
WebLogic Server
Programming WebLogic

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : M a r c h 6 , 2 0 0 1

BEA

JSP Tag Extensions

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Introduction to BEA WebLogic Server

Part Number Document Date Software Version

March 6, 2001 BEA WebLogic Server Version 6.0

Contents

About This Document
Audience..v

e-docs Web Site... vi

How to Print the Document... vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions .. vii

1. Overview of Programming JSP Tag Extensions
Overview of Custom Tag Functionality .. 1-1

Using Custom Tags in a JSP ... 1-2

Formatting Custom Tags.. 1-2

Some Example Scenarios ... 1-3

Referencing a Tag Library... 1-4

2. Quick Start Guide

3. Creating a Tag Library Descriptor
Overview ... 3-1

Writing the Tag Library Descriptor... 3-2

Sample Tag Library Descriptor ... 3-5

4. Implementing the Tag Handler
Tag Handler API.. 4-1

Tag Handler Life Cycle ... 4-2

Using Tag Attributes ... 4-5

Defining New Scripting Variables .. 4-6

Dynamically Named Scripting Variables... 4-7

Writing Cooperative Nested Tags ... 4-8
Programming WebLogic JSP Tag Extensions iii

5. Administration and Configuration
Configuring JSP Tag Libraries .. 5-1

Deploying a JSP Tag Library as a JAR File .. 5-2

Index
iv Programming WebLogic JSP Tag Extensions

About This Document

This document describes how to write and deploy custom JavaServer Pages (JSP) tags
and JSP tab libraries.

The document is organized as follows:

� Chapter 1, “Overview of Programming JSP Tag Extensions,” provides a
summary of JSP tag functionality and deployment.

� Chapter 2, “Quick Start Guide,” lists the steps required to create and use custom
JSP tags.

� Chapter 3, “Creating a Tag Library Descriptor,” discusses how to create a Tag
Library Descriptor (TLD) file.

� Chapter 4, “Implementing the Tag Handler,” describes how to write Java classes
that implement the functionality of an extended tag.

� Chapter 5, “Administration and Configuration,” contains an overview of
Administration and Configuration tasks for using JSP Tag Extensions.

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.
Programming WebLogic JSP Tag Extensions v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

� JSP 1.1 Specification from Sun Microsystems, available at
http://java.sun.com/products/jsp/download.html.

� Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs60/jsp/index.html.

� Deploying and Configuring Web Applications at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

.

vi Programming WebLogic JSP Tag Extensions

http://www.adobe.com
http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs60/jsp/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Programming WebLogic JSP Tag Extensions vii

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

Convention Usage
viii Programming WebLogic JSP Tag Extensions

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic JSP Tag Extensions ix

x Programming WebLogic JSP Tag Extensions

CHAPTER
1 Overview of
Programming JSP Tag
Extensions

The JSP 1.1 Specification introduced the ability to create and use custom tags in
JavaServer Pages (JSP). Custom tags are an excellent way to abstract the complexity
of business logic from the presentation of Web pages in a way that is easy for the Web
author to use and control. You can use custom JSP tag extensions in JSP pages to
generate dynamic content, and you can use a variety of Web development tools to
create the presentation.

The WebLogic Server fully supports the tag extension mechanism described in the JSP
1.1 Specification available at
http://java.sun.com/products/jsp/download.html.

This topic includes the following sections:

� Overview of Custom Tag Functionality

� Using Custom Tags in a JSP

Overview of Custom Tag Functionality

You write a custom JSP tag by writing a Java class called a tag handler. You write the
tag handler class by implementing one of two interfaces, Tag or BodyTag that define
methods that are invoked during the life cycle of the tag or by extending an abstract
Programming WebLogic JSP Tag Extensions 1-1

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html

1 Overview of Programming JSP Tag Extensions
base class that implements one of these interfaces. Extending an abstract base class
relieves the tag handler class from having to implement all methods in the interfaces
and also provides other convenient functionality. The TagSupport and
BodyTagSupport classes implement these interfaces and are included in the API.

One or more custom JSP tags can be included in a Tag Library. A tag library is defined
by a Tag Library Descriptor (TLD) file. The TLD describes the syntax for each tag and
ties it to the Java classes that execute its functionality.

Using Custom Tags in a JSP

Custom tags can perform the following tasks:

� Produce output. The output of the tag is sent to the surrounding scope. The
scope can be one of the following:

� If the tag is included directly in the JSP page, then the surrounding scope is
the JSP page output.

� If the tag is nested within another parent tag, then the output becomes part of
the evaluated body of its parent tag.

� Define new objects that can be referenced and used as scripting variables in the
JSP page. A tag can introduce fixed-named scripting variables, or can define a
dynamically-named scripting variable with the id attribute.

� Iterate over their body content until a certain condition is met. Use iteration to
create repetitive output, or to repeatedly invoke a server side action.

� Determine whether the rest of the JSP page should be processed as part of the
request, or skipped.

Formatting Custom Tags

The format of a custom tag format can be empty, called an empty tag, or can contain a
body, called a body tag. Both types of tags can accept a number of attributes that are
passed to the Java class that implements the tag. For more details, see Using Tag
Attributes on page 4-5.
1-2 Programming WebLogic JSP Tag Extensions

Using Custom Tags in a JSP
An empty tag takes the following form:

<mytaglib:newtag attr1="aaa" attr2="bbb" ... />

A body tag takes the following form:

<mytaglib:newtag attr1="aaa" attr2="bbb" ... >
body

</mytaglib:newtag>

A tag body can include more JSP syntax, and even other custom JSP tags that also have
nested bodies. Tags can be nested within each other to any level. For example:

<mytaglib:tagA>
<h2>This is the body of tagA</h2>
You have seen this text <mytaglib:counter /> times!
<p>
<mytaglib:repeater repeat=4>

<p>Hello World!
</mytaglib:repeater>

</mytaglib:tagA>

The preceding example uses three custom tags to illustrate the ability to nest tags
within a body tag. The tags function like this:

� The body tag <mytaglib:tagA> only sees the HTML output from its evaluated
body. That is, the nested JSP tags <mytaglib:counter> and
<mytaglib:repeater> are first evaluated and their output becomes part of the
evaluated body of the <mytaglib:tagA> tag.

� The body of a body tag is first evaluated as JSP and all tags that it contains are
translated, including nested body tags, whose bodies are recursively evaluated.
The result of an evaluated body can then be used directly as the output of a body
tag, or the body tag can determine its output based on the content of the
evaluated body.

� The output generated from the JSP of a body tag is treated as plain HTML. That
is, the output is not further interpreted as JSP.

Some Example Scenarios

The following scenarios demonstrate what you can do with custom tags:
Programming WebLogic JSP Tag Extensions 1-3

1 Overview of Programming JSP Tag Extensions
� An empty tag can perform server-side work based on its attributes. The action
that the tag performs can determine whether the rest of the page is interpreted or
some other action is taken, such as a redirect. This function is useful for
checking that users are logged in before accessing a page, and redirecting them
to a login page if necessary.

� An empty tag can insert content into a page based on its attributes. You can use
such a tag to implement a simple page-hits counter or another template-based
insertion.

� An empty tag can define a server-side object that is available in the rest of the
page, based on its attributes. You can use this tag to create a reference to an EJB,
which is queried for data elsewhere in the JSP page.

� A body tag has the option to process its output before the output becomes part of
the HTML page sent to the browser, evaluate that output, and then determine the
resulting HTML that is sent to the browser. This functionality could be used to
produce “quoted HTML,” reformatted content, or used as a parameter that you
pass to another function, such as an SQL query, where the output of the tag is a
formatted result set.

� A body tag can repeatedly process its body until a particular condition is met.

Referencing a Tag Library

JSP tab libraries are defined in a tag library descriptor (tld). To use a custom tag
library from a JSP page, reference its tag library descriptor with a <%@ taglib %>

directive. For example:

<%@ taglib uri="myTLD" prefix="mytaglib" %>

uri

The JSP engine attempts to find the Tag Library Descriptor by matching the
uri attribute to a uri that is defined in the Web Application deployment
descriptor (web.xml)with the <taglib-uri> element. For example, myTLD
in the above taglib directive would reference its tag library descriptor
(library.tld) in the Web Application deployment descriptor like this:

<taglib>
1-4 Programming WebLogic JSP Tag Extensions

Referencing a Tag Library
<taglib-uri>myTLD</taglib-uri>
<taglib-location>library.tld</taglib-location>

</taglib>

prefix

The prefix attribute assigns a label to the tag library. You use this label to
reference its associated tag library when writing your pages using custom JSP
tags. For example, if the library (called mytaglib) from the example above
defines a new tag called newtag, you would use the tag in your JSP page like
this:

<mytaglib:newtag>

For more information, see Creating a Tag Library Descriptor on page 3-1.
Programming WebLogic JSP Tag Extensions 1-5

1 Overview of Programming JSP Tag Extensions
1-6 Programming WebLogic JSP Tag Extensions

CHAPTER
2 Quick Start Guide

The following is an overview of the steps required to create and use custom JSP tags.
These topics are covered in detail in this document:

1. Write a tag handler class. When you use a custom tag in your JSP, this class
executes the functionality of the tag. A tag handler class implements one of two
interfaces: javax.servlet.jsp.tagtext.BodyTag or
javax.servlet.jsp.tagtext.Tag. Your tag handler class is implemented as
part of a tag library. For more information, see Implementing the Tag Handler on
page 4-1.

2. Reference the tag library in your JSP source using the JSP <taglib> directive. A
tag library is a collection of JSP tags. Include this directive at the top of your JSP
source. For more information, see Referencing a Tag Library on page 1-4.

3. Write the Tag Library Descriptor (TLD). The TLD defines the tag library and
provides additional information about each tag, such as the name of the tag
handler class, attributes, and other information about the tags. For more
information, see Creating a Tag Library Descriptor on page 3-1.

4. Reference the Tag Library Descriptor in the Web Application deployment
descriptor (web.xml). For more information, see Writing Web Application
Deployment Descriptors at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html.

5. Use your custom tag in your JSP. For more information, see Using Custom Tags
in a JSP on page 1-2.
Programming WebLogic JSP Tag Extensions 2-1

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html

2 Quick Start Guide
2-2 Programming WebLogic JSP Tag Extensions

CHAPTER
3 Creating a Tag Library
Descriptor

This section discusses how to create a Tag Library Descriptor (TLD) file. The
following topics are discussed:

� Overview

� Writing the Tag Library Descriptor

� Sample Tag Library Descriptor

Overview

A tag library allows a developer to group together tags with related functionality. A tag
library uses a tag library Descriptor (tld) file that describes the tag extensions and
relates them to their Java classes. WebLogic Server and some authoring tools use the
TLD to get information about the extensions. TLD files are written in XML notation.

The syntax for a tag library Descriptor is specified in the document type descriptor
(DTD) available at: http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd.
Programming WebLogic JSP Tag Extensions 3-1

http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd

3 Creating a Tag Library Descriptor
Writing the Tag Library Descriptor

Order the elements in the Tag Library Descriptor file as they are defined in the DTD.
This ordering is used in the steps below. The XML parser will throw an exception if
you incorrectly order the TLD elements.

The body of the TLD contains additional nested elements inside of the
<taglib> ... </taglib> element. These nested elements are described in the steps
below. For display in this document, nested elements are indented from their parent
elements, but indenting is not required in the TLD.

A Sample Tag Library Descriptor on page 3-5 declares a new tag called code. The
functionality of this tag is implemented by the Java class
weblogic.taglib.quote.CodeTag.

To create a tag library descriptor:

1. Create a text file with an appropriate name and the extension .tld, and locate it in
the WEB-INF directory of the Web Application containing your JSP(s). Content
beneath the WEB-INF directory is non-public and is not served over HTTP by
WebLogic Server.

2. Include the following header:

<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.
//DTD JSP Tag Library 1.1//EN" "web-jsptaglib_1_1.dtd">

3. Add the contents of the TLD, embedded in a <taglib> element. The contents
include elements containing information about the tag library and elements that
define each tag. For example:

<taglib>
... body of taglib descriptor ...

</taglib>

4. Identify the Tag Library

<tlibversion>version_number</tlibversion>

(Required) The version number of the tag library.

<jspversion>version_number</jspversion>

(Optional) The JSP version that this tag library is designed to work
with. WebLogic supports JSP version 1.1 from this release.
3-2 Programming WebLogic JSP Tag Extensions

Writing the Tag Library Descriptor
<shortname>TagLibraryName</shortname>

(Required) Assigns a short name to this tag library. This element is
not used by WebLogic Server.

<uri>unique_string</uri>

(Optional) This element is not used by WebLogic Server.

<info>...text...</info>

(Optional) Use this element to provide a description of the tag
library. This element is not used by WebLogic Server.

5. Define a Tag

Use a separate <tag> element to define each new tag in the tag library. The
<tag> element takes the following nested tags:

<name>tag_name</name>

(Required) Defines the name of the tag. This is used when
referencing the tag in a JSP file, after the “:” symbol, For example:
<mytaglib:tag_name>

For more information, see Using Custom Tags in a JSP on page 1-2.

<tagclass>package.class.name</tagclass>

(Required) Declares the tag handler class that implements the
functionality of this tag. Specify the fully qualified package name of
the class.

Locate the class file under the WEB-INF/classes directory, in a
directory structure reflecting the package name.

<teiclass>package.class.name</teiclass>

(Optional) Declares the subclass of TagExtraInfo that describes
the scripting variables introduced by this tag. If your tag does not
define new scripting variables, it does not use this element. Specify
the fully qualified package name of the class.

Place the class files under the WEB-INF/classes directory of your
Web Application, under a directory structure reflecting the package
name.

<bodycontent>tagdependent | JSP | empty</bodycontent>

(Optional) Defines the content of the tag body.

empty means that you use the tag in the empty tag format in the JSP
page. For example: <taglib:tagname/>

JSP means that the contents of the tag can be interpreted as JSP and
that you must use the tag in the body tag format. For example:
Programming WebLogic JSP Tag Extensions 3-3

3 Creating a Tag Library Descriptor
<taglib:tagname>...</taglib:tagname>.

tagdependentmeans that your tag will interpret the contents of the
body as non-JSP (for instance an SQL statement).

If the <bodycontent> element is not defined, the default value is
JSP.

<attribute>

Use a separate <attribute> element to define each attribute that
the tag can take. Tag attributes allow the JSP author to alter the
behavior of your tags.

<name>myAttribute</name>

(Required) Defines the name of the attribute as it appears in the tag
element in the JSP page. For example:
<taglib:mytag myAttribute="myAttributeValue">

<required>true | false</required>

(Optional) Defines whether this attribute has optional use in the JSP
page.

If not defined here, the default is false — that is, the attribute is
optional by default.

If true is specified, and the attribute is not used in a JSP page, a
translation-time error occurs.

<rtexprvalue>true | false</rtexprvalue>

(Optional) Defines whether this attribute can take a scriptlet
expression as a value, allowing it to be dynamically calculated at
request time.

If this element is not specified, the value is presumed to be false.

</attribute>
3-4 Programming WebLogic JSP Tag Extensions

Sample Tag Library Descriptor
Sample Tag Library Descriptor

The following is a sample listing of a Taglib Descriptor.

Listing 3-1 Sample Taglib Descriptor (tld)

<taglib>

<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>quote</shortname>
<info>

This tag library contains several tag extensions
useful for formatting content for HTML.

</info>

<tag>
<name>code</name>
<tagclass>weblogic.taglib.quote.CodeTag</tagclass>
<bodycontent>tagdependent</bodycontent>
<attribute>
<name>fontAttributes</name>

</attribute>
<attribute>
<name>commentColor</name>

</attribute>
<attribute>
<name>quoteColor</name>

</attribute>
</tag>

</taglib>
Programming WebLogic JSP Tag Extensions 3-5

3 Creating a Tag Library Descriptor
3-6 Programming WebLogic JSP Tag Extensions

CHAPTER
4 Implementing the Tag
Handler

This section describes how to write Java classes that implement the functionality of an
extended tag. The following topics are discussed:

� Tag Handler API

� Tag Handler Life Cycle

� Using Tag Attributes

� Writing Cooperative Nested Tags

Tag Handler API

The JSP 1.1 API defines a set of classes and interfaces that you use to write custom tag
handlers. Documentation for the javax.servlet.jsp.tagext API is available at
http://java.sun.com/j2ee/j2sdkee/techdocs/api/index.html.

Your tag handler must implement one of two interfaces:

Tag

Implement the javax.servlet.jsp.tagext.Tag interface if your custom
tag is an empty-body tag. The API also provides a convenience class
TagSupport that implements the Tag interface and provides default empty
methods for the methods defined in the interface.
Programming WebLogic JSP Tag Extensions 4-1

http://java.sun.com/j2ee/j2sdkee/techdocs/api/index.html

4 Implementing the Tag Handler
BodyTag

Implement the javax.servlet.jsp.tagext.BodyTag interface if your
custom tag needs to use a body. The API also provides a convenience class
BodyTagSupport that implements the BodyTag interface and provides
default empty methods for the methods defined in the interface. Because
BodyTag extends Tag it is a super set of the interface methods.

Tag Handler Life Cycle

The methods inherited from either the Tag or BodyTag interfaces and implemented by
the tag handler class are invoked by the JSP engine at specific points during the
processing of the JSP page. These methods signify points in the life cycle of a tag and
are executed in the following sequence:

1. When the JSP engine encounters a tag in a JSP page, a new tag handler is
initialized. The setPageContext() and setParent() methods of the
javax.servlet.jsp.tagext.Tag interface are invoked to set up the
environment context for the tag handler. As a tag developer, you need not
implement these methods if you extend the TagSupport or BodyTagSupport base
classes.

2. The setXXXX() JavaBean-like methods for each tag attribute are invoked. For
more details, see Using Tag Attributes on page 4-5.

3. The doStartTag() method is invoked. You can define this method in your tag
handler class to initialize your tag handler or open connections to any resources it
needs, such as a database.

At the end of the doStartTag() method, you can determine if the tag body
should be evaluated or not by returning one of the following value constants
from your tag handler class:

SKIP_BODY

Directs the JSP engine to skip the body of the tag. Return this value
if the tag is an empty-body tag. The body-related parts of the tag’s
life cycle are skipped, and the next method invoked is doEndTag().
4-2 Programming WebLogic JSP Tag Extensions

Tag Handler Life Cycle
EVAL_BODY_INCLUDE

Directs the JSP engine to evaluate and include the content of the tag
body. The body-related parts of the tag’s life cycle are skipped, and
the next method invoked is doEndTag().

You can only return this value for tags that implement the Tag
interface. This allows you to write a tag that can determine whether
its body is included, but is not concerned with the contents of the
body. You cannot return this value if your tag implements the
BodyTag interface (or extends the BodyTagSuport class).

EVAL_BODY_TAG

Instructs the JSP engine to evaluate the tag body, then invokes the
doInitBody() method. You can only return this value if your tag
implements the BodyTag interface (or extends the
BodyTagSupport class).

4. The setBodyContent() method is invoked. At this point, any output from the
tag is diverted into a special JspWriter called BodyContent, and is not sent to
the client. All content from evaluating the body is appended to the BodyContent
buffer. This method allows the tag handler to store a reference to the
BodyContent buffer so it is available to the doAfterBody() method for
post-evaluation processing.

If the tag is passing output to the JSP page (or the surrounding tag scope if it is
nested), the tag must explicitly write its output to the parent-scoped JspWriter

between this point in the tag life cycle and the end of the doEndTag() method.
The tag handler can gain access to the enclosing output using the
getEnclosingWriter() method.

You do not need to implement this method if you are using the
BodyTagSupport convenience class, because the tag keeps a reference to the
BodyContent and makes the reference available through the
getBodyContent() method.

5. The doInitBody() method is invoked. This method allows you to perform some
work immediately before the tag body is evaluated for the first time. You might
use this opportunity to set up some scripting variables, or to push some content
into the BodyContent before the tag body. The content you prepend here will not
be evaluated as JSP—unlike the tag body content from the JSP page.

The significant difference between performing work in this method and
performing work at the end of the doStartTag() method (once you know you
are going to return EVAL_BODY_TAG) is that with this method, the scope of the
Programming WebLogic JSP Tag Extensions 4-3

4 Implementing the Tag Handler
tag’s output is nested and does not go directly to the JSP page (or parent tag).
All output is now buffered in a special type of JspWriter called BodyContent.

6. The doAfterBody() method is invoked. This method is called after the body of
the tag is evaluated and appended to the BodyContent buffer. Your tag handler
should implement this method to perform some work based on the evaluated tag
body. If your handler extends the convenience class BodyTagSupport, you can
use the getBodyContent() method to access the evaluated body. If you are
simply implementing the BodyTag interface, you should have defined the
setBodyContent() method where you stored a reference to the BodyContent
instance.

At the end of the doAfterBody() method, you can determine the life cycle of
the tag again by returning one of the following value constants:

SKIP_BODY

Directs the JSP engine to continue, not evaluating the body again.
The life cycle of the tag skips to the doEndTag() method.

EVAL_BODY_TAG

Directs the JSP engine to evaluate the body again. The evaluated
body is appended to the BodyContent and the doAfterBody()
method is invoked again.

At this point, you may want your tag handler to write output to the surrounding
scope. Obtain a writer to the enclosing scope using the
BodyTagSupport.getPreviousOut() method or the
BodyContent.getEnclosingWriter() method. Either method obtains the
same enclosing writer.

Your tag handler can write the contents of the evaluated body to the surrounding
scope, or can further process the evaluated body and write some other output.
Because the BodyContent is appended to the existing BodyContent upon each
iteration through the body, you should only write out the entire iterated body
content once you decide you are going to return SKIP_BODY. Otherwise, you will
see the content of each subsequent iteration repeated in the output.

7. The out writer in the pageContext is restored to the parent JspWriter. This
object is actually a stack that is manipulated by the JSP engine on the
pageContext using the pushBody() and popBody() methods. Do not, however,
attempt to manipulate the stack using these methods in your tag handler.
4-4 Programming WebLogic JSP Tag Extensions

Using Tag Attributes
8. The doEndTag() method is invoked. Your tag handler can implement this
method to perform post-tag, server side work, write output to the parent scope
JspWriter, or close resources such as database connections.

Your tag handler writes output directly to the surrounding scope using the
JspWriter obtained from pageContext.getOut() in the doEndTag()
method. The previous step restored pageContext.out to the enclosing writer
when popBody() was invoked on the pageContext.

You can control the flow for evaluation of the rest of the JSP page by returning
one of the following values from the doEngTag() method:

EVAL_PAGE

Directs the JSP engine to continue processing the rest of the JSP
page.

SKIP_PAGE

Directs the JSP engine to skip the rest of the JSP page.

9. The release() method is invoked. This occurs just before the tag handler
instance is de-referenced and made available for garbage collection.

Using Tag Attributes

Your custom tags can define any number of attributes that can be specified from the
JSP page. You can use these attributes to pass information to the tag handler and
customize its behavior.

You declare each attribute name in the TLD, in the <attribute> element. This
declares the name of the attribute and other attribute properties.

Your tag handler must implement setter and getter methods based on the attribute
name, similar to the JavaBean convention. For example, if you declare an attribute
named foo, your tag handler must define the following public methods:

public void setFoo(String f);
public String getFoo();

Note that the first letter of the attribute name is capitalized after the set/get prefix.
Programming WebLogic JSP Tag Extensions 4-5

4 Implementing the Tag Handler
The JSP engine invokes the setter methods for each attribute appropriately after the tag
handler is initialized and before the doStartTag() method is called. Generally, you
should implement the setter methods to store the attribute value in a member variable
that is accessible to the other methods of the tag handler.

Defining New Scripting Variables

Your tag handler can introduce new scripting variables that can be referenced by the
JSP page at various scopes. Scripting variables can be used like implicit objects within
their defined scope.

Define a new scripting variable by using the <teiclass> element to identify a Java
class that extends javax.servlet.jsp.tagext.TagExtraInfo. For example:

<teiclass>weblogic.taglib.session.ListTagExtraInfo</teiclass>

Then write the TagExtraInfo class. For example:

package weblogic.taglib.session;
import javax.servlet.jsp.tagext.*;

public class ListTagExtraInfo extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {
return new VariableInfo[] {

new VariableInfo("username",
"String",
true,
VariableInfo.NESTED),

new VariableInfo("dob",
"java.util.Date",
true,
VariableInfo.NESTED)

};
}

}

The example above defines a single method, getVariableInfo(), which returns an
array of VariableInfo elements. Each element defines a new scripting variable. The
example shown above defines two scripting variables called username and dob which
are of type java.lang.String and java.util.Date respectively.
4-6 Programming WebLogic JSP Tag Extensions

Defining New Scripting Variables
The constructor for VariableInfo() takes four arguments.

� A String that defines the name of the new variable.

� A String that defines the Java type of the variable. Give the full package name
for types in packages other than the java.lang package.

� A boolean that declares whether the variable must be instantiated before use.
Set this argument to “true” unless your tag handler is written in a language other
than Java.

� An int declaring the scope of the variable. Use a static field from
VariableInfo shown here:

VariableInfo.NESTED

Available only within the start and end tags of the tag.

VariableInfo.AT_BEGIN

Available from the start tag until the end of the page.

VariableInfo.AT_END

Available from the end tag until the end of the page.

Configure your tag handler to initialize the value of the scripting variables via the page
context. For example, the following Java source could be used in the doStartTag()
method to initialize the values of the scripting variables defined above:

pageContext.setAttribute("name", nameStr);
pageContext.setAttribute("dob", bday);

Where the first parameter names the scripting variable, and the second parameter is the
value assigned. Here, the Java variable nameStr is of type String and bday is of type
java.util.Date.

You can also access variables created with the TagExtraInfo class by referencing it
the same way you access a JavaBean that was created with useBean.

Dynamically Named Scripting Variables

It is possible to define the name of a new scripting variable from a tag attribute. This
definition allows you to use multiple instances of a tag that define a scripting variable
at the same scope, without the scripting variables of the tag clashing. In order to
Programming WebLogic JSP Tag Extensions 4-7

4 Implementing the Tag Handler
achieve this from your class that extends TagExtraInfo, you must get the name of the
scripting variable from the TagData that is passed into the getVariableInfo()
method.

From TagData, you can retrieve the value of the attribute that names the scripting
variable using the getAttributeString() method. There is also the getId()
method that returns the value of the id attribute, which is often used to name a new
implicit object from JSP tag.

Writing Cooperative Nested Tags

You can design your tags to implicitly use properties from tags they are nested within.
For example, in the code example called SQL Query (see the
samples/examples/jsp/tagext/sql directory of your WebLogic Server
installation) a <sql:query> tag is nested within a <sql:connection> tag. The query
tag searches for a parent scope connection tag and uses the JDBC connection
established by the parent scope.

To locate a parent scope tag, your nested tag uses the static
findAncestorWithClass() method of the TagSupport class. The following is an
example taken from the QueryTag example.

try {
ConnectionTag connTag = (ConnectionTag)

findAncestorWithClass(this,
Class.forName("weblogic.taglib.sql.ConnectionTag"));

} catch(ClassNotFoundException cnfe) {
throw new JspException("Query tag connection "+

"attribute not nested "+
"within connection tag");

}

This example returns the closest parent tag class whose tag handler class matched the
class given. If the direct parent tag is not of this type, then it is parent is checked and
so on until a matching tag is found, or a ClassNotFoundException is thrown.

Using this feature in your custom tags can simplify the syntax and usage of tags in the
JSP page.
4-8 Programming WebLogic JSP Tag Extensions

CHAPTER
5 Administration and
Configuration

This section contains an overview of Administration and Configuration tasks for using
JSP Tag Extensions and covers the following topics:

� Configuring JSP Tag Libraries

� Deploying a JSP Tag Library as a JAR File

Configuring JSP Tag Libraries

The following steps describe how to configure and deploy a JSP tag library. You can
also deploy a tag library as a jar file (see Deploying a JSP Tag Library as a JAR File
on page 5-2).

1. Create a tag library descriptor (TLD).

For more information, see Creating a Tag Library Descriptor on page 3-1.

2. Reference this TLD in the Web Application deployment descriptor, web.xml.
For example:

<taglib>

<taglib-uri>myTLD</taglib-uri>
<taglib-location>WEB-INF/library.tld</taglib-location>

</taglib>
Programming WebLogic JSP Tag Extensions 5-1

5 Administration and Configuration
In this example the tag library descriptor is a file called library.tld. Always
specify the location of the tld relative to the root of the Web Application.

For more information on editing the Web Application deployment descriptor, see
Taglib element at
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#taglib.

3. Place the tag library descriptor file in the WEB-INF directory of the Web
Application.

4. Reference the tag library in the JSP page

In your JSP, reference the tag library with a JSP directive. For example:

<%@ taglib uri="myTLD" prefix="mytaglib" %>

For more information on WebLogic JSP, see Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs60/jsp/index.html.

5. Place the tag handler Java class files for your tags in the WEB-INF/classes
directory of your Web Application.

6. Deploy the Web Application on WebLogic Server. For more information, see
Deploying and Configuring Web Applications at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

.

Deploying a JSP Tag Library as a JAR File

In addition to the procedure described above, you can also deploy a JSP tag library as
a jar file:

1. Create a TLD (tag library descriptor) file named taglib.tld.

For more information, see Creating a Tag Library Descriptor on page 3-1.

2. Create a directory containing the compiled Java tag handler class files used in
your tag library.

3. Create a subdirectory of the above directory called META-INF.
5-2 Programming WebLogic JSP Tag Extensions

http://e-docs.bea.com/wls/docs60/programming/web_xml.html#taglib
http://e-docs.bea.com/wls/docs60/jsp/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

Deploying a JSP Tag Library as a JAR File
4. Copy the taglib.tld file you created in step 1. into the META-INF directory you
created in step 3.

5. Archive your compiled Java class files into a jar file by executing the following
command from the directory you created in step 2.

jar cv0f myTagLibrary.jar

(where myTagLibrary.jar is a name you provide)

6. Copy the jar file into the WEB-INF/lib directory of the Web Application that
uses your tag library.

7. Reference this tag library descriptor in the Web Application deployment
descriptor, web.xml. For example:

<taglib>
<taglib-uri>myjar.tld</taglib-uri>
<taglib-location>

/WEB-INF/lib/myTagLibrary.jar
</taglib-location>

</taglib>

For more information, see Writing Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html.

8. Reference the tag library in your JSP. For example:

<%@ taglib uri="myjar.tld" prefix="wl" %>
Programming WebLogic JSP Tag Extensions 5-3

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html

5 Administration and Configuration
5-4 Programming WebLogic JSP Tag Extensions

Index

B
BodyContent 4-3
bodycontent 3-3
BodyContent.getEnclosingWriter() 4-4
BodyTagSupport.getPreviousOut() 4-4
C
classes, directories 5-2
cooperative nested tags 4-8
customer support contact information vii
D
doAfterBody() 4-4
documentation, where to find it vi
doEndTag() 4-5
doInitBody() 4-3
doStartTag() 4-2
E
EVAL_BODY_INCLUDE 4-3
EVAL_BODY_TAG 4-3, 4-4
EVAL_PAGE 4-5
G
getter method 4-5
J
jar 5-2
javax.servlet.jsp.tagext.BodyTag 4-2
javax.servlet.jsp.tagext.Tag interface 4-1
N
nested tags 4-8
Programming WebLogic JSP Tag Extensions v

O
out writer 4-4
P
printing product documentation vi
R
release() 4-5
S
scripting variables

defining 4-6
dynamically named 4-7
scope 4-7

setBodyContent() 4-3
setPageContext() 4-2
setter method 4-5
SKIP_BODY 4-2, 4-4
SKIP_PAGE 4-5
support

technical vii
T
tag attribute

using 4-5
tag handler 1-1, 4-1

BodyTag interface 4-2
life cycle 4-2
Tag interface 4-1

tag libraries
classes 5-2
configuration 5-1
deploying as jar file 5-2
overview 1-1
referencing 1-4
tag library descriptor 5-1
tld 5-1

tag library descriptor 3-1
and Web Applications 3-2
vi Programming WebLogic JSP Tag Extensions

bodycontent 3-3
defining 3-3
DTD 3-1
sample 3-5
tagclass 3-3
tieclass 3-3
writing 3-2

tagclass 3-3
TagExtraInfo 4-6
taglib directive 1-4

prefix 1-5
uri 1-4

tags
examples of use 1-3
nested, writing 4-8
using 1-2
writing 2-1

tieclass 3-3
tld 3-1, 5-1

and Web Application deployment descriptor 5-1
and Web Applications 3-2
body content 3-3
defining 3-3
DTD 3-1
sample 3-5
tagclass 3-3
tieclass 3-3
writing 3-2

W
Web Application deployment descriptor 5-1
Programming WebLogic JSP Tag Extensions vii

	Contents
	1 Overview of Programming JSP Tag Extensions
	Overview of Custom Tag Functionality
	Using Custom Tags in a JSP
	Formatting Custom Tags
	Some Example Scenarios

	Referencing a Tag Library

	2 Quick Start Guide
	3 Creating a Tag Library Descriptor
	Overview
	Writing the Tag Library Descriptor
	Sample Tag Library Descriptor

	4 Implementing the Tag Handler
	Tag Handler API
	Tag Handler Life Cycle
	Using Tag Attributes
	Defining New Scripting Variables
	Dynamically Named Scripting Variables

	Writing Cooperative Nested Tags

	5 Administration and Configuration
	Configuring JSP Tag Libraries
	Deploying a JSP Tag Library as a JAR File

	Index
	B
	C
	D
	E
	G
	J
	N
	O
	P
	R
	S
	T
	W

