
WebLogic Server
Developing WebLogic

B E A W e b L o g i c S e r v e r 6 . 0
D o c u m e n t D a t e : M a y 1 6 , 2 0 0 1

BEA

Server Applications

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Developing WebLogic Server Applicatinos

Part Number Document Date Software Version

N/A May 16, 2001 BEA WebLogic Server Version 6.0

Contents

About This Document
Audience..x

e-docs Web Site...x

How to Print the Document...x

Related Information... xi

Contact Us! .. xi

Documentation Conventions .. xii

1. Understanding WebLogic Server Applications
What Are WebLogic Server Application Components? 1-1

Web Application Components ... 1-2

Servlets.. 1-3

JavaServer Pages... 1-3

Web Application Directory Structure ... 1-3

For More Information on Web Application Components................... 1-4

Enterprise JavaBean Components.. 1-4

EJB Overview ... 1-4

EJB Interfaces ... 1-5

EJBs and WebLogic Server .. 1-5

WebLogic Components.. 1-6

Enterprise Applications ... 1-7

Client Applications.. 1-7

2. Developing WebLogic Server Components
Creating WebLogic Server Applications: Main Steps 2-1

Creating Web Applications: Overview .. 2-3

Creating Enterprise Beans: Overview .. 2-4
Developing BEA WebLogic Server Applications iii

Creating Enterprise Applications: Overview.. 2-5

Establishing a Development Environment .. 2-6

Software Tools.. 2-6

Source Code Editor or IDE ... 2-6

Java Compiler.. 2-6

Development WebLogic Server .. 2-7

Database System and JDBC Driver .. 2-7

Web Browser... 2-8

Third-Party Software .. 2-8

WebGain VisualCafé Enterprise Edition .. 2-8

Informix Cloudscape ... 2-9

Sybase PowerJ... 2-9

WebGain TopLink... 2-9

KL Group JProbe .. 2-9

Versant Enterprise Container .. 2-10

eXcelon Javlin ... 2-10

Object Design ObjectStore.. 2-10

Preparing to Compile... 2-10

Putting the Java Tools in Your Search Path ... 2-11

Setting the Classpath for Compiling... 2-11

Setting Target Directories for Compiled Classes 2-12

3. Packaging and Deploying WebLogic Server Applications
Packaging Overview.. 3-1

JAR Files .. 3-2

XML Deployment Descriptors ... 3-3

Packaging Web Applications... 3-4

Packaging Enterprise JavaBeans ... 3-5

Packaging Enterprise Applications.. 3-6

Resolving Class References Between Components .. 3-8

Classloader Overview... 3-8

About Application Classloaders ... 3-9

Packaging Common Utilities and Third-Party Classes 3-10

Handling Interactions Between Startup Classes and Applications........... 3-10

Deploying Applications and Components ... 3-11
iv Developing BEA WebLogic Server Applications

Using the Administration Console ... 3-12

Using the weblogic.deploy Command-Line Utility 3-13

Packaging and Deploying Client Applications.. 3-13

J2EE Client... 3-14

4. Programming Topics
Logging Messages ... 4-1

Using Threads in WebLogic Server .. 4-4

Using JavaMail with WebLogic Server Applications 4-6

About JavaMail Configuration Files .. 4-6

Configuring JavaMail for WebLogic Server.. 4-7

Sending Messages with JavaMail .. 4-9

Reading Messages with JavaMail .. 4-10

5. Writing Web Application Deployment Descriptors
Overview of Web Application Deployment Descriptors 5-1

Writing the web.xml Deployment Descriptor .. 5-2

Main Steps to Create the web.xml File .. 5-2

Detailed Steps to Create the web.xml File ... 5-3

Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml) 5-19

Main Steps to Create the weblogic.xml File .. 5-19

Detailed Steps to Create the weblogic.xml File 5-20

A. web.xml Deployment Descriptor Elements
icon Element... A-2

display-name Element .. A-2

description Element .. A-3

context-param Element... A-3

servlet Element ... A-3

icon Element.. A-5

init-param Element.. A-5

security-role-ref Element... A-6

servlet-mapping Element.. A-6

session-config Element... A-7

mime-mapping Element ... A-8

welcome-file-list Element .. A-9
Developing BEA WebLogic Server Applications v

error-page Element ... A-9

taglib Element... A-10

resource-ref Element... A-11

security-constraint Element .. A-12

web-resource-collection Element .. A-12

auth-constraint Element... A-13

user-data-constraint Element ... A-14

login-config Element .. A-15

form-login-config Element.. A-15

security-role Element.. A-16

env-entry Element... A-17

ejb-ref Element ... A-17

B. weblogic.xml Deployment Descriptor Elements
description Element .. B-1

weblogic-version Element .. B-2

security-role-assignment Element .. B-2

reference-descriptor Element.. B-3

resource-description Element .. B-3

ejb-reference-description Element... B-3

session-descriptor Element ... B-4

Session Parameter Names and Values... B-4

jsp-descriptor Element .. B-8

JSP Parameter Names and Values... B-9

C. Client Application Deployment Descriptor Elements
application.xml Deployment Descriptor Elements... C-1

application ... C-2

icon ... C-3

display-name .. C-3

description .. C-3

module.. C-3

security-role.. C-4

WebLogic Run-time Client Application Deployment Descriptor C-5

application-client ... C-6
vi Developing BEA WebLogic Server Applications

env-entry* ...C-6

ejb-ref* ..C-7

resource-ref* ...C-7
Developing BEA WebLogic Server Applications vii

viii Developing BEA WebLogic Server Applications

About This Document

This documentintroduces the BEA WebLogic Server™ application development
environment. It describes how to establish a development environment and how to
package applications for deployment on the WebLogic Server platform.

The document is organized as follows:

� Chapter 1, “Understanding WebLogic Server Applications,” describes
components of WebLogic Server applications.

� Chapter 2, “Developing WebLogic Server Components,” describes the process
for creating WebLogic Server components and helps Java programmers establish
their programming environment.

� Chapter 3, “Packaging and Deploying WebLogic Server Applications,” describes
how to bundle WebLogic Server components and applications in standard JAR
files for distribution and deployment.

� Chapter 4, “Programming Topics,” covers general WebLogic Server application
programming issues, such as logging messages and using threads.

� Chapter 5, “Writing Web Application Deployment Descriptors,” describes how
to write the deployment descriptors that tell WebLogic Server how to deploy a
Web application.

� Appendix A, “web.xml Deployment Descriptor Elements,” is a reference for the
standard J2EE Web application deployment descriptor, web.xml.

� Appendix B, “weblogic.xml Deployment Descriptor Elements,” is a reference
for the WebLogic-specific Web application deployment descriptor,
weblogic.xml.

� Appendix C, “Client Application Deployment Descriptor Elements,” is a
reference for the standard J2EE Client application deployment descriptor,
Developing WebLogic Server Applications ix

application.xml, and the WebLogic-specific client application deployment
descriptor.

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
x Developing WebLogic Server Applications

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. The
following WebLogic Server documents contain information that is relevant to creating
WebLogic Server application components:

� Programming WebLogic EJB

� Programming WebLogic HTTP Servlets

� Programming WebLogic JSP

� Programming WebLogic JDBC

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address
Developing WebLogic Server Applications xi

mailto:docsupport@bea.com
http://www.bea.com

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR
xii Developing WebLogic Server Applications

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Developing WebLogic Server Applications xiii

xiv Developing WebLogic Server Applications

CHAPTER
1 Understanding
WebLogic Server
Applications

The following sections provide an overview of WebLogic Server applications and
application components:

� What Are WebLogic Server Application Components?

� Web Application Components

� Enterprise JavaBean Components

� WebLogic Components

� Enterprise Applications

� Client Applications

What Are WebLogic Server Application
Components?

BEA WebLogic Server™ applications can include the following components:

� Web components—HTML pages, servlets, JavaServer Pages, and related files
Developing WebLogic Server Applications 1-1

1 Understanding WebLogic Server Applications
� EJB components—entity beans, session beans, and message-driven beans

� WebLogic components—startup and shutdown classes

Web designers, application developers, and application assemblers create components
by using J2EE technologies such as JavaServer Pages, servlets, and Enterprise
JavaBeans.

Components are packaged in Java ARchive (JAR) files—archives created with the
Java jar utility. JAR files bundle all component files in a directory into a single file,
maintaining the directory structure. JAR files include XML descriptors that instruct
WebLogic Server how to deploy the components.

Web Applications are packaged in a JAR file with a .war extension. Enterprise beans,
WebLogic components, and client applications are packaged in JAR files with .jar

extensions.

An Enterprise Application, consisting of assembled components, is a JAR file with an
.ear extension. An .ear file contains all of the .jar and .war component archive
files for an application and an XML descriptor that describes the bundled components.

To deploy a component or an application, you use the Administration Console or the
weblogic.deploy command-line utility to upload JAR files to the target WebLogic
Servers.

Client applications (when the client is not a Web browser) are Java classes that connect
to WebLogic Server using Remote Method Invocation (RMI). A Java client can access
Enterprise JavaBeans, JDBC connections, JMS messaging, and other services by using
RMI.

Web Application Components

A Web archive contains all of the files that make up a Web application. A .war file is
deployed as a unit on one or more WebLogic Servers. A Web archive can include the
following:

� Servlets, JSP pages, and their helper classes.

� HTML/XML pages with supporting files such as images and multimedia files.

� A web.xml deployment descriptor, a J2EE standard XML document that
describes the contents of a .war file.
1-2 Developing WebLogic Server Applications

What Are WebLogic Server Application Components?
� A weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

Servlets

Servlets are Java classes that execute in WebLogic Server, accept a request from a
client, process it, and optionally return a response to the client. A GenericServlet is
protocol independent and can be used in J2EE applications to implement services
accessed from other Java classes. An HttpServlet extends GenericServlet with support
for the HTTP protocol. An HttpServlet is most often used to generate dynamic Web
pages in response to Web browser requests.

JavaServer Pages

JSP pages are Web pages coded with an extended HTML that makes it possible to
embed Java code in a Web page. JSP pages can call custom Java classes, called taglibs,
using HTML-like tags. The WebLogic JSP compiler, weblogic.jspc, translates JSP
pages into servlets. WebLogic Server automatically compiles JSP pages if the servlet
class file is not present or is older than the JSP source file.

You can also precompile JSP pages and package the servlet class in the Web Archive
to avoid compiling in the server. Servlets and JSP pages may depend upon additional
helper classes that must also be deployed with the Web application.

Web Application Directory Structure

Web application components are assembled in a directory in order to stage the .war
file for the jar command. HTML pages, JSP pages, and the non-Java class files they
reference are accessed beginning in the top level of the staging directory.

The XML descriptors, compiled Java classes and JSP taglibs are stored in a WEB-INF
subdirectory at the top level of the staging directory. Java classes include servlets,
helper classes and, if desired, precompiled JSP pages.

The entire directory, once staged, is bundled into a .war file using the jar command.
The .war file can be deployed alone or packaged in an Enterprise Archive (.ear file)
with other application components, including other Web Applications, EJB
components, and WebLogic components.
Developing WebLogic Server Applications 1-3

1 Understanding WebLogic Server Applications
For More Information on Web Application Components

For more information about creating Web application components, see these
documents:

� Programming WebLogic Servlets at
http://e-docs.bea.com/wls/docs60/servlet/index.html

� Programming WebLogic JSP at http://e-docs.bea.com/wls/docs60/jsp/index.html

� Writing JSP Extensions at http://e-docs.bea.com/wls/docs60/taglib/index.html

For help deploying Web Applications, see the following sections of this document:

� Chapter 5, “Writing Web Application Deployment Descriptors.”

� Appendix A, “web.xml Deployment Descriptor Elements.”

� Appendix B, “weblogic.xml Deployment Descriptor Elements.”

Enterprise JavaBean Components

Enterprise JavaBeans (EJBs) beans are server-side Java components written according
to the EJB specification. There are three types of enterprise beans: session beans, entity
beans, and message-driven beans.

EJB Overview

Session beans represent a single client within WebLogic Server. They can be stateful
or stateless, but are not persistent; when a client finishes with a session bean, the bean
goes away.

Entity beans represent business objects in a data store, usually a relational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be shared by multiple clients and they are persistent by
definition.
1-4 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/servlet/index.html
http://e-docs.bea.com/wls/docs60/jsp/index.html
http://e-docs.bea.com/wls/docs60/taglib/index.html

What Are WebLogic Server Application Components?
A message-driven bean is an enterprise bean that runs in the EJB container and handles
asynchronous messages from a JMS Queue. When a message is received on the JMS
Queue, the message-driven bean assigns an instance of itself from a pool to process the
message. Message-driven beans are not associated with any client. They simply handle
messages as they arrive. A JMS ServerSessionPool provides a similar capability, but
without the advantages of running in the EJB container.

Enterprise beans are bundled into a JAR file that contains their compiled classes and
XML deployment descriptors.

EJB Interfaces

Entity beans and session beans have remote interfaces, home interfaces, and
implementation classes provided by the bean developer. (Message-driven beans do not
require home or remote interfaces, because they are not accessible outside of the EJB
container.)

The remote interface defines the methods a client can call on an entity bean or session
bean. The implementation class is the server-side implementation of the remote
interface. The home interface provides methods for creating, destroying, and finding
enterprise beans. The client accesses instances of an enterprise bean through the bean’s
home interface.

EJB home and remote interfaces and implementation classes are portable to any EJB
container that implements the EJB specification. An EJB developer can supply a JAR
file containing just the compiled EJB interfaces and classes and a deployment
descriptor.

EJBs and WebLogic Server

J2EE cleanly separates the development and deployment roles to ensure that
components are portable between EJB servers that support the EJB specification.
Deploying an enterprise bean in WebLogic Server requires running the WebLogic EJB
compiler, weblogic.ejbc, to generate the stub and skeleton classes that allow an
enterprise bean to be executed remotely.

WebLogic stubs and skeletons can also contain support for WebLogic clusters, which
enable load-balancing and failover for enterprise beans. You can run weblogic.ejbc

to generate the stub and skeleton classes and add them to the EJB JAR file, or
WebLogic Server can create them by running the compiler at deployment time.
Developing WebLogic Server Applications 1-5

1 Understanding WebLogic Server Applications
The J2EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise
beans packaged in an EJB JAR file. It defines the beans’ types, names, and the names
of their home and remote interfaces and implementation classes. The ejb-jar.xml
deployment descriptor defines security roles for the beans, and transactional behaviors
for the beans’ methods.

Additional deployment descriptors provide WebLogic-specific deployment
information. A weblogic-cmp-rdbms-jar.xml deployment descriptor for
container-managed entity beans maps a bean to tables in a database. The
weblogic-ejb-jar.xml deployment descriptor supplies additional information
specific to the WebLogic Server environment, such as clustering and cache
configuration.

For help creating and deploying Enterprise JavaBeans, see Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs60/ejb/index.html.

WebLogic Components

The WebLogic Server components are startup and shutdown classes, Java classes that
execute when deployed or at shutdown time, respectively.

Startup classes can be RMI classes that register themselves in the WebLogic Server
naming tree or any other Java class that can be executed in WebLogic Server. Startup
classes can be used to implement new services in WebLogic Server. You could create
a startup class that provides access to a legacy application or a real-time feed, for
example.

Shutdown classes execute when WebLogic Server shuts down and are usually used to
free resources obtained by startup classes.

Startup and shutdown classes can be configured in WebLogic Server from the
Administration Console. The Java class must be in the server’s classpath.
1-6 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/ejb/index.html

Enterprise Applications
Enterprise Applications

An Enterprise Archive (.ear) file contains the Web archives and EJB archives that
constitute a J2EE application. The META-INF/application.xml deployment
descriptor contains an entry for each Web and EJB module, and additional entries to
describe security roles and application resources such as databases.

You use the Administration Console or the weblogic.deploy command line utility
to deploy an .ear file on one or more WebLogic Servers in the domain managed by
the Administration Server.

Client Applications

Client-side applications written in Java have access to WebLogic Server services via
RMI. Client applications range from simple command line utilities that use standard
I/O to highly interactive GUI applications built using the Java Swing/AWT classes.

Client applications use WebLogic Server components indirectly, using HTTP requests
or RMI requests. The components actually execute in WebLogic Server, not in the
client.

To execute a WebLogic Server Java client, the client computer needs the
weblogic_sp.jar file, the weblogic.jar file, the remote interfaces for any RMI
classes and enterprise beans on WebLogic Server, and the client application classes.

The application developer packages client-side applications so they can be deployed
on client computers. To simplify maintenance and deployment, it is a good idea to
package a client-side application in a JAR file that can be added to the client’s
classpath along with the weblogic.jar and weblogic_sp.jar files.

WebLogic Server also supports J2EE client applications, packaged in a JAR file with
a standard XML deployment descriptor. The weblogic.ClientDeployer command
line utility is executed on the client computer to run a client application packaged to
this specification. See “Packaging and Deploying Client Applications” on page 3-13
for more about J2EE client applications.
Developing WebLogic Server Applications 1-7

1 Understanding WebLogic Server Applications
1-8 Developing WebLogic Server Applications

CHAPTER
2 Developing WebLogic
Server Components

The following sections describe how to create WebLogic Server components and set
up a development envioronment:

� Creating WebLogic Server Applications: Main Steps

� Establishing a Development Environment

� Preparing to Compile

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create components that implement
the business logic and presentation logic for the application. Application assemblers
assemble the components into applications ready to deploy on WebLogic Server.

Creating WebLogic Server Applications:
Main Steps

Creating a WebLogic Server application requires creating Web and EJB components,
deployment descriptors, and archive files. The result is an enterprise application
archive (.ear file), that can be deployed on WebLogic Server.

Here are the main steps:

1. Create Web and EJB components for your application.
Developing WebLogic Server Applications 2-1

2 Developing WebLogic Server Components
Programmers create servlets and enterprise beans using the J2EE APIs for these
components. Web designers create Web pages using HTML/XML, and
JavaServer Pages.

2. Create deployment descriptors.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebLogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as
ejb-jar.xml and web.xml. Additional deployment descriptors provide
supplement the J2EE-specified descriptors with information required to deploy
components in WebLogic Server.

3. Create component archive.

Component archives are JAR files containing all of the files that make up the
component, including deployment descriptors.

4. Create application deployment descriptor.

The application deployement descriptor, application.xml, lists individual
components that are assembled together in an application.

5. Assemble application.

Component archives are packaged with the application deployment descriptor in
an application JAR file. This is the file that is deployed on WebLogic Server.
WebLogic Server uses the application.xml deployment descriptor to locate
and deploy the individual components packaged in the JAR file.

Figure 2-1 illustrates the process for developing and assembling WebLogic Server
applications.
2-2 Developing WebLogic Server Applications

Creating WebLogic Server Applications: Main Steps
Figure 2-1 Creating Enterprise Applications

Creating Web Applications: Overview

Web designers create HTML pages and JavaServer Pages to create the Web interface
for an application. Java programmers create Servlets and the JSP taglibs referenced in
JavaServer Pages (JSPs).

JSP Pages

Servlets

Web Pages

Assemble

Web Archive

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms.xml

web.xml

weblogic.xml

Application

Create
Component
Archive

EJB Archive

Enterprise Beans
Create
Components

Enterprise Archive

.jar .war

.ear

Create Application
Deployment
Descriptor

application.xml

Create Component
Deployment
Descriptor
Developing WebLogic Server Applications 2-3

2 Developing WebLogic Server Components
JSP pages, HTML pages, and multimedia files referenced by the pages are saved in the
top level of the Web application staging directory. Compiled Servlet classes, taglibs,
and, if desired, Servlets compiled from JSP pages are stored under a WEB-INF directory
in the staging directory.

Two deployment descriptors are created in the WEB-INF directory: web.xml and
weblogic.xml. The web.xml file defines each Servlet and JSP page and enumerates
enterprise beans referenced in the Web application. The weblogic.xml file adds
additional deployment information for WebLogic Server. See Chapter 5, “Writing
Web Application Deployment Descriptors,” for instructions on creating these
deployment descriptors.

When the Web application components are all in place in the staging directory, you
create the Web archive with a command such as the following, executed in the staging
directory:

jar cvf myWebApp.war *

The .war file is ready to be deployed, or it can be added to an Enterprise archive and
deployed as part of an application.

Creating Enterprise Beans: Overview

A Java programmer creates an enterprise bean by writing three classes, in accordance
with the EJB specification:

� An EJB home interface

� A remote interface for the bean

� An implementation class for the bean

Message-driven beans require only an implementation class. The interfaces and
implementation classes are compiled into a staging directory for the bean.

Deployment descriptors are created in a META-INF directory in the top level of the
staging directory:

� ejb-jar.xml describes the enterprise bean type and its deployment properties
using a standard DTD from Sun Microsystems.
2-4 Developing WebLogic Server Applications

Creating WebLogic Server Applications: Main Steps
� weblogic-ejb-jar.xml adds additional WebLogic Server-specific deployment
information.

� weblogic-cmp-rdbms-jar.xml maps a container-managed entity bean to
tables in a database. This file can must have a different name for each CMP bean
packaged in a JAR file. The name of the file is specified in the bean’s entry in
the weblogic-ejb.jar file.

See “Programming WebLogic Enterprise JavaBeans” at
http://e-docs.bea.com/wls/docs60/ejb/index.html for help creating EJB deployment
descriptors.

After the EJB classes are compiled, you run the weblogic.ejbc EJB compiler to
generate the stub and skeleton classes into the staging directory. Then you create the
EJB archive by executing a jar command like the following in the staging directory:

jar cvf myEJB.jar *

The EJB .jar file can be deployed as is, or packaged in an Enterprise Archive (.ear)
file and deployed with an application.

Creating Enterprise Applications: Overview

When you have assembled all of the Web archives and EJB archives for your
application, you can bundle them together in an Enterprise Archive (.ear) file so that
you can deploy all of the dependent components together.

Copy the .war and EJB .jar files into a staging directory and then create a
META-INF/application.xml deployment descriptor for the application. The
application.xml file contains a descriptor for each component in the application,
using a DTD supplied by Sun Microsystems.

Create the Enterprise Archive by executing a jar command such as the following in
the staging directory:

jar cvf myApp.ear *

Use the Administration Console or the weblogic.deploy command line utility to
deploy the application.
Developing WebLogic Server Applications 2-5

http://e-docs.bea.com/wls/docs60/ejb/index.html

2 Developing WebLogic Server Components
Establishing a Development Environment

To develop WebLogic Server applications, you need to assemble your software tools
and set up an environment for creating, compiling, deploying, testing, and debugging
your code. This section helps you start building your toolkit and setting up the
compiler-related environment on your development computer.

Software Tools

This section reviews the software required to develop WebLogic Server applications
and describes optional tools for development and debugging.

Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML/XML pages,
and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differences is preferred, but there are no other special requirements for
your editor.

Java Interactive Development Environments (IDEs) such as WebGain VisualCafé
usually include a programmer’s editor with custom support for Java. An IDE may also
have support for creating and deploying Servlets and Enterprise JavaBeans on
WebLogic Server, which makes it much easier to develop, test, and debug
applications.

You can edit HTML/XML pages and JavaServer Pages with a plain text editor, or use
a Web page editor such as DreamWeaver.

Java Compiler

A Java compiler produces Java class files, containing portable byte code, from Java
source. The compiler compiles the Java code you write for your applications, as well
as the code generated by the WebLogic RMI, EJB, and JSP compilers.
2-6 Developing WebLogic Server Applications

Establishing a Development Environment
Sun Microsystems Java 2, Standard Edition includes a Java compiler, javac. If you
install the bundled JRE when you install WebLogic Server, the javac compiler is
installed on your computer.

Other Java compilers are available for various platforms. You can use a different Java
compiler for WebLogic Server application development as long as it produces
standard Java .class files. Most Java compilers are many times faster than javac,
and some are integrated nicely with an IDE.

Occasionally, a compiler generates optimized code that does not behave well in all
Java Virtual Machines (JVMs). When debugging problems try disabling
optimizations, choosing a different set of optimizations, or compiling with javac to
rule out your Java compiler as the cause. Always test your code in each of your target
JVMs before deploying.

Development WebLogic Server

Never deploy untested code on a WebLogic Server that is serving production
applications, so you will need a development WebLogic Server in your environment.
You can run a development WebLogic Server on the same computer you edit and
compile on, or you can use one deployed somewhere on the network.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

Even if you do not run a development WebLogic Server on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or J2EE APIs, the Java compiler
needs access to the weblogic.jar file and other JAR files in the distribution
directory. Installing WebLogic Server on your development computer makes these
files available locally.

Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any
DBMS that you can access with a standard JDBC driver, but services such as
WebLogic JMS require a supported JDBC driver for Oracle, Sybase, Informix,
Developing WebLogic Server Applications 2-7

2 Developing WebLogic Server Components
Microsoft SQL Server, IBM DB2, or Cloudscape. Refer to the Platform Support Web
page at http://e-docs.bea.com/wls/platforms/index.html to find out about supported
database systems and JDBC drivers.

JDBC connection pools offer such significant performance advantages that you should
only rarely consider writing an application that uses a two-tier JDBC driver directly.
On a WebLogic cluster, be sure to set up a multipool, which provides load balancing
over JDBC connection pools on multiple servers in the cluster.

Web Browser

Most J2EE applications are designed to be executed by Web browser clients.
WebLogic Server supports the HTTP 1.1 specification and is tested with current
versions of the Netscape Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.
Be explicit about version numbers and browser configurations. Will your application
support SSL? Test alternative security settings in the browser so that you can tell your
users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differences in the JVMs embedded in
various browsers. One solution is to require users to install the Java plug-in from Sun
so that everyone has the same Java run-time version.

Third-Party Software

This section describes several third-party software products that can enhance your
WebLogic Server development environment.

Note: Check with the software vendor to verify software compatibility with your
platform and WebLogic Server version.

WebGain VisualCafé Enterprise Edition

VisualCafé Enterprise Edition builds on proven Java development technology and
delivers a complete Java Integrated Development Environment (IDE) for the
heterogeneous enterprise. Enterprise Edition inherits powerful productivity features
2-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/platforms/index.html

Establishing a Development Environment
and database functionality from the VisualCafé family while introducing unique new
server-side development and distributed debugging capabilities to minimize the
challenges of enterprise Java application development. VisualCafé Enterprise Edition
is the most mature and open Java development environment backed by extensive
industry wide support.

Informix Cloudscape

Cloudscape is the first 100% pure Java SQL database management system.
Cloudscape is designed to be embedded in client or server applications as a local data
manager. It implements SQL-92 with extensions for Java that enable the developer to
create a column of type Java class, and to write stored procedures in Java for execution
inside the DBMS.

Sybase PowerJ

PowerJ provides a true end-to-end solution for building sophisticated Internet
applications, exploiting the benefits of HTML, Java clients, and Java server-side
components.

WebGain TopLink

TOPLink for BEA WebLogic is a powerful tool for building EJB applications.
TOPLink is seamlessly integrated with BEA WebLogic Server. With TOPLink for
BEA WebLogic Server, you can build components for application servers that run on
Java, while significantly cutting application development time and expense.

KL Group JProbe

JProbe is a performance-tuning toolkit. With other performance-tuning toolkits,
developers working on specific application servers must use command line prompts.
Under these circumstances, setting up the session typically involves time-consuming
manual configuration, and usually more than a fair share of trial and error. The JProbe
2.5 Server Launch Pad eliminates much of this effort, making server-side tuning fast
and easy. JProbe supports many popular Web and application servers, including
WebLogic Server.
Developing WebLogic Server Applications 2-9

2 Developing WebLogic Server Components
Versant Enterprise Container

VERSANT Enterprise Container (VEC) is the integration between a VERSANT
ODBMS and an EJB-compliant application server. VEC supports WebLogic Server.
VERSANT Enterprise Container is an EJB-compliant container that plugs directly into
the application server, allowing transparent persistence for your entity beans.
VERSANT Enterprise Container is targeted at applications that have complex object
models and require high-performance access to persistent data.

eXcelon Javlin

EJB is the standard for building scalable eBusiness applications, from eCommerce,
supply-chain, and customer-relationship management, to enterprise information and
application portals, and others.

EJB-compliant application servers facilitate the creation, distribution, and integration
of eBusiness Java components in the middle tier—but they do not do the same for data.
In order to meet or exceed time to market and performance goals, you need a
middle-tier data manager like Javlin to complement your EJB server.

Object Design ObjectStore

ObjectStore is an ideal data management solution for developers creating dynamic,
reliable, high-performance applications for telecommunications, packaged software,
the Internet and other distributed computing environments.

ObjectStore combines best-of-breed, object data management with Java and C++, and
ActiveX to enable the development and delivery of high-speed, complex Web
transactions, dynamic content, and network management applications.

Preparing to Compile

Compiling Java programs for WebLogic Server is the same as compiling any other
Java program. To compile successfully, you must:

� Have the Java compiler in your search path
2-10 Developing WebLogic Server Applications

Preparing to Compile
� Set your classpath so that the Java compiler can find all of the dependent classes

� Specify the output directories for the compiled classes

One way to set up your environment is to create a command file or shell script to set
variables in your environment, which you can then pass to the compiler. The
setExamplesEnv.cmd (Windows) and setExamplesEnv.sh (UNIX) files in the
config/examples directory are examples of this technique.

Putting the Java Tools in Your Search Path

Make sure the operating system can find the compiler and other JDK tools by adding
it to the PATH environment variable in your command shell. If you are using the JDK,
the tools are in the bin subdirectory of the JDK directory. To use an alternative
compiler, such as the sj compiler from WebGain VisualCafé, add the directory
containing that compiler to your search path.

For example, if the JDK is installed in /usr/local/java/java130 on your UNIX
file system, use a command such as the following to add javac to your path in a
Bourne shell or shell script:

PATH=/usr/local/java/java130/bin:$PATH; export PATH

To add the WebGain sj compiler to your path on Windows NT or Windows 2000, use
a command such as the following in a command shell or in a command file:

PATH=c:\VisualCafe\bin;%PATH%

If you are using an IDE, see the IDE documentation for help setting up an equivalent
search path.

Setting the Classpath for Compiling

Most WebLogic services are based on J2EE standards and are accessed via standard
J2EE packages. The Sun, WebLogic, and other Java classes required to compile
programs that use WebLogic services are packaged in the weblogic.jar file in the
lib directory of your WebLogic Server installation. In addition to weblogic.jar,
include the following in your compiler’s classpath:
Developing WebLogic Server Applications 2-11

2 Developing WebLogic Server Components
� The lib/tools.jar file in the JDK directory, or other standard Java classes
required by the Java Development Kit you use.

� The weblogic_sp.jar file distributed with a WebLogic Server service pack, if
you have one.

This jar file should precede weblogic.jar in your classpath so that the service
pack classes are found before any classes they supersede in weblogic.jar.

� Classes for third party Java tools or services your programs import.

� Other application classes referenced by the programs you are compiling.

Include in your classpath the target directories where the compiler writes the
classes you are compiling so that the compiler can locate all of the
interdependent classes in your application. The next section has more
information on target directories.

Setting Target Directories for Compiled Classes

The Java compiler writes class files in the same directory with the Java source unless
you specify an output directory for the compiled classes. If you specify the output
directory, the compiler stores the class file in a directory structure that matches the
package name. This allows you to compile Java classes into the correct locations in the
staging directory you use to package your application. If you do not specify an output
directory, you have to move files around before you can create the jar file that
contains your packaged component.

J2EE applications consist of modules assembled into an application and deployed on
one or more WebLogic Servers or WebLogic Clusters. Each module should have its
own staging directory so that it can be compiled, packaged, and deployed
independently from other modules. For example, you can package EJBs in a separate
module, Web components in a separate module, and other server-side classes in
another module.

See the setExamplesEnv scripts in the config/examples directory of the WebLogic
Server distribution for an example of setting up target directories for the compiler. The
scripts set the following variables:
2-12 Developing WebLogic Server Applications

Preparing to Compile
CLIENT_CLASSES

The directory where compiled client classes are written. These classes are
usually standalone Java programs that connect to WebLogic Server. They do
not have to be in the WebLogic Server classpath.

SERVER_CLASSES

The directory where server-side classes are written. These classes include
startup classes and other Java classes that must be in the WebLogic Server
classpath when the server starts up. Application classes should usually not be
compiled into this directory, because the classes in this directory cannot be
redeployed without restarting WebLogic Server.

EX_WEBAPP_CLASSES

The directory where classes used by the Web Application are written.

APPLICATIONS

The applications directory for the examples domain. Unlike the others,
this variable is not used to specify a target for the Java compiler. It is used as
a convenient reference to the applications directory in copy commands
that move files from source directories into the applications directory. For
example, if you have .html, .jsp, and image files in your source tree, you
can use the variable in a copy command to install them in your development
server.

These environment variables are passed to the compiler in commands such as the
following command for Windows:

javac -d %SERVER_CLASSES% *.java

If you do not use an IDE, consider writing a make file, shell script, or command file to
compile and package your components and applications. Set the variables in the build
script so that you can rebuild components by typing a single command.
Developing WebLogic Server Applications 2-13

2 Developing WebLogic Server Components
2-14 Developing WebLogic Server Applications

CHAPTER
3 Packaging and
Deploying WebLogic
Server Applications

The following sections describe how to package and deploy WebLogic Server
applications:

� Packaging Overview

� Packaging Web Applications

� Packaging Enterprise JavaBeans

� Packaging Enterprise Applications

� Resolving Class References Between Components

� Deploying Applications and Components

� Packaging and Deploying Client Applications

Packaging Overview

WebLogic Server applications are packaged in a standard way, defined by the J2EE
specifications. J2EE defines component behaviors and packaging in a generic, portable
way, postponing run-time configuration until the component is actually deployed on
an application server.
Developing WebLogic Server Applications 3-1

3 Packaging and Deploying WebLogic Server Applications
J2EE includes deployment specifications for Web applications, EJB modules,
Enterprise applications, and Client applications. J2EE does not specify how an
application is deployed on the target server—only how a standard component or
application is packaged.

For each component type, the specifications define the files required and their location
in the directory structure. Components and applications may include Java classes for
EJBs and servlets, Web pages and supporting files, XML-formatted deployment
descriptors, and JAR files containing other components.

An application that is ready to deploy on WebLogic Server contains additional,
WebLogic-specific deployment descriptors and, possibly, container classes generated
with the WebLogic EJB, RMI, or JSP compilers.

JAR Files

A file created with the Java jar utility bundles the files in a directory into a single Java
ARchive (JAR) file, maintaining the directory structure. The Java classloader can
search for Java class files (and other file types) in a JAR file the same way that it
searches a directory in its classpath. Because the classloader can search a directory or
a JAR file, you can deploy J2EE components on WebLogic Server in either an
“exploded” directory or a JAR file.

JAR files are convenient for packaging components and applications for distribution.
They are easier to copy, they use up fewer file handles than an exploded directory, and
they can save disk space with file compression. If your Administration Server manages
a domain with multiple WebLogic Servers, you can only deploy JAR files, because the
Administration Console does not copy expanded directories to managed servers.

The jar utility is in the bin directory of your Java Development Kit. If you have
javac in your path, you also have jar in your path. The jar command syntax and
behavior is similar to the UNIX tar command.

The most common usages of the jar command are:

jar cf jar-file files ...

Creates a JAR file named jar-file containing listed files. If you include a
directory in the list of files, all files in that directory and its subdirectories are
added to the JAR file.

jar xf jar-file

Extract (unbundle) a JAR file in the current directory.
3-2 Developing WebLogic Server Applications

Packaging Overview
jar tf jar-file

List (tell) the contents of a JAR file.

The first flag specifies the operation: create, extract, or list (tell). The f flag must be
followed by a JAR file name. Without the f flag, jar reads or writes JAR file contents
on stdin or stdout which is usually not what you want. See the documentation for
the JDK utilities for more about jar command options.

XML Deployment Descriptors

Components and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The J2EE specifications define standard,
portable deployment descriptors for J2EE components and applications. BEA defines
additional WebLogic-specific deployment descriptors required to deploy a component
or application in the WebLogic Server environment.

Table 3-1 lists the types of components and applications and their J2EE-standard and
WebLogic-specific deployment descriptors.

Table 3-1 J2EE and WebLogic Deployment Descriptors

Component or
Application

Scope Deployment Descriptors

Web Application J2EE WEB-INF/web.xml

WebLogic WEB-INF/weblogic.xml

Enterprise Bean J2EE META-INF/ejb-jar.xml

WebLogic META-INF/weblogic-ejb-jar.xml

META-INF/weblogic-cmp-rdbms-jar.xml

Enterprise
Application

J2EE META-INF/application.xml

Client
Application

J2EE META-INF/application.xml

client-application-runtime.xml
Developing WebLogic Server Applications 3-3

3 Packaging and Deploying WebLogic Server Applications
When you package a component or application, you create a directories to hold the
deployment descriptors—WEB-INF or META-INF—and then create the required XML
deployment descriptors in that directory.

If you receive a J2EE-compliant JAR file from a developer, it already contains
J2EE-defined deployment descriptors. To deploy the JAR file on WebLogic Server,
you must extract the contents of the JAR file into a directory, add the required
WebLogic-specific deployment descriptors and any generated container classes, and
then create a new JAR file containing the old and new files.

Packaging Web Applications

To stage and package a Web application:

1. Create a temporary staging directory.

2. Copy all of your HTML files, JSP files, images, and any other files that these
Web pages reference into the staging directory, maintaining the directory
structure for referenced files. For example, if an HTML file has a tag such as
, the pic.gif file must be in the images
subdirectory beneath the HTML file.

3. Create META-INF and WEB-INF/classes subdirectories in the staging directory
to hold deployment descriptors and compiled Java classes.

4. Copy or compile any servlet classes and helper classes into the
WEB-INF/classes subdirectory.

5. Copy the home and remote interface classes for enterprise beans used by the
servlets into the WEB-INF/classes subdirectory.

Note: See “Classloader Overview” on page 3-8 to understand how the WebLogic
Server class-loading mechanism affects EJB references from servlets
within the same application.

6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be
installed in a subdirectory beneath WEB-INF; the path to the .tld file is coded in
the .jsp file.)
3-4 Developing WebLogic Server Applications

Packaging Enterprise JavaBeans
7. Create web.xml and weblogic.xml deployment descriptors in the WEB-INF
subdirectory.

Note: See “Writing Web Application Deployment Descriptors” on page 5-1 for
help creating deployment descriptors for Web applications.

8. Bundle the staging directory into a .war file by executing a jar command such
as the following:

jar cvf myapp.war -C staging-dir .

The resulting .war file can be added to an Enterprise application (.ear file) or
deployed independently using the Administration Console or the
weblogic.deploy command-line utility.

Packaging Enterprise JavaBeans

You can stage one or more enterprise beans in a directory and package them in an EJB
JAR file.

To stage and package an enterprise bean:

1. Create a temporary staging directory.

2. Compile or copy the bean’s Java classes into the staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Create an ejb-jar.xml deployment descriptor in the META-INF subdirectory
and add entries for the bean.

5. Create a weblogic-ejb-jar.xml deployment descriptor in the META-INF
subdirectory and add entries for the bean.

6. If the bean is an entity bean with container-managed persistence, create a
weblogic-rdbms-cmp-jar—bean_name.xml deployment descriptor in the
META-INF directory with entries for the bean. Map the bean to this CMP
deployment descriptor with a <type-storage> attribute in the
weblogic-ejb-jar.xml file.
Developing WebLogic Server Applications 3-5

3 Packaging and Deploying WebLogic Server Applications
Note: See “Programming WebLogic EJB” at
http://e-docs.bea.com/wls/docs60/ejb/index.html for help compiling
enterprise beans and creating EJB deployment descriptors.

7. When all of the enterprise bean classes and deployment descriptors are set up in
the staging directory, you can create the EJB JAR file with a jar command such
as:

jar cvf jar-file.jar -C staging-dir .

This command creates a jar file that you can deploy on a WebLogic Server or
package in an application JAR file.

The -C staging-dir option instructs the jar command to change to the
staging-dir directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the enterprise beans.

Enterprise beans require container classes, classes the WebLogic EJB compiler
generates to allow the bean to deploy in a WebLogic Server. The WebLogic EJB
compiler reads the deployment descriptors in the EJB JAR file to determine how to
generate the classes. You can run the WebLogic EJB compiler on the JAR file before
you deploy the beans, or you can let WebLogic Server run the compiler for you at
deployment time. See Programming WebLogic EJB at
http://e-docs.bea.com/wls/docs60/ejb/index.html for help with the WebLogic EJB
compiler.

Packaging Enterprise Applications

An Enterprise archive contains EJB and Web modules that are part of a related
application. The EJB and Web modules are bundled together in another JAR file with
an .ear extension.

The META-INF subdirectory in an .ear file contains an application.xml

deployment descriptor, which identifies the modules packaged in the .ear file. You
can find the DTD for the application.xml file at
http://java.sun.com/j2ee/dtds/application_1_2.dtd. No
WebLogic-specific deployment descriptor is needed for an enterprise archive.

Here is the application.xml file from the Pet Store example:
3-6 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/ejb/index.html
http://java.sun.com/j2ee/dtds/application_1_2.dtd

Packaging Enterprise Applications
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD
J2EE Application 1.2//EN'
'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
<display-name>estore</display-name>
<description>Application description</description>
<module>

<web>
<web-uri>petStore.war</web-uri>
<context-root>estore</context-root>

</web>
</module>
<module>

<ejb>petStore_EJB.jar</ejb>
</module>
<security-role>

<description>the gold customer role</description>
<role-name>gold_customer</role-name>

</security-role>
<security-role>

<description>the customer role</description>
<role-name>customer</role-name>

</security-role>
</application>

To stage and package an Enterprise application:

1. Create a temporary staging directory.

2. Copy the Web archives (.war files) and EJB archives (.jar files) into the
staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Create the application.xml deployment descriptor in the META-INF
subdirectory.

5. Create the Enterprise Archive (.ear file) for the application, using a jar
command such as:

jar cvf application.ear -C staging-dir .

The resulting .ear file can be deployed using the Administration Console or the
weblogic.deploy command-line utility.
Developing WebLogic Server Applications 3-7

3 Packaging and Deploying WebLogic Server Applications
Resolving Class References Between
Components

Your applications may use many different Java classes, including enterprise beans,
servlets and JavaServer Pages, startup classes, utility classes, and third-party packages.
WebLogic Server deploys applications in separate classloaders to maintain
independence and to facilitate dynamic redeployment and undeployment. Because of
this, you need to package your application classes in such a way that each component
has access to the classes it depends on. In some cases, you may have to include a set
of classes in more than one application or component. This section describes how
WebLogic Server uses multiple classloaders so that you can stage your applications
successfully.

Classloader Overview

A classloader is a Java class that locates and loads a requested class into the Java
virtual machine (JVM). A classloader resolves references by searching for files in the
directories or JAR files listed in its classpath. Most Java programs have a single
classloader, the default system classloader created when the JVM starts up. WebLogic
Server creates additional classloaders when it deploys applications because these
classloaders can be destroyed in order to undeploy the application. This allows
WebLogic Server to redeploy modified applications without having to restart the
server.

Classloaders are hierarchical. When you start WebLogic Server, the Java system
classloader is active and is the parent of all subsequent classloaders that WebLogic
Server creates. A classloader always asks its parent for a class before it searches its
own classpath, but a parent classloader does not consult its children. Because the
search only proceeds upwards in the classloader hierarchy, this also means that a child
classloader cannot locate classes on a sibling’s classpath.

The search protocol also clarifies how duplicate classes are handled in Java. Classes
located in the Java system classpath always have precedence over any class with the
same name in a child classloader’s classpath. Because of this, you should avoid placing
3-8 Developing WebLogic Server Applications

Resolving Class References Between Components
application classes in the Java system classpath before you start WebLogic Server. The
classloader created at startup time cannot be destroyed, so any classes it contains
cannot be redeployed without restarting WebLogic Server.

About Application Classloaders

When WebLogic Server deploys an application, it creates two new classloaders: one
for EJBs and one for Web applications. The EJB classloader is a child of the Java
system classloader and the Web application classloader is a child of the EJB
classloader. This allows classes in a Web application to locate EJB classes, but EJB
classes cannot locate Web application classes. A positive side-effect of this classloader
hierarchy is that it allows servlets and JSPs direct access to EJB implementation
classes. WebLogic Server can bypass the intermediate RMI classes because the EJB
client and implementation are in the same JVM.

If your application includes servlets and JSPs that use enterprise beans:

� Package the servlets and JSPs in a .war file

� Package the enterprise beans in an EJB .jar file

� Package the .war and .jar files in an .ear file

� Deploy the .ear file

Although you could deploy the .war and .jar files separately, deploying them
together in an .ear file produces a classloader arrangement that allows the servlets and
JSPs to find the EJB classes. If you deploy the .war and .ejb files separately,
WebLogic Server creates sibling classloaders for them. You must include the EJB
home and remote interfaces in the .war file, and WebLogic Server must use the RMI
stub and skeleton classes for EJB calls, just as it does when EJB clients and
implementation classes are in different JVMs.
Developing WebLogic Server Applications 3-9

3 Packaging and Deploying WebLogic Server Applications
Packaging Common Utilities and Third-Party Classes

If you create or acquire utility classes that you will use in more than one application,
you must package them with each application. Alternatively, you could add them to
the Java system classpath by editing the java command in the script that runs
WebLogic Server. If you modify your utility classes and they are in the Java system
classpath, however, you will have to restart WebLogic Server.

Classes that WebLogic Server uses during startup must be in the Java system classpath.
For example, JDBC drivers used for connection pools must be in the classpath when
you start WebLogic Server. Again, if you need to modify classes in the Java system
classpath, or modify the classpath itself, you will have to restart WebLogic Server.

Handling Interactions Between Startup Classes and
Applications

Startup classes are classes you create that WebLogic Server executes at startup time.
Startup classes are located by the Java system classpath, so you must put them in the
system classpath before you start the server. Also, any classes they require must be
included in the system classpath.

If a startup class uses application classes (such as EJB interfaces) you will also have to
add those classes to the WebLogic Server startup classpath. Unfortunately, this means
that you cannot modify those classes without restarting the server.

Startup classes that use application objects must wait for WebLogic Server to finish
deploying the applications before they attempt to access the application objects. For
example, if a startup class uses EJBs, you must include the home and remote interfaces
in the system classpath, and you must ensure that the startup class does not create any
EJB instances until WebLogic Server has finished deploying the EJB application.

The Pet Store application has a startup class that demonstrates one method a startup
class can use to wait for applications to finish deploying. The
com.bea.estore.startup.StartBrowser startup class displays the initial URL to
access the Pet Store application, and on Windows it also launches the browser with the
URL. StartBrowser executes a while loop until applications have deployed and the
server begins accepting connection requests.
3-10 Developing WebLogic Server Applications

Deploying Applications and Components
Here is an excerpt from that class to show how this works:

while (loop) {
try {
socket = new Socket(host, new Integer(port).intValue());
socket.close();

//launch browser
String[] cmdArray = new String[3];
cmdArray[0] = "beaexec.exe";
cmdArray[1] = "-target:browser";
cmdArray[2] = "-command:\"http://"+host+":"+port+"\"";
try {

Process p = Runtime.getRuntime().exec(cmdArray);
p.getInputStream().close();
p.getOutputStream().close();
p.getErrorStream().close();

}
catch (IOException ioe) {
}
loop = false;

} catch (Exception e) {
try {

Thread.sleep(SLEEPTIME); // try every 500 ms
} catch (InterruptedException ie) {}
finally {

try {
socket.close();

} catch (Exception se) {}
}

}
}

If the system fails to create a socket, or if the BEA-supplied beaexec.exe utility
returns an error, the class sleeps for 500 milliseconds before repeating the loop. If a
startup class needs to create an EJB instance, it could use a similar technique by
looping until the EJB create method succeeds.

Deploying Applications and Components

You can deploy an EJB JAR, Web application, or Enterprise application by using the
Administration Console or the weblogic.deploy command-line utility. You can also
use either method to undeploy or redeploy an updated application.
Developing WebLogic Server Applications 3-11

3 Packaging and Deploying WebLogic Server Applications
The .jar, .ear, or .war file must be correctly structured and contain all of the
necessary deployment descriptors described in previous sections.

Note: If you have a single WebLogic Server, you can deploy applications and
components by copying them to the server’s applications subdirectory. In
this case, files do not need to be packaged in JAR files. The ability to refresh
individual files in the applications directory is useful for testing during
development. However, using JAR files is recommended for production
applications.

Using the Administration Console

To deploy an application using the Administration Console:

1. Start the Administration Console.

2. In the left pane, expand Deployments.

3. Under Deployments, click Applications.

4. In the right pane, click Browse, and find the .ear, .jar, or .war file containing
the component or application you want to install.

5. Click Upload.

This copies the file to the Administration Server’s applications directory.

6. Expand the new application under the Applications node to reveal the
components.

7. For each of the components in the application, click the component name in the
left pane, then complete the information on the Configuration and Targets tabs in
the right pane. Consult the online help to find details about the values on these
tabs.

8. Click on the application name under the Applications node, and check the
Deployed check box in the right pane.

9. Click Apply.

Depending on your choices, you may need to restart WebLogic Server. The
Administration Console displays a restart message in the right pane.
3-12 Developing WebLogic Server Applications

Packaging and Deploying Client Applications
Using the weblogic.deploy Command-Line Utility

The weblogic.deploy command-line utility allows you to deploy, undeploy, update,
and list components on an Administration Server—tasks you can accomplish
interactively using the Administration Console. The weblogic.deploy command
line utility can be used in scripts, which is especially useful during development.

See the documentation for weblogic.deploy in the Administration Guide for syntax
and usage for this command line-utility.

Packaging and Deploying Client
Applications

WebLogic Server applications written in Java run in a JVM on a client machine. The
client JVM must be able to locate the Java classes you create for your application and
any Java classes your application depends upon, including WebLogic Server classes.
This usually means distributing the weblogic_sp.jar and weblogic.jar files to the
client and adding them to the client’s classpath.

You may also want to package a Java Runtime Environment (JRE) with a Java client
application.

You can stage a client application by copying all of the files required on the client into
a directory and bundling the directory up in a .zip file, or a .jar file if you know that
clients have already installed a Java environment with the jar utility.

The top level of the client application directory can have a batch file or script to start
the application. Make a classes subdirectory to hold Java classes and .jar files, and
add them to the client’s classpath in the startup script.
Developing WebLogic Server Applications 3-13

http://e-docs.bea.com/wls/docs60/adminguide/utils.html#deploy
http://e-docs.bea.com/wls/docs60/adminguide/utils.html#deploy

3 Packaging and Deploying WebLogic Server Applications
J2EE Client

Although not required for WebLogic Server applications, J2EE includes a standard for
deploying client applications. A J2EE Client application module is packaged in a .jar
file. The .jar file contains the Java classes that execute in the client JVM and
deployment descriptors that describe Enterprise JavaBeans and other WebLogic
resources used by the client.

A standard deployment descriptor from Sun is used for J2EE clients and a
supplemental deployment descriptor contains additional WebLogic-specific
deployment information.

See “Client Application Deployment Descriptor Elements” on page C-1 for help with
these deployment descriptors.

On the client, the weblogic.ClientDeployer utility starts a J2EE client application
on the client machine. This class is executed on the Java command line with the
following syntax:

java weblogic.ClientDeployer ear-file client

The ear-file argument is an expanded directory, or Java archive file with an .ear

extension, that contains one or more Client application .jar files.

For example:

java appclient.ClientDeployer app.ear client

In this example, the app.ear file is a JAR file that contains a J2EE client packaged in
the client.jar JAR file.
3-14 Developing WebLogic Server Applications

CHAPTER
4 Programming Topics

The following sections contains information about programming in the WebLogic
Server environment, including descriptions of useful WebLogic Server facilities and
advice about using various programming techniques:

� Logging Messages

� Using Threads in WebLogic Server

� Using JavaMail with WebLogic Server Applications

Logging Messages

Each WebLogic Server instance has a log file that contains messages generated from
that server. Your applications can write messages to the log file using
internationalization services that access localized message catalogs. If localization is
not required, you can use the weblogic.logging.NonCatalogLogger class to write
messages to the log. This class can also be use in client applications to write messages
in a client-side log file.

This section describes how to use the NonCatalogLogger class. See the
Internationalization Guide at http://e-docs.bea.com/wls/docs60/i18n/index.html for
details on using the internationalization interface.
Developing WebLogic Server Applications 4-1

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/logging/NonCatalogLogger.html
http://e-docs.bea.com/wls/docs60/i18n/index.html

4 Programming Topics
The log file name, location, and other properties can be administered in the
Administration Console. Log messages written via the NonCatalogLogger class
contain the following information.

Table 4-1 Log Message Format

Property Description

Localized Timestamp Date and time when message originated, including the year, month, day of month,
hours, minutes and seconds.

millisecondsFromEpoch The origination time of the message, in milliseconds since the epoch.

ServerName,
MachineName,
ThreadId, TransactionId

The origin of the message. TransactionId is present only for messages logged within
the context of a transaction.

User Id User on behalf of whom the system was executing when the error was reported.

Subsystem Source of the message, for example EJB, JMS, or RMI. A user application supplies
a Subsystem String in the NonCatalogLogger constructor.

Message Id A unique six-digit identifier for the message. All message IDs through 499000 are
reserved for WebLogic Server.
4-2 Developing WebLogic Server Applications

Logging Messages
To use NonCatalogLogger, import the weblogic.logging.NonCatalogLogger
class and call the constructor with a subsystem String. Here is an example using the
subsystem name “MyApp”:

Severity One of the following severity values:

Debug Should be output only when the server/application is configured
in a debug mode. May contain detailed information about
operations or the state of the server/application.

Informational Used to log normal operations for later examination.

Warning A suspicious operation, event, or configuration that does not
affect the normal operation of the server/application.

Error A user level error. The system/application can handle the error
with no interruption and with limited degradation in service.

In addition to the above, some severity levels are reserved for WebLogic Server
messages:

Notice A warning message. A suspicious operation or configuration
that does not affect the normal operation of the server.

Critical A system/service level error. The system is able to recover,
perhaps with a momentary loss or permanent degradation of
service.

Alert A particular service is in an unusable state. Other parts of the
system continue to function. Automatic recovery is not possible
and the immediate attention of the administrator is required to
resolve the problem.

Emergency The server is in an unusable state. This is used to designate
severe system failures or panics.

ExceptionName If the message is logging an Exception, this field contains the name of the Exception.

Message text For WebLogic Server messages, this field contains the “short description” of the
message defined in the system message catalog.

Table 4-1 Log Message Format

Property Description
Developing WebLogic Server Applications 4-3

4 Programming Topics
import weblogic.logging.NonCatalogLogger;
...
NonCatalogLogger mylogger = new NonCatalogLogger("MyApp");

NonCatalogLogger provides the methods debug(), info(), warn(), and error(),
which write messages with Debug, Informational, Warning, and Error severities,
respectively. Each method has two signatures, one that takes a String message
argument, and another that takes a String message and a java.lang.Throwable
argument. If you use the latter form, the log message includes a stack trace.

Here is an example of writing an informational message, without stack trace, to the log:

mylogger.info("MyApp initialized.");

If you are using NonCatalogLogger in a Java client, you specify the name of the log
file on the java command line, using the weblogic.log.FileName Java system
property. For example:

java -Dweblogic.log.FileName=myapp.log myapp

If you have special processing requirements for some log messages, you can add your
own message handlers.Your message handler provides a filter to select the messages
it is interested in processing. For each log message, the WebLogic Server logging
infrastructure raises a JMX notification, which is delivered to the registered message
handlers with filters that match the message.

See weblogic.management.logging.WebLogicLogNotification information
about using this JMX feature.

Using Threads in WebLogic Server

WebLogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the
components it hosts. To obtain the greatest advantage from WebLogic Server’s
architecture you should construct your applications from components created using the
standard J2EE APIs.

It is advisable to avoid application designs that require creating new threads in
server-side components for several reasons:
4-4 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/management/logging/WebLogicLogNotification.html

Using Threads in WebLogic Server
� Applications that create their own threads do not scale well. Threads in the JVM
are a limited resource that must be allocated thoughtfully. Your applications may
break or cause WebLogic Server to thrash when the server load increases.
Problems such as deadlocks and thread starvation may not appear until the
application is under a heavy load.

� Multithreaded components are complex and difficult to debug. Interactions
between application-generated threads and WebLogic Server threads are
especially difficult to anticipate and analyze.

There are some situations where creating threads may be appropriate, in spite of these
warnings. For example, an application that searches several repositories and returns a
combined result set can return results sooner if the searches are done asynchronously
using a new thread for each repository instead of synchronously using the main client
thread.

If you decide you must use threads in your application code, your should create a pool
of threads so that you can control the number of threads your application creates. Like
a JDBC connection pool, you allocate a given number of threads to a pool, and then
obtain an available thread from the pool for your runnable class. If all threads in the
pool are in use, wait until one is returned. A thread pool can help avoid performance
issues and will also allow you to optimize the allocation of threads between WebLogic
Server execution threads and your application.

Be sure you understand where your threads can deadlock and handle the deadlocks
when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

To avoid undesireable interactions with WebLogic Server threads, do not let your
threads call into WebLogic Server components. For example, do not use enterprise
beans or servlets from threads that you create. Application threads are best used for
independent, isolated tasks, such as conversing with an external service with a TCP/IP
connection or, with proper locking, reading or writing to files. A short-lived thread that
accomplishes a single purpose and ends (or returns to the thread pool) is less likely to
interfere with other threads.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even
to the point of failure. Observe the application performance and WebLogic Server
behavior and then add checks to prevent failures from occuring in production.
Developing WebLogic Server Applications 4-5

4 Programming Topics
Using JavaMail with WebLogic Server
Applications

WebLogic Server includes the JavaMail API version 1.1.3 reference implementation
from Sun Microsystems. Using the JavaMail API, you can add email capabilities to
your WebLogic Server applications. JavaMail provides access from Java applications
to IMAP- and SMTP-capable mail servers on your network or the Internet. It does not
provide mail server functionality; so you must have access to a mail server to use
JavaMail.

Complete documentation for using the JavaMail API is available on the JavaMail page
on the Sun Web site at http://java.sun.com/products/javamail/index.html. This section
describes how you can use JavaMail in the WebLogic Server environment.

The weblogic.jar \file contains the javax.mail and javax.mail.internet

packages from Sun. weblogic.jar also contains the the Java Activation Framework
(JAF) package, which JavaMail requires.

The javax.mail package includes providers for IMAP and SMTP mail servers. Sun
has a separate POP3 provider for JavaMail, which is not included in weblogic.jar.
You can download the POP3 provider from Sun and add it to the WebLogic Server
classpath if you want to use it.

About JavaMail Configuration Files

JavaMail depends on configuration files that define the mail transport capabilities of
the system. The weblogic.jar file contains the standard configuration files from
Sun, which enable IMAP and SMTP mail servers for JavaMail and define the default
message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, you should download JavaMail from Sun and follow Sun’s
instructions for adding your extensions. Then add your extended JavaMail package in
the WebLogic Server classpath in front of weblogic.jar.
4-6 Developing WebLogic Server Applications

http://java.sun.com/products/javamail/index.html

Using JavaMail with WebLogic Server Applications
Configuring JavaMail for WebLogic Server

To configure JavaMail for use in WebLogic Server, you create a Mail Session in the
WebLogic Server Administration Console. This allows server-side components and
applications to access JavaMail services with JNDI, using Session properties you
preconfigure for them. For example, by creating a Mail Session, you can designate the
mail hosts, transport and store protocols, and the default mail user in the
Administration Console so that components that use JavaMail do not have to set these
properties. Applications that are heavy email users benefit because WebLogic Server
creates a single Session object and makes it available via JNDI to any component that
needs it.

1. In the Administration Console, click on the Mail node in the left pane of the
Administration Console.

2. Click Create a New Mail Session.

3. Complete the form in the right pane, as follows:

� In the Name field, enter a name for the new session.

� In the JNDIName field, enter a JNDI lookup name. Your code uses this
string to look up the javax.mail.Session object.

� In the Properties field, enter properties to configure the Session. The property
names are specified in the JavaMail API Design Specification. JavaMail
provides default values for each property, and you can override the values in
the application code. The following table lists the properties you can set in
this field.

Table 4-2 Mail Session Properties Field

Property Description Default

mail.store.protocol The protocol to use to retrieve email.

Example:

mail.store.protocol=imap

The bundled JavaMail library
has support for IMAP.

mail.transport.protocol The protocol to use to send email.

Example:

mail.transport.protocol=smtp

The bundled JavaMail library
has support for SMTP.
Developing WebLogic Server Applications 4-7

4 Programming Topics
You can override any properties set in the Mail Session in your code by
creating a Properties object containing the properties you want to override.
Then, after you lookup the Mail Session object in JNDI, call the
Session.getInstance() method with your Properties to get a
customized Session.

mail.host The name of the mail host machine.

Example:

mail.host=mailserver

The default is the local
machine.

mail.user The name of the default user for retrieving
email.

Example:

mail.user=postmaster

The default is the value of the
user.name Java system
property.

mail.protocol.host The mail host for a specific protocol. For
example, you can set mail.SMTP.host and
mail.IMAP.host to different machine
names.

Examples:

mail.smtp.host=mail.mydom.com
mail.imap.host=localhost

The value of the mail.host
property.

mail.protocol.user The protocol-specific default user name
for logging into a mailer server.

Examples:

mail.smtp.user=weblogic
mail.imap.user=appuser

The value of the mail.user
property.

mail.from The default return address.

Examples:

mail.from=master@mydom.com

username@host

mail.debug Set to true to enable JavaMail debug
output.

false

Table 4-2 Mail Session Properties Field

Property Description Default
4-8 Developing WebLogic Server Applications

Using JavaMail with WebLogic Server Applications
Sending Messages with JavaMail

Here are the steps to send a message with JavaMail from within a WebLogic Server
component:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the
Administration Console, create a Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties.

Properties props = new Properties();
props.put("mail.transport.protocol", "smtp");
props.put("mail.smtp.host", "mailhost");
// use mail address from HTML form for from address
props.put("mail.from", emailAddress);
Session session2 = session.getInstance(props);

4. Construct a MimeMessage. In the following example, to, subject, and
messageTxt are String variables containing input from the user.

Message msg = new MimeMessage(session2);
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(to, false));
msg.setSubject(subject);
msg.setSentDate(new Date());
// Content is stored in a MIME multi-part message
// with one body part
MimeBodyPart mbp = new MimeBodyPart();
mbp.setText(messageTxt);

Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp);
Developing WebLogic Server Applications 4-9

4 Programming Topics
5. Send the message.

Transport.send(msg);

The JNDI lookup can throw a NamingException on failure. JavaMail can throw a
MessagingException if there are problems locating transport classes or if
communications with the mail host fails. Be sure to put your code in a try block and
catch these exceptions and handle them.

Reading Messages with JavaMail

The JavaMail API allows you to connect to a message store, which could be an IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders
are stored on the mail server, including folders that contain incoming messages and
folders that contain archived messages. With POP3, the server provides a folder that
stores messages as they arrive. When a client connects to a POP3 server, it retrieves
the messages and transfers them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain
messages or other folders. The default folder is at the top of the structure. The special
folder name INBOX refers to the primary folder for the user, and is within the default
folder. To read incoming mail, you get the default folder from the store, and then get
the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified
message number or range of message numbers, or pre-fetching specific parts of
messages into the folder’s cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic
Server component:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:
4-10 Developing WebLogic Server Applications

Using JavaMail with WebLogic Server Applications
InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the
Administration Console, create a Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props.put("mail.pop3.host", "mailhost");
Session session2 = session.getInstance(props);

4. Get a Store object from the Session and call its connect() method to connect
to the mail server. To authenticate the connection, you need to supply the
mailhost, username, and password in the connect method:

Store store = session.getStore();
store.connect(mailhost, username, password);

5. Get the default folder, then use it to get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder("INBOX");

6. Read the messages in the folder into an array of Messages:

Message[] messages = folder.getMessages();

7. Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement a full-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage a message store
via WebLogic Server, possibly using a database or file system to represent folders.
Developing WebLogic Server Applications 4-11

4 Programming Topics
4-12 Developing WebLogic Server Applications

Overview of Web Application Deployment Descriptors
5 Writing Web
Application
Deployment
Descriptors

The following sections describe how to writeWeb Application deployment
descriptors:

� Overview of Web Application Deployment Descriptors

� Writing the web.xml Deployment Descriptor

� Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)

Overview of Web Application Deployment
Descriptors

Deploying Web Applications requires you to create two deployment descriptors for
each Web Application. These deployment descriptors define components and
operating parameters for a Web Application. Deployment descriptors are standard text
Developing WebLogic Server Applications 5-1

5 Writing Web Application Deployment Descriptors
files, formatted using XML notation and are packaged within the Web Application.
For more information on Web Applications, see Deploying and Configuring Web
Applications at http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html.

The first deployment descriptor, web.xml is defined by the Servlet 2.2 specification
from Sun Microsystems. This deployment descriptor can be used to deploy a Web
Application on any J2EE-compliant application server.

The second deployment descriptor, weblogic.xml, defines deployment properties
that are specific to a Web Application running on WebLogic Server.

Writing the web.xml Deployment Descriptor

This section describes the steps to create the web.xml deployment descriptor.
Depending on the components in your Web Application, you may not need to include
all of the elements listed here to configure and deploy your Web Application.

The elements in the web.xml file must be entered in the order they are presented in
this document.

Main Steps to Create the web.xml File

Step 1: Create a deployment descriptor file on page 5-3
Step 2: Create the header on page 5-3
Step 3: Create the main body of the web.xml file on page 5-4
Step 4: Define deployment-time attributes on page 5-4
Step 5: Define context parameters on page 5-5
Step 6: Deploy servlets on page 5-6
Step 7: Map a servlet to a URL on page 5-8
Step 8: Define the session timeout value on page 5-9
Step 9: Define welcome pages on page 5-9
Step 10: Define error pages on page 5-10
Step 11: Define MIME mapping on page 5-10
Step 12: Define a JSP tag library descriptor on page 5-11
Step 13: Reference external resources on page 5-12
Step 14: Set up security constraints on page 5-12
5-2 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

Writing the web.xml Deployment Descriptor
Step 15: Set up login authentication on page 5-14
Step 16: Define security roles on page 5-16
Step 17: Set environment entries on page 5-16
Step 18: Reference Enterprise JavaBean (EJB) resources on page 5-17

If you have installed the WebLogic Server samples and examples, you can look at the
web.xml and weblogic.xml files in the Pet Store sample to see a working example
of Web Application deployment descriptors. These files are located in the
/samples/PetStore/source/dd/war/WEB-INF directory of your WebLogic
Server distribution.

Detailed Steps to Create the web.xml File

Step 1: Create a deployment descriptor file

Name the file web.xml and place it under the WEB-INF directory of the Web
Application. Use any text editor.

Step 2: Create the header

This text must be the first line of the file:

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

The header refers to the location and version of the Document Type Descriptor (DTD)
file for the deployment descriptor. Although this header references an external URL at
java.sun.com, WebLogic Server contains its own copy of the DTD file, so your host
server need not have access to the Internet. However, you must still include this
<!DOCTYPE...> element in your web.xml file, and have it reference the external URL
because the version of the DTD contained in this element is used to identify the version
of this deployment descriptor.
Developing WebLogic Server Applications 5-3

5 Writing Web Application Deployment Descriptors
Step 3: Create the main body of the web.xml file

Wrap all of your entries within a pair of opening and closing <web-app> tags.

In XML, properties are defined by surrounding a property name or value with opening
and closing tags as shown above. The opening tag, the body (the property name or
value), and the closing tag are collectively called an element. Some elements do not
use the surrounding tags, but instead use a single tag that contains attributes called an
empty-tag. Elements contained within other elements are indented in this text for
clarity. Indenting is not necessary in an XML file.

The body of the <web-app> element itself contains additional elements that determine
how the Web Application will run on WebLogic Server. The order of the tag elements
within the file must follow the order reflected in this document. This ordering is
defined in the Document Type Descriptor (DTD) file. For more information, refer to
the DTD, available on the Sun Microsystems Web site at
http://java.sun.com/j2ee/dtds/web-app_2_2.dtd.

Step 4: Define deployment-time attributes

These tags provide information for the deployment tools or the application server
resource management tools. These values are not used by WebLogic Server in this
release.

<web-app>

All elements describing this Web Application go within
the <web-app> element.

</web-app>

This tag should be the
final tag in the
web.xml file

<small-icon>
iconfile.gif(jpg)

</small-icon>

(Optional)

<large-icon>
iconfile.gif(jpg)

</large-icon>

(Optional)

<display-name>
application-name

</display-name>

(Optional)
5-4 Developing WebLogic Server Applications

http://java.sun.com/j2ee/dtds/web-app_2_2.dtd

Writing the web.xml Deployment Descriptor
Step 5: Define context parameters

The context-param element declares a Web Application’s servlet context
initialization parameters. These can be parameters that you define that will be available
throughout your Web Application. You set each context-param within a single
context-param element, using <param-name> and <param-value> elements. You
can access these parameters in your code using the
javax.servlet.ServletContext.getInitParameter() and
javax.servlet.ServletContext.getInitParameterNames() methods.

Precompiling JSPs
You can use the context-param element to specify that WebLogic Server
precompile JSPs on start up. For more information, see Precompiling JSPs at
http://e-docs.bea.com/wls/docs60/jsp/reference.html#precomp

ile.

<description>
descriptive-text

</description>

(Optional)

<distributable> (Optional)

<context-param> For more information,
see context-param
Element on page A-3

<param-name>
user-defined param name

</param-name>

(Required)

<param-value>
user-defined value

</param-value>

<description
text description

</description>

(Required)

<context-param>
Developing WebLogic Server Applications 5-5

http://e-docs.bea.com/wls/docs60/jsp/reference.html#precompile

5 Writing Web Application Deployment Descriptors
Step 6: Deploy servlets

In this step, you give the servlet a name, specify the class file or JSP used to implement
its behavior, and set other servlet-specific properties. List each of the servlets in your
Web Application within separate <servlet>...</servlet> elements. After you
create entries for all of your servlets, you must include elements that map the servlet
to a URL pattern. These mapping elements are described in “Step 7: Map a servlet to
a URL” on page 5-8.

Use the following elements to declare a servlet:

<servlet> For more information,
see “servlet Element”
on page A-3

<servlet-name>
name

</servlet-name>

(Required)

<servlet-class>
package.name.MyClass

</servlet-class>
-or-
<jsp-file>

/foo/bar/myFile.jsp
</jsp-file>

(Required)

<init-param> For more information,
see “init-param
Element” on page A-5

<param-name>
name

</param-name>

(Required)

<param-value>
value

</param-value>

(Required)

<description>
...text...

</description>

</init-param>

(Optional)

<load-on-startup>
loadOrder

</load-on-startup>

(Optional)
5-6 Developing WebLogic Server Applications

Writing the web.xml Deployment Descriptor
Here is an example of a servlet element that includes an initialization parameter.

<servlet>
<init-param>

<param-name>feedbackEmail</param-name>
<param-value>feedback123@beasys.com</param-value>
<description>
The email for web-site feedback.

</description>
</init-param>

</servlet>

<security-role-ref> (Optional).

For more information,
see “security-role-ref
Element” on page A-6

<description>
...text...

</description>

(Optional)

<role-name>
rolename

</role-name>

(Required)

<role-link>
rolelink

</role-link>

(Required)

</security-role-ref>

<small-icon>
iconfile

</small-icon>

Not Used.(Optional)

<large-icon>
iconfile

</large-icon>

(Optional)

<display-name>
Servlet Name

</display-name>

(Optional)

<description>
...text...

</description>

(Optional)

</servlet>
Developing WebLogic Server Applications 5-7

5 Writing Web Application Deployment Descriptors
Step 7: Map a servlet to a URL

Once you declare your servlet or JSP using a <servlet> element, map it to one or
more URL patterns to make it a public HTTP resource. For each mapping, use a
<servlet-mapping> element.

Here is an example of a <servlet-mapping> for the <servlet> declaration example
used earlier:

<servlet-mapping>
<servlet-name>LoginServlet</servlet-name>
<url-pattern>/login</url-pattern>

</servlet-mapping>

<servlet-mapping> For more information,
see servlet-mapping
Element on page A-6

<servlet-name>
name

</servlet-name>

(Required)

<url-pattern>
pattern

</url-pattern>

(Required)

</servlet-mapping>
5-8 Developing WebLogic Server Applications

Writing the web.xml Deployment Descriptor
Step 8: Define the session timeout value

Step 9: Define welcome pages

<session-config> (Optional)

<session-timeout>
minutes

</session-timeout>

For more information,
see “session-config
Element” on page A-7

</session-config>

<welcome-file-list> (Welcome pages are
Optional.)
For more information,
see “welcome-file-list
Element” on page A-9

<welcome-file>
myWelcomeFile.jsp

</welcome-file>

<welcome-file>
myWelcomeFile.html

</welcome-file>

See also Welcome
Pages at
http://e-docs.bea.com/
wls/docs60/admingui
de/config_web_app.ht
ml#welcome_pages

And How WebLogic
Server Resolves
HTTP Requests at
http://e-docs.bea.com/
wls/docs60/admingui
de/config_web_app.ht
ml#resolve_http_req

</welcome-file-list>
Developing WebLogic Server Applications 5-9

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req

5 Writing Web Application Deployment Descriptors
Step 10: Define error pages

Step 11: Define MIME mapping

<error-page> (Optional) Define a
customized page to
respond to errors

For more information,
see “error-page
Element” on page A-9

And How WebLogic
Server Resolves
HTTP Requests at
http://e-docs.bea.com/
wls/docs60/admingui
de/config_web_app.ht
ml#resolve_http_req

<error-code>
HTTP error code

</error-code>

-or-

<exception-type>
Java exception class

</exception-type>

<location>URL</location>

</error-page>

<mime-mapping> (Optional)

Define MIME types

For more
information, see
“mime-mapping
Element” on page
A-8
5-10 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req

Writing the web.xml Deployment Descriptor
Step 12: Define a JSP tag library descriptor

The following is an example of a taglib directive used in a JSP:

<%@ taglib uri="string_pattern" prefix="taglib" %>

For more details, see the Programming WebLogic JSP Tag Extensions at
http://e-docs.bea.com/wls/docs60/taglib/index.html.

<extension>
ext

</extension>

<mime-type>
mime type

</mime-type>

</mime-mapping>

<taglib> (Optional) Identify
JSP tag libraries

For more information,
see “taglib Element”
on page A-10

<taglib-uri>
string_pattern

</taglib-uri>

(Required)

<taglib-location>
filename

</taglib-location>

(Required)

</taglib>
Developing WebLogic Server Applications 5-11

http://e-docs.bea.com/wls/docs60/taglib/index.html

5 Writing Web Application Deployment Descriptors
Step 13: Reference external resources

Step 14: Set up security constraints

A Web Application that uses security requires the user to log in in order to access its
resources. The user’s credentials are verified against a security realm, and once
authorized, the user will have access only to specified resources within the Web
Application.

Security in a Web Application is configured using three elements:

� The <login-config> element specifies how the user is prompted to login and
the location of the security realm. If this element is present, the user must be
authenticated in order to access any resource that is constrained by a
<security-constraint> defined in the Web Application.

� A <security-constraint> is used to define the access privileges to a
collection of resources via their URL mapping.

� A <security-role> element represents a group or principal in the realm. This
security role name is used in the <security-constraint> element and can be
linked to an alternative role name used in servlet code via the
<security-role-ref> element.

<resource-ref> (Optional)
For more information,
see “resource-ref
Element” on page
A-11.

<res-ref-name>
name

</res-ref-name>

(Required)

<res-type>
Java class

</res-type>

(Required)

<res-auth>
CONTAINER | SERVLET

</res-auth>

(Required)

</resource-ref>
5-12 Developing WebLogic Server Applications

Writing the web.xml Deployment Descriptor
<security-constraint> (Optional) For more
information, see
“security-constraint
Element” on page
A-12

<web-resource-collection> (Required) For more
information, see
“web-resource-collect
ion Element” on page
A-12

<web-resource-name>
name

</web-resource-name>

(Required)

<description>
...text...
</description>

(Optional)

<url-pattern>
pattern

</url-pattern>

(Optional)

<http-method>
GET | POST

</http-method>

(Optional)

</web-resource-collection>

<auth-constraint> (Optional)

For more information,
see “auth-constraint
Element” on page
A-13

<role-name>
group | principal

</role-name>

(Optional)

</auth-constraint>
Developing WebLogic Server Applications 5-13

5 Writing Web Application Deployment Descriptors
Step 15: Set up login authentication

<user-data-constraint> (Optional)

For more information,
see
“user-data-constraint
Element” on page
A-14

<description>...text...</description> (Optional)

<transport-guarantee>

NONE
INTEGRAL
or
CONFIDENTIAL

</transport-guarantee>

(Required)

</user-data-constraint>

</security-constraint>

<login-config> (Optional)

For more information,
see “login-config
Element” on page
A-15

<auth-method>
BASIC,FORM, or
CLIENT-CERT

</auth-method>

(Optional) Specifies
the method used to
authenticate the user
5-14 Developing WebLogic Server Applications

Writing the web.xml Deployment Descriptor
<realm-name>
realmname

</realm-name>

(Optional) For more
information, see
Specifying a Security
Realm at
http://e-docs.bea.com/
wls/docs60/admingui
de/cnfgsec.html#cnfg
sec004.

<form-login-config> (Optional)

For more information,
see
“form-login-config
Element” on page
A-15

Use this element if
you configure the
<auth-method> to
FORM

<form-login-page>
URI

</form-login-page>

(Required)

<form-error-page>
URI

</form-error-page>

</form-login-config>

(Required)

</login-config>
Developing WebLogic Server Applications 5-15

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec004
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec004
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec004

5 Writing Web Application Deployment Descriptors
Step 16: Define security roles

Step 17: Set environment entries

<security-role> (Optional)

For more information,
see “security-role
Element” on page
A-16

<description>
...text...

</description>

(Optional)

<role-name>
rolename

</role-name>

(Required)

</security-role>

<env-entry> (Optional)

For more information,
see “env-entry
Element” on page
A-17

<description>
...text...

</description>

(Optional)

<env-entry-name>
name

</env-entry-name>

(Required)

<env-entry-value>
value

</env-entry-value>

(Required)

<env-entry-type>
type

</env-entry-type>

(Required)

</env-entry>
5-16 Developing WebLogic Server Applications

Writing the web.xml Deployment Descriptor
Step 18: Reference Enterprise JavaBean (EJB) resources

Listing 5-1 Sample web.xml with Servlet Mapping, Welcome file, and Error
Page

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//
DTD Web Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<!- The following servlet element defines a servlet called servletA.
The Java class of this servlet is servlets.servletA ->
<servlet>

<servlet-name>servletA</servlet-name>

<ejb-ref> Optional)

For more information,
see “ejb-ref Element”
on page A-17

<description>
...text...

</description>

(Optional)

<ejb-ref-name>
name

</ejb-ref-name>

(Required)

<ejb-ref-type>
Java type

</ejb-ref-type>

(Required)

<home>
mycom.ejb.AccountHome

</home>

(Required)

<remote>
mycom.ejb.Account

</remote>

(Required)

<ejb-link>
ejb.name

</ejb-link>

(Optional)

</ejb-ref>
Developing WebLogic Server Applications 5-17

5 Writing Web Application Deployment Descriptors
<servlet-class>servlets.servletA</servlet-class>
</servlet>

<!- The following servlet element defines another servlet called
servletB. The Java class of this servlet is servlets.servletB ->
<servlet>

<servlet-name>servletB</servlet-name>
<servlet-class>servlets.servletB</servlet-class>

</servlet>

<!- The following servlet-mapping maps the servlet called servletA
(see the servlet element) to a url-pattern of "blue".
The url-pattern is used when requesting this servlet, for example:
http://host:port/myWebApp/blue. ->
<servlet-mapping>

<servlet-name>servletA</servlet-name>
<url-pattern>blue</url-pattern>

</servlet-mapping>

<!- The following servlet-mapping maps the servlet called servletB
(see the servlet element) to a url-pattern of "yellow".
The url-pattern is used when requesting this servlet, for example:
http://host:port/myWebApp/yellow. ->
<servlet-mapping>

<servlet-name>servletB</servlet-name>
<url-pattern>yellow</url-pattern>

</servlet-mapping>

<!-The following welcome-file-list specifies a welcome-file.
Welcome files are discussed elsewhere in this document->
<welcome-file-list>

<welcome-file>hello.html</welcome-file>
</welcome-file-list>

<!-The following error-page element specifies a page that is served
in place of the standard HTTP error response pages, in this case
HTTP error 404.->
<error-page>

<error-code>404</error-code>
<location>/error.jsp</location>

</error-page>

</web-app>
5-18 Developing WebLogic Server Applications

Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
Writing the WebLogic-Specific Deployment
Descriptor (weblogic.xml)

The weblogic.xml file contains WebLogic-specific attributes for a Web Application.
You define the following attributes in this file: HTTP session parameters, HTTP
cookie parameters, JSP parameters, resource references, and security role assignments.

If you define external resources such as DataSources, EJBs, or a Security realm in the
web.xml deployment descriptor, you can use any descriptive name to define the
resource. To access the resource, you then map this resource name to the actual name
of the resource in the JNDI tree using a file called weblogic.xml. Place this file in the
WEB-INF directory of your Web Application.

If you have installed the WebLogic Server samples and examples, you can look at the
web.xml and weblogic.xml files in the Pet Store sample to see a working example
of Web application deployment descriptors. These files are located in the
/samples/PetStore/source/dd/war/WEB-INF directory of your WebLogic
Server distribution.

The ordering of the tag elements within the weblogic.xml file must follow the
ordering specified in this document.

Main Steps to Create the weblogic.xml File

Step 1: Begin the weblogic.xml file with a DOCTYPE header on page 5-20
Step 2: Map security role names to a security realm on page 5-21
Step 3 Reference resources on page 5-21
Step 4: Define session parameters on page 5-23
Step 5: Define JSP parameter on page 5-23
Developing WebLogic Server Applications 5-19

5 Writing Web Application Deployment Descriptors
Detailed Steps to Create the weblogic.xml File

Step 1: Begin the weblogic.xml file with a DOCTYPE header

This header refers to the location and version of the DTD file for the deployment
descriptor. Although this header references an external URL at www.beasys.com,
WebLogic Server has its own copy of the DTD file, so your host server need not have
access to the Internet. However, you must still include this DOCTYPE element in your
weblogic.xml file, and have it reference the external URL since the version of the
DTD is used to identify the version of this deployment descriptor.

<!DOCTYPE weblogic-web-app PUBLIC "-//BEA
Systems, Inc.//DTD Web Application 6.0//EN"
"http://www.bea.com/servers/wls600/dtd/
weblogic-web-jar.dtd">

<weblogic-web-app>

<description>
Text description of the Web App

</description>

<weblogic-version>

</weblogic-version>

This element is not
used by WebLogic
Server
5-20 Developing WebLogic Server Applications

Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
Step 2: Map security role names to a security realm

If you need to define multiple roles, define each additional pair of <role-name> and
<principal-name> tags within separate <security-role-assignment> elements.

Step 3 Reference resources

In this step you map resources used in your Web Application to the JNDI tree. When
you define an <ejb-ref-name> or a <res-ref-name> in the web.xml deployment
descriptor, you also reference those names in weblogic.xml and map them to an
actual JNDI name that is available in WebLogic Server. In the following example, a
Data Source is referenced in a servlet with the name myDataSource. myDataSource
is then referenced in web.xml and its data type defined. Finally, in the weblogic.xml
file, myDataSource is mapped to the JNDI name accountDataSource, which is
available in the JNDI tree. The JNDI name must match the name of an object bound in
the JNDI tree. Objects can be bound to the JNDI tree programatically or by configuring
them in the Administration Console. For more information, see Programming
WebLogic JNDI at {DOCROOTS}/jndi/index.html.

Servlet code:

javax.sql.DataSource ds = (javax.sql.DataSource) ctx.lookup
("myDataSource");

web.xml entries:

<resource-ref>
. . .

<res-ref-name>myDataSource</res-ref-name>

<security-role-assignment>

<role-name>
name

</role-name>

(Required)

For more information,
see
“security-role-assign
ment Element” on
page B-2

<principal-name>
name

</principal-name>

(Required)

</security-role-assignment>
Developing WebLogic Server Applications 5-21

{DOCROOTS}/jndi/index.html
{DOCROOTS}/jndi/index.html

5 Writing Web Application Deployment Descriptors
<res-type>javax.sql.DataSource</res-type>
<res-auth>CONTAINER</res-auth>

. . .
</resource-ref>

weblogic.xml entries:

<resource-description>
<res-ref-name>myDataSource</res-ref-name>
<jndi-name>accountDataSource</jndi-name>

</security-role-ref>

A similar pattern is used to map EJBs to the JNDI tree, but uses the <ejb-ref-name>
element of the <ejb-reference-description> element in place of the
<res-ref-name> element of the <resource-description> element.

<reference-descriptor> For more information,
see
“reference-descriptor
Element” on page B-3

<resource-description> For more information,
see
“resource-description
Element” on page B-3

<res-ref-name>
name

</res-ref-name>

(Required)

<jndi-name>
JNDI name of resource

</jndi-name>

(Required)

</resource-description>

<ejb-reference-description>

<ejb-ref-name>
name

</ejb-ref-name>

(Required) For more
information, see
“ejb-reference-descrip
tion Element” on page
B-3

<jndi-name>
JNDI name of EJB

</jndi-name>

(Required)
5-22 Developing WebLogic Server Applications

Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
Step 4: Define session parameters

You define HTTP session parameters for this Web Application inside of
<session-param> tags, which are nested in side <session-descriptor> tags.
For each <session-param> you need to supply a
<param-name>...</param-name> element that names the parameter being
defined and a <param-value>...</param-value> element that provides the
value of the parameter. For a list of HTTP session parameters and details on
setting them, see “session-descriptor Element” on page B-4 .

Step 5: Define JSP parameter

You define JSP configuration parameters for this Web Application inside of
<jsp-param> tags, which are nested in side <jsp-descriptor> tags. For each
<jsp-param> you need to supply a <param-name>...</param-name> element that

</ejb-reference-description>

</reference-descriptor>

<session-descriptor> For more information,
see
“session-descriptor
Element” on page B-4

<session-param>

<param-name>
session param name

</param-name>

<param-value>
my value

</param-value>

</session-param>

</session-descriptor>
Developing WebLogic Server Applications 5-23

5 Writing Web Application Deployment Descriptors
names the parameter being defined and a <param-value>...</param-value>
element that provides the value of the parameter. For a list of JSP parameters and
details on setting them, see “jsp-descriptor Element” on page B-8.

<jsp-descriptor> For more information,
see “jsp-descriptor
Element” on page B-8

<jsp-param>

<param-name>
jsp param name

</param-name>

<param-value>
my value

</param-value>

</jsp-param>

</jsp-descriptor>
5-24 Developing WebLogic Server Applications

A web.xml Deployment
Descriptor Elements

This following sections describe the deployment descriptor elements defined in the
web.xml file. The root element for web.xml is <web-app>. The following elements
are defined within the <web-app> element:

� “icon Element” on page A-2

� “display-name Element” on page A-2

� “description Element” on page A-3

� “context-param Element” on page A-3

� “servlet Element” on page A-3

� “servlet-mapping Element” on page A-6

� “session-config Element” on page A-7

� “mime-mapping Element” on page A-8

� “welcome-file-list Element” on page A-9

� “error-page Element” on page A-9

� “taglib Element” on page A-10

� “resource-ref Element” on page A-11

� “security-constraint Element” on page A-12

� “login-config Element” on page A-15

� “env-entry Element” on page A-17
Developing WebLogic Server Applications A-1

A web.xml Deployment Descriptor Elements
� “ejb-ref Element” on page A-17

icon Element

The icon element specifies the location within the Web Application for a small and
large image used to represent the Web Application in a GUI tool. (The servlet element
also has an element called the icon element, used to supply an icon to represent a
servlet in a GUI tool.)

This element is not currently used by WebLogic Server.

The following table describes the elements you can define within an icon element.

display-name Element

The optional display-name element specifies the Web Application display name, a
short name that is intended to be displayed by GUI tools.

Element Required/
Optional

Description

<small-icon> Optional Specifies the location for a small (16x16 pixel) .gif or .jpg image
used to represent the Web Application in a GUI tool. Currently, this is
not used by WebLogic Server.

<large-icon> Optional Specifies the location for a large (32x32 pixel) .gif or .jpg image
used to represent the Web Application in a GUI tool. Currently, this
element is not used by WebLogic Server.

<display-name> Optional Currently, this element is not used by WebLogic Server.

<description> Optional Currently, this element is not used by WebLogic Server.

<distributable> Optional Currently, this element is not used by WebLogic Server.
A-2 Developing WebLogic Server Applications

description Element
description Element

The optional description element provides descriptive text about the Web Application.

context-param Element

The optional context-param element declares a Web Application's servlet context
initialization parameters. You set each context-param within a single context-param
element, using <param-name> and <param-value> elements. You can access these
parameters in your code using the
javax.servlet.ServletContext.getInitParameter() and
javax.servlet.ServletContext.getInitParameterNames() methods.

The following table describes the elements you can define within a context-param
element.

servlet Element

The servlet element contains the declarative data of a servlet.

If a jsp-file is specified and the load-on-startup element is present, then the JSP
should be precompiled and loaded.

Element Required/
Optional

Description

<param-name> Required The name of a parameter.

<param-value> Required The value of a parameter.

<description> Required A text description of a parameter.
Developing WebLogic Server Applications A-3

A web.xml Deployment Descriptor Elements
The following table describes the elements you can define within a servlet element.

Element Required/
Optional

Description

<icon> Optional Specifies the location within the Web Application for a small and
large image used to represent the servlet in a GUI tool. Contains a
small-icon and large-icon element.

Currently, this element is not used by WebLogic Server.

<servlet-name> Required Defines the canonical name of the servlet, used to reference the
servlet definition elsewhere in the deployment descriptor.

<display-name> Optional A short name intended to be displayed by GUI tools.

<description> Optional A text description of the servlet.

<servlet-class> Required (or
use <jsp-
file>

The fully-qualified class name of the servlet.

You may use only one of either the <servlet-class> tags or
<jsp-file> tags in your servlet body.

<jsp-file> Required (or
use
<servlet-
class>

The full path to a JSP file within the Web Application, relative to the
Web Application root directory.

You may use only one of either the <servlet-class> tags or
<jsp-file> tags in your servlet body.

<init-param> Optional Contains a name/value pair as an initialization parameter of the
servlet.

Use a separate set of <init-param> tags for each parameter.

<load-on-startup> Optional WebLogic Server initializes this servlet when WebLogic Server
starts up. The optional contents of this element must be a positive
integer indicating the order in which the servlet should be loaded.
Lower integers are loaded before higher integers. If no value is
specified, or if the value specified is not a positive integer, WebLogic
Server can load the servlet in any order in the startup sequence.

<security-role-
ref>

Optional Used to link a security role name defined by <security-role> to
an alternative role name that is hard coded in the servlet logic. This
extra layer of abstraction allows the servlet to be configured at
deployment without changing servlet code.
A-4 Developing WebLogic Server Applications

servlet Element
icon Element

This is an element within the “servlet Element” on page A-3.

The icon element specifies the location within the Web Application for small and
large images used to represent the servlet in a GUI tool.

The following table describes the elements you can define within a icon element.

init-param Element

This is an element within the “servlet Element” on page A-3.

The optional init-param element contains a name/value pair as an initialization
parameter of the servlet. Use a separate set of init-param tags for each parameter.

You can access these parameters with the
javax.servlet.ServletConfig.getInitParameter() method.

The following table describes the elements you can define within a init-param
element.

Element Required/
Optional

Description

<small-icon> Optional Specifies the location within the Web Application for a small (16x16
pixel) .gif or .jpg image used to represent the servlet in a GUI tool.

Currently, this element is not used by WebLogic Server.

<large-icon> Optional Specifies the location within the Web Application for a small (32x32
pixel) .gif or .jpg image used to represent the servlet in a GUI tool.

Currently, this element is not used by WebLogic Server.

Element Required/
Optional

Description

<param-name> Required Defines the name of this parameter.

<param-value> Required Defines a String value for this parameter.
Developing WebLogic Server Applications A-5

A web.xml Deployment Descriptor Elements
security-role-ref Element

This is an element within the “servlet Element” on page A-3.

The security-role-ref element links a security role name defined by
<security-role> to an alternative role name that is hard-coded in the servlet logic. This
extra layer of abstraction allows the servlet to be configured at deployment without changing
servlet code.

The following table describes the elements you can define within a
security-role-ref element.

servlet-mapping Element

The servlet-mapping element defines a mapping between a servlet and a URL
pattern.

<description> Optional Text description of the initialization parameter.

Element Required/
Optional

Description

Element Required/
Optional

Description

<description> Optional Text description of the role.

<role-name> Required Defines the name of the security role or principal that is used in the
servlet code.

<role-link> Required Defines the name of the security role that is defined in a
<security-role> element later in the deployment descriptor.
A-6 Developing WebLogic Server Applications

session-config Element
The following table describes the elements you can define within a servlet-mapping
element.

session-config Element

The session-config element defines the session parameters for this Web
Application.

Element Required/
Optional

Description

<servlet-name> Required The name of the servlet to which you are mapping a URL pattern. This
name corresponds to the name you assigned a servlet in a <servlet>
declaration tag.

<url-pattern> Required Describes a pattern used to resolve URLs. The portion of the URL after
the http://host:port + WebAppName is compared to the
<url-pattern> by WebLogic Server. If the patterns match, the
servlet mapped in this element will be called.

Example patterns:

/soda/grape/*
/foo/*
/contents
*.foo

The URL must follow the rules specified in Section 10 of the Servlet
2.2 Specification.

For additional examples of servlet mapping, see Servlet Mapping
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#
servlet-mapping.
Developing WebLogic Server Applications A-7

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#servlet-mapping

A web.xml Deployment Descriptor Elements
The following table describes the element you can define within a session-config
element.

mime-mapping Element

The mime-mapping element defines a mapping between an extension and a mime
type.

The following table describes the elements you can define within a mime-mapping
element.

Element Required/
Optional

Description

<session-timeout> Optional The number of minutes after which sessions in this Web Application
expire. The value set in this element overrides the value set in the
TimeoutSecs parameter of the <session-descriptor>
element in the WebLogic-specific deployment descriptor
weblogic.xml, unless one of the special values listed here is
entered.

Default value: -2

Maximum value: Integer.MAX_VALUE ÷ 60

Special values:

� -2 = Use the value set by TimeoutSecs in
<session-descriptor> element of weblogic.xml

� -1 = Sessions do not timeout. The value set in
<session-descriptor> element of weblogic.xml is
ignored.

For more information, see “session-descriptor Element” on page B-4.

Element Required/
Optional

Description

<extension> Required A string describing an extension, for example: txt.

<mime-type> Required A string describing the defined mime type, for example:
text/plain.
A-8 Developing WebLogic Server Applications

welcome-file-list Element
welcome-file-list Element

The optional welcome-file-list element contains an ordered list of
welcome-file elements.

When the URL request is a directory name, WebLogic Server serves the first file
specified in this element. If that file is not found, the server then tries the next file in
the list.

For more information, see Welcome Files at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_page
s and How WebLogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_re
q.

The following table describes the element you can define within a
welcome-file-list element.

error-page Element

The optional error-page element specifies a mapping between an error code or
exception type to the path of a resource in the Web Application.

When an error occurs—while WebLogic Server is responding to an HTTP request, or
as a result of a Java exception—WebLogic Server returns an HTML page that displays
either the HTTP error code or a page containing the Java error message. You can define
your own HTML page to be displayed in place of these default error pages or in
response to a Java exception.

Element Required/
Optional

Description

<welcome-file> Optional File name to use as a default welcome file, such as index.html
Developing WebLogic Server Applications A-9

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req

A web.xml Deployment Descriptor Elements
For more information, see Customizing HTTP Error Responses at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#error_pages
and How WebLogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_re
q.

The following table describes the elements you can define within an error-page

element.

taglib Element

The optional taglib element describes a JSP tag library.

This element associates the location of a JSP Tag Library Descriptor (TLD) with a URI
pattern. Although you can specify a TLD in your JSP that is relative to the WEB-INF
directory, you can also use the <taglib> tag to configure the TLD when deploying
your Web Application. Use a separate element for each TLD.

The following table describes the elements you can define within a taglib element.

Element Required/
Optional

Description

<error-code> Optional A valid HTTP error code, for example 404.

<exception-type> Optional A fully-qualified class name of a Java exception type, for example
java.lang.

<location> Required The location of the resource to display in response to the error. For
example /myErrorPg.html

Element Required/
Optional

Description

<taglib-location> Required Gives the file name of the tag library descriptor relative to the root of
the Web Application. It is good idea to store the tag library descriptor
file under the WEB-INF directory so it is not publicly available over an
HTTP request.
A-10 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#error_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req

resource-ref Element
resource-ref Element

The optional resource-ref element defines a reference lookup name to an external
resource. This allows the servlet code to look up a resource by a “virtual” name that is
mapped to the actual location at deployment time.

Use a separate <resource-ref> element to define each external resource name. The
external resource name is mapped to the actual location name of the resource at
deployment time in the WebLogic-specific deployment descriptor weblogic.xml.

The following table describes the elements you can define within a resource-ref
element.

<taglib-uri> Required Describes a URI, relative to the location of the web.xml document,
identifying a Tag Library used in the Web Application.

If the URI matches the URI string used in the taglib directive on the
JSP page, this taglib is used.

Element Required/
Optional

Description

Element Required/
Optional

Description

<description> Optional A text description.

<res-ref-name> Required The name of the resource used in the JNDI tree. Servlets in the Web
Application use this name to look up a reference to the resource.

<res-type> Required The Java type of the resource that corresponds to the reference name.
Use the full package name of the Java type.

<res-auth> Required Used to control the resource sign on for security.

If set to SERVLET, indicates that the application component code
performs resource sign on programmatically. If set to CONTAINER
WebLogic Server uses the security context established with the
login-config element. See “login-config Element” on page A-15.
Developing WebLogic Server Applications A-11

A web.xml Deployment Descriptor Elements
security-constraint Element

The security-constraint element defines the access privileges to a collection of
resources via their URL mapping.

For more information, see Configuring Security in Web Applications at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#configure-secur
ity.

The following table describes the elements you can define within a
security-constraint element.

web-resource-collection Element

Each <security-constraint> element must have one or more
<web-resource-collection> elements. These define the area of the Web
Application that this security constraint is applied to.

This is an element within the “security-constraint Element” on page A-12.

The required web-resource-collection element define the area of the Web
Application that this security constraint is applied to.

Element Required/
Optional

Description

<web-resource-
collection>

Required Defines the components of the Web Application that this security
constraint is applied to.

<auth-constraint> Optional Defines which groups or principals have access to the collection of
web resources defined in this security constraint. See also
“auth-constraint Element” on page A-13.

<user-data-
constraint>

Optional Defines how the client should communicate with the server.

See also “user-data-constraint Element” on page A-14.
A-12 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#configure-security

security-constraint Element
The following table describes the elements you can define within a
web-resource-collection element.

auth-constraint Element

This is an element within the “security-constraint Element” on page A-12.

The optional auth-constraint element defines which groups or principals have
access to the collection of Web resources defined in this security constraint.

The following table describes the elements you can define within an
auth-constraint element.

Element Required/
Optional

Description

<web-resource-
name>

Required The name of this Web resource collection.

<description> Optional A text description of this security constraint.

<url-pattern> Optional Use one or more of these elements to declare which URL patterns this
security constraint applies to. If you do not use at least one of these
elements, this <web-resource-collection> is ignored by WebLogic
Server.

<http-method> Optional Use one or more of these elements to declare which HTTP methods
(GET | POST |...) are subject to the authorization constraint. If
you omit this element, the default behavior is to apply the security
constraint to all HTTP methods.

Element Required/
Optional

Description

<description> Optional A text description of this security constraint.

<role-name> Optional Defines which security roles can access resources defined in this
security-constraint. Security role names are mapped to principals using
the security-role-ref Element. See “security-role-ref
Element” on page A-6.
Developing WebLogic Server Applications A-13

A web.xml Deployment Descriptor Elements
user-data-constraint Element

This is an element within the “security-constraint Element” on page A-12.

The user-data-constraint element defines how the client should communicate
with the server.

The following table describes the elements you may define within a
user-data-constraint element.

Element Required/
Optional

Description

<description> Optional A text description.

<transport-
guarantee>

Required Specifies that the communication between client and server.

WebLogic Server establishes a Secure Sockets Layer (SSL)
connection when the user is authenticated using the INTEGRAL or
CONFIDENTIAL constraint.

Range of values:

� NONE—the application does not require any transport guarantees.

� INTEGRAL—the application requires that the data sent between
the client and server be sent in such a way that it cannot be changed
in transit.

� CONFIDENTIAL—the application requires that the data be
transmitted in a fashion that prevents other entities from observing
the contents of the transmission.
A-14 Developing WebLogic Server Applications

login-config Element
login-config Element

The optional login-config element configures how the user is authenticated, the
realm name that should be used for this application, and the attributes that are needed
by the form login mechanism.

If this element is present, the user must be authenticated in order to access any resource
that is constrained by a <security-constraint> defined in the Web Application.
Once authenticated, the user can be authorized to access other resources with access
privileges.

The following table describes the elements you can define within a login-config
element.

form-login-config Element

This is an element within the “login-config Element” on page A-15.

Use the form-login-config element if you configure the <auth-method> to FORM.

Element Required/
Optional

Description

<auth-method> Optional Specifies the method used to authenticate the user. Possible values:

BASIC - uses browser authentication
FORM - uses a user-written HTML form
CLIENT-CERT

<realm-name> Optional The name of the realm that is referenced to authenticate the user
credentials. If omitted, the WebLogic realm is used by default. For
more information, see Specifying a Security Realm at
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec0
04.

<form-login-
config>

Optional Use this element if you configure the <auth-method> to FORM.
See “form-login-config Element” on page A-15.
Developing WebLogic Server Applications A-15

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec004

A web.xml Deployment Descriptor Elements
.

security-role Element

The following table describes the elements you can define within a security-role
element.

Element Required/
Optional

Description

<form-login-page> Required The URI of a Web resource relative to the document root, used to
authenticate the user. This can be an HTML page, JSP, or HTTP
servlet, and must return an HTML page containing a FORM that
conforms to a specific naming convention. For more information, see
Setting Up Authentication for Web Applications at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#
webapp-auth

<form-error-page> Required The URI of a Web resource relative to the document root, sent to the
user in response to a failed authentication login.

Element Required/
Optional

Description

<description> Optional A text description of this security role.

<role-name> Required The role name. The name you use here must have a corresponding
entry in the WebLogic-specific deployment descriptor,
weblogic.xml, which maps roles to principals in the security
realm. For more information, see “security-role-assignment Element”
on page B-2.
A-16 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#webapp-auth

env-entry Element
env-entry Element

The optional env-entry element declares an environment entry for an application.
Use a separate element for each environment entry.

The following table describes the elements you can define within a env-entry
element.

ejb-ref Element

The optional ejb-ref element defines a reference to an EJB resource. This reference
is mapped to the actual location of the EJB at deployment time by defining the
mapping in the WebLogic-specific deployment descriptor file, weblogic.xml. Use a
separate <ejb-ref> element to define each reference EJB name.

Element Required/
Optional

Description

<description> Optional A textual description.

<env-entry-name> Required The name of the environment entry.

<env-entry-value> Required The value of the environment entry.

<env-entry-type> Required The type of the environment entry.

Can be set to one of the following Java types:

java.lang.Boolean

java.lang.String

java.lang.Integer

java.lang.Double

java.lang.Float
Developing WebLogic Server Applications A-17

A web.xml Deployment Descriptor Elements
The following table describes the elements you can define within a ejb-ref element.

Element Required/
Optional

Description

<description> Optional A text description of the reference.

<ejb-ref-name> Required The name of the EJB used in the Web Application. This name is
mapped to the JNDI Tree in the WebLogic-specific deployment
descriptor weblogic.xml. For more information, see
“ejb-reference-description Element” on page B-3.

<ejb-ref-type> Required The expected Java class type of the referenced EJB.

<home> Required The fully qualified class name of the EJB home interface.

<remote> Required The fully qualified class name of the EJB remote interface.

<ejb-link> Optional The <ejb-name> of an EJB in an encompassing J2EE application
package.
A-18 Developing WebLogic Server Applications

description Element
B weblogic.xml
Deployment Descriptor
Elements

This following sections describe the deployment descriptor elements defined in the
weblogic.xml file. The root element for weblogic.xml is <weblogic-web-app>.
The following elements are defined within the <weblogic-web-app> element:

� “description Element” on page B-1

� “weblogic-version Element” on page B-2

� “security-role-assignment Element” on page B-2

� “reference-descriptor Element” on page B-3

� “session-descriptor Element” on page B-4

� “jsp-descriptor Element” on page B-8

You can also access the Document Type Descriptor (DTD) for weblogic.xml at
http://www.bea.com/servers/wls600/dtd/weblogic-web-jar.dtd.

description Element

The description element is a text description of the Web Application.
Developing WebLogic Server Applications B-1

http://www.bea.com/servers/wls600/dtd/weblogic-web-jar.dtd

B weblogic.xml Deployment Descriptor Elements
weblogic-version Element

The weblogic-version element indicates the version of WebLogic Server on which
this Web Application is intended to be deployed. This element is informational only
and is not used by WebLogic Server.

security-role-assignment Element

The security-role-assignment element declares a mapping between a security
role and one or more principals in the realm, as shown in the following example.

<security-role-assignment>
<role-name>PayrollAdmin</role-name>
<principal-name>Tanya</principal-name>
<principal-name>Fred</principal-name>
<principal-name>system</principal-name>

</security-role-assignment>

The following table describes the elements you can define within a
security-role-assignment element.

Element Required
Optional

Description

<role-name> Required Specifies the name of a security role.

<principal-name> Required Specifies the name of a principal that is defined in the security realm.
You can use multiple <principal-name> elements to map
principals to a role. For more information on security realms, see
the Programming WebLogic Security at
http://e-docs.bea.com/wls/docs60/security/index.html.
B-2 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/security/index.html

reference-descriptor Element
reference-descriptor Element

The reference-descriptor element maps the JNDI name of a server resource to a
name used in the Web Application. The reference-description element contains
two elements: The resource-description element maps a resource, for example,
a DataSource, to its JNDI name. The ejb-reference element maps an EJB to its
JNDI name.

resource-description Element

The following table describes the elements you can define within a
resource-description element.

ejb-reference-description Element

The following table describes the elements you can define within a
ejb-reference-description element.

Element Required/
Optional

Description

<res-ref-name> Required Specifies the name of a resource reference.

<jndi-name> Required Specifies a JNDI name for the resource.

Element Required/
Optional

Description

<ejb-ref-name> Required Specifies the name of an EJB reference used in your Web Application.

<jndi-name> Required Specifies a JNDI name for the reference.
Developing WebLogic Server Applications B-3

B weblogic.xml Deployment Descriptor Elements
session-descriptor Element

The session-descriptor element defines parameters for HTTP sessions, as shown
in the following example:

<session-descriptor>
<session-param>

<param-name>
CookieDomain

</param-name>
<param-value>
myCookieDomain

</param-value>
</session-param>

</session-descriptor>

Session Parameter Names and Values

The following table describes the valid session parameter names and values you can
define within a session-param element:

Parameter Name Default Value Parameter Value

CookieDomain Null Identifies the server to which the browser sends cookie
information when the browser makes a request. For
example, setting the CookieDomain to
.mydomain.com returns cookies to any server in the
*.mydomain.com domain.

The domain name must have at least two components;
setting a name to *.com or *.net is invalid.

If unset, this parameter defaults to the server that issued
the cookie.

CookieComment Weblogic Server
Session
Tracking Cookie

Specifies the comment that identifies the session tracking
cookie in the cookie file.

If unset, this parameter defaults to WebLogic
Session Tracking Cookie. You may provide a
more specific name for your application.
B-4 Developing WebLogic Server Applications

session-descriptor Element
CookieMaxAgeSecs -1 Sets the life span of the session cookie, in seconds, after
which it expires on the client.

If the value is 0, the cookie expires immediately.

The maximum value is MAX_VALUE, where the cookie
lasts forever.

If set to -1, the cookie expires when the user exits the
browser.

For more information about cookies, see Setting up
Session Management at
http://e-docs.bea.com/wls/docs60/adminguide/config_w
eb_app.html#session-management.

CookieName JSESSIONID Defines the session cookie name. Defaults to
JSESSIONID if unset. You may set this to a more
specific name for your application.

CookiePath Null Specifies the pathname to which the browser sends
cookies.

If unset, this parameter defaults to / (slash), where the
browser sends cookies to all URLs served by WebLogic
Server. You may set the path to a narrower mapping, to
limit the request URLs to which the browser sends
cookies.

CookiesEnabled True Use of session cookies is enabled by default and is
recommended, but you can disable them by setting this
property to false. You might turn this option off to test
URL re-writing (see
http://e-docs.bea.com/wls/docs60/adminguide/config_w
eb_app.html#urlrewriting) on your site.

InvalidationIntervalSecs 60 Sets the time, in seconds, that WebLogic Server waits
between doing house-cleaning checks for timed-out and
invalid sessions, and deleting the old sessions and freeing
up memory. Use this parameter to tune WebLogic Server
for best performance on high traffic sites.

The minimum value is every second (1). The maximum
value is once a week (604,800 seconds). If unset, the
parameter defaults to 60 seconds.

Parameter Name Default Value Parameter Value
Developing WebLogic Server Applications B-5

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-management
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-management
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#urlrewriting

B weblogic.xml Deployment Descriptor Elements
PersistentStoreDir session_db If you have set PersistentStoreType to file, this
parameter sets the directory path where WebLogic
Server will store the sessions. The directory path is either
relative to the temp directory or an absolute path. The
temp directory is either a generated directory under the
WEB-INF directory of the Web Application, or a
directory specified by the context-param
javax.servlet.context.tmpdir.

Ensure that you have enough disk space to store the
number of valid sessions multiplied by the size of each
session. You can find the size of a session by looking at
the files created in the PersistentStoreDir.

You can make file-persistent sessions clusterable by
making this directory a shared directory among different
servers.

You must create this directory manually.

PersistentStorePool None Specifies the name of a JDBC connection pool to be used
for persistence storage.

For more details on setting up a database connection
pool, see Managing JDBC Connectivity at
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html
.

PersistentStoreType memory Sets the persistent store method to one of the following
options:

� memory—disables persistent session storage

� file—uses file-based persistence (See also
PersistentStoreDir, above)

� jdbc—uses a database to store persistent sessions.
(see also PersistentStorePool, above)

� replicated—same asmemory, but session data is
replicated across the clustered servers

SwapIntervalSecs 10 Sets the time, in seconds, that WebLogic Server waits
between purging the least recently-used sessions from
the cache to the persistent store, when the
cacheEntries limit has been reached.

If unset, this property defaults to 10 seconds; minimum is
1 second, and maximum is 604800 (1 week).

Parameter Name Default Value Parameter Value
B-6 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html

session-descriptor Element
IDLength 52 Sets the size of the session ID.

The minimum value is 8 bytes and the maximum value is
Integer.MAX_VALUE.

If you are writing a WAP application, you must use URL
rewriting because the WAP protocol does not support
cookies. Also, some WAP devices have a 128-character
limit on URL length (including parameters), which limits
the amount of data that can be transmitted using URL
re-writing. To allow more space for parameters, use this
parameter to limit the size of the session ID that is
randomly generated by WebLogic Server

CacheSize 1024 The number of sessions that may be active at one time.

TimeoutSecs 3600 Sets the time, in seconds, that WebLogic Server waits
before timing out a session, where x is the number of
seconds between a session's activity.

Minimum value is 1, default is 3600, and maximum
value is integer MAX_VALUE.

On busy sites, you can tune your application by adjusting
the timeout of sessions. While you want to give a browser
client every opportunity to finish a session, you do not
want to tie up the server needlessly if the user has left the
site or otherwise abandoned the session.

This parameter can be overridden by the
session-timeout element (defined in minutes) in
web.xml. For more information, see
“session-config Element” on page A-7.

JDBConnectionTimeoutSecs 120 Sets the time, in seconds, that WebLogic Server waits
before timing out a JDBC connection, where x is the
number of seconds between.

URLRewritingEnabled true Enables URL rewriting, which encodes the session ID
into the URL and provides session tracking if cookies are
disabled in the browser.

Parameter Name Default Value Parameter Value
Developing WebLogic Server Applications B-7

B weblogic.xml Deployment Descriptor Elements
jsp-descriptor Element

The jsp-descriptor element defines parameter names and values for servlet JSPs,
as shown in the following example.

<jsp-descriptor>
<jsp-param>

<param-name>
FOO
</param-name>
<param-value>
BAR
</param-value>

</jsp-param>

</jsp-descriptor>

ConsoleMainAttribute If you enable Session Monitoring in the WebLogic
Server Administration Console, set this parameter to the
name of the session parameter you will use to identify
each session that is monitored. For more information, see
Monitoring a WebLogic Domain at
http://e-docs.bea.com/wls/docs60/adminguide/monitori
ng.html.

Parameter Name Default Value Parameter Value
B-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/monitoring.html

jsp-descriptor Element
JSP Parameter Names and Values

The following table describes the parameter names and values you can define within a
jsp-param element.

Parameter Name Default Value Parameter Value

compileCommand javac, or the
Java compiler
defined for a
server under the
configuration
/tuning tab of the
WebLogic
Server
Administration
Console

Specifies the full pathname of the standard Java compiler used to
compile the generated JSP servlets. For example, to use the
standard Java compiler, specify its location on your system as
shown below:

<param-value>
/jdk130/bin/javac.exe

</param-value>

You can also specify that WebLogic Server precompile JSPs on
start up. For more information, see Precompiling JSPs at
http://e-docs.bea.com/wls/docs60/jsp/referenc
e.html#precompile.

compileFlags None Passes one or more command-line flags to the compiler. Enclose
multiple flags in quotes, separated by a space. For example:

java weblogic.jspc
-compileFlags "-g -v" myFile.jsp

compilerclass None Name of a Java compiler that is executed in WebLogic Servers’s
virtual machine. (Used in place of an executable compiler such as
javac or sj.)

encoding Default encoding
of your platform

Specifies the default character set used in the JSP page. Use
standard Java character set names (see
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.htm).

If unset, this parameter defaults to the encoding for your platform.

A JSP page directive (included in the JSP code) overrides this
setting. For example:

<%@ page contentType="text/html;
charset=custom-encoding”%>

keepgenerated false Saves the Java files that are generated as an intermediary step in
the JSP compilation process. Unless this parameter is set to true,
the intermediate Java files are deleted after they are compiled.
Developing WebLogic Server Applications B-9

http://e-docs.bea.com/wls/docs60/jsp/reference.html#precompile
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

B weblogic.xml Deployment Descriptor Elements
noTryBlocks false If a JSP file has numerous or deeply nested custom JSP tags and
you receive a java.lang.VerifyError exception when
compiling, use this flag to allow the JSPs to compile correctly.

packagePrefix jsp_servlet Specifies the package into which all JSP pages are compiled.

pageCheckSeconds 1 Sets the interval, in seconds, at which WebLogic Server checks to
see if JSP files have changed and need recompiling.
Dependencies are also checked and recursively reloaded if
changed.

If set to 0, pages are checked on every request. If set to -1, page
checking and recompiling is disabled.

verbose true When set to true, debugging information is printed out to the
browser, the command prompt, and WebLogic Server log file.

workingDir internally
generated
directory

The name of a directory where WebLogic Server saves the
generated Java and compiled class files for a JSP.

Parameter Name Default Value Parameter Value
B-10 Developing WebLogic Server Applications

application.xml Deployment Descriptor Elements
C Client Application
Deployment Descriptor
Elements

The following sections describe deployment descriptors for J2EE Client applications
on WebLogic Server. Two deployment descriptors are required: a J2EE standard
deployment descriptor, named application.xml, and a WebLogic-specific runtime
deployment descriptor with a name derived from the client application JAR file.

� application.xml Deployment Descriptor Elements

� WebLogic Run-time Client Application Deployment Descriptor

application.xml Deployment Descriptor
Elements

The application.xml file is the deployment descriptor for Enterprise Application
Archives. The file is located in the META-INF subdirectory of the application archive.
It must begin with the following DOCTYPE declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/dtd/application_1_2.dtd">
Developing WebLogic Server Applications C-1

C Client Application Deployment Descriptor Elements
The following diagram summarizes the structure of the application.xml
deployment descriptor.

The following sections describe each of the elements that can appear in the file.

application

application is the root element of the application deployment descriptor. The
elements within the application element are described in the following sections.

application

icon

small-icon

large-icon

display-name

description?

module+

security-role*

ejb

java

web

web-uri

context-root

description

role-name

? = Optional
+ = One or more
* = Zero or more
C-2 Developing WebLogic Server Applications

application.xml Deployment Descriptor Elements
icon

The icon element specifies the locations of small and large images that represent the
application in a GUI tool. This element is not currently used by WebLogic Server.

small-icon

Optional. Specifies the location for a small (16x16 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this is not used by WebLogic Server.

large-icon

Optional. Specifies the location for a large (32x32 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebLogic Server.

display-name

Optional. The display-name element specifies the application display name, a short
name that is intended to be displayed by GUI tools.

description

The optional description element provides descriptive text about the application.

module

The application.xml deployment descriptor contains one module element for each
module in the Enterprise Archive file. Each module element contains an ejb, java, or
web element that indicates the module type and location of the module within the
application. An optional alt-dd element specifies an optional URI to the
post-assembly version of the deployment descriptor.

ejb

Defines an EJB module in the application file. Contains the path to an EJB JAR file in
the application.

Example:
Developing WebLogic Server Applications C-3

C Client Application Deployment Descriptor Elements
<ejb>petStore_EJB.jar</ejb>

java

Defines a client application module in the application file.

Example:

<java>client_app.jar</java>

web

Defines a Web application module in the application file. The web element contains a
web-uri element and, optionally, a context-root element.

web-uri

Defines the location of a Web module in the application file. This is the name of the
.war file.

context-root

Optional. Specifies a context root for the Web application.

Example:

<web>
<web-uri>petStore.war</web-uri>
<context-root>estore</context-root>

</web>

security-role

The security-role element contains the definition of a security role which is global
to the application. Each security-role element contains an optional description
element, and a role-name element.

description

Optional. Text description of the security role.
C-4 Developing WebLogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor
role-name

Required. Defines the name of a security role or principal that is used for authorization
within the application. Roles are mapped to WebLogic Server users or groups in the
weblogic-application.xml deployment descriptor.

Example:

<security-role>
<description>the gold customer role</description>
<role-name>gold_customer</role-name>

</security-role>
<security-role>
<description>the customer role</description>
<role-name>customer</role-name>

</security-role>

WebLogic Run-time Client Application
Deployment Descriptor

This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory as the client application JAR file.

The file name for the deployment descriptor is the base name of the JAR file, with the
extension .runtime.xml. For example, if the client application is packaged in a file
named c:/applications/ClientMain.jar, the runtime deployment descriptor is
in the file named c:/applications/ClientMain.runtime.xml.
Developing WebLogic Server Applications C-5

C Client Application Deployment Descriptor Elements
The following diagram shows the structure of the elements in the runtime deployment
descriptor.

application-client

The application-client element is the root element of a WebLogic-specific
runtime client deployment descriptor.

env-entry*

The env-entry element specifies values for environment entries declared in the
deployment descriptor.

env-entry-name

The env-entry-name element contains the name of an application client's
environment entry.

Example:

application-client

env-entry*

env-entry-name

env-entry-value

ejb-ref*

ejb-ref-name

jndi-name

resource-ref*

resource-ref-name

jndi-name

? = Optional
+ = One or more
* = Zero or more
C-6 Developing WebLogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor
<env-entry-name>EmployeeAppDB</env-entry-name>

env-entry-value

The env-entry-value element contains the value of an application client’s
environment entry. The value must be a string valid for the constructor of the specified
type that takes a single string parameter.

ejb-ref*

The ejb-ref element specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

ejb-ref-name

The ejb-ref-name element contains the name of an EJB reference. The EJB
reference is an entry in the application client’s environment. It is recommended that
name is prefixed with ejb/.

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

jndi-name

The jndi-name element specifies the JNDI name for the EJB.

resource-ref*

The resource-ref element declares an application client’s reference to an external
resource. It contains the resource factory reference name , an indication of the resource
factory type expected by the application client’s code, and the type of authentication
(bean or container).

Example:

<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<jndi-name>enterprise/databases/HR1984</jndi-name>

</resource-ref>
Developing WebLogic Server Applications C-7

C Client Application Deployment Descriptor Elements
resource-ref-name

The res-ref-name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the application client’s
environment entry whose value contains the JNDI name of the data source.

jndi-name

The jndi-name element specifies the JNDI name for the resource.
C-8 Developing WebLogic Server Applications

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Understanding WebLogic Server Applications
	2. Developing WebLogic Server Components
	3. Packaging and Deploying WebLogic Server Applications
	4. Programming Topics
	5. Writing Web Application Deployment Descriptors
	A. web.xml Deployment Descriptor Elements
	B. weblogic.xml Deployment Descriptor Elements
	C. Client Application Deployment Descriptor Elements

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding WebLogic Server Applications
	What Are WebLogic Server Application Components?
	Web Application Components
	Servlets
	JavaServer Pages
	Web Application Directory Structure
	For More Information on Web Application Components
	For help deploying Web Applications, see the following sections of this document:

	Enterprise JavaBean Components
	EJB Overview
	EJB Interfaces
	EJBs and WebLogic Server

	WebLogic Components

	Enterprise Applications
	Client Applications

	2 Developing WebLogic Server Components
	Creating WebLogic Server Applications: Main Steps
	1. Create Web and EJB components for your application.
	2. Create deployment descriptors.
	3. Create component archive.
	4. Create application deployment descriptor.
	5. Assemble application.
	Figure 2�1 Creating Enterprise Applications
	Creating Web Applications: Overview
	Creating Enterprise Beans: Overview
	Creating Enterprise Applications: Overview

	Establishing a Development Environment
	Software Tools
	Source Code Editor or IDE
	Java Compiler
	Development WebLogic Server
	Database System and JDBC Driver
	Web Browser

	Third-Party Software
	WebGain VisualCafé Enterprise Edition
	Informix Cloudscape
	Sybase PowerJ
	WebGain TopLink
	KL Group JProbe
	Versant Enterprise Container
	eXcelon Javlin
	Object Design ObjectStore

	Preparing to Compile
	Putting the Java Tools in Your Search Path
	Setting the Classpath for Compiling
	Setting Target Directories for Compiled Classes
	CLIENT_CLASSES
	SERVER_CLASSES
	EX_WEBAPP_CLASSES
	APPLICATIONS

	3 Packaging and Deploying WebLogic Server Applications
	Packaging Overview
	JAR Files
	jar cf jar-file files ...
	jar xf jar-file
	jar tf jar-file

	XML Deployment Descriptors
	Table 3�1 J2EE and WebLogic Deployment Descriptors

	Packaging Web Applications
	1. Create a temporary staging directory.
	2. Copy all of your HTML files, JSP files, images, and any other files that these Web pages refer...
	3. Create META-INF and WEB-INF/classes subdirectories in the staging directory to hold deployment...
	4. Copy or compile any servlet classes and helper classes into the WEB-INF/classes subdirectory.
	5. Copy the home and remote interface classes for enterprise beans used by the servlets into the ...
	6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be installed in a sub...
	7. Create web.xml and weblogic.xml deployment descriptors in the WEB-INF subdirectory.
	8. Bundle the staging directory into a .war file by executing a jar command such as the following:

	Packaging Enterprise JavaBeans
	1. Create a temporary staging directory.
	2. Compile or copy the bean’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Create an ejb-jar.xml deployment descriptor in the META-INF subdirectory and add entries for t...
	5. Create a weblogic-ejb-jar.xml deployment descriptor in the META-INF subdirectory and add entri...
	6. If the bean is an entity bean with container-managed persistence, create a weblogic-rdbms-cmp-...
	7. When all of the enterprise bean classes and deployment descriptors are set up in the staging d...

	Packaging Enterprise Applications
	1. Create a temporary staging directory.
	2. Copy the Web archives (.war files) and EJB archives (.jar files) into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Create the application.xml deployment descriptor in the META-INF subdirectory.
	5. Create the Enterprise Archive (.ear file) for the application, using a jar command such as:

	Resolving Class References Between Components
	Classloader Overview
	About Application Classloaders
	Packaging Common Utilities and Third-Party Classes
	Handling Interactions Between Startup Classes and Applications

	Deploying Applications and Components
	Using the Administration Console
	1. Start the Administration Console.
	2. In the left pane, expand Deployments.
	3. Under Deployments, click Applications.
	4. In the right pane, click Browse, and find the .ear, .jar, or .war file containing the componen...
	5. Click Upload.
	6. Expand the new application under the Applications node to reveal the components.
	7. For each of the components in the application, click the component name in the left pane, then...
	8. Click on the application name under the Applications node, and check the Deployed check box in...
	9. Click Apply.

	Using the weblogic.deploy Command-Line Utility

	Packaging and Deploying Client Applications
	J2EE Client

	4 Programming Topics
	Logging Messages
	Table 4�1 Log Message Format

	Using Threads in WebLogic Server
	Using JavaMail with WebLogic Server Applications
	About JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	1. In the Administration Console, click on the Mail node in the left pane of the Administration C...
	2. Click Create a New Mail Session.
	3. Complete the form in the right pane, as follows:
	Table 4�2 Mail Session Properties Field

	Sending Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are String vari...
	5. Send the message.

	Reading Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Get a Store object from the Session and call its connect() method to connect to the mail serve...
	5. Get the default folder, then use it to get the INBOX folder:
	6. Read the messages in the folder into an array of Messages:
	7. Operate on messages in the Message array. The Message class has methods that allow you to acce...

	5 Writing Web Application Deployment Descriptors
	Overview of Web Application Deployment Descriptors
	Writing the web.xml Deployment Descriptor
	Main Steps to Create the web.xml File
	Detailed Steps to Create the web.xml File
	Step 1: Create a deployment descriptor file
	Step 2: Create the header
	Step 3: Create the main body of the web.xml file
	Step 4: Define deployment-time attributes
	Step 5: Define context parameters
	Precompiling JSPs

	Step 6: Deploy servlets
	Step 7: Map a servlet to a URL
	</servlet-mapping>

	Step 8: Define the session timeout value
	Step 9: Define welcome pages
	Step 10: Define error pages
	Step 11: Define MIME mapping
	Step 12: Define a JSP tag library descriptor
	Step 13: Reference external resources
	Step 14: Set up security constraints
	Step 15: Set up login authentication
	�

	Step 16: Define security roles
	Step 17: Set environment entries
	Step 18: Reference Enterprise JavaBean (EJB) resources
	Listing 5-1 Sample web.xml with Servlet Mapping, Welcome file, and Error Page

	Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
	Main Steps to Create the weblogic.xml File
	Detailed Steps to Create the weblogic.xml File
	Step 1: Begin the weblogic.xml file with a DOCTYPE header
	Step 2: Map security role names to a security realm
	Step 3 Reference resources
	Step 4: Define session parameters
	Step 5: Define JSP parameter

	A web.xml Deployment Descriptor Elements
	icon Element
	display-name Element
	description Element
	context-param Element
	servlet Element
	icon Element
	init-param Element
	security-role-ref Element

	servlet-mapping Element
	session-config Element
	mime-mapping Element
	welcome-file-list Element
	error-page Element
	taglib Element
	resource-ref Element
	security-constraint Element
	web-resource-collection Element
	auth-constraint Element
	user-data-constraint Element

	login-config Element
	form-login-config Element
	security-role Element
	env-entry Element
	ejb-ref Element

	B weblogic.xml Deployment Descriptor Elements
	description Element
	weblogic-version Element
	security-role-assignment Element
	reference-descriptor Element
	resource-description Element
	ejb-reference-description Element

	session-descriptor Element
	Session Parameter Names and Values

	jsp-descriptor Element
	JSP Parameter Names and Values

	C Client Application Deployment Descriptor Elements
	application.xml Deployment Descriptor Elements
	application
	icon
	small-icon
	large-icon

	display-name
	description
	module
	ejb
	java
	web
	web-uri
	context-root

	security-role
	description
	role-name

	WebLogic Run-time Client Application Deployment Descriptor
	application-client
	env-entry*
	env-entry-name
	env-entry-value

	ejb-ref*
	ejb-ref-name
	jndi-name

	resource-ref*
	resource-ref-name
	jndi-name

