
WebLogic Server
Programming

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : M a r c h 3 , 2 0 0 1

BEA

WebLogic RMI

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Programming WebLogic RMI

Document Edition Date Software Version

March 3, 2001 BEA WebLogic Server Version 6.0

Contents

About This Document
Audience..v

e-docs Web Site ... vi

How to Print the Document... vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions .. vii

1. Introduction to WebLogic RMI
Introducing WebLogic RMI .. 1-1

Advantages of WebLogic RMI ... 1-2

Differences in WebLogic RMI’s Implementation 1-3

WebLogic RMI Features .. 1-5

WebLogic RMI Compiler ... 1-5

Proxy Classes .. 1-6

WebLogic RMI Registry and Server .. 1-6

WebLogic RMI Performance and Scalability ... 1-6

2. Programming WebLogic RMI
WebLogic RMI Compiler... 2-1

WebLogic RMI Compiler Options... 2-2

Additional WebLogic RMI Compiler Features.. 2-4

Proxies in WebLogic RMI... 2-5

Using the WebLogic RMI Compiler with Proxies..................................... 2-5

WebLogic RMI Registry ... 2-6

Implementation Features ... 2-6
Programming WebLogic RMI iii

3. WebLogic RMI API
Overview of the WebLogic RMI API ... 3-1

Implementing with WebLogic RMI .. 3-2

Creating classes that can be invoked remotely... 3-2

Step 1. Write a Remote interface .. 3-3

Step 2. Implement the Remote interface ... 3-4

Step 3. Compile the java class... 3-6

Step 4. Compile the implementation class with RMI compiler 3-6

Invoking methods on remote objects in your client code........................... 3-7

Full Code Examples ... 3-7

Using the WebLogic RMI Compiler for Clustered Services............................. 3-9

Cluster-specific RMI compiler options .. 3-9

Non-Replicated Stubs... 3-10
iv Programming WebLogic RMI

About This Document

This document introduces BEA WebLogic Server™ RMI features and describes the
RMI implementation that run on the WebLogic Server platform.

The document is organized as follows:

n Chapter 1, “Introduction to WebLogic RMI,” is an overview of WebLogic Server
RMI features and its architecture.

n Chapter 2, “Programming WebLogic RMI,” describes how to use the WebLogic
RMI functions and features.

n Chapter 3, “WebLogic RMI API,” describes the packages shipped as part of
WebLogic RMI. The public API includes the WebLogic implementation of the
RMI base classes, the registry, and the server packages.

Audience

This document is written for application developers who want to build e-commerce
applications using the Remote Method Invocation (RMI) features. It is assumed that
readers know Web technologies, object-oriented programming techniques, and the
Java programming language.
Programming WebLogic RMI v

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. In
additon to this document you may want to review Programming RMI over IIOP.
WebLogic RMI over IIOP extends the RMI programming model by providing the
ability for clients to access RMI remote objects using the Internet Inter-ORB Protocol
(IIOP)
vi Programming WebLogic RMI

http://www.adobe.com
http://e-docs.bea.com/wls/docs60/rmi_iiop/index.html

Contact Us!

Your feedback on the BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Programming WebLogic RMI vii

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

n An argument can be repeated several times in the command line.

n The statement omits additional optional arguments.

n You can enter additional parameters, values, or other information

Convention Usage
viii Programming WebLogic RMI

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic RMI ix

x Programming WebLogic RMI

Introducing WebLogic RMI
1 Introduction to
WebLogic RMI

The following sections introduce WebLogic RMI and describe the advantages and
features.

n Introducing WebLogic RMI

n Advantages of WebLogic RMI

n WebLogic RMI Features

n WebLogic RMI Performance and Scalability

Introducing WebLogic RMI

Remote Method Invocation (RMI) is the standard for distributed object computing in
Java. RMI allows an application to obtain a reference to an object that exists elsewhere
in the network, and then to invoke methods on that object as though it existed locally
in the client’s virtual machine. RMI specifies how distributed Java applications should
operate over multiple Java virtual machines.

WebLogic implements the JavaSoft RMI specification. WebLogic RMI provides
standards-based distributed object computing. WebLogic Server enables fast, reliable,
large-scale network computing, and WebLogic RMI allows products, services, and
resources to exist anywhere on the network but appear to the programmer and the end
user as part of the local environment.
Programming WebLogic RMI 1-1

Advantages of WebLogic RMI
WebLogic RMI scales linearly under load, and execution requests can be partitioned
into a configurable number of server threads. Multiple server threads allow WebLogic
Server to take advantage of latency time and available processors.

There are differences in the JavaSoft reference implementation of RMI and
WebLogic’s RMI product; however, these differences are completely transparent to
the developer. WebLogic RMI is WebLogic’s implementaion of JavaSoft RMI.

In addition, WebLogic RMI is fully integrated with WebLogic JNDI. Applications can
be partitioned into meaningful name spaces by using either the JNDI API or the
Registry interfaces in WebLogic RMI.

The WebLogic RMI compiler generates stubs and skeltons that completely replace the
stubs and skeltons produced by RMIC, the RMI compiler. Like RMIC, the WebLogic
RMI compiler produces enough compile-time information to support runtime
resolution of classes, methods, and instances to override Object methods, and to
deliver exceptions raised in the server to the invoking clients.

If you are just beginning to learn about RMI, visit the JavaSoft website and take the
RMI tutorial. This document contains information about using WebLogic RMI, but it
is not a beginner's tutorial on remote objects or writing distributed applications.

Advantages of WebLogic RMI

As a service that operates within WebLogic Server, WebLogic RMI has some
characteristics that differ from JavaSoft’s reference implementation of RMI. These
characteristics do not change how you uses WebLogic RMI, but they do affect
performance and scalability.

WebLogic RMI is completely standards-compliant. If you are an RMI user, you can
convert your programs by changing nothing more than the import statement and
running your remote classes through the WebLogic RMI compiler..

Here is a brief comparison of WebLogic RMI and the JavaSoft RMI reference
implementation. In general, like JavaSoft’s reference implementation of RMI,
WebLogic RMI provides transparent remote invocation in different JVMs. Remote
interfaces and implementations that are written to the RMI specification can be
Programming WebLogic RMI 1-2

Advantages of WebLogic RMI
compiled with the WebLogic RMI compiler and used without changes. But there are
significant differences in the fundamental implementation of WebLogic RMI that
enhance the many aspects of distributed computing.

Differences in WebLogic RMI’s Implementation

The following sections identify some of the differences in WebLogic’s implementaion
of RMI compaired to the JavaSoft RMI implementation.

Performance-related issues
Management of threads and sockets. The reference implementation uses
multiple sockets—an expensive, limited resource — to support
communications among the server, clients, and the RMI registry. WebLogic
RMI uses a single, multiplexed, asynchronous, bidirectional connection for
WebLogic RMI client-to-network traffic. The same connection may also
support WebLogic JDBC requests or other services. With WebLogic RMI,
the complicated virtual circuit that is maintained by the reference
implementation is replaced by a single connection to the WebLogic Server.
Serialization. WebLogic RMI uses serialization, which offers a significant
performance gain, even for one-time use of a remote class.
Resolution of co-located objects. Unlike the reference implementation, with
WebLogic RMI there is no performance penalty for co-located objects that
are defined as remote. References to co-located “remote” objects are resolved
as direct references to the actual implementation object, rather than to the
generated proxies.
Processes for supporting services. The WebLogic RMI registry, a
functional replacement for the RMI registry process, runs insides the
WebLogic Server; no additional processes are needed for WebLogic RMI.
Garbage collection. JavaSoft’s RMI implementation supports distributed
garbage collection, which is an expensive task. With WebLogic RMI,
garbage collection is handled more efficiently at the session level by the
WebLogic Server.

Power and flexibility
SmartStub support. Stubs in WebLogic RMI can be “SmartStubs,” which
are custom stubs that allow for application-specific partitioning of logic and
data at the object level between client and server. SmartStubs override the
generated stubs and permit custom optimizations of WebLogic RMI
infrastructure.
Programming WebLogic RMI 1-3

Advantages of WebLogic RMI
Ease of use
Fewer things to implement. WebLogic RMI provides ease-of-use
extensions for the use of remote interfaces and code generation. For example,
a remote method does not need to declare RemoteException, and WebLogic
RMI does not require a separate stub and skeleton class for every remote
class.
Security without a Security Manager. There is no requirement in
WebLogic RMI to set a Security Manager. You may comment out the call to
setSecurityManager() when converting RMI code to WebLogic RMI.
Since all WebLogic RMI services are provided by WebLogic Server, which
has other more sophisticated options for security SSL and ACLs, there is no
need for separate functionality that applies only to the WebLogic RMI
service.

Naming/Registry issues
Flexible naming and lookup. WebLogic RMI allows you to chose among
several schemes for naming, binding, and looking up remote objects. In your
URLs, you can use the standard rmi:// scheme, or http:// which tunnels
WebLogic RMI requests over HTTP, thus making WebLogic RMI remote
invocation available even through firewalls.

WebLogic RMI is fully integrated with WebLogic JNDI. Applications can be
partitioned into meaningful name spaces by using either the Java Naming and
Directory Interface (JNDI) API or the registry interfaces in WebLogic RMI.
JNDI allows publication of RMI objects through enterprise naming services,
such as LDAP or NDS.

Client-side invocation
Client-to-server, client-to-client, or server-to-client invocations. Since
WebLogic RMI operates within a well-defined server environment, where
clients and servers are connected with optimized, multiplexed, asynchronous,
bidirectional connections, WebLogic RMI can support client-side callbacks
into applications. This architecture allows clients to host remote objects with
levels of service and resource access that are similar to those supported by the
WebLogic Server.

This capability enables a client application to publish its objects through the
registry. Other clients or servers can use the client-resident objects just like
any server-resident objects. No performance penalty is imposed on the
publishing client for using its own objects, even though stubs and skeletons
will exist for accessing the objects remotely. When a second client looks up
the object and then invokes on it, the request will be routed through the
Programming WebLogic RMI 1-4

WebLogic RMI Features
WebLogic Server to the first client, which will broker the request and invoke
the remote object within its local JVM.

Inheritance
Preservation of a logical object hierarchy. There is no requirement in
WebLogic RMI to extend UnicastRemoteObject.This functionality is built
into WebLogic Server and preserves your object hierarchy. There is no
artificial need for every remote class to inherit from UnicastRemoteObject in
order to inherit implementation from the rmi.server package; rather, your
remote classes can inherit from classes within your application hierarchy and
yet retain the behavior of the rmi.server package.

Instrumentation and management
The reference implementation RMI server obscures RMI operations; it has
few tools for debugging or monitoring your RMI classes. WebLogic Server,
which hosts the RMI registry, provides a well-instrumented environment for
development and deployment of distributed applications.

WebLogic RMI Features

Like the JavaSoft reference implementation of RMI, WebLogic RMI has a code
generator, and a registry and server hosted by a WebLogic Server. But WebLogic RMI
provides features that are different or missing from the reference implementation.

WebLogic RMI Compiler

The WebLogic RMI code generator (compiler) produces a stub and a skeleton that
support the interfaces implemented by the remote object. The object’s implementation
is bound to a name in the RMI registry, and any client can acquire a remote stub of the
object upon which it can invoke by looking up the object in the registry.

With WebLogic RMI it is possible to specify that platform-specific compilers should
be used. In addition, the WebLogic RMI compiler accepts and passes on any additional
Java compiler options to the Java compiler.
Programming WebLogic RMI 1-5

1 Introduction to WebLogic RMI
The WebLogic RMI compiler allows a flexible inheritance structure; remote classes
can also implement non-remote interfaces, and code generation can be done on the
descendants of a class, or on an abstract class. Your distributed application can exist in
a meaningful object hierarchy, rather than the artificial hierarchy that results under the
reference RMI where every remote class must inherit from a single interface.

Proxy Classes

The WebLogic RMI compiler increases efficiency in its use of proxies. Proxy classes
are the resulting skeleton and stub classes that any RMI compiler produces when run
against a remote class (that is, one that implements a remote interface). The WebLogic
RMI compiler by default produces proxies for the remote interface, and the remote
classes share the proxies. This is a much more efficient system than the reference
implementation’s model of producing proxies for each remote class. When a remote
object implements more than one interface, the proxy names and packages are
determined by encoding the set of interfaces, unless you choose to produce
class-specific proxies. When a class-specific proxy is found, it takes precedence over
the interface-specific proxy.

WebLogic RMI Registry and Server

With WebLogic RMI, the RMI registry is hosted by WebLogic Server, which provides
the necessary networking infrastructure and execution model for using RMI in a
production environment.

WebLogic Server, and likewise the registry, can be accessed by a variety of client
protocols, includinga secure (SSL) mode of WebLogic’s protocol, HTTP tunneling,
HTTPS, and IIOP. A call to look up an object in the WebLogic registry may use
various URL schemes, including the default rmi:// scheme, http://, https://, and
iiop://.

WebLogic RMI Performance and Scalability

WebLogic RMI performance is enhanced by its integration into the WebLogic Server
framework, which provides the underlying support for communications, management
of threads and sockets, efficient garbage collection, and server-related support.
1-6 Programming WebLogic RMI

WebLogic RMI Performance and Scalability
WebLogic RMI scales dramatically better than the reference implementation, and
provides outstanding performance and scalability. Even relatively small,
single-processor, PC-class servers can support well over a thousand simultaneous RMI
clients, depending on the total workload of the server and the complexity of the method
calls.

WebLogic RMI, while offering the flexibility and universality of the JavaSoft
standard, provides the power and performance necessary for a production
environment. Because WebLogic RMI depends upon and takes advantage of the
sophisticated infrastructure of WebLogic Server, it is fast and scalable, with many
additional features that support real-world use of RMI for building complex,
distributed systems.
Programming WebLogic RMI 1-7

1 Introduction to WebLogic RMI
1-8 Programming WebLogic RMI

WebLogic RMI Compiler
2 Programming
WebLogic RMI

The following sections describe the WebLogic RMI features used to program RMI for
use with WebLogic Server.

n WebLogic RMI Compiler

n Proxies in WebLogic RMI

n WebLogic RMI Registry

n Implementation Features

WebLogic RMI Compiler

Run the WebLogic RMI compiler (rmic) by executing the weblogic.rmic class on
the Java class file you want to execute via RMI. The compiler produces a stub and
skeleton.

The stub class is the serializable class that is passed to the client. The skeleton is a
server-side class that processes requests from the stub on the client. The
implementation for the class is bound to a name in the RMI registry in the WebLogic
Server.

A client acquires the stub for the class by looking up the class in the registry.
WebLogic Server serializes the stub and sends it to the client. The client calls methods
on the stub just as if it were a local class and the stub serializes the requests and sends
Programming WebLogic RMI 2-1

2 Programming WebLogic RMI
them to the skeleton on the WebLogic Server. The skeleton deserializes client requests
and executes them against the implementation classes, serializing results and sending
them back to the stub on the client.

With the WebLogic RMI compiler, you can specify that more platform-specific
compilers should be used. By default, weblogic.rmic invokes the compiler from
the JDK distribution, javac, but you may call any compiler with the -compiler
option to weblogic.rmic, as shown in this example which calls the Symantec Java
compiler:

 $ java weblogic.rmic -compiler \Cafe\bin\sj.exe

WebLogic RMI Compiler Options

The WebLogic RMI compiler accepts any option supported by the Java compiler; for
example, you could add -d \classes examples.hello.HelloImpl to the
command above. All other options supported by the compiler can be used, and are
passed directly to the Java compiler. The following options for java
weblogic.rmic are available for you to use, and should be entered in one line, after
java weblogic.rmic and before the name of the remote class.

Table 1: WebLogic RMI Compiler Options

-help Prints a description of the options

-version Prints version information

-d <dir> Target (top-level) directory for complation

-verbosemethods Instruments proxies to print debug info for std err

-descriptor Associates or creates a descriptor for each remote class

-nomanglednames Does not mangle the names of stubs and skeletons

-idl Generates IDLs for remote interfaces

-idlOverwrite Overwrites existing IDL files

-idlVerbose Displays verbose information for IDL information

-idlStrict Generate IDL according to OMG standard
2-2 Programming WebLogic RMI

WebLogic RMI Compiler
-idlNoFactories Do not generate factory methods for valuetypes

-idlDirectory <idlDirectory> Specifies the directory where IDL files will be created (Default =
current directory)

-clusterable Marks the service as clusterable (can be hosted by multiple servers
in a WebLogic cluster). Each hosting object, or replica, is bound
into the naming service under a common name. When the service
stub is retrieved from the naming service, it contains a replica-aware
reference that maintains the list of replicas and performs
load-balancing and fail-over between them.

-loadAlgorithm <algorithm> Only for use in conjunction with -clusterable. Specifies a service
specific algorithm to use for load-balancing and failover (Default =
weblogic.cluster.loadAlgorithm). Must be one of the following:
round-robin, random, or weight-based.

-callRouter <callRouterClass> Only for use in conjunction with -clusterable. Specifies the class to
be used for routing method calls. This class must implement
weblogic.rmi.extensions.CallRouter. If specified, an instance of the
class will be called before each method call and be given the
opportunity to choose a server to route to based on the method
parameters. It either returns a server name or null--indicating that
the current load algorithm should be used.

-stickToFirstServer Only for use in conjunction with -clusterable. Enables ’sticky’ load
balancing. The server chosen for servicing the first request will be
used for all subsequent requests.

-methodsAreIdempotent Only for use in conjuction with -clusterable. Indicates that the
methods on this class are idempotent. This allows the stub to attempt
recovery form any communication failure, even if it can not ensure
that failure occurred before the remote methode was invoked. By
default (if this option is not used) the stub will only retry on failures
that are guaranteed to have occured before the remote method was
invoked.

-replicaListRefreshInterval <seconds> Only for use in conjunction with -clusterable. Specifies the
minimum time to wait between attempts to refresh the replica list
from the cluster (Default = 180 seconds).

-iiop Generate IIOP stubs from servers

-iiopDirectory Directory where IIOP proxy classes are written

Table 1: WebLogic RMI Compiler Options
Programming WebLogic RMI 2-3

2 Programming WebLogic RMI
Additional WebLogic RMI Compiler Features

Other features of the WebLogic RMI compiler include:

n Signatures of remote methods do not need to throw RemoteException.

n Remote exceptions can be mapped to RuntimeException.

n Remote classes can also implement non-remote interfaces. For example,
java.io.Input/OutputStream classes are not serializable and do not
implement an interface that conforms to the specification for a remote interface.

n Code generation can be done on the descendants of a class.

n Code generation can be done from an abstract class.

-keepgenerated Keeps the generated .java files

-commentary Emits commentary

-compiler <compiler> Specifies the java compiler (Default = javac)

-comilerclass <null> Loads the compiler as a class instead of an executable

-g Compiles debugging information into a class file

-O Compiles with optimization enabled

-debug Compiles with debugging enabled

-nowarn Compiles without warnings

-verbose Compiles with verbose output

-nowrite Does not generate .class files

-deprecation Warns of deprecated calls

-normi Passes through to Symantec’s sj

-J <option> Flags passed through to java runtime

-classpath <path> Classpath to use during compilation

Table 1: WebLogic RMI Compiler Options
2-4 Programming WebLogic RMI

Proxies in WebLogic RMI
Proxies in WebLogic RMI

A proxy is a class used by the clients of a remote object, in the case of RMI, a skeleton
and a stub. The stub class is the instance that is invoked upon in the client’s Java Virtual
Machine (JVM); the stub marshals the invoked method name and its arguments,
forwards these to the remote JVM, and -- after the remote invocation is completed and
returns -- unmarshals the results on the client. The skeleton class, which exists in the
remote JVM, unmarshals the invoked method and arguments on the remote JVM,
invokes the method on the instance of the remote object, and then marshals the results
for return to the client.

In the JavaSoft RMI reference implementation, there is a one-to-one correspondence
between the proxy classes and the remote objects. For example, running the JavaSoft
RMI compiler against example.hello.HelloImpl -- which implements the
remote class example.hello.Hello -- will produce two classes,
example.hello.HelloImpl_Skel and
example.hello.HelloImpl_Stub. If another class -- for example,
counter.example.CiaoImpl also implements the same remote interface
(example.hello.Hello), a virtually identical pair of proxy classes will be
produced with the JavaSoft RMI compiler
(counter.example.CiaoImpl_Skel and
counter.example.CiaoImpl_Stub).

Using the WebLogic RMI Compiler with Proxies

The WebLogic RMI compiler works differently. The default behavior of the
WebLogic RMI compiler is to produce proxies for the remote interface, and for the
remote classes to share the proxies. For example, example.hello.HelloImpl
and counter.example.CiaoImpl are represented by a single stub and skeleton,
the proxy that matches the remote interface implemented by the remote object -- in this
case, example.hello.Hello.

When a remote object implements more than one interface, the proxy names and
packages are determined by encoding the set of interfaces. You can override this
default behavior with the WebLogic RMI compiler option -nomanglednames,
which will cause the compiler to produce proxies specific to the remote class. When a
class-specific proxy is found, it takes precedence over the interface-specific proxy.
Programming WebLogic RMI 2-5

2 Programming WebLogic RMI
In addition, with WebLogic RMI proxy classes, the stubs are not final. References to
colocated remote objects are references to the objects themselves, not to the stubs.

WebLogic RMI Registry

WebLogic Server hosts the RMI registry and provides server infrastructure for RMI
clients. The overhead for RMI registry and server communications is minimal, since
registry traffic is multiplexed over the same connection as JDBC and other kinds of
traffic. Clients use a single socket for RMI; scaling for RMI clients is linear in the
WebLogic Server environment.

The WebLogic RMI registry is created when WebLogic Server starts up, and calls to
create new registries simply locate the existing registry. Objects that have been bound
in the registry can be accessed with a variety of client protocols, including the standard
rmi://, as well as http://, or https://. In fact, all of the naming services use JNDI.

Implementation Features

In general, functional equivalents of all methods in the java.rmi package are
provided in WebLogic RMI, except for those methods in the RMIClassLoader and
the method java.rmi.server.RemoteServer.getClientHost().

All other interfaces, exceptions, and classes are supported in WebLogic RMI. Here are
notes on particular implementations that may be of interest:

rmi.Naming is implemented as a final class in WebLogic RMI with all public
methods supported by JNDI, which is the preferred mechanism for naming objects in
WebLogic RMI.

rmi.RMISecurityManager is implemented as a non-final class with all public
methods in WebLogic RMI and, unlike the restrictive JavaSoft reference
implementation, is entirely permissive. Security in WebLogic RMI is an integrated
part of the larger WebLogic environment, for which there is support for SSL (Secure
Socket Layer) and ACLs (Access Control Lists).
2-6 Programming WebLogic RMI

Implementation Features
rmi.registry.LocateRegistry is implemented as a final class with all public
methods, but a call to LocateRegistry.createRegistry(int port) will
not create a colocated registry, but rather will attempt to connect to the server-side
instance that implements JNDI, for which host and port are designated by attributes. In
WebLogic RMI, a call to this method allows the client to find the JNDI tree on the
WebLogic Server.

Note: You can use protocols other than the default (rmi) as well, and provide the
scheme, host, and port as a URL, as shown here:

Note: LocateRegistry.getRegistry(https://localhost:7002);

Note: which will locate a WebLogic Server registry on the local host at port 7002,
using a standard SSL protocol.

rmi.server.LogStream diverges from the JavaSoft reference implementation in
that the write(byte[]) method logs messages through the WebLogic SErver log
file.

rmi.server.RemoteObject is implemented in WebLogic RMI to preserve the
type equivalence of UnicastRemoteObject, but the functionality is provided by the
WebLogic RMI base class Stub.

rmi.server.RemoteServer is implemented as the abstract superclass of
rmi.server.UnicastRemoteObject and all public methods are supported in
WebLogic RMI with the exception of getClientHost().

rmi.server.UnicastRemoteObject is implemented as the base class for
remote objects, and all the methods in this class are implemented in terms of the
WebLogic RMI base class Stub. This allows the stub to override non-final Object
methods and equate these to the implementation without making any requirements on
the implementation.

In WebLogic RMI, all method parameters are pass-by-value, unless the invoking
object resides in the same Java Virtual Machine (JVM) as the RMI object. In this
scenerio, method parameters are pass-by-reference.

Note: WebLogic RMI does not support uploading classes from the client. In other
words, any classes passed to a remote object must be available within the
server’s CLASSPATH.
Programming WebLogic RMI 2-7

2 Programming WebLogic RMI
The setSecurityManager() method is provided in WebLogic RMI for
compilation compatibility only. No security is associated with it, since WebLogic RMI
depends on the more general security model within WebLogic Server. If, however, you
do set a SecurityManager, you can set only one. Before setting a SecurityManager, you
should test to see if one has already been set; if you try to set another, your program
will throw an exception. Here is an example:

 if (System.getSecurityManager() == null)

 System.setSecurityManager(new RMISecurityManager());

The following classes are implemented but unused in WebLogic RMI:

n rmi.dgc.Lease

n rmi.dgc.VMID

n rmi.server.ObjID

n rmi.server.Operation

n rmi.server.RMIClassLoader

n rmi.server.RMISocketFactory

n rmi.server.RemoteStub

n rmi.server.UID
2-8 Programming WebLogic RMI

Overview of the WebLogic RMI API
3 WebLogic RMI API

The following sections describe the WebLogic RMI API.

n Overview of the WebLogic RMI API

n Implementing with WebLogic RMI

n Using the WebLogic RMI Compiler for Clustered Services

Overview of the WebLogic RMI API

There are several packages shipped as part of WebLogic RMI. The public API includes
the WebLogic implementation of the RMI base classes, the registry, and the server
packages. It also includes the WebLogic RMI compiler and supporting classes that are
not part of the public API.

If you have written RMI classes, you can drop them in WebLogic RMI by changing
the import statement on a remote interface and the classes that extend it. To add remote
invocation to your client applications, look up the object by name in the registry.

The basic building block for all Remote objects is the interface
weblogic.rmi.Remote, which contains no methods. You extend this "tagging"
interface -- that is, it functions as a tag to identify remote classes -- to create your own
remote interface, with method stubs that create a structure for your remote object. Then
you implement your own remote interface with a remote class. This implementation is
bound to a name in the registry, from whence a client or server may look up the object
and use it remotely.
Programming WebLogic RMI 3-1

3 WebLogic RMI API
As in the JavaSoft reference implementation of RMI, the weblogic.rmi.Naming
class is an important one. It includes methods for binding, unbinding, and rebinding
names to remote objects in the registry. It also includes a lookup() method to give
a client access to a named remote object in the registry.

In addition, WebLogic JNDI provides naming and lookup services. WebLogic RMI
supports naming and lookup in JNDI.

WebLogic RMI Exceptions are identical to and extend java.rmi exceptions so that
existing interfaces and implementations do not have to changeexception handling.

Implementing with WebLogic RMI

There are two parts to using WebLogic RMI. First you create the interfaces and classes
that you will invoke remotely. Then you add code to your client application that carries
out the remote invocations. The following sections detail these implementation phases.

 Creating classes that can be invoked remotely
Step 1. Write a Remote interface
Step 2. Implement the Remote interface
Step 3. Compile the java class
Step 4. Compile the implementation class with RMI compiler
Step 5. Write a client that invokes on remote objects
 Full code examples

 Setting up WebLogic Server for RMI

 WebLogic RMI for clustered services
 Cluster-specific RMI compiler options
 Non-replicated stubs

Creating classes that can be invoked remotely

You can write your own WebLogic RMI classes in just a few steps. Here is a simple
example.
3-2 Programming WebLogic RMI

Implementing with WebLogic RMI
Step 1. Write a Remote interface

Every class that can be remotely invoked implements a remote interface. A remote
interface must extend the interface weblogic.rmi.Remote, which contains no
method signatures.

The interface that you write should include method signatures that will be
implemented in every remote class that implements it. Interfaces in Java are a powerful
concept, and allow great flexibility at both design time and runtime. If you need more
information on how to write an interface, see the JavaSoft tutorial Creating Interfaces.

Your Remote interface should follow guidelines similar to those followed if you are
using JavaSoft’s RMI:

n It must be public. Otherwise a client will get an error when attempting to load a
remote object that implements it.

n It must extend the interface weblogic.rmi.Remote.

n Unlike JavaSoft’s RMI, it is not necessary that each method in the interface
declares weblogic.rmi.RemoteException in its throws block. The
Exceptions that your application throws can be specific to your application, and
may extend RuntimeException. WebLogic’s RMI subclasses
java.rmi.RemoteException so if you already have existing RMI classes, you will
not have to change your exception handling.

With JavaSoft’s RMI, every class that implements a remote interface must have
accompanying, precompiled stubs and skeletons. WebLogic RMI supports more
flexible runtime code generation; WebLogic RMI supports stubs and skeletons that are
type-correct but are otherwise independent of the class that implements the interface.
If a class implements a single remote interface, the stub and skeleton that is generated
by the compiler will have the same name as the remote interface. If a class implements
more than one remote interface, the name of the stub and skeleton that result from
compilation will depend on the name mangling used by the compiler.

Your Remote interface may not contain much code. All you need are the method
signatures for methods you want to implement in Remote classes.

Here is an example of a Remote interface. It has only one method signature.

package examples.rmi.multihello;

import weblogic.rmi.*;

public interface Hello extends weblogic.rmi.Remote {
Programming WebLogic RMI 3-3

3 WebLogic RMI API
 String sayHello() throws RemoteException;

}

Step 2. Implement the Remote interface

Now write the class that will be invoked remotely. The class should implement the
Remote interface that you wrote in Step 1, which means that you implement the
method signatures that are contained in the interface. Currently, all the code generation
that takes place in WebLogic RMI is dependent on this class file, but this will change
in future releases.

With WebLogic’s RMI, there is no need for your class to extend UnicastRemoteObject,
which is required by JavaSoft’s RMI. (If you extend UnicastRemoteObject, WebLogic
RMI will not care, but it isn’t necessary.) This allows you to retain a class hierarchy
that makes sense for your application.

Your class may implement more than one Remote interface. Your class may also
define methods that are not in the Remote interface, but you will not be able to invoke
those methods remotely. You should also define at least a default constructor.

In this example, we implement a class that creates multiple HelloImpls and binds each
to a unique name in the Registry. The method sayHello() greets the user and
identifies the object which was remotely invoked.

package examples.rmi.multihello;

import weblogic.rmi.*;

public class HelloImpl implements Hello {

 private String name;

 public HelloImpl(String s) throws RemoteException {

 name = s;

 }

 public String sayHello() throws RemoteException {

 return "Hello! From " + name;

 }
3-4 Programming WebLogic RMI

Implementing with WebLogic RMI
Finally, write a main that creates an instance of the remote object and registers it in the
WebLogic RMI registry, by binding it to a name (a URL that points to the
implementation of the object). A client that wants to obtain a stub to use the object
remotely will be able to look up the object by name.

Here is an example of a main() for the HelloImpl class. This registers the HelloImpl
object under the name HelloRemoteWorld in a WebLogic Server registry.

 public static void main(String[] argv) {

 // Not needed with WebLogic RMI

 // System.setSecurityManager(new RmiSecurityManager());

 // But if you include this line of code, you should make

 // it conditional, as shown here:

 // if (System.getSecurityManager() == null)

 // System.setSecurityManager(new RmiSecurityManager());

 int i = 0;

 try {

 for (i = 0; i < 10; i++) {

 HelloImpl obj = new HelloImpl("MultiHelloServer" + i);

 Naming.rebind("//localhost/MultiHelloServer" + i, obj);

System.out.println("MultiHelloServer" + i + " created.");

 }

 System.out.println("Created and registered " + i +

 " MultiHelloImpls.");

 }

 catch (Exception e) {

 System.out.println("HelloImpl error: " + e.getMessage());

 e.printStackTrace();

 }

 }
Programming WebLogic RMI 3-5

3 WebLogic RMI API
WebLogic RMI does not require that you set a SecurityManager in order to integrate
security into your application. Security is handled by WebLogic Server support for
SSL and ACLs. If you must, you may use your own security manager, but do not install
it in the WebLogic Server.

Step 3. Compile the java class

First compile the .java files with javac or some other Java compiler to produce .class
files for the Remote interface and the class that implements it.

Step 4. Compile the implementation class with RMI compiler

Run the WebLogic RMI compiler against the remote class to generate the stub and
skeleton. A stub is the client-side proxy for a remote object that forwards each
WebLogic RMI call to its matching serverside skeleton, which in turn forwards the call
to the actual remote object implementation. To run the WebLogic RM compiler, use
the command pattern:

 $ java weblogic.rmic nameOfRemoteClass

where nameOfRemoteClass is the full package name of the class that implements your
Remote interface. With the examples we have used previously, the command would
be:

 $ java weblogic.rmic examples.rmi.hello.HelloImpl

You should set the flag -keepgenerated when you run the WebLogic RMI
compiler if you want to keep the generated stub and skeleton files. For a listing of the
available WebLogic RMI compiler options, see Chapter , “WebLogic RMI
Compiler.”.

Running the WebLogic RMI compiler creates two new classes, a stub and a skeleton.
These appear as nameOfInterface_Stub.class and nameOfInterface_Skel.class. The
four files created -- the remote interface, the class that implements it, and the stub and
skeleton created by the WebLogic RMI compiler -- should be placed in the appropriate
directory in the CLASSPATH of the WebLogic Server whose URL you used in the
naming scheme of the object's main().
3-6 Programming WebLogic RMI

Implementing with WebLogic RMI
Invoking methods on remote objects in your client code

Once you compile and install the remote class, the interface it implements, and its stub
and skeleton on the WebLogic Server, you can add code to a WebLogic client
application to invoke methods in the remote class.

In general, it takes just a single line of code: you need to get a reference to the remote
object. Do this with the Naming.lookup() method. Here is a short WebLogic
client application that uses an object created in a previous example.

package mypackage.myclient;

import weblogic.rmi.*;

import weblogic.common.*;

public class HelloWorld throws Exception {

 // Look up the remote object in the

 // WebLogic’s registry

 Hello hi = (Hello)Naming.lookup("HelloRemoteWorld");

 // Invoke a method remotely

 String message = hi.sayHello();

 System.out.println(message);

}

This example demonstrates using a Java application as the client.

Full Code Examples

Here is the full code for the Hello interface.

package examples.rmi.hello;

import weblogic.rmi.*;
Programming WebLogic RMI 3-7

3 WebLogic RMI API
public interface Hello extends weblogic.rmi.Remote {

 String sayHello() throws RemoteException;

}

Here is the full code for the HelloImpl class that implements it.

package examples.rmi.hello;

import weblogic.rmi.*;

public class HelloImpl

 // Don’t need this in WebLogic RMI:

 // extends UnicastRemoteObject

 implements Hello {

 public HelloImpl() throws RemoteException {

 super();

 }

 public String sayHello() throws RemoteException {

 return "Hello Remote World!!";

 }

 public static void main(String[] argv) {

 try {

 HelloImpl obj = new HelloImpl();
3-8 Programming WebLogic RMI

Using the WebLogic RMI Compiler for Clustered Services
 Naming.bind("HelloRemoteWorld", obj);

 }

 catch (Exception e) {

 System.out.println("HelloImpl error: " + e.getMessage());

 e.printStackTrace();

 }

 }

}

Using the WebLogic RMI Compiler for
Clustered Services

The following sections identifies the cluster-specific RMI options used with
WebLogic’s implementation of RMI and describes the non-replicated stubs.

Cluster-specific RMI compiler options

The RMI compiler (RMIC) has several flags that relate to clusters. These argument
tags are not case sensitive; inner caps are used in these descriptions for ease of reading.

-clusterable
Generates a stub that can failover and load balance. By default, the generated
stub will be capable of failover and will load balance between replicas using
a round-robin scheduling algorithm.

-methodsAreIdempotent
May only be used in conjunction with "-clusterable". Indicates to the
stub that it can attempt retries after failover even if it might result in executing
the same method multiple times. If this flag isn't present, methods for this stub
Programming WebLogic RMI 3-9

3 WebLogic RMI API
are not considered idempotent. The exceptions that are handled by this are
described in Exceptions used for failover.

-loadAlgorithm load algorithm name
May only be used in conjunction with "-clusterable". Specifies a
service-specific algorithm that will be used by the stub to handle failover and
load balancing. If this argument is unspecified, the default load balancing
algorithm specified in the Administration Console. For example, to specify
weight-based load balancing:

 $ java weblogic.rmic -clusterable -loadAlgorithm=weight-based

-stickToFirstServer
May only be used in conjunction with "-clusterable". Enables ’sticky’
load balancing. The server chosen for servicing the first request will be used
for all subsequent requests.

-replicaListRefreshInterval seconds
May only be used in conjunction with "-clusterable". Specifies the
minimum time to wait between attempts to refresh the replica list from the
Cluster. Default is 180 seconds (3 minutes).

-callRouter callRouterClass
May only be used in conjunction with "-clusterable". Specifies the
class to be used for routing method calls. This class must implement
weblogic.rmi.extensions.CallRouter. If specified, an instance
of this class will be called before each method call and be given the
opportunity to choose the server given the method parameters. It either
returns a server name or null indicating that the current load algorithm
should be used to pick the server.

Non-Replicated Stubs

You can also generate stubs that are not replicated; these are known as "pinned"
services, because after they are registered they will be available only from the host with
which they are registered and will not provide transparent failover or load balancing.
Pinned services are available cluster-wide, since they are bound into the replicated
cluster-wide JNDI tree; but if the individual server that hosts them fails, the client
cannot failover to another server.
3-10 Programming WebLogic RMI

Using the WebLogic RMI Compiler for Clustered Services
Client-side RMI objects can only be reached through a single WebLogic Server, even
in a cluster. If a client-side RMI object is bound into the JNDI naming service, it will
only be reachable as long as the Server that carried out the bind is reachable.
Programming WebLogic RMI 3-11

3 WebLogic RMI API
3-12 Programming WebLogic RMI

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Introduction to WebLogic RMI
	2. Programming WebLogic RMI
	3. WebLogic RMI API

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic RMI
	Introducing WebLogic RMI
	Advantages of WebLogic RMI
	Differences in WebLogic RMI’s Implementation
	Performance-related issues
	Power and flexibility
	Ease of use
	Naming/Registry issues
	Client-side invocation
	Inheritance
	Instrumentation and management

	WebLogic RMI Features
	WebLogic RMI Compiler
	Proxy Classes
	WebLogic RMI Registry and Server

	WebLogic RMI Performance and Scalability

	2 Programming WebLogic RMI
	WebLogic RMI Compiler
	WebLogic RMI Compiler Options
	Table 1: WebLogic RMI Compiler Options

	Additional WebLogic RMI Compiler Features

	Proxies in WebLogic RMI
	Using the WebLogic RMI Compiler with Proxies

	WebLogic RMI Registry
	Implementation Features

	3 WebLogic RMI API
	Overview of the WebLogic RMI API
	Implementing with WebLogic RMI
	There are two parts to using WebLogic RMI. First you create the interfaces and classes that you w...
	Creating classes that can be invoked remotely
	Setting up WebLogic Server for RMI
	WebLogic RMI for clustered services
	Creating classes that can be invoked remotely
	Step 1. Write a Remote interface
	Step 2. Implement the Remote interface
	Step 3. Compile the java class
	Step 4. Compile the implementation class with RMI compiler

	Invoking methods on remote objects in your client code
	Full Code Examples

	Using the WebLogic RMI Compiler for Clustered Services
	Cluster-specific RMI compiler options
	-clusterable
	-methodsAreIdempotent
	-loadAlgorithm load algorithm name
	-stickToFirstServer
	-replicaListRefreshInterval seconds
	-callRouter callRouterClass

	Non-Replicated Stubs

