
WebLogic Server
Programming

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : M a r c h 6 , 2 0 0 1

BEA

WebLogic Time Services

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Programming WebLogic Server Time Services

Part Number Document Date Software Version

N/A March 6, 2001 BEA WebLogic Server Version 6.0

Contents

1. Programming WebLogic Time Services
Overview ...5

WebLogic Time Architecture..5

WebLogic Time API ...6

2. Implementing with WebLogic Time
Scheduling a Recurring Trigger on a Client..1

Scheduling a Recurring Server-side Trigger from a WebLogic Client3

Step 1. Implement the ScheduleDef and TriggerDef interfaces.....................3

Step 2. Create the ScheduledTrigger from a WebLogic Client......................5

Setting up Complex Schedules..6

Rescheduling ...7

Stopping a ScheduledTrigger ..7
Programming WebLogic Time Services -iii

-iv Programming WebLogic Time Services

Overview
1 Programming
WebLogic Time
Services

Overview

The WebLogic Time API provides a mechanism for scheduling actions (triggers) to
take place at a future date and time, or on a regularly recurring schedule. The Time API
allows any user-written trigger to be scheduled and then executed, either in the client
JVM, or on WebLogic Server on behalf of a client. The Time API provides a
dependable, distributable method of setting up actions that occur automatically.

Note: Although you can use the time service with individual WebLogic Server
instances in a cluster, the service itself is non-clusterable. The WebLogic Time
API does not make use of cluster features such as load balancing and failover.

WebLogic Time Architecture

WebLogic Time is a lightweight, efficient API that shares many characteristics of
other WebLogic Server APIs. WebLogic Time is built around a ScheduledTriggerDef
object, constructed from a Schedulable object. The ScheduledTriggerDef object is
responsible for starting, stopping, or repeating the action schedule. A Triggerable
Programming WebLogic Time Services 1-5

1 Programming WebLogic Time Services
object defines the action to be carried out on schedule. You use an object factory to
create a ScheduledTrigger. Object factories provide a well-defined, easy-to-use
methodology for managing scarce resources within WebLogic Server.

Accounting for scheduling is kept in a series of efficient linked lists that are sorted only
at the most proximate chronological point as new triggers are scheduled and then acted
upon. For example, a trigger for a week from Tuesday at 12:15:30 is initially inserted
into the schedule for next Tuesday. Not until noon on Tuesday is the schedule for the
noon hour sorted, and not until fifteen minutes past noon are the triggers for that
minute sorted. This drastically reduces the overhead for scheduling in a heavily
scheduled environment.

WebLogic Server also keeps accounting of the differences in time zone, clock
accuracy, and latency between users of the Time service. Note that WebLogic triggers
are not real time triggers that can be used to millisecond granularity. WebLogic
triggers used properly will function reliably within an estimated 1 second of accuracy.

WebLogic Time API

A ScheduledTrigger takes two objects in its constructor:

� An object that implements either weblogic.time.common.Schedulable or
weblogic.time.common.ScheduleDef

� An object that implements either weblogic.time.common.Triggerable or
weblogic.time.common.TriggerDef

An object passed to the ScheduledTrigger object factory method may also be a
client-side object, in which case the client creates, schedules, and executes a
ScheduledTrigger within its own JVM. The client-side object must implement
Schedulable (or ScheduleDef) and Triggerable (or TriggerDef).

The TimeServicesDef interface also provides methods for obtaining time-related
information about client and server:

� currentTimeMillis() returns the current server time, in “local server time”
format, which is the server’s time adjusted for propagation delay between the
method invoker and the server (zero when the method invoker is the server, and
1-6 Programming WebLogic Time Services

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/Schedulable.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/ScheduleDef.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/Triggerable.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/TriggerDef.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/TimeServicesDef.html

WebLogic Time API
some positive milliseconds when the invoker is the client or another WebLogic
Server).

� getRoundTripDelayMillis() returns the number of milliseconds of round-trip
delay between the client and server. This method depends on the algorithm
described in the overview.

� getLocalClockOffsetMillis() returns the number of milliseconds of offset
between the client and server clocks, based on the algorithm described in the
overview.

The weblogic.time.common.TimeRepeat class implements Schedulable. This
utility class is a prefabricated scheduler you can use to set up a repeating trigger. Just
pass an int that is the interval (in milliseconds) at which the trigger should repeat.
Then call its schedule() method with the starting time.

Warning: If your trigger throws an exception, it is not rescheduled. This is to ensure
that a failing trigger is not re-executed indefinitely. If you want to
reschedule a trigger after an exception, you must catch the exception and
schedule the trigger again.

The package contains a single exception class, TimeTriggerException.
Programming WebLogic Time Services 1-7

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/TimeRepeat.html

1 Programming WebLogic Time Services
1-8 Programming WebLogic Time Services

CHAPTER
2 Implementing with
WebLogic Time

Scheduling a Recurring Trigger on a Client

The simplest case of scheduling a recurring trigger is to create a ScheduledTrigger that
is scheduled and executed on a WebLogic client. In such a case, you write a class that
implements both Schedulable and Triggerable, and implement the methods of those
interfaces.

This example illustrates how to schedule and execute a trigger:

import weblogic.time.common.*;
import weblogic.common.*;
import java.util.*;
import weblogic.jndi.*;
import javax.naming.*;
import java.util.*;

class myTrigger implements Schedulable, Triggerable {
...

}

First, obtain a ScheduledTrigger object from the TimeServices factory. Obtain the
TimeServices factory from the T3Services remote factory stub on the WebLogic
Server via the getT3Services() method.

Next, call the schedule() and cancel() methods on the trigger, as shown in this
example:
Programming WebLogic Time Services 2-1

2 Implementing with WebLogic Time
public myTrigger() throws TimeTriggerException {
// Obtain a T3Services factory
T3ServicesDef t3 = getT3Services("t3://localhost:7001");

// Request a ScheduledTrigger from the factory. Use
// this class for scheduling and execution
ScheduledTriggerDef std =
t3services.time().getScheduledTrigger(this, this);

// Start the ball rolling
std.schedule();
// Your class may do other things after scheduling the trigger
// When you are finished, cancel the trigger
std.cancel();

}

Your class must implement the methods in the following interfaces.

Schedulable

The Schedulable interface has only one method, schedule(), which
allows you to set the time at which the trigger should be executed.

public long schedule(long time) {
// Schedule the trigger for every 5 seconds
return time + 5000;

}

Triggerable

The Triggerable interface has only one method, trigger(), where the
client performs an action in response to the timed triggered.

public void trigger() {
// The trigger method is where the work takes place
System.out.println("trigger called");

}

This example is self-contained within a single class that implements both the
scheduler and the trigger. This is convenient since both required methods share class
variables necessary for scheduling or execution.
2-2 Programming WebLogic Time Services

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/Schedulable.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/Triggerable.html

Scheduling a Recurring Server-side Trigger from a WebLogic Client
Scheduling a Recurring Server-side Trigger
from a WebLogic Client

You can write more flexible schedulers and triggers, which may be executed anywhere
within the WebLogic framework, by implementing ScheduleDef and TriggerDef

instead of the simpler interfaces Schedulable and Triggerable. This example
illustrates a flexible implementation that creates a recurring trigger that is rescheduled
and executed on a WebLogic Server, or anywhere within the WebLogic framework.

Here are the steps to creating a scheduled trigger in this scenario. You will need to
write a class that implements ScheduleDef and TriggerDef. We implement these
interfaces in separate classes in this example.

Compile the classes and place them in the WebLogic Server serverclasses
directory. Then create a ScheduledTrigger with those classes from a client
application.

Step 1. Implement the ScheduleDef and TriggerDef
interfaces

In this example, the scheduler implements ScheduleDef rather than Schedulable so that
its setServices() and scheduleInit()methods are called. The trigger implements
TriggerDef rather than Triggerable for the same reason. These objects differ from the
interfaces they implement in that they can be initialized with a ParamSet, and have
access to WebLogic services through the T3Services stub. These two differences are
important for the following reasons.

You do not need to write different versions for client-side and server-side deployment
because the T3ServicesDef interface is a remote stub.

When you instantiate an object dynamically, you must call the default constructor.
Consequently, all service-related interfaces, including the Time interfaces, require that
you implement the scheduleInit() method which takes a ParamSet, thus allowing
you to pass initialization parameters for the object.

Here is a simple implementation of ScheduleDef.
Programming WebLogic Time Services 2-3

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/common/ParamSet.html

2 Implementing with WebLogic Time
package examples.time;

import weblogic.common.*;
import weblogic.time.common.*;
import java.util.*;

class MyScheduler implements ScheduleDef {

private int interval = 0;
private T3ServicesDef services;

public void setServices(T3ServicesDef services) {
this.services = services;

}

public void scheduleInit (ParamSet ps) throws ParamSetException {
interval = ps.getParam("interval").asInt();

}

public long schedule(long currentMillis) {
return currentMillis + interval;

}
}

Here is a simple class that implements TriggerDef. In this case, we do not need to set
or get any parameters for the Trigger, so we implement the method to do nothing.

package examples.time;

import weblogic.common.*;
import weblogic.time.common.*;
import java.util.*;

public class MyTrigger implements TriggerDef {

private T3ServicesDef services;

public void setServices(T3ServicesDef services) {
this.services = services;

}

public void triggerInit (ParamSet ps) throws ParamSetException {
// Empty method definition
}

public void trigger(Schedulable sched) {
System.out.println("trigger called");

}
}

2-4 Programming WebLogic Time Services

Scheduling a Recurring Server-side Trigger from a WebLogic Client
Step 2. Create the ScheduledTrigger from a WebLogic
Client

This method of setting up a scheduler and trigger require that you create a Scheduler
and Trigger object to pass to the get ScheduledTrigger() factory method. We
created those in “Step 1. Implement the ScheduleDef and TriggerDef interfaces.”

We have compiled those classes and placed them in the CLASSPATH of the
WebLogic Server. Now we’ll write a client that uses those classes to schedule a trigger
that runs in the server’s JVM.

We use a ParamSet to pass initialization parameters between the client and the objects
that the WebLogic Server instantiates. The class that we wrote in Step 1 to implement
ScheduleDef depends upon a Parameter “interval” to be set by the caller, so we’ll
create a ParamSet with one Param. The class we wrote to implement TriggerDef
doesn’t require any initialization parameters.

T3ServicesDef t3services = getT3Services("t3://localhost:7001");

// Create a ParamSet to pass initialization parameters for
// the ScheduleDef object. Set one parameter, "interval,"
// for 10 seconds
ParamSet schedParams = new ParamSet();
schedParams.setParam("interval", 10000);

Add the getT3Services() method to your client class and create the Scheduler and
Trigger wrapper objects that instantiate a ScheduledTrigger on the server. The
Scheduler and Trigger wrapper objects hold the name of the target class and a
ParamSet to initialize it, if necessary.

Scheduler scheduler =
new Scheduler("examples.time.MyScheduler", schedParams);

Trigger trigger =
new Trigger("examples.time.MyTrigger");

Finally, use the time services object factory to manufacture a ScheduledTrigger. It
takes two arguments, a Scheduler and a Trigger, which we have just created.

ScheduledTriggerDef std =
t3.services.time().getScheduledTrigger(scheduler, trigger);

The getScheduledTrigger() method returns a ScheduledTriggerDef object. To
initiate execute, the client calls the ScheduledTriggerDef’s schedule() and
cancel() methods.
Programming WebLogic Time Services 2-5

2 Implementing with WebLogic Time
If you are setting up a repeating schedule, you might also use the utility class
TimeRepeat, which is part of this package. Here is a simple example of how to use the
TimeRepeat class to set up a regular schedule for a ScheduledTrigger that repeats
every 10 seconds. Again, it uses the getT3Services() method to access the
WebLogic server-side services.

T3ServicesDef t3services = getT3Services("t3://localhost:7001");

Scheduler scheduler = new Scheduler(new TimeRepeat(1000 * 10));
Trigger trigger = new Trigger("examples.time.MyTrigger");

ScheduledTriggerDef std =
t3services.time().getScheduledTrigger(scheduler, trigger);

std.schedule();

Setting up Complex Schedules

You can design arbitrarily complex schedules with the schedule() method of a
Schedulable object. Here are some examples and tips on scheduling.

There are several ways in which the argument to the schedule()method can describe
the execution time:

� The current time, in milliseconds since the epoch.

� A specific future date and time, in a millisecond representation by performing
date arithmetic using standard Java classes (such as java.util.Date).

The schedule() method returns a long value, which allows you to set up repeating
triggers. Simply return the time at which the schedule() method was last called plus
the interval (in milliseconds) at which the schedule should repeat.
2-6 Programming WebLogic Time Services

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/time/common/TimeRepeat.html

Rescheduling
Rescheduling

In this example, we write the schedule() method to delay for an incrementing
interval between each call to the trigger() method. The schedule() and
trigger() methods are implemented in the same class in this example.

In the trigger() method, we set an incrementing delay, using a private int delay,
which we initialize to zero in the class constructor. Each time the trigger is called, it
incrementally adjusts its own schedule.

public void trigger() {
System.out.println("Trigger called");
// Carry out some arbitrary tasks . . .
System.out.println("Trigger completed");
// Add a thousand milliseconds to the delay
delay += 1000;

}

In the schedule() method, we return the next execution of the trigger as the time of
the last scheduled execution, plus the delay incremented by the last scheduled
execution (in milliseconds). We also include an upper bounds on the delay to end the
scheduling.

public long schedule(long t) {
System.out.println("--------------------------------------");
if (delay > 10000) {
System.out.println("Cancelling Timer");
return 0;

}
else {
System.out.println("Scheduling next trigger for " +

delay/1000 + " seconds");
return t + delay;

}
}

Stopping a ScheduledTrigger

There are two ways to stop a ScheduledTrigger:
Programming WebLogic Time Services 2-7

2 Implementing with WebLogic Time
� Call the ScheduledTrigger’s cancel() method.

� Return zero (0) when the schedule() method is called ends the scheduling.

There is some slight difference in these two methods. If you return zero from the
schedule() method, the schedule is immediately ended. If you call a
ScheduledTrigger’s cancel() method, the clock continues to run until the next
scheduled instance of the trigger(), at which point it is cancelled.
2-8 Programming WebLogic Time Services

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	1. Programming WebLogic Time Services
	2. Implementing with WebLogic Time

	1 Programming WebLogic Time Services
	Overview
	WebLogic Time Architecture
	WebLogic Time API

	2 Implementing with WebLogic Time
	Scheduling a Recurring Trigger on a Client
	Schedulable
	Triggerable

	Scheduling a Recurring Server-side Trigger from a WebLogic Client
	Step 1. Implement the ScheduleDef and TriggerDef interfaces
	Step 2. Create the ScheduledTrigger from a WebLogic Client

	Setting up Complex Schedules
	Rescheduling
	Stopping a ScheduledTrigger

