o®%%,

9 F
: #
L e a

BEA
WebLogic Server

Programming
WebLogic HTTP Servlets

BEA WebLogic Server 6.0
Document Date: March 3, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the
BEA Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically alowed in the agreement.
This document may not, in whole or in part, be copied photocopied, reproduced, transl ated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from BEA
Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer
Software-Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin
Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their
equivalent.

Information in this document is subject to change without notice and does not represent a commitment
on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS
IS" WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business
Becomes E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA
eLink, BEA WebL ogic Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic
Process Integrator, BEA WebL ogic Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic
Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are
associated.

Programming WebL ogic HTTP Servlets

Part Number Document Date Software Version

March 6, 2001 BEA WebL ogic Server Version 6.0

Contents

About This Document

N 0 [1= 0 TS \Y
E-UOCSWED STttt e be e e see e e e beeraens Vi
How to Print the DOCUMENE........cceeieeei e Vi
Related INfOrmation..........cceeoi e s %
(0o 1 r=o: A U LS ST vii
Documentation CONVENTIONS.........cccuveeierrereseeeeseseseeeeiereeseeseesessessessessessesnens viii

1. Overview

WHhaEE IS @ SEIVIEL?.....c e et 1-1
What You Can DO With SEIVIELS.......ccceeiieienee e 1-2
Overview of Serviet DevElOPMENtcccoveeireriere e 1-3
ServletSand J2EE ... e s 1-3
HTTP Serviet APl REFEIENCE......ccvveee et 1-4

2. Introduction to Programming

Writing aBasiC HTTP SErVIEL........cooiieeee e 2-1
AAVANCED FEBIUINES ..ottt ettt ettt ea s 2-4
Complete HelloWorldServiet EXample......cccooeveeveccenesiene e 2-5

3. Programming Tasks

INItTAlIZING A SEIVIEL ... e 31
Initializing a Servlet when WebL ogic Server Starts.......oovoveevvreeveennnne 32
Overriding the init() Method..........coeoveevrecice e 3-3

Providing an HTTP RESPONSEcooiiriiierieie sttt 34

Retrieving ClHEnt INPUL.........cooeieereeecre et 3-6
Other Methods for Using the HTTP ReqUESE........ccceveverereereciereeeee e 3-7

Programming WebL ogic HTTP Servlets i

Example: Retrieving Input by Using Query Parameters..........cccovvveereenen. 3-8

Using Session Tracking from a ServIet ... 3-10
A History of Session TraCkingccvevveverereresenersseesesesseseeesseseseens 3-10
Tracking a Session with an HttpSession Object........ccccovvveeveceveneennene 311
Lifetime of @SESSIONceiiiirire e e 312
How Session Tracking WOrKS.........cciveerereseesseeeeesesesese e e e 312
Detecting the Start of @ SeSSION........ccoieirrirre e 3-13
Setting and Getting Session Name/Value Attributesccoooveeeecereene. 3-13
Logging Out and ENding @ SESSIONccceveeriereererneeieeeneseesesessessesseseens 3-14
Configuring SeSSION TraCKiNgccceoereriinene et 3-15
USING URL REWIITING......coviiiiiriirierie ettt 3-15

URL Rewriting and Wireless Access Protocol (WAP).......ccccceeeen. 3-16
Making SesSiONS PErSIStENLcoeriieieeirenere e 3-16
Scenarios to Avoid When UsSing SESSIONSeeeveveereeneeneeieeeniennes 3-17
Use Seridizable Attribute ValUes.........ooeveereeeccnneceece s 3-18
Configuring Session PErsistenCe.........cccooeeeereriene s 3-18

USiNg COOKIES TN @ SEIVIEL ... e 3-18
Setting Cookiesin an HTTP SErVIELccovveeeeceeecececece e 3-18
Retrieving Cookiesin an HTTP ServIet ..o 3-19
Using Cookies that Are Transmitted by Both HTTPand HTTPS............ 3-20
Application Security and COOKIES.........cccuvrerereereeeiere e 321

Using WebL ogic Servicesfrom an HTTP Serviet ... 321

ACCESSING DAtBDASES......ccve ittt 3-22
Connecting to a Database Using a JDBC Connection Pool 3-22

Using a Connection Pool in aServiet.........cooooeeininincccienee 3-23
Connecting to a Database Using a DataSource Objectccceeereeuenee. 3-24
Using aDataSourcein @aServI€t........coovvvvveeersceesesiese e e e 3-24
Connecting Directly to a Database Using a JDBC Drivercccccueuee. 325

Threading ISSUES TN HTTP SEIVIELS......coiiiiiee e e 3-25
SINGIEThreadMOdeccovieerecree e s 3-25
Shared RESOUICES........evieeieeieire ettt st sae st e e e 3-26

Dispatching Requests to ANOther RESOUICEooeverieriereeienereee e 3-26
FOrwarding @ REQUESE.........coov i seceeire et ne e 3-28
INCIUAING @ REQUESE ... e 3-28

Programming WebL ogic HTTP Servlets

4. Administration and Configuration

OVEIVIBIW ..ttt e e e ene 4-1
Using Deployment Descriptors to Configure and Deploy Servlets........... 4-2
web.xml (Web Application Deployment DesCriptor)cccceeveveenene. 4-2
weblogic.xml (Weblogic-Specific Deployment Descriptor) 4-3

WebL ogic Server Administration Console.........ccocooevenrininenceniennn, 4-3
DITECLONY SITUCIUNE....cveceeverie st see e see st ese e e ere e ere e e s e sres e sae e e seneeneeneeneas 4-5
URL ottt sttt b et bbbt e 4-5
S ol 1SS 4-6
AULNENEICALION ... 4-6
Authorization (Security CONSITAINES)coereerereriererere e 4-7
Servliet DeVEl OPMENE TIPS ..coiiiiirierierieee e e e eeas 4-7
ClIUSLENNG SEIVIELS.......ccveieceieeee st s ene e re e renne s 4-8

Index

Programming WebL ogic HTTP Servlets %

Vi

Programming WebL ogic HTTP Servlets

About This Document

Thisdocument providesinformation on programming and deploying WebL ogicHTTP
Servlets.

The document is organized as follows:

m Chapter 1, “Overview,” provides an overview of Hypertext transfer protocol
(HTTP) servlet programming and explains how to use HTTP servlets with
WebL ogic Server.

m Chapter 2, “Introduction to Programming,” introduces basic HTTP servlet
programming.

m Chapter 3, “Programming Tasks,” provides information about writing HTTP
servletsin aWebL ogic Server environment.

m Chapter 4, “Administration and Configuration,” provides information about
writing HTTP servlets in a WebL ogic Server environment.

Audience

This document is written for application devel opers who want to build e-commerce
applications using HTTP servlets and the Java 2 Platform, Enterprise Edition (J2EE)
from Sun Microsystems. It is assumed that readers know Web technol ogies,
object-oriented programming techniques, and the Java programming language.

Programming WebL ogic HTTP Servlets %

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebL ogic
Server Product Documentation page at ht t p: / / e- docs. bea. coml W s/ docs60.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

m Package javax.serviet
(http://java. sun. con product s/ servl et/2.2/javadoc/
j avax/ servl et / package- summary. ht nl)

m Package javax.servlet.http
(http://java. sun. con products/servl et/2.2/javadoc/
j avax/ servl et/ htt p/ package- summary. ht m)

m Servlet 2.2 specification
(http://java. sun. con product s/ servl et/ downl oad. ht nl #specs)

Vi Programming WebL ogic HTTP Servlets

http://www.adobe.com
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/package-summary.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/package-summary.html
http://java.sun.com/products/servlet/download.html#specs

Deploying and Configuring Applications at

http://e-docs. bea. coml W s/ docs60/ adni ngui de/ confi g_web_app. ht n

Writing Web Application Deployment Descriptors at

http://e-docs. bea. comi W s/ docs60/ pr ogr ammi ng/ webappdepl oynent . h

tm

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at

docsupport@bea.com if you have questions or comments. Y our comments will be

reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and

running BEA WebL ogic Server, contact BEA Customer Support through BEA

WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Programming WebL ogic HTTP Servlets

vii

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

viii

The following documentation conventions are used throughout this document.

Convention Usage
Ctrl+Tab Keysyou press simultaneously.
italics Emphasis and book titles.
nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;
chrmod u+w *
confi g/ exanpl es/ appl i cati ons
.java
config. xm
fl oat
nonospace Variablesin code.
italic Example:
t ext .
String Customer Nane;
UPPERCASE Device names, environment variables, and logical operators.
TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.

Optiona itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Programming WebL ogic HTTP Servlets

Convention Usage

| Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c. depl oy [list| depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in a command line:
= Anargument can be repeated severa timesin the command line.
m The statement omits additional optional arguments.

= You can enter additional parameters, values, or other
information

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic HTTP Servlets iX

Programming WebL ogic HTTP Servlets

CHAPTER

1

What Is

Overview

This section provides an overview of Hypertext transfer protocol (HTTP) servlet
programming and explains how to use HTTP servlets with WebL ogic Server. The
following topics are discussed:

m What Isa Servlet?

m What You Can Do with Servlets
m Overview of Servlet Development
m Servletsand J2EE

m HTTP Servlet APl Reference

a Servlet?

A servletisaJavaclassthat runsin aJava-enabled server. AnHTTP servietisaspecial
type of servlet that handles an HTTP request and provides an HT TP response, usually
in the form of an HTML page. The most common use of WebLogic HTTP Servietsis
to create interactive applications using standard Web browsers for the client-side
presentation while WebL ogic Server handles the businesslogic as a server-side
process. WeblL ogic HTTP servlets can access databases, Enterprise JavaBeans,
messaging APIs, HTTP sessions, and other facilities of WebL ogic Server.

WebL ogic Server fully supports HTTP servlets as defined in the Servlet 2.2
specification from Sun Microsystems. HTTP servletsform an integral part of the Java
2 Enterprise Edition (J2EE) standard.

Programming WebL ogic HTTP Servlets 11

1 overview

What You Can Do with Servlets

m Create dynamic Web pages that utilize HTML formsto get end-user input and
provide HTML pages that respond to that input. Examples of thisinclude online
shopping carts, financial services, and personalized content.

m Create collaborative systems such as online conferencing.

m Servletsrunning in WebL ogic Server have access to a variety of APIsand
services. For example:

Session tracking—allows a Web site to track a user’s progress across
multiple Web pages. This functionality supports Web sites such as
e-commerce sites that use shopping carts. WebL ogic Server supports session
persistence to a database, providing fail-over between server down time and
session sharing between clustered servers. For more information see Using
Session Tracking from a Servlet on page 3-10.

JDBC drivers (including BEA’s)—provide basic database access. With
Weblogic Server’s multitier JDBC implementations, you can take advantage
of connection pools, server-side data caching, and transactions. For more
information see Accessing Databases on page 3-22.

Security—you can apply various types of security to servlets, including using
ACLs for authentication and Secure Sockets Layer (SSL) to provide secure
communications.

Enterprise JavaBeans—servlets can use Enterprise JavaBeans (EJB) to
encapsulate sessions, data from databases, and other functionality.

Java Messaging Service (IMS)—JIM S alows your servlets to exchange
messages with other servlets and Java programs.

Java JDK APls—servlets can use the standard Java JDK APIs.

Forwarding reguests—servlets can forward arequest to another servlet or
other resource.

m Servletswritten for any J2EE-compliant Servlet engine can be easily deployed
on WebL ogic Server.

m Servlets and Java Server Pages (JSP) can work together to create an application.

1-2 Programming WebL ogic HTTP Servlets

OVERVIEW OF SERVLET DEVELOPMENT

Overview of Servlet Development

m Programmers of HTTP servlets utilize a standard API from JavaSoft,
j avax. servl et. htt p to create interactive applications.

m HTTP servlets can read HTTP headers and write HTML coding to deliver a
response to abrowser client.

m Servlets are deployed on WebL ogic Server as part of aWeb Application. A Web
Application is a grouping of application components such as servlet classes,
JavaServer Pages (JSP), static HTML pages, images, and security. For more
information see “ Administration and Configuration” on page 4-1.

Servlets and J2EE

The Servlet 2.2 specification (available at

http://java. sun. coni product s/ ser vl et/ downl oad. ht n #specs), part of the
Java2 Platform, Enterprise Edition, definesthe implementation of the servliet APl and
the method by which servlets are deployed in enterprise applications. Deploying
servlets on a J2EE-compliant server, such as WebL ogic Server, is accomplished by
packaging the servlets and other resources that make up an enterprise application into
asingle unit called aWeb Application. A Web Application utilizes aspecific directory
structure to contain its resources and a deployment descriptor that defines how these
resourcesinteract and how the application is accessed by aclient. A Web Application
may also be deployed as an archivefilecaled a. war file.

For more information on creating Web Applications, see “ Deploying and Configuring
Web Applications” section of the WebLogic Server Administration Guide at
http://e-docs. bea. comf W s/ docs60/ adnmi ngui de/ confi g_web_app. htm .
For an overview of servlet administration and deployment issues, see“ Administration
and Configuration” on page 4-1.

Programming WebL ogic HTTP Servlets 1-3

http://java.sun.com/products/servlet/download.html#specs
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

1 overview

HTTP Serviet API Reference

WebL ogic Server supportsthej avax. servl et . ht t p package inthe Java Servlet 2.2
API. You canfind additional documentation for the package from Sun Microsystems:

m APl documentation

e Package javax.servlet
(http://java. sun. con product s/ servl et/2.2/javadoc/
j avax/ servl et / package- summary. ht nl)

e Packagejavax.servlet.http
(http://java. sun. con product s/ servl et/2.2/javadoc/
j avax/ servl et/ htt p/ package- summary. ht m)

m Servlet 2.2 specification
(http://java. sun. com product s/ servl et/ downl oad. ht ml #specs)

1-4 Programming WebL ogic HTTP Servlets

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/package-summary.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/package-summary.html
http://java.sun.com/products/servlet/download.html#specs

CHAPTER

2 Introduction to
Programming

This section introduces basic HTTP servlet programming. The following topics are
discussed:

m Writing aBasic HTTP Servlet
m Advanced Features
m Complete HelloWorldServlet Example

Writing a Basic HTTP Servlet

The section provides a procedure for writing abasic HTTP servlet. A complete code
example (the Hel | owor | dSer vl et) illustrating these stepsisincluded at the end of
this section. Additional information about using various J2EE and Weblogic Server
services, such as JDBC, RMI, and IMS, in your servlet are discussed later in this
document.

1. Import the appropriate packages and classes, including the following:

i mport javax.servlet.*;
import javax.servlet.http.*;
i mport java.io.*;

2. Extendj avax. servlet. http. Ht pServl et . For example:

public class Hell owsrl dServl et extends H tpServlet{

Programming WebL ogic HTTP Servlets 2-1

2 INTRODUCTION TO PROGRAMMING

3. Implement aservi ce() method. The main function of a servlet isto accept an
HTTP regquest from a Web Browser, and return an HTTP response. Thiswork is
done by the ser vi ce() method of your servlet. Service methods include
response objects used to create output and request objects used to receive data
from the client.

You may have seen other servlet examples implement the doPost () and/or
doGet () methods. These methods reply only to POST or GET requests; if you
want to handle all request types from a single method, your servlet can simply
implement the ser vi ce() method. (However, if you choose to implement the
servi ce() method, you will not be able to implement the doPost () or
doGet () methods, unlessyou call super . servi ce() at the beginning of the
servi ce() method.) The HTTP servlet specification describes other methods
used to handle other request types, but all of these methods are collectively
referred to as service methods.

All the service methods take the same parameter arguments. An
Ht t pSer vl et Request provides information about the request, and an
Ht t pSer vl et Response, isused by your servlet to reply to the HTTP client.

public void service(HttpServl et Request req,
Ht t pServl et Response res) throws | OException
{

4. Set the content type, asfollows:;
res. set Content Type(“"text/htm ");

5. Getareferencetoajava.io. PrintWiter object to usefor output, as follows:
PrintWiter out = res.getWiter();

6. Createsome HTML usingtheprintln() methodonthePrintWiter object,
as shown in the following example:

out.println("<htm ><head><title>Hello Wirld!</title></head>");
out. println("<body><hl>Hello Wrl d! </ hl></body></htm >");

}
}

7. Compilethe servlet, asfollows

a. Set up adevelopment environment shell (see
http://e-docs.bea.com/wls/docs60/programming/environment.html) with the
correct classpath and path settings.

2-2 Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs60/programming/environment.html

WRITING A BASIC HTTP SERVLET

b. From the directory containing the Java source code for your servlet, compile
your servlet into the WEB- | NF/ ¢l asses directory of the Web Application that
contains your servlet. For example;

javac -d / nyWebApplication/WEB-|NF/ cl asses nyServlet.java

8. Deploy the servlet as part of a Web Application hosted on WebL ogic Server. For
an overview of servlet deployment, see “ Administration and Configuration” on

page 4-1.
9. Cadll the servlet from abrowser.

The URL you useto call aservlet is determined by: (a) the name of the Web
Application containing the servlet and (b) the name of the servlet as mapped in
the deployment descriptor of the Web Application. Request parameters can also
be included in the URL used to call a servlet.

Generally the URL for a servlet conforms to the following:

http://host: port/webApplicati onNarme/ mappedSer vl et Nare?par anet er
The components of the URL are defined as follows:

e host isthe name of the machine running WebL ogic Server

e port isthe port at which the above machineis listening for HTTP requests

e webAppl i cati onNane isthe name of the Web Application containing the
servlet

e parameters are one or more name-value pairs containing information sent
from the browser that can be used in your servlet

For example, to use a Web browser to call the Hel | ovor | dSer vl et (the
example featured in this document), which is deployed in the exanpl esWebApp
and served from a WebL ogic Server running on your machine, enter the
following URL :

http://1ocal host: 7001/ exanpl esWebApp/ Hel | oWor | dSer vl et

Thehost : port portion of the URL can be replaced by aDNS namethat is
mapped to a Web Server running in WebL ogic Server.

Programming WebL ogic HTTP Servlets 2-3

2

INTRODUCTION TO PROGRAMMING

Advanced Features

2-4

The preceding steps create abasic servlet. You will probably also want to use some of
the more advanced features of servlets, which are described briefly below:

Handling HTML form data—HTTP servlets can receive and process data
received from a browser client in HTML forms.

e “Retrieving Client Input” on page 3-6.

Application design—HTTP servlets offer many ways to design your application.
The following sections provide detailed information about writing servlets:

e “Providing an HTTP Response’ on page 3-4.
e “Threading Issuesin HTTP Servlets’ on page 3-25.
e “Dispatching Requests to Another Resource” on page 3-26.

Initializing a servlet—if your servlet needs to initialize data, accept initialization
arguments, or perform other actions when the servlet isinitialized, you can
overridethei nit () method.

e ‘“Initializing a Servlet” on page 3-1.
Use of sessions and persistence in your servlet—sessions and persistence allow

you to track your users within and between HTTP sessions. Session management
includes the use of cookies. For more information, see the following sections:

e “Using Session Tracking from a Servlet” on page 3-10.
e “Using Cookiesin a Servlet” on page 3-18.
e “Configuring Session Persistence” on page 3-18

Use of WebL ogic servicesin your serviet—WebL ogic Server provides a variety
of services and APIsthat you can use in your Web applications. These services
include Java Database Connectivity (JDBC) drivers, JDBC database connection
pools, Java Messaging Service (IMS), Enterprise JavaBeans (EJB), and Remote
Method Invocation (RMI). For more information, see the following sections:

e “Using WebL ogic Servicesfrom an HTTP Servlet” on page 3-21.
e “Security” on page 4-6.
e “Accessing Databases’ on page 3-22.

Programming WebL ogic HTTP Servlets

COMPLETE HELLOWORLDSERVLET EXAMPLE

Complete HelloWorldServlet Example

This section provides the compl ete Java source code for the example used in the
preceding procedure. The example is a simple servlet that provides a response to an
HTTP request. Later in this document, this example is expanded to illustrate how to
use HTTP parameters, cookies, and session tracking.

Listing 2-1 HelloWorldServiet.java

import javax.servlet.*;
import javax.servlet.http.*;
i nport java.io.*;

public class Hell owsrl dServl et extends H tpServlet {
public void service(HttpServl et Request req,
Ht t pSer vl et Response res)
throws | OException

{

/1 Must set the content type first

res.set Content Type("text/htm");

/] Now obtain a PrintWiter to insert HTM. into

PrintWiter out = res.getWiter();

out.println("<htm ><head><title>" +

"Hello World!</title></head>");

out.println("<body><hl>Hell o Wrl d! </ hl1></body></htnm >");

}

Y ou can find the source code and instructions for compiling and running all the
examples used in this document in the sanpl es/ exanpl es/ ser vl et s directory of
your WebL ogic Server distribution.

Programming WebL ogic HTTP Servlets 2-5

2 INTRODUCTION TO PROGRAMMING

2-6 Programming WebL ogic HTTP Servlets

CHAPTER

3 Programming Tasks

This section provides information about writing HTTP servletsin a WebL ogic Server
environment. The following topics are discussed:

m |nitializing a Servlet

Providing an HTTP Response

m Retrieving Client Input

m Using Session Tracking from a Servlet

m Using Cookiesin a Servlet

m Using WebL ogic Services from an HTTP Servlet
m Accessing Databases

m Threading Issuesin HTTP Serviets

m Dispatching Requests to Another Resource

Initializing a Servlet

When aservlet isinitialized, WebL ogic Server executesthei ni t () method of the
servlet. Oncethe servlet has beeninitialized, it isnot initialized again until you restart
WebL ogic Server or the servlet code is recompiled and reloaded. By overriding the

i ni t () method, your serviet can perform certain tasks, such as establishing database
connections, when the servlet isinitialized.

Programming WebL ogic HTTP Servlets 31

3 PROGRAMMING TASKS

Normally, WebL ogic Server initializes a servlet when the first request is made for the
servlet. Subsequently, if the servlet is modified, the dest r oy() method is called on
the existing version of the servlet. Then, after arequest is made for the modified
servlet, thei ni t () method of the modified servlet is executed. For moreinformation,
see “ Servlet Development Tips’ on page 4-7.

Initializing a Servlet when WebLogic Server Starts

Y ou can also configure WebL ogic Server to initialize a servlet when the server starts

by specifying the servlet class in the <I oad- on- st ar t up> element in the Web

Application deployment descriptor. For more information see “ Servlet element” at

http://e-docs. bea. com Wl s/ docs60/ progr ammi ng/ web_xm . ht m #web_xm
servlet.

Y ou can pass parametersto an HTTP servlet during initialization by defining these
parameters in the Web Application containing the servlet. Y ou can use these
parameters to pass values to your servlet every time the servlet isinitialized without
having to rewrite the servlet. For more information see “Writing Web Application
Deployment Descriptors’ at

http://e-docs. bea. com wl s/ docs60/ pr ogr anm ng/ webappdepl oynent . ht m
I .

For exampl e, the following entries in the Web Application deployment descriptor
define two initialization parameters: gr eet i ng, which has a value of Wl come and
per son, which hasavalue of WwebLogi ¢ Devel oper.

<servl et >

<i nit-paranpr
<par am nane>gr eet i ng</ par am nane>
<par am val ue>Wel conme</ par am val ue>
<descri ption>The sal utation</description>
</init-paran>
<i nit-paranp
<par am nane>per son</ par am nane>
<par am val ue>WebLogi c Devel oper </ par am val ue>
<descri pti on>nane</ descri ption>
</init-paran>
</servlet>

32 Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs60/programming/web_xml.html#web_xml_servlet
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html

INITIALIZING A SERVLET

Toretrieveinitialization parameters by call theget | ni t Par anet er (St ri ng nane)
method from the parent j avax. servl et . Generi cServl et class. When passed the
name of the parameter, this method returns the parameter’svalueasast ri ng.

Overriding the init() Method

Y ou can haveyour servlet executetasksat initialization time by overriding thei ni t ()
method. The following code fragment reads the <i ni t - par ane tags that define a
greeting and aname in the Web Application deployment descriptor:

String defaultGreeting;
String def aul t Nane;

public void init(ServletConfig config)
throws Servl et Exception {
if ((defaultGreeting = getlnitParaneter("greeting”)) == null)
defaul tGeeting = "Hello";

if ((defaultName = getlnitParaneter("person”)) == null)
defaul t Nanme = "World";
}

The values of each parameter are stored in the class instance variables

def aul t G eet i ng and def aul t Nanme. Note that the first code teststo see if the
parameters have null values and, if null values are returned, provides appropriate
default values.

You can then use the ser vi ce() method to use these variables in the response. For
example:

out . print ("<body><h1>");
out.println(defaultGeeting + " " + defaultNane + "!");
out. println("</hl></body></htm >");

The full source code and instructions for compiling, installing, and trying out an
example called Hel | owor | d2. j ava, which illustrates the use of thei ni t () method,
can be found in the sanpl es/ exanpl es/ ser vl et s directory of your WebL ogic
Server distribution.

Programming WebL ogic HTTP Servlets 33

3 PROGRAMMING TASKS

Providing an HTTP Response

34

This section describes how to provide a response to the client in your HTTP servlet.
All responses should be delivered using the Ht t pSer vl et Response object that is
passed as a parameter to the ser vi ce() method of your servlet.

1. Configurethe Ht t pSer vl et Response.

Using the Ht t pSer vi et Response object, you can set several servlet properties
that are translated into HT TP header information:

e At aminimum, set the content type using the set Cont ent Type() method
before you obtain the output stream to which you write the page contents.
For HTML pages, set the content typetot ext / ht ml . For example:

res. set Content Type("text/htm");

e (optional) You can also use the set Cont ent Type() method to set the
character encoding. For example:
res. set Content Type("text/htnl ;| SO 88859-4");

e Set header attributes using the set Header () method. For dynamic
responses, it is useful to set the “pr agma” attribute to no- cache, which
causes the browser to always rel oad the page and ensures the data is current.
For example:

res. set Header (" Pragma”, "no-cache");
2. Compose the HTML page.

The response that your servlet sends back to the client must 1ook like regular
HTTP content. For the most part, this means you must send back a response that
isformatted as an HTML page.Your servlet sends back an HTTP response via an
output stream that you obtain using the response parameter of the ser vi ce()
method. To send an HTTP response:

a. Obtainan output stream using the Ht t pSer vI et Response object, using one of
the methods shown in the following two examples:

e PrintWiter out = res.getWiter();

e ServletQutputStreamout = res.getQutputStrean();

You canuseboth Print Wi ter and Servl et Qut put St r eamin the same
servlet (or in another servlet that isincluded in a servlet). The output of both
iswritten to the same buffer.

Programming WebL ogic HTTP Servlets

PROVIDING AN HTTP RESPONSE

b. Write the contents of the response to the output stream using the pri nt ()
method. You can use HTML tags in these statements. For example:

out.print(“<htm ><head><title>My Servlet</title>");

out. print (“</head><body><h1>");

out.print(“Welcone”);

out. print(“</hl></body></htm >");

Do not close the output stream using the cl ose() method and avoid flushing
the contents of the stream. If you do not close or flush the output stream,
WebL ogic Server can take advantage of persistent HTTP connections, as
described in the next step.

3. Optimize the response.

By default, WebL ogic Server attempts to use HT TP persistent connections
whenever possible. A persistent connection attempts to reuse the sasme HTTP
TCP/IP connection for a series of communications between client and server.
Application performance improves because a new connection need not be
opened for each request. Persistent connections are useful for HTML pages
containing many in-line images, where each requested image would otherwise
require anew TCP/IP connection.

You can configure the amount of time that WebL ogic Server keepsan HTTP
connection open using the WebL ogic Server Administration Console. For more
information, see “KeepAliveSecs’ (see

http://e-docs. bea. comf W s/ docs60/ Consol eHel p/ vi rtual host . ht m #k
eepal i veenabl ed).

WebL ogic Server must know the length of the HTTP responsein order to
establish a persistent connection and automatically adds a Cont ent - Lengt h
property to the HTTP response header. In order to determine the content length,
WebL ogic Server must buffer the response. However, if your servlet explicitly
flushes the Ser vI et Qut put St r eam WebL ogic Server is unable to determine the
length of the response and therefore cannot use persistent connections. For this
reason, you should avoid explicitly flushing the HTTP response in your servlets.

You may decide that, in some cases, it is better to flush the response early to
display information in the client before the page has completed, for example to
display a banner advertisement while some time-consuming page content is
calculated. Conversely, you may want to increase the size of the buffer used by
the servlet engine to accommodate a larger response before flushing the
response. You can manipulate the size of the response buffer by using the related
methods of the javax.servlet.ServletResponse interface (at

Programming WebL ogic HTTP Servlets 35

http://e-docs.bea.com/wls/docs60/ConsoleHelp/virtualhost.html#keepaliveenabled
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html

3 PROGRAMMING TASKS

http://java. sun. conl products/servlet/2.2/javadoc/
j avax/ servl et/ Servl et Response. ht i).

Retrieving Client Input

36

The HTTP servlet API provides a clean interface for retrieving user input from Web
pages.

AnHTTPrequest from aWeb browser can be accompanied by information besidesthe
URL, such as information about the client, the browser, cookies, and user query
parameters. Query parameters are used to carry user input from the browser, and are
either appended to the URL address (the GET method) or included in the HT TP request
body (the POST method).

HTTP serviets need not deal with these details; all theinformation in arequest ismade
available through the Ht t pSer vI et Request object and can be accessed using the
request . get Par anmet er s() method, regardless of the send method.

Y ou can send query parameters from the client in anumber of ways:

m Encode the parameters directly into the URL of alink on a page. This approach
uses the GET method for sending parameters. The parameters are appended to the
URL after a? character. Multiple parameters are separated by a & character.
Parameters are always specified in name=val ue pairs so the order in which they
arelisted is not important. For example, you might include the following link in
aWeb page, which sends the parameter col or with the value pur pl e to an
HTTP serviet called Col or Ser vl et :

<a href=
"http://1ocal host: 7001/ myWebApp/ Col or Ser vl et ?col or =pur pl e" >
Click Here For Purple!

m Manualy enter the URL, with query parameters, into the browser location field.
Thisis equivalent to clicking the link shown in the previous example.

m Query the user for input with an HTML form. The contents of each user input
field on the form are sent as query parameters when the user clicks the form’s
submit button. Specify the method used by the form to send the query
parameters (POST or GET) in the <FORM> tag using the METHOD=" GET| PCST"
attribute.

Programming WebL ogic HTTP Servlets

RETRIEVING CLIENT INPUT

Query parameters are always sent in nane=val ue pairs, and are accessed through the
Ht t pSer vl et Request object. You can obtain an Enurrer at i on of all parameter
names in aquery, and fetch each parameter value using its parameter name. A
parameter usually has only onevalue, but it can also hold an array of values. Parameter
values are always interpreted as St r i ngs, so you may need to cast them to a more

appropriate type.

The following sample from aser vi ce() method examines query parameter names
and their valuesfrom aform. Notethat r equest istheHt t pSer vl et Request object.

Enurer ati on params = request. get Paranet er Names() ;
String paranName = nul | ;
String[] paranmvalues = null;

whil e (parans. hasMoreEl enents()) {
paranmName = (String) parans. nextEl enent();
par amVal ues = request. get Par anet er Val ues(par anNane) ;
Systemout. println("\nParaneter nane is " + paranmNane);
for (int i =0; i < paramVval ues.length; i++) {
Systemout.println(", value " +i + " is " +
paranVal ues[i].toString());

Other Methods for Using the HTTP Request

This section defines the methods of thej avax. servl et . Ht t pSer vl et Request
interface that you can use to get data from the request object. Y ou should keep the
following limitationsin mind:

®m You cannot read request parameters using any of the get Par anet er () methods
described in this section and then attempt to read the request with the
get | nput St rean() method.

m You cannot read the request with get | nput St r ean{) and then attempt to read
request parameters with one of the get Par anret er () methods.

If you attempt either of these procedures, ani | | egal St at eExcept i on isthrown.

Ht t pSer vl et Request . get Met hod()
Allows you to determine the request method, such as GET or POST.

Programming WebL ogic HTTP Servlets 37

PROGRAMMING TASKS

Ht t pSer vl et Request . get QueryString()
Allowsyou to accessthe query string. (The remainder of the requested URL,
following the ? character.)

Ht t pSer vl et Request . get Par anet er ()
Returns the value of a parameter.

Ht t pSer vl et Request . get Par anet er Nanes()
Returns an array of parameter names.

Ht t pSer vl et Request . get Par anet er Val ues()
Returns an array of values for a parameter.

Ht t pSer vl et Request . get | nput Streamn()
Reads the body of the request as binary data. If you call this method after
reading the request parameters with get Par anet er (),
get Par aret er Nanes(), Or get Par aret er Val ues(), an
i |l egal StateException isthrown.

Example: Retrieving Input by Using Query Parameters

3-8

In thisexample, the Hel | oVor | d2. j ava servliet example is modified to accept a
username as a query parameter, in order to display a more personal greeting. (For the
complete code, seethe Hel | oWor | d3. j ava servliet example, located in the

sanpl es/ exanpl es/ ser vl et s directory of your WebL ogic Server distribution.) The
servi ce() method is shown here;

Listing 3-1

public void service(HttpServl et Request req,
Ht t pSer vl et Response res)
t hrows | OExcepti on

String nane, paramNane[];
i f ((paranmName = req. get Par anet er Val ues("nane"))

= null) {
name = paranNane[0] ;
}
el se {
name = def aul t Nane;
}

Programming WebL ogic HTTP Servlets

RETRIEVING CLIENT INPUT

/1 Set the content type first

res.set Content Type("text/htm");

/] Qotain a PrintWiter as an output stream
PrintWiter out = res.getWiter();

out.print("<htm ><head><title>" +

"Hello World!'" + </title></head>");
out . print ("<body><h1>");
out.print(defaultGeeting +" " + name + "!");
out . print ("</hl></body></htn >");

Theget Par aret er Val ues() method retrievesthe value of the name parameter from
the HTTP query parameters. Y ou retrieve these valuesin an array of type Stri ng. A
single value for this parameter isreturned and is assigned to the first element in the
name array. If the parameter is not present in the query data, nul | isreturned; in this
case, nane is assigned to the default name that was read from the <i ni t - par ane by
thei ni t () method.

Y our servlet code should not presume that parameters are included in an HTTP
reguest. Because the get Par amet er () method has been deprecated, you might be
tempted to shorthand the get Par amet er Val ues() method by tagging an array
subscript to the end. However, this method can return nul | if the specified parameter
isnot available, resulting in aNul | Poi nt er Except i on.

For example, the following code will trigger aNul | Poi nt er Except i on:
String nyStr = req. get Paranet er Val ues(" par amNane") [0] ;
Instead, use the following code:
if ((String nyStr[] =

reg. get Par anet er Val ues(" paranNanme"))!=nul I') {

/1 Now you can use the nyStr[O0];

el se {
/1 paranName was not in the query paraneters!

}

Programming WebL ogic HTTP Servlets 39

3 PROGRAMMING TASKS

Using Session Tracking from a Servlet

Session tracking enablesyou to track auser’ s progressover multiple servlietsor HTML
pages, which, by nature, are stateless. A sessionisdefined asaseriesof related browser
requests that come from the same client during a certain time period. Session tracking
tiestogether a series of browser requests—think of these requests as pages—that may
have some meaning as a whole, such as a shopping cart application.

A History of Session Tracking

3-10

Before session tracking matured conceptually, devel operstried to build stateinto their
pages by stuffing information into hidden fields on a page or embedding user choices
into URLs used in links with along string of appended characters. Y ou can see good
examples of thisat most search engine sites, many of which till depend on CGI. These
sitestrack user choices with URL parameter nane=val ue pairs that are appended to
the URL, after the reserved HTTP character 2. This practice can result in avery long
URL that the CGI script must carefully parse and manage. The problem with this
approach is that you cannot pass this information from session to session. Once you
lose control over the URL—that is, once the user leaves one of your pages—the user
information islost forever.

Later, Netscape introduced browser cookies, which enable you to store user-related
information about the client for each server. However, some browsersstill do not fully
support cookies, and some users prefer to turn off the cookie option in their browsers.
Another factor that should be considered isthat most browserslimit the amount of data
that can be stored with a cookie.

The HTTP servlet specification defines a solution that allows the server to store user
detailson the server, and protects your code from the compl exities of tracking sessions.
Your servlets can use an Ht t pSessi on object to track a user’s input over the span of
asingle session and to share session details among multiple servlets.

Programming WebL ogic HTTP Servlets

USING SESSION TRACKING FROM A SERVLET

Tracking a Session with an HttpSession Object

According to the Java Servlet API, which WebL ogic Server implements and supports,
each servlet can accessaserver-side session by using itsHt t pSessi on object. Y ou can
accessan Ht t pSessi on object intheser vi ce() method of the servlet using the

Ht t pSer vl et Request object, as shown in the following example using the variable
request:

Ht t pSessi on session = request. get Session(true);

AnH: t pSessi on object iscreated if onedoesnot already exist for that client when the
request . get Sessi on(t r ue) method is called with the argument t r ue. The session
object lives on WebL ogic Server for the lifetime of the session, during which the
session object accumulates information related to that client. Y our servlet adds or
removesinformation from the session object asnecessary. A sessionisassociated with
aparticular client. Each time the client visits your servlet, the same associated

Ht t pSessi on object isretrieved when the get Sessi on() method is called.

For more details on the methods supported by the Ht t pSessi on, refer to the
HttpServlet APl at htt p: // j ava. sun. com j 2ee/ j 2sdkee/
techdocs/ api/javax/servlet/http/ HtpSession. htni.

In the following example, the ser vi ce() method counts the number of times a user
reguests the servlet during a session.

public void service(HtpServl et Request request,
Ht t pSer vl et Response, response)
throws | OException

/1 Get the session and the counter param attribute
Ht t pSessi on session = request. get Session (true);

Integer ival = (Integer)
session. getAttri bute("sinpl esession. counter”);

if (ival == null) // Initialize the counter

ival = new Integer (1);
else // Increment the counter

ival = new Integer (ival.intValue () + 1);
/1 Set the new attribute value in the session
session. set Attri bute("sinpl esession.counter”, ival);

/1 Qutput the HTM. page

out. print (" <HTM.><body>");

out.print("<center> You have hit this page ");
out.print(ival + " tines!");

out. print("</body></htnl>");

Programming WebL ogic HTTP Servlets 31

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/HttpSession.html

3 PROGRAMMING TASKS

Lifetime of a Session

A session tracks the selections of a user over a series of pagesin a single transaction.
A singletransaction may consist of several tasks, such as searching for anitem, adding
it to ashopping cart, and then processing a payment. A session is transient, and its
lifetime ends when one of the following occurs:

m A user leavesyour site and the user’s browser does not accept cookies.
m A user quits the browser.

m Thesessionistimed out due to inactivity.

m Thesession is completed and invalidated by the servlet.

m The user logs out and isinvalidated by the servlet.

For more persistent, long-term storage of data your servlet should write detailsto a
database using JDBC or EJB and associate the client with this data using along-lived
cookie and/or username and password. Although this document describesthat sessions
use cookies and persistence internally, you should not use sessions as a general
mechanism for storing data about a user.

How Session Tracking Works

312

How does WebL ogic Server know which session is associated with each client? When
anHt t pSessi on iscreated in aservlet, it is associated with aunique ID. The browser
must provide this session ID with its request in order for the server to find the session
data again. The server attemptsto store this ID by setting a cookie on the client. Once
the cookie is set, each time the browser sends a request to the server it includes the
cookie containing the ID. The server automatically parses the cookie and suppliesthe
session data when your servlet callsthe get Sessi on() method.

If the client does not accept cookies, the only alternative isto encode the ID into the
URL linksin the pages sent back to the client. For this reason, you should always use
the encodeURL() method when you include URLSsin your servlet response.

WebL ogic Server knows whether the browser accepts cookies and does not
unnecessarily encode URLs. WebL ogic automatically parses the session ID from an
encoded URL and retrieves the correct session datawhen you call the get Sessi on()

Programming WebL ogic HTTP Servlets

USING SESSION TRACKING FROM A SERVLET

method. Using the encodeURL() method ensures no disruption to your servlet code,
regardless of the procedure used to track sessions. For more information, see “Using
URL Rewriting” on page 3-15.

Detecting the Start of a Session

After you obtain asession using theget Sessi on(t r ue) method, you can tell whether
the session hasjust been created by callingtheHt t pSessi on. i sNew() method. If this
method returnst r ue, then the client does not already have avalid session, and at this
point it is unaware of the new session. The client does not become aware of the new
session until areply is posted back from the server.

Design your application to accommodate new or existing sessionsin away that suits
your business logic. For example, your application might redirect the client’s URL to
alogin/password page if you determine that the session has not yet started, as shown
in the following code example:

Ht t pSessi on session = request. get Session(true);
if (session.isNew()) {
response. sendRedi rect (wel comeURL) ;

}

On the login page, provide an option to log in to the system or create a new account.
Y ou can also specify alogin pagein your Web Application. For moreinformation, see
login-config at

http://e-docs. bea. coml W s/ docs60/ pr ogramm ng/ web_xmn . ht m #l ogi n-c
onfig.

Setting and Getting Session Name/Value Attributes

You can storedatain an Ht t pSessi on object using name=val ue pairs. Datastoredin
asession isavailablethrough the session. To store datain a session, use these methods
from the Ht t pSessi on interface:

getAttribute()
get Attri but eNames()

setAttribute()
removeAttribute()

The following code fragment shows how to get all the existing nane=val ue pairs:

Programming WebL ogic HTTP Servlets 3-13

http://e-docs.bea.com/wls/docs60/programming/web_xml.html#login-config

3 PROGRAMMING TASKS

Enuner ati on sessi onNanmes = session. getAttributeNames();
String sessionNane = null;
bj ect sessionValue = null;

whi | e (sessi onNanes. hashor eEl enents()) {
sessi onNane = (String)sessionNanes. next El ement () ;
sessionVal ue = session.getAttribute(sessi onNane);
Systemout.println("Session nanme is " + sessionNane +
value is " + sessionVal ue);

}

To add or overwrite a named attribute, usetheset At t ri but e() method. To remove
anamed attribute altogether, usether emoveAt t ri but e() method.

Note: You can add any Java descendant of Cbj ect as asession attribute and
associate it with aname. However, if you are using session persistence, your
attribute val ue objects must implement j ava. i 0. Seri al i zabl e.

Logging Out and Ending a Session

314

If your application deals with sensitive information you might consider offering the
ahility to log out of the session. This is a common feature when using shopping carts
and Internet email accounts. When the same browser returns to the service, the user
must log back in to the system. To log a user out of a session, invalidate the current
session by calling the following method:

session.invalidate()

Do not reference an invalidated session after calling this method. If you do, an

I'll egal St at eExcept i on isthrown. The next timeauser visitsyour servlet fromthe
same browser, the session datawill be missing, and anew session will be created when
you call the get Sessi on(true) method. At that time you can send the user to the

login page again.

Programming WebL ogic HTTP Servlets

USING SESSION TRACKING FROM A SERVLET

Configuring Session Tracking

WebL ogic Server provides many configurable attributes that determine how

WebL ogic Server handles session tracking. For details about configuring these session
tracking attributes, see “ Session descriptor” at

http://e-docs. bea. com W s/ docs60/ pr ogr ammi ng/ webl ogi c_xm . ht m #se
ssion-descriptor.

Using URL Rewriting

In some situations, a browser may not accept cookies, which means that session
tracking using cookiesis not possible. URL rewriting is aworkaround to this scenario
that can be substituted automatically when WebL ogic Server detects that the browser
does not accept cookies. URL rewriting involves encoding the session ID into the
hyperlinks on the Web pages that your servlet sends back to the browser. When the
user subsequently clicks these links, WebL ogic Server extracts the ID from the URL
and findsthe appropriate Ht t pSessi on. Then you usethe get Sessi on() method to
access session data.

To enable URL rewriting in WebL ogic Server, set the Ur | Rewr i t i ngEnabl ed
attribute to true in the Session descriptor element of the WebL ogic-specific
deployment descriptor (at

http://e-docs. bea. com w s/ docs60/ pr ogr amm ng/ webl ogi c_xmnl . ht M #se
ssi on-descri ptor).

To make sure your code correctly handles URL s in order to support URL rewriting,
consider the following guidelines:

m You should avoid writing a URL straight to the output stream, as shown here:
out.println("catal og");
Instead, usethe Ht t pSer vl et Response. encodeURL() method. For example:

out.println("<a href=\""
+ response. encodeURL(" nyshop/ cat al og. j sp")
+ "\">catal og");

m Calling theencodeURL() method determinesif the URL needs to be rewritten
and, if necessary, rewrites the URL by including the session ID in the URL.

Programming WebL ogic HTTP Servlets 3-15

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor
http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor

3 PROGRAMMING TASKS

m Encode URLSs that send redirects, aswell as URL s that are returned as a
response to WebL ogic Server. For example:

if (session.isNew())
response. sendRedi rect (response. encodeRedi rect Ur | (wel coneURL)) ;

WebL ogic Server uses URL rewriting when a session is new, even if the browser
accepts cookies, because the server cannot determine, during thefirst visit of asession,
whether the browser accepts cookies.

Y our servlet may determine whether a given session was returned from a cookie by
checking the Boolean returned from the

Ht t pSer vl et Request . i sRequest edSessi onl dFr onCooki e() method. Your
application may respond appropriately, or it may simply rely on URL rewriting by
WebL ogic Server.

URL Rewriting and Wireless Access Protocol (WAP)

If you are writing a WAP application, you must use URL rewriting because the WAP
protocol does not support cookies. In addition, some WAP devicesimpose a
128-character limit (including parameters) on the length of a URL, which limits the
amount of data that can be transmitted using URL rewriting. To allow more space for
parameters, you can limit the size of the session ID that is randomly generated by
WebL ogic Server by specifying the number of byteswiththel DLengt h attributeinthe
session-descriptor element of the WebL ogi c-specific deployment descriptor,

webl ogi c. xm (see

http://e-docs. bea. com w s/ docs60/ progr ammi ng/ webl ogi c_xm . ht m #se
ssi on-descri ptor).

The minimum value is 8 bytes; the default value is 52 bytes; the maximum valueis
I nt eger . MAX_VALUE.

Making Sessions Persistent

Y ou can set up WebL ogic Server to record session datain apersistent store. If you are
using session persistence, you can expect the following characteristics:

m Good failover, because sessions are saved when servers fail.

m Better load balancing, because any server can handle requests for any number of
sessions, and use caching to optimize performance. For more information, see

3-16 Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs60/programming/weblogic_xml.html#session-descriptor

USING SESSION TRACKING FROM A SERVLET

the cacheEnt ri es property, under “ Configuring session persistence’ at
http://e-docs. bea. coml W s/ docs60/ adni ngui de/ confi g_web_app. ht n
#sessi on- per si st ence.

m Sessions can be shared across clustered WebL ogic Servers. Note that session
persistence is no longer arequirement in aWebL ogic Cluster. Instead, you can
use in-memory replication of state. For more information, see Using WebLogic
Server Clusters at
http://e-docs. bea. com W s/ docs60/ cl uster/index. htmni .

m For customers who want the highest in servlet session persistence, JDBC-based
persistence is the best choice. For customers who want to sacrifice some amount
of session persistencein favor of drastically better performance, in-memory
replication isthe appropriate choice. JDBC-based persistence is noticeably
slower than in-memory replication. In some cases, in-memory replication has
outperformed JDBC-based persistence for servlet sessions by afactor of eight.

m |tislegal to put any kind of Java object into a session, but for file, JDBC, and
in-memory replication, only objectsthat arej ava. i 0. Seri al i zabl e can be
stored in a session. For more information, see “ Configuring session persistence”
at
http://e-docs. bea. com W s/ docs60/ adni ngui de/ confi g_web_app. ht
#sessi on- per si st ence.

Scenarios to Avoid When Using Sessions

Do not use session persistence for storing long-term data between sessions. In other
words, do not rely on asession still being activewhen aclient returnsto asite at some
later date. Instead, your application should record long-term or important information
in a database.

Sessions are not a convenience wrapper around cookies. Do not attempt to store
long-term or limited-term client datain a session. Instead, your application should
create and set its own cookies on the browser. Exampl es include an auto-login feature
that allows a cookieto live for along period, or an auto-logout feature that allows a
cookieto expire after ashort period of time. Here, you should not attempt touse HTTP
sessions. | nstead, you should write your own application-specific logic.

Programming WebL ogic HTTP Servlets 317

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-persistence
http://e-docs.bea.com/wls/docs60/cluster/index.html
http://e-docs.bea.com/wls/docs60/cluster/index.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-persistence

3 PROGRAMMING TASKS

Use Serializable Attribute Values

When you use persistent sessions, all attribute val ue objects that you add to the
session must implement j ava. i 0. Seri al i zabl e. For more details on writing

serializable classes, refer to the online javatutorial about serializable objects at
http://java. sun. coni docs/ books/tutorial/essential/iol

provi di ng. ht i . If you add your own serializable classes to a persistent session,
make sure that each instance variable of your classisalso serializable. Otherwise, you
can declareit ast r ansi ent , and WebL ogic Server does not attempt to save that
variable to persistent storage. One common example of an instance variable that must
be madet ransi ent isthe H t pSessi on object. (See the notes on using serialized
objects in sessionsin the section “Making Sessions Persistent” on page 3-16.)

Configuring Session Persistence

For details about setting up persistent sessions, see “ Configuring session persistence’
at

http://e-docs. bea. com wl s/ docs60/ adm ngui de/ confi g_web_app. ht m #s
essi on- per si st ence.

Using Cookies in a Servlet

A cookieisapieceof information that the server asksthe client browser to savelocally
on the user’ s disk. Each time the browser visits the same server, it sends all cookies
relevant to that server with the HT TP request. Cookies are useful for identifying clients
asthey return to the server.

Each cookie has aname and avalue. A browser that supports cookies generally allows
each server domain to store up to 20 cookies with a size of up to 4k per cookie.

Setting Cookies in an HTTP servlet

To set acookie on abrowser, create the cookie, give it avalue, and add it to the

Ht t pSer vl et Response object that is the second parameter in your servlet’s service
method. For example:

3-18 Programming WebL ogic HTTP Servlets

http://java.sun.com/docs/books/tutorial/essential/io/providing.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-persistence

USING COOKIES IN A SERVLET

Cooki e myCooki e = new Cooki e(" Chocol at eChi p", "100");
nyCooki e. set MaxAge(| nt eger. MAX_VALUE) ;
response. addCooki e(nmyCooki e) ;

This examples shows how to add a cookie called Chocol at eChi p with avalue of 100
to the browser client when the response is sent. The expiration of the cookieis set to
the largest possible value, which effectively makes the cookie last forever. Because
cookies accept only string-type values, you should cast to and from the desired type
that you want to storein the cookie. When using EJBs, acommon practiceisto usethe
home handle of an EJB instance for the cookie value and to store the user’ s detailsin
the EJB for later reference.

Retrieving Cookies in an HTTP Servlet

Y ou can retrieve acookie object fromtheHt t pSer vl et Request that ispassed to your
servlet as an argument to the ser vi ce() method. The cookieitself is presented as a
j avax. servl et. http. Cooki e object.

Inyour servlet code, you can retrieve all the cookies sent from the browser by calling
the get Cooki es() method. For example:

Cooki e[] cooki es = request. get Cookies();

This method returns an array of all cookies sent from the browser, or nul | if no
cookies were sent by the browser. Y our servlet must process the array in order to find
the correct named cookie. Y ou can get the name of a cookie using the

Cooki e. get Name() method. Itispossible to have morethat one cookie with the same
name, but different path attributes. If your servlets set multiple cookies with the same
names, but different path attributes, you also need to compare the cookies using the
Cooki e. get Pat h() method. The following code illustrates how to access the details
of a cookie sent from the browser. It assumes that all cookies sent to this server have
unique names, and that you are looking for a cookie called Chocol at eChi p that may
have been set previously in abrowser client. For example:

Cooki e[] cooki es = request. get Cookies();
bool ean cooki eFound = fal se;

for(int i=0; i < cookies.length; i++) {
t hi sCooki e = cookies[i];
i f (thisCookie.getNane().equal s("Chocol ateChip")) {
cooki eFound = true;
br eak;

Programming WebL ogic HTTP Servlets 3-19

3 PROGRAMMING TASKS

}
}

i f (cookieFound) ({

/1 W found the cookie! Now get its value

int cookieOrder = String. parselnt(thisCookie.getValue());
}

For more details on cookies, see:

m TheCookie APl athttp://java. sun. con j 2ee/ j 2sdkee/
techdocs/ api/javax/servl et/ http/ Cooki e. ht m

m TheJavaTutoria: Using Cookies at
http://java. sun. coni docs/ books/tutorial/
servl ets/client-state/cookies. htm

Using Cookies that Are Transmitted by Both HTTP and HTTPS

Because HTTPand HTTPSrequests are sent to different ports, some browsers may not
include the cookie sent in an HTTP request with a subsequent HTTPS request (or
vice-versa). Thismay cause new sessionsto be created when servlet requests alternate
between HTTPand HTTPS. To ensurethat all cookies set by aspecific domain are sent
to the server every timearequest in asession is made, set the Cooki eDonai n attribute
to the name of the domain. Set the Cooki eDonai n attribute with the

<sessi on- descri pt or > element of the WebL ogic-specific deployment descriptor
(webl ogi c. xm) for the Web Application that contains your servlet. For example:

<sessi on-descri ptor>
<sessi on- par anp
<par am nanme>Cooki eDonai n</ par am nane>
<par am val ue>nmydomai n. conk/ par am val ue>
</ sessi on- par an»
</ sessi on-descri pt or >

The Cooki eDonai n attribute instructs the browser to include the proper cookie(s) for
all requeststo hostsin the domain specified by mydomai n. com For moreinformation
about this property or configuring session cookies, see “ Setting Up Session
Management” at

http://e-docs. bea. com wl s/ docs60/ adm ngui de/ confi g_web_app. ht m #s
essi on- managenent .

320 Programming WebL ogic HTTP Servlets

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/servlet/http/Cookie.html
http://java.sun.com/docs/books/tutorial/servlets/client-state/cookies.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-management
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-management

USING WEBLOGIC SERVICES FROM AN HTTP SERVLET

Application Security and Cookies

Using cookies that enable automatic account access on amachineis convenient, but
can be undesirable from a security perspective. When designing an application that
uses cookies, follow these guidelines:

m Do not assume that a cookie is aways correct for a user. Sometimes machines
are shared or the same user may want to access a different account.

m Allow your users to make a choice about leaving cookies on the server. On
shared machines, users may not want to leave automatic logins for their account.
Do not assume that users know what a cookie is; instead, ask a question like:

Automatically login fromthis conmputer?

m Alwaysask for passwords from users logging on to obtain sensitive data. Unless
a user requests otherwise, you can store this preference and the password in the
user’s session data. Configure the session cookie to expire when the user quits
the browser.

Using WebLogic Services from an HTTP Servlet

When you write an HTTP servlet, you have access to many of the rich features of
WebL ogic Server, such as INDI, EJB, JDBC, and JMS.

The following documents provide additional information about these features:

m Programming WebLogic EJB at
http://e-docs. bea. coml W s/ docs60/ ej b/ i ndex. ht m

m Programming WebLogic JDBC at
http://e-docs. bea. com w s/ docs60/j dbc/i ndex. ht m

m Programming WebLogic JNDI at
http://e-docs. bea. coml W s/ docs60/j ndi/index. htm

m Programming WebLogic JMS at
http://e-docs. bea. coml W s/ docs60/j ns/ i ndex. ht m

Programming WebL ogic HTTP Servlets 321

http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/jdbc/index.html
http://e-docs.bea.com/wls/docs60/jndi/index.html
http://e-docs.bea.com/wls/docs60/jms/index.html

3 PROGRAMMING TASKS

Accessing Databases

WebL ogic Server supports the use of Java Database Connectivity (JDBC) from
server-side Java classes, including servlets. JDBC allows you to execute SQL queries
from a Java class and to process the results of those queries. For more information on
JDBC and WebL ogic Server, see Using WebLogic JDBC at

http://e-docs. bea. com w s/ docs60/j dbc/i ndex. htm .

There three ways you can use JDBC in servlets, which are discussed in detail in the
following sections:

m “Connecting to a Database Using a JIDBC Connection Pool” on page 3-22.
m “Connecting to a Database Using a DataSource Object” on page 3-24.
m “Connecting Directly to a Database Using a JDBC Driver” on page 3-25

Connecting to a Database Using a JDBC Connection Pool

322

A connection pool isanamed group of identical JIDBC connections to a database that
are created when the connection poal is registered, usually when starting WebL ogic
Server. Your servlets“borrow” aconnection from the pool, useit, and then return it to
the pool by closingit. Thisprocessisfar more efficient than creating anew connection
for every client each time the client needs to access the database. Another advantage
isthat you do not need to include details about the database in your servlet code.

When connecting to aJDBC connection pool, use one of the following multitier IDBC
drivers:

m Pool driver, used for most server-side operations:
e Driver URL: j dbc: webl ogi c: pool
e Driver package name: webl ogi c. j dbc. pool . Dri ver

m JTS pool driver, used when database operations require transactional support.
e Driver URL:j dbc: webl ogic:jts

e Driver package name: webl ogi c. j dbc. jts. Driver

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs60/jdbc/index.html

ACCESSING DATABASES

Using a Connection Pool in a Servlet

The following example demonstrates how to use a database connection pool from a
servlet.

1. Load the pool driver and castittoj ava. sql . Dri ver. Thefull pathname of the
driver iswebl ogi c. j dbc. pool . Dri ver. For example:

Driver nyDriver = (Driver)
Cl ass. f or Nanme(" webl ogi c. j dbc. pool . Driver"). new nstance();

2. Create aconnection using the URL for the driver, plus (optionally) the name of
the registered connection pool. The URL of the pool driver is
j dbc: webl ogi c: pool .

You can identify the pool in either of two ways:

e Specify the name of the connection pool inaj ava. util . Properties
object using the key connect i onPool | D. For example:

Properties props = new Properties();

props. put ("connecti onPool | D', "myConnecti onPool ");
Connection conn =
nyDri ver. connect ("j dbc: webl ogi c: pool ", props);

e Add the name of the pool to the end of the URL. In this case you do not need
aProperties object unless you are setting a username and password for
using a connection from the pool. For example:

Connection conn =
nmyDri ver. connect ("j dbc: webl ogi c¢: pool : myConnect i onPool ",

null);
Notethat the Dri ver. connect () method is used in these examplesinstead of
the Dri ver Manger . get Connect i on() method. Although you may use
Dri ver Manger . get Connecti on() to obtain a database connection, we
recommend that you use Dr i ver . connect () because this method is not
synchronized and provides better performance.

Note that the Connection returned by connect () isan instance of
webl ogi c. j dbc. pool . Connect i on.

3. Cdl thecl ose() method on the Connect i on object when you have finished
with your JDBC calls, so that the connection is properly returned to the pool. A
good coding practice isto create the connection in at ry block and then close the
connectionin afi nal | y block, to make sure the connection isclosed in all
Cases.

Programming WebL ogic HTTP Servlets 3-23

3 PROGRAMMING TASKS

conn. cl ose();

Connecting to a Database Using a DataSource Object

A Dat aSour ce isaserver-side object that references a connection pool. The
connection pool registration defines the JDBC driver, database, login, and other
parameters associated with a database connection. DataSource objects and connection
pools are created using the Administration Console. Using a Dat aSour ce object is
recommended when creating J2EE-compliant applications.

Using a DataSource in a Servlet

324

1

Register a connection pool using the Administration Console. For more

information, see “ Create a Connection Pool” at
http://e-docs. bea. com wl s/ docs60/ Consol eHel p/j dbcconnecti onpool
.htm .

Register a Dat aSour ce object that points to the connection pool. For more
information, see “JDBC DataSources’ at

http://e-docs. bea. com wl s/ docs60/ Consol eHel p/ j dbcdat asource. ht m
I .

Look up the Dat aSour ce object in the INDI tree. For example:

Context ctx = null;

/1 Get a context for the JNDI | ook up
ctx = new Initial Context(ht);

/1 Look up the DataSource object
j avax. sql . Dat aSour ce ds
= (javax. sql . DataSource) ctx.lookup ("nyDataSource");

Use the Dat aSour ce to create a JDBC connection. For example:
java. sgl . Connection conn = ds. get Connection();
Use the connection to execute SQL statements. For example:

Statenent stnt = conn.createStatenent();
st . execute("select * fromenmp");

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcconnectionpool.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jdbcdatasource.html

THREADING ISSUES IN HTTP SERVLETS

Connecting Directly to a Database Using a JDBC Driver

Connecting directly to a database is the least efficient way of making a database
connection because a new database connection must be established for each request.
Y ou can use any JDBC driver to connect to your database. BEA providesJDBC drivers
for Oracle, Microsoft SQL Server, and Informix. For more information, see
Programming WebLogic JDBC at

http://e-docs. bea. coml W s/ docs60/j dbc/ i ndex. ht i .

Threading Issues in HTTP Servlets

When you design a servlet, you should consider how the servlet isinvoked by
WebL ogic Server under high load. It isinevitable that more than one client will hit
your servlet simultaneously. Therefore, write your servlet code to guard against
sharing violations on shared resources or instance variables. The following tips can
help you to design around this issue.

SingleThreadModel

An instance of aclassthat implementsthe Si ngl eThr eadModel is guaranteed not to
be invoked by multiple threads simultaneously. Multiple instances of a

Si ngl eThr eadModel servlet are used to service simultaneous requests, each running
in asingle thread.

Tousethe Si ngl eThr eadMbdel efficiently, WebL ogic Server creates a pool of
servlet instances for each servlet that implements Si ngl eThr eadModel . WebL ogic
Server createsthe pool of servlet instances when thefirst request is madeto the servlet
and increments the number of servlet instances in the pool as needed.

The attribute “ SingleT hreadedM odel Pool Size” (see

http://e-docs. bea. com W s/ docs60/ Consol eHel p/ webappconponent . ht il
#Si ngl eThr eadedModel Pool Si ze), set using the WebL ogic Server Administration
Console, specifies theinitial number of servlet instances that are created when the
servletisfirst requested. Set thisattribute to the average number of concurrent requests
that you expect your Si ngl eThr eadMbdel servietsto handle.

Programming WebL ogic HTTP Servlets 325

http://e-docs.bea.com/wls/docs60/jdbc/index.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/webappcomponent.html#singlethreadedservletpoolsize

3 PROGRAMMING TASKS

When designing your servlet, consider how you use shared resources outside of the
servlet class such asfile and database access. Because there are multiple instances of
servletsthat areidentical, and may use exactly the same resources, there are till
synchroni zation and sharing i ssuesthat must beresolved, evenif you doimplement the
Si ngl eThr eadModel .

Shared Resources

We recommend that shared-resource issues be handled on an individual servlet basis.
Consider the following guidelines:

m Wherever possible, avoid synchronization, because it causes subseguent servlet
reguests to bottleneck until the current thread compl etes.

m Define variablesthat are specific to each servlet request within the scope of the
service methods. Local scope variables are stored on the stack and, therefore, are
not shared by multiple threads running within the same method, which avoids
the need to be synchronized.

m Accessto external resources should be synchronized on a Classlevel, or
encapsulated in atransaction.

Dispatching Requests to Another Resource

3-26

This section provides an overview of commonly used methods for dispatching
requests.

A servlet can pass on arequest to another resource, such as a servlet, JSP, or HTML
page. This processis referred to as request dispatching. When you dispatch requests,
you use either thei ncl ude() or f orwar d() method of the Request Di spat cher
interface. There are limitations regarding when output can be written to the response
object using thef or war d() ori ncl ude() methods. These limitations are also
discussed in this section.

For a complete discussion of request dispatching, see section 8.1 of the Servlet 2.2
specification (seehtt p: //j ava. sun. cont product s/
servl et/ downl oad. ht m #specs) from Sun Microsystems.

Programming WebL ogic HTTP Servlets

http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/servlet/download.html#specs

DISPATCHING REQUESTS TO ANOTHER RESOURCE

By usingthe Request Di spat cher , you can avoid sending an HT TP-redirect response
back to theclient. The Request Di spat cher passesthe HT TP request to the requested
resource.

To dispatch arequest to a particular resource:
1. Get areferenceto aSer vl et Cont ext :
Servl et Context sc = get Servl et Config().getServletContext();
2. Look up the Request Di spat cher object using one of the following methods:
e RequestDispatcher rd = sc. get Request Di spat cher (String path);
pat h should be relative to the root of the Web Application.
e RequestDi spatcher rd = sc. get NamedDi spat cher (String name);

Replace nane with the name assigned to the servlet in aWeb Application
deployment descriptor with the <ser vi et - name> element. For details, see
“Servlet element” at

http://e-docs. bea. com W s/ docs60/ pr ogr amm ng/

web_xm . ht m #web_xm _servl et

e RequestDispatcher rd =
Ser vl et Request . get Request Di spat cher (String path);

This method returns aRequest Di spat cher object and issimilar to the

Ser vl et Cont ext . get Request Di spat cher (String pat h) method except
that it allows the pat h specified to be relative to the current servlet. If the
path begins with a/ character it isinterpreted to be relative to the Web
Application.

You can obtain aRequest Di spat cher for any HTTP resource within a Web
Application, including HTTP Servlets, JSP pages, or plain HTML pages by
requesting the appropriate URL for the resource in the
get Request Di spat cher () method. Use the returned Request Di spat cher
object to forward the request to another servlet.

3. Forward or include the request using the appropriate method:
e rd.forward(request, response);
e rd.include(request, response);

These methods are discussed in the next two sections.

Programming WebL ogic HTTP Servlets 3-27

http://e-docs.bea.com/wls/docs60/programming/web_xml.html#web_xml_servlet

3 PROGRAMMING TASKS

Forwarding a Request

Onceyou havethecorrect Request Di spat cher , your servlet forwardsarequest using
the Request Di spat cher . f or war d() method, passing HTTPSer vl et Request and
HTTPSer vl et Response asarguments. If you call thismethod when output has al ready
been sent to theclientan 1 | | egal St at eExcept i on isthrown. If the response buffer
contains pending output that has not been committed, the buffer is reset.

The servlet must not attempt to write any previous output to the response. If the servlet
retrieves the Ser vl et Qut put St r eamor thePri nt Wi t er for the response before
forwarding the request, an | | | egal St at eExcept i on isthrown.

All other output from the original servlet isignored after the request has been
forwarded.

Including a Request

3-28

Y our servlet can include the output from another resource by using the

Request Di spat cher. i ncl ude() method, and passing HTTPSer vi et Request and
HTTPSer vl et Response as arguments. When you include output from another
resource, the included resource has access to the request object.

The included resource can write data back to the Ser vl et Qut put St reamor Wi t er
objects of the response object and then can either add datato the response buffer or call
thef 1 ush() method on the response object. Any attempt to set the response status
code or to set any HTTP header information from the included servlet response is
ignored.

In effect, you can use the i ncl ude() method to mimic a“server-side-include’ of
another HTTP resource from your servlet code.

Programming WebL ogic HTTP Servlets

CHAPTER

4 Administration and
Configuration

This section provides a brief overview of administration and configuration tasks for
WebL ogic HTTP servlets. For a complete discussion of servlet administration and
configuration see “Using WebL ogic Server HTTP/Web Services’ in the WebLogic
Server Administration Guide at

http://e-docs. bea. coml W s/ docs60/ admi ngui de/ confi g_web_app. htm .

This section discusses the following topics:
m Overview

m URL

m Directory Structure

m Security

m Servliet Development Tips

m Clustering Servlets

Overview

Consistent with the Java 2 Enterprise Edition standard, HT TP servlets are deployed as
part of a Web Application. A Web Application is a grouping of application
components, such as servlet classes, JavaServer Pages (JSP), static HTML pages,
images, and utility classes.

Programming WebL ogic HTTP Servlets 4-1

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

4 ADMINISTRATION AND CONFIGURATION

In a Web Application the components are deployed using a standard directory
structure. Thisdirectory structure can bearchivedinto afilecalleda. war fileandthen
deployed on WebL ogic Server. Information about the resources and operating
parameters of a\Web Application are defined using two depl oyment descriptors, which
are packaged with the Web Application.

Using Deployment Descriptors to Configure and Deploy

Servlets

The first deployment descriptor, web. xn , is defined in the Servlet 2.2 specification
from Sun Microsystems and provides a standardized format that describes the Web
Application. The second deployment descriptor, webl ogi c. xnl , isa

WebL ogic-specific depl oyment descriptor that maps resources defined intheweb. xmi
file to resources available in WebL ogic Server, defines JSP behavior, and defines
HTTP session parameters.

web.xml (Web Application Deployment Descriptor)

4-2

In the Web Application deployment descriptor you define the following attributes for
HTTP servlets:

m Servlet name
m Javaclass of the serviet
m serviet initialization parameters

m Whether or not thei ni t () method of the servlet is executed when WebL ogic
Server starts

m URL pattern which, if matched, will call this servlet
m Security

m MIME type

m Error pages

m Referencesto EJBs

m References to other resources

Programming WebL ogic HTTP Servlets

OVERVIEW

For a complete discussion of creating web. xni file see “Writing Web Application
Deployment Descriptors’ at
http://e-docs. bea. comi W s/ docs60/ pr ogr ammi ng/ webappdepl oyment . ht m

weblogic.xml (Weblogic-Specific Deployment Descriptor)

In the WebL ogic-specific deployment descriptor you define the following attributes
for HTTP servlets:

HTTP session configuration
Cookie configuration
EJB resource mapping

JSP Configuration

For a complete discussion of creating the webl ogi c. xm file see “Writing Web
Application Deployment Descriptors’ at
http://e-docs. bea. comf W s/ docs60/ pr ogr ammi ng/ webappdepl oyment . ht m

WebLogic Server Administration Console

Use the WebL ogic Server Administration Console to set the following parameters:

HTTP parameters
Log files

URL rewriting

Keep alive

Default MIME types
Clustering parameters

URL mapping for virtual hosting

For more information see the following resources:

e Administration Console: “WebApp Component” at
http://e-docs. bea. coml W s/ docs60/ Consol eHel p/ webappconponent
.htm

Programming WebL ogic HTTP Servlets 4-3

http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/programming/webappdeployment.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/webappcomponent.html

4 ADMINISTRATION AND CONFIGURATION

e Administration Console: “Virtual Hosts” at
http://e-docs. bea. comf Wl s/ docs60/ Consol eHel p/ virtual host. htm
I

4-4 Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs60/ConsoleHelp/virtualhost.html

DIRECTORY STRUCTURE

Directory Structure

Use the following directory structure for all Web Applications:

WebAppl i cati onRoot/ (Publicly available files, such as
I .isp, .htm, .jpg, .gif)
+WVEB- | NF/ - +

cl asses/ (directory containing
Java cl asses i ncl udi ng

servl ets used by the
Web Application)

jar files used by the

I

+

I

I

I

I

+ lib/(directory containing
I

[Web Application)
I

+

I

+

webl ogi c. xm

URL

The URL used to reference aservlet in aWeb Application is constructed as follows:
htt p: // myHost Name: por t / nyCont ext Pat h/ myRequest / ?nyRequest Par anet er s
The components of this URL are defined as follows:

nmyHost Nane
the DNS name mapped to the Web Server defined in the WebL ogic Server
Administration Console

this portion of the URL can be replaced with host : port, where host isthe
name of the machine running WebL ogic Server and por t isthe port at which
WebL ogic Server islistening for requests

Programming WebL ogic HTTP Servlets 4-5

4 ADMINISTRATION AND CONFIGURATION

port
the port at which WebL ogic Server islistening for requests

nmy Cont ext Pat h
the name of the Web Application defined in the WebL ogic Server
Administration Console

nyRequest
the name of the servlet as defined in the web. xm file

nmyRequest Par anet er s
optional HT TP request parameters encoded in the URL, which can beread by
an HTTP servlet.

Security

Security for servletsis defined in the context of the Web Application containing the
servlet. Security can be handled by WebL ogic Server, or it can be incorporated
programmatically into your servlet classes.

For more information see “ Configuring Security in Web Applications’ at
http://e-docs. bea. com wl s/ docs60/ adm ngui de/ confi g_web_app. ht m #c
onfigure-security

Authentication

Y ou can incorporate user authentication into your servlets using any of the following
three techniques:

m BASIC—uses the browser to collect a username and password.
m FORM—uses HTML formsto collect a username and password

m Client Certificate—uses digital certificates to authenticate the user. For more
information, see “Digital Certificates’ at
http://e-docs. bea. com w s/ docs60/ security/ concepts. ht m #concept
s008.

4-6 Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#configure-security
http://e-docs.bea.com/wls/docs60/security/concepts.html#concepts008

SERVLET DEVELOPMENT TIPS

The BASIC and FORM techniques call into a security realm that contains user and
password information. Y ou can use a default realm provided with WebL ogic Server,
or avariety of existing realms, including realms for Windows NT, UNIX, RDBMS,
and user-defined realms. For more information about security realms, see “ Security
Fundamentals’ at

http://e-docs. bea. coml W s/ docs60/ security/ concepts. ht ml #concept sO
02.

Authorization (Security Constraints)

Y ou can restrict access to servlets and other resourcesin a Web Application by using
security constraints. Security constraints are defined in theWeb Application
deployment descriptor (web. xm). Resources may be constrained by roles and/or by
resource. Roles can be mapped to a principal in arealm. Specific resources can be
constrained by matching a URL pattern to aresource in aWeb Application. Finally,
the use of Secure Sockets Layer (SSL) can be specified for a security constraint.

Y ou can al so perform authorization programmatically, using one of the following
methods of the Ht t pSer vI et Request interface:

m get Renpt eUser ()
m jsUserlnRol e()
m get UserPrinci pal ()

For more information see the javax.servliet APl at
http://java. sun. coni products/servl et/ 2.2/javadoc/index. htm .

Servlet Development Tips

Consider the following tips when writing HTTP servlets:

m Make sure you compile your servlet classesinto the WEB- | NF/ ¢l asses
directory of your Web Application.

m Make sure your servlet is registered in the Web A pplications deployment
descriptor (web. xm).

Programming WebL ogic HTTP Servlets 4-7

http://e-docs.bea.com/wls/docs60/security/concepts.html#concepts002
http://e-docs.bea.com/wls/docs60/security/concepts.html#concepts002
http://java.sun.com/products/servlet/2.2/javadoc/index.html

4 ADMINISTRATION AND CONFIGURATION

m When responding to arequest for a servlet, WebL ogic Server checks the time
stamp of the servlet class file and compares it to the servlet instance in memory.
If anewer version of the servlet class is found, WebL ogic Server re-loads the
servlet class. When a servlet isre-loaded, thei ni t () method of the servlet is
called.

You can set the interval (in seconds) at which WebL ogic Server checks the time
stamp with the Ser vl et Rel oad attribute. This attribute is set on the Fi | es tab
of your Web Application, in the Administration Console. If you set this attribute
to zero, WebL ogic Server checks the time stamp on every request, which can be
useful while developing and testing servlets but is needlesdly time consuming in
aproduction environment. If this attribute is set to - 1, WebL ogic Server does
not check for modified servlets.

Clustering Servlets

4-8

To deploy an HTTP servlet in acluster of WebL ogic Servers, deploy the Web
Application containing the servlet on all of the serversin the cluster. Depending on the
cluster configuration, requests are routed to various serversin the cluster, each of
which has access to a copy of the Web Application resources.

For more information on clustering, see Using WebL ogic Server Clusters at
http://e-docs.bea.com/wls/docs60/cluster/index.html.

Programming WebL ogic HTTP Servlets

http://e-docs.bea.com/wls/docs60/cluster/index.html

Index

A
addCookie() 3-19
administration
console4-3
administration console 4-3
APl 1-4
authentication 4-6
C
classpath 2-2
clustering 3-17, 4-8
compiling 2-2
connection pools 3-22
DataSource 3-24
driver 3-23
JDBC 3-22
using 3-23
contentType 2-2
cookies 3-18
and EJB 3-19
and logging in 3-21
and passwords 3-21
domain 3-20
HTTP and HTTPS 3-20
retreiving 3-19
using in servlets 3-18
customer support contact information
Vii

D
databases 3-22
DataSource 3-22, 3-24
deployment 2-3
deployment descriptor 4-2
Developing 1-3
devel opment
classpath 2-2
compiling 4-7
tips4-7
development environment 2-2
dispatching 3-26
documentation, whereto find it vi
E
EJB 3-21
encodeURL () 3-15
environment, development
environment 2-2
F
forward() 3-26
forwarding 3-27, 3-28
G
getAttribute() 3-13
getAttributeNames() 3-13
getCookies() 3-19
getParameters() 3-6
getParameterVaues() 3-9

Installation Guide -1

getSession() 3-11, 3-13
H
HelloWorldServlet 2-5
HTTP
response 3-4
HttpServletRequest 2-2
methods 3-7
HttpServletResponse 2-2, 3-4
HttpSession object 3-11
I
IDLength 3-16
I1legal StateException 3-14
import 2-1
include() 3-26
including 3-27
including arequest 3-28
init parameters 3-2
init() method 3-1, 3-3
initialization
init() method 3-1
on server start up 3-2
parameters 3-2
init-param 3-3
in-memory replication 3-17
input
query paramters 3-8
J
J2EE 1-3
javax.servlet 1-4
JDBC 3-21, 3-22, 3-25
JDBC session persistence 3-17
JMS 3-21
JNDI 3-21
JTS pool driver 3-22

-2 Installation Guide

K

keep alive 3-5

L

load-on-startup 3-2

logging out 3-14

N

name/value pairs 3-13

P

packages 2-1

Pool driver 3-22

printing product documentation vi

PrintWriter object 2-2

Q

query parameters 3-6, 3-7, 3-8

R

removeAttribute() 3-13

RequestDispatcher() 3-27

requests
dispatching 3-26
forwarding 3-27, 3-28
including 3-27, 3-28

response 3-4
buffer 3-5
optimizing 3-5

retreiving input 3-6

S

security 4-6
applying programatically 4-7
authentication 4-6
authorization 4-7
constraints 4-7
realms4-7

security constraints 4-7

service method 2-2

Servlet 2.2 Specification 1-4

servlets
and clustering 4-8
Session persistence
JDBC 3-17
sessions
and clusters 3-17
and persistence 3-16
and serialization 3-17
cookies 3-12, 3-15
detecting start of 3-13
encodeURL () method 3-15
ending 3-14
history of tracking 3-10
lifetime 3-12
logging out 3-14
name/value attributes 3-13
tracking 3-10, 3-12
tracking with HttpSession object
3-11
tracking, configuration 3-15
URL rewriting 3-15
setAttribute() 3-13
SingleThreadM odel 3-25
SingleThreadM odel Pool Size 3-25
support
technical vii
T
threading 3-25
SingleThreadModel 3-25
U
URL rewriting 3-15
and WAP 3-16
and Wireless Access Protocol
3-16
URLs4-5

w

WAP 3-16

Web Applications
and security 4-6
deployment descriptor 4-2
directory structure 4-5
URLs4-5

web.xml 4-2

weblogic.xml 4-2

Wireless Access Protocol 3-16

Installation Guide

-3

	Contents
	1 Overview
	What Is a Servlet?
	What You Can Do with Servlets
	Overview of Servlet Development
	Servlets and J2EE
	HTTP Servlet API Reference

	2 Introduction to Programming
	Writing a Basic HTTP Servlet
	Advanced Features
	Complete HelloWorldServlet Example

	3 Programming Tasks
	Initializing a Servlet
	Initializing a Servlet when WebLogic Server Starts
	Overriding the init() Method

	Providing an HTTP Response
	Retrieving Client Input
	Other Methods for Using the HTTP Request
	Example: Retrieving Input by Using Query Parameters

	Using Session Tracking from a Servlet
	A History of Session Tracking
	Tracking a Session with an HttpSession Object
	Lifetime of a Session
	How Session Tracking Works
	Detecting the Start of a Session
	Setting and Getting Session Name/Value Attributes
	Logging Out and Ending a Session
	Configuring Session Tracking
	Using URL Rewriting
	URL Rewriting and Wireless Access Protocol (WAP)

	Making Sessions Persistent
	Scenarios to Avoid When Using Sessions
	Use Serializable Attribute Values
	Configuring Session Persistence

	Using Cookies in a Servlet
	Setting Cookies in an HTTP servlet
	Retrieving Cookies in an HTTP Servlet
	Using Cookies that Are Transmitted by Both HTTP and HTTPS
	Application Security and Cookies

	Using WebLogic Services from an HTTP Servlet
	Accessing Databases
	Connecting to a Database Using a JDBC Connection Pool
	Using a Connection Pool in a Servlet

	Connecting to a Database Using a DataSource Object
	Using a DataSource in a Servlet

	Connecting Directly to a Database Using a JDBC Driver

	Threading Issues in HTTP Servlets
	SingleThreadModel
	Shared Resources

	Dispatching Requests to Another Resource
	Forwarding a Request
	Including a Request

	4 Administration and Configuration
	Overview
	Using Deployment Descriptors to Configure and Deploy Servlets
	web.xml (Web Application Deployment Descriptor)
	weblogic.xml (Weblogic-Specific Deployment Descriptor)
	WebLogic Server Administration Console

	Directory Structure
	URL
	Security
	Authentication
	Authorization (Security Constraints)

	Servlet Development Tips
	Clustering Servlets

	Index

