
WebLogic Server
Programming WebLogic XML

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : M a y 1 5 , 2 0 0 1

BEA

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Programming WebLogic XML

Part Number Document Date Software Version

N/A May 15, 2001 BEA WebLogic Server Version 6.0

Contents

About This Document
Audience... vii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ... ix

1. XML Overview
What Is XML?... 1-1

Why Use XML? ... 1-2

Learning About XML... 1-2

What Are XSL and XSLT? ... 1-3

Common Uses of XML and XSLT ... 1-4

Using XML and XSLT to Separate Content from Presentation................. 1-4

XML as a Message Format for Business-to-Business Communication..... 1-5

WebLogic Server XML Features .. 1-5

Parsing XML Documents... 1-6

Generating Custom Parsers .. 1-6

Validating XML Documents.. 1-6

Transforming XML Documents... 1-7

Resolving External Entities.. 1-7

WebLogic Server XML Components.. 1-7

Built-in XML Parser... 1-9

WebLogic Integrated Java API for XML Parsing (JAXP) 1.0.1 1-9

Built-in XSLT Processor .. 1-10

WebLogic XML Registry... 1-10
Programming WebLogic XML iii

XML Servlet Attributes.. 1-11

XML Module Components.. 1-11

XML Parser .. 1-12

XSLT Processor.. 1-12

WebLogic Parser Generator ... 1-12

WebLogic XSLT JSP Tag Library ... 1-13

2. Developing XML Applications with WebLogic Server
Using WebLogic Server Features For XML Application Development 2-1

Advantage of Using JAXP ... 2-2

Using JAXP with SAX... 2-2

Using JAXP and DOM... 2-3

XML Registry Configuration Options.. 2-4

Servlet Programming Features ... 2-4

Generating XML.. 2-6

Generating XML from a DOM Document Tree... 2-6

Generating XML Documents by Using JSP... 2-7

Transforming XML Documents .. 2-8

Using the XLST Processor to Transform XML Documents 2-8

Using the JSP Tag to Transform XML Documents 2-10

Using Parsers Other Than the Built-In Parser ... 2-16

Using the WebLogic Parser Generator to Generate Custom Parsers 2-16

Using Parsers Other Than the Built-In Parser .. 2-18

Setting Up Local Entity Resolution Using the XML Registry................. 2-19

3. XML Administration
Introduction to XML Administration .. 3-1

Using the XML Registry ... 3-2

Example of an XML Registry .. 3-3

Relationship Between JAXP and the XML Registry 3-3

XML Registry Configuration Tasks .. 3-4

Using the Built-In Parser .. 3-4

Configuring a Parser Other Than the Built-In Parser................................. 3-5

Configuring a Custom-Generated Parser.. 3-10

Configuring Local Entity Resolution ... 3-14
iv Programming WebLogic XML

4. XML Reference
Extensible Markup Language (XML) 1.0 Specification 4-1

Simple API for XML (SAX) 1.0 ... 4-2

Document Object Model (DOM) Level 1 API.. 4-2

W3C XML Namespaces 1.0 Recommendation... 4-3

Java API for XML Parsing (JAXP) 1.0.1.. 4-3

Apache Xerces Java Parser API 1.2.0 ... 4-4

Apache Xalan XML Stylesheet Language Transformer (XSLT) API 1.2 4-4

Additional Resources... 4-5

Code Examples... 4-5

Related WebLogic Services ... 4-5

General XML Information ... 4-6

Tutorials and Online Courses... 4-6

XML APIs .. 4-7

XML Specifications ... 4-7

Index
Programming WebLogic XML v

vi Programming WebLogic XML

About This Document

This document explains how to use the BEA WebLogic Server™ XML software. It
defines concepts associated with using the XML software and describes the
development process for XML applications. In addition, the document includes
descriptions of the application programming interfaces (APIs), administrative tasks,
and XML tools.

The document is organized as follows:

� Chapter 1, “XML Overview,” provides a basic description of the XML software
and its components.

� Chapter 2, “Developing XML Applications with WebLogic Server,” describes
how to develop XML applications using WebLogic Server and XML tools.

� Chapter 3, “XML Administration,” describes the Administration Console XML
Registry and how to perform XML configuration tasks.

� Chapter 4, “XML Reference,” provides pointers to specifications and application
programming interfaces supported by the XML software.

Audience

This document is written for system administrators and programmers who design,
develop, configure, and manage XML applications. It is assumed that readers know
Web technologies, XML, XSLT, the Java programming language, and the Servlet and
JSP APIs of the J2EE specification.
Programming WebLogic XML vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

For related information about XML, see “Learning About XML” on page 1-2.
viii Programming WebLogic XML

http://www.adobe.com

Contact Us!
Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Programming WebLogic XML ix

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
x Programming WebLogic XML

Documentation Conventions
.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic XML xi

xii Programming WebLogic XML

CHAPTER
1 XML Overview

The following sections provide an overview of XML technology and WebLogic
Server:

� What Is XML?

� What Are XSL and XSLT?

� Common Uses of XML and XSLT

� WebLogic Server XML Features

� WebLogic Server XML Components

� XML Module Components

What Is XML?

Extensible Markup Language (XML) is a markup language for documents containing
structured information. It is a simplified version of Standard Generalized Markup
Language (SGML). XML has become an industry standard for delivering content on
the Internet. Because it provides a facility to define new tags, XML is also extensible.

Like HTML, XML uses tags to describe content. However, rather than focusing on the
presentation of content, the tags in XML describe the meaning and hierarchical
structure of data. This functionality allows for the sophisticated data types that are
required for efficient data interchange between different programs and systems.
Further, because XML enables separation of content and presentation, the content, or
data, is portable across heterogeneous systems.
Programming WebLogic XML 1-1

1 XML Overview
The XML syntax uses matching start and end tags to mark up information. Information
delimited by tags is called an element. Elements can also have attributes that are
defined in the form of name-value pairs.

The syntactic meaning associated with the tags of an XML document is defined in a
Document Type Definition (DTD). A DTD describes the elements and attributes that
are valid in an XML document, and the contexts in which they are valid. In other
words, a DTD specifies which tags are allowed within certain other tags, and which
tags and attributes are optional.

Schemas are a recent development in XML specifications and are intended to
supersede DTDs. They describe XML documents with more flexibility and detail than
DTDs do. The schema specification, currently under development, is a product of the
World Wide Web Consortium (W3C) and is intended to address many limitations of
DTDs.

Note: In this version of WebLogic Server, the final version of the schema
specification is not supported. Therefore, the schema support in this version
should be considered experimental; it should not be used in a production
environment.

Why Use XML?

An industry typically uses data exchange methods that are meaningful and specific to
that industry. With the advent of e-commerce, businesses conduct an increasing
number of relationships with a variety of industries and, therefore, must develop expert
knowledge of the various protocols used by those industries for electronic
communication.

The extensibility of XML makes it a very effective tool for standardizing the format of
data interchange among various industries. For example, when message brokers and
workflow engines must coordinate transactions among multiple industries or
departments within an enterprise, they can use XML to combine data from disparate
sources into a format that is understandable by all parties.

Learning About XML

To learn about XML, see the following online courses and tutorials:
1-2 Programming WebLogic XML

What Are XSL and XSLT?
� A Technical Introduction to XML at
“http://www.xml.com/pub/a/98/10/guide0.html”

� XML Authoring Tutorial at “http://www.xml.com/pub/r/32.”

� Working with XML and Java at “http://java.sun.com/xml/tutorial_intro.html.”

� Tutorials for using the Java 2 platform and XML technology at
“http://developerlife.com/.”

� XML, Java, and the Future of the Web at
“http://www.xml.com/pub/a/w3j/s3.bosak.html.”

� Chapter 14 of The XML Bible: XSL Transformations at
“http://metalab.unc.edu/xml/books/bible/updates/14.html.”

� XSL Tutorial by Miloslav Nic at
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html.

What Are XSL and XSLT?

The Extensible Stylesheet Language (XSL) is a W3C standard for describing
presentation rules that apply to XML documents. XSL includes both a transformation
language, (XSLT), and a formatting language. These two languages function
independently of each other. XSLT is an XML-based language and W3C specification
that describes how to transform an XML document into another XML document, or
into HTML, PDF, or some other document definition format.

An XSLT processor accepts as input an XML document and an XSLT document. The
template rules contained in an XSLT document include patterns that specify the XML
tree to which the rule applies. The XSLT processor scans the XML document for
patterns that match the rule, and then it applies the template to the appropriate section
of the original XML document.
Programming WebLogic XML 1-3

http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32
http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html

1 XML Overview
Common Uses of XML and XSLT

How you use XML and XSLT depends on your particular business needs.

Using XML and XSLT to Separate Content from
Presentation

XML and XSLT are often used in applications that support multiple client types. For
example, suppose you have a Web-based application that supports both browser-based
clients and Wireless Application Protocol (WAP) clients. These clients understand
different markup languages, HTML and Wireless Markup Language (WML),
respectively, but your application must deliver content that is appropriate for both.

To accomplish this goal, you can write your application to first produce an XML
document that represents the data it is sending to the client. Then the application can
transform the XML document that represents the data into HTML or WML,
depending on the client’s browser type. Your application can determine the client
browser type by examining the User-Agent request header of an HTTP request. Once
the application knows the client browser type, it uses the appropriate XSLT style sheet
to transform the document into the correct markup language. See the SnoopServlet
example included in the examples/servlets directory of your WebLogic Server
distribution for an example of how to access this type of header information.

This method of rendering the same XML document using different markup languages
in respective client types helps concentrate the effort required to support multiple
client types into the development of the appropriate XSLT style sheets. Additionally,
it allows your application to adapt to other clients types easily, if necessary.

For additional information about XSLT, see “Additional Resources” on page 4-5.
1-4 Programming WebLogic XML

WebLogic Server XML Features
XML as a Message Format for Business-to-Business
Communication

In a business-to-business (B2B) environment, Company A and Company B want to
exchange information about e-commerce transactions in which both are involved.
Company A is a major e-commerce site. Company B is a small affiliate that sells
Company A’s products to a niche group of customers. When Company B sends
customers to Company A, Company B is compensated in two ways: it receives, from
Company A, both money and information about other customers that make the same
sort of purchases as those made by the customers referred by Company B. To exchange
information, Company A and Company B must agree on a data format for information
that is machine readable and that operates with systems from both companies easily.

XML is the logical data format to use in this scenario, but selecting this format is only
the first step. The companies must then agree on the format of the XML messages to
be exchanged. Because Company A has a one-to-many relationship with its affiliates,
Company A must define the format of the XML messages they will send and accept.

To define the format of XML messages, or XML documents, Company A creates two
document type definitions (DTDs): one that describes the information that A will
provide about customers and one that describes the information that A wants to receive
about a newly affiliated company. Company B must also create two DTDs: one to
process the XML documents received from Company A and one to prepare an XML
document in a format that can be processed by Company A.

WebLogic Server XML Features

WebLogic Server consolidates XML technologies applicable to WebLogic Server and
XML applications based on WebLogic Server. The XML Module is a set of XML
components that is installed and integrated automatically when you install WebLogic
Server. These components facilitate the development and use of XML applications.
Using XML Module and WebLogic Server, customers can build XML applications
that use standard parsers, custom-generated parsers, XSLT transformers, and DTDs to
process and convert XML files.
Programming WebLogic XML 1-5

1 XML Overview
Parsing XML Documents

WebLogic Server includes a built-in parser that is based on the Apache Xerces parser
version 1.2.0. You can use the built-in parser in either Simple API For XML (SAX)
mode or Document Object Model (DOM) mode.

You can also use the parser of your choice for selected XML applications or for all
your XML applications: custom-generated parsers, different versions of the Apache
Xerces parser, the Sun parser, and so on.You can configure a single WebLogic Server
to use one parser for a particular application and use another parser for a different
application. WebLogic Server makes parser capabilities available through the XML
Registry. To use these capabilities, use the Administration Console to configure the
appropriate parser classes in the XML Registry. For more information about using the
XML Registry to specify different parsers, see “Configuring a Parser Other Than the
Built-In Parser” on page 3-5.

Generating Custom Parsers

Using the WebLogic Parser Generator you can generate a parser that is tailored for a
particular DTD. Generated parsers use the SAX API. They are efficient and fast, but
should only parse XML documents that use the same DTD used to generate the parser.
For more information about the limitations, behaviors, and performance of generated
parsers, refer to:

� “Limitations of Generated Parsers” on page 2-16

� “Performance and Usage Considerations for Generated Parsers” on page 2-17

Validating XML Documents

WebLogic Server supports the use of DTDs to validate XML documents.

As mentioned earlier, an XML DTD contains markup declarations that provide a
grammar for a class of documents. An XML document is considered valid if 1) it has
an associated DTD, and 2) it complies with the constraints expressed in the associated
DTD.
1-6 Programming WebLogic XML

WebLogic Server XML Components
Validation is a powerful tool for ensuring that an XML document contains all the
information required by your application. An XML parser automatically checks a
document to ensure that it is well-formed, or that it follows all the rules in the W3C
Recommendation for XML 1.0. However, to validate a document, you must include
in your document either a DTD or a reference to an external DTD. You specify how
the DTD will be handled within the document type declaration.

Transforming XML Documents

WebLogic Server includes a built-in XSLT processor that is based on the Apache
Xalan-Java XSLT processor version 1.2. You can use this built-in XSLT processor or
other XSLT processors in your XML application to transform XML documents. To do
so, you must define the processor of choice in your application code. For more
information about transforming XML documents, see “Transforming XML
Documents” on page 2-8.

Resolving External Entities

The XML Module supports external entity resolution through the XML Registry. This
feature of the registry eliminates the need to construct and set SAX EntityResolvers.
To use this feature, open the Administration Console and use the XML Registry to
associate the pathnames of local copies of external entities with their Public id

and/or System id. These entities are then resolved automatically by WebLogic Server
at parse time. For more information about using the XML Registry for external entity
resolution, see “Using the XML Registry” on page 3-2.

WebLogic Server XML Components

The WebLogic Server distribution provides XML components packaged as follows:

� weblogic.jar contains some WebLogic Server XML components.

� xmlx.jar and xmlx-tags.jar contain the XML Module components.
Programming WebLogic XML 1-7

1 XML Overview
All of these components are automatically installed when you install the WebLogic
Server distribution.

WebLogic Server includes the basic components needed to build and run XML
applications:

� Built-in XML Parser

� WebLogic Integrated Java API for XML Parsing (JAXP) 1.0.1

� Built-in XSLT Processor

� WebLogic XML Registry

� XML Servlet Attributes

Figure 1-1 WebLogic Server XML Components
1-8 Programming WebLogic XML

WebLogic Server XML Components
Built-in XML Parser

In WebLogic Server Version 6.0, the built-in parser is based on the Apache Xerces
parser 1.2.0. This parser replaces the Sun parser that shipped with WebLogic Server
5.1. By default, the built-in parser is used to parse XML documents. Because the
built-in parser is in the weblogic.apache.xerces package, it does not interfere with
any other version of the Xerces parser that may be defined in the WebLogic Server
classpath. If you want to use a different parser, use the WebLogic XML Registry to
configure the parser of your choice as the default parser. This design minimizes the
work required to write, build, and run XML applications on WebLogic Server that use
different parsers.

Note: The built-in parser is in the weblogic.Apache.Xerces package.

WebLogic Integrated Java API for XML Parsing (JAXP)
1.0.1

Java API for XML Parsing (JAXP) 1.0.1 is a Java-standard, parser-independent API
for XML. When you use JAXP, you can also use the WebLogic XML Registry to
control which parsers are used without having to write application code that is
dependent on a particular parser. The use of the XML Registry to configure parsers
supersedes the use of the JAXP parser factory system properties, which is the default
JAXP mechanism for configuring a parser.

JAXP 1.0.1 supports two modes for processing XML documents: SAX 1.0 and DOM
Level 1.

� For SAX processing, JAXP defines a factory API that enables applications to
configure and obtain a SAX-based parser to parse XML documents.

� For DOM processing, JAXP defines a factory API that enables applications to
configure and obtain a parser to parse XML documents into a DOM document
tree.
Programming WebLogic XML 1-9

1 XML Overview
Built-in XSLT Processor

WebLogic Server includes an XSLT processor, which is based on the Apache
Xalan-Java XSLT processor 1.2, as the built-in XSLT processor. You can use the
Xalan-based processor to transform XML documents into HTML, WML, text, or other
XML document types. XSLT transformations are not part of JAXP 1.0.1, so you must
use Xalan specific code in your XML application to instantiate and run XSLT
transformation using the built-in XSLT processor. Because the Xalan processor
classes are provided in the weblogic.apache.xalan package, the built-in XSLT
processor does not interfere with any other version of the Xalan XSLT processor that
may be defined in the WebLogic Server classpath.

WebLogic XML Registry

The XML Registry simplifies XML administration and configuration tasks by
separating these tasks from the XML application. Use the Administration Console (a
graphical user interface, or GUI, for WebLogic Server administration) to configure
and assign XML Registries.

Note: Each WebLogic Server domain can include any number of registries; each
WebLogic Server in a domain can be assigned zero or one registry.

The advantages of the XML Registry are as follows:

� You can specify the parser at deployment time, not only at build time.

� You do not need to include any parser-dependent code in your applications.

� You can support multiple parsers in a single server more conveniently.

You can use the XML registry to perform the following tasks:

� Specify an alternative default XML parser instead of the built-in parser shipped
in this version of WebLogic Server.

� Specify an XML parser that should be used to process a particular document
type (including custom-generated parsers).

� Specify external entities that are to be resolved locally. Then, you can store local
copies of external entities in the Administration Server’s file system so that they
1-10 Programming WebLogic XML

XML Module Components
can be distributed automatically to the server’s parser at parse time. This feature
eliminates the need to construct and set SAX EntityResolvers and the need for
the parser to consult an external Web site, thus improving parser performance.

All the preceding capabilities are available if your application uses the standard Java
API for XML Parsing (JAXP), which is included in this version of WebLogic Server.
These capabilities are for use on the server side only.

XML Servlet Attributes

WebLogic Server supports two special XML servlet attributes:
org.xml.sax.HandlerBase and org.w3c.dom.Document. These attributes:

� Provide access to XML from servlets that use SAX or DOM parsers. For SAX,
you use the setAttribute method to access the org.xml.sax.HandlerBase
attribute. For DOM, you use the getAttribute method to access the
org.w3c.dom.Document attribute.

� Work with parser and entity resolver configuration information in the XML
Registry.

Note: The setAttribute and getAttribute methods are provided for
convenience only; they are not required to parse XML from a servlet.

XML Module Components

The XML Module is a set of XML components that is installed and integrated
automatically when you install the WebLogic Server software (see Figure 1-1). These
components facilitate the development and use of XML applications. Specifically, the
module components enable the use of the parser generator and the JSP tag library.
Although the module components do not make up a separate software package, they
perform a discrete set of functions, and are therefore referred to collectively as a
module.
Programming WebLogic XML 1-11

1 XML Overview
Note: The XML Module can be updated and released separately from WebLogic
Server.

The XML Module contains the following components:

� XML Parser

� XSLT Processor

� WebLogic Parser Generator

� WebLogic XSLT JSP Tag Library

XML Parser

The XML Module includes the Apache Xerces parser version 1.2.0. In this version of
WebLogic Server, this component is functionally the same as the WebLogic Server
built-in XML parser.

XSLT Processor

The XML Module includes Apache Xalan-Java XSLT processor 1.2. In this version of
WebLogic Server, this component is functionally the same as the WebLogic Server
built-in XSLT processor.

WebLogic Parser Generator

The parser generator tool is built by BEA to achieve custom parsing performance while
using standard XML APIs. This tool enables you to generate customized SAX parsers
that are specific to the document types represented by DTDs. Because each generated
parser is built for a specific DTD, it cannot be used to parse XML documents written
for other DTDs.

The parser generator is included in xmlx.jar, which is installed when you install your
WebLogic Server distribution.
1-12 Programming WebLogic XML

XML Module Components
Using the parser generator has advantages and disadvantages. The advantages are
better performance while using standard JAXP APIs, a smaller code footprint, and less
server resource utilization. The disadvantages are that the parser generator produces a
SAX 1.0 parser (instead of SAX 2.0); it is neither a fully validating parser nor a
non-validating parser; and it does not support DOM.

After you use this tool to generate a custom parser, you can configure the XML registry
in WebLogic Server so that the custom-generated parser is automatically used to parse
a particular XML document.

WebLogic XSLT JSP Tag Library

The JSP tag library provides a simple tag that enables access to the built-in XSLT
processor from within a Java Server Pages (JSP) running on WebLogic Server.
Currently, this tag supports the built-in XSLT processor only; you cannot use the tag
to parse an XML document from within a JSP using a different parser.

The JSP tag library is included in xmlx-tags.jar, which is installed when you install
your WebLogic Server distribution.

Note: The JSP tag library is provided for convenience only; it is not required to
access XSLT processors from within a JSP.
Programming WebLogic XML 1-13

1 XML Overview
1-14 Programming WebLogic XML

CHAPTER
2 Developing XML
Applications with
WebLogic Server

The following sections describe how to use the Java programming language and
WebLogic Server to develop XML applications. It is assumed that you know how to
use Java Servlets and Java Server Pages (JSPs) to write Java applications. For
information about how to write servlet and JSP applications, see Programming
WebLogic HTTP Servlets at http://e-docs.bea.com/wls/docs60/servlet/index.html and
Programming WebLogic JSP at http://e-docs.bea.com/wls/docs60/jsp/index.html.

� Using WebLogic Server Features For XML Application Development

� Generating XML

� Transforming XML Documents

� Using Parsers Other Than the Built-In Parser

Using WebLogic Server Features For XML
Application Development

To facilitate XML application development and the work required to move XML
applications built on WebLogic Server to other Web application servers, WebLogic
Server implements the Java API for XML Parsing (JAXP). JAXP was developed by
Programming WebLogic XML 2-1

http://e-docs.bea.com/wls/docs60/servlet/index.html
http://e-docs.bea.com/wls/docs60/servlet/index.html
http://e-docs.bea.com/wls/docs60/jsp/index.html

2 Developing XML Applications with WebLogic Server
Sun Microsystems to make XML applications portable; it provides basic support for
parsing and manipulating XML documents through a standardized set of Java platform
APIs. JAXP 1.0.1, included in the WebLogic Server distribution, is configured to use
the built-in parser. Therefore, by default, XML applications built using WebLogic
Server use JAXP.

The WebLogic Server distribution contains the interfaces and classes needed for JAXP
1.0.1. JAXP 1.0.1 contains explicit support for SAX 1.0 and DOM Level 1. The
Javadoc for JAXP is included with the WebLogic Server online reference
documentation. The WebLogic Server distribution does not include the Sun Projectx
parser.

Advantage of Using JAXP

When you write XML applications, the application must get the XML document and
parse it to make its contents available to the application. To accomplish this task, you
can use either the SAX or the DOM API. Both APIs provide extensive functionality
and are very useful. However, to use either API, you must import and reference a
parser class from a parser vendor’s Java code. The problem with this approach is
twofold:

� The use of SAX or DOM requires knowledge of the specific implementation
of the vendor’s parser.

� To make a change to the parser class used, you must change the application
code and recompile it.

These problems could be avoided if the XML parser were completely pluggable. The
Java API for XML Parsing (JAXP) provides a parser Pluggability Layer. The JAXP
Pluggability Layer allows a compliant SAX or DOM parser to be accessed through
factory classes in the javax.xml.parsers package.

Using JAXP with SAX

The following code example shows how to provide an implementation of the
org.xml.sax.HandlerBase class to a SAXParser implementation and then parse an
XML document:
2-2 Programming WebLogic XML

Using WebLogic Server Features For XML Application Development
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

...
MyHandler handler = new MyHandler();
// MyHandler extends org.xml.sax.HandlerBase.

//Obtain an instance of SAXParserFactory.
SAXParserFactory spf = SAXParserFactory.newInstance();
//Specify a validating parser.
spf.setValidating(true); // Requires loading the DTD.
//Obtain an instance of a SAX parser from the factory.
SAXParser sp = spf.newSAXParser();
//Parse the documnt.
sp.parse(inputFile, handler);

...

Note: If you want to use a parser other than the default, built-in parser, you must use
the WebLogic Server Administration Console to specify the parser in the
XML Registry; otherwise the newInstance method returns the built-in
parser. For instructions about configuring WebLogic Server to use a parser
other than the built-in parser, see “XML Registry Configuration Tasks” on
page 3-4.

Using JAXP and DOM

The following code example shows how to provide an implementation of the
org.w3c.dom.Document class to a DocumentBuilder implementation and then
parse an XML document:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

...
//Obtain an instance of DocumentBuilderFactory.
DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();
//Specify a validating parser.
dbf.setValidating(true); // Requires loading the DTD.
//Obtain an instance of a DocumentBuilder from the factory.
DocumentBuilder db = dbf.newDocumentBuilder();
//Parse the document.
Document doc = db.parse(inputFile);
...
Programming WebLogic XML 2-3

2 Developing XML Applications with WebLogic Server
Note: If you want to use a parser other than the built-in parser, you must use the
WebLogic Server Administration Console to specify the parser in the XML
Registry; otherwise the newInstance method returns the built-in parser. For
instructions about configuring WebLogic Server to use a parser other than the
built-in parser, see “XML Registry Configuration Tasks” on page 3-4.

XML Registry Configuration Options

As mentioned previously, you use the Administration Console XML Registry to
configure the following:

� Server-wide default parser

� Per-doctype parsers, which supersede the default parser for the specified
doctype

� External entity resolution, or the process that an XML parser goes through
when requested to find an external file in the course of parsing an XML
document

When you make configuration changes using the XML Registry, the changes take
effect immediately, that is, it is not necessary to recompile the XML application code
or to restart the server. You can make changes at deploy time or run time without
modifying and recompiling the XML application code or restarting the server.

Servlet Programming Features

Support for the setAttribute and getAttribute methods was added to version 2.2
of the Java Servlet Specification. Attributes are objects associated with a request. The
request object encapsulates all information from the client request. In the HTTP
protocol, this information is transmitted from the client to the server by the HTTP
headers and message body of the request.

With WebLogic Server, you can use these methods to parse XML documents. The
setAttribute method is used for SAX mode parsing; the getAttribute method,
for DOM mode parsing.
2-4 Programming WebLogic XML

Using WebLogic Server Features For XML Application Development
Using the org.xml.sax.HandlerBase Attribute to Parse a Document

The following code example shows how to use the setAttribute method:

import weblogic.servlet.XMLProcessingException;
...
public final void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {
try {// MyHandler extends org.xml.sax.HandlerBase.

request.setAttribute(
"org.xml.sax.HandlerBase", new MyHandler());

} catch(XMLProcessingException xpe) {
System.out.println("Error in processing XML");
xpe.printStackTrace();
return;

}
...

Note: This code example shows a simple way to parse a document using SAX and
the setAttribute method. This is a WebLogic Server convenience feature,
and it is not supported by other servlet vendors. Therefore, if you plan to run
your application on other servlet platforms, do not use this feature.

Using the org.w3c.dom.Document Attribute to Parse a Document

The following code example shows how to use the getAttribute method.

import org.w3c.dom.Document;
import weblogic.servlet.XMLProcessingException;

...

public final void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

try {
Document doc = request.getAttribute("org.w3c.dom.Document");

} catch(XMLProcessingException xpe) {
System.out.println("Error in processing XML");
xpe.printStackTrace();
return;

}
...
Programming WebLogic XML 2-5

2 Developing XML Applications with WebLogic Server
Note: This code example shows a simple way to parse a document using DOM and
the getAttribute method. This is a WebLogic Server convenience feature,
and it is not supported by other servlet vendors. Therefore, if you plan to run
your application on other servlet platforms, do not use this feature.

Generating XML

This section describes how to generate XML documents from a DOM document tree
and by using JSP.

Generating XML from a DOM Document Tree

To generate an XML document from a DOM document tree, you can use the class
weblogic.apache.xml.serialize. You can use this class to convert a DOM
document tree to XML text. For a description of this class, see Javadoc for
weblogic.apache.xml.serialize.

The following code example shows how to used this class.

package test;

import java.io.OutputStreamWriter;
import java.util.Date;
import java.text.DateFormat;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import weblogic.apache.xerces.dom.DocumentImpl;
import weblogic.apache.xml.serialize.DOMSerializer;
import weblogic.apache.xml.serialize.XMLSerializer;

public class WriteXML {

public static void main(String[] args) throws Exception {

// Create a DOM tree.
Document doc= new DocumentImpl();
Element message = doc.createElement("message");
doc.appendChild(message);
Element text = doc.createElement("text");
2-6 Programming WebLogic XML

Generating XML
text.appendChild(doc.createTextNode("Hello world."));
message.appendChild(text);
Element timestamp = doc.createElement("timestamp");
timestamp.appendChild(
doc.createTextNode(

DateFormat.getDateInstance().format(new Date()))
);
message.appendChild(timestamp);

// Serialize the DOM to XML text and output to stdout.
DOMSerializer xmlSer =
new XMLSerializer(new OutputStreamWriter(System.out),null);
xmlSer.serialize(doc);

}
}

Generating XML Documents by Using JSP

The most common reason for using JSP is to generate HTML, but JSP can also be used
to generate an XML document.

The main requirement for using JSP to generate XML is that the JSP page set the
content type of the page as follows:

<%@ page contentType="text/xml"%>
... XML document

The following code shows an example of how to use JSP to generate an XML
document:

<?xml version="1.0">

<%@ page contentType="text/xml"
import="java.text.DateFormat,java.util.Date" %>

<message>
<text>

Hello World.
</text>
<timestamp>

<%
out.print(DateFormat.getDateInstance().format(new Date()));
%>
</timestamp>

</message>
Programming WebLogic XML 2-7

2 Developing XML Applications with WebLogic Server
For more information about using JSP to generate XML, see
http://java.sun.com/products/jsp/html/JSPXML.html.

Transforming XML Documents

WebLogic Server includes a built-in XSLT processor, which is based on the Apache
Xalan XSLT processor. The built-in XSLT processor uses the built-in parser by
default. JAXP does not provide a standard API to access the built-in XSLT processor,
so the XSLT processor must be handled in your application programmatically.

In an XSLT transformation, an XSLT processor reads both an XML document and an
XSLT style sheet. Based on the instructions in the XSLT style sheet, the transformer
outputs a new XML document, an HTML document, a WML document, and so on.

WebLogic Server supports two ways of using the XSLT processor:

� You can use the standard Xalan API to instantiate and invoke the built-in
XSLT processor from the XML application.

� You can use the JSP tag provided by WebLogic Server to invoke the built-in
XSLT processor from a JSP. The JSP tag x:xslt is a convenience method
that is provided in a JSP tag library.

Using the XLST Processor to Transform XML Documents

The following code example shows how to construct a simple DOM tree (for the same
XML document used in HelloWorld.jsp) and then serialize it to XML text. In the
example, the XML text is printed to the standard output using the System.out
method.

Note: The following code example was taken from the Apache Xalan samples,
which are available at http://xml.apache.org.

*
* This code example was taken from code examples provided by the
* Apache Software Foundation. It consists of voluntary
* contributions made by many individuals on behalf of the Apache
* Software Foundation and was originally based on software
2-8 Programming WebLogic XML

http://java.sun.com/products/jsp/html/JSPXML.html
http://xml.apache.org/xalan/index.html

Transforming XML Documents
* copyright (c) 1999, Lotus Development Corporation.,
* http://www.lotus.com. For more information on the Apache
* Software Foundation, please see <http://www.apache.org/>.
*/

import org.xml.sax.SAXException;
import org.apache.xalan.xslt.XSLTProcessorFactory;
import org.apache.xalan.xslt.XSLTInputSource;
import org.apache.xalan.xslt.XSLTResultTarget;
import org.apache.xalan.xslt.XSLTProcessor;

/**
* Simple sample code to show how to run the XSL processor
* from the API.
*/
public class SimpleTransform
{

public static void main(String[] args)
throws java.io.IOException,

java.net.MalformedURLException,
org.xml.sax.SAXException

{
// Have the XSLTProcessorFactory obtain a interface to a
// new XSLTProcessor object.
XSLTProcessor processor =

XSLTProcessorFactory.getProcessor();

// Have the XSLTProcessor processor object transform
"foo.xml"

// to System.out, using the XSLT instructions found in
"foo.xsl".

processor.process(new XSLTInputSource("foo.xml"),
new XSLTInputSource("foo.xsl"),
new XSLTResultTarget(System.out));

}
}

For additional information about the Xalan samples, see the Apache Xalan Javadoc “at
http://e-docs.bea.com/wls/docs60/Xalan/index.html” and the Overview and Getting
Started documents on the Apache Web site at http://xml.apache.org/xalan.
Programming WebLogic XML 2-9

http://e-docs.bea.com/wls/docs60/Xalan/index.html
http://xml.apache.org/xalan

2 Developing XML Applications with WebLogic Server
Using the JSP Tag to Transform XML Documents

WebLogic Server provides a small JSP tag library for convenient access to an XSLT
processor from within a JSP. You can use this tag to transform XML documents, but
it is not required.

The JSP tag library consists of one main tag, x:xslt, and two subtags you can use
within the x:xslt tag: x:stylesheet and x:xml.

XSLT JSP Tag Syntax

The XSLT JSP tag syntax is based on XML. A JSP tag consists of a start tag, an
optional body, and a matching end tag. The start tag includes the element name and
optional attributes.

The following syntax describes how to use the three XSLT JSP tags provided by
WebLogic Server in a JSP. The attributes are optional, as are the subtags
x:stylesheet and x:xml. The tables following the syntax describe the attributes of
the x:xslt and x:stylesheet tags; the x:xml tag does not have any attributes.

<x:xslt [xml="uri of XML file"]
[media="media type to determine stylesheet"]
[stylesheet="uri of stylesheet"]

<x:xml>In-line XML goes here
</x:xml>
<x:stylesheet [media="media type to determine stylesheet"]

[uri="uri of stylesheet"]
</x:stylesheet>

</x:xslt>

The following table describes the attributes of the x:xslt tag.

x:xslt Tag
Attribute

Required Data type Description

xml No String Specifies the location of the XML file that you want to transform.
The location is relative to the document root of the Web application
in which the tag is used.
2-10 Programming WebLogic XML

Transforming XML Documents
The following table describes the attributes of the x:stylesheet tag.

media No String Defines the document output type, such as HTML or WML, that
determines which stylesheet to use when transforming the XML
document.

This attribute can be used in conjunction with the media attribute
of any enclosed x:stylesheet tags within the body of the
x:xslt tag. The value of the media attribute of the x:xslt tag is
compared to the value of the media attribute of any enclosed
x:stylesheet tags. If the values are equal, then the stylesheet
specified by the uri attribute of the x:stylesheet tag is applied
to the XML document.

NOTE: It is an error to set both the media and stylesheet
attributes within the same x:xslt tag.

stylesheet No String Specifies the location of the stylesheet to use to transform the XML
document. The location is relative to the document root of the Web
application in which the tag is used.

NOTE: It is an error to set both the media and stylesheet
attributes within the same x:xslt tag.

x:xslt Tag
Attribute

Required Data type Description

x:stylesheet
Tag Attribute

Required Data type Description

media No String Defines the document output type, such as HTML or WML,
that determines which stylesheet to use when transforming the
XML document.

Use this attribute in conjunction with the media attribute of
enveloping x:xslt tag. The value of the media attribute of the
x:xslt tag is compared to the value of the media attribute
of the enclosed x:stylesheet tags. If the values are equal,
then the stylesheet specified by the uri attribute of the
x:stylesheet tag is applied to the XML document.

uri No String Specifies the location of the stylesheet to use when the value of
the media attribute matches the value of the media attribute
of the enveloping x:xslt tag. The location is relative to the
document root of the Web application in which the tag is used.
Programming WebLogic XML 2-11

2 Developing XML Applications with WebLogic Server
XSLT JSP Tag Usage

The x:xslt tag can be used with or without a body, and its attributes are optional.
This section describes the rules that dictate how the tag behaves depending on whether
you specify a body or one or more attributes.

If the x:xslt JSP tag is an empty tag (no body), the following statements apply:

� If no attributes are set, the XML document is processed using the servlet path
and the default media stylesheet. You specify the default media stylesheet in
your XML file with the <?xml-stylesheet> processing instruction; the
default stylesheet is the one that does not have a media attribute.

This type of processing allows you to register the JSP page that contains the
tag extension as a file servlet that performs XSLT processing.

� If only the media attribute is set, the XML document is processed using the
servlet path and the specified media type. The value of the media type
attribute of the x:xslt tag is compared to the value of the media attribute of
any <?xml-stylesheet> processing instructions in your XML document;
if any match then the corresponding stylesheet is applied. If none match then
the default media stylesheet is used. The media type attribute is used to
define the document output type (for example, XML, HTML, postscript, or
WML). This feature enables you to organize stylesheets by document output
type.

� If only the xml attribute is set, the specified XML document is processed
using the default media stylesheet.

� If the media and xml attributes are set, the specified XML document is
processed using the specified media type.

� If the stylesheet attribute is defined, the XML document is processed
using the specified stylesheet.

Caution: It is an error to set both the media and stylesheet attributes.

An XSLT JSP tag that has a body may contain <x:xml> tags and/or <x:stylesheet>
tags.

� The <x:xml> tag allows you specify an XML document for inline
processing. This tag has no attributes.
2-12 Programming WebLogic XML

Transforming XML Documents
� The <x:stylesheet> tag, when used without any attributes, allows you
specify the default stylesheet inline.

� Use the uri attribute of the <x:stylesheet> tag to specify the location of
the default stylesheet.

� If you want to specify different stylesheets for different media types, you can
use multiple <x:stylesheet> tags with different values for the media
attribute. You can specify a stylesheet for each media type in the body of the
tag, or specify the location of the stylesheet with the uri attribute.
Programming WebLogic XML 2-13

2 Developing XML Applications with WebLogic Server
Transforming XML Documents Using an XSLT JSP Tag

To use an XSLT JSP tag to transform XML documents, perform the following steps:

1. Open the xmlx.zip file in the BEA Home/wlserver6.0/ext directory, extract the
xmlx-tags.jar file, and put it in the /lib directory of your Web application,
where BEA Home is the top-level directory in which you installed the WebLogic
Server distribution.

2. Add a <taglib> entry to the web.xml file. For example:

<taglib>
<taglib-uri>xmlx.tld</taglib-uri>
<taglib-location>/WEB-INF/lib/xmlx-tags.jar</taglib-location>

</taglib>

3. To use the tags, add the following line to your JSP page:

<%@ taglib uri="xmlx.tld" prefix="x"%>

4. Configure the processor. The following procedure shows a generic way to
configure the processor:

a. Enter the following code line to create an xslt.jsp file:

<%@ taglib uri="xmlx.tld" prefix="x"%><x:xslt/>

b. Register the xslt.jsp file in your web.xml file, as follows:

<servlet>
<servlet-name>myxsltinterceptor</servlet-name>
<jsp-file>xslt.jsp</jsp-file>

</servlet>
<servlet-mapping>

<servlet-name>myxsltinterceptor</servlet-name>
<url-pattern>/xslt/*</url-pattern>

</servlet-mapping>

c. Put your XML/DTD/XSL documents or servlets in your Web application.

d. Add an xslt prefix to the pathname for the XML document (for example,
change docs/fred.xml to xslt/docs/fred.xml) and then access the
document. Because of the <url-pattern> entry in the web.xml file,
WebLogic Server automatically runs the XSLT processor on the XML
document and sets the default stylesheet in the document.

e. To define media type, add code to the JSP to determine the media type for the
XML document and the content type for the output.
2-14 Programming WebLogic XML

Transforming XML Documents
f. Pass the media type into the xslt tag and then set the content type of the
response object.

Note: The other forms of the XSLT JSP tag are used when stylesheets are not
specified in the XML document or your XML stylesheet can be generated
inline.

Example of Using the XSLT JSP Tag in a JSP

The following snippet of code from a JSP shows how to use the XSLT JSP tag to
transform XML into HTML or WML, depending on the type of client that is requesting
the JSP. If the client is a browser, the JSP returns HTML; if the client is a wireless
device, the JSP returns WML.

First the JSP uses the getHeader() method of the HttpServletRequest object to
determine the type of client that is requesting the JSP and sets the myMedia variable to
wml or html appropriately. Using the x:xslt and x:stylesheet in unison, if the JSP
set the myMedia variable to html, then it applies the html.xsl stylesheet to the XML
document contained in the content variable. Similarly, if the JSP set the myMedia
variable to wml, then it applies the wml.xsl stylesheet.

<%
String clientType = request.getHeader("User-Agent");
// default to WML client
String myMedia = "wml";

// if client is an HTML browser

if (clientType.indexOf("Mozilla") != -1) {
myMedia = "http"

}
%>

<x:xslt media="<%=myMedia%>">
<x:xml><%=content%></x:xml>
<x:stylesheet media="html" uri="html.xsl"/>
<x:stylesheet media="wml" uri="wml.xsl"/>

</x:xslt>
Programming WebLogic XML 2-15

2 Developing XML Applications with WebLogic Server
Using Parsers Other Than the Built-In Parser

This section explains how to use parsers other than the built-in parser. Specifically, it
discusses these topics:

� Using the WebLogic Parser Generator to Generate Custom Parsers

� Using Parsers Other Than the Built-In Parser

Using the WebLogic Parser Generator to Generate
Custom Parsers

In a highly scalable Internet application, parser performance can be a bottleneck. To
address this problem, WebLogic Server provides the WebLogic Parser Generator.
Using the WebLogic Parser Generator you can create a parser that is tailored to a
particular DTD. This parser will be much more efficient and faster than a
general-purpose parser that can handle any document type. Generated parsers use the
SAX API and should be used to parse only XML documents that are based on the DTD
used to generate the parser.

Limitations of Generated Parsers

The following limitations apply to generated parsers:

� Generated parsers support SAX 1.0 features, but not SAX 2.0 enhancements.

� Generated parsers are not fully XML 1.0 compliant; they are specific to a DTD
and therefore behave slightly differently from general-purpose, validating
parsers. For example, generated parsers do not resolve external entities,
including those defined in the DTD.

� A generated parser is able to parse only those documents that conform to the
DTD used to generate the parser. A generated parser performs limited validation
on the parsed document, and therefore is neither a truly validating nor a
non-validating parser.
2-16 Programming WebLogic XML

Using Parsers Other Than the Built-In Parser
� Generated parsers ignore DOCTYPE statements in an XML document. These
statements are not useful because a generated parser operates on the assumption
that it was generated with the DTD specified in the DOCTYPE statement.

� Generated parsers do not:

� Support DTD entity references other than the following predefined entity
references: & (for the ampersand sign), " (for a double quotation
mark), < (for the less-than sign), > (for the greater-than sign), and
&apos (for a single quotation mark or apostrophe).

� Support processing instructions, an element content specification of ANY, or
references to elements that are not defined in the DTD.

� Report all whitespace or ignorable whitespace in character data.

� Normalize attribute values to specification.

Performance and Usage Considerations for Generated Parsers

When deciding whether to use a generated parser, keep in mind the following
considerations:

� Parsing performance improvements as much as 10 times that of a standard parser
have been observed when generated parsers are used. However, actual
performance improvements depend on the application. Generally, the smaller the
document, the higher the performance benefit. If performance is critical for your
application environment, you should conduct benchmarks on your own
application with representative document types.

� The use of generated parsers is intended for applications that require very fast
parsing of XML documents and that do not require strict adherence to the XML
1.0 specification.

� Generated parsers are not recommended for parsing documents that attach
significance to whitespace, such as prose.

Generating a Custom Parser

To generate a customized parser, perform the following steps:
Programming WebLogic XML 2-17

2 Developing XML Applications with WebLogic Server
1. Make sure the xmlx.jar file is in BEA Home\wlserver6.0\lib, where BEA
Home is the top-level directory in which you installed the WebLogic Server
distribution.

2. Run the parser generator against the DTD for which you want to generate a
custom parser. The following is a typical execution command using the
wml12.dtd on a Microsoft Windows platform:

java weblogicx.xml.parserc -d %SERVER_CLASSES% -root wml
-package weblogicx.xml.parsers wml12.dtd

Where:

� -d designates the destination of the class files (for example, BEA
Home\wlserver6.0\clientclasses).

� -root specifies the top-level element—if it is not the DTD name—with the
.dtd extension deleted.

� -package specifies the package in which the generated parser will be placed.

� wml12.dtd is the name of the DTD.

� The name of the parser class will consist of the Java class-named version of
the root element plus Parser. For example, this example command produces a
parser named wmlparser.

3. If you want to examine the generated parser’s code, use the -keepgenerated
option.

4. Use the Administration Console to register wmlparser in the XML Registry. For
instructions about registering a parser in the XML Registry, see “Configuring a
Custom-Generated Parser” on page 3-10.

Once this procedure is completed, as long as you use JAXP to parse a WML document,
WebLogic Server will use wmlparser to do SAX parsing.

Using Parsers Other Than the Built-In Parser

If you use JAXP to parse your XML documents, the WebLogic Server XML Registry
(which is configured through the Administration Console) offers the following
options:

� Accept the built-in parser as the server-wide parser.
2-18 Programming WebLogic XML

Using Parsers Other Than the Built-In Parser
� Configure a parser other than the built-in parser as the server-wide parser.

� Configure a parser other than the built-in parser as the parser only for
applications that use a particular DTD to parse XML documents.

� Configure a custom-generated parser as the parser for particular XML
applications.

If you elect to use the API of a general-purpose parser instead of JAXP, you must
control all parsing options through the parser’s API; the WebLogic Server XML
Registry does not control parsing options when the API of a general-purpose parser is
used. For example, if you elect to use the built-in parser’s proprietary API, rather than
JAXP, to parse documents, then you must also use the built-in parser’s proprietary API
to control all parsing options.

For instructions on how to use the XML Registry to configure parsing options, see
“XML Registry Configuration Tasks” on page 3-4.

Setting Up Local Entity Resolution Using the XML
Registry

For instructions about setting up local entity resolution, see “Configuring Local Entity
Resolution” on page 3-14.
Programming WebLogic XML 2-19

2 Developing XML Applications with WebLogic Server
2-20 Programming WebLogic XML

CHAPTER
3 XML Administration

The following sections describe XML administration with WebLogic Server:

� Introduction to XML Administration

� Using the XML Registry

� XML Registry Configuration Tasks

For additional information about using the XML Registry to configure WebLogic
Server for XML applications, see the Administration Guide at
http://e-docs.bea.com/wls/docs60/adminguide/index.html and the Administration
Console Online Help.

Introduction to XML Administration

You use the XML Registry, which is accessed through the Administration Console, to
configure WebLogic Server for XML applications.

By default, WebLogic Server is configured to use the built-in parser to parse XML
documents. As long as you use the default configuration, you do not have to perform
any configuration tasks for your XML applications. If you want to use a parser or
parsers other than the built-in parser, you must use the XML Registry to configure
them.

Note: To use the XML Registry to configure WebLogic Server for an XML
application, you must use the Java API for XML Parsing (JAXP). If you use a
parser through the parser’s own proprietary API, the XML Registry has no
effect on the behavior of your XML application.
Programming WebLogic XML 3-1

http://e-docs.bea.com/wls/docs60/adminguide/index.html

3 XML Administration
Using the XML Registry

You create, configure, and use the XML Registry through the Administration Console.
You can configure as many XML Registries in a domain as there are servers in a
domain, but you can only configure one XML Registry or zero for a particular server.

The benefits of using the Administration Console XML Registry are as follows:

� Configuration changes take effect automatically at run time, provided you use
JAXP API.

� When you make changes using the XML Registry, it is not necessary to change
the XML application code.

� Entity resolution is done locally. You can use the XML Registry to define a local
copy of an entity. This means that the parser does not have to go to the Web site
to parse. Instead, the parser downloads the entity from the Administration Server
and then caches it.

You can use the XML Registry to specify the following:

� Specify an alternative default XML parser to use instead of the built-in parser
included in this version of WebLogic Server.

� Specify an XML parser to be used to process a particular document type
(including custom-generated parsers).

� Specify external entities that are to be resolved using local copies. Once these
entities are specified, the Administration Server stores local copies of them in
the file system and automatically distributes them to the server’s parser at parse
time. This feature eliminates the need to construct and set SAX EntityResolvers.

� The advantage of using local copies of external entities is that the parser does
not have to consult an external Web site, which improves parser performance.

All of the above capabilities are automatically enabled if your application uses the
standard Java API for XML Parsing (JAXP), which is included in this version of
WebLogic Server. These capabilities are for use on the server side only.
3-2 Programming WebLogic XML

Using the XML Registry
Example of an XML Registry

Use the Administration Console to access and edit contents of the XML Registry.
Figure 3-1 shows an example of an XML Registry configured through the
Administration Console.

Figure 3-1 Sample XML Registry Code Displayed in Administration Console

Relationship Between JAXP and the XML Registry

The XML registry is automatically consulted whenever you use the JAXP API to write
your XML applications. The WebLogic Server JAXP implementation can inspect the
content of the XML document and delegate to an appropriate parser based on the XML
Programming WebLogic XML 3-3

3 XML Administration
Registry configuration. If no parser is registered for the document type, the JAXP
implementation delegates to the default parsers specified in the XML Registry. If no
default parsers are registered, the built-in parser is registered for the document type.
Additionally, when WebLogic Server starts, a SAX entity resolver is automatically set
so that it can resolve entities that are declared in the registry. As a result, users are not
required to modify their XML application code to control the parsers used, or to set the
location of local copies of external entities. All of this is controlled by the XML
Registry.

Note: If you elect to use an API provided by a parser instead of the JAXP API, the
XML Registry has no effect on the processing of XML documents.

XML Registry Configuration Tasks

You can use the XML Registry to perform the following tasks:

� Configuring a Parser Other Than the Built-In Parser

In this configuration, WebLogic Server uses parsers other than the built-in
parser. For example, you can configure WebLogic Server to use the bundled
version of the Apache Xerces parser, the Sun parser, and other available parsers.

� Configuring a Custom-Generated Parser

In this configuration, WebLogic Server uses custom parsers generated using the
WebLogic Parser Generator.

� Configuring Local Entity Resolution

In this configuration, WebLogic Server uses local copies of external entities for
entity resolution.

Using the Built-In Parser

WebLogic Server uses the built-in parser to parse XML documents by default. You do
not have to perform any configuration tasks. You simply write and build your XML
application using the JAXP API.
3-4 Programming WebLogic XML

XML Registry Configuration Tasks
Configuring a Parser Other Than the Built-In Parser

To use a parser other than the built-in parser, use the following procedure:

1. Start the server, open the Administration Console.

2. Right-click the XML node and select Create a new XML Registry from the
drop-down menu. The XML Registries>Create window is displayed (see
Figure 3-2).

Figure 3-2 XML Registries Create Window

3. Enter a unique registry name in the Name field and set the
DocumentBuilderFactory and the SaxParserFactory fields to the appropriate
parser classes.
Programming WebLogic XML 3-5

3 XML Administration
For example, to use the Sun parser, enter the following in the XML
Registries>Create window (see Figure 3-3):

Name: Sun Parser Registry
DocumentBuilderFactory: com.sun.xml.parser.DocumentBuilderFactoryImpl
SAXParserFactory: com.sun.xml.parser.SAXParserFactoryImpl

To use the bundled Apache Xerces parser from the XML Module, enter the
following in the XML Registries>Create window.

Name: Xerces parer Registry
DocumentBuilderFactory: "org.apache.xerces.jaxp.DocumentBuilderFactoryImpl"
SAXParserFactory: "org.apache.xerces.jaxp.SAXParserFactoryImpl"

Figure 3-3 Configured Sun Parser Registry

4. Click the Create button. The XML Registry is created and listed under the XML
node.
3-6 Programming WebLogic XML

XML Registry Configuration Tasks
5. Click the Servers node in the left pane. The Servers table displays in the right
pane showing all the servers defined in the domain (see Figure 3-4).

Figure 3-4 Servers Table Window

6. Click the Create a New Server text link. A dialog is displayed in the right pane
showing the tabs associated with configuring a new server (see Figure 3-5).
Programming WebLogic XML 3-7

3 XML Administration
Figure 3-5 Server Configuration Window

7. Enter values in the Name, Machine, and System Password attribute fields.

8. Click the Create button in the lower right corner to create a server instance with
the name you specified in the Name field. The new instance is added under the
Servers node in the left pane.

9. Click the Services tab. The XML Registry folder window is displayed (see
Figure 3-6).
3-8 Programming WebLogic XML

XML Registry Configuration Tasks
Figure 3-6 XML Registry Folder Window

10. Select the Sun Parser Registry in the XML Registry field and click the Apply
button.

11. Restart your server so the new settings to take effect.
Programming WebLogic XML 3-9

3 XML Administration
Configuring a Custom-Generated Parser

You can generate a custom parser based on a specific DTD. For instructions about how
to generate a custom parser, see “Using the WebLogic Parser Generator to Generate
Custom Parsers” on page 2-16.

To use a generated parser to parse XML documents based on a particular DTD,
perform the following steps:

1. Start the server and open the Administration Console.

2. Right-click the XML node and select Create a New XML Registry from the
drop-down menu. The XML Registries>Create window is displayed (see
Figure 3-2).

3. Enter a unique name (for example: Generated Parser Registry) for the new XML
Registry and click the Create button. The XML Registries>Generated Parser
Registry window is displayed (see Figure 3-7).
3-10 Programming WebLogic XML

XML Registry Configuration Tasks
Figure 3-7 XML Registries Generated Parser Registry Window

4. Click Edit Entries. The XML Registry Entries window is displayed (see
Figure 3-8).
Programming WebLogic XML 3-11

3 XML Administration
Figure 3-8 XML Registry Entries Window

5. Click Create a new XML Registry Entry. A blank XML Registries>Create
window is displayed (see Figure 3-9).
3-12 Programming WebLogic XML

XML Registry Configuration Tasks
Figure 3-9 XML Registries Create Window

6. Enter the doctype in one of the following ways:

a. Use either the Public Id or the System Id field to specify the doctype. For
example, for the car.dtd (see Listing 3-1), enter -//BEA Systems,

Inc.//DTD for cars//EN in the Public Id field.

b. Specify the Root Element Tag name of the document.

Listing 3-1 car.xml File

<?xml version="1.0"?>
<!-- This XML document describes a car -->
<!DOCTYPE CAR PUBLIC "-//BEA Systems, Inc.//DTD for cars//EN"
"http://dev/null">
<CAR>
Programming WebLogic XML 3-13

3 XML Administration
<MAKE>Toyota</MAKE>
<MODEL>Corrolla</MODEL>
<YEAR>1998</YEAR>
<ENGINE>1.5L</ENGINE>
<HP>149</HP>
</CAR>

7. Enter the parser name in the Parser Class Name field. For example, for the
CarParser generated parser, enter com.foo.myapp.parsers.CarParser.

8. Click the Create button. The XML Registry is created and listed under the XML
node.

Note: Using URLs is not desirable because both reliability and performance may
suffer.

9. Click the Servers node in the left pane to display the Servers table in the right
pane, showing all the servers defined in the domain (see Figure 3-4).

10. Click the Create a New Server text link. A dialog is displayed in the right pane
showing the tabs associated with configuring a new server (see Figure 3-5).

11. Enter values in the Name, Machine, and System Password attribute fields.

12. Click the Create button in the lower right corner to create a server instance with
the name you specified in the Name field. The new instance is added under the
Servers node in the left pane.

13. Click the Services tab. The XML Registry folder window is displayed (see
Figure 3-6).

14. Select the Generated Parser Registry in the XML Registry field and click the
Apply button.

15. Restart your server to make the new settings take effect.

Configuring Local Entity Resolution

You can use the XML Registry to define local copies of external entities. These entities
can then be copied to a local area for resolution so that WebLogic Server does not have
to access a remote Web site to resolve them.
3-14 Programming WebLogic XML

XML Registry Configuration Tasks
To configure local entity resolution, perform the following steps:

1. Start the server, open the Administration Console, and click the XML node. The
XML Registries window is displayed (see Figure 3-8).

2. Click Create a new XML Registry. The XML Registries>Create window is
displayed (see Figure 3-2).

3. Enter a name for the XML Registry and click the Create button. The named
window is displayed (see Figure 3-7).

4. Click Edit Entries. The XML Registry> Entries window is displayed (see
Figure 3-8).

5. Click Create a new XML Registry Entry. A blank XML Registry
Entries>Create window is displayed (see Figure 3-10).
Programming WebLogic XML 3-15

3 XML Administration
Figure 3-10 XML Registry Entries Create Window for Entity Resolution

6. Enter the system Id. For example, for the car.dtd entity (see Listing 3-2),
enter http://www.bea.com/dtd/car.dtd.

7. In the Entity Path field, enter the pathname of the local copy of the entity file
in the Administration Server. This pathname must be relative to the registries
entity directory. The entity directory is the directory
c:/BEA Home/wlserver6.0/config/examples/xml/registries/reg_name

in the domain configuration directory, where BEA Home is the top-level directory
in which the WebLogic Server software is installed. The reg_name is the name
of the new XML Registry. For example, for the car.dtd, enter dtd/car.dtd in
the Entity Path field.

8. Click the Create button. The XML Registry is created and listed under the XML
node.
3-16 Programming WebLogic XML

XML Registry Configuration Tasks
9. Copy the entity file into the entity directory. For example, you would copy the
car.dtd file to xml/registry/myregistry/dtd/car.dtd.

10. Restart your server so the new settings to take effect.
Programming WebLogic XML 3-17

3 XML Administration
3-18 Programming WebLogic XML

CHAPTER
4 XML Reference

The following sections describe the XML specifications, application programming
interfaces (APIs), and tools supported by WebLogic Server:

� Extensible Markup Language (XML) 1.0 Specification

� Simple API for XML (SAX) 1.0

� Document Object Model (DOM) Level 1 API

� W3C XML Namespaces 1.0 Recommendation

� Java API for XML Parsing (JAXP) 1.0.1

� Apache Xerces Java Parser API 1.2.0

� Apache Xalan XML Stylesheet Language Transformer (XSLT) API 1.2

� Additional Resources

Extensible Markup Language (XML) 1.0
Specification

The W3C Recommendation for XML provides the following abstract:

“The Extensible Markup Language (XML) is a subset of SGML that is completely
described in this document. Its goal is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with HTML. XML has been
designed for ease of implementation and for interoperability with both SGML and
HTML.”
Programming WebLogic XML 4-1

4 XML Reference
The Recommendation is available at the following URL:

http://www.w3.org/TR/REC-XML

The complete XML specification is available at
http://www.w3.org/TR/REC-xml.html.

Simple API for XML (SAX) 1.0

The SAX API is platform-independent and language-neutral. It is a standard interface
for event-based XML parsing that was developed collaboratively by the members of
the XML-DEV mailing list.

SAX applications process an XML document by creating a parser object and
associating handlers with XML events. Once these tasks are done, the parser can read
through the document as events occur, and pass them to the handlers. Events represent
the entities within the document, such as start of document, end of document, start of
element, and end of element. The SAX interface provides a simple coding model and
is useful for processing XML documents with a relatively simple hierarchical
structure. Hence, the SAX interface provides what is required by the bundled parser to
parse XML documents. For links to the Javadoc for the SAX API, see “Additional
Resources.”

Document Object Model (DOM) Level 1 API

The DOM API is a platform- and language-neutral interface It allows programs and
scripts to access and update the content, structure, and style of XML documents
dynamically. DOM gives you access to the information stored in your XML document
as a hierarchical object model, much like a tree with the document's root element as the
tree's root node. Using the DOM interface, you can access different parts of XML
documents, navigate through them, and make changes and additions to them.
4-2 Programming WebLogic XML

http://www.w3.org/TR/REC-XML.html

W3C XML Namespaces 1.0 Recommendation
When an application invokes a DOM parser, the parser processes the entire document,
creating an in-memory object model, which the application can process in any fashion
it chooses. The DOM approach is most useful for more complex documents because it
does not require a developer to interpret every element. For links to the specification
and Javadoc for DOM, see “Additional Resources” on page 4-5.

W3C XML Namespaces 1.0 Recommendation

WebLogic Server does support namespaces; however, in this release of WebLogic
Server, the XML Registry does not support namespaces.

The following abstract is taken from the W3C XML Namespace Recommendation:

“XML namespaces provide a simple method for qualifying element and attribute
names used in Extensible Markup Language documents by associating them with
namespaces identified by Universal Resource Identifier (URI) references.”

The XML Namespaces 1.0 Recommendation is available on the Internet at
http://www.w3.org/TR/1999/REC-xml-names-19990114/.

Java API for XML Parsing (JAXP) 1.0.1

JAXP is Sun’s Java API for XML parsing. JAXP provides basic support for parsing
and manipulating XML documents through a standardized set of Java platform APIs.
Thus, applications that use JAXP to process XML documents are portable across
platforms.

Note: The JAXP API does not replace either the SAX or DOM API. Instead, it adds
some convenience methods that are designed to make the SAX and DOM APIs
easier to use.

JAXP 1.0.1 consists of the javax.xml.parsers package. This package contains two
vendor-neutral factory classes: SAXParserFactory and DocumentBuilderFactory.
The JAXP 1.0.1 specification describes these classes as follows:
Programming WebLogic XML 4-3

http://www.w3.org/TR/1999/REC-xml-names-19990114/

4 XML Reference
� “The SAXParserFactory defines a factory API that enables applications to
configure and obtain a SAX based parser to parse XML documents.”

� “The DocumentBuilderFactory defines a factory API that enables
applications to configure and obtain a parser to parse XML documents into a
DOM document tree.”

The JAXP specification is available on the Internet at http://java.sun.com/xml/.
The JAXP Javadoc is available at http://java.sun.com/xml/docs/api/.

Apache Xerces Java Parser API 1.2.0

The Apache Xerces Java Parser 1.2.0 package includes the API documentation for
SAX and DOM, the two most common interfaces for programming XML. In addition,
the parser provides documentation for classes that are not part of the SAX and DOM
API’s, but are useful for writing parser programs. For links to the specification and
Javadoc for the Xerces parser, see “Additional Resources” on page 4-5.

Apache Xalan XML Stylesheet Language
Transformer (XSLT) API 1.2

The Apache Xalan-Java version 1.2 XSLT processor is used for transforming XML
documents. It implements the W3C Recommendation 16 November 1999 XSL
Transformations (XSLT) Version 1.0. XSLT is a stylesheet language for transforming
XML documents into other XML documents, HTML documents, or other document
types. The language includes the XSL Transformation vocabulary and XPath, a
language for addressing parts of an XML document. An XSL stylesheet describes how
to transform the tree of nodes in the XML input into another tree of nodes.

For links to the specification and Javadoc for the Xalan XSLT processor, see
“Additional Resources” on page 4-5.

Note: To use the XSLT processor, you must supply your own language extensions.
4-4 Programming WebLogic XML

http://java.sun.com/xml/
http://java.sun.com/xml/docs/api/

Additional Resources
Additional Resources

This section lists various resources that are available online to help you learn about
programming with WebLogic XML:

� Code Examples

� Related WebLogic Services

� General XML Information

� Tutorials and Online Courses

� XML APIs

� XML Specifications

Code Examples

XML code examples and supporting documentation are included in the WebLogic
Server distribution at BEA Home\wlserver6.0\samples\examples\xml, where
BEA Home is the directory in which the WebLogic Server software is installed. The
default installation directory is c:\bea\wlserver6.0\samples\examples\xml.

Related WebLogic Services

� Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs60/ejb/index.html.

� Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs60/jms/index.html.

� Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs60/jsp/index.html.

� Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs60/servlet/index.html.
Programming WebLogic XML 4-5

http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/jms/index.html
http://e-docs.bea.com/wls/docs60/jsp/index.html
http://e-docs.bea.com/wls/docs60/servlet/index.html

4 XML Reference
� Using WAP with WebLogic Server at
http://e-docs.bea.com/wls/docs60/wap/index.html.

General XML Information

� W3C (World Wide Web Consortium) at http://www.w3c.org.

� XML.com at http://www.xml.com.

� XML FAQ at http://www.ucc.ie/xml/.

� XML.org, The XML Industry Portal at http://www.xml.org/.

� W3C: Extensible Stylesheet Language at http://www.w3.org/Style/XSL/.

� XLS Frequently Asked Questions at
http://www.laidback.org/dpawson/xsl/xslfaq.html.

Tutorials and Online Courses

� A Technical Introduction to XML at
http://www.xml.com/pub/a/98/10/guide0.html.

� XML Authoring Tutorial at http://www.xml.com/pub/r/32.

� Working with XML and Java at http://java.sun.com/xml/tutorial_intro.html.

� Tutorials for using the Java 2 platform and XML technology at
http://developerlife.com/.

� Developing XML Solutions with JavaServer Pages Technology at
http://java.sun.com/products/jsp/html/JSPXML.html.

� XML, Java, and the Future of the Web at
http://www.xml.com/pub/a/w3j/s3.bosak.html.

� Chapter 14 of the XML Bible: XSL Transformations at
http://metalab.unc.edu/xml/books/bible/updates/14.html.

� XSL Tutorial by Miloslav Nic at
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html.
4-6 Programming WebLogic XML

http://e-docs.bea.com/wls/docs60/wap/index.html
http://www.w3c.org
http://www.xml.com
http://www.ucc.ie/xml/
http://www.xml.org/
http://www.w3.org/Style/XSL/
http://www.laidback.org/dpawson/xsl/xslfaq.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32
http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/
http://java.sun.com/products/jsp/html/JSPXML.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html

Additional Resources
� XML Schema Part 0: Primer at
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/.

XML APIs

� Apache Xerces Java Parser at
http://e-docs.bea.com/wls/docs60/xerces/index.html.

� Apache Xalan XSLT Transformer at
http://e-docs.bea.com/wls/docs60/Xalan/index.html.

� SAX (Simple API for XML) at
http://e-docs.bea.com/wls/docs60/xerces/index.html.

� DOM (Document Object Model) at
http://e-docs.bea.com/wls/docs60/xerces/index.html.

� JAXP (Java API for XML Parsing) at http://java.sun.com/xml/docs/api/.

XML Specifications

� Extensible Markup Language (XML) 1.0 Specification at
http://www.w3.org/TR/REC-xml.html.

� Extensible Stylesheet Language (XSL) 1.0 Specification at
http://www.w3.org/TR/xsl/.

� DOM (Document Object Model) Level 2 Specification at
http://www.w3.org/TR/DOM-Level-2/.

� Java API for XML Parsing (JAXP) 1.0.1 Specification at
http://java.sun.com/xml/download.html.

� JSR-000031 XML Data Binding Specification at
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.htm.

� XML Path Language (XPath) Version 1.0 Specification at
http://www.w3.org/TR/xpath.

� XML Linking Language (XLink) Specification at http://www.w3.org/TR/xlink.
Programming WebLogic XML 4-7

http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/
http://e-docs.bea.com/wls/docs60/xerces/index.html
http://e-docs.bea.com/wls/docs60/Xalan/index.html
http://e-docs.bea.com/wls/docs60/xerces/index.html
http://e-docs.bea.com/wls/docs60/xerces/index.html
http://java.sun.com/xml/docs/api/
http://www.w3.org/TR/REC-xml.html
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/DOM-Level-2/
http://java.sun.com/xml/download.html
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink

4 XML Reference
� XML Pointer Language (XPointer) Specification at
http://www.w3.org/TR/WD-xptr.

� Namespaces in XML Specification at http://www.w3.org/TR/REC-xml-names/.

� XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/.

� XML Schema Part 2: Datatypes at http://www.w3.org/TR/xmlschema-2/.
4-8 Programming WebLogic XML

http://www.w3.org/TR/xlink
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

Index

A
Administration Console 2-3, 2-4, 2-18, 3-1,

3-3, 3-5
benefits 3-2

Administration Server 1-10, 3-2
ANY 2-17
Apache Xalan XSLT processor 2-8, 4-4
Apache Xerces Parser 4-4
Apache Xerces parser 1-6, 1-12, 3-6

B
B2B 1-5
built-in parser 3-1

C
class packages

javax.xml.parsers 4-3
classes

DocumentBuilderFactory 4-3
SAXParserFactory 4-3

classname 3-14
classpath 1-10, 3-14
Configuration tasks 3-1
content type

setting 2-7
customer support contact information ix
custom-generated parser 1-13, 2-17, 2-19, 3-

10

D
data types 1-1
DOCTYPE 2-17
doctype 2-4, 3-13
document class 2-3
document type declaration 1-7
Document Type Definition. See DTD
documentation, where to find it viii
DocumentBuilder implementation 2-3
DocumentBuilderFactory 3-6, 4-3
DOM 2-2
DOM API 4-2, 4-4
DOM document tree 2-6, 4-4
DOM interface 4-2
DOM Level 1 1-9
DOM mode parsing 2-4
domain 1-10, 3-2
DTD 1-6, 1-12, 2-16, 2-17, 2-18

external 1-7
DTD entity references 2-17

E
entity references

& 2-17
&apos 2-17
> 2-17
< 2-17
" 2-17

entity resolution 3-4
entity resolver 3-4
Programming WebLogic XML I-1

EntityResolvers 1-7
Extensible Markup Language. See XML
external entities 3-2

G
General XML information 4-6
generated parser 2-17, 2-19, 3-10
getAttribute method 1-11, 2-4

H
HandlerBase class 2-2
HelloWorld.jsp 2-8
HTML 1-1, 2-7, 4-1
HTTP protocol 2-4

J
jar files

weblogic.jar 1-7
xmlx.jar 1-7, 1-12
xmlx-tags.jar 1-7, 1-13

Java API for XML Parsing. See JAXP
Java Server Pages. See JSP
Javadoc for Apache Xalan processor 2-9
Javadoc for JAXP 4-4
Javadoc for the SAX API 4-2
Javadoc for the Xerces parser 4-4
javax.xml.parsers package 4-3
JAXP 2-1, 2-18, 3-1, 3-2, 4-3
JAXP API 3-2, 3-4, 4-3
JAXP Plugability Layer 2-2
JAXP specification 4-4
JSP 1-13, 2-7
JSP tag 2-8, 2-10, 2-14

attributes 2-12
media type 2-12
start tag 2-10
stylesheet attribute 2-12

JSP tag library 1-13, 2-10

L
language extensions 4-4

M
media type 2-12

N
namespaces 4-3
name-value pairs 1-2
normalize attribute values 2-17

O
object model 4-3
org.w3c.dom.Document servlet attribute 1-

11
org.xml.sax.HandlerBase servlet attribute 1-

11

P
parser classname 3-14
parser performance 2-16
parser plugability layer 2-2
parser-dependent code 1-10
Parsing performance 2-17
pathname 3-16
printing product documentation viii
processing instructions

ANY 2-17
Public Id 3-13

R
Root Element Tag 3-13

S
SAX 2-2
SAX 1.0 1-9, 2-16
I-2 Programming WebLogic XML

SAX API 1-6, 2-16, 4-2, 4-4
SAX entity resolver 3-4
SAX EntityResolvers 1-11, 3-2
SAX interface 4-2
SAX mode parsing 2-4
SAX Parser Factory 3-6
SAXParserFactory 4-3
schemas 1-2
serialize class 2-6
servlet attributes

getAttribute 1-11
org.w3c.dom.Document 1-11
org.xml.sax.HandlerBase 1-11

setAttribute method 1-11, 2-4
SGML 1-1, 4-1
stylesheet attribute 2-12
stylesheet language 4-4
Sun parser 1-6, 1-9, 3-4, 3-6
support

technical ix
System Id 3-13

T
Tutorials and online courses 4-6

U
Universal Resource Identifier. See URI
URI 4-3
URLs 3-14

W
WebLogic Parser Generator 1-12, 2-16, 3-4
weblogic.apache.xerces package 1-9
weblogic.jar 1-7
whitespace or ignorable whitespace 2-17

X
Xalan processor 1-10

Xalan samples 2-9
XML 4-1
XML APIs 4-7
xml attribute 2-12
XML code examples 4-5
XML configurations options 2-4
XML documents

validating 1-6
well-formed 1-7

XML events 4-2
XML namespaces 4-3
XML Namespaces 1.0 Recommendation 4-3
XML parser 1-9, 1-12
XML Registry 1-6, 1-7, 1-9, 1-10, 2-3, 2-4, 3-

1, 3-2, 3-3
advantages 1-10

XML specifications 4-7
XML syntax 1-2
xmlx.jar 1-7, 1-12, 2-18
xmlx-tags.jar 1-7, 1-13
XPath 4-4
XSLT processor 1-12, 2-8, 4-4

built-in 1-10
Programming WebLogic XML I-3

I-4 Programming WebLogic XML

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 XML Overview
	What Is XML?
	Why Use XML?
	Learning About XML

	What Are XSL and XSLT?
	Common Uses of XML and XSLT
	Using XML and XSLT to Separate Content from Presentation
	XML as a Message Format for Business-to-Business Communication

	WebLogic Server XML Features
	Parsing XML Documents
	Generating Custom Parsers
	Validating XML Documents
	Transforming XML Documents
	Resolving External Entities

	WebLogic Server XML Components
	Figure 1�1 WebLogic Server XML Components
	Built-in XML Parser
	WebLogic Integrated Java API for XML Parsing (JAXP) 1.0.1
	Built-in XSLT Processor
	WebLogic XML Registry
	XML Servlet Attributes

	XML Module Components
	XML Parser
	XSLT Processor
	WebLogic Parser Generator
	WebLogic XSLT JSP Tag Library

	2 Developing XML Applications with WebLogic Server
	Using WebLogic Server Features For XML Application Development
	Advantage of Using JAXP
	Using JAXP with SAX
	Using JAXP and DOM
	XML Registry Configuration Options
	Servlet Programming Features
	Using the org.xml.sax.HandlerBase Attribute to Parse a Document
	Using the org.w3c.dom.Document Attribute to Parse a Document

	Generating XML
	Generating XML from a DOM Document Tree
	Generating XML Documents by Using JSP

	Transforming XML Documents
	Using the XLST Processor to Transform XML Documents
	Using the JSP Tag to Transform XML Documents
	XSLT JSP Tag Syntax
	Transforming XML Documents Using an XSLT JSP Tag
	1. Open the xmlx.zip file in the BEA Home/wlserver6.0/ext directory, extract the xmlx-tags.jar fi...
	2. Add a <taglib> entry to the web.xml file. For example:
	3. To use the tags, add the following line to your JSP page:
	4. Configure the processor. The following procedure shows a generic way to configure the processor:
	a. Enter the following code line to create an xslt.jsp file:
	b. Register the xslt.jsp file in your web.xml file, as follows:
	c. Put your XML/DTD/XSL documents or servlets in your Web application.
	d. Add an xslt prefix to the pathname for the XML document (for example, change docs/fred.xml to ...
	e. To define media type, add code to the JSP to determine the media type for the XML document and...
	f. Pass the media type into the xslt tag and then set the content type of the response object.

	Example of Using the XSLT JSP Tag in a JSP

	Using Parsers Other Than the Built-In Parser
	Using the WebLogic Parser Generator to Generate Custom Parsers
	Limitations of Generated Parsers
	Performance and Usage Considerations for Generated Parsers
	Generating a Custom Parser
	1. Make sure the xmlx.jar file is in BEA Home\wlserver6.0\lib, where BEA Home is the top-level di...
	2. Run the parser generator against the DTD for which you want to generate a custom parser. The f...
	3. If you want to examine the generated parser’s code, use the -keepgenerated option.
	4. Use the Administration Console to register wmlparser in the XML Registry. For instructions abo...

	Using Parsers Other Than the Built-In Parser
	Setting Up Local Entity Resolution Using the XML Registry

	3 XML Administration
	Introduction to XML Administration
	Using the XML Registry
	Example of an XML Registry
	Figure 3�1 Sample XML Registry Code Displayed in Administration Console

	Relationship Between JAXP and the XML Registry

	XML Registry Configuration Tasks
	Using the Built-In Parser
	Configuring a Parser Other Than the Built-In Parser
	1. Start the server, open the Administration Console.
	2. Right-click the XML node and select Create a new XML Registry from the drop-down menu. The XML...
	Figure 3�2 XML Registries Create Window
	3. Enter a unique registry name in the Name field and set the DocumentBuilderFactory and the SaxP...

	Name: Sun Parser Registry DocumentBuilderFactory: com.sun.xml.parser.DocumentBuilderFactoryImpl S...
	Name: Xerces parer Registry DocumentBuilderFactory: "org.apache.xerces.jaxp.DocumentBuilderFactor...
	Figure 3�3 Configured Sun Parser Registry
	4. Click the Create button. The XML Registry is created and listed under the XML node.
	5. Click the Servers node in the left pane. The Servers table displays in the right pane showing ...

	Figure 3�4 Servers Table Window
	6. Click the Create a New Server text link. A dialog is displayed in the right pane showing the t...

	Figure 3�5 Server Configuration Window
	7. Enter values in the Name, Machine, and System Password attribute fields.
	8. Click the Create button in the lower right corner to create a server instance with the name yo...
	9. Click the Services tab. The XML Registry folder window is displayed (see Figure�3�6).

	Figure 3�6 XML Registry Folder Window
	10. Select the Sun Parser Registry in the XML Registry field and click the Apply button.
	11. Restart your server so the new settings to take effect.

	Configuring a Custom-Generated Parser
	1. Start the server and open the Administration Console.
	2. Right-click the XML node and select Create a New XML Registry from the drop-down menu. The XML...
	3. Enter a unique name (for example: Generated Parser Registry) for the new XML Registry and clic...
	Figure 3�7 XML Registries Generated Parser Registry Window
	4. Click Edit Entries. The XML Registry Entries window is displayed (see Figure�3�8).

	Figure 3�8 XML Registry Entries Window
	5. Click Create a new XML Registry Entry. A blank XML Registries>Create window is displayed (see ...

	Figure 3�9 XML Registries Create Window
	6. Enter the doctype in one of the following ways:
	a. Use either the Public Id or the System Id field to specify the doctype. For example, for the c...
	b. Specify the Root Element Tag name of the document.

	Listing 3-1 car.xml File
	7. Enter the parser name in the Parser Class Name field. For example, for the CarParser generated...
	8. Click the Create button. The XML Registry is created and listed under the XML node.
	9. Click the Servers node in the left pane to display the Servers table in the right pane, showin...
	10. Click the Create a New Server text link. A dialog is displayed in the right pane showing the ...
	11. Enter values in the Name, Machine, and System Password attribute fields.
	12. Click the Create button in the lower right corner to create a server instance with the name y...
	13. Click the Services tab. The XML Registry folder window is displayed (see Figure�3�6).
	14. Select the Generated Parser Registry in the XML Registry field and click the Apply button.
	15. Restart your server to make the new settings take effect.

	Configuring Local Entity Resolution
	1. Start the server, open the Administration Console, and click the XML node. The XML Registries ...
	2. Click Create a new XML Registry. The XML Registries>Create window is displayed (see Figure�3�2).
	3. Enter a name for the XML Registry and click the Create button. The named window is displayed (...
	4. Click Edit Entries. The XML Registry> Entries window is displayed (see Figure�3�8).
	5. Click Create a new XML Registry Entry. A blank XML Registry Entries>Create window is displayed...
	Figure 3�10 XML Registry Entries Create Window for Entity Resolution
	6. Enter the system Id. For example, for the car.dtd entity (see Listing�3�2), enter http://www.b...
	7. In the Entity Path field, enter the pathname of the local copy of the entity file in the Admin...
	8. Click the Create button. The XML Registry is created and listed under the XML node.
	9. Copy the entity file into the entity directory. For example, you would copy the car.dtd file t...
	10. Restart your server so the new settings to take effect.

	4 XML Reference
	Extensible Markup Language (XML) 1.0 Specification
	Simple API for XML (SAX) 1.0
	Document Object Model (DOM) Level 1 API
	W3C XML Namespaces 1.0 Recommendation
	Java API for XML Parsing (JAXP) 1.0.1
	Apache Xerces Java Parser API 1.2.0
	Apache Xalan XML Stylesheet Language Transformer (XSLT) API 1.2
	Additional Resources
	Code Examples
	Related WebLogic Services
	General XML Information
	Tutorials and Online Courses
	XML APIs
	XML Specifications
	Index

