BEA
WebLogic Server

Programming
WebLogic RMI

BEA WebLogic Server 6.0
Document Date: March 3, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Programming WebL ogic RM|

Document Edition Date Software Version

March 3, 2001 BEA WebL ogic Server Version 6.0

Contents

About This Document

AUAIENCE. ...ttt ettt et e s et e e ee e e e st e e e e ene e e s v
E-0OCS WED SItE..... ettt se et e st Vi
HOW to Print the DOCUMENE.........cooiuiiiiie et e Vi
Related INfOrMEatioN...........o.oiie e e e Vi
L0091 = 'ox AU LS TSR vii
Documentation CONVENLIONSccuruerireeeireeeiese et e s e eee e e e ees Vii
Introduction to WebLogic RMI
Introducing WebLogic RMIcooiiiiiieeeeeesecse sttt 1-1
Advantages of WebLOGIC RMIcooiiiiiiecceeeeee e 1-2
Differencesin WebLogic RMI’s Implementationc.ccccceeieroeieneennne 1-3
WEDLOGIC RMI FEAIUIES.......ccue ettt ettt 1-5
WebLogic RMI COMPILENcoiiieieieeiee et e 1-5
PrOXY ClaSSES....cuecuireeeeie st ettt et ee e e e e ene e 1-6
WebLogic RMI Registry and SErverccoocoeeererieneseeneeee e 1-6
WebL ogic RMI Performance and Scalabilitycccccoveeieiece e, 1-6

Programming WebLogic RMI

WebLogic RMI COMPILEN ..ot st s 2-1
WebLogic RMI Compiler Options.........ccccveiereniereeeie e 2-2
Additional WebLogic RMI Compiler Features...........oovooeeeveeneeinenncnene 2-4

Proxiesin WebLOgIC RMI........ccvciiii ettt 2-5
Using the WebLogic RMI Compiler with ProXies..........ccccoviieieicnennnne 2-5

WebLOGIC RMI REGISITY ...ttt e e s s 2-6

IMplementation FEIUINES..........ooioi it s 2-6

Programming WebL ogic RMI iii

iv

3. WebLogic RMI API

Overview of the WebLOgIC RMI APl ..o 31
Implementing with WebLogic RMI ... 3-2
Creating classesthat can be invoked remotely..........ocoeieieiiiecincnncn 3-2
Step 1. Write a Remote interface ..o ienenee e 3-3

Step 2. Implement the Remote interface.........cocovviniie e 3-4

Step 3. Compilethe java class.........ccooeveveniieeniece e 3-6

Step 4. Compile the implementation class with RMI compiler 3-6
Invoking methods on remote objectsin your client code............ccccceveeeeee. 37

Full Code EXAMPIES ..ot 3-7
Using the WebL ogic RMI Compiler for Clustered Services..........cooeeeeenenene. 3-9
Cluster-specific RMI compiler OptionS..........ccovieneieneneie e 39
Non-Replicated StUDS..........cooiiiiie e e 3-10

Programming WebL ogic RMI

About This Document

This document introduces BEA WebL ogic Server™ RMI features and describes the
RMI implementation that run on the WebL ogic Server platform.

The document is organized as follows:

m Chapter 1, “Introduction to WebL ogic RMI,” isan overview of WebL ogic Server
RMI features and its architecture.

m Chapter 2, “Programming WebL ogic RMI,” describes how to use the WebL ogic
RMI functions and features.

m Chapter 3, “WebL ogic RMI API,” describes the packages shipped as part of
WebLogic RMI. The public API includes the WebL ogic implementation of the
RMI base classes, the registry, and the server packages.

Audience

This document is written for application developers who want to build e-commerce
applications using the Remote Method Invocation (RMI) features. It is assumed that
readers know Web technologies, object-oriented programming techniques, and the

Java programming language.

Programming WebL ogic RMI Y,

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from aWeb browser, one main topic at atime,
by using the File— Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Related Information

Vi

The BEA corporate Web site provides all documentation for WebL ogic Server. In
additon to this document you may want to review Programming RMI over 11OP.
WebLogic RMI over [10P extends the RMI programming model by providing the

ability for clientsto access RMI remote objects using the Internet Inter-ORB Protocol
(11OP)

Programming WebL ogic RMI

http://www.adobe.com
http://e-docs.bea.com/wls/docs60/rmi_iiop/index.html

Contact Us!

Y our feedback on the BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professional s who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneously.

italics Emphasis and book titles.

Programming WebL ogic RMI Vii

mailto:docsupport@bea.com
http://www.bea.com

viii

Convention

Usage

nonospace
t ext

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

inport java.util.Enuneration;
chnod u+w *

confi g/ exanpl es/ appli cati ons
.java

config.xm

f |l oat

nonospace
italic
t ext

Variablesin code.
Example:
String Custoner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{1}

A set of choicesin asyntax line.

Optional itemsin a syntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnumber] [-t tinmeout] [-s send]

Separates mutually exclusive choicesin a syntax line. Example:

java webl ogi c. depl oy [I|ist|depl oy| undepl oy| updat €]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Programming WebL ogic RMI

Convention Usage

Indicates the omission of items from a code example or from asyntax line.

Programming WebL ogic RMI iX

Programming WebL ogic RMI

Introducing WebLogic RMI

1 Introduction to
WebLogic RMI

The following sections introduce WebL ogic RMI and describe the advantages and
features.

m Introducing WebL ogic RMI

m Advantages of WebL ogic RM|

m WebLogic RMI Features

m WeblL ogic RMI Performance and Scalability

Introducing WebLogic RMI

Remote Method Invocation (RMI) isthe standard for distributed object computing in
Java. RMI allowsan application to obtain areference to an object that exists elsewhere
in the network, and then to invoke methods on that object asthough it existed locally
intheclient’ svirtual machine. RM1 specifies how distributed Java applications should
operate over multiple Java virtual machines.

WebL ogic implements the JavaSoft RMI specification. WebL ogic RMI provides
standards-based distributed object computing. WebL ogic Server enablesfagt, reliable,
large-scale network computing, and WebL ogic RMI allows products, services, and
resourcesto exist anywhere on the network but appear to the programmer and the end
user as part of the local environment.

Programming WebL ogic RMI 1-1

Advantages of WebLogic RMI

WebLogic RMI scales linearly under load, and execution requests can be partitioned
into a configurable number of server threads. Multiple server threads allow WebL ogic
Server to take advantage of latency time and available processors.

There are differences in the JavaSoft reference implementation of RMI and
WebL ogic’'s RMI product; however, these differences are completely transparent to
the developer. WebLogic RMI is WebL ogic's implementaion of JavaSoft RMI.

Inaddition, WebL ogic RMI isfully integrated with WebL ogic INDI. Applications can
be partitioned into meaningful name spaces by using either the INDI API or the
Registry interfacesin WebLogic RMI.

The WebL ogic RMI compiler generates stubs and skeltons that compl etely replace the
stubs and skeltons produced by RMIC, the RMI compiler. Like RMIC, the WebL ogic
RMI compiler produces enough compile-time information to support runtime
resolution of classes, methods, and instances to override Object methods, and to
deliver exceptions raised in the server to the invoking clients.

If you are just beginning to learn about RMI, visit the JavaSoft website and take the
RMI tutorid. This document contains information about using WebL ogic RMI, but it
is not abeginner's tutorial on remote objects or writing distributed applications.

Advantages of WebLogic RMI

Asaservice that operates within WebL ogic Server, WebLogic RMI has some
characteristics that differ from JavaSoft’ s reference implementation of RMI. These
characteristics do not change how you uses WebL ogic RMI, but they do affect
performance and scal ability.

WebLogic RMI is completely standards-compliant. If you are an RMI user, you can
convert your programs by changing nothing more than the import statement and
running your remote classes through the WebL ogic RMI compiler..

Hereisabrief comparison of WebLogic RMI and the JavaSoft RMI reference
implementation. In general, like JavaSoft’ s reference implementation of RMI,
WebL ogic RMI provides transparent remote invocation in different VMs. Remote
interfaces and implementations that are written to the RM|I specification can be

Programming WebL ogic RMI 1-2

Advantages of WebLogic RMI

compiled with the WebL ogic RMI compiler and used without changes. But there are
significant differencesin the fundamental implementation of WebL ogic RMI that
enhance the many aspects of distributed computing.

Differences in WebLogic RMI's Implementation

Thefollowing sectionsidentify some of the differencesin WebL ogic’ simplementaion
of RMI compaired to the JavaSoft RMI implementation.

Performance-related issues
Management of threads and sockets. The reference implementation uses
multiple sockets—an expensive, limited resource — to support
communications among the server, clients, and the RMI registry. WebL ogic
RMI uses a single, multiplexed, asynchronous, bidirectional connection for
WebL ogic RMI client-to-network traffic. The same connection may aso
support WebL ogic JDBC requests or other services. With WebL ogic RMI,
the complicated virtua circuit that is maintained by the reference
implementation is replaced by a single connection to the WebL ogic Server.
Serialization. WebLogic RMI uses serialization, which offers a significant
performance gain, even for one-time use of aremote class.
Resolution of co-located objects. Unlike the referenceimplementation, with
WebL ogic RMI there is no performance penalty for co-located objects that
aredefined asremote. Referencesto co-located “ remote” objectsareresolved
as direct references to the actual implementation object, rather than to the
generated proxies.
Processesfor supporting services. The WebLogic RMI registry, a
functional replacement for the RMI registry process, runs insides the
WebL ogic Server; no additional processes are needed for WebL ogic RMI.
Garbage collection. JavaSoft's RMI implementation supports distributed
garbage collection, which is an expensive task. With WebL ogic RMI,
garbage collection is handled more efficiently at the session level by the
WebL ogic Server.

Power and flexibility
SmartStub support. Stubsin WebL ogic RMI can be “ SmartStubs,” which
are custom stubs that allow for application-specific partitioning of logic and
data at the object level between client and server. SmartStubs override the
generated stubs and permit custom optimizations of WebL ogic RMI
infrastructure.

Programming WebL ogic RMI 1-3

Advantages of WebLogic RMI

Ease of use
Fewer thingstoimplement. WebLogic RMI provides ease-of -use
extensions for the use of remote interfaces and code generation. For example,
aremote method does not need to declare RemoteException, and WebL ogic
RMI does not require a separate stub and skeleton class for every remote
class.
Security without a Security Manager. Thereisno requirement in
WebL ogic RMI to set a Security Manager. Y ou may comment out the call to
set Securi t yManager () when converting RMI code to WebL ogic RMI.
Since al WebL ogic RMI services are provided by WebL ogic Server, which
has other more sophisticated options for security SSL and ACL s, thereis no
need for separate functionality that applies only to the WebL ogic RMI
service.

Naming/Registry issues
Flexible naming and lookup. WebL ogic RMI allows you to chose among
severa schemesfor naming, binding, and looking up remote objects. In your
URLS, you can use the standard rmi:// scheme, or http:// which tunnels
WebL ogic RMI requests over HT TP, thus making WebL ogic RMI remote
invocation available even through firewalls.

WebLogic RMI isfully integrated with WebL ogic INDI. Applications can be
partitioned into meaningful name spaces by using either the Java Naming and
Directory Interface (INDI) API or theregistry interfacesin WeblL ogic RMI.
JNDI alows publication of RMI objects through enterprise naming services,
such as LDAP or NDS.

Client-sideinvocation
Client-to-server, client-to-client, or server-to-client invocations. Since
WebL ogic RMI operates within a well-defined server environment, where
clientsand serversare connected with optimized, multiplexed, asynchronous,
bidirectional connections, WeblL ogic RMI can support client-side callbacks
into applications. This architecture allows clientsto host remote objects with
levelsof service and resource accessthat are similar to those supported by the
WebL ogic Server.

This capability enables aclient application to publish its objects through the
registry. Other clients or servers can use the client-resident objectsjust like
any server-resident objects. No performance penalty isimposed on the
publishing client for using its own objects, even though stubs and skeletons
will exist for accessing the objects remotely. When a second client |ooks up
the object and then invokes on it, the request will be routed through the

Programming WebL ogic RMI 1-4

WebLogic RMI Features

WebL ogic Server to the first client, which will broker the request and invoke
the remote object within itslocal VM.

Inheritance
Preservation of alogical object hierarchy. Thereis no requirement in
WebL ogic RMI to extend UnicastRemoteObject. This functionality is built
into WebL ogic Server and preserves your object hierarchy. Thereisno
artificial need for every remote classto inherit from UnicastRemoteObject in
order to inherit implementation from ther ni . ser ver package; rather, your
remote classes can inherit from classes within your application hierarchy and
yet retain the behavior of ther ni . server package.

Instrumentation and management
The reference implementation RM| server obscures RMI operations; it has
few tools for debugging or monitoring your RMI classes. WebL ogic Server,
which hoststhe RMI registry, provides awell-instrumented environment for
development and deployment of distributed applications.

WebLogic RMI Features

Like the JavaSoft reference implementation of RMI, WebL ogic RMI has a code
generator, and aregistry and server hosted by aWebL ogic Server. But WebL ogic RMI
provides features that are different or missing from the reference implementation.

WebLogic RMI Compiler

The WebLogic RMI code generator (compiler) produces a stub and a skeleton that
support theinterfacesimplemented by the remote object. The object’ simplementation
is bound to aname in the RMI registry, and any client can acquire aremote stub of the
object upon which it can invoke by looking up the object in the registry.

With WebLogic RMI it is possible to specify that platform-specific compilers should
be used. In addition, the WebL ogic RM | compiler accepts and passes on any additional
Java compiler options to the Java compiler.

Programming WebL ogic RMI 1-5

1 Introduction to WebLogic RMI

The WebL ogic RMI compiler allows aflexible inheritance structure; remote classes
can also implement non-remote interfaces, and code generation can be done on the
descendants of aclass, or on an abstract class. Y our distributed application can existin
ameaningful object hierarchy, rather than the artificial hierarchy that results under the
reference RMI where every remote class must inherit from a single interface.

Proxy Classes

The WebLogic RMI compiler increases efficiency in its use of proxies. Proxy classes
are the resulting skeleton and stub classes that any RMI compiler produces when run
against aremote class (that is, one that implements aremote interface). The WebL ogic
RMI compiler by default produces proxies for the remote interface, and the remote
classes share the proxies. This is a much more efficient system than the reference
implementation’s model of producing proxies for each remote class. When aremote
object implements more than one interface, the proxy names and packages are
determined by encoding the set of interfaces, unless you choose to produce
class-specific proxies. When a class-specific proxy is found, it takes precedence over
the interface-specific proxy.

WebLogic RMI Registry and Server

WithWebL ogic RMI, the RMI registry ishosted by WebL ogic Server, which provides
the necessary networking infrastructure and execution model for using RMI in a
production environment.

WebL ogic Server, and likewise the registry, can be accessed by avariety of client
protocols, includinga secure (SSL) mode of WebL ogic’s protocol, HTTP tunneling,
HTTPS, and I1OP. A call to look up an object in the WebL ogic registry may use
various URL schemes, including the default rmi:// scheme, http://, https://, and
iiop://.

WebLogic RMI Performance and Scalability

WebLogic RMI performance is enhanced by itsintegration into the WebL ogic Server
framework, which provides the underlying support for communicati ons, management
of threads and sockets, efficient garbage collection, and server-related support.

1-6 Programming WebL ogic RMI

WebLogic RMI Performance and Scalability

WebL ogic RMI scales dramatically better than the reference implementation, and
provides outstanding performance and scalability. Even relatively small,
single-processor, PC-class servers can support well over athousand simultaneous RMI
clients, depending on the total workload of the server and the complexity of the method
cals.

WebL ogic RMI, while offering the flexibility and universality of the JavaSoft
standard, provides the power and performance necessary for a production
environment. Because WebL ogic RMI depends upon and takes advantage of the
sophisticated infrastructure of WebL ogic Server, it is fast and scalable, with many
additional features that support real-world use of RMI for building complex,
distributed systems.

Programming WebL ogic RMI 1-7

1 Introduction to WebLogic RMI

1-8 Programming WebL ogic RMI

WebLogic RMI Compiler

2 Programming
WebLogic RMI

Thefollowing sections describe the WebL ogic RMI features used to program RMI for
use with WebL ogic Server.

m WeblL ogic RMI Compiler
m Proxiesin WebLogic RMI
m WeblLogic RMI Registry

m Implementation Features

WebLogic RMI Compiler

Run the WebLogic RMI compiler (rmic) by executingthewebl ogi c. r mi ¢ classon
the Java class file you want to execute via RMI. The compiler produces a stub and
skeleton.

The stub classisthe seriadizable class that is passed to the client. The skeletonisa
server-side class that processes requests from the stub on the client. The
implementation for the class is bound to aname in the RMI registry in the WebL ogic
Server.

A client acquires the stub for the class by looking up the class in the registry.
WebL ogic Server serializes the stub and sendsit to the client. The client calls methods
on the stub just asif it were alocal class and the stub serializes the requests and sends

Programming WebL ogic RMI 2-1

2 Programming WebLogic RMI

them to the skeleton on the WebL ogic Server. The skeleton deserializes client requests
and executes them against the implementation classes, serializing results and sending
them back to the stub on the client.

With the WebL ogic RMI compiler, you can specify that more platform-specific
compilers should be used. By default, webl ogi c. r m ¢ invokes the compiler from
the JDK distribution, j avac, but you may call any compiler with the - conpi | er
optiontowebl ogi c. r m ¢, asshown in this example which callsthe Symantec Java
compiler:

$ java weblogic.rmic -conpiler \Cafe\bin\sj.exe

WebLogic RMI Compiler Options

The WebLogic RMI compiler accepts any option supported by the Java compiler; for
example, youcouldadd - d \ cl asses exanpl es. hel | 0. Hel | ol npl tothe
command above. All other options supported by the compiler can be used, and are
passed directly to the Java compiler. The following optionsfor j ava

webl ogi c. r m ¢ areavailablefor you to use, and should be entered in oneline, after
j ava webl ogi c. r m ¢ and before the name of the remote class.

Table 1: WebL ogic RMI Compiler Options

-help Prints a description of the options
-version Prints version information
-d <dir> Target (top-leve) directory for complation
-verbosemethods Instruments proxies to print debug info for std err
-descriptor Associates or creates a descriptor for each remote class
-nomanglednames Does not mangle the names of stubs and skeletons
-idl Generates | DLs for remote interfaces
-idlOverwrite Overwrites existing IDL files
-idlVerbose Displays verbose information for IDL information
-idIStrict Generate | DL according to OMG standard

2-2 Programming WebL ogic RMI

WebLogic RMI Compiler

Table 1: WebL ogic RM| Compiler Options

-idINoFactories

-idIDirectory <idlDirectory>

-clusterable

-loadAlgorithm <algorithm>

-callRouter <callRouterClass>

-stickToFirstServer

-methodsAreldempotent

-replicalistRefreshinterval <seconds>

-iiop

-iiopDirectory

Do not generate factory methods for valuetypes

Specifies the directory where IDL fileswill be created (Default =
current directory)

Marks the service as clusterable (can be hosted by multiple servers
in aWebL ogic cluster). Each hosting object, or replica, is bound
into the naming service under acommon name. When the service
stub isretrieved from the naming service, it containsareplica-aware
reference that maintains the list of replicas and performs
load-balancing and fail-over between them.

Only for use in conjunction with -clusterable. Specifies a service
specific algorithm to use for load-balancing and failover (Default =
weblogic.cluster.loadAlgorithm). Must be one of the following:
round-robin, random, or weight-based.

Only for usein conjunction with -clusterable. Specifiesthe classto
be used for routing method calls. This class must implement
weblogic.rmi.extensions.CallRouter. If specified, an instance of the
class will be called before each method call and be given the
opportunity to choose a server to route to based on the method
parameters. It either returns a server name or null--indicating that
the current load a gorithm should be used.

Only for use in conjunction with -clusterable. Enables 'sticky’ load
balancing. The server chosen for servicing the first request will be
used for all subsequent requests.

Only for use in conjuction with -clusterable. Indicates that the
methods onthisclassareidempotent. Thisallowsthe stub to attempt
recovery form any communication failure, even if it can not ensure
that failure occurred before the remote methode was invoked. By
default (if thisoption is not used) the stub will only retry on failures
that are guaranteed to have occured before the remote method was
invoked.

Only for use in conjunction with -clusterable. Specifies the
minimum time to wait between attempts to refresh the replica list
from the cluster (Default = 180 seconds).

Generate |1 OP stubs from servers

Directory where I|OP proxy classes are written

Programming WebL ogic RMI 2-3

2 Programming WebLogic RMI

Table 1: WebL ogic RMI Compiler Options

-keepgenerated Keeps the generated .javafiles

-commentary Emits commentary

-compiler <compiler> Specifies the java compiler (Default = javac)
-comilerclass <null> L oads the compiler as a class instead of an executable
-g Compiles debugging information into a classfile
-0 Compiles with optimization enabled

-debug Compiles with debugging enabled

-nowarn Compiles without warnings

-verbose Compiles with verbose output

-nowrite Does not generate .classfiles

-deprecation Warns of deprecated cdls

-normi Passes through to Symantec's §

-J <option> Flags passed through to java runtime

-classpath <path> Classpath to use during compilation

Additional WebLogic RMI Compiler Features

Other features of the WebLogic RMI compiler include:
m Signatures of remote methods do not need to throw RemoteException.
m Remote exceptions can be mapped to RuntimeException.

m Remote classes can also implement non-remote interfaces. For example,
java.io. | nput/ Qut put St r eamclasses are not serializable and do not
implement an interface that conforms to the specification for aremote interface.

m Code generation can be done on the descendants of a class.

m Code generation can be done from an abstract class.

2-4 Programming WebL ogic RMI

Proxies in WebLogic RMI

Proxies in WebLogic RMI

A proxy isaclass used by the clients of aremote object, in the case of RMI, a skeleton
and astub. Thestub classistheinstancethat isinvoked uponintheclient's JavaVirtual
Machine (JVM); the stub marshals the invoked method name and its arguments,
forwards these to the remote VM, and -- after the remote invocation is completed and
returns -- unmarshals the results on the client. The skeleton class, which existsin the
remote VM, unmarshals the invoked method and arguments on the remote VM,
invokes the method on the instance of the remote object, and then marshals the results
for return to the client.

In the JavaSoft RMI reference implementation, there is a one-to-one correspondence
between the proxy classes and the remote objects. For example, running the JavaSoft
RMI compiler against exanpl e. hel | o. Hel | ol npl -- which implements the
renote class exanpl e. hel | 0. Hel | o -- will produce two classes,
exanpl e. hel | 0. Hel | ol npl _Skel and

exanpl e. hel | 0. Hel | ol npl _St ub. If another class -- for example,

count er. exanpl e. C aol npl aso implements the same remote interface
(exanpl e. hel | 0. Hel | 0), avirtualy identical pair of proxy classeswill be
produced with the JavaSoft RMI compiler

(count er . exanpl e. Ci aol npl _Skel and

count er. exanpl e. C aol npl _St ub).

Using the WebLogic RMI Compiler with Proxies

The WebLogic RMI compiler works differently. The default behavior of the

WebL ogic RMI compiler is to produce proxies for the remote interface, and for the
remote classes to share the proxies. For example, exanpl e. hel | 0. Hel | ol npl
andcount er . exanpl e. Ci aol npl arerepresented by asingle stub and skeleton,
the proxy that matchesthe remote interfaceimplemented by the remote object -- in this
case, exanpl e. hel | 0. Hel | o.

When a remote object implements more than one interface, the proxy names and
packages are determined by encoding the set of interfaces. Y ou can override this
default behavior with the WebL ogic RMI compiler option - nomangl ednanes,
which will cause the compiler to produce proxies specific to the remote class. When a
class-specific proxy isfound, it takes precedence over the interface-specific proxy.

Programming WebL ogic RMI 2-5

2 Programming WebLogic RMI

In addition, with WebL ogic RMI proxy classes, the stubs are not final. References to
colocated remote objects are references to the objects themselves, not to the stubs.

WebLogic RMI Registry

WebL ogic Server hosts the RMI registry and provides server infrastructure for RMI
clients. The overhead for RMI registry and server communicationsis minimal, since
registry traffic is multiplexed over the same connection as JDBC and other kinds of
traffic. Clients use a single socket for RMI; scaling for RMI clientsislinear in the
WebL ogic Server environment.

The WebL ogic RMI registry is created when WebL ogic Server starts up, and callsto
create new registries simply locate the existing registry. Objects that have been bound
intheregistry can be accessed with avariety of client protocols, including the standard
rmi://, aswell ashttp://, or https://. Infact, al of the naming services use INDI.

Implementation Features

2-6

In general, functional equivaents of all methodsin thej ava. r mi package are
provided in WebL ogic RMI, except for those methodsintheRM Cl assLoader and
themethod j ava. rmi . server. Renpt eServer. get C i ent Host () .

All other interfaces, exceptions, and classes are supported in WebL ogic RMI. Here are
notes on particular implementations that may be of interest:

rm . Nami ng isimplemented as afinal classin WebL ogic RMI with all public
methods supported by JNDI, which is the preferred mechanism for naming objectsin
WebLogic RMI.

rm . RM Securit yManager isimplemented as anon-final class with all public
methods in WebL ogic RMI and, unlike the restrictive JavaSoft reference
implementation, is entirely permissive. Security in WebL ogic RMI is an integrated
part of the larger WebL ogic environment, for which there is support for SSL (Secure
Socket Layer) and ACLs (Access Control Lists).

Programming WebL ogic RMI

Implementation Features

rm.registry. Locat eRegi st ry isimplemented asafinal classwithall public
methods, but acall to Locat eRegi stry. creat eRegi stry(int port) will
not create a colocated registry, but rather will attempt to connect to the server-side
instance that implements JNDI, for which host and port are designated by attributes. In
WebL ogic RMI, acal to this method allows the client to find the INDI tree on the
WebL ogic Server.

Note: Y ou can use protocols other than the default (rmi) as well, and provide the
scheme, host, and port as a URL, as shown here:

Not e: Locat eRegi stry. get Regi stry(https://1ocal host: 7002);

Note: which will locate a WebL ogic Server registry on the local host at port 7002,
using a standard SSL protocol.

rm . server. LogSt r eamdivergesfrom the JavaSoft referenceimplementation in
that thewr i t e(byt e[]) method logs messages through the WebL ogic SErver log
file

rm . server. Renpt eCbj ect isimplemented in WebLogic RMI to preserve the
type equivalence of UnicastRemoteObject, but the functionality is provided by the
WebL ogic RMI base class St ub.

rm . server. Renpt eSer ver isimplemented as the abstract superclass of
rm . server. Uni cast Renpt eObj ect and all public methods are supported in
WebL ogic RMI with the exception of get Cl i ent Host () .

rm . server. Uni cast Renpt eObj ect isimplemented as the base class for
remote objects, and all the methods in this class are implemented in terms of the
WebLogic RMI base class St ub. This allowsthe stub to override non-final Object
methods and equate these to the implementation without making any requirements on
the implementation.

In WebL ogic RMI, all method parameters are pass-by-value, unlessthe invoking
object resides in the same Java Virtual Machine (JVM) as the RMI object. In this
scenerio, method parameters are pass-by-reference.

Note: WebLogic RMI does hot support uploading classes from the client. In other
words, any classes passed to a remote object must be available within the
server’s CLASSPATH.

Programming WebL ogic RMI 2-7

2 Programming WebLogic RMI

2-8

Theset Securit yManager () method isprovided in WebLogic RMI for
compilation compatibility only. No security isassociated with it, since WebL ogic RM|
dependsonthemoregeneral security model within WebL ogic Server. If, however, you
do set a SecurityManager, you can set only one. Before setting a SecurityM anager, you
should test to seeif one has aready been set; if you try to set another, your program
will throw an exception. Here is an example:

if (System get SecurityManager() == null)
Syst em set SecurityManager (new RM SecurityManager());

Thefollowing classes are implemented but unused in WebL ogic RMI:
m rm.dgc. Lease
m rm.dgc. VM D
m rm.server. bjID
m rm.server. Qperation
m rmi.server.RM Cl assLoader
m rm.server.RM Socket Fact ory
m rmi.server.RenoteStub

m rm.server. U D

Programming WebL ogic RMI

Overview of the WebLogic RMI API

3 WebLogic RMI API

The following sections describe the WeblLogic RMI API.
m Overview of the WebL ogic RMI API
m Implementing with WebL ogic RMI

m Using the WebL ogic RMI Compiler for Clustered Services

Overview of the WebLogic RMI API

Thereareseveral packages shipped as part of WebLogic RMI. The public APl includes
the WebL ogic implementation of the RMI base classes, the registry, and the server
packages. It also includes the WeblL ogic RM| compiler and supporting classesthat are
not part of the public API.

If you have written RMI classes, you can drop them in WebL ogic RMI by changing
theimport statement on aremoteinterface and the classesthat extend it. To add remote
invocation to your client applications, look up the object by name in the registry.

The basic building block for all Remote objects is the interface

webl ogi c. rm . Renot e, which contains no methods. Y ou extend this "tagging”
interface -- that is, it functions as atag to identify remote classes -- to create your own
remoteinterface, with method stubsthat create a structure for your remote object. Then
you implement your own remote interface with aremote class. Thisimplementationis
bound to a namein the registry, from whence aclient or server may look up the object
and use it remotely.

Programming WebL ogic RMI 31

3 WebLogic RMI API

Asinthe JavaSoft reference implementation of RM|I, thewebl ogi c. r m . Nani ng
classis an important one. It includes methods for binding, unbinding, and rebinding
names to remote objectsin theregistry. It dsoincludesal ookup() method to give
aclient access to a named remote object in the registry.

In addition, WebL ogic INDI provides naming and lookup services. WebL ogic RMI
supports naming and lookup in INDI.

WebL ogic RMI Exceptionsareidentical to and extendj ava. r mi exceptions so that
existing interfaces and implementations do not have to changeexception handling.

Implementing with WebLogic RMI

Therearetwo partsto using WebL ogic RMI. First you createthe interfaces and classes
that you will invoke remotely. Then you add code to your client application that carries
out theremoteinvocations. The following sections detail theseimplementation phases.

Creating classes that can be invoked remotely
Step 1. Write aRemote interface
Step 2. Implement the Remote interface
Step 3. Compilethejavaclass
Step 4. Compile the implementation class with RMI compiler
Step 5. Write a client that invokes on remote objects
Full code examples

Setting up WebLogic Server for RMI

WebL ogic RMI for clustered services
Cluster-specific RMI compiler options
Non-replicated stubs

Creating classes that can be invoked remotely

Y ou can write your own WebLogic RMI classesin just afew steps. Hereisasimple
example.

Programming WebL ogic RMI

Implementing with WebLogic RMI

Step 1. Write a Remote interface

Every class that can be remotely invoked implements a remote interface. A remote
interface must extend the interface webl ogi c. r m . Renot e, which contains no
method signatures.

The interface that you write should include method signatures that will be

implemented in every remote classthat implementsit. Interfacesin Javaare apowerful
concept, and allow great flexibility at both design time and runtime. If you need more
information on how to write an interface, see the JavaSoft tutorial Creating I nterfaces.

Y our Remote interface should follow guidelines similar to those followed if you are
using JavaSoft's RMI:

m It must be public. Otherwise a client will get an error when attempting to load a
remote object that implementsit.

m It must extend theinterfacewebl ogi c. r m . Renot e.

m Unlike JavaSoft's RMI, it is hot necessary that each method in the interface
declareswebl ogi c. r mi . Renpt eExcepti on initst hr ows block. The
Exceptions that your application throws can be specific to your application, and
may extend RuntimeException. WebL ogic's RMI subclasses
javarmi.RemoteException so if you already have existing RMI classes, you will
not have to change your exception handling.

With JavaSoft's RMI, every class that implements a remote interface must have
accompanying, precompiled stubs and skeletons. WebL ogic RMI supports more
flexible runtime code generation; WebL ogic RM| supports stubsand skeletonsthat are
type-correct but are otherwise independent of the class that implements the interface.
If aclassimplementsasingle remote interface, the stub and skeleton that is generated
by the compiler will have the same name asthe remote interface. If aclassimplements
more than one remote interface, the name of the stub and skeleton that result from
compilation will depend on the name mangling used by the compiler.

Y our Remote interface may not contain much code. All you need are the method
signatures for methods you want to implement in Remote classes.

Here isan example of a Remoteinterface. It has only one method signature.

package exanpl es.rm .nultihello;
import weblogic.rm.?*;

public interface Hello extends weblogic.rm . Renote {

Programming WebL ogic RMI 3-3

3 WebLogic RMI API

String sayHell o() throws RenpteException;

Step 2. Implement the Remote interface

34

Now write the class that will be invoked remotely. The class should implement the
Remote interface that you wrotein Step 1, which means that you implement the
method signaturesthat are contained in theinterface. Currently, all the code generation
that takes placein WebL ogic RMI is dependent on this classfile, but thiswill change
in future releases.

WithWebL ogic'sRMI, thereisno need for your classto extend UnicastRemoteObject,
whichisrequired by JavaSoft'sRMI. (If you extend UnicastRemoteObject, WebL ogic
RMI will not care, but it isn't necessary.) This allows you to retain a class hierarchy
that makes sense for your application.

Y our class may implement more than one Remote interface. Y our class may aso
define methods that are not in the Remote interface, but you will not be ableto invoke
those methods remotely. Y ou should also define at least a default constructor.

In this example, we implement a classthat creates multiple Hellolmpls and binds each
to aunique name in the Registry. The method sayHel | o() greets the user and
identifies the object which was remotely invoked.

package exanples.rm . multihell o;
i nport weblogic.rm.*;
public class Hellolnpl inplements Hello {
private String nane;
public Hellolnpl (String s) throws RenoteException {
name = s;
}
public String sayHell o() throws RenoteException {

return "Hello! From" + nane;

Programming WebL ogic RMI

Implementing with WebLogic RMI

Finally, write amain that creates an instance of the remote object and registersit inthe
WebL ogic RMI registry, by binding it to aname (a URL that pointsto the
implementation of the object). A client that wantsto obtain a stub to use the object
remotely will be able to look up the object by name.

Hereisan exampleof amai n() for the Helloimpl class. Thisregistersthe Hellolmpl
object under the name HelloRemoteWorld in a WebL ogic Server registry.

public static void main(String[] argv) {
/1 Not needed with WebLogi c RM
/1 System set SecurityManager (new Rm SecurityManager());
/1 But if you include this line of code, you should make
/] it conditional, as shown here:
/1 if (System getSecurityManager() == null)
/1 System set Securi t yManager (new Rm SecurityManager());
int i =0;
try {
for (i =0; i < 10; i++) {
Hel | ol npl obj = new Hellolnpl ("Ml tiHelloServer" + i);
Nam ng. rebi nd("/ /1 ocal host/Muil ti Hell oServer" + i, obj);
Systemout.println("MiltiHelloServer" +i + " created.");
}
Systemout.println("Created and regi stered " + i +
" MultiHellolnpls.");

}
catch (Exception e) {

Systemout.println("Hellolnpl error: + e. get Message());

e.printStackTrace();

Programming WebL ogic RMI 3-5

3 WebLogic RMI API

WebL ogic RMI does not require that you set a SecurityManager in order to integrate
security into your application. Security is handled by WebL ogic Server support for
SSL and ACL s. If you must, you may use your own security manager, but do not install
it in the WebL ogic Server.

Step 3. Compile the java class

First compilethe .javafileswithj avac or some other Javacompiler to produce .class
filesfor the Remote interface and the class that implements it.

Step 4. Compile the implementation class with RMI compiler

3-6

Run the WebL ogic RMI compiler against the remote class to generate the stub and
skeleton. A stub isthe client-side proxy for aremote object that forwards each
WebL ogic RMI call toitsmatching serverside skeleton, which in turn forwardsthe call
to the actual remote object implementation. To run the WebL ogic RM compiler, use
the command pattern:

$ java webl ogi c. rm ¢ naneX Renot el ass

where nameOfRemoteClassisthe full package name of the class that implementsyour
Remote interface. With the examples we have used previously, the command would
be:

$ java webl ogic.rmc exanples.rm. hell o. Hel | ol npl

Y ou should set the flag - keepgener at ed when you run the WebL ogic RMI
compiler if you want to keep the generated stub and skeleton files. For alisting of the
available WebL ogic RMI compiler options, see Chapter , “WebL ogic RMI
Compiler.”.

Running the WebL ogic RMI compiler creates two new classes, a stub and a skeleton.
These appear as nameOfinterface_Stub.class and nameOfinterface_Skel.class. The
four files created -- the remote interface, the classthat implementsit, and the stub and
skeleton created by the WebL ogic RMI compiler -- should be placed in the appropriate
directory in the CLASSPATH of the WebL ogic Server whose URL you used in the
naming scheme of the object'smai n() .

Programming WebL ogic RMI

Implementing with WebLogic RMI

Invoking methods on remote objects in your client code

Once you compile and install the remote class, the interface it implements, and its stub
and skeleton on the WebL ogic Server, you can add code to a WebL ogic client
application to invoke methods in the remote class.

In general, it takes just asingle line of code: you need to get areference to the remote
object. Do thiswith the Nam ng. | ookup() method. Here is a short WebL ogic
client application that uses an object created in a previous example.

package nypackage. nyclient;
import weblogic.rm.?*;

i mport webl ogi c. common. *;
public class Hell owbrld throws Exception {

/1 Look up the renpote object in the
/1 WeblLogic's registry
Hel o hi = (Hello)Nam ng. | ookup("Hell oRenoteWorld");
/1 Invoke a nethod renotely
String nmessage = hi.sayHello();
System out . printl n(nmessage) ;
}

This example demonstrates using a Java application asthe client.

Full Code Examples

Hereisthe full code for the Hello interface.
package exanpl es.rm . hell o;

import weblogic.rm.?*;

Programming WebL ogic RMI 3-7

3 WebLogic RMI API

public interface Hell o extends webl ogic.rm . Renote {

String sayHell o() throws RenpteException;

}

Here is the full code for the Hellolmpl class that implementsiit.

package exanpl es.rm. hell o;

i nport weblogic.rm.*;

public class Hell ol npl
/1 Don’t need this in WblLogic RM:
/1 extends Uni cast Renpt e(bj ect

i mpl enents Hello {
public Hellolnpl () throws RenoteException {

super () ;

public String sayHello() throws RenoteException {

return "Hell o Renote World!!";

public static void main(String[] argv) {

try {
Hel [ol npl obj = new Hell ol npl ();

3-8 Programming WebL ogic RMI

Using the WebLogic RMI Compiler for Clustered Services

Nam ng. bi nd(" Hel | oRenot eWor| d", obj);
}

catch (Exception e) {

Systemout.println("Hellolnpl error: " + e.getMssage());

e.printStackTrace();

Using the WebLogic RMI Compiler for
Clustered Services

The following sections identifies the cluster-specific RMI options used with
WebL ogic’s implementation of RMI and describes the non-replicated stubs.

Cluster-specific RMI compiler options

The RMI compiler (RMIC) has severa flags that relate to clusters. These argument
tagsare not case sensitive; inner capsare used in these descriptionsfor ease of reading.

-clusterabl e

Generates astub that can failover and load balance. By default, the generated

stub will be capable of failover and will load balance between replicas using
around-robin scheduling agorithm.

- met hodsAr el denpot ent

May only be used in conjunction with "- cl ust er abl e". Indicatesto the
stub that it can attempt retries after failover even if it might result in executing
the same method multipletimes. If thisflag isn't present, methodsfor this stub

Programming WebL ogic RMI 39

3 WebLogic RMI API

are not considered idempotent. The exceptions that are handled by this are
described in Exceptions used for failover.

-1 oadAl gori t hm load algorithm name
May only be used in conjunction with "- cl ust er abl e". Specifiesa
service-specific algorithm that will be used by the stub to handle failover and
load balancing. If this argument is unspecified, the default 10ad bal ancing
algorithm specified in the Administration Console. For example, to specify
weight-based load bal ancing:

$ java weblogic.rmc -clusterable -1oadAl gorithnmrwei ght - based

-stickToFirst Server
May only be used in conjunction with "- cl ust er abl e". Enables 'sticky’
load balancing. The server chosen for servicing the first request will be used
for all subsequent reguests.

-replicali st Refreshl nt erval seconds
May only be used in conjunction with "- cl ust er abl e". Specifies the
minimum time to wait between attempts to refresh the replica list from the
Cluster. Default is 180 seconds (3 minutes).

- cal | Rout er callRouterClass
May only be used in conjunction with "- cl ust er abl e". Specifies the
class to be used for routing method calls. This class must implement
webl ogi c. rm . ext ensi ons. Cal | Rout er . If specified, an instance
of this class will be called before each method call and be given the
opportunity to choose the server given the method parameters. It either
returns a server name or nul | indicating that the current load algorithm
should be used to pick the server.

Non-Replicated Stubs

Y ou can aso generate stubs that are not replicated; these are known as "pinned"”
services, because after they areregistered they will be available only from the host with
which they are registered and will not provide transparent failover or load balancing.
Pinned services are availabl e cluster-wide, since they are bound into the replicated
cluster-wide JNDI tree; but if theindividual server that hosts them fails, the client
cannot failover to another server.

3-10 Programming WebL ogic RMI

Using the WebLogic RMI Compiler for Clustered Services

Client-side RM|I objects can only be reached through a single WebL ogic Server, even
inacluster. If aclient-side RMI object is bound into the INDI naming service, it will
only be reachable as long as the Server that carried out the bind is reachable.

Programming WebL ogic RMI 31

3 WebLogic RMI API

3-12 Programming WebLogic RMI

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Introduction to WebLogic RMI
	2. Programming WebLogic RMI
	3. WebLogic RMI API

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic RMI
	Introducing WebLogic RMI
	Advantages of WebLogic RMI
	Differences in WebLogic RMI’s Implementation
	Performance-related issues
	Power and flexibility
	Ease of use
	Naming/Registry issues
	Client-side invocation
	Inheritance
	Instrumentation and management

	WebLogic RMI Features
	WebLogic RMI Compiler
	Proxy Classes
	WebLogic RMI Registry and Server

	WebLogic RMI Performance and Scalability

	2 Programming WebLogic RMI
	WebLogic RMI Compiler
	WebLogic RMI Compiler Options
	Table 1: WebLogic RMI Compiler Options

	Additional WebLogic RMI Compiler Features

	Proxies in WebLogic RMI
	Using the WebLogic RMI Compiler with Proxies

	WebLogic RMI Registry
	Implementation Features

	3 WebLogic RMI API
	Overview of the WebLogic RMI API
	Implementing with WebLogic RMI
	There are two parts to using WebLogic RMI. First you create the interfaces and classes that you w...
	Creating classes that can be invoked remotely
	Setting up WebLogic Server for RMI
	WebLogic RMI for clustered services
	Creating classes that can be invoked remotely
	Step 1. Write a Remote interface
	Step 2. Implement the Remote interface
	Step 3. Compile the java class
	Step 4. Compile the implementation class with RMI compiler

	Invoking methods on remote objects in your client code
	Full Code Examples

	Using the WebLogic RMI Compiler for Clustered Services
	Cluster-specific RMI compiler options
	-clusterable
	-methodsAreIdempotent
	-loadAlgorithm load algorithm name
	-stickToFirstServer
	-replicaListRefreshInterval seconds
	-callRouter callRouterClass

	Non-Replicated Stubs

