Oracle® WebLogic Server
Configuring and Managing WebLogic JMS

10g Release 3 (10.3)

July 2008

ORACLE

Oracle WebLogic Server Configuring and Managing WebLogic JMS, 10g Release 3 (10.3)
Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or “commercial technical data” pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents

1. Introduction and Roadmap

Document Scope and AUdIENCEottt e 1-1
Guide to ThiS DOCUMENE e e 1-2
Related DOCUMENTALIONo 1-2
JMS Samples and Tutorials for the JMS Administrator 1-3
Avitek Medical Records Application (MedRec) and Tutorials 1-3
JMS Examples in the WebLogic Server Distribution. 1-4
New and Changed JMS Features In ThisRelease 1-4
WebLogic Server Value-Added IMS Features, 1-4
Enterprise-grade Reliability 1-4
Enterprise-level FEaturesttt e 1-5
PerfOrMAaNCE . . o oot 1-7
Tight Integration with WebLogic Server 1-8
Interoperability With Other Messaging Services, 1-9

2. Understanding JMS Resource Configuration

Overview of IMS and WebLogiC Server.o 2-1
What Is the Java Message ServiCe?t 2-1
WebLogic JMS Architecture and Environment 2-2

Domain Configuration: Environment-Related Resources versus Application-Related
RESOUICES . . ot 2-4

What Are JMS Configuration RESOUICES?. oottt e 2-5

OVerview 0f JIMS SEIVEISot 2-5

Configuring and Managing WebLogic JMS iii

JMS Server Behavior in WebLogic Server 9.0 and Later 2-6

Overview of IMS Modules 2-7
JMS System MOdUIES. oo 2-7
JMS Application Modules 2-9
Comparing JMS System Modules and Application Modules 2-9
Configurable JMS ResourcesinModules 2-10
JMS SChema. . . oo 2-11
JMS Interop Modules. 2-11

Other Environment-Related System Resources for WebLogicJMS 2-12
PersiStent STOreSt 2-12
JMS Store-and-Forward (SAF)o 2-12
Path ServiCeo 2-13
Messaging Bridges.ot 2-13

3. Configuring Basic JMS System Resources

Methods for Configuring JMS System ReSOUICEeSiiiineniinnnn 3-2
Main Steps for Configuring Basic JMS System Resources 3-2
Advanced Resources in JMS System Modules i 3-4
JMS Configuration Naming Requirements. 3-4
JMS Server Configuration. 3-5
JMS Server Configuration Parameters. i 3-5
JMS Server Targeting. oot 3-6
JMS Server Monitoring Parameters.o 3-6
Session Pools and Connection CONSUMENSo et it e 3-7
JMS System Module Configuration i 3-7
JMS System Module and Resource Subdeployment Targeting. 3-8
Default Targetingot e 3-8
Subdeployment Targetingttt 3-9

iv Programming WebLogic JMS

Connection Factory Configuration i 3-11

Using a Default Connection Factoryo ... 3-11
Connection Factory Configuration Parameters 3-12
Connection Factory Targetingt 3-13
Queue and Topic Destination Configuration. oo, 3-13
Queue and Topic Configuration Parameters. i, 3-14
Creating Error Destinations. i 3-15
Creating Distributed Destinations. 3-15

Queue and ToPIiC Targeting.o oot 3-15
Destination Monitoring and Management Parameters. 3-16
JMS Template Configuration 3-16
JMS Template Configuration Parameters., 3-16
Destination Key Configuration i 3-17
Quota Configuration i 3-18
Foreign Server Configuration i 3-18
Distributed Destination Configuration i, 3-18
JMS Store-and-Forward (SAF) Configuration ot 3-18

4. Configuring Advanced JMS System Resources

Configuring WebLogic IMS CIuSteringt e 4-1
Advantages of IMS CIustering. 4-1
How JMS Clustering WOrks.o 4-3

JMS Clustering Naming Requirements., 4-4
Distributed Destination Withina Cluster 4-4

JMS Services As a Migratable Service Withina Cluster 4-4
Configuration Guidelines for IMS Clustering oot 4-5
What About Failover? 4-5
Migration of IMS-related Services 4-6

Programming WebLogic JMS

vi

Automatic Migration of IMS Services. 4-7

Manual Migration JIMS Servicest 4-7
Persistent Store High Availability 4-7
Using the WebLogic Path Service i 4-8
Path Service High Availability. 4-8
Implementing Message UOO With a Path Service 4-8
Configuring Foreign Server Resources to Access Third-Party JMS Providers 4-10
How WebLogic JMS Accesses Foreign JMS Providers 4-10
Creating Foreign Server ReSOUICESottt e 4-11
Creating Foreign Connection Factory Resources. 4-11
Creating a Foreign Destination ReSOUrcescvvvivenennnan.. 4-11

Sample Configuration for MQSeriesIJNDI 4-12
Configuring Distributed Destination RESOUICESot 4-13
Uniform Distributed Destinations vs. Weighted Distributed Destinations 4-13
Creating Uniform Distributed Destinations. 4-14
Targeting Uniform Distributed Queuesand Topics 4-14

Pausing and Resuming Message Operations on UDD Members........... 4-16
Monitoring UDD Members 4-16
Creating Weighted Distributed Destinations 4-16
Load Balancing Messages Across a Distributed Destination 4-17
Load Balancing Optionst 4-17
Consumer Load Balancing 4-18
Producer Load BalanCingt 4-18

Load Balancing Heuristics 4-18
Defeating Load Balancingt 4-20

How Distributed Destination Load Balancing Is Affected When Server Affinity Is

Enabled 4-21

Distributed Destination Migration. i 4-23

Programming WebLogic JMS

Distributed Destination Failover 4-24

5. Configuring JMS Application Modules for Deployment

Methods for Configuring JMS Application Modules 5-2
JMS SChemMa . . oo 5-2
Packaging JMS Application Modules In an Enterprise Application. 5-3
Creating Packaged JMS Application Modules. 5-3
Packaged JMS Application Module Requirements. 5-3

Main Steps for Creating Packaged JMS Application Modules. 5-3

Referencing a Packaged JMS Application Module In Deployment Descriptor Files 5-4

Referencing JMS Application Modules In a weblogic-application.xml Descriptor .

5-5

Referencing JMS Resources In a WebLogic Application. 5-5
Referencing JMS Resources In a Java EE Application. 5-5
Sample of a Packaged JMS Application Module In an EJB Application 5-6
Packaged JMS Application Module References In weblogic-application.xml. . 5-7
Packaged JMS Application Module References In ejb-jarxml 5-8
Packaged JMS Application Module References In weblogic-ejb-jarxml 5-8
Packaging an Enterprise Application With a JMS Application Module 5-9
Deploying a Packaged JMS Application Module 5-9
Deploying Standalone JMS Application Modules 5-10
Standalone IMS Modules 5-10
Creating Standalone JMS Application Modules 5-10
Standalone JMS Application Module Requirements 5-10
Main Steps for Creating Standalone JMS Application Modules 5-11
Sample of a Simple Standalone JMS Application Module 5-11
Deploying Standalone JMS Application Modules. 5-12
Tuning Standalone JMS Application Modules. 5-12

Programming WebLogic JMS vii

Generating Unique Runtime JNDI Names for JMS Resources 5-13

Uniqgue Runtime JNDI Name for Local Applications 5-14
Uniqgue Runtime JNDI Name for Application Libraries 5-14
Unique Runtime JNDI Name for Standalone IMS Modules. 5-14
Where to Use the ${APPNAME} String. 5-15
EXample Use-Case oottt 5-15

6. Using WLST to Manage JMS Servers and JMS System Module
Resources

Understanding JMS System Modules and Subdeployments. 6-1
How to Create JMS Servers and JMS System Module Resources 6-3
How to Modify and Monitor JMS Servers and JIMS System Module Resources. 6-6
Best Practices when Using WLST to Configure JMS Resources. 6-7

/. Monitoring JMS Statistics and Managing Messages

Monitoring JMS StatistiCs.o 7-2
Monitoring JMS SErVErSot 7-2
Monitoring Active JMS Destinations.o 7-2
Monitoring Active JMS Transactions.c.o i, 7-2
Monitoring Active JMS Connections, Sessions, Consumers, and Producers. .. 7-3
Monitoring Active JMS SessionPools. o i 7-3
MOoNItoring QUELES oottt e e e e e 7-3
MONItOriNG TOPICS . . o .ottt e e e e e e e 7-4
Monitoring Durable Subscribers for Topics. i 7-4
Monitoring Uniform Distributed QUeues., 7-4
Monitoring Uniform Distributed Topics i, 7-5
Monitoring Pooled JMS CoNNectionst 7-5
Managing JIMS MESSAgES vttt et e 7-5

viii Programming WebLogic JMS

JMS Message Management Using Java APIs 7-5

JMS Message Management Using the Administration Console 7-6
Monitoring Message Runtime Information. 7-6
QUENYING MESSAES . « . o oottt e e 7-7
MOVING MESSAGES . .« v v ettt e e e e e 7-7
Deleting MESSAgES. vttt e 7-8
Creating New MESSA0ES oottt e 7-8
IMPOrting MESSAgES vttt 7-9
EXPOrting MESSAgES . . . o vttt e 7-10

Managing TranSacCtions.o vttt e 7-10

Managing Durable Topic Subscribers i 7-11

8. Troubleshooting WebLogic JMS
Configuring Notifications for JIMS 8-2
Debugging IMS 8-2

Enabling Debugging. o o 8-2
Enable Debugging Using the Command Line. 8-2
Enable Debugging Using the WebL ogic Server Administration Console 8-2
Enable Debugging Using the WebL ogic Scripting Tool 8-3
Changes to the config.xml File i 8-5

JMS Debugging SCOPES oot e 8-5

Messaging Kernel and Path Service Debugging Scopes 8-6

ReqUESE DYRING . . . oot 8-7

Message Life Cycle Logging.o oo 8-7

Events in the JMS Message LifeCycle o i 8-8
Message Log Locationo 8-8

Enabling IMS Message Loggingo v vt 8-9

JMS Message Log Contento e 8-9

Programming WebLogic JMS ix

JMS Message Log Record Format.t 8-9

Sample Log File RECOIdS.t 8-11
Consumer Created EVent 8-11
Consumer Destroyed Event i 8-11
Message Produced Eventt 8-12
Message Consumed Event i 8-12
Message Expired EVent 8-13
Retry Exceeded EVent. o 8-13
Message Removed Event 8-14

Managing JIMS Server Log Files 8-14
Rotating Message Log Files. i 8-14
Renaming Message Log Files. 8-15
Limiting the Number of Retained Message Log Files 8-15

Controlling Message Operations on Destinations. oot 8-15

Definition of Message Production, Insertion, and Consumption............... 8-16
Pause and Resume Loggingo oot 8-16

Production Pause and Production Resume., 8-17
Pausing and Resuming Production at Boot-time 8-17
Pausing and Resuming Production at Runtime. 8-18
Production Pause and Resume and Distributed Destinations. 8-18
Production Pause and Resume and JMS Connection Stop/Start. 8-18

Insertion Pause and Insertion ReSUME.t 8-18
Pausing and Resuming Insertionat Boot Time. 8-19
Pausing and Resuming Insertionat Runtime 8-19
Insertion Pause and Resume and Distributed Destination 8-20
Insertion Pause and Resume and JMS Connection Stop/Start 8-20

Consumption Pause and Consumption ReSUMe., 8-20
Pausing and Resuming Consumption at Boot-time 8-21

Programming WebLogic JMS

Pausing and Resuming Consumption at Runtime. 8-21

Consumption Pause and Resume and Queue Browsers 8-22
Consumption Pause and Resume and Distributed Destination............. 8-22
Consumption Pause and Resume and Message-Driven Beans............. 8-22
Consumption Pause and Resume and JMS Connection Stop/Start. 8-22
Definition of In-Flight Work 8-22
In-flight Work Associated with Producers 8-23
In-flight Work Associated with Consumers, 8-23

Order of Precedence for Boot-time Pause and Resume of Message Operations . . . 8-24
S CUNIY . . oottt 8-25

Programming WebLogic JMS Xi

Xii Programming WebLogic JMS

Introduction and Roadmap

The following sections describe the contents and organization of this guide—Configuring and
Managing WebLogic JMS.

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-2

“JMS Samples and Tutorials for the IMS Administrator” on page 1-3
“New and Changed JMS Features In This Release” on page 1-4

“WebLogic Server Value-Added JMS Features” on page 1-4

Document Scope and Audience

This document is a resource for system administrators who configure, manage, and monitor
WebLogic JMS resources, including JMS servers, stand-alone destinations (queues and topics),
distributed destinations, and connection factories.

The document is relevant to production phase administration, monitoring, and performance
tuning. It does not address the pre-production development or testing phases of a software project.
For links to WebLogic Server documentation and resources for these topics, see “Related
Documentation” on page 1-2.

It is assumed that the reader is familiar with WebLogic Server system administration. This
document emphasizes the value-added features provided by WebLogic Server IMS and key

Configuring and Managing WebLogic JMS 1-1

Introduction and Roadmap

information about how to use WebLogic Server features and facilities to maintain WebLogic
JMS in a production environment.

Guide to This Document

e This chapter, Chapter 1, “Introduction and Roadmap,” describes the organization and scope
of this guide.

e Chapter 2, “Understanding JMS Resource Configuration,” is an overview of WebLogic
JMS architecture and features.

e Chapter 3, “Configuring Basic JMS System Resources,” describes how to configure basic
WebLogic JMS resources, such as a JMS server, destinations (queues and topics), and
connection factories.

e Chapter 4, “Configuring Advanced JMS System Resources,” explains how to configure
clustering JMS features, such as JIMS servers, migratable targets, and distributed
destinations.

e Chapter 5, “Configuring JMS Application Modules for Deployment,” describes how to
prepare JMS resources for an application module that can be deployed as a stand-alone
resource that is globally available, or as part of an Enterprise Application that is available
only to the enclosing application.

e Chapter 7, “Monitoring JMS Statistics and Managing Messages,” describes how to monitor
and manage the run-time statistics for your JMS objects from the Administration Console.

e Chapter 6, “Using WLST to Manage JMS Servers and JMS System Module Resources,”
explains how to use the WebL ogic Scripting Tool to create and manage JMS resources
programmatically.

e Chapter 8, “Troubleshooting WebLogic JMS,” explains how to configure and manage
message logs, and how to temporarily pause message operations on destinations.

Related Documentation

This document contains JMS-specific configuration and maintenance information.

For comprehensive information on developing, deploying, and monitoring WebLogic Server
applications:

e Programming WebLogic JMS is a guide to JMS API programming with WebLogic Server.

1-2 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/jms/index.html

JMS Samples and Tutorials for the JMS Administrator

e Understanding WebLogic Server Clustering in Using Clusters explains how WebLogic
Server clustering works.

e Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications, which includes standalone or application-scoped
JMS resource modules.

e Using the WebL ogic Persistent Store in Configuring Server Environments describes the
benefits and use of the system-wide WebL ogic Persistent Store.

e Configuring and Managing WebLogic Store-and-Forward describes the benefits and use of
the Store-and-Forward service with JMS messages.

e Configuring and Managing the WebLogic Messaging Bridge explains how to configure a
messaging bridge between any two messaging products—thereby providing
interoperability between separate implementations of WebLogic JMS, including different
releases, or between WebLogic JMS and another messaging product.

e Performance and Tuning contains information on monitoring and improving the
performance of WebLogic Server applications, including information on how to get the
most out of your JMS applications by using the administrative performance tuning features
available with WebLogic JMS.

JMS Samples and Tutorials for the JMS Administrator

In addition to this document, Oracle provides JMS code samples and tutorials that document JMS
configuration, APl use, and key JMS development tasks. Oracle recommends that you run some
or all of the JMS examples before configuring your own system.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application enables patients, doctors, and administrators to manage patient data using a variety of
different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
Oracle-recommended best practices. MedRec is included in the WebLogic Server distribution,
and can be accessed from the Start menu on Windows machines. For Linux and other platforms,
you can start MedRec from the wz,_#omE\samp les\domains\medrec directory, where wr,_HoME
is the top-level installation directory for WebLogic Platform.

Configuring and Managing WebLogic JMS 1-3

http://e-docs.bea.com/wls/docs103/cluster/overview.html
http://e-docs.bea.com/wls/docs103/deployment/index.html
http://e-docs.bea.com/wls/docs103/config_wls/store.html
http://e-docs.bea.com/wls/docs103/saf_admin/index.html
http://e-docs.bea.com/wls/docs103/bridge/index.html
http://e-docs.bea.com/wls/docs103/perform/index.html

Introduction and Roadmap

JMS Examples in the WebLogic Server Distribution

This release of WebLogic Server optionally installs APl code examples in

wr,_HomMENsamp les\server\examples\src\examples, where wr,_HoME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebL ogic Server Start menu.

New and Changed JMS Features In This Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see
What’s New in WebLogic Server in Release Notes.

WebLogic Server Value-Added JMS Features

1-4

WebLogic JMS provides numerous WebLogic JMS Extension APIs that go above and beyond
the standard JMS APIs specified by the IMS 1.1 Specification. Moreover, it is tightly integrated
into the WebLogic Server platform, allowing you to build secure Java EE applications that can
be easily monitored and administered through the WebLogic Server console. In addition to fully
supporting XA transactions, WebLogic JMS also features high availability through its clustering
and service migration features, while also providing interoperability with other versions of
WebLogic Server and third-party messaging providers.

The following sections provide an overview of the unique features and powerful capabilities of
WebLogic JMS.

Enterprise-grade Reliability

e Out-of-the-box transaction support:

— Fully supports transactions, including distributed transactions, between JMS
applications and other transaction-capable resources using the Java Transaction API
(JTA), as described in Using Transactions with WebLogic JMS in Programming
WebLogic JMS.

— Fully-integrated Transaction Manager, as described in Introducing Transactions in
Using WebLogic JTA.

e File or database persistent message storage (both fully XA transaction capable). See Using
the WebLogic Persistent Store in Configuring Server Environments.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/notes/new.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/package-summary.html
http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs103/jms/trans.html
http://e-docs.bea.com/wls/docs103/jta/gstrx.html
http://e-docs.bea.com/wls/docs103/config_wls/store.html
http://e-docs.bea.com/wls/docs103/config_wls/store.html

WebLogic Server Value-Added JMS Features

e Message Store-and-Forward (SAF) is clusterable and improves reliability by locally storing
messages sent to unavailable remote destinations. See Understanding the
Store-and-Forward Service in Configuring and Managing WebLogic Store-and-Forward.

o If a server or network failure occurs, JMS producer and consumer objects will attempt to
transparently failover to another server instance, if one is available. See Automatic JMS
Client Failover in Programming WebLogic JMS.

e Supports connection clustering using connection factories targeted on multiple WebLogic
Servers, as described in “Configuring WebLogic JMS Clustering” on page 4-1.

e System-assisted configuration of Uniform Distributed Destinations that provide high
availability, load balancing, and failover support in a cluster, as described in Using
Distributed Destinations in Programming WebLogic JMS.

e Automatic whole server migration provides improved cluster reliability and server
migration WebL ogic Server now supports automatic and manual migration of a clustered
server instance and all the services it hosts from one machine to another, as described in
“Configuring WebLogic JMS Clustering” on page 4-1.

o Redirects failed or expired messages to error destinations, as described in Managing Rolled
Back, Recovered, Redelivered, or Expired Messages in Programming WebLogic JMS.

e Supports the JIMS Delivery Count message property (JMSXDel iveryCount), which
specifies the number of message delivery attempts, where the first attempt is 1, the second
is 2, and so on. WebLogic Server makes a best effort to persist the delivery count, so that
the delivery count does not reset back to one after a server reboot. See Message in
Programming WebLogic JMS.

e Provides three levels of load balancing: network-level, JMS connections, and distributed
destinations.

Enterprise-level Features

e WebLogic Server fully supports the JMS 1.1 Specification, is fully compliant with the Java
EE 5.0 specification, and provides numerous WebLogic JMS Extensions that go beyond
the standard JIMS APIs.

e Provides robust message and destination management capabilities:

— Administrators can manipulate most messages in a running JMS Server, using either the
Administration Console or runtime APIs. See “Managing JMS Messages” on page 7-5.

Configuring and Managing WebLogic JMS 1-5

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs103/saf_admin/overview.html
http://e-docs.bea.com/wls/docs103/saf_admin/overview.html
http://e-docs.bea.com/wls/docs103/jms/recover.html#AutomaticFailoverforJMSClients
http://e-docs.bea.com/wls/docs103/jms/recover.html#AutomaticFailoverforJMSClients
http://e-docs.bea.com/wls/docs103/jms/dds.html
http://e-docs.bea.com/wls/docs103/jms/dds.html
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#ManagingRolledBackRecoveredRedeliveredorExpiredMessages
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#ManagingRolledBackRecoveredRedeliveredorExpiredMessages
http://e-docs.bea.com/wls/docs103/jms/fund.html#Message

Introduction and Roadmap

1-6

— Administrators can pause and resume message production, message insertion (in-flight
messages), and message consumption operations on a given JMS destination, or on all
the destinations hosted by a single JMS Server, using either the Administration Console
or runtime APIs. See “Controlling Message Operations on Destinations” on page 8-15.

— Message-Driven EJBs (MDBs) also supply message pause and resume functionality,
and can even automatically temporarily pause during error conditions. See
Message-Driven EJBs in Programming WebLogic Enterprise JavaBeans.

Modular deployment of JMS resources, which are defined by an XML so that you can
migrate your application and the required JMS configuration from environment to
environment without opening an enterprise application file, and without extensive manual
JMS reconfiguration. See “Overview of JMS Modules” on page 2-7.

JMS message producers can group ordered messages into a single unit-of-order, which
guarantees that all such messages are processed serially in the order in which they were
created. See Using Message Unit-of-Order in Programming WebLogic JMS.

To provide an even more restricted notion of a group than the Message Unit-of-Order
feature, the Message Unit-of-Work (UOW) feature allows JMS producers to identify
certain messages as components of a UOW message group, and allows a JMS consumer to
process them as such. For example, a JMS producer can designate a set of messages that
need to be delivered to a single client without interruption, so that the messages can be
processed as a unit. See Using Unit-of-Work Message Groups in Programming WebLogic
JMS.

Message Life Cycle Logging provides an administrator with better transparency about the
existence of JMS messages from the JMS server viewpoint, in particular basic life cycle
events, such as message production, consumption, and removal. See “Message Life Cycle
Logging” on page 8-7.

Timer services available for scheduled message delivery, as described in Setting Message
Delivery Times in Programming WebLogic JMS.

Flexible expired message policies to handle expired messages, as described in Handling
Expired Messages in Performance and Tuning.

Supports messages containing XML (Extensible Markup Language). See Defining XML
Message Selectors Using the XML Selector Method in Programming WebLogic JMS.

Thin application client .7ar that provides full WebLogic Server Java EE functionality,
including JMS, yet greatly reduces the client-side WebLogic footprint. See WebLogic JMS
Thin Client in Programming Stand Alone Clients.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/ejb/message_beans.html
http://e-docs.bea.com/wls/docs103/jms/uow.html
http://e-docs.bea.com/wls/docs103/jms/uoo.html
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#Defining_XML_Message_Selectors
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#Defining_XML_Message_Selectors
http://e-docs.bea.com/wls/docs103/client/jms_thin_client.html
http://e-docs.bea.com/wls/docs103/client/jms_thin_client.html
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#SettingMessageDeliveryTimes
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#SettingMessageDeliveryTimes
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#expiration_policy
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#expiration_policy

WebLogic Server Value-Added JMS Features

e The JMS SAF Client enables standalone JMS clients to reliably send messages to
server-side JMS destinations, even when the JMS client cannot temporarily reach a
destination (for example, due to a network connection failure). While disconnected from
the server, messages sent by the JMS SAF client are stored locally on the client and are
forwarded to server-side JMS destinations when the client reconnects. See Reliably
Sending Messages Using the JMS SAF Client in Programming Stand Alone Clients.

e Automatic pooling of JMS client resources in server-side applications via JMS
resource-reference pooling. Server-side applications use standard JMS APIs, but get
automatic resource pooling. See Enhanced Java EE Support for Using WebLogic IMS
With EJBs and Servlets in Programming WebLogic JMS.

Performance

WebLogic JMS features enterprise-class performance features, such as automatic message
paging, message compression, and DOM support for XML messages:

e WebL ogic Server uses highly optimized disk access algorithms and other internal
enhancements to provide a unified messaging kernel that improves both JIMS-based and
Web Services messaging performance. See Using the WebLogic Persistent Store in
Configuring Server Environments.

e You may greatly improve the performance of typical non-persistent messaging with
One-Way Message Sends. When configured on a connection factory, associated producers
can send messages without internally waiting for a response from the target destination’s
host JMS server. You can choose to allow queue senders and topic publishers to do
one-way sends, or to limit this capability to topic publishers only. You can also specify a
“One-Way Window Size” to determine when a two-way message is required to regulate
the producer before it can continue making additional one-way sends. See Configure
connection factory flow control in the Administration Console Online Help.

e Message paging automatically kicks in during peak load periods to free up virtual memory.
See Paging Out Messages To Free Up Memory in Performance and Tuning.

e Administrators can enable the compression of messages that exceed a specified threshold
size to improve the performance of sending messages travelling across JVM boundaries
using either the Administration Console or runtime APIs. See Compressing Messages in
Performance and Tuning.

e Synchronous consumers can also use the same efficient behavior as asynchronous
consumers by enabling the Prefetch Mode for Synchronous Consumers option on the
consumer’s JMS connection factory, using either the Administration Console or runtime

Configuring and Managing WebLogic JMS 1-7

http://e-docs.bea.com/wls/docs103/client/saf_client.html
http://e-docs.bea.com/wls/docs103/client/saf_client.html
http://e-docs.bea.com/wls/docs103/jms/j2ee.html
http://e-docs.bea.com/wls/docs103/jms/j2ee.html
http://e-docs.bea.com/wls/docs103/config_wls/store.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureFlowControl.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureFlowControl.html
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#using_message_paging
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#compressing_messages

Introduction and Roadmap

APIs. See Using the Prefetch Mode to Create a Synchronous Message Pipeline in
Programming WebLogic JMS

Supplies a wide variety of performance tuning options for JMS messages. See Tuning
WebLogic JMS in Performance and Tuning.

Supports MDB transaction batching by processing multiple messages in a single
transaction. See Transaction Batching of MDBs in Programming WebLogic Enterprise
JavaBeans.

JMS SAF provides better performance than the WebLogic Messaging Bridge across
clusters. See Tuning WebLogic JMS Store-and-Forward in Performance and Tuning.

DOM (Document Object Model) support for sending XML messages greatly improves
performance for implementations that already use a DOM, since those applications do not
have to flatten the DOM before sending XML messages. See Sending XML Messages in
Programming WebLogic JMS.

Message flow control during peak load periods, including blocking overactive senders, as
described in Controlling the Flow of Messages on JMS Servers and Destinations and
Defining Quota in Performance and Tuning.

The automatic pooling of connections and other objects by the JMS wrappers via JMS
resource-reference pooling. See Enhanced Java EE Support for Using WebLogic JMS With
EJBs and Servlets in Programming WebLogic JMS.

Multicasting of messages for simultaneous delivery to many clients using IP multicast, as
described in Using Multicasting with WebLogic JMS in Programming WebLogic JMS.

Tight Integration with WebLogic Server

1-8

JMS can be accessed locally by server-side applications without a network call because the
destinations can exist on the same server as the application.

Uses same ports, protocols, and user identities as WebLogic Server (T3, IIOP, and HTTP
tunnelling protocols, optionally with SSL).

Web Services, Enterprise Java Beans (including MDBs), and servlets supplied by
WebLogic Server can work in close concert with JIMS.

Can be configured and monitored by using the same Administration Console, or by using
the JMS API.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/ejb/message_beans.html#transaction_batching_MDB
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html
http://e-docs.bea.com/wls/docs103/jms/implement.html#SynchronousPrefetchMode
http://e-docs.bea.com/wls/docs103/perform/saftune.html
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#xml
http://e-docs.bea.com/wls/docs103/jms/j2ee.html
http://e-docs.bea.com/wls/docs103/jms/j2ee.html
http://e-docs.bea.com/wls/docs103/jms/multicast.html
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#message_flow_control
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#message_quota_maintenance

WebLogic Server Value-Added JMS Features

e Supports the WebLogic Scripting Tool (WLST) to initiate, manage, and persist
configuration changes interactively or by using an executable script. See Chapter 6, “Using
WLST to Manage JMS Servers and JMS System Module Resources.”

e Complete IMX administrative and monitoring APIs, as described in Developing Custom
Management Utilities with JMX.

e Fully-integrated Transaction Manager, as described in Introducing Transactions in Using
WebLogic JTA.

e Leverages sophisticated security model built into WebLogic Server (policy engine), as
described in the Understanding WebLogic Security and Resource Types You Can Secure
with Policies in Securing WebLogic Resources.

Interoperability With Other Messaging Services

e Fully supports direct interoperability from WebLogic Server 8.1 through WebL ogic Server
10.0. For example, a release 8.1 client can interoperate with a release 10.0 server and
vice-versa.

o Messages forwarded transactionally by the WebLogic Messaging Bridge to other JMS
providers — as well as to other instances and versions of WebLogic JMS, as described see
Configuring and Managing the WebLogic Messaging Bridge.

e Supports mapping of other JIMS providers so their objects appear in the WebLogic JNDI
tree as local JIMS objects. Also references remote instances of WebLogic Server in another
cluster or domain in the local JNDI tree. See “Foreign Server Configuration” on page 3-18.

e Uses MDBs to transactionally receive messages from multiple JMS providers. See
Message-Driven EJBs in Programming WebLogic Enterprise JavaBeans.

o Reliable Web Services integration with JMS as a transport, as described in Using Web
Services Reliable Messaging in Programming Advanced Features of WebLogic Web
Services Using JAX-RPC.

e Automatic transaction enlistment of non-WebLogic JMS client resources in server-side
applications via JMS resource-reference pooling. See Enhanced Java EE Support for Using
WebLogic JMS With EJBs and Servlets in Programming WebLogic JMS.

e Integration with Oracle Tuxedo messaging provided by WebL ogic Tuxedo Connector. See
How to Configure the Oracle Tuxedo Queuing Bridge in the Oracle WebLogic Tuxedo
Connector Administration Guide.

Configuring and Managing WebLogic JMS 1-9

http://e-docs.bea.com/wls/docs103/jmx/index.html
http://e-docs.bea.com/wls/docs103/secwlres/types.html
http://e-docs.bea.com/wls/docs103/secwlres/types.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/rm.html
http://e-docs.bea.com/wls/docs103/webserv_adv_rpc/rm.html
http://e-docs.bea.com/wls/docs103/jta/gstrx.html
http://e-docs.bea.com/wls/docs103/secintro/index.html
http://e-docs.bea.com/wls/docs103/bridge/index.html
http://e-docs.bea.com/wls/docs103/ejb/message_beans.html
http://e-docs.bea.com/wls/docs103/jms/j2ee.html
http://e-docs.bea.com/wls/docs103/jms/j2ee.html
http://e-docs.bea.com/wls/docs103/wtc_admin/tBridge.html

Introduction and Roadmap

e The Weblogic JMS C API enables programs written in ‘C’ to participate in JMS
applications. This implementation of the JMS C API uses JNI in order to access a Java
Virtual Machine (JVM). See WebLogic JMS C API in Programming WebLogic JMS.

1-10 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/jms/C_api.html

CHAPTERa

Understanding JMS Resource
Configuration

These sections briefly review the different WebLogic JMS concepts and features, and describe
how they work with other application components and WebLogic Server.

It is assumed the reader is familiar with Java programming and JMS 1.1 concepts and features.

“Overview of JMS and WebLogic Server” on page 2-1

“Domain Configuration: Environment-Related Resources versus Application-Related
Resources” on page 2-4

“What Are JMS Configuration Resources?” on page 2-5

“Overview of JMS Servers” on page 2-5

“Overview of JIMS Modules” on page 2-7

“Other Environment-Related System Resources for WebLogic JMS” on page 2-12

Overview of JMS and WebLogic Server

The WebLogic Server implementation of JMS is an enterprise-class messaging system that is
tightly integrated into the WebLogic Server platform. It fully supports the JMS 1.1 Specification
and also provides numerous WebLogic JMS Extensions that go beyond the standard JMS APIs.

What Is the Java Message Service?

An enterprise messaging system enables applications to asynchronously communicate with one
another through the exchange of messages. A message is a request, report, and/or event that

Configuring and Managing WebLogic JMS 2-1

http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/package-summary.html

Understanding JMS Resource Configuration

contains information needed to coordinate communication between different applications. A
message provides a level of abstraction, allowing you to separate the details about the destination
system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging systems
that is implemented by industry messaging providers. Specifically, JIMS:

e Enables Java applications that share a messaging system to exchange messages

o Simplifies application development by providing a standard interface for creating, sending,
and receiving messages

WebLogic JMS accepts messages from producer applications and delivers them to consumer
applications. For more information on JMS API programming with WebLogic Server, see
Programming WebLogic JMS.

WebLogic JMS Architecture and Environment

The following figure illustrates the WebLogic JMS architecture.

2-2 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/jms/index.html

Overview of JMS and WebLogic Server

Figure 2-1 WebLogic JMS Architecture

Webl aogic Server

!ﬁ WebLogic JMS
iﬁ A
R JMS Server

c ;)’Jﬂ

=
h
| JHDI o
Al-=A
B1-=B
B2->B <
B
b
; B1
B2
JMS Server
Weblogic JMS
Weblogic Server

where: Al and B1 are connection factories and B2 is a queue.

The major components of the WebLogic JMS architecture include:

e A JMS server is an environment-related configuration entity that acts as management
container for JIMS queue and topic resources defined within JMS modules that are targeted
to specific that JIMS server. A JMS server’s primary responsibility for its targeted
destinations is to maintain information on what persistent store is used for any persistent
messages that arrive on the destinations, and to maintain the states of durable subscribers
created on the destinations. You can configure one or more JMS servers per domain, and a
JMS server can manage one or more JMS modules. For more information, see “Overview
of JMS Servers” on page 2-5.

Configuring and Managing WebLogic JMS 2-3

Understanding JMS Resource Configuration

e JMS modules contain configuration resources, such as standalone queue and topic
destinations, distributed destinations, and connection factories, and are defined by XML
documents that conform to the weblogic-jms.xsd schema. For more information, see
“What Are JMS Configuration Resources?” on page 2-5.

e Client JMS applications that either produce messages to destinations or consume messages
from destinations.

e JNDI (Java Naming and Directory Interface), which provides a server lookup facility.

e \WebLogic persistent storage (a server instance’s default store, a user-defined file store, or a
user-defined JDBC-accessible store) for storing persistent message data.

Domain Configuration: Environment-Related Resources
versus Application-Related Resources

2-4

In general, the WebLogic Server domain configuration file (config.xml) contains the
configuration information required for a domain. This configuration information can be further
classified into environment-related information and application-related information. Examples
of environment-related information are the identification and definition of JMS servers, JDBC
data sources, WebL ogic persistent stores, and server network addresses. These system resources
are usually unique from domain to domain.

The configuration and management of these system resources are the responsibility of a
WebLogic administrator, who usually receives this information from an organization’s system
administrator or MIS department. To accomplish these tasks, an administrator can use the
WebLogic Administration Console, various command-line tools, such as WebLogic Scripting
Tool (WLST), or IMX APIs for programmatic administration.

Examples of application-related definitions that are independent of the domain environment are
the various Java EE application components configurations, such as EAR, WAR, JAR, RAR
files, and JMS and JDBC modules. The application components are originally developed and
packaged by an application development team, and may contain optional programs (compiled
Java code) and respective configuration information (also called descriptors, which are mostly
stored as XML files). In the case of JMS and JDBC modules, however, there are no compiled
Java programs involved. These pre-packaged applications are given to WebLogic Server
administrators for deployment in a WebLogic domain.

The process of deploying an application links the application components to the
environment-specific resource definitions, such as which server instances should host a given

Configuring and Managing WebLogic JMS

What Are JMS Configuration Resources?

application component (targeting), and the WebLogic persistent store to use for persisting JMS
messages.

Once the initial deployment is completed, an administrator has only limited control over deployed
applications. For example, administrators are only allowed to ensure the proper life cycle of these
applications (deploy, undeploy, redeploy, remove, etc.) and to tune the parameters, such as
increasing or decreasing the number of instances of any given application to satisfy the client
needs. Other than life cycle and tuning, any modification to these applications must be completed
by the application development team.

What Are JMS Configuration Resources?

Beginning in WebLogic Server 9.0, JMS configuration resources, such as destinations and
connections factories, are stored outside of the WebLogic domain as module descriptor files,
which are defined by XML documents that conform to the weblogic-jms.xsd schema. JMS
modules do not include JMS server definitions, which are stored in the WebLogic domain
configuration file, as described in “Overview of JMS Servers” on page 2-5.

You create and manage JMS resources either as system modules, similar to the way they were
managed prior to this release, or as application modules. JMS application modules are a
WebL ogic-specific extension of Java EE modules and can be deployed either with a Java EE
application (as a packaged resource) or as stand-alone modules that can be made globally
available. See “Overview of JIMS Modules” on page 2-7.

Overview of JMS Servers

JMS servers are environment-related configuration entities that act as management containers for
destination resources within JMS modules that are targeted to specific JMS servers. A IMS
server’s primary responsibility for its targeted destinations is to maintain information on what
persistent store is used for any persistent messages that arrive on the destinations, and to maintain
the states of durable subscribers created on the destinations. As a container for targeted
destinations, any configuration or run-time changes to a JMS server can affect all of its
destinations.

JMS servers are persisted in the domain’s config.xml file and multiple JMS servers can be
configured on the various WebLogic Server instances in a cluster, as long as they are uniquely
named. Client applications use either the JNDI tree or the java:/comp/env naming context to
look up a connection factory and create a connection to establish communication with a JMS
server. Each JMS server handles requests for all targeted modules’ destinations. Requests for
destinations not handled by a JMS server are forwarded to the appropriate server instance.

Configuring and Managing WebLogic JMS 2-5

Understanding JMS Resource Configuration

JMS Server Behavior in WebLogic Server 9.0 and Later

Beginning in WebLogic Server 9.0, JMS server behavior differs in certain respects from behavior
in pre-9.0 releases:

e Because destination resources are encapsulated in JMS modules, they are not nested under
JMS servers in the configuration file. However, a sub-targeting relationship between JMS
servers and destinations is maintained because each standalone destination resource within
a JMS module is always targeted to a single JMS server. This way, JMS servers continue
to manage persistent messages, durable subscribers, message paging, and, optionally,
quotas for their targeted destinations. Multiple JMS modules can be targeted to each IMS
server in a domain.

e JMS servers support the default persistent store that is available to multiple subsystems and
services within a server instance, as described in “Persistent Stores” on page 2-12.

— JMS servers can store persistent messages in a host server’s default file store by
enabling the “Use the Default Store” option. In prior releases, persistent messages were
silently downgraded to non-persistent if no store was configured. Disabling the Use the
Default Store option, however, forces persistent messages to be non-persistent.

— In place of the deprecated JMS stores (JMS file store and JMS JDBC store), IMS
servers now support user-defined WebLogic file stores or JDBC stores, which provide
better performance and more capabilities than the legacy JMS stores. (The legacy IMS
stores are supported for backward compatibility.)

e JMS servers support an improved message paging mechanism. For more information on
message paging, see Performance and Tuning.

— The configuration of a dedicated paging store is no longer necessary because paged
messages are stored in a directory on your file system -- either to a user-defined
directory or to a default paging directory if one is not specified.

— Temporary paging of messages is always enabled and is controlled by the value set on
the Message Buffer Size option. When the total size of non-pending, unpaged messages
reaches this setting, a JMS server will attempt to reduce its memory usage by paging
out messages to the paging directory.

e You can pause message production or message consumption operations on all the
destinations hosted by a single JMS server, either programmatically with JMX or by using
the Administration Console. For more information see, “Controlling Message Operations
on Destinations” on page 8-15.

e JMS servers can be undeployed and redeployed without having to reboot WebLogic Server.

2-6 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/perform/jmstuning.html

Overview of JMS Modules

For more information on configuring JMS servers, see “JMS Server Configuration” on page 3-5.

Overview of JMS Modules

JMS modules are application-related definitions that are independent of the domain environment.
You create and manage JMS resources either as system modules or as application modules. JIMS
system modules are typically configured using the Administration Console or the WebLogic
Scripting Tool (WLST), which adds a reference to the module in the domain’s config.xml file.
JMS application modules are a WebL ogic-specific extension of Java EE modules and can be
deployed either with a Java EE application (as a packaged resource) or as stand-alone modules
that can be made globally available.

The main difference between system modules and application modules comes down to
ownership. System modules are owned and modified by the WebLogic administrator and are
available to all applications. Application modules are owned and modified by the WebLogic
developers, who package the JMS resource modules with the application's EAR file.

With modular deployment of JMS resources, you can migrate your application and the required
JMS configuration from environment to environment, such as from a testing environment to a
production environment, without opening an enterprise application file (such as an EAR file) or
a stand-alone JMS module, and without extensive manual JMS reconfiguration.

These sections describe the different types of JIMS module and the resources that they can
contain:

e “JMS System Modules” on page 2-7

e “JMS Application Modules” on page 2-9

e “Comparing JMS System Modules and Application Modules” on page 2-9
e “Configurable JMS Resources in Modules” on page 2-10

e “JMS Schema” on page 2-11

e “JMS Interop Modules” on page 2-11

JMS System Modules

WebLogic Administrators typically use the Administration Console or the WebL ogic Scripting
Tool (WLST) to create and deploy (target) JMS modules, and to configure the module’s
configuration resources, such as queues, and topics connection factories.

Configuring and Managing WebLogic JMS 2-1

Understanding JMS Resource Configuration

2-8

JMS modules that you configure this way are considered system modules. JMS system modules
are owned by the Administrator, who can at any time add, modify, or delete resources. System

modules are globally available for targeting to servers and clusters configured in the domain, and
therefore are available to all applications deployed on the same targets and to client applications.

When you create a IMS system module WebLogic Server creates a JMS module file in the
config\jms subdirectory of the domain directory, and adds a reference to the module in the
domain’s config.xml file as a IMSSystemResource element. This reference includes the path
to the JMS system module file and a list of target servers and clusters on which the module is
deployed.

The JMS module conforms to the weblogic-jms.xsd schema, as described in “JMS Schema”
on page 5-2. System modules are also accessible through WebLogic Management Extension
(IMX) utilities, as a IMSSystemResourceMBean. The naming convention for JMS system
modules is MygMsModule-jms.xml.

Figure 2-2 shows an example of a JMS system module listing in the domain’s config.xml file
and the module that it maps to in the config\jms directory.

Figure 2-2 Reference from config.xml to a JMS System Module

Domaix'config Directory Domain'configjms Directory

oyment-rames

For more information about configuring JMS system modules, see “Configuring Basic JMS
System Resources” on page 3-1.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/JMSSystemResourceMBean.html

Overview of JMS Modules

JMS Application Modules

JMS configuration resources can also be managed as deployable application modules, similar to
standard Java EE descriptor-based modules. JMS Application modules can be deployed either
with a Java EE application as a packaged module, where the resources in the module are
optionally made available to only the enclosing application (i.e., application-scoped), or as a
standalone module that provides global access to the resources defined in that module.

Application developers typically create application modules in an enterprise-level IDE or another
development tool that supports editing XML descriptor files, then package the JMS modules with
an application and pass the application to a WebLogic Administrator to deploy, manage, and tune.

As discussed in “Domain Configuration: Environment-Related Resources versus
Application-Related Resources” on page 2-4, JMS application modules do not contain compiled
Java programs as part of the package, enabling administrators or application developers to create
and manage JMS resources on demand.

For more information about configuring JMS application modules, see Chapter 5, “Configuring
JMS Application Modules for Deployment.”

Comparing JMS System Modules and Application Modules

A key to understanding WebLogic JMS configuration and management is that who creates a IMS
resource and how a JMS resource is created determines how a resource is deployed and modified.
Both WebLogic administrators and programmers can configure JMS modules:

In contrast to system modules, deployed application modules are owned by the developer who
created and packaged the module, rather than the administrator who deploys the module, which
means the administrator has more limited control over deployed resources. When deploying an
application module, an administrator can change resource properties that were specified in the
module, but the administrator cannot add or delete resources. As with other Java EE modules,
deployment configuration changes for a application module are stored in a deployment plan for
the module, leaving the original module untouched.

Configuring and Managing WebLogic JMS 2-9

Understanding JMS Resource Configuration

Table 2-1 lists the JMS module types and how they can be configured and modified.

Table 2-1 JMS Module Types and Configuration and Management Options

Module Created Dynamically Modify Modify with Modify with Scoping Default
Type with Add/Remove with JMX Deployment Admin Sub-module
Modules Remotely Tuning Plan Console Targeting

(non-remote)

System Admin Yes Yes No Yes —via Globaland No
Console or JMX local
WLST

Application IDE or No-mustbe No Yes —via Yes —via Global, Yes
XML redeployed deployment deployment local, and
editor plan plan application

For more information about preparing JMS application modules for deployment, see
“Configuring JMS Application Modules for Deployment” on page 5-1 and Deploying
Applications and Modules with weblogic.deployer in Deploying Applications to WebLogic
Server.

Configurable JMS Resources in Modules

The following configuration resources are defined as part of a system module or an application
module:

e Queue and topic destinations, as described in “Queue and Topic Destination
Configuration” on page 3-13.

e Connection factories, as described in “Connection Factory Configuration” on page 3-11.
e Templates, as described in “JMS Template Configuration” on page 3-16.

e Destination keys, as described in “Destination Key Configuration” on page 3-17.

e Quota, as described in “Quota Configuration” on page 3-18.

e Distributed destinations, as described in “Configuring Distributed Destination Resources”
on page 4-13.

e Foreign servers, as described in “Configuring Foreign Server Resources to Access
Third-Party JMS Providers” on page 4-10.

2-10 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/deployment/deploy.html
http://e-docs.bea.com/wls/docs103/deployment/deploy.html

Overview of JMS Modules

e JMS store-and-forward (SAF) configuration items, as described in “JMS
Store-and-Forward (SAF)” on page 2-12.

All other JIMS environment-related resources must be configured by the administrator as domain
configuration resources. This includes:

e JMS servers (required), as described in “Overview of JMS Servers” on page 2-5

e Store-and-Forward agents (optional), as described in “JMS Store-and-Forward (SAF)” on
page 2-12.

e Path service (optional), as described in “Path Service” on page 2-13.
e Messaging bridges (optional), as described in “Messaging Bridges” on page 2-13.
e Persistent stores (optional), as described in “Persistent Stores” on page 2-12

For more information about configuring JMS system modules, see “Configuring Basic JMS
System Resources” on page 3-1.

JMS Schema

In support of the modular configuration model for JIMS resources, Oracle provides a schema for
WebLogic JMS objects: weblogic-jms.xsd. When you create JMS resource modules
(descriptors), the modules must conform to the schema. IDEs and other tools can validate JIMS
resource modules based on this schema.

The weblogic-jms.xsd schema is available online at

http://www.bea.com/ns/weblogic/weblogic-jms/1.0/weblogic-jms.xsd.

JMS Interop Modules

A JMS interop module is a special type of JMS system resource module. It is created and
managed as a result of a JMS configuration upgrade for this release, and/or through the use of
WebLogic JIMX MBean APIs from prior releases.

JMS interop modules differ in many ways from JMS system resource modules, as follows.

e The JMS module descriptor is always named as interop-jms.xml and the file exists in
the domain’s config\jms directory.

e Interop modules are owned by the system, as opposed to other JMS system resource
modules, which are owned mainly by an administrator.

e Interop modules are targeted everywhere in the domain.

Configuring and Managing WebLogic JMS 2-11

http://www.bea.com/ns/weblogic/weblogic-jms/1.0/weblogic-jms.xsd

Understanding JMS Resource Configuration

e The JMS resources that exist in a JMS interop module can be accessed and managed using
deprecated JMX (MBean) APls.

e The MBean of a JMS interop module is JMSInteropModuleMBean, which is a child
MBean of DomainMBean, and can be looked up from DomainMBean like any other child
MBean in a domain.

A JMS interop module can also implement many of the WebLogic Server 9.0 or later features,
such as message unit-of-order and destination quota. However, it cannot implement the following
WebLogic Server 9.0 or later features:

e Uniform distributed destination resources

o JMS store-and forward resources

Caution: Use of any new features in the current release in a JMS interop module may possibly
break compatibility with IMX clients prior to WebLogic Server 9.0.

Other Environment-Related System Resources for
WebLogic JMS

2-12

These environment-related resources must be configured by the administrator as domain
configuration resources in order to be accessible to JMS Servers and JMS modules.

Persistent Stores

The WebLogic Persistent Store provides a built-in, high-performance storage solution for all
subsystems and services that require persistence. For example, it can store persistent IMS
messages or temporarily store messages sent using the Store-and-Forward feature. Each

WebL ogic Server instance in a domain has a default persistent store that requires no configuration
and which can be simultaneously used by subsystems that prefer to use the system’s default
storage. However, you can also configure a dedicated file-based store or JDBC
database-accessible store to suit your JIMS implementation. For more information on configuring
a persistent store for JMS, see Using the WebLogic Persistent Store in Configuring Server
Environments.

JMS Store-and-Forward (SAF)

The SAF service enables WebL ogic Server to deliver messages reliably between applications that
are distributed across WebLogic Server instances. For example, with the SAF service, an

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/JMSInteropModuleMBean.html
http://e-docs.bea.com/wls/docs103/config_wls/store.html

Other Environment-Related System Resources for WebLogic JMS

application that runs on or connects to a local WebLogic Server instance can reliably send
messages to a destination that resides on a remote server. If the destination is not available at the
moment the messages are sent, either because of network problems or system failures, then the
messages are saved on a local server instance, and are forwarded to the remote destination once
it becomes available.

JMS modules utilize the SAF service to enable local IMS message producers to reliably send
messages to remote JMS queues or topics. For more information, see Configuring SAF for JMS
Messages in Configuring and Managing WebLogic Store-and-Forward.

Path Service

The WebLogic Server Path Service is a persistent map that can be used to store the mapping of a
group of messages to a messaging resource by pinning messages to a distributed queue member
or store-and-forward path. For more information on configuring a path service, see “Using the
WebLogic Path Service” on page 4-8.

Messaging Bridges

The Messaging Bridge allows you to configure a forwarding mechanism between any two
messaging products, providing interoperability between separate implementations of WebLogic
JMS, or between WebLogic JMS and another messaging product. The messaging bridge
instances and bridge source and target destination instances are persisted in the domain’s
config.xml file. For more information, see Understanding the Messaging Bridge in Configuring
and Managing the WebLogic Messaging Bridge.

Configuring and Managing WebLogic JMS 2-13

http://e-docs.bea.com/wls/docs103/saf_admin/config_jms.html
http://e-docs.bea.com/wls/docs103/saf_admin/config_jms.html
http://e-docs.bea.com/wls/docs103/bridge/basics.html

Understanding JMS Resource Configuration

2-14 Configuring and Managing WebLogic JMS

CHAPTERa

Configuring Basic JMS System
Resources

The procedures in the following sections describe how to configure and manage basic IMS
system resources, such as JMS servers and JMS system modules.

e “Methods for Configuring JMS System Resources” on page 3-2
e “Main Steps for Configuring Basic JMS System Resources” on page 3-2
e “JMS Configuration Naming Requirements” on page 3-4

e “JMS Server Configuration” on page 3-5

e “JMS System Module Configuration” on page 3-7

e “Connection Factory Configuration” on page 3-11

e “Queue and Topic Destination Configuration” on page 3-13

e “JMS Template Configuration” on page 3-16

o “Destination Key Configuration” on page 3-17

e “Quota Configuration” on page 3-18

e “Foreign Server Configuration” on page 3-18

e “Distributed Destination Configuration” on page 3-18

e “JMS Store-and-Forward (SAF) Configuration” on page 3-18

Configuring and Managing WebLogic JMS 3-1

Configuring Basic JMS System Resources

Methods for Configuring JMS System Resources

WebLogic Administrators can use these tools to create and deploy (target) system resources, such
as JMS servers and JMS system modules.

e The WebLogic Server Administration Console enables you to configure, modify, and target
JMS-related resources:

— JMS servers, as described in “JMS Server Configuration” on page 3-5.

— JMS system modules, as described in “JMS System Module Configuration™ on
page 3-7.

— Store-and-Forward services for JIMS, as described in Configuring SAF for IMS
Messages in Configuring and Managing WebLogic Store-and-Forward.

— Persistent stores, as described in Using the WebLogic Persistent Store in Configuring
Server Environments.

e The WebLogic Scripting Tool (WLST) is a command-line scripting interface that allows
system administrators and operators to initiate, manage, and persist WebLogic Server
configuration changes interactively or by using an executable script. See Chapter 6, “Using
WLST to Manage JMS Servers and JMS System Module Resources.”

e WebL ogic Java Management Extensions (JMX) is the Java EE solution for monitoring and
managing resources on a network. See Overview of WebLogic Server Subsystem MBeans
in Developing Custom Management Utilities with IMX.

e The JIMSModuleHelper extension class contains methods to create and manage JMS
module configuration resources in a given module. For more information, see Using the
JMS Module Helper to Manage Applications in Programming WebLogic JMS or the
JMSModuleHelper Class Javadoc.

Note: For information on configuring and deploying JMS application modules in an enterprise
application, see Chapter 5, “Configuring JMS Application Modules for Deployment.”

Main Steps for Configuring Basic JMS System Resources

This section describes how to use the Administration Console to configure a persistent store, a
JMS server, and a basic JMS system module. For instructions about using the Administration
Console to manage a WebLogic Server domain, see The WebLogic Server Administration
Console in the Administration Console Online Help.

3-2 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/saf_admin/config_jms.html
http://e-docs.bea.com/wls/docs103/saf_admin/config_jms.html
http://e-docs.bea.com/wls/docs103/config_wls/store.html
http://e-docs.bea.com/wls/docs103/jmx/subsystem.html
http://e-docs.bea.com/wls/docs103/jms/modulehelper.html
http://e-docs.bea.com/wls/docs103/jms/modulehelper.html
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/JMSModuleHelper.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/index.html

Main Steps for Configuring Basic JMS System Resources

WebLogic JMS provides default values for some configuration options; you must provide values
for all others. Once WebLogic JMS is configured, applications can send and receive messages
using the JMS API. For information on tuning the default configuration parameters, see
Performance and Tuning or JMSBean in the WebLogic Server MBean Reference.

1. If you require persistent messaging, use one of the following storage options:

— To store persistent messages in a file-based store, you can simply use the server’s
default persistent store, which requires no configuration on your part. However, you
can also create a dedicated file store for JMS. See Creating a Custom (User-Defined)
File Store in the Configuring Server Environments.

— To store persistent messages in a JDBC-accessible database, you must create a JDBC
store. See Creating a JDBC Store in Configuring Server Environments.

2. Configure a JMS server to manage the messages that arrive on the queue and topic
destinations in a JMS system module. See “Overview of JMS Servers” on page 2-5.

3. Configure a JIMS system module to contain your destinations, as well as other resources, such
as quotas, templates, destination keys, distributed destinations, and connection factories. See
“JMS System Modules” on page 2-7.

4. Before creating any queues or topics in your system module, you can optionally create other
JMS resources in the module that can be referenced from within a queue or topic, such as JIMS
templates, quota settings, and destination sort keys:

— Define quota resources for your destinations. Destinations can be assigned their own
quotas; multiple destinations can share a quota; or destinations can share the JMS
server’s quota. See “Quota Configuration” on page 3-18.

— Create JMS templates, which allow you to define multiple destinations with similar
option settings. See “JMS Template Configuration” on page 3-16.

— Configure destination keys to create custom sort orders of messages as they arrive on a
destination. See “Destination Key Configuration” on page 3-17.

Once these resources are configured, you can select them when you configure your queue
or topic resources.

5. Configure a queue and/or topic destination in your system module:

— Configure a standalone topic for the delivery of messages to multiple recipients
(publish/subscribe). See “Queue and Topic Destination Configuration” on page 3-13.

— Configure a standalone queue for the delivery of messages to exactly one recipient
(point-to-point). See “Queue and Topic Destination Configuration” on page 3-13.

Configuring and Managing WebLogic JMS 3-3

http://e-docs.bea.com/wls/docs103/config_wls/store.html#CreatingaCustomFileStore
http://e-docs.bea.com/wls/docs103/config_wls/store.html#CreatingaCustomFileStore
http://e-docs.bea.com/wls/docs103/config_wls/store.html#CreatingaJDBCStore
http://e-docs.bea.com/wls/docs103/jms_admin/basic_config.html

Configuring Basic JMS System Resources

6. If the default connection factories provided by WebLogic Server are not suitable for your
application, create a connection factory to enable your JMS clients to create JMS connections.

For more information about using the default connection factories, see “Using a Default
Connection Factory” on page 3-11. For more information on configuring a Connection
Factory, see “Connection Factory Configuration Parameters” on page 3-12.

WebLogic JMS provides default values for some configuration options; you must provide values
for all others. Once WebLogic JMS is configured, applications can send and receive messages
using the JMS API.

Advanced Resources in JMS System Modules

Beyond basic JMS resource configuration, you can add these advanced resources to a JMS
system module:

e Create a Uniform Distributed Destination resource to configure a set of queues or topics
that distributed across the cluster, with each member belonging to a separate JMS server in
the cluster. See “Configuring Distributed Destination Resources” on page 4-13.

e Create a JMS Store-and-Forward resource to reliably forward messages to remote
destinations, even when a destination is unavailable at the time a message is sent, as
described in Configuring and Managing WebLogic Store-and-Forward.

e Create a Foreign Server resource to reference third-party JIMS providers within a local
WebLogic Server INDI tree. See “Configuring Foreign Server Resources to Access
Third-Party JMS Providers” on page 4-10.

JMS Configuration Naming Requirements

3-4

Within a domain, each server, machine, cluster, virtual host, and any other resource type must be
named uniquely and must not use the same name as the domain. This unique naming rule also
applies to all configuration objects, including configurable JMS objects such as JMS servers,
JMS system modules, and JMS application modules.

The resource names inside JMS modules must be unique per resource type (for example, queues,
topics, and connection factories). However, two different JMS modules can have a resource of
the same type that can share the same name.

Also, the JNDI name of any bindable JMS resource (excluding quotas, destination keys, and JIMS
templates) across JMS modules has to be unique.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/saf_admin/index.html

JMS Server Configuration

JMS Server Configuration

JMS servers are environment-related configuration entities that act as management containers for
JMS queue and topic resources within JMS modules that are specifically targeted to JMS servers.
A JMS server’s primary responsibility for its targeted destinations is to maintain information on
what persistent store is used for any persistent messages that arrive on the destinations, and to
maintain the states of durable subscribers created on the destinations. As a container for targeted
destinations, any configuration or run-time changes to a JMS server can affect all of its
destinations.

Note: A sample examplesJMSServer configuration is provided with the product in the
Examples Server. For more information about developing basic WebLogic IMS
applications, refer to Developing a Basic JMS Application in Programming WebLogic
JMS.

JMS Server Configuration Parameters

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete JMS server resources in a system module. For a road map of the JMS server tasks, see
Configure JMS servers in the Administration Console Online Help.

You can configure the following parameters for JMS servers:

e General configuration parameters, including persistent storage, message paging defaults, a
template to use when your applications create temporary destinations, and expired message
scanning.

e Threshold and quota parameters for destinations in JMS system modules targeted to a
particular JMS server.

For more information about configuring messages and bytes quota for JMS servers and
destinations, see Performance and Tuning.

e Message logging parameters for a JMS server’s log file, which contains the basic events
that a JMS message traverses, such as message production, consumption, and removal.

For more information about configuring message life cycle logging on JMS servers, see
“Message Life Cycle Logging” on page 8-7.

e Destination pause and resume controls that enable you to pause message production,
message insertion (in-flight messages), and message consumption operations on all the
destinations hosted by a single JMS Server.

Configuring and Managing WebLogic JMS 3-5

http://e-docs.bea.com/wls/docs103/jms/implement.html
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSServers.html

Configuring Basic JMS System Resources

For more information about pausing message operations on destinations, see “Controlling
Message Operations on Destinations” on page 8-15.

Some JMS server options are dynamically configurable. When options are modified at runtime,
only incoming messages are affected; stored messages are not affected. For more information
about the default values for all JIMS server options, see JMSServerBean and
JMSServerRuntimeMBean in the WebLogic Server MBean Reference.

JMS Server Targeting

You can target a JMS server to either an independent WebLogic Server instance or to a
migratable target server where it will be deployed.

e \Weblogic Server instance — Server target where you want to deploy the JMS server. When
a target WebLogic Server boots, the JMS server boots as well. If no target WebLogic
Server is specified, the JMS server will not boot.

e Migratable Target — Migratable targets define a set of WebLogic Server instances in a
cluster that can potentially host an exactly-once service, such as a JMS server. When a
migratable target server boots, the JMS server boots as well on the specified user-preferred
server in the cluster. However, a JMS server and all of its destinations can be migrated to
another server within the cluster in response to a server failure or due to a scheduled
migration for system maintenance. For more information on configuring a migratable
target for JIMS services, see “Migration of JIMS-related Services” on page 4-6.

For instructions on specifying JMS server targets using the Administration Console, see Change
JMS server targets in the Administration Console Online Help.

JMS Server Monitoring Parameters

You can monitor run-time statistics for active JMS servers, destinations, and server session pools.

e Monitor all Active JMS Servers — A table displays showing all instances of the JMS
server deployed across the WebLogic Server domain.

e Monitor all Active JMS Destinations — A table displays showing all active IMS
destinations for the current domain.

e Monitor all Active JMS Session Pool Runtimes — A table displays showing all active JMS
session pools for the current domain.

For more information about monitoring JMS objects, see “Monitoring JMS Statistics and
Managing Messages” on page 7-1.

3-6 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/JMSServerMBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/JMSServerRuntimeMBean.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_servers/TargetAndDeployJMSServers.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_servers/TargetAndDeployJMSServers.html

JMS System Module Configuration

Session Pools and Connection Consumers

Note: Session pool and connection consumer configuration objects were deprecated in
WebLogic Server 9.0. They are not a required part of the J2EE specification, do not
support JTA user transactions, and are largely superseded by Message-Driven Beans
(MDBs), which are a required part of J2EE. For more information on designing MDBs,
see Message-Driven EJBs in Programming WebLogic Enterprise JavaBeans.

Server session pools enable an application to process messages concurrently. After you define a
JMS server, you can configure one or more session pools for each JMS server. Some session pool
options are dynamically configurable, but the new values do not take effect until the JMS server
is restarted. See Defining Server Session Pools in Programming WebLogic JMS.

Connection consumers are queues (Point-to-Point) or topics (Pub/Sub) that will retrieve server
sessions and process messages. After you define a session pool, configure one or more connection
consumers for each session pool. See Defining Server Session Pools in Programming WebLogic
JMS.

JMS System Module Configuration

JMS system modules are owned by the Administrator, who can delete, modify, or add JIMS
system resources at any time. With the exception of standalone queue and topic resources that
must be targeted to a single JMS server, the connection factory, distributed destination, foreign
server, and JMS SAF destination resources in system modules can be made globally available by
targeting them to server instances and clusters configured in the WebLogic domain. These
resources are therefore available to all applications deployed on the same targets and to client
applications. The naming convention for JMS system modules is MygmMsModule-jms.xml.

The WebL ogic Server Administration Console enables you to configure, modify, target, monitor,
and delete JMS system modules in your environment. For a road map of the JMS system module
configuration tasks, see Configure JMS system modules and add JMS resources in the
Administration Console Online Help.

You define the following “basic” configuration resources as part of a JMS system module:

e Queue and topic destinations, as described in “Queue and Topic Destination
Configuration” on page 3-13.

e Connection factories, as described in “Connection Factory Configuration” on page 3-11.
e Templates, as described in “JMS Template Configuration” on page 3-16.

e Destination keys, as described in “Destination Key Configuration” on page 3-17.

Configuring and Managing WebLogic JMS 3-7

http://e-docs.bea.com/wls/docs103/ejb/message_beans.html
http://e-docs.bea.com/wls/docs103/jms/appc_deprecate.html#implement061
http://e-docs.bea.com/wls/docs103/jms/appc_deprecate.html#implement061
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/ConfigJMSModuleResources.html

Configuring Basic JMS System Resources

3-8

e Quota, as described in “Quota Configuration” on page 3-18.

You can also define the following “advanced” clustering configuration resources as part of a JMS
system module:

e Foreign servers, as described in “Configuring Foreign Server Resources to Access
Third-Party JMS Providers” on page 4-10.

e Distributed destinations, as described in “Configuring Distributed Destination Resources”
on page 4-13.

e JMS store-and-forward configurations, as described in Configuring SAF for JIMS Messages
in Configuring and Managing WebLogic Store-and-Forward.

A sample examples-jms module is provided with the product in the Examples Server. For more
information about starting the Examples Server, see Starting and Stopping Servers in Managing
Server Startup and Shutdown.

For information on alternative methods for configuring JMS system modules, such as using the
WebLogic Scripting Tool (WLRT), see “Methods for Configuring JMS System Resources” on
page 3-2.

JMS System Module and Resource Subdeployment Targeting

JMS system modules must be targeted to one or more WebLogic Server instances or to a cluster.
Targetable JMS resources defined in a system module must also be targeted to JMS server or
WebLogic Server instances within the scope of a parent module’s targets. Additionally,
targetable JMS resources inside a system module can be further grouped into subdeployments
during the configuration or targeting process to provide further loose coupling of JMS resources
in a WebLogic domain.

Default Targeting

When using the Administration Console to configure resources in a JMS system module, you can
choose whether to simply accept the parent module’s default targets or to proceed to an advanced
targeting page where you can use the subdeployment mechanism for targeting the resource.
However, standalone queue and topic resource types, cannot use default targets and must be
targeted to a subdeployment that is targeted to a single JMS server.

When you select the default targeting mechanism, it’s target status will be reflected by the Default
Targeting Enabled check box on the resource type’s Configuration: General page on the
Administration Console.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/saf_admin/config_jms.html
http://e-docs.bea.com/wls/docs103/server_start/overview.html

JMS System Module Configuration

For more information on configuring JMS system resources, see Configure resources for JMS
system modules in the Administration Console Online Help.

Subdeployment Targeting

When targeting standalone queue and topic resources, or when bypassing the default targeting
mechanism for other resource types, you must use subdeployment targets. A subdeployment is a
mechanism by which targetable system module resources (such as standalone destinations,
distributed destinations, and connection factories) are grouped and targeted to specific server
resources within a system module’s targeting scope.

Although a JMS system module can be targeted to a wide array of WebLogic Server instances in
a domain, a module’s standalone queues or topics can only be targeted to a single JMS server.

Whereas, connection factories, uniform distributed destinations (UDDs), and foreign servers can
be targeted to one or more JMS servers, one or more WebLogic Server instances, or to a cluster.

Therefore, standalone queues or topics cannot be associated with a subdeployment if other
members of the subdeployment are targeted to multiple JMS servers, which would be the case,
for example, if a connection factory is targeted to a cluster that is hosting JMS servers in a
domain. UDDs, however, can be associated with such subdeployments since the purpose of
UDDs is to distribute its members to multiple JMS servers in a domain.

Table 3-1 shows the valid targeting options for JMS system resource subdeployments:

Table 3-1 JMS System Resource Subdeployment Targeting

JMS Resource Valid Targets

Queue JMS server

Topic JMS server

Connection factory JMS server(s) | server instance(s) | cluster

Uniform distributed queue JMS server(s) | server instance(s) | cluster

Uniform distributed topic ~ JMS server(s) | server instance(s) | cluster

Foreign server JMS server(s) | server instance(s) | cluster

SAF imported destinations ~ SAF Agent(s) | server instance(s) | cluster

Configuring and Managing WebLogic JMS 3-9

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleResources.html

Configuring Basic JMS System Resources

Note: Connection factory, uniform distributed destination, foreign server, and SAF imported
destination resources can also be configured to default to their parent module’s targets,
as explained in “Default Targeting” on page 3-8.

An example of a simple subdeployment for standalone queues or topics would be to group them
with a connection factory so that these resources are co-located on a specific JMS server, which
can help reduce network traffic. Also, if the targeted JMS server should be migrated to another
WebLogic Server instance, the connection factory and all its connections will also migrate along
with the JMS server’s destinations.

For example, if a system module named jmssysmod-jms.xml, is targeted to a WebLogic Server
instance that has two configured JMS servers: jmsserverl and jmsserver2, and you want to
co-locate two queues and a connection factory on only jmsserverl, you can group the queues and
connection factory in the same subdeployment, named jmsserverlgroup, to ensure that these
resources are always linked to jmsserverl, provided the connection factory is not already targeted
to multiple JMS servers.

<weblogic-jms xmlns="http://www.bea.com/ns/weblogic/91">
<connection-factory name="connfactoryl'>
<sub-deployment-name>jmsserverlgroup</sub-deployment-name>
<jndi-name>cfl</jndi-name>
</connection-factory>
<queue name='‘'queuel’’>
<sub-deployment-name>jmsserverlgroup</sub-deployment-name>
<jndi-name>ql</jndi-name>
</queue>
<queue name='‘queue2'>
<sub-deployment-name>jmsserverlgroup</sub-deployment-name>
<jndi-name>q2</jndi-name>
</queue>
</weblogic-jms>

And here’s how the jmsserverlgroup subdeployment targeting would look in the domain’s
configuration file:

<jms-system-resource>
<name>jmssysmod-jms</name>
<target>wlsserverl</target>
<sub-deployment>
<name>jmsserverlgroup</name>
<target>jmsserveril</target>

3-10 Configuring and Managing WebLogic JMS

Connection Factory Configuration

</sub-deployment>
<descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>
</jms-system-resource>

To help manage your subdeployments for a JMS system module, the Administration Console
provides subdeployment management pages. For more information, see Configure
subdeployments in JMS system modules in the Administration Console Online Help.

For information about deploying stand-alone JMS modules, see Deploying JDBC, JMS, and
WLDF Application Modules in Deploying Applications to WebLogic Server.

Connection Factory Configuration

Connection factories are resources that enable JMS clients to create JMS connections. A
connection factory supports concurrent use, enabling multiple threads to access the object
simultaneously. WebLogic JMS provides pre-configured default connection factories that can be
enabled or disabled on a per-server basis, as described in “Using a Default Connection Factory”
on page 3-11.

Otherwise, you can configure one or more connection factories to create connections with
predefined options that better suit your application. Within each JIMS module, connection factory
resource names must be unique. And, all connection factory JNDI names in any JMS module
must be unique across an entire WebLogic domain, as defined in “JMS Configuration Naming
Requirements” on page 3-4. WebLogic Server adds them to the JNDI space during startup, and
the application then retrieves a connection factory using the WebLogic INDI APIs.

You can establish cluster-wide, transparent access to JMS destinations from any server in the
cluster, either by using the default connection factories for each server instance, or by configuring
one or more connection factories and targeting them to one or more server instances in the cluster.
This way, each connection factory can be deployed on multiple WebLogic Server instances. For
more information on configuring JMS clustering, see “Configuring WebLogic JMS Clustering”
on page 4-1.

Using a Default Connection Factory

WebLogic Server defines two default connection factories, which can be looked up using the
following JNDI names:

e weblogic.jms.ConnectionFactory

e weblogic.jms.XAConnectionFactory

Configuring and Managing WebLogic JMS 3-11

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleSubdeploys.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/modules/ConfigureJMSModuleSubdeploys.html
http://e-docs.bea.com/wls/docs103/deployment/deploy.html#deploy_resources
http://e-docs.bea.com/wls/docs103/deployment/deploy.html#deploy_resources

Configuring Basic JMS System Resources

You only need to configure a new connection factory if the pre-configured settings of the default
factories are not suitable for your application. For more information on using the default
connection factories, see Understanding WebLogic JMS in Programming WebLogic JMS

The main difference between the pre-configured settings for the default connection factories and
a user-defined connection factory is the default value for the “XA Connection Factory Enabled”
option to enable JTA transactions. For more information about the XA Connection Factory
Enabled option, and to see the default values for the other connection factory options, see
JMSConnectionFactoryBean in the WebLogic Server MBean Reference.

Also, using default connection factories means that you have no control over targeting the
WebLogic Server instances where the connection factory may be deployed. However, you can
enable and or disable the default connection factories on a per-WebL ogic Server basis, as defined
in Server: Configuration: Services in the Administration Console Online Help.

Connection Factory Configuration Parameters

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete connection factory resources in a system module. For a road map of the JMS connection
configuration tasks, see Configure connection factories in the Administration Console Online
Help.

You can modify the following parameters for connection factories:

e General configuration parameters, including modifying the default client parameters,
default message delivery parameters, load balancing parameters, unit-of-order parameters,
and security parameters.

e Transaction parameters, which enable you to define a value for the transaction time-out
option and to indicate whether an XA queue or XA topic connection factory is returned,
and whether the connection factory creates sessions that are JTA aware.

Note: When selecting the “XA Connection Factory Enabled” option to enable JTA
transactions with JDBC stores, you must verify that the configured JDBC data source
uses a non-XA JDBC driver. This limitation does not remove the XA capabilities of
layered subsystems that use JDBC stores. For example, WebLogic JMS is fully
XA-capable regardless of whether it uses a file store or any JDBC store.

e Flow control parameters, which enable you to tell a JMS server or destination to slow
down message producers when it determines that it is becoming overloaded.

Some connection factory options are dynamically configurable. When options are modified at
runtime, only incoming messages are affected; stored messages are not affected. For more

3-12 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/jms/fund.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/JMSConnectionFactoryBean.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/Corecoreserverserverconfigservicestitle.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureConnectionFactories.html

Queue and Topic Destination Configuration

information about the default values for all connection factory options, see
JMSConnectionFactoryBean in the WebLogic Server MBean Reference.

Connection Factory Targeting

You can target connection factories to one or more JMS server, to one or more WebL ogic Server
instances, or to a cluster.

e JMS server(s) — You can target connection factories to one or more JMS servers along
with destinations. You can also group a connection factory with standalone queues or
topics in a subdeployment targeted to a specific JMS server, which guarantees that all these
resources are co-located to avoid extra network traffic. Another advantage of such a
configuration would be if the targeted JMS server needs to be migrated to another
WebLogic server instance, then the connection factory and all its connections will also
migrate along with the JMS server’s destinations. However, when standalone queues or
topics are members of a subdeployment, a connection factory can only be targeted to the
same JMS server.

e Weblogic server instance(s) — To establish transparent access to JMS destinations from
any server in a domain, you can target a connection factory to multiple WebLogic Server
instances simultaneously.

e Cluster — To establish cluster-wide, transparent access to JMS destinations from any
server in a cluster, you can target a connection factory to all server instances in the cluster,
or even to specific servers within the cluster.

For more information on JMS system module subdeployment targeting, see “JMS System
Module and Resource Subdeployment Targeting” on page 3-8.

Queue and Topic Destination Configuration

A JMS destination identifies a queue (point-to-point) or topic (publish/subscribe) resource within
aJMS module. Each queue and topic resource is targeted to a specific JMS server. A JMS server’s
primary responsibility for its targeted destinations is to maintain information on what persistent
store is used for any persistent messages that arrive on the destinations, and to maintain the states
of durable subscribers created on the destinations.

You can optionally create other JMS resources in a module that can be referenced from within a
queue or topic, such as JMS templates, quota settings, and destination sort keys:

— Quota — Assign quotas to destinations; multiple destinations can share a quota; or
destinations can share the JMS server’s quota. See Performance and Tuning.

Configuring and Managing WebLogic JMS 3-13

http://e-docs.bea.com/wls/docs103/perform/jmstuning.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/JMSConnectionFactoryBean.html

Configuring Basic JMS System Resources

3-14

— JMS Template — Define multiple destinations with similar option settings. You also
need a JMS template to create temporary queues. See “JMS Template Configuration”
on page 3-16.

— Destination Key — Create custom sort orders of messages as they arrive on a
destination. See “Destination Key Configuration” on page 3-17.

Queue and Topic Configuration Parameters

A JMS queue defines a point-to-point destination type for a JMS server. A message delivered to
aqueue is distributed to a single consumer. A JMS topic identifies a publish/subscribe destination
type for a JMS server. Topics are used for asynchronous peer communications. A message
delivered to a topic is distributed to all consumers that are subscribed to that topic.

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete queue and topic resources in a system module. For a road map of queue and topic tasks,
see Configure queues and Configure topics in the Administration Console Online Help. Within
each JMS module, queue and topic resource names must be unique. And, all queue and topic
JNDI names in any JMS module must be unique across an entire WebLogic domain, as defined
in “JMS Configuration Naming Requirements” on page 3-4.

You can configure the following parameters for a queue and/or a topic:

e General configuration parameters, including a JNDI name, a destination key for sorting
messages as they arrive at the destination, or selecting a JMS template if you are using one
to configure properties for multiple destinations.

Note: Although queue and topic JNDI names can be dynamically changed, there may be
long-lived producers or consumers, such as MDBs, that will continue trying to
produce or consume messages to and from the original queue or topic JNDI name.

e Threshold and quota parameters, which define the upper and lower message and byte
threshold and maximum quota options for the destination. See “Quota Configuration” on
page 3-18.

e Message logging parameters, such as message type and user properties, and logging
message life cycle information into a JMS log file.

See “Message Life Cycle Logging” on page 8-7. Pause and resume controls for message
production, message insertion (in-flight messages), and message consumption operations
on a destination. See “Controlling Message Operations on Destinations” on page 8-15.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueues.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopics.html

Queue and Topic Destination Configuration

e Message delivery override parameters, such as message priority and time-to-deliver values,
which can override those specified by a message producer or connection factory.

e Message Delivery failure parameters, such as defining a message redelivery limit, selecting
a message expiration policy, and specifying an error destination for expired messages.

e For topics only, multicast parameters, including a multicast address, time-to-live (TTL),
and port.

Some options are dynamically configurable. When options are modified at run time, only
incoming messages are affected; stored messages are not affected. For more information about
the default values for all options, see QueueBean and TopicBean in the WebLogic Server MBean
Reference.

Creating Error Destinations

To help manage recovered or rolled back messages, you can also configure a target error
destination for messages that have reached their redelivery limit. The error destination can be
either a topic or a queue, but it must be a destination that is targeted to same JMS server as the
destination(s) it is associated with. For more information, see Configuring an Error Destination
for Undelivered Messages in Programming WebLogic JMS.

Creating Distributed Destinations

A distributed destination resource is a group of destinations (queues or topics) that are accessible
as a single, logical unit to a client (for example, a distributed topic has its own JNDI name). The
members of the set are typically distributed across multiple servers within a cluster, with each
member belonging to a separate JMS server. See “Distributed Destination Configuration” on
page 3-18.

Queue and Topic Targeting

Stand-alone queues and topics can only be deployed to a specific JMS server in a domain because
they depend on the JMS servers they are targeted to for the management of persistent messages,
durable subscribers, and message paging.

If you want to associate a group of queues and/or topics with a connection factory on a specific
JMS server, you can target the destinations and connection factory to the same subdeployment,
which links these resources to the JMS server targeted by the subdeployment. However, when
standalone destinations are members of a subdeployment, a connection factory can only be
targeted to the same JMS server.

Configuring and Managing WebLogic JMS 3-15

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/QueueBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/TopicBean.html
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#error_destination
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#error_destination

Configuring Basic JMS System Resources

For more information on JMS system module subdeployment targeting, see “JMS System
Module and Resource Subdeployment Targeting” on page 3-8.

Destination Monitoring and Management Parameters

You can monitor run-time statistics for queues and topics in system modules, as well as manage
the messages on queues and durable subscribers on topics.

e For information on using the Administration Console to monitor queues, see Monitoring
queues in JMS system modules in the Administration Console Online Help.

e For information on managing messages on queues, as described in “Managing JMS
Messages” on page 7-5.

e For more information on using the Administration Console to monitor topics, see Monitor
topics in JMS system modules in the Administration Console Online Help.

e For information on managing durable subscriber on topics, as described in “Managing JMS
Messages” on page 7-5.

JMS Template Configuration

A JMS template is an efficient means of defining multiple destinations with similar option
settings:

e You do not need to re-enter every option setting each time you define a new destination;
you can use the JMS template and override any setting to which you want to assign a new
value.

e You can modify shared option settings dynamically simply by modifying the template.

e You can specify subdeployments for error destinations so that any number of destination
subdeployments (groups of queue or topics) will use only the error destinations specified in
the corresponding template subdeployments.

JMS Template Configuration Parameters

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete JIMS template resources in a system module. For a road map of the JMS template tasks, see
Configure JMS templates in the Administration Console Online Help.

The configurable options for a JMS template are the same as those configured for a destination.
See “Queue and Topic Configuration Parameters” on page 3-14.

3-16 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/queues/MonitorQueues.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/queues/MonitorQueues.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/topics/MonitorTopics.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/topics/MonitorTopics.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplates.html

Destination Key Configuration

These configuration options are inherited by the destinations that use them, with the following
exceptions:

o [f the destination that is using a JMS template specifies an override value for an option, the
override value is used.

o If the destination that is using a JMS template specifies a message redelivery value for an
option, that redelivery value is used.

e The Name option is not inherited by the destination. This name is valid for the JMS
template only. You must explicitly define a unique name for all destinations. See “JMS
Configuration Naming Requirements” on page 3-4.

e The JNDI Name, Enable Store, and Template options are not defined for JMS templates.

e You can configure subdeployments for error destinations, so that any number of destination
subdeployments (groups of queue or topics) will use only the error destinations specified in
the corresponding template subdeployments.

Any options that are not explicitly defined for a destination are assigned default values. If no
default value exists, be sure to specify a value within the JMS template or as a destination option
override.

Some template options are dynamically configurable. When options are modified at run time,
only incoming messages are affected; stored messages are not affected. For more information
about the default values for all topic options, see TemplateBean in the WebLogic Server MBean
Reference.

Destination Key Configuration

As messages arrive on a specific destination, by default they are sorted in FIFO (first-in, first-out)
order, which sorts ascending based on each message's unique JMSMessagelD. However, you can
use a destination key to configure a different sorting scheme for a destination, such as LIFO
(last-in, first-out).

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete destination key resources in a system module. For a road map of the destination key tasks,
see Configure destination keys in the Administration Console Online Help.

For more information about the default values for all destination key options, see
DestinationKeyBean in the WebLogic Server MBean Reference.

Configuring and Managing WebLogic JMS 3-17

http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/TemplateBean.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/destination_keys/ConfigureDestinationKeys.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/DestinationKeyBean.html

Configuring Basic JMS System Resources

Quota Configuration

A quota resource defines a maximum number of messages and bytes, and is then associated with
one or more destinations and is responsible for enforcing the defined maximums.

See Performance and Tuning.

Foreign Server Configuration

A foreign server resource enables you to reference third-party JMS providers within a local
WebLogic Server INDI tree. With a foreign server resource, you can quickly map a foreign JMS
provider so that its associated connection factories and destinations appear in the WebLogic JINDI
tree as local IMS objects. A foreign server resource can also be used to reference remote instances
of WebLogic Server in another cluster or domain in the local WebLogic JNDI tree.

See “Configuring Foreign Server Resources to Access Third-Party JMS Providers” on page 4-10.

Distributed Destination Configuration

A distributed destination resource is a single set of destinations (queues or topics) that are
accessible as a single, logical destination to a client (for example, a distributed topic has its own
JNDI name). The members of the set are typically distributed across multiple servers within a
cluster, with each member belonging to a separate JMS server. Applications that use a distributed
destination are more highly available than applications that use standalone destinations because
WebLogic JMS provides load balancing and failover for the members of a distributed destination
in a cluster.

See “Configuring Distributed Destination Resources” on page 4-13.

JMS Store-and-Forward (SAF) Configuration

3-18

JMS SAF resources build on the WebL ogic Store-and-Forward (SAF) service to provide
highly-available JMS message production. For example, a JMS message producer connected to
a local server instance can reliably forward messages to a remote JMS destination, even though
that remote destination may be temporarily unavailable when the message was sent. IMS
Store-and-forward is transparent to JMS applications; therefore, JMS client code still uses the
existing JMS APIs to access remote destinations.

See Configuring SAF for JMS Messages in Configuring and Managing WebLogic
Store-and-Forward.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/perform/jmstuning.html
http://e-docs.bea.com/wls/docs103/saf_admin/config_jms.html

CHAPTERa

Configuring Advanced JMS System
Resources

These sections provide information on configuring advanced WebLogic JMS resources, such as
a distributed destination in a clustered environment:

e “Configuring WebLogic JMS Clustering” on page 4-1
e “Migration of JMS-related Services” on page 4-6
e “Using the WebLogic Path Service” on page 4-8

e “Configuring Foreign Server Resources to Access Third-Party JMS Providers” on
page 4-10

e “Configuring Distributed Destination Resources” on page 4-13

Configuring WebLogic JMS Clustering

A WebLogic Server cluster is a group of servers in a domain that work together to provide a more
scalable, more reliable application platform than a single server. A cluster appears to its clients
as a single server but is in fact a group of servers acting as one.

Note: JMS clients depend on unique WebLogic Server names to successfully access a cluster—
even when WebLogic Servers reside in different domains. Therefore, make sure that all
WebLogic Servers that JMS clients contact have unigue server names.

Advantages of JMS Clustering

The advantages of clustering for JMS include the following:

Configuring and Managing WebLogic JMS 4-1

Configuring Advanced JMS System Resources

42

e Load balancing of destinations across multiple servers in a cluster

An administrator can establish load balancing of destinations across multiple servers in the
cluster by configuring multiple JMS servers and targeting them to the defined WebLogic
Servers. Each JMS server is deployed on exactly one WebLogic Server instance and
handles requests for a set of destinations.

Note: Load balancing is not dynamic. During the configuration phase, the system
administrator defines load balancing by specifying targets for JMS servers.

e High availability of destinations

— Distributed destinations — The queue and topic members of a distributed destination
are usually distributed across multiple servers within a cluster, with each member
belonging to a separate JMS server. Applications that use distributed destinations are
more highly available than applications that use simple destinations because WebLogic
JMS provides load balancing and failover for member destinations of a distributed
destination within a cluster. For more information on distributed destinations, see
“Configuring Distributed Destination Resources” on page 4-13.

— Store-and-Forward — JMS modules utilize the SAF service to enable local IMS
message producers to reliably send messages to remote queues or topics. If the
destination is not available at the moment the messages are sent, either because of
network problems or system failures, then the messages are saved on a local server
instance, and are forwarded to the remote destination once it becomes available. For
more information, see Understanding the Store-and-Forward Service in Configuring
and Managing WebLogic Store-and-Forward.

— For automatic failover, WebLogic Server supports migration at the server level—a
complete server instance, and all of the services it hosts can be migrated to another
machine, either automatically, or manually. For more information, see Whole Server
Migration in Using Clusters.

e Cluster-wide, transparent access to destinations from any server in a cluster

An administrator can establish cluster-wide, transparent access to destinations from any
server in the cluster by either using the default connection factories for each server instance
in the cluster, or by configuring one or more connection factories and targeting them to one
or more server instances in the cluster, or to the entire cluster. This way, each connection
factory can be deployed on multiple WebLogic Server instances. Connection factories are
described in more detail in “Connection Factory Configuration” on page 3-11.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/saf_admin/overview.html
http://e-docs.bea.com/wls/docs103/cluster/migration.html
http://e-docs.bea.com/wls/docs103/cluster/migration.html

Configuring WebLogic JMS Clustering

e Scalability

— Load balancing of destinations across multiple servers in the cluster, as described
previously.

— Distribution of application load across multiple JMS servers through connection
factories, thus reducing the load on any single JMS server and enabling session
concentration by routing connections to specific servers.

— Optional multicast support, reducing the number of messages required to be delivered
by a JMS server. The JMS server forwards only a single copy of a message to each host
group associated with a multicast IP address, regardless of the number of applications
that have subscribed.

o Migratability

WebLogic Server supports migration at the server level—a complete server instance, and
all of the services it hosts can be migrated to another machine, either automatically, or
manually. For more information, see Whole Server Migration in Using Clusters.

Also, as an “exactly-once” service, WebLogic JMS takes advantage of the service
migration framework implemented in WebLogic Server for clustered environments. This
allows WebL ogic JMS to respond properly to migration requests and to bring a JMS server
online and offline in an orderly fashion. This includes both scheduled manual migrations as
well as automatic migrations in response to a WebL ogic Server failure. For more
information, see “Migration of JMS-related Services” on page 4-6.

e Server affinity for JMS Clients

When configured for the cluster, load balancing algorithms (round-robin-affinity,
weight-based-affinity, or random-affinity), provide server affinity for JMS client
connections. If a JMS application has a connection to a given server instance, JMS
attempts to establish new JMS connections to the same server instance. For more
information on server affinity, see Load Balancing in a Cluster in Using Clusters.

For more information about the features and benefits of using WebLogic clusters, see
Understanding WebLogic Server Clustering in Using Clusters.

How JMS Clustering Works

An administrator can establish cluster-wide, transparent access to JMS destinations from any
server in a cluster, either by using the default connection factories for each server instance in a
cluster, or by configuring one or more connection factories and targeting them to one or more
server instances in a cluster, or to an entire cluster. This way, each connection factory can be

Configuring and Managing WebLogic JMS 4-3

http://e-docs.bea.com/wls/docs103/cluster/migration.html
http://e-docs.bea.com/wls/docs103/cluster/load_balancing.html
http://e-docs.bea.com/wls/docs103/cluster/overview.html

Configuring Advanced JMS System Resources

44

deployed on multiple WebLogic Servers. For information on configuring and deploying
connection factories, see “Connection Factory Configuration Parameters” on page 3-12.

The application uses the Java Naming and Directory Interface (JNDI) to look up a connection
factory and create a connection to establish communication with a JMS server. Each JMS server
handles requests for a set of destinations. If requests for destinations are sent to a WebLogic
Server instance that is hosting a connection factory, but which is not hosting a JMS server or
destinations, the requests are forwarded by the connection factory to the appropriate WebLogic
Server instance that is hosting the JMS server and destinations.

The administrator can also configure multiple JMS servers on the various servers in the cluster—
as long as the JMS servers are uniquely named—and can then target JMS queue or topic resources
to the various JMS servers. The application uses the Java Naming and Directory Interface (JNDI)
to look up a connection factory and create a connection to establish communication with a IMS
server. Each JMS server handles requests for a set of destinations. Requests for destinations not
handled by a JMS server are forwarded to the appropriate WebLogic Server instance. For
information on configuring and deploying JMS servers, see “JMS Server Configuration” on
page 3-5.

JMS Clustering Naming Requirements

There are naming requirements when configuring JMS objects and resources, such as JMS
servers, JMS modules, and JMS resources, to work in a clustered environment in a single
WebLogic domain or in a multi-domain environment. For more information, see “JMS
Configuration Naming Requirements” on page 3-4.

Distributed Destination Within a Cluster

A distributed destination resource is a single set of destinations (queues or topics) that are
accessible as a single, logical destination to a client (for example, a distributed topic has its own
JNDI name). The members of the unit are usually distributed across multiple servers within a
cluster, with each member belonging to a separate JMS server. Applications that use distributed
destinations are more highly available than applications that use simple destinations because
WebLogic Server provides load balancing and failover for member destinations of a distributed
destination within a cluster. For more information, see “Configuring Distributed Destination
Resources” on page 4-13.

JMS Services As a Migratable Service Within a Cluster

In addition to being part of a whole server migration, where all services hosted by a server can be
migrated to another machine, JMS services are also part of the singleton service migration

Configuring and Managing WebLogic JMS

Configuring WebLogic JMS Clustering

framework. This allows an administrator, for example, to migrate a JMS server and all of its
destinations to migrate to another WebLogic Server within a cluster in response to a server failure
or for scheduled maintenance. This includes both scheduled migrations as well as automatic
migrations. For more information on JMS service migration, see “Migration of JMS-related
Services” on page 4-6.

Configuration Guidelines for JMS Clustering

In order to use WebLogic JMS in a clustered environment, follow these guidelines:

1. Configure your clustered environment as described in Setting Up WebLogic Clusters in Using
Clusters.

2. ldentify server targets for any user-defined JMS connection factories using the Administration
Console. For connection factories, you can identify either a single-server target or a cluster
target, which are server instances that are associated with a connection factory to support
clustering.

For more information about these connection factory configuration attributes, see
“Connection Factory Configuration” on page 3-11.

3. Optionally, identify migratable server targets for JMS services using the Administration
Console. For example, for JMS servers, you can identify either a single-server target or a
migratable target, which is a set of server instances in a cluster that can host an “exactly-once”
service like JMS in case of a server failure in the cluster.

For more information on migratable JMS server targets, see “Migration of JIMS-related
Services” on page 4-6. For more information about JMS server configuration attributes, see
“JMS Server Configuration” on page 3-5.

Note: You cannot deploy the same destination on more than one JMS server. In addition,
you cannot deploy a JMS server on more than one WebLogic Server.

4. Optionally, you can configure the physical JMS destinations in a cluster as part of a virtual
distributed destination set, as discussed in “Distributed Destination Within a Cluster” on
page 4-4.

What About Failover?

If a server or network failure occurs, JIMS message producer and consumer objects will attempt
to transparently failover to another server instance, if one is available. In WebLogic Server

release 9.1 or later, WebLogic JIMS message producers automatically attempt to reconnect to an
available server instance without any manual configuration or changes to existing client code. In

Configuring and Managing WebLogic JMS 4-5

http://e-docs.bea.com/wls/docs103/cluster/setup.html

Configuring Advanced JMS System Resources

WebLogic Server release 9.2 or later, you can use the Administration Console or WebLogic JMS
APIs to configure WebLogic JMS message consumers to attempt to automatically reconnect to
an available server instance. See Automatic JMS Client Failover in Programming WebLogic
JMS.

Note: For WebLogic Server 9.0 or earlier JMS client applications, refer to Programming
Considerations for WebLogic Server 9.0 or Earlier Failures in Programming WebLogic
JMS.

In addition, implementing the automatic service migration feature ensures that exactly-once
services, like JIMS, do not introduce a single point of failure for dependent applications in the
cluster. See “Migration of JMS-related Services” on page 4-6. WebLogic Server also supports
data migration at the server level—a complete server instance, and all of the services it hosts can
be migrated to another machine, either automatically, or manually. See Whole Server Migration
in Using Clusters.

In a clustered environment, WebLogic Server also offers service continuity in the event of a
single server failure by allowing you to configure distributed destinations, where the members of
the unit are usually distributed across multiple servers within a cluster, with each member
belonging to a separate JMS server. See “Distributed Destination Within a Cluster” on page 4-4.

Oracle also recommends implementing high-availability clustering software such as VERITAS
Cluster Server, which provides an integrated, out-of-the-box solution for WebLogic Server-based
applications. Another recommended high-availability software solution is IBM HACMP or the
equivalent.

Migration of JMS-related Services

46

JMS-related services are singleton services, and, therefore, are not active on all server instances
in a cluster. Instead, they are pinned to a single server in the cluster to preserve data consistency.
To ensure that singleton JMS services do not introduce a single point of failure for dependent
applications in the cluster, WebLogic Server can be configured to automatically migrate JMS
service to any server instance in the migratable target list. migratable JMS services can also be
manually migrated if the host server fails. JMS services can also be manually migrated before
performing scheduled server maintenance.

Migratable JMS-related services include:

e JMS Server — a management container for the queues and topics in JMS modules that are
targeted to them. See “JMS Server Configuration” on page 3-5.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/jms/recover.html#AutomaticFailoverforJMSClients
http://e-docs.bea.com/wls/docs103/jms/recover.html#90_server_failure
http://e-docs.bea.com/wls/docs103/jms/recover.html#90_server_failure
http://e-docs.bea.com/wls/docs103/cluster/migration.html

Migration of JMS-related Services

e Store-and-Forward (SAF) Service — store-and-forward messages between local sending and
remote receiving endpoints, even when the remote endpoint is not available at the moment
the messages are sent. Only sending SAF agents configured for JIMS SAF (sending
capability only) are migratable. See Understanding the Store-and-Forward Service in
Configuring and Managing WebLogic Store-and-Forward.

e Path Service — a persistent map that can be used to store the mapping of a group of
messages in a JMS Message Unit-of-Order to a messaging resource in a cluster. One path
service is configured per cluster. See “Using the WebLogic Path Service” on page 4-8.

e Custom Persistent Store — a user-defined, disk-based file store or JDBC-accessible database
for storing subsystem data, such as persistent IMS messages or store-and-forward
messages. See Using the WebLogic Persistent Store in Configuring Server Environments.

You can configure JMS-related services for high availability by using migratable targets. A
migratable target is a special target that can migrate from one server in a cluster to another. As
such, a migratable target provides a way to group migratable services that should move together.
When the migratable target is migrated, all services hosted by that target are migrated.

See Understanding the Service Migration Framework in Using Clusters.

Automatic Migration of JMS Services

An administrator can configure migratable targets so that hosted JMS services are automatically
migrated from the current unhealthy hosting server to a healthy active server with the help of the
Health Monitoring subsystem. For more information about configuring automatic migration of
JMS-related services, see Roadmap for Configuring Automatic Migration of JIMS-Related
Services in Using Clusters.

Manual Migration JMS Services

An administrator can manually migrate JMS-related services to a healthy server if the host server
fails or before performing server maintenance. For more information about configuring manual
migration of IMS-related services, see Roadmap for Configuring Manual Migration of
JMS-Related Services in Using Clusters.

Persistent Store High Availability

As discussed in “What About Failover?” on page 4-5, a JMS service, including a custom
persistent store, can be migrated as part of the “whole server” migration feature, or as part of a
“service-level” migration for migratable JIMS-related services. Migratable JMS-related services

Configuring and Managing WebLogic JMS 4-7

http://e-docs.bea.com/wls/docs103/cluster/service_migration.html#AutomaticJMSMigration
http://e-docs.bea.com/wls/docs103/cluster/service_migration.html#AutomaticJMSMigration
http://e-docs.bea.com/wls/docs103/saf_admin/overview.html
http://e-docs.bea.com/wls/docs103/cluster/service_migration.html#ManualJMSMigration
http://e-docs.bea.com/wls/docs103/cluster/service_migration.html#ManualJMSMigration
http://e-docs.bea.com/wls/docs103/cluster/service_migration.html#service_migration
http://e-docs.bea.com/wls/docs103/config_wls/store.html

Configuring Advanced JMS System Resources

cannot use the default persistent file store, so you must configure a custom file store or JDBC
store and target it to the same migratable target as the JMS server or SAF agent associated with
the store. (As a best practice, a path service should use its own custom store and migratable
target).

Migratable custom file stores can be configured on a shared disk that is available to the migratable
target servers in the cluster or can be migrated to a backup server target by using
pre/post-migration scripts. For more information on migrating persistent stores, see Custom Store
Availability for IMS Services in Configuring Server Environments.

Using the WebLogic Path Service

4-8

The WebLogic Server Path Service is a persistent map that can be used to store the mapping of a
group of messages in a JMS Message Unit-of-Order to a messaging resource in a cluster. It
provides a way to enforce ordering by pinning messages to a member of a cluster that is hosting
servlets, distributed queue members, or Store-and-Forward agents. One path service is configured
per cluster. For more information on the Message Unit-of-Order feature, see Using Message
Unit-of-Order in Programming WebLogic JMS.

To configure a path service in a cluster, see Configure path services in the Administration
Console Online Help.

Path Service High Availability

For high availability, a cluster’s path service can be targeted to a migratable target for automatic
or manual service migration. However, a migratable path service cannot use the default store, so
a custom store must be configured and targeted to the same migratable target. As an additional
best practice, the path service and its custom store should be the only users of that migratable
target. See Understanding the Service Migration Framework in Using Clusters.

Implementing Message U00 With a Path Service

Consider the following when implementing Message Unit-of-Order in conjunction with Path
Service-based routing:

e Each path service mapping is stored in a persistent store. When configuring a path service,
select a persistent store that takes advantage of a high-availability solution. See “Persistent
Store High Availability” on page 4-7.

o |f one or more producers send messages using the same Unit-of-Order name, all messages
they produce will share the same path entry and have the same member queue destination.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/cluster/service_migration.html#custom_store_migration
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/pathservice/ConfigurePathService.html
http://e-docs.bea.com/wls/docs103/cluster/service_migration.html#service_migration
http://e-docs.bea.com/wls/docs103/jms/uoo.html
http://e-docs.bea.com/wls/docs103/jms/uoo.html

Using the WebLogic Path Service

o If the required route for a Unit-of-Order name is unreachable, the producer sending the
message will throw a JMSOrderException. The exception is thrown because the JMS
messaging system can not meet the quality-of-service required — only one distributed
destination member consumes messages for a particular Unit-of-Order.

e A path entry is automatically deleted when the last producer and last message reference are
deleted.

e Depending on your system, using the Path Service may slow system throughput due to a
remote disk operations to create, read, and delete path entries.

e A distributed queue and its individual members each represent a unique destination. For
example:

DXQ1 is a distributed queue with queue members Q1 and Q2. DXQ1 also has a
Unit-of-Order name value of Fred mapped by the Path Service to the Q2 member.

If message M1 is sent to DXQ1, it uses the Path Service to define a route to Q2.

If message M1 is sent directly to Q2, no routing by the Path Service is performed. This
is because the application selected Q2 directly and the system was not asked to pick a
member from a distributed destination.

If you want the system to use the Path Service, send messages to the distributed
destination. If not, send directly to the member.

You can have more than one destination that has the same Unit-of-Order names in a
distributed queue. For example:

Queue Q3 also has a Unit-of-Order name value of Fred. If Q3 is added to DXQ1, there
are now two destinations that have the same Unit-of-Order name in a distributed queue.
Even though, Q3 and DXQ1 share the same Unit-of-Order name value Fred, each has a
unique route and destination that allows the server to continue to provide the correct
message ordering for each destination.

e Empty queues before removing them from a distributed queue or adding them to a
distributed queue. Although the Path Service will remove the path entry for the removed
member, there is a short transition period where a message produced may throw a
JMSOrderException when the queue has been removed but the path entry still exists.

Configuring and Managing WebLogic JMS 4-9

Configuring Advanced JMS System Resources

Configuring Foreign Server Resources to Access
Third-Party JMS Providers

4-10

WebLogic JMS enables you to reference third-party JMS providers within a local WebLogic
Server JNDI tree. With Foreign Server resources in JMS modules, you can quickly map a foreign
JMS provider so that its associated connection factories and destinations appear in the WebLogic
JNDI tree as local JMS objects. Foreign Server resources can also be used to reference remote
instances of WebL ogic Server in another cluster or domain in the local WebLogic JNDI tree.

For more information on integrating remote and foreign JMS providers, see Enhanced 2EE
Support for Using WebLogic JMS With EJBs and Servlets in Programming WebLogic JMS.

These sections provide more information on how a Foreign Server works and a sample
configuration for accessing a remote MQSeries JNDI provider.

e “How WebLogic JIMS Accesses Foreign JMS Providers” on page 4-10
e “Creating Foreign Server Resources” on page 4-11

e “Creating Foreign Connection Factory Resources” on page 4-11

e “Creating a Foreign Destination Resources” on page 4-11

e “Sample Configuration for MQSeries JNDI” on page 4-12

How WebLogic JMS Accesses Foreign JMS Providers

When a foreign JMS server is deployed, it creates local connection factory and destination objects
in WebLogic Server JNDI. Then when a foreign connection factory or destination object is
looked up on the local server, that object performs the actual lookup on the remote JNDI
directory, and the foreign object is returned from that directory.

This method makes it easier to configure multiple WebLogic Messaging Bridge destinations,
since the foreign server moves the JNDI Initial Context Factory and Connection URL
configuration details outside of your Messaging Bridge destination configurations. You need
only provide the foreign Connection Factory and Destination JNDI name for each object.

For more information on configuring a Messaging Bridge, see Configuring and Managing the
WebLogic Messaging Bridge.

The ease-of-configuration concept also applies to configuring WebL ogic Servlets, EJBs, and
Message-Driven Beans (MDBs) with WebLogic JMS. For example, the
weblogic-ejb-jar.xml file in the MDB can have a local INDI name, and you can use the

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/jms/j2ee.html
http://e-docs.bea.com/wls/docs103/jms/j2ee.html
http://e-docs.bea.com/wls/docs103/bridge/index.html
http://e-docs.bea.com/wls/docs103/bridge/index.html

Configuring Foreign Server Resources to Access Third-Party JMS Providers

foreign JMS server to control where the MDB receives messages from. For example, you can
deploy the MDB in one environment to talk to one JMS destination and server, and you can
deploy the same weblogic-ejb-jar.xml file to a different server and have it talk to a different
JMS destination without having to unpack and edit the weblogic-ejb-jar._xml file.

Creating Foreign Server Resources

A Foreign Server resource in a JMS module represents a JNDI provider that is outside the
WebLogic JMS server. It contains information that allows a local WebLogic Server instance to
reach a remote JNDI provider, thereby allowing for a number of foreign connection factory and
destination objects to be defined on one JNDI directory.

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete foreign server resources in a system module. For a road map of the foreign server tasks,
see Configure foreign servers in the Administration Console Online Help.

Note: For information on configuring and deploying JMS application modules in an enterprise
application, see Chapter 5, “Configuring JMS Application Modules for Deployment.”

Some foreign server options are dynamically configurable. When options are modified at run
time, only incoming messages are affected; stored messages are not affected. For more
information about the default values for all foreign server options, see ForeignServerBean in
the WebLogic Server MBean Reference.

After defining a foreign server, you can configure connection factory and destination objects.
You can configure one or more connection factories and destinations (queues or topics) for each
foreign server.

Creating Foreign Connection Factory Resources

A Foreign Connection Factory resource in a JMS module contains the JNDI name of the
connection factory in the remote JNDI provider, the JNDI name that the connection factory is
mapped to in the local WebLogic Server JNDI tree, and an optional user name and password.

The foreign connection factory creates non-replicated JNDI objects on each WebLogic Server
instance that the parent foreign server is targeted to. (To create the JNDI object on every node in
a cluster, target the foreign server to the cluster.)

Creating a Foreign Destination Resources

A Foreign Destination resource in a JMS module represents either a queue or a topic. It contains
the destination JNDI name that is looked up on the foreign JNDI provider and the INDI name that

Configuring and Managing WebLogic JMS 4-1

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/foreign_servers/ConfigureForeignServers.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/ForeignServerBean.html

Configuring Advanced JMS System Resources

the destination is mapped to on the local WebLogic Server. When the foreign destination is
looked up on the local server, a lookup is performed on the remote JNDI directory, and the

destination object is returned from that directory.

Sample Configuration for MQSeries JNDI

The following table provides a possible a sample configuration when accessing a remote
MQSeries JNDI provider.

Table 4-1 Sample MQSeries Configuration

Foreign JMS Object

Option Names

Sample Configuration Data

Foreign Server

Name

JNDI Initial Context Factory

JNDI Connection URL
JNDI Properties

MQJNDI
com.sun.jndi.fscontext.RefFSContextFactory
file:/MQJNDI/

(If necessary, enter a comma-separated
name=value list of properties.)

Foreign Name MQ_QCF
Connection Factory Local JNDI Name maseries.QCF

Remote JNDI Name QCF

Username weblogic_jms

Password weblogic_jms
Foreign Name MQ_QUEUE1L
Destination 1 Local JNDI Name maseries.QUEUEL

Remote JNDI Name QUEUE_1
Foreign Name MQ_QUEUE2
Destination 2 i

Local JNDI Name mgseries.QUEUE2

Remote JNDI Name QUEUE_2

4-12 Configuring and Managing WebLogic JMS

Configuring Distributed Destination Resources

Configuring Distributed Destination Resources

A distributed destination resource in a JMS module represents a single set of destinations (queues
or topics) that are accessible as a single, logical destination to a client (for example, a distributed
topic has its own JNDI name). The members of the set are typically distributed across multiple
servers within a cluster, with each member belonging to a separate JMS server. Applications that
use a distributed destination are more highly available than applications that use standalone
destinations because WebLogic JMS provides load balancing and failover for the members of a
distributed destination in a cluster.

These sections provide information on how to create, monitor, and load balance distributed
destinations:

e “Uniform Distributed Destinations vs. Weighted Distributed Destinations” on page 4-13
e “Creating Uniform Distributed Destinations” on page 4-14

e “Creating Weighted Distributed Destinations” on page 4-16

e “Monitoring UDD Members” on page 4-16

e “Load Balancing Messages Across a Distributed Destination” on page 4-17

e “Distributed Destination Migration” on page 4-23

e “Distributed Destination Failover” on page 4-24

Uniform Distributed Destinations vs. Weighted Distributed
Destinations

WebLogic Server 9.0 and later offers two types of distributed destination: uniform and weighted.
In releases prior to WebLogic Server 9.0, WebLogic Administrators often needed to manually
configure physical destinations to function as members of a distributed destination. This method
provided the flexibility to create members that were intended to carry extra message load or have
extra capacity; however, such differences often led to administrative and application problems
because such a weighted distributed destination was not deployed consistently across a cluster.
This type of distributed destination is officially referred to as a weighted distributed destination
(or WDD).

A uniform distributed destination (UDD) greatly simplifies the management and development of
distributed destination applications.Using uniform distributed destinations, you no longer need to
create or designate destination members, but instead rely on WebLogic Server to uniformly create

Configuring and Managing WebLogic JMS 4-13

Configuring Advanced JMS System Resources

4-14

the necessary members on the JMS servers to which a JMS module is targeted. This feature
ensures the consistent configuration of all distributed destination parameters, particularly in
regards to weighting, security, persistence, paging, and quotas.

The weighted distributed destination feature is still available for users who prefer to manually
fine-tune distributed destination members. However, Oracle strongly recommends configuring
uniform distributed destinations to avoid possible administrative and application problems due to
a weighted distributed destinations not being deployed consistently across a cluster.

For more information about using a distributed destination with your applications, see Using
Distributed Destinations in Programming WebLogic JMS.

Creating Uniform Distributed Destinations

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete UDD resources in JMS system module. By leaving the “Allocate Members Uniformly”
check box selected, the WebL ogic Server automatically creates uniformly-configured destination
members on selected JMS servers, or on all JMS servers on a target server or cluster.

Note: For information on configuring and deploying JMS application modules in an enterprise
application, see Chapter 5, “Configuring JMS Application Modules for Deployment.”

For a road map of the uniform distributed destination tasks, see the following topics in the
Administration Console Online Help:

e Configure uniform distributed queues

e Configure uniform distributed topics

Some uniform distributed destination options are dynamically configurable. When options are
modified at run time, only incoming messages are affected; stored messages are not affected. For
more information about the default values for all uniform distributed destination options, see the
following entries in the WebLogic Server MBean Reference:

e UniformDistributedQueueBean

e UniformDistributedTopicBean

Targeting Uniform Distributed Queues and Topics

Unlike standalone queue and topics resources in a module, which can only be targeted to a
specific JMS server in a domain, UDDs can be targeted to one or more JMS servers, one or more
WebLogic Server instances, or to a cluster, since the purpose of UDDs is to distribute its members

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/jms/dds.html
http://e-docs.bea.com/wls/docs103/jms/dds.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/distributed_queues/ConfigureDistributedQueues.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/distributed_topics/ConfigureDistributedTopics.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/UniformDistributedQueueBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/UniformDistributedTopicBean.html

Configuring Distributed Destination Resources

on every JMS server in a domain. For example, targeting a UDD to a cluster ensures that a
member is uniformly configured on every JMS server in the cluster.

Caution: Changing the targets of a UDD can lead to the removal of a member destination and
the unintentional loss of messages.

You can also use subdeployment groups when configuring UDDs to link specific resources with
the distributed members. For example, if a system module named jmssysmod-jms.xml, is targeted
to three WebL ogic Server instances: wiserverl, wiserver2, and wliserver3, each with a configured
JMS server, and you want to target a uniform distributed queue and a connection factory to each
server instance, you can group the UDQ and connection factory in a subdeployment named
servergroup, to ensure that these resources are always linked to the same server instances.

Here’s how the servergroup subdeployment resources would look in jmssysmod-jms.xml:

<weblogic-jms xmlns="http://www.bea.com/ns/weblogic/91'">
<connection-factory name="connfactory'>
<sub-deployment-name>servergroup</sub-deployment-name>
<jndi-name>jms.connectionfactory.CF</jndi-name>
</connection-factory>
<uniform-distributed-queue name="UniformDistributedQueue'>
<sub-deployment-name>servergroup</sub-deployment-name>
<jndi-name>jms.queue .UDQ</jndi-name>
<forward-delay>10</forward-delay>
</uniform-distributed-queue>
</weblogic-jms>

And here’s how the servergroup subdeployment targeting would look in the domain’s
configuration file:

<jms-system-resource>
<name>jmssysmod-jms</name>
<target>clusterl,</target>
<sub-deployment>
<name>servergroup</name>
<target>wlserverl,wlserver2,wlserver3</target>
</sub-deployment>
<descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>
</jms-system-resource>

Configuring and Managing WebLogic JMS 4-15

Configuring Advanced JMS System Resources

4-16

Pausing and Resuming Message Operations on UDD Members

You can pause and resume message production, insertion, and/or consumption operations on a
uniform distributed destinations, either programmatically (using JMX and the runtime MBean
API) or administratively (using the Administration Console). In this way, you can control the
JMS subsystem behavior in the event of an external resource failure that would otherwise cause
the JMS subsystem to overload the system by continuously accepting and delivering (and
redelivering) messages.

For more information on the “pause and resume” feature, see “Controlling Message Operations
on Destinations” on page 8-15.

Monitoring UDD Members

Runtime statistics for uniform distributed destination members can be monitored via the
Administration console, as described in “Monitoring JMS Statistics” on page 7-2.

Creating Weighted Distributed Destinations

The WebLogic Server Administration Console enables you to configure, modify, target, and
delete WDD resources in JMS system modules. When configuring a distributed topic or
distributed queue, clearing the “Allocate Members Uniformly” check box allows you to manually
select existing queues and topics to add to the distributed destination, and to fine-tune the
weighting of resulting distributed destination members.

For a road map of the weighted distributed destination tasks, see the following topics in the
Administration Console Online Help:

e Create weighted distributed queues in a system module

e Create weighted distributed topics in a system module

Some weighted distributed destination options are dynamically configurable. When options are
modified at run time, only incoming messages are affected; stored messages are not affected. For
more information about the default values for all weighted distributed destination options, see the
following entries in the WebLogic Server MBean Reference:

e DistributedQueueBean

e DistributedTopicBean

Unlike UDDs, WDD members cannot be monitored with the Administration Console or though
runtime MBeans. Also, WDDs members cannot be uniformly targeted to JMS server or

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/distributed_queues/CreateWeightedDistributedQueues.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/distributed_topics/CreateWeightedDistributedTopics.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/DistributedQueueBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/DistributedTopicBean.html

Configuring Distributed Destination Resources

WebLogic Server instances in a domain. Instead, new WDD members must be manually
configured on such instances, and then manually added to the WDD.

Load Balancing Messages Across a Distributed Destination

By using distributed destinations, JMS can spread or balance the messaging load across multiple
destinations, which can result in better use of resources and improved response times. The JMS
load-balancing algorithm determines the physical destinations that messages are sent to, as well
as the physical destinations that consumers are assigned to.

Load Balancing Options

WebLogic JMS supports two different algorithms for balancing the message load across multiple
physical destinations within a given distributed destination set. You select one of these load
balancing options when configuring a distributed topic or queue on the Administration Console.

Round-Robin Distribution

In the round-robin algorithm, WebLogic JMS maintains an ordering of physical destinations
within the distributed destination. The messaging load is distributed across the physical
destinations one at a time in the order that they are defined in the WebLogic Server configuration
(config.xml) file. Each WebLogic Server maintains an identical ordering, but may be at a
different point within the ordering. Multiple threads of execution within a single server using a
given distributed destination affect each other with respect to which physical destination a
member is assigned to each time they produce a message. Round-robin is the default algorithm
and doesn’t need to be configured.

For weighted distributed destinations only, if weights are assigned to any of the physical
destinations in the set for a given distributed destination, then those physical destinations appear
multiple times in the ordering.

Random Distribution

The random distribution algorithm uses the weight assigned to the physical destinations to
compute a weighted distribution for the set of physical destinations. The messaging load is
distributed across the physical destinations by pseudo-randomly accessing the distribution. In the
short run, the load will not be directly proportional to the weight. In the long run, the distribution
will approach the limit of the distribution. A pure random distribution can be achieved by setting
all the weights to the same value, which is typically 1.

Configuring and Managing WebLogic JMS 4-11

Configuring Advanced JMS System Resources

4-18

Adding or removing a member (either administratively or as a result of a WebLogic Server
shutdown/restart event) requires a recomputation of the distribution. Such events should be
infrequent however, and the computation is generally simple, running in O(n) time.

Consumer Load Balancing

When an application creates a consumer, it must provide a destination. If that destination
represents a distributed destination, then WebLogic JIMS must find a physical destination that
consumer will receive messages from. The choice of which destination member to use is made
by using one of the load-balancing algorithms described in “Load Balancing Options” on

page 4-17. The choice is made only once: when the consumer is created. From that point on, the
consumer gets messages from that member only.

Producer Load Balancing

When a producer sends a message, WebLogic JMS looks at the destination where the message is
being sent. If the destination is a distributed destination, WebLogic JMS makes a decision as to
where the message will be sent. That is, the producer will send to one of the destination members
according to one of the load-balancing algorithms described in “Load Balancing Options” on
page 4-17.

The producer makes such a decision each time it sends a message. However, there is no
compromise of ordering guarantees between a consumer and producer, because consumers are
load balanced once, and are then pinned to a single destination member.

Note: If a producer attempts to send a persistent message to a distributed destination, every
effort is made to first forward the message to distributed members that utilize a persistent
store. However, if none of the distributed members utilize a persistent store, then the
message will still be sent to one of the members according to the selected load-balancing
algorithm.

Load Balancing Heuristics

In addition to the algorithms described in “Load Balancing Options” on page 4-17, WebLogic
JMS uses the following heuristics when choosing an instance of a destination.

Transaction Affinity

When producing multiple messages within a transacted session, an effort is made to send all
messages produced to the same WebLogic Server. Specifically, if a session sends multiple
messages to a single distributed destination, then all of the messages are routed to the same
physical destination. If a session sends multiple messages to multiple different distributed

Configuring and Managing WebLogic JMS

Configuring Distributed Destination Resources

destinations, an effort is made to choose a set of physical destinations served by the same
WebLogic Server.

Server Affinity

The Server Affinity Enabled parameter on connection factories defines whether a WebLogic
Server that is load balancing consumers or producers across multiple member destinations in a
distributed destination set, will first attempt to load balance across any other local destination
members that are also running on the same WebLogic Server.

Note: The Server Affinity Enabled attribute does not affect queue browsers. Therefore, a queue
browser created on a distributed queue can be pinned to a remote distributed queue
member even when Server Affinity is enabled.

To disable server affinity on a connection factory:

1. Follow the directions for navigating to the JMS Connection Factory — Configuration —
General page in Configure connection factory load balancing parameters in the
Administration Console Online Help.

2. Define the Server Affinity Enabled field as follows:

e If the Server Affinity Enabled check box is selected (True), then a WebLogic Server
that is load balancing consumers or producers across multiple physical destinations in a
distributed destination set, will first attempt to load balance across any other physical
destinations that are also running on the same WebLogic Server.

o If the Server Affinity Enabled check box is not selected (False), then a WebLogic
Server will load balance consumers or producers across physical destinations in a
distributed destination set and disregard any other physical destinations also running on
the same WebLogic Server.

3. Click Save.

For more information about how the Server Affinity Enabled setting affects the load balancing
among the members of a distributed destination, see “How Distributed Destination Load
Balancing Is Affected When Server Affinity Is Enabled” on page 4-21.

Queues with Zero Consumers

When load balancing consumers across multiple remote physical queues, if one or more of the
queues have zero consumers, then those queues alone are considered for balancing the load. Once
all the physical queues in the set have at least one consumer, the standard algorithms apply.

Configuring and Managing WebLogic JMS 4-19

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureLoadBalancingParams.html

Configuring Advanced JMS System Resources

4-20

In addition, when producers are sending messages, queues with zero consumers are not
considered for message production, unless all instances of the given queue have zero consumers.

Paused Distributed Destination Members

When distributed destinations are paused for message production or insertion, they are not
considered for message production. Similarly, when destinations are paused for consumption,
they are not considered for message production.

For more information on pausing message operations on destinations, see “Controlling Message
Operations on Destinations” on page 8-15.

Defeating Load Balancing

Applications can defeat load balancing by directly accessing the individual physical destinations.
That is, if the physical destination has no JNDI name, it can still be referenced using the
createQueue() or createTopic() methods.

For instructions on how to directly access uniform and weighted distributed destination members,
see Accessing Distributed Destination Members in Programming WebLogic JMS.

Connection Factories

Applications that use distributed destinations to distribute or balance their producers and
consumers across multiple physical destinations, but do not want to make a load balancing
decision each time a message is produced, can use a connection factory with the Load Balancing
Enabled parameter disabled. To ensure a fair distribution of the messaging load among a
distributed destination, the initial physical destination (queue or topic) used by producers is
always chosen at random from among the distributed destination members.

To disable load balancing on a connection factory:

1. Follow the directions for navigating to the JMS Connection Factory — Configuration —
General page in Configure connection factory load balancing parameters in the
Administration Console Online Help.

2. Define the setting of the Load Balancing Enabled field using the following guidelines:

e Load Balancing Enabled = True
For Queue.sender.send() methods, non-anonymous producers are load balanced on
every invocation across the distributed queue members.

For TopicPublish.publish() methods, non-anonymous producers are always pinned

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureLoadBalancingParams.html
http://e-docs.bea.com/wls/docs103/jms/dds.html#AccessingDistributedDestinationMembers

Configuring Distributed Destination Resources

to the same physical topic for every invocation, irrespective of the Load Balancing
Enabled setting.

e lLoad Balancing Enabled = False
Producers always produce to the same physical destination until they fail. At that point,
a new physical destination is chosen.

3. Click Save.

Note: Depending on your implementation, the setting of the Server Affinity Enabled attribute
can affect load balancing preferences for distributed destinations. For more information,
see “How Distributed Destination Load Balancing Is Affected When Server Affinity Is
Enabled” on page 4-21.

Anonymous producers (producers that do not designate a destination when created), are
load-balanced each time they switch destinations. If they continue to use the same destination,
then the rules for non-anonymous producers apply (as stated previously).

How Distributed Destination Load Balancing Is Affected When Server Affinity
Is Enabled

Table 4-2 explains how the setting of a connection factory’s Server Affinity Enabled parameter
affects the load balancing preferences for distributed destination members. The order of
preference depends on the type of operation and whether or not durable subscriptions or persistent
messages are involved.

The Server Affinity Enabled parameter for distributed destinations is different from the server
affinity provided by the Default Load Algorithm attribute in the ClusterMBean, which is also
used by the JMS connection factory to create initial context affinity for client connections.

Configuring and Managing WebLogic JMS 41

Configuring Advanced JMS System Resources

For more information, refer to the Load Balancing for EJBs and RMI Objects and Initial Context
Affinity and Server Affinity for Client Connections sections in Using Clusters.

Table 4-2 Server Affinity Load Balancing Preferences

And Server Affinity
When the operation is... Enabled is... Then load balancing preference is given to a...
e createReceiver() for True 1. local member without a consumer
queues 2. local member
* createSubscriber() 3. remote member without a consumer
for topics
4. remote member
createReceiver() for queues False 1. member without a consumer
2. member
createSubscriber() for topics True or False 1. local member without a consumer
(Note: non-durable subscribers) 2. local member
e createSender() for queues True or False There is no separate machinery for load
+ createPublisher() for balancing a JMS producer creation. JIMS _
topics producers are created on the server on which
your JMS connection is load balanced or pinned.
For more information about load balancing JIMS
connections created via a connection factory,
refer to the Load Balancing for EJBs and RMI
Objects and Initial Context Affinity and Server
Affinity for Client Connections sections in
Using Clusters.
For persistent messages using True local member with a consumer and a store

QueueSender .send() remote member with a consumer and a store

local member with a store
remote member with a store
local member with a consumer
remote member with a consumer
local member

© N o gk wbdeE

remote member

4-22 Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/cluster/load_balancing.html#LoadBalancingforEJBsandRMIObjects
http://e-docs.bea.com/wls/docs103/cluster/load_balancing.html#LoadBalancingforEJBsandRMIObjects
http://e-docs.bea.com/wls/docs103/cluster/load_balancing.html#context_affinity
http://e-docs.bea.com/wls/docs103/cluster/load_balancing.html#context_affinity
http://e-docs.bea.com/wls/docs103/cluster/load_balancing.html#LoadBalancingforEJBsandRMIObjects
http://e-docs.bea.com/wls/docs103/cluster/load_balancing.html#context_affinity
http://e-docs.bea.com/wls/docs103/cluster/load_balancing.html#context_affinity

Tahle 4-2 Server Affinity Load Balancing Preferences

Configuring Distributed Destination Resources

And Server Affinity

When the operation is... Enabled is... Then load halancing preference is given to a...
For persistent messages using False 1. member with a consumer and a store
QueueSender .send() 2. member with a store

3. member with a consumer

4. member
For non-persistent messages using True 1. local member with a consumer
QueueSender .send() 2. remote member with a consumer

3. local member

4. remote member
For non-persistent messages: False 1. member with a consumer

¢ QueueSender.send()
e TopicPublish_publish()

2. member

createConnectionConsumer (
) for session pool queues and topics

True or False

1. local member only

Note: Session pools are now used rarely, as they
are not a required part of the J2EE specification,
do not support JTA user transactions, and are
largely superseded by message-driven beans
(MDBs), which are simpler, easier to manage,
and more capable.

Distributed Destination Migration

For clustered JMS implementations that take advantage of the Service Migration feature, a JMS
server and its distributed destination members can be manually migrated to another WebLogic
Server instance within the cluster. Service migrations can take place due to scheduled system
maintenance, as well as in response to a server failure within the cluster.

However, the target WebL ogic Server may already be hosting a JMS server with all of its physical
destinations. This can lead to situations where the same WebLogic Server instance hosts two
physical destinations for a single distributed destination. This is permissible in the short term,
since a WebLogic Server instance can host multiple physical destinations for that distributed
destination. However, load balancing in this situation is less effective.

Configuring and Managing WebLogic JMS 4-23

Configuring Advanced JMS System Resources

4-24

In such a situation, each JMS server on a target WebLogic Server instance operates
independently. This is necessary to avoid merging of the two destination instances, and/or
disabling of one instance, which can make some messages unavailable for a prolonged period of
time. The long-term intent, however, is to eventually re-migrate the migrated JMS server to yet
another WebLogic Server instance in the cluster.

For more information about the configuring JMS migratable targets, see “Migration of
JMS-related Services” on page 4-6.

Distributed Destination Failover

If the server instance that is hosting the JMS connections for the JMS producers and JMS
consumers should fail, then all the producers and consumers using these connections are closed
and are not re-created on another server instance in the cluster. Furthermore, if a server instance
that is hosting a JMS destination should fail, then all the JMS consumers for that destination are
closed and not re-created on another server instance in the cluster.

If the distributed queue member on which a queue producer is created should fail, yet the
WebLogic Server instance where the producer’s JMS connection resides is still running, the
producer remains alive and WebLogic JMS will fail it over to another distributed queue member,
irrespective of whether the Load Balancing option is enabled.

For more information about procedures for recovering from a WebLogic Server failure, see
Recovering From a Server Failure in Programming WebLogic JMS.

Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs103/jms/recover.html

CHAPTERa

Configuring JMS Application Modules
for Deployment

These sections explain how to configure JMS application modules for deployment, including

JMS application modules packaged with a Java EE enterprise application and globally-available,
standalone application modules.

e “Methods for Configuring JMS Application Modules” on page 5-2
e “JMS Schema” on page 5-2

“Packaging JMS Application Modules In an Enterprise Application” on page 5-3
— “Main Steps for Creating Packaged JMS Application Modules” on page 5-3
— “Creating Packaged JMS Application Modules” on page 5-3

“Referencing a Packaged JMS Application Module In Deployment Descriptor Files” on
page 5-4

“Packaging an Enterprise Application With a IMS Application Module” on page 5-9
“Deploying a Packaged JMS Application Module” on page 5-9

e “Deploying Standalone JMS Application Modules” on page 5-10

e “Generating Unique Runtime JNDI Names for JMS Resources” on page 5-13

Configuring and Managing WebLogic JMS 5-1

Configuring JMS Application Modules for Deployment

Methods for Configuring JMS Application Modules

All JMS resources that can be configured in a JMS system module can also be configured and
managed as deployable application modules, similar to standard Java EE modules. Deployed
JMS application modules are owned by the developer who created and packaged the module,
rather than the administrator who deploys the module; therefore, the administrator has more
limited control over deployed resources.

For example, administrators can only modify (override) certain properties of the resources
specified in the module using the deployment plan (JSR-88) at the time of deployment, but they
cannot dynamically add or delete resources. As with other Java EE modules, configuration
changes for an application module are stored in a deployment plan for the module, leaving the
original module untouched.

Application developers can use these tools to create and deploy (target) system resources

e Create a JMS system module, as described in “JMS System Module Configuration” on
page 3-7 and then copy the resulting XML file to another directory and rename it, using
“—jms.xml” as the file suffix.

e Create application modules in an enterprise-level IDE or another development tool that
supports editing of XML files, then package the JMS modules with an application and pass
the application to a WebLogic Administrator to deploy.

JMS Schema

5-2

In support of the modular deployment model for JMS resources in WebLogic Server 9.x or
higher, Oracle provides a schema for defining WebLogic JMS resources: weblogic-jms.xsd.
When you create IMS modules (descriptors), the modules must conform to this schema. IDEs and
other tools can validate JMS modules based on the schema.

The weblogic-jms.xsd schema is available online at
http://www.bea.com/ns/weblogic/weblogic-jms/1.0/weblogic-jms.xsd.

For an explanation of the JMS resource definitions in the schema, see the corresponding system
module beans in the System Module MBeans folder of the WebLogic Server MBean Reference.
The root bean in the JMS module that represents an entire JMS module is named JMSBean.

Configuring and Managing WebLogic JMS

http://www.bea.com/ns/weblogic/weblogic-jms/1.0/weblogic-jms.xsd
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/JMSBean.html
http://e-docs.bea.com/wls/docs103/wlsmbeanref/mbeans/JMSBean.html

Packaging JMS Application Modules In an Enterprise Application

Packaging JMS Application Modules In an Enterprise
Application

JMS application modules can be packaged as part of an Enterprise Application Archive (EAR),
as a packaged module. Packaged modules are bundled with an EAR or exploded EAR directory,
and are referenced in the weblogic-application.xml descriptor.

The packaged JMS module is deployed along with the Enterprise Application, and the resources
defined in this module can optionally be made available only to the enclosing application (i.e., as
an application-scoped resource). Such modules are particularly useful when packaged with EJBs
(es