. This class can be looked up in t...
	3. Start a transaction on the current thread:
	4. Load the JTS driver
	5. Get a connection from the connection pool.
	6. Execute your database operations. These operations may be made by any service that uses a data...
	7. Close your connection objects. Note that closing the connections does not commit the transacti...
	8. Execute any other database operations. If these operations are made by connecting to the same ...
	9. Complete the transaction by either committing the transaction or rolling it back. The JTS driv...


	Using the WebLogic Pool Driver

	6 Using Third-Party Drivers with WebLogic Server
	Overview of Third-Party JDBC Drivers
	Using the Third-Party Drivers
	Limitations

	Setting the Environment for Your Third-Party Driver
	CLASSPATH for Third-Party Driver on Windows NT
	CLASSPATH for Third-Party Driver on Unix

	Getting a Connection with Your Third-Party Driver
	Using Connection Pools With a Third-Party Driver
	Create the Connection Pool and DataSource
	Using a JNDI Lookup to Obtain the Connection

	Setting a Direct Connection
	Create the Connection Pool
	Setting a Direct Connection Using the Oracle Thin Driver
	Setting a Direct Connection Using the Sybase jConnect Driver



	7 Migrating JDBC
	T3 API Deprecated
	JDBC Package Name Change

	8 Using dbKona
	Introduction to dbKona
	dbKona in a Multitier Configuration
	How dbKona and a JDBC Driver interact
	How dbKona and WebLogic Events Can interact
	The dbKona Architecture

	The dbKona API
	The dbKona API Reference
	The dbKona Objects and Their Classes
	Data Container Objects in dbKona
	DataSet
	QueryDataSet
	TableDataSet
	EventfulTableDataSet
	Record
	Value
	Data Description Objects In dbKona
	Schema
	Column
	KeyDef
	SelectStmt
	Miscellaneous Objects in dbKona
	Exceptions
	Constants


	Entity Relationships
	Inheritance Relationships
	Possession Relationships
	DataSet
	TableDataSet
	Schema


	Implementing With dbKona
	Accessing a DBMS With dbKona
	Step 1. Importing packages
	Step 2. Setting Properties For Making a Connection
	Step 3. Making a Connection to the DBMS

	Preparing a Query, Retrieving, and Displaying Data
	Step 1. Setting Parameters for Data Retrieval
	Step 2. Creating a DataSet for the Query Results
	Step 3. Fetching the Results
	Step 4. Examining a TableDataSet’s Schema
	Step 5. Examining the Data with htmlKona
	Step 6. Displaying the Results with htmlKona
	Step 7. Closing the DataSet and the Connection

	Using a SelectStmt Object To Form a Query
	Step 1. Setting SelectStmt Parameters
	Step 2. Using QBE to Refine the Parameters

	Modifying DBMS Data With a SQL Statement
	Step 1. Writing SQL Statements
	Step 2. Executing Each SQL Statement
	Step 3. Displaying the Results with htmlKona

	Modifying DBMS Data With a KeyDef
	Step 1. Creating a KeyDef and Building Its Attributes
	Step 2. Creating a TableDataSet with a KeyDef
	Step 3. Inserting a Record into the TableDataSet
	Step 4. Updating a Record In the TableDataSet
	Step 5. Deleting a Record from the TableDataSet
	Step 6. More on Saving the TableDataSet
	needsToBeSaved() and recordIsClean()
	valueIsClean(int)
	toBeSavedWith...()

	Step 7. Verifying the changes
	Code Summary

	Using a JDBC PreparedStatement with dbKona
	Using Stored Procedures With dbKona
	Step 1. Creating a Stored Procedure
	Step 2. Examining the Results

	Using Byte Arrays For Images and Audio
	Step 1. Retrieving and Displaying Image Data
	Step 2. Inserting An Image Into a Database

	Using dbKona For Oracle Sequences
	Constructing a dbKona Sequence Object
	Creating and Destroying Sequences on an Oracle Server from dbKona
	Using a Sequence
	Code Summary



	9 Testing JDBC Connections and Troubleshooting
	Testing Connections
	Validating a DBMS Connection from the Command Line

	Troubleshooting JDBC
	Troubleshooting JDBC Connections
	UNIX users
	WinNT


	SEGVs with JDBC and Oracle Databases
	Out-of-Memory Errors
	Codeset Support
	Other Problems with Oracle on UNIX
	Thread-related Problems on UNIX
	Closing JDBC Objects

	Troubleshooting Problems with Shared Libraries on UNIX
	WebLogic jDriver for Oracle
	Solaris
	HP-UX



