o®%%,

9 F
: #
L e a

BEA
WebLogic Server

Programming WebLogic JMS

BEA WebLogic Server Version 6.0
Document Edition 1.0
December 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any el ectronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Programming WebL ogic IMS

Document Edition Date Software Version

10 December 2000 6.0

Contents

About This Document

AUIENCE. ...t e sttt b et b bt b et e e e et ne s X
E-0OCS WED SItE.....eiieiiei ittt s e e e X
How to Print the DOCUMENE.........ccooririiirirerieseree e X
Related INfOrmMation.co.ooeeiee e e Xi
(001 7= o AL U L RO TPRURPRT Xi
Documentation CONVENTIONSc.ciueuerurreriieerienesieesiesesie s seene Xii
1. Introduction to WebLogic JMS

WL IS IMS? ..ottt st sttt st sttt sttt 1-1
WEDLOGIC IMS FEAIUIESeeuvereeeeeeeeeeeeteete e seestesteseeseeseseeseene e seesessesnessesnens 1-2
WebLOGIC IMS ArChItECIUIE....c.eceveeeeee et ene 1-4

MO COMPONENES......cuieirteie ettt sb s se b et ene e se e ene e s 1-5

ClIUSLENNG FEALUIES.......ecviciieieseeeeieeee et se e ne e snenes 1-5
WEDBLOGIC IMS EXLENSIONSeoeveeeerieeeseesteseseesiesieseeneeseseeseeneesesseesessessessessens 1-7

2. WebLogic JMS Fundamentals

MeESSAgiNG MOTEIS.......eiiieiieie e e 2-2

POINt-t0-POINt MESSAGINGe.veeverereerrereeiereeeeesresesresreseeseesseeeseeseesessessens 2-2

Publish/Subscribe MeSSaging.........ccoereerrieeienere e 2-3

M ESSA0E PEISISLENCE. ... ettt e eb e 2-4
WEDLOGIC IMS ClESSES......ccteeereeriereeeeneeresteseseestestessessesseseessensessnseeassessessessens 2-5
CONNECHTIONFBCLONYciiieictieie ettt bbb e sne e 2-6
1670107 o 1o o FOU USSP 2-7
=SS o o OO 2-8

NON-tranSaCted SESSIONc.ciuiiiriire et et r e 29

TranSACEd SESTIONccueririiriirie ettt et e e e enea 2-11

Programming WeblL ogic IMS i

MessageProducer and M essageCONSUMEScueiueeerireenereeesesesresee e eeeeas 2-12
T SS2 o = 2-14
Message Header Fields.........coouveririeeieinre e 2-14
Message Property FIelds.......ooo e 2-18
=SS0 (= 2 |V R 2-18
ServerSessiONPOOIFACTONYcoiieiiieeiere e e 2-19
SErVErSESSIONPOOIcouiiiiiieie et et 2-20
SNV SESSION...eteiereere ettt 2-20
CONNECETONCONSUIMIEScviiieiiteiesieseesieseeseesee e e e et esee st s e sbe s e ssessesbesaeseesreeeses 2-21

Managing WebLogic JMS

Configuring WebLOGIC IMSccv oot seens 32
Configuring WebLogiC IMS CIUSLENING......coereeriireeiereeeereeeeesreeeseseeseseesnens 33
Monitoring WeDLOGIC IMS........coiiiiiereresese e e 34
Recovering From aWebLogic Server Failure.........ccovveveeevnceecesese e 34

Developing a WebLogic JMS Application

Application DevelopmENt FIOW........cooieiiierirenere e 4-2
Importing Required Packages...........ccooeieiiinieie e 4-3
Setting Up @aJMS APPlICaLIONccveieeececeeie ettt e 4-4
Step 1: Look Up a Connection Factory in INDI ... veiinneniencnenne 4-6
Step 2: Create a Connection Using the Connection Factoryc.c...... 4-7
Step 3: Create a Session Using the CoNNECLioN.........cccccvvereveereereeeerennnnn 4-8
Step 4: Look Up aDestination (QUEUE OF TOPIC).....veveevererreererereerieneenees 4-10
Step 5: Create Message Producers and M essage Consumers Using the
Session and DESHiNGLIONS.......c.oceereriere e e 4-11
Step 6a: Create the Message Object (Message Producers)coveenee. 4-14
Step 6b: Optionally Register an Asynchronous Message Listener (Message
(0001010 191< =) 1SR UR 4-15
Step 7: Start the CONNECLTION.........ccouiereeeere e 4-16
Example: Setting Up aPTP Application..........occovoeevneencnerceencneerns 4-16
Example: Setting Up a Pub/Sub Applicationccoccveiecennccnieneneins 4-19
SENAING MESSAGES.ceeeueeueeerieeerie ettt sttt e e e s eebe e aeese st e saeseesbebees 4-22
Step 1: Create aMessage ODJECL ..o 4-22
Step 2: DEfiNE aMESSAGE......eeiveeeieiee ettt 4-22

Programming WebL ogic IMS

Step 3: Send the Message to a DeStinationccocvveeveverereereeresienieneens 4-23
Dynamically Configuring Message Producer Configuration Attributes.. 4-27

Example: Sending Messages Within aPTP Application.........c.ccceeveene. 4-28
Example: Sending Messages Within a Pub/Sub Application................... 4-28
RECEIVING MESSAGES ..ottt sttt s e st nes 4-29
Receiving Messages ASyNChroNOUSIYccccveeveerereseesieseeseeeeneeeeeeseens 4-30
Receiving Messages Synchronoudly ... siese e 4-30
Receiving Messages with Client SErvIetS........ccoooevenenineneneeecen 4-31
Recovering ReCEIVEd MESSAgES.ccvrvrereereerieneesisseeseeseeeseesseseeseesse s 4-33
Acknowledging ReCEIVEd MESSAgES.......ccccererererie e 4-34
Releasing ObjeCt RESOUICESc.cooiiuiririe et e ene s 4-35
Managing CONNECLIONS.........ccveiriereieerierieseeseeseeee e eseere e ere e seesreeesseeeneeneenes 4-36
Defining a Connection EXception LiStenercceveeriereneneneniesicenes 4-36
Accessing Connection Meta Data.........c.covereereerieienienenese e 4-37
Starting, Stopping, and Closing a CoONNECLIONcccocevveeveeveriereseereenens 4-38
MBNAGING SESSIONS.......ceierueeirieeieetere sttt seesee st e resaesbe st et besbeseebesbeeeneeneenes 4-39
Defining a Session EXception LiStenercocoveeeeveeerienenene e 4-40
ClOSING @ SESSION ...cvvvireiieieseeeeee et s re e se e e e e eneeneenens 4-41
Creating Destinations DynamiCallyc.coirerinrieinieni e 4-42
Using the IMSHelper Class Methods...........ccccoeevneniniiineneceeeeee 4-42
Using Temporary DeStiNatioNs.........c..coveeereeeriesiesesieseseeseeseeseeseeseesenseens 4-44
Setting Up Durable SUDSCIIPLIONScoeieiiieie e 4-46
Defining the CHIENt ID ... e 4-46
Creating Subscribers for a Durable Subscription..........ccoccvvvevereieeneennns 4-48
Deleting Durable SUDSCIiPLIONScereiiierereriee e 4-49
Modifying Durable SUDSCIPLIONS........cccoiiiriiirereee e 4-49
Setting and Browsing M essage Header and Property Fields.........cccvevveeenens 4-50
Setting Message Header FIelds........ooeeieinenecee e 4-50
Setting Message Property Fields.... ... 4-53
Browsing Header and Property Fields.........cccovvivvieveninvenceeeeeceen 4-57
FIltering MESSA0ES.c.ciiie ettt ettt bbb 4-58
Defining Message Selectors Using SQL Statements..........c.ccoevereeieeennes 4-59
Defining XML Message Selectors Using XML Selector Method............ 4-60
Displaying Message SEl€CLOrS........ccoiriiiierireeeeee e 4-61
Defining Server SeSSioN POOIS ..o 4-61

Programming WeblL ogic IMS v

Vi

Step 1. Look Up Server Session Pool Factory in INDI........ccceceevveenenne. 4-64
Step 2: Create a Server Session Pool Using the Server Session Pool Factory

4-64
Step 3: Create a ConNection CONSUMESccviererereereereeseenesresresseeeenees 4-66
Example: Setting Up a PTP Client Server Session Podlcccccvvvenens 4-68
Example: Setting Up a Pub/Sub Client Server Session Paal 4-70
USING MUILICBSLING ...eveveveiieeiecesesecese s e e s se e e sre e enenen 4-73
Step 1: Set Up the IMS Application, Creating Multicast Session and Topic
SUDSCIIEN ... e 4-75
Step 2: Set Upthe Message LiStener ..o 4-76
Dynamically Configuring Multicasting Configuration Attributes........... 4-77
Example: MUITICASt TTL ..ccciiiieierie et s 4-78

Using Transactions with WebLogic JMS

OVErView Of TranSACHIONS.......ccuveverieierieerie ettt s ebe e 5-2
USINg IMS TransaCtetd SESSIONS.......cceeurrerierireeriesesesesaeseeseesesseeesreseeseessessenes 5-3
Step 1: Set Up IMS Application, Creating Transacted Session................. 5-4
Step 2: Perform Desired Operations.........c.ceoveveeeeneeesieseseseseesesseeseeseenenns 55
Step 3: Commit or Roll Back the IMS Transacted Session..........cccvveeeeeee. 55
USING JTA USEr TraNSaCtiONS.....couiiueieriereeieee et sies e see e et see e e seese e 5-6
Step 1: Set Up IMS Application, Creating Non-Transacted Session......... 5-7
Step 2: Look Up User Transaction in INDIccccvvveveveeveeneseee e 5-8
Step 3: Start the JTA UsSer TranSaCtionccccceevevereeneneeneeresese e 5-8
Step 4: Perform Desired Operations.........coceevereeeeneeerieseseeseseesesseessesessenns 5-8
Step 5: Commit or Roll Back the JTA User Transaction..........cc.cceeveeeeeee. 5-9
Asynchronous Messaging Within JTA User Transactions Using Message Driven
BBANS ... e e b ne e e e s 5-9
Example: IMSand EJB in aJTA User Transaction........ccocvvvvevereereneesveenns 5-10

Migrating WebLogic JMS Applications

Existing Feature Functionality Changes...........ccoeeeneienineeienenieeie e 6-1
Migrating EXisting APPliCaHIONScccoueeeirire et e 6-7
BEfOre YOU BEJIN....cuecuecieiei et sttt s 6-7
MIQration SEEPS ...c.eeveiuerierie et bbb 6-7
Deleting IDBC Datahase SEOFES.......ccceurueereriererie e e 6-9

Programming WebL ogic IMS

A. Configuration Checklists

SEIVES CIUSLENS.... vt A-2
JTA USEr TranSaCHIONSccvieeieeeiricecrie ettt e s s e e A-2
IMS TraNSACHIONS ...c.vvveeeeree ettt A-2
MESSAGE DEIIVENY ...e.veeesieiesieeee et st se e ere e st sae e sneneeneas A-3
Asynchronous Message DElIVENY ..o A-3
PErSIStENt MESSA0ES.veveriereireeseereseeestes e seesee e seesssseeseeneesaesesesnesressesnesreneen A-3
Concurrent MeSSage PrOCESSING.ccvervreeurerrereeeriese e sieseesreseesesseeseeesseenens A-4
YT e Tor= s] oo PSS URUUROU A-5
DuUrable SUDSCIIPLIONScuveueeeeeecieeesie et se et st sreneenens A-5
Destination SOt OFAENccueoeerieeriere ettt b e e A-6
Temporary DESHNGLIONSccourerirererie e st A-6
Thresholds and QUOLES.........cecciieieiieciiieecee ettt et sre e A-6
B. JDBC Database Utility
OVEIVIBIV <.ttt ettt b et b e s b e b b se et et e se e e et e e e ebeeeas B-1
ADOUL IMS SEOFES.......oviecireeiereres e nnenes B-1
Regenerating JDBC SLOrES........cveeerrereriiresreeeseses e B-2
Index

Programming WeblL ogic IMS vii

viii Programming WebL ogic IMS

About This Document

This document explains how to use the BEA WebL ogic Server™ platform to
implement the Java™ Messaging Service (JMS) API for accessing enterprise

messaging systems.

The document is organized as follows:

m Chapter 1, “Introduction to WebL ogic IMS,” provides an overview of WebL ogic

Java Message Service (IMS).

Chapter 2, “WebL ogic IMS Fundamentals,” describes WebLogic IMS
components and features.

Chapter 3, “Managing WebLogic IMS,” provides an overview of configuring
and monitoring WebL ogic IMS.

Chapter 4, “Developing a WebLogic IMS Application,” describes how to
develop aWebL ogic IMS application.

Chapter 5, “Using Transactions with WebLogic IMS,” describes how to use
transactions with WebL ogic IMS.

Chapter 6, “Migrating WebL ogic IMS Applications,” describes how to migrate
WebL ogic JM S applications.

Chapter A, “Configuration Checklists,” provides monitoring checklists for
various WebL ogic IM S features.

Chapter B, “JDBC Database Utility,” describes how to use the the JIDBC
database utility to generate new JDBC stores and delete existing ones.

Programming WeblL ogic IMS

iX

Audience

This document is written for application devel opers who want to design, develop,
configure, and manage JM S appli cations using the Java 2 Platform, Enterprise Edition
(J2EE) from Sun Microsystems. It is assumed that readers know JMS, JNDI (Java
Naming and Directory Interface), the Java programming language, the Enterprise
JavaBeans™ (EJB™), and Java Transaction API (JTA) of the J2EE specification.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation. Or you can go directly to the
WebL ogic Server Product Documentation page at http://e-docs.bea.com/wls/docs60.

How to Print the Document

Y ou can print acopy of this document from a Web browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

X Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60
http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebL ogic Server. For

moreinformation on IMS, accessthe IM S Javadoc and the IMS API — Errata, supplied
on the Sun Microsystems Javasoft Web site at the follow locations:

http://www.java.sun.com/products/jms/javadoc-102a/index.html

http://www.java.sun.com/products/jmg/errata_051801.html

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at

docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,

aswell asthetitle and document date of your documentation. If you have any questions

about this version of BEA WebL ogic Server, or if you have problemsinstalling and

running BEA WebL ogic Server, contact BEA Customer Support through BEA

WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the fol lowing information:

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Programming WeblL ogic IMS

Xi

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://www.java.sun.com/products/jms/errata_051801.html
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

Xii

The following documentation conventions are used throughout this document.

Convention Usage
Ctrl+Tab Keysyou press simultaneously.
italics Emphasis and book titles.
nonospace Code samples, commands and their options, Java classes, data types,
t ext directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;
chrmod u+w *
confi g/ exanpl es/ appl i cati ons
.java
config. xm
fl oat
nonospace Variablesin code.
italic Example:
t ext .
String Customer Nane;
UPPERCASE Device names, environment variables, and logical operators.
TEXT Examples:
LPT1
BEA_HOME
OR
{1} A set of choicesin asyntax line.

Optiona itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Programming WebL ogic IMS

Convention Usage

| Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c. depl oy [list| depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in a command line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Programming WeblL ogic IMS Xiii

Xiv Programming WebL ogic IMS

CHAPTER

1 Introduction to
WebLogic JMS

Thefollowing sections provide an overview of the WebL ogic JavaMessaging Service
(IMS):

= What ISIMS?

m WebLogic IMS Features

m WeblLogic IMS Architecture
m WebLogic JMS Extensions

What Is JMS?

An enterprise messaging system, also referred to as Message-Oriented Middleware
(MOM), enables applications to communicate with one another through the exchange
of messages. A message is arequest, report, and/or event that contains information
needed to coordinate communication between different applications. A message
provides alevel of abstraction, allowing you to separate the detail s about the
destination system from the application code.

The JavaMessage Service (JMS) isastandard API for accessing enterprise messaging
systems. Specifically, IMS:

m Enables Java applications sharing a messaging system to exchange messages

Programming WeblL ogic IMS 11

1 introductionto WebLogic IMS

m Simplifies application development by providing a standard interface for
creating, sending, and receiving messages

The following figure illustrates WebL ogic IM S messaging.
Figure1l-1 WebLogic JMS Messaging

WebLogic JMS

=B =

=
Application A - iE — Application B

i
Message Producer

= Message Consumer

Asillustrated in the figure, WebL ogic JM S accepts messages from producer
applications and delivers them to consumer applications.

WebLogic JMS Features

WebLogic JMS provides afull implementation of the IMS API. Specificaly,
WebLogic IMS;

m Providesasingle, unified messaging API.

m Implements the JavaSoft JM S specification version 1.0.2a, including the latest
JMS API — Errata.

m Support clustering.

m Supports messaging for applications that span different operating systems and
machine architectures.

m Can be configured by setting attributes from the WebL ogic Administration
Console and/or using the IMS API to override values.

m Allowsinteroperability between JM S applications and other resource managers
(primarily databases) using the Java Transaction APl (JTA) transactions. IMS
applications can participate in transactions with other Java APIs that use JTA.

1-2 Programming WebL ogic IMS

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://www.java.sun.com/products/jms/errata_051801.html

WebLogic JMS Features

Supports messages containing Extensible Markup Language (XML).

Supports multicasting allowing the delivery of messages to a select group of
hosts using an 1P multicast address.

May use either adatabase or file for persistent message storage.

Can be used with other BEA WebL ogic Server™ APIs and facilities, such as
Enterprise Java Beans (EJB), JDBC connection pools, Servlets, and RMI.

Programming WeblL ogic IMS 1-3

1 introductionto WebLogic IMS

WebLogic JMS Architecture

The following figure illustrates the WebL ogic JM S architecture.

Figure1-2 WebLogic JMSArchitecture

WebLagic Server
WebLogic JMS
A
S JMS Server
= ch
S ; 2
T F
h
»| JNDI <
Al-=A
B1-=B
B2- B *
B
Client 2 =
B1 iste
- ; Persistel
= B2 > Storage
¥ “ JME Server
WebLogic JMS

1-4 Programming WebL ogic IMS

WebLogic JMS Architecture

Major Components

The major components of the WebL ogic IMS Server architecture, asillustrated in the
figure “WebL ogic IMS Architecture” on page 1-4, include:

WebL ogic JM S servers implementing the messaging facility
Client applications

JINDI (Java Naming and Directory Interface), which provides a server lookup
facility

Backing stores (file or database) for storing persistent data

Clustering Features

The WebL ogic IM S architecture implements clustering of multiple IMS servers. For
detailed information about WebL ogic clustering, see the Using WebLogic Server
Clusters.

The advantages of clustering include:

Load balancing of destinations across multiple serversin the cluster

A system administrator can establish load balancing of destinations across
multiple IMS servers in the cluster by configuring multiple JIM S servers and
using targets to assign them to the defined WebL ogic Servers. Each IM S server
is deployed on exactly one WebL ogic Server and handles requests for a set of
destinations.

Note: Load balancingisnot dynamic. During the configuration phase, the system
administrator definesload balancing by specifying targetsfor IMS servers.

Cluster-wide, transparent access to destinations from any server in the cluster

A system administrator can establish cluster-wide, transparent access to
destinations from any server in the cluster by configuring multiple connection
factories and using targets to assign them to WebL ogic Servers. Each connection
factory can be deployed on multiple WebL ogic Servers.

Programming WeblL ogic IMS 1-5

http://e-docs.bea.com/wls/docs60/cluster/index.html
http://e-docs.bea.com/wls/docs60/cluster/index.html

1 introductionto WebLogic IMS

The application uses the Java Naming and Directory Interface (JNDI) to look up
a connection factory and create a connection to establish communication with a
JMS server. Each IMS server handles requests for a set of destinations. Requests
for destinations not handled by a JM S server are forwarded to the appropriate
server.

Connection factories are described in more detail in “WebLogic IMS
Fundamentals’ on page 2-1.

m Scalability
Scalability is provided by:

e Load balancing of destinations across multiple serversin the cluster, as
described previously.

e Distribution of application load across multiple JIMS servers via connection
factories, thus reducing the load on any single IMS server and enabling
session concentration by routing connections to specific servers.

e Optional multicast support, reducing the number of messages required to be
delivered by a JMS server. The IM S server forwards only a single copy of a
message to each host group associated with a multicast | P address, regardless
of the number of applications that have subscribed.

Note: Automatic failover is not supported by IMS for thisrelease.

1-6 Programming WebL ogic IMS

WebLogic JMS Extensions

WebLogic JMS Extensions

In addition to the API specified by the JavaSoft IM S specification version 1.0.2,
WebL ogic IMS provides a public API, webl ogi c. j ms. ext ensi ons, that includes
classes and methods for the extensions described in the following table.

Table 1-1 WebL ogic JIM S Extensions

Extension

For moreinformation. . .

Create XML messages

Refer to “ Step 6a: Create the Message Object (Message
Producers)” on page 4-14

Define a session exception listener

Refer to “Defining a Session Exception Listener” on page 4-40

Set or display the maximum number of
pre-fetched asynchronous messages allowed
on the session

Refer to “Dynamically Configuring Multicasting Configuration
Attributes’ on page 4-77

Set or display the multicast session overrun
policy that is applied when the message
maximum is reached

Refer to “ Dynamically Configuring Multicasting Configuration
Attributes’ on page 4-77

Dynamically create permanent queues or
topics

Refer to “Using the IM SHel per Class Methods® on page 4-42

Convert between WebLogic IMS 6.0 and
pre-6.0 IMSMessagel Dformats

Refer to “ Setting M essage Header Fields’ on page 4-50

This API also supports NO_ ACKNOW.EDGE and MULTI CAST_NO_ACKNOW.EDGE
acknowledge modes, and extended exceptions, including throwing an exception:

m To the session exception listener (if set), when one of its consumers has been
closed by the server as aresult of aserver failure, or administrative intervention.

m From amulticast session when the number of messages received by the session
but not yet delivered to the messages listener, exceeds the maximum number of
messages allowed for that session.

m From amulticast consumer when it detects a sequence gap (message received
out of sequence) in the data stream.

Programming WeblL ogic IMS 1-7

message URL http://www.javasoft.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/package-summary.html

1 introductionto WebLogic IMS

1-8 Programming WebL ogic IMS

CHAPTER

2

WebLogic JMS
Fundamentals

The following sections describe WebL ogic IM S components and features:
m Messaging Models

m WebLogic IMS Classes

m ConnectionFactory

m Connection

m Session

m Dedtination

m MessageProducer and M essageConsumer
m ServerSessionPool Factory

m ServerSessionPool

m ServerSession

m ConnectionConsumer

Note: For more information on the IM S classes described in this section, access the
JM S Javadoc, including the latest IMS API Errata, supplied on the Sun
Microsystems Javasoft Web site at the following locations:

http://www.javasoft.com/products/jms/javadoc-102a/index.html
and
http://www.java.sun.com/products/jms/errata_051801.html

Programming WeblL ogic IMS 2-1

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://www.java.sun.com/products/jms/errata_051801.html

2 WebLogic JIMS Fundamentals

Messaging Models

JM S supports two messaging models: point-to-point (PTP) and publish/subscribe
(Pub/sub). The messaging models are very similar, except for the following
differences:

m PTP messaging model enables the delivery of a message to exactly one recipient.

m Pub/sub messaging model enables the delivery of a message to multiple
recipients.

Each model isimplemented with classes that extend common base classes. For
example, the PTP classj avax. j ms. Queue and the Pub/sub classj avax. j ns. Topi ¢
both extend the classj avax. j ns. Dest i nat i on.

Each message model is described in detail in the following sections.

Note: Theterms producer and consumer are used as generic descriptions of
applications that send and receive messages, respectively, in either messaging
model. For each specific messaging model, however, unique terms specific to
that model are used when referring to producers and consumers.

Point-to-Point Messaging

The point-to-point (PTP) messaging model enables one application to send amessage
to another. PTP messaging applications send and receive messages using named
queues. A queue sender (producer) sends a message to a specific queue. A queue
receiver (consumer) receives messages from a specific queue.

The following figure illustrates PTP messaging.

2-2 Programming WebL ogic IMS

http://www.java.sun.com/products/jms/errata_051801.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Queue.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Topic.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Destination.html

Messaging Models

Figure2-1 Point-to-Point (PTP) Messaging

: listening i
1
H I
Application Al H‘EDLE:QE ot E Application Al :
= = i
== : i
Application A2 —}— - i‘:]E - ! Epplication A2 |
== : |
1 I
Application A3 MESEEQE Queue E Application A3 i
i |
Message Producers Message Consumers
(Queue Senders) {Queue Receivers)

Multiple queue senders and queue receivers can be associated with a single queue, but
an individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, WebL ogic IMS
determines which one will receive the next message on afirst come, first serve basis.
If no queue receivers are listening on the queue, messages remain in the queue until a
gueue receiver attaches to the queue.

Publish/Subscribe Messaging

The publish/subscribe (Pub/sub) messaging model enables an application to send a
message to multiple applications. Pub/sub messaging applications send and receive
messages by subscribing to atopic. A topic publisher (producer) sends messagesto a
specific topic. A topic subscriber (consumer) retrieves messages from a specific topic.

The following figure illustrates Pub/sub messaging.

Programming WeblL ogic IMS 2-3

2

WebLogic JIMS Fundamentals

Figure2-2 Publish/Subscribe (Pub/Sub) M essaging

WeblLogic JMS

Application Al Application Bl

Application A2 —} N

Application B2

Application A3 MEBSHQE Tﬂf}iﬂ Application B3
Message Producers Message Consumers
(Topic Publishers) {Topic Subscribers)

Unlike with the PTP messaging model, with the Pub/sub messaging model multiple
topic subscribers can receive the same message. JM S retainsthe message until all topic
subscribers have received it.

The Pub/sub messaging model supports durable subscribers, allowing you to assign a
name to atopic subscriber and associate it with auser or application. For more
information about durable subscribers, see “ Setting Up Durable Subscriptions’ on
page 4-46.

Message Persistence

2-4

Messages can be specified as persistent or non-persistent.

A persistent message is guaranteed to be delivered at least once—it is not considered
sent until it has been safely written in the file or database. WeblL ogic IMS writes
persistent messages to a persistent backing store (file or JIDBC database) assigned to
each JM S server during configuration.

Non-persistent messages are not stored. They are guaranteed to be delivered at least
once unless there is a system failure, in which case messages may be lost. If a
connection is closed or recovered, all non-persistent messages that have not yet been
acknowledged will be redelivered. Once a non-persistent message is acknowledged, it
will not be redelivered.

Programming WebL ogic IMS

WebLogic JMS Classes

WebLogic JMS Classes

To create aJMS applications, use thej avax. j ms API. The API allowsyou to create
the class objects necessary to connect to the IM S, and send and receive messages. IMS
classinterfaces are created as subclassesto provide queue- and topic-specific versions

of the common parent classes.

The following table lists the IM S classes described in more detail in subsequent
sections. For a complete description of all IMS classes, seethej avax. j ns,
webl ogi c. j nms. Server Sessi onPool Fact ory, or webl ogi c. j ns. ext ensi ons

javadoc.

Table 2-1 JMS Classes

JMSClass

Description

Connecti onFact ory

Encapsulates connection configuration information. A
connection factory isused to create connections. Y oulook
up a connection factory using JNDI.

Connecti on

Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Sessi on

Defines a serial order for the messages produced and
consumed.

Desti nation

Identifies a queue or topic, encapsulating the address of a
specific provider. Queue and topic destinations manage
the messages delivered from the PTP and Pub/sub
messaging models, respectively.

MessagePr oducer and

Provides the interface for sending and receiving

MessageConsuner messages. M essage producers send messages to a queue
or topic. Message consumers receive messages from a
queue or topic.

Message Encapsulates information to be sent or received.

Ser ver Sessi onPool Fact o
ryl

Encapsulates configuration information for a
server-managed pool of message consumers. The server
session pool factory is used to create server session pools.

Programming WeblL ogic IMS 2-5

http://www.javasoft.com/products/jms/javadoc-102a/index.html
http://www.javasoft.com/products/jms/javadoc-102a/index.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/package-summary.html

WebLogic JIMS Fundamentals

Table 2-1 JM S Classes (Continued)

JMS Class Description

Ser ver Sessi onPool 1 Provides a pool of server sessions that can be used to
process messages concurrently for connection consumers.

Server Sessi on? Associates a thread with a IMS session.

Connect i onConsuner * Specifies a consumer that retrieves server sessions to
process messages concurrently.

1 Supports an optional IMS interface for processing multiple messages concurrently.

For information about configuring JM S objects, see “Managing WebLogic IMS’ on
page 3-1. The procedure for setting up aJM S application are presented in “ Setting Up
aJMS Application” on page 4-4.

ConnectionFactory

2-6

A Connect i onFact or y object encapsul ates connection configuration information,
and enables IM S applications to create a Connect i on. A system administrator
configures connection factories to create connections with predefined attributes.

A system administrator defines and configures one or more connection factories, and
theWebL ogic Server addsthem to the INDI space during startup. The application then
retrieves a connection factory using WebL ogic JNDI.

Notes: WeblL ogic IMS provides one connection factory by default. Y ou only need to
define a connection factory if the default provided by WeblL ogic IMS is not
suitable for your application. For information on configuring connection
factories, see“Managing JIMS’ in the Administration Guide.

Two deprecated connection factories are also supported,

j avax. j ms. QueueConnect i onFact ory and

j avax. j ms. Topi cConnect i onFact ory for backwards compatibility. For
information on migrating to a new default or user-defined connection factory
from a deprecated connection factory, refer to “Migrating WebLogic IMS
Applications’ on page 6-1.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/adminguide/jms.html

Connection

The Connect i onFact or y class does not define methods; however, its subclasses
define methods for the respective messaging models.

A connection factory supports concurrent use, enabling multiple threads to access the
object simultaneously.

The following table describes the Connect i onFact or y subclasses.

Table 2-2 ConnectionFactory Subclasses

Subclass. . . In Messaging IsUsed to Create. . .

Model. ..
QueueConnecti onFactory PTP QueueConnecti on toaJMS PTP provider.
Topi cConnect i onFact ory Pub/sub Topi cConnect i on to aJMS Pub/sub provider.

To learn how to use the Connect i onFact or y class within an application, see
“Developing aWebLogic IMS Application” on page 4-1, or the
j avax. j ms. Connect i onFact or y javadoc.

Connection

A Connect i on object represents an open communication channel between an
application and the messaging system, and is used to create a Sessi on for producing
and consuming messages. A connection creates server-side and client-side objects that
manage the messaging activity between an application and JIMS. A connection may
also provide user authentication.

A Connect i on iscreated by a Connect i onFact ory, obtained through a JNDI
lookup.

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish asingle connection for all messaging. In
the WebL ogic Server, IMStraffic is multiplexed with other WebL ogic serviceson the
client connection to the server. No additional TCP/IP connectionsare created for IMS.
Servlets and other server-side objects may also obtain IMS Connections.

Programming WeblL ogic IMS 2-7

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionFactory.html

2 WebLogic JIMS Fundamentals

By default, a connection is created in stopped mode. For information about how and
whento start astopped connection, see“ Starting, Stopping, and Closing aConnection”
on page 4-38.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

The following table describes the Connect i on subclasses.

Table 2-3 Connection Subclasses

Subclass. . . In Messaging IsUsed to Create. . .
Model. . .
QueueConnecti on PTP QueueSessi ons, and consists of a connectionto aJMS PTP

provider created by QueueConnect i onFactory.

Topi cConnecti on Pub/sub Topi cSessi ons, and consistsof aconnectionto aJM S Pub/sub
provider created by Topi cConnecti onFactory.

To learn how to use the Connect i on class within an application, see“Developing a
WebLogic IMS Application” on page 4-1, or thej avax. j ms. Connect i on javadoc.

Session

A Session object defines a serial order for the messages produced and consumed, and
can create multiple message producers and message consumers. The same thread can
be used for producing and consuming messages. If an application wantsto have a
separate thread for producing and consuming messages, the application should create
a separate session for each function.

A Session is created by the Connection.

Note: A session and its message producers and consumers can only be accessed by
one thread at atime. Their behavior isundefined if multiple threads access
them simultaneously.

2-8 Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Connection.html

Session

The following table describes the Session subclasses.

Table 2-4 Session Subclasses

Subclass. . . InMessaging Providesa context for. . .
Moddl. ..
QueueSessi on PTP Producing and consuming messages for aJMS PTP provider.
Created by QueueConnection.
Topi cSessi on Pub/sub Producing and consuming messages for aJM S Pub/sub provider.
Created by TopicConnection.

To learn how to use the Session class within an application, see “Developing a
WebL ogic IMS Application” on page 4-1, or thej avax. j ms. Sessi on and
webl ogi c. j ms. ext ensi ons. W.Sessi on javadocs.

Non-transacted Session

In anon-transacted session, the application creating the session selects one of thefive
acknowledge modes defined in the following table.

Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge M ode Description

AUTO_ACKNOW.EDGE The Sessi on object acknowledges receipt of a message once the
receiving application method has returned from processing it.

CLI ENT_ACKNOW.EDGE The Sessi on object relies on the application to call an acknowledge
method on a received message. Once the method is called, the session
acknowledges all messages received since the last acknowledge.

Thismode allows an application to receive, process, and acknowledge a
batch of messages with one call.

Programming WeblL ogic IMS 2-9

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Session.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/WLSession.html

2 WebLogic JIMS Fundamentals

Table 2-5 Acknowledge Modes Used for Non-Transacted Sessions (Continued)

Acknowledge Mode

Description

DUPS_OK_ACKNONEDGE

The Sessi on object acknowledges receipt of a message once the
receiving application method has returned from processing it; duplicate
acknowledges are permitted.

This mode is most efficient in terms of resource usage.
Note: You should avoid using this mode if your application cannot

handl e duplicate messages. Duplicate messages may be sent if
an initial attempt to deliver a message fails.

NO_ACKNOW.EDGE

No acknowledge is required. Messages sent to a NO_ACKNOW.EDGE
session are immediately deleted from the server. Messages received in
this mode are not recovered, and as aresult messages may belost and/or
duplicate message may be delivered if an initial attempt to deliver a
message fails.

Thismodeis supported for applications that do not require the quality of
service provided by session acknowledge, and that do not want to incur
the associated overhead.

Note: You should avoid using this mode if your application cannot
handlelost or duplicate messages. Duplicate messages may be
sent if aninitial attempt to deliver a message fails.

MULTI CAST_NO_ACKNOW.EDGE

Multicast mode with no acknowledge required.

Messages sent to aMULTI CAST_NO_ACKNOW.EDGCE session share the
same characteristicsas NO_ ACKNOW.EDGE mode, described previoudly.

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service provided by
session acknowledge. For more information on multicasting, see“Using
Multicasting” on page 4-73.

Note: You should avoid using this mode if your application cannot
handle lost or duplicate messages. Duplicate messages may be
sent if aninitial attempt to deliver a message fails.

2-10

Programming WebL ogic IMS

Destination

Transacted Session

In atransacted session, only onetransaction is active at any given time. Any messages
sent or received during atransaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an
application commitsatransaction, all the messagesthat the application received during
the transaction are acknowledged by the messaging system and messages it sent are
accepted for delivery. If an application rolls back a transaction, the messages that the
application received during the transaction are not acknowledged and messagesit sent
are discarded.

JMSS can participate in distributed transactions with other Java services, such as EJB,
that use the Java Transaction API (JTA). Transacted sessions do not support this
capability asthetransaction isrestricted to accessing the messages associated with that
session. For more information about using IMS with JTA, see “Using JTA User
Transactions’ on page 5-6.

Destination

A Dest i nat i on object can be either aqueue or topic, encapsul ating the address syntax
for a specific provider. The JM S specification does not define a standard address
syntax due to the variations in syntax between providers.

Similar to aconnection factory, an administrator defines and configuresthe destination
and the WebL ogic Server adds it to the INDI space during startup. Applications can
also create temporary destinations that exist only for the duration of the IMS
connection in which they are created.

On the client side, Queue and Topi ¢ objects are handles to the object on the server.
Their methods only return their names. To access them for messaging, you create
message producers and consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously.

Programming WebLogic IMS ~ 2-11

2 WebLogic JIMS Fundamentals

JMS Queues and Topi cs extend j avax. j ns. Dest i nat i on. The following table
describes the Dest i nat i on subclasses.

Table 2-6 Destination Subclasses

Subclass. . . In Messaging Manages Messages For. . .
Model. . .
Queue PTP JMS PTP provider.
Tenpor ar yQueue PTP JMS PTP provider, and exists for the duration of the IMS

connection in which the messages are created. A temporary queue
can be consumed only by the queue connection that created it.

Topi ¢ Pub/sub JM S Pub/sub provider.

Tenpor aryTopi c Pub/sub JMS PTP provider, and exists for the duration of the IMS
connection in which the messages are created. A temporary topic
can be consumed only by the topic connection that created it.

Note: An application has the option of browsing queues by creating a
QueueBr owser objectinitsqueue session. Thisobject produces a snapshot of
the messages in the queue at the time the queue browser is created. The
application can view the messages in the queue, but the messages are not
considered read and are not removed from the queue. For more information
about browsing queues, see “Browsing Header and Property Fields’ on page
4-57.

To learn how to use the Dest i nat i on class within an application, see “Developing a
WebLogic IMS Application” on page 4-1, or thej avax. j ms. Dest i nat i on javadoc.

MessageProducer and MessageConsumer

A MessagePr oducer object sendsmessagesto aqueueor topic. A MessageConsumer
object receives messages from a queue or topic. Message producers and consumers
operate independently of one another. M essage producers generate and send messages
regardless of whether a message consumer has been created and is waiting for a
message, and vice versa.

2-12 Programming WebLogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Destination.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Destination.html

MessageProducer and MessageConsumer

A Sessi on createsthe MessagePr oducer s and MessageConsuner s that are attached
to queues and topics.

The message sender and receiver objects are created as subclasses of the
MessagePr oducer and MessageConsuner classes. Thefollowing table describesthe
MessagePr oducer and MessageConsuner subclasses.

Table 2-7 MessageProducer and M essageConsumer Subclasses

Subclass. . . In Messaging Performs The Following Function. . .
Modedl. ..
QueueSender PTP Sends messages for aJM S PTP provider.
QueueRecei ver PTP Receives messages for aJMS PTP provider, and exists until the
JMSS connection in which the messages are created is closed.
Topi cPubl i sher Pub/sub Sends messages for a IM S Pub/sub provider.
Topi cSubscri ber Pub/sub Receives messagesfor aJM S Pub/sub provider, and existsfor the

duration of the IMS connection in which the messages are
created. Message destinations must be bound explicitly using the
appropriate INDI interface.

The PTP model, as shown inthefigure* Point-to-Point (PTP) Messaging” on page 2-3,
allows multiple sessions to receive messages from the same queue. However, a
message can only be delivered to one queue receiver. When there are multiple queue
receivers, WebL ogic M S defines the next queue receiver that will receive a message
on afirst-come, first-serve basis.

The Pub/sub model, as shown in the figure “ Publish/Subscribe (Pub/Sub) M essaging”
on page 2-4, allows messages to be delivered to multiple topic subscribers. Topic
subscribers can be durable or non-durable, as described in “ Setting Up Durable
Subscriptions’ on page 4-46.

An application can use the same JM S connection to both publish and subscribe to a
single topic. Because topic messages are delivered to all subscribers, an application
can receive messages it has published itself. To prevent clients from receiving
messages that they publish, aJM S application can set anoLocal attribute onthetopic
subscriber, as described in “ Step 5: Create Message Producers and M essage
Consumers Using the Session and Destinations” on page 4-11.

Programming WebLogic IMS ~ 2-13

2 WebLogic JIMS Fundamentals

To learn how to use the MessagePr oducer and MessageConsurrer classes within an
application, see “ Setting Up a IMS Application” on page 4-4, or the
j avax. j ms. MessagePr oducer andj avax. j ms. MessageConsuner javadocs.

Message

A Message object encapsulates the information exchanged by applications. This
information includes three components: a set of standard header fields, a set of
application-specific properties, and a message body. The following sections describe
these components.

Message Header Fields

Every JM' S message contains a standard set of header fieldsthat isincluded by default
and availabl e to message consumers. Somefields can be set by the message producers.

For information about setting message header fields, see “ Setting and Browsing
Message Header and Property Fields’ on page 4-50, or to thej avax. j ns. Message
javadoc.

2-14 Programming WebLogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageProducer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageConsumer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

Message

Thefollowing table describes the fields in the message headers and shows how values
are defined for each field.

Table 2-8 Message Header Fields

Field

Description Defined By

JMSCorrel ationl D

Specifies one of the following: a WebLogic JMSMessagel D Application
(described later in thistable), an application-specific string, or a
byt e[] array. The JIMSCor r el at i onl Disused to correlate
messages.
There are two common applications for this field.
Thefirst application is to link messages by setting up a
request/response scheme, as follows:
1. When an application sends a message, it stores the
JMSMessagel Dvalue assigned toit.

2. When an application receives the message, it copiesthe
JMSMessagel Dintothe JMSCor r el at i onl Dfield of a
response message that it sends back to the sending application.

The second application isto use the JIMSCor r el at i onl Dfield to
carry any String you choose, enabling a series of messages to be
linked with some application-determined value.

All JMSMessagel Ds start withan | D: prefix. If you use the
JMSCor r el at i onl Dfor some other application-specific string, it
must not begin with the | D: prefix.

Note: Thebyte[] JMSCorrel ati onl Disavailable for
external IM S providers and is not supported by WebL ogic
JMS. Calling set JMSCor r el ati onl DAsByt es()
throws a
java. |l ang. Unsupport edOper ati onExcepti on.

Programming WebLogic IMS ~ 2-15

2 WebLogic JIMS Fundamentals

Table 2-8 Message Header Fields (Continued)

Field

Description

Defined By

JMBDel i ver yMode

Specifies PERSI STENT or NON_PERS| STENT messaging.

When a persistent message is sent, WebLogic IMS stores it in the
IJMSfile or IDBC database. Thesend() operation isnot
considered successful until delivery of the message can be
guaranteed. A persistent message is guaranteed to be delivered at
least once.

WebL ogic JMS does not store non-persistent messagesin the IMS
database. This mode of operation provides the lowest overhead.
They are guaranteed to be delivered at least once unlessthereisa
system failure, in which case messages may belost. If a connection
isclosed or recovered, all non-persistent messages that have not yet
been acknowledged will be redelivered. Once a non-persistent
message is acknowledged, it will not be reddlivered.

When amessage is sent, thisvalueisignored. When the message is
received, it contains the delivery mode specified by the sending
method.

send() method

JMSDest i nati on

Specifies the destination (queue or topic) to which the messageisto
be delivered. The application’s message producer sets the value of
this field when the message is sent.

When amessage is sent, this value isignored. When amessage is
received, its destination value must be equivalent to the value
assigned when it was sent.

send() method

JMBExpi rati on

Specifies the expiration, or time-to-live value, for a message.

WebL ogic IMS calculates the JMSExpi r at i on value as the sum
of the application’ s time-to-live and the current GMT. If the
application specifiestime-to-liveas 0, IMSExpi r at i onissettoO,
which means the message never expires.

WebL ogic JMS removes expired messages from the system to
prevent their delivery.

send() method

JMsMessagel D

Containsastring valuethat uniquely identifies each message sent by
aJMS Provider.

All JMSMessagel Dsstart withan | D: prefix.

When amessage is sent, this valueisignored. When the message is
received, it contains a provider-assigned value.

send() method

2-16 Programming WebLogic IMS

Message

Table 2-8 Message Header Fields (Continued)

Field

Description Defined By

JMBPriority

Specifiesthe priority level. Thisfield isset beforeamessageissent. Message

JMS defines ten priority levels, 0to 9, 0 being the lowest priority. ~ Consumer
Levels 0-4 indicate gradations of normal priority, and level 5-9

indicate gradations of expedited priority.

When the messageisreceived, it containsthe value specified by the

method sending the message.

Y ou can sort destinations by priority by configuring a destination
key, as described in Managing JMS in the Administration Guide.

JMSRedel i ver ed

Specifies aflag set when amessage is redelivered because no WebLogic IMS
acknowledge was received. Thisflag is of interest to areceiving
application only.

If set, the flag indicates that IMS may have delivered the message
previously because one of the following istrue:

m The application has already received the message, but did not
acknowledge it.

m Thesession'srecover () method was caled to restart the
session beginning after the last acknowledged message. For
more information about ther ecover () method, see
“Recovering Received Messages’ on page 4-33.

JMBRepl yTo

Specifies a queue or topic to which reply messages should be sent. Application
Thisfield is set by the sending application before the messageis
sent.

This feature can be used with the JMSCor r el at i onl D header
field to coordinate request/response messages.
Simply setting the IMSRepl yTo field does not guarantee a

response; it enables the receiving application to respond, if it so
chooses.

Y ou may set the IMSRepl yTo to null, which may have asemantic
meaning to the receiving application, such as a notification event.

JMBTI meSt anp

Contains the time at which the message was sent. WebLogic IMS ~ Message
writesthetimestamp in the messagewhen it acceptsthe messagefor ~ Consumer
delivery, not when the application sends the message.

When the message is received, it contains the timestamp.
The value stored in the field is a Javamillis time value.

Programming WebLogic IMS ~ 2-17

http://e-docs.bea.com/wls/docs60/adminguide/jms.html

2 WebLogic JIMS Fundamentals

Table 2-8 Message Header Fields (Continued)

Field

Description Defined By

JMSType

Specifies the message type identifier (String) set by the sending Application
application.

The JM S specification alows someflexibility with thisfield in order

to accommodate diverse IMS providers. Some messaging systems

alow application-specific message types to be used. For such

systems, the IMSTy pe field could be used to hold a message type

ID that provides access to the stored type definitions.

WebL ogic IMS does not restrict the use of thisfield.

Message Property Fields

The property fields of a message contain header fields added by the sending
application. The properties are standard Java name/val ue pairs. Property names must
conform to the message selector syntax specifications defined in the

j avax. j ms. Message javadoc. Thefollowing values are valid: boolean, byte, double,
float, int, long, short, and String.

Although message property fields may be used for application-specific purposes, IMS
provides them primarily for use in message selectors. For more information about
message selectors, see “Filtering Messages” on page 4-58.

For information about setting message property fields, see “ Setting and Browsing
Message Header and Property Fields’ on page 4-50, or to thej avax. j ns. Message
javadoc.

Message Body

A message body contains the content being delivered from producer to consumer.

2-18 Programming WebLogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

Server SessionPool Factory

The following table describes the types of messages defined by IMS. All message
typesextendj avax. j ns. Message, which consists of message headersand properties,

but no message body.
Table 2-9 JM S Message Types
Type Description
j avax.j ns. Byt esMessage Stream of uninterpreted bytes, which must be understood by the sender and

receiver. The access methods for this message type are stream-oriented
readers and writersbased onj ava. i 0. Dat al nput St r eamand
j ava. i o. Dat aQut put St r eam

j avax. j ns. MapMessage Set of name/value pairs in which the names are strings and the values are
Java primitive types. Pairs can be read sequentially or randomly, by
specifying aname.

j avax. j ms. Cbj ect Message Single serializable Java object.

j avax. j ns. St reamnVessage Similar to aBytesMessage, except that only Java primitive typesare written
to or read from the stream.

j avax. j ns. Text Message Single String. The TextMessage can also contain XML content.

webl ogi c. j ns. extensi ons. XML content. Use of the XMLMessage type facilitates message filtering,

XM.Message which is more complex when performed on XML content shippedin a
TextMessage.

For more information, seethej avax. j ns. Message javadoc. For more information
about the access methods and, if applicable, the conversion charts associated with a
particular message type, see the javadoc for that message type.

ServerSessionPoolFactory

A server session pool isaWebL ogic-specific IM S feature that enables you to process
messages concurrently. A server session pool factory is used to create a server-side
Ser ver Sessi onPool .

Programming WebLogic IMS ~ 2-19

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/BytesMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MapMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ObjectMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/StreamMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TextMessage.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/XMLMessage.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

2 WebLogic JIMS Fundamentals

WebLogic IMS defines one Ser ver Sessi onPool Fact ory object, by default:

webl ogi c. j ms. Ser ver Sessi onPool Fact or y: <name>, where<nane> specifiesthe
name of the IMS server to which the session pool is created. The WebL ogic Server
adds the default server session pool factory to the INDI space during startup and the
application subsequently retrieves the server session pool factory using WebL ogic
INDI.

Tolearn how to usethe server session pool factory within an application, see” Defining
Server Session Pools’ on page 4-61, or the
webl ogi c. j ms. Ser ver Sessi onPool Fact ory javadoc.

ServerSessionPool

A Server Sessi onPool application server object provides a pool of server sessions
that connection consumers can retrieve in order to process messages concurrently.

A Ser ver Sessi onPool iscreated by the Ser ver Sessi onPool Fact ory object
obtained through a INDI lookup.

Tolearn how to usethe server session pool within an application, see“ Defining Server
Session Pools’ on page 4-61, or thej avax. j ms. Ser ver Sessi onPool javadoc.

ServerSession

A Ser ver Sessi on application server object enables you to associate a thread with a
JMSS session by providing a context for creating, sending, and receiving messages.

A Ser ver Sessi on iscreated by a Ser ver Sessi onPool object.

To learn how to use the server session within an application, see “Defining Server
Session Pools” on page 4-61, or thej avax. j ms. Ser ver Sessi on javadoc.

2-20 Programming WebLogic IMS

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ServerSessionPool.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ServerSession.html

ConnectionConsumer

ConnectionConsumer

A Connect i onConsurer object usesaserver session to process received messages. I
message traffic is heavy, the connection consumer can load each server session with
multiple messages to minimize thread context switching.

A Connect i onConsuner iscreated by a Connect i on object.

To learn how to use the connection consumers within an application, see “Defining
Server Session Pools’ on page 4-61, or thej avax. j ms. Connect i onConsuner
javadoc.

Note: Connection consumer listeners run on the same JVM as the server.

Programming WebLogic IMS ~ 2-21

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html

2 WebLogic JIMS Fundamentals

2-22 Programming WebLogic IMS

CHAPTER

3

Managing WebLogic
JMS

The Administration Console provides the interface that you can use to enable,
configure, and monitor the features of the WebL ogic Server, including IMS. Toinvoke
the Administration Console, refer the procedures described in Administration Guide.

Thefollowing sections provide an overview of configuring and monitoring WebL ogic
JMS:

m Configuring WebLogic IMS
m Configuring WebL ogic IM S Clustering
m Monitoring WebLogic IMS

m Recovering From a WebL ogic Server Failure

Programming WeblL ogic IMS 31

http://e-docs.bea.com/wls/docs60/adminguide/index.html

3 Managing WebLogic IMS

Configuring WebLogic JMS

32

Using the Administration Console, you define configuration attributes to:
m Enable IMS.
m Create IMS servers.

m Create and/or customize values for IMS servers, connection factories,
destinations (queues and topics), destination templates, destination keys, backing
stores, session pools, and connection consumers.

m Set up custom JM S applications.
m Define thresholds and quotas.

m Enable any desired IM S features, such as server clustering (see the next section),
concurrent message processing, destination sort ordering, and persistent

messaging.

WebL ogic IMS provides default values for some configuration attributes; you must
provide values for all others. If you specify an invalid value for any configuration
attribute, or if you fail to specify avalue for an attribute for which a default does not
exist, the WebL ogic Server will not boot IMS when you restart it. A sample IMS
configuration is provided with the product.

When migrating from a previous release, the configuration information will be
converted automatically, as described in “Migrating Existing Applications’ on page
6-7.

Note: Appendix A, “Configuration Checklists,” provides checklists that enable you
to view the attribute requirements and/or options for supporting various IMS
features.

Programming WebL ogic IMS

Configuring WebLogic JMS Clustering

Configuring WebLogic JMS Clustering

A WebL ogic cluster isagroup of serversthat, from the application point-of-view,
operate asasingle server. A cluster provides:

m Scalability—servers can be added to the cluster dynamically to increase capacity

m High-availability—redundancy of multiple servers insulates applications from
failures

A clustered serviceisonethat isavailable on multiple serversin the cluster. WebL ogic
JMS can be clustered by deploying the service on multiple WebL ogic Servers. Each
clustered service is represented by a replica-aware stub, which appearsto the
application as anorma RMI stub representing a single object, which in actuality
represents a collection of replicas. Each stub employs aload a gorithm that chooses
which replicato call and that is transparent to the caller.

In order to use IMS in a clustered environment, you must:

1. Administer WebL ogic clusters as described in “ Configuring WebL ogic Servers
and Clusters” in the Administration Guide.

2. ldentify server targets for IMS servers and connection factories using the
Administration Console. For more information about the configuration attributes,
see “Managing JIMS’ in the Administration Guide.

Note: You cannot deploy the same destination on more than one IMS server. In
addition, you cannot deploy aJM S server on more than one WebL ogic Server.

For more information about starting WebL ogic clusters and its features and benefits,
see the Using WebL ogic Server Clusters.

Note: Automatic failover is not supported for the clustered IMS service for this
release. For information about performing a manual failover, refer to
“Recovering From a WebL ogic Server Failure’ on page 3-4.

Programming WeblL ogic IMS 33

http://e-docs.bea.com/wls/docs60/adminguide/config.html
http://e-docs.bea.com/wls/docs60/adminguide/config.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/cluster/index.html

3 Managing WebLogic IMS

Monitoring WebLogic JMS

Statistics are provided for the following JMS objects: IM S servers, connections,
sessions, destinations, message producers, message consumers, and server session
pools. You can monitor JM S statistics using the Administration Console.

JM S statistics continue to increment aslong asthe server isrunning. Statistics can only
be reset when the server is rebooted.

For more information on configuring and monitoring WebL ogic IMS, see “Managing
JMS’ in the Administration Guide.

Once WebL ogic IM S has been configured, applications can begin sending and
receiving messages through the IMS API, as described in “ Devel oping a WebL ogic
JMS Application” on page 4-1.

Recovering From a WebLogic Server Failure

The procedures for recovering from a WebL ogic Server failure, and performing a
manual failover, including programming considerations, are described in detail in
“Managing IMS’ in the Administration Guide.

34 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html

CHAPTER

A

Developing a WebLogic
JMS Application

The following sections describe how to develop a WebL ogic IM S application:

Application Development Flow
Importing Required Packages
Setting Up aJM S Application
Sending Messages

Receiving Messages
Acknowledging Received Messages
Releasing Object Resources
Managing Connections

Managing Sessions

Using Temporary Destinations
Setting Up Durable Subscriptions
Setting and Browsing M essage Header and Property Fields
Filtering Messages

Defining Server Session Pools

Using Multicasting

Programming WeblL ogic IMS

4 Dev oping a WebLogic JMS Application

Note: For moreinformation about the JIM S classes described in this section, access
the IMS Javadoc, including the latest Errata, supplied on the Sun
Microsystems Javasoft Web site at the following locations:
http://www.javasoft.com/products/jms/Javadoc-102a/index.html
and
http://www.javasoft.com/products/jms/errata_051801.html

Application Development Flow

When developing aWebL ogic IM S application, you must perform the stepsidentified
in the following figure.

Figure4-1 WebLogic JM S Application Development Flow—Required Steps

|mport Required Packages

!

Set Up a JMS Application

'

Send, Recewe, andfor
Acknowledge Messages

.

Close and Release Resources

I'n addition to the application devel opment stepsdefined in the previousfigure, you can
also optionally perform any of the following steps during your design development:

m Manage connection and session processing
m Create destinations dynamically
m Create durable subscriptions

m Manage message processing by setting and browsing message header and
property fields, filtering messages, and/or processing messages concurrently

4-2 Programming WebL ogic IMS

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://www.java.sun.com/products/jms/errata_051801.html

Importing Required Packages

m Usemulticasting

m Use IMSwithin transactions (described in “ Using Transactions with WebL ogic

JMS’ on page 5-1)

Except where noted, all application devel opment steps are described in the following

sections.

Importing Required Packages

The following table lists the packages that are commonly used by WeblL ogic IMS

applications.
Table 4-1 WebL ogic JM S Packages

Package Description

javax.jns JavaSoft IMS API. This package is always used by
WebL ogic IMS applications.

java. util Utility API, such as date and time facilities.

java.io System input and output API.

j avax. nam ng
webl ogi c. j ndi

JINDI packages required for server and destination
lookups.

j avax. transaction. User Transacti on

JTA API required for JTA user transaction support.

webl ogi c. j ms. Server Sessi onPool Fact ory

WebL ogic IMS public API for use with server session
pools, an optional application server facility described
in the IM S specification.

webl ogi c. j nms. ext ensi ons

WebL ogic-specific IMS public API that provides
additional classes and methods, as described in
“WebLogic IMS Extensions’ on page 1-7.

Programming WeblL ogic IMS 4-3

http://www.javasoft.com/products/jms/javadoc-102a/index.html
http://java.sun.com/j2se/1.3/docs/api/java/util/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/java/io/package-summary.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/package-summary.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jndi/package-summary.html
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/package-summary.html

4 Dev oping a WebLogic JMS Application

Include the following packagei nport statements at the beginning of your program:
i mport javax.jms.*;

import java.util.*;

import java.io.*;

i mport javax.nam ng.*;

i mport javax.transaction.*;

If you implement aserver session pool application, also include the following classon
your import list:

i mport webl ogi c. j ns. Server Sessi onPool Fact ory;

If you want to utilize any of the WebL ogic IM S extension classes described in the
previous table, also include the following statement on your import list:

i mport webl ogi c. j ns. ext ensi ons. *;

Setting Up a JMS Application

Before you can send and receive messages, you must set up aJMS application. The
following figure illustrates the steps required to set up a JMS application.

4-4 Programming WebLogic IMS

Setting Up a IMS Application

Figure4-2 Setting Up a JM S Application

Step 1. Look up JMS
Connection Factory
in JNDI

!

Step 2. Create a Connection
Using the
Connection Factory

Step 3. Create a Session
Using the
Connection

.

Step 4. Look up Destinations
(Queues and Topics)
in JNDI

i

Step 5. Create Message Producers
and Message Consumers
Using Session and Destinations

Step 6a. Create the
Message Object

Step 6b. Optionally Register
Asynchronous Message Listener

57

Step 7. Start the Connection

Programming WebL ogic IMS 4-5

4 Dev oping a WebLogic JMS Application

The setup steps are described in the following sections. Detailed examples of setting
up a Paint-to-point (PTP) and Publish/subscribe (Pub/sub) application are also
provided. The examplesare excerpted from theexanpl es. j ms package provided with
WebL ogic Server inthe sanpl es/ exanpl es directory.

Before proceeding, ensure that the system administrator responsible for configuring
WebL ogic Server has configured the required IM S features, including the connection
factories, IMS servers, and destinations. For more information, see “Managing IM S’
in the Administration Guide.

For more information about the IM S classes and methods described in these sections,
see “WebLogic IMS Classes” on page 2-5 or thej avax. j ms or

webl ogi c. j ms. Ser ver Sessi onPool Fact ory, or webl ogi c. j ms. ext ensi ons
javadoc.

For information about setting up transacted applicationsand JTA user transactions, see
“Using Transactions with WebL ogic IMS’ on page 5-1.

Step 1: Look Up a Connection Factory in JNDI

Before you can look up a connection factory, it must be defined as part of the
configuration information. WebL ogic JM S provides one default connection factory,
that isincluded as part of the configuration by default. The WebLogic JMS system
administrator may add or update connection factories during configuration. For
information on configuring connection factories and the defaultsthat are available, see
“Managing IMS’ in the Administration Guide.

Once the connection factory has been defined, you can look it up by first establishing
aJNDI context (cont ext) using the Nani ngManager . | ni ti al Cont ext () method.
For any application other than a servlet application, you must pass an environment
used to create the initial context. For more information, see the

Nam ngManager . | ni ti al Cont ext () javadoc.

Once the context is defined, to ook up a connection factory in INDI, execute one of
the following commands, for PTP or Pub/sub messaging, respectively:

QueueConnecti onFact ory queueConnectionFactory =
(QueueConnecti onFactory) context.| ookup(CF_nane);

Topi cConnecti onFactory topi cConnecti onFactory =
(Topi cConnecti onFactory) context.| ookup(CF_nane);

4-6 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/index.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()

Setting Up a IMS Application

The CF_name argument specifies the connection factory name defined during
configuration.

For moreinformation about the Connect i onFact or y class, see” ConnectionFactory”
on page 2-6 or j avax. j ms. Connect i onFact ory javadoc.

Step 2: Create a Connection Using the Connection Factory

Y ou can create a connection for accessing a queue or topic using the
Connect i onFact or y methods described in the following sections.

For more information about the Connect i on class, see “ Connection” on page 2-7 or
thej avax. j ms. Connect i on javadoc.

Create a Queue Connection

The QueueConnect i onFact or y provides the following two methods for creating a
gueue connection:

publ i ¢ QueueConnection creat eQueueConnecti on(
) throws JMSException

publ i c QueueConnection creat eQueueConnecti on(
String user Nane,
String password

) throws JMSException

The first method creates a QueueConnect i on; the second method creates a
QueueConnect i on using a specified user identity. In each case, a connectionis
created in stopped mode and must be started in order to accept messages, as described
in“Step 7: Start the Connection” on page 4-16.

For more information about the QueueConnect i onFact ory class methods, see the
j avax. j ms. QueueConnect i onFact ory javadoc. For more information about the
QueueConnect i on class, seethej avax. j ms. QueueConnect i on javadoc.

Programming WeblL ogic IMS 4-7

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Connection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueConnectionFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueConnection.html

4 Dev oping a WebLogic JMS Application

Create a Topic Connection

The Topi cConnect i onFact or y provides the following two methods for creating a
topic connection:

publ i c Topi cConnecti on createTopi cConnecti on(
) throws JMSException

publ i c Topi cConnection createTopi cConnecti on(
String user Nane,
String password

) throws JMSException

The first method creates a Topi cConnect i on; the second method creates a

Topi cConnect i on using a specified user identity. In each case, a connectionis
created in stopped mode and must be started in order to accept messages, as described
in“Step 7: Start the Connection” on page 4-16.

For more information about the Topi cConnect i onFact ory class methods, see the
j avax. j ms. Topi cConnect i onFact ory javadoc. For more information about the
Topi cConnect i on class, seethej avax. j ns. Topi cConnect i on javadoc.

Step 3: Create a Session Using the Connection

4-8

Y ou can create one or more sessions for accessing a queue or topic using the
Connect i on methods described in the following sections.

Note: A session and its message producers and consumers can only be accessed by
one thread at atime. Their behavior isundefined if multiple threads access
them simultaneously.

For more information about the Sessi on class, see “Session” on page 2-8 or the
j avax. j ms. Sessi on javadoc.

Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicConnectionFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Session.html

Setting Up a IMS Application

Create a Queue Session

The QueueConnect i on class defines the following method for creating a queue
session;
publ i c QueueSessi on creat eQueueSessi on(

bool ean transact ed,

i nt acknow edgehbde
) throws JMSException

Y ou must specify aboolean argument indi cating whether the session will betransacted
(true) or non-transacted (fal se), and an integer that indi cates the acknowledge mode for
non-transacted sessions, as described in “ Acknowledge Modes Used for
Non-Transacted Sessions’ on page 2-9. The acknow edgeMode attribute isignored
for transacted sessions. In this case, messages are acknowledged when the transaction
iscommitted using the conmi t () method.

For more information about the QueueConnect i on class methods, see the
j avax. j ms. QueueConnect i on javadoc. For more information about the
QueueSessi on class, seethej avax. j ms. QueueSessi on javadoc.

Create a Topic Session

The Topi cConnect i on class defines the following method for creating atopic
session;
publ i ¢ Topi cSessi on createTopi cSessi on(

bool ean transacted,

i nt acknow edgehbde
) throws JMSException

Y ou must specify aboolean argument indicating whether the session will betransacted
(true) or non-transacted (fal se), and an integer that i ndicates the acknowledge mode for
non-transacted sessions, as described in “ Acknowledge Modes Used for
Non-Transacted Sessions’ on page 2-9. The acknow edgeMode attribute isignored
for transacted sessions. In this case, messages are acknowledged when the transaction
iscommitted using the conmi t () method.

For more information about the Topi cConnect i on class methods, see the
j avax. j ms. Topi cConnect i on javadoc. For more information about the
Topi cSessi on class, seethej avax. j ns. Topi cSessi on javadoc.

Programming WeblL ogic IMS 4-9

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicSession.html

4 Dev oping a WebLogic JMS Application

Step 4: Look Up a Destination (Queue or Topic)

4-10

Before you can look up a destination, the destination must be configured by the
WebLogic JMS system administrator, as described in “Managing IMS’ in the
Administration Guide.

Once the destination has been configured, you can look up a destination by
establishingaJNDI context (cont ext), which has already been accomplished in“ Step
1: Look Up a Connection Factory in INDI” on page 4-6, and executing one of the
following commands, for PTP or Pub/sub messaging, respectively:

Queue queue = (Queue) context.| ookup(Dest_nane);
Topi ¢ topic = (Topic) context.|ookup(Dest_nane);
TheDest _nane argument specifiesthe destination name defined during configuration.

If you do not use a INDI namespace, you can use the following QueueSessi on or
Topi cSessi on method to reference a queue or topic, respectively:

publ i c Queue createQueue(
String queueNane
) throws JMSException

public Topic createTopic(
String topicName
) throws JMSException

The syntax for the queueName and/or t opi cNane string is

JMS_Ser ver _Name/ Dest i nati on_Name (for example,

nyj neser ver/ nydest i nat i on). To view source code that uses this syntax, refer to
thefi ndqueue() examplein “Creating Destinations Dynamically” on page 4-42.

Note: Thecreat eQueue() andcreat eTopi ¢c() methods do not create
destinations dynamically; they create only references to destinations that
aready exist. For information about creating destinations dynamically, see
“Creating Destinations Dynamically” on page 4-42.

For more information about these methods, seethej avax. j ms. QueueSessi on and
j avax. j ms. Topi cSessi on javadoc, respectively.

Once the destination has been defined, you can use the following Queue or Topi ¢
method to access the queue or topic name, respectively:

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicSession.html

Setting Up a IMS Application

public String get QueueName(
) throws JMSException

public String get Topi cNane(
) throws JMSException

To ensure that the queue and topic names are returned in printable format, use the
toString() method.

For more information about the Dest i nat i on class, see “Destination” on page 2-11
orj avax. j ms. Dest i nati on javadoc.

Step 5: Create Message Producers and Message
Consumers Using the Session and Destinations

Y ou can create message producers and message consumers by passing the destination
reference to the Sessi on methods described in the following sections.

Note: Each consumer receivesitsown local copy of a message. Once received, you
can modify the header field values; however, the message properties and
message body are read only. Y ou can modify the message body by executing
the corresponding message type’sr eset () method to clear the existing
contents and enable write permission.

For more information about the MessagePr oducer and MessageConsuner classes,
see “MessageProducer and MessageConsumer” on page 2-12, or the

j avax. j ms. MessagePr oducer andj avax. j ms. MessageConsumner javadocs,
respectively.

Create QueueSenders and QueueReceivers

The QueueSessi on object defines the following methods for creating queue senders
and receivers:

publ i ¢ QueueSender createSender (
Queue queue
) throws JMSException

publ i ¢ QueueRecei ver createRecei ver (
Queue queue
) throws JMSException

Programming WebLogic IMS ~ 4-11

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Destination.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageProducer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageConsumer.html

4 Dev oping a WebLogic JMS Application

publ i ¢ QueueRecei ver createReceiver (
Queue queue,
String nmessageSel ect or

) throws JMSException

Y ou must specify the queue object for the queue sender or receiver being created. Y ou
may also specify a message selector for filtering messages. Message selectors are
described in more detail in “Filtering Messages’ on page 4-58.

If you pass avalue of null tothe cr eat eSender () method, you create an anonymous
producer. In this case, you must specify the queue name when sending messages, as
described in “ Sending Messages’ on page 4-22.

Once the queue sender or receiver has been created, you can access the queue name
associated with the queue sender or receiver using the following QueueSender or
QueueRecei ver method:

publ i c Queue get Queue(
) throws JMSException

For more information about the QueueSessi on class methods, see the
j avax. j ms. QueueSessi on javadoc. For more information about the QueueSender

and QueueRecei ver classes, seethej avax. j ms. QueueSender and
j avax. j ms. QueueRecei ver javadocs, respectively.

Create TopicPublishers and TopicSubscribers

4-12

TheTopi cSessi on object definesthe following methods for creating topic publishers
and topic subscribers:

publ i c Topi cPublisher createPublisher(
Topic topic
) throws JMSException

publ i c Topi cSubscri ber createSubscri ber(
Topic topic
) throws JMSException

publ i c Topi cSubscri ber createSubscri ber(
Topi ¢ topic,
String nessageSel ector,
bool ean nolLocal

) throws JMSException

Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSender.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueReceiver.html

Setting Up a IMS Application

Note: The methods described in this section create non-durable subscribers.
Non-durable topic subscribers only receive messages sent while they are
active. For information about the methods used to create durable subscriptions
enabling messages to be retained until all messages are delivered to adurable
subscriber, see“ Setting Up Durable Subscriptions’ on page 4-46. In this case,
durable subscribers only receive messages that are published after the
subscriber has subscribed.

Y ou must specify the topic object for the publisher or subscriber being created. Y ou
may also specify a message selector for filtering messages and noLocal flag
(described later in this section). M essage selectors are described in more detail in
“Filtering Messages’ on page 4-58.

If you pass avalue of null to the cr eat ePubl i sher () method, you create an
anonymous producer. In this case, you must specify the topic name when sending
messages, as described in “ Sending Messages’ on page 4-22.

An application can have aJM S connection that it usesto both publish and subscribe to
the sametopic. Because topic messages aredelivered to all subscribers, the application
can receive messages it has published itself. To prevent this behavior, aJMS
application can set anoLocal flagto true.

Once the topic publisher or subscriber has been created, you can access the topic name
associated with the topic publisher or subscriber using thefollowing Topi cPubl i sher
or Topi cSubscri ber method:

Topi ¢ get Topi c(
) throws JMSException

In addition, you can accessthe noLocal variable setting associated with the topic
subscriber using the following Topi cSubscri ber method:

bool ean get NoLocal (
) throws JMSException

For more information about the Topi cSessi on class methods, see the

j avax. j ms. Topi cSessi on javadoc. For more information about the

Topi cPubl i sher and Topi cSubscri ber classes, seethe

j avax. j ms. Topi cPubl i sher andj avax. j ms. Topi cSubscri ber javadocs,
respectively.

Programming WebLogic IMS ~ 4-13

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicPublisher.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicSubscriber.html

4 Dev oping a WebLogic JMS Application

Step 6a: Create the Message Object (Message Producers)

Note: This step applies to message producers only.

To create the message object, use one of the following Sessi on or W.Sessi on class
methods:

m Sessi on Methods

Note: These methods are inherited by both the QueueSessi on and
Topi cSessi on subclasses.

publ i c Byt esMessage createByt esMessage(
) throws JMSException

publ i c MapMessage creat eMapMessage(
) throws JMSException

publ i c Message creat eMessage(
) throws JMSException

publ i c Obj ect Message creat eCbj ect Message(
) throws JMSException

publ i c Obj ect Message creat eCbj ect Message(
Serial i zabl e obj ect
) throws JMSException

public StreamVessage createStreamvessage(
) throws JMSException

publ i c Text Message createText Message(
) throws JMSException

publ i c Text Message createText Message(
String text
) throws JMSException

® \WSessi on Method

public XM_.Message creat eXM_Message(
String text
) throws JMSException

For more information about the Sessi on and W.Sessi on class methods, see the
j avax. j ms. Sessi on and webl ogi c. j ns. ext ensi ons. W.Sessi on javadocs,
respectively. For more information about the Message class and its methods, see
“Message’ on page 2-14, or thej avax. j ms. Message javadoc.

4-14 Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Session.html
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/WLSession.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

Setting Up a IMS Application

Step 6b: Optionally Register an Asynchronous Message
Listener (Message Consumers)

Note: This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message
listener by performing the following steps:

1. Implement thej avax. j ms. MessagelLi st ener interface, which includes an
onMessage() method.

Note: For an example of the onMessage() method interface, see“ Example:
Setting Up a PTP Application” on page 4-16.

If youwishtoissuethecl ose() method within an onMessage() method
call, the system administrator must select the Allow Close In OnMessage
checkbox when configuring the connection factory. For more information
on configuring IMS, see “Managing JMS’ in the Administration Guide.

2. Set the message listener using the following MessageConsunmer method, passing
the listener information as an argument:

public void set MessagelLi st ener (
Messageli stener |istener
) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as
described in “ Defining a Session Exception Listener” on page 4-40.

Y ou can unset a message listener by calling the MessagelLi st ener () method with a
vaue of null.

Once a message listener has been defined, you can access it by calling the following
MessageConsuner method:

publ i c Messageli st ener get Messageli st ener(
) throws JMSException

Note: WebL ogic IMS guarantees that multiple onMessage() callsfor the same
session will not be executed simultaneously.

Programming WebLogic IMS ~ 4-15

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageListener.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html

4 Dev oping a WebLogic JMS Application

If amessage consumer is closed by an administrator or astheresult of aserver failure,
aConsuner d osedExcept i onisdelivered to the session exception listener, if onehas
been defined. In this way, a new message consumer can be created, if necessary. For
information about defining a session exception listener, see “ Defining a Session
Exception Listener” on page 4-40.

The MessageConsuner class methods are inherited by the QueueRecei ver and
Topi cSubscri ber classes. For additional information about the MessageConsuner
class methods, see “MessageProducer and MessageConsumer” on page 2-12 or the
j avax. j ms. MessageConsumer javadoc.

Step 7: Start the Connection

Example:

Y ou start the connection using the Connect i on classst art () method.

For additional information about starting, stopping, and closing a connection, see
“ Starting, Stopping, and Closing a Connection” on page 4-38 or the
j avax. j ms. Connect i on javadoc.

Setting Up a PTP Application

The following example is excerpted from the exanpl es. j ms. queue. QueueSend
example, provided with WebL ogic Server in the sanpl es/ exanpl es/ j ns/ queue
directory. Thei ni t () method shows how to set up and start a QueueSessi on for a
JM S application. Thefollowing showsthei ni t () method, with commentsdescribing
each setup step.

Define the required variables, including the JINDI context, JM S connection factory,
and gqueue static variables.

public final static String JND _FACTORY=

"webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory";
public final static String JM5_FACTORY=

"webl ogi c. exanpl es. j ms. QueueConnecti onFact ory";
public final static String

QUEUE="webl ogi c. exanpl es. j ns. exanpl eQueue";

private QueueConnecti onFactory qgconFactory;
private QueueConnecti on gcon;
private QueueSession gsession;

4-16 Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageConsumer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Connection.html

Setting Up a IMS Application

Step 1

Step 2

Step 3

private QueueSender gsender;
private Queue queue;
private Text Message nsg;

Set up the INDI initial context, as follows:

Initial Context ic = getlnitial Context(args[0]);

private static Initial Context getlnitial Context(
String url
) throws Nami ngException

{
Hasht abl e env = new Hasht abl e();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, JNDI _FACTORY);
env. put (Cont ext . PROVI DER_URL, url);
return new I nitial Context(env);

}

Note: When setting up the INDI initial context for a servlet, use the following
method:

Initial Context ic = newinitial Context();

Create al the necessary objects for sending messagesto aJM S queue. Thect x object
isthe JNDI initial context passed in by the mai n() method.
public void init(

Cont ext ctx,

String queueNane
) throws Nam ngException, JMSException

{
Look up a connection factory in INDI.

gconFactory = (QueueConnectionFactory) ctx.| ookup(JM5_FACTORY);
Create a connection using the connection factory.

gcon = qgconFactory. creat eQueueConnection();

Create a session using the connection. The following code defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about transacted sessions and acknowl edge modes, see“ Session” on
page 2-8.

gsessi on = gcon. creat eQueueSessi on(fal se,
Sessi on. AUTO_ACKNOW.EDGE) ;

Programming WebLogic IMS ~ 4-17

4 Dev oping a WebLogic JMS Application

Step4 Look up adestination (queue) in INDI.
queue = (Queue) ctx.|ookup(queueNane);

Step5 Create areference to a message producer (queue sender) using the session and
destination (queue).

gsender = gsession. creat eSender (queue);
Step6 Create the message object.

msg = Qgsession. creat eText Message() ;
Step7 Start the connection.

gcon.start();

}

Thei ni t () method for the exanpl es. j ms. queue. QueueRecei ve exampleis
similar to the QueueSend i ni t () method shown previoudly, with the one exception.
Steps 5 and 6 would be replaced by the following code, respectively:

grecei ver = gsessi on. creat eRecei ver (queue) ;
grecei ver. set Messageli stener (this);

In thefirst ling, instead of calling the cr eat eSender () method to create areference
to the queue sender, the application callsthecr eat eRecei ver () method to createthe
gueue receiver.

In the second line, the message consumer registers an asynchronous message listener.

When amessageis delivered to the queue session, it is passed to the
exampl es. j ns. QueueRecei ve. onMessage() method. The following code excerpt
showsthe onMessage() interface from the QueueRecei ve example:

public void onMessage(Message nsg)

{
try {
String msgText;
if (nmsg instanceof TextMessage) {
nmegText = ((Text Message)nsg) . get Text ();
} else { // If it is not a Text Message...
nmsgText = nsg.toString();
}

Systemout. println("Message Received: "+ nsgText);

i f (nsgText.equal slgnoreCase("quit")) {
synchroni zed(this) {

4-18 Programming WebL ogic IMS

Setting Up a IMS Application

Example:

quit = true;
this.notifyAll(); // Notify main thread to quit
}

}
} catch (JMSException jnse) {
jmse. printStackTrace();

}

The onMessage() method processes messages received through the queue receiver.
The method verifies that the message isaText Message and, if itis, printsthe text of
the message. If onMessage() receivesadifferent messagetype, it uses the message's
toString() method to display the message contents.

Note: Itisgood practice to verify that the received message is the type expected by
the handler method.

For moreinformation about the IM S classes used in thisexample, see“WebL ogic IMS
Classes’ on page 2-5 or thej avax. j ms javadoc.

Setting Up a Pub/Sub Application

The following example is excerpted from the exanpl es. j ms. t opi ¢. Topi cSend
example, provided with WebL ogic Server in the sanpl es/ exanpl es/ j ns/ t opi c
directory. Thei ni t () method showshow to set up and start atopic session for aJMS
application. Thefollowing showsthei ni t () method, with comments describing each
setup step.

Define the required variables, including the INDI context, IM S connection factory,
and topic static variables.

public final static String JND _FACTORY=

"webl ogi c. jndi . W.I nitial Cont ext Factory";
public final static String JM5_FACTORY=

"webl ogi c. exanpl es. j ms. Topi cConnecti onFact ory";
public final static String

TOPI C="webl ogi c. exanpl es. j ns. exanpl eTopi c";

protected Topi cConnectionFactory tconFactory;
prot ect ed Topi cConnection tcon;

prot ect ed Topi cSession tsession;

protected Topi cPublisher tpublisher;

prot ected Topic topic;

protected Text Message nsg;

Programming WebLogic IMS ~ 4-19

http://www.javasoft.com/products/jms/javadoc-102a/index.html

4 Dev oping a WebLogic JMS Application

4-20

Step 1

Step 2

Step 3

Set up the INDI initial context, as follows:

Initial Context ic = getlnitial Context(args[0]);

private static Initial Context getlnitial Context(

String url

) throws Nami ngException

{
Hasht abl e env = new Hasht abl e() ;
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, JNDI _FACTORY);
env. put (Cont ext . PROVI DER_URL, url);
return new I nitial Context(env);

}

Note: When setting up the JNDI initial context for a servlet, use the following

method:

Initial Context ic = newnitial Context();

Create all the necessary objects for sending messagesto aJM S queue. Thect x object
isthe JNDI initial context passed in by the mai n() method.

public void init(

Cont ext ctx,

String topi cNane
) throws Nam ngException, JMSException
{

Look up a connection factory using JNDI.

tconFactory =
(Topi cConnecti onFactory) ctx. | ookup(JMS_FACTCRY);

Create a connection using the connection factory.
tcon = tconFactory. createTopi cConnection();

Create a session using the connection. The following defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about setting session transaction and acknowledge modes, see
“Session” on page 2-8.

tsessi on = tcon. createTopi cSession(fal se,
Sessi on. AUTO_ACKNOW.EDGE) ;

Programming WebL ogic IMS

Setting Up a IMS Application

Step 4

Step 5

Step 6

Step 7

Look up the destination (topic) using INDI.
topic = (Topic) ctx.lookup(topicNane);

Create areference to a message producer (topic publisher) using the session and
destination (topic).

t publ i sher = tsession.createPublisher(topic);
Create the message object.

msg = tsession. createText Message();
Start the connection.

tcon.start();

}

Thei ni t () method for the exanpl es. j ns. t opi c. Topi cRecei ve exampleis
similar to the Topi cSend i ni t () method shown previously with on exception. Steps
5 and 6 would be replaced by the following code, respectively:

t subscri ber = tsession. createSubscriber(topic);
t subscri ber. set Messageli st ener (t hi s);

Inthefirst ling, instead of calling the cr eat ePubl i sher () method to create a
reference to the topic publisher, the application callsthe cr eat eSubscri ber ()
method to create the topic subscriber.

In the second line, the message consumer registers an asynchronous message listener.

When amessage is delivered to the topic session, it is passed to the

exanpl es. j ms. Topi cSubscri be. onMessage() method. The onMessage()
interface for the Topi cRecei ve example is the same as the QueueReceive
onMessage() interface, asdescribed in “Example: Setting Up aPTP Application” on
page 4-16.

For moreinformation about the IM S classes used in thisexample, see“WebL ogic IMS
Classes’ on page 2-5 or thej avax. j ms javadoc.

Programming WebLogic IMS ~ 4-21

http://www.javasoft.com/products/jms/javadoc-102a/index.html

4 Dev oping a WebLogic JMS Application

Sending Messages

Once you have set up the IMS application as described in “ Setting Up aJM S
Application” on page 4-4, you can send messages. To send a message, you must
perform the following steps:

1. Create a message object.
2. Define amessage.
3. Send the message to a destination.

For more information about the JIM S classes for sending messages and the message
types, seethej avax. j ms. Message javadoc. For information about receiving
messages, see “ Receiving Messages’ on page 4-29.

Step 1: Create a Message Object

This step has already been accomplished as part of the client setup procedure, as
described in “ Step 6a: Create the M essage Object (M essage Producers)” on page 4-14.

Step 2: Define a Message

This step may have been accomplished when setting up an application, as described in
“Step 6a: Create the Message Object (M essage Producers)” on page 4-14. Whether or
not this step has already been accomplished depends on the method that was called to
create the message object. For example, for TextM essage and ObjectM essage types,
when you create a message object, you have the option of defining the message when
you create the message object.

If avalue has been specified and you do not wish to change it, you can proceed to step
3.

4-22 Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

Sending Messages

If avalue has not been specified or if you wish to change an existing value, you can
defineavalue using the appropriateset method. For example, the method for defining
the text of a Text Message isasfollows;

public void set Text (
String string
) throws JMSException

Note: Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void cl earBody(
) throws JMSException

For more information about the methods used to define messages, see the
j avax. j ms. Sessi on javadoc.

Step 3: Send the Message to a Destination

Y ou can send a message to a destination using a message producer—queue sender
(PTP) or topic publisher (Pub/sub)—and the methods described in the following
sections. The Dest i nat i on and MessagePr oducer objects were created when you
set up the application, as described in “ Setting Up a IMS Application” on page 4-4.

Note: If multiple topic subscribers are defined for the same topic, each subscriber
will receive its own local copy of a message. Once received, you can modify
the header field values, however, the message properties and message body are
read only. Y ou can modify the message body by executing the corresponding
message type’sr eset () method to clear the existing contents and enable
write permission.

For more information about the MessagePr oducer class, see“MessageProducer and
MessageConsumer” on page 2-12 or thej avax. j ms. MessagePr oducer javadoc.

Programming WebLogic IMS ~ 4-23

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Session.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageProducer.html

4 Dev oping a WebLogic JMS Application

Send a Message Using Queue Sender

Y ou can send messages using the following QueueSender methods:

public void send(
Message nessage
) throws JMSException

public void send(
Message nessage,
int deliveryMde,
int priority,
| ong timeToLive

) throws JMSException

public void send(
Queue queue,
Message nessage

) throws JMSException

public void send(
Queue queue,
Message nessage,
i nt deliveryMde,
int priority,
| ong timeToLive

) throws JMSException

Y ou must specify amessage. Y ou may also specify the queue name (for anonymous
message producers), delivery mode (Del i ver yMode. PERSI STENT or

Del i ver yMode. NON_PERSI STENT), priority (0- 9), and time-to-live (in milliseconds).
If not specified, the delivery mode, priority, and time-to-live attributes are set to one
of the following:

m Connection factory or destination override configuration attributes defined for
the producer, as described “Managing IMS’ in the Administration Guide.

m Values specified using the message producer’s set methods, as described in
“Dynamically Configuring Message Producer Configuration Attributes’ on page
4-27.

If you define the delivery mode as PERSI STENT, you should configure abacking store
for the destination, as described in “Managing IMS’ in the Administration Guide.

Note: If no backing storeis configured, then the delivery mode is changed to
NON_PERSI STENT and messages are not written to the persistent store.

4-24 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html

Sending Messages

If the queue sender is an anonymous producer—that is, if when the queue was created,
the name was set to null—then you must specify the queue name (using one of the last
two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see “ Create QueueSenders and QueueReceivers’ on
page 4-11.

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

QueueSender . send(nessage, DeliveryMde. PERSI STENT, 4, 3600000);

For additional information about the QueueSender class methods, see the
j avax. j ms. QueueSender javadoc.

Send a Message Using TopicPublisher

Y ou can send messages using the following Topi cPubl i sher methods:

public void publish(
Message nessage
) throws JMSException

public void publish(
Message nessage,
int deliveryMde,
int priority,
I ong tinmeToLive

) throws JMSException

public void publish(
Topi ¢ topic,
Message nessage

) throws JMSException

public void publish(
Topi ¢ topic,
Message nessage,
int deliveryMde,
int priority,
I ong tineToLive

) throws JMSException

Programming WebLogic IMS ~ 4-25

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSender.html

4 Dev oping a WebLogic JMS Application

4-26

Y ou must provide amessage. Y ou may also specify the topic name, delivery mode
(Del i ver yMode. PERSI STENT or Del i ver yMode. NON_PERSI STENT), priority (0- 9),
and time-to-live (in milliseconds). If not specified, the delivery mode, priority, and
time-to-live attributes are set to one of the following:

m Connection factory or destination override configuration attributes defined for
the producer, as described “Managing IMS’ in the Administration Guide.

m Values specified using the message producer’s set methods, as described in
“Dynamically Configuring Message Producer Configuration Attributes’ on page
4-27.

If you define the delivery mode as PERSI STENT, you should configure abacking store,
asdescribed in “Managing IMS’ in the Administration Guide.

Note: If no backing storeis configured, then the delivery mode is changed to
NON_PERSI STENT and no messages are stored.

If the topic publisher isan anonymous producer—that is, if when the topic was created,
the name was set to null—then you must specify the topic name (using either of the
last two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see “ Create TopicPublishers and TopicSubscribers’
on page 4-12.

For example, the following code sends a persistent message with apriority of 4 and a
time-to-live of one hour:

Topi cPubl i sher. publ i sh(message, DeliveryMde. PERSI STENT,
4, 3600000) ;

For more information about the Topi cPubl i sher class methods, see the
j avax. j ms. Topi cPubl i sher javadoc.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicPublisher.html

Sending Messages

Dynamically Configuring Message Producer
Configuration Attributes

As described in the previous section, when sending a message, you can optionally
specify the delivery mode, timeout, and time-to-live values. If not specified, the
delivery mode, priority, and time-to-live attributes are set to the connection factory or
destination override configuration attributes defined for the producer, as described
“Managing IMS’ in the Administration Guide.

Alternatively, you can set the delivery mode, timeout, and time-to-live values
dynamically using the message producers set methods to override the configured
values.

The following table lists the message producer set and get methods for each
dynamically configurable attribute.

Note: The delivery mode, timeout, and time-to-live attribute settings can be
overridden by the destination using the Delivery Mode Override, Priority
Override, and Time To Live Override destination configuration attributes, as
described in Administration Console Online Help.

Table 4-2 Message Producer Set and Get M ethods

Attribute Set Method Get Method
Delivery Mode public void setDeliveryMde(public int getDeliveryMde(
int deliveryMde) throws JMSException
) throws JMSException
Priority public void setPriority(public int getPriority(
int defaultPriority) throws JMSException
) throws JMSException
Time-to-live public void set Ti meToLi ve(public | ong get Ti meToLi ve(
I ong tineToLive) throws JMSException

) throws JMSException

Note: JMS defines optional MessagePr oducer methods for disabling the message
ID and timestamp information. However, these methods are ignored by
WebL ogic IMS.

Programming WebLogic IMS ~ 4-27

http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/index.html

4 Dev oping a WebLogic JMS Application

Example:

Example:

For more information about the MessagePr oducer class methods, see the
j avax. j ms. MessagePr oducer javadoc.

Sending Messages Within a PTP Application

The following example is excerpted from the exanpl es. j ms. queue. QueueSend
example, provided with WebL ogic Server in the sanpl es/ exanpl es/ j ns/ queue
directory. The example shows the code required to create a Text Message, Set the text
of the message, and send the message to a queue.

nmsg = Qgsession. creat eText Message() ;

public ;/oi d send(
String message

) throws JMSException

{

nsg. set Text (message) ;
gsender. send(nsg);

}

For more information about the QueueSender class and methods, see the
j avax. j ms. QueueSender javadoc.

Sending Messages Within a Pub/Sub

Application

The following example is excerpted from the exanpl es. j ms. t opi ¢. Topi cSend
example, provided with WebL ogic Server in the sanpl es/ exanpl es/ j ms/ t opi ¢
directory. The following example shows the code required to create a Text Message,
set the text of the message, and send the message to atopic.

msg = tsession. createText Message();

public ;/oi d send(
String message
) throws JMSException

4-28 Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageProducer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueSender.html

Receiving Messages

{

neg. set Text (nessage) ;
t publ i sher. publ i sh(nsg);
}

For more information about the Topi cPubl i sher class and methods, see the
j avax. j ms. Topi cPubl i sher javadoc.

Receiving Messages

Once you have set up the IMS application as described in “ Setting Up aJMS
Application” on page 4-4, you can receive messages.

To receive amessage, you must create the receiver object and specify whether you
want to receive messages asynchronously or synchronously, as described in the
following sections. Guidelines for programming client servlet applicationsto receive
messages are provided in “ Receiving M essages with Client Servlets’ on page 4-31.

The order in which messages are received can be controlled by the following:

m Message delivery attributes (delivery mode and sorting criteria) defined during
configuration, as described in “Managing JIMS’ in the Administration Guide, or
as part of thesend() method, as described in “ Sending Messages’ on page
4-22.

m Destination sort order set using destination keys, as described in “Managing
JMS” in the Administration Guide.

Once received, you can modify the header field values, however, the message
properties and message body are read only. Y ou can modify the message body by
executing the corresponding message type' sr eset () method to clear the existing
contents and enable write permission.

For more information about the JM S classes for receiving messages and the message
types, seethej avax. j ms. Message javadoc. For information about sending messages,
see “ Sending Messages” on page 4-22.

Programming WebLogic IMS ~ 4-29

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicPublisher.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

4 Dev oping a WebLogic JMS Application

Receiving Messages Asynchronously

This procedure is described within the context of setting up the application. For more
information, see“ Step 6b: Optionally Register an Asynchronous Message Listener
(Message Consumers)” on page 4-15.

Note: You can control the maximum number of messages that may exist for an
asynchronous session and that have not yet been passed to the message listener
by setting the M essages Maximum attribute when configuring the connection
factory.

Receiving Messages Synchronously

4-30

To receive messages synchronously, use the following MessageConsuner methods:

publ i c Message receive(
) throws JMSException

publ i c Message receive(
| ong ti meout
) throws JMSException

public Message recei veNoWai t (
) throws JMSException

In each case, the application receives the next message produced. If you call the
recei ve() method with no arguments, the call blocks indefinitely until amessageis
produced or the application is closed. Alternatively, you can pass a timeout value to
specify how long towait for amessage. If you call ther ecei ve() method withavalue
of 0, the call blocksindefinitely. Ther ecei veNowai t () method receives the next
message if oneisavailable, or returns null; in this case, the call does not block.

The MessageConsuner class methods are inherited by the QueueRecei ver and
Topi cSubscri ber classes. For additional information about the MessageConsuner
class methods, seethej avax. j ns. MessageConsumer javadoc.

Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/MessageConsumer.html

Receiving Messages

Example: Receiving Messages Synchronously Within a PTP Application

Thefollowing exampleisexcerpted from theexanpl es. j ms. queue. QueueRecei ve
example, provided with WebL ogic Server in the sanpl es/ exanpl es/ j ms/ queue
directory. Rather than set amessage listener, you would call gr ecei ver . recei ve()
for each message. For example:

grecei ver = gsession. creat eRecei ver (queue) ;
grecei ver.receive();

Thefirst line creates the queue receiver on the queue. The second line executes a
recei ve() method. Ther ecei ve() method blocks and waits for a message.

Example: Receiving Messages Synchronously Within a Pub/Sub Application

Thefollowing exampleisexcerpted from theexanpl es. j ms. t opi c. Topi cRecei ve
example, provided with WebL ogic Server in the sanpl es/ exanpl es/ j ns/ t opi ¢
directory. Rather than set a message listener, you would call

t subscri ber. recei ve() for each message.

For example:
t subscri ber = tsession. createSubscriber(topic);
Message nmsg = tsubscriber.receive();

nsg. acknow edge() ;

Thefirst line creates the topic subscriber on the topic. The second line executes a
recei ve() method. Therecei ve() method blocks and waits for a message.

Receiving Messages with Client Servlets

The WebL ogic Server execute thread pool has afinite number of threads available for
processing reguests. The number of threads available is defined by the system
administrator when configuring the Server using the Execute Threads attribute. By
default, 15 threads are available.

It ispossible for all threads in the execute thread pool to be blocked causing a server
deadlock, asillustrated in the following figure.

Programming WebLogic IMS ~ 4-31

4 Dev oping a WebLogic JMS Application

Note: Only blocking servlet IMS requests running in the servers VM may
potentially deadlock the server. RMI requests cannot cause a server to
deadlock.

Figure4-3 Example of a Deadlock in the Execute Thread Pool

Threads Reading Execute Thread Pool
Reguests from Sockets {n=Execute Threads value)

Thread Consumed By: Resull:

Requests

Thread E
Submitted ;
receivel] ; i
oMl ; 1 Thread blocks indefiniely
2 | receive(20000]; Thread blocks for 20,000ms,
Requasts E
P Submitted to —_— 3 | receive|(15000] ; Thraar hlocks for 15,000ms
Sarvlat UR i =

Other g
Requasts n| receive|];: Thread blocks indefinidedy

Asshown in the previous figure, once all configured threads from the execute thread
pool are blocked, no threads are available for new requests. If the RMI requests and
other pending servlet URL s are waiting for threads to become available to complete
the blocking calls, the blocked calls never resume (because all available threads are
blocked) and the server becomes deadl ocked.

For example, if ar ecei ve() method isblocking athread, and its corresponding
send() method has been submitted to the RMI or servlet, thesend() may not be able
to access athread in which to run. Ther ecei ve() method blocks the thread until it
receivesitsdatafromthesend() method; the send() method cannot access athread
and execute because al of the threads are blocked, resulting in a deadlock.

To prevent a server deadlock, you should avoid the following:
m Coding servletsto receive messages synchronously and wait for a response.
m Specifying along or infinite timeout value on the IMSr ecei ve() method.

Message polling is an inefficient use of resources. Y ou should use a different, more
efficient method for activating a thread when needed, and exit, rather than wait for
future requirements, when the thread is no longer needed.

4-32 Programming WebL ogic IMS

Receiving Messages

Y ou should design the servlet applications to receive messages asynchronously using
theonMessage() method, as described in “ Receiving M essages Asynchronously” on
page 4-30. In this way, no threads are wasted waiting for messages to be received.

Note:

WebL ogic IMS also implements an optional IMS facility for defining a
server-managed pool of server sessions. Thisfacility enables an applicationto
process messages concurrently. For more information, see “ Defining Server
Session Pools’ on page 4-61.

Server session pools can also be implemented using Message Driven Beans.
For information on using message driven beans to implement server session
pools, seeto Using WebLogic EJB.

If your servlet program design requires messages to be received synchronousdly, it is
recommended that you use one of the following methods, listed in order of preference:

m Usetherecei veNowai t () method, which returns the next message or a null
valueif no message is currently available. In this case, the call does not block.
The servlet should provide away to return to or reschedule the request, without
calingwai t () .

m Passatimeout value asan argument to ther ecei ve() method and set it to the
minimum value (greater than 0) that is allowed by the application to avoid
consuming threads that are waiting for a response from the server.

Note: Use of this option should be minimized, asit may deadlock a busy server.

For more information about the methods described in this section, see “Receiving
Messages’ on page 4-29 or thej avax. j ms javadoc.

Recovering Received Messages

Note:

This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLI ENT_ACKNOW.EDGE, as described in

“ Acknowledge Modes Used for Non-Transacted Sessions’ on page 2-9.
Synchronously received AUTO_ACKNOWLEDGE messages may not be
received; they have already been acknowledged.

An application can request that IM S redeliver messages (unacknowledge them) using
the following method:

Programming WebLogic IMS ~ 4-33

http://e-docs.bea.com/wls/docs60/ejb/index.html
http://www.javasoft.com/products/jms/javadoc-102a/index.html

4 Dev oping a WebLogic JMS Application

public void recover(
) throws JMSException

Therecover () method performs the following steps:
m Stops message delivery for the session

m Tagsall messages that have not been acknowledged (but may have been
delivered) asredelivered

m Resumes sending messages starting from the first unacknowledged message for
that session

Messages in queues are not necessarily redelivered in the same order that they were
originaly delivered, nor to the same queue consumers.

Acknowledging Received Messages

4-34

Note: This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLI ENT_ACKNOW.EDGE, as described in
“ Acknowledge Modes Used for Non-Transacted Sessions’ on page 2-9.

To acknowledge a received message, use the following Message method:

public void acknow edge(
) throws JMSException

The acknow edge() method acknowledges the current message and all previous
messages received since the last client acknowledge. Messages that are not
acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the
acknowledge modeis set to CLI ENT_ACKNOW.EDGE. Otherwise, the method isignored.

Programming WebL ogic IMS

Releasing Object Resources

Releasing Object Resources

When you havefinished using the connection, session, message producer or consumer,
connection consumer, or queue browser created on behalf of aJMS application, you
should explicitly close them to release the resources.

Enter thecl ose() method to close JMS objects, as follows:

public void close(
) throws JMSException

When closing an object:

m The call blocks until the method call completes and any outstanding
synchronous applications are cancelled.

m All associated sub-objects are also closed. For example, when closing a session,
all associated message producers and consumers are also closed. When closing a
connection, all associated sessions are a so closed.

For moreinformation about theimpact of thecl ose() method for each object, seethe
appropriate j avax. j ns javadoc. In addition, for more information about the
connection or Session cl ose() method, see” Starting, Stopping, and Closing a
Connection” on page 4-38 or “Closing a Session” on page 4-41, respectively.

The following example is excerpted from the exanpl es. j ms. queue. QueueSend
example, provided with WebL ogic Server in the sanpl es/ exanpl es/ j ms/ queue
directory. This example shows the code required to close the message consumer,
session, and connection objects.

public void close(
) throws JMSException

{

gr ecei ver. cl ose();
gsession. cl ose();
gcon. cl ose();

}

In the QueueSend example, thecl ose() method is called at the end of mai n() to
close objects and free resources.

Programming WebLogic IMS ~ 4-35

http://www.javasoft.com/products/jms/javadoc-102a/index.html

4 Dev oping a WebLogic JMS Application

Managing Connections

The following sections describe how to manage connections:
m Defining a Connection Exception Listener
m Accessing Connection Meta Data

m Starting, Stopping, and Closing a Connection

Defining a Connection Exception Listener

4-36

An exception listener asynchronously notifies an application whenever aproblem
occurs with a connection. This mechanism is particularly useful for a connection
waiting to consume messages that might not be notified otherwise.

Note: The purpose of an exception listener isnot to monitor all exceptionsthrown by
aconnection, but to deliver those exceptions that would not be otherwise be
delivered.

Y ou can define an exception listener for aconnection using thefollowing Connect i on
method:

public void set ExceptionLi stener(
ExceptionLi stener |istener
) throws JMSException

Y ou must specify an Except i onLi st ener object for the connection.

The IMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a connection using the following Except i onLi st ener
method:

public void onException(
JMSException exception

)

The IMS Provider specifiesthe exception that describes the problem when calling the
method.

Programming WebL ogic IMS

Managing Connections

Y ou can access the exception listener for aconnection using the following Connection
method:

publ i c ExceptionLi stener getExceptionLi stener(
) throws JMSException

Accessing Connection Meta Data

Y ou can access the meta data associ ated with a specific connection using thefollowing
Connect i on method:

publ i ¢ Connecti onMet aDat a get Met aDat a(
) throws JMSException

This method returns aConnect i onMet aDat a object that enables you to access IMS
meta data. The following table lists the various type of IMS meta data and the get
methods that you can use to access them.

Table 4-3 Connection Meta Data Get M ethods
JM S Meta Data Get Method

Version public String getJMsVersion(
) throws JMSException

Major version public int getJMSMaj or Versi on(
) throws JMSException

Minor version public int getJMSM nor Version(
) throws JMSException

Provider name public String get JVMSProvi der Nang(
) throws JMSException

Provider version public String getProviderVersion(
) throws JMSException

Provider major version public int getProviderMaj orVersion(
) throws JMSException

Provider minor version public int getProviderM norVersion(
) throws JMSException

JMSX property names public Enumeration get JMSXPropertyNanes(
) throws JMSException

Programming WebLogic IMS ~ 4-37

4 Dev oping a WebLogic JMS Application

For more information about the Connect i onMet aDat a class, see the
j avax. j ms. Connect i onMet aDat a javadoc.

Starting, Stopping, and Closing a Connection

4-38

To control the flow of messages, you can start and stop a connection temporarily using
thestart () and st op() methods, respectively, asfollows.

Thestart () andstop() method details are as follows:

public void start(
) throws JMSException

public void stop(
) throws JMSException

A newly created connection is stopped—no messages are received until the connection
is started. Typically, other IMS objects are set up to handle messages before the
connection is started, as described in “ Setting Up a IMS Application” on page 4-4.
Messages may be produced on a stopped connection, but cannot be delivered to a
stopped connection.

Once started, you can stop a connection using the st op() method. This method
performs the following steps:

m Pausesthe delivery of all messages. No applications waiting to receive messages
will return until the connection isrestarted or the time-to-live value associated
with the message is reached.

m Waitsuntil all message listeners that are currently processing messages have
completed.

Typically, aJMS Provider allocates a significant amount of resources when it creates
a connection. When a connection is no longer being used, you should close it to free
up resources. A connection can be closed using the following method:

public void close(
) throws JMSException

Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionMetaData.html

Managing Sessions

This method performs the following steps to execute an orderly shutdown:

m Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

m Waitsuntil all message listeners that are currently processing messages have
compl eted.

m Rollsback in-process transactions on its transacted sessions (unless such
transactions are part of an external JTA user transaction). For more information
about JTA user transactions, see “Using JTA User Transactions’ on page 5-6.

m Does not force an acknowledge of client-acknowledged sessions. By not forcing
an acknowledge, no messages are lost for queues and durabl e subscriptions that
require reliable processing.

When you close aconnection, all associated objects are also closed. Y ou can continue
to use the message objects created or received viathe connection, except the received
message’' s acknowl edge() method. Closing a closed connection has no effect.

Note: Attempting to acknowledge a received message from a closed connection’s
sessionthrowsan | | | egal St at eExcept i on.

Managing Sessions

The following sections describe how to manage sessions, including:
m Defining a Session Exception Listener
m Closing a Session

Programming WebLogic IMS ~ 4-39

4 Dev oping a WebLogic JMS Application

Defining a Session Exception Listener

4-40

An exception listener asynchronously notifies a client in the event a problem occurs
with asession. Thisis particularly useful for a session waiting to consume messages
that might not be notified otherwise.

Note: The purpose of an exception listener isnot to monitor all exceptionsthrown by
asession, only to deliver those exceptions that would otherwise be
undelivered.

Y ou can define an exception listener for a session using the following W.Sessi on
method:

public void set ExceptionLi stener(
ExceptionLi stener |istener
) throws JMSException

Y ou must specify an Except i onLi st ener object for the session.

The IMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a session using the following Except i onLi st ener
method:

public void on Exception(
JMSException exception
)

The IM S Provider specifies the exception encountered that describes the problem
when calling the method.

Y ou can access the exception listener for a session using the following W.Sessi on
method:

publ i ¢ ExceptionLi st ener get Excepti onLi stener(
) throws JMSException

Note: Because there can only be one thread per session, an exception listener and
message listener (used for asynchronous message delivery) cannot execute
simultaneously. Consequently, if amessage listener is executing at thetime a
problem occurs, execution of the exception listener is blocked until the
messagelistener compl etesitsexecution. For moreinformation about message
listeners, see “Receiving Messages Asynchronously” on page 4-30.

Programming WebL ogic IMS

Managing Sessions

Closing a Session

Aswith connections, aJM S Provider all ocates asignificant amount of resources when
it creates a session. When a session is no longer being used, it is recommended that it
be closed to free up resources. A session can be closed using the following Sessi on
method:

public void close(
) throws JMSException

Note: Thecl ose() methodistheonly Sessi on method that can beinvoked from a
thread that is separate from the session thread.

This method performs the following steps to execute an orderly shutdown:

m Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

m Waitsuntil all message listeners that are currently processing messages have
compl eted.

m Rolls back in-process transactions (unless such transactions are part of external
JTA user transaction). For more information about JTA user transactions, see
“Using JTA User Transactions’ on page 5-6.

m Does not force an acknowledge of client acknowledged sessions, ensuring that
no messages are lost for queues and durable subscriptions that require reliable
processing.

When you close a session, all associated producers and consumers are a so closed.

Note: If youwishtoissuethecl ose() method withinanonMessage() method call,
the system administrator must select the Allow Close In OnM essage checkbox
when configuring the connection factory. For more information, see” JMS
Connection Factories’ in the Administration Console Online Help.

Programming WebLogic IMS ~ 4-41

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html

4 Dev oping a WebLogic JMS Application

Creating Destinations Dynamically

Y ou can create destinations dynamically using:
®m webl ogi c. j ms. ext ensi ons. JMSHel per class methods
m Temporary destinations

The associated procedures for creating dynamic destinations are described in the
following sections.

Using the JMSHelper Class Methods

Y ou can dynamically submit an asynchronous request to create a queue or topic,
respectively, using the following JMSHel per methods:

static public void createPermanent QuieueAsync(
Cont ext ctx,
String j msServer Nane,
String queueNane,
String jndi Name
) throws JMSException

static public void createPermanent Topi cAsync(
Cont ext ctx,
String jnsServer Nane,
String topicNane,
String jndi Name
) throws JMSException

Y ou must specify the INDI initial context, name of the IMS server to be associated
with the destination, name of the destination (queue or topic), and name used to look
up the destination within the INDI namespace.

Each method updates the following:

m Configuration file associated with the specified domain to include the
dynamically created destination

m INDI namespace to advertise the destination

4-42 Programming WebL ogic IMS

Creating Destinations Dynamically

Note: Either method call can fail without throwing an exception. In addition, a
thrown exception does not necessarily indicate that the method call failed.

The time required to create the destination on the IM S server and propagate the
information to the INDI namespace can be significant. The propagation delay
increasesif the environment contains multiple servers. It isrecommended that you test
for the existence of the queue or topic, respectively, using the session cr eat eQueue()
or creat eTopi ¢() method, rather than perform a JNDI lookup. By doing so, you can
avoid some of the propagation-specific delay.

For example, the following method, f i ndQueue() , attempts to access a dynamically
created queue, and if unsuccessful, sleeps for a specified interval before retrying. A
maximum retry count is established to prevent an infinite loop.

private static Queue findQueue (
QueueSessi on queueSessi on,
String jmsServer Nane,
String queueNane,
int retryCount,
long retrylnterval

) throws JMSException

{
String W sQueueNane = jnsServerNane + “/” + queueNane;
String command = “QueueSessi on. creat eQueue(“ +
W sQueueNanme + “)”;
long startTimeMIlis = SystemcurrentTineMI1is();
for (int i=retryCount; i>=0; i--) {
try {
Systemout.printIn(“Trying “ + comuand);
Queue queue = queueSessi on. creat eQueue(w sQueueNane) ;
System out . println(comnmand + “succeeded after “ +
(retryCount - i + 1) + “ tries in*“ +
(SystemcurrentTimneM I lis() - startTimeMIlis) +
mllis.”);
return queue;
} catch (JMSException je) {
if (retryCount == 0) throw je;
}
try {
System out. println(conmand + “> failed, pausing “ +
retrylnterval + “ mllis.”);
Thread. sl eep(retrylnterval);
} catch (InterruptedException ignore) {}
}
t hrow new JMSException(“out of retries”);
}

Programming WebLogic IMS ~ 4-43

4 Dev oping a WebLogic JMS Application

Y ou can then call thefi ndQueue() method after the IMSHel per class method call to
retrieve the dynamically created queue once it becomes available. For example:

JMBHel per . cr eat ePer manent QueueAsync(ctx, donmain, jnsServer Nane,
queueNane, jndi Name);

Queue queue = findQueue(qgsess, jnsServerNane, queueNane,
retry_count, retry_interval);

For more information on the JMSHel per class, refer to the
webl ogi c. j ms. ext ensi ons. JMSHel per javadoc.

Using Temporary Destinations

Temporary destinations enable an application to create a destination, as required,
without the system administration overhead associated with configuring and creating
a server-defined destination.

The WebLogic IMS server can use the JMSRepl y To header field to return aresponse
to the application. The application may optionally set the IMSRepl yTo header field of
its messages to its temporary destination name to advertise the temporary destination
that it is using to other applications.

Temporary destinations exist only for the duration of the current connection, unless
they are removed using the del et e() method, described in “Deleting a Temporary
Destination” on page 4-45.

Because messages are never availableif the server isrestarted, all PERSI STENT
messages are silently made NON_PERSI STENT. Asaresult, temporary destinations are
not suitable for business logic that must survive arestart.

Note: Before creating atemporary destination (queue or topic), you must use the
Adminstration Console to configure the IMS server to use temporary
destinations. Thisis done by using the IMS Server’'s Tenpor ary Tenpl at e
attribute to select a M S template that is configured in the same domain. For
more information about configuring a JIM S server, see “JMS Server” in the
Administration Console Online Help.

The following sections describe how to create atemporary queue (PTP) or temporary
topic (Pub/sub).

4-44 Programming WebLogic IMS

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/JMSHelper.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsserver.html

Creating Destinations Dynamically

Creating a Temporary Queue

Y ou can create atemporary queue using the following QueueSessi on method:

publ i c TenporaryQueue createTenporaryQueue(
) throws JMSException

For example, to create areference to a Tenpor ar yQueue that will exist only for the
duration of the current connection, use the following method call:

QueueSender = Sessi on. creat eTenporaryQueue();

Creating a Temporary Topic
Y ou can create atemporary topic using the following Topi cSessi on method:

publ i ¢ TenporaryTopi c createTenporaryTopi c(
) throws JMSException

For example, to create areference to atemporary topic that will exist only for the
duration of the current connection, use the following method call:

Topi cPubl i sher = Sessi on. creat eTenporaryTopic();

Deleting a Temporary Destination

When you finish using atemporary destination, you can deleteit (to release associated
resources) using the following Tenpor ar yQueue or Tenpor ar y Topi ¢ method:

public void del ete(
) throws JMSException

Programming WebLogic IMS ~ 4-45

4 Dev oping a WebLogic JMS Application

Setting Up Durable Subscriptions

WebL ogic JM S supports durable and non-durabl e subscriptions.

For durable subscriptions, WebL ogic M S stores a message in afile or database until
the message has been delivered to the subscribers or has expired, even if those
subscribers are not active at the time that the message is delivered. A subscriber is
considered active if the Java object that represents it exists. Durable subscriptions are
supported for Pub/sub messaging only.

For non-durable subscriptions, WebL ogic JM S delivers messages only to applications
with an active session. M essages sent to atopic while an applicationisnot listening are
never delivered to that application. In other words, non-durabl e subscriptionslast only
aslong astheir subscriber objects. By default, subscribers are non-durable.

The following sections describe:

m Defining the Client ID

m Creating Subscribers for a Durable Subscription
m Deleting Durable Subscriptions

m Modifying Durable Subscriptions

Defining the Client ID

4-46

To support durable subscriptions, aclient identifier (client ID) must be defined for the
connection.

Note: TheJMSclient ID is not necessarily equivalent to the WebL ogic Server
username, that is, aname used to authenticate auser in the WebL ogic security
realm. Y ou can, of course, set the IMS client ID to the WebL ogic Server
username, if it is appropriate for your IMS application.

Programming WebL ogic IMS

Setting Up Durable Subscriptions

The client ID can be supplied in two ways:

m The preferred method, according to the JIMS specification, isto configure the
connection factory with the client ID. For WebL ogic IMS, this means adding a
separate connection factory definition during configuration for each client ID.
Applications then look up their own topic connection factoriesin INDI and use
them to create connections containing their own client IDs. For more
information about configuring a connection factory with aclient ID, see“IJMS
Connection Factories’ in the Administration Console Online Help.

m Alternatively, an application can set its client ID in the connection after the
connection is created by calling the following connection method:

public void setdientl D
String clientlD
) throws JMSException

You must specify aunique client ID. If you use this alternative approach, you
can use the default connection factory (if it is acceptable for your application)
and avoid the need to modify the configuration information. However,
applications with durabl e subscriptions must ensure that they call
setClientl D() immediately after creating their topic connection. For
information on the default connection factory, see “Managing IMS’ in the
Administration Guide.

If aclient ID isaready defined for the connection, an
Il 1 egal St at eExcept i on isthrown. If the specified client ID is aready defined
for another connection, an | nval i dCl i ent | DExcept i on isthrown.

Note: When specifying theclient ID using theset Cl i ent | D() method, thereis
arisk that aduplicate client ID may be specified without throwing an
exception. For example, if the client IDs for two separate connections are
set simultaneously to the same value, arace condition may occur and the
same value may be assigned to both connections. Y ou can avoid this risk
of duplication by specifying the client ID during configuration.

To display aclient ID and test whether or not aclient 1D has already been
defined, use the following Connection method:

public String getdientl D
) throws JMSException

Note: Support for durable subscriptionsis afeature unique to the Pub/sub messaging
model, so client IDs are used only with topic connections; queue connections
also contain client IDs, but IM S does not use them.

Programming WebLogic IMS ~ 4-47

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html

4 Dev oping a WebLogic JMS Application

Durabl e subscriptions should not be created for atemporary topic, because a
temporary topic is designed to exist only for the duration of the current
connection.

Creating Subscribers for a Durable Subscription

4-48

Y ou can create subscribers for a durable subscription using the following
Topi cSessi on methods:

publ i c Topi cSubscri ber createDurabl eSubscri ber(
Topi ¢ topic,
String nane

) throws JMSException

publ i ¢ Topi cSubscri ber createDurabl eSubscri ber(
Topi ¢ topic,
String nane,
String messageSel ector,
bool ean nolLocal
) throws JMSException

Y ou must specify the name of the topic for which you are creating a subscriber, and
the name of the durable subscription. Y ou may also specify a message selector for
filtering messages and anoLocal flag (described later in this section). Message
selectors are described in more detail in “Filtering Messages’ on page 4-58. If you do
not specify amessageSel ect or, by default all messages are searched.

An application can use a IM S connection to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, an application can
receive messages it has published itself. To prevent this, aJMS application can set a
noLocal flagtotrue. ThenoLocal value defaultsto false.

The durable subscription name must be unique per client ID. For information on
defining the client ID for the connection, see “Defining the Client ID” on page 4-46.

Only one session can define a subscriber for a particular durable subscription at any
given time. Multiple subscribers can access the durable subscription, but not at the
same time. Durable subscriptions are stored within the file or database.

Programming WebL ogic IMS

Setting Up Durable Subscriptions

Deleting Durable Subscriptions

To delete a durable subscription, you use the following Topi cSessi on method:

public void unsubscri be(
String nane
) throws JMSException

Y ou must specify the name of the durable subscription to be deleted.
Y ou cannot delete a durable subscription if any of the following are true:
m A Topi cSubscri ber istill active on the session.

m A message received by the durable subscription is part of atransaction or has
not yet been acknowledged in the session.

Modifying Durable Subscriptions

To modify adurable subscription, perform the following steps:

1. Optionally, delete the durable subscription, as described in “ Deleting Durable
Subscriptions’ on page 4-49.

This step is optional. If not explicitly performed, the deletion will be executed
implicitly when the durable subscription is recreated in the next step.

2. Usethe methods described in “ Creating Subscribers for a Durable Subscription”
on page 4-48 to recreate a durable subscription of the same name, but specifying
adifferent topic name, message selector, or noLocal value.

The durable subscription is recreated based on the new values.

Note: When recreating adurable subscription, be careful to avoid creating adurable
subscription with a duplicate name. For example, if you attempt to delete a
durabl e subscription from aJM S server that isunavailable, the delete call fails.
If you subsequently create a durable subscription with the same name on a
different IMS server, you may experience unexpected results when the first
JMSS server becomes available. Because the original durable subscription has
not been deleted, when thefirst IM S server again becomesavailable, therewill
be two durable subscriptions with duplicate names.

Programming WebLogic IMS ~ 4-49

4 Dev oping a WebLogic JMS Application

Setting and Browsing Message Header and
Property Fields

WebLogic IMS provides a set of standard header fields that you can define to identify
and route messages. |n addition, property fields enable you to include
application-specific header fields within a message, extending the standard set. You
can use the message header and property fields to convey information between
communicating processes.

The primary reason for including datain a property field rather than in the message
body is to support message filtering via message selectors. Data in the message body
cannot be accessed via message selectors. For example, suppose you use a property
field to assign high priority to amessage. Y ou can then design a message consumer
containing a message selector that accesses this property field and selects only
messages of expedited priority. For more information about selectors, see “Filtering
Messages’ on page 4-58.

Setting Message Header Fields

4-50

JM S messages contain a standard set of header fieldsthat are always transmitted with
the message. They are available to message consumers that receive messages, and
some fields can be set by the message producers that send messages. Once a message
isreceived, its header field values can be modified.

For adescription of the standard messages header fields, see “ Message Header Fields’
on page 2-14.

The following table lists the Message class set and get methods for each of the
supported data types.

Programming WebL ogic IMS

Setting and Browsing Message Header and Property Fields

Note: Insome cases, thesend() method overrides the header field value set using
theset () method, asindicated in the following table.

Table 4-4 Message Header Set and Get Methods

Header Field Set Method

Get Method

JMSCorrelationlD public void setJMSCorrel ationl D(
String correlationlD
) throws JMSException

Note: The byte[]
JMBCorrel ati onl Dis
available for externad IMS
providers and is not supported by
WebLogic IMS. Calling
set JMSCorr el ati onl DAsBy
tes() throwsa
java. |l ang. Unsupport edOp
erationExcepti on.

public String
get IMsCorrel ati onl D(
) throws JMSException

public byte[]
get IMSCorrel ati onl DAsByt es(
) throws JMSException

JMBDest i nati ont publ i c_ voi d setJl\/SDest? nat i on(
Desti nation destination
) throws JMSException

public Destination
get JMSDest i nati on(
) throws JMSException

JNBDel i veryl\/bdel public void set JMSDel i ver yMode(
int deliveryMde
) throws JMSException

public int getJWMSDeliveryMde(
) throws JMSException

; i anl public void set JMSExpiration
JMBEXxpi ration : h
| ong expiration
) throws JMSException

public |1 ong get JMSExpiration(
) throws JMSException

Programming WebLogic IMS ~ 4-51

4 Dev oping a WebLogic JMS Application

Table 4-4 Message Header Set and Get M ethods (Continued)

Header Field

Set Method

Get Method

JMBMessagel D

public void set JMSMessagel D(
String id

) throws JMSException

In addition to the set method, the

webl ogi c. j nms. ext ensi ons. JMsHel

per class provides the following methods

to convert between WebL ogic IMS 6.0 and

pre-6.0 IMBMessagel D formats:

public voi d ol dJMSMessagel DToNew(
String id,
long timeStanp

) throws JNMSException

public voi d newJMsMessagel DTod d(
String id,
long tinmeStanp

) throws JMSException

public String getJMsMessagel I
) throws JMSException

JMBPri ori ty1

public void setJIJMSPriority(
int priority
) throws JMSException

public int getJVMSPriority(
) throws JMSException

JVBRedel i ver ed!

public void set JMSRedel i vered(
bool ean redelivered
) throws JNMSException

publ i c bool ean get JMSRedel i ver ed(
) throws JMSException

JMBRepl yTo

public void set JMSRepl yTo(
Destination replyTo
) throws JMSException

publ i c Destination getJMSRepl yTo(
) throws JNMSException

JVBTi mesSt anp?

public void set JMSTi meSt anp(
I ong timestanp
) throws JMSException

public | ong get JMSTi meSt anp(
) throws JMSException

JMBType

public void set IMSType(
String type
) throws JNMSException

public String get JMSType(
) throws JMSException

1. The corresponding set () method has no impact on the message header field when the send() method is
executed. If set, this header field value will be overridden during the send() operation.

4-52

Programming WebL ogic IMS

Setting and Browsing Message Header and Property Fields

The exanpl es. j ms. sender . Sender Ser vl et example, provided with WebL ogic
Server inthe sanpl es/ exanpl es/ j ms/ sender directory, shows how to set header
fields in messages that you send and how to display message header fields after they
are sent.

For example, thefoll owing code, which appears after thesend() method, displaysthe
message | D that was assigned to the message by Webl ogic IMS:

System out.println("Sent nessage " +
nsg. get JIMSMessagel D() + " to " +
nsg. get JMSDest i nation());

Setting Message Property Fields

To set aproperty field, call the appropriate set method and specify the property name
and value. To read a property field, call the appropriate get method and specify the
property name.

The sending application can set properties in the message, and the receiving
application can subsequently view them. The receiving application cannot change the
properties without first clearing them using the following cl ear Pr operti es()
method:

public void clearProperties(
) throws JMSException

Programming WebLogic IMS ~ 4-53

4 Dev oping a WebLogic JMS Application

This method does not clear the message header fields or body.

Note:

The JVsX property name prefix isreserved for IMS. The connection metadata

contains alist of IMSX properties, which can be accessed as an enumerated
list using the get JVMBXPr oper t yNanes() method. For more information, see
“Accessing Connection Meta Data” on page 4-37.

The JVs_ property name prefix isreserved for provider-specific properties; it
isnot intended for use with standard JM S messaging.

The property field can be set to any of thefollowing types: boolean, byte, double, float,
int, long, short, or String. The following table lists the Message class set and get
methods for each of the supported data types.

Table 4-5 Message Property Set and Get Methods for Data Types

DataType Set Method Get Method
boolean public void setBool eanProperty(public bool ean
String nane, get Bool eanPr operty(
bool ean val ue String name
) throws JMSException) throws JMSException
byte public void setByteProperty(public byte getByteProperty(
String nane, String name
byte val ue) throws JMSException
) throws JMSException
double public void set Doubl eProperty(publ i ¢ doubl e get Doubl eProperty(
String nane, String name
doubl e val ue) throws JMSException
) throws JMSException
float public void setFl oat Property(public float getFl oatProperty(

String nane,
float val ue
) throws JMSException

String nane
) throws JMSException

int

public void setlntProperty(
String nane,
int val ue

) throws JMSException

4-54 Programming WebL ogic IMS

public int getlntProperty(
String nane
) throws JMSException

Setting and Browsing Message Header and Property Fields

Table 4-5 Message Property Set and Get Methods for Data Types (Continued)

DataType Set Method Get Method
long public void setLongProperty(public | ong getLongProperty(
String nane, String nane
| ong val ue) throws) throws JMSException
JMBExcepti on
short public void set ShortProperty(public short get ShortProperty(
String nane, String nane
short val ue) throws JMSException
) throws JMSException
String public void setStringProperty(public String getStringProperty(

String nane, String nane
String val ue) throws JMSException
) throws JMSException

In addition to the set and get methods described in the previous table, you can use the
set Obj ect Property() and get Obj ect Property() methods to use the objectified
primitive values of the property type. When the objectified value is used, the property
type can be determined at execution time rather than during the compilation. Thevalid
object types are boolean, byte, double, float, int, long, short, and String.

Y ou can access al property field names using the following M essage method:

public Enuneration getPropertyNanmes(
) throws JMSException

Thismethod returns all property field names as an enumeration. Y ou can then retrieve
the value of each property field by passing the property field name to the appropriate
get method, as described in the previous table, based on the property field data type.

Programming WebLogic IMS ~ 4-55

4 Dev oping a WebLogic JMS Application

The following table is a conversion chart for message properties. It allows you to
identify the type that can be read based on the type that has been written.

Table 4-6 M essage Property Conversion Chart

Property Can BeRead As. . .
Written As. . .
boolean byte double float int long short String

boolean X X
byte X X X X X
double X X
float X X X
int X X X
long X X
Object X X X X X X X X
short X X X X
String X X X X X X X X

Y ou can test whether or not a property value has been set using thefollowing Message
method:

publ i c bool ean propertyExi sts(
String nanme
) throws JMSException

Y ou specify a property name and the method returns a boolean value indicating
whether or not the property exists.

For exampl e, the following code sets two String properties and an int property:
msg. set StringProperty("User", user);

nmsg. set StringProperty("Category", category);

nsg. setlntProperty("Rating", rating);

For more information about message property fields, see “Message Property Fields’
on page 2-18 or thej avax. j ms. Message javadoc.

4-56 Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html

Setting and Browsing Message Header and Property Fields

Browsing Header and Property Fields

Note: Only queue message header and property fields can be browsed. Y ou cannot
browse topic message header and property fields.

Y ou can browse the header and property fields of messages on a queue using the
following QueueSessi on methods:

publ i c QueueBrowser createBrowser (
Queue queue
) throws JMSException

publ i c QueueBrowser createBrowser(
Queue queue,
String nessageSel ector

) throws JMSException

Y ou must specify the queue that you wish to browse. Y ou may also specify amessage
selector to filter messages that you are browsing. M essage selectors are described in
more detail in “Filtering Messages’ on page 4-58.

Once you have defined a queue, you can access the queue hame and message selector
associated with a queue browser using the following QueueBr owser methods:

publ i c Queue get Queue(
) throws JMSException

public String get MessageSel ect or (
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the
following QueueBr owser method:

public Enuneration get Enumerati on(
) throws JMSException

The exanpl es. j ms. queue. QueueBr owser example, provided with WebL ogic
Server in the sanpl es/ exanpl es/ j ns/ queue directory, shows how to access the
header fields of received messages.

For example, the following code line is an excerpt from the QueueBr owser example
and creates the QueueBr owser object:

gbrowser = gsession. creat eBrowser (queue);

Programming WebLogic IMS ~ 4-57

4 Dev oping a WebLogic JMS Application

The following provides an excerpt from the di spl ayQueue() method defined in the
QueueBr owser example. In this example, the QueueBr owser object isused to obtain
an enumeration that is subsequently used to scan the queue’ s messages.

public void displayQueue(
) throws JMSException
{

Enunerati on e = gbrowser. get Enuneration();
Message m = nul | ;

if (! e.hasMoreEl enents()) {
Systemout.println("There are no nessages on this queue.");
} else {

System out. println("Qeued JM5 Messages: ");

whi |l e (e. hasMreEl enents()) {
m = (Message) e.nextEl enent();
System out.println("Message ID" + mget JVMSMessagel D() +

" delivered " + new Date(m get JMSTi mest anp())
" to " + mgetJMsDestination());
}
}

When aqueue browser isno longer being used, you should closeit to free up resources.
For more information, see “ Releasing Object Resources’ on page 4-35.

For more information about the QueueBr owser class, see the
j avax. j ms. QueueBr owser javadoc.

Filtering Messages

In many cases, an application does not need to be notified of every message that is
delivered to it. Message selectors can be used to filter unwanted messages, and
subsequently improve performance by minimizing their impact on network traffic.

Message sel ectors operate as follows:

m The sending application sets message header or property fieldsto describe or
classify amessage in a standardized way.

m The receiving applications specify a simple query string to filter the messages
that they want to receive.

4-58 Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueBrowser.html

Filtering Messages

Because message sel ectors cannot reference the contents (body) of a message, some
information may be duplicated in the message property fields (except in the case of
XML messages).

Y ou specify a selector when creating a queue receiver or topic subscriber, as an
argument to the QueueSessi on. cr eat eRecei ver () or

Topi cSessi on. cr eat eSubscri ber () methods, respectively. For information about
creating queue receivers and topic subscribers, see” Step 5: Create M essage Producers
and Message Consumers Using the Session and Destinations’ on page 4-11.

The following sections describe how to define a message sel ector using SQL
statementsand XML selector methods, and how to update message sel ectors. For more
information about setting header and property fields, see “ Setting and Browsing
Message Header and Property Fields’ on page 4-50 and “ Setting M essage Property
Fields’ on page 4-53, respectively.

Defining Message Selectors Using SQL Statements

A message selector isaboolean expression. It consists of a String with asyntax similar
to thewher e clause of an SQL sel ect statement.

The following excerpts provide examples of selector expressions.
salary > 64000 and dept in ('eng','qga")

(product |ike 'WebLogic% or product like '%3")
and version > 3.0

hi reyear between 1990 and 1992
or fireyear is not null

fireyear - hireyear > 4

Thefollowing exampl e showshow to set asel ector when creating aqueue receiver that
filters out messages with a priority lower than 6.

String selector = "JMSPriority >= 6";
gsessi on. cr eat eRecei ver (queue, selector);

The following example shows how to set the same selector when creating a topic
subscriber.

String selector = "JMSPriority >= 6";
gsessi on. creat eSubscri ber(topic, selector);

Programming WebLogic IMS ~ 4-59

4 Dev oping a WebLogic JMS Application

For moreinformation about the message sel ector syntax, seethej avax. j ns. Message
javadoc.

Defining XML Message Selectors Using XML Selector

Method

4-60

For XML message types, in addition to using the SQL selector expressions described
in the previous section to define message sel ectors, you can use the following method:

String JMS_BEA SELECT(String type, String expression)

Y ou specify the syntax type, which for this release must be set to xpath (XML Path
Language), and an X Path expression. The XML path language is defined in the XML
Path Language (X Path) document, which isavailable at the XML Path Language web
siteat: htt p: // www. w3. or g/ TR/ xpat h

The methods return a null value under the following circumstances:
m The message does not parse.
m The message parses, but the element is not present.

m |f amessage parses and the element is present, but the message contains no
value (for example, <or der ></ or der >)

For example, consider the following XML excerpt:

<or der >
<itemid="007">
<nane>Hand- hel d Power Drill </ name>
<descri pti on>Conpact, assorted col ors. </description>
<pri ce>$34.99</pri ce>
<itemid="123">
<name>M tre Saw</nane>
<description>Three bl ades si zes. </ descri pti on>
<pri ce>$69. 99</ pri ce>
<itemid="66">
<name>Socket Wench Set </ nane>
<description>Set of 10.</description>
<pri ce>$19. 99</ pri ce>
</ or der >

Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/Message.html
http://www.w3.org/TR/xpath

Defining Server Session Pools

The following example shows how to retrieve the text node name of the second item
in the previous example. The method call returns the following string: M tre Saw.

JVMB_BEA SELECT(‘ xpath', ‘/order/itenf2]/nane/text()’);

The following example shows how to retrieve the ID attribute of the third item. This
method call returns the following string: 66.

JVMB_BEA SELECT(‘ xpath’, ‘/order/iten]{3]/attribute::id);
The following example shows how to retrieve all elements of item.

JMS_BEA SELECT(‘ xpath’, ‘/order/itemni);

Displaying Message Selectors

Y ou can use the following MessageConsuner method to display a message selector:

public String get MessageSel ect or (
) throws JMSException

This method returns either the currently defined message selector or null if amessage
selector is not defined.

Defining Server Session Pools

WebL ogic IMS implements an optional IM S facility for defining a server-managed
pool of server sessions. This facility enables an application to process messages
concurrently.

The server session pool:

m Receives messages from a destination and passes them to a server-side message
listener that you provide to process messages. The message listener class
provides an onMessage() method that processes a message.

m Processes messages in parallel by managing apool of JMS sessions, each of
which executes a single-threaded onMessage() method.

Programming WebLogic IMS ~ 4-61

4 Dev oping a WebLogic JMS Application

The following figure illustrates the server session pool facility, and the relationship
between the application and the application server components.

Figure4-4 Server Session Pool Facility

Application
Message
Producer
- p
) E Y
Connection Connection, Session Destination
Factory > >
|__ 1__._ i ——1 =" =" =" T=" ==
Application Server ¥ .
i Connection |
i Consumer i
! ¥ Y i
| Server M
] Session ettt
: Session > ¥ Listener

Server Session Server Session |
Pool Factory > Poal -

L P

Asillustrated inthefigure, the application provides asingle-threaded message listener.
The connection consumer, implemented by JM S on the application server, performs
the following tasks to process one or more messages.

1. Getsaserver session from the server session pool.
2. Getsthe server session’s session.

3. Loads the session with one or more messages.

4. Startsthe server session to consume messages.
5

Releases the server session back to pool when finished processing messages.

4-62 Programming WebL ogic IMS

Defining Server Session Pools

The following figure illustrates the steps required to prepare for concurrent message
processing.

Figure4-5 Preparingfor Concurrent M essage Processing

Step 1: Look up
Server Session Pool Factory
in JNDI

.

Step 2: Create a
Server Session Pool Using the
Server Session Pool Factory

'

Step 3: Create a
Connection Consumer
Using the Connection

Notes: When you create aserver session pool (step 2), WebL ogic Server first teststhe
webl ogi c. al | ow. creat e. j ms. Ser ver Sessi onPool ACL to ensure the
user has create permission. This permission isgranted to everyone, by default.
Y ou can update this property to restrict the permission to a set of users and
groupsor you can del ete the property to disabl e the server session pool feature.
For more information about configuring ACL s, see “Managing Security” in
the Administration Guide.

Applications can use other application server providers session pool
implementations within this flow. Server session pools can also be
implemented using M essage Driven Beans. For information on using message
driven beans to implement server session poals, see Using WebL ogic EJB.

If the session pool and connection consumer were defined during
configuration, you can skip this section. For more information on configuring
server session pools and connection consumers, see Managing JMSin the
Administration Guide.

WebL ogic IM S does not support the optional

Topi cConnect i on. cr eat eDur abl eConnect i onConsumer () operation.
For more information on this advanced JM S operation, refer to the JavaSoft
JMSS Specification version 1.0.2.

Programming WebLogic IMS ~ 4-63

http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/adminguide/cnfgsec.html
http://e-docs.bea.com/wls/docs60/ejb/index.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://www.javasoft.com/products/jms/docs.html
http://www.javasoft.com/products/jms/docs.html

4 Dev oping a WebLogic JMS Application

Step 1: Look Up Server Session Pool Factory in JNDI

Y ou use a server session pool factory to create a server session pool.

WebL ogic IMS defines one Ser ver Sessi onPool Fact ory object, by default:
webl ogi c. j ms. Ser ver Sessi onPool Fact or y: <nanme>, where<nane> specifiesthe
name of the IMS server to which the session pool is created.

Once it has been configured, you can look up a server session pool factory by first
establishing a JNDI context (cont ext) using the

Nami ngManager . | ni ti al Cont ext () method. For any application other than a
servlet application, you must pass an environment used to createtheinitial context. For
more information, see the Nami ngManager . | ni ti al Cont ext () javadoc.

Once the context is defined, to look up a server session pool factory in INDI use the
following code:

factory = (Server Sessi onPool Factory) context.| ookup(<ssp_nane>);

The <ssp_name> specifies aqualified or non-qualified server session pool factory
name.

For more information about server session pool factories, see
“ ServerSessionPool Factory” on page 2-19 or
webl ogi c. j ms. Ser ver Sessi onPool Fact ory javadoc.

Step 2: Create a Server Session Pool Using the Server
Session Pool Factory

4-64

Y ou can create a server session pool for use by queue (PTP) or topic (Pub/sub)
connection consumers, using the Ser ver Sessi onPool Fact or y methodsdescribed in
the following sections.

For more information about server session poals, see “ ServerSessionPool” on page
2-20 or thej avax. j ms. Ser ver Sessi onPool javadoc.

Programming WebL ogic IMS

http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://java.sun.com/j2se/1.3/docs/api/javax/naming/InitialContext.html#InitialContext()
http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ServerSessionPool.html

Defining Server Session Pools

Create a Server Session Pool for Queue Connection Consumers

The Ser ver Sessi onPool Fact ory provides the following method for creating a
server session pool for queue connection consumers:

publ i c Server Sessi onPool get Server Sessi onPool (
QueueConnecti on connecti on,
int maxSessi ons,
bool ean transact ed,
i nt ackMbde,
String |listenerd assNane
) throws JMSException

Y ou must specify the queue connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3), whether or not the sessions are transacted, the
acknowledge mode (applicable for non-transacted sessions only), and the message
listener class that is instantiated and used to receive and process messages
concurrently.

For moreinformation about the Ser ver Sessi onPool Fact ory class methods, see the
webl ogi c. j ms. Server Sessi onPool Fact ory javadoc. For more information about
the Connect i onConsuner class, seethej avax. j ms. Connect i onConsuner
javadoc.

Create a Server Session Pool for Topic Connection Consumers

The Ser ver Sessi onPool Fact ory provides the following method for creating a
server session pool for topic connection consumers:

publ i ¢ Server Sessi onPool get Server Sessi onPool (
Topi cConnecti on connecti on,
i nt nmaxSessi ons,
bool ean transact ed,
i nt ackMde,
String |istenerd assNanme
) throws JMSException

Y ou must specify the topic connection associated with the server session pool, the
maximum number of concurrent sessionsthat can beretrieved by the connection (to be
created in step 3), whether or not the sessions are transacted, the acknowledge mode
(applicable for non-transacted sessions only), and the message listener class that is
instantiated and used to receive and process messages concurrently.

Programming WebLogic IMS ~ 4-65

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html

4 Dev oping a WebLogic JMS Application

For moreinformation about the Ser ver Sessi onPool Fact ory class methods, seethe
webl ogi c. j ms. Ser ver Sessi onPool Fact ory javadoc. For more information about
the Connect i onConsuner class, seethej avax. j ms. Connect i onConsumner
javadoc.

Step 3: Create a Connection Consumer

Y ou can create a connection consumer for retrieving server sessions and processing
messages concurrently using one of the following methods:

m Configuring the server session pool and connection consumer during the
configuration, as described in the “Managing IMS’ in the Administration Guide

m Including in your application the Connection methods described in the following
sections

For more information about the Connect i onConsuner class, see
“ConnectionConsumer” on page 2-21 or thej avax. j ms. Connect i onConsuner
javadoc.

Create a Connection Consumer for Queues

4-66

The QueueConnect i on provides the following method for creating connection
consumers for queues:

publ i ¢ Connecti onConsuner createConnecti onConsuner (
Queue queue,
String messageSel ector,
Ser ver Sessi onPool sessi onPool ,
i nt maxMessages
) throws JMSException

Y ou must specify the name of the associated queue, the message sel ector for filtering
messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session
simultaneously. For information about message selectors, see“ Filtering Messages” on
page 4-58.

For more information about the QueueConnect i on class methods, see the
j avax. j ms. QueueConnect i on javadoc. For moreinformation about the
Connect i onConsuner class, seethej avax. j ms. Connect i onConsumer javadoc.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/ServerSessionPoolFactory.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/QueueConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html

Defining Server Session Pools

Create a Connection Consumer for Topics

The Topi cConnect i on provides the following two methods for creating
Connect i onConsurer s for topics:

publ i c Connecti onConsuner createConnecti onConsuner (
Topi ¢ topic,
String nessageSel ector,
Ser ver Sessi onPool sessi onPool ,
i nt maxMessages
) throws JMSException

publ i c Connecti onConsuner createbDurabl eConnecti onConsuner (
Topi ¢ topic,
String nmessageSel ector,
Ser ver Sessi onPool sessi onPool ,
i nt maxMessages
) throws JMSException

For each method, you must specify the name of the associated topic, the message
selector for filtering messages, the associated server session pool for accessing server
sessions, and the maximum number of messages that can be assigned to the server
session simultaneously. For information about message selectors, see “Filtering
Messages” on page 4-58.

Each method creates a connection consumer; but, the second method also creates a
durable connection consumer for use with durable subscribers. For more information
about durable subscribers, see “ Setting Up Durable Subscriptions’ on page 4-46.

For more information about the Topi cConnect i on class methods, see the
j avax. j ms. Topi cConnect i on javadoc. For more information about the
Connect i onConsumner class, seethej avax. j ns. Connect i onConsuner javadoc.

Programming WebLogic IMS ~ 4-67

http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/TopicConnection.html
http://www.javasoft.com/products/jms/javadoc-102a/javax/jms/ConnectionConsumer.html

4 Dev oping a WebLogic JMS Application

Example: Setting Up a PTP Client Server Session Pool

4-68

Thefollowing exampleillustrates how to set up aserver session pool for aJMSclient.
Thest artup() methodissimilar tothei ni t () methodinthe

exanpl es. j ns. queue. QueueSend example, asdescribed in “Example: Setting Up a
PTP Application” on page 4-16. This method al so sets up the server session pool.

The following illustrates the st ar t up() method, with comments highlighting each
setup step.

Include the following package on the import list to implement a server session pool
application:

i mport webl ogi c. j ns. Server Sessi onPool Fact ory

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSI ON_POO._FACTORY=
"webl ogi c. j ms. Ser ver Sessi onPool Fact ory: exanpl esJMSSer ver";

private QueueConnecti onFactory qconFactory;

private QueueConnection gcon;

private QueueSession gsession;

private QueueSender gsender;

private Queue queue;

private Server Sessi onPool Factory sessi onPool Fact ory;
private Server Sessi onPool sessi onPool ;

private ConnectionConsuner consuner;

Programming WebL ogic IMS

Defining Server Session Pools

Step 1

Step 2

Create the required JM S objects.

public String startup(
String nane,
Hasht abl e args

) throws Exception

{

String connectionFactory = (String)args. get("connectionFactory");
String queueNarme = (String)args. get("queue");
if (connectionFactory == null || queueNane == null) {
t hrow new
111 egal Argunent Excepti on("connecti onFact ory="+connecti onFactory+
", queueNane="+queueNane) ;

Context ctx = new Initial Context();
gconFactory = (QueueConnecti onFactory)
ct x. | ookup(connecti onFactory);
gcon =qconFactory. creat eQueueConnecti on();
gsessi on = gcon. creat eQueueSessi on(fal se,
Sessi on. AUTO_ACKNOWL.EDGE) ;
gueue = (Queue) ctx. | ookup(queueNane);
gcon.start();

Look up the server session pool factory in INDI.

sessi onPool Factory = (Server Sessi onPool Fact ory)
ct x. | ookup(SESSI ON_POOL_FACTORY) ;

Create a server session pool using the server session pool factory, asfollows:
sessi onPool = sessi onPool Fact ory. get Server Sessi onPool (qcon, 5,
fal se, Sessi on. AUTO ACKNOALEDGE,
exanpl es.j ns. startup. MsgLi stener);
The code defines the following:
m qcon as the queue connection associated with the server session pool

m 5 asthe maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

m Sessionswill be non-transacted (f al se)
m AUTO ACKNOW.EDGE as the acknowledge mode

m Theexanpl es. j ns. startup. MsgLi st ener will be used as the message
listener that is instantiated and used to receive and process messages
concurrently.

Programming WebLogic IMS ~ 4-69

4 Dev oping a WebLogic JMS Application

Step 3

Example:
Pool

Create a connection consumer, as follows:

consunmer = gcon. creat eConnecti onConsuner (queue, “TRUE",
sessi onPool, 10);

The code defines the following:

m queue asthe associated queue

®m TRUE as the message selector for filtering messages

m sessi onPool astheassociated server session pool for accessing server sessions

m 10 asthe maximum number of messages that can be assigned to the server
session simultaneously

For moreinformation about the IM S classes used in thisexample, see“WebLogic IMS
Classes’ on page 2-5 or thej avax. j ms javadoc.

Setting Up a Pub/Sub Client Server Session

Thefollowing exampleillustrates how to set up aserver session pool for aJMSclient.
Thest artup() methodissimilar tothei ni t () method inthe

exanpl es. j ns. t opi c. Topi cSend example, asdescribed in “Example: Setting Up a
Pub/Sub Application” on page 4-19. It also sets up the server session pool.

Thefollowing illustratesst ar t up() method, with comments highlighting each setup
step.

Include the following package on the import list to implement a server session pool
application:

i mport webl ogi c. j ns. Server Sessi onPool Fact ory

4-70 Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/index.html

Defining Server Session Pools

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSI ON_POO._FACTORY=
"webl ogi c. j ms. Ser ver Sessi onPool Fact ory: exanpl esJMsSSer ver";

private Topi cConnecti onFactory tconFactory;

private Topi cConnection tcon;

private Topi cSession tsession;

private Topi cSender tsender;

private Topic topic;

private Server Sessi onPool Factory sessi onPool Fact ory;
private Server Sessi onPool sessionPool ;

private ConnectionConsuner consumner;

Create the required JM S objects.

public String startup(
String nane,
Hasht abl e args

) throws Exception

{

String connectionFactory = (String)args. get("connectionFactory");
String topicName = (String)args.get("topic");
if (connectionFactory == null || topicNane == null) {
t hrow new
111 egal Argunent Excepti on("connecti onFact ory="+connecti onFact ory+
", topi cNane="+t opi cNane) ;
}

Context ctx = new Initial Context();
tconFactory = (Topi cConnecti onFactory)
ct x. | ookup(connecti onFactory);
tcon = tconFactory. creat eTopi cConnection();
tsession = tcon. createTopi cSession(fal se,
Sessi on. AUTO _ACKNOWL.EDGE) ;
topic = (Topic) ctx.lookup(topicNane);
tcon.start();

Step1 Look up the server session pool factory in JNDI.

sessi onPool Factory = (Server Sessi onPool Fact ory)
ct x. | ookup(SESSI ON_POOL_FACTORY) ;

Step2 Create a server session pool using the server session pool factory, asfollows:
sessi onPool = sessi onPool Fact ory. get Server Sessi onPool (tcon, 5,

fal se, Sessi on. AUTO ACKNOALEDGE,
exanpl es.j ns. startup. MsgLi stener);

Programming WebLogic IMS ~ 4-71

4 Dev oping a WebLogic JMS Application

4-72

Step 3

The code defines the following:
m t con asthe topic connection associated with the server session pool

m 5 asthe maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

m Sessionswill be non-transacted (f al se)
B AUTO_ACKNOW.EDGE as the acknowledge mode

m Theexanpl es. j ns. startup. MsgLi st ener will be used as the message
listener that is instantiated and used to receive and process messages
concurrently.

Create a connection consumer, as follows:

consuner = tcon. createConnecti onConsuner (topic, “TRUE',
sessi onPool, 10);

The code defines the following:

m topi c astheassociated topic

m TRUE as the message selector for filtering messages

m sessi onPool astheassociated server session pool for accessing server sessions

m 10 asthe maximum number of messages that can be assigned to the server
session simultaneously

For moreinformation about the IM S classes used in thisexample, see“WebLogic IMS
Classes’ on page 2-5 or thej avax. j ms javadoc.

Programming WebL ogic IMS

http://www.javasoft.com/products/jms/javadoc-102a/index.html

Using Multicasting

Using Multicasting

Multicasting enables the delivery of messages to a select group of hosts that
subsequently forward the messages to subscribers.

The benefits of multicasting include:
m Near rea-time delivery of messages to host group

m High scalability due to the reduction in the amount of resources required by the
JMS server to deliver messages to subscribers

Multicast messages are not guaranteed to be delivered to all members of the host
group. For messages requiring reliable delivery and recovery, you should not use
multicasting.

For an example of when multicasting might be useful, consider a stock ticker. When
accessing stock quotes, timely delivery is more important than reliability. When
accessing the stock information in real-time, if al or a portion of the contents is not
delivered, the client can ssimply request the information to be resent. Clientswould not
want to have the information recovered, in this case, asby thetimeit isredelivered, it
would be out-of-date.

The following figure illustrates the steps required to set up multicasting.

Figure4-6 Setting Up Multicasting

Step 1. Set Up JMS Application,
Creating Multicast Session and
Topic Subscriber

'

Step 2. Set Up Message Listener
to Receive
Messages Ansynchronously

Note: Multicasting isonly supported for the Pub/sub messaging model, and only for
non-durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.

Programming WebLogic IMS ~ 4-73

4 Dev oping a WebLogic JMS Application

Before setting up multicasting, the connection factory and destination must be
configured to support multicasting, as follows:

m For each connection factory, the system administrator configures the maximum
number of outstanding messages that can exist on amulticast session and
whether the most recent or oldest messages are discarded in the event the
maximum is reached. If the message maximum is reached, a
Dat aOver r unExcept i on isthrown, and messages are automatically discarded.
These attributes are also dynamically configurable, as described in “Dynamically
Configuring Multicasting Configuration Attributes’ on page 4-77.

m For each destination, the multicast IP address, port, and time-to-live attributes
are specified. To better understand the time-to-live attribute setting, see
“Example: Multicast TTL” on page 4-78.

Note: It isstrongly recommended that you seek the advice of your network
administrator when configuring the multicast | P address, port, and time-to-live
attributes to ensure that the appropriate values are set.

For more information on the multicasting configuration attributes, see the
Administration Console Online Help. The multicast configuration attributes are also
summarized in Appendix A, “Configuration Checklists.”

4-74 Programming WebLogic IMS

http://e-docs.bea.com/wls/docs60/ConsoleHelp/index.html

Using Multicasting

Step 1: Set Up the JMS Application, Creating Multicast
Session and Topic Subscriber

Set up the IMS application as described in “ Setting Up aJM S Application” on page
4-4, however, when creating sessions, asdescribed in “ Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session would like to receive multicast
messages by setting the acknow edgeMbde value to MULTI CAST_NO_ACKNOW.EDGE.

Note: Multicasting is only supported for the Pub/sub messaging model.

For example, the following method illustrates how to create amulticast session for the
Pub/sub messaging model.

tsession = tcon. createTopi cSessi on(
fal se,
WL Sessi on. MULTI CAST_NO_ACKNOW.EDGE

);

In addition, create a topic subscriber, as described in “ Create TopicPublishers and
TopicSubscribers’ on page 4-12.

For example, the following code illustrates how to create a topic subscriber:

t subscri ber = tsession. createSubscriber(myTopic);

Note: ThecreateSubscri ber () method failsif the specified destination is not
configured to support multicasting.

Multicasting is only supported for non-durable subscribers. An attempt to

create adurable subscriber on amulticast session will cause aJMSExcept i on
to be thrown.

Programming WebLogic IMS ~ 4-75

4 Dev oping a WebLogic JMS Application

Step 2: Set Up the Message Listener

4-76

Multicast topic subscribers can only receive messages asynchronously. If you attempt
to receive synchronous messages on a multicast session, a JMSExcept i on isthrown.

Set up the message listener for the topic subscriber, as described in “Receiving
M essages Asynchronously” on page 4-30.

For exampl e, the following code illustrates how to establish a message listener.
tsubscri ber. set Messageli st ener(this);

When receiving messages, WebL ogic JM Stracksthe order in which messages are sent
by the destinations. If a multicast subscriber’s message listener receives the messages
out of sequence, resulting in one or more messages being skipped, a
SequenceGapExcept i on will be delivered to the Except i onLi st ener for the
session(s) present. If askipped message is subsequently delivered, it will be discarded.
For example, in the following figure, the subscriber is receiving messages from two
destinations simultaneously.

Figure4-7 Multicasting Sequence Gap

Destination 1 Destination 2
[o]
™, I

Fd
. V'
N ¥
[B][d] ...
Subscriber

Upon receiving the “4” message from Destination 1, a SequenceGapExcepti on is
thrown to notify the application that a message was received out of sequence. If
subsequently received, the “3” message will be discarded.

Note: Thelarger the messages being exchanged, the greater the risk of encountering
a SegquenceGapException.

Programming WebL ogic IMS

Using Multicasting

Dynamically Configuring Multicasting Configuration
Attributes

During configuration, for each connection factory the system administrator configures
the following information to support multicasting:

m Messages maximum specifying the maximum number of outstanding messages
that can exist on a multicast session.

m Overrun policy specifying whether recent or older messages are discarded in the
event the messages maximum is reached.

If the messages maximum is reached, a Dat aOver r unExcept i on isthrown and
messages are automatically discarded based on the overrun policy.

Alternatively, you can set the messages maximum and overrun policy using the
Sessi on set methods.

The following table lists the Sessi on set and get methods for each dynamically
configurable attribute.

Table 4-7 Message Producer Set and Get M ethods

Attribute Set Method Get Method
Messages public void set MessagesMaxi mun{ public int get MessagesMaxi mun(
Maximum i nt nessagesMaxi mum) throws JMSException
) throws JMSException
Overrun Policy public void setOverrunPolicy (public int getOverrunPolicy(

int overrunPolicy) throws JMSException
) throws JMSException

Note: The values set using the set methods take precedence over the configured
values.

For more information about these Sessi on class methods, see the

webl ogi c. j ms. ext ensi ons. W.Sessi on javadoc. For more information on these
multicast configuration attributes, see“ JM S Destinations’ in the Administration
Console Online Help.

Programming WebLogic IMS ~ 4-77

http://e-docs.bea.com/wls/docs60/javadocs/weblogic/jms/extensions/WLSession.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsdestination.html

4 Dev oping a WebLogic JMS Application

Example: Multicast TTL

Note: Thefollowing exampleisavery ssimplified illustration of how the Multicast
TTL (time-to-live) destination configuration attribute impacts the delivery of
messages across routers. It is strongly advised that you seek the assistance of
your network administrator when configuring the multicast TTL attribute to
ensure that the appropriate value is set.

The Multicast TTL isindependent of the message time-to-live.

The following example illustrates how the Multicast TTL destination configuration
attribute impacts the delivery of messages across routers. For more information on the
multicast configuration attributes, see “JM S Destinations” in the Administration
Console Online Help.

Consider the following network diagram.

Figure4-8 Multicast TTL Example

TTL Count
Subnet A | |
Multicast Router ’
Pubslisher - i - :
e s
. -

Subnet B | | |

m B m =T

. SRR | ST
Multicast Subscriber - -
Subnet C | | l
= = #
"y ..J'L-.’:r,a..'n-'au. :
- o
Multicast Subscriber

In thefigure, the network consists of three subnets: Subnet A containing the multicast
publisher, and Subnets B and C each containing one multicast subscriber.

4-78 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsdestination.html

Using Multicasting

If the Multicast TTL attribute is set to O (indicating that the messages cannot traverse
any routers and are delivered on the current subnet only), when the multicast publisher
on Subnet A publishes a message, the message will not be delivered to any of the
multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one
router), when the multicast publisher on Subnet A publishes a message, the multicast
subscriber on Subnet B will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can
traverse two routers), when the multicast publisher on Subnet A publishes a message,
the multicast subscribers on Subnets B and C will receive the message.

Programming WebLogic IMS ~ 4-79

4 Dev oping a WebLogic JMS Application

4-80 Programming WebL ogic IMS

CHAPTER

5

Using Transactions
with WebLogic JMS

The following sections describe how to use transactions with WebL ogic IMS:

Overview of Transactions
Using JM S Transacted Sessions
Using JTA User Transactions

Asynchronous Messaging Within JTA User Transactions Using Message Driven
Beans

Example: IMS and EJB in a JTA User Transaction

Note: For more information about the IM S classes described in this section, access

the IMS Javadoc, including the latest IMS API Errata, supplied on the Sun
Microsystems Javasoft Web site at the following locations:
http://www.javasoft.com/products/jms/Javadoc-102a/index.html

and

http://www.javasoft.com/products/jms/errata_051801.html

Programming WeblL ogic IMS 51

http://www.java.sun.com/products/jms/javadoc-102a/index.html
http://www.java.sun.com/products/jms/errata_051801.html

5 us ng Transactions with WebLogic IMS

Overview of Transactions

5-2

A transaction enables an application to coordinate agroup of messages for production
and consumption, treating messages sent or received as an atomic unit.

When an application commits atransaction, all of the messagesit received within the
transaction are removed from the messaging system and the messagesit sent within the
transaction are actually delivered. If the application rolls back the transaction, the
messages it received within the transaction are returned to the messaging system and
messages it sent are discarded.

When atopic subscriber rolls back areceived message, the message isredelivered to
that subscriber. When a queue receiver rolls back a received message, the message is
redelivered to the queue, not the consumer, so that another consumer on that queue
may receive the message.

For example, when shopping online, you select items and store them in an online
shopping cart. Each ordered item is stored as part of the transaction, but your credit
card is not charged until you confirm the order by checking out. At any time, you can
cancel your order and empty your cart, rolling back all orders within the current
transaction.

There are three ways to use transactions with IM S:

m If you areusing only JMS in your transactions, you can create a JMStransacted
session.

m If you are mixing other operations, such as EJB, with JMS operations, you
should use a Java Transaction API (JTA) user transaction in a non-transacted
JM S session.

m Use message driven beans.

To enable multiple IMS serversin the same JTA user transaction, or to combine IMS
operations with non-JM S operations (such as EJB), the two-phase commit licenseis
required. For moreinformation, see “Using JTA User Transactions’ on page 5-6.

The following sections explain how to use a M S transacted session and JTA user
transaction.

Programming WebL ogic IMS

Using JMS Transacted Sessions

Note: When using transactions, it is recommended that you define a session
exception listener to handle any problems that occur before atransaction is
committed or rolled back, as described in “ Defining a Session Exception
Listener” on page 4-40.

If theacknow edge() method iscalled within atransaction, it isignored. If
ther ecover () method is called within atransaction, a JM SException is
thrown.

Using JMS Transacted Sessions

A IMS transacted session supports transactions that are located within the session. A
JMSS transacted session’ s transaction will not have any effects outside of the session.

For example, rolling back asession will roll back all sendsand receiveson that session,
but will not roll back any database updates. JTA user transactions areignored by IMS
transacted sessions.

Transactionsin JM Stransacted sessionsare started implicitly, after thefirst occurrence
of asend or receive operation, and chained together—whenever you commit or roll
back atransaction, another transaction automatically begins.

Before using a JM S transacted session, the system administrator should adjust the
connection factory (Transaction Timeout) and/or session pool (Transaction) attributes,
as necessary for the application development environment, as described in Managing
JMSin the Administration Guide.

Programming WeblL ogic IMS 5-3

http://e-docs.bea.com/wls/docs60/adminguide/jms.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html

5 us ng Transactions with WebLogic IMS

The following figure illustrates the steps required to set up and use a JIM S transacted
session.

Figure5-1 Setting Up and Using a JM S Transacted Session

Step 1. Set Up JWMS Application
C reating Transacted Session

'

Step 2. Perform
Desired Operations

.

Step 3. Commit or Roll Back
the JMS Transacted Session

Step 1: Set Up JMS Application, Creating Transacted
Session

Set up the IMS application as described in “ Setting Up a JM S Application” on page
4-4, however, when creating sessions, as described in “ Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session isto be transacted by setting the
transact ed boolean valuetot r ue.

For example, the following methodsillustrate how to create atransacted session for the
PTP and Pub/sub messaging models, respectively.

gsessi on = gcon. cr eat eQueueSessi on(
true,

Sessi on. AUTO_ACKNOW.EDCGE
)

t session = tcon. createTopi cSessi on(
true,

Sessi on. AUTO_ACKNOW.EDCGE
)

54 Programming WebL ogic IMS

Using JMS Transacted Sessions

Once defined, you can determine whether or not a session is transacted using the
following session method:

publ i c bool ean get Transact ed(
) throws JMSException

Note: The acknowledge value isignored for transacted sessions.

Step 2: Perform Desired Operations

Perform the desired operations assoicated with the current transaction.

Step 3: Commit or Roll Back the JMS Transacted Session

Once you have performed the desired operations, execute one of the following
methods to commit or rollback the transaction.

To commit the transaction, execute the following method:

public void commit (
) throws JMSException

The commi t () method commits all messages sent or received during the current
transaction. Sent messages are made visible, while received messages are removed
from the messaging system.

To rollback the transaction, execute the following method:

public void roll back(
) throws JMSException

Ther ol | back() method cancelsany messages sent during the current transaction and
returns any messages received to the messaging system.

If either thecomi t () orrol | back() methodsareissued outside of aJM Stransacted
session, al | | egal St at eExcept i on isthrown.

Programming WeblL ogic IMS 5-5

5 us ng Transactions with WebLogic IMS

Using JTA User Transactions

5-6

The Java Transaction API (JTA) supports transactions across multiple data resources.
JTA isimplemented as part of WebL ogic Server and providesastandard Javainterface
for implementing transaction management.

Y ou program your JTA user transaction applications using the

j avax. transacti on. User Transact i on object to begin, commit, and roll back the
transactions. When mixing IM S and EJB within a JTA user transaction, you can also
start the transaction from the EJB, as described in Programming WebLogic JTA.

Y ou can start aJJTA user transaction after a transacted session has been started;
however, the JTA transaction will be ignored by the session and vice versa.

WebL ogic Server supports the two-phase commit protocol (2PC), enabling an
application to coordinate asingle JTA transaction across two or more resource
managers. It guarantees data integrity by ensuring that transactional updates are
committed in all of the participating resource managers, or arefully rolled back out of
all the resource managers, reverting to the state prior to the start of the transaction.

Note: A separate 2PC transaction licenseis required to support this protocol. For
transaction migration considerationsrelated to 2PC, see* Migrating WebL ogic
JMS Applications’ on page 6-1.

Before using a JTA transacted session, the system administrator must configure the
connection factories to support JTA user transactions by selecting the User
Transactions Enabled checkbox, as described in Managing IM S in the Administration
Guide.

The following figureillustrates the steps required to set up and use a JTA user
transaction.

Programming WebL ogic IMS

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html
http://e-docs.bea.com/wls/docs60/jta/index.html
http://e-docs.bea.com/wls/docs60/adminguide/jms.html

Using JTA User Transactions

Figure5-2 Setting Up and Usinga JTA User Transaction

Step 1. Set Up JMS Application,
C reating Non-Transacted Session

!

Step 2. Look up UserTransaction
in JNDI

{

Step 3. Start the JTA
User Transaction

!

Step 4. Perform Desired
Operations

.

Step 5. Commit or Roll Back
the JTA User Tmansaction

Step 1: Set Up JMS Application, Creating Non-Transacted
Session

Set up the IMS application as described in “ Setting Up aJM S Application” on page
4-4, however, when creating sessions, asdescribed in “ Step 3: Create a Session Using
the Connection” on page 4-8, specify that the session isto be non-transacted by setting
thet r ansact ed boolean valueto f al se.

Programming WeblL ogic IMS 5-7

5 us ng Transactions with WebLogic IMS

For exampl e, the following methods illustrate how to create a non-transacted session
for the PTP and Pub/sub messaging models, respectively.

gsessi on = gcon. cr eat eQueueSessi on(
fal se,
Sessi on. AUTO_ACKNOW.EDGE

);

t session = tcon. createTopi cSessi on(
fal se,
Sessi on. AUTO_ACKNOW.EDGE

)

Note: When auser transaction is active, the acknowledge mode is ignored.

Step 2: Look Up User Transaction in JNDI

The application uses INDI to return an object referenceto the User Tr ansact i on
object for the WebL ogic Server domain.

Y ou can lookup the User Tr ansact i on object by establishing a INDI context
(cont ext) and executing the following code, for example:

User Transacti on xact =
ct x. | ookup(“j avax. transaction. User Transacti on”);

Step 3: Start the JTA User Transaction

Start the JTA user transaction using the User Tr ansact i on. begi n() method. For
example:

xact . begi n();

Step 4: Perform Desired Operations

Perform the desired operations associated with the current transaction.

5-8 Programming WebL ogic IMS

Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans

Step 5: Commit or Roll Back the JTA User Transaction

Once you have performed the desired operations, execute one of the following
methods to commit or rollback the JTA user transaction.

To commit the transaction, execute the following method:
xact.comit();

The commi t () method causes WebL ogic Server to call the transaction manager to
complete the transaction, and commit all operations performed during the current
transaction. The transaction manager is responsible for coordinating with the resource
managers to update any databases.

To rollback the transaction, execute the following method:
xact . rol | back();

Ther ol I back() method causes WebL ogic Server to call the transaction manager to
cancel the transaction, and roll back all operations performed during the current
transactions.

Onceyou call thecommi t () orrol | back() method, you can optionally start another
transaction by calling xact . begi n() .

Asynchronous Messaging Within JTA User
Transactions Using Message Driven Beans

Because JM S cannot determinewhich, if any, transaction to usefor an asynchronously
delivered message, M S asynchronous message delivery is not supported within JTA
user transactions.

However, message driven beans provide an alternative approach. A message driven
bean can automatically begin a user transaction just prior to message delivery.

For information on using message driven beans to simulate asynchronous message
delivery, seeto Programming WebL ogic EJB.

Programming WeblL ogic IMS 59

http://e-docs.bea.com/wls/docs60/ejb/index.html

5 us ng Transactions with WebLogic IMS

Example: JMS and EJB in a JTA User
Transaction

5-10

The following example shows how to set up an application for mixed EJB and IMS
operationsin a JTA user transaction by looking up a

j avax. transacti on. User Transact i on using JNDI, and beginning and then
committing a JTA user transaction. In order for this example to run, the User
Transactions Enabled checkbox must be selected when the system administrator
configures the connection factory.

Note: Inadditionto thissimple JTA User Transaction example, refer to the example
provided with WebL ogic JTA, located in the
sanpl es/ exanpl es/ j t a/ j nsj dcb directory

Import the appropriate packages, including the
j avax. transacti on. User Transact i on package.

import java.io.*;

import java.util.*;

i mport javax.transaction. User Transacti on;
i mport javax.nam ng.*;

import javax.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA USER XACT=
"javax. transaction. User Transacti on";

Programming WebL ogic IMS

http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transaction/UserTransaction.html

Example: JIMSand EJB in a JTA User Transaction

Step 1

Step 2

Step 3

Step 4

Step 5

Set up the IMS application, creating a non-transacted session. For more information
on setting up the IM S application, refer to “ Setting Up aJMS Application” on page
4-4,

/1 IMS application setup steps including, for exanple:

gsessi on = gcon. creat eQueueSessi on(fal se,
Sessi on. CLI ENT_ACKNON_EDGE) ;

Look up the User Transact i on using JNDI.

User Transaction xact = (UserTransacti on)
ct x. | ookup(JTA_USER_XACT) ;

Start the JTA user transaction.

xact . begi n();

Perform the desired operations.

/1 Perform sone JMS and EJB operations here.
Commit the JTA user transaction.

xact . comm t ()

Programming WebLogic IMS 5-11

5 us ng Transactions with WebLogic IMS

5-12 Programming WebLogic IMS

CHAPTER

O Migrating WebLogic
JMS Applications

The following sections describe how to migrate WebL ogic JM S applications:
m Existing Feature Functionality Changes

m Migrating Existing Applications

m Deleting JDBC Database Stores

Existing Feature Functionality Changes

Changesin existing feature functionality have been made in order to comply with the
JavaSoft IM S Specification version 1.0.2. and the latest IMS API — Errata.

The following table lists the changes in existing feature functionality from WebL ogic
Server Version 5.1, and also indicate any code changes that might be required asa
result. For additional information pertaining to the Version 1.0.2 change history, see
Chapter 11, “Change History,” of the JavaSoft IM S Specification Version 1.0.2.

Programming WeblL ogic IMS 6-1

http://www.java.sun.com/products/jms/docs.html
http://www.java.sun.com/products/jms/errata_051801.html
http://www.javasoft.com/products/jms/docs.html

6 Migrating WebLogic JMS Applications

Table 6-1 Existing Feature Functionality Changes

Category Description Code M adification
Connection The following two default connection factories It isrecommended that existing code that use
Factories have been deprecated: the deprecated classes be modified to use a
javax. j ms. QueueConnecti onFact ory new default or user-defined connection
and factory class.
j avax. j ms. Topi cConnecti onFact ory. For example, if your code specified the
These connection factories are still defined and following constant using the default queue
usablein this release for backwards compatibility. connection factory:
WebL ogic IMS 6.0 defines one connection public final static String
factory, by defaullt: JM5_FACTORY="j avax. j ns. QueueCon
webl ogi c. j ms. Connect i onFactory nectionFactory”
Y ou can also specify user-defined connection Y ou should modify the constant to use anew
factories using the Administration Console. user-defined connection factory, for
example:
Note: Usingthedefault connection factory, you
) public final static String
have no control over the ngLoglc JMB_FACTORY="webl ogi c. j ms. Queue
server on which the connection fgctory Connect i onFact or y”
may be deployed. If you would like to L .
target a particular WebLogic Server, For t.rue backwards compatibility with
create anew connection factory and previousreleases, you should ensure that you
specify the appropriate WebL ogic Server select the Allqw Close In onMessage and
target(s). User_ Tra_nsactl ons Enabl_ed checkboxeswhen
configuring the connection factory.
For more information about defining
connection factories, see “JM S Connection
Factories’ in the Administration Console
Online Help.
In order to instantiate the default connection None required. Thisis a configuration
factory on aparticular WebL ogic Server, youmust requirement. For more information, see
select the Enable Default IM S Connection “Server” in the Administration Console
Factories checkbox when configuring the Online Help.
WebL ogic Server.
Connections ~ When closing a connection, the call blocks until None required.

outstanding synchronous calls and asynchronous
listeners have completed.

6-2 Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/server.html

Existing Feature Functionality Changes

Table 6-1 Existing Feature Functionality Changes (Continued)

Category Description Code M odification
Sessions When closing a session, the call blocks until None required.
outstanding synchronous calls and asynchronous
listeners have completed.
Message If multiple topic subscribers are defined in the None required.
Consumers same session for the same topic, each consumer
will receiveits own copy of a message.
When closing amessage consumer, thecall blocks None required.

until the method call completes and any
outstanding synchronous applications are
cancelled.

In order to comply with the IMS specification, if
thecl ose() method is called from within an
onMessage() method, the application will hang
unlessthe Allow Closeln OnMessage checkbox is
selected when configuring the connection factory.
If the acknowledge mode is
AUTO_ACKNOW.EDGE, the current message will
still be automatically acknowledged.

None required. Thisis aconfiguration
requirement. For more information, see
“JMS Connection Factories’ in the
Administration Console Online Help.

Programming WeblL ogic IMS 6-3

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsconnectionfactory.html

6 Migrating WebLogic JMS Applications

Table 6-1 Existing Feature Functionality Changes (Continued)

Category Description Code M adification
Message The JMBMessagel D header field format has If you wish to access existing messagesusing
Header Field changed. the JMSMessagel D, you may need to run

one of the following

webl ogi c. j ms. ext ensi ons. JMSHel p
er methodsto convert between WebL ogic
JMS 6.0 and pre-6.0 IM SMessagel D
formats.

To convert from pre-6.0 to 6.0
JMBMessagel Dformat:

public void

ol dJVMsMessagel DToNew(
String id,
| ong timeStanp

) throws JMSException

To convert from 6.0 to pre- 6.0
JMSMessagel Dformat:
public void
newdMSMessagel DTod d(
String id,
| ong timeStanp
) throws JMSException

6-4 Programming WebL ogic IMS

Existing Feature Functionality Changes

Table 6-1 Existing Feature Functionality Changes (Continued)

Category Description Code M odification
Destinations Thecr eat eQueue() andcr eat eTopi c() Update any portion of code that uses
methods do not create destinations dynamically, cr eat eQueue() orcreat eTopi c() to
only references to destinations that already exist ~ dynamically create destinations using the
given the vendor-specific destination name. following JM SHel per class methods,
respectively:
cr eat ePer manent QueueAsync() and
cr eat ePer manent Topi cAsync() .
For example, if your code used the following
method to dynamically create a queue:
gueue=qgsessi on. cr eat eQueue(queu
eNane) ;
Y ou should modify the code to dynamically
create a queue, as described in the sample
fi ndQueue() methodin“Usingthe
IJM SHelper Class Methods’ on page 4-42.
For more information on the JM SHel per
classes, see “ Creating Destinations
Dynamically” on page 4-42.
When creating temporary destinations, youmust ~ None required. Thisis aconfiguration
specify atemporary template. reguirement. For more information, see
“IJMS Templates’ in the Administration
Console Online Help.
Y ou must be the owner of the connectioninorder When creating a message consumer on a
to create a message consumer for that temporary temporary destination, ensurethat you arethe
destination. owner of the connection.
Durable Y ou no longer need to manually create JDBC None required.
Subscribers tables for durable subscribers. They are created
automatically.
Thereis no limit on the number of durable None required.

subscribers that can be created.

When defining aclient ID programatically, it must
be defined immediately after creating a
connection. Otherwise, an exception will be
thrown and you will be unable to make any other
JMS calls on that connection.

Ensurethat theset O i ent | D() methodis
issued immediately after creating the
connection. For more information, refer to
“Defining the Client ID” on page 4-46.

Programming WeblL ogic IMS 6-5

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmstemplate.html

6 Migrating WebLogic JMS Applications

Table 6-1 Existing Feature Functionality Changes (Continued)

Category Description Code M adification

Session Pools Session pool factories, session pools, referenced Ensure that all objects are targeted on the
connection factories, referenced destinations, and same JM S server.
associated connection consumers must all be
targeted on the same JM S server.

The Sessi onPool Manager and If used, remove any referencesto these
Connect i onConsuner Manager interfaces objects from the client application.
that were published as part of the WebLogic IMS

Version 5.1 javadoc have been removed from the

Version 6.0 javadoc, asthey are system interfaces

and should not be used within client applications.

In WebL ogic Server 6.0 SP2 or higher, for the Inthecr eat eConnect i onConsuner
QueueConnect i on and Topi cConnecti on method, ensure that the value of the
classes, the Max Messages argument in the MaxMessages argument is set to either -1
cr eat eConnect i onConsuner method (the default) or a positive integer.

requires a specific value for the amount of
messages to be reserved on the server.

Therefore, MaxMessages will be parsed as
follows:

- 1 — The same as the default value, which is 10.
>0 — Positive integers require no conversion.

0 —Aninvalid value that will generate a
JMSExcept i on.

<- 1 —Aninvalid value that will generate a
JMSExcepti on.

Transactions ~ To combine IMS and EJB database calls within None required.
the same transaction, a two-phase commit (2PC)
licenseis required. In previous releases of
WebL ogic Server, it was possible to combine
them by using the same database connection pool.

Recovering or rolling back received queue None required.
messages makes them available to all consumers

on the queue. In previous releases of WebL ogic

Server, rolled back messages were only available

to the session that rolled back the message, until

that session was closed.

6-6 Programming WebL ogic IMS

Migrating Existing Applications

Migrating Existing Applications

WebL ogic Server 6.0 supports the JavaSoft JIMS Specification version 1.0.2. and the
latest IMS API — Errata. In order to use your existing JM S applications, you must first
confirm your version of WebL ogic server, and then perform the following migration
procedure outlined in this section.

Before You Begin

Before beginning the migration procedure, you should check the following list to
confirm whether migration is support for your version of WebL ogic Server IM S, and
to find out whether special migration rules apply to that release:

m Version 4.5.1 — Migration is supported only for SP14. Customers running all
service packs should contact BEA Support.

m Version 5.1 — Customers running with SP07 or SP08 should contact BEA
Support before migrating existing JDBC storesto version 6.0.

e |norder to migrate object messages, the object classes need to bein the
version 6.0 server classpath.

Migration Steps

Before you can use an existing JM S application, you must migrate the configuration
and message data as follows:;

1. Properly shut down the old version of WebL ogic Server before beginning the
migration process.

Warning: Abruptly stopping the old version of WebL ogic Server while messaging
isstill in process may cause problems during migration. Processing
should be inactive before shutting down the old server and beginning the
migration to WebL ogic Server version 6.0.

2. Upgrade the WL S environment, as described in Installing WebL ogic Server.

Programming WeblL ogic IMS 6-7

http://www.java.sun.com/products/jms/docs.html
http://www.java.sun.com/products/jms/errata_051801.html
http://e-docs.bea.com/wls/docs60/install/index.html

6 Migrating WebLogic JMS Applications

6-8

3. Migrate configuration information using the configuration conversion facility.

During the configuration migration, the following default queue and topic
connection factories are enabled:

e javax.jms. QueueConnecti onFactory

e javax.jms. Topi cConnecti onFactory

e webl ogi c.j ns. Connecti onFactory

The first two connection factories are deprecated, but they are till defined and

usabl e for backwards compatibility. For information on the new default
connection factory, see the table “ Existing Feature Functionality Changes’ on

page 6-2.

The IMS administrator will need to review the resulting configuration to ensure
that the conversion meets the needs of the application.

Inthis case, al of the IM S attributes will be mapped to asingle node, asin
Version 5.1

Note: InVersion 6.0, IMS queues are defined during configuration, and no
longer saved within database tables. M essage data and durable
subscriptions are stored either in two JDBC tables or viaadirectory within
thefile system.

. Prepare for automatic migration of existing JDBC database stores.

a. Make abackup of the existing JDBC database.

b. Ensure that the migrated configuration information (see step 2) contains a
JDBC database store with exactly the same attributes as the existing store, and
that the new JM S servers that use the store define the same destinations and
corresponding destination attributes as the existing IMS servers.

c. If the new JDBC database store already exists, ensure that it is empty.

The new JDBC database store will be created during the automatic
migration, if required.

d. Ensurethat there is twice the amount of disk space required by the JDBC
database store available on the system.

Both the existing and new database information will exist on disk while the
migration is performed, doubling the space requirements. Once migration is
complete, you can delete the old JDBC database stores, as described in
“Deleting JDBC Database Stores’ on page 6-9.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/ConsoleHelp/conversion.html

Deleting JDBC Database Stores

5. Update any existing code, as required, to reflect the feature functionality changes
described in “ Existing Feature Functionality Changes’ on page 6-1.

When you initially boot up the WebL ogic Server, the existing JDBC database stores
will be migrated automatically. If the automatic migration fails for any reason, the
automatic migration will be re-attempted the next time the WebL ogic Server boots.

Deleting JDBC Database Stores

Once the migration is complete, the old JDBC database tables should be removed
usingtheuti | s. Schema utility, described in detail in Appendix B, “JDBC Database
Utility.”

During migration, aDDL file is generated and stored in the local working directory.
The DDL fileis named dr op_<j nsSer ver Name>. ol dt abl es. ddl , where

<j ms Ser ver Nanme> specifiesthe name of the IMS server. To deletethe IDBC database
stores, you pass the resulting DDL file as an argument to the ut i | s. Schema utility.

For example, to delete the old JDBC database store from a JM S server named
MyJM SServer, execute the following command:

java utils. Schenma jdbc: webl ogi c: oracl e webl ogic.jdbc.oci.Driver -s server -u
userl -p foobar -verbose drop_M/JMsServer _ol dt abl es. ddl

For moreinformationontheut i | s. Schema utility, see Appendix B, “JDBC Database
Utility.”

Programming WeblL ogic IMS 6-9

6 Migrating WebLogic JMS Applications

6-10 Programming WebLogic IMS

CHAPTER

A Configuration
Checklists

The following sections provide monitoring checklists for various WebL ogic IMS
features:

m Server Clusters

m JTA User Transactions

m JMS Transactions

m Message Delivery

m Asynchronous Message Delivery
m Persistent Messages

m Concurrent Message Processing
m Multicasting

m Durable Subscriptions

m Destination Sort Order

m Temporary Destinations

m Thresholds and Quotas

For more information on setting the configuration attributes, refer to the
Administration Guide. For detailed descriptions of each of the configuration attributes,
refer to the Administration Console Online Help.

Programming WeblL ogic IMS A-1

http://e-docs.bea.com/wls/docs60/adminguide/index.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/index.html

A Confi guration Checklists

Server Clusters

To support server clusters, configure the following:
O WebLogic Server targets under the Targets tab on the Connection Factories node

O WebLogic Server targets under the Targets tab on the IMS Servers node

JTA User Transactions

To support JTA user transactions, configure the following:

O Connection factory JTA user transaction mode by selecting the User
Transactions Enabled checkbox under the Configuration—Transactions tab on
the Connection Factories node

JMS Transactions

To support JMS transacted sessions, configure the following:

O Connection factory transaction timeout value by setting the Transaction Timeout
attribute under the Configuration—Transactions tab on the Connection Factories
node

O Session pool transaction mode by selecting the Transacted checkbox under the
Configuration tab on the Session Pools node

A-2 Programming WebL ogic IMS

Message Delivery

Message Delivery

To define message delivery attributes, configure the following:

O Connection factory priority, time-to-live, and delivery mode attributes under the
Configuration—General tab on the Connection Factories node

O Destination priority, time-to-live, and delivery mode override attributes under the
Configuration—Overrides tab on the Destinations node

Note: These settings can also be set dynamically by the message producer when
sending a message or using the set methods, as described in “ Sending
Messages’ on page 4-22.

The destination configuration attributes take precedence over all other
settings.

Asynchronous Message Delivery

To define the maximum number of messages that may exist for an asynchronous
session and that have not yet been passed to the message listener, configure the
following:

O Message maximum attribute under the Configuration—General tab on the
Connection Factories node

Persistent Messages

Note: Topic destinations are persistent if, and only if they have durable
subscriptions. For moreinformation about durable subscriptions, see“ Setting
Up Durable Subscriptions’ on page 4-46.

Programming WeblL ogic IMS A-3

A Confi guration Checklists

To support persistent messaging, configure the following:
O Createafile or JDBC store using the Stores node

O JMS server backing store by setting the Store attribute under the
Configuration—General tab on the IM S Servers node

Note: Notwo JMS servers can use the same backing store.

O Default message delivery mode by setting one of the following attributes to
PERSI STENT or NON_PERSI STENT:

e Default Delivery Mode attribute under the Configurations—General tab on
the Connection Factories node

e Delivery Mode Override attribute under the Configurations—Overrides tab
on the Destination node

Note: You can also specify persistent as the delivery mode when sending
messages, as described in “ Sending Messages’ on page 4-22.

Concurrent Message Processing

A-4

To support concurrent message processing, configure the following:

O Server session poal attributes under the Configuration tab on the Session Pools
node

O Connection consumer attributes under the Configuration tab on the Connection
Consumers node

Note: Server session pool factories, used for concurrent message processing, are not
configurable. WebL ogic JM S defines one Server SessionPool Factory object,
by default: webl ogi c. j ms. Ser ver Sessi onPool Fact ory: <name>, where
<name> specifies the name of the IMS server on which the session pooal is
created. For more information about using server session pool factories, refer
to “Defining Server Session Pools’ on page 4-61.

Programming WebL ogic IMS

Multicasting

Multicasting

Note: Multicasting applies to topics only.

To configure multicasting on a topic, configure the following:

O Multicast address, multicast port, and multicast time-to-live (TTL) under the
Configuration—M ulticast tab on the Destination node

O Maximum number of outstanding messages by setting the M essages Maximum
attribute under the Configuration—General tab on the Connection Factories node

O Overrun policy used when the number of outstanding messages reaches the
Messages Maximum value by setting the Overrun Policy attribute under the
Configuration—General tab on the Connection Factories node

Durable Subscriptions

To support durable subscriptions, optionally configure the following:

O Client identifier (client D) that can be used for clients with durable
subscriptions by setting the ClientID attribute under the Configuration—General
tab on the Connection Factories node

Note: Alternatively, clients can set the client ID in the connection after the
connection is created, as described in “ Setting Up Durable Subscriptions’ on
page 4-46.

Programming WeblL ogic IMS A-5

A Confi guration Checklists

Destination Sort Order

To support destination sort order, configure the following:
O Key attributes under the Configuration tab on Destination Keys node

O Destination Keys under Configuration—General tab on Destinations node

Temporary Destinations

To support temporary destinations (queue or topic), configure the following:

O A JMStemplate for the IMS server (in the same domain) under the
Configuration—General tab on the Templates node

O A JMStemplate to be used by the IMS server for temporary destinations by
setting the Temporary Template attribute for the IM S server under the
Configuration—General tab on the IM S Servers node

Thresholds and Quotas

A-6

To configure threshol ds and quotas, configure the following:

O Message and byte thresholds and quotas (maximum number, and high and low
thresholds) under the Configurations—Thresholds tab on the IMS Server node

O Message and byte thresholds and quotas (maximum number, and high and low
thresholds) under the Configurations—Thresholds tab on the Destination node

O Maximum number of sessions that can be retrieved from a session pool by
setting the Sessions Maximum attribute under the Configurations tab on the
Session Pools node

Programming WebL ogic IMS

Thresholds and Quotas

O Maximum number of messages that can be accumulated by a connection
consumer by setting the Messages Maximum attribute under the Configuration
tab of the Consumers node

Programming WeblL ogic IMS A-7

A Confi guration Checklists

A-8 Programming WebL ogic IMS

APPENDI X

B JDBC Database Utility

The following sections describe WebL ogic IM S stores and how to use the JDBC
database utility to regenerate existing JDBC database stores:

m Overview
m About IMS Stores

m Regenerating JDBC Stores

Overview

The JDBC uti | s. Schena utility allows you to regenerate new JDBC stores by
deleting the existing versions. Running this utility isusually not necessary, since IMS
automatically creates these stores for you. However, if your existing JDBC database
stores somehow become corrupted, you can regeneratethem using theut i | s. Schema
utility.

Caution: Use caution when running theut i | s. Schema command as it will delete
all existing database tables and then recreate new ones.

About JMS Stores

The JM S database contains two system tables that are generated automatically and are
used internally by JMS, asfollows:

Programming WeblL ogic IMS B-1

B JDBC Database Utility

m <prefix>JMSStore

m <prefix>JMSState
The prefix name uniquely identifies IM Stablesin the backing store. Specifying unique
prefixes allows multiple stores to exist in the same database. The prefix is configured

viathe Administration Console when configuring the JDBC store. A prefix is
prepended to table names when:

m The DBMSrequires fully qualified names.

m You must differentiate between JIM S tables for two WebL ogic servers, enabling
multiple tables to be stored on asingle DBMS.

The prefix should be specified using the following format, whichwill resultina
valid table name when prepended to the IM S table name:

[[catal og.]schena.]prefix

Note: No two JMS stores should be allowed to use the same database tables, as this
will result in data corruption.

For instructions on creating and configuring a store, see “JM S File Stores’ and “JM S
JDBC Stores” for information about file and JDBC database stores, respectively, inthe
Administration Console Online Help.

Regenerating JDBC Stores

B-2

Theutils. Schema utility is a Java program that takes command line arguments to
specify the following:

m JDBCdriver
m Database connection information

m Name of afile containing the SQL Data Definition Language (DDL) commands
(terminated by semicolons) that create the database tables

By convention, the DDL filehasa.ddl extension. DDL files are provided for
Cloudscape, Sybase, Oracle, MSSQL Server, and IBM DB2 databases.

Programming WebL ogic IMS

http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsfilestore.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsjdbcstore.html
http://e-docs.bea.com/wls/docs60/ConsoleHelp/jmsjdbcstore.html

Regenerating JDBC Stores

To executeuti | s. Schema, your CLASSPATH must contain thewebl ogi c. j ar file.

Programming WeblL ogic IMS B-3

B JDBC Database Utility

Enter theuti | s. Schema command, as follows:
java utils.Schema url JDBC driver [options] DDL_file

Thefollowing tableliststheut i | s. Schema command-line arguments.

Table 6-2 utils.Schema Command-Line Arguments

Argument Description

url Database connection URL. Thisvalue must be acol on-separated
URL as defined by the JIDBC specification.

JDBC_dri ver Full package name of the JDBC Driver class.

opti ons Optional command options.

If required by the database, you can specify:
m The username and password as follows:
-u <username> -p <password>

m The Domain Name Server (DNS) name of the JDBC
database server asfollows:
-s <dbserver>

Y ou can also specify the-ver bose option, which causes
utils. Schenma to echo SQL commands as they are executed.

DDL_file The full pathname of atext file containing the SQL commands
that you wish to execute. An SQL command can span several
lines and is terminated with a semicolon (;). Lines beginning
with pound signs (#) are comments.

Thewebl ogi ¢/ cl asses/j s/ ddl directory within the
webl ogi c. j ar filecontains IMS DDL files for Cloudscape,
Sybase, Oracle, MSSQL Server, and IBM DB2 databases. To
use a different database, copy and edit any one of thesefiles.

For example, the following command recreates the IMS tablesin an Oracle server
named DEMD, with the username user 1 and password f oobar :

java utils. Schema jdbc: webl ogic: oracl e: DEMO \

webl ogic.jdbc.oci.Driver -u userl -p foobar -verbose \
webl ogi c/ cl asses/j ns/ddl /j ms_oracl e. ddl

B-4 Programming WebL ogic IMS

Regenerating JDBC Stores

With the Cloudscape database, no username or password is required. However, the
Cloudscape JDBC driver usesthecl oudscape. syst em hone system property tofind
the directory containing its database files. Y ou must supply the value for this property
with the - D Java command option. In addition, you must specify the Cloudscape
classesin your CLASSPATH, which existsin

webl ogi c/ sanpl es/ eval / cl oudscape/ li b.

For example, the following command creates the IM S tables in a Cloudscape server:

java

- Dcl oudscape. syst em hone=/ webl ogi c/ sanpl es/ eval / cl oudscape/ dat a
utils. Schema jdbc: cl oudscape: denoPool ; cr eat e=true
COM cl oudscape. core. JDBCDri ver -verbose
webl ogi c/ cl asses/j ns/ ddl /j ms_cl oudscape. ddl

The Cloudscape JDBC URL specifies the demo database, which isincluded with the
WebL ogic IM S examples. For the examples, the IM Stables have already been created
in this database.

Programming WeblL ogic IMS B-5

B JDBC Database Utility

B-6 Programming WebL ogic IMS

Index

A

Acknowledge message 4-34
Acknowledge modes 2-9
Anonymous producer 4-25, 4-26
Application development flow
acknowledging received messages 4-34
importing required packages 4-3
receiving messages 4-29
releasing object resources 4-35
sending messages 4-22
setting up 4-4
steps 4-2
Application setup
creating a connection 4-7
creating a session 4-8
creating message consumers 4-11
creating message object 4-14
creating message producers 4-11
example
PTP 4-16
Pub/sub 4-19
looking up connection factory 4-6
looking up destination 4-10
receiving messages asynchronously 4-15
registering asynchronous message
listener 4-15
starting the connection 4-16
steps 4-4
Asynchronous message, receiving 4-15, 4-30
Automatic failover 3-3

C

Client ID
defining 4-46
displaying 4-47

Client servlets
receiving messages 4-31
Close
connection 4-38
session 4-41
Clusters
configuration checklist A-2
configuring 3-3
Concurrent processing 4-61
Configuration
checklists A-1
clustered IMS 3-3
IMS 3-2
Connection
closing 4-38
creating 4-7
definition of 2-7
exception listener 4-36
managing 4-36
meta data 4-37
starting 4-16, 4-38
stopping 4-38
Connection consumer
definition of 2-21
queue 4-66
topic 4-67
Connection factory

Programming WeblL ogic IMS

definition of 2-6
looking up 4-6
customer support contact information xi

D
Delivery mode 4-24, 4-26, 4-27
Dedtination

creating dynamically 4-42

definition of 2-11

looking up 4-10

sort order 4-29

temporary 4-44
documentation, where to find it x
Durable subscription

client 1D 4-46

creating 4-48

deleting 4-49

modifying 4-49

setting up 4-46

E

Error recovery
connection 4-36
session 4-40
Examples
browse queue 4-58
closing resources 4-35
JMSand EJB in JTA user transaction
5-10
message filtering 4-60
multicast session 4-78
receiving messages synchronously
PTP4-31
Pub/sub 4-31
sending messages
PTP 4-28
Pub/sub 4-28
server session pool
PTP 4-68

-2 Programming WebL ogic IMS

Pub/sub 4-70
setting message header field 4-53
setting up
PTP 4-16
Pub/sub 4-19
Exception listener
connection 4-36
session 4-40
Existing feature functionality changes 6-1

F

Failover procedures 3-4

Failure, server 3-4

Filter message
definition 4-58
example 4-60
SQL statement 4-59
XML selector 4-60

H

Header fields
browsing 4-57
definition of 2-14
displaying 4-50
setting 4-50

J

JDBC store
automatic migration 6-8
regenerating B-1

JMS

architecture 1-4
clustering features 1-5
major components 1-5
classes 2-5
configuring 3-2
configuring clusters 3-3
existing feature functionality changes

6-1
features 1-2
monitoring 3-4
JM S transacted sessions

commiting or rolling back 5-5

configuration checklist A-2
creating 5-4
displaying 5-5
executing operations 5-5

JMSCorrelationl D header field
definition of 2-15
displaying 4-51
setting 4-51

IMSDeliveryMode header field
definition of 2-16
displaying 4-51

JIM SDestination header field
definition of 2-16
displaying 4-51

JM SExpiration header field
definition of 2-16
displaying 4-51

JM SHel per class methods 4-42

IMSMessagel D header field
definition of 2-16
displaying 4-52

JM SPriority header field
definition of 2-17
displaying 4-52

JM SRedelivered header field
definition of 2-17
displaying 4-52

JMSReplyTo header field
definition of 2-17
displaying 4-52
setting 4-52

JM STimestamp header field
definition of 2-17
displaying 4-52
setting 4-52

JM SType header field

definition of 2-18
displaying 4-52
setting 4-52

JTA user transaction

committing or rolling back 5-9
configuration checklist A-2

creating non-transacted session 5-7
example 5-10

looking up user transaction in JNDI 5-8
performing desired operations 5-8
starting 5-8

Message

acknowledging 4-34
body 2-18
creating object 4-14, 4-22
defining content 4-22
definition of 2-14
delivery
configuration checklists A-3
mode 4-24, 4-26, 4-27
filtering
definition 4-58
SQL message selector 4-59
XML message selector 4-60
header fields
browsing 4-57
definition of 2-14
displaying 4-50
setting 4-50
persistence
configuration checklist A-3
definition of 2-4
priority 4-24, 4-26, 4-27
processing concurrently 4-61
property fields
browsing 4-57
clearing 4-53
conversion chart 4-56

Programming WebL ogic IMS 1-3

definition of 2-18
displaying 4-53
displaying all 4-55
setting 4-53
receiving
asynchronous 4-15, 4-30
order control 4-29
synchronous 4-30
with client servlets 4-31
recovering 4-33
sending 4-22
server session pools 4-61
time-to-live 4-24, 4-26, 4-27
types
definition of 2-19
displaying 4-54
setting 4-14, 4-54
M essage consumer
creating 4-11
definition of 2-12
Message driven beans 5-9
Message listener, registering 4-15
M essage producer
creating 4-11
creating dynamically 4-27
definition of 2-12
M essage sel ector
defining
SQL 4-59
XML 4-60
displaying 4-61
example 4-60
Messaging models
point-to-point 2-2
publish/subscribe 2-3
Meta data, connection 4-37
Migration procedures 6-7
Monitor IMS 3-4
Multicast session
creating 4-75
creating topic subscriber 4-75

-4 Programming WebL ogic IMS

definition 4-73

dynamically configuring 4-77
example 4-78

messages maximum 4-77
overrun policy 4-77
prerequisites 4-74

setting up message listener 4-76

N
Non-durable subscription 4-46

P
Packages, required 4-3
Persistent message
configuration checklist A-3
definition of 2-4
Point-to-point messaging
definition of 2-2
example
receiving messages synchronously
4-31
sending messages 4-28
server session pool 4-70
setting up application 4-16
printing product documentation x
Priority, message 4-24, 4-26, 4-27
Property fields
browsing 4-57
clearing 4-53
conversion chart 4-56
displaying 4-53
displaying all 4-55
setting 4-53
Publish/subscribe messaging
definition of 2-3
example
receiving messages synchronously
4-31
sending messages 4-28

setting up application 4-19

Q

Queue
creating 4-10
creating dynamically 4-42
definition of 2-12
displaying 4-11, 4-12
temporary
creating 4-45
definition of 2-12
deleting 4-45
Queue connection
creating 4-7
definition of 2-8
Queue connection factory
creating queue connection 4-7
definition of 2-7
looking up 4-6
Queue receiver
creating 4-11
definition of 2-13
receiving messages 4-30
Queue sender
creating 4-11
definition of 2-13
sending message 4-24
Queue session
creating 4-9
definition of 2-9

R
Receive message
asynchronous 4-15, 4-30
order 4-29
synchronous 4-30
with client servlets 4-31
Recover from system failure 3-4
Recover message 4-33

Redeliver message 4-33

Rel ease object resources 4-35
Request/response, support of 2-15
Resources, releasing 4-35

S

Send messages 4-22
Server failure recovery 3-4
Server session
definition of 2-20
retrieving 4-66
Server session pool
ACL 4-63
creating

gueue connection consumers 4-65
topic connection consumers 4-65

definition of 2-20
setting up 4-61

Server session pool factory
creating a server session pool 4-64

definition of 2-19
looking up 4-64

Servlets

receiving messages 4-31

Session

acknowledge modes 2-9
closing 4-41

creating 4-8

definition of 2-8
exception listener 4-40
managing 4-39
non-transacted 2-9
transacted 2-11

SQL message selectors 4-59
Start connection 4-16, 4-38
Stop connection 4-38
support

technical xi

Synchronous receive 4-30

Programming WebL ogic IMS

T

Temporary destination
configuring IMS server A-6
creating

queue 4-45
topic 4-45
deleting 4-45

Temporary queue
creating 4-45
definition of 2-12
deleting 4-45

Temporary topic
creating 4-45
definition of 2-12
deleting 4-45

Time-to-live 4-24, 4-26, 4-27

Topic
creating 4-10
creating dynamically 4-42
definition of 2-12
displaying 4-11, 4-13
displaying NoL ocal variable 4-13
JM SHelper class methods 4-42
temporary

creating 4-45
definition of 2-12
deleting 4-45

Topic connection
creating 4-8
definition of 2-8

Topic connection factory
creating topic connection 4-8
definition of 2-7
looking up 4-6

Topic publisher
creating 4-12
definition of 2-13
sending messages 4-25

Topic session
creating 4-9

1-6 Programming WebL ogic IMS

definition of 2-9
Topic subscriber
creating 4-12
definition of 2-13
durable 4-46
Transactions 5-1
JMS transacted sessions. See IMS
transacted sessions
JTA user transaction. See JTA user
transaction

u
utils.Schema utility 6-9, B-1

X

XML message
class 2-19
creating 4-14
selector 4-60

	Copyright
	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to WebLogic JMS
	What Is JMS?
	WebLogic JMS Features
	WebLogic JMS Architecture
	Major Components
	Clustering Features

	WebLogic JMS Extensions

	2 WebLogic JMS Fundamentals
	Messaging Models
	Point-to-Point Messaging
	Publish/Subscribe Messaging
	Message Persistence

	WebLogic JMS Classes
	ConnectionFactory
	Connection
	Session
	Non-transacted Session
	Transacted Session

	Destination
	MessageProducer and MessageConsumer
	Message
	Message Header Fields
	Message Property Fields
	Message Body

	ServerSessionPoolFactory
	ServerSessionPool
	ServerSession
	ConnectionConsumer

	3 Managing WebLogic JMS
	Configuring WebLogic JMS
	Configuring WebLogic JMS Clustering
	Monitoring WebLogic JMS
	Recovering From a WebLogic Server Failure

	4 Developing a WebLogic JMS Application
	Application Development Flow
	Importing Required Packages
	Setting Up a JMS Application
	Step 1: Look Up a Connection Factory in JNDI
	Step 2: Create a Connection Using the Connection Factory
	Step 3: Create a Session Using the Connection
	Step 4: Look Up a Destination (Queue or Topic)
	Step 5: Create Message Producers and Message Consumers Using the Session and Destinations
	Step 6a: Create the Message Object (Message Producers)
	Step 6b: Optionally Register an Asynchronous Message Listener (Message Consumers)
	Step 7: Start the Connection
	Example: Setting Up a PTP Application
	Example: Setting Up a Pub/Sub Application

	Sending Messages
	Step 1: Create a Message Object
	Step 2: Define a Message
	Step 3: Send the Message to a Destination
	Dynamically Configuring Message Producer Configuration Attributes
	Example: Sending Messages Within a PTP Application
	Example: Sending Messages Within a Pub/Sub Application

	Receiving Messages
	Receiving Messages Asynchronously
	Receiving Messages Synchronously
	Receiving Messages with Client Servlets
	Recovering Received Messages

	Acknowledging Received Messages
	Releasing Object Resources
	Managing Connections
	Defining a Connection Exception Listener
	Accessing Connection Meta Data
	Starting, Stopping, and Closing a Connection

	Managing Sessions
	Defining a Session Exception Listener
	Closing a Session

	Creating Destinations Dynamically
	Using the JMSHelper Class Methods
	Using Temporary Destinations

	Setting Up Durable Subscriptions
	Defining the Client ID
	Creating Subscribers for a Durable Subscription
	Deleting Durable Subscriptions
	Modifying Durable Subscriptions

	Setting and Browsing Message Header and Property Fields
	Setting Message Header Fields
	Setting Message Property Fields
	Browsing Header and Property Fields

	Filtering Messages
	Defining Message Selectors Using SQL Statements
	Defining XML Message Selectors Using XML Selector Method
	Displaying Message Selectors

	Defining Server Session Pools
	Step 1: Look Up Server Session Pool Factory in JNDI
	Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	Step 3: Create a Connection Consumer
	Example: Setting Up a PTP Client Server Session Pool
	Example: Setting Up a Pub/Sub Client Server Session Pool

	Using Multicasting
	Step 1: Set Up the JMS Application, Creating Multicast Session and Topic Subscriber
	Step 2: Set Up the Message Listener
	Dynamically Configuring Multicasting Configuration Attributes
	Example: Multicast TTL

	5 Using Transactions with WebLogic JMS
	Overview of Transactions
	Using JMS Transacted Sessions
	Step 1: Set Up JMS Application, Creating Transacted Session
	Step 2: Perform Desired Operations
	Step 3: Commit or Roll Back the JMS Transacted Session

	Using JTA User Transactions
	Step 1: Set Up JMS Application, Creating Non-Transacted Session
	Step 2: Look Up User Transaction in JNDI
	Step 3: Start the JTA User Transaction
	Step 4: Perform Desired Operations
	Step 5: Commit or Roll Back the JTA User Transaction

	Asynchronous Messaging Within JTA User Transactions Using Message Driven Beans
	Example: JMS and EJB in a JTA User Transaction

	6 Migrating WebLogic JMS Applications
	Existing Feature Functionality Changes
	Migrating Existing Applications
	Before You Begin
	Migration Steps

	Deleting JDBC Database Stores

	A Configuration Checklists
	Server Clusters
	JTA User Transactions
	JMS Transactions
	Message Delivery
	Asynchronous Message Delivery
	Persistent Messages
	Concurrent Message Processing
	Multicasting
	Durable Subscriptions
	Destination Sort Order
	Temporary Destinations
	Thresholds and Quotas

	B JDBC Database Utility
	Overview
	About JMS Stores
	Regenerating JDBC Stores

	Index

