o®%%,

9 F
: #
L e a

BEA
WebLogic Server

Programming WebLogic
JSP Tag Extensions

BEA WebLogic Server 6.0
Document Date: March 6, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any el ectronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Introduction to BEA WebL ogic Server

Part Number Document Date Software Version

March 6, 2001 BEA WebL ogic Server Version 6.0

Contents

About This Document

0o 1= 5 o RSN v
E-UOCSWED STttt s see st s e reeraens Vi
How to Print the DOCUMENL........c.eeiireeecese e e e Vi
Related INfOrmMatioN.........coeieieieeeereeec e nns Vi
(0o 1 r=o: A U LSS vii
Documentation CONVENTIONS..........cceierirerereereeeesee e ere e e se e e eneeneenenses vii

Overview of Programming JSP Tag Extensions

Overview of Custom Tag FUNCLIONalityccoeeeirerienerese e 1-1

UsiNg CUStOM TagSiN @JSPccuiieiieiie ettt 1-2
FOrmatting CUStOM TagS.....cecvereereerereeresereesteseessesseseeseesesseesessessessessessessens 1-2
SOME EXaMPIE SCENAITOS.ccueeueruieierierie sttt eas 1-3

Referencing aTag Library ...t 1-4

Quick Start Guide

Creating a Tag Library Descriptor

OVEIVIBIV ..ttt ettt bbbttt nnes 31

Writing the Tag Library DeSCriPLOr........coieeienereeerere e 32

Sample Tag Library DESCIIPLONvververereereeeeerese e se e see e seese e ne e eneees 35

Implementing the Tag Handler

Tag HANAIEr AP ...t et 4-1
Tag Handler LifE@ CYCle...miiiiiiiisee ettt e 4-2
USING TaQ AITDULES ..o s 4-5
Defining New Scripting Variables ..o 4-6

Dynamically Named Scripting Variables..........cccoevveivvieninivnin s 4-7
Writing Cooperative NeStEd TagSc.cvvereereererereeeseseseseesie e see e eseesesseenens 4-8

Programming WebL ogic JSP Tag Extensions i

5. Administration and Configuration

Configuring JSP Tag Libraries. ... vinienie et
Deploying aJSP Tag Library asaJAR File......ccooiiiiiiee e

Index

Programming WebL ogic JSP Tag Extensions

About This Document

This document describes how to write and deploy custom JavaServer Pages (JSP) tags
and JSP tab libraries.

The document is organized as follows:

Chapter 1, “Overview of Programming JSP Tag Extensions,” provides a
summary of JSP tag functionality and deployment.

Chapter 2, “Quick Start Guide,” lists the steps required to create and use custom
JSP tags.

Chapter 3, “Creating a Tag Library Descriptor,” discusses how to create a Tag
Library Descriptor (TLD) file.

Chapter 4, “Implementing the Tag Handler,” describes how to write Java classes
that implement the functionality of an extended tag.

Chapter 5, “Administration and Configuration,” contains an overview of
Administration and Configuration tasks for using JSP Tag Extensions.

Audience

This document is written for application devel opers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

Programming WebL ogic JSP Tag Extensions v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebL ogic
Server Product Documentation page at ht t p: / / e- docs. bea. coml W s/ docs60.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

Vi

m JSP 1.1 Specification from Sun Microsystems, available at
http://java. sun. coni products/jsp/ downl oad. htmi .

m Programming WebL ogic JSP at
http://e-docs. bea. com w s/ docs60/j sp/ i ndex. htni .

m Deploying and Configuring Web Applications at
http://e-docs. bea. comf wl s/ docs60/ adm ngui de/ confi g_web_app. ht n

Programming WebL ogic JSP Tag Extensions

http://www.adobe.com
http://java.sun.com/products/jsp/download.html
http://e-docs.bea.com/wls/docs60/jsp/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

®m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneoudly.

italics Emphasis and book titles.

Programming WebL ogic JSP Tag Extensions vii

mailto:docsupport@bea.com
http://www.bea.com

Convention Usage

nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also

indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chrmod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace Variablesin code.

italic Example:
t ext .
String Custoner Nane;

UPPERCASE Device names, environment variables, and logical operators.

TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.
[1] Optiona itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [list]|depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

viii Programming WebL ogic JSP Tag Extensions

Convention Usage

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic JSP Tag Extensions iX

Programming WebL ogic JSP Tag Extensions

CHAPTER

1 overview of

Programming JSP Tag
Extensions

The JSP 1.1 Specification introduced the ability to create and use custom tagsin
JavaServer Pages (JSP). Custom tags are an excellent way to abstract the complexity
of businesslogic from the presentation of Web pagesin away that is easy for the Web
author to use and control. Y ou can use custom JSP tag extensions in JSP pages to
generate dynamic content, and you can use a variety of Web development tools to
create the presentation.

The WebL ogic Server fully supportsthe tag extension mechanism described in the JSP
1.1 Specification available at
http://java. sun. conl products/j sp/ downl oad. ht i .

This topic includes the following sections:
m Overview of Custom Tag Functionality

m Using Custom Tagsin a JSP

Overview of Custom Tag Functionality

Y ou write acustom JSP tag by writing a Java class called atag handler. Y ou write the
tag handler class by implementing one of two interfaces, Tag or Body Tag that define
methods that are invoked during the life cycle of the tag or by extending an abstract

Programming WebL ogic JSP Tag Extensions 11

http://java.sun.com/products/jsp/download.html
http://java.sun.com/products/jsp/download.html

1 overviewof Programming JSP Tag Extensions

base class that implements one of these interfaces. Extending an abstract base class
relieves the tag handler class from having to implement all methods in the interfaces
and also provides other convenient functionality. The TagSupport and

Body TagSupport classesimplement theseinterfaces and are included in the API.

Oneor more custom JSPtags can beincluded inaTag Library. A tag library is defined
by aTag Library Descriptor (TLD) file. The TLD describesthe syntax for each tag and
tiesit to the Java classes that execute its functionality.

Using Custom Tags in a JSP

Custom tags can perform the following tasks:

m Produce output. The output of the tag is sent to the surrounding scope. The
scope can be one of the following:

e |f thetagisincluded directly in the JSP page, then the surrounding scopeis
the JSP page output.

e |f thetag is nested within another parent tag, then the output becomes part of
the evaluated body of its parent tag.

m Define new objects that can be referenced and used as scripting variablesin the
JSP page. A tag can introduce fixed-named scripting variables, or can definea
dynamically-named scripting variable with thei d attribute.

m |terate over their body content until acertain condition is met. Use iteration to
create repetitive output, or to repeatedly invoke a server side action.

m Determine whether the rest of the JSP page should be processed as part of the
request, or skipped.

Formatting Custom Tags

The format of a custom tag format can be empty, called an empty tag, or can contain a
body, called abody tag. Both types of tags can accept a number of attributes that are
passed to the Java class that implements the tag. For more details, see Using Tag
Attributes on page 4-5.

1-2 Programming WebL ogic JSP Tag Extensions

Using Custom Tagsin a JSP

An empty tag takes the following form:
<nmytaglib:newag attrl="aaa" attr2="bbb" ... />
A body tag takes the following form:

<nmytaglib:newag attrl="aaa" attr2="bbb" ... >
body
</ nmyt agl i b: newt ag>

A tag body can include more JSP syntax, and even other custom JSP tagsthat also have
nested bodies. Tags can be nested within each other to any level. For example:

<nyt agl i b: t agA>
<h2>This is the body of tagA</h2>
You have seen this text <nytaglib:counter /> tines!
<p>
<mytaglib:repeater repeat=4>
<p>Hel l o Worl d!
</ nytaglib:repeater>
</ nytaglib:tagA>

The preceding exampl e uses three custom tagsto illustrate the ability to nest tags
within abody tag. The tags function like this:

m Thebody tag <nyt agl i b: t agA> only seesthe HTML output from its evaluated
body. That is, the nested JSP tags <nyt agl i b: count er > and
<nyt agl i b: r epeat er > arefirst evaluated and their output becomes part of the
evaluated body of the <nyt agl i b: t agA> tag.

m The body of abody tag isfirst evaluated as JSP and all tags that it contains are
translated, including nested body tags, whose bodies are recursively evaluated.
The result of an evaluated body can then be used directly as the output of a body
tag, or the body tag can determine its output based on the content of the
evaluated body.

m The output generated from the JSP of a body tag istreated as plain HTML. That
is, the output is not further interpreted as JSP.

Some Example Scenarios

The following scenarios demonstrate what you can do with custom tags:

Programming WebL ogic JSP Tag Extensions 1-3

1 overviewof Programming JSP Tag Extensions

m Anempty tag can perform server-side work based on its attributes. The action
that the tag performs can determine whether the rest of the page is interpreted or
some other action is taken, such as aredirect. This function is useful for
checking that users are logged in before accessing a page, and redirecting them
to alogin pageif necessary.

m Anempty tag can insert content into a page based on its attributes. You can use
such atag to implement a simple page-hits counter or another templ ate-based
insertion.

m Anempty tag can define a server-side object that is available in the rest of the
page, based on its attributes. You can use this tag to create areference to an EJB,
which is queried for data el sewhere in the JSP page.

m A body tag has the option to process its output before the output becomes part of
the HTML page sent to the browser, evaluate that output, and then determine the
resulting HTML that is sent to the browser. This functionality could be used to
produce “quoted HTML,” reformatted content, or used as a parameter that you
pass to another function, such asan SQL query, where the output of thetag isa
formatted result set.

m A body tag can repeatedly process its body until a particular condition is met.

Referencing a Tag Library

1-4

JSPtab libraries are defined in atag library descriptor (t 1 d) . To use a custom tag
library from a JSP page, reference itstag library descriptor witha<v@t aglib %
directive. For example:

<U@taglib uri="nmyTLD" prefix="nytaglib" %
uri
The JSP engine attempts to find the Tag Library Descriptor by matching the
uri attributetoauri that isdefined in the Web Application deployment
descriptor (web. xm) withthe<t agl i b- uri > element. For example, my TLD
in the abovet agl i b directive would reference its tag library descriptor
(library.tld) inthe Web Application deployment descriptor like this:

<taglib>

Programming WebL ogic JSP Tag Extensions

Referencing a Tag Library

<taglib-uri>myTLD</taglib-uri>
<taglib-location>library.tld</taglib-Ilocation>
</taglib>

prefix
Thepr ef i x attribute assigns alabel to the tag library. Y ou use this label to
referenceitsassociated tag library when writing your pages using custom JSP
tags. For example, if the library (called nyt agl i b) from the example above
definesanew tag called newt ag, you would use the tag in your JSP page like
this:

<nyt agl i b: newt ag>
For more information, see Creating a Tag Library Descriptor on page 3-1.

Programming WebL ogic JSP Tag Extensions 1-5

1 overviewof Programming JSP Tag Extensions

1-6 Programming WebL ogic JSP Tag Extensions

CHAPTER

2

Quick Start Guide

Thefollowing is an overview of the steps required to create and use custom JSP tags.
These topics are covered in detail in this document:

1

Write atag handler class. When you use a custom tag in your JSP, this class
executes the functionality of thetag. A tag handler class implements one of two
interfaces: j avax. servl et . j sp. t agt ext . BodyTag or

javax.servlet. | sp.tagtext. Tag. Your tag handler classisimplemented as
part of atag library. For more information, see Implementing the Tag Handler on

page 4-1.

Reference the tag library in your JSP source using the JSP <t agl i b> directive. A
tag library is acollection of JSP tags. Include this directive at the top of your JSP
source. For more information, see Referencing a Tag Library on page 1-4.

Write the Tag Library Descriptor (TLD). The TLD defines the tag library and
provides additional information about each tag, such as the name of the tag
handler class, attributes, and other information about the tags. For more
information, see Creating a Tag Library Descriptor on page 3-1.

Reference the Tag Library Descriptor in the Web Application deployment
descriptor (web.xml). For more information, see Writing Web Application
Deployment Descriptors at

http://e-docs.bea.com/wl s/docs60/programming/webappdepl oyment.html.

Use your custom tag in your JSP. For more information, see Using Custom Tags
in aJSP on page 1-2.

Programming WebL ogic JSP Tag Extensions 2-1

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html

2 Quick Sart Guide

2-2 Programming WebL ogic JSP Tag Extensions

CHAPTER

3 (Creating a Tag Library
Descriptor

This section discusses how to create a Tag Library Descriptor (TLD) file. The
following topics are discussed:

m Overview
m Writing the Tag Library Descriptor

m Sample Tag Library Descriptor

Overview

A taglibrary allowsadevel oper to group together tagswith related functionality. A tag
library uses atag library Descriptor (t1d) filethat describes the tag extensions and

relates them to their Java classes. WebL ogic Server and some authoring tools use the
TLD to get information about the extensions. TLD files are written in XML notation.

The syntax for atag library Descriptor is specified in the document type descriptor
(DTD) available at: http://java.sun.com/j2ee/dtds/web-jsptaglibrary 1 1.dtd.

Programming WebL ogic JSP Tag Extensions 31

http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd

3 Creating a Tag Library Descriptor

Writing the Tag Library Descriptor

32

Order the elementsin the Tag Library Descriptor file asthey are defined in the DTD.
This ordering is used in the steps below. The XML parser will throw an exception if
you incorrectly order the TLD elements.

The body of the TLD contains additional nested elementsinside of the

<taglib> ... </taglib>element. Thesenested elementsaredescribed inthe steps
below. For display in this document, nested elements are indented from their parent
elements, but indenting is not required in the TLD.

A Sample Tag Library Descriptor on page 3-5 declares anew tag called code. The
functionality of thistag isimplemented by the Java class
webl ogi c. tagl i b. quot e. CodeTag.

To create atag library descriptor:

1. Createatext file with an appropriate name and the extension . t | d, and locateit in
the WEB-INF directory of the Web Application containing your JSP(s). Content
beneath the VEB- | NF directory is non-public and is not served over HTTP by
WebL ogic Server.

2. Include the following header:

<! DOCTYPE taglib PUBLIC "-//Sun M crosystems, Inc.
/1 DTD JSP Tag Library 1.1//EN' "web-jsptaglib_1_ 1.dtd">

3. Add the contents of the TLD, embedded in a<t agl i b> element. The contents
include elements containing information about the tag library and elements that
define each tag. For example:
<tagl i b>

... body of taglib descriptor ...
</taglib>

4. I|dentify the Tag Library

<tlibversion>versi on_nunber</tlibversion>
(Required) The version number of the tag library.

<j spver si on>ver si on_nunber </ j spver si on>
(Optional) The JSP version that thistag library is designed to work
with. WebL ogic supports JSP version 1.1 from this release.

Programming WebL ogic JSP Tag Extensions

Writing the Tag Library Descriptor

<short name>TagLi br ar yNane</ shor t nane>
(Required) Assigns a short nameto thistag library. Thiselement is
not used by WebL ogic Server.

<uri>uni que_string</uri>
(Optional) This element is not used by WebL ogic Server.

<info> ..text...</info>
(Optional) Use this element to provide a description of the tag
library. This element is not used by WebL ogic Server.

5. DefineaTag

Use a separate <t ag> element to define each new tag in the tag library. The
<t ag> element takes the following nested tags:

<nane>t ag_nane</ nane>
(Required) Defines the name of thetag. Thisis used when
referencing thetag in a JSPfile, after the“: ” symbol, For example:
<nytaglib:tag_nane>
For moreinformation, see Using Custom Tagsin aJSP on page 1-2.

<t agcl ass>package. cl ass. name</t agcl ass>
(Required) Declares the tag handler class that implements the
functionality of thistag. Specify thefully qualified package name of
theclass.

Locate the class file under the VEB- | NF/ ¢l asses directory, ina
directory structure reflecting the package name.

<t ei cl ass>package. cl ass. name</tei cl ass>
(Optional) Declares the subclass of TagExt r al nf o that describes
the scripting variables introduced by this tag. If your tag does not
define new scripting variables, it does not use this element. Specify
the fully qualified package name of the class.

Place the class files under the VEB- | NF/ ¢l asses directory of your
Web Application, under adirectory structure reflecting the package
name.

<bodycont ent >t agdependent | JSP | enpty</bodycontent>
(Optional) Defines the content of the tag body.

enpt y meansthat you use the tag in the empty tag format in the JSP
page. For example: <t agl i b: t agname/ >

JSP means that the contents of the tag can beinterpreted as JSP and
that you must use the tag in the body tag format. For example:

Programming WebL ogic JSP Tag Extensions 33

3 Creating a Tag Library Descriptor

34

<taglib:tagname>...</taglib:tagnane>.

t agdependent meansthat your tag will interpret the contents of the
body as non-JSP (for instance an SQL statement).

If the <bodycont ent > element is not defined, the default valueis
JSP.

<attribute>

Use aseparate <at t r i but e> element to define each attribute that
the tag can take. Tag attributes allow the JSP author to alter the
behavior of your tags.

<nane>myAttri but e</ nane>
(Required) Defines the name of the attribute as it appearsin the tag
element in the JSP page. For example:
<taglib:nytag nyAttribute="nyAttributeVal ue">

<required>true | fal se</required>

(Optional) Defines whether this attribute has optional usein the JSP
page.

If not defined here, the default isf al se — that is, the attribute is
optional by default.

If t rue is specified, and the attribute is not used in a JSP page, a
translation-time error occurs.

<rtexprvalue>true | fal se</rtexprval ue>

(Optional) Defines whether this attribute can take a scriptlet
expression asavalue, alowing it to be dynamically calculated at
reguest time.

If this element is not specified, the value is presumed to bef al se.

</attribute>

Programming WebL ogic JSP Tag Extensions

Sample Tag Library Descriptor

Sample Tag Library Descriptor

The following is a sample listing of a Taglib Descriptor.

Listing 3-1 Sample Taglib Descriptor (tld)

<taglib>

<tlibversion>1.0</tlibversion>

<j spversi on>1. 1</ j spver si on>

<short nane>quot e</ shor t nane>

<i nf 0>
This tag library contains several tag extensions
useful for formatting content for HTM.

</info>

<t ag>
<nanme>code</ nane>
<t agcl ass>webl ogi c. tagl i b. quot e. CodeTag</t agcl ass>
<bodycont ent >t agdependent </ bodycont ent >
<attribute>
<name>f ont Attri but es</ nane>
</attribute>
<attribute>
<nane>conment Col or </ hane>
</attribute>
<attribute>
<nane>quot eCol or </ nane>
</attribute>
</ tag>

</taglib>

Programming WebL ogic JSP Tag Extensions 35

3 Creating a Tag Library Descriptor

36 Programming WebL ogic JSP Tag Extensions

CHAPTER

4 Implementing the Tag
Handler

This section describes how to write Java classes that implement the functionality of an
extended tag. The following topics are discussed:

m Tag Handler AP

m TagHandler Life Cycle

m Using Tag Attributes

m Writing Cooperative Nested Tags

Tag Handler API

TheJSP 1.1 API definesaset of classesand interfacesthat you useto write custom tag
handlers. Documentation for thej avax. servl et . j sp. t agext APl isavailable at
http://java.sun.com/j 2ee/j 2sdkee/techdocs/api/index.html.

Y our tag handler must implement one of two interfaces:

Tag
Implement thej avax. servl et . j sp. t agext . Tag interface if your custom
tag is an empty-body tag. The API also provides a convenience class
TagSupport that implements the Tag interface and provides default empty
methods for the methods defined in the interface.

Programming WebL ogic JSP Tag Extensions 4-1

http://java.sun.com/j2ee/j2sdkee/techdocs/api/index.html

Implementing the Tag Handler

BodyTag
Implement thej avax. servl et . j sp. t agext . BodyTag interface if your
custom tag needs to use a body. The API aso provides a convenience class
BodyTagSupport that implements the BodyTag interface and provides
default empty methods for the methods defined in the interface. Because
BodyTag extends Tag it is a super set of the interface methods.

Tag Handler Life Cycle

4-2

The methodsinherited from either the Tag or Body Tag interfaces and implemented by
the tag handler class are invoked by the JSP engine at specific points during the
processing of the JSP page. These methods signify pointsin thelife cycle of atag and
are executed in the following sequence:

1. When the JSP engine encounters atag in a JSP page, a new tag handler is
initialized. The set PageCont ext () and set Par ent () methods of the
j avax.servl et.] sp.tagext. Tag interface are invoked to set up the
environment context for the tag handler. As atag developer, you need not
implement these methodsif you extend the TagSuppor t or Body TagSupport base
classes.

2. Theset XXxX() JavaBean-like methods for each tag attribute are invoked. For
more details, see Using Tag Attributes on page 4-5.

3. ThedoStart Tag() method isinvoked. You can define this method in your tag
handler classto initialize your tag handler or open connectionsto any resourcesit
needs, such as a database.

At the end of the doSt ar t Tag() method, you can determine if the tag body
should be evaluated or not by returning one of the following value constants
from your tag handler class:

SKI P_BODY
Directs the JSP engine to skip the body of the tag. Return thisvalue
if thetag is an empty-body tag. The body-related parts of thetag’s
life cycle are skipped, and the next method invoked isdoEndTag() .

Programming WebL ogic JSP Tag Extensions

Tag Handler Life Cycle

EVAL_BODY_| NCLUDE
Directsthe JSP engine to evaluate and include the content of the tag
body. The body-related parts of thetag’ slife cycle are skipped, and
the next method invoked isdoEndTag() .

Y ou can only return this value for tags that implement the Tag
interface. Thisallowsyou to write atag that can determine whether
its body isincluded, but is not concerned with the contents of the
body. Y ou cannot return this value if your tag implements the
BodyTag interface (or extends the Body TagSuport class).

EVAL_BCDY_TAG
Instructs the JSP engine to evaluate the tag body, then invokes the
dol ni t Body() method. You can only return thisvalueif your tag
implements the Body Tag interface (or extends the
BodyTagSupport class).

4. Theset BodyCont ent () method isinvoked. At this point, any output from the
tag isdiverted into aspecia JspWi t er called BodyCont ent, and is not sent to
the client. All content from evaluating the body is appended to the Body Cont ent
buffer. This method allows the tag handler to store areference to the
Body Cont ent buffer so it isavailableto the doAf t er Body() method for
post-eval uation processing.

If the tag is passing output to the JSP page (or the surrounding tag scopeif itis
nested), the tag must explicitly write its output to the parent-scoped JspW i t er
between this point in the tag life cycle and the end of the doEndTag() method.
The tag handler can gain access to the enclosing output using the

get Encl osi ngW i t er () method.

You do not need to implement this method if you are using the

Body TagSupport convenience class, because the tag keeps areference to the
BodyCont ent and makes the reference available through the

get BodyCont ent () method.

5. Thedol ni t Body() method isinvoked. This method allows you to perform some
work immediately before the tag body is evaluated for the first time. You might
use this opportunity to set up some scripting variables, or to push some content
into the Body Cont ent before the tag body. The content you prepend here will not
be evaluated as JISP—unlike the tag body content from the JSP page.

The significant difference between performing work in this method and
performing work at the end of the doSt art Tag() method (once you know you
are going to return EVAL_BODY_TAG) is that with this method, the scope of the

Programming WebL ogic JSP Tag Extensions 4-3

4

Implementing the Tag Handler

4-4

tag's output is nested and does not go directly to the JSP page (or parent tag).
All output is now buffered in aspecial type of Jspw i t er called BodyCont ent .

. ThedoAft er Body() method isinvoked. This method is called after the body of

the tag is evaluated and appended to the Body Cont ent buffer. Your tag handler
should implement this method to perform some work based on the evaluated tag
body. If your handler extends the convenience class Body TagSuppor t , you can
use the get Body Cont ent () method to access the evaluated body. If you are
simply implementing the Body Tag interface, you should have defined the

set BodyCont ent () method where you stored a reference to the Body Cont ent
instance.

At the end of the doAf t er Body() method, you can determine the life cycle of
the tag again by returning one of the following value constants:

SKI P_BODY
Directs the JSP engine to continue, not evaluating the body again.
The life cycle of the tag skipsto the doEndTag() method.

EVAL_BCDY_TAG
Directs the JSP engine to evaluate the body again. The evaluated
body is appended to the Body Cont ent and the doAf t er Body()
method is invoked again.

At this point, you may want your tag handler to write output to the surrounding
scope. Obtain awriter to the enclosing scope using the

Body TagSupport . get Previ ousCQut () method or the

Body Cont ent . get Encl osi ngW i ter () method. Either method obtains the
same enclosing writer.

Your tag handler can write the contents of the evaluated body to the surrounding
scope, or can further process the evaluated body and write some other output.
Because the Body Cont ent is appended to the existing Body Cont ent upon each
iteration through the body, you should only write out the entire iterated body
content once you decide you are going to return SKi P_BODY. Otherwise, you will
see the content of each subsequent iteration repeated in the output.

. Theout writer in the pageCont ext isrestored to the parent Jspw i t er. This

object is actually a stack that is manipulated by the JSP engine on the
pageCont ext using the pushBody() and popBody() methods. Do not, however,
attempt to manipulate the stack using these methods in your tag handler.

Programming WebL ogic JSP Tag Extensions

Using Tag Attributes

8. ThedoEndTag() method isinvoked. Your tag handler can implement this
method to perform post-tag, server side work, write output to the parent scope
JspW i t er, or close resources such as database connections.

Your tag handler writes output directly to the surrounding scope using the
JspW it er obtained from pageCont ext . get Qut () inthedoEndTag()
method. The previous step restored pageCont ext . out to the enclosing writer
when popBody () was invoked on the pageCont ext .

You can control the flow for evaluation of the rest of the JSP page by returning
one of the following values from the doEngTag() method:

EVAL_PAGE
Directs the JSP engine to continue processing the rest of the JSP
page.

SKI P_PAGE

Directs the JSP engine to skip the rest of the JSP page.

9. Therel ease() method isinvoked. This occurs just before the tag handler
instance is de-referenced and made available for garbage collection.

Using Tag Attributes

Y our custom tags can define any number of attributes that can be specified from the
JSP page. Y ou can use these attributes to pass information to the tag handler and
customize its behavior.

Y ou declare each attribute nameinthe TLD, inthe <at t ri but e> element. This
declares the name of the attribute and other attribute properties.

Y our tag handler must implement setter and getter methods based on the attribute
name, similar to the JavaBean convention. For example, if you declare an attribute
named f oo, your tag handler must define the following public methods:

public void setFoo(String f);
public String getFoo();

Note that the first letter of the attribute name is capitalized after the set/get prefix.

Programming WebL ogic JSP Tag Extensions 4-5

4

Implementing the Tag Handler

The JSP engineinvokesthe setter methods for each attribute appropriately after thetag
handler isinitialized and before the doSt ar t Tag() method is called. Generally, you
should implement the setter methods to store the attribute value in amember variable
that is accessible to the other methods of the tag handler.

Defining New Scripting Variables

4-6

Y our tag handler can introduce new scripting variables that can be referenced by the
JSP page at various scopes. Scripting variables can be used likeimplicit objectswithin
their defined scope.

Define a new scripting variable by using the <t ei ¢l ass> element to identify a Java
classthat extendsj avax. servl et . j sp. t agext . TagExt r al nf o. For example;

<t ei cl ass>webl ogi c. tagl i b. sessi on. Li st TagExtral nfo</teicl ass>
Then write the TagExt r al nf o class. For example:

package webl ogi c.taglib. session;
i mport javax.servlet.jsp.tagext.*;

public class ListTagExtral nfo extends TagExtralnfo {

public Variablelnfo[] getVariabl el nfo(TagData data) {
return new Variablelnfo[] {

new Vari abl el nf o("user nane",
"String",
true,
Vari abl el nf o. NESTED) ,

new Vari abl el nf o("dob",
"java.util.Date",
true,
Var i abl el nf 0. NESTED)

}
}

The example above defines a single method, get Vari abl el nf o() , which returns an
array of Vari abl el nf o elements. Each element defines anew scripting variable. The
example shown above definestwo scripting variablescalled user name and dob which
areof typej ava. | ang. String andj ava. uti| . Dat e respectively.

Programming WebL ogic JSP Tag Extensions

Defining New Scripting Variables

The constructor for Vari abl el nf o() takesfour arguments.
m A String that defines the name of the new variable.

m A String that defines the Javatype of the variable. Give the full package name
for typesin packages other than the j ava. | ang package.

m A bool ean that declares whether the variable must be instantiated before use.
Set this argument to “true” unless your tag handler iswritten in alanguage other
than Java.

m Anint declaring the scope of the variable. Use a static field from
Vari abl el nf o shown here:

Vari abl el nf o. NESTED
Available only within the start and end tags of the tag.

Vari abl el nfo. AT_BEG N
Available from the start tag until the end of the page.

Vari abl el nf o. AT_END
Available from the end tag until the end of the page.

Configureyour tag handler to initialize the value of the scripting variables viathe page
context. For example, the following Java source could be used in the doSt ar t Tag()
method to initialize the values of the scripting variables defined above:

pageCont ext.set Attri bute("nanme", nameStr);
pageCont ext.set Attri bute("dob", bday);

Wherethefirst parameter namesthe scripting variable, and the second parameter isthe
value assigned. Here, the JavavariablenameSt r isof type St ri ng and bday isof type
java.util . Date.

Y ou can also access variables created with the TagExt r al nf o class by referencing it
the same way you access a JavaBean that was created with useBean.

Dynamically Named Scripting Variables

It is possible to define the name of a new scripting variable from atag attribute. This
definition allows you to use multiple instances of atag that define a scripting variable
at the same scope, without the scripting variables of the tag clashing. In order to

Programming WebL ogic JSP Tag Extensions 4-7

4

Implementing the Tag Handler

achievethisfrom your classthat extends TagExt r al nf o, you must get the name of the
scripting variable from the TagDat a that is passed into the get Vari abl el nf o()
method.

From TagDat a, you can retrieve the value of the attribute that names the scripting
variable using theget At t ri but eSt ri ng() method. Thereisalso theget1d()
method that returns the value of thei d attribute, which is often used to name anew
implicit object from JSP tag.

Writing Cooperative Nested Tags

4-8

Y ou can design your tagsto implicitly use propertiesfrom tags they are nested within.
For example, in the code example called SQL Query (see the

sanpl es/ exanpl es/ j sp/ t agext/ sql directory of your WebLogic Server
installation) a<sql : quer y>tagisnested withina<sql : connect i on>tag. The query
tag searches for a parent scope connection tag and uses the JDBC connection
established by the parent scope.

To locate a parent scope tag, your nested tag uses the static
fi ndAncest or Wt hCl ass() method of the TagSupport class. Thefollowingisan
example taken from the Quer yTag example.

try {
Connecti onTag connTag = (Connecti onTag)

fi ndAncest or Wt hCl ass(this,
Cl ass. for Name(" webl ogi c. taglib. sql . Connecti onTag"));
} catch(d assNot FoundException cnfe) {
t hrow new JspException("Query tag connection "+
"attribute not nested "+
"within connection tag");

}

This example returns the closest parent tag class whose tag handler class matched the
class given. If the direct parent tag is not of thistype, then it is parent is checked and
so on until amatching tag isfound, or ad assNot FoundExcept i on isthrown.

Using thisfeature in your custom tags can simplify the syntax and usage of tagsin the
JSP page.

Programming WebL ogic JSP Tag Extensions

CHAPTER

5 Administration and
Configuration

This section contains an overview of Administration and Configuration tasksfor using
JSP Tag Extensions and covers the following topics:

m Configuring JSP Tag Libraries
m Deploying aJSP Tag Library asaJAR File

Configuring JSP Tag Libraries

The following steps describe how to configure and deploy a JSP tag library. Y ou can
also deploy atag library asaj ar file (see Deploying aJSP Tag Library asaJAR File
on page 5-2).

1. Createatag library descriptor (TLD).

For more information, see Creating a Tag Library Descriptor on page 3-1.

2. Reference this TLD in the Web Application deployment descriptor, web. xni .
For example:
<tagli b>

<taglib-uri>myTLD</taglib-uri>
<taglib-locati on>VEB-I NF/library.tld</taglib-Iocation>

</taglib>

Programming WebL ogic JSP Tag Extensions 51

5 Administration and Configuration

In this example the tag library descriptor isafilecalled i brary. t1d. Always
specify the location of thet | d relative to the root of the Web Application.

For more information on editing the Web Application deployment descriptor, see
Taglib element at
http://e-docs.bea.com/wls/docs60/programming/web_xml.html#taglib.

Place the tag library descriptor file in the WEB- | NF directory of the Web
Application.

Reference the tag library in the JSP page

In your JSP, reference the tag library with a JSP directive. For example:
<U@taglib uri="nyTLD" prefix="nytaglib" %

For more information on WebL ogic JSP, see Programming WebL ogic JSP at
http://e-docs.bea.com/wls/docs60/jsp/index.html.

Place the tag handler Java class files for your tagsin the WEB- | NF/ ¢l asses
directory of your Web Application.

Deploy the Web Application on WebL ogic Server. For more information, see
Deploying and Configuring Web Applications at
http://e-docs. bea. comf W s/ docs60/ adm ngui de/ confi g_web_app. ht m

Deploying a JSP Tag Library as a JAR File

5-2

In addition to the procedure described above, you can also deploy a JSP tag library as
aj ar file

1

Createa TLD (tag library descriptor) filenamedt agli b. t1 d.
For more information, see Creating a Tag Library Descriptor on page 3-1.

Create a directory containing the compiled Javatag handler classfilesused in
your tag library.

Create a subdirectory of the above directory called META- | NF.

Programming WebL ogic JSP Tag Extensions

http://e-docs.bea.com/wls/docs60/programming/web_xml.html#taglib
http://e-docs.bea.com/wls/docs60/jsp/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

Deploying a JSP Tag Library as a JAR File

. Copy thetaglib. tld fileyou created in step 1. into the META- | NF directory you
created in step 3.

. Archive your compiled Java classfilesinto aj ar file by executing the following
command from the directory you created in step 2.

jar cvOf myTagLibrary.jar
(wherenyTagLi brary. j ar isaname you provide)

. Copy thej ar fileintothe WEB- I NF/ | i b directory of the Web Application that
uses your tag library.

. Reference thistag library descriptor in the Web Application deployment
descriptor, web. xnm . For example;

<taglib>
<taglib-uri>nyjar.tld</taglib-uri>
<taglib-1location>
/VEB- | NF/ | i b/ nyTagLi brary.j ar
</taglib-Ilocation>
</taglib>

For more information, see Writing Web Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs60/programming/webappdepl oyment.html.

. Reference the tag library in your JSP. For example:
<U@taglib uri="nyjar.tld" prefix="w" %

Programming WebL ogic JSP Tag Extensions 5-3

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html

5 Administration and Configuration

54 Programming WebL ogic JSP Tag Extensions

Index

B

BodyContent 4-3

bodycontent 3-3
BodyContent.getEnclosingWriter() 4-4
Body TagSupport.getPreviousOut() 4-4
C

classes, directories 5-2

cooperative nested tags 4-8

customer support contact information vii
D

doAfterBody() 4-4

documentation, whereto find it vi
doEndTag() 4-5

dolnitBody() 4-3

doStartTag() 4-2

E

EVAL_BODY_INCLUDE 4-3

EVAL BODY_TAGA4-3,4-4
EVAL_PAGE 4-5

G

getter method 4-5

J

jar 5-2
javax.servlet.jsp.tagext.BodyTag 4-2
javax.servlet.jsp.tagext.Tag interface 4-1
N

nested tags 4-8

Programming WebL ogic JSP Tag Extensions

Vv

O

out writer 4-4

P

printing product documentation vi

R

release() 4-5

S

scripting variables
defining 4-6
dynamically named 4-7
scope 4-7

setBodyContent() 4-3

setPageContext() 4-2

setter method 4-5

SKIP_BODY 4-2,4-4

SKIP_PAGE 4-5

support
technical vii

T

tag attribute
using 4-5

tag handler 1-1, 4-1
BodyTag interface 4-2
life cycle 4-2
Tag interface 4-1

tag libraries
classes 5-2
configuration 5-1
deploying asjar file 5-2
overview 1-1
referencing 1-4
tag library descriptor 5-1
tld 5-1

tag library descriptor 3-1
and Web Applications 3-2

Vi Programming WebL ogic JSP Tag Extensions

bodycontent 3-3
defining 3-3
DTD 3-1
sample 3-5
tagclass 3-3
tieclass 3-3
writing 3-2
tagclass 3-3
TagExtralnfo 4-6
taglib directive 1-4
prefix 1-5
uri 1-4
tags
examples of use 1-3
nested, writing 4-8
using 1-2
writing 2-1
tieclass 3-3
tld 3-1, 5-1
and Web Application deployment descriptor 5-1
and Web Applications 3-2
body content 3-3
defining 3-3
DTD 3-1
sample 3-5
tagclass 3-3
tieclass 3-3
writing 3-2
w
Web Application deployment descriptor 5-1

Programming WebL ogic JSP Tag Extensions vii

	Contents
	1 Overview of Programming JSP Tag Extensions
	Overview of Custom Tag Functionality
	Using Custom Tags in a JSP
	Formatting Custom Tags
	Some Example Scenarios

	Referencing a Tag Library

	2 Quick Start Guide
	3 Creating a Tag Library Descriptor
	Overview
	Writing the Tag Library Descriptor
	Sample Tag Library Descriptor

	4 Implementing the Tag Handler
	Tag Handler API
	Tag Handler Life Cycle
	Using Tag Attributes
	Defining New Scripting Variables
	Dynamically Named Scripting Variables

	Writing Cooperative Nested Tags

	5 Administration and Configuration
	Configuring JSP Tag Libraries
	Deploying a JSP Tag Library as a JAR File

	Index
	B
	C
	D
	E
	G
	J
	N
	O
	P
	R
	S
	T
	W

