
Programming RMI over IIOP

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 0
D o c u m e n t D a t e : M a r c h 3 , 2 0 0 1

BEA
WebLogic Server

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Programming RMI over IIOP

Part Number Date Software Version

March 3, 2001 BEA Weblogic Server Version 6.0

Contents

About This Document
What You Need to Know ..v

e-docs Web Site ... vi

How to Print the Document... vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions .. vii

1. Using WebLogic RMI over IIOP
Overview ... 1-1

RMI over IIOP overview... 1-2

RMI over IIOP ... 1-2

RMI over IIOP with IDL.. 1-3

Java-to-IDL mapping ... 1-4

Objects-by-Value ... 1-4

Client types... 1-5

EJB-to-CORBA mapping... 1-6

RMI over IIOP with SSL... 1-6

Using Client Certificates .. 1-7

Implementing with WebLogic RMI over IIOP ... 1-8

System requirements .. 1-8

Developing an RMI over IIOP application .. 1-8

RMI over IIOP .. 1-8

RMI over IIOP using IDL... 1-9

Develop the remote interface and implementation class 1-9

Generate the IDL file .. 1-10

Compile the IDL file ... 1-11
Document Templates for FrameMaker 5.5 iii

Develop the client.. 1-12

Configure WebLogic Server... 1-15

Code examples.. 1-15

Additional considerations .. 1-15
iv Document Templates for FrameMaker 5.5

About This Document

This document explains Remote Method Invocation (RMI) over Internet Inter-ORB
Protocol (IIOP) and how to create RMI over IIOP applications for various clients
types. It describes how to extend the RMI programming model by providing the ability
for clients to access RMI remote objects using IIOP in the BEA WebLogic Server
environment.

This document covers the following topic:

n Chapter 1, “Using WebLogic RMI over IIOP,” provides an overview to RMI
over IIOP, describes how to develop an RMI over IIOP application, and explains
how to configure a WebLogic server. Code segments are provided to illustrate
these tasks.

What You Need to Know

This document is intended mainly for application developers who are interested in
providing the ability for clients to access Remote Method Invocation (RMI) remote
objects using the Internet Inter-ORB Protocol (IIOP). This allows for RMI to Common
Object Request Broker Architecture (CORBA) interoperability. It assumes a
familiarity with the RMI over IIOP for WebLogic Server platform, CORBA, and Java
programming.
Programming RMI over IIOP v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the RMI over IIOP for WebLogic
Server documentation Home page on the e-docs Web site (and also on the
documentation CD). You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format. To access the PDFs, open the RMI
over IIOP for WebLogic Server documentation Home page, click the PDF files button
and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA RMI over IIOP for WebLogic Server documents contain
information that is relevant to using RMI over IIOP.

For more information in general about RMI over IIOP refer to the following sources.

n The OMG Web Site at http://www.omg.org/

n The Sun Microsystems, Inc. Java site at http://java.sun.com/
vi Programming RMI over IIOP

For more information about CORBA and distributed object computing, transaction
processing, and Java, refer to the Bibliography at http://edocs.bea.com/.

Contact Us!

Your feedback on the BEA RMI over IIOP for WebLogic Server documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the RMI over IIOP for WebLogic Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA RMI over IIOP for WebLogic Server 6.0 release.

If you have any questions about this version of BEA RMI over IIOP for WebLogic
Server, or if you have problems installing and running BEA RMI over IIOP for
WebLogic Server, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.
Programming RMI over IIOP vii

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.
viii Programming RMI over IIOP

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Programming RMI over IIOP ix

x Programming RMI over IIOP

CHAPTER
1 Using WebLogic RMI
over IIOP

The following sections is this chapter describe the RMI over IIOP features.

n Overview

n RMI over IIOP overview

n RMI over IIOP with SSL

n Implementing with WebLogic RMI over IIOP

n Additional considerations

Overview

WebLogic RMI over IIOP extends the RMI programming model by providing the
ability for clients to access RMI remote objects using the Internet Inter-ORB Protocol
(IIOP). This exposes RMI remote objects to a new class of client -- the Common
Object Request Broker Architecture (CORBA) client. CORBA clients can be written
in a variety of languages including C++.

Within the developer community, there is a strong demand for the ability to access
J2EE services -- specifically Enterprise JavaBeans (EJB) -- from CORBA clients.
Since RMI is an enabling technology for EJB, providing RMI over IIOP enhances the
ability to support various clients. However, Java and CORBA are based upon very
different object models. Because of this, sharing data between objects created in the
two programming models was, until recently, limited to Remote and CORBA
 Programming RMI over IIOP 1-1

1 Using WebLogic RMI over IIOP
primitive data types. Neither CORBA structures nor Java objects could be readily
passed between disparate objects. As a result, the Objects-by-Value specification was
created by the Object Management Group (OMG). This specification defines the
enabling technology for exporting the Java object model into the CORBA
programming model allowing for the interchange of complex data types between the
two models.

This document describes how to create RMI over IIOP applications for various clients
types. For more general information on WebLogic RMI including discussions on Java
RMI clients, please refer to Using WebLogic RMI.

RMI over IIOP overview

This overview covers both the RMI with IIOP and the RMI with IDL programming
models. RMI over IIOP give you access to a robust protocol that is supported by
numerous vendors and is designed to facilitate interoperability of heterogeneous
distributed objects.

RMI over IIOP

The RMI over IIOP is an application of the RMI programming model. In it
programmers use JNDI and the RMI type system.
1-2 Programming RMI over IIOP

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/
http://e-docs.bea.com/wls/docs60/rmi/rmi_api.html

RMI over IIOP overview
Figure 1-1 RMI object relationships

RMI over IIOP with IDL

In CORBA, interfaces to remote objects are described in a platform-neutral interface
definition language (IDL). To map the IDL to a specific language, the IDL is compiled
with an IDL compiler. The IDL compiler generates a number of classes such as stubs
and skeletons which are used by the client and server for obtaining references to
remote objects, forwarding requests, and marshalling incoming calls.

Figure 1-2 Corba object relationships

WebLogic
Server

Client

Stub

ORB

RMI
runtime

RMI
object

IIOP

IDLClient

Stub

ORB

Server

TieIDL compiler

ORB
IIOP
 Programming RMI over IIOP 1-3

1 Using WebLogic RMI over IIOP
RMI over IIOP allows CORBA clients to access RMI objects and is based on two
specifications of the OMG: Java-to-IDL mapping and Objects-by-value.

Java-to-IDL mapping

In WebLogic RMI, interfaces to remote objects are described in a Java remote
interface that extends java.rmi.Remote. The Java-to-IDL mapping specification
defines how an IDL is derived from a Java remote interface. In the WebLogic RMI
over IIOP implementation, the implementation class is run through the WebLogic RMI
compiler or WebLogic EJB compiler with the - idl option. This creates an IDL
equivalent of the remote interface. This IDL is then compiled with an IDL compiler to
generate the classes required by the CORBA client.

The client obtains a reference to the remote object and forwards method calls through
the stub. WebLogic Server implements a CosNaming service that parses incoming
IIOP requests and dispatches them directly into the RMI runtime.

Figure 1-3 WebLogic RMI over IIOP object relationships

Objects-by-Value

The Objects-by-Value specification allows complex data types to be passed between
the two programming models. In order for a CORBA client to support
Objects-by-Value, the client should be developed in conjunction with an Object
Request Broker (ORB) that supports Objects-by-Value. To date, relatively few ORBs

WebLogic
Server

IDL

Client

Stub

ORB

RMI
compiler

IDL
compiler

RMI
runtime

RMI
object

IIOP
1-4 Programming RMI over IIOP

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm

RMI over IIOP overview
support Objects-by-Value. When developing your RMI over IIOP application, you
must consider whether your CORBA clients will support Objects-by-Value and design
your RMI interface accordingly. In other words, you must limit you RMI interface to
pass only primitive data types, if your application will support CORBA clients that do
not support Objects-by-Value. This will be discussed further in Develop the remote
interface and implementation class.

Client types

The CORBA 2.3 specification includes support for Objects-by-Value. While it is
possible to support clients that utilize pre-2.3 ORBs, certain limitations will apply.
There are three distinct kinds of CORBA clients you must consider when designing an
RMI over IIOP application. The type of client is defined by the specification the client
ORB supports and the programing model the client is developed against (RMI/JNDI
or CORBA/CosNaming).

Implementing with WebLogic RMI over IIOP discusses how to create an RMI over
IIOP application that supports these types of clients.

Client Definition

RMI over IIOP client RMI client that utilizes the CORBA 2.3 specification’s
support for Objects-by-Value. This Java client is
developed using the standard RMI/JNDI model (with a
few exceptions that are discussed in Develop the client).

IDL(OBV) client C++ CORBA client that uses a CORBA 2.3 ORB. Note:
Due to name-space conflicts, Java CORBA clients that
use a CORBA 2.3 ORB are not supported by the RMI over
IIOP specification.

IDL(non-OBV) client CORBA client that uses a pre-CORBA 2.3 ORB
 Programming RMI over IIOP 1-5

1 Using WebLogic RMI over IIOP
EJB-to-CORBA mapping

WebLogic RMI over IIOP is the framework for EJB-to-CORBA mapping support.
Currently, however, a standard for passing user identity -- required to implement
EJB-to-CORBA mapping -- does not exist and the requirement for transaction
propagation from the client is in question. While RMI over IIOP does allow CORBA
clients to access EJBeans, the following services will not be available:

n EJB transaction services

n EJB security services

RMI over IIOP with SSL

The SSL protocol can be used to protect IIOP connections to RMI remote objects. The
SSL protocol secures connections through authentication and encrypts the data
exchanged between objects. To use the SSL protocol to protect IIOP over RMI
connections, do the following:

1. Configure WebLogic Server to use the SSL protocol. For more information, see
Configuring the SSL Protocol

2. Configure the client Object Request Broker (ORB) to use the SSL protocol. Refer
to the product documentation for your client ORB for information about
configuring the SSL protocol.

3. Use the host2ior utility to print the WebLogic Server IOR to the console. The
host2ior utility prints two versions of the IOR, one for SSL connections and
one for non-SSL connections. The header of the IOR specifies whether or not the
IOR can be used for SSL connections.

4. Use the SSL IOR when obtaining the initial reference to the CosNaming service
that accesses the WebLogic Server JNDI tree.
1-6 Programming RMI over IIOP

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec015

RMI over IIOP with SSL
Using Client Certificates

Once you have set the client ORB to support SSL, you can enforce an additional level
of security by using client certificates with RMI over IIOP and SSL. The behavior will
differ depending on whether you choose to enforce client certificates.

The client ORB must be aware of WebLogic Server’s trusted certificate authenticator
and WebLogic Server must be aware of the ORB’s trusted certificate authenticator. To
make WebLogic Server aware of the ORB’s certificate authenticator copy the client
ORB’s trusted certificate authenticator to WebLogic Server.

1. Use java utils.der2pem to convert the certificate authenticator.

2. Copy the ca.pem file to a new ca_new.pem file.

3. Add the client ORB’s trusted ca.pem file to the end of the new ca_new.pem file.

4. In the Console, change the Trusted CAFile Name to ca_new.pem.

The certificate chain file will still be ca.pem.

Note: Refer to the ORB’s product documentation to see how to make the client ORB
aware of WebLogic Server’s trusted certificate authenticator.

Implement the weblogic.security.acl.CertAuthenticator interface and
register the class in the Console. See examples.security.cert, in your WebLogic
Server distribution for a sample of how this is handled.

Using the Administration Console, set the client certificate enforced option:

1. Click the Server tab and in the right pane, choose the desired server.

2. Click the SSL tab and select the Client Certificate Enforced box.

3. Click Apply.

With RMI over IIOP and SSL, you can expect the following behavior:

If client certificates are enforced:

n The client ORB invokes on the IOR using SSL.

n On the server side, the Certificate Authenticator class is called to determine if
the user is authorized.
 Programming RMI over IIOP 1-7

1 Using WebLogic RMI over IIOP
To configure the certificate authenticator, choose on the SSL tab and specify the
certificate authenticator to be used to determine the validity of the certificate.
The certificate authenticator class accesses the certificate and uses the fields on
the certificate to determine the user.

The samples/examples/security/cert/example contains a very simple certificate
authenticator class that maps the email address from a certificate to a user in the
realm.

n If the certificate authenticator is not configured or the certificate authenticator
returns null, then a no permission exception is returned to the client and the
method is not executed.

If client certificates are not enforced:

n The client ORB invokes on the IOR using SSL.

n On the server side, the invoke occurs on the default IIOP user.

To set this user option on the SSL tab, click the Protocols tab and check the
Default IIOP Users box.

Implementing with WebLogic RMI over IIOP

System requirements

WebLogic RMI over IIOP is supported under JDK 1.3 only. See WebLogic platform
support for an up-to-date listing of supported platforms and JDKs.

Developing an RMI over IIOP application

This section covers developing RMI applications over IIOP with or without IDL.

RMI over IIOP

To develop an RMI over IIOP application, the following steps must be performed:
1-8 Programming RMI over IIOP

http://e-docs.bea.com/wls/platforms/index.html
http://e-docs.bea.com/wls/platforms/index.html

Implementing with WebLogic RMI over IIOP
1. Develop the remote interface and implementation class and compile with a Java
compiler.

2. Generate the IIOP stub classes using the -iiop option.

3. Compile the implementation class using the WebLogic RMI compiler or
WebLogic EJB compiler.

4. Develop the client and compile with a language-specific compiler

See Using WebLogic RMI for more instructions on developing an RMI application.

RMI over IIOP using IDL

To develop an RMI over IIOP application using IDL (RMI and/or EJB), the following
steps must be performed:

1. Develop the remote interface and implementation class and compile with a Java
compiler

2. Generate the IDL file using the WebLogic RMI compiler or WebLogic EJB
compiler.

3. Compile the IDL file with an IDL compiler and compile the resulting classes
with a language-specific compiler, such as C++.

4. Develop the client and compile with a language-specific compiler

Develop the remote interface and implementation class

To develop an RMI object, you must define the object’s public methods in an interface
that extends java.rmi.Remote.

With RMI objects, you can implement the interface in a class named
interfaceNameImpl. The implementation class it can be bound to the JNDI tree to
be made available to clients. Typically, your implementation class will be configured
as a WebLogic startup class and will include a main method that binds the object into
the JNDI tree. For more information on developing RMI objects, see Using WebLogic
RMI.
 Programming RMI over IIOP 1-9

http://e-docs.bea.com/wls/docs60/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs60/rmi/rmi_api.html

1 Using WebLogic RMI over IIOP
Special considerations for supporting non-OBV clients

If your client ORB does not support Objects-by-Value, you must limit your RMI
interface to pass only other interfaces or CORBA primitive data types. The following
table lists ORBs that we have tested with respect to Objects-by-Value support:

Generate the IDL file

After developing and compiling the implementation class, you must generate an IDL
file by running the WebLogic RMI compiler or WebLogic EJB compiler with the -idl
option. If the client is an RMI over IIOP client (as defined in Overview), you must also
generate the IIOP stub classes required by the client using the -iiop option. If the
client is an IDL client, the required stub classes will be generated when you compile
the IDL file as described in the following section. For general information on the these
compilers, refer to Using WebLogic RMI and BEA WebLogic Server Enterprise
JavaBeans. The following compiler options are specific to RMI over IIOP:

Table 1-1

Vendor Versions Objects-by-Value

Inprise VisiBroker 3.3, 3.4 not supported

Inprise VisiBroker 4.x supported

JavaSoft JDK 1.2 not supported

JavaSoft RMI over IIOP Reference
Implementation

supported

Option Function

-idl Creates an IDL for the remote interface of the
implementation class being compiled
1-10 Programming RMI over IIOP

http://e-docs.bea.com/wls/docs60/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/ejb/index.html

Implementing with WebLogic RMI over IIOP
The options are applied as shown in this example of running the RMI compiler:

 $ java weblogic.rmic -idl -idlDirectory /IDL
 examples.rmi_iiop.HelloImpl

The compiler will generate the IDL file within sub-directories of the idlDirectoy
according to the package of the implementation class. For example, the above
command will result in a Hello.idl file generated in the /IDL/examples/rmi_iiop
directory. If the idlDirectory option is not used, the IDL file will be generated
relative to the location of the generated stub and skeleton classes.

Compile the IDL file

Now that you have an IDL file, it can be used to create the stub classes required by your
IDL client (as defined in Client types) to communicate with the remote class. Your
ORB vendor will provide an IDL compiler.

-idlDirectory Target directory where the IDL will be generated

-idlNoFactories Do not generate factory methods for value types. This is
useful if your client ORB does not support the factory
valuetype.

-idlOverwrite Causes the compiler to overwrite an existing idl file of the
same name

-idlAll Creates an IDL that adheres strictly to the Objects-By-Value
specification

-idlVerbose Display verbose information for IDL generation

-iiop Creates stub classes required for RMI over IIOP clients that
utilize the JDK 1.3 ORB.

Note: Tie classes are also created, however these are not
used by the server or client.

-iiopDirectory Target directory where the IIOP classes will be generated

-idlNoValueTypes Suppresses generation of idl for value types.

Option Function
 Programming RMI over IIOP 1-11

1 Using WebLogic RMI over IIOP
This step is unnecessary for RMI over IIOP clients since the stub class should have
already been generated using the -iiop option with the RMI or EJB compiler in the
previous step. Note that the IIOP stubs created by the WebLogic RMI compiler are
intended to be used with the JDK 1.3 ORB. If you are using another ORB, consult the
ORB vendor’s documentation to determine whether these stubs are appropriate.

The IDL file generated by the WebLogic compilers contains the directives: #include
orb.idl. This IDL file should be provided by your ORB vendor. The directory
containing this file should be included in the IDL compiler’s include path at compile
time. An orb.idl file is shipped in the /lib directory of the WebLogic distribution.
This file is only intended for use with the ORB included in the JDK.

If you are developing a Java IDL(non-OBV) client, you should be careful to compile
your server-side and client-side classes into separate directories and to keep the two
CLASSPATHs (server- and client-side CLASSPATHs) separate. Package and class
names can be repeated on the server- and client- side, particularly with the class that
defines the remote interface. Since the RMI object and the IDL client have different
type systems, the class that defines the interface for the server-side will be very
different from the class that defines the interface on the client-side. To avoid conflicts,
it is essential that the client CLASSPATH does not include the RMI object classes, and
that the server CLASSPATH does not include any client classes.

Develop the client

With RMI over IIOP, clients may be developed using the RMI/JNDI programming
model (RMI over IIOP clients) or the CORBA/CosNaming model (IDL clients).

RMI over IIOP clients

RMI clients access remote objects by creating an initial context and performing a
lookup on the object. The object is then cast to the appropriate type. RMI over IIOP
clients differ from regular RMI clients in that IIOP is defined as the protocol when
obtaining an initial context. Because of this, lookups and casts must be performed in
conjunction with the javax.rmi.PortableRemoteObject.narrow() method.

For example, in the stateless session EJB example (the
examples.ejb.basic.statelessSession package included in your distribution),
an RMI client creates an initial context, performs a lookup on the EJBean home,
obtains a reference to an EJBean, and calls methods on the EJBean. To make this
example work over IIOP, you must perform the following steps:
1-12 Programming RMI over IIOP

Implementing with WebLogic RMI over IIOP
n Re-compile the EJBean and EJBean home implementation classes using the
WebLogic EJB compiler with the - iiop option. This generates the appropriate
stubs for exporting over IIOP.

n Obtain an initial context by specifying IIOP as the protocol.

n Modify the client code to perform the lookup in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

In the statelessSession example, the client obtains an initial context using the code
below:

Listing 1-1 Obtaining an InitialContext

h.put(Context.INITIAL_CONTEXT_FACTORY,
 “com.sun.jndi, cosnaming.CNCtxFactory”);
h.put(Context.PROVIDER_URL, url);
InitialContext ic = new InitialContext(h);

where url defines the protocol, hostname, and listen port for the WebLogic Server and
is passed in as a command-line argument. To make this client connect over IIOP, you
would run client with a command like:

 $ java examples.ejb.basic.statelessSession.Client
 iiop://localhost:7001

Additionally, javax.rmi.PortableRemoteObject.narrow() must be used in any
situation where you would normally cast an object to a specific class type. For
example, the client code responsible for looking up the EJBean home and casting the
result to a TraderHome object must be modified to use the
javax.rmi.PortableRemoteObject.narrow() as shown below:

Listing 1-2 Performing a lookup

TraderHome brokerage = (TraderHome)
 javax.rmi.PortableRemoteObject.narrow(
 ctx.lookup(“statelessSession.TraderHome”),
 TraderHome.class);
 Programming RMI over IIOP 1-13

1 Using WebLogic RMI over IIOP
IDL clients

IDL clients are pure CORBA clients and do not require any WebLogic classes.
Depending on your ORB vendor, additional classes may be generated to help resolve,
narrow, and obtain a reference to the remote class. In the following example of a client
developed against a VisiBroker 3.4 ORB, the client initializes a naming context,
obtains a reference to the remote object, and calls a method on the remote object.

Listing 1-3 Code segment from C++ client of the RMI-IIOP hello example

// obtain WebLogic Server IOR from command line argument
const char* ior = argv[1];

// string to object
CORBA::Object_ptr o = orb->string_to_object(ior);

// obtain a naming context
CosNaming::NamingContext_var context =
 CosNaming::NamingContext::_narrow(o);
CosNaming::Name name;
name.length(1);
name[0].id = "HelloServer";
name[0].kind = "";

// resolve and narrow to RMI object
CORBA::Object_var object = context->resolve(name);

examples::rmi_iiop::hello::Hello_var hi =
 examples::rmi_iiop::hello::Hello::_narrow(object);

The naming context is obtained by narrowing a CORBA object to the WebLogic IOR.
In a future version, RMI over IIOP will have “plug-and-play” capability with select
ORBs and will not require obtaining the IOR of the server.

The host2ior utility included with WebLogic Server can be used to print the
WebLogic Server IOR to the console by running the following command:

 $ java utils.host2ior hostName port

where hostName is the name of the machine running WebLogic Server and port is the
port where WebLogic Server is listening for connections.
1-14 Programming RMI over IIOP

Additional considerations
Configure WebLogic Server

Because of a lack of standards for propagating client identity from a CORBA client,
the identity of any client connecting over IIOP will default to "guest". The user, as well
as a password, can be set in the config.xml file to establish a single identity for all
clients connecting over IIOP, as shown in the example below:

<Server
Name="myserver"
NativeIOEnabled="true"
DefaultIIOPUser="Bob"
DefaultIIOPPassword="Gumby1234"
ListenPort="7001">

There is also a IIOPEnabled attribute which can be set in the config.xml. The
default value “true” and set this to “false” only if you wish to disable IIOP support.
No additional server configuration is required to use RMI over IIOP beyond ensuring
that all remote objects are bound to the JNDI tree to be made available to clients. RMI
objects are typically bound to the JNDI tree by a startup class. EJBean homes are
bound to the JNDI tree at the time of deployment. WebLogic Server implements a
CosNaming Service by delegating all lookup calls to the JNDI tree.

Code examples

The examples.rmi_iiop package is included within the /samples/examples
directory in your WebLogic installation directory. Refer to the example documentation
for more details.

Additional considerations

WebLogic RMI over IIOP is intended to be a complete implementation of RMI.
Please refer to the release notes for any additional considerations that might
apply to your version.
 Programming RMI over IIOP 1-15

1 Using WebLogic RMI over IIOP
1-16 Programming RMI over IIOP

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Using WebLogic RMI over IIOP

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Using WebLogic RMI over IIOP
	Overview
	RMI over IIOP overview
	RMI over IIOP
	Figure 1�1 RMI object relationships

	RMI over IIOP with IDL
	Figure 1�2 Corba object relationships

	Java-to-IDL mapping
	Figure 1�3 WebLogic RMI over IIOP object relationships

	Objects-by-Value
	Client types
	EJB-to-CORBA mapping

	RMI over IIOP with SSL
	1. Configure WebLogic Server to use the SSL protocol. For more information, see Configuring the S...
	2. Configure the client Object Request Broker (ORB) to use the SSL protocol. Refer to the product...
	3. Use the host2ior utility to print the WebLogic Server IOR to the console. The host2ior utility...
	4. Use the SSL IOR when obtaining the initial reference to the CosNaming service that accesses th...
	Using Client Certificates
	1. Use java utils.der2pem to convert the certificate authenticator.
	2. Copy the ca.pem file to a new ca_new.pem file.
	3. Add the client ORB’s trusted ca.pem file to the end of the new ca_new.pem file.
	4. In the Console, change the Trusted CAFile Name to ca_new.pem.
	1. Click the Server tab and in the right pane, choose the desired server.
	2. Click the SSL tab and select the Client Certificate Enforced box.
	3. Click Apply.

	Implementing with WebLogic RMI over IIOP
	System requirements
	Developing an RMI over IIOP application
	RMI over IIOP
	1. Develop the remote interface and implementation class and compile with a Java compiler.
	2. Generate the IIOP stub classes using the -iiop option.
	3. Compile the implementation class using the WebLogic RMI compiler or WebLogic EJB compiler.
	4. Develop the client and compile with a language-specific compiler

	RMI over IIOP using IDL
	1. Develop the remote interface and implementation class and compile with a Java compiler
	2. Generate the IDL file using the WebLogic RMI compiler or WebLogic EJB compiler.
	3. Compile the IDL file with an IDL compiler and compile the resulting classes with a language-sp...
	4. Develop the client and compile with a language-specific compiler

	Develop the remote interface and implementation class
	Special considerations for supporting non-OBV clients
	Table 1�1

	Generate the IDL file
	Compile the IDL file
	Develop the client
	RMI over IIOP clients
	Listing 1-1 Obtaining an InitialContext
	Listing 1-2 Performing a lookup

	IDL clients
	Listing 1-3 Code segment from C++ client of the RMI-IIOP hello example

	Configure WebLogic Server
	Code examples

	Additional considerations

