o®%%,

9 F
: #
L e a

BEA
WebLogic Server

Developing WebLogic
Server Applications

BEA WebLogic Server 6.0
Document Date: May 16, 2001

Copyright
Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any el ectronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Developing WebL ogic Server Applicatinos

Part Number Document Date Software Version

N/A May 16, 2001 BEA WebL ogic Server Version 6.0

Contents

About This Document

N 0 [1= 0 TS X
E-UOCSWED SOt st ereens X
How to Print the DOCUMENLccecoiieri et X
Related INfOrmation..........cceeoi e s Xi
(0o 1 r=o: A U LS T Xi
Documentation CONVENLIONS.........ccceveriererereereeeeseeeee s sre e see s eeneeneeneenenss Xii

1. Understanding WebLogic Server Applications

What Are WebL ogic Server Application Components?..........ccoeeeeveeeeeenenenn 11
Web Application COMPONENEScoeveeeerireer e se e 1-2
SENVIELS. ..t e 1-3
JAVASEIVEL PAgES......ccceiiieee e e 1-3

Web Application Directory StruCturecovvvveveverierieserseeeeeeenns 1-3

For More Information on Web Application Components................... 1-4
Enterprise JavaBean COMPONENTS........cccceieieririereriesiesie e sieeeseeeeeeneeenne 1-4

EIB OVEIVIEW ...ttt et st s 1-4

EJB INtEITACES ...cvieieiereiieieie et e 1-5

EJBs and WeDLOQIC SEIVENcocoiiieiiee e 1-5

WebL OGIC COMPONENES.......cveireeireeeieseeee e se e see s see e seeneeseeeeseeseesesnens 1-6
Enterprise APPlICALIONS........coiiveererecseeetee e ene 1-7
Client APPIICALIONS.cceeeeeeririererie e sr e s se e 1-7

2. Developing WebLogic Server Components

Creating WebL ogic Server Applications: Main StEPScccovvevvvvervveseereeeene 2-1
Creating Web Applications. OVEIVIEWcccoeeereienieneie e 2-3
Creating Enterprise Beans, OVEIVIEWcocoeeereienienenee e 2-4

Developing BEA WebL ogic Server Applications iii

iv

Creating Enterprise Applications: OVENVIEW.........ccvvereverereeseeeseeenes 2-5

Establishing a Development ENVIronmentcoccoereneneeieenenieeiesene e 2-6
SOFtWEIE TOOIS.....cerrieirereeieree e 2-6
Source Code Editor or IDE ... 2-6

JAVA COMPIIEN ... s 2-6
Development WEebLOGIC SEIVEccuvvveieeereeeeere e seeseesieeeseeeenens 2-7
Database System and JIDBC DIIVEScooeiveierereeireeere e 2-7

WWED BIOWSEYcviiuiiiiie ittt st see e s se e sne s saesnns 2-8
Third-Party SOftWar€........coccevereiirere st enens 2-8
WebGain VisualCafé Enterprise Eitionccoccceveeveiencenecesenen, 2-8
INfOrMIX ClOUASCAPE........eeveeeieiie et s 2-9

Y07z Sl 0T 0 2-9
WeEDGEIN TOPLINK. ...ttt s 2-9

KL Group JPrODE ...ttt s e 2-9

Versant Enterprise CONtaINESccvveveveresesereeseeesesreseseeseeneeses 2-10
EXCAON JAVIIN ..t 2-10

Object Design ObJECESLONE........c.coieruerere et 2-10
Preparing to COMPIIE......ccv i 2-10
Putting the Java Tools in Your Search Path............ccocooiiiiiiiiininnes 2-11
Setting the Classpath for Compiling.........cocooereienninineresere e 2-11
Setting Target Directories for Compiled Classes........ccoovvevvreeenesecennnn 2-12

3. Packaging and Deploying WebLogic Server Applications

PaCKagiNg OVEIVIEW ...ttt s e 31
JAR FIIBS ..ottt 32
XML Deployment DESCIIPLOrS.ccviveerereriereesieseeseeeeseeeesesseseseessenseseens 3-3

Packaging Webh AppliCatiONS.........coeeiiriireee e 34

Packaging Enterprise JAVaBEaNSccviereesieniesesieseseese e sese e eresse e 35

Packaging Enterprise APpliCations..........ccoovveriereveresieeeseeeesese e e s 3-6

Resolving Class References Between COmMpPoNentsScooeveveerereereeieeenenenne 3-8
Class 0a0er OVEIVIEW.........coeiiiiriieie st seenes 3-8
About Application Class0aders..........ccoeeveeevenine s 39
Packaging Common Utilities and Third-Party Classes..........cccceeriereenns 3-10
Handling Interactions Between Startup Classes and Applications........... 3-10

Deploying Applications and COMPONENES........cccevererereereereererreereeeseseeeenees 311

Developing BEA WebL ogic Server Applications

Using the Administration Console.........cccoveeeerievenerinseneseseeseee e 312

Using the weblogic.deploy Command-Line Utilityccocoveiiiieinnenn 3-13
Packaging and Deploying Client AppliCations.........cccoevererreeesennseneesenens 313
J2EE ClIENE....ictieteeee ettt e 3-14
Programming Topics
LOQGING MESSAGESeiueeeerreriesteseesteseeseesseeeseeessesseeseesessessessessessessessensensessensenens 4-1
Using Threads in WEDLOGIC SEIVESccvceeeeeeeneresesteeseeeesieeesessesseseenens 4-4
Using JavaMail with WebL ogic Server Applications..........ccccooeveveneieenniennns 4-6
About JavaMail Configuration FIlES.........ccccevevveeneric s 4-6
Configuring JavaMail for WebLogiC SErVEr........ccocvevereeereeeeiereeie e 4-7
Sending Messages with JavaMallccccoeeiiiiiiiine e 4-9
Reading Messages with JavaMailccccoeoveeeeevinninnese e 4-10

Writing Web Application Deployment Descriptors

Overview of Web Application Deployment DeSCriptors.........c.cooeevereeneeneneenee. 51
Writing the web.xml Deployment DesCriptorc.ccveverereieenieeeeeeeeeeeene 5-2
Main Steps to Create the web.xml File.......ccooeveeeecivcecce e 5-2
Detailed Steps to Create the web.xml File ... 5-3
Writing the WebL ogic-Specific Deployment Descriptor (weblogic.xml) 5-19
Main Steps to Create the weblogicxml File........ccooevvevvvenccvcsecce, 5-19
Detailed Steps to Create the weblogic.xml File..........ccocooiiiiiinniinenne. 5-20

. web.xml Deployment Descriptor Elements

TCON ETEIMENLuiiitiieie ettt e ettt A-2
display-name ElEMENtcccovviieereeeecee e A-2
desSCription ElEMENt ... e e A-3
context-param ElEMENL..........ccocv e s A-3
SENVIEL EIEIMENLcviiieeee ettt s A-3

ICON EIEMENLot sttt ens A-5

INit-param EIEMENE........cccvveerereee e s A-5

Security-role-ref ElemMent.........cccovcveerreeeie e A-6
Serviet-mapping ElEmMeNnt...... ..o e A-6
SESSION-CONFig EIEMENT......ceeceecee e e s A-7
MIiMe-MappPiNg EIEMENt ..o e A-8
welcome-file-list EI@MENtcov i A-9

Developing BEA WebL ogic Server Applications %

EIror-page ElEMENt ..o A-9

TAGID EIEMENT ... e s A-10
FESOUrCE-TEf EIOMENE.......iiiiiieiiieree e e A-11
SECUrity-CONSLraiNt ElEMENocveie e A-12
web-resource-collection Element ... eceveeve e A-12
auth-constraint Element..........ccoov oo A-13
user-data-constraint Element...........ccoceeoe e A-14
10giN-Config ElEMENtc.ooiiiee e e A-15
form-login-config ElemMEent.........ccevveeeirieci e A-15
SECUKItY-r0l€ BIOMENL.......ootiii ittt A-16
ENV-ENEIY BIOMENE.......o.iiiiie e A-17
GO-TEf EI@MENT ... s A-17

B. weblogic.xml Deployment Descriptor Elements

desCription EIEMENt ... et B-1
Weblogic-version ElemMeNntcccovveevireeesseeree e B-2
security-role-assignment Elementccoveveeeinece s B-2
reference-descriptor EIEMENt...... ... B-3
resource-description EIementcccocvveeererie v s B-3
gjb-reference-description Element..........ccccovevevvienieveniesese e B-3
SESSION-AESCriPtOr EIEMENtcc.oivi e B-4
Session Parameter Names and ValUES.........ooveveereinenienenecseeseee B-4
JSP-AESCriPtOr ElEMENE.......civieeeeeeeeer et sre e snens B-8
JSP Parameter Names and ValUES..........couceeeieeinenenesene e B-9

C. Client Application Deployment Descriptor Elements

application.xml Deployment Descriptor Elements........cccccovvevevvvernceeseneenn, C-1
APPHICELION ... bbb C-2

[o{o] o H TR C-3

Lo S oo Y2 = C-3
ESCIIPLION ...t e e C-3

(00100 (01 = TR C-3

LSS o 0] Y (0] = C-4

WebL ogic Run-time Client Application Deployment Descriptor C-5
APPlICALTION-CHIENE ... e C-6

Vi Developing BEA WebL ogic Server Applications

Developing BEA WebL ogic Server Applications

vii

viii Developing BEA WebL ogic Server Applications

About This Document

This documentintroduces the BEA WebL ogic Server™ application devel opment
environment. It describes how to establish a development environment and how to
package applications for deployment on the WebL ogic Server platform.

The document is organized as follows:

Chapter 1, “Understanding WebL ogic Server Applications,” describes
components of WebL ogic Server applications.

Chapter 2, “Developing WebL ogic Server Components,” describes the process
for creating WebL ogic Server components and hel ps Java programmers establish
their programming environment.

Chapter 3, “Packaging and Deploying WebL ogic Server Applications,” describes
how to bundle WebL ogic Server components and applicationsin standard JAR
filesfor distribution and deployment.

Chapter 4, “Programming Topics,” covers general WebL ogic Server application
programming issues, such as logging messages and using threads.

Chapter 5, “Writing Web Application Deployment Descriptors,” describes how
to write the deployment descriptors that tell WebL ogic Server how to deploy a
Web application.

Appendix A, “web.xml Deployment Descriptor Elements,” is areference for the
standard J2EE Web application deployment descriptor, web. xni .

Appendix B, “weblogic.xml Deployment Descriptor Elements,” is areference
for the WebL ogi c-specific Web application deployment descriptor,
webl ogi c. xmi .

Appendix C, “Client Application Deployment Descriptor Elements,” isa
reference for the standard J2EE Client application deployment descriptor,

Developing WebL ogic Server Applications iX

appl i cation. xm , and the WebL ogic-specific client application deployment
descriptor.

Audience

This document is written for application devel opers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebL ogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

X Developing WebL ogic Server Applications

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebL ogic Server. The
following WebL ogic Server documents contain information that isrelevant to creating
WebL ogic Server application components:

m Programming WebLogic EJB

m Programming WebLogic HTTP Serviets
m Programming WebLogic JSP

m Programming WebLogic JDBC

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/.

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version your are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

Developing WebL ogic Server Applications Xi

mailto:docsupport@bea.com
http://www.bea.com

®m Your machine type and authorization codes
m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneously.

italics Emphasis and book titles.

nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also

indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chnod u+w *

conf i g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace Variablesin code.
italic Example:
t ext .
String Customer Nane;

UPPERCASE Device names, environment variables, and logical operators.
TEXT Examples:

LPT1

BEA_HOME

OR

Xii Developing WebL ogic Server Applications

Convention

Usage

{1}

A set of choicesin asyntax line.

[]

Optional itemsin asyntax line. Example:

java utils.MilticastTest -n name -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c. depl oy [list| depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in acommand line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Developing WebL ogic Server Applications Xiii

Xiv Developing WebL ogic Server Applications

CHAPTER

1 Understanding

WebLogic Server
Applications

The following sections provide an overview of WebL ogic Server applications and
application components:

What Are WebL ogic Server Application Components?
Web Application Components

Enterprise JavaBean Components

WebL ogic Components

Enterprise Applications

Client Applications

What Are WebLogic Server Application
Components?

BEA WebLogic Server™ applications can include the following components:

Web components—HTML pages, servlets, JavaServer Pages, and related files

Developing WebL ogic Server Applications 11

1 Understanding WebLogic Server Applications

m EJB components—entity beans, session beans, and message-driven beans
m Webl ogic components—startup and shutdown classes

Web designers, application devel opers, and application assembl ers create components
by using J2EE technol ogies such as JavaServer Pages, servlets, and Enterprise
JavaBeans.

Components are packaged in Java ARchive (JAR) files—archives created with the
Javaj ar utility. JAR files bundle all component filesin a directory into asinglefile,
maintaining the directory structure. JAR filesinclude XML descriptors that instruct
WebL ogic Server how to deploy the components.

Web Applications are packaged in aJAR filewith a. war extension. Enterprise beans,
WebL ogic components, and client applications are packaged in JAR fileswith . j ar
extensions.

An Enterprise Application, consisting of assembled components, isaJAR filewith an
. ear extension. An. ear filecontainsall of the. j ar and. war component archive
filesfor an application and an XML descriptor that describes the bundled components.

To deploy acomponent or an application, you use the Administration Console or the
webl ogi c. depl oy command-line utility to upload JAR files to the target WebL ogic
Servers.

Client applications (whenthe clientisnot aWeb browser) are Javaclassesthat connect
to WebL ogic Server using Remote M ethod Invocation (RMI). A Javaclient can access
Enterprise JavaBeans, JDBC connections, JM S messaging, and other servicesby using
RMI.

Web Application Components

1-2

A Web archive contains all of the filesthat make up aWeb application. A . war fileis
deployed as a unit on one or more WebL ogic Servers. A Web archive can include the
following:

m Servlets, JSP pages, and their helper classes.
m HTML/XML pages with supporting files such asimages and multimediafiles.

m Aweb. xm deployment descriptor, a J2EE standard XML document that
describes the contents of a. war file.

Developing WebL ogic Server Applications

What Are WebL ogic Server Application Components?

Servlets

m A webl ogi c. xm deployment descriptor, an XML document containing
WebL ogic Server-specific elements for Web applications.

Servlets are Java classes that execute in WebL ogic Server, accept arequest from a
client, processit, and optionally return aresponse to the client. A GenericServlet is
protocol independent and can be used in J2EE applications to implement services
accessed from other Java classes. An HttpServlet extends GenericServlet with support
for the HTTP protocol. An HttpServlet is most often used to generate dynamic Web
pages in response to Web browser requests.

JavaServer Pages

JSP pages are Web pages coded with an extended HTML that makes it possible to
embed Javacodein aWeb page. JSP pages can call custom Java classes, called taglibs,
using HTML -like tags. The WebL ogic JSP compiler, webl ogi c. j spc, trandates JSP
pages into serviets. WebL ogic Server automatically compiles JSP pagesif the servlet
classfileis not present or is older than the JSP source file.

Y ou can also precompile JSP pages and package the servlet classin the Web Archive
to avoid compiling in the server. Servlets and JSP pages may depend upon additional
helper classes that must also be deployed with the Web application.

Web Application Directory Structure

Web application components are assembled in adirectory in order to stage the . war
filefor thej ar command. HTML pages, JSP pages, and the non-Java class files they
reference are accessed beginning in the top level of the staging directory.

The XML descriptors, compiled Java classes and JSP taglibs are stored in a VEB- | NF
subdirectory at the top level of the staging directory. Java classes include servlets,
helper classes and, if desired, precompiled JSP pages.

The entire directory, once staged, isbundledinto a. war fileusing thej ar command.
The. war file can be deployed alone or packaged in an Enterprise Archive (. ear file)
with other application components, including other Web Applications, EJB
components, and WebL ogic components.

Developing WebL ogic Server Applications 1-3

1 Understanding WebLogic Server Applications

For More Information on Web Application Components

For more information about creating Web application components, see these
documents:

m Programming WebL ogic Servlets at
http://e-docs.bea.com/wls/docs60/serviet/index.html

m Programming WebL ogic JSP at http://e-docs.bea.com/wls/docs60/jsp/index.html
m Writing JSP Extensions at http://e-docs.bea.com/wls/docs60/taglib/index.html
For help deploying Web Applications, see the following sections of this document:
m Chapter 5, “Writing Web Application Deployment Descriptors.”

m Appendix A, “web.xml Deployment Descriptor Elements.”

m Appendix B, “weblogic.xml Deployment Descriptor Elements.”

Enterprise JavaBean Components

Enterprise JavaBeans (EJBs) beans are server-side Java components written according
tothe EJB specification. There arethreetypes of enterprise beans: session beans, entity
beans, and message-driven beans.

EJB Overview

Session beans represent a single client within WebL ogic Server. They can be stateful
or stateless, but are not persistent; when aclient finishes with a session bean, the bean
goes away .

Entity beans represent business objects in a data store, usually arelational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be shared by multiple clients and they are persistent by
definition.

1-4 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/servlet/index.html
http://e-docs.bea.com/wls/docs60/jsp/index.html
http://e-docs.bea.com/wls/docs60/taglib/index.html

What Are WebL ogic Server Application Components?

A message-driven bean isan enterprise bean that runsin the EJB container and handles
asynchronous messages from a JIM'S Queue. When a message is received on the IMS
Queue, the message-driven bean assigns an instance of itself from apool to processthe
message. M essage-driven beans are not associated with any client. They simply handle
messages as they arrive. A IMS ServerSessionPool provides asimilar capability, but
without the advantages of running in the EJB container.

Enterprise beans are bundled into a JAR file that contains their compiled classes and
XML deployment descriptors.

EJB Interfaces

Entity beans and session beans have remote interfaces, home interfaces, and
implementation classes provided by the bean devel oper. (M essage-driven beans do not
reguire home or remote interfaces, because they are not accessible outside of the EJB
container.)

The remote interface defines the methods a client can call on an entity bean or session
bean. The implementation class is the server-side implementation of the remote
interface. The home interface provides methods for creating, destroying, and finding
enterprise beans. The client accessesinstances of an enterprise bean through thebean’s
home interface.

EJB home and remote interfaces and implementation classes are portable to any EJB
container that implements the EJB specification. An EJB developer can supply aJAR
file containing just the compiled EJB interfaces and classes and a depl oyment
descriptor.

EJBs and WebLogic Server

J2EE cleanly separates the development and deployment roles to ensure that
components are portable between EJB servers that support the EJB specification.
Deploying an enterprise bean in WebL ogic Server requires running the WebL ogic EJB
compiler, webl ogi c. ej bc, to generate the stub and skeleton classes that allow an
enterprise bean to be executed remotely.

WebL ogic stubs and skeletons can also contain support for WebL ogic clusters, which
enable load-balancing and failover for enterprise beans. Y ou can run webl ogi c. ej bc
to generate the stub and skeleton classes and add them to the EJB JAR file, or

WebL ogic Server can create them by running the compiler at deployment time.

Developing WebL ogic Server Applications 1-5

1 Understanding WebLogic Server Applications

The J2EE-specified deployment descriptor, ej b-j ar . xm , describes the enterprise
beans packaged in an EJB JAR file. It defines the beans' types, names, and the names
of their home and remote interfaces and implementation classes. Theej b-j ar . xm
deployment descriptor defines security rolesfor the beans, and transactional behaviors
for the beans' methods.

Additional deployment descriptors provide WebL ogic-specific deployment
information. A webl ogi c- cnp-rdbms-j ar . xm deployment descriptor for
container-managed entity beans maps a bean to tablesin a database. The

webl ogi c- ej b-j ar. xm deployment descriptor supplies additional information
specific to the WebL ogic Server environment, such as clustering and cache
configuration.

For help creating and deploying Enterprise JavaBeans, see Programming WebL ogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs60/ejb/index.html.

WebLogic Components

1-6

The WebL ogic Server components are startup and shutdown classes, Java classes that
execute when deployed or at shutdown time, respectively.

Startup classes can be RMI classes that register themselvesin the WebL ogic Server
naming tree or any other Java class that can be executed in WebL ogic Server. Startup
classes can be used to implement new servicesin WebL ogic Server. Y ou could create
a startup class that provides access to alegacy application or areal-time feed, for
example.

Shutdown classes execute when WebL ogic Server shuts down and are usually used to
free resources obtained by startup classes.

Startup and shutdown classes can be configured in WebLogic Server from the
Administration Console. The Java class must be in the server’s classpath.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/ejb/index.html

Enterprise Applications

Enterprise Applications

An Enterprise Archive (. ear) file contains the Web archives and EJB archives that
congtitute a J2EE application. The META- | NF/ appl i cati on. xm deployment
descriptor contains an entry for each Web and EJB module, and additional entriesto
describe security roles and application resources such as databases.

Y ou use the Administration Console or the webl ogi c. depl oy command line utility
to deploy an . ear file on one or more WebL ogic Serversin the domain managed by
the Administration Server.

Client Applications

Client-side applications written in Java have access to WebL ogic Server servicesvia
RMI. Client applications range from simple command line utilities that use standard
1/O to highly interactive GUI applications built using the Java Swing/AWT classes.

Client applications use WebL ogic Server componentsindirectly, using HT TP requests
or RMI requests. The components actually execute in WebL ogic Server, not in the
client.

To execute aWebL ogic Server Java client, the client computer needs the
webl ogi c_sp. j ar file, thewebl ogi c. j ar file, the remote interfaces for any RMI
classes and enterprise beans on WebL ogic Server, and the client application classes.

The application devel oper packages client-side applications so they can be deployed
on client computers. To simplify maintenance and deployment, it isagood ideato
package a client-side application in a JAR file that can be added to the client’s
classpath along with the webl ogi c. j ar and webl ogi c_sp. j ar files.

WebL ogic Server also supports J2EE client applications, packaged in aJAR file with
astandard XML deployment descriptor. Thewebl ogi c. d i ent Depl oyer command
line utility is executed on the client computer to run a client application packaged to

this specification. See “Packaging and Deploying Client Applications’ on page 3-13
for more about J2EE client applications.

Developing WebL ogic Server Applications 1-7

1 Understanding WebLogic Server Applications

1-8 Developing WebL ogic Server Applications

CHAPTER

2 Developing WebLogic
Server Components

The following sections describe how to create WebL ogic Server components and set
up a development envioronment:

m Creating WebL ogic Server Applications: Main Steps
m Establishing a Development Environment
m Preparing to Compile

WebL ogic Server applications are created by Java programmers, Web designers, and
application assembl ers. Programmersand designers create componentsthat i mplement
the business logic and presentation logic for the application. Application assemblers
assembl e the components into applications ready to deploy on WebL ogic Server.

Creating WebLogic Server Applications:
Main Steps

Creating aWebL ogic Server application requires creating Web and EJB components,
deployment descriptors, and archive files. Theresult is an enterprise application
archive (. ear file), that can be deployed on WebL ogic Server.

Here are the main steps:

1. Create Web and EJB components for your application.

Developing WebL ogic Server Applications 2-1

2 Deve oping WebL ogic Server Components

2-2

Programmers create servlets and enterprise beans using the J2EE APIsfor these
components. Web designers create Web pages using HTML/XML, and
JavaServer Pages.

. Create deployment descriptors.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebL ogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as

ej b-jar.xm andweb. xm . Additional deployment descriptors provide
supplement the J2EE-specified descriptors with information required to deploy
components in WebL ogic Server.

. Create component archive.

Component archives are JAR files containing all of the files that make up the
component, including deployment descriptors.

. Create application deployment descriptor.

The application deployement descriptor, appl i cati on. xni , listsindividual
components that are assembled together in an application.

. Assemble application.

Component archives are packaged with the application deployment descriptor in
an application JAR file. Thisisthe file that is deployed on WebL ogic Server.
WebL ogic Server usesthe appl i cati on. xm deployment descriptor to locate
and deploy the individual components packaged in the JAR file.

Figure 2-1 illustrates the process for devel oping and assembling WebL ogic Server
applications.

Developing WebL ogic Server Applications

Creating WebL ogic Server Applications; Main Steps

Figure2-1 Creating Enterprise Applications

Servlets
Create)
c Enterprise Beans JSP Pages
omponents
Web Pages
Create Component ej b-j a_r . xn1_ _ veb. xm
Deployment webl ogi c-ej b-jar. xnm .
X . webl ogi c. xm
Descriptor webl ogi c- crp-r dbms. xni
Create EJB Archi Web Archi
rchive eb Archive
Component jar war
Archive

¢ —

Create Application

Deployment appl i cation. xm
Descriptor

Assemble Enterprise Archive
Application . ear

Creating Web Applications: Overview

Web designers create HTML pages and JavaServer Pages to create the Web interface
for an application. Java programmers create Servlets and the JSP taglibs referenced in
JavaServer Pages (JSPs).

Developing WebL ogic Server Applications 2-3

2 Deve oping WebL ogic Server Components

JSP pages, HTML pages, and multimediafilesreferenced by the pages are saved inthe
top level of the Web application staging directory. Compiled Servlet classes, taglibs,
and, if desired, Servlets compiled from JSP pagesare stored under aweB- | NF directory
in the staging directory.

Two deployment descriptors are created in the WEB- | NF directory: web. xm and
webl ogi c. xm . Theweb. xni file defines each Servlet and JSP page and enumerates
enterprise beans referenced in the Web application. Thewebl ogi c. xni file adds
additional deployment information for WebL ogic Server. See Chapter 5, “Writing
Web Application Deployment Descriptors,” for instructions on creating these
deployment descriptors.

When the Web application components are all in place in the staging directory, you
create the Web archive with acommand such asthe following, executed in the staging
directory:

jar cvf myWebApp. war *

The . war fileisready to be deployed, or it can be added to an Enterprise archive and
deployed as part of an application.

Creating Enterprise Beans: Overview

2-4

A Java programmer creates an enterprise bean by writing three classes, in accordance
with the EJB specification:

m An EJB homeinterface
m A remote interface for the bean
m Animplementation class for the bean

M essage-driven beans require only an implementation class. The interfaces and
implementation classes are compiled into a staging directory for the bean.

Deployment descriptors are created in a META- | NF directory in the top level of the
staging directory:

m ejb-jar.xm describesthe enterprise bean type and its deployment properties
using astandard DTD from Sun Microsystems.

Developing WebL ogic Server Applications

Creating WebL ogic Server Applications; Main Steps

®m webl ogi c-ej b-j ar. xnl adds additional WebL ogic Server-specific deployment
information.

m webl ogi c- cnp-rdbns-j ar. xni maps a container-managed entity bean to
tablesin adatabase. This file can must have a different name for each CMP bean
packaged in a JAR file. The name of thefileis specified in the bean’s entry in
thewebl ogi c-ej b. j ar file.

See “Programming WebL ogic Enterprise JavaBeans” at

http://e-docs.bea.com/wls/docs60/ejb/index.html for help creating EJB deployment
descriptors.

After the EJB classes are compiled, you run the webl ogi c. ej bc EJB compiler to
generate the stub and skeleton classes into the staging directory. Then you create the
EJB archive by executing aj ar command like the following in the staging directory:

jar cvf nyBJB.jar *

TheEJB . ar filecanbedeployed asis, or packaged in an Enterprise Archive (. ear)
file and deployed with an application.

Creating Enterprise Applications: Overview

When you have assembled all of the Web archives and EJB archives for your
application, you can bundle them together in an Enterprise Archive (. ear) file so that
you can deploy all of the dependent components together.

Copy the .war and EJB . j ar filesinto a staging directory and then create a

META- | NF/ appl i cation. xmi deployment descriptor for the application. The
appl i cation. xm file contains a descriptor for each component in the application,
using a DTD supplied by Sun Microsystems.

Create the Enterprise Archive by executing aj ar command such as the following in
the staging directory:

jar cvf nyApp.ear *

Use the Administration Console or the webl ogi c. depl oy command line utility to
deploy the application.

Developing WebL ogic Server Applications 2-5

http://e-docs.bea.com/wls/docs60/ejb/index.html

2 Deve oping WebL ogic Server Components

Establishing a Development Environment

To develop WebL ogic Server applications, you need to assemble your software tools
and set up an environment for creating, compiling, deploying, testing, and debugging
your code. This section helps you start building your toolkit and setting up the
compiler-related environment on your development computer.

Software Tools

This section reviews the software required to develop WebL ogic Server applications
and describes optional tools for development and debugging.

Source Code Editor or IDE

Y ou need atext editor to edit Javasourcefiles, configuration files, HTML/XML pages,
and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differencesis preferred, but there are no other special requirements for
your editor.

Java Interactive Devel opment Environments (IDEs) such as WebGain Visual Café
usually include a programmer’ s editor with custom support for Java. An IDE may also
have support for creating and deploying Servlets and Enterprise JavaBeans on

WebL ogic Server, which makesit much easier to develop, test, and debug
applications.

You can edit HTML/XML pages and JavaServer Pages with aplain text editor, or use
aWeb page editor such as DreamWeaver.

Java Compiler

A Java compiler produces Java class files, containing portable byte code, from Java
source. The compiler compiles the Java code you write for your applications, as well
as the code generated by the WebL ogic RMI, EJB, and JSP compilers.

2-6 Developing WebL ogic Server Applications

Establishing a Development Environment

Sun Microsystems Java 2, Standard Edition includes a Java compiler, j avac. If you
install the bundled JRE when you install WebL ogic Server, thej avac compiler is
installed on your computer.

Other Java compilers are available for various platforms. Y ou can use adifferent Java
compiler for WebL ogic Server application development aslong as it produces
standard Java. cl ass files. Most Java compilers are many times faster than j avac,
and some are integrated nicely with an IDE.

Occasionally, a compiler generates optimized code that does not behave well in all
Java Virtual Machines (JVMs). When debugging problems try disabling
optimizations, choosing adifferent set of optimizations, or compiling with j avac to
rule out your Java compiler as the cause. Alwaystest your code in each of your target
JVMs before deploying.

Development WebLogic Server

Never deploy untested code on a WebL ogic Server that is serving production
applications, so you will need a development WebL ogic Server in your environment.
Y ou can run a development WebL ogic Server on the same computer you edit and
compile on, or you can use one deployed somewhere on the network.

Javais platform independent, so you can edit and compile code on any platform, and
test your applications on devel opment WebL ogic Servers running on other platforms.
For example, it iscommon to develop WebL ogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

Even if you do not run a development WebL ogic Server on your development
computer, you must have access to a WebL ogic Server distribution to compile your
programs. To compile any code using WebL ogic or J2EE APIs, the Java compiler
needs accessto the webl ogi c. j ar file and other JAR files in the distribution
directory. Installing WebL ogic Server on your development computer makes these
filesavailable locally.

Database System and JDBC Driver
Nearly all WebL ogic Server applications require a database system. Y ou can use any

DBMS that you can access with a standard JDBC driver, but services such as
WebL ogic IM S require a supported JDBC driver for Oracle, Sybase, Informix,

Developing WebL ogic Server Applications 2-7

2 Deve oping WebL ogic Server Components

Web Browser

Microsoft SQL Server, IBM DB2, or Cloudscape. Refer to the Platform Support Web
page at http://e-docs.bea.com/wls/platforms/index.html to find out about supported
database systems and JDBC drivers.

JDBC connection pools offer such significant performance advantagesthat you should
only rarely consider writing an application that uses atwo-tier JDBC driver directly.

On aWebL ogic cluster, be sure to set up a multipool, which provides load balancing
over JDBC connection pools on multiple serversin the cluster.

Most J2EE applications are designed to be executed by Web browser clients.
WebL ogic Server supportsthe HTTP 1.1 specification and is tested with current
versions of the Netscape Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.

Be explicit about version numbers and browser configurations. Will your application
support SSL? Test alternative security settingsin the browser so that you can tell your
users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differencesin the JVMs embedded in
various browsers. One solution isto require usersto install the Java plug-in from Sun
so that everyone has the same Java run-time version.

Third-Party Software

This section describes several third-party software products that can enhance your
WebL ogic Server development environment.

Note: Check with the software vendor to verify software compatibility with your
platform and WebL ogic Server version.

WebGain VisualCafé Enterprise Edition

2-8

Visual Café Enterprise Edition builds on proven Java devel opment technology and
delivers a complete Java I ntegrated Devel opment Environment (IDE) for the
heterogeneous enterprise. Enterprise Edition inherits powerful productivity features

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/platforms/index.html

Establishing a Development Environment

and database functionality from the Visual Café family while introducing unique new
server-side devel opment and distributed debugging capabilities to minimize the
challenges of enterprise Java application development. Visual Café Enterprise Edition
is the most mature and open Java development environment backed by extensive
industry wide support.

Informix Cloudscape

Cloudscape is the first 100% pure Java SQL database management system.
Cloudscape is designed to be embedded in client or server applications as alocal data
manager. It implements SQL-92 with extensions for Java that enable the devel oper to
create acolumn of type Javaclass, and to write stored proceduresin Javafor execution
inside the DBMS.

Sybase PowerJ

PowerJ provides a true end-to-end solution for building sophisticated Internet
applications, exploiting the benefits of HTML, Javaclients, and Java server-side
components.

WebGain TopLink

TOPLink for BEA WebL ogic is a powerful tool for building EJB applications.
TOPLink is seamlessly integrated with BEA WebL ogic Server. With TOPLink for
BEA WebL ogic Server, you can build components for application servers that run on
Java, while significantly cutting application development time and expense.

KL Group JProbe

JProbe is a performance-tuning toolkit. With other performance-tuning toolkits,
developers working on specific application servers must use command line prompts.
Under these circumstances, setting up the session typically involves time-consuming
manual configuration, and usually morethan afair share of trial and error. The JProbe
2.5 Server Launch Pad eliminates much of this effort, making server-side tuning fast
and easy. JProbe supports many popular Web and application servers, including
WebL ogic Server.

Developing WebL ogic Server Applications 2-9

2 Deve oping WebL ogic Server Components

Versant Enterprise Container

VERSANT Enterprise Container (VEC) isthe integration between a VERSANT
ODBMS and an EJB-compliant application server. VEC supports WebL ogic Server.
VERSANT Enterprise Container isan EJB-compliant container that plugsdirectly into
the application server, allowing transparent persistence for your entity beans.
VERSANT Enterprise Container istargeted at applications that have complex object
models and require high-performance access to persistent data.

eXcelon Javlin

EJB isthe standard for building scalable eBusiness applications, from eCommerce,
supply-chain, and customer-rel ationship management, to enterprise information and
application portals, and others.

EJB-compliant application serversfacilitate the creation, distribution, and integration
of eBusiness Javacomponentsin the middletier—but they do not do the samefor data.
In order to meet or exceed time to market and performance goals, you need a
middle-tier data manager like Javlin to complement your EJB server.

Object Design ObjectStore

ObjectStoreis an ideal data management solution for devel opers creating dynamic,
reliable, high-performance applications for telecommunications, packaged software,
the Internet and other distributed computing environments.

ObjectStore combines best-of-breed, object data management with Javaand C++, and
ActiveX to enable the development and delivery of high-speed, complex Web
transactions, dynamic content, and network management applications.

Preparing to Compile

Compiling Java programs for WebL ogic Server is the same as compiling any other
Java program. To compile successfully, you must:

m Have the Java compiler in your search path

2-10 Developing WebL ogic Server Applications

Preparing to Compile

m Set your classpath so that the Java compiler can find all of the dependent classes
m Specify the output directories for the compiled classes

One way to set up your environment isto create acommand file or shell script to set
variables in your environment, which you can then pass to the compiler. The

set Exanpl esEnv. cnd (Windows) and set Exanpl esEnv. sh (UNIX) filesin the
conf i g/ exanpl es directory are examples of this technique.

Putting the Java Tools in Your Search Path

Make sure the operating system can find the compiler and other JDK tools by adding
it to the PATH environment variable in your command shell. If you are using the JDK,,
the tools are in the bi n subdirectory of the JDK directory. To use an aternative
compiler, such asthesj compiler from WebGain Visual Café, add the directory
containing that compiler to your search path.

For example, if the IDK isinstalledin/ usr/ 1 ocal / j ava/ j aval30 on your UNIX
file system, use a command such as the following to add j avac to your pathin a
Bourne shell or shell script:

PATH=/ usr/ | ocal / j aval/ j aval30/ bi n: $PATH, export PATH

To add the WebGain sj compiler to your path on Windows NT or Windows 2000, use
a command such as the following in acommand shell or in acommand file:

PATH=c: \ Vi sual Caf e\ bi n; %°PATH%

If you are using an IDE, see the IDE documentation for help setting up an equivalent
search path.

Setting the Classpath for Compiling

Most WebL ogic services are based on J2EE standards and are accessed via standard
J2EE packages. The Sun, WebL ogic, and other Java classes required to compile
programs that use WebL ogic services are packaged in the webl ogi c. j ar fileinthe
l'i b directory of your WebL ogic Server installation. In addition towebl ogi c. j ar,
include the following in your compiler’s classpath:

Developing WebL ogic Server Applications 2-11

2 Deve oping WebL ogic Server Components

m Thelib/tools.jar fileinthe JDK directory, or other standard Java classes
required by the Java Development Kit you use.

m Thewebl ogi c_sp.jar filedistributed with a WebL ogic Server service pack, if
you have one.

Thisj ar file should precede webl ogi c. j ar inyour classpath so that the service
pack classes are found before any classes they supersedein webl ogi c. j ar .

m Classesfor third party Javatools or services your programs import.

m Other application classes referenced by the programs you are compiling.

Include in your classpath the target directories where the compiler writes the
classes you are compiling so that the compiler can locate al of the
interdependent classes in your application. The next section has more
information on target directories.

Setting Target Directories for Compiled Classes

2-12

The Java compiler writes class files in the same directory with the Java source unless
you specify an output directory for the compiled classes. If you specify the output
directory, the compiler storesthe classfile in adirectory structure that matches the
package name. Thisallowsyou to compile Javaclassesinto the correct locationsin the
staging directory you use to package your application. If you do not specify an output
directory, you have to move files around before you can create thej ar file that
contains your packaged component.

J2EE applications consist of modules assembled into an application and deployed on
one or more WebL ogic Servers or WebL ogic Clusters. Each module should have its
own staging directory so that it can be compiled, packaged, and deployed
independently from other modules. For example, you can package EJBsin a separate
module, Web components in a separate module, and other server-side classesin
another module.

Seetheset Exanpl esEnv scriptsintheconf i g/ exanpl es directory of theWebL ogic
Server distribution for an example of setting up target directoriesfor the compiler. The
scripts set the following variables:

Developing WebL ogic Server Applications

Preparing to Compile

CLI ENT_CLASSES
The directory where compiled client classes are written. These classes are
usually standal one Java programsthat connect to WebL ogic Server. They do
not have to be in the WebL ogic Server classpath.

SERVER_CLASSES
The directory where server-side classes are written. These classes include
startup classes and other Java classes that must be in the WebL ogic Server
classpath when the server starts up. Application classes should usually not be
compiled into this directory, because the classes in this directory cannot be
redeployed without restarting WebL ogic Server.

EX_VEBAPP_CLASSES
The directory where classes used by the Web Application are written.

APPLI CATI ONS
Theappl i cat i ons directory for the examples domain. Unlike the others,
thisvariable is not used to specify atarget for the Java compiler. It isused as
aconvenient reference to the appl i cat i ons directory in copy commands
that movefilesfrom sourcedirectoriesintotheappl i cat i ons directory. For
example, if you have. ht ml, . j sp, and imagefilesin your sourcetree, you
can use the variablein a copy command to install them in your devel opment
server.

These environment variables are passed to the compiler in commands such as the
following command for Windows:

javac -d YSERVER CLASSES% *. | ava

If you do not use an I DE, consider writing amake file, shell script, or command fileto
compile and package your components and applications. Set the variablesin the build
script so that you can rebuild components by typing a single command.

Developing WebL ogic Server Applications 2-13

2 Deve oping WebL ogic Server Components

2-14 Developing WebL ogic Server Applications

CHAPTER

3 Packaging and
Deploying WebLogic
Server Applications

The following sections describe how to package and deploy WebL ogic Server
applications:

Packaging Overview

Packaging Web Applications

Packaging Enterprise JavaBeans

Packaging Enterprise Applications

Resolving Class References Between Components
Deploying Applications and Components
Packaging and Deploying Client Applications

Packaging Overview

WebL ogic Server applications are packaged in a standard way, defined by the J2EE
specifications. J2EE defines component behaviorsand packaging in ageneric, portable
way, postponing run-time configuration until the component is actually deployed on
an application server.

Developing WebL ogic Server Applications 31

3 Packaging and Deploying WebLogic Server Applications

JAR Files

J2EE includes deployment specifications for Web applications, EJB modules,
Enterprise applications, and Client applications. J2EE does not specify how an
application is deployed on the target server—only how a standard component or
application is packaged.

For each component type, the specifications define the files required and their location
in the directory structure. Components and applications may include Java classes for
EJBs and servlets, Web pages and supporting files, XML-formatted deployment
descriptors, and JAR files containing other components.

An application that is ready to deploy on WebL ogic Server contains additional,
WebL ogic-specific deployment descriptors and, possibly, container classes generated
with the WebL ogic EJB, RMI, or JSP compilers.

A filecreated with the Javaj ar utility bundlesthefilesinadirectory into asingle Java
ARchive (JAR) file, maintaining the directory structure. The Java classloader can
search for Java class files (and other file types) in a JAR file the same way that it
searches adirectory inits classpath. Because the classloader can search adirectory or
aJAR file, you can deploy J2EE components on WebL ogic Server in either an
“exploded” directory or aJAR file.

JAR files are convenient for packaging components and applications for distribution.
They are easier to copy, they use up fewer file handlesthan an exploded directory, and
they can save disk space with file compression. If your Administration Server manages
adomain with multiple WebL ogic Servers, you can only deploy JAR files, becausethe
Administration Console does not copy expanded directories to managed servers.

Thej ar utility isin the bi n directory of your Java Development Kit. If you have
j avac inyour path, you also havej ar inyour path. Thej ar command syntax and
behavior is similar to the UNIX t ar command.

The most common usages of thej ar command are:

jar cf jar-file files ...
CreatesaJAR filenamedj ar-fi |l e containing listed files. If you include a
directory inthelist of files, all filesin that directory and its subdirectories are
added to the JAR file.

jar xf jar-file
Extract (unbundle) a JAR file in the current directory.

32 Developing WebL ogic Server Applications

Packaging Overview

jar tf jar-file
List (tell) the contents of a JAR file.

The first flag specifies the operation: create, extract, or list (t €ll). Thef flag must be
followed by aJAR file name. Without thef flag, j ar readsor writes JAR file contents
on st di n or st dout whichis usually not what you want. See the documentation for

the JDK utilities for more about j ar command options.

XML Deployment Descriptors

Components and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The J2EE specifications define standard,
portable deployment descriptors for J2EE components and applications. BEA defines
additional WebL ogic-specific deployment descriptors required to depl oy acomponent
or application in the WebL ogic Server environment.

Table 3-1 lists the types of components and applications and their J2EE-standard and
WebL ogic-specific deployment descriptors.

Table 3-1 J2EE and WebL ogic Deployment Descriptors

Component or Scope Deployment Descriptors
Application
Web Application J2EE VEEB- | NF/ web. xni

WebLogic WEB- | NF/ webl ogi c. xm

Enterprise Bean J2EE META- | NF/ e b-j ar. xm

WebLogic META-1 NF/ webl ogi c-ej b-j ar. xm
META- | NF/ webl ogi c- cnp-rdbms-j ar. xmi

Enterprise JPEE META- | NF/ appl i cati on. xm
Application

Client JEE META- | NF/ appl i cati on. xm
Application client-application-runtine.xmn

Developing WebL ogic Server Applications 33

3 Packaging and Deploying WebLogic Server Applications

When you package a component or application, you create a directories to hold the
deployment descriptors—WEB- | NF or META- | NF—and then create the required XML
deployment descriptorsin that directory.

If you receive a J2EE-compliant JAR file from a developer, it already contains
J2EE-defined deployment descriptors. To deploy the JAR file on WebL ogic Server,
you must extract the contents of the JAR file into a directory, add the required

WebL ogic-specific deployment descriptors and any generated container classes, and
then create a new JAR file containing the old and new files.

Packaging Web Applications

To stage and package a Web application:

1
2.

Create atemporary staging directory.

Copy all of your HTML files, JSP files, images, and any other files that these
Web pages reference into the staging directory, maintaining the directory
structure for referenced files. For example, if an HTML file has atag such as
<inmg src="inmages/pic.gif">, thepic.gif filemust beinthei nages
subdirectory beneath the HTML file.

Create META- | NF and VEB- | NF/ ¢l asses subdirectoriesin the staging directory
to hold deployment descriptors and compiled Java classes.

Copy or compile any servlet classes and helper classesinto the
VEB- | NF/ cl asses subdirectory.

Copy the home and remote interface classes for enterprise beans used by the
servletsinto the WVEB- | NF/ ¢l asses subdirectory.

Note: See*Classloader Overview” on page 3-8 to understand how the WebL ogic
Server class-loading mechanism affects EJB references from servlets
within the same application.

Copy JSP tag libraries into the WVEB- | NF subdirectory. (Tag libraries may be
installed in a subdirectory beneath WEB- | NF; the pathtothe. t | d fileis coded in
the. j sp file)

34 Developing WebL ogic Server Applications

Packaging Enterprise JavaBeans

7.

Createweb. xmi and webl ogi c. xm deployment descriptors in the WVEB- | NF
subdirectory.

Note: See“Writing Web Application Deployment Descriptors’ on page 5-1 for
help creating deployment descriptors for Web applications.

Bundle the staging directory into a. war file by executingaj ar command such
asthe following:
jar cvf nyapp.war -C staging-dir .

Theresulting . war file can be added to an Enterprise application (. ear file) or
deployed independently using the Administration Console or the
webl ogi c. depl oy command-line utility.

Packaging Enterprise JavaBeans

Y ou can stage one or more enterprise beansin adirectory and package themin an EJB
JAR file.

To stage and package an enterprise bean:

1

2
3.
4

Create atemporary staging directory.

. Compile or copy the bean’s Java classes into the staging directory.

Create a META- | NF subdirectory in the staging directory.

. Createan ej b-j ar. xn deployment descriptor in the META- | NF subdirectory

and add entries for the bean.

Create awebl ogi c- ej b-j ar. xml deployment descriptor in the META- | NF
subdirectory and add entries for the bean.

If the bean is an entity bean with container-managed persistence, create a
webl ogi c- r doms- cnp- j ar —bean_nare. xmi deployment descriptor in the
META- | NF directory with entries for the bean. Map the bean to this CMP
deployment descriptor with a<t ype- st or age> attribute in the

webl ogi c-ej b-j ar. xm file.

Developing WebL ogic Server Applications 35

3 Packaging and Deploying WebLogic Server Applications

Note: See“Programming WebLogic EJB” at
http://e-docs.bea.com/wls/docs60/ejb/index.html for help compiling
enterprise beans and creating EJB deployment descriptors.

7. When al of the enterprise bean classes and deployment descriptors are set up in
the staging directory, you can create the EJB JAR filewith aj ar command such
as.

jar cvf jar-file.jar -C staging-dir .

This command creates aj ar file that you can deploy on a WebL ogic Server or
package in an application JAR file.

The - Cst agi ng-di r option instructsthej ar command to change to the
st agi ng-di r directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the enterprise beans.

Enterprise beans require container classes, classes the WebL ogic EJB compiler
generates to allow the bean to deploy in a WebL ogic Server. The WeblL ogic EJB
compiler reads the deployment descriptorsin the EJB JAR file to determine how to
generate the classes. Y ou can run the WebL ogic EJB compiler on the JAR file before
you deploy the beans, or you can let WebL ogic Server run the compiler for you at
deployment time. See Programming WebLogic EJB at
http://e-docs.bea.com/wls/docs60/ejb/index.html for help with the WebL ogic EJB
compiler.

Packaging Enterprise Applications

An Enterprise archive contains EJB and Web modules that are part of arelated
application. The EJB and Web modules are bundled together in another JAR file with
an . ear extension.

The META- | NF subdirectory inan . ear file containsan appl i cati on. xni
deployment descriptor, which identifies the modules packaged in the . ear file. You
can find the DTD for theappl i cati on. xni fileat

http://java. sun. com j 2ee/ dtds/ application_1 2.dtd.No

WebL ogic-specific deployment descriptor is needed for an enterprise archive.

Hereistheappl i cati on. xnl file from the Pet Store example:

36 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/ejb/index.html
http://java.sun.com/j2ee/dtds/application_1_2.dtd

Packaging Enterprise Applications

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE application PUBLIC '-//Sun M crosystens, Inc.//DTD
J2EE Application 1.2//EN
"http://java. sun.confj2ee/ dtds/application_1_2.dtd" >

<application>
<di spl ay- name>est or e</ di spl ay- nane>
<descri pti on>Application description</description>
<nmodul e>
<web>
<web- uri >pet St or e. war </ web-uri >
<cont ext - r oot >est or e</ cont ext - r oot >
</ web>
</ modul e>
<nmodul e>
<ej b>pet Store_EJB. jar</ ej b>
</ modul e>
<security-rol e>
<description>the gold custoner rol e</description>
<rol e- nanme>gol d_cust oner </ rol e- nane>
</ security-rol e>
<security-rol e>
<description>the customer rol e</description>
<r ol e- nane>cust oner </ r ol e- nane>
</ security-rol e>
</ appl i cation>

To stage and package an Enterprise application:
1. Create atemporary staging directory.

2. Copy the Web archives (. war files) and EJB archives (. j ar files) into the
staging directory.

3. Create a META- | NF subdirectory in the staging directory.

4. Createtheappl i cation. xm deployment descriptor in the VETA- | NF
subdirectory.

5. Create the Enterprise Archive (. ear file) for the application, using aj ar
command such as:

jar cvf application.ear -C staging-dir .

Theresulting . ear file can be deployed using the Administration Console or the
webl ogi c. depl oy command-line utility.

Developing WebL ogic Server Applications 37

3 Packaging and Deploying WebLogic Server Applications

Resolving Class References Between
Components

Y our applications may use many different Java classes, including enterprise beans,
servletsand JavaServer Pages, startup classes, utility classes, and third-party packages.
WebL ogic Server deploys applications in separate classloaders to maintain
independence and to facilitate dynamic redeployment and undeployment. Because of
this, you need to package your application classes in such away that each component
has access to the classes it depends on. In some cases, you may have to include a set
of classes in more than one application or component. This section describes how
WebL ogic Server uses multiple classloaders so that you can stage your applications
successfully.

Classloader Overview

3-8

A classloader is a Java class that locates and |oads a requested class into the Java
virtual machine (JVM). A classloader resolves references by searching for filesin the
directoriesor JAR fileslisted in its classpath. Most Java programs have asingle
classloader, the default system classl oader created when the VM starts up. WebL ogic
Server creates additional classloaders when it deploys applications because these
classloaders can be destroyed in order to undeploy the application. This allows

WebL ogic Server to redeploy modified applications without having to restart the
server.

Classloaders are hierarchical. When you start WebL ogic Server, the Java system
classloader is active and is the parent of all subsequent classloaders that WebL ogic
Server creates. A classloader always asksiits parent for a class before it searches its
own classpath, but a parent classloader does not consult its children. Because the
search only proceeds upwardsin the classloader hierarchy, thisaso meansthat achild
classloader cannot locate classes on asibling’ s classpath.

The search protocol also clarifies how duplicate classes are handled in Java. Classes
located in the Java system classpath always have precedence over any class with the
samenamein achild classloader’ s classpath. Because of this, you should avoid placing

Developing WebL ogic Server Applications

Resolving Class References Between Components

application classesin the Java system classpath before you start WebL ogic Server. The
classloader created at startup time cannot be destroyed, so any classesit contains
cannot be redeployed without restarting WebL ogic Server.

About Application Classloaders

When WebL ogic Server deploys an application, it creates two new classloaders: one
for EJBs and one for Web applications. The EJB classloader is achild of the Java
system classloader and the Web application classloader is achild of the EJB
classloader. This allows classesin a Web application to locate EJB classes, but EJB
classes cannot locate Web application classes. A positive side-effect of this classl oader
hierarchy isthat it allows servlets and JSPs direct access to EJB implementation
classes. WebL ogic Server can bypass the intermediate RMI classes because the EJB
client and implementation are in the same JVM.

If your application includes servlets and JSPs that use enterprise beans:
m Package the servletsand JSPsina. war file

m Package the enterprisebeansinan EJB . j ar file

m Packagethe.war and.j ar filesinan. ear file

m Deploy the. ear file

Although you could deploy the . war and . j ar files separately, deploying them
together inan. ear file producesaclassloader arrangement that allowsthe servletsand
JSPsto find the EJB classes. If you deploy the . war and . ej b files separately,
WebL ogic Server creates sibling classloaders for them. Y ou must include the EJB
home and remote interfacesin the . war file, and WebL ogic Server must use the RMI
stub and skeleton classes for EJB calls, just asit does when EJB clients and
implementation classes are in different JVMs.

Developing WebL ogic Server Applications 39

3 Packaging and Deploying WebLogic Server Applications

Packaging Common Utilities and Third-Party Classes

If you create or acquire utility classes that you will use in more than one application,
you must package them with each application. Alternatively, you could add them to
the Java system classpath by editing the j ava command in the script that runs

WebL ogic Server. If you modify your utility classes and they are in the Java system
classpath, however, you will have to restart WebL ogic Server.

Classesthat WebL ogic Server uses during startup must bein the Java system classpath.
For example, JDBC drivers used for connection pools must be in the classpath when
you start WebL ogic Server. Again, if you need to modify classes in the Java system
classpath, or modify the classpath itself, you will have to restart WebL ogic Server.

Handling Interactions Between Startup Classes and
Applications

3-10

Startup classes are classes you create that Webl ogic Server executes at startup time.
Startup classes are located by the Java system classpath, so you must put them in the
system classpath before you start the server. Also, any classes they require must be
included in the system classpath.

If astartup class uses application classes (such as EJB interfaces) you will also haveto
add those classes to the WebL ogic Server startup classpath. Unfortunately, this means
that you cannot modify those classes without restarting the server.

Startup classes that use application objects must wait for WebL ogic Server to finish
deploying the applications before they attempt to access the application objects. For
example, if astartup class uses EJBs, you must include the home and remoteinterfaces
in the system classpath, and you must ensure that the startup class does not create any
EJB instances until WebL ogic Server has finished deploying the EJB application.

The Pet Store application has a startup class that demonstrates one method a startup
class can use to wait for applications to finish deploying. The

com bea. estore. startup. StartBrowser startup classdisplaystheinitial URL to
accessthe Pet Store application, and on Windowsit al so launches the browser with the
URL. St art Br owser executesawhi | e loop until applications have deployed and the
server begins accepting connection requests.

Developing WebL ogic Server Applications

Deploying Applications and Components

Hereis an excerpt from that class to show how this works:

while (loop) {

try {
socket = new Socket (host, new Integer(port).intValue());

socket. cl ose();

//1aunch browser
String[] cndArray = new String[3];

cmdArray[0] = "beaexec. exe";

cmdArray[1] = "-target: browser";

cmdArray[2] = "-command:\"http://"+host+":"+port+"\"";
try {

Process p = Runtine.getRuntime().exec(cndArray);
p. get I nput Strean().cl ose();

p. get Qut put Strean() . cl ose();

p.get ErrorStream().cl ose();

}
catch (I Oexception ioe) {
}

| oop = fal se;
} catch (Exception e) {

try {
Thread. sl eep(SLEEPTIME); // try every 500 ms

} catch (InterruptedException ie) {}
finally {

try {
socket . cl ose();

} catch (Exception se) {}

}
}
}

If the system fails to create a socket, or if the BEA-supplied beaexec. exe utility
returns an error, the class sleeps for 500 milliseconds before repeating the loop. If a
startup class needs to create an EJB instance, it could use asimilar technique by
looping until the EJB create method succeeds.

Deploying Applications and Components

Y ou can deploy an EJB JAR, Web application, or Enterprise application by using the
Administration Console or thewebl ogi ¢. depl oy command-lineutility. Y ou can also
use either method to undeploy or redeploy an updated application.

Developing WebL ogic Server Applications 3-11

Packaging and Deploying WebLogic Server Applications

The.jar,.ear,or.war file must be correctly structured and contain all of the
necessary deployment descriptors described in previous sections.

Note: If you have asingle WebL ogic Server, you can deploy applications and

components by copying them to the server'sappl i cat i ons subdirectory. In
this case, files do not need to be packaged in JAR files. The ability to refresh
individual filesinthe appl i cat i ons directory isuseful for testing during
development. However, using JAR files is recommended for production
applications.

Using the Administration Console

To deploy an application using the Administration Console;

1

2
3.
4

9.

Start the Administration Console.

. Intheleft pane, expand Deployments.

Under Deployments, click Applications.

. Intheright pane, click Browse, and find the . ear, . j ar, or . war file containing

the component or application you want to install.

Click Upload.

This copies the file to the Administration Server’'sappl i cat i ons directory.

Expand the new application under the Applications node to reveal the
components.

For each of the componentsin the application, click the component name in the
left pane, then complete the information on the Configuration and Targets tabsin
the right pane. Consult the online help to find details about the values on these
tabs.

Click on the application name under the Applications node, and check the
Deployed check box in the right pane.

Click Apply.

Depending on your choices, you may need to restart WebL ogic Server. The
Administration Console displays a restart message in the right pane.

3-12 Developing WebL ogic Server Applications

Packaging and Deploying Client Applications

Using the weblogic.deploy Command-Line Utility

Thewebl ogi c. depl oy command-line utility allowsyou to deploy, undeploy, update,
and list components on an Administration Server—tasks you can accomplish
interactively using the Administration Console. The webl ogi c. depl oy command
line utility can be used in scripts, which is especially useful during devel opment.

See the documentation for webl ogi c. depl oy in the Administration Guide for syntax
and usage for this command line-utility.

Packaging and Deploying Client
Applications

WebL ogic Server applications written in Javarun in aJVM on aclient machine. The
client VM must be able to locate the Java classes you create for your application and
any Java classes your application depends upon, including WebL ogic Server classes.
Thisusually meansdistributing thewebl ogi c_sp. j ar andwebl ogi c. j ar filestothe
client and adding them to the client’s classpath.

Y ou may also want to package a Java Runtime Environment (JRE) with a Java client
application.

Y ou can stage aclient application by copying all of the filesrequired on the client into
adirectory and bundling the directory upina. zi p file, or a. j ar fileif you know that
clients have already installed a Java environment with thej ar utility.

Thetop level of the client application directory can have a batch file or script to start
the application. Makeac! asses subdirectory to hold Javaclassesand . j ar files, and
add them to the client’ s classpath in the startup script.

Developing WebL ogic Server Applications 3-13

http://e-docs.bea.com/wls/docs60/adminguide/utils.html#deploy
http://e-docs.bea.com/wls/docs60/adminguide/utils.html#deploy

3 Packaging and Deploying WebLogic Server Applications

J2EE Client

314

Although not required for WebL ogic Server applications, J2EE includes a standard for
deploying client applications. A J2EE Client application moduleispackagedina. j ar
file. The.j ar file contains the Java classes that execute in the client VM and
deployment descriptors that describe Enterprise JavaBeans and other WebL ogic
resources used by the client.

A standard deployment descriptor from Sun is used for J2EE clients and a
supplemental deployment descriptor contains additional WebL ogic-specific
deployment information.

See “Client Application Deployment Descriptor Elements’ on page C-1 for help with
these deployment descriptors.

Ontheclient, thewebl ogi c. Cl i ent Depl oyer utility starts a J2EE client application
on the client machine. This class is executed on the Java command line with the
following syntax:

java webl ogic. ClientDeployer ear-file client

Theear-fil e argument isan expanded directory, or Java archive file with an . ear
extension, that contains one or more Client application . j ar files.

For example:
java appclient.dientDeployer app.ear client

Inthisexample, the app. ear fileisaJAR filethat containsa J2EE client packaged in
theclient.jar JARfile

Developing WebL ogic Server Applications

CHAPTER

4 Programming Topics

The following sections contai ns information about programming in the WebL ogic
Server environment, including descriptions of useful WebL ogic Server facilities and
advice about using various programming techniques:

m L ogging Messages
m Using Threads in WebL ogic Server
m Using JavaMail with WebL ogic Server Applications

Logging Messages

Each WebL ogic Server instance has alog file that contains messages generated from
that server. Y our applications can write messages to the log file using
internationalization services that access |ocalized message catalogs. If localization is
not required, you can usethewebl ogi c. | oggi ng. NonCat al ogLogger classtowrite
messagesto thelog. This class can also be usein client applicationsto write messages
inaclient-side log file.

This section describes how to use the NonCat al oglLogger class. Seethe
Internationalization Guide at http://e-docs.bea.com/wls/docs60/i 18n/index.html for
details on using the internationalization interface.

Developing WebL ogic Server Applications 4-1

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/logging/NonCatalogLogger.html
http://e-docs.bea.com/wls/docs60/i18n/index.html

4 Programming Topics

Thelog file name, location, and other properties can be administered in the
Administration Console. Log messages written viathe NonCat al ogLogger class
contain the following information.

Table4-1 L og Message For mat

Property Description

Localized Timestamp Date and time when message originated, including the year, month, day of month,
hours, minutes and seconds.

millisecondsFromEpoch The origination time of the message, in milliseconds since the epoch.

ServerName, Theorigin of the message. Transactionld is present only for messages |ogged within
MachineName, the context of a transaction.
Threadld, Transactionld

User Id User on behalf of whom the system was executing when the error was reported.

Subsystem Source of the message, for example EJB, IMS, or RMI. A user application supplies
a Subsystem String in the NonCat al ogLogger constructor.

Message Id A unique six-digit identifier for the message. All message I1Ds through 499000 are
reserved for WebL ogic Server.

4-2 Developing WebL ogic Server Applications

Logging Messages

Table 4-1 Log Message Format

Property

Description

Severity

One of the following severity values:

Debug Should be output only when the server/applicationis configured
in adebug mode. May contain detailed information about
operations or the state of the server/application.

Informational Used to log normal operations for later examination.

Warning A suspicious operation, event, or configuration that does not
affect the normal operation of the server/application.

Error A user level error. The system/application can handle the error
with no interruption and with limited degradation in service.

In addition to the above, some severity levels are reserved for WebL ogic Server

messages:

Notice A warning message. A suspicious operation or configuration
that does not affect the normal operation of the server.

Critical A system/service level error. The systemis able to recover,
perhaps with a momentary loss or permanent degradation of
service.

Alert A particular serviceisin an unusable state. Other parts of the
system continueto function. Automatic recovery isnot possible
and the immediate attention of the administrator is required to
resolve the problem.

Emergency The server isin an unusable state. Thisis used to designate

severe system failures or panics.

ExceptionName

If the messageislogging an Exception, thisfield contains the name of the Exception.

Message text

For WebL ogic Server messages, this field contains the “ short description” of the
message defined in the system message catal og.

To use NonCat al ogLogger , import thewebl ogi c. | oggi ng. NonCat al ogLogger
class and call the constructor with a subsystem String. Here is an example using the
subsystem name “MyApp”:

Developing WebL ogic Server Applications 4-3

4 Programming Topics

i mport webl ogi c. | oggi ng. NonCat al ogLogger ;
NonCat al ogLogger nyl ogger = new NonCat al ogLogger (" MyApp") ;

NonCat al ogLogger providesthe methodsdebug(),info(),warn(),anderror(),
which write messages with Debug, Informational, Warning, and Error severities,
respectively. Each method has two signatures, one that takes a String message
argument, and another that takes a String message and aj ava. | ang. Thr owabl e
argument. If you use the latter form, the log message includes a stack trace.

Hereisan example of writing an informational message, without stack trace, to thelog:

nmyl ogger.info("M/App initialized.");

If you are using NonCat al ogLogger inaJavaclient, you specify the name of the log
file on thej ava command line, using the webl ogi c. | og. Fi | eName Java system
property. For example:

java -Dwebl ogi c. | og. Fi | eName=nyapp. | og nyapp

If you have special processing requirements for some log messages, you can add your
own message handlers.Y our message handler provides afilter to select the messages
itisinterested in processing. For each log message, the WebL ogic Server logging
infrastructure raises a JMX notification, which is delivered to the registered message
handlers with filters that match the message.

Seewebl ogi c. management . | oggi ng. WebLogi cLogNot i fi cat i on information
about using this IMX feature.

Using Threads in WebLogic Server

4-4

WebL ogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the
components it hosts. To obtain the greatest advantage from WebL ogic Server’s
architecture you should construct your applicationsfrom components created using the
standard J2EE APIs.

It is advisable to avoid application designs that require creating new threadsin
server-side components for several reasons:

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/management/logging/WebLogicLogNotification.html

Using Threads in WebLogic Server

m Applications that create their own threads do not scale well. Threadsin the VM
are alimited resource that must be allocated thoughtfully. Your applications may
break or cause WebL ogic Server to thrash when the server |oad increases.
Problems such as deadlocks and thread starvation may not appear until the
application is under a heavy load.

m Multithreaded components are complex and difficult to debug. Interactions
between application-generated threads and WebL ogic Server threads are
especialy difficult to anticipate and analyze.

There are some situations where creating threads may be appropriate, in spite of these
warnings. For example, an application that searches several repositories and returns a
combined result set can return results sooner if the searches are done asynchronously
using anew thread for each repository instead of synchronously using the main client
thread.

If you decide you must use threads in your application code, your should create a pool
of threads so that you can control the number of threads your application creates. Like
a JDBC connection pool, you allocate a given number of threads to a pool, and then
obtain an available thread from the pool for your runnable class. If al threadsin the
pool arein use, wait until oneisreturned. A thread pool can help avoid performance
issuesand will also allow you to optimize the allocation of threads between WebL ogic
Server execution threads and your application.

Be sure you understand where your threads can deadlock and handle the deadlocks
when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

To avoid undesireabl e interactions with WebL ogic Server threads, do not let your
threads call into WebL ogic Server components. For example, do not use enterprise
beans or servlets from threads that you create. Application threads are best used for
independent, isolated tasks, such as conversing with an external servicewith aTCP/IP
connection or, with proper locking, reading or writing to files. A short-lived thread that
accomplishes asingle purpose and ends (or returnsto the thread pool) islesslikely to
interfere with other threads.

Be sureto test multithreaded code under increasingly heavy loads, adding clientseven
to the point of failure. Observe the application performance and WebL ogic Server
behavior and then add checks to prevent failures from occuring in production.

Developing WebL ogic Server Applications 4-5

4 Programming Topics

Using JavaMail with WebLogic Server
Applications

WebL ogic Server includes the JavaMail API version 1.1.3 reference implementation
from Sun Microsystems. Using the JavaMail API, you can add email capabilitiesto
your WebL ogic Server applications. JavaMail provides access from Java applications
to IMAP- and SMTP-capable mail servers on your network or the Internet. It does not
provide mail server functionality; so you must have accessto amail server to use
JavaMail.

Compl ete documentation for using the JavaMail API isavailable onthe JavaMail page
on the Sun Web site at http://java.sun.com/products/javamail/index.html. This section
describes how you can use JavaMail in the WebL ogic Server environment.

Thewebl ogi c.j ar \filecontainsthej avax. mai | andj avax. mai | . i nt er net
packages from Sun. webl ogi c. j ar also contains the the Java Activation Framework
(JAF) package, which JavaMail requires.

Thej avax. mai | package includes providers for IMAP and SMTP mail servers. Sun
has a separate POP3 provider for JavaMail, which is not included in webl ogi c. j ar .
Y ou can download the POP3 provider from Sun and add it to the WebL ogic Server
classpath if you want to useit.

About JavaMail Configuration Files

4-6

JavaMail depends on configuration files that define the mail transport capabilities of
the system. Thewebl ogi c. j ar file contains the standard configuration files from
Sun, which enable IMAP and SMTP mail serversfor JavaMail and define the default
message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, you should download JavaMail from Sun and follow Sun’s
instructions for adding your extensions. Then add your extended JavaMail packagein
the WebL ogic Server classpath in front of webl ogi c. j ar .

Developing WebL ogic Server Applications

http://java.sun.com/products/javamail/index.html

Using JavaMail with WebL ogic Server Applications

Configuring JavaMail for WebLogic Server

To configure JavaMail for use in WebL ogic Server, you create aMail Session in the
WebL ogic Server Administration Console. This allows server-side components and
applications to access JavaMail services with INDI, using Session properties you
preconfigure for them. For example, by creating aMail Session, you can designate the
mail hosts, transport and store protocols, and the default mail user in the
Administration Console so that components that use JavaMail do not haveto set these
properties. Applications that are heavy email users benefit because WebL ogic Server
creates a single Session object and makesit available via JNDI to any component that
needsiit.

1. Inthe Administration Console, click on the Mail node in the left pane of the
Administration Console.

2. Click Create aNew Mail Session.

3. Complete the form in the right pane, as follows:
e Inthe Namefield, enter a name for the new session.

e Inthe INDINamefield, enter aJNDI lookup name. Your code uses this
string to look up thej avax. mai | . Sessi on object.

e InthePropertiesfield, enter properties to configure the Session. The property
names are specified in the JavaMail APl Design Specification. JavaMail
provides default values for each property, and you can override the valuesin
the application code. The following table lists the properties you can set in
thisfield.

Table 4-2 Mail Session Properties Field

Property Description Default

mai | . store. protocol The protocol to use to retrieve email. The bundled JavaMail library
Example: has support for IMAP.
mai | . st ore. protocol =i map

mai | . transport. protocol Theprotocol to useto send email. The bundled JavaMail library
Example: has support for SMTP.

mai | . transport. protocol =snt p

Developing WebL ogic Server Applications 4-7

4 Programming Topics

Table 4-2 Mail Session Properties Field

Property Description Default

mai | . host The name of the mail host machine. The default isthelocal
Example: machine.
mai | . host =nmi | server

mai | . user The name of the default user for retrieving The default is the value of the

email.
Example:

mai | . user =post mast er

user . nane Javasystem
property.

mai | . protocol . host

The mail host for a specific protocol. For
example, you can set mail. SMTP.host and
mail.IMAP.host to different machine
names.

Examples:

mai | . snt p. host =nmi | . mydom com
mai | . i map. host =l ocal host

The value of the mail.host
property.

mai | . protocol . user

The protocol-specific default user name
for logging into a mailer server.

Examples:

mai | . snt p. user =webl ogi c

The value of the mail.user
property.

mai | . i map. user =appuser

mai | . from The default return address. username@host
Examples:
mai | . fromenast er @rydom com

mai | . debug Set to true to enable JavaMail debug false

output.

You can override any properties set in the Mail Session in your code by
creating aPr operti es object containing the properties you want to override.
Then, after you lookup the Mail Session abject in JNDI, call the

Sessi on. get I nst ance() method with your Properti es to get a
customized Session.

4-8 Developing WebL ogic Server Applications

Using JavaMail with WebL ogic Server Applications

Sending Messages with JavaMail

Here are the steps to send a message with JavaMail from within a WebL ogic Server
component:

1

Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will
alsoneedtoimport j ava. util . Properties:

import java.util.*;

i mport javax.activation.*;

i mport javax. mail.*;

import javax.mail.internet.*;
i mport javax.nam ng.*;

Look up the Mail Sessionin JNDI:

Initial Context ic = new Initial Context();
Sessi on session = (Session) ic.lookup("nyMil Session");

If you need to override the properties you set for the Session in the
Administration Console, create aPr operti es object and add the properties you
want to override. Then call get | nst ance() to get anew Session object with the
new properties.

Properties props = new Properties();

props. put("mail.transport.protocol”, "sntp");

props. put("mail.sntp.host", "mailhost");

/1 use nmil address from HTM. formfor from address
props.put("nail.fronf', ennil Address);

Sessi on session2 = session. getlnstance(props);

Construct aM neMessage. In the following example, t o, subject, and
messageTxt are String variables containing input from the user.

Message nmsg = new M nmeMessage(session2);
nsg. set From() ;
nsg. set Reci pi ent s(Message. Reci pi ent Type. TO,
I nt er net Addr ess. parse(to, false));
neg. set Subj ect (subj ect);
nsg. set Sent Dat e(new Date());
/1 Content is stored in a MM nulti-part nessage
/1 with one body part
M nmeBodyPart nbp = new M neBodyPart () ;
nbp. set Text (nessageTxt) ;

Miltipart mp = new MnmeMiul tipart();
np. addBodyPart (mbp) ;

Developing WebL ogic Server Applications 4-9

Programming Topics

5. Send the message.

Transport. send(nsg);

The INDI lookup can throw a Nani ngExcept i on on failure. JavaMail can throw a
Messagi ngExcept i on if there are problems locating transport classes or if
communications with the mail host fails. Be sure to put your code in atry block and
catch these exceptions and handle them.

Reading Messages with JavaMail

4-10

The JavaMail API allows you to connect to a message store, which could bean IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders
are stored on the mail server, including folders that contain incoming messages and
foldersthat contain archived messages. With POP3, the server provides afolder that
stores messages as they arrive. When a client connects to a POP3 server, it retrieves
the messages and transfers them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain
messages or other folders. The default folder is at the top of the structure. The special
folder name INBOX refersto the primary folder for the user, and is within the default
folder. To read incoming mail, you get the default folder from the store, and then get
the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified
message number or range of message numbers, or pre-fetching specific parts of
messages into the folder’ s cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within aWebL ogic
Server component:

1. Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will
alsoneedtoimport j ava. util . Properties:

import java.util.*;

i mport javax.activation.*;

i mport javax.mail.*;

import javax.mail.internet.*;
i mport javax.nam ng.*;

2. Look up the Mail Session in JNDI:

Developing WebL ogic Server Applications

Using JavaMail with WebL ogic Server Applications

Initial Context ic = new Initial Context();
Sessi on session = (Session) ic.lookup("nyMil Session");

3. If you need to override the properties you set for the Session in the
Administration Console, create aPr opert i es object and add the properties you
want to override. Then call get | nst ance() to get anew Session object with the
new properties:

Properties props = new Properties();

props. put ("mail.store.protocol”, "pop3");
props. put ("mail . pop3. host", "mail host");

Sessi on sessi on2 = session. getlnstance(props);

4. Get astor e object from the Session and call itsconnect () method to connect
to the mail server. To authenticate the connection, you need to supply the
mailhost, username, and password in the connect method:

Store store = session.getStore();
store. connect (nai |l host, usernane, password);

5. Get the default folder, then use it to get the INBOX folder:

Fol der fol der = store. getDefaultFol der();
fol der = fol der. get Fol der ("1 NBOX");

6. Read the messagesin the folder into an array of Messages:

Message[] nessages = fol der. get Messages();

7. Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement afull-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage amessage store
viaWebL ogic Server, possibly using a database or file system to represent folders.

Developing WebL ogic Server Applications 4-11

4 Programming Topics

4-12 Developing WebL ogic Server Applications

Overview of Web Application Deployment Descriptors

5 Writing Web
Application
Deployment
Descriptors

The following sections describe how to writeWeb Application deployment
descriptors:

m Overview of Web Application Deployment Descriptors
m Writing the web.xml Deployment Descriptor

m Writing the WebL ogic-Specific Deployment Descriptor (weblogic.xml)

Overview of Web Application Deployment
Descriptors

Deploying Web Applications requires you to create two deployment descriptors for
each Web Application. These deployment descriptors define components and
operating parametersfor aWeb A pplication. Deployment descriptorsare standard text

Developing WebL ogic Server Applications 51

5 writi ng Web Application Deployment Descriptors

files, formatted using XML notation and are packaged within the Web Application.
For more information on Web Applications, see Deploying and Configuring Web
Applications at http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html.

The first deployment descriptor, web. xni is defined by the Servlet 2.2 specification
from Sun Microsystems. This deployment descriptor can be used to deploy a Web
Application on any J2EE-compliant application server.

The second deployment descriptor, webl ogi c. xn , defines deployment properties
that are specific to aWeb Application running on WebL ogic Server.

Writing the web.xml Deployment Descriptor

This section describes the steps to create theweb. xni deployment descriptor.
Depending on the components in your Web Application, you may not need to include
all of the elements listed here to configure and deploy your Web Application.

The elementsintheweb. xm file must be entered in the order they are presented in
this document.

Main Steps to Create the web.xml File

Step 1: Create a deployment descriptor file on page 5-3
Step 2: Create the header on page 5-3

Step 3: Create the main body of the web.xml file on page 5-4
Step 4: Define depl oyment-time attributes on page 5-4
Step 5: Define context parameters on page 5-5

Step 6: Deploy servlets on page 5-6

Step 7: Map aservlet to a URL on page 5-8

Step 8: Define the session timeout value on page 5-9
Step 9: Define welcome pages on page 5-9

Step 10: Define error pages on page 5-10

Step 11: Define MIME mapping on page 5-10

Step 12: Define a JSP tag library descriptor on page 5-11
Step 13: Reference external resources on page 5-12

Step 14: Set up security constraints on page 5-12

5-2 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html

Writing the web.xml Deployment Descriptor

Step 15: Set up login authentication on page 5-14

Step 16: Define security roles on page 5-16

Step 17: Set environment entries on page 5-16

Step 18: Reference Enterprise JavaBean (EJB) resources on page 5-17

If you have installed the WebL ogic Server samples and examples, you can look at the
web. xm and webl ogi c. xm filesin the Pet Store sample to see aworking example
of Web Application deployment descriptors. These files are located in the

/ sanpl es/ Pet St or e/ sour ce/ dd/ war / WEB- | NF directory of your WebL ogic
Server distribution.

Detailed Steps to Create the web.xml File

Step 1: Create a deployment descriptor file

Namethefileweb. xm and place it under the VEB- | NF directory of the Web
Application. Use any text editor.

Step 2: Create the header

This text must be the first line of thefile:

<! DOCTYPE web-app PUBLIC
"-//Sun Mcrosystens, Inc.//DTD Wb Application 2.2//EN
"http://java. sun. com j 2ee/ dt ds/ web-app_2_2. dtd" >

The header refersto the location and version of the Document Type Descriptor (DTD)
filefor the deployment descriptor. Although this header references an external URL at
j ava. sun. com WebL ogic Server containsits own copy of the DTD file, so your host
server need not have access to the Internet. However, you must still include this

<! DOCTYPE. . . > elementinyour web. xm file, and haveit referencethe external URL
becausetheversion of the DTD contained in thiselement isused to identify theversion
of this deployment descriptor.

Developing WebL ogic Server Applications 5-3

5 writi ng Web Application Deployment Descriptors

Step 3: Create the main body of the web.xml file

Wrap al of your entries within a pair of opening and closing <web- app> tags.

<web- app> Thistag should be the

All elements describing this Web Application go within final tagin the
the <web- app> element. web. xm file

</ web- app>

In XML, properties are defined by surrounding a property name or value with opening
and closing tags as shown above. The opening tag, the body (the property name or
value), and the closing tag are collectively called an element. Some elements do not
use the surrounding tags, but instead use a single tag that contains attributes called an
empty-tag. Elements contained within other elements are indented in this text for
clarity. Indenting is not necessary in an XML file.

The body of the <web- app> element itself contains additional elementsthat determine
how the Web Application will run on WebL ogic Server. The order of the tag elements
within the file must follow the order reflected in this document. This ordering is
defined in the Document Type Descriptor (DTD) file. For more information, refer to
the DTD, available on the Sun Microsystems Web site at
http://java.sun.com/j2ee/dtds/web-app 2 2.dtd.

Step 4: Define deployment-time attributes

These tags provide information for the deployment tools or the application server
resource management tools. These values are not used by WebL ogic Server in this

release.

<snal | -i con> (Optional)
iconfile.gif(jpg)

</smal | -i con>

<l arge-icon> (Optional)

i confile.gif(jpg)
</l arge-icon>

<di spl ay- nane> (Optional)
appl i cati on- nanme
</ di spl ay- nane>

54 Developing WebL ogic Server Applications

http://java.sun.com/j2ee/dtds/web-app_2_2.dtd

Writing the web.xml Deployment Descriptor

<descri pti on> (Optional)
descriptive-text
</ descri ption>

<di stri but abl e> (Optional)

Step 5: Define context parameters

The cont ext - par amelement declares aWeb Application’s servlet context
initialization parameters. These can be parametersthat you definethat will beavailable
throughout your Web Application. Y ou set each cont ext - par amwithin asingle
cont ext - par amelement, using <par am nane> and <par am val ue> elements. You
can access these parameters in your code using the

j avax. servl et. Servl et Cont ext . get | ni t Par aneter () and

j avax. servl et. Servl et Cont ext . get | ni t Par amet er Names() methods.

Precompiling JSPs
You can use the cont ext - par amelement to specify that WebL ogic Server
precompile JSPs on start up. For moreinformation, see Precompiling JSPsat
http://e-docs. bea. comw s/ docs60/] sp/ reference. ht M #preconp

ile.
<cont ext - par an® For moreinformation,
see context-param
Element on page A-3
<par am name> (Required)

user - defi ned param nane
</ par am nane>

<par am val ue> (Required)
user - def i ned val ue

</ par am val ue>

<descri ption
text description
</ descri ption>

<cont ext - par an»

Developing WebL ogic Server Applications 5-5

http://e-docs.bea.com/wls/docs60/jsp/reference.html#precompile

5 writi ng Web Application Deployment Descriptors

Step 6: Deploy servlets

Inthisstep, you givethe servlet aname, specify the classfile or JSP used to implement
its behavior, and set other servlet-specific properties. List each of the servletsin your
Web Application within separate <ser vl et >. . . </ ser vl et > elements. After you

create entries for al of your servlets, you must include elements that map the servlet
to aURL pattern. These mapping elements are described in “ Step 7: Map a servlet to

aURL" on page 5-8.

Use the following elements to declare a servlet:

<servl et >

<servl et - nane>
nane
</ servl et - nanme>

<servl et -cl ass>
package. nane. MyCl ass
</ servl et-cl ass>
_or-
<jsp-file>
/fool bar/ nyFile.jsp
</[jsp-file>

<init-paranr

<par am nane>
name
</ par am nane>

<par am val ue>
val ue
</ par am val ue>

<descri pti on>
ootext. .
</ descri pti on>
</init-paranr

<l oad- on- st artup>
| oadOr der
</ | oad- on- st art up>

5-6 Developing WebL ogic Server Applications

For moreinformation,
see “servlet Element”
on page A-3

(Required)

(Required)

For moreinformation,
see “init-param
Element” on page A-5

(Required)

(Required)

(Optional)

(Optional)

Writing the web.xml Deployment Descriptor

<security-rol e-ref> (Optional).

For moreinformation,
see “security-role-ref
Element” on page A-6

<descri ption> (Optional)
o.otext. .
</ description>

<rol e- name> (Required)
rol enane

</rol e- nane>

<rol e-1ink> (Required)
rol el i nk

</rol e-1ink>
</security-rol e-ref>

<smal | -i con> Not Used.(Optional)
iconfile

</small -icon>

<l arge-i con> (Optional)
iconfile

</l arge-icon>

<di spl ay- nanme> (Optional)

Servl et Name
</ di spl ay- nanme>

<descri pti on> (Optional)
o.otext. .
</ descri ption>

</servlet>

Here is an example of a servlet element that includes an initialization parameter.

<servl et >

<init-paranr
<par am nane>f eedbackEnsi | </ par am name>
<par am val ue>f eedback123@easys. conx/ par am val ue>
<descri ption>

The email for web-site feedback.
</ descri ption>
</init-paranp
</servl et>

Developing WebL ogic Server Applications 5-7

5 writi ng Web Application Deployment Descriptors

Step 7: Map a servlet to a URL

Once you declare your servlet or JSP using a<ser vl et > element, map it to one or
more URL patterns to make it a public HTTP resource. For each mapping, use a
<ser vl et - mappi ng> element.

<ser vl et - mappi ng> For moreinformation,
see servlet-mapping
Element on page A-6

<servl et - nane> (Required)
name

</ servl et - name>

<url -pattern> (Required)
pattern

</url -pattern>

</ servl et - mappi ng>

Hereisan exampleof a<ser vl et - mappi ng> for the <ser vl et > declaration example
used earlier:

<servl et - mappi ng>
<servl et - name>Logi nServl et </ servl et - nane>
<url-pattern>/login</url-pattern>

</ servl et - mappi ng>

5-8 Developing WebL ogic Server Applications

Writing the web.xml Deployment Descriptor

Step 8: Define the session timeout value

<sessi on-confi g>

<sessi on-ti neout >
m nut es
</ sessi on-ti meout >

</ sessi on-confi g>

Step 9: Define welcome pages

<wel cone-file-list>

<wel cone-fil e>
nyWel comeFil e. jsp
</ wel corme-file>

<wel cone-fil e>
nyWel coneFi | e. ht mi
</wel cone-fil e>

</wel come-file-list>

(Optional)

For moreinformation,
see “session-config
Element” on page A-7

(Welcome pages are
Optional.)

For moreinformation,
see “welcome-file-list
Element” on page A-9

See also Welcome
Pages at
http://e-docs.bea.com/
wls/docs60/admingui
de/config_web_app.ht
mi#welcome_pages

And How WebL ogic
Server Resolves
HTTP Reguests at
http://e-docs.bea.com/
wls/docs60/admingui
de/config_web_app.ht
mi#resolve_http_req

Developing WebL ogic Server Applications 59

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req

5 writi ng Web Application Deployment Descriptors

Step 10: Define error pages

<error- page>

<error-code>
HTTP error code
</error-code>

or

<exception-type>
Java exception cl ass
</ excepti on-type>

<l ocati on>URL</ | ocati on>
</ error-page>

Step 11: Define MIME mapping

<m me- mappi ng>

5-10 Developing WebL ogic Server Applications

(Optional) Define a
customized page to
respond to errors

For moreinformation,
see “error-page
Element” on page A-9
And How WebL ogic
Server Resolves
HTTP Reguests at
http://e-docs.bea.com/
wls/docs60/admingui
de/config_web_app.ht
ml#resolve _http_req

(Optional)
Define MIME types

For more
information, see
“mime-mapping
Element” on page
A-8

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req

Writing the web.xml Deployment Descriptor

<ext ensi on>
ext

</ ext ensi on>

<m ne-type>
m e type
</ m nme-type>

</ m me- mappi ng>

Step 12: Define a JSP tag library descriptor

<tagli b> (Optional) Identify
JSPtag libraries
For moreinformation,
see “taglib Element”

on page A-10
<taglib-uri> (Required)
string_pattern
</taglib-uri>
<t agli b-1ocation> (Required)

fil ename
</taglib-Ilocation>

</taglib>

The following is an example of ataglib directive used in a JSP:
<U@taglib uri="string_pattern"” prefix="taglib" %

For more details, see the Programming WebL ogic JSP Tag Extensions at
http://e-docs.bea.com/wls/docs60/taglib/index.html.

Developing WebL ogic Server Applications 5-11

http://e-docs.bea.com/wls/docs60/taglib/index.html

5 writi ng Web Application Deployment Descriptors

Step 13: Reference external resources

<resour ce-ref > (Optional)

For moreinformation,
see “resource-ref
Element” on page

A-11.
<res-ref - name> (Required)
name
</res-ref-name>
<res-type> (Required)

Java cl ass
</res-type>

<res-aut h> (Required)
CONTAI NER | SERVLET

</res-aut h>

</resource-ref>

Step 14: Set up security constraints

A Web Application that uses security requires the user to log in in order to accessiits
resources. The user’s credentials are verified against a security realm, and once
authorized, the user will have access only to specified resources within the Web
Application.

Security in aWeb Application is configured using three elements:

m The<l ogi n- confi g> element specifies how the user is prompted to login and
the location of the security realm. If this element is present, the user must be
authenticated in order to access any resource that is constrained by a
<security-constrai nt > defined in the Web Application.

m A <security-constraint > isused to define the access privilegesto a
collection of resources viatheir URL mapping.

m A <security-rol e> element representsagroup or principal in the realm. This
security role nameisused inthe <securi ty- const r ai nt > element and can be
linked to an alternative role name used in servlet code viathe
<security-rol e-ref>eement.

5-12 Developing WebL ogic Server Applications

Writing the web.xml Deployment Descriptor

<security-constraint>

<web-resource-col | ecti on>

<web- r esour ce- nane>
nane
</ web- r esour ce- name>

<descri pti on>
... text. .
</ description>

<url -pattern>
pattern
</url-pattern>

<ht t p- met hod>
GET | POST
</ htt p- met hod>

</ web-resource-col | ecti on>

<aut h- constrai nt >

<r ol e- nane>
group | principal
</rol e- nane>

</ aut h- const rai nt >

(Optional) For more
information, see
“security-constraint
Element” on page
A-12

(Required) For more
information, see
“web-resource-collect
ion Element” on page
A-12

(Required)

(Optional)

(Optional)

(Optional)

(Optional)

For moreinformation,
see “auth-constraint
Element” on page
A-13

(Optional)

Developing WebL ogic Server Applications 5-13

5 Writing Web Application Deployment Descriptors

<user - dat a- const rai nt >

<description>...text...</description>

<transport - guar ant ee>

NONE
| NTEGRAL
or
CONFI DENTI AL

</transport - guar ant ee>

</ user-dat a-constraint >

</security-constraint>

Step 15: Set up login authentication

<l ogi n- confi g>

<aut h- met hod>
BASI C, FORM or
CLI ENT- CERT

</ aut h- met hod>

5-14 Developing WebL ogic Server Applications

(Optional)

For moreinformation,
see
“user-data-constraint
Element” on page
A-14

(Optional)
(Required)

(Optional)

For moreinformation,
see “login-config
Element” on page
A-15

(Optional) Specifies
the method used to
authenticate the user

Writing the web.xml Deployment Descriptor

<r eal m nane> (Optional) For more
real mamne information, see
</real m name> Specifying a Security
Realm at

http://e-docs.bea.com/
wls/docs60/admingui
de/cnfgsec.html#cnfg
sec004.

<f orm | ogi n- confi g> (Optional)

For moreinformation,
see
“form-login-config
Element” on page
A-15

Use this element if
you configure the
<aut h- met hod> to

FORM
<form | ogi n- page> (Required)
URI
</ forml ogi n- page>
<f orm error-page> (Required)

URI
</formerror-page>

</forml ogi n-config>

</l ogi n-confi g>

Developing WebL ogic Server Applications 5-15

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec004
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec004
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec004

5 Writing Web Application Deployment Descriptors

Step 16: Define security roles

<security-rol e>

<descri pti on>
L.o.otext. .
</ description>

<rol e- nane>
r ol enane
</rol e- name>

</security-rol e>

Step 17: Set environment entries

<env-entry>

<descri pti on>
Lootext.
</ description>

<env-ent ry- nane>

nane

</ env-entry-name>

<env-entry-val ue>

val ue

</ env-entry-val ue>
<env-entry-type>

type

</ env-entry-type>

</ env-entry>

5-16 Developing WebL ogic Server Applications

(Optional)

For moreinformation,
see “security-role
Element” on page
A-16

(Optional)

(Required)

(Optional)

For moreinformation,
see “env-entry
Element” on page
A-17

(Optional)

(Required)

(Required)

(Required)

Writing the web.xml Deployment Descriptor

Step 18: Reference Enterprise JavaBean (EJB) resources

<ej b-ref> Optional)

For moreinformation,
see “gjb-ref Element”
on page A-17

<descri pti on> (Optional)
Lo.text. ..
</ descri ption>

<ej b-r ef - name> (Required)
name
</ ej b-ref - name>

<ej b-ref-type> (Required)
Java type
</ejb-ref-type>

<home> _ (Required)
nmycom ej b. Account Honme
</ hone>

<r enot e> (Required)
nmycom ej b. Account

</renot e>

<ej b- i nk> (Optional)
ej b. name
</ ej b-1ink>

</ejb-ref>

Listing5-1 Sampleweb.xml with Servliet Mapping, Welcome file, and Error
Page

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//
DTD Wb Application 1.2//EN'
"http://java. sun.conlj2ee/ dt ds/ web-app_2_2. dtd">

<web- app>

<I- The foll owing servlet el enent defines a servlet called servletA
The Java class of this servliet is servlets.servletA ->
<servl et >
<servl et - nane>ser vl et A</ servl et - nane>

Developing WebL ogic Server Applications 5-17

5 writi ng Web Application Deployment Descriptors

<servl et-cl ass>servl ets. servl et A</ servl et-cl ass>
</ servl et >

<I- The follow ng servlet element defines another servlet called
servletB. The Java class of this servlet is servlets.servletB ->
<servl et >
<servl et - nane>ser vl et B</ ser vl et - nane>
<servl et-cl ass>servl ets. servl et B</servl et-cl ass>
</ servlet>

<I- The follow ng servlet-nmapping maps the servlet called servlietA
(see the servlet elenent) to a url-pattern of "blue".
The url-pattern is used when requesting this servlet, for exanple:
http://host: port/nyWebApp/ bl ue. ->
<servl et - mappi ng>
<servl et - name>ser vl et A</ servl et - nane>
<url - pattern>bl ue</url -pattern>
</ servl et - mappi ng>

<I- The follow ng servlet-nmapping naps the servl et called servletB
(see the servlet elenent) to a url-pattern of "yell ow'
The url-pattern is used when requesting this servlet, for exanple:
http://host: port/ nyWebApp/yel | ow. ->
<servl et - mappi ng>
<servl et - name>ser vl et B</ ser vl et - nane>
<url -pattern>yel | ow</url -pattern>
</ servl et - mappi ng>

<I-The follow ng wel come-file-list specifies a welconme-file
Wl cone files are discussed el sewhere in this docunent->
<wel conme-file-list>
<wel conme-fil e>hello. ht il </ wel come-file>
</wel cone-file-list>

<I-The follow ng error-page el ement specifies a page that is served
in place of the standard HTTP error response pages, in this case
HTTP error 404.->
<error-page>
<error-code>404</ error-code>
<l ocation>/error.jsp</location>
</ error-page>

</ web- app>

5-18 Developing WebL ogic Server Applications

Writing the WebL ogic-Specific Deployment Descriptor (weblogic.xml)

Writing the WebLogic-Specific Deployment
Descriptor (weblogic.xml)

Thewebl ogi c. xm file contains WebL ogic-specific attributesfor aWeb Application.
Y ou define the following attributesin thisfile: HTTP session parameters, HTTP
cookie parameters, JSP parameters, resource references, and security role assignments.

If you define external resources such as DataSources, EJBS, or a Security realmin the
web. xm deployment descriptor, you can use any descriptive name to define the
resource. To access the resource, you then map this resource name to the actual name
of theresourceinthe INDI treeusing afilecalled webl ogi c. xm . Placethisfileinthe
VEB- | NF directory of your Web Application.

If you have installed the WebL ogic Server samples and examples, you can look at the
web. xm and webl ogi c. xm filesin the Pet Store sample to see aworking example
of Web application deployment descriptors. These files are located in the

/ sanpl es/ Pet St or e/ sour ce/ dd/ war / WEB- | NF directory of your WebL ogic
Server distribution.

The ordering of the tag elements within the webl ogi c. xml file must follow the
ordering specified in this document.

Main Steps to Create the weblogic.xml File

Step 1: Begin the weblogic.xml file with a DOCTY PE header on page 5-20
Step 2: Map security role names to a security realm on page 5-21

Step 3 Reference resources on page 5-21

Step 4: Define session parameters on page 5-23

Step 5: Define JSP parameter on page 5-23

Developing WebL ogic Server Applications 5-19

5 writi ng Web Application Deployment Descriptors

Detailed Steps to Create the weblogic.xml File

Step 1: Begin the weblogic.xml file with a DOCTYPE header

This header refersto the location and version of the DTD file for the deployment
descriptor. Although this header references an external URL at www. beasys. com
WebL ogic Server hasits own copy of the DTD file, so your host server need not have
access to the Internet. However, you must still include this DOCTYPE element in your
webl ogi c. xm file, and have it reference the external URL since the version of the
DTD isused to identify the version of this deployment descriptor.

<! DOCTYPE webl ogi c- web-app PUBLIC "-//BEA
Systens, Inc.//DTD Wb Application 6.0//EN'
"http://ww. bea. conf servers/w s600/ dt d/
webl ogi c- web-j ar. dtd">

<webl ogi c- web- app>
<descri pti on>

Text description of the Wb App
</ descri ption>

<webl ogi c- ver si on> This element is not
_ _ used by WebL ogic
</ webl ogi c- versi on> Server

5-20 Developing WebL ogic Server Applications

Writing the WebL ogic-Specific Deployment Descriptor (weblogic.xml)

Step 2: Map security role names to a security realm

<security-rol e-assi gnnent >

<r ol e- nane> (Required)
name

</ 1ol e- name> For moreinformation,

See
“security-role-assign
ment Element” on
page B-2
<princi pal - nanme> (Required)
name
</ princi pal - nane>

</ security-rol e-assi gnnent >

If you need to define multiple roles, define each additional pair of <r ol e- nanme> and
<pri nci pal - name> tagswithin separate<securi t y-r ol e- assi gnment > elements.

Step 3 Reference resources

In this step you map resources used in your Web Application to the INDI tree. When
you define an <ej b- r ef - name> or a<r es-r ef - name> in theweb. xm deployment
descriptor, you also reference those namesin webl ogi c. xm and map them to an
actual INDI name that is available in WebL ogic Server. In the following example, a
Data Sourceisreferenced in a servlet with the name ny Dat aSour ce. nyDat aSour ce
isthenreferencedinweb. xm and its datatype defined. Finally, in thewebl ogi c. xni
file, myDat aSour ce is mapped to the INDI name account Dat aSour ce, whichis
availableinthe JNDI tree. The JINDI name must match the name of an object bound in
the INDI tree. Objects can be bound to the INDI tree programatically or by configuring
them in the Administration Console. For more information, see Programming

WebL ogic INDI at { DOCROOTS} / j ndi /i ndex. ht i .

Servlet code;

javax. sqgl . Dat aSource ds = (] avax.sql.DataSource) ctx.|ookup
(" myDat aSour ce") ;

web. xm entries:

<resource-ref>

<res-ref - name>nyDat aSour ce</r es-r ef - name>

Developing WebL ogic Server Applications 5-21

{DOCROOTS}/jndi/index.html
{DOCROOTS}/jndi/index.html

5 writi ng Web Application Deployment Descriptors

<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>CONTAI NER</ r es- aut h>

</resource-ref>
webl ogi c. xm entries:

<resour ce-descri pti on>
<res-ref - name>nyDat aSour ce</ r es-r ef - nanme>
<j ndi - nane>account Dat aSour ce</j ndi - nanme>
</security-role-ref>

A similar pattern is used to map EJBsto the INDI tree, but usesthe <ej b- r ef - nane>
element of the <ej b- r ef er ence- descri pti on> element in place of the
<r es-ref - name> element of the <r esour ce- descri pti on> element.

<r ef erence-descri pt or >

<resour ce-descri pti on>

<r es-r ef - name>
name
</res-ref-name>
<j ndi - nane>
JNDI name of resource
</ j ndi - name>

</resource-descripti on>
<ej b-ref erence-descri ption>

<ej b-r ef - name>
name
</ ej b-r ef - name>

<j ndi - nane>
JNDI nane of EJB
</ j ndi - name>

Developing WebL ogic Server Applications

For moreinformation,
see
“reference-descriptor
Element” on page B-3

For moreinformation,
see
“resource-description
Element” on page B-3

(Required)

(Required)

(Required) For more
information, see
“gb-reference-descrip
tion Element” on page
B-3

(Required)

Writing the WebL ogic-Specific Deployment Descriptor (weblogic.xml)

</ ej b-reference-descripti on>

</reference-descriptor>

Step 4: Define session parameters

You define HTTP session parameters for this Web Application inside of

<sessi on- par anp tags, which are nested in side <sessi on- descri pt or > tags.
For each <sessi on- par ane you need to supply a

<par am name>. . . </ par am name> element that names the parameter being
defined and a<par am val ue>. . . </ par am val ue> element that provides the
value of the parameter. For alist of HTTP session parameters and details on
setting them, see “ session-descriptor Element” on page B-4 .

<sessi on-descri pt or> For moreinformation,
see
“ session-descriptor
Element” on page B-4

<sessi on- par an

<par am nane>
sessi on param name
</ par am nane>

<par am val ue>
ny val ue
</ par am val ue>

</ sessi on- par anp

</ sessi on-descri pt or >

Step 5: Define JSP parameter

Y ou define JSP configuration parameters for this Web Application inside of
<j sp- par ane tags, which are nested in side <j sp- descri pt or > tags. For each
<j sp- par an® you need to supply a<par am nane>. . . </ par am nane> element that

Developing WebL ogic Server Applications 5-23

5 writi ng Web Application Deployment Descriptors

names the parameter being defined and a<par am val ue>. . . </ par am val ue>
element that provides the value of the parameter. For alist of JSP parameters and
details on setting them, see “jsp-descriptor Element” on page B-8.

<j sp-descri ptor> For moreinformation,
see “jsp-descriptor
Element” on page B-8
<j sp- par an>

<par am nane>
j Sp param nane
</ par am nane>

<par amval ue>
nmy val ue
</ par am val ue>

</ j sp- par an»

</j sp-descri ptor>

5-24 Developing WebL ogic Server Applications

web.xml Deployment
Descriptor Elements

This following sections describe the deployment descriptor elements defined in the
web. xml file. Theroot element for web. xnl is<web- app>. The following elements

are defined within the <web- app> element:

m “icon Element” on page A-2

“display-name Element” on page A-2

m “description Element” on page A-3

m “context-param Element” on page A-3

m “servlet Element” on page A-3

m “servlet-mapping Element” on page A-6
m “session-config Element” on page A-7

® “mime-mapping Element” on page A-8
m “welcome-file-list Element” on page A-9
m “error-page Element” on page A-9

m “taglib Element” on page A-10

m “resource-ref Element” on page A-11

m “security-constraint Element” on page A-12
m “login-config Element” on page A-15

m “env-entry Element” on page A-17

Developing WebL ogic Server Applications

A-1

A web.xmi Deployment Descriptor Elements

m “gb-ref Element” on page A-17

icon Element

Thei con element specifies the location within the Web Application for asmall and
large image used to represent the Web Application in aGUI tool. (The servlet element
also has an element called the icon element, used to supply anicon to represent a
servlet in aGUI tool.)

This element is not currently used by WebL ogic Server.

The following table describes the elements you can define within ani con element.

Element Required/ Description
Optional
<smal | -i con> Optional Specifies the location for asmall (16x16 pixel) . gi f or. j pg image
used to represent the Web Applicationin aGUI tool. Currently, thisis
not used by WebL ogic Server.
<l arge-i con> Optional Specifies the location for alarge (32x32 pixel) . gi f or. j pg image

used to represent the Web Application in aGUI tool. Currently, this
element is not used by WebL ogic Server.

<di spl ay- nanme> Optional Currently, this element is not used by WebL ogic Server.

<descri pti on> Optional Currently, this element is not used by WebL ogic Server.

<di stri but abl e> Optional Currently, this element is not used by WebL ogic Server.

display-name Element

The optional di spl ay- name element specifies the Web Application display name, a
short name that is intended to be displayed by GUI tools.

A-2 Developing WebL ogic Server Applications

description Element

description Element

The optional description element provides descriptive text about the Web Application.

context-param Element

The optional cont ext - par amelement declares a Web Application's servlet context
initialization parameters. Y ou set each context-param within a single context-param
element, using <param-name> and <param-value> elements. Y ou can access these
parameters in your code using the

j avax. servl et. Servl et Cont ext . get | ni t Par aneter () and

j avax. servl et. Servl et Cont ext . get | ni t Par amet er Names() methods.

The following table describes the elements you can define within acont ext - par am
element.

Element Required/ Description
Optional
<par am name> Required The name of a parameter.
<par am val ue> Required The value of a parameter.
<descri pti on> Required A text description of a parameter.

serviet

Element

Theservl et element contains the declarative data of a servlet.

If aj sp-fil e isspecified and the load-on-startup element is present, then the JSP
should be precompiled and loaded.

Developing WebL ogic Server Applications A-3

A web.xmi Deployment Descriptor Elements

The following table describes the el ements you can define within aser vl et €lement.

Element Required/ Description
Optional
<i con> Optional Specifies the location within the Web Application for asmall and
large image used to represent the servlet in aGUI tool. Contains a
small-icon and large-icon element.
Currently, this element is not used by WebL ogic Server.
<ser vl et - nane> Required Defines the canonical name of the servlet, used to reference the
serviet definition elsawhere in the deployment descriptor.
<di spl ay- nane> Optional A short name intended to be displayed by GUI tools.
<descri pti on> Optional A text description of the servlet.
<servl et-cl ass> Required (or The fully-qualified class name of the servlet.
use<j sp- You may use only one of either the <ser vl et - cl ass> tagsor
file> <j sp-fil e>tagsin your servlet body.
<jsp-file> Required (or Thefull path to a JSPfile within the Web Application, relative to the
use Web Application root directory.
<servlet- voyumay useonly oneof either the <ser vl et - ¢l ass> tagsor
class> <j sp-fil e>tagsinyour serviet body.
<init-paran> Optional Contains aname/value pair as an initialization parameter of the
serviet.
Use a separate set of <i ni t - par am» tags for each parameter.
<l oad- on- st artup> Optional WebL ogic Server initializes this servliet when WebL ogic Server
starts up. The optional contents of this element must be a positive
integer indicating the order in which the servlet should be |oaded.
Lower integers are loaded before higher integers. If novalueis
specified, or if thevalue specified isnot apositive integer, WebLogic
Server can load the servlet in any order in the startup sequence.
<security-role- Optional Used to link asecurity rolenamedefined by <securi ty-rol e>to

ref>

an aternative role namethat is hard coded in the servlet logic. This
extralayer of abstraction allows the servlet to be configured at
deployment without changing servlet code.

A-4

Developing WebL ogic Server Applications

serviet Element

icon Element

Thisisan element within the “servlet Element” on page A-3.

Thei con element specifies the location within the Web Application for small and
large images used to represent the servlet in a GUI tool.

The following table describes the elements you can define within ai con element.

Element Required/ Description
Optional

<smal | -i con> Optional Specifies the location within the Web Application for asmall (16x16
pixel) . gi f or.j pgimage used to represent the servietinaGUI tool.

Currently, this element is not used by WebL ogic Server.

<l ar ge-i con> Optional Specifies the location within the Web Application for asmall (32x32
pixel). gi f or . j pgimageusedto represent theservietinaGuUI tool.

Currently, this element is not used by WebL ogic Server.

init-param Element

Thisis an element within the “servlet Element” on page A-3.

The optional i ni t - par amelement contains aname/value pair as an initialization
parameter of the servlet. Use a separate set of i ni t - par amtags for each parameter.

Y ou can access these parameters with the
j avax. servl et. Servl et Confi g. get | ni t Paramet er () method.

The following table describes the elements you can define within ai ni t - par am

element.
Element Required/ Description
Optional
<par am nane> Required Defines the name of this parameter.
<par am val ue> Required Definesa St ri ng vaue for this parameter.

Developing WebL ogic Server Applications A-5

A web.xmi Deployment Descriptor Elements

Element Required/ Description
Optional
<descri pti on> Optional Text description of theinitialization parameter.

security-role-ref Element

Thisis an element within the “serviet Element” on page A-3.

Thesecurity-rol e-ref element links a security role name defined by
<security-rol e>toanadternative role namethat is hard-coded in the servlet logic. This
extralayer of abstraction allows the servlet to be configured at deployment without changing
servlet code.

The following table describes the elements you can define within a
security-rol e-ref element.

Element Required/ Description
Optional
<descri pti on> Optional Text description of therole.
<r ol e- nanme> Required Defines the name of the security role or principal that isused in the
servlet code.
<rol e-1ink> Required Defines the name of the security role that is defined in a

<security-rol e>element later in the deployment descriptor.

servliet-mapping Element

Theser vl et - mappi ng element defines a mapping between a servlet and a URL
pattern.

A-6 Developing WebL ogic Server Applications

session-config Element

Thefollowing table describesthe elementsyou can definewithinaser vl et - mappi ng

element.
Element Required/ Description
Optional
<servl et - name> Required The name of the servlet to which you are mapping aURL pattern. This
name correspondsto the nameyou assigned aservletina<ser vl et >
declaration tag.
<url -pattern> Required Describes apattern used to resolve URLSs. The portion of the URL after

thehtt p: // host: port +WebAppNane iscompared to the
<url - pattern> by WebLogic Server. If the patterns match, the
servlet mapped in this element will be called.

Example patterns:
/ soda/ gr ape/ *
/fool *

/contents
* foo

The URL must follow the rules specified in Section 10 of the Servlet
2.2 Specification.
For additional examples of servlet mapping, see Serviet Mapping

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#
servlet-mapping.

session-config Element

Thesessi on- conf i g element defines the session parameters for this Web
Application.

Developing WebL ogic Server Applications A-7

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#servlet-mapping

A web.xmi Deployment Descriptor Elements

The following table describes the element you can define within asessi on-confi g

element.
Element Required/ Description
Optional
<session-tinmeout> Optiona The number of minutes after which sessionsin this Web Application

expire. The value set in this element overrides the value set in the
Ti meout Secs parameter of the <sessi on-descri pt or >
element in the WebL ogic-specific deployment descriptor

webl ogi c. xnl , unless one of the special values listed hereis
entered.

Default value: -2
Maximum value: Integer. MAX_VALUE =+ 60
Special values:

m -2=Usethevaueset by Ti meout Secs in
<sessi on- descri pt or > element of webl ogi c. xni

m -1=Sessionsdo not timeout. Thevalue set in
<sessi on- descri pt or > element of webl ogi c. xm is
ignored.

For more information, see “ session-descriptor Element” on page B-4.

mime-mapping Element

The ni me- mappi ng element defines a mapping between an extension and amime

type.
The following table describes the elements you can define within ani ne- mappi ng
element.
Element Required/ Description
Optional
<ext ensi on> Required A string describing an extension, for example: t xt .
<m me-type> Required A string describing the defined mime type, for example:

text/plain.

A-8 Developing WebL ogic Server Applications

welcome-file-list Element

welcome-file-list Element

The optional wel conme-file-1ist element containsan ordered list of
wel come-fi | e elements.

When the URL request is a directory name, WebL ogic Server servesthefirst file
specified in this element. If that fileis not found, the server then triesthe next file in
thelist.

For more information, see Welcome Files at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_page
sand How WebL ogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http re
g.

The following table describes the element you can define within a
wel come-file-list element.

Element Required/ Description
Optional
<wel conme-fil e> Optional File name to use as a default welcome file, such as index.html

error-page Element

The optional err or - page element specifies a mapping between an error code or
exception type to the path of aresource in the Web Application.

When an error occurs—while WebL ogic Server is responding to an HTTP request, or
asaresult of aJavaexception—WebL ogic Server returnsan HTML pagethat displays
either theHT TP error code or apage containing the Javaerror message. Y ou can define
your own HTML page to be displayed in place of these default error pagesor in
response to a Java exception.

Developing WebL ogic Server Applications A-9

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#welcome_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req

A web.xmi Deployment Descriptor Elements

For more information, see Customizing HTTP Error Responses at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#error_pages
and How WebL ogic Server Resolves HTTP Requests at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve http_re

g.
The following table describes the elements you can define within aner r or - page
element.
Element Required/ Description
Optional
<error-code> Optional A valid HTTP error code, for example 404.
<exception-type> Optional A fully-qualified class name of a Java exception type, for example
j ava. | ang.
<l ocati on> Required The location of the resource to display in response to the error. For

example/ myEr r or Pg. ht ni

taglib Element

The optional t agl i b element describes a JSP tag library.

Thiselement associatesthelocation of aJSP Tag Library Descriptor (TLD) withaURI
pattern. Although you can specify aTLD in your JSP that is relative to the WEB-INF
directory, you can also use the <t agl i b> tag to configure the TLD when deploying
your Web Application. Use a separate element for each TLD.

The following table describes the elements you can define within at agl i b element.

Element Required/ Description
Optional

<taglib-location> Required Gives the file name of the tag library descriptor relative to the root of
the Web Application. It is good ideato store the tag library descriptor
fileunder theVEB- | NF directory soitisnot publicly available over an
HTTP request.

A-10 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#error_pages
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#resolve_http_req

resource-ref Element

Element Required/ Description
Optional
<taglib-uri> Required Describes a URI, relative to the location of the web.xml document,

identifying a Tag Library used in the Web Application.

If the URI matches the URI string used in the taglib directive on the
JSP page, thistaglib is used.

resource-ref Element

The optional r esour ce-r ef element defines areference lookup name to an external
resource. Thisallowsthe servlet code to look up aresource by a“virtual” namethat is
mapped to the actual location at deployment time.

Use aseparate <r esour ce- r ef > element to define each external resource name. The
external resource name is mapped to the actual location name of the resource at
deployment time in the WebL ogi c-specific deployment descriptor webl ogi c. xn .

The following table describes the elements you can define within ar esour ce- r ef

element.
Element Required/ Description
Optional

<descri pti on> Optional A text description.

<res-ref-nane> Required The name of the resource used in the JNDI tree. Servletsin the Web
Application use this name to look up areference to the resource.

<res-type> Required The Javatype of the resource that corresponds to the reference name.
Use the full package name of the Javatype.

<res-aut h> Required Used to control the resource sign on for security.

If set to SERVLET, indicates that the application component code
performs resource sign on programmatically. If set to CONTAI NER
WebL ogic Server uses the security context established with the

| ogi n- confi g element. See “login-config Element” on page A-15.

Developing WebL ogic Server Applications A-11

A web.xmi Deployment Descriptor Elements

security-constraint Element

Thesecurity-constraint element defines the access privileges to a collection of
resources via their URL mapping.

For more information, see Configuring Security in Web Applications at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#configure-secur

ity.
The following table describes the elements you can define within a
security-constraint element.

Element Required/ Description
Optional
<web-r esour ce- Required Defines the components of the Web Application that this security
col | ection> constraint is applied to.
<aut h-constrai nt> Optiona Defines which groups or principals have access to the collection of

web resources defined in this security constraint. See also
“auth-constraint Element” on page A-13.

<user-dat a- Optional Defines how the client should communicate with the server.
constraint > See al's0 “ user-data-constraint Element” on page A-14.

web-resource-collection Element

Each <securi t y- const r ai nt > element must have one or more
<web- resour ce- col | ecti on> elements. These define the area of the Web
Application that this security constraint is applied to.

Thisis an element within the “security-constraint Element” on page A-12.

Therequired web- r esour ce- col | ecti on element define the area of the Web
Application that this security constraint is applied to.

A-12 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#configure-security

security-constraint Element

The following table describes the elements you can define within a
web- r esour ce-col | ecti on element.

Element Required/ Description
Optional
<web-resource- Required The name of this Web resource collection.
nanme>
<descri pti on> Optional A text description of this security constraint.

<url -pattern> Optional Use one or more of these elements to declare which URL patternsthis
security constraint appliesto. If you do not use at least one of these
elements, this <web-resource-collection> isignored by WebL ogic
Server.

<ht t p- met hod> Optional Use one or more of these elements to declare which HTTP methods

(GET | POST |...) aresubject tothe authorization constraint. If
you omit this element, the default behavior is to apply the security
congtraint to all HTTP methods.

auth-constraint Element

Thisisan element within the “ security-constraint Element” on page A-12.

The optional aut h- const rai nt element defines which groups or principals have
access to the collection of Web resources defined in this security constraint.

The following table describes the elements you can define within an
aut h- const rai nt element.

Element Required/ Description
Optional
<descri pti on> Optional A text description of this security constraint.
<rol e- name> Optional Defines which security roles can access resources defined in this

security-constraint. Security role namesare mapped to principalsusing
thesecurity-rol e-ref Elenent. See"“security-role-ref
Element” on page A-6.

Developing WebL ogic Server Applications A-13

A web.xmi Deployment Descriptor Elements

user-data-constraint Element

Thisisan element within the “security-constraint Element” on page A-12.

Theuser - dat a- const r ai nt €element defines how the client should communicate
with the server.

The following table describes the elements you may define within a
user - dat a- const r ai nt €lement.

Element Required/ Description
Optional
<descri pti on> Optional A text description.
<transport - Required Specifies that the communication between client and server.
guar ant ee> WebL ogic Server establishes a Secure Sockets Layer (SSL)

connection when the user is authenticated using the | NTEGRAL or
CONFI DENTI AL constraint.

Range of values:
m NONE—t he application does not require any transport guarantees.

m | NTEGRAL—t he application requires that the data sent between
the client and server be sentin such away that it cannot be changed
in transit.

m CONFI DENTI AL—the application requires that the data be
transmitted in afashion that prevents other entities from observing
the contents of the transmission.

A-14 Developing WebL ogic Server Applications

login-config Element

login-config Element

The optional | ogi n- conf i g element configures how the user is authenticated, the
realm name that should be used for this application, and the attributes that are needed
by the form login mechanism.

If thiselement is present, the user must be authenticated in order to access any resource

that is constrained by a<securi ty- const r ai nt > defined in the Web Application.
Once authenticated, the user can be authorized to access other resources with access

privileges.
The following table describes the elements you can define within al ogi n- confi g
element.
Element Required/ Description
Optional
<aut h- met hod> Optional Specifies the method used to authenticate the user. Possible values:
BASI C - uses browser authentication
FORM- uses a user-written HTML form
CLI ENT- CERT
<r eal m nanme> Optional The name of the realm that is referenced to authenticate the user
credentials. If omitted, the WebL ogic realm is used by default. For
more information, see Specifying a Security Realm at
http://e-docs.bea.com/wls/docs60/admi nguide/cnfgsec.html#cnfgsecO
04.
<forml ogi n- Optional Use this element if you configure the <aut h- met hod> to FORM.

config>

See “form-login-config Element” on page A-15.

form-login-config Element

Thisis an element within the “login-config Element” on page A-15.

Use the form-login-config element if you configure the <aut h- net hod> to FORM

Developing WebL ogic Server Applications A-15

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html#cnfgsec004

A web.xmi Deployment Descriptor Elements

Element Required/ Description
Optional

<form| ogi n-page> Required The URI of aWeb resource relative to the document root, used to
authenticate the user. This can be an HTML page, JSP, or HTTP
servlet, and must return an HTML page containing a FORM that
conforms to a specific naming convention. For more information, see
Setting Up Authentication for Web Applications at
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#
webapp-auth

<formerror-page> Required The URI of aWeb resource relative to the document root, sent to the
user in response to afailed authentication login.

security-role Element

The following table describes the elements you can define within asecuri ty-rol e

element.
Element Required/ Description
Optional
<descri pti on> Optional A text description of this security role.
<r ol e- nane> Required The role name. The name you use here must have a corresponding

entry in the WebL ogic-specific deployment descriptor,

webl ogi c. xml , which mapsrolesto principalsin the security
realm. For more information, see “security-role-assignment Element”
on page B-2.

A-16 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#webapp-auth

env-entry Element

env-entry Element

The optional env- ent ry element declares an environment entry for an application.
Use a separate element for each environment entry.

The following table describes the elements you can define within aenv-ent ry

element.
Element Required/ Description
Optional
<descri pti on> Optional A textual description.
<env-entry- name> Required The name of the environment entry.
<env-entry-val ue> Required The value of the environment entry.
<env-entry-type> Required The type of the environment entry.

Can be set to one of the following Javatypes:
j ava. | ang. Bool ean

java.lang. String

java. |l ang. | nt eger

j ava. | ang. Doubl e

j ava. | ang. Fl oat

ejb-ref Element

The optional ej b-r ef element defines areference to an EJB resource. This reference
is mapped to the actual location of the EJB at deployment time by defining the
mapping in the WebL ogic-specific deployment descriptor file, webl ogi c. xnl . Usea
separate <ej b- r ef > element to define each reference EJB name.

Developing WebL ogic Server Applications A-17

A web.xmi Deployment Descriptor Elements

The following table describes the el ements you can define within aej b-r ef element.

Element Required/ Description
Optional

<description> Optional A text description of the reference.

<gjb-ref-name> Required The name of the EJB used in the Web Application. This nameis
mapped to the INDI Tree in the WebL ogi c-specific deployment
descriptor webl ogi ¢. xm . For more information, see
“gjb-reference-description Element” on page B-3.

<ej b-ref-type> Required The expected Java class type of the referenced EJB.

<home> Required The fully qualified class name of the EJB home interface.

<r enot e> Required The fully qualified class name of the EJB remote interface.

<ej b-1ink> Optional The <ej b- nanme> of an EJB in an encompassing J2EE application

package.

A-18 Developing WebL ogic Server Applications

description Element

B weblogic.xml

Deployment Descriptor
Elements

This following sections describe the deployment descriptor elements defined in the
webl ogi c. xm file. Theroot element for webl ogi c. xm is<webl ogi c- web- app>.
The following elements are defined within the <webl ogi c- web- app> element:

m “description Element” on page B-1

m “weblogic-version Element” on page B-2

m “security-role-assignment Element” on page B-2
m “reference-descriptor Element” on page B-3

m “session-descriptor Element” on page B-4

m “jsp-descriptor Element” on page B-8

Y ou can also access the Document Type Descriptor (DTD) for webl ogi ¢. xm at
http://www.bea.com/servers/wl s600/dtd/webl ogi c-web-jar.dtd.

description Element

The description element is a text description of the Web Application.

Developing WebL ogic Server Applications B-1

http://www.bea.com/servers/wls600/dtd/weblogic-web-jar.dtd

B weblogic.xml Deployment Descriptor Elements

weblogic-version Element

Thewebl ogi c- ver si on element indicates the version of WebL ogic Server on which
this Web Application is intended to be deployed. This element isinformational only
and is not used by WebL ogic Server.

security-role-assignment Element

Thesecurity-rol e-assi gnment element declares a mapping between a security
role and one or more principalsin the realm, as shown in the following example.

<security-rol e-assi gnnent >
<rol e- nane>Payr ol | Admi n</r ol e- name>
<princi pal - name>Tanya</ pri nci pal - name>
<pri nci pal - name>Fr ed</ pri nci pal - nane>
<princi pal - name>syst enx/ pri nci pal - name>
</ security-rol e-assi gnnent >

The following table describes the elements you can define within a
security-rol e-assi gnment element.

Element Required Description
Optional
<r ol e- nanme> Required Specifies the name of a security role.

<pri nci pal - name> Required Specifies the name of a principal that is defined in the security realm.
You can use multiple <pri nci pal - nane> elementsto map
principalsto arole. For moreinformation on security realms, see
the Programming WebLogic Security at
http://e-docs.bea.com/wls/docs60/security/index.html.

B-2 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/security/index.html

reference-descriptor Element

reference-descriptor Element

Ther ef erence- descri pt or element maps the INDI name of a server resource to a
name used in the Web Application. Ther ef er ence- descri pt i on element contains
two elements: The resour ce- descri pti on element maps aresource, for example,
a DataSource, to its INDI name. The ej b- r ef er ence element maps an EJB to its
JINDI name.

resource-description Element

The following table describes the elements you can define within a
resour ce-descri ption element.

Element Required/ Description

Optional
<res-ref-name> Required Specifies the name of aresource reference.
<jndi-name> Required Specifiesa JNDI name for the resource.

ejb-reference-description Element

The following table describes the elements you can define within a
ej b-reference-description eement.

Element Required/ Description

Optional
<gjb-ref-name> Required Specifies the name of an EJB reference used in your Web Application.
<jndi-name> Required Specifiesa JNDI name for the reference.

Developing WebL ogic Server Applications B-3

B weblogic.xml Deployment Descriptor Elements

session-descriptor Element

Thesessi on-descri pt or element defines parametersfor HTTP sessions, as shown

in the following example:

<sessi on-descri ptor>
<sessi on- par anp
<par am nane>
Cooki eDomai n
</ par am nane>
<par am val ue>
my Cooki eDonmai n
</ par am val ue>
</ sessi on- par an»
</ sessi on-descri pt or >

Session Parameter Names and Values

The following table describes the valid session parameter names and values you can
define within asessi on- par amelement:

Parameter Name Default Value

Parameter Value

Cooki eDomai n Null

Identifies the server to which the browser sends cookie
information when the browser makes a request. For
example, setting the CookieDomain to

. nydonai n. comreturns cookiesto any server in the
*. nmydomai n. comdomain.

The domain name must have at least two components;
setting anameto *. comor *. net isinvalid.

If unset, this parameter defaults to the server that issued
the cookie.

Cooki eConment Weblogic Server
Session
Tracking Cookie

B-4

Developing WebL ogic Server Applications

Specifiesthe comment that identifiesthe session tracking
cookie in the cookiefile.

If unset, this parameter defaultsto WebLogi ¢
Sessi on Tracki ng Cooki e. You may providea
more specific name for your application.

session-descriptor Element

Parameter Name Default Value

Parameter Value

Cooki eMaxAgeSecs -1

Sets the life span of the session cookie, in seconds, after
which it expires on the client.

If the value is 0, the cookie expiresimmediately.
ThemaximumvalueisMAX_VALUE, wherethe cookie
lasts forever.

If set to - 1, the cookie expires when the user exits the
browser.

For more information about cookies, see Setting up
Session Management at
http://e-docs.bea.com/wls/docs60/adminguide/config_w
eb_app.html#session-management.

Cooki eNarne JSESSI ONI D

Defines the session cookie name. Defaults to
JSESSI ONI Dif unset. You may set thisto amore
specific name for your application.

Cooki ePat h Null

Specifies the pathname to which the browser sends
cookies.

If unset, this parameter defaultsto/ (slash), where the
browser sends cookiesto all URLs served by WebL ogic
Server. You may set the path to a narrower mapping, to
limit the request URLSs to which the browser sends
cookies.

Cooki esEnabl ed True

Use of session cookies is enabled by default and is
recommended, but you can disable them by setting this
property tof al se. Youmight turn this option off to test
URL re-writing (see
http://e-docs.bea.com/wls/docs60/adminguide/config_w
eb_app.html#urlrewriting) on your site.

I nval i dati onl nterval Secs 60

Sets the time, in seconds, that WebL ogic Server waits
between doing house-cleaning checks for timed-out and
invalid sessions, and deleting the old sessionsand freeing
up memory. Usethisparameter to tune WebL ogic Server
for best performance on high traffic sites.

The minimum valueis every second (1). The maximum
valueis once aweek (604,800 seconds). If unset, the
parameter defaults to 60 seconds.

Developing WebL ogic Server Applications B-5

http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-management
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#session-management
http://e-docs.bea.com/wls/docs60/adminguide/config_web_app.html#urlrewriting

B weblogic.xml Deployment Descriptor Elements

Parameter Name Default Value

Parameter Value

Persi stent StoreDi r sessi on_db

If you have set Per si st ent St or eType tofi | e, this
parameter sets the directory path where WebL ogic
Server will storethe sessions. Thedirectory pathiseither
relative to the temp directory or an absolute path. The
temp directory is either agenerated directory under the
WEB- | NF directory of the Web Application, or a
directory specified by the context-param
javax.servlet.context.tnpdir.

Ensure that you have enough disk space to store the
number of valid sessions multiplied by the size of each
session. You can find the size of a session by looking at
the files created in the Per si st ent St oreDi r .

Y ou can make file-persistent sessions clusterable by
making this directory ashared directory among different
servers.

Y ou must create this directory manually.

Per si st ent St or ePool None

Specifiesthe name of aJDBC connection pool to be used
for persistence storage.

For more details on setting up a database connection
pool, see Managing JDBC Connectivity at
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html

Per si st ent St or eType menory

Sets the persistent store method to one of the following
options:
m nenor y—disables persistent session storage

m fil e—usesfile-based persistence (See aso
Per si st ent St or eDi r, above)

j dbc—uses a database to store persistent sessions.
(see also Per si st ent St or ePool , above)

m replicat ed—sameasnmenory, but sessiondatais

replicated across the clustered servers

Swapl nt er val Secs 10

B-6 Developing WebL ogic Server Applications

Setsthetime, in seconds, that WebL ogic Server waits
between purging the least recently-used sessions from
the cache to the persistent store, when the

cacheEnt ri es limit has been reached.

If unset, this property defaultsto 10 seconds; minimum s
1 second, and maximum is 604800 (1 week).

http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html

session-descriptor Element

Parameter Name

Default Value Parameter Value

| DLengt h

52

Sets the size of the session ID.

The minimum valueis 8 bytes and the maximum valueis
| nt eger . MAX_VALUE.

If you arewriting aWAP application, you must use URL
rewriting because the WAP protocol does not support
cookies. Also, some WAP devices have a 128-character
limit on URL length (including parameters), which limits
the amount of data that can be transmitted using URL
re-writing. To allow more space for parameters, use this
parameter to limit the size of the session ID that is
randomly generated by WebL ogic Server

CacheSi ze

1024

The number of sessions that may be active at onetime.

Ti meout Secs

3600

Sets the time, in seconds, that WebL ogic Server waits
before timing out a session, where x is the number of
seconds between a session's activity.

Minimum valueis 1, default is 3600, and maximum
valueisinteger MAX_VALUE.

Onbusy sites, you can tuneyour application by adjusting
thetimeout of sessions. Whileyou want to give abrowser
client every opportunity to finish a session, you do not
want to tie up the server needlesdly if the user has|eft the
site or otherwise abandoned the session.

This parameter can be overridden by the

sessi on-ti meout element (defined in minutes) in
web. xm . For more information, see
“session-config Elenment” on page A-7.

JDBConnect i onTi meout Secs

120

Sets the time, in seconds, that WebL ogic Server waits
before timing out a JDBC connection, where x isthe
number of seconds between.

URLRewr i ti ngEnabl ed

true

Enables URL rewriting, which encodes the session ID
into the URL and provides sessiontracking if cookies are
disabled in the browser.

Developing WebL ogic Server Applications B-7

B weblogic.xml Deployment Descriptor Elements

Parameter Name Default Value Parameter Value

Consol eMai nAttribute If you enable Session Monitoring in the WebL ogic
Server Administration Console, set this parameter to the
name of the session parameter you will use to identify
each session that ismonitored. For moreinformation, see
Monitoring a WebL ogic Domain at
http://e-docs.bea.com/wls/docs60/adminguide/monitori
ng.html.

jsp-descriptor Element

Thej sp-descri pt or element defines parameter names and values for serviet JSPs,
as shown in the following example.

<j sp-descri ptor>
<j sp- par an»
<par am nane>
FOO
</ par am nane>
<par am val ue>
BAR
</ param val ue>
</] sp- par an®r
</j sp-descri pt or >

B-8 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs60/adminguide/monitoring.html

Jsp-descriptor Element

JSP Parameter Names and Values

Thefollowing table describes the parameter names and values you can define within a
j sp- par amelement.

Parameter Name

Default Value

Parameter Value

conpi | eCormand

j avac, or the
Java compiler
defined for a
server under the
configuration

Specifiesthe full pathname of the standard Java compiler used to
compile the generated JSP servlets. For example, to use the
standard Java compiler, specify itslocation on your system as
shown below:

<par am val ue>

tuningtabofthe /j dk130/ bi n/ j avac. exe
WebL ogic </ par am val ue>
Servgr_) Y ou can also specify that WebL ogic Server precompile JSPs on
Administration gty For more information, see Precompiling JSPs at
Console http://e-docs. bea. coml W s/ docs60/j sp/ ref erenc
e. ht m #preconpi | e.
conpi | eFl ags None Passes one or more command-line flags to the compiler. Enclose
multiple flags in quotes, separated by a space. For example:
java webl ogi c.j spc
-conpileFlags "-g -v" nyFile.jsp
conpi |l ercl ass None Name of aJava compiler that is executed in WebL ogic Servers's

virtual machine. (Used in place of an executable compiler such as
javacorsj.)

encodi ng

Default encoding
of your platform

Specifies the default character set used in the JSP page. Use
standard Java character set names (see
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.htm).
If unset, this parameter defaultsto the encoding for your platform.
A JSP page directive (included in the JSP code) overrides this
setting. For example:

<%@ page content Type="text/htn;
char set =cust om encodi ng” %

keepgener at ed

fal se

Saves the Javafiles that are generated as an intermediary step in
the JSP compilation process. Unlessthisparameter issettot r ue,
the intermediate Java files are deleted after they are compiled.

Developing WebL ogic Server Applications B-9

http://e-docs.bea.com/wls/docs60/jsp/reference.html#precompile
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html

B weblogic.xml Deployment Descriptor Elements

Parameter Name Default Value Parameter Value

noTr yBl ocks fal se If a JSP file has numerous or deeply nested custom JSP tags and
youreceiveaj ava. | ang. Veri f yEr r or exception when
compiling, use this flag to allow the JSPs to compile correctly.

packagePrefi x j sp_servl et Specifies the package into which all JSP pages are compiled.

pageCheckSeconds 1 Setstheinterval, in seconds, at which WebL ogic Server checksto
see if JSP files have changed and need recompiling.
Dependencies are also checked and recursively reloaded if
changed.

If set to 0, pages are checked on every request. If setto - 1, page
checking and recompiling is disabled.

ver bose true When settot r ue, debugging information is printed out to the
browser, the command prompt, and WebL ogic Server log file.
wor ki ngDi r internally The name of adirectory where WebL ogic Server saves the
gener at ed generated Java and compiled class files for a JSP.
directory

B-10 Developing WebL ogic Server Applications

application.xml Deployment Descriptor Elements

C dient Application

DeploymentDescriptor
Elements

The following sections describe deployment descriptors for J2EE Client applications
on WebL ogic Server. Two deployment descriptors are required: a J2EE standard
deployment descriptor, named appl i cati on. xnl , and a WebL ogic-specific runtime
deployment descriptor with a name derived from the client application JAR file.

m application.xml Deployment Descriptor Elements

m WebL ogic Run-time Client Application Deployment Descriptor

application.xml Deployment Descriptor
Elements

Theappl i cation. xn fileisthe deployment descriptor for Enterprise Application
Archives. Thefileislocated in the META- | NF subdirectory of the application archive.
It must begin with the following DOCTY PE declaration:

<! DOCTYPE application PUBLIC "-//Sun M crosystens,

Inc.//DTD J2EE Application 1.2//EN'
"http://java.sun.com dtd/ application_1_2.dtd">

Developing WebL ogic Server Applications C-1

C dient Application Deployment Descriptor Elements

The following diagram summarizes the structure of the appl i cat i on. xm
deployment descriptor.

‘ application ‘

4{ icon ‘
small-icon ‘
large-icon ‘

4{ display-name ‘

4{ description? ‘

4{ module+ ‘

ejb ‘

java ‘

web ‘

web-uri ‘

context-root ‘

4{ security-role* ‘

description ‘ ? = Optional
+ = One or more
role-name ‘ * = Zero or more

The following sections describe each of the elements that can appear in thefile.

application

appl i cati on istheroot element of the application deployment descriptor. The
elements withinthe appl i cat i on element are described in the following sections.

C-2 Developing WebL ogic Server Applications

application.xml Deployment Descriptor Elements

icon
Thei con element specifies the locations of small and |arge images that represent the
application in a GUI tool. This element is not currently used by WebL ogic Server.
small-icon
Optional. Specifiesthe location for asmall (16x16 pixel) . gi f or. j pg image used to
represent the application in aGUI tool. Currently, thisis not used by WebL ogic Server.
large-icon

Optional. Specifiesthe location for alarge (32x32 pixel) . gi f or . j pg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebL ogic Server.

display-name
Optional. Thedi spl ay- nanme element specifies the application display name, a short
name that is intended to be displayed by GUI tools.

description

The optional description element provides descriptive text about the application.

module

Theappl i cati on. xm deployment descriptor containsone modul e element for each
modulein the Enterprise Archivefile. Each modul e element containsanej b, j ava, or
web element that indicates the module type and location of the module within the
application. An optional al t - dd element specifies an optional URI to the
post-assembly version of the deployment descriptor.

ejb

Defines an EJB modulein the application file. Contains the path to an EJB JARfilein
the application.

Example:

Developing WebL ogic Server Applications C-3

C dient Application Deployment Descriptor Elements

java

web

security-role

description

<ej b>pet Store_EJB. j ar</ ej b>

Defines aclient application module in the application file.
Example:

<java>client_app.jar</java>

Defines a Web application module in the application file. Theweb element contains a
web- uri element and, optionally, acont ext - r oot element.

web-uri

Defines the location of a Web module in the application file. Thisis the name of the
.war file.

context-root
Optional. Specifies a context root for the Web application.
Example:
<web>
<web- uri >pet St or e. war </ web-uri >

<cont ext - r oot >est or e</ cont ext - r oot >
</ web>

Thesecurity-rol e element containsthe definition of a security role which isglobal
tothe application. Each securi t y-r ol e element contains an optional descri pti on
element, and ar ol e- nane element.

Optional. Text description of the security role.

Cc-4 Developing WebL ogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor

role-name

Required. Definesthe name of asecurity role or principal that isused for authorization
within the application. Roles are mapped to WebL ogic Server users or groups in the
webl ogi c- appl i cation. xm deployment descriptor.

Example:

<security-rol e>
<descri ption>the gold custoner rol e</description>
<r ol e- nanme>gol d_cust oner </ r ol e- nane>
</ security-rol e>
<security-rol e>
<descri ption>the custoner rol e</description>
<r ol e- nanme>cust oner </ r ol e- nane>
</security-role>

WebLogic Run-time Client Application
Deployment Descriptor

This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory asthe client application JAR file.

Thefile name for the deployment descriptor isthe base name of the JAR file, with the
extension . runti me. xm . For example, if the client application is packaged in afile
named c: / appl i cations/ d i ent Mai n. j ar, the runtime deployment descriptor is
inthefilenamed c: / appl i cati ons/ d i ent Mai n. runti ne. xm

Developing WebL ogic Server Applications C-5

C dient Application Deployment Descriptor Elements

Thefollowing diagram shows the structure of the elementsin the runtime deployment

descriptor.

‘ application-client ‘

4{

env-entry* ‘

4{
4{

env-entry-name ‘

env-entry-value ‘

ejb-ref* ‘

4{
4{

ejb-ref-name ‘

jndi-name ‘

resource-ref* ‘

_{ resource-ref-name ‘

_{

* 4)

jndi-name ‘

application-client

Optional
One or more

Zero or more

Theappl i cation-client elementisthe root element of a WebL ogic-specific

runtime client deployment descriptor.

env-entry*
Theenv- ent ry element specifies values for environment entries declared in the
deployment descriptor.

env-entry-name
Theenv- ent ry- name element contains the name of an application client's
environment entry.
Example:

C-6 Developing WebL ogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor

env-entry-value

ejb-ref*

ejb-ref-name

jndi-name

resource-ref*

<env-ent ry-name>Enpl oyeeAppDB</ env- ent ry- nanme>

Theenv-entry-val ue element contains the value of an application client’s
environment entry. The value must be astring valid for the constructor of the specified
type that takes a single string parameter.

Theej b-ref element specifiesthe INDI name for a declared EJB referencein the
deployment descriptor.

Theej b-r ef - nane element contains the name of an EJB reference. The EJB
reference is an entry in the application client’s environment. It is recommended that
nameis prefixed with ej b/ .

Example:

<ej b-ref - nanme>ej b/ Payr ol | </ ej b-r ef - nanme>

Thej ndi - name element specifies the INDI name for the EJB.

Theresour ce-ref element declares an application client’ s reference to an external
resource. It containsthe resource factory reference name, an indication of theresource
factory type expected by the application client’s code, and the type of authentication
(bean or container).

Example:

<resource-ref>

<r es-r ef - name>Enpl oyeeAppDB</ r es-r ef - nane>

<j ndi - nanme>ent er pri se/ dat abases/ HR1984</ j ndi - nanme>
</resource-ref>

Developing WebL ogic Server Applications C-7

C dient Application Deployment Descriptor Elements

resource-ref-name

Ther es-ref - name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the application client’s
environment entry whose value contains the JNDI name of the data source.

jndi-name

Thej ndi - name element specifies the INDI name for the resource.

C-8 Developing WebL ogic Server Applications

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. Understanding WebLogic Server Applications
	2. Developing WebLogic Server Components
	3. Packaging and Deploying WebLogic Server Applications
	4. Programming Topics
	5. Writing Web Application Deployment Descriptors
	A. web.xml Deployment Descriptor Elements
	B. weblogic.xml Deployment Descriptor Elements
	C. Client Application Deployment Descriptor Elements

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding WebLogic Server Applications
	What Are WebLogic Server Application Components?
	Web Application Components
	Servlets
	JavaServer Pages
	Web Application Directory Structure
	For More Information on Web Application Components
	For help deploying Web Applications, see the following sections of this document:

	Enterprise JavaBean Components
	EJB Overview
	EJB Interfaces
	EJBs and WebLogic Server

	WebLogic Components

	Enterprise Applications
	Client Applications

	2 Developing WebLogic Server Components
	Creating WebLogic Server Applications: Main Steps
	1. Create Web and EJB components for your application.
	2. Create deployment descriptors.
	3. Create component archive.
	4. Create application deployment descriptor.
	5. Assemble application.
	Figure 2�1 Creating Enterprise Applications
	Creating Web Applications: Overview
	Creating Enterprise Beans: Overview
	Creating Enterprise Applications: Overview

	Establishing a Development Environment
	Software Tools
	Source Code Editor or IDE
	Java Compiler
	Development WebLogic Server
	Database System and JDBC Driver
	Web Browser

	Third-Party Software
	WebGain VisualCafé Enterprise Edition
	Informix Cloudscape
	Sybase PowerJ
	WebGain TopLink
	KL Group JProbe
	Versant Enterprise Container
	eXcelon Javlin
	Object Design ObjectStore

	Preparing to Compile
	Putting the Java Tools in Your Search Path
	Setting the Classpath for Compiling
	Setting Target Directories for Compiled Classes
	CLIENT_CLASSES
	SERVER_CLASSES
	EX_WEBAPP_CLASSES
	APPLICATIONS

	3 Packaging and Deploying WebLogic Server Applications
	Packaging Overview
	JAR Files
	jar cf jar-file files ...
	jar xf jar-file
	jar tf jar-file

	XML Deployment Descriptors
	Table 3�1 J2EE and WebLogic Deployment Descriptors

	Packaging Web Applications
	1. Create a temporary staging directory.
	2. Copy all of your HTML files, JSP files, images, and any other files that these Web pages refer...
	3. Create META-INF and WEB-INF/classes subdirectories in the staging directory to hold deployment...
	4. Copy or compile any servlet classes and helper classes into the WEB-INF/classes subdirectory.
	5. Copy the home and remote interface classes for enterprise beans used by the servlets into the ...
	6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be installed in a sub...
	7. Create web.xml and weblogic.xml deployment descriptors in the WEB-INF subdirectory.
	8. Bundle the staging directory into a .war file by executing a jar command such as the following:

	Packaging Enterprise JavaBeans
	1. Create a temporary staging directory.
	2. Compile or copy the bean’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Create an ejb-jar.xml deployment descriptor in the META-INF subdirectory and add entries for t...
	5. Create a weblogic-ejb-jar.xml deployment descriptor in the META-INF subdirectory and add entri...
	6. If the bean is an entity bean with container-managed persistence, create a weblogic-rdbms-cmp-...
	7. When all of the enterprise bean classes and deployment descriptors are set up in the staging d...

	Packaging Enterprise Applications
	1. Create a temporary staging directory.
	2. Copy the Web archives (.war files) and EJB archives (.jar files) into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Create the application.xml deployment descriptor in the META-INF subdirectory.
	5. Create the Enterprise Archive (.ear file) for the application, using a jar command such as:

	Resolving Class References Between Components
	Classloader Overview
	About Application Classloaders
	Packaging Common Utilities and Third-Party Classes
	Handling Interactions Between Startup Classes and Applications

	Deploying Applications and Components
	Using the Administration Console
	1. Start the Administration Console.
	2. In the left pane, expand Deployments.
	3. Under Deployments, click Applications.
	4. In the right pane, click Browse, and find the .ear, .jar, or .war file containing the componen...
	5. Click Upload.
	6. Expand the new application under the Applications node to reveal the components.
	7. For each of the components in the application, click the component name in the left pane, then...
	8. Click on the application name under the Applications node, and check the Deployed check box in...
	9. Click Apply.

	Using the weblogic.deploy Command-Line Utility

	Packaging and Deploying Client Applications
	J2EE Client

	4 Programming Topics
	Logging Messages
	Table 4�1 Log Message Format

	Using Threads in WebLogic Server
	Using JavaMail with WebLogic Server Applications
	About JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	1. In the Administration Console, click on the Mail node in the left pane of the Administration C...
	2. Click Create a New Mail Session.
	3. Complete the form in the right pane, as follows:
	Table 4�2 Mail Session Properties Field

	Sending Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are String vari...
	5. Send the message.

	Reading Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Get a Store object from the Session and call its connect() method to connect to the mail serve...
	5. Get the default folder, then use it to get the INBOX folder:
	6. Read the messages in the folder into an array of Messages:
	7. Operate on messages in the Message array. The Message class has methods that allow you to acce...

	5 Writing Web Application Deployment Descriptors
	Overview of Web Application Deployment Descriptors
	Writing the web.xml Deployment Descriptor
	Main Steps to Create the web.xml File
	Detailed Steps to Create the web.xml File
	Step 1: Create a deployment descriptor file
	Step 2: Create the header
	Step 3: Create the main body of the web.xml file
	Step 4: Define deployment-time attributes
	Step 5: Define context parameters
	Precompiling JSPs

	Step 6: Deploy servlets
	Step 7: Map a servlet to a URL
	</servlet-mapping>

	Step 8: Define the session timeout value
	Step 9: Define welcome pages
	Step 10: Define error pages
	Step 11: Define MIME mapping
	Step 12: Define a JSP tag library descriptor
	Step 13: Reference external resources
	Step 14: Set up security constraints
	Step 15: Set up login authentication
	�

	Step 16: Define security roles
	Step 17: Set environment entries
	Step 18: Reference Enterprise JavaBean (EJB) resources
	Listing 5-1 Sample web.xml with Servlet Mapping, Welcome file, and Error Page

	Writing the WebLogic-Specific Deployment Descriptor (weblogic.xml)
	Main Steps to Create the weblogic.xml File
	Detailed Steps to Create the weblogic.xml File
	Step 1: Begin the weblogic.xml file with a DOCTYPE header
	Step 2: Map security role names to a security realm
	Step 3 Reference resources
	Step 4: Define session parameters
	Step 5: Define JSP parameter

	A web.xml Deployment Descriptor Elements
	icon Element
	display-name Element
	description Element
	context-param Element
	servlet Element
	icon Element
	init-param Element
	security-role-ref Element

	servlet-mapping Element
	session-config Element
	mime-mapping Element
	welcome-file-list Element
	error-page Element
	taglib Element
	resource-ref Element
	security-constraint Element
	web-resource-collection Element
	auth-constraint Element
	user-data-constraint Element

	login-config Element
	form-login-config Element
	security-role Element
	env-entry Element
	ejb-ref Element

	B weblogic.xml Deployment Descriptor Elements
	description Element
	weblogic-version Element
	security-role-assignment Element
	reference-descriptor Element
	resource-description Element
	ejb-reference-description Element

	session-descriptor Element
	Session Parameter Names and Values

	jsp-descriptor Element
	JSP Parameter Names and Values

	C Client Application Deployment Descriptor Elements
	application.xml Deployment Descriptor Elements
	application
	icon
	small-icon
	large-icon

	display-name
	description
	module
	ejb
	java
	web
	web-uri
	context-root

	security-role
	description
	role-name

	WebLogic Run-time Client Application Deployment Descriptor
	application-client
	env-entry*
	env-entry-name
	env-entry-value

	ejb-ref*
	ejb-ref-name
	jndi-name

	resource-ref*
	resource-ref-name
	jndi-name

