0?7,

r
P i’
L/

BEAWebLogic
Servere

Using WebLogic Server
Clusters

Version 10.0
Revised: March 30, 2007

Contents

1. Introduction and Roadmap

Document Scope and AUdIENCEottt e 1-1
Guide to thiS DOCUMENT e 1-2
Related DOCUMENTALIONo 1-2
New and Changed Clustering Features in ThisRelease 1-2

2. Understanding WebLogic Server Clustering

What Is a WebLogic Server CIUStEr?.ot e 2-1
How Does a Cluster Relate to aDomain?t 2-2
What Are the Benefits of Clustering? i 2-3
What Are the Key CapabilitiesofaCluster?. 2-3
What Types of Objects Can Be Clustered? i, 2-5
Servlets and JSPS . .. oo 2-6
EJBsand RMI ODJECESot 2-6
JDBC CONNECLIONS . . o ottt et et et e e e 2-6
Getting Connections with Clustered JDBC., 2-7

Failover and Load Balancing for JDBC Connections. 2-8

JMS and CIUSEErING.o 2-8
What Types of Objects Cannot Be Clustered?. 2-8

3. Communications In a Cluster

WebLogic Server Communication InaCluster. 3-1

Using IP Multicast for Backward Compatibility 3-2

Using WebLogic Server Clusters iii

Multicast and Cluster Configuration. 3-2

One-to-Many Communication Using Unicast.o, 3-4
Unicast Configuration. 3-4
Considerations When Using Unicast, 3-5

Peer-to-Peer Communication Using IP Sockets 3-5
Pure-Java Versus Native Socket Reader Implementations. 3-6
Configuring Reader Threads for Java Socket Implementation. 3-7

Client Communication viaSockets i 3-10

Cluster-Wide INDI Naming Service.t 3-10

How WebL ogic Server Creates the Cluster-Wide INDI Tree 3-11

How JNDI Naming Conflicts Oceur 3-13
Deploy Homogeneously to Avoid Cluster-Level JINDI Conflicts 3-14

How WebL ogic Server Updatesthe JINDI Tree. ..., 3-14

Client Interaction with the Cluster-Wide INDI Tree 3-14

4. Understanding Cluster Configuration

Cluster Configuration and config.xml. i 4-1
Role of the Administration Server 4-2
What Happens if the Administration Server Fails? 4-3
How Dynamic Configuration Works i 4-4
Application Deployment for Clustered Configurations 4-4
Deployment Methods. 4-4
Introduction to Two-Phase Deployment 4-5
First Phase of Deployment 4-5

Second Phase of Deployment. i i 4-6
Guidelines for Deployingtoa Cluster. it 4-6
WebLogic Server Supports “Relaxed Deployment” Rules. 4-7
Methods of Configuring CIUSters e 4-8

iv Using WebLogic Server Clusters

5. Load Balancing in a Cluster

Load Balancing for Servletsand JSPS. 5-1
Load Balancing with a Proxy Plug-in i, 5-2
How Session Connection and Failover Work with a Proxy Plug-in.......... 5-2

Load Balancing HTTP Sessions with an External Load Balancer............... 5-2
Load Balancer Configuration Requirements. 5-2

Load Balancers and the WebLogic Session Cookie 5-3

Related Programming Considerations. oo, 5-4

How Session Connection and Failover Works with a Load Balancer. 5-4

Load Balancing for EJBs and RMI Objects 5-4
Round Robin Load Balancingo 5-4
Weight-Based Load Balancing. i 5-5
Random Load Balancing 5-6
Server Affinity Load Balancing Algorithms, 5-6
Server Affinity and Initial Context i 5-7

Server Affinity and I1OP Client Authentication Using CSIv2 5-7
Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity........ 5-8
Parameter-Based Routing for Clustered Objects 5-12
Optimization for Collocated Objectst 5-12
Transactional Collocation i i 5-13

Load Balancing for JIMS 5-14
Server Affinity for Distributed JMS Destinations 5-14
Initial Context Affinity and Server Affinity for Client Connections 5-15
Load Balancing for JDBC CoNNectionscuuiiinininnnnnnann. 5-16

6. Failover and Replication in a Cluster
How WebLogic Server Detects Failures. i, 6-1

Failure Detection Using IP Sockets i 6-2

Using WebLogic Server Clusters

vi

The WebLogic Server “Heartbeat” 6-2

Replication and Failover for Servletsand JSPs i 6-2
HTTP Session State Replication i, 6-3
Requirements for HTTP Session State Replication 6-4

Using Replication GroUPS.ot 6-6
Accessing Clustered Servlets and JSPs UsingaProxy 6-9
Proxy Connection Procedurecouuiininin i 6-9

Proxy Failover Proceduret 6-10
Accessing Clustered Servlets and JSPs with Load Balancing Hardware 6-11
Connection with Load Balancing Hardware. 6-11
Failover with Load Balancing Hardware 6-13

Session State Replication Across Clustersina MAN/WAN 6-14
Network Requirements for Cross-cluster Replication 6-14
Configuration Requirements for Cross-Cluster Replication. 6-16
Configuring Session State Replication Across Clusters. 6-18
Configuring a Replication Channel 6-19

MAN HTTP Session State Replication. 6-19

WAN HTTP Session State Replication. 6-22
Replication and Failover for EJBsand RMIs i, 6-25
Clustering Objects with Replica-Aware Stubs. 6-26
Clustering Support for Different Typesof EJBSt 6-27
Clustered EJBHOMESo 6-27
Clustered EJBODJECES oo e 6-27

ENtity EJBS . . oot 6-30
Clustering Support for RMI Objects i i 6-31
Object Deployment Requirements.t 6-31
Other Failover EXCeptionst 6-32
Failover and JDBC CONNECLIONS.o vt i 6-32

Using WebLogic Server Clusters

/. Whole Server Migration

Understanding Whole Server and Service Migration 7-1
Migration Terminologyo 7-2
LaSING. o v ot e 7-3
Features That USe Leasingo vu ittt e e e 7-3
Leasing VEISIONS.ottt 7-4
Determining Which Leasing TypetoUse it 7-5
High-availability Database Leasing 7-5
Non-database Consensus Leasingo.vuuiitie e 7-6
Automatic Whole Server Migration i 7-7
Preparing for Automatic Whole Server Migration. 7-7
Configuring Automatic Whole Server Migration. 7-8
Using High Availability Storage for StateData 7-10
Server Migration Processes and Communications. 7-10
Startup Process in a Cluster with Migratable Servers. 7-10
Automatic Migration Process 7-12

Manual Migration Processo 7-14
Administration Server’s Role in Whole Server Migration 7-16
Migratable Server BehaviorinaCluster. 7-16

Node Manager’s Role in Whole Server Migration...................... 7-17

Cluster Master’s Role in Whole Server Migration 7-18

8. Service-Level Migration

Understanding the Service-Level Migration Framework 8-2
Migratable Services 8-2
Messaging/JMS-related Services 8-2

JTA Transaction Recovery Service. 8-3
User-defined Singleton Services. 8-3

Using WebLogic Server Clusters vii

viii

Understanding Migratable Targets InaCluster. 8-4

User-Preferred Servers and Candidate Servers. 8-4
Targeting Rules for IMS Servers 8-5
Targeting Rules for SAF AQents.t 8-5
Targeting Rules for Path Service i .. 8-6
Targeting Rules for Custom Stores.t 8-6
Migratable Targets For the JTA Transaction Recovery Service............. 8-6
Migration Processing ToOIS oo 8-7
Administration Console 8-7
WebLogic Scripting Tool 8-7
Automatic Service Migration Infrastructure for JTA. o it 8-7
Leasing for Migratable Services.o i 8-7
NOde Manager.ot 8-8
Service Health Monitoring 8-9
Migrating a Service From an Unavailable Server 8-9
Pre-Migration ReqUIrements.ttt e 8-10
Custom Store Availability for IMS Serviceso i, 8-10
Default File Store Availability for JTA 8-10
Server State and Manual Service Migration 8-11
Roadmap for Configuring Manual Migration of IMS-Related Services 8-13
Step 1: Configured Managed Servers ..., 8-13
Step 2: Configure Migratable Targets i, 8-13
Configuring a Migratable Server As a Migratable Target 8-13
Create a New Migratable Target.o 8-14
Step 3: Configure and Target Custom Stores., 8-15
Step 4: Target the IMS Services.t e 8-15
Special Considerations When Targeting SAF Agents or Path Service. 8-15

Using WebLogic Server Clusters

Step 5: Restart the Administration Server and Managed Servers With Modified

Migration POlICIESo 8-16
Step 6: Manually Migrating JMS Services., 8-16
Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service .
8-17
Step 1: Configured Managed Servers and Node Manager. 8-17
Step 2: Configure the Migration Basis., 8-18
Step 3: Enable Automatic JTAMigration o, 8-18
Step 4: Configure the Default Persistent Store For Transaction Recovery Service
MIgration.o 8-19
Step 5: Restart the Administration Server and Managed Servers With Modified
Migration PoOliCieSo 8-19
Step 6: Automatic Failback of the Transaction Recovery Service Back to the Original
ST 8-19
Manual Migration of the JTA Transaction Recovery Service. 8-21
Automatic Migration of User-Defined Singleton Services 8-22
Overview of Singleton Service Migration, 8-22
Migration Master. e 8-22
Migration Failure. e 8-23
Implementing the Singleton Service Interface. 8-23
Deploying a Singleton Service and Configuring the Migration Behavior. 8-24
Packaging and Deploying a Singleton Service Within an Application. 8-24

Deploying a Singleton Service As a Standalone Service in WebLogic Server. 8-24

Configuring Singleton Service Migration. 8-25

9. Cluster Architectures

Architectural and Cluster Terminology. e 9-1
ArChItECtUrE . . oo 9-1
Web Application THers 9-1

Using WebLogic Server Clusters ix

Combined Tier ArchiteCturettt e 9-2

De-Militarized Zone (DMZ) oo e 9-2
Load BalanCer 9-3
Proxy PIUG-IN . ..o 9-3
Recommended Basic Architecture 9-3
When Not to Use a Combined Tier Architecture. 9-5
Recommended Multi-Tier Architecture i 9-6
Physical Hardware and Software Layers. 9-7
Web/Presentation Layer 9-7

ObjeCt Layer . ..ot 9-8
Benefits of Multi-Tier Architecture. o i 9-8
Load Balancing Clustered Objects in a in Multi-Tier Architecture.............. 9-9
Configuration Considerations for Multi-Tier Architecture 9-10
IPSocket Usageot 9-10
Hardware Load Balancers. 9-11
Limitations of Multi-Tier Architectures. i, 9-11

No Collocation Optimization 9-11

Firewall Restrictions. 9-11
Recommended Proxy Architectures i 9-12
Two-Tier Proxy ArchiteCture. oo e 9-12
Physical Hardware and Software Layers, 9-13
Multi-Tier Proxy Architecture e 9-14
Proxy Architecture Benefits. 9-15
Proxy Architecture Limitations i i 9-16
Proxy Plug-In Versus Load Balancer. 9-16
Security Options for Cluster Architectures. i 9-17
Basic Firewall for Proxy Architectures i, 9-17
Firewall Between Proxy Layerand Cluster 9-18

Using WebLogic Server Clusters

DMZ with Basic Firewall Configurations. 9-19

Combining Firewall with Load Balancer 9-19
Expanding the Firewall for Internal Clients 9-20
Additional Security for Shared Databases il 9-22
DMZ with Two Firewall Configuration 9-22

10.Setting up WebLogic Clusters

Before YOU Start 10-1
Understand the Configuration Process., 10-1
Determine Your Cluster Architecture.o i, 10-1
Consider Your Network and Security Topologies 10-2
Choose Machines for the Cluster Installation 10-2

WebLogic Server Instances on Multi-CPU machines. 10-3
Check Host Machines’ Socket Reader Implementation 10-3
Setting Up a Cluster on a Disconnected Windows Machine. 10-3
Identify Names and Addresses.ot 10-3
Avoiding Listen Address Problems. i 10-4
Assigning Names to WebLogic Server Resources 10-5
Administration Server Addressand Port.o oo 10-5
Managed Server Addresses and ListenPorts 10-5
Cluster Multicast Addressand Port., 10-5
Cluster AdOreSSot 10-6

Cluster Implementation Procedures.t e 10-8
Configuration Roadmapot 10-9
Install WebLOgIC SErver. 10-9
Create a Clustered DOmMain.ot 10-10

Starting a WebLogic Server Cluster, 10-10
Configure Node Manager.ot 10-12

Using WebLogic Server Clusters Xi

Configure Load Balancing Method for EJBsandRMIs 10-12

Specifyinga Timeout Value FOorRMIs 10-13
Configure Server Affinity for Distributed JMS Destinations 10-13
Configuring Load Balancers that Support Passive Cookie Persistence. 10-13
Configure Proxy Plug-Ins 10-14
Set Up the HttpClusterServlet. i i 10-14
Configure Replication GroupS.o vt 10-22
Configure Migratable Targets for Pinned Services 10-23
Configure Clustered IDBCot e 10-24
Clustering Data SOUICESo oo vttt e e 10-24
Clustering Multi Data SOUICES.ottt et 10-24
Package Applications for Deployment 10-25
Deploy Applications 10-25
Deploying to a Single Server Instance (Pinned Deployment) 10-25
Cancelling Cluster Deploymentsoouiineii .. 10-26
Viewing Deployed Applications. 10-26
Undeploying Deployed Applications oo ... 10-26
Deploying, Activating, and Migrating Migratable Services 10-27
Deploying JMS to a Migratable Target Server Instance. 10-27
Activating JTA as a Migratable Service i 10-27
Migrating a Pinned Service to a Target Server Instance. 10-27
Configure In-Memory HTTP Replication oo, 10-30
Additional Configuration TOPICSottt 10-30
Configure IP SOCKELSt 10-30
Configure Multicast Time-To-Live (TTL) 10-32
Configure Multicast Buffer Size.......... i, 10-33
Configure Multicast Data Encryption., 10-33
Configure Machine Names. e 10-34

Xii Using WebLogic Server Clusters

Configuration Notes for Multi-Tier Architecture 10-34
Enable URL ReWritingt 10-34

11.Clustering Best Practices

General Design Considerationsot 11-1
Strive for Simplicity 11-1
Minimize Remote Calls e 11-2

Session Facades Reduce Remote Calls., 11-2
Transfer Objects Reduce Remote Calls.t 11-2
Distributed Transactions Increase Remote Calls. 11-2

Web Application Design Considerations. 11-2
Configure In-Memory Replication. i 11-3
Design for Idempotence e 11-3
Programming Considerations.t 11-3

EJB Design Considerationsot 11-3
Design Idempotent Methods. 11-3
Follow Usage and Configuration Guidelines. 11-4

Cluster-Related Configuration Options., 11-6

State Managementina ClIUSter i 11-7

Application Deployment Considerations. i, 11-13

Architecture Considerationso ottt 11-13

Avoiding Problems 11-13
Naming Considerations ot 11-14
Administration Server Considerations i 11-14
Firewall Considerationst 11-14
Evaluate Cluster Capacity Prior to ProductionUse 11-17

Using WebLogic Server Clusters Xiii

12.Troubleshooting Common Problems

Before You Startthe CIuSter.t e 12-1
Check the Server Version Numbers. 12-1
Check the Multicast ADdresst 12-1
Check the CLASSPATH Value e 12-2
Check the Thread Count o it 12-2

After You Startthe CIUSter 12-3
Check Your Commandsttt 12-3
Generatea Log File 12-3

Getting a JRockit Thread Dump Under Linux 12-4
Check Garbage Collection. 12-4
Run utils.MUlticastTest e 12-5

13.Troubleshooting Multicast Configuration

Verifying Multicast Address and Port Configuration. 13-2
POSSIDIE ETOrS . . oo 13-2
Checking the Multicast Addressand Port 13-2

Identifying Network Configuration Problems. 13-2
Physical Connections. i e 13-2
Address Conflicts. o 13-3
nsswitch.conf Settings on UNIX Systems., 13-3

Using the MulticastTest Utility. e 13-3

Tuning Multicast Features. o e e 13-3
Multicast TIMEOULS.o e 13-3
Cluster Heartbeats 13-4

Multicast Send Delay o 13-4
Operating System Parameters.t 13-4
MUILICASt STOIMS e 13-5

Xiv Using WebLogic Server Clusters

Multicast and Multihomed Machines. 13-5

Multicast in Different Subnets 13-5
Debugging MUILICaSt 13-5
Debugging Utilities 13-5
MulticastMONItor.o 13-6
MUItiCaStTESEo 13-6
Debugging Flags.o 13-6
Setting Debug Flags onthe Command Line................ 13-6

Setting Debug Flags by Using weblogic. Admin. 13-6
MiSCEllaneoUS ISSUBS oottt 13-7
Multicast on ALX .. .o 13-7

File Descriptor Problems 13-7
Other Resources for Troubleshooting Multicast Configuration 13-7

A. The WebLogic Cluster API
Howto Usethe AP, e e e e

Custom Call Routing and Collocation Optimization.

B. Configuring BIG-IP™ Hardware with Clusters
Configuring Session PersistencCet e
Configuring URL ReWritingt e e
Configuring WebLogic Server for URL Rewriting
Configuring BIG-IP for URL Rewriting

A. Configuring F5 Load Balancers for MAN/WAN Failover

REQUITEMENTS . . . oo
Configure Local Load Balancers.o
Virtual Server IPsand PoolS.

Create a Failover Trigger Virtual ServerandPool.

Using WebLogic Server Clusters

XV

Create a Multi-layered Virtual Serverand IPPool C-3

Configure the 3-DNS Global Hardware Load Balancer.......................... C-4
Configure DNS ZONESot C-4
Configure BIG-IP Addresses Managed by 3-DNS C-5
Configure Data Centersttt e C-5
Configure Wide IPS oo C-5

Configuring WebLogic Server CoOmponents.ttt C-6

A. Configuring Radware Load Balancers for MAN/WAN Failover

Xvi

REQUITEMENTS. D-2
Step 1: Configure an Authoritative Delegation Zone D-2
Step 2: Configure Farm Virtual IPsand Servers. D-2

Createa Farm P D-2

Configure the Dispatch Method for the Server Farm D-3

Creating Farm SErVerS o D-3
Step 3: Configure Port Multiplexing. i D-4
Step 4: Configure HTTP Redirectso e D-4
Step 5: Configure Session 1D PersistenCy. e D-5
Step 6: Configure LRP o D-5
Step 7: Configure WebLogic Server Components, D-6

Using WebLogic Server Clusters

Introduction and Roadmap

This section describes the contents and organization of this guide—Using WebLogic Server®
Clusters.

e “Document Scope and Audience” on page 1-1
e “Guide to this Document” on page 1-2
e “Related Documentation” on page 1-2

e “New and Changed Clustering Features in This Release” on page 1-2

Document Scope and Audience

This document is written for application developers and administrators who are developing or
deploying Web-based applications on one or more clusters. It also contains information that is
useful for business analysts and system architects who are evaluating WebLogic Server or
considering the use of WebLogic Server clusters for a particular application.

The topics in this document are primarily relevant to planning, implementing, and supporting a
production environment that includes WebLogic Server clusters. Key guidelines for software
engineers who design or develop applications that will run on a WebLogic Server cluster are also
addressed.

It is assumed that the reader is familiar with Java EE, HTTP, HTML coding, and Java
programming (servlets, JSP, or EJB development).

Using WebLogic Server Clusters 1-1

Guide to this Document

e This chapter, Chapter 1, “Introduction and Roadmap,” describes the organization of this
guide.

e Chapter 2, “Understanding WebLogic Server Clustering”
e Chapter 3, “Communications In a Cluster”

e Chapter 4, “Understanding Cluster Configuration”

e Chapter 5, “Load Balancing in a Cluster”

e Chapter 6, “Failover and Replication in a Cluster”

e Chapter 9, “Cluster Architectures”

e Chapter 10, “Setting up WebLogic Clusters”

e Chapter 11, “Clustering Best Practices”

e Chapter 12, “Troubleshooting Common Problems”

e Appendix A, “The WebLogic Cluster API”

e Appendix B, “Configuring BIG-IP™ Hardware with Clusters”.

Related Documentation

e “Understanding Enterprise JavaBeans (EJBs)” in Programming WebLogic Enterprise
JavaBeans

e “Creating and Configuring Web Applications” in Developing Web Applications, Servlets,
and JSPs for WebLogic Server

New and Changed Clustering Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see
“What's New in WebLogic Server 10” in Release Notes.

1-2 Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/ejb/understanding.html
http://e-docs.bea.com/wls/docs100/webapp/configurewebapp.html
http://e-docs.bea.com/wls/docs100/notes/new.html

CHAPTERa

Understanding WebLogic Server
Clustering

This section is a brief introduction to WebLogic Server clusters. It contains the following
information:

e “What Is a WebLogic Server Cluster?” on page 2-1

e “How Does a Cluster Relate to a Domain?” on page 2-2

e “What Are the Benefits of Clustering?” on page 2-3

e “What Are the Key Capabilities of a Cluster?” on page 2-3
e “What Types of Objects Can Be Clustered?” on page 2-5

e “What Types of Objects Cannot Be Clustered?” on page 2-8

What Is a WebLogic Server Cluster?

A WebLogic Server cluster consists of multiple WebLogic Server server instances running
simultaneously and working together to provide increased scalability and reliability. A cluster
appears to clients to be a single WebLogic Server instance. The server instances that constitute a
cluster can run on the same machine, or be located on different machines. You can increase a
cluster’s capacity by adding additional server instances to the cluster on an existing machine, or
you can add machines to the cluster to host the incremental server instances. Each server instance
in a cluster must run the same version of WebLogic Server.

Using WebLogic Server Clusters 2-1

How Does a Cluster Relate to a Domain?

2-2

A cluster is part of a particular WebLogic Server domain.

A domain is an interrelated set of WebLogic Server resources that are managed as a unit. A
domain includes one or more WebLogic Server instances, which can be clustered, non-clustered,
or a combination of clustered and non-clustered instances. A domain can include multiple
clusters. A domain also contains the application components deployed in the domain, and the
resources and services required by those application components and the server instances in the
domain. Examples of the resources and services used by applications and server instances include
machine definitions, optional network channels, connectors, and startup classes.

You can use a variety of criteria for organizing WebLogic Server instances into domains. For
instance, you might choose to allocate resources to multiple domains based on logical divisions
of the hosted application, geographical considerations, or the number or complexity of the
resources under management. For additional information about domains see Understanding
Domain Configuration.

In each domain, one WebLogic Server instance acts as the Administration Server—the server
instance which configures, manages, and monitors all other server instances and resources in the
domain. Each Administration Server manages one domain only. If a domain contains multiple
clusters, each cluster in the domain has the same Administration Server.

All server instances in a cluster must reside in the same domain; you cannot “split” a cluster over
multiple domains. Similarly, you cannot share a configured resource or subsystem between
domains. For example, if you create a JDBC connection pool in one domain, you cannot use it
with a server instance or cluster in another domain. (Instead, you must create a similar connection
pool in the second domain.)

Clustered WebLogic Server instances behave similarly to non-clustered instances, except that
they provide failover and load balancing. The process and tools used to configure clustered
WebLogic Server instances are the same as those used to configure non-clustered instances.
However, to achieve the load balancing and failover benefits that clustering enables, you must
adhere to certain guidelines for cluster configuration.

To understand how the failover and load balancing mechanisms used in WebLogic Server relate
to particular configuration options see “Load Balancing in a Cluster” on page 5-1, and “Failover
and Replication in a Cluster” on page 6-1.

Detailed configuration recommendations are included throughout the instructions in “Setting up
WebLogic Clusters” on page 10-1.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/domain_config/index.html
http://e-docs.bea.com/wls/docs100/domain_config/index.html

What Are the Benefits of Clustering?

What Are the Benefits of Clustering?

A WeblLogic Server cluster provides these benefits:

e Scalability

The capacity of an application deployed on a WebLogic Server cluster can be increased
dynamically to meet demand. You can add server instances to a cluster without interruption
of service—the application continues to run without impact to clients and end users.

o High-Availability

In a WebLogic Server cluster, application processing can continue when a server instance
fails. You “cluster” application components by deploying them on multiple server instances
in the cluster—so, if a server instance on which a component is running fails, another
server instance on which that component is deployed can continue application processing.

The choice to cluster WebLogic Server instances is transparent to application developers and
clients. However, understanding the technical infrastructure that enables clustering will help
programmers and administrators maximize the scalability and availability of their applications.

What Are the Key Capabilities of a Cluster?

This section defines, in non-technical terms, the key clustering capabilities that enable scalability
and high availability.

e Application Failover

Simply put, failover means that when an application component (typically referred to as an
“object” in the following sections) doing a particular “job”—some set of processing
tasks—becomes unavailable for any reason, a copy of the failed object finishes the job.

For the new object to be able to take over for the failed object:
— There must be a copy of the failed object available to take over the job.

— There must be information, available to other objects and the program that manages
failover, defining the location and operational status of all objects—so that it can be
determined that the first object failed before finishing its job.

— There must be information, available to other objects and the program that manages
failover, about the progress of jobs in process—so that an object taking over an
interrupted job knows how much of the job was completed before the first object failed,
for example, what data has been changed, and what steps in the process were
completed.

Using WebLogic Server Clusters 2-3

2-4

WebLogic Server uses standards-based communication techniques and facilities—
including IP sockets and the Java Naming and Directory Interface (JNDI)—to share and
maintain information about the availability of objects in a cluster. These techniques allow
WebLogic Server to determine that an object stopped before finishing its job, and where
there is a copy of the object to complete the job that was interrupted.

Note: For backward compatibility with previous versions, WebLogic Server also allows
you to use multicast for communications between clusters.

Information about what has been done on a job is called state. WebLogic Server maintains
information about state using techniques called session replication and replica-aware stubs.
When a particular object unexpectedly stops doing its job, replication techniques enable a
copy of the object pick up where the failed object stopped, and finish the job.

WebLogic Server supports automatic and manual migration of a clustered server instance
from one machine to another. A Managed Server that can be migrated is referred to as a
migratable server. This feature is designed for environments with requirements for high
availability. The server migration capability is useful for

— Ensuring uninterrupted availability of singleton services—services that must run on
only a single server instance at any given time, such as JMS and the JTA transaction
recovery system, when the hosting server instance fails. A Managed Server configured
for automatic migration will be automatically migrated to another machine in the even
of failure.

— Easing the process of relocating a Managed Server, and all the services it hosts, as part
of a planned system administration process. An administrator can initiate the migration
of a Managed Server from the Administration Console or command line.

The server migration process relocates a Managed Server in its entirety—including IP
addresses and hosted applications—to on of a predefined set of available host machines.

Load Balancing

Load balancing is the even distribution of jobs and associated communications across the
computing and networking resources in your environment. For load balancing to occur:

— There must be multiple copies of an object that can do a particular job.
— Information about the location and operational status of all objects must be available.

WebLogic Server allows objects to be clustered—deployed on multiple server instances—
so that there are alternative objects to do the same job. WebLogic Server shares and
maintains the availability and location of deployed objects using unicast, IP sockets, and
JNDI.

Using WebLogic Server Clusters

What Types of Objects Can Be Clustered?

Note: For backward compatibility with previous versions, WebLogic Server also allows
you to use multicast for communications between clusters.

A detailed discussion of how communications and replication techniques are employed by
WebLogic Server is provided in “Communications In a Cluster” on page 3-1.

What Types of Objects Can Be Clustered?

A clustered application or application component is one that is available on multiple WebLogic
Server instances in a cluster. If an object is clustered, failover and load balancing for that object
is available. Deploy objects homogeneously—to every server instance in your cluster—to
simplify cluster administration, maintenance, and troubleshooting.

Web applications can consist of different types of objects, including Enterprise Java Beans
(EJBs), servlets, and Java Server Pages (JSPs). Each object type has a unique set of behaviors
related to control, invocation, and how it functions within an application. For this reason, the
methods that WebLogic Server uses to support clustering—and hence to provide load balancing
and failover—can vary for different types of objects. The following types of objects can be
clustered in a WebLogic Server deployment:

e Servlets

e JSPs

e EJBs

e Remote Method Invocation (RMI) objects
e Java Messaging Service (JMS) destinations

e Java Database Connectivity (JDBC) connections

Different object types can have certain behaviors in common. When this is the case, the clustering
support and implementation considerations for those similar object types may be same. In the
sections that follow, explanations and instructions for the following types of objects are generally
combined:

e Servlets and JSPs

e EJBs and RMI objects

The sections that follow briefly describe the clustering, failover, and load balancing support that
WebLogic Server provides for different types of objects.

Using WebLogic Server Clusters 2-5

2-6

Servlets and JSPs

WebLogic Server provides clustering support for servlets and JSPs by replicating the HTTP
session state of clients that access clustered servlets and JSPs. WebLogic Server can maintain
HTTP session states in memory, a filesystem, or a database.

To enable automatic failover of servlets and JSPs, session state must persist in memory. For
information about how failover works for servlets and JSPs, and for related requirements and
programming considerations, see “HTTP Session State Replication” on page 6-3.

You can balance the servlet and JSP load across a cluster using a WebLogic Server proxy plug-in
or external load balancing hardware. WebLogic Server proxy plug-ins perform round robin load
balancing. External load balancers typically support a variety of session load balancing
mechanisms. For more information, see “Load Balancing for Servlets and JSPs” on page 5-1.

EJBs and RMI Objects

Load balancing and failover for EJBs and RMI objects is handled using replica-aware stubs,
which can locate instances of the object throughout the cluster. Replica-aware stubs are created
for EJBs and RMI objects as a result of the object compilation process. EJBs and RMI objects are
deployed homogeneously—to all the server instances in the cluster.

Failover for EJBs and RMI objects is accomplished using the object’s replica-aware stub. When
aclient makes a call through a replica-aware stub to a service that fails, the stub detects the failure
and retries the call on another replica. To understand failover support for different types of
objects, see “Replication and Failover for EJBs and RMIs” on page 6-25.

WebLogic Server clusters support multiple algorithms for load balancing clustered EJBs and
RMI objects: round-robin, weight-based, random, round-robin-affinity, weight-based-affinity,
and random-affinity. By default, a WebLogic Server cluster will use the round-robin method.
You can configure a cluster to use one of the other methods using the Administration Console.
The method you select is maintained within the replica-aware stub obtained for clustered objects.
For details, see “Load Balancing for EJBs and RMI Objects” on page 5-4.

JDBC Connections

WebLogic Server allows you to cluster JDBC objects, including data sources and multi data
sources, to improve the availability of cluster-hosted applications. Each JDBC object you
configure for your cluster must exist on each managed server in the cluster—when you configure
the JDBC objects, target them to the cluster.

Using WebLogic Server Clusters

What Types of Objects Can Be Clustered?

e Data Sources—In a cluster, external clients must obtain connections through a JDBC data
source on the JNDI tree. The data source uses the WebLogic Server RMI driver to acquire
a connection. The cluster-aware nature of WebLogic data sources in external client
applications allows a client to request another connection if the server instance hosting the
previous connection fails. Although not strictly required, BEA recommends that server-side
clients also obtain connections via a data source on the JNDI tree.

e Multi data sources—Multi data sources are an abstraction around a group of data sources
that provides load balancing or failover processing between the data sources associated
with the multi data source. Multi data sources are bound to the JNDI tree or local
application context just like data sources are bound to the JNDI tree. Applications lookup a
multi data source on the JNDI tree just like they do for data sources, and then request a
database connection. The multi data source determines which data source to use to satisfy
the request depending on the algorithm selected in the multi data source configuration: load
balancing or failover.

For more information about JDBC, see “Configuring WebLogic JDBC Resources” in the
Configuring and Managing WebLogic JDBC.

Getting Connections with Clustered JDBC

To ensure that any JDBC request can be handled equivalently by any cluster member, each
managed server in the cluster must have similarly named/defined data sources, if applicable,
multi data sources. To achieve this result, data sources and multi data sources should be targeted
to the cluster so they are cluster-aware and, if intended for use in external clients, their
connections can be to any cluster members.

e External Clients Connections—External clients that require a database connection perform
a JNDI lookup and obtain a replica-aware stub for the data source. The stub for the data
source contains a list of the server instances that host the data source—which should be all
of the Managed Servers in the cluster. Replica-aware stubs contain load balancing logic for
distributing the load among host server instances.

e Server-Side Client Connections—For server-side use, connection requests will be handled
by the local instance of the data source or multi data source. A server-side data source will
not go to another cluster member for its JDBC connections. The connection is pinned to
the local server instance for the duration of the database transaction, and as long as the
application code retains it (until the connection is closed).

Using WebLogic Server Clusters 2-1

http://e-docs.bea.com/wls/docs100/jdbc_admin/config.html

Failover and Load Balancing for JDBC Connections

Clustering your JDBC objects does not enable failover of connections, but it can ease the process
of reconnecting when a connection fails. In replicated database environments, multi data sources
may be clustered to support database failover, and optionally, load balancing of connections. See
the following topics for more information:

e To understand the behavior of clustered JDBC objects when failures occur, see “Failover
and JDBC Connections” on page 6-32.

e To learn more about how clustered multi data sources enable load balancing of
connections, see “Load Balancing for JDBC Connections” on page 5-16.

e For instructions on configuring clustered JDBC objects, see “Configure Clustered JDBC”
on page 10-24.

JMS and Clustering

The WebLogic Java Messaging Service (JMS) architecture implements clustering of multiple
JMS servers by supporting cluster-wide, transparent access to destinations from any WebLogic
Server server instance in the cluster. Although WebLogic Server supports distributing JMS
destinations and connection factories throughout a cluster, the same JMS topic or queue is still
managed separately by each WebL ogic Server instance in the cluster.

Load balancing is supported for JMS. To enable load balancing, you must configure targets for
JMS servers. For more information about load balancing and JMS components, see “Load
Balancing for IMS” on page 5-14. For instructions on setting up clustered JMS, see “Configure
Migratable Targets for Pinned Services” on page 10-23 and “Deploying, Activating, and
Migrating Migratable Services” on page 10-27.

What Types of Objects Cannot Be Clustered?

2-8

The following APIs and internal services cannot be clustered in WebLogic Server:
e File services including file shares

e Time services

You can still use these services on individual WebLogic Server instances in a cluster. However,
the services do not make use of load balancing or failover features.

Using WebLogic Server Clusters

CHAPTERa

Communications In a Cluster

WebLogic Server clusters implement two key features: load balancing and failover. The
following sections provide information that helps architects and administrators configure a
cluster that meets the needs of a particular Web application:

e “WebLogic Server Communication In a Cluster” on page 3-1

e “Cluster-Wide JNDI Naming Service” on page 3-10

WebLogic Server Communication In a Cluster

WebLogic Server instances in a cluster communicate with one another using two basic network
technologies:

— IP sockets, which are the conduits for peer-to-peer communication between clustered
server instances.

— IP unicast or multicast, which server instances use to broadcast availability of services
and heartbeats that indicate continued availability.

Note: When creating a new cluster, it is recommended that you use unicast for
messaging within a cluster. For backward compatibility with previous versions,
WebLogic Server you must use multicast for communications between clusters.

The way in which WebLogic Server uses IP multicast or unicast and socket communication
affects the way you configure your cluster.

Using WebLogic Server Clusters 3-1

3-2

Using IP Multicast for Backward Compatibility

IP multicast is a simple broadcast technology that enables multiple applications to “subscribe” to
a given IP address and port number and listen for messages.

Note: When creating a new cluster, it is recommended that you use unicast for messaging
within a cluster. For backward compatibility with previous versions, WebL ogic Server
you must use multicast for communications between clusters.

IP multicast broadcasts messages to applications, but it does not guarantee that messages are
actually received. If an application’s local multicast buffer is full, new multicast messages cannot
be written to the buffer and the application is not notified when messages are “dropped.” Because
of this limitation, WebLogic Server instances allow for the possibility that they may occasionally
miss messages that were broadcast over IP multicast.

Note: A multicast address is an IP address in the range from 224.0.0.0 to 239.255.255.255. The
default multicast value used by WebLogic Server is 239.192.0.0. You should not use any
multicast address within the range x.0.0.1.

WebLogic Server uses IP multicast for all one-to-many communications among server instances
in a cluster. This communication includes:

e Cluster-wide JNDI updates—Each WebL ogic Server instance in a cluster uses multicast to
announce the availability of clustered objects that are deployed or removed locally. Each
server instance in the cluster monitors these announcements and updates its local INDI tree
to reflect current deployments of clustered objects. For more details, see “Cluster-Wide
JNDI Naming Service” on page 3-10.

e Cluster heartbeats—Each WebLogic Server instance in a cluster uses multicast to broadcast
regular “heartbeat” messages that advertise its availability. By monitoring heartbeat
messages, server instances in a cluster determine when a server instance has failed.
(Clustered server instances also monitor IP sockets as a more immediate method of
determining when a server instance has failed.)

Multicast and Cluster Configuration

Because multicast communications control critical functions related to detecting failures and
maintaining the cluster-wide JNDI tree (described in “Cluster-Wide JNDI Naming Service” on
page 3-10) it is important that neither the cluster configuration nor the network topology interfere
with multicast communications. The sections that follow provide guidelines for avoiding
problems with multicast communication in a cluster.

Using WebLogic Server Clusters

WebLogic Server Communication In a Cluster

If Your Cluster Spans Multiple Subnets In a WAN

In many deployments, clustered server instances reside within a single subnet, ensuring multicast
messages are reliably transmitted. However, you may want to distribute a WebLogic Server
cluster across multiple subnets in a Wide Area Network (WAN) to increase redundancy, or to
distribute clustered server instances over a larger geographical area.

If you choose to distribute a cluster over a WAN (or across multiple subnets), plan and configure
your network topology to ensure that multicast messages are reliably transmitted to all server
instances in the cluster. Specifically, your network must meet the following requirements:

o Full support of IP multicast packet propagation. In other words, all routers and other
tunneling technologies must be configured to propagate multicast messages to clustered
server instances.

e Network latency low enough to ensure that most multicast messages reach their final
destination in 200 to 300 milliseconds.

e Multicast Time-To-Live (TTL) value for the cluster high enough to ensure that routers do
not discard multicast packets before they reach their final destination. For instructions on
setting the Multicast TTL parameter, see “Configure Multicast Time-To-Live (TTL)” on
page 10-32.

Note: Distributing a WebLogic Server cluster over a WAN may require network facilities in
addition to the multicast requirements described above. For example, you may want to

configure load balancing hardware to ensure that client requests are directed to server
instances in the most efficient manner (to avoid unnecessary network hops).

Firewalls Can Break Multicast Communication

Although it may be possible to tunnel multicast traffic through a firewall, this practice is not
recommended for WebLogic Server clusters. Treat each WebLogic Server cluster as a logical unit
that provides one or more distinct services to clients of a Web application. Do not split this logical
unit between different security zones. Furthermore, any technologies that potentially delay or
interrupt IP traffic can disrupt a WebLogic Server cluster by generating false failures due to
missed heartbeats.

Do Not Share the Cluster Multicast Address with Other Applications

Although multiple WebLogic Server clusters can share a single IP multicast address and port,
other applications should not broadcast or subscribe to the multicast address and port used by
your cluster or clusters. That is, if the machine or machines that host your cluster also host other

Using WebLogic Server Clusters 3-3

3-4

applications that use multicast communications, make sure that those applications use a different
multicast address and port than the cluster does.

Sharing the cluster multicast address with other applications forces clustered server instances to
process unnecessary messages, introducing overhead. Sharing a multicast address may also
overload the IP multicast buffer and delay transmission of WebLogic Server heartbeat messages.
Such delays can result in a WebLogic Server instance being marked as failed, simply because its
heartbeat messages were not received in a timely manner.

For these reasons, assign a dedicated multicast address for use by WebLogic Server clusters, and
ensure that the address can support the broadcast traffic of all clusters that use the address.

If Multicast Storms Occur

If server instances in a cluster do not process incoming messages on a timely basis, increased
network traffic, including NAK messages and heartbeat re-transmissions, can result. The
repeated transmission of multicast packets on a network is referred to as a multicast storm, and
can stress the network and attached stations, potentially causing end-stations to hang or fail.
Increasing the size of the multicast buffers can improve the rate at which announcements are
transmitted and received, and prevent multicast storms. See “Configure Multicast Buffer Size”
on page 10-33.

One-to-Many Communication Using Unicast

WebLogic Server provides an alternative to using multicast to handle cluster messaging and
communications. Unicast configuration is much easier because it does not require cross network
configuration that multicast requires. Additionally, it reduces potential network errors that can
occur from multicast address conflicts.

Unicast Configuration

Unicast is configured using ClusterMBean. isUnicastBasedClusterMessagingEnabled().
The default value of this parameter is false. Changes made to this MBean are not dynamic. You
must restart your cluster for changes to take effect.

To define a specific channel for unicast communications, you can use the
setNetworkChannelForUnicastMessaging(String NetworkChannelName). When unicast
is enabled, servers will attempt to use the value defined in this MBean for communications
between clusters. If the unicast channel is not explicitly defined, the default network channel is
used.

Using WebLogic Server Clusters

WebLogic Server Communication In a Cluster

Considerations When Using Unicast
The following considerations apply when using unicast to handle cluster communications:

o All members of a cluster must use the same message type. Mixing between multicast and
unicast messaging is not allowed.

e You must use multicast if you need to support previous version of WebLogic Server within
your cluster.

e Individual cluster members cannot override the cluster messaging type.
e The entire cluster must be shutdown and restarted to message modes.

e JMS topics configured for multicasting can access WebLogic clusters configured for
Unicast because a JMS topic publishes messages on its own multicast address that is
independent of the cluster address. However, the following considerations apply:

— The router hardware configurations that allow unicast clusters may not allow JMS
multicast subscribers to work.

— JMS multicast subscribers need to be in a network hardware configuration that allows
multicast accessibility.
Notes:

e In unicast messaging mode, the default listening port of the server is used if no
channel is configured.

e Cluster members communicate to the group leader when they need to send a
broadcast message which is usually the heartbeat message. When the cluster
members detect the failure of a group leader, the next oldest member becomes the
group leader.

e The frequency of communication in unicast mode is similar to the frequency of
sending messages on multicast port.

For more details, see Using Multicasting with WebLogic JMS in Programming WebLogic
JMS.

Peer-to-Peer Communication Using IP Sockets

IP sockets provide a simple, high-performance mechanism for transferring messages and data
between two applications. Clustered WebLogic Server instances use IP sockets for:

Using WebLogic Server Clusters 3-5

http://e-docs.bea.com/wls/docs100/jms/multicast.html

3-6

e Accessing non-clustered objects deployed to another clustered server instance on a
different machine.

e Replicating HTTP session states and stateful session EJB states between a primary and
secondary server instance.

e Accessing clustered objects that reside on a remote server instance. (This generally occurs
only in a multi-tier cluster architecture, such as the one described in “Recommended
Multi-Tier Architecture” on page 9-6.)

Note: The use of IP sockets in WebLogic Server extends beyond the cluster scenario—all RMI
communication takes place using sockets, for example, when a remote Java client
application accesses a remote object.

Proper socket configuration is crucial to the performance of a WebLogic Server cluster. Two
factors determine the efficiency of socket communications in WebLogic Server:

e Whether the server instance’s host system uses a native or a pure-Java socket reader
implementation.

e For systems that use pure-Java socket readers, whether the server instance is configured to
use enough socket reader threads.

Pure-Java Versus Native Socket Reader Implementations

Although the pure-Java implementation of socket reader threads is a reliable and portable method
of peer-to-peer communication, it does not provide the best performance for heavy-duty socket
usage in a WebLogic Server cluster. With pure-Java socket readers, threads must actively poll all
opened sockets to determine if they contain data to read. In other words, socket reader threads are
always “busy” polling sockets, even if the sockets have no data to read. This unnecessary
overhead can reduce performance.

The performance issue is magnified when a server instance has more open sockets than it has
socket reader threads—each reader thread must poll more than one open socket. When the socket
reader encounters an inactive socket, it waits for a timeout before servicing another. During this
timeout period, an active socket may go unread while the socket reader polls inactive sockets, as
shown in the following figure.

Using WebLogic Server Clusters

WebLogic Server Communication In a Cluster

Figure 3-1 Pure-Java Socket Reader Threads Poll Inactive Sockets

Poll Poll Read

*Socket Reader Thread ¢ ¢ ¢

D Socket _ A v

I Active Socket |:I LU I :':l

For best socket performance, configure the WebLogic Server host machine to use the native
socket reader implementation for your operating system, rather than the pure-Java
implementation. Native socket readers use far more efficient techniques to determine if there is
data to read on a socket. With a native socket reader implementation, reader threads do not need
to poll inactive sockets—they service only active sockets, and they are immediately notified (via
an interrupt) when a given socket becomes active.

Note: Applets cannot use native socket reader implementations, and therefore have limited
efficiency in socket communication.

For instructions on how to configure the WebLogic Server host machine to use the native socket
reader implementation for your operating system, see “Configure Native IP Sockets Readers on
Machines that Host Server Instances” on page 10-31.

Configuring Reader Threads for Java Socket Implementation

If you do use the pure-Java socket reader implementation, you can still improve the performance
of socket communication by configuring the proper number of socket reader threads for each
server instance. For best performance, the number of socket reader threads in WebLogic Server
should equal the potential maximum number of opened sockets. This configuration avoids the
situation in which a reader thread must service multiple sockets, and ensures that socket data is
read immediately.

Using WebLogic Server Clusters 3-7

To determine the proper number of reader threads for server instances in your cluster, see the
following section, “Determining Potential Socket Usage.”

For instructions on how to configure socket reader threads, see “Set the Number of Reader
Threads on Machines that Host Server Instances” on page 10-31.

Determining Potential Socket Usage

Each WebLogic Server instance can potentially open a socket for every other server instance in
the cluster. However, the actual maximum number of sockets used at a given time depends on the
configuration of your cluster. In practice, clustered systems generally do not open a socket for
every other server instance, because objects are deployed homogeneously—to each server
instance in the cluster.

If your cluster uses in-memory HTTP session state replication, and you deploy objects
homogeneously, each server instance potentially opens a maximum of only two sockets, as
shown in the following figure.

Figure 3-2 Homogeneous Deployment Minimizes Socket Requirements

<&» Potential IP Socket

isp |8
Servlet
1
JDBC
D
ysp |08 ysp |08
Servlet Servlet
| |
JDBC JDBC
Jsp |8
Servlet
|
JDBC

Using WebLogic Server Clusters

WebLogic Server Communication In a Cluster

The two sockets in this example are used to replicate HTTP session states between primary and
secondary server instances. Sockets are not required for accessing clustered objects, due to the
collocation optimizations that WebL ogic Server uses to access those objects. (These
optimizations are described in “Optimization for Collocated Objects” on page 5-12.) In this
configuration, the default socket reader thread configuration is sufficient.

Deployment of “pinned” services—services that are active on only one server instance at a
time—can increase socket usage, because server instances may need to open additional sockets
to access the pinned object. (This potential can only be released if a remote server instance
actually accesses the pinned object.) The following figure shows the potential effect of deploying
a non-clustered RMI object to Server A.

Figure 3-3 Non-Clustered Objects Increase Potential Socket Requirements

A “Pinned” RMI

<> Potential IP Socket isp | o8
Servlet
|
JDBC
B

D
Jsp [0B Jsp [0B
Servlet Servlet
1 1
JDBC JDBC
C
Jsp | OB
Servlet
I
JDBC

Using WebLogic Server Clusters 3-9

In this example, each server instance can potentially open a maximum of three sockets at a given
time, to accommodate HTTP session state replication and to access the pinned RMI object on
Server A.

Note: Additional sockets may also be required for servlet clusters in a multi-tier cluster
architecture, as described in “Configuration Notes for Multi-Tier Architecture” on
page 10-34.

Client Communication via Sockets

Clients of a cluster use the Java implementation of socket reader threads.

WebLogic Server allows you to configure server affinity load balancing algorithms that reduce
the number of IP sockets opened by a Java client application. A client accessing multiple objects
on a server instance will use a single socket. If an object fails, the client will failover to a server
instance to which it already has an open socket, if possible. In older version of WebLogic Server,
under some circumstances, a client might open a socket to each server instance in a cluster.

For best performance, configure enough socket reader threads in the Java Virtual Machine (JVM)
that runs the client. For instructions, see “Set the Number of Reader Threads on Client Machines”
on page 10-32.

Cluster-Wide JNDI Naming Service

3-10

Clients of a non-clustered WebL ogic Server server instance access objects and services by using
a JNDI-compliant naming service. The JNDI naming service contains a list of the public services
that the server instance offers, organized in a tree structure. A WebLogic Server instance offers
a new service by binding into the JNDI tree a name that represents the service. Clients obtain the
service by connecting to the server instance and looking up the bound name of the service.

Server instances in a cluster utilize a cluster-wide JNDI tree. A cluster-wide JNDI tree is similar
to a single server instance JNDI tree, insofar as the tree contains a list of available services. In
addition to storing the names of local services, however, the cluster-wide JNDI tree stores the
services offered by clustered objects (EJBs and RMI classes) from other server instances in the
cluster.

Each WebLogic Server instance in a cluster creates and maintains a local copy of the logical
cluster-wide JNDI tree. The follow sections describe how the cluster-wide JNDI tree is
maintained, and how to avoid naming conflicts that can occur in a clustered environment.

Using WebLogic Server Clusters

Cluster-Wide JNDI Naming Service

WARNING: Do not use the cluster-wide JNDI tree as a persistence or caching mechanism for
application data. Although WebLogic Server replicates a clustered server
instance’s JNDI entries to other server instances in the cluster, those entries are
removed from the cluster if the original instance fails. Also, storing large objects
within the JNDI tree can overload multicast or unicast traffic and interfere with
the normal operation of a cluster.

How WebLogic Server Creates the Cluster-Wide JNDI Tree

Each WebLogic Server in a cluster builds and maintains its own local copy of the cluster-wide
JNDI tree, which lists the services offered by all members of the cluster. Creation of a
cluster-wide JNDI tree begins with the local JNDI tree bindings of each server instance. As a
server instance boots (or as new services are dynamically deployed to a running server instance),
the server instance first binds the implementations of those services to the local INDI tree. The
implementation is bound into the JNDI tree only if no other service of the same name exists.

Note: When you start a Managed Server in a cluster, the server instance identifies other running
server instances in the cluster by listening for heartbeats, after a warm-up period
specified by the MemberWarmupTimeoutSeconds parameter in ClusterMBean. The
default warm-up period is 30 seconds.

Once the server instance successfully binds a service into the local JINDI tree, additional steps are
performed for clustered objects that use replica-aware stubs. After binding the clustered object’s
implementation into the local JNDI tree, the server instance sends the object’s stub to other
members of the cluster. Other members of the cluster monitor the multicast or unicast address to
detect when remote server instances offer new services.

The following figure shows a snapshot of the JNDI binding process.

Using WebLogic Server Clusters 3-11

Figure 3-4 Server A Binds an Object in its JNDI Tree, then Unicasts Object Availability

A B

Object X Service offered
A on Server A

P

Unicast C

Object X
C

In the previous figure, Server A has successfully bound an implementation of clustered Object X
into its local INDI tree. Because Object X is clustered, it offers this service to all other members
of the cluster. Server C is still in the process of binding an implementation of Object X.

Other server instances in the cluster listening to the multicast or unicast address note that Server
A offers a new service for clustered object, X. These server instances update their local INDI
trees to include the new service.

Updating the local JNDI bindings occurs in one of two ways:

o If the clustered service is not yet bound in the local JNDI tree, the server instance binds a
new replica-aware stub into the local tree that indicates the availability of Object X on
Server A. Servers B and D would update their local JNDI trees in this manner, because the
clustered object is not yet deployed on those server instances.

o |f the server instance already has a binding for the cluster-aware service, it updates its local
JNDI tree to indicate that a replica of the service is also available on Server A. Server C
would update its JNDI tree in this manner, because it will already have a binding for the
clustered Object X.

In this manner, each server instance in the cluster creates its own copy of a cluster-wide JNDI
tree. The same process would be used when Server C announces that Object X has been bound
into its local JNDI tree. After all broadcast messages are received, each server instance in the

3-12 Using WebLogic Server Clusters

Cluster-Wide JNDI Naming Service

cluster would have identical local INDI trees that indicate the availability of the object on Servers
A and C, as shown below.

Figure 3-5 Each Server’s JNDI Tree is the Same after Unicast Messages are Received

- B
Object X Object X
A C A, C
D C
Object X Object X
A, C A, C

Note: Inanactual cluster, Object X would be deployed homogeneously, and an implementation
which can invoke the object would be available on all four server instances.

How JNDI Naming Conflicts Occur

Simple JNDI naming conflicts occur when a server instance attempts to bind a non-clustered
service that uses the same name as a non-clustered service already bound in the JNDI tree.
Cluster-level INDI conflicts occur when a server instance attempts to bind a clustered object that
uses the name of a non-clustered object already bound in the JNDI tree.

WebLogic Server detects simple naming conflicts (of non-clustered services) when those
services are bound to the local INDI tree. Cluster-level JINDI conflicts may occur when new
services are advertised over multicast or unicast. For example, if you deploy a pinned RMI object
on one server instance in the cluster, you cannot deploy a replica-aware version of the same object
on another server instance.

If two server instances in a cluster attempt to bind different clustered objects using the same
name, both will succeed in binding the object locally. However, each server instance will refuse

Using WebLogic Server Clusters 3-13

3-14

to bind the other server instance’s replica-aware stub in to the JNDI tree, due to the JNDI naming
conflict. A conflict of this type would remain until one of the two server instances was shut down,
or until one of the server instances undeployed the clustered object. This same conflict could also
occur if both server instances attempt to deploy a pinned object with the same name.

Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts

To avoid cluster-level INDI conflicts, you must homogeneously deploy all replica-aware objects
to all WebLogic Server instances in a cluster. Having unbalanced deployments across WebLogic
Server instances increases the chance of JNDI naming conflicts during startup or redeployment.
It can also lead to unbalanced processing loads in the cluster.

If you must pin specific RMI objects or EJBs to individual server instances, do not replicate the
object’s bindings across the cluster.

How WebLogic Server Updates the JNDI Tree

When a clustered object is removed (undeployed from a server instance), updates to the JNDI tree
are handled similarly to the updates performed when new services are added. The server instance
on which the service was undeployed broadcasts a message indicating that it no longer provides
the service. Again, other server instances in the cluster that observe the multicast or unicast
message update their local copies of the JNDI tree to indicate that the service is no longer
available on the server instance that undeployed the object.

Once the client has obtained a replica-aware stub, the server instances in the cluster may continue
adding and removing host servers for the clustered objects. As the information in the JNDI tree
changes, the client’s stub may also be updated. Subsequent RMI requests contain update
information as necessary to ensure that the client stub remains up-to-date.

Client Interaction with the Cluster-Wide JNDI Tree

Clients that connect to a WebLogic Server cluster and look up a clustered object obtain a
replica-aware stub for the object. This stub contains the list of available server instances that host
implementations of the object. The stub also contains the load balancing logic for distributing the
load among its host servers.

For more information about replica-aware stubs for EJBs and RMI classes, see “Replication and
Failover for EJBs and RMIs” on page 6-25.

Using WebLogic Server Clusters

Cluster-Wide JNDI Naming Service

For a more detailed discussion of how WebLogic JNDI is implemented in a clustered
environment and how to make your own objects available to JNDI clients, see “Using WebLogic
JNDI in a Clustered Environment” in Programming WebLogic JNDI.

Using WebLogic Server Clusters 3-15

http://e-docs.bea.com/wls/docs100/jndi/jndi.html#475689
http://e-docs.bea.com/wls/docs100/jndi/jndi.html#475689

3-16 Using WebLogic Server Clusters

CHAPTERa

Understanding Cluster Configuration

This following sections explain how the information that defines the configuration of a cluster is
stored and maintained, and the methods you can use to accomplish configuration tasks:

e “Cluster Configuration and config.xml” on page 4-1

e “Role of the Administration Server” on page 4-2

e “How Dynamic Configuration Works” on page 4-4

e “Application Deployment for Clustered Configurations” on page 4-4

e “Methods of Configuring Clusters” on page 4-8

Note: Much of the information in this section also pertains to the process of configuring a
WebLogic domain in which the server instances are not clustered.

Cluster Configuration and config.xml

The config.xml file is an XML document that describes the configuration of a WebLogic
Server domain. config.xml consists of a series of XML elements. The Domain element is the
top-level element, and all elements in the Domain descend from the Domain element. The
Domain element includes child elements, such as the Server, Cluster, and Application elements.
These child elements may have children of their own. For example, the Server element includes
the child elements WebServer, SSL and Log. The Application element includes the child
elements EJBComponent and WebAppComponent.

Using WebLogic Server Clusters 4-1

Each element has one or more configurable attributes. An attribute defined in config.dtd has a
corresponding attribute in the configuration API. For example, the Server element has a
ListenPort attribute, and likewise, the
weblogic.management.configuration.ServerMBean has a ListenPort attribute.
Configurable attributes are readable and writable, that is, ServerMBean has a getListenPort
and a setListenPort method.

To learn more about config.xml, see Domain Configuration Files in Understanding Domain
Configuration.

Role of the Administration Server

42

The Administration Server is the WebLogic Server instance that configures and manages the
WebLogic Server instances in its domain.

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic Server
instances. Strictly speaking, a domain could consist of only one WebLogic Server instance—
however, in that case that sole server instance would be an Administration Server, because each
domain must have exactly one Administration Server.

There are a variety of ways to invoke the services of the Administration Server to accomplish
configuration tasks, as described in “Methods of Configuring Clusters” on page 4-8. Whichever
method is used, the Administration Server for a cluster must be running when you modify the
configuration.

When the Administration Server starts, it loads the config.xml for the domain. It looks for
config.xml in the directory:

BEA_HOME/user_projects/domains/<domain_name>/config
where domain_name is a domain-specific directory, with the same name as the domain.

Each time the Administration Server starts successfully, a backup configuration file named
config.xml .booted is created in the domain directory. In the unlikely event that the
config.xml file should be corrupted during the lifetime of the server instance, it is possible to
revert to this previous configuration.

The following figure shows a typical production environment that contains an Administration
Server and multiple WebLogic Servers instances. When you start the server instances in such a
domain, the Administration Server is started first. As each additional server instance is started, it
contacts the Administration Server for its configuration information. In this way, the
Administration Server operates as the central control entity for the configuration of the entire
domain.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/domain_config/config_files.html

Role of the Administration Server

Figure 4-1 WebLogic Server Configuration

i nfig.xml
i
I
Managed i_ _______
Server 1
Managed
Server 2 Administration
Server Cluster B

Managed
Server 5

Cluster A

Managed
Sarver 6

Managed
Server 3

Managed
Server 4

What Happens if the Administration Server Fails?

The failure of an Administration Server for a domain does not affect the operation of Managed
Servers in the domain. If an Administration Server for a domain becomes unavailable while the
server instances it manages—clustered or otherwise—are up and running, those Managed
Servers continue to run. If the domain contains clustered server instances, the load balancing and
failover capabilities supported by the domain configuration remain available, even if the
Administration Server fails.

Using WebLogic Server Clusters 4-3

Note: If an Administration Server fails because of a hardware or software failure on its host
machine, other server instances on the same machine may be similarly affected.
However, the failure of an Administration Server itself does not interrupt the operation
of Managed Servers in the domain.

For instructions on re-starting an Administration Server, see “Avoiding and Recovering From
Server Failure” in Managing Server Startup and Shutdown.

How Dynamic Configuration Works

WebLogic Server allows you to change the configuration attributes of domain resources
dynamically—while server instances are running. In most cases you do not need to restart the
server instance for your changes to take effect. When an attribute is reconfigured, the new value
is immediately reflected in both the current run-time value of the attribute and the persistent value
stored in config.xml.

Not all configuration changes are applied dynamically. For example, if you change a Managed
Server’s ListenPort value, the new port will not be used until the next time you start the
Managed Server. The updated value is stored in config.xml, but the runtime value is not
affected.

The Administration Console validates attribute changes, checking for out-of-range errors and
data type mismatch errors, and displays an error message for erroneous entries.

Once the Administration Console has been started, if another process captures the listen port
assigned to the Administration Server, you should stop the process that captured the port. If you
are not able to remove the process that captured the listen port, edit the config.xml file to change
the ListenPort value.

Application Deployment for Clustered Configurations

44

This section is brief introduction to the application deployment process. For more information
about deployment, see Deploying WebLogic Server Applications.

For instructions on how to perform common deployment tasks, see “Deploy Applications” on
page 10-25.

Deployment Methods

You can deploy an application to a cluster using following methods:

e \WebLogic Server Administration Console

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/deployment/index.html
http://e-docs.bea.com/wls/docs100/server_start/failures.html
http://e-docs.bea.com/wls/docs100/server_start/failures.html

Application Deployment for Clustered Configurations

The Administration Console is a graphical user interface (GUI) to the BEA Administration
Service.

e weblogic.Deployer

The weblogic.Deployer utility is a Java-based deployment tool that provides a
command-line interface to the WebLogic Server deployment API.

e WebLogic Scripting Tool

The WebLogic Scripting Tool (WLST) is a new command-line interface that you can use
to automate domain configuration tasks, including application deployment configuration
and deployment operations.

These deployment tools are discussed in “Overview of Deployment Tools” in Deploying
WebLogic Server Applications.

Regardless of the deployment tool you use, when you initiate the deployment process you specify
the components to be deployed, and the targets to which they will be deployed—your cluster, or
individual server instances within the cluster or domain.

The Administration Server for the domain manages the deployment process, communicating with
the Managed Servers in the cluster throughout the process. Each Managed Server downloads
components to be deployed, and initiates local deployment tasks. The deployment state is
maintained in the relevant MBeans for the component being deployed. For more information, see
Deployment Management API.

Note: You must package applications before you deploy them to WebLogic Server. For more
information, see the packaging topic in “Deploying the Application” in Developing
Applications for WebLogic Server.

Introduction to Two-Phase Deployment

In WebLogic Server, applications are deployed in two phases. Before starting, WebLogic Server
determines the availability of the Managed Servers in the cluster.

First Phase of Deployment

During the first phase of deployment, application components are distributed to the target server
instances, and the planned deployment is validated to ensure that the application components can
be successfully deployed. During this phase, user requests to the application being deployed are
not allowed.

Using WebLogic Server Clusters 4-5

http://e-docs.bea.com/wls/docs100/deployment/understanding.html#DeploymentTools
http://e-docs.bea.com/wls/docs100/javadocs/weblogic/management/deploy/package-frame.html
http://e-docs.bea.com/wls/docs100/programming/splitdeploy.html

Failures encountered during the distribution and validation process will result in the deployment
being aborted on all server instances—including those upon which the validation succeeded.
Files that have been staged will not be removed; however, container-side changes performed
during the preparation will be reverted.

Second Phase of Deployment

After the application components have been distributed to targets and validated, they are fully
deployed on the target server instances, and the deployed application is made available to clients.

When a failure is encounted during the second phase of deployment, the server starts with one of
the following behaviors:

o Ifafailure occurs while deploying to the target server instances, the server instance will
start in ADMIN state. See ADMIN State in Managing Server Startup and Shutdown.

o If cluster member fails to deploy an application, the application that failed to deploy is
made unavailable.

Guidelines for Deploying to a Cluster

Ideally, all Managed Servers in a cluster should be running and available during the deployment
process. Deploying applications while some members of the cluster are unavailable is not
recommended. Before deploying applications to a cluster, ensure, if possible, that all Managed
Servers in the cluster are running and reachable by the Administration Server.

Note: If you deploy an application to a Managed Server that is partitioned at the time of
deployment—running but not reachable by the Administration Server—problems
accessing the Managed Server can occur when that Managed Server rejoins the cluster.
During the synchronization period, while other clustered Managed Servers re-establish
communications with the previously partitioned server instance, user requests to the
deployed applications and attempts to create secondary sessions on that server instance
will fail. The risk of this circumstance occurring can be reduced by setting
ClusterConstraintsEnabled, as described in Enforcing Cluster Constraints with
Two-Phase Deployment in Deploying WebLogic Server Applications.

Cluster membership should not change during the deployment process. After initiating
deployment, do not:

e add or remove Managed Servers to the target cluster

e shut down Managed Servers in the target cluster

4-6 Using WebLogic Server Clusters

../server_start/server_life.html#AdminState
http://e-docs.bea.com/wls/docs100/deployment/deploy.html#ClusterConstraintsEnabled
http://e-docs.bea.com/wls/docs100/deployment/deploy.html#ClusterConstraintsEnabled

Application Deployment for Clustered Configurations

WebLogic Server Supports “Relaxed Deployment” Rules
Previous versions of WebLogic Server imposed these restrictions on deployment to clusters:

e No partial deployment—If one or more of the Managed Servers in the cluster are
unavailable, the deployment process is terminated, and an error message is generated,
indicating that unreachable Managed Servers should be either restarted or removed from
the cluster before attempting deployment.

e Pinned services cannot be deployed to multiple Managed Servers in a cluster—If an
application is not deployed to the cluster, you can deploy it to one and only one Managed
Server in the cluster.

Deployment to a Partial Cluster is Allowed

By default, WebLogic Server allows deployment to a partial cluster. If one or more of the
Managed Servers in the cluster are unavailable, the following message may be displayed:

Unable to contact “servername”. Deployment is deferred until “servername”

becomes available.

When the unreachable Managed Server becomes available, deployment to that server instance
will be initiated. Until the deployment process is completed, the Managed Server may experience
failures related to missing or out-of-date classes.

Deploying to Complete Clusters in WebLogic Server

You can ensure that deployment is only performed if all Managed Servers in the cluster are
maChﬂﬂebysﬂﬁngClusterConstraintsEnabled.VVhenClusterConstraintsEnablediS
set to “true”, a deployment to a cluster succeeds only if all members of the cluster are reachable
and all can deploy the specified files. See Enforcing Cluster Constraints with Two-Phase
Deployment in Deploying WebLogic Server Applications.

Pinned Services can be Deployed to Multiple Managed Servers.

It is possible to target a pinned service to multiple Managed Servers in a cluster. This practice is
not recommended. The load-balancing capabilities and scalability of your cluster can be
negatively affected by deploying a pinned service to multiple Managed Servers in a cluster. If you
target a pinned service to multiple Managed Servers, the following message is printed to the
server logs:

Adding server servername of cluster clustername as a target for
module modulename. This module also includes server servername that

belongs to this cluster as one of its other targets. Having multiple

Using WebLogic Server Clusters 4-7

http://e-docs.bea.com/wls/docs100/deployment/deploy.html#ClusterConstraintsEnabled
http://e-docs.bea.com/wls/docs100/deployment/deploy.html#ClusterConstraintsEnabled

individual servers a cluster as targets instead of having the entire

cluster as the target can result in non-optimal load balancing and

scalability. Hence this is not usually recommended.

Methods of Configuring Clusters

There are several methods for configuring a clusters:

4-8

Configuration Wizard

The Configuration Wizard is the recommended tool for creating a new domain or cluster.
See “Overview of Creating a New Domain Using the Configuration Wizard” in Creating
WebLogic Domains Using the Configuration Wizard. See “Customizing the Environment”
for information on creating and configuring a cluster.

WebLogic Server Administration Console

The Administration Console is a graphical user interface (GUI) to the BEA Administration
Service. It allows you to perform a variety of domain configuration and monitoring
functions.

WebLogic Server Application Programming Interface (API)

You can write a program to modify the configuration attributes, based on the configuration
application programming interface (API) provided with WebLogic Server. This method is
not recommended for initial cluster implementation.

WebLogic Scripting Tool (WLST)

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that system
administrators and operators use to monitor and manage WebLogic Server instances and
domains. For more information, see WebLogic Scripting Tool.

Java Management Extensions (JMX)

JMX is the Java EE solution for monitoring and managing resources on a network. BEA
WebLogic Server provides a set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources through JMX.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/../../common/docs100/confgwiz/index.html
http://e-docs.bea.com/wls/docs100/../../common/docs100/confgwiz/index.html
http://e-docs.bea.com/wls/docs100/../../common/docs100/confgwiz/index.html

Load Balancing in a Cluster

This section describes the load balancing support that a WebLogic Server cluster provides for
different types of objects, and related planning and configuration considerations for architects
and administrators. It contains the following information:

e “Load Balancing for Servlets and JSPs” on page 5-1
e “Load Balancing for EJBs and RMI Objects” on page 5-4
e “Load Balancing for JMS” on page 5-14

e “Load Balancing for JDBC Connections” on page 5-16

For information about replication and failover in a cluster, see “Failover and Replication in a
Cluster” on page 6-1.

Load Balancing for Servlets and JSPs

Load balancing of servlets and JSPs can be accomplished with the built-in load balancing
capabilities of a WebLogic proxy plug-in or with separate load balancing hardware.

Note: In addition to distributing HTTP traffic, external load balancers can distribute initial
context requests that come from Java clients over t3 and the default channel. See “Load
Balancing for EJBs and RMI Objects” on page 5-4 for a discussion of object-level load
balancing in WebLogic Server.

Using WebLogic Server Clusters 5-1

5-2

Load Balancing with a Proxy Plug-in

The WebLogic proxy plug-in maintains a list of WebLogic Server instances that host a clustered
servlet or JSP, and forwards HTTP requests to those instances on a round-robin basis. This load
balancing method is described in “Round Robin Load Balancing” on page 5-4.

The plug-in also provides the logic necessary to locate the replica of a client’s HT TP session state
if a WebLogic Server instance should fail.

WebLogic Server supports the following Web servers and associated proxy plug-ins:
e WebL ogic Server with the HttpClusterServiet
e Netscape Enterprise Server with the Netscape (proxy) plug-in
e Apache with the Apache Server (proxy) plug-in

e Microsoft Internet Information Server with the Microsoft-11S (proxy) plug-in
For instructions on setting up proxy plug-ins, see “Configure Proxy Plug-Ins” on page 10-14.

How Session Connection and Failover Work with a Proxy Plug-in

For a description of connection and failover for HTTP sessions in a cluster with proxy plug-ins,
see “Accessing Clustered Servlets and JSPs Using a Proxy” on page 6-9.

Load Balancing HTTP Sessions with an External Load
Balancer

Clusters that utilize a hardware load balancing solution can use any load balancing algorithm
supported by the hardware. These can include advanced load-based balancing strategies that
monitor the utilization of individual machines.

Load Balancer Configuration Requirements

If you choose to use load balancing hardware instead of a proxy plug-in, it must support a
compatible passive or active cookie persistence mechanism, and SSL persistence.

e Passive Cookie Persistence

Passive cookie persistence enables WebL ogic Server to write a cookie containing session
parameter information through the load balancer to the client. For information about the
session cookie and how a load balancer uses session parameter data to maintain the

Using WebLogic Server Clusters

Load Balancing for Servlets and JSPs

relationship between the client and the primary WebLogic Server hosting a HTTP session
state, see “Load Balancers and the WebLogic Session Cookie” on page 5-3.

e Active Cookie Persistence

Certain active cookie persistence mechanisms can be used with WebL ogic Server clusters,
provided the load balancer does not modify the WebLogic Server cookie. WebLogic Server
clusters do not support active cookie persistence mechanisms that overwrite or modify the
WebLogic HTTP session cookie. If the load balancer’s active cookie persistence
mechanism works by adding its own cookie to the client session, no additional
configuration is required to use the load balancer with a WebL ogic Server cluster.

e SSL Persistence

When SSL persistence is used, the load balancer performs all encryption and decryption of
data between clients and the WebLogic Server cluster. The load balancer then uses the
plain text cookie that WebLogic Server inserts on the client to maintain an association
between the client and a particular server in the cluster.

Load Balancers and the WebLogic Session Cookie

A load balancer that uses passive cookie persistence can use a string in the WebLogic session
cookie to associate a client with the server hosting its primary HTTP session state. The string
uniquely identifies a server instance in the cluster. You must configure the load balancer with the
offset and length of the string constant. The correct values for the offset and length depend on the
format of the session cookie.

The format of a session cookie is:
sessionidlprimary_server_idlsecondary_server_id

where:

e sessionid is a randomly generated identifier of the HTTP session. The length of the
value is configured by the 1DLength parameter in the <session-descriptor> elementin
the weblogic.xml file for an application. By default, the sessionid length is 52 bytes.

e primary_server_id and secondary_server_id are 10 character identifiers of the
primary and secondary hosts for the session.

Note: For sessions using non-replicated memory, cookie, JDBC, or file-based session
persistence, the secondary_server_id is not present. For sessions that use in-memory
replication, if the secondary session does not exist, the secondary_server_id is
“NONE”.

Using WebLogic Server Clusters 5-3

http://e-docs.bea.com/wls/docs100/webapp/weblogic_xml.html

For general instructions on configuring load balancers, see “Configuring Load Balancers that
Support Passive Cookie Persistence” on page 10-13. Instructions for configuring BIG-IP, see
Configuring BIG-IP™ Hardware with Clusters.

Related Programming Considerations

For programming constraints and recommendations for clustered servlets and JSPs, see
“Programming Considerations for Clustered Servlets and JSPs” on page 6-5.

How Session Connection and Failover Works with a Load Balancer

For a description of connection and failover for HTTP sessions in a cluster with load balancing
hardware, see “Accessing Clustered Servlets and JSPs with Load Balancing Hardware” on
page 6-11.

Load Balancing for EJBs and RMI Objects

5-4

This section describes WebLogic Server load balancing algorithms for EJBs and RMI objects.

The load balancing algorithm for an object is maintained in the replica-aware stub obtained for a
clustered object.

By default, a WebLogic Server cluster uses round-robin load balancing, described in “Round
Robin Load Balancing” on page 5-4. You can configure a different default load balancing method
for the cluster by using the Administration Console to set
weblogic.cluster.defaultlLoadAlgorithm. For instructions, see “Configure Load
Balancing Method for EJBs and RMIs” on page 10-12. You can also specify the load balancing
algorithm for a specific RMI object using the —loadAlgorithm option in rmic, or with the
home-load-algorithm or stateless-bean-load-algorithmin an EJB’s deployment
descriptor. A load balancing algorithm that you configure for an object overrides the default load
balancing algorithm for the cluster.

In addition to the standard load balancing algorithms, WebLogic Server supports custom
parameter-based routing. For more information, see “Parameter-Based Routing for Clustered
Objects” on page 5-12.

Round Robin Load Balancing

WebLogic Server uses the round-robin algorithm as the default load balancing strategy for
clustered object stubs when no algorithm is specified. This algorithm is supported for RMI
objects and EJBs. It is also the method used by WebL ogic proxy plug-ins.

Using WebLogic Server Clusters

Load Balancing for EJBs and RMI Objects

The round-robin algorithm cycles through a list of WebLogic Server instances in order. For
clustered objects, the server list consists of WebLogic Server instances that host the clustered
object. For proxy plug-ins, the list consists of all WebLogic Server instances that host the
clustered servlet or JSP.

The advantages of the round-robin algorithm are that it is simple, cheap and very predictable. The
primary disadvantage is that there is some chance of convoying. Convoying occurs when one
server is significantly slower than the others. Because replica-aware stubs or proxy plug-ins
access the servers in the same order, a slow server can cause requests to “synchronize” on the
server, then follow other servers in order for future requests.

Note: WebLogic Server does not always load balance an object’s method calls. For more
information, see “Optimization for Collocated Objects” on page 5-12.

Weight-Based Load Balancing
This algorithm applies only to EJB and RMI object clustering.

Weight-based load balancing improves on the round-robin algorithm by taking into account a
pre-assigned weight for each server. You can use the Server -> Configuration -> Cluster tab in
the Administration Console to assign each server in the cluster a numerical weight between 1 and
100, in the Cluster Weight field. This value determines what proportion of the load the server will
bear relative to other servers. If all servers have the same weight, they will each bear an equal
proportion of the load. If one server has weight 50 and all other servers have weight 100, the
50-weight server will bear half as much as any other server. This algorithm makes it possible to
apply the advantages of the round-robin algorithm to clusters that are not homogeneous.

If you use the weight-based algorithm, carefully determine the relative weights to assign to each
server instance. Factors to consider include:

e The processing capacity of the server’s hardware in relationship to other servers (for
example, the number and performance of CPUs dedicated to WebLogic Server).

e The number of non-clustered (“pinned”) objects each server hosts.

If you change the specified weight of a server and reboot it, the new weighting information is
propagated throughout the cluster via the replica-aware stubs. For related information see
“Cluster-Wide JNDI Naming Service” on page 3-10.

Using WebLogic Server Clusters 5-5

5-6

Notes: WebLogic Server does not always load balance an object’s method calls. For more
information, see “Optimization for Collocated Objects” on page 5-12.

In this version of WebLogic Server, weight-based load balancing is not supported for
objects that communicate using the RMI/11OP protocol.

Random Load Balancing
The random method of load balancing applies only to EJB and RMI object clustering.

In random load balancing, requests are routed to servers at random. Random load balancing is
recommended only for homogeneous cluster deployments, where each server instance runs on a
similarly configured machine. A random allocation of requests does not allow for differences in
processing power among the machines upon which server instances run. If a machine hosting
servers in a cluster has significantly less processing power than other machines in the cluster,
random load balancing will give the less powerful machine as many requests as it gives more
powerful machines.

Random load balancing distributes requests evenly across server instances in the cluster,
increasingly so as the cumulative number of requests increases. Over a small number of requests
the load may not be balanced exactly evenly.

Disadvantages of random load balancing include the slight processing overhead incurred by
generating a random number for each request, and the possibility that the load may not be evenly
balanced over a small number of requests.

Note: WebLogic Server does not always load balance an object’s method calls. For more
information, see “Optimization for Collocated Objects” on page 5-12.

Server Affinity Load Balancing Algorithms

WebLogic Server provides three load balancing algorithms for RMI objects that provide server
affinity. Server affinity turns off load balancing for external client connections: instead, the client
considers its existing connections to WebLogic server instances when choosing the server
instance on which to access an object. If an object is configured for server affinity, the client-side
stub attempts to choose a server instance to which it is already connected, and continues to use
the same server instance for method calls. All stubs on that client attempt to use that server
instance. If the server instance becomes unavailable, the stubs fail over, if possible, to a server
instance to which the client is already connected.

The purpose of server affinity is to minimize the number IP sockets opened between external Java
clients and server instances in a cluster. WebLogic Server accomplishes this by causing method

Using WebLogic Server Clusters

Load Balancing for EJBs and RMI Objects

calls on objects to “stick” to an existing connection, instead of being load balanced among the
available server instances. With server affinity algorithms, the less costly server-to-server
connections are still load-balanced according to the configured load balancing algorithm—Iload
balancing is disabled only for external client connections.

Server affinity is used in combination with one of the standard load balancing methods:
round-robin, weight-based, or random:

e round-robin-affinity—server affinity governs connections between external Java clients and
server instances; round robin load balancing is used for connections between server
instances.

o weight-based-affinity—server affinity governs connections between external Java clients
and server instances; weight-based load balancing is used for connections between server
instances.

e random-affinity—server affinity governs connections between external Java clients and
server instances; random load balancing is used for connections between server instances.

Server Affinity and Initial Context

A client can request an initial context from a particular server instance in the cluster, or from the
cluster by specifying the cluster address in the URL. The connection process varies, depending
on how the context is obtained:

o If the initial context is requested from a specific Managed Server, the context is obtained
using a new connection to the specified server instance.

o If the initial context is requested from a the cluster, by default, context requests are load
balanced on a round-robin basis among the clustered server instances. To reuse an existing
connection between a particular JVM and the cluster, set ENABLE_SERVER_AFFINITY to
true in the hashtable of weblogic. jndi -WLContext properties you specify when
obtaining context. (If a connection is not available, a new connection is created.)
ENABLE_SERVER_AFFINITY is only supported when the context is requested from the
cluster address.

Server Affinity and I10P Client Authentication Using CSIv2

If you use WebLogic Server’s Common Secure Interoperability (CSIv2) functionality to support
stateful interactions with WebL ogic Server’s Java EE Application Client (“thin client”), you must
use an affinity-based load balancing algorithm to ensure that method calls stick to a server

instance. Otherwise, all remote calls will be authenticated. To prevent redundant authentication

Using WebLogic Server Clusters 5-1

5-8

of stateful CSIv2 clients, use one of the load balancing algorithms described in “Round-Robin
Affinity, Weight-Based Affinity, and Random-Affinity” on page 5-8.

Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity

WebLogic Server has three load balancing algorithms that provide server affinity:
e round-robin-affinity
e weight-based-affinity

e random-affinity

Server affinity is supported for all types of RMI objects including JMS objects, all EJB home
interfaces, and stateless EJB remote interfaces.

The server affinity algorithms consider existing connections between an external Java client and
server instances in balancing the client load among WebLogic server instances. Server affinity:

o turns off load balancing between external Java clients and server instances

e causes method calls from an external Java client to stick to a server instance to which the
client has an open connection, assuming that the connection supports the necessary
protocol and QOS

e in the case of failure, causes the client to failover to a server instance to which it has an
open connection, assuming that the connection supports the necessary protocol and QOS

e does not affect the load balancing performed for server-to-server connections

Server Affinity Examples

The following examples illustrate the effect of server affinity under a variety of circumstances.
In each example, the objects deployed are configured for round-robin-affinity.

Example 1—Context from cluster

In this example, the client obtains context from the cluster. Lookups on the context and object
calls stick to a single connection. Requests for new initial context are load balanced on a
round-robin basis.

Using WebLogic Server Clusters

Load Balancing for EJBs and RMI Objects

Figure 5-1 Client Obtains Context From the Cluster

NewlC (clusteraddress)

MS1
IClookup A Objects

Calls on A -

Ms2

Objects
A
B

MS3
Objects

IC.lookup B

Calls on B

Ioad algorithm:

round-robin-affinity

1. Clientrequests a new initial context from the cluster (Provider_URL=clusteraddress) and
obtains the context from MS1.

2. Client does a lookup on the context for Object A. The lookup goes to MS1.

3. Clientissues a call to Object A. The call goes to MS1, to which the client is already connected.
Additional method calls to Object A stick to MS1.

4. Clientrequestsanew initial context from the cluster (Provider_URL=clusteraddress)and
obtains the context from MS2.

5. Client does a lookup on the context for Object B. The call goes to MS2, to which the client is
already connected. Additional method calls to Object B stick to MS2.

Using WebLogic Server Clusters 5-9

Example 2—Server Affinity and Failover

This example illustrates the effect that server affinity has on object failover. When a Managed
Server goes down, the client fails over to another Managed Server to which it has a connection.

Figure 5-2 Server Affinity and Failover

NewlC (MS1)
MS1
IC.lookup A
Chbjects
Calls on A A
B
Client Calls on A fail
after MS1 fails
Stub A IC.lookup C
Stub C M32
Objects
A
B
Calls on C Client fails over
) _ fo replica of
] MS3 fﬁ‘g;crf:l D:HFS'I
Calls on A Objects oo anet
fails
\-\‘______,Jr A
B
C

load algerithm;

round-robin-affinity

1. Client requests new initial context from MS1.
2. Client does a lookup on the context for Object A. The lookup goes to MS1.

3. Client makes a call to Object A. The call goes to MS1, to which the client is already
connected. Additional calls to Object A stick to MS1.

4. The client obtains a stub for Object C, which is pinned to MS3. The client opens a connection
to MS3.

5-10 Using WebLogic Server Clusters

Load Balancing for EJBs and RMI Objects

5. MSI1 fails.

6. Client makes a call to Object A.The client no longer has a connection to MS1. Because the
client is connected to MS3, it fails over to a replica of Object A on MS3.

Example 3—Server affinity and server-to-server connections

This example illustrates the fact that server affinity does not affect the connections between
server instances.

Figure 5-3 Server Affinity and Server-to-Server Connections

NewlC (MS1)
MS1
IC.lookup A
Objects
Calls on A A
B
Client Calls on A fail
after MS1 fails
Stub A I1C.lookup C
Stub C MS2
Objects
A
B
Calls on C Client fails over
) = fo replica of
] MS3 32;Cffﬂ D:HIS‘I
Calls on A Objects > ater
fails
_____,,Jr A
B
C

load algorithm;

round-robin-affinity

1. A JSP on MS4 obtains a stub for Object B.

2. The JSP selects a replica on MS1. For each method call, the JSP cycles through the Managed
Servers upon which Object B is available, on a round-robin basis.

Using WebLogic Server Clusters 5-11

5-12

Parameter-Based Routing for Clustered Objects

Parameter-based routing allows you to control load balancing behavior at a lower level. Any
clustered object can be assigned a Cal IRouter. This is a class that is called before each
invocation with the parameters of the call. The Cal IRouter is free to examine the parameters
and return the name server to which the call should be routed. For information about creating
custom Cal IRouter classes, see Parameter-Based Routing for Clustered Objects in
Programming WebLogic RMI.

Optimization for Collocated Objects

WebLogic Server does not always load balance an object’s method calls. In most cases, it is more
efficient to use a replica that is collocated with the stub itself, rather than using a replica that
resides on a remote server. The following figure illustrates this.

Figure 5-4 Collocation Optimization Overrides Load Balancer Logic for Method Call

/N

[Serviet |Objects
Client 3—» |

\ / Stub —é
S~ C

Servlet Objects

A
B
c

In this example, a client connects to a servlet hosted by the first WebLogic Server instance in the
cluster. In response to client activity, the servlet obtains a replica-aware stub for Object A.
Because a replica of Object A is also available on the same server instance, the object is said to
be collocated with the client’s stub.

WebLogic Server always uses the local, collocated copy of Object A, rather than distributing the
client’s calls to other replicas of Object A in the cluster. It is more efficient to use the local copy,
because doing so avoids the network overhead of establishing peer connections to other servers
in the cluster.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/rmi/rmi_api.html#CallRouting

Load Balancing for EJBs and RMI Objects

This optimization is often overlooked when planning WebLogic Server clusters. The collocation
optimization is also frequently confusing for administrators or developers who expect or require
load balancing on each method call. If your Web application is deployed to a single cluster, the
collocation optimization overrides any load balancing logic inherent in the replica-aware stub.

If you require load balancing on each method call to a clustered object, see “Recommended

Multi-Tier Architecture” on page 9-6 for information about how to plan your WebLogic Server
cluster accordingly.

Transactional Collocation

As an extension to the basic collocation strategy, WebL ogic Server attempts to use collocated
clustered objects that are enlisted as part of the same transaction. When a client creates a
UserTransaction object, WebLogic Server attempts to use object replicas that are collocated
with the transaction. This optimization is depicted in the figure below.

Figure 5-5 Collocation Optimization Extends to Other Objects in Transaction

N
[Client | Serviet |Objécts
\ / | A

~ User i B :

Transaction C

Servlet |Objects +—® Database

A
B
C

Servlet |Objects —

A
B
C

In this example, a client attaches to he first WebLogic Server instance in the cluster and obtains
aUserTransaction object. After beginning a new transaction, the client looks up Objects A and

Using WebLogic Server Clusters 5-13

B to do the work of the transaction. In this situation WebLogic Server always attempts to use
replicas of A and B that reside on the same server as the UserTransaction object, regardless of
the load balancing strategies in the stubs for A and B.

This transactional collocation strategy is even more important than the basic optimization
described in “Optimization for Collocated Objects” on page 5-12. If remote replicas of A and B
were used, added network overhead would be incurred for the duration of the transaction,
because the peer connections for A and B would be locked until the transaction committed.
Furthermore, WebLogic Server would need to employ a multi-tiered JDBC connection to commit
the transaction, incurring additional network overhead.

By using collocating clustered objects during a transaction, WebLogic Server reduces the
network load for accessing the individual objects. The server also can make use of a single-tiered
JDBC connection, rather than a multi-tiered connection, to do the work of the transaction.

Load Balancing for JMS

5-14

WebLogic Server JMS supports server affinity for distributed JMS destinations and client
connections.

By default, a WebLogic Server cluster uses the round-robin method to load balance objects. To
use a load balancing algorithm that provides server affinity for JMS objects, you must configure
the desired method for the cluster as a whole. You can configure the load balancing algorithm by
using the Administration Console to set weblogic.cluster.defaultLoadAlgorithm. For
instructions, see “Configure Load Balancing Method for EJBs and RMIs” on page 10-12.

Note: To provide persistent store for failover of IMS and JTA pinned services, you may
consider using high-availability clustering software such as VERITAS™ Cluster Server,
which provides an integrated, out-of-the-box solution for BEA WebLogic Server-based
applications. Some other recommended high-availability software solutions include
SunCluster, IBM HACMP, or the equivalent.

Server Affinity for Distributed JMS Destinations

Server affinity is supported for JMS applications that use the distributed destination feature; this
feature is not supported for standalone destinations. If you configure server affinity for JIMS
connection factories, a server instance that is load balancing consumers or producers across
multiple members of a distributed destination will first attempt to load balance across any
destination members that are also running on the same server instance.

Using WebLogic Server Clusters

Load Balancing for JMS

For detailed information on how the JMS connection factory’s Server Affinity Enabled option
affects the load balancing preferences for distributed destination members, see “How Distributed
Destination Load Balancing Is Affected When Using the Server Affinity Enabled Attribute” in
Programming WebLogic JMS.

Initial Context Affinity and Server Affinity for Client
Connections

A system administrator can establish load balancing of JMS destinations across multiple servers
in a cluster by configuring multiple JMS servers and using targets to assign them to the defined
WebLogic Servers. Each JMS server is deployed on exactly one WebLogic Server and handles
requests for a set of destinations. During the configuration phase, the system administrator
enables load balancing by specifying targets for JMS servers. For instructions on setting up
targets, see “Configure Migratable Targets for Pinned Services” on page 10-23. For instructions
on deploying a JMS server to a migratable target, see “Deploying, Activating, and Migrating
Migratable Services” on page 10-27.

A system administrator can establish cluster-wide, transparent access to destinations from any
server in the cluster by configuring multiple connection factories and using targets to assign them
to WebLogic Servers. Each connection factory can be deployed on multiple WebLogic Servers.
Connection factories are described in more detail in “Connection Factory” in Programming
WebLogic JMS.

The application uses the Java Naming and Directory Interface (JNDI) to look up a connection
factory and create a connection to establish communication with a JMS server. Each JMS server
handles requests for a set of destinations. Requests for destinations not handled by a JMS server
are forwarded to the appropriate server.

WebLogic Server provides server affinity for client connections. If an application has a
connection to a given server instance, JMS will attempt to establish new JMS connections to the
same server instance.

When creating a connection, JMS will try first to achieve initial context affinity. It will attempt
to connect to the same server or servers to which a client connected for its initial context,
assuming that the server instance is configured for that connection factory. For example, if the
connection factory is configured for servers A and B, but the client has an InitialContext on server
C, then the connection factory will not establish the new connection with A, but will choose
between servers B and C.

If a connection factory cannot achieve initial context affinity, it will try to provide affinity to a
server to which the client is already connected. For instance, assume the client has an

Using WebLogic Server Clusters 5-15

http://e-docs.bea.com/wls/docs100/jms/dds.html
http://e-docs.bea.com/wls/docs100/jms/dds.html
http://e-docs.bea.com/wls/docs100/jms/fund.html#1023885

InitialContext on server A and some other type of connection to server B. If the client then uses
a connection factory configured for servers B and C it will not achieve initial context affinity. The
connection factory will instead attempt to achieve server affinity by trying to create a connection
to server B, to which it already has a connection, rather than server C.

If a connection factory cannot provide either initial context affinity or server affinity, then the
connection factory is free to make a connection wherever possible. For instance, assume a client
has an initial context on server A, no other connections and a connection factory configured for
servers B and C. The connection factory is unable to provide any affinity and is free to attempt
new connections to either server B or C.

Note: In the last case, if the client attempts to make a second connection using the same
connection factory, it will go to the same server as it did on the first attempt. That is, if it
chose server B for the first connection, when the second connection is made, the client
will have a connection to server B and the server affinity rule will be enforced.

Load Balancing for JDBC Connections

5-16

Load balancing of JDBC connection requires the use of a multi data source configured for load
balancing. Load balancing support is an option you can choose when configuring a multi data
source.

A load balancing multi data source provides the high available behavior described in “Failover
and JDBC Connections” on page 6-32, and in addition, balances the load among the data sources
in the multi data source. A multi data source has an ordered list of data sources it contains. If you
do not configure the multi data source for load balancing, it always attempts to obtain a
connection from the first data source in the list. In a load-balancing multi data source, the data
sources it contains are accessed using a round-robin scheme. In each successive client request for
a multi data source connection, the list is rotated so the first pool tapped cycles around the list.

For instructions on clustering JDBC objects, see “Configure Clustered JDBC” on page 10-24.

Using WebLogic Server Clusters

CHAPTERa

Failover and Replication in a Cluster

In order for a cluster to provide high availability it must be able to recover from service failures.
The following sections describe how WebL ogic Server detect failures in a cluster, and provides
an overview of how failover is accomplished for different types of objects:

e “How WebLogic Server Detects Failures” on page 6-1
e “Replication and Failover for Servlets and JSPs” on page 6-2
e “Replication and Failover for EJBs and RMIs” on page 6-25

e “Failover and JDBC Connections” on page 6-32

This chapter focuses on failover and replication at the application level. WebLogic Server also
supports automatic migration of server instances and services after failure. For more information,
see Chapter 7, “Whole Server Migration”.

How WebLogic Server Detects Failures

WebLogic Server instances in a cluster detect failures of their peer server instances by
monitoring:

e Socket connections to a peer server

e Regular server heartbeat messages

Using WebLogic Server Clusters 6-1

Failure Detection Using IP Sockets

WebLogic Server instances monitor the use of IP sockets between peer server instances as an
immediate method of detecting failures. If a server connects to one of its peers in a cluster and
begins transmitting data over a socket, an unexpected closure of that socket causes the peer server
to be marked as “failed,” and its associated services are removed from the JNDI naming tree.

The WebLogic Server “Heartheat”

If clustered server instances do not have opened sockets for peer-to-peer communication, failed
servers may also be detected via the WebLogic Server heartbeat. All server instances in a cluster
use multicast or unicast to broadcast regular server heartbeat messages to other members of the
cluster.

Note: For backward compatibility with previous versions, WebLogic Server also allows you to
use multicast for communications between clusters.

Each heartbeat message contains data that uniquely identifies the server that sends the message.
Servers broadcast their heartbeat messages at regular intervals of 10 seconds. In turn, each server
in a cluster monitors the multicast or unicast address to ensure that all peer servers’ heartbeat
messages are being sent.

Note: For backward compatibility with previous versions, WebLogic Server also allows you to
use multicast for communications between clusters.

If a server monitoring the multicast or unicast address misses three heartbeats from a peer server
(i.e., if it does not receive a heartbeat from the server for 30 seconds or longer), the monitoring

server marks the peer server as “failed.” It then updates its local JNDI tree, if necessary, to retract
the services that were hosted on the failed server.

In this way, servers can detect failures even if they have no sockets open for peer-to-peer
communication.

Note: For more information about how WebLogic Server uses IP sockets and either multicast
or unicast communications see “WebLogic Server Communication In a Cluster” on
page 3-1.

Replication and Failover for Servlets and JSPs

6-2

To support automatic replication and failover for servlets and JSPs within a cluster, Weblogic
Server supports two mechanisms for preserving HTTP session state:

e hardware load balancers

Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

For clusters that use a supported hardware load balancing solution, the load balancing
hardware simply redirects client requests to any available server in the WebLogic Server
cluster. The cluster itself obtains the replica of the client’s HTTP session state from a
secondary server in the cluster.

e proxy plug-ins

In clusters that utilize Web servers with WebLogic proxy plug-ins, the proxy plug-in
handles failover transparently to the client. If a server fails, the plug-in locates the
replicated HTTP session state on a secondary server and redirects the client’s request
accordingly.

This section covers the following topics:
e “HTTP Session State Replication” on page 6-3
e “Accessing Clustered Servlets and JSPs Using a Proxy” on page 6-9
e “Accessing Clustered Servlets and JSPs with Load Balancing Hardware” on page 6-11

e “Session State Replication Across Clusters in a MAN/WAN” on page 6-14

HTTP Session State Replication

Weblogic Server uses two methods for replicating HTTP session state across clusters:

e in-memory replication

Using in-memory replication, WebLogic Server copies a session state from one server
instance to another. The primary server creates a primary session state on the server to
which the client first connects, and a secondary replica on another WebLogic Server
instance in the cluster. The replica is kept up-to-date so that it may be used if the server
that hosts the servlet fails.

e JDBC-based persistence

In JDBC-based persistence, WebLogic Server maintains the HTTP session state of a servlet
or JSP using file-based or JDBC-based persistence. For more information on these
persistence mechanisms, see “Configuring Session Persistence” in Programming WebLogic
HTTP Servlets.

JDBC-based persistence is also used for HTTP session state replication within a Wide Area
Network (WAN). For more information, see “WAN HTTP Session State Replication” on
page 6-22.

Using WebLogic Server Clusters 6-3

http://e-docs.bea.com/wls/docs100/webapp/sessions.html#session-persistence

6-4

Note: WebApps which have persistent store type set to replicated or
replicated_if_clustered will have to be targetted to the cluster or all the nodes of
that cluster. If its targetted to only some nodes in the cluster then the webapp will not be
deployed. In memory replication requires that webapps be deployed homogeneously on
all the nodes in a cluster.

The following section describe session state replication using in-memory replication.

Requirements for HTTP Session State Replication

To utilize in-memory replication for HTTP session states, you must access the WebLogic Server
cluster using either a collection of Web servers with identically configured WebLogic proxy
plug-ins, or load balancing hardware.

Supported Server and Proxy Software

The WebLogic proxy plug-in maintains a list of WebLogic Server instances that host a clustered
servlet or JSP, and forwards HTTP requests to those instances using a round-robin strategy. The
plug-in also provides the logic necessary to locate the replica of a client’s HTTP session state if
a WebLogic Server instance should fail.

In-memory replication for HTTP session states is supported by the following Web servers and
proxy software:

e WebL ogic Server with the HttpClusterServiet
e Netscape Enterprise Server with the Netscape (proxy) plug-in
e Apache with the Apache Server (proxy) plug-in

e Microsoft Internet Information Server with the Microsoft-11S (proxy) plug-in
For instructions on setting up proxy plug-ins, see “Configure Proxy Plug-Ins” on page 10-14.

Load Balancer Requirements

If you choose to use load balancing hardware instead of a proxy plug-in, it must support a
compatible passive or active cookie persistence mechanism, and SSL persistence. For details on
these requirements, see “Load Balancer Configuration Requirements” on page 5-2. For
instructions on setting up a load balancer, see “Configuring Load Balancers that Support Passive
Cookie Persistence” on page 10-13.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/plugins/nsapi.html
http://e-docs.bea.com/wls/docs100/plugins/apache.html
http://e-docs.bea.com/wls/docs100/plugins/isapi.html

Replication and Failover for Servlets and JSPs

Programming Considerations for Clustered Servlets and JSPs

This section highlights key programming constraints and recommendations for servlets and JSPs
that you will deploy in a clustered environment.

e Session Data Must Be Serializable

To support in-memory replication of HTTP session states, all servlet and JSP session data
must be serializable.

Note: Serialization is the process of converting a complex data structure, such as a parallel
arrangement of data (in which a number of bits are transmitted at a time along parallel
channels) into a serial form (in which one bit at a time is transmitted); a serial
interface provides this conversion to enable data transmission.

Every field in an object must be serializable or transient in order for the object to be
considered serializable. If the servlet or JSP uses a combination of serializable and
non-serializable objects, WebL ogic Server does not replicate the session state of the
non-serializable objects.

e Use setAttribute to Change Session State

Inan HTTP servlet that implements javax.servlet.http.HttpSession, use
HttpSession.setAttribute (which replaces the deprecated putvalue) to change
attributes in a session object. If you set attributes in a session object with setAttribute,
the object and its attributes are replicated in a cluster using in-memory replication. If you
use other set methods to change objects within a session, WebLogic Server does not
replicate those changes. Every time a change is made to an object that is in the session,
setAttribute() should be called to update that object across the cluster.

Likewise, use removeAttribute (which, in turn, replaces the deprecated removevalue)
to remove an attribute from a session object.

Note: Use of the deprecated putvalue and removevalue methods will also cause session
attributes to be replicated.

e Consider Serialization Overhead

Serializing session data introduces some overhead for replicating the session state. The
overhead increases as the size of serialized objects grows. If you plan to create very large
objects in the session, test the performance of your servlets to ensure that performance is
acceptable.

e Control Frame Access to Session Data

Using WebLogic Server Clusters 6-5

If you are designing a Web application that utilizes multiple frames, keep in mind that
there is no synchronization of requests made by frames in a given frameset. For example, it
is possible for multiple frames in a frameset to create multiple sessions on behalf of the
client application, even though the client should logically create only a single session.

In a clustered environment, poor coordination of frame requests can cause unexpected
application behavior. For example, multiple frame requests can “reset” the application’s
association with a clustered instance, because the proxy plug-in treats each request
independently. It is also possible for an application to corrupt session data by modifying
the same session attribute via multiple frames in a frameset.

To avoid unexpected application behavior, carefully plan how you access session data with
frames. You can apply one of the following general rules to avoid common problems:

— In a given frameset, ensure that only one frame creates and modifies session data.

— Always create the session in a frame of the first frameset your application uses (for
example, create the session in the first HTML page that is visited). After the session
has been created, access the session data only in framesets other than the first frameset.

Using Replication Groups

By default, WebLogic Server attempts to create session state replicas on a different machine than
the one that hosts the primary session state. You can further control where secondary states are
placed using replication groups. A replication group is a preferred list of clustered servers to be
used for storing session state replicas.

Using the WebLogic Server Console, you can define unique machine names that will host
individual server instances. These machine names can be associated with new WebLogic Server
instances to identify where the servers reside in your system.

Machine names are generally used to indicate servers that run on the same machine. For example,
you would assign the same machine name to all server instances that run on the same machine,
or the same server hardware.

If you do not run multiple WebLogic Server instances on a single machine, you do not need to
specify WebLogic Server machine names. Servers without a machine name are treated as though
they reside on separate machines. For detailed instructions on setting machine names, see
“Configure Machine Names” on page 10-34.

When you configure a clustered server instance, you can assign the server to a replication group,
and a preferred secondary replication group for hosting replicas of the primary HTTP session
states created on the server.

Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

When a client attaches to a server in the cluster and creates a primary session state, the server
hosting the primary state ranks other servers in the cluster to determine which server should host
the secondary. Server ranks are assigned using a combination of the server’s location (whether or
not it resides on the same machine as the primary server) and its participation in the primary
server’s preferred replication group. The following table shows the relative ranking of servers in
a cluster.

Table 6-1 Ranking Server Instances for Session Replication

Server Rank Server Resides on a Server is a Member of Preferred

Different Machine Replication Group
1 Yes Yes
2 No Yes
3 Yes No
4 No No

Using these rules, the primary WebLogic Server ranks other members of the cluster and chooses
the highest-ranked server to host the secondary session state. For example, the following figure
shows replication groups configured for different geographic locations.

Using WebLogic Server Clusters 6-7

Figure 6-1 Replication Groups for Different Geographic Locations

Headquarters Crosstown

r— - - — A r— - — — ‘I
| sardina | | |
I I I I
| A I X |
I I | |
I I I I
I I I I
I 8 I I v I
I I I I
I I | |
I C I | Z |
I I | |
L - - - - — _I L — - - — _I

In this example, Servers A, B, and C are members of the replication group “Headquarters” and
use the preferred secondary replication group “Crosstown.” Conversely, Servers X, Y, and Z are
members of the “Crosstown” group and use the preferred secondary replication group
“Headquarters.” Servers A, B, and X reside on the same machine, “sardina.”

If a client connects to Server A and creates an HTTP session state,

e Servers Y and Z are most likely to host the replica of this state, since they reside on
separate machines and are members of Server A’s preferred secondary group.

e Server X holds the next-highest ranking because it is also a member of the preferred
replication group (even though it resides on the same machine as the primary.)

e Server C holds the third-highest ranking since it resides on a separate machine but is not a
member of the preferred secondary group.

e Server B holds the lowest ranking, because it resides on the same machine as Server A
(and could potentially fail along with A if there is a hardware failure) and it is not a
member of the preferred secondary group.

To configure a server’s membership in a replication group, or to assign a server’s preferred
secondary replication group, follow the instructions in “Configure Replication Groups” on
page 10-22.

6-8 Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

Accessing Clustered Servlets and JSPs Using a Proxy

This section describes the connection and failover processes for requests that are proxied to
clustered servlets and JSPs. For instructions on setting up proxy plug-ins, see “Configure Proxy
Plug-Ins” on page 10-14.

The following figure depicts a client accessing a servlet hosted in a cluster. This example uses a
single WebL ogic Server to serve static HTTP requests only; all servlet requests are forwarded to
the WebL ogic Server cluster via the HttpClusterServliet.

Figure 6-2 Accessing Servlets and JSPs using a Proxy

WebLogic Server
Cluster

A

Servlet
Primary State

I

Ve ~
HTTP Server

[\ Servlet

Cllent/ y : Secondary
\ State

~,

HttpClusterServlet

Cookie C

Primary: A Servlet

Secondary: |B

Note: The discussion that follows also applies if you use a third-party Web server and
WebLogic proxy plug-in, rather than WebL ogic Server and the HttpClusterServlet.

Proxy Connection Procedure

When the HTTP client requests the servlet, HttpClusterServlet proxies the request to the
WebLogic Server cluster. HttpClusterServlet maintains the list of all servers in the cluster,
and the load balancing logic to use when accessing the cluster. In the above example,

Using WebLogic Server Clusters 6-9

6-10

HttpClusterServlet routes the client request to the servlet hosted on WebLogic Server A.
WebLogic Server A becomes the primary server hosting the client’s servlet session.

To provide failover services for the servlet, the primary server replicates the client’s servlet
session state to a secondary WebL ogic Server in the cluster. This ensures that a replica of the
session state exists even if the primary server fails (for example, due to a network failure). In the
example above, Server B is selected as the secondary.

The servlet page is returned to the client through the HttpClusterServlet, and the client
browser is instructed to write a cookie that lists the primary and secondary locations of the servlet
session state. If the client browser does not support cookies, WebLogic Server can use URL
rewriting instead.

Using URL Rewriting to Track Session Replicas

In its default configuration, WebLogic Server uses client-side cookies to keep track of the
primary and secondary server that host the client’s servlet session state. If client browsers have
disabled cookie usage, WebLogic Server can also keep track of primary and secondary servers
using URL rewriting. With URL rewriting, both locations of the client session state are embedded
into the URLSs passed between the client and proxy server. To support this feature, you must
ensure that URL rewriting is enabled on the WebLogic Server cluster. For instructions on how to
enable URL rewriting, see “Using URL Rewriting”, in Assembling and Configuring Web
Applications.

Proxy Failover Procedure

Should the primary server fail, HttpClusterServlet uses the client’s cookie information to
determine the location of the secondary WebLogic Server that hosts the replica of the session
state. HttpClusterServlet automatically redirects the client’s next HTTP request to the
secondary server, and failover is transparent to the client.

After the failure, WebLogic Server B becomes the primary server hosting the servlet session
state, and a new secondary is created (Server C in the previous example). In the HTTP response,
the proxy updates the client’s cookie to reflect the new primary and secondary servers, to account
for the possibility of subsequent failovers.

Note: Now WebLogic proxy plug-ins randomly pick up a secondary server after the failover.

In atwo-server cluster, the client would transparently fail over to the server hosting the secondary
session state. However, replication of the client’s session state would not continue unless another
WebLogic Server became available and joined the cluster. For example, if the original primary

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/webapp/sessions.html#urlrewriting

Replication and Failover for Servlets and JSPs

server was restarted or reconnected to the network, it would be used to host the secondary session
state.

Accessing Clustered Servlets and JSPs with Load Balancing
Hardware

To support direct client access via load balancing hardware, the WebLogic Server replication
system allows clients to use secondary session states regardless of the server to which the client
fails over. WebLogic Server uses client-side cookies or URL rewriting to record primary and
secondary server locations. However, this information is used only as a history of the servlet
session state location; when accessing a cluster via load balancing hardware, clients do not use
the cookie information to actively locate a server after a failure.

The following sections describe the connection and failover procedure when using HT TP session
state replication with load balancing hardware.

Connection with Load Balancing Hardware

The following figure illustrates the connection procedure for a client accessing a cluster through
a load balancer.

Using WebLogic Server Clusters 6-11

Figure 6-3 Connection with Load Balancing Hardware

WebLogic Server
Cluster
A

Servlet
Primary State

- '
— (&)
7 N c :I
[. \ c—‘g Servlet
Client @ > 3 Secondary
\ / - State
N s |
o
-
Cookie C
Servlet

Primary: A
Secondary: B

When the client of a Web application requests a servlet using a public IP address:

1. The load balancer routes the client’s connection request to a WebLogic Server cluster in
accordance with its configured policies. It directs the request to WebLogic Server A.

2. WebLogic Server A acts as the primary host of the client’s servlet session state. It uses the
ranking system described in “Using Replication Groups” on page 6-6 to select a server to host
the replica of the session state. In the example above, WebLogic Server B is selected to host
the replica.

3. Theclientis instructed to record the location of WebLogic Server instances A and B in a local
cookie. If the client does not allow cookies, the record of the primary and secondary servers
can be recorded in the URL returned to the client via URL rewriting.

Note: You must enable WebLogic Server URL rewriting capabilities to support clients that
disallow cookies, as described in “Using URL Rewriting to Track Session Replicas”
on page 6-10.

6-12 Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

4. As the client makes additional requests to the cluster, the load balancer uses an identifier in
the client-side cookie to ensure that those requests continue to go to WebLogic Server A
(rather than being load-balanced to another server in the cluster). This ensures that the client
remains associated with the server hosting the primary session object for the life of the
session.

Failover with Load Balancing Hardware

Should Server A fail during the course of the client’s session, the client’s next connection request
to Server A also fails, as illustrated in the following figure.

Figure 6-4 Failover with Load Balancing Hardware

WebLogic Server
Cluster

A
Ser
/Pri ry\gtate
)/\ B

3
/SN c]
(' \ = Servlet
Client /<—>)] Secondary
\ = State
~ © :I
o
|
Cookie ¢ C
Primary: C Serviet

Secondary: |B Primary State

In response to the connection failure:

1. The load balancing hardware uses its configured policies to direct the request to an available
WebLogic Server in the cluster. In the above example, assume that the load balancer routes
the client’s request to WebL ogic Server C after WebLogic Server A fails.

Using WebLogic Server Clusters 6-13

6-14

2. When the client connects to WebLogic Server C, the server uses the information in the client’s
cookie (or the information in the HTTP request if URL rewriting is used) to acquire the
session state replica on WebLogic Server B. The failover process remains completely
transparent to the client.

WebLogic Server C becomes the new host for the client’s primary session state, and WebLogic
Server B continues to host the session state replica. This new information about the primary and
secondary host is again updated in the client’s cookie, or via URL rewriting.

Session State Replication Across Clusters in a MAN/WAN

In addition to providing HTTP session state replication across servers within a cluster, WebLogic
server provides the ability to replicate HT TP session state across multiple clusters. This improves
high-availability and fault tolerance by allowing clusters to be spread across multiple geographic
regions, power grids, and internet service providers. This section discusses the two mechanisms
for cross-cluster replication supported by WebLogic Server:

o “Network Requirements for Cross-cluster Replication” on page 6-14
e “Configuration Requirements for Cross-Cluster Replication” on page 6-16
e “MAN HTTP Session State Replication” on page 6-19

e “WAN HTTP Session State Replication” on page 6-22

For general information on HTTP session state replication, see “HTTP Session State Replication”
on page 6-3. For more information on using hardware load balancers, see “Accessing Clustered
Servlets and JSPs with Load Balancing Hardware” on page 6-11.

Network Requirements for Cross-cluster Replication

To perform cross-cluster replication with WebLogic Server, your network must include global
and local hardware load balancers. Figure 6-5 shows how both types of load balancers interact
within a multi-cluster environment to support cross-cluster replication. For general information
on using load balancer within a WebLogic Server environment, see “Connection with Load
Balancing Hardware” on page 6-11.

Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

Figure 6-5 Load Balancer Requirements for Cross-cluster Replications

Ve ~
[Client)
\ /
\i/
Global Load
Balancer
L] LT [
Local Load Local Load
Balancer A Balancer B
L] L] L] L]
Cluster A Cluster B
4+ |— —F— — | >
Domain A Domain B

Replication Channel
The following sections describe each of the components in this network configuration.

Global Load Balancer

In a network configuration that supports cross-cluster replication, the global load balancer is
responsible for balancing HTTP requests across clusters. When a request comes in, the global
load balancer determines which cluster to send it to based on the current number of requests being
handled by each cluster. Then the request is passed to the local load balancer for the chosen
cluster.

Local Load Balancer

The local load balancer receives HTTP requests from the global load balancer. The local load
balancer is responsible for balancing HTTP requests across servers within the cluster.

Using WebLogic Server Clusters 6-15

Replication

In order to replicate session data from one cluster to another, a replication channel must be
configured to communicate session state information from the primary to the secondary cluster.
The specific method used to replicate session information depends on which type of cross-cluster
replication you are implementing. For more information, see “MAN HTTP Session State
Replication” on page 6-19 or “WAN HTTP Session State Replication” on page 6-22.

Failover

When a server within a cluster fails, the local load balancer is responsible for transferring the
request to other servers within a cluster. When the entire cluster fails, the local load balancer
returns HTTP requests back to the global load balancer. The global load balancer then redirects
this request to the other local load balancer.

Configuration Requirements for Cross-Cluster Replication
The following procedures outline the basic steps required to configure cross-cluster replication.

1. Install WebLogic server according to your network configuration and requirements. This
includes installing a WebLogic Server instance on every physical machine that hosts a WLS
instance.

2. Install and configure the hardware load balancers. For more information on load balancer
requirements see “Network Requirements for Cross-cluster Replication” on page 6-14. For
more information on installing and configuring load balancers, see the documentation for
your load balancer.

Following are some general considerations when configuring hardware load balancers to
support cross-cluster replications:

— You must configure your load balancer to maintain session ids. If the load balancers do
not maintain session id, subsequent requests will always be sent to a new server. For
more information, see “Connection with Load Balancing Hardware” on page 6-11.

— You should ensure that the cluster failover timeout value is not set to high. This value
should be around 3-5 seconds. Some hardware load balancers have default values that
are much longer.

— You must configure your load balancer to know which backup cluster to use when a
primary cluster or server fails.

3. Create and configure your domains according to your cluster requirements.

Note: Cross-cluster replication requires that each cluster be assigned to a different domain.

6-16 Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

In addition to creating and configuring your domains, you should also create and configure
your clusters and managed servers. For information on creating and configuring a domain,
see “Using WebLogic Tools to Configure a Domain”, in Understanding Domain
Configuration.

Following are some considerations when configuring domains to support cross-cluster
replication:

— Each domain should be set up and configured identically. In addition to identical
domain, cluster and server configuration, the number of servers clusters, etc. should be
identical.

— Application deployment should be identical in each domain.

— When setting up your domains, you must enable trust between both domains. For more
information on enabling trust between domains, see “Enabling Trust Between
WebLogic Server Domains”, in Securing WebLogic Server.

4. Ifyou are using cross cluster replication in a WAN environment, you must create a datasource
that is used to maintain session state. For more information, see “Database Configuration for
WAN Session State Replication” on page 6-24.

5. After you have created and configured your domains, servers, and clusters you should verify
the configuration elements specific to cross-cluster replication have been configured
correctly. These parameters must be configured identically for both domains.

The following table lists the subelements of the cluster element in config.xml that are used
to configure cross-cluster replication:

Tahle 6-2 Cluster Elements in config.xml

Element Description

cluster-type This setting must match the replication type you are using and
must be consistent across both clusters.

The valid values are man or wan

remote-cluster-address This is the address used to communicate replication information
to the other cluster. This should be configured so that
communications between clusters do not go through a load
balancer.

Using WebLogic Server Clusters 6-17

http://e-docs.bea.com/wls/docs100/domain_config/index.html
http://e-docs.bea.com/wls/docs100/secmanage/domain.html
http://e-docs.bea.com/wls/docs100/secmanage/domain.html

6-18

Table 6-2 Cluster Elements in config.xml

Element Description

replication-channel This is the network channel used to communicate replication
information to the other cluster.

Note: The named channel must exist on all members of the
cluster and must be configured to use the same
protocol. The selected channel may be configured to
use a secure protocol.

data-source-for-session-p This is the data source that is used to store session information
ersistence when using JDBC-based session persistence.

This method of session state replication is used to perform
cross-cluster replication within a WAN. For more
information, see “Database Configuration for WAN
Session State Replication” on page 6-24.

session-flush-interval This is the interval, in seconds, the cluster waits to flush HTTP
sessions to the backup cluster.

session-flush-threshold If the number of HTTP sessions reaches the value of
session-flush-threshold, the sessions are flushed to the backup
cluster. This allows servers to flush sessions faster under heavy
loads.

inter-cluster-comm-link- This is the amount of time, in milliseconds, that the cluster waits
health-check-interval to

Configuring Session State Replication Across Clusters

You can use a third-party replication product to replicate state across clusters, or you can allow
WebLogic Server to replicate session state across clusters. The following configuration
considerations should be kept in mind depending on which method you use:

e If you are using a third-party product, ensure that you have specified a value for
jdbc-pool, and that backup-cluster-address is blank.

o If you are using WebLogic Server to handle session state replication, you must configure
both the jdbc-pool and the backup-cluster-address.

Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

If backup-cluster-address is NULL, WebLogic Server assumes that you are using a third-party
product to handle replication. In this case, session data is not persisted to the remote database, but
is persisted locally.

Configuring a Replication Channel

A replication channel is a normal network channel that is dedicated specifically to replication
traffic between clusters. For general information on configuring a network channel, see “
Configuring Network Resources,” in Configuring WebLogic Server Environments.

When creating a network channel to be used as the replication channel in cross-cluster
replication, the following considerations apply:

e You must ensure that the replication channel is created on all cluster members and has the
same name.

e The channel should be used only for replication. Other types of network traffic should be
directed to other network channels.

MAN HTTP Session State Replication

Resources within a metropolitan area network (MAN) are often in physically separate locations,
but are geographically close enough that network latency is not an issue. Network communication
in a MAN generally has low latency and fast interconnect. Clusters within a MAN can be
installed in physically separate locations which improves availability.

To provide failover within a MAN, WebLogic Server provides an in-memory mechanism that
works between two separate clusters. This allows session state to be replicated synchronously
from one cluster to another, provided that the network latency is a few milliseconds. The
advantage of using a synchronous method is that reliability of in-memory replication is
guaranteed.

Note: The performance of synchronous state replication is dependant on the network latency
between clusters. You should use this method only if the network latency between the
clusters is tolerable.

Replication Within a MAN

This section discusses possible failover scenarios across multiple clusters within a MAN.
Figure 6-6, “MAN Replication,” on page 6-20 shows a typical multi-cluster environment within
a MAN.

Using WebLogic Server Clusters 6-19

http://e-docs.bea.com/wls/docs100/config_wls/network.html
http://e-docs.bea.com/wls/docs100/config_wls/network.html

Figure 6-6 MAN Replication

s
3 S2
(s

Local Load 4
Balancer 1 S3
2 Cluster 1
! Global Load
Client obal Loa
Balancer
Cluster 2
Local Load sS4
Balancer 2
S6 "
This figure shows the following HTTP session state scenario:

1.
2.

6-20

A client makes a request which passes through the global load balancer.

The global load balancer passes the request to a local load balancer based on current system
load. In this case, the session request is passed to Local Load Balancer 1.

The local load balancer in turn passes the request to a server within a cluster based on system
load, in this case S1. Once the request reaches S1, this managed server becomes the primary
server for this HT TP session. This server will handle subsequent requests assuming there are
no failures.

Session state information is stored in the database of the primary cluster.

Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

5. After the server establishes the HTTP session, the current session state is replicated to the
designated secondary server.

Failover Scenarios in a MAN

The following sections describe various failover scenarios based on the MAN configuration in
Figure 6-7, “WAN Replication,” on page 6-23.

Failover Scenario 1
If all of the servers in Cluster 1 fail, the global load balancer will automatically fail all
subsequent session requests to Cluster 2. All sessions that have been replicated to Cluster
2 will be recovered and the client will experience no data loss.

Failover Scenario 2
Assume that the primary server S1 is being hosted on Cluster 1, and the secondary server
S6 is being hosted on Cluster 2. If S1 crashes, then any other server in Cluster 1 (S2 or S3)
can pick up the request and retrieve the session data from server S6. S6 will continue to
be the backup server.

Failover Scenario 3
Assume that the primary server S1 is being hosted on Cluster 1, and the secondary server
S6 is being hosted on Cluster 2. If the secondary server S6 fails, then the primary server
S1 will automatically select a new secondary server on Cluster 2. Upon receiving a client
request, the session information will be backed up on the new secondary server.

Failover Scenario 4
If the communication between the two clusters fails, the primary server will automatically
replicate session state to a new secondary server within the local cluster. Once the
communication between the two clusters, any subsequent client requests will be replicated
on the remote cluster.

MAN Replication, Load Balancers, and Session Stickiness

MAN replication relies on global load balancers to maintain cluster affinity and local load
balancers to maintain server affinity. If a server within a cluster fails, the local load balancer is
responsible for ensuring that session state is replicated to another server in the cluster. If all of the
servers within a cluster have failed or are unavailable, the global load balancer is responsible for
replicating session state to another cluster. This ensures that failover to another cluster does not
occur unless the entire cluster fails.

Once a client establishes a connection through a load balancer to a cluster, the client must
maintain stickiness to that cluster as long as it is healthy.

Using WebLogic Server Clusters 6-21

6-22

WAN HTTP Session State Replication

Resources in a wide area network (WAN) are frequently spread across separate geographical
regions. In addition to requiring network traffic to cross long distances, these resources are often
separated by multiple routers and other network bottle necks. Network communication ina WAN
generally has higher latency and slower interconnect.

Slower network performance within a WAN makes it difficult to use a synchronous replication
mechanism like the one used within a MAN. WebLogic Server provides failover across clusters
in WAN by using an asynchronous data replication scheme.

Replication Within a WAN

This section discusses possible failover scenarios across multiple clusters within a WAN. Figure
5-7 shows a typical multi-cluster environment within a WAN.

Using WebLogic Server Clusters

Replication and Failover for Servlets and JSPs

Figure 6-7 WAN Replication

D
kS

s
3 S2
(s

Local Load
Balancer 1 IS
2 Cluster 1
! Global Load
Client obal Loa
Balancer
Cluster 2 5

Local Load sS4
Balancer 2

pz 5
e

This figure demonstrates the following HTTP session state scenario:

1. A client makes a request which passes through the global load balancer.

2. The global load balancer passes the request to a local load balancer based on current system
load. In this case, the session request is passed to Local Load Balancer 1.

3. Thelocal load balancer in turn passes the request to a server within a cluster based on system
load, in this case S1. Once the request reaches S1, this managed server becomes the primary
server for this HT TP session. This server will handle subsequent requests assuming there are
no failures.

4. Session state information is stored in the database of the primary cluster.

Using WebLogic Server Clusters 6-23

6-24

5. After the server establishes the HTTP session, the current session state is replicated to the
designated secondary server.

Failover Scenarios Within a WAN
This section describes possible failover scenarios within a WAN environment.

Failover Scenario 1
If all of the servers in Cluster 1 fail, the global load balancer will automatically fail all
subsequent session requests to Cluster 2. All sessions will be backed up according to the
last know flush to the database.

Failover Scenario 2
Assume that the primary server S1 is being hosted on Cluster 1, and the secondary server
S6 is being hosted on Cluster 2. If S1 crashes, then S6 will become the new primary server.
The session state will be backed up on a new secondary sever.

Database Configuration for WAN Session State Replication

This section describes the data source configuration requirements for cross-cluster session state
replication in a WAN. For more general information about setting up cross-cluster replication,
see “Configuration Requirements for Cross-Cluster Replication” on page 6-16.

To enable cross-cluster replication within a WAN environment, you must create a JDBC data
source that points to the database where session state information is stored. Perform the following
procedures to setup and configure your database:

1. Install and configure your database server software according to your vendor’s
documentation.

2. Create a JDBC data source that references this database. For more information on creating a
JDBC datasource, see “Configuring JDBC Data Sources” in Configuring and Managing
WebLogic JDBC.

This data source can also be configured as a JDBC Multi Data Source. For more
information on configuring a Multi Data Source, see “Configuring JDBC Multi Data
Sources” in Configuring and Managing WebLogic JDBC.

3. Setthe DataSourceForSessionPersistence for both the primary and secondary cluster to
point to this data source.

4. Create a table called WLS_WAN_PERSISTENCE in your database according to the following
schema:

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/jdbc_admin/jdbc_datasources.html
http://e-docs.bea.com/wls/docs100/jdbc_admin/jdbc_multidatasources.html
http://e-docs.bea.com/wls/docs100/jdbc_admin/jdbc_multidatasources.html

Replication and Failover for EJBs and RMIs

CREATE TABLE WLS_WAN_PERSISTENCE_TABLE (
WL_ID VARCHAR2(100) NOT NULL,
WL_CONTEXT_PATH VARCHAR2(50) NOT NULL,
WL_CREATE_TIME NUMBER(20),
WL_ACCESS_TIME NUMBER(20),
WL_MAX_INACTIVE_INTERVAL NUMBER(38),
WL_VERSION NUMBER(20) NOT NULL,
WL_INTERNAL_ATTRIBUTE NUMBER(38),
WL_SESSION_ATTRIBUTE_KEY VARCHAR2(100),
WL_SESSION_ATTRIBUTE_VALUE LONG RAW,
PRIMARY KEY(WL_ID, WL_CONTEXT PATH,
WL_VERSION, WL_SESSION_ATTRIBUTE_KEY));

The following table describes what each row of this table contains:

Table 6-3 Contents of Replication Table

Database Row Description

wl_id Stores the HTTP session ID.

wl_context_path Stores the context path to the web application that created the
session.

wl_create_time Stores the time the session state was created.

wl_session_values Stores the session attributes.

wl_access_time Stores the time of the last update to the session state.

wl_max_inactive_interval Stores the MaxInactivelnterval of the session state.

wl_version Stores the version of the session. Each update to a session has an
associated version.

Replication and Failover for EJBs and RMIs

For clustered EJBs and RMIs, failover is accomplished using the object’s replica-aware stub.
When a client makes a call through a replica-aware stub to a service that fails, the stub detects the
failure and retries the call on another replica.

With clustered objects, automatic failover generally occurs only in cases where the object is
idempotent. An object is idempotent if any method can be called multiple times with no different
effect than calling the method once. This is always true for methods that have no permanent side
effects. Methods that do have side effects have to be written with idempotence in mind.

Using WebLogic Server Clusters 6-25

6-26

Consider a shopping cart service call add1tem() that adds an item to a shopping cart. Suppose
client C invokes this call on a replica on Server S1. After S1 receives the call, but before it
successfully returns to C, S1 crashes. At this point the item has been added to the shopping cart,
but the replica-aware stub has received an exception. If the stub were to retry the method on
Server S2, the item would be added a second time to the shopping cart. Because of this,
replica-aware stubs will not, by default, attempt to retry a method that fails after the request is
sent but before it returns. This behavior can be overridden by marking a service idempotent.

Clustering Objects with Replica-Aware Stubs

If an EJB or RMI object is clustered, instances of the object are deployed on all WebLogic Server
instances in the cluster. The client has a choice about which instance of the object to call. Each
instance of the object is referred to as a replica.

The key technology that supports object clustering objects in WebLogic Server is the
replica-aware stub. When you compile an EJB that supports clustering (as defined in its
deployment descriptor), appc passes the EJB’s interfaces through the rmic compiler to generate
replica-aware stubs for the bean. For RMI objects, you generate replica-aware stubs explicitly
using command-line options to rmic, as described in “WebLogic RMI Compiler,” in
Programming WebLogic RMI.

A replica-aware stub appears to the caller as a normal RMI stub. Instead of representing a single
object, however, the stub represents a collection of replicas. The replica-aware stub contains the
logic required to locate an EJB or RMI class on any WebLogic Server instance on which the
object is deployed. When you deploy a cluster-aware EJB or RMI object, its implementation is
bound into the JNDI tree. As described in “Cluster-Wide JNDI Naming Service” on page 3-10,
clustered WebLogic Server instances have the capability to update the JNDI tree to list all server
instances on which the object is available. When a client accesses a clustered object, the
implementation is replaced by a replica-aware stub, which is sent to the client.

The stub contains the load balancing algorithm (or the call routing class) used to load balance
method calls to the object. On each call, the stub can employ its load algorithm to choose which
replica to call. This provides load balancing across the cluster in a way that is transparent to the
caller. To understand the load balancing algorithms available for RMI objects and EJBs, see
“Load Balancing for EJBs and RMI Objects” on page 5-4. If a failure occurs during the call, the
stub intercepts the exception and retries the call on another replica. This provides a failover that
is also transparent to the caller.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/rmi/rmi_rmic.html

Replication and Failover for EJBs and RMIs

Clustering Support for Different Types of EJBs

EJBs differ from plain RMI objects in that each EJB can potentially generate two different
replica-aware stubs: one for the EJBHome interface and one for the EJBObject interface. This
means that EJBs can potentially realize the benefits of load balancing and failover on two levels:

e When a client looks up an EJB object using the EJBHome stub

e When a client makes method calls against the EJB using the EJBObject stub
The following sections describe clustering support for different types of EJBs.

Clustered EJBHomes

All bean homes interfaces—used to find or create bean instances—can be clustered, by
specifying the determined by the home-is-clusterable elementinweblogic-ejb-jar.xml.

Note: Stateless session beans, stateful session beans, and entity beans have home interfaces.
Message-driven beans do not.

When a bean is deployed to a cluster, each server binds the bean’s home interface to its cluster
JNDI tree under the same name. When a client requests the bean’s home from the cluster, the
server instance that does the look-up returns a EJBHome stub that has a reference to the home on
each server.

When the client issues a create() or find() call, the stub routes selects a server from the
replica list in accordance with the load balancing algorithm, and routes the call to the home
interface on that server. The selected home interface receives the call, and creates a bean instance
on that server instance and executes the call, creating an instance of the bean.

Note: WebLogic Server supports load balancing algorithms that provide server affinity for EJB
home interfaces. To understand server affinity and how it affects load balancing and
failover, see “Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity” on
page 5-8.

Clustered EJBObjects

An EJBObject stub tracks available replicas of an EJB in a cluster.

Stateless Session Beans

When a home creates a stateless bean, it returns a EJBObject stub that lists all of the servers in
the cluster, to which the bean should be deployed. Because a stateless bean holds no state on
behalf of the client, the stub is free to route any call to any server that hosts the bean. The stub

Using WebLogic Server Clusters 6-27

http://e-docs.bea.com/wls/docs100/ejb/DDreference-ejb-jar.html#home-is-clusterable

6-28

can automatically fail over in the event of a failure. The stub does not automatically treat the bean
as idempotent, so it will not recover automatically from all failures. If the bean has been written
with idempotent methods, this can be noted in the deployment descriptor and automatic failover
will be enabled in all cases.

Note: WebLogic Server supports load balancing options that provide server affinity for
stateless EJB remote interfaces. To understand server affinity and how it affects load
balancing and failover, see “Round-Robin Affinity, Weight-Based Affinity, and
Random-Affinity” on page 5-8.

Stateful Session Beans

Method-level failover for a stateful service requires state replication. WebLogic Server satisfies
this requirement by replicating the state of the primary bean instance to a secondary server
instance, using a replication scheme similar to that used for HTTP session state.

When a home interface creates a stateless session bean instance, it selects a secondary instance
to host the replicated state, using the same rules defined in “Using Replication Groups” on
page 6-6. The home interface returns a EJBObject stub to the client that lists the location of the
primary bean instance, and the location for the replicated bean state.

The following figure shows a client accessing a clustered stateful session EJB.

Using WebLogic Server Clusters

Replication and Failover for EJBs and RMIs

Figure 6-8 Client Accessing Stateful Session EJB

WebLogic Server

Cluster
A
Instance of
Object ‘A’
~ - = ~N
7 Client N #
/ \ B
/ Opject “A” Stub State of
| Primary Staté] | Object ‘A
\ /
\ %econdary State:
AN)
~ / C

As the client makes changes to the state of the EJB, state differences are replicated to the
secondary server instance. For EJBs that are involved in a transaction, replication occurs
immediately after the transaction commits. For EJBs that are not involved in a transaction,
replication occurs after each method invocation.

In both cases, only the actual changes to the EJB’s state are replicated to the secondary server.
This ensures that there is minimal overhead associated with the replication process.

Note: The actual state of a stateful EJB is non-transactional, as described in the EJB
specification. Although it is unlikely, there is a possibility that the current state of the EJB
can be lost. For example, if a client commits a transaction involving the EJB and there is
afailure of the primary server before the state change is replicated, the client will fail over
to the previously-stored state of the EJB. If it is critical to preserve the state of your EJB
in all possible failover scenarios, use an entity EJB rather than a stateful session EJB.

Using WebLogic Server Clusters 6-29

6-30

Failover for Stateful Session EJBs

Should the primary server fail, the client’s EJB stub automatically redirects further requests to the
secondary WebLogic Server instance. At this point, the secondary server creates a new EJB
instance using the replicated state data, and processing continues on the secondary server.

After a failover, WebLogic Server chooses a new secondary server to replicate EJB session states
(if another server is available in the cluster). The location of the new primary and secondary
server instances is automatically updated in the client’s replica-aware stub on the next method
invocation, as shown below.

Figure 6-9 Replica Aware Stubs are Updated after Failover

WebLogic Server
Cluster

— ~

~ ~
“Client N\
/ \ B
/ Opject “A” Stub | \ TS ETEE G
[Rrimary Sta:/,\//V Object ‘A’
\ Erimary Sta:
\ Secondary State:
N #
~ s C
S~ - —
State of
Object ‘A’
Entity EJBs

There are two types of entity beans to consider: read-write entity beans and read-only entity
beans.

o Read-Write Entities

Using WebLogic Server Clusters

Replication and Failover for EJBs and RMIs

When a home finds or creates a read-write entity bean, it obtains an instance on the local
server and returns a stub pinned to that server. Load balancing and failover occur only at
the home level. Because it is possible for multiple instances of the entity bean to exist in
the cluster, each instance must read from the database before each transaction and write on
each commit.

e Read-Only Entities

When a home finds or creates a read-only entity bean, it returns a replica-aware stub. This
stub load balances on every call but does not automatically fail over in the event of a
recoverable call failure. Read-only beans are also cached on every server to avoid database
reads.

Failover for Entity Beans and EJB Handles

Failover for entity beans and EJB handles depends upon the existence of the cluster address. You
can explicitly define the cluster address, or allow WebL ogic Server to generate it automatically,
as described in “Cluster Address” on page 10-6. If you explicitly define cluster address, you must
specify it as a DNS name that maps to all server instances in the cluster and only server instances
in the cluster. The cluster DNS name should not map to a server instance that is not a member of
the cluster.

Clustering Support for RMI Objects

WebLogic RMI provides special extensions for building clustered remote objects. These are the
extensions used to build the replica-aware stubs described in the EJB section. For more
information about using RMI in clusters, see “WebLogic RMI Features and Guidelines” in
Programming WebLogic RMI.

Object Deployment Requirements

If you are programming EJBs to be used in a WebLogic Server cluster, read the instructions in
this section to understand the capabilities of different EJB types in a cluster. Then ensure that you
enable clustering in the EJB’s deployment descriptor. “weblogic-ejb-jar.xml Deployment
Descriptor Reference” in Programming WebLogic Enterprise JavaBeans describes the XML
deployment elements relevant for clustering.

If you are developing either EJBs or custom RMI objects, also refer to “Using WebLogic JNDI
in a Clustered Environment” in Programming WebLogic JNDI to understand the implications of
binding clustered objects in the JNDI tree.

Using WebLogic Server Clusters 6-31

http://e-docs.bea.com/wls/docs100/rmi/rmi_api.html
http://e-docs.bea.com/wls/docs100/ejb/DDreference-ejb-jar.html
http://e-docs.bea.com/wls/docs100/ejb/DDreference-ejb-jar.html
http://e-docs.bea.com/wls/docs100/jndi/jndi.html#jndi012
http://e-docs.bea.com/wls/docs100/jndi/jndi.html#jndi012

Other Failover Exceptions

Even if a clustered object is not idempotent, WebL ogic Server performs automatic failover in the
case of a ConnectException or MarshalException. Either of these exceptions indicates that
the object could not have been modified, and therefore there is no danger of causing data
inconsistency by failing over to another instance.

Failover and JDBC Connections

6-32

JDBC is a highly stateful client-DBMS protocol, in which the DBMS connection and
transactional state are tied directly to the socket between the DBMS process and the client
(driver). For this reason, failover of a connection is not supported. If a WebLogic Server instance
dies, any JDBC connections that it managed will die, and the DBMS(s) will roll back any
transactions that were under way. Any applications affected will have to restart their current
transactions from the beginning. All JDBC objects associated with dead connections will also be
defunct. Clustered JDBC eases the reconnection process: the cluster-aware nature of WebL ogic
data sources in external client applications allow a client to request another connection from them
if the server instance that was hosting the previous connection fails.

If you have replicated, synchronized database instances, you can use a JDBC multi data source
to support database failover. In such an environment, if a client cannot obtain a connection from
one data source in the multi data source because the data source doesn’t exist or because database
connectivity from the data source is down, WebLogic Server will attempt to obtain a connection
from the next data source in the list of data sources.

For instructions on clustering JDBC objects, see “Configure Clustered JDBC” on page 10-24.

Note: Any data source assigned to a multi data source must be configured to test its connections
at reserve time. This is the only way a pool can verify it has a good connection, and the
only way a multi data source can know when to fail over to the next pool on its list.

Using WebLogic Server Clusters

Whole Server Migration

The following sections describe the different migration mechanisms supported by WebLogic
Server:

e “Understanding Whole Server and Service Migration” on page 7-1
e “Migration Terminology” on page 7-2

e “Leasing” on page 7-3

e “Automatic Whole Server Migration” on page 7-7

These sections focus on whole server-level migration, where a migratable server instance, and all
of its services, is migrated to a different physical machine upon failure. WebLogic Server also
supports service-level migration, as well as replication and failover at the application level. For
more information, see Chapter 8, “Service-Level Migration” and Chapter 6, “Failover and
Replication in a Cluster”.

Understanding Whole Server and Service Migration

Note: Whole server migration is not supported on all platforms. See Server Migration in
Supported Configurations for WebLogic Platform 10.0.

In a WebLogic Server cluster, most services are deployed homogeneously on all server instances
in the cluster, enabling transparent failover from one server to another. In contrast, “pinned
services” such as JMS and the JTA transaction recovery system are targeted at individual server
instances within a cluster—for these services, WebLogic Server supports failure recovery with
migration, as opposed to failover.

Using WebLogic Server Clusters 1-1

http://e-docs.bea.com/platform/suppconfigs/configs100/100_over/prod-info.html#ServerMigration

Migration in WebLogic Server is the process of moving a clustered WebLogic Server instance or
acomponent running on a clustered instance elsewhere in the event of failure. In the case of whole
server migration, the server instance is migrated to a different physical machine upon failure. In
the case of service-level migration, the services are moved to a different server instance within
the cluster. See Chapter 8, “Service-Level Migration.”

WebLogic Server provides a feature for making JMS and the JTA transaction system highly
available: migratable servers. Migratable servers provide for both automatic and manual
migration at the server-level, rather than the service level.

Note: Server migration is only supported when you use the SSH version of Node Manager.
Server migration is not supported on Windows.

When a migratable server becomes unavailable for any reason, for example, if it hangs, loses
network connectivity, or its host machine fails—migration is automatic. Upon failure, a
migratable server is automatically restarted on the same machine if possible. If the migratable
server cannot be restarted on the machine where it failed, it is migrated to another machine. In
addition, an administrator can manually initiate migration of a server instance.

Migration Terminology

1-2

The following terms apply to server and service migration:

e Migratable server—A clustered server instance that migrates in its entirety, along with all
the services it hosts. Migratable servers are intended to host pinned services, such as JMS
servers and the JTA transaction recovery servers, but they can also host clusterable
services. All services that run on a migratable server are highly available.

e Server migration—Server-level migration allows a WebLogic Server instance to be
configured

e Manual Service-level Migration—You can manually migrate pinned JTA and JMS-related
services (e.g., JMS server, SAF agent, path service, and custom persistent store) after the
host server instance fails. See Chapter 8, “Service-Level Migration.”

e Automatic JTA Service Migration—Automatic service-level migration allows the JTA
Transaction Recovery Service to be configured to be migrated to another server
automatically. When a server fails or is restarted, this service is migrated automatically.
See Chapter 8, “Service-Level Migration.”

e Cluster master—One server instance in a cluster that contains migratable servers acts as the
cluster master and orchestrates the process of automatic server migration, in the event of
failure. Any Managed Server in a cluster can serve as the cluster master, whether it hosts

Using WebLogic Server Clusters

Leasing

pinned services or not. See “Cluster Master’s Role in Whole Server Migration” on
page 7-18.

e Migration master—A lightweight singleton service that monitors other services that can be
migrated automatically. The server that currently hosts the migration master is responsible
for starting and stopping the migration tasks associated with each migratable service. See
“Migration Master” on page 8-22.

e Candidate machines—A user-defined list of machines within a cluster that can be a
potential target for migration.

e Target machines—A set of machines that are designated as allowable or preferred hosts for
migratable servers.

e Node Manager—Node Manager is used by the Administration Server or a stand-alone
Node Manager client, to start and stop migratable servers, and is invoked by the cluster
master to shut down and restart migratable servers, as necessary.

For background information about Node Manager and how it fits into a WebLogic Server
environment, see “Using Node Manager to Control WebLogic Server” in Configuring
WebLogic Server Environments.

e Lease table—You can configure a database table in which migratable servers persist their
state, and which the cluster master monitors to verify the health and liveness migratable
servers. For more information on leasing, see “Leasing” on page 7-3.

e Administration Server—Used to configure migratable servers and target machines, to
obtain the runtime state of migratable servers, and to orchestrate the manual migration
process.

Leasing

Leasing is the process WebLogic Server uses to manage services that are required to run on only
one member of a cluster at a time. Leasing ensures exclusive ownership of a cluster-wide entity.
Within a cluster, there is a single owner of a lease. Additionally, leases can failover in case of
server or cluster failure. This helps to avoid having a single point of failure.

Features That Use Leasing

The following WebLogic server features use leasing:

Using WebLogic Server Clusters 1-3

http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html

7-4

e Automatic Whole Server Migration — Uses leasing to elect a cluster master. The cluster

master is responsible for monitoring other cluster members. It is also responsible for
restarting failed members hosted on other physical machines.

Leasing ensures that the cluster master is always running, but is only running on one server
at a time within a cluster. For information on the cluster master, see “Cluster Master’s Role
in Whole Server Migration” on page 7-18.

e Automatic JTA Service Migration — The JTA Transaction Recovery Service can be

configured to automatically migrate from a unhealthy hosting server to a healthy active
server with the help of the Health Monitoring subsystem. When the migratable target is
migrated, the pinned Transaction Recovery Service hosted by that target is migrated.
Migratable targets use leasing to accomplish automatic Transaction Recovery Service
migration. See Chapter 8, “Service-Level Migration.”.

Singleton Services — A singleton service is, by definition, a service running within a
cluster that is available on only one member of the cluster at a time. Singleton services use
leasing to accomplish this. See “Migration Master” on page 8-22.

Job Scheduler — The Job Scheduler is a persistent timer that is used with in a cluster. The
Job Scheduler uses the timer master to load balance the timer across a cluster.

Note: Although you can use the use the non-database version of Consensus leasing with the
Job Scheduler, this feature requires an external database to maintain failover and
replication information.

Note: Beyond basic configuration, most leasing functionality is handled internally by

WebLogic Server.

Leasing Versions

WebLogic Server provides two separate implementations of the leasing functionality. Which one
you use depends on your requirements and your environment.

e High-availability database leasing — This version of leasing requires the availability of a

high-availability database to store leasing information. For information on general
requirements and configuration, see “High-availability Database Leasing” on page 7-5.

e Non-database Consensus leasing — This version of leasing stores the leasing information

in-memory within a cluster member. For more information, see “Non-database Consensus
Leasing” on page 7-6.

Using WebLogic Server Clusters

Leasing

Note: Within a WebLogic Server installation, you can only use one type of leasing. Although
it is possible to implement multiple features that use leasing within your environment,
each must use the same kind of leasing.

Note: When switching from one leasing type to another, you must restart the entire cluster, not
just the Administration Server. Changing the leasing type cannot be done dynamically.

Determining Which Leasing Type to Use

The following considerations will help you determine which type of leasing is appropriate to your
WebLogic Server environment:

e Non-database Consensus Leasing

This type of leasing provides a leasing basis option (consensus) that does not require the
use of a HA database like Oracle RAC. This has direct benefit in automatic whole server
migration since the HA database requirement is removed with consensus leasing. This
means less configuration is required to enable automatic server migration.

Consensus leasing basis requires Node Manager to be configured and running. Automatic
whole server migration also requires the Node Manager for IP migration and server restart
on another machine. Hence, consensus leasing works well since it does not impose
additional requirements, but instead takes away an expensive one.

e High-availability Database Leasing

DB-leasing basis is still useful in cases in environments that are already invested in a HA
database, like Oracle RAC, for features like JMS store recovery. The HA database instance
can also be configured to support leasing with minimal additional configuration. This is
particularly useful if Node Manager is not running in the system.

High-availability Database Leasing

In this version of leasing, lease information is maintained within a table in a high-availability. A
high-availability database is required to ensure that leasing information is always available. Each
member of the cluster must be able to connect to the database in order to access leasing
information.

This method of leasing is useful for customers who already have a high-availability database
within their clustered environment. This method allows you to utilize leasing functionality
without being required to use Node Manager to manage servers within your environment.

The following procedures outline the steps required to configure your database for leasing.

Using WebLogic Server Clusters 1-5

1-6

1. Configure the database for server migration. This information that is used to determine
whether or not a server is running or needs to be migrated. For more information on leasing,
see “Leasing” on page 7-3.

Your database must be reliable. The server instances will only be as reliable as the database
is. For experimental purposes, a normal database will suffice. For a production
environment, only high-availability databases are recommended. If the database goes
down, all the migratable servers will shut themselves down.

Create the leasing table in the database. This is used to store the machine-server
associations used to enable server migration. The schema for this table is located in:

<WL_HOME>/server/db/<dbname>/leasing.ddl
where dbname is the name of the database vendor.

Note: The leasing table should be stored in a highly available database. Migratable servers
are only as reliable as the database used to store the leasing table.

2. Set up and configure a data source. This data source should point to the database configured
in the previous step.

Note: XA data sources are not supported for server migration.

For more information on creating a JDBC data source, see “Configuring JDBC Data
Sources” in Configuring and Managing WebLogic JDBC.

Non-database Consensus Leasing

In the non-database version of Consensus leasing, WebLogic Server maintains leasing
information in-memory. This removes the requirement of having a high-availability database to
use features that require leasing.

One member of a cluster is chosen as the cluster leader and is responsible for maintaining the
leasing information. The cluster leader is chosen based on the length of time that has passed since
startup. The managed server that has been running the longest within a cluster is chosen as the
cluster leader. Other cluster members communicate with this server to determine leasing
information, however, the leasing table is replicated to other nodes of the cluster to provide
failover.

Note: This version of leasing requires that you use Node Manager to control servers within the
cluster. Node Manager should also be running on every machine hosting managed
servers within the cluster. For more information, see Using Node Manager to Control
Servers.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs100/jdbc_admin/jdbc_datasources.html
http://e-docs.bea.com/wls/docs100/jdbc_admin/jdbc_datasources.html

Automatic Whole Server Migration

Automatic Whole Server Migration

This section outlines the procedures for configuring server migration and provides a general
discussion of how server migration functions within a WebLogic Server environment.

The following topics are covered:

“Preparing for Automatic Whole Server Migration” on page 7-7
“Configuring Automatic Whole Server Migration” on page 7-8
“Using High Availability Storage for State Data” on page 7-10

“Server Migration Processes and Communications” on page 7-10

Preparing for Automatic Whole Server Migration

Before configuring server migration, be aware of the following requirements:

Verify that whole server migration is supported on your platform. See Server Migration in
Supported Configurations for WebLogic Platform 10.0.

Caution: Automatic whole server migration is not supported on Solaris 10 systems using
the Solaris Zones feature. For more information, see Product Support Information
Supported Configurations.

Each Managed Server uses the same subnet mask. Unicast and multicast communication
among servers requires each server to use the same subnet. Server migration will not work
without multicast or unicast communication being configured.

For information on using multicast, see “Using IP Multicast for Backward Compatibility”
on page 3-2. For information on using unicast, see “One-to-Many Communication Using
Unicast” on page 3-4.

All servers hosting migratable servers are time-synchronized. Although migration works
when servers are not time-synchronized, time-synchronized servers are recommended in a
clustered environment.

If you are using different operating system versions among migratable servers, make sure
that all versions support identical functionality for ifconfig.

The primary interface names used by migratable servers are the same. If your environment
requires different interface names, then configure a local version of wlscontrol . sh for
each migratable server.

Using WebLogic Server Clusters 1-1

http://e-docs.bea.com/platform/suppconfigs/configs100/100_over/prod-info.html#ServerMigration
http://e-docs.bea.com/platform/suppconfigs/configs/prod-info.html#SolarisZones

1-8

For more information on wlsconstol.sh, see Using Node Manager to Control Servers.

See Databases Supporting WebL ogic Server Features for a list of databases that WebLogic
Server supports Automatic Server migration.

You cannot create Channels/NetworkAccessPoints that have a different Listen Address on
a migratable server.

There is no built-in mechanism for transferring files that a server depends on between
machines. Using a disk that is accessible from all machines is the preferred way to ensure
file availability. If you cannot share disks between servers, you must ensure that the
contents of domain_dir/bin are copied to each machine.

Ensure that the Node Manager security files are copied to each machine using the
nmEnrol1(Q WLST command. For more information, see Using Node Manager to Control
Servers.

Use high availability storage for state data. For highest reliability, use a shared storage
solution that is itself highly available—for example, a storage area network (SAN). See
“Using High Availability Storage for State Data” on page 7-10.

Configuring Automatic Whole Server Migration

Before configuring server migration, ensure that your environment meets the requirements
outlined in “Preparing for Automatic Whole Server Migration” on page 7-7.

To configure server migration for a Managed Server within a cluster, perform the following tasks:

1.

Obtain floating IP addresses for each Managed Server that will have migration enabled.

Each migratable server must be assigned a floating IP address which follows the server
from one physical machine to another after migration. Any server that is assigned a
floating IP address must also have AutoMigrationEnabled set to true.

Note: The migratable IP address should not be present on the interface of any of the
candidate machines before the migratable server is started.

Configure Node Manager. Node Manager must be running and configured to allow server
migration.

Note: Server migration is only supported using the SSH version of Node Manager.

For general information on using Node Manager in server migration, see “Node Manager’s
Role in Whole Server Migration” on page 7-17. For general information on configuring
Node Manager, see “Using Node Manager to Control Servers.”

Using WebLogic Server Clusters

http://e-docs.bea.com/platform/suppconfigs/configs100/100_over/supported_db.html#WLS_Feature_Support
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html

Automatic Whole Server Migration

If you are using a database to manage leasing information, configure the database for server
migration according to the procedures outlined in “High-availability Database Leasing” on
page 7-5.

For general information on leasing, see “Leasing” on page 7-3.

If you are using database leasing within a test environment and you need to reset the leasing
table, you should re-run the leasing.ddl script. This causes the correct tables to be dropped
and re-created.

If you are using a database to store leasing information, set up and configure a data source
according to the procedures outlined in “High-availability Database Leasing” on page 7-5.

You should set DataSourceForAutomaticMigration to this data source in each cluster
configuration.

Note: XA data sources are not supported for server migration.

For more information on creating a JDBC data source, see “Configuring JDBC Data
Sources” in Configuring and Managing WebLogic JDBC.

. Grant superuser privileges to the wlsifconfig.sh script.

This script is used to transfer IP addresses from one machine to another during migration.
It must be able to run ifconfig, which is generally only available to superusers. You can
edit the script so that it is invoked using sudo.

This script is available in the $BEA_HOME/wlserver_10.0/common/bin directory.

Ensure that wlsifconfig.sh, wlscontrol .sh, and nodemanager .domains are included
in your machines' PATH. The _sh files are located in
$BEA_HOME/wlserver_10.0/common/bin, and nodemanager .domains is located in
$BEA_HOME/wlserver_10.0/common/nodemanager.

Depending on your default shell, you may need to edit the first line of these scripts.

. The machines that host migratable servers must trust each other. For server migration to
occur, it must be possible to get to a shell prompt using 'ssh/rsh machine_A' from
machine_B and vice versa without having to explicitly enter a username/password. Also, each
machine must be able to connect to itself using SSH in the same way.

Note: You should ensure that your login scripts (.cshrc, .profile, .login, etc.) only echo
messages from your shell profile if the shell is interactive. WebLogic Server uses an
ssh command to login and echo the contents of the server.state file. Only the first line
of this output is used to determine the server state.

Using WebLogic Server Clusters 1-9

http://e-docs.bea.com/wls/docs100/jdbc_admin/jdbc_datasources.html
http://e-docs.bea.com/wls/docs100/jdbc_admin/jdbc_datasources.html

1-10

9. Set the candidate machines for server migration.Each server can have a different set of
Candidate machines, or they can all have the same set.

10. Edit wiscontrol .sh and set the Interface variable to the name of your network interface.

11. Restart the admin server.

Using High Availability Storage for State Data

The server migration process migrates services, but not the state information associated with
work in process at the time of failure.

To ensure high availability, it is critical that such state information remains available to the server
instance and the services it hosts after migration. Otherwise, data about the work in process at the
time of failure may be lost. State information maintained by a migratable server, such as the data
contained in transaction logs, should be stored in a shared storage system that is accessible to any
potential machine to which a failed migratable server might be migrated. For highest reliability,
use a shared storage solution that is itself highly available—for example, a storage area network
(SAN).

In addition, if you are using a database to store leasing information, the lease table, described in
the following sections, which is used to track the health and liveness of migratable servers should
also stored in a high availability database. For more information, see “Leasing” on page 7-3.

Server Migration Processes and Communications

The sections that follow describe key processes in a cluster that contains migratable servers:
e “Startup Process in a Cluster with Migratable Servers” on page 7-10
e “Automatic Migration Process” on page 7-12

e “Manual Migration Process” on page 7-14

Startup Process in a Cluster with Migratable Servers

Figure 7-1, “Startup of Cluster with Migratable Servers,” on page 7-11 illustrates the processing
and communications that occur during startup of a cluster that contains migratable servers.

The example cluster contains two Managed Servers, both of which are migratable. The
Administration Server and the two Managed Servers each run on different machines. A fourth
machine is available as a backup—in the event that one of the migratable servers fails. Node

Using WebLogic Server Clusters

Automatic Whole Server Migration

Manager is running on the backup machine and on each machine with a running migratable
server.

Figure 7-1 Startup of Cluster with Migratable Servers

1. Start cluster

[

Machine A

Administration """"_'_H_._._-___-_H_z-_ Caontact NM

Server \
4. Obtain
/ configuration
4. Obtain \
2. Contact NM configuration | pachine G
Node
Manager

3. Start MS2

Machine B

Node
Manager
5. Cache
config

3. Start MS1

anaged
Server 2

(Migratable)

anaged
Server 1

(Migratable)

Machine D

6. Obtain migratable
server lease

6. Obtain Node
migratable server lease Manager
and

7. Renew leases cluster master lease

7. Renew lease

Lease Table

These are the key steps that occur during startup of the cluster illustrated in Figure 7-1:

Using WebLogic Server Clusters 1-11

1-12

1. The administrator starts up the cluster.

2. The Administration Server invokes Node Manager on Machines B and C to start Managed
Servers 1 and 2, respectively. See “Administration Server’s Role in Whole Server Migration”
on page 7-16.

3. The Node Manager on each machine starts up the Managed Server that runs there. See “Node
Manager’s Role in Whole Server Migration” on page 7-17.

4. Managed Servers 1 and 2 contact the Administration Server for their configuration. See
“Migratable Server Behavior in a Cluster” on page 7-16.

5. Managed Servers 1 and 2 cache the configuration they started up.

6. Managed Servers 1 and 2 each obtain a migratable server lease in the lease table. Because
Managed Server 1 starts up first, it also obtains a cluster master lease. See “Cluster Master’s
Role in Whole Server Migration” on page 7-18.

7. Managed Server 1 and 2 periodically renew their leases in the lease table, proving their health
and liveness.

Automatic Migration Process

Figure 7-2, “Automatic Migration of a Failed Server,” on page 7-13 illustrates the automatic
migration process after the failure of the machine hosting Managed Server 2.

Using WebLogic Server Clusters

Automatic Whole Server Migration

Figure 7-2 Automatic Migration of a Failed Server

1. Machine C
fails

Machine B Machine A
Nade
Administration

Server

Managed
Server 1

(Migratable,
Cluster Master)

chine C
Mode
3. Cluster Manager Manag
tries to Contact NM
an
Sgfver

4. Cluster Master

2. Cluster Manager 4
detects that contacts NM igratable

MS2's lease is expired 6. Obtain

configuration
Machine D
Node
Manager
“-\

Lease Table
7. Obtain lease 5. Start MS2

8. Cache

R Managed

Server 2

(Migratabla)

1. Machine C, which hosts Managed Server 2, fails.

2. Upon its next periodic review of the lease table, the cluster master detects that Managed
Server 2’s lease has expired. See “Cluster Master’s Role in Whole Server Migration” on

page 7-18.

Using WebLogic Server Clusters 1-13

1-14

3. The cluster master tries to contact Node Manager on Machine C to restart Managed Server 2,
but fails, because Machine C is unreachable.

Note: Ifthe Managed Server 2’s lease had expired because it was hung, and Machine C was
reachable, the cluster master would use Node Manager to restart Managed Server 2
on Machine C.

4. The cluster master contacts Node Manager on Machine D, which is configured as an available
host for migratable servers in the cluster.

5. Node Manager on Machine D starts Managed Server 2. See “Node Manager’s Role in Whole
Server Migration” on page 7-17.

6. Managed Server 2 starts up and contacts the Administration Server to obtain its configuration.
7. Managed Server 2 caches the configuration it started up with.

8. Managed Server 2 obtains a migratable server lease.

During migration, the clients of the Managed Server that is migrating may experience a brief
interruption in service; it may be necessary to reconnect. On Solaris and Linux operating systems,
this can be done using i fconfig command. The clients of a migrated server do not need to know
the particular machine to which it has migrated.

When a machine that previously hosted a server instance that was migrated becomes available
again, the reversal of the migration process—migrating the server instance back to its original
host machine—is known as failback. WebLogic Server does not automate the process of failback.
An administrator can accomplish failback by manually restoring the server instance to its original
host.

The general procedures for restoring a server to its original host are as follows:
e Gracefully shutdown the new instance of the server

e After you have restarted the failed machine, restart Node Manager and the managed server.

The exact procedures you will follow depend on your server and network environment.

Manual Migration Process

Figure 7-3, “Manual Server Migration,” on page 7-15 illustrates what happens when an
administrator manually migrates a migratable server.

Using WebLogic Server Clusters

Figure 7-3 Manual Server Migration

/’

1. Initiate manual migration

/

Machine A

| —

——
7. Obtain

Administration
Server

5. Contact NM

2. Contact NM —|

configuration

Automatic Whole Server Migration

Machine C

Machine B

Node
Manager

anaged
Server 1

anaged
Server 2

Migratable
6. Start MS2 (Mig)

8. Cache
config

{Migratable)

Managed
Server 2

(Migratable)

Node
Manager

3. Stop M52

I
9. Obtain lease

4. Give up lease

Lease Table

1. Anadministrator uses the Administration Console to initiate the migration of Managed Server

2 from Machine C to Machine B.

2. The Administration Server contacts Node Manager on Machine C. See “Administration

Server’s Role in Whole Server Migration” on page 7-16.

o o k~ w

Node Manager on Machine C stops Managed Server 2.

Managed Server 2 removes its row from the lease table.

Node Manager on Machine B starts Managed Server 2.

The Administration Server invokes Node Manager on Machine B.

7. Managed Server 2 obtains its configuration from the Administration Server.

Using WebLogic Server Clusters

1-15

8. Managed Server 2 caches the configuration it started up with.

9. Managed Server 2 adds a row to the lease table.

Administration Server’s Role in Whole Server Migration
In a cluster that contains migratable servers, the Administration Server:
e Invokes Node Manager, on each machine that hosts cluster members, to start up the

migratable servers. This is a prerequisite for server migratability—if a server instance was
not initially started by Node Manager, it cannot be migrated.

e Invokes Node Manager on each machine involved in a manual migration process to stop
and start the migratable server.

e Invokes Node Manager on each machine that hosts cluster members to stop server
instances during a normal shutdown. This is a prerequisite for server migratability—if a
server instance is shut down directly, without using Node Manager, when the cluster master
detects that the server instance is not running, it will call Node Manager to restart it.

In addition, the Administration Server provides its regular domain management functionality,
persisting configuration updates issued by an administrator, and providing a run-time view of the
domain, including the migratable servers it contains.

Migratable Server Behavior in a Cluster

A migratable server is a clustered Managed Server that has been configured as migratable. These
are the key behaviors of a migratable server:

e If you are using a database to manage leasing information, during startup and restart by
Node Manager, a migratable server adds a row to the lease table. The row for a migratable
server contains a timestamp, and the machine where it is running.

For more information, see on leasing, see “Leasing” on page 7-3.

e When using a database to manage leasing information, a migratable server adds a row to
the database as a result of startup, it tries to take on the role of cluster master, and succeeds
if it is the first server instance to join the cluster.

e Periodically, the server renews its “lease” by updating the timestamp in the lease table.

By default a migratable server renews its lease every 30,000 milliseconds—the product of
two configurable ServerMBean properties:

— HealthChecklIntervalMillis, which by default is 10,000.

Using WebLogic Server Clusters

Automatic Whole Server Migration

— HealthCheckPeriodsUntilFencing, which by default is 3.

o |f a migratable server fails to reach the lease table and renew its lease before the lease
expires, it terminates as quickly as possible using a Java System.exit—in this case, the
lease table still contains a row for that server instance. For information about how this
relates to automatic migration, see Cluster Master’s Role in Whole Server Migration.

e During operation, a migratable server listens for heartbeats from the cluster master. When
it detects that the cluster master is not sending heartbeats, it attempts to take over the role
of cluster master, and succeeds if no other server instance has claimed that role.

Node Manager’s Role in Whole Server Migration

The use of Node Manager is required for server migration—it must run on each machine that
hosts, or is intended to host.

Node Manager supports server migration in these ways:

e Node Manager must be used for initial startup of migratable servers.

When you initiate the startup of a Managed Server from the Administration Console, the
Administration Server uses Node Manager to start up the server instance. You can also
invoke Node Manager to start the server instance using the stand-alone Node Manager
client; however, the Administration Server must be available so that the Managed Server
can obtain its configuration.

Note: Migration of a server instance that not initially started with Node Manager will fail.

o Node Manager must be used for suspend, shutdown, or force shutdown of migratable
Servers.

e Node Manager tries to restart a migratable server whose lease has expired on the machine
where it was running at the time of failure.

Node Manager performs the steps in the server migrate process by running customizable
shell scripts, provided with WebLogic Server, that start, restart and stop servers; migrate IP
addresses; and mount and unmount disks. The scripts are available for Solaris and Linux.

— In an automatic migration, the cluster master invokes Node Manager to perform the
migration.

— In a manual migration, the Administration Server invokes Node Manager to perform
the migration.

Using WebLogic Server Clusters 1-11

1-18

Cluster Master’s Role in Whole Server Migration

In a cluster that contains migratable servers, one server instance acts as the cluster master. Its role
is to orchestrate the server migration process. Any server instance in the cluster can serve as the
cluster master. When you start a cluster that contains migratable servers, the first server to join
the cluster becomes the cluster master and starts up the cluster manager service. If a cluster does
not include at least one migratable server, it does not require a cluster master, and the cluster
master service does not start up. In the absence of a cluster master, migratable servers can
continue to operate, but server migration is not possible. These are the key functions of the cluster
master:

o Issues periodic heartbeats to the other servers in the cluster.

e Periodically reads the lease table to verify that each migratable server has a current lease.
An expired lease indicates to the cluster master that the migratable server should be
restarted.

e Upon determining that a migratable server’s lease is expired, waits for period specified by
the FencingGracePeriodMillis on the ClusterMBean, and then tries to invoke the
Node Manager process on the machine that hosts the migratable server whose lease is
expired, to restart the migratable server.

o [f unable to restart a migratable server whose lease has expired on its current machine, the
cluster master selects a target machine in this fashion:

— If you have configured a list of preferred destination machines for the migratable
server, the cluster master chooses a machine on that list, in the order the machines are
listed.

— Otherwise, the cluster master chooses a machine on the list of those configured as
available for hosting migratable servers in the cluster.

A list of machines that can host migratable servers can be configured at two levels: for the
cluster as a whole, and for an individual migratable server. You can define a machine list at
both levels. You must define a machine list at least one level.

e To accomplish the migration of a server instance to a new machine, the cluster master
invokes the Node Manager process on the target machine to create a process for the server
instance.

The time required to perform the migration depends on the server configuration and startup
time.

Using WebLogic Server Clusters

Automatic Whole Server Migration

— The maximum time taken for cluster master to restart the migratable server is
(HealthCheckPeriodsUntilFencing * HealthCheckIntervalMillis) +
FencingGracePeriodMillis.

— The total time before the server becomes available for client requests depends on the
server startup time and the application deployment time.

Using WebLogic Server Clusters 1-19

1-20 Using WebLogic Server Clusters

Service-Level Migration

The following sections describe the service-level migration mechanisms supported by WebLogic
Server:

“Understanding the Service-Level Migration Framework” on page 8-2
“Pre-Migration Requirements” on page 8-10
“Roadmap for Configuring Manual Migration of JMS-Related Services” on page 8-13

“Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service”
on page 8-17

“Manual Migration of the JTA Transaction Recovery Service” on page 8-21

“Automatic Migration of User-Defined Singleton Services” on page 8-22

These sections focus on the migration of failed services. WebLogic Server also supports whole
server-level migration, where a migratable server instance, and all of its services, is migrated to
a different physical machine upon failure. For information on failed server migration, see
Chapter 7, “Whole Server Migration.”

WebLogic Server also supports replication and failover at the application level. For more
information, see Chapter 6, “Failover and Replication in a Cluster”.

Using WebLogic Server Clusters 8-1

Understanding the Service-Level Migration Framework

8-2

In a WebL ogic Server cluster, most subsystem services are hosted homogeneously on all server
instances in the cluster, enabling transparent failover from one server to another. In contrast,
pinned services, such as messaging-related services, the JTA Transaction Recovery Service, and
user-defined singleton services are hosted on individual server instances within a cluster—for
these services, the WebLogic Server migration framework supports failure recovery with service
migration, as opposed to failover. See “Migratable Services” on page 8-2.

Service-level migration in WebLogic Server is the process of moving the pinned services from
one instance server instance to a different available server instance within the cluster. Service
migration is controlled by logical migratable target, which serves as a grouping of services that
is hosted on only one physical server in a cluster. You can select a migratable target in place of a
server or cluster when targeting certain pinned services. High availability is achieved by
migrating a migratable target from one clustered server to another when a problem occurs on the
original server. You can also manually migrate a migratable target for scheduled maintenance.
See “Understanding Migratable Targets In a Cluster” on page 8-4.

The migration framework provides tools and infrastructure for configuring and migrating
targets. See “Migration Processing Tools” on page 8-7 and “Automatic Service Migration
Infrastructure for JTA” on page 8-7. For definitions of the terms that apply to server and service
migration, see “Migration Terminology” on page 7-2.

Migratable Services

WebLogic Server supports service-level migration for IMS-related services, the JTA Transaction
Recovery Service, and user-defined singleton services. These are referred to as migratable
services, because you can move them from one server to another within a cluster. The following
migratable services can be configured for manual migration:

Messaging/IMS-related Services

JMS services are singleton services, and, therefore, are not active on all server instances in a
cluster. Instead, they are pinned to a single server in the cluster to preserve data consistency. To
ensure that singleton JMS services do not introduce a single point of failure for dependent
applications in the cluster, WebLogic Server can be configured to manually migrate them to any
server instance in the migratable target list.

Using WebLogic Server Clusters

Understanding the Service-Level Migration Framework

e JMS Server — management containers for the queues and topics in JMS modules that are
targeted to them. See JMS Server Configuration in Configuring and Managing WebLogic
JMS.

e Store-and-Forward (SAF) Service — store-and-forward messages between local sending and
remote receiving endpoints, even when the remote endpoint is not available at the moment
the messages are sent. Only sending SAF agents configured for JIMS SAF (sending
capability only) are migratable. See Configuring and Managing WebLogic
Store-and-Forward.

e Path Service — a persistent map that can be used to store the mapping of a group of
messages in a JMS Message Unit-of-Order to a messaging resource in a cluster. It provides
a way to enforce ordering by pinning messages to a member of a cluster hosting servlets,
distributed queue members, or Store-and-Forward agents. One path service is configured
per cluster. See Using the WebLogic Path Service in Configuring and Managing WebLogic
JMS.

e Custom Persistent Store — a user-defined, disk-based file store or JDBC-accessible database
for storing subsystem data, such as persistent JIMS messages or store-and-forward
messages. See Using the WebLogic Persistent Store in Configuring WebLogic Server
Environments.

JTA Transaction Recovery Service

The Transaction Recovery Service automatically attempts to recover transactions on system
startup by parsing all transaction log records for incomplete transactions and completing them.
For detailed information, see Transaction Recovery After a Server Fails in Programming
WebLogic JTA.

User-defined Singleton Services

Within an application, you can define a singleton service that can be used to perform tasks that
you want to be executed on only one member of a cluster at any give time. See “Automatic
Migration of User-Defined Singleton Services” on page 8-22.

Using WebLogic Server Clusters 8-3

http://e-docs.bea.com/wls/docs100/jms_admin/basic_config.html#jms_servers_config
http://e-docs.bea.com/wls/docs100/saf_admin/index.html
http://e-docs.bea.com/wls/docs100/saf_admin/index.html
http://e-docs.bea.com/wls/docs100/jms_admin/advance_config.html#Path_Service
http://e-docs.bea.com/wls/docs100/config_wls/store.html
http://e-docs.bea.com/wls/docs100/jta/trxman.html#transaction_recovery

8-4

Understanding Migratable Targets In a Cluster

You can configure JMS and JTA services for high availability by using migratable targets. A
migratable target is a special target that can migrate from one server in a cluster to another. As
such, a migratable target provides a way to group migratable services that should move together.
When the migratable target is migrated, all services hosted by that target are migrated.

In order to configure a migratable JMS service for migration, it must be deployed to a migratable
target. A migratable target specifies a set of servers that can host a target, and can optionally
specify a user-preferred host for the services and an ordered list of candidate backup servers
should the preferred server fail. Only one of these servers can host the migratable target at any
one time.

Once a service is configured to use a migratable target, then the service is independent from the
server member that is currently hosting it. For example, if a JMS server with a deployed JIMS
queue is configured to use a migratable target, then the queue is independent of when a specific
server member is available. In other words, the queue is always available when the migratable
target is hosted by any server in the cluster.

An administrator can manually migrate pinned migratable services from one server instance to
another in the cluster, either in response to a server failure or as part of regularly scheduled
maintenance. If you do not configure a migratable target in the cluster, migratable services can
be migrated to any WebL ogic Server instance in the cluster. See the “Roadmap for Configuring
Manual Migration of IMS-Related Services” on page 8-13.

User-Preferred Servers and Candidate Servers

When deploying a JMS service to the migratable target, you can select a the user-preferred server
(UPS) target to host the service. When configuring a migratable target, you can also specify
constrained candidate servers (CCS) that can potentially host the service should the
user-preferred server fail. If the migratable target does not specify a constrained candidate server,
the JMS server can be migrated to any available server in the cluster.

WebLogic Server enables you to create separate migratable targets for JMS services. This allows
you to always keep each service running on a different server in the cluster, if necessary.
Conversely, you can configure the same selection of servers as the constrained candidate servers
for both JTA and JMS, to ensure that the services remain co-located on the same server in the
cluster.

Using WebLogic Server Clusters

Understanding the Service-Level Migration Framework

Targeting Rules for JMS Servers

When not using migratable targets, a JMS server can be targeted to a specific cluster member and
can use either the default file or a custom store. However, when targeted to a migratable target, a
JMS server must use a custom persistent store, and must be targeted to the same migratable target
used by the custom store. A JMS server, SAF agent, and custom store can share a migratable
target. See “Custom Store Availability for JMS Services” on page 8-10.

Targeting Rules for SAF Agents

When not using migratable targets, a SAF agent can be targeted to an entire cluster or a list of
multiple servers in a cluster, with the requirement that the SAF agent and each server in the cluster
must use the default persistent store. However, when targeted to a migratable target, a SAF agent
can only be targeted to that migratable target. It must also use a custom persistent store, and, like
a JMS server, must targeted to the same migratable target used by the custom store. A SAF agent,
JMS server, and custom store can share a migratable target.

In addition, consider the following topics when targeting SAF agents to migratable targets.

Re-targeting SAF Agents to Migratable Targets

To preserve SAF message consistency, WebLogic Server prevents you from retargeting an
existing SAF agent to a migratable target. Instead, you must delete the existing SAF agent and
configure a new one with the same values and target it to a migratable target.

Targeting Migratable SAF Agents For Increased Message Throughput

When not using migratable targets, a SAF agent can be targeted to an entire cluster or multiple
servers in a cluster for increased message throughput. However, When a SAF agent is targeted to
a migratable target, it cannot be targeted to any other servers in the cluster, including an entire
cluster. Therefore, if you want to increase throughput by importing a JMS destination to multiple
SAF agents on separate servers in a cluster, then you should create migratable targets for each
server in the cluster, and then create separate SAF agents that are targeted individually to each
migratable target.

Targeting SAF Agents For Consistent Quality-of-Service

A Weblogic administrator has the freedom to configure and deploy multiple SAF agents in the
same cluster or on the same server. As such, there could be situations where the same server has
both migratable SAF agents and non-migratable ones. For such cases, the behavior of a IMS
client application may vary depending on which SAF agent handles the messages.

Using WebLogic Server Clusters 8-5

8-6

For example, an imported destination can be deployed to multiple SAF agents, and messages sent
to the imported destination will be load-balanced among all SAF agents. If the list of the SAF
agents contains non-migratable agents, the JMS client application may have a limited sense of
HA (high availability). Therefore, a recommended best practice is to deploy an imported
destination to one or more SAF agents that provide the same level of HA functionality. In other
words, to get consistent forwarding quality and behavior, you should target the imported
destination to a set of SAF agents that are all targeted to migratable targets or are all targeted to
non-migratable targets

Targeting Rules for Path Service

When not using migratable targets, a path service is targeted to single member of a cluster, and
can use either the default file or a custom store. However, when targeted to a migratable target, a
path service cannot use the default store, so a custom store must be configured and targeted to the
same migratable target. As an additional best practice, the path service and its custom store
should be the only users of that migratable target. Whereas, a JMS server, SAF agent, and custom
store can share a migratable target.

Special Considerations For Targeting a Path Service

When the path service for a cluster is targeted to a migratable target, as a best practice, the path
service and its custom store should be the only users of that migratable target.

When a path service is targeted to a migratable target its provides enhanced storage of message
unit-of-order (UOQ) information for JMS distributed destinations, since the UOO information

will be based on the entire migratable target instead of being based only on the server instance

hosting the distributed destinations member.

Targeting Rules for Custom Stores

As mentioned previously, all IMS-related services require a custom persistent store that is also
targeted to the same migratable targets as the JMS services. See “Custom Store Availability for
JMS Services” on page 8-10.

Migratable Targets For the JTA Transaction Recovery Service

For JTA, migratable target configuration should not be configured because a migratable target is
automatically defined for JTA at the server level. To enable JTA automatic migration select the
Automatic JTA Migration Enabled check box. The default migration policy for JTA is
manual, but when configured for automatic migration, the JTA policy is internally set to
failure-recovery. This means that Transaction Recovery Service will only start if its

Using WebLogic Server Clusters

Understanding the Service-Level Migration Framework

user-preferred server (UPS) is started. If an administrator shuts down the UPS either gracefully
or forcefully, this service will not be migrated anywhere. However, if the UPS shuts down due to
an internal error, then this service will be migrated to another candidate server.

Migration Processing Tools

WebLogic Server migration framework provides infrastructure and facilities to perform the
manual migration of JMS-related services and the manual or automatic migration of the JTA
Transaction Recovery Service.

Administration Console

An administrator can use the WebLogic Administration Console to configure and/or perform the
migration process.

For more information, see the following topics in the Administration Console Help:
e Configure JMS service migration

e Configure JTA Transaction Recovery Service migration

WebLogic Scripting Tool

An administrator can use the WebLogic Scripting Tool (WLST) command-line interface utility
to manage the life cycle of a server instance, including configuring and/or performing the
migration process.

For more information, refer to the Life Cycle Commands in WebLogic Scripting Tool.

Automatic Service Migration Infrastructure for JTA

The service migration framework depends on the following components to monitor server health
issues and, if necessary, automatically migrate the JTA Transaction Recovery Service to a
healthy server.

Leasing for Migratable Services

Leasing is the process WebLogic Server uses to manage services that are required to run on only
one member of a cluster at a time. Leasing ensures exclusive ownership of a cluster-wide entity.
Within a cluster, there is a single owner of a lease. Additionally, leases can failover in case of
server or cluster failure. This helps to avoid having a single point of failure. See “Leasing” on
page 7-3.

Using WebLogic Server Clusters 8-7

http://e-docs.bea.com/wls/docs100/config_scripting/reference.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSMigration.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jta/ConfigureTRSMigration.html

8-8

Using the Automatic Migration option for the JTA Transaction Recovery Service requires setting
a cluster’s Migration Basis policy to either Database or Consensus leasing, as follows:

Database Leasing

If you are using a database to manage leasing information, configure the database for server
migration according to the procedures outlined in “High-availability Database Leasing” on
page 7-5.

Setting Migration Basis to Database leasing requires that the Data Source For Automatic
Migration option is set with a valid JDBC System Resource. It implies that there is a table
created on that resource that the Managed Servers will use for leasing. For more information on
creating a JDBC data source, see “Configuring JDBC Data Sources” in Configuring and
Managing WebLogic JDBC.

Consensus Leasing

Setting Migration Basis to Consensus leasing means that the member servers maintain leasing
information in-memory, which removes the requirement of having a high-availability database to
use leasing. This version of leasing requires that you use Node Manager to control servers within
the cluster. It also requires that all servers that are migratable, or which could host a migratable
target, must have a Node Manager associated with them. The Node Manager is required to get
health monitoring information about the member servers involved. See “Non-database
Consensus Leasing” on page 7-6.

Node Manager
When using automatic service migration for JTA, the Node Manager is required to get health
monitoring information about the member servers involved, as follows:

e Consensus leasing — Node Manager must be running on every machine hosting managed
servers within the cluster.

e Database leasing — Node Manager must be running on every machine hosting managed
servers within the cluster only if pre/post-migration scripts are defined. If
pre/post-migrations are not defined, then Node manager is not required.

For general information on configuring Node Manager, see Using Node Manager to Control
Servers.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/jdbc_admin/jdbc_datasources.html
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html

Understanding the Service-Level Migration Framework

Service Health Monitoring

To accommaodate service migration requests, the migratable target performs basic health
monitoring on JTA Transaction Recovery Services deployed on it that implement a Health
Monitoring Interface. The advantage of having a migratable target do this job is that it is
guaranteed to be local. Plus, the migratable target has a direct communication channel to the
leasing system, and can request that the lease be released (thus triggering a migration) when bad
health is detected.

How Health Monitoring of the JTA Transaction Recovery Service Triggers Automatic
Migration

When JTA has automatic migration enabled, the server defaults to shutting down if the JTA
subsystem reports itself as unhealthy (FAILED). For example, if any 10 error occurs when
accessing the TLOG, then JTA health state will change to FAILED.

When the primary server fails, the migratable service framework automatically migrates the
Transaction Recovery Service to a backup server. The automatic service migration framework
selects a backup server from the configured candidate servers. If a backup server fails before
completing the transaction recovery actions, and then is restarted, the Transaction Recovery
Service will eventually be migrated to another server in the cluster (either the primary server will
reclaim it or the migration framework will notice that the backup server’s lease has expired).

After successful migration, if the backup server is shut down normally, then when the backup
server is rebooted, the Transaction Recovery Service will again be activated on the backup server.
This is consistent with manual service migration. As with manual service migration, the
Transaction Recovery Service service cannot be migrated from a running primary server.

Migrating a Service From an Unavailable Server

There are special considerations when you migrate a service from a server instance that has
crashed or is unavailable to the Administration Server. If the Administration Server cannot reach
the previously active host of the service at the time you perform the migration, that Managed
Server’s local configuration information (i.e., migratable target) will not be updated to reflect that
it is no longer the active host for the service. In this situation, you must purge the unreachable
Managed Server’s local configuration cache before starting it again. This prevents the previous
active host from hosting a service that has been migrated to another Managed Server.

Using WebLogic Server Clusters 8-9

Pre-Migration Requirements

WebLogic Server imposes certain constraints and prerequisites in terms of the service
configuration in order to support service migration. These constraints are service specific and also
depend your enterprise application architecture.

Custom Store Availabhility for JMS Services

Migratable JIMS-related services cannot use the default persistent store, so you must configure a
custom store and target it to the same migratable target as the JMS server or SAF agent. (As a
best practice, a path service should use its own custom store and migratable target).

The custom store must also either be:

e Accessible from all candidate servers for both file-based and JDBC-accessible stores:

— If the application uses file-based persistence (file store), it is recommended to have
either a SAN (Storage Area Network) or a dual-ported SCSI disk.

— If the application uses JDBC-based persistence (JDBC store), then the JDBC
connection information for that database instance, such as data source and connection
pool, has to be available from all candidate servers.

e Custom file stores need to be migrated to a backup server target by
pre-migration/post-migration scripts in the
BEA_HOME/user_projects/domains/mydomain/bin/service_migration directory,
where mydomain is a domain-specific directory, with the same name as the domain.

Note: Basic directions for creating pre/post-migration scripts are provided in the
readme. txt file in this directory.

In some cases, scripts may be needed to dismount the disk from the previous server and
mount it on the backup server. These scripts are configured on the Node Manager, using
the PreScript() and PostScript() methods in the MigratableTargetMBean, Or using
the Administration Console. In other cases, a script may be needed to move (not copy) a
custom file store directory to the backup server. The old configured file store directory
should not be left for the next time the migratable target is hosted by the old server;
therefore, the WebLogic administrator should delete or move the files to another directory.

Default File Store Availability for JTA

To migrate the JTA Transaction Recovery Service from a failed server in a cluster to another
server (backup server) in the same cluster, the backup server must have access to the transaction

8-10 Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/wlsmbeanref/mbeans/MigratableTargetMBean.html

Pre-Migration Requirements

log (TLOG) records from the failed server. Transaction log records are stored in the default
persistent store for the server.

If you plan to use service migration in the event of a failure, you must configure the default
persistent store so that it stores records in a shared storage system that is accessible to any
potential machine to which a failed migratable server might be migrated. For highest reliability,
use a shared storage solution that is itself highly available—for example, a storage area network
(SAN) or a dual-ported disk. In addition, only JTA and other non-migratable services can share
the same default store.

Optionally, you may also want to use pre/post-migration scripts to perform any unmounting and
mounting of shared storage, as needed. Basic directions for creating pre/post-migration scripts are
provided in a readme . txt file in the
BEA_HOME/user_projects/domains/mydomain/bin/service_migration directory, where
mydomain is a domain-specific directory, with the same name as the domain.

Server State and Manual Service Migration

For automatic migration, when the current (source) server fails, the migration framework will
automatically migrate the Transaction Recovery Service to a target backup server.

For manual migration, you cannot migrate the Transaction Recovery Service to a backup server
from a running server. You must stop the server before migrating the Transactions Recovery
Service.

Table 8-1 Server Running State and Manual Migration Support

Server State Information Migration Allowed?
Current Server Backup Server Messaging JTA
Running Running Yes No
Running Standby Yes No
Running Not running Yes No
Standby Running Yes No
Standby Standby Yes No
Standby Not Running Yes No

Using WebLogic Server Clusters 8-11

8-12

Tahle 8-1 Server Running State and Manual Migration Support

Server State Information Migration Allowed?
Not Running Running Yes Yes
Not Running Standby Yes No
Not Running Not Running Yes Yes

Using WebLogic Server Clusters

Roadmap for Configuring Manual Migration of JMS-Related Services

Roadmap for Configuring Manual Migration of
JMS-Related Services

WebLogic JMS leverages the migration framework by allowing an administrator to specify a
migratable target for IMS-related services. Once properly configured, a JMS service can be
manually migrated to another WebLogic Server within a cluster. This includes both scheduled
migrations as well as manual migrations in response to a WebLogic Server failure within the
cluster.

To configure JMS-related services for manual migration on a migratable target within a cluster,
perform the following tasks.

Step 1: Configured Managed Servers

Configure the Managed Servers in the cluster for migration, including assigning Managed
Servers to a machine.

For step-by-step instructions for using the Administration Console to complete these tasks, refer
to the following topics:

e Create Managed Servers

Note: You mustsetaunique Listen Address value for the Managed Server instance that will
host a migrated the JMS server; otherwise, the migration will fail.

e Create and configure machines

Step 2: Configure Migratable Targets

You should perform this step before targeting any JMS-related services or enabling the JTA
Transaction Recovery Service migration.

Configuring a Migratable Server As a Migratable Target

The Migratable Target Summary table in Administration Console displays the system-generated
migratable targets of servername (migratable), which are automatically generated for each
running server in a cluster. However, these are only generic templates and still need to be targeted
and configured for migration.

Using WebLogic Server Clusters 8-13

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/domainconfig/CreateManagedServers.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/machines/ConfigureMachines.html

8-14

Create a New Migratable Target

When creating a new migratable target, the Administration Console provides a mechanism for
creating, targeting, and selecting a migration policy.

Select a Preferred Server

When you create a new migratable target using the Administration Console, you can initially
choose a preferred server in the cluster to associate the target with. The preferred server is the
most appropriate server for hosting the migratable target.

Optionally Select Constrained Candidate Servers

When creating migratable targets you may also want to restrict the potential servers to which you
can migrate JMS-related services to only those that have access to a custom persistent store that
is targeted to the same migratable target as the JMS-related services.

For the cluster’s Path Service, however, the candidate servers for the migratable target should be
the whole cluster, which is the default setting.

On the migratable target’s Configuration > Migration page, the Constrained Candidate Servers
Available box lists all the Managed Servers that could possibly support the migratable target.
They become valid Candidate Servers when you move them into the Chosen box.

Optionally Specify Pre/Post-Migration Scripts

After creating a migratable target, you may also want to specify whether you are providing any
pre-migration and post-migration scripts to perform any unmounting and mounting of the shared
custom store, as needed.

e Pre-Migration Script Path — the path to the pre-migration script to run before a
migratable target is actually activated.

e Post-Migration Script Path — the path to the post-migration script to run after a
migratable target is fully deactivated.

e Allow Post-Migration Script To Run On a Different Machine — specifies whether or not
the post-deactivation script is allowed to run on a different machine.

The pre/post-migration scripts must be located in the
BEA_HOME/user_projects/domains/mydomain/bin/service_migration directory, where
mydomain is a domain-specific directory, with the same name as the domain. Basic directions for
creating pre/post-migration scripts are provided in a readme . txt file in this directory.

Using WebLogic Server Clusters

Roadmap for Configuring Manual Migration of JMS-Related Services

Step 3: Configure and Target Custom Stores

As discussed in “Custom Store Availability for IMS Services” on page 8-10, JMS-related
services require you to configure a custom persistent store that is also targeted to the same
migratable targets as the JMS services, and make sure that the store is either:

e Configured such that all the candidate servers in a migratable target have access to the
custom store

e Migrated around by pre/post migration scripts. See “Optionally Specify Pre/Post-Migration
Scripts” on page 8-14.

Step 4: Target the JMS Services

When using migratable targets, you must target your JMS service to the same migratable target
used by the custom persistent store. In the event that no custom store is specified for a JIMS
service that uses a migratable target, then a validation message will be generated, followed by
failed JMS server deployment and a WebLogic Server boot failure. For example, attempting to
target a JMS server that is using the default file store to a migratable target, will generate the
following message:

Since the JMS server is targeted to a migratable target, it cannot use the
default store.

Similar messages are generated for a SAF agent or path service that is targeted to a migratable
target and attempts to use the default store.

In addition, if the custom store is not targeted to the same migratable target as the migratable
service, then the following validation log message will be generated, followed by failed IMS
server deployment and a WebL ogic Server boot failure.

The JMS server is not targeted to the same target as its persistent store.

Special Considerations When Targeting SAF Agents or Path Service

There are some special targeting choices to consider when targeting SAF agents and a path
service to migratable targets. For more information, see “Targeting Rules for SAF Agents” on
page 8-5 and “Targeting Rules for Path Service” on page 8-6.

Using WebLogic Server Clusters 8-15

8-16

Step 5: Restart the Administration Server and Managed
Servers With Modified Migration Policies

You must restart the Administration Server after configuring your JMS services for manual
service migration.

You must also restart any Managed Servers whose migration policies were modified.

Step 6: Manually Migrating JMS Services

For instructions on manually migrating the JMS-related services using the Administration
Console, see Manually Migrate JMS Services in the Administration Console Help.

For instructions on manually migrating the JMS-related services using WLST, see the WLST
Command and Variable Reference in WebLogic Scripting Tool.

Note: You may want to migrate a JMS service back to the original primary server once it is back
online. Unlike the JTA Transaction Recovery Service, JMS services do not automatically
migrate back to the primary server when it becomes available, so you need to manually
migrate these services.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jms_servers/MigrateJMSServer.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jms_servers/MigrateJMSServer.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jms_servers/MigrateJMSServer.html

Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service

Roadmap for Configuring Automatic Migration of the JTA
Transaction Recovery Service

The JTA Transaction Recovery Service is designed to gracefully handle transaction recovery
after a crash. You can specify to have the Transaction Recovery Service automatically migrated
from an unhealthy server instance to a healthy server instance, with the help of the server health
monitoring services. This way the backup server can complete transaction work for the failed
Sserver.

To configure automatic migration of the Transaction Recovery Service for a migratable target
within a cluster, perform the following tasks.

Step 1: Configured Managed Servers and Node Manager

Configure the Managed Servers in the cluster for migration, including assigning Managed
Servers to a machine. Node Manager must also be running and configured to allow automatic
server migration. The Node Manager is required to get liveliness information about the servers
involved.

For step-by-step instructions for using the Administration Console to complete these tasks, refer
to the following topics:

e Create Managed Servers

Note: For information on configuring a primary server to not boot in Managed Server
Independence (MSI) mode, which will prevent concurrent access to the TLOG with
another backup server in recovery mode, see Managed Server Independence in
Programming WebLogic JTA.

e Create and configure machines

e Configure Node Manager

Note: For automatic service migration, Consensus leasing requires that you use Node
Manager to control servers within the cluster and that all migratable servers must
have a Node Manager associated with them. For Database leasing, Node Manager is
required only if pre-migration/post-migration scripts are defined. If
pre/post-migrations are not defined, then Node manager is not required.

For general information on configuring Node Manager, see Using Node Manager to
Control Servers.

Using WebLogic Server Clusters 8-11

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/domainconfig/CreateManagedServers.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/machines/ConfigureMachines.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/machines/BindToProtectedPortsOnServersStartedByNodeManager.html
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html
http://e-docs.bea.com/wls/docs100/jta/trxman.html#MSI Mode

8-18

Step 2: Configure the Migration Basis

On the Cluster > Configuration > Migration page, configure the cluster’s “Migration Basis”
according to how your data persistence environment is configured, using either Database Leasing
or Consensus Leasing. See “Leasing for Migratable Services” on page 8-7.

Step 3: Enable Automatic JTA Migration

In the JTA Migration Configuration section on the Server > Configuration > Migration page,
configure the following options.

Select the Automatic JTA Migration Check Box

Configure the automatic migration of the JTA Transaction Recovery Service by selecting the
Automatic JTA Migration Enabled check box.

Optionally Select Candidate Servers

You may also want to restrict the potential servers to which you can migrate the Transaction
Recovery Service to those that have access to the current server’s transaction log files (stored in
the default WebL ogic store). If no candidate servers are chosen, then any server within the cluster
can be chosen as a candidate server.

From the Candidate Servers Available box, select the Managed Servers that can access the JTA
log files. They become valid Candidate Servers when you move them into the Chosen box.

Note: You mustinclude the original server in the list of chosen servers so that you can manually
migrate the Transaction Recovery Service back to the original server, if need be. The
Administration Console enforces this rule.

Optionally Specify Pre/Post-Migration Scripts

You can specify whether you are providing any pre-migration and post-migration scripts to
perform any unmounting and mounting of the shared storage, as needed.

e Pre-Migration Script Path — the path to the pre-migration script to run before a
migratable target is actually activated.

e Post-Migration Script Path — the path to the post-migration script to run after a
migratable target is fully deactivated.

e Post-Migration Script Failure Cancels Automatic Migration — specifies whether or not
a failure during execution of the post-deactivation script is fatal to the migration.

Using WebLogic Server Clusters

Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service

e Allow Post-Migration Script To Run On a Different Machine — specifies whether or not
the post-deactivation script is allowed to run on a different machine.

The pre/post-migration scripts must be located in the
BEA_HOME/user_projects/domains/mydomain/bin/service_migrationdirectory, where
mydomain is a domain-specific directory, with the same name as the domain. Basic directions for
creating pre/post-migration scripts are provided in a readme . txt file in this directory.

Step 4: Configure the Default Persistent Store For
Transaction Recovery Service Migration

As discussed in “Default File Store Availability for JTA” on page 8-10, the Transaction Manager
uses the default persistent store to store transaction log files. To enable migration of the
Transaction Recovery Service, you must configure the default persistent store so that it stores its
data files on a persistent storage solution that is available to other servers in the cluster if the
original server fails.

Step 5: Restart the Administration Server and Managed
Servers With Modified Migration Policies

You must restart the Administration Server after configuring the JTA Transaction Recovery
service for automatic service migration.

You must also restart any Managed Servers whose migration policies were modified.

Step 6: Automatic Failback of the Transaction Recovery
Service Back to the Original Server

After completing transaction recovery for a failed server, a backup server releases ownership of
the Transaction Recovery Service so that the original server can reclaim it when the server is
restarted. If the backup server stops (crashes) for any reason before it completes transaction
recovery, its lease will expire. This way when primary server starts up, it can reclaim successfully
ownership.

There are two scenarios for automatic failback of the Transaction Recovery Service to the
primary server:

e Automatic failback after recovery is complete:

Using WebLogic Server Clusters 8-19

— If the backup server finishes recovering the TLOG transactions before the primary
server is restarted, it will initiate an implicit migration of the Transaction Recovery

Service back to the primary server.
— For both manual and automatic migration, the post-deactivation script would be
executed automatically.
e Automatic failback before recovery is complete:

— If the backup server is still recovering the TLOG transactions when the primary server
is started, during the Transaction Recovery Service initialization of the primary server
startup, it will initiate an implicit migration of the Transaction Recovery Service from

the backup server.

8-20 Using WebLogic Server Clusters

Manual Migration of the JTA Transaction Recovery Service

Manual Migration of the JTA Transaction Recovery
Service

The JTA Transaction Recovery Service is designed to gracefully handle transaction recovery
after a crash. You can manually migrate the Transaction Recovery Service from an unhealthy
server instance to a healthy server instance, with the help of the server health monitoring services.
This way the backup server can complete transaction work for the failed server.

You can manually migrate the Transaction Recovery Service back to the original server by
selecting the original server as the destination server. The backup server must not be running
when you manually migrate the service back to the original server.

Note: Please note the following:

o |f a backup server fails before completing the transaction recovery actions, the
primary server cannot reclaim ownership of the Transaction Recovery Service and
recovery will not be re-attempted on the rebooting server. Therefore, you must
attempt to manually re-migrate the Transaction Recovery Service to another
backup server.

o If you restart the original server while the backup server is recovering transactions,
the backup server will gracefully release ownership of the Transaction Recovery
Service. You do not need to stop the backup server. For detailed information, see
Recovering Transactions For a Failed Clustered Server in Programming WebLogic
JTA.

e For information on configuring a primary backup server to not boot in Managed
Server Independence (MSI) mode, which will prevent concurrent access to the
TLOG with another backup server in recovery mode, see Managed Server
Independence in Programming WebLogic JTA.

For instructions on manually migrating the Transaction Recovery Service using the
Administration Console, see “Migrate the Transaction Recovery Service” in the Administration
Console Help.

Using WebLogic Server Clusters 8-21

http://e-docs.bea.com/wls/docs100/jta/trxman.html#jta_recover_cluster
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jta/MigrateTheTransactionRecoveryService.html
http://e-docs.bea.com/wls/docs100/jta/trxman.html#MSI Mode
http://e-docs.bea.com/wls/docs100/jta/trxman.html#MSI Mode

Automatic Migration of User-Defined Singleton Services

8-22

Automatic singleton service migration allows the automatic health monitoring and migration of
singleton services. A singleton service is a service operating within a cluster that is available on
only one server at any given time. When a migratable service fails or become unavailable for any
reason (for example, because of a bug in the service code, server failure, or network failure), it is
deactivated at its current location and activated on a new server. The process of migrating these
services to another server is handled via the Migration Master. See “Migration Master” on
page 8-22.

WebLogic Server supports the automatic migration of user-defined singleton services.

Note: Althoughthe JTA Transaction Recovery Service is also singleton service that is available
on only one node of a cluster at any time, it is configured differently for automatic
migration than user-defined singleton services. JMS and JTA services can also be
manually migrated. See “Understanding the Service-Level Migration Framework” on
page 8-2.

Overview of Singleton Service Migration

This section provides an overview of how automatic singleton service is implemented in
WebLogic Server.

Migration Master

The migration master is a lightweight singleton service that monitors other services that can be
migrated automatically. The server that currently hosts the migration master is responsible for
starting and stopping the migration tasks associated with each migratable service.

Note: Migratable services do not have to be hosted on the same server as the migration master,
but they must be hosted within the same cluster.

The migration master functions similar to the cluster master in that it is maintained by lease
competition and runs on only one server at a time. Each server in a cluster continuously attempts
to register the migration master lease. If the server currently hosting the migration master fails,
the next server in the queue will take over the lease and begin hosting the migration master.

For more information on the cluster master, see “Cluster Master’s Role in Whole Server
Migration” on page 7-18.

Note: The migration master and cluster master function independently and are not required to
be hosted on the same server.

Using WebLogic Server Clusters

Automatic Migration of User-Defined Singleton Services

The server hosting the migration master maintains a record of all migrations performed, including
the target name, source server, destination server, and the timestamp.

Migration Failure

If the migration of a singleton service fails on every candidate server within the cluster, the
service is left deactivated. You can configure the number of times the number of times the
migration master will iterate through the servers in the cluster.

Note: If you do not explicitly specify a list of candidate servers, the migration master will
consider all of the cluster members as possible candidates for migration.

Implementing the Singleton Service Interface

A Singleton Service could be defined either as part of an application or as a standalone service.
It is active only on one server at any time and so it can be used to perform tasks that you want to
be executed on only one member of a cluster.

To create a singleton service, you must create a class that, in addition to any tasks you want the
singleton service to perform, implements the
weblogic.cluster.singleton.SingletonService interface.

The SingletonService interface contains the following methods, which are used in the process of
migration.
e public void activate()

This method should obtain any system resources and start any services required for the
singleton service to begin processing requests. This method is called in the following
cases:

— When a newly deployed application is started
— During server start

— During the activation stage of service migration

e public void deactivate()

This method is called during server shutdown and during the deactivation stage of
singleton service migration. This method should release any resources obtained through the
activate() method. Additionally, it should stop any services that should only be
available from one member of a cluster.

Using WebLogic Server Clusters 8-23

8-24

Deploying a Singleton Service and Configuring the
Migration Behavior
Depending on how you used the SingletonService interface to define a singleton service, you
must perform the following steps to deploy it:
e Package and deploy the singleton service within an application.
~or~
e Deploy the singleton service as a standalone service within WebLogic Server.

e Optionally, configure the migration behavior of the singleton service.

The following sections outline these procedures in detail.

Packaging and Deploying a Singleton Service Within an Application

Singleton services that are packaged within an application should have their classes implement
the SingletonService interface, either in the APP-INF/1ib or the APP-INF/classes directories
within the EAR file for deployment.

Also, add the following entry to the weblogic-application.xml descriptor file.

<weblogic-application>

<singleton-service>
<class-name>mypackage -MySingletonServicelmpl</class-name>
<name>Appscoped_Singleton_Service</name>
</singleton-service>

</weblogic-application>
Note: The <class-name> and <name> elements are required.

Deployment of an application-scoped singleton service will happen automatically as part of the
application deployment. The candidate servers for the singleton service will be the cluster
members where the application is deployed.

Deploying a Singleton Service As a Standalone Service in WebLogic Server

After you have created a singleton service class using the SingletonService interface, you must
define it as a singleton service within WebLogic Server. This singleton service object contains
the following information:

Using WebLogic Server Clusters

Automatic Migration of User-Defined Singleton Services

e The path to the class to load as the singleton service.

e The preferred server and other candidate servers for the singleton service.

The following excerpt from the cluster element of config.xml shows how a singleton service
is defined:

<SingletonService
Name="'SingletonTestServiceName"
ClassName=""mycompany .myprogram.subpackage.SingletonTestServicelmpl"
Cluster="mycluster-"'

/>

Configuring Singleton Service Migration

A singleton service is automatically configured to be a exactly-once service, which indicates that
if at least one Managed Server in the candidate list is running, then the service will be active
somewhere in the cluster. You can modify certain singleton service migration parameters using
the following methods:

e WebL ogic Server Administration Console—allows you to create and configure singleton
services. See Configure a singleton service.

e WebL ogic Scripting Tool (WLST)—allows you to configure automatic service migration
using the MigratableTarget Management Bean. See the WLST Command and Variable
Reference in WebLogic Scripting Tool.

Using WebLogic Server Clusters 8-25

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/clusters/ConfigureSingletonService.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jms_servers/MigrateJMSServer.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jms_servers/MigrateJMSServer.html

8-26 Using WebLogic Server Clusters

Cluster Architectures

This following sections describe alternative architectures for a WebLogic Server cluster:

“Architectural and Cluster Terminology” on page 9-1
“Recommended Basic Architecture” on page 9-3
“Recommended Multi-Tier Architecture” on page 9-6
“Recommended Proxy Architectures” on page 9-12

“Security Options for Cluster Architectures” on page 9-17

Architectural and Cluster Terminology

This section defines terms used in this document.

Architecture

In this context the architecture refers to how the tiers of an application are deployed to one or
more clusters.

Web Application Tiers

A Web application is divided into several “tiers” that correspond to the logical services the
application provides. Because not all Web applications are alike, your application may not utilize
all of the tiers described below. Also keep in mind that the tiers represent logical divisions of an
application’s services, and not necessarily physical divisions between hardware or software

Using WebLogic Server Clusters 9-1

9-2

components. In some cases, a single machine running a single WebLogic Server instance can
provide all of the tiers described below.

o \Web Tier

The web tier provides static content (for example, simple HTML pages) to clients of a Web
application. The web tier is generally the first point of contact between external clients and
the Web application. A simple Web application may have a web tier that consists of one or
more machines running WebLogic Express, Apache, Netscape Enterprise Server, or
Microsoft Internet Information Server.

e Presentation Tier

The presentation tier provides dynamic content (for example, servlets or Java Server
Pages) to clients of a Web application. A cluster of WebLogic Server instances that hosts
servlets and/or JSPs comprises the presentation tier of a web application. If the cluster also
serves static HTML pages for your application, it encompasses both the web tier and the
presentation tier.

e Object Tier

The object tier provides Java objects (for example, Enterprise JavaBeans or RMI classes)
and their associated business logic to a Web application. A WebLogic Server cluster that
hosts EJBs provides an object tier.

Combined Tier Architecture

A cluster architecture in which all tiers of the Web application are deployed to a single WebL ogic
Server cluster is called a combined tier architecture.

De-Militarized Zone (DMZ2)

The De-Militarized Zone (DMZ) is a logical collection of hardware and services that is made
available to outside, untrusted sources. In most Web applications, a bank of Web servers resides
in the DMZ to allow browser-based clients access to static HTML content.

The DMZ may provide security against outside attacks to hardware and software. However,
because the DMZ is available to untrusted sources, it is less secure than an internal system. For
example, internal systems may be protected by a firewall that denies all outside access. The DMZ
may be protected by a firewall that hides access to individual machines, applications, or port
numbers, but it still permits access to those services from untrusted clients.

Using WebLogic Server Clusters

Recommended Basic Architecture

Load Balancer

In this document, the term load balancer describes any technology that distributes client
connection requests to one or more distinct IP addresses. For example, a simple Web application
may use the DNS round-robin algorithm as a load balancer. Larger applications generally use
hardware-based load balancing solutions such as those from Alteon WebSystems, which may
also provide firewall-like security capabilities.

Load balancers provide the capability to associate a client connection with a particular server in
the cluster, which is required when using in-memory replication for client session information.
With certain load balancing products, you must configure the cookie persistence mechanism to
avoid overwriting the WebLogic Server cookie which tracks primary and secondary servers used
for in-memory replication. See “For a discussion of external load balancers, session cookie
persistence, and the WebLogic Server session cookie, see “Load Balancing HTTP Sessions with
an External Load Balancer” on page 5-2” on page 10-13 for more information.

Proxy Plug-In

A proxy plug-in is a WebLogic Server extension to an HTTP server—such as Apache, Netscape
Enterprise Server, or Microsoft Internet Information Server—that accesses clustered servlets
provided by a WebLogic Server cluster. The proxy plug-in contains the load balancing logic for
accessing servlets and JSPs in a WebLogic Server cluster. Proxy plug-ins also contain the logic
for accessing the replica of a client’s session state if the primary WebLogic Server hosting the
session state fails.

Recommended Basic Architecture

The recommended basic architecture is a combined tier architecture—all tiers of the Web
application are deployed to the same WebLogic Server cluster. This architecture is illustrated in
the following figure.

Using WebLogic Server Clusters 9-3

Figure 9-1 Recommended Basic Architecture

WebLogic Server
Cluster

(“combined-tier”)

HTTP

N > ISP —EJB
\ Servlet

|
\ JDBC

HTTP_ EJB
- JSP T > Database
Servlet

|
| JDBC

Load
Balancer

Firewall

Untrusted

/ HTTP_
_ L Jsp VB
Servlet

I
JDBC

The benefits of the Recommended Basic Architecture are:
e Ease of administration

Because a single cluster hosts static HTTP pages, servlets, and EJBs, you can configure the
entire Web application and deploy/undeploy objects using the WebLogic Server Console.
You do not need to maintain a separate bank of Web servers (and configure WebLogic
Server proxy plug-ins) to benefit from clustered servlets.

e Flexible load balancing

Using load balancing hardware directly in front of the WebLogic Server cluster enables
you to use advanced load balancing policies for accessing both HTML and servlet content.

For example, you can configure your load balancer to detect current server loads and direct
client requests appropriately.

9-4 Using WebLogic Server Clusters

Recommended Basic Architecture

e Robust security

Placing a firewall in front of your load balancing hardware enables you to set up a
De-Militarized Zone (DMZ) for your web application using minimal firewall policies.

e Optimal performance

The combined tier architecture offers the best performance for applications in which most
or all of the servlets or JSPs in the presentation tier typically access objects in the object
tier, such as EJBs or JDBC objects

Note: When using a third-party load balancer with in-memory session replication, you must
ensure that the load balancer maintains a client’s connection to the WebLogic Server
instance that hosts its primary session state (the point-of-contact server). For more
information about load balancers, see “For a discussion of external load balancers,
session cookie persistence, and the WebLogic Server session cookie, see “Load
Balancing HTTP Sessions with an External Load Balancer” on page 5-2” on page 10-13.

When Not to Use a Combined Tier Architecture

While a combined tier architecture, such as the Recommended Basic Architecture, meets the
needs of many Web applications, it limits your ability to fully employ the load balancing and
failover capabilities of a cluster. Load balancing and failover can be introduced only at the
interfaces between Web application tiers, so, when tiers are deployed to a single cluster, you can
only load balance between clients and the cluster.

Because most load balancing and failover occurs between clients and the cluster itself, a
combined tier architecture meets the needs of most Web applications.

However, combined-tier clusters provide no opportunity for load balancing method calls to
clustered EJBs. Because clustered objects are deployed on all WebLogic Server instances in the
cluster, each object instance is available locally to each server. WebLogic Server optimizes
method calls to clustered EJBs by always selecting the local object instance, rather than
distributing requests to remote objects and incurring additional network overhead.

This collocation strategy is, in most cases, more efficient than load balancing each method
request to a different server. However, if the processing load to individual servers becomes
unbalanced, it may eventually become more efficient to submit method calls to remote objects
rather than process methods locally.

To utilize load balancing for method calls to clustered EJBs, you must split the presentation and
object tiers of the Web application onto separate physical clusters, as described in the following
section.

Using WebLogic Server Clusters 9-5

Consider the frequency of invocations of the object tier by the presentation tier when deciding
between a combined tier and multi-tier architecture. If presentation objects usually invoke the
object tier, a combined tier architecture may offer better performance than a multi-tier
architecture.

Recommended Multi-Tier Architecture

9-6

This section describes the Recommended Multi-Tier Architecture, in which different tiers of your
application are deployed to different clusters.

The recommended multi-tier architecture uses two separate WebLogic Server clusters: one to
serve static HTTP content and clustered servlets, and one to serve clustered EJBs. The multi-tier
cluster is recommended for Web applications that:

e Require load balancing for method calls to clustered EJBs.

e Require more flexibility for balancing the load between servers that provide HTTP content
and servers that provide clustered objects.

e Require higher availability (fewer single points of failure).

Note: Consider the frequency of invocations from the presentation tier to the object tier when
considering a multi-tier architecture. If presentation objects usually invoke the object
tier, a combined tier architecture may offer better performance than a multi-tier
architecture.

The following figure depicts the recommended multi-tier architecture.

Using WebLogic Server Clusters

Untrusted

Recommended Multi-Tier Architecture

Figure 9-2 Recommended Multi-Tier Architecture

WebLogic Server WebLogic Server

Cluster Cluster
(web, presentation (object tier)
tiers)
HTTP EJB
JSP >
Servlet —— JDBC
\
L3
—1 = Load HTTP EJB .
| o Balancer JSP - P~ Database
j [Servlet JDBC
-
HTTP EJB
JSP —
Servlet JDBC

Physical Hardware and Software Layers

In the Recommended Multi-Tier Architecture the application tiers are hosted on two separate
physical layers of hardware and software.

Web/Presentation Layer

The web/presentation layer consists of a cluster of WebLogic Server instances dedicated to
hosting static HTTP pages, servlets, and JSPs. This servlet cluster does not host clustered objects.
Instead, servlets in the presentation tier cluster act as clients for clustered objects, which reside
on an separate WebLogic Server cluster in the object layer.

Using WebLogic Server Clusters 9-7

9-8

Object Layer

The object layer consists of a cluster of WebLogic Server instances that hosts only clustered
objects—EJBs and RMI objects as necessary for the web application. By hosting the object tier
on a dedicated cluster, you lose the default collocation optimization for accessing clustered
objects described in “Optimization for Collocated Objects” on page 5-12. However, you gain the
ability to load balance on each method call to certain clustered objects, as described in the
following section.

Benefits of Multi-Tier Architecture

The multi-tier architecture provides these advantages:

e Load Balancing EJB Methods

By hosting servlets and EJBs on separate clusters, servlet method calls to EJBs can be load
balanced across multiple servers. This process is described in detail in “Load Balancing
Clustered Objects in a in Multi-Tier Architecture” on page 9-9.

e Improved Server Load Balancing

Separating the presentation and object tiers onto separate clusters provides more options
for distributing the load of the web application. For example, if the application accesses
HTTP and servlet content more often than EJB content, you can use a large number of
WebLogic Server instances in the presentation tier cluster to concentrate access to a
smaller number of servers hosting EJBs.

e Higher Availability

By utilizing additional WebLogic Server instances, the multi-tier architecture has fewer
points of failure than the basic cluster architecture. For example, if a WebLogic Server that
hosts EJBs fails, the HTTP- and servlet-hosting capacity of the Web application is not
affected.

e Improved Security Options

By separating the presentation and object tiers onto separate clusters, you can use a
firewall policy that places only the servlet/JSP cluster in the DMZ. Servers hosting
clustered objects can be further protected by denying direct access from untrusted clients.
For more information, see “Security Options for Cluster Architectures” on page 9-17.

Using WebLogic Server Clusters

Recommended Multi-Tier Architecture

Load Balancing Clustered Objects in a in Multi-Tier
Architecture

WebLogic Server’s collocation optimization for clustered objects, described in “Optimization for
Collocated Objects” on page 5-12, relies on having a clustered object (the EJB or RMI class)
hosted on the same server instance as the replica-aware stub that calls the object.

The net effect of isolating the object tier is that no client (HTTP client, Java client, or servlet) ever
acquires a replica-aware stub on the same server that hosts the clustered object. Because of this,
WebLogic Server cannot use its collocation optimization (described in “Optimization for
Collocated Objects” on page 5-12), and servlet calls to clustered objects are automatically load
balanced according to the logic contained in the replica-aware stub. The following figure depicts
a client accessing a clustered EJB instance in the multi-tier architecture.

Figure 9-3 Load Balancing Objects in a Multi-Tier Architecture

Web/Servlet Object
Cluster Cluster
) HTTP EJB
\ JSP| 5
\ erviet 2 JDBC——+
n
\
\
| HTTP
c | Load SJSTt EJB Database
2 | |Balancer ARt JDBC—
O]
I
!
/ HTTP
/ JSP EJB
— Servlet
JDBC——

Tracing the path of the client connection, you can see the implication of isolating the object tier
onto separate hardware and software:

Using WebLogic Server Clusters 9-9

9-10

1.

4,

An HTTP client connects to one of several WebLogic Server instances in the web/servilet
cluster, going through a load balancer to reach the initial server.

The client accesses a servlet hosted on the WebLogic Server cluster.

The servlet acts as a client to clustered objects required by the web application. In the example
above, the servlet accesses a stateless session EJB.

The servlet looks up the EJB on the WebLogic Server cluster that hosts clustered objects.
The servlet obtains a replica-aware stub for the bean, which lists the addresses of all
servers that host the bean, as well as the load balancing logic for accessing bean replicas.

Note: EJB replica-aware stubs and EJB home load algorithms are specified using elements
of the EJB deployment descriptor. See “weblogic-ejb-jar.xml Deployment Descriptor
Reference” in Programming WebLogic Enterprise JavaBeans for more information.

When the servlet next accesses the EJB (for example, in response to another client), it uses
the load-balancing logic present in the bean’s stub to locate a replica. In the example above,
multiple method calls are directed using the round-robin algorithm for load balancing.

In this example, if the same WebLogic Server cluster hosted both servlets and EJBs (as in the
Recommended Basic Architecture), WebLogic Server would not load balance requests for the
EJB. Instead, the servlet would always invoke methods on the EJB replica hosted on the local
server. Using the local EJB instance is more efficient than making remote method calls to an EJB
on another server. However, the multi-tier architecture enables remote EJB access for
applications that require load balancing for EJB method calls.

Configuration Considerations for Multi-Tier Architecture

IP Socket Usage

Because the multi-tier architecture provides load balancing for clustered object calls, the system
generally utilizes more IP sockets than a combined-tier architecture. In particular, during peak

socket usage, each WebLogic Server in the cluster that hosts servlets and JSPs may potentially
use a maximum of:

e One socket for replicating HTTP session states between primary and secondary servers,

plus

e One socket for each WebLogic Server in the EJB cluster, for accessing remote objects

For example, in Figure 9-2, each server in the servlet/JSP cluster could potentially open a
maximum of five sockets. This maximum represents a worst-case scenario where primary and

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/ejb/DDreference-ejb-jar.html
http://e-docs.bea.com/wls/docs100/ejb/DDreference-ejb-jar.html

Recommended Multi-Tier Architecture

secondary session states are equally dispersed throughout the servlet cluster, and each server in
the servlet cluster simultaneously accesses a remote object on each server in the object cluster. In
most cases, the number of sockets actual sockets in use would be less than this maximum.

If you use a pure-Java sockets implementation with the multi-tier architecture, ensure that you
configure enough socket reader threads to accommodate the maximum potential socket usage.
For details, see “Configuring Reader Threads for Java Socket Implementation” on page 3-7.

Hardware Load Balancers

Because the multi-tier architecture uses a hardware load balancer, you must configure the load
balancer to maintain a “sticky” connection to the client’s point-of-contact server if you use
in-memory session state replication. For details, see “Configure Load Balancing Method for
EJBs and RMIs” on page 10-12.

Limitations of Multi-Tier Architectures

This section summarizes the limitations of multi-tier cluster architectures.

No Collocation Optimization

Because the Recommended Multi-Tier Architecture cannot optimize object calls using the
collocation strategy, the Web application incurs network overhead for all method calls to
clustered objects. This overhead may be acceptable, however, if your Web application requires
any of the benefits described in “Benefits of Multi-Tier Architecture” on page 9-8.

For example, if your Web clients make heavy use of servlets and JSPs but access a relatively
small set of clustered objects, the multi-tier architecture enables you to concentrate the load of
servlets and object appropriately. You may configure a servlet cluster of ten WebLogic Server
instances and an object cluster of three WebLogic Server instances, while still fully utilizing each
Server’s processing power.

Firewall Restrictions

If you place a firewall between the servlet cluster and object cluster in a multi-tier architecture,
you must bind all servers in the object cluster to public DNS names, rather than IP addresses.
Binding those servers with IP addresses can cause address translation problems and prevent the
servlet cluster from accessing individual server instances.

If the internal and external DNS names of a WebLogic Server instance are not identical, use the
External DNSName attribute for the server instance to define the server's external DNS name.
Outside the firewall the External DNSName should translate to external IP address of the server.

Using WebLogic Server Clusters 9-11

Use of ExternalDNSName is required for configurations in which a firewall is performing
Network Address Translation, unless clients are accessing WebLogic Server using t3 and the
default channel. For instance, External DNSName is required for configurations in which a
firewall is performing Network Address Translation, and clients are accessing WebLogic Server
using HTTP via a proxy plug-in.

Recommended Proxy Architectures

9-12

You can configure WebLogic Server clusters to operate alongside existing Web servers. In such
an architecture, a bank of Web servers provides static HTTP content for the Web application,
using a WebLogic proxy plug-in or HttpClusterServlet to direct servlet and JSP requests to
a cluster.

The following sections describe two alternative proxy architectures.

Two-Tier Proxy Architecture

The two-tier proxy architecture illustrated in the following figure is similar to the “Recommended
Basic Architecture” on page 9-3, except that static HTTP servers are hosted on a bank of Web
servers.

Using WebLogic Server Clusters

Figure 9-4 Two-Tier Proxy Architecture

N

Clients

\
\
|

\
n

Firewall

Web Servers
(web tier)

HTTP Server
—

HTTP Server
i

Servlet/Object

Cluster

(presentation,
object tiers)

ISP | -
—Servlet

I
JDBC

JSP | -
Servlet

Hroxy E!Ug-llr'i

HTTP Server

—
Hroxy Plug-ip

- - - - - - 4 - - - - - - - _— _ 41

|
JDBC

JSP | -
L__Servlet
|

JD

BC

Physical Hardware and Software Layers
The two-tier proxy architecture contains two physical layers of hardware and software.

Web Layer
The proxy architecture utilizes a layer of hardware and software dedicated to the task of providing
the application’s web tier. This physical web layer can consist of one or more
identically-configured machines that host one of the following application combinations:

e WebL ogic Server with the HttpClusterServiet

e Apache with the WebLogic Server Apache proxy plug-in

Recommended Proxy Architectures

Database

o Netscape Enterprise Server with the WebLogic Server NSAPI proxy plug-in

Using WebLogic Server Clusters

9-13

http://e-docs.bea.com/wls/docs100/plugins/apache.html

9-14

e Microsoft Internet Information Server with the WebLogic Server Microsoft-11S proxy
plug-in
Regardless of which Web server software you select, keep in mind that the physical tier of Web
servers should provide only static Web pages. Dynamic content—servlets and JSPs—are proxied
via the proxy plug-in or HttpClusterServilet to a WebLogic Server cluster that hosts servlets
and JSPs for the presentation tier.

Servlet/Object Layer

The recommended two-tier proxy architecture hosts the presentation and object tiers on a cluster
of WebLogic Server instances. This cluster can be deployed either on a single machine or on
multiple separate machines.

The Servlet/Object layer differs from the combined-tier cluster described in Recommended Basic
Architecture in that it does not provide static HTTP content to application clients.

Multi-Tier Proxy Architecture

You can also use a bank of Web servers as the front-end to a pair of WebLogic Server clusters
that host the presentation and object tiers. This architecture is shown in the following figure.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/plugins/isapi.html
http://e-docs.bea.com/wls/docs100/plugins/isapi.html

Recommended Proxy Architectures

Figure 9-5 Multi-Tier Proxy Architecture

Web Servers Servlet Object
(web tier) Cluster Cluster
(presentation (object tier)
tier)

HTTP Server

N > JSP EJB
\ g Serviet — B)
\
\
N HTTP Server
s 3> Jsp EJB
5 | |E]| AOYPUgTh e Seiviet |
|
/
/
/ HTTP Server
. L JSP EJB

- \lenda— —

Database -——

This architecture provides the same benefits (and the same limitations) as the Recommended

Multi-Tier Architecture. It differs only insofar as the web tier is placed on a separate bank of Web
servers that utilize WebL ogic proxy plug-ins.

Proxy Architecture Benefits

Using standalone Web servers and proxy plug-ins provides the following advantages:

e Ultilize Existing Hardware

Using WebLogic Server Clusters 9-15

9-16

If you already have a Web application architecture that provides static HTTP content to
clients, you can easily integrate existing Web servers with one or more WebLogic Server
clusters to provide dynamic HTTP and clustered objects.

e Familiar Firewall Policies

Using a Web server proxy at the front-end of your Web application enables you to use
familiar firewall policies to define your DMZ. In general, you can continue placing the
Web servers in your DMZ while disallowing direct connections to the remaining WebL ogic
Server clusters in the architecture. The figures above depict this DMZ policy.

Proxy Architecture Limitations

Using standalone Web servers and proxy plug-ins limits your Web application in the
following ways:

e Additional administration

The Web servers in the proxy architecture must be configured using third-party utilities,
and do not appear within the WebLogic Server administrative domain. You must also
install and configure WebL ogic proxy plug-ins to the Web servers in order to benefit from
clustered servlet access and failover.

e Limited Load Balancing Options

When you use proxy plug-ins or the HttpClusterServlet to access clustered servlets,
the load balancing algorithm is limited to a simple round-robin strategy.

Proxy Plug-In Versus Load Balancer

Using a load balancer directly with a WebLogic Server cluster provides several benefits over
proxying servlet requests. First, using WebLogic Server with a load balancer requires no
additional administration for client setup—you do not need to set up and maintain a separate layer
of HTTP servers, and you do not need to install and configure one or more proxy plug-ins.
Removing the Web proxy layer also reduces the number of network connections required to
access the cluster.

Using load balancing hardware provides more flexibility for defining load balancing algorithms
that suit the capabilities of your system. You can use any load balancing strategy (for example,
load-based policies) that your load balancing hardware supports. With proxy plug-ins or the
HttpClusterServlet, you are limited to a simple round-robin algorithm for clustered servlet
requests.

Using WebLogic Server Clusters

Security Options for Cluster Architectures

Note, however, that using a third-party load balancer may require additional configuration if you
use in-memory session state replication. In this case, you must ensure that the load balancer
maintains a “sticky” connection between the client and its point-of-contact server, so that the
client accesses the primary session state information. When using proxy plug-ins, no special
configuration is necessary because the proxy automatically maintains a sticky connection.

Security Options for Cluster Architectures

The boundaries between physical hardware/software layers in the recommended configurations
provide potential points for defining your Web application’s De-Militarized Zone (DMZ).
However, not all boundaries can support a physical firewall, and certain boundaries can support
only a subset of typical firewall policies.

The sections that follow describe several common ways of defining your DMZ to create varying
levels of application security.

Basic Firewall for Proxy Architectures

The basic firewall configuration uses a single firewall between untrusted clients and the Web
server layer, and it can be used with either the Recommended Basic Architecture or
Recommended Multi-Tier Architecture cluster architectures.

Using WebLogic Server Clusters 9-17

http://e-docs.bea.com/wls/docs100/cluster/planning.html#recbasic
http://e-docs.bea.com/wls/docs100/cluster/planning.html#recmulti

9-18

Figure 9-6 Basic Proxy with Firewall Architecture

Web Layer Servlet/Object
| | Cluster
I I
I I
| HTTP Server | |
N | I | Jjsp TEJB
Servlet
Vo :
\ | | JDBC
b |
2 \ =1l HTTP Server |
o Y zZH» | lJsp UB
2 |1 ProxyPlug-r——Serviet
= | | JDBC
// | |
, | wrrPiserver |
_ Ly | Jjsp TEJB
| Aroxy Plug-ip SerVIP]t
! ! JDBC
I I
! DMz !
- - - — — |

Database

In the above configuration, the single firewall can use any combination of policies

(application-level restrictions, NAT, IP masquerading) to filter access to three HTTP servers. The
most important role for the firewall is to deny direct access to any other servers in the system. In
other words, the servlet layer, the object layer, and the database itself must not be accessible from

untrusted clients.

Note that you can place the physical firewall either in front of or behind the Web servers in the
DMZ. Placing the firewall in front of the Web servers simplifies your firewall policies, because

you need only permit access to the web servers and deny access to all other systems.

Firewall Between Proxy Layer and Cl

If you place a firewall between the proxy layer and the cluster, follow these configuration

guidelines:

Using WebLogic Server Clusters

uster

Security Options for Cluster Architectures

e Bind to clustered server instances using publicly-listed DNS names, rather than IP
addresses, to ensure that the proxy plug-ins can connect to each server in the cluster
without address translation error that might otherwise occur, as described in “Firewall
Considerations” on page 11-14.

o If the internal and external DNS names of a clustered server instance are not identical, use
the ExternalDNSName attribute for the server instance to define the its external DNS
name. Outside the firewall the ExternalDNSName should translate to external IP address of
the server instance.

Note: If the clustered servers segregate https and http traffic on a pair of custom channels, see
“Channels, Clusters, and Firewalls” in Designing and Configuring WebLogic Server
Environments.

DMZ with Basic Firewall Configurations

By denying access to all but the Web server layer, the basic firewall configuration creates a
small-footprint DMZ that includes only three Web servers. However, a more conservative DMZ
definition might take into account the possibility that a malicious client may gain access to
servers hosting the presentation and object tiers.

For example, assume that a hacker gains access to one of the machines hosting a Web server.
Depending on the level of access, the hacker may then be able to gain information about the
proxied servers that the Web server accesses for dynamic content.

If you choose to define your DMZ more conservatively, you can place additional firewalls using
the information in “Additional Security for Shared Databases” on page 9-22.

Combining Firewall with Load Balancer

If you use load balancing hardware with a recommended cluster architecture, you must decide
how to deploy the hardware in relationship to the basic firewall. Although many hardware
solutions provide security features in addition to load balancing services, most sites rely on a
firewall as the first line of defense for their Web applications. In general, firewalls provide the
most well-tested and familiar security solution for restricting web traffic, and should be used in
front of load balancing hardware, as shown below.

Using WebLogic Server Clusters 9-19

http://e-docs.bea.com/wls/docs100/config_wls/network.html#ChannelsClustersandFirewalls

9-20

Figure 9-7 Basic Proxy with Firewall and Load Balancer Architecture

N Servlet/Object
| E Web Layer | Cluster
: HTTP Server :
| Froxy Plug-in | 1 55p —EIB
I
| HTTP Server| Servlet
| .
JDBC
| Load || prroyy Plug-ih |
N | |Balancer |
\ | HTTP Server
\ | " [JspEdB
Hroxy PTug-T -
| | y g | Servlelt > Database
s |\-t———=——=—=——— JDBC
()
Z L Firewall
5 | —EJB
> ISP
/ Servlet _
I
/ JDBC
/
e

The above setup places the load balancer within the DMZ along with the web tier. Using a
firewall in this configuration can simplify security policy administration, because the firewall
need only limit access to the load balancer. This setup can also simplify administration for sites
that support internal clients to the Web application, as described below.

Expanding the Firewall for Internal Clients

If you support internal clients that require direct access to your Web application (for example,
remote machines that run proprietary Java applications), you can expand the basic firewall
configuration to allow restricted access to the presentation tier. The way in which you expand
access to the application depends on whether you treat the remote clients as trusted or untrusted
connections.

If you use a Virtual Private Network (VPN) to support remote clients, the clients may be treated
as trusted connections and can connect directly to the presentation tier going through a firewall.
This configuration is shown below.

Using WebLogic Server Clusters

Security Options for Cluster Architectures

Figure 9-8 VPN Users have Restricted Access Through Firewall

g Servlet/Object
| g Web Layer | Cluster
: HTTP Server :
| Froxy Plug-in ~E38
| Load | | y g JSP
| Balancer HTTP Server Servlet
: A
| A JDBC
Aroxy Plug-
N
\ | HTTP Server
Hroxy Plug-i Servlet e
\! i Database
s |\---—"—————— = : JDBC
2
o Firewall
5 l -EJB
> = JSP
I ¢ Trusted pServiet -
internal :
fomernal, JDBC
/ —
e

If you do not use a VPN, all connections to the Web application (even those from remote sites
using proprietary client applications) should be treated as untrusted connections. In this case, you
can modify the firewall policy to permit application-level connections to WebLogic Server
instances hosting the presentation tier, as shown in the following figure.

Using WebLogic Server Clusters 9-21

9-22

Figure 9-9 Application Components Have Restricted Access Through Firewall

r— - - - - - - - — — 1
N Servlet/Object
| g Web Layer | Cluster
: HTTP Server :
| Hroxy PTugh -
y Plug-ip ISP EJB
| Load | | I
| Balancer HTTP Server | Servlet
| .
I A | JDBC
o Froxy PTug-]
AN
\ | HTTP Server |
Froxy Plug-] _
|l y Plug |_>Servle]t B Database
s |- - — - JDBC
()
Z F Firewall \‘
5 l | —EJB
> | ~ 7T~ JSP
/ [Trusted _»Servlelt _—
S JDBC
y _
e

Additional Security for Shared Databhases

If you use a single database that supports both internal data and data for externally-available Web
applications, you should consider placing a hard boundary between the object layer that accesses
your database. Doing so simply reinforces the DMZ boundaries described in “Basic Firewall for
Proxy Architectures” on page 9-17 by adding an additional firewall.

DMZ with Two Firewall Configuration

The following configuration places an additional firewall in front of a database server that is
shared by the Web application and internal (trusted) clients. This configuration provides
additional security in the unlikely event that the first firewall is breached, and a hacker ultimately
gains access to servers hosting the object tier. Note that this circumstance should be extremely
unlikely in a production environment—your site should have the capability to detect and stop a
malicious break-in long before a hacker gains access to machines in the object layer.

Using WebLogic Server Clusters

Untrusted

Security Options for Cluster Architectures

Figure 9-10 DMZ with Two Firewalls Architecture

Web Layer Servlet/Object
I I Cluster
I I
I I
| HTTP Server | N
- Jsp B
| | Servlet
|| FAroxy PTug-p A
\ | I JDBC
b |
I =l HTTP Server |
H 2 e | JSP] I—
| = | Aroxy Plug-ip Servlet | —— | Firewall
|
/ | | JDBC
/ | |
' wrrPiServer |
L | Jsp [FIB Database
oy Plugp—LSenviet |
| | JDBC
I I
' bmz | SR
L — — - — — . (Trusted Clients A
~ 7

In the above configuration, the boundary between the object tier and the database is hardened
using an additional firewall. The firewall maintains a strict application-level policy that denies
access to all connections except JDBC connections from WebLogic Servers hosting the object
tier.

Using WebLogic Server Clusters 9-23

9-24 Using WebLogic Server Clusters

CHAPTERm

Setting up WebLogic Clusters

The following sections contain guidelines and instructions for configuring a WebLogic Server
cluster:

e “Before You Start” on page 10-1

e “Cluster Implementation Procedures” on page 10-8

Before You Start

This section summarizes prerequisite tasks and information for setting up a WebLogic Server
Cluster.

Understand the Configuration Process

The information in this section will be most useful to you if you have a basic understanding of
the cluster configuration process and how configuration tasks are accomplished.

For information about the configuration facilities available in WebLogic Server and the tasks
they support, see “Understanding Cluster Configuration” on page 4-1.

Determine Your Cluster Architecture

Determine what cluster architecture best suits your needs. Key architectural decisions include:

e Should you combine all application tiers in a single cluster or segment your application
tiers in separate clusters?

Using WebLogic Server Clusters 10-1

10-2

e How will you balance the load among server instances in your cluster? Will you:
— Use basic WebLogic Server load balancing,
— Implement a third-party load balancer, or

— Deploy the Web tier of your application on one or more secondary HTTP servers, and
proxy requests to it?

e Should you define your Web applications De-Militarized Zone (DMZ) with one or more
firewalls?

To guide these decisions, see “Cluster Architectures” on page 9-1, and “Load Balancing in a
Cluster” on page 5-1.

The architecture you choose affects how you set up your cluster. The cluster architecture may also
require that you install or configure other resources, such as load balancers, HTTP servers, and
proxy plug-ins.

Consider Your Network and Security Topologies

Your security requirements form the basis for designing the appropriate security topology. For a
discussion of several alternative architectures that provide varying levels of application security,
see “Security Options for Cluster Architectures” on page 9-17.

Notes: Some network topologies can interfere with multicast communication. If you are
deploying a cluster across a WAN, see “If Your Cluster Spans Multiple Subnets In a
WAN” on page 3-3.

Avoid deploying server instances in a cluster across a firewall. For a discussion of the
impact of tunneling multicast traffic through a firewall, see “Firewalls Can Break
Multicast Communication” on page 3-3.

Choose Machines for the Cluster Installation

Identify the machine or machines where you plan to install WebLogic Server—throughout this
section we refer to such machines as “hosts”—and ensure that they have the resources required.
WebLogic Server allows you to set up a cluster on a single, non-multihomed machine. This new
capability is useful for demonstration or development environments.

Do not install WebLogic Server on machines that have dynamically assigned IP
addresses.

Using WebLogic Server Clusters

Before You Start

WebLogic Server Instances on Multi-CPU machines

BEA WebLogic Server has no built-in limit for the number of server instances that can reside in
a cluster. Large, multi-processor servers such as Sun Microsystems, Inc. Sun Enterprise 10000
can host very large clusters or multiple clusters.

In most cases, WebLogic Server clusters scale best when deployed with one WebLogic Server
instance for every two CPUs. However, as with all capacity planning, you should test the actual
deployment with your target Web applications to determine the optimal number and distribution
of server instances. See “Performance Considerations for Multi-CPU Machines” in BEA
WebLogic Server Performance and Tuning for additional information.

Check Host Machines’ Socket Reader Implementation

For best socket performance, configure the WebLogic Server host machine to use the native
socket reader implementation for your operating system, rather than the pure-Java
implementation. To understand why, and for instructions for configuring native sockets or
optimizing pure-Java socket communications, see “Peer-to-Peer Communication Using IP
Sockets” on page 3-5.

Setting Up a Cluster on a Disconnected Windows Machine

If you want to demonstrate a WebL ogic Server cluster on a single, disconnected Windows
machine, you must force Windows to load the TCP/IP stack. By default, Windows does not load
the TCP/IP stack if it does not detect a physical network connection.

To force Windows to load the TCP/IP stack, disable the Windows media sensing feature using
the instructions in “How to Disable Media Sense for TCP/IP in Windows” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;239924.

Identify Names and Addresses

During the cluster configuration process, you supply addressing information—IP addresses or
DNS names, and port numbers—for the server instances in the cluster.

For information on intra-cluster communication, and how it enables load balancing and failover,
see “WebLogic Server Communication In a Cluster” on page 3-1.

When you set up your cluster, you must provide location information for:

e Administration Server

Using WebLogic Server Clusters 10-3

http://support.microsoft.com/default.aspx?scid=kb;en-us;239924

10-4

e Managed Servers

e Multicast location

Read the sections that follow for an explanation of the information you must provide, and factors
that influence the method you use to identify resources.

Avoiding Listen Address Problems

As you configure a cluster, you can specify address information using either IP addresses or DNS
names.

DNS Names or IP Addresses?

Consider the purpose of the cluster when deciding whether to use DNS names or IP addresses.
For production environments, the use of DNS names is generally recommended. The use of IP
addresses can result in translation errors if:

e Clients will connect to the cluster through a firewall, or

e You have a firewall between the presentation and object tiers, for example, you have a
servlet cluster and EJB cluster with a firewall in between, as described in the
recommended multi-tier cluster.

You can avoid translation errors by binding the address of an individual server instance to a DNS
name. Make sure that a server instance’s DNS name is identical on each side of firewalls in your
environment, and do not use a DNS name that is also the name of an NT system on your network.

For more information about using DNS names instead of IP addresses, see “Firewall
Considerations” on page 11-14.

When Internal and External DNS Names Vary

If the internal and external DNS names of a WebLogic Server instance are not identical, use the
External DNSName attribute for the server instance to define the server's external DNS name.
Outside the firewall the External DNSName should translate to external IP address of the server.
If clients are accessing WebLogic Server over the default channel and T3, do not set the
External DNSName attribute, even if the internal and external DNS names of a WebLogic Server
instance are not identical.

Localhost Considerations

If you identify a server instance’s Listen Address as localhost, non-local processes will not be
able to connect to the server instance. Only processes on the machine that hosts the server

Using WebLogic Server Clusters

Before You Start

instance will be able to connect to the server instance. If the server instance must be accessible as
localhost (for instance, if you have administrative scripts that connect to localhost), and must also
be accessible by remote processes, leave the Listen Address blank. The server instance will
determine the address of the machine and listen on it.

Assigning Names to WebLogic Server Resources

Make sure that each configurable resource in your WebLogic Server environment has a unique
name. Each, domain, server, machine, cluster, JDBC data source, virtual host, or other resource
must have a unique name.

Administration Server Address and Port

Identify the DNS name or IP address and Listen Port of the Administration Server you will use
for the cluster.

The Administration Server is the WebLogic Server instance used to configure and manage all the
Managed Servers in its domain. When you start a Managed Server, you identify the host and port
of its Administration Server.

Managed Server Addresses and Listen Ports
Identify the DNS name or IP address of each Managed Server planned for your cluster.

Each Managed Server in a cluster must have a unique combination of address and Listen Port
number. Clustered server instances on a single non-multihomed machine can have the same
address, but must use a different Listen Port.

Cluster Multicast Address and Port

Identify the address and port you will dedicate to multicast communications for your cluster. A
multicast address is an IP address between 224.0.0.0 and 239.255.255.255.

Note: The default multicast value used by WebLogic Server is 239.192.0.0. You should not use
any multicast address with the value x.0.0.1.

Server instances in a cluster communicate with each other using multicast—they use multicast to
announce their services, and to issue periodic heartbeats that indicate continued availability.

The multicast address for a cluster should not be used for any purpose other than cluster
communications. If the machine where the cluster multicast address exists hosts or is accessed by
cluster-external programs that use multicast communication, make sure that those multicast
communications use a different port than the cluster multicast port.

Using WebLogic Server Clusters 10-5

Multicast and Multiple Clusters

Multiple clusters on a network may share a multicast address and multicast port combination if
necessary.

Multicast and Multi-Tier Clusters

If you are setting up the Recommended Multi-Tier Architecture, described in Chapter 9, “Cluster
Architectures,” with a firewall between the clusters, you will need two dedicated multicast
addresses: one for the presentation (servlet) cluster and one for the object cluster. Using two
multicast addresses ensures that the firewall does not interfere with cluster communication.

Cluster Address

In WebLogic Server cluster, the cluster address is used in entity and stateless beans to construct
the host name portion of request URLSs.

You can explicitly define the cluster address when you configure the a cluster; otherwise,
WebLogic Server dynamically generates the cluster address for each new request. Allowing
WebLogic Server to dynamically generate the cluster address is simplest, in terms of system
administration, and is suitable for both development and production environments.

Dynamic Cluster Address

If you do not explicitly define a cluster address when you configure a cluster, when a clustered
server instance receives a remote request, WebLogic Server generates the cluster address, in the
form:

listenaddressl:listenportl, listenaddress2:listenport2;listenaddress3:
listenport3

Each listen address:listen port combination in the cluster address corresponds to
Managed Server and network channel that received the request.

o [f the request was received on the Managed Server’s default channel, the 1isten
address: listen port combinations in the cluster address reflect the ListenAddress
and ListenPort values from the associated ServerMBean and SSLMBean instances. For
more information, see “The Default Network Channel” in Configuring WebLogic Server
Environments.

o If the request was received on a custom network channel, the listen address:listen
port in the cluster address reflect the ListenAddress and ListenPort values from
NetworkAccessPointMBean that defines the channel. For more information about

10-6 Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/config_wls/network.html#TheDefaultNetworkChannel

Before You Start

network channels in a cluster, see “Configuring Network Channels For a Cluster” in
Configuring WebLogic Server Environments.

The number of ListenAddress:ListenPort combinations included in the cluster address is
governed by the value of the NumberOfServersinClusterAddress attribute on the
ClusterMBean, which is 3 by default.

You can modify the value of NumberOfServersinClusterAddress on the Environments—
>Clusters—>ClusterName->Configuration->General page of the Administration Console.

o If there are fewer Managed Servers available in the cluster than the value of
NumberOfServersInClusterAddress, the dynamically generated cluster address
contains a ListenAddress:ListenPort combination for each of the running Managed
Servers.

o |f there are more Managed Servers available in the cluster than the value of
NumberOfServersiInClusterAddress, WebLogic Server randomly selects a subset of the
available instances—equal to the value of NumberOfServersinClusterAddress—and
uses the ListenAddress:ListenPort combination for those instances to form the cluster
address.

The order inwhich the ListenAddress: ListenPort combinations appear in the cluster address
is random—from request to request, the order will vary.

Explicitly Defining Cluster Address for Production Environments

If you explicitly define a cluster address for a cluster in a production environment, specify the
cluster address as a DNS name that maps to the IP addresses or DNS names of each WebL ogic
Server instance in the cluster.

If you define the cluster address as a DNS name, the Listen Ports for the cluster members are not
specified in the cluster address—it is assumed that each Managed Server in the cluster has the
same Listen Port number. Because each server instance in a cluster must have a unique
combination of address and Listen Port, if a cluster address is a DNS name, each server instance
in the cluster must have:

e a unique address and

e the same Listen Port number

When clients obtain an initial INDI context by supplying the cluster DNS name,

weblogic. jndi.WLInitialContextFactory obtains the list of all addresses that are mapped
to the DNS name. This list is cached by WebLogic Server instances, and new initial context
requests are fulfilled using addresses in the cached list with a round-robin algorithm. If a server

Using WebLogic Server Clusters 10-7

http://e-docs.bea.com/wls/docs100/config_wls/network.html#ConfiguringNetworkChannelsForaCluster

instance in the cached list is unavailable, it is removed from the list. The address list is refreshed
from the DNS service only if the server instance is unable to reach any address in its cache.

Using a cached list of addresses avoids certain problems with relying on DNS round-robin alone.
For example, DNS round-robin continues using all addresses that have been mapped to the
domain name, regardless of whether or not the addresses are reachable. By caching the address
list, WebLogic Server can remove addresses that are unreachable, so that connection failures
aren't repeated with new initial context requests.

Note: The Administration Server should not participate in a cluster. Ensure that the
Administration Server's IP address is not included in the cluster-wide DNS name. For
more information, see “Administration Server Considerations” on page 11-14.

Explicitly Defining Cluster Address for Development and Test Environments

If you explicitly define a cluster address for use in development environments, you can use a
cluster DNS name for the cluster address, as described in the previous section.

Alternatively, you can define the cluster address as a list that contains the DNS name (or IP
address) and Listen Port of each Managed Server in the cluster, as shown in the examples below:

DNSNamel:portl,DNSNamel:port2,DNSNamel:port3
IPaddressl:portl, IPaddress2:port2; IPaddress3:port3

Note that each cluster member has a unique address and port combination.

Explicitly Defining Cluster Address for Single, Multihomed Machine

If your cluster runs on a single, multihomed machine, and each server instance in the cluster uses
a different IP address, define the cluster address using a DNS name that maps to the IP addresses
of the server instances in the cluster. If you define the cluster address as a DNS name, specify the
same Listen Port number for each of the Managed Servers in the cluster.

Cluster Implementation Procedures

This section describes how to get a clustered application up and running, from installation of
WebLogic Server through initial deployment of application components.

10-8 Using WebLogic Server Clusters

Cluster Implementation Procedures

Configuration Roadmap

This section lists typical cluster implementation tasks, and highlights key configuration
considerations. The exact process you follow is driven by the unique characteristics of your
environment and the nature of your application. These tasks are described:

1.

© o N o o & w Db

A < e =
A W N B O

15.

“Install WebLogic Server” on page 10-9

“Create a Clustered Domain” on page 10-10

“Configure Node Manager” on page 10-12

“Configure Load Balancing Method for EJBs and RMIs” on page 10-12

“Configure Server Affinity for Distributed JMS Destinations” on page 10-13
“Configuring Load Balancers that Support Passive Cookie Persistence” on page 10-13
“Configure Proxy Plug-Ins” on page 10-14

“Configure Replication Groups” on page 10-22

“Configure Migratable Targets for Pinned Services” on page 10-23

. “Configure Clustered JDBC” on page 10-24

. “Package Applications for Deployment” on page 10-25

. “Deploy Applications” on page 10-25

. “Deploying, Activating, and Migrating Migratable Services” on page 10-27
. “Configure In-Memory HTTP Replication” on page 10-30

“Additional Configuration Topics” on page 10-30

Not every step is required for every cluster implementation. Additional steps may be necessary
in some cases.

Install WebLogic Server

If you have not already done so, install WebLogic Server. For instructions, see Installing
WebLogic Server.

If the cluster will run on a single machine, do a single installation of WebLogic Server
under the /bea directory to use for all clustered instances.

Using WebLogic Server Clusters 10-9

../../../common/docs100/install/index.html
../../../common/docs100/install/index.html

10-10

e For remote, networked machines, install the same version of WebLogic Server on each
machine. Each machine:

— Must have permanently assigned, static IP addresses. You cannot use
dynamically-assigned IP addresses in a clustering environment.

— Must be accessible to clients. If the server instances are behind a firewall and the
clients are in front of the firewall, each server instance must have a public IP address
that can be reached by the clients.

— Must be located on the same local area network (LAN) and must be reachable via IP
multicast.

Note: Do not use a shared filesystem and a single installation to run multiple WebLogic Server
instances on separate machines. Using a shared filesystem introduces a single point of
contention for the cluster. All server instances must compete to access the filesystem (and
possibly to write individual log files). Moreover, should the shared filesystem fail, you
might be unable to start clustered server instances.

Create a Clustered Domain

The are multiple methods of creating a clustered domain. For a list, see “Methods of Configuring
Clusters” on page 4-8.

For instructions to create a cluster using the:

e Configuration Wizard, first see “Creating a New WebLogic Domain” in Creating WebLogic
Domains Using the Configuration Wizard for instructions on creating the domain, and then
“Customizing your Domain” for instructions on configuring a cluster.

e Administration Console, see Create and configure clusters in Administration Console
Online Help.

Starting a WebLogic Server Cluster

There are multiple methods of starting a cluster—available options include the command line
interface, scripts that contain the necessary commands, and Node Manager.

Note: Node Manager eases the process of starting servers, and restarting them after failure.

To use Node Manager, you must first configure a Node Manager process on each
machine that hosts Managed Servers in the cluster. See “Configure Node Manager” on
page 10-12.

Regardless of the method you use to start a cluster, start the Administration Server first, then start
the Managed Servers in the cluster.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/../../common/docs100/confgwiz/index.html
http://e-docs.bea.com/wls/docs100/../../common/docs100/confgwiz/index.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/clusters/ClusterRoadmap.html

Cluster Implementation Procedures

Follow the instructions below to start the cluster from a command shell. Note that each server
instance is started in a separate command shell.

1. Open a command shell.
2. Change directory to the domain directory that you created with the Configuration Wizard.
3. Type this command to start the Administration Server:
StartWebLogic
4. Enter the user name for the domain at the “Enter username to boot WebLogic Server” prompt.

5. Enter the password for the domain at the “Enter password to boot WebL ogic Server” prompt.

The command shell displays messages that report the status of the startup process.
6. Open another command shell so that you can start a Managed Server.
7. Change directory to the domain directory that you created with the Configuration Wizard.

8. Type this command
StartManagedWebLogic server_name address:port
where:
server_name is the name of the Managed Server you wish to start
address is the IP address or DNS name for the Administration Server for the domain

port is the listen port for the Administration Server for the domain
9. Enter the user name for the domain at the “Enter username to boot WebLogic Server” prompt.

10. Enter the password for the domain at the “Enter password to boot WebLogic Server” prompt.
The command shell displays messages that report the status of the startup process.

Note: Note: After you start a Managed Server, it listens for heartbeats from other running
server instances in the cluster. The Managed Server builds its local copy of the
cluster-wide JNDI tree, as described in “How WebLogic Server Updates the JINDI
Tree” on page 3-14, and displays status messages when it has synchronized with each
running Managed Server in the cluster. The synchronization process can take a
minute or so.

11. To start another server instance in the cluster, return to step 6 Continue through step 10

Using WebLogic Server Clusters 10-11

10-12

12. When you have started all Managed Servers in the cluster, the cluster startup process is
complete.

Configure Node Manager

Node Manager is a standalone Java program provided with WebLogic Server that is useful for
starting a Managed Server that resides on a different machine than its Administration Server.
Node Manager also provides features that help increase the availability of Managed Servers in
your cluster. For more information, and for instructions to configure and use Node Manager, see
Using Node Manager to Control Servers in Designing and Configuring WebLogic Server
Environments.

Configure Load Balancing Method for EJBs and RMIs

Follow the instructions in this section to select the load balancing algorithm for EJBs and RMI
objects.

Unless you explicitly specify otherwise, WebLogic Server uses the round-robin algorithm as the
default load balancing strategy for clustered object stubs. To understand alternative load
balancing algorithms, see “Load Balancing for EJBs and RMI Objects” on page 5-4. To change
the default load balancing algorithm:

1. Open the WebLogic Server Console.
Select the Environments—>Clusters node.

Click on the name of your cluster in the table.

A won

If you have not already done so, click the Lock & Edit button in the top left corner of the
console.

Enter the desired load balancing algorithm in the Default Load Algorithm field.
Click the Advanced link.
Enter the desired value in the Service Age Threshold field

Click Save to save your changes.

© © N o O

Click the Activate Changes button in the top left corner once you are ready to activate your
changes.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/server_start/nodemgr.html

Cluster Implementation Procedures

Specifying a Timeout Value For RMIs

You can enable a timeout option when making calls to the ReplicationManager by setting the
ReplicationTimeoutEnabled in the ClusterMBean to true.

The timeout value is equal to the multicast heartbeat timeout. Although you can customize the
multicast timeout value, the ReplicationManager timeout cannot be changed. This restriction
exists because the ReplicationManager timeout does not affect cluster membership. A missing
multicast heartbeat causes the member to be removed from the cluster and the timed out
ReplicationManager call will choose a new secondary server to connect to.

Note: It is possible that a cluster member will continue to send multicast heartbeats, but will be
unable to process replication requests. This could potentially cause an uneven
distribution of secondary servers. When this situation occurs, a warning message is
recorded in the server logs.

Configure Server Affinity for Distributed JMS Destinations

To understand the server affinity support provided by WebL ogic Server for JMS, see “Load
Balancing for JMS” on page 5-14.

Configuring Load Balancers that Support Passive Cookie
Persistence

Load balancers that support passive cookie persistence can use information from the WebLogic
Server session cookie to associate a client with the WebLogic Server instance that hosts the
session. The session cookie contains a string that the load balancer uses to identify the primary
server instance for the session.

For a discussion of external load balancers, session cookie persistence, and the WebLogic Server
session cookie, see “Load Balancing HTTP Sessions with an External Load Balancer” on
page 5-2

To configure the load balancer to work with your cluster, use the facilities of the load balancer to
define the offset and length of the string constant.

Assuming that the Session ID portion of the session cookie is the default length of 52 bytes, on
the load balancer, set:

e string offset to 53 bytes, the default Random Session ID length plus 1 byte for the delimiter
character.

Using WebLogic Server Clusters 10-13

10-14

e string length to 10 bytes

If your application or environmental requirements dictate that you change the length of the
Random Session ID from its default value of 52 bytes, set the string offset on the load balancer
accordingly. The string offset must equal the length of the Session ID plus 1 byte for the delimiter
character.

Notes: For vendor-specific instructions for configuring Big-1P load balancers, see Appendix B,
“Configuring BIG-IP™ Hardware with Clusters.”

Configure Proxy Plug-Ins

Refer to the instructions in this section if you wish to load balance servlets and JSPs using a proxy
plug-in. A proxy plug-in proxies requests from a web server to WebLogic Server instances in a
cluster, and provides load balancing and failover for the proxied HTTP requests.

For information about load balancing using proxy plug-ins, see “Load Balancing with a Proxy
Plug-in” on page 5-2. For information about connection and failover using proxy plug-ins, see
“Replication and Failover for Servlets and JSPs” on page 6-2, and “Accessing Clustered Servlets
and JSPs Using a Proxy” on page 6-9.

e If you use WebLogic Server as a web server, set up HttpClusterServlet using the
instructions in “Set Up the HttpClusterServlet” on page 10-14.

e |f you use a supported third-party web server, set up a product-specific plug-in (for a list of
supported web servers, see “Load Balancing with a Proxy Plug-in” on page 5-2.), follow
the instructions in Using WebLogic Server with Plug-ins.

Note: Each web server that proxies requests to a cluster must have an identically configured
plug-in.

Set Up the HttpClusterServlet

To use the HTTP cluster servlet, configure it as the default web application on your proxy server
machine, as described in the steps below. For an introduction to web applications, see “Overview
of Web Applications” in Developing Web Applications for WebLogic Server.

1. If you have not already done so, configure a separate, non-clustered Managed Server to host
the HTTP Cluster Servlet.

2. Create the web.xml deployment descriptor file for the servlet. This file must reside in the
\WEB- INF subdirectory of the web application directory. A sample deployment descriptor for
the proxy servlet is provided in “Sample web.xml” on page 10-16. For more information on

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/plugins/index.html
http://e-docs.bea.com/wls/docs100/webapp/basics.html
http://e-docs.bea.com/wls/docs100/webapp/basics.html

Cluster Implementation Procedures

web . xml, see “Understanding Web Applications, Servlets, and JSPs” in Developing Web
Applications, Servlets, and JSPs for WebLogic Server.

a. Define the name and class for the servlet in the <servlet> element in web.xml. The
servlet name is HttpClusterServilet. The servlet class is
weblogic.servlet.proxy.HttpClusterServlet.

b. Identify the clustered server instances to which the proxy servlet will direct requests in the
<servlet> element in web.xml, by defining the WebLogicCluster parameter.

c. Optionally, define the following <keyStore> initialization parameters to use two-way
SSL with your own identity certificate and key. If no <keyStore> is specified in the
deployment descriptor, the proxy will assume one-way SSL.

» <KeyStore> — The key store location in your Web application.

» <KeyStoreType> — The key store type. If it is not defined, the default type will be
used instead.

* <PrivateKeyAlias> — The private key alias.

» <KeyStorePasswordProperties> — A property file in your Web application that
defines encrypted passwords to access the key store and private key alias. The file
contents looks like this:
KeyStorePassword={3DES}i14+50LCKenQ08BBVvIsXTrg\=\=
PrivateKeyPassword={3DES}a4TcG4mtVVBRKtZwWH3p7yA\=\=

You must use the weblogic.security.Encrypt command-line utility to encrypt
the password. For more information on the Encrypt utility, as well as the CertGen,
and der2pem utilities, see Using the WebLogic Server Java Utilities in the WebLogic
Server Command Reference.

d. Create <servlet-mapping> stanzas to specify the requests that the servlet will proxy to
the cluster, using the <url-pattern> element to identify specific file extensions, for
example *_jsp, or *_html. Define each pattern in a separate <servlet-mapping>
stanza.

You can set the <url-pattern>to “/” to proxy any request that cannot be resolved by
WebLogic Server to the remote server instance. If you do so, you must also specifically
map the following extensions: *_jsp, *_-html, and *.html, to proxy files ending with
those extensions. For an example, see “Sample web.xml” on page 10-16.

Using WebLogic Server Clusters 10-15

http://e-docs.bea.com/wls/docs100/admin_ref/utils.html#encrypt
http://e-docs.bea.com/wls/docs100/admin_ref/utils.html#certgen
http://e-docs.bea.com/wls/docs100/admin_ref/utils.html#der2pem
http://e-docs.bea.com/wls/docs100/webapp/basics.html
http://e-docs.bea.com/wls/docs100/admin_ref/utils.html

10-16

e. Define, as appropriate, any additional parameters. See Table for a list of key parameters.
See “Parameters for Web Server Plug-ins” in Using WebLogic Server with Plug-ins for a
complete list. Follow the syntax instructions in “Proxy Servlet Deployment Parameters”
on page 10-18.

3. Create the weblogic.xml deployment descriptor file for the servlet. This file must reside in
the \WEB- INF subdirectory of the web application directory.

Assign the proxy servlet as the default web application for the Managed Server on the
proxy machine by setting the <context-root> element to a forward slash character (/) in
the <weblogic-web-app> stanza. For an example, see “Sample weblogic.xml” on

page 10-18.

4. Inthe Administration Console, deploy the servlet to the Managed Server on your proxy server
machine. For instructions, see “Deploying a New Web Application” in Administration
Console Online Help.

Sample web.xml

This section contains a sample deployment descriptor file (web.xml) for HttpClusterServlet.

web . xml defines parameters that specify the location and behavior of the proxy servlet: both
versions of the servlet:

m The DOCTYPE stanza specifies the DTD used by WebLogic Server to validate web . xml.

m The servlet stanza:

e Specifies the location of the proxy plug-in servlet class. The file is located in the
weblogic.jar in your WL_HOME/server/lib directory. You do not have to specify
the servlet’s full directory path in web.xml because weblogic. jar is put in your
CLASSPATH when you start WebLogic Server.

e Identifies the host name(either DNS name or IP address) and listen port of each
Managed Servers in the cluster, using the WebLogicCluster parameter.

e Identifies the key store initialization parameters to use two-way SSL with your own
identity certificate and key.

m The three servlet-mapping stanzas specify that the servlet will proxy URLSs that end in
‘I, 'htm', "html', or 'jsp' to the cluster.

For parameter definitions see “Proxy Servlet Deployment Parameters” on page 10-18.

<IDOCTYPE web-app PUBLIC ""-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/dtd/web-app_2 3.dtd";>

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/plugins/plugin_params.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/deployment/DeployApplicationsAndModules.html

Cluster Implementation Procedures

<web-app>

<servlet>
<servlet-name>HttpClusterServlet</servilet-name>
<servlet-class>
weblogic.servlet.proxy.HttpClusterServilet
</servlet-class>

<init-param>
<param-name>WebLogicCluster</param-name>

<param-value>hostnamel:7736|hostname2:7736 | hostname:7736</param-value>

</init-param>

<init-param>
<param-name>KeyStore</param-name>
<param-value>/mykeystore</param-value>

</init-param>

<init-param>
<param-name>KeyStoreType</param-name>
<param-value>jks</param-value>
</init-param>

<init-param>
<param-name>PrivateKeyAl ias</param-name>
<param-value>passalias</param-value>
</init-param>

<init-param>
<param-name>KeyStorePasswordProperties</param-name>
<param-value>mykeystore.properties</param-value>
</init-param>

</servlet>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>/</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServilet</servlet-name>
<url-pattern>*_jsp</url-pattern>
</servlet-mapping>

Using WebLogic Server Clusters

10-17

10-18

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*_htm</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>HttpClusterServlet</servlet-name>
<url-pattern>*_html</url-pattern>
</servlet-mapping>

</web-app>

Sample weblogic.xml

This section contains a sample weblogic.xml file. The <context-root> deployment
parameter is set to "/". This makes the proxy servlet the default web application for the proxy
server.

<IDOCTYPE weblogic-web-app PUBLIC "-//BEA Systems, Inc.//DTD Web
Application 9.1//EN" "http://www._bea.com/servers/wls810/dtd/weblogic
810-web-jar.dtd">
<weblogic-web-app>
<context-root>/</context-root>
</weblogic-web-app>

Proxy Servlet Deployment Parameters

Key parameters for configuring the behavior of the proxy servlet in web .xml are listed in
Table 10-1.

The parameters for the proxy servlet are the same as those used to configure WebLogic Server
plug-ins for Apache, Microsoft, and Netscape web servers. For a complete list of parameters for
configuring the proxy servlet and the plug-ins for third-part web servers see “Parameters for Web
Server Plug-ins” in Using WebLogic Server with Plug-ins.

The syntax for specifying the parameters, and the file where they are specified, is different for the
proxy servlet and for each of the plug-ins.

For the proxy servlet, specify the parameters in web .xml, each in its own <init-param> stanza
within the <servlet> stanza of web.xml. For example:

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/plugins/plugin_params.html
http://e-docs.bea.com/wls/docs100/plugins/plugin_params.html

<init-param>

Cluster Implementation Procedures

<param-name>ParameterName</param-name>
<param-value>ParameterValue</param-value>

</init-param>

Table 10-1 Proxy Servlet Deployment Parameter

Parameter Usage
WebLogicCluster <init-param>
<param-name>WebLogicCluster</param-name>
<param-value>WLS1.com:port]|WLS2.com:port
</param-value>
Where WLS1 . comand WLS2 . com are the host names of servers in the cluster,
and port is a port where the host is listening for HTTP requests.
If you are using SSL between the plug-in and WebLogic Server, set the port
number to the SSL listen port (see Configuring the Listen Port) and set the
SecureProxy parameter to ON.
SecureProxy <init-param>
<param-name>SecureProxy</param-name>
<param-value>ParameterValue</param-value>
</init-param>
Valid values are ON and OFF.
If you are using SSL between the plug-in and WebLogic Server, set the port
number to the SSL listen port (see Configuring the Listen Port) and set the
SecureProxy parameter to ON.
DebugConfiglinfo <init-param>

<param-name>DebugConfiglnfo</param-name>
<param-value>ParameterValue</param-value>
</init-param>
Valid values are ON and OFF.

If set to ON, you can query the HttpClusterServlet for debugging infor-
mation by adding a request parameter of ?__WebLogicBridgeConfig to
any request. (Note: There are two underscore (_) characters after the ?.) For
security reasons, it is recommended that you set the DebugConfiglInfo pa-
rameter to OFF in a production environment.

Using WebLogic Server Clusters 10-19

10-20

Table 10-1 Proxy Servlet Deployment Parameter

Parameter

Usage

ConnectRetry
Secs

Interval in seconds that the servlet will sleep between attempts to connect to a
server instance. Assign a value less than ConnectTimeoutSecs.

The number of connection attempts the servlet makes before returning an
HTTP 503/Service Unavailable response to the client is
ConnectTimeoutSecs divided by ConnectRetrySecs.

Syntax:

<init-param>
<param-name>ConnectRetrySecs</param-name>
<param-value>ParameterValue</param-value>

</init-param>

ConnectTimeout
Secs

Maximum time in seconds that the servlet will attempt to connect to a server
instance. Assign a value greater than ConnectRetrySecs.

If ConnectT imeoutSecs expires before a successful connection, an HTTP
503/Service Unavailable response is sent to the client.

Syntax:

<init-param>

<param-name>ConnectTimeoutSecs</param-name>
<param-value>ParameterValue</param-value>

</init-param>

PathTrim

String trimmed by the plug-in from the beginning of the original URL, before

the request is forwarded to the cluster.

Syntax:

<init-param>

<param-name>PathTrim</param-name>
<param-value>ParameterValue</param-value>

</init-param>

Example:

If the URL

http://myWeb.server.com/weblogic/foo

is passed to the plug-in for parsing and if PathTrim has been set to

/weblogic

the URL forwarded to WebLogic Server is:

http://myWeb.server.com:7001/foo

Using WebLogic Server Clusters

Cluster Implementation Procedures

Table 10-1 Proxy Servlet Deployment Parameter

Parameter

Usage

TrimExt

The file extension to be trimmed from the end of the URL.

Syntax:

<init-param>

<param-name>TrimExt</param-name>
<param-value>ParameterValue</param-value>

</init-param>

clientCertProxy

Specifies to trust client certificates in the WL-Proxy-Cl ient-Cert header.
Valid values are true and false. The default value is false.

This setting is useful if user authentication is performed on the proxy server—
setting cl ientCertProxy to true causes the proxy server to pass on the
certs to the cluster in a special header, WL-Proxy-Client-Cert.

The WL-Proxy-Client-Cert header can be used by any client with direct
access to WebLogic Server. WebLogic Server takes the certificate information
from that header, trusting that is came from a secure source (the plug-in) and
uses that information to authenticate the user.

For this reason, if you set clientCertProxy to true, use a connection filter
to ensure that WebL ogic Server accepts connections only from the machine on
which the plug-in is running. See “Using Network Connection Filters” in
Programming WebLogic Security.

PathPrepend

String that the servlet prepends to the original URL, after PathTrim is

trimmed, before forwarding the URL to the cluster.

<init-param>

<param-name>PathPrepend</param-name>
<param-value>ParameterValue</param-value>

</init-param>

Accessing Applications Via the Proxy Server

Ensure that applications clients will access via the proxy server are deployed to your cluster.
Address client requests to the listen address and listen port of the proxy server.

If you have problems:

e Make sure all servers instances have unique address/port combinations

Each of the server instances in the configuration must have a unique combination of Listen
Address and Listen Port.

Using WebLogic Server Clusters 10-21

http://e-docs.bea.com/wls/docs100/security/con_filtr.html

10-22

e Make sure that the proxy servlet is the default application for the proxy server

If you get a page not found error when you try to your application, make sure that
weblogic.xml is in \WEB- INF for the application and that it sets the context-root
deployment parameter to "'/".

o When all else fails, restart

If you are having problems try rebooting all your servers, some of the changes you made
while configuring your setup may not have been persisted to the configuration file.

o Verify Your Configuration
To verify the configuration of the HttpClusterServlet:
a. Set the DebugConfiglInfo parameter in web.xml to ON.
b. Use a Web browser to access the following URL:
http://myServer:port/placeholder.jsp?__WebLogicBridgeConfig
Where:

myServer is the Managed Server on the proxy machine where HttpClusterServiet
runs,

port is the port number on that server that is listening for HTTP requests, and
placeholder. jsp is a file that does not exist on the server.

The plug-in gathers configuration information and run-time statistics and returns the
information to the browser. For more information, see “Parameters for \Web Server
Plug-ins” in Using WebLogic Server with Plug-ins.

Configure Replication Groups

To support automatic failover for servlets and JSPs, WebLogic Server replicates HTTP session
states in memory. You can further control where secondary states are placed using replication
groups. A replication group is a preferred list of clustered instances to be used for storing session
state replicas.

If your cluster will host servlets or stateful session EJBS, you may want to create replication
groups of WebLogic Server instances to host the session state replicas.

For instructions on how to determine which server instances should participate in each replication
group, and to determine each server instance’s preferred replication group, follow the instructions
in “Using Replication Groups” on page 6-6.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/plugins/plugin_params.html
http://e-docs.bea.com/wls/docs100/plugins/plugin_params.html

Cluster Implementation Procedures

Then follow these steps to configure replication groups for each WebLogic Server instance:
To configure replication groups for a WebLogic Server instance:

1. Open the WebLogic Server Console.

Select the Environments->Servers node.

In the table, click on the name of the server you want to configure.

Select the Cluster tab.

o ~ w N

If you have not already done so, click the Lock & Edit button in the top left corner of the
console.

6. Enter values for the following attribute fields:

— Replication Group: Enter the name of the replication group to which this server
instance belongs.

— Preferred Secondary Group: Enter the name of the replication group you would like to
use to host replicated HTTP session states for this server instance.

7. Click Save to save your changes.

8. Click the Activate Changes button in the top left corner to activate your changes.

Configure Migratable Targets for Pinned Services

WebLogic Server enables you to configure an optional migratable target, which is a special target
that can migrate from one server in a cluster to another. As such, a migratable target provides a
way to group pinned services that should move together. When the migratable target is migrated,
all services hosted by that target are migrated. Pinned services include JMS-related services (e.g.,
JMS servers, SAF agents, path services, and persistent stores) or the JTA Transaction Recovery
Service.

If you want to use a migratable target, configure the target server list before deploying or
activating the service in the cluster. If you do not configure a migratable target in the cluster,
migratable services can be migrated to any available WebLogic Server instance in the cluster. For
more details on migratable targets, see “Understanding Migratable Targets In a Cluster” on
page 8-4.

Using WebLogic Server Clusters 10-23

10-24

Configure Clustered JDBC

This section provides instructions for configuring JDBC components using the Administration
Console. The choices you make as you configure the JDBC components are reflected in the
configuration files for the WebLogic Server domain that contains the cluster.

First you create the data sources and optionally create a multi data source.

e For an overview of how JDBC objects work in a WebLogic Server cluster, see “JDBC
Connections” on page 2-6.

e For a description of how clustered JDBC can increase application availability, see
“Failover and JDBC Connections” on page 6-32.

e For a description of how clustered JDBC supports load balancing, see “Load Balancing for
JDBC Connections” on page 5-16.

Clustering Data Sources
Perform these steps to set up a basic data source in a cluster:
1. Create a data source.

For instructions, see “Create JDBC data sources” in the Administration Console Online
Help.

2. Target the data source to the cluster.

Clustering Multi Data Sources

Perform these steps to create a clustered multi data source for increased availability, and
optionally, load balancing.

Note: Multi data sources are typically used to provide increased availability and load balancing
of connections to replicated, synchronized instances of a database. For more information,
see “JDBC Connections” on page 2-6.

1. Create two or more data sources.

For instructions, see “Create JDBC data sources” in the Administration Console Online
Help.

2. Target each data source to the cluster.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jdbc/jdbc_datasources/CreateDataSources.html

Cluster Implementation Procedures

3. Create a multi data source. Assign the data sources created in the previous step to the multi
data source.

For instructions, see “Configure JDBC multi data sources” in the Administration Console
Online Help.

4. Target the multi data source to the cluster.

Package Applications for Deployment

You must package applications before you deploy them to WebLogic Server. For more
information, see the packaging topic in “Deploying the Application” in Developing Applications
for WebLogic Server.

Deploy Applications

Clustered objects in WebLogic Server should be deployed homogeneously. To ensure
homogeneous deployment, when you select a target use the cluster name, rather than individual
WebLogic Server instances in the cluster.

The console automates deploying replica-aware objects to clusters. When you deploy an
application or object to a cluster, the console automatically deploys it to all members of the
cluster (whether they are local to the Administration Server machine or they reside on remote
machines.) For a discussion of application deployment in clustered environments see “Methods
of Configuring Clusters” on page 4-8. For a broad discussion of deployment topics, see
Deploying WebLogic Server Applications.

Note: All server instances in your cluster should be running when you deploy applications to
the cluster using the Administration Console

Deploying to a Single Server Instance (Pinned Deployment)

Deploying a application to a server instance, rather than the all cluster members is called a pinned
deployment. Although a pinned deployment targets a specific server instance, all server instances
in the cluster must be running during the deployment process.

You can perform a pinned deployment using the Administration Console or from the command
line, using weblogic.Deployer.

Pinned Deployment from the Command Line
From a command shell, use the following syntax to target a server instance:

Using WebLogic Server Clusters 10-25

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jdbc/ConfigureMultiDataSources.html
http://e-docs.bea.com/wls/docs100/programming/splitdeploy.html
http://e-docs.bea.com/wls/docs100/deployment/index.html

10-26

java weblogic.Deployer -activate -name ArchivedEarJar -source
C:/MyApps/JarEar.ear -target serverl

Cancelling Cluster Deployments

You can cancel a deployment using the Administration Console or from the command line, using
weblogic.Deployer.

Cancel Deployment from the Command Line
From a command shell, use the following syntax to cancel the deployment task 1D:

jJjava weblogic.Deployer -adminurl http://admin:7001 -cancel -id tag

Cancel Deployment Using the Administration Console

In the Administration Console, open the Tasks node to view and to cancel any current deployment
tasks.

Viewing Deployed Applications

To view a deployed application in the Administration Console:

1. Inthe Console, click the Deployments node.

2. View a list of deployed applications in the table displayed in the Console.
Undeploying Deployed Applications

To undeploy a deployed application from the WebL ogic Server Administration Console:

1. Inthe Console, click Deployments.

2. Inthe displayed table, check the checkbox to the left of the application you want to undeploy.

3. If you have not already done so, click the Lock & Edit button in the top left corner of the
console.

4. Click Stop.

5. Select when you want the application to stop (undeploy).

6. Click Yes.

7. Click the Activate Changes button in the top left corner of the console to activate your
changes.

Using WebLogic Server Clusters

Cluster Implementation Procedures

Deploying, Activating, and Migrating Migratable Services

The sections that follow provide guidelines and instructions for deploying, activating, and
migrating migratable services.

Deploying JMS to a Migratable Target Server Instance

The migratable target that you create defines the scope of server instances in the cluster that can
potentially host a migratable service. You must deploy or activate a pinned service on one of the
server instances listed in the migratable target in order to migrate the service within the target
server list at a later time. Use the instructions that follow to deploy a JMS service on a migratable
target, or activate the JTA transaction recovery system so that you can migrate it later.

Note: If you did not configure a migratable target, simply deploy the JMS server to any
WebLogic Server instance in the cluster; you can then migrate the JMS server to any
other server instance in the cluster (no migratable target is used).

Before you begin, use the instructions in “Configure Migratable Targets for Pinned Services” on
page 10-23 to create a migratable target for the cluster. Next, deploy JMS-related services to a
migratable target, as described in the following topics in the Administration Console Online Help:

e Change JMS server targets
e Change SAF agent targets
e Change path service targets

e Create file stores and Create JDBC stores

Activating JTA as a Migratable Service

The JTA recovery service is automatically started on one of the server instances listed in the
migratable target for the cluster; you do not have to deploy the service to a selected server
instance.

If you did not configure a JTA migratable target, WebLogic Server activates the service on any
available WebLogic Server instance in the cluster. To change the current server instance that
hosts the JTA service, use the instructions in “Migrating a Pinned Service to a Target Server
Instance” on page 10-27.

Migrating a Pinned Service to a Target Server Instance

After you have deployed a migratable service, you can use the Administration Console to
manually migrate the service to another server instance in the cluster. If you configured a

Using WebLogic Server Clusters 10-27

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jms_servers/TargetAndDeployJMSServers.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/saf_agents/TargetSAFAgentsToServers.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/pathservice/TargetPathServices.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/stores/CreateFileStores.html

10-28

migratable target for the service, you can migrate to any other server instance listed in the
migratable target, even if that server instance is not currently running. If you did not configure a
migratable target, you can migrate the service to any other server instance in the cluster.

If you migrate a service to a stopped server instance, the server instance will activate the service
upon the next startup. If you migrate a service to a running WebLogic Server instance, the
migration takes place immediately.

Before you begin, use the instructions in “Deploying JMS to a Migratable Target Server Instance”
on page 10-27 to deploy a pinned service to the cluster. Next, migrate the pinned service using
the Administration Console by following the appropriate instructions in the Administration
Console Online Help:

e Manually migrate JIMS-related services

e Manually migrate the Transaction Recovery Service
Here are some additional steps that are not covered in the console help instructions:

1. If the Current Server is not reachable by the Administration Server, the Administration
Console displays this message:

Unable to contact server MyServer-1, the source server from which
services are being migrated.

Please ensure that server MyServer-1 is NOT running! If the
administration server cannot reach server MyServer-1 due to a network
partition, inspect the server directly to verify that it is not
running. Continue the migration only if MyServer-1 is not running.
Cancel the migration if MyServer-1 is running, or if you do not know
whether it is running.

If this message is displayed, perform the procedure described in “Migrating When the
Currently Active Host is Unavailable” on page 10-29.

2. If the Destination Server is stopped, the Administration Console notifies you of the stopped
server instance and asks if you would like to continue the migration. Click the Continue
button to migrate to the stopped server instance, or click Cancel to stop the migration and
select a different server instance.

3. The migration process may take several minutes to complete, depending on the server
instance configuration. However, you can continue using other Administration Console
features while the migration takes place. To view the migration status at a later time, click the
Tasks node in the left pane to display the currently-running tasks for the domain; then select
the task description for the migration task to view the current status.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jta/MigrateTheTransactionRecoveryService.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/jms_servers/MigrateJMSServer.html

Cluster Implementation Procedures

Migrating When the Currently Active Host is Unavailable

Use this migration procedure if a clustered Managed Server that was the active server for the
migratable service crashes or becomes unreachable.

This procedure purges the failed Managed Server’s configuration cache. The purpose of purging
the cache is to ensure that, when the failed server instance is once again available, it does not
re-deploy a service that you have since migrated to another Managed Server. Purging the cache
eliminates the risk that Managed Server which was previously the active host for the service uses
local, out-of-date configuration data when it starts up again.

1.

Disconnect the machine from the network entirely. It should not be accessible to the
Administration Server or client traffic. If the machine has a dual ported disk, disconnect it.

Migrate the migratable service(s) to a Managed Server instance on a different machine. The
Administration Server must be running, so that it can coordinate the migration and update the
activation table.

— If you use the command line for migration, use the -sourcedown flag.

— If you use the console, it will ask you to make sure the source server is not going to
restart.

The migratable service is now available on a different Managed Server on a different
machine. The following steps can be performed at leisure.

Perform the necessary repair or maintenance on the failed machine.

Reboot the machine, but do not connect it to the network.

Node Manager will start as a service or daemon, and will attempt to start the Managed
Servers on the machine.

— If Managed Server Independence is enabled, the Managed Server will start, even
though it cannot connect to the Administration Server.

— If Managed Server Independence is disabled, the Managed Server will not start,
because it cannot connect to the Administration Server.

Reconnect the machine to the network and shared storage, including dual ported disk, if
applicable.

Restart the Node Manager daemon/service or reboot the machine, to start all remaining
Managed Servers.

Start the Managed Server that was disabled. This is a normal start up, rather than a restart
performed by Node Manager. The Administration Server must be reachable and running, so

Using WebLogic Server Clusters 10-29

10-30

that the Managed Servers can synchronize with the migratable service activation table on the
Administration Server—and hence know that it is no longer the active host of the migratable
service.

Configure In-Memory HTTP Replication

To support automatic failover for servlets and JSPs, WebLogic Server replicates HTTP session
states in memory.

Note: WebLogic Server can also maintain the HTTP session state of a servlet or JSP using
file-based or JDBC-based persistence. For more information on these persistence
mechanisms, see “Using Sessions and Session Persistence” in Developing Web
Applications, Servets, and JSPs for WebLogic Server.

In-memory HTTP Session state replication is controlled separately for each application you
deploy. The parameter that controls it—PersistentStoreType-appears within the
session-descriptor element, in the WebLogic deployment descriptor file, weblogic.xml,
for the application.

domain_directory/applications/application_directory/Web-1nf/weblogic.xml

To use in-memory HTTP session state replication across server instances in a cluster, set the
PersistentStoreType to replicated. The fragment below shows the appropriate XML from
weblogic.xml.

<session-descriptor>
<session-param>
<param-name> PersistentStoreType </param-name>
<param-value> replicated </param-value>
</session-param>
</session-descriptor>

Additional Configuration Topics

The sections below contain useful tips for particular cluster configurations.

Configure IP Sockets

For best socket performance, BEA recommends that you use the native socket reader
implementation, rather than the pure-Java implementation, on machines that host WebLogic
Server instances.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/webapp/sessions.html
http://e-docs.bea.com/wls/docs100/webapp/weblogic_xml.html

Cluster Implementation Procedures

If you must use the pure-Java socket reader implementation for host machines, you can still
improve the performance of socket communication by configuring the proper number of socket
reader threads for each server instance and client machine.

e To learn more about how IP sockets are used in a cluster, and why native socket reader
threads provide best performance, see “Peer-to-Peer Communication Using IP Sockets” on
page 3-5, and “Client Communication via Sockets” on page 3-10.

e For instructions on how to determine how many socket reader threads are necessary in
your cluster, see “Determining Potential Socket Usage” on page 3-8. If you are deploying a
servlet cluster in a multi-tier cluster architecture, this has an effect on how many sockets
you require, as described in “Configuration Considerations for Multi-Tier Architecture” on
page 9-10.

The sections that follow have instructions on how to configure native socket reader threads for
host machines, and how to set the number of reader threads for host and client machines.

Configure Native IP Sockets Readers on Machines that Host Server Instances

To configure a WebL ogic Server instance to use the native socket reader threads implementation:
1. Open the WebLogic Server Administration Console.

Select the Environments->Servers node.

Click the name of the server instance you want to configure.

> W Dd

If you have not already done so, click the Lock & Edit button in the top left corner of the
console.

Select the Configuration->Tuning tab.
Check the Enable Native 10 box.
Click Save.

© N o g

Click the Activate Changes button in the top left corner of the console to activate your
changes.

Set the Number of Reader Threads on Machines that Host Server Instances

By default, a WebLogic Server instance creates three socket reader threads upon booting. If you
determine that your cluster system may utilize more than three sockets during peak periods,
increase the number of socket reader threads:

Using WebLogic Server Clusters 10-31

10-32

1. Open the WebLogic Server Administration Console.
Select the Environments->Servers node.

Click the name of the server instance you want to configure.

> v

If you have not already done so, click the Lock & Edit button in the top left corner of the
console.

a

Select the Configuration->Tuning tab.

6. Edit the percentage of Java reader threads in the Socket Readers field. The number of Java
socket readers is computed as a percentage of the number of total execute threads (as shown
in the Execute Threads field).

7. Click Save to save your changes.

8. Click the Activate Changes button in the top left corner of the console to activate your
changes.

Set the Number of Reader Threads on Client Machines

On client machines, you can configure the number socket reader threads in the Java Virtual
Machine (JVM) that runs the client. Specify the socket readers by defining the
-Dweblogic.ThreadPoolSize=value and

-Dweblogic. ThreadPoolPercentSocketReaders=value options in the Java command line
for the client.

Configure Multicast Time-To-Live (TTL)

If your cluster spans multiple subnets in a WAN, the value of the Multicast Time-To-Live (TTL)
parameter for the cluster must be high enough to ensure that routers do not discard multicast
packets before they reach their final destination. The Multicast TTL parameter sets the number
of network hops a multicast message makes before the packet can be discarded. Configuring the
Multicast TTL parameter appropriately reduces the risk of losing the multicast messages that are
transmitted among server instances in the cluster.

For more information about planning your network topology to ensure that multicast messages
are reliably transmitted see “If Your Cluster Spans Multiple Subnets In a WAN” on page 3-3.

To configure the Multicast TTL for a cluster, change the Multicast TTL value in the Multicast tab
for the cluster in the Administration Console. The config.xml excerpt below shows a cluster
with a Multicast TTL value of three. This value ensures that the cluster’s multicast messages can
pass through three routers before being discarded:

Using WebLogic Server Clusters

Cluster Implementation Procedures

<Cluster
Name=""testcluster"
ClusterAddress="wanclust"
MulticastAddress="wanclust-multi”
MulticastTTL="3"

/>

Note: When relying upon the Multicast TTL value, it is important to remember that within a
clustered environment it is possible that timestamps across servers may not always be
synchronized. This can occur in replicated HTTP sessions and EJBs for example.

When the ClusterDebug flag is enabled, an error is printed to the server log when cluster
members clocks are not synchronized.

Configure Multicast Buffer Size

If multicast storms occur because server instances in a cluster are not processing incoming
messages on a timely basis, you can increase the size of multicast buffers. For information on
multicast storms, see “If Multicast Storms Occur” on page 3-4.

TCP/IP kernel parameters can be configured with the UNIX ndd utility. The udp_max_buf
parameter controls the size of send and receive buffers (in bytes) for a UDP socket. The
appropriate value for udp_max_buf varies from deployment to deployment. If you are
experiencing multicast storms, increase the value of udp_max_buf by 32K, and evaluate the
effect of this change.

Do not change udp_max_buf unless necessary. Before changing udp_max_buf, read the Sun
warning in the “UDP Parameters with Additional Cautions” section in the “TCP/IP Tunable
Parameters” chapter in Solaris Tunable Parameters Reference Manual at
http://docs.sun.com/?p=/doc/806-6779/6jfmsfr7o&.

Configure Multicast Data Encryption

WebLogic server allows you to encrypt multicast messages that are sent between clusters. You
can enable this option by checking Enable Multicast Data Encryption from the Administration
Console by navigating to the Environment —>Clusters—><cluster_name>—>Multicast node
and selecting the Advanced options.

Only the data portion of the multicast message is encrypted. Information contained in the
multicast header is not encrypted.

Using WebLogic Server Clusters 10-33

10-34

Configure Machine Names
Configure a Machine Name if:

e Your cluster will span multiple machines, and multiple server instances will run on
individual machines in the cluster, or

e You plan to run Node Manager on a machine that does not host a Administration Server

WebLogic Server uses configured machine names to determine whether or not two server
instances reside on the same physical hardware. Machine names are generally used with
machines that host multiple server instances. If you do not define machine names for such
installations, each instance is treated as if it resides on separate physical hardware. This can
negatively affect the selection of server instances to host secondary HT TP session state replicas,
as described in “Using Replication Groups” on page 6-6.

Configuration Notes for Multi-Tier Architecture

If your cluster has a multi-tier architecture, see the configuration guidelines in “Configuration
Considerations for Multi-Tier Architecture” on page 9-10.

Enable URL Rewriting

In its default configuration, WebLogic Server uses client-side cookies to keep track of the
primary and secondary server instance that host the client’s servlet session state. If client
browsers have disabled cookie usage, WebLogic Server can also keep track of primary and
secondary server instances using URL rewriting. With URL rewriting, both locations of the client
session state are embedded into the URLS passed between the client and proxy server. To support
this feature, you must ensure that URL rewriting is enabled on the WebLogic Server cluster. For
instructions on how to enable URL rewriting, see “Using URL Rewriting” in Developing Web
Applications for WebLogic Server.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/webapp/sessions.html#urlrewriting

Clustering Best Practices

These topics recommend design and deployment practices that maximize the scalability,
reliability, and performance of applications hosted by a WebLogic Server Cluster.

“General Design Considerations” on page 11-1

“Web Application Design Considerations” on page 11-2
“EJB Design Considerations” on page 11-3

“State Management in a Cluster” on page 11-7
“Application Deployment Considerations” on page 11-13
“Architecture Considerations” on page 11-13

“Avoiding Problems” on page 11-13

General Design Considerations

The following sections describe general design guidelines for clustered applications.

Strive for Simplicity

Distributed systems are complicated by nature. For a variety of reasons, make simplicity a
primary design goal. Minimize “moving parts” and do not distribute algorithms across multiple
objects.

Using WebLogic Server Clusters 111

Minimize Remote Calls

You improve performance and reduce the effects of failures by minimizing remote calls.

Session Facades Reduce Remote Calls

Avoid accessing EJB entity beans from client or servlet code. Instead, use a session bean, referred
to as a facade, to contain complex interactions and reduce calls from web applications to RMI
objects. When a client application accesses an entity bean directly, each getter method is a remote
call. A session facade bean can access the entity bean locally, collect the data in a structure, and
return it by value.

Transfer Objects Reduce Remote Calls

EJBs consume significant system resources and network bandwidth to execute—they are
unlikely to be the appropriate implementation for every object in an application.

Use EJBs to model logical groupings of an information and associated business logic. For example,
use an EJB to model a logical subset of the line items on an invoice—for instance, items to which
discounts, rebates, taxes, or other adjustments apply.

In contrast, an individual line item in an invoice is fine-grained—implementing it as an EJB wastes
network resources. Implement objects that simply represents a set of data fields, which require only
get and set functionality, as transfer objects.

Transfer objects (sometimes referred to as value objects or helper classes) are good for modeling
entities that contain a group of attributes that are always accessed together. A transfer object is a
serializable class within an EJB that groups related attributes, forming a composite value. This
class is used as the return type of a remote business method.

Clients receive instances of this class by calling coarse-grained business methods, and then
locally access the fine-grained values within the transfer object. Fetching multiple values in one
server round-trip decreases network traffic and minimizes latency and server resource usage.

Distributed Transactions Increase Remote Calls

Avoid transactions that span multiple server instances. Distributed transactions issue remote calls
and consume network bandwidth and overhead for resource coordination.

Web Application Design Considerations

11-2

The following sections describe design considerations for clustered servlets and JSPs.

Using WebLogic Server Clusters

EJB Design Considerations

Configure In-Memory Replication

To enable automatic failover of servlets and JSPs, session state must persist in memory. For
instructions to configure in-memory replication for HTTP session states, see “Requirements for
HTTP Session State Replication” on page 6-4 and “Configure In-Memory HTTP Replication” on
page 10-30.

Design for Idempotence

Failures or impatient users can result in duplicate servlet requests. Design servlets to tolerate
duplicate requests.

Programming Considerations

See “Programming Considerations for Clustered Servlets and JSPs” on page 6-5.

EJB Design Considerations

The following sections describe design considerations for clustered RMI objects.

Design Idempotent Methods

Itis not always possible to determine when a server instance failed with respect to the work it was
doing at the time of failure. For instance, if a server instance fails after handling a client request
but before returning the response, there is no way to tell that the request was handled. A user that
does not get a response retries, resulting in an additional request.

Failover for RMI objects requires that methods be idempotent. An idempotent method is one that
can be repeated with no negative side-effects.

Using WebLogic Server Clusters 11-3

Follow Usage and Configuration Guidelines

The following table summarizes usage and configuration guidelines for EJBs. For a list of
configurable cluster behaviors, see Table 11-2.

Table 11-1 EJB Types and Guidelines

Object Type Usage

Configuration

EJBs of all Use EJBs to model logical groupings of an information and Configure clusterable homes
types associated business logic. See “Transfer Objects Reduce

Remote Calls” on page 11-2.
Stateful Recommended for high volume, heavy-write transactions. Configure clusterable homes

session beans

Remove stateful session beans when finished to minimize EJB
container overhead. A stateful session bean instance is
associated with a particular client, and remains in the container
until explicitly removed by the client, or removed by the
container when it times out. Meanwhile, the container may
passivate inactive instances to disk. This consumes overhead
and can affect performance.

Note: Although unlikely, the current state of a stateful
session bean can be lost. For example, if a client
commits a transaction involving the bean and there is
a failure of the primary server before the state change
is replicated, the client will fail over to the
previously-stored state of the bean. If it is critical to
preserve bean state in all possible failover scenarios,
use an entity EJB rather than a stateful session EJB.

Configure in-memory
replication for EJBs

11-4

Using WebLogic Server Clusters

Table 11-1 EJB Types and Guidelines

EJB Design Considerations

Object Type Usage Configuration
Stateless Scale better than stateful session beans which are instantiated ~ Configure clusterable homes.
Session on a per client basis, and can multiply and consume resources Configure Cluster Address.
Beans rapidly.
. . Configure methods to be
When a home creates a stateless bean, it returns a replica-aware idempotence to support
stub that can route to any server where the bean is deployed. failover during method calls.
Because a stateless bean holds no state on behalf of the client, (Failover is default behavior
the stub is free to route any call to any server that hosts the if failure occurs between
bean. method calls.or if the method
fails to connect to a server).
The methods on stateless
session bean homes are
automatically set to be
idempotent. It is not
necessary to explicitly
specify them as idempotent.
Read-only Recommended whenever stale data is tolerable—suitable for ~ Configure clusterable homes.
Entity Beans product catalogs and the majority of content within many Configure Cluster Address.
applications. Reads are performed against a local cache that is)
invalided on a timer basis. Read-only entities perform three to ~ Methods are configured to be
four times faster than transactional entities. idempotent by default.
Note: A client can successfully call setter methods on a
read-only entity bean, however the data will never be
moved into the persistent store.
Read-Write Best suited for shared persistent data that is not subject to heavy ~ Configure clusterable homes
Entity Beans request and update.|f the access/update load is high, consider

session beans and JDBC.

Recommended for applications that require high data
consistency, for instance, customer account maintenance. All
reads and writes are performed against the database.

Use the isModified method to reduce writes.

For read-mostly applications, characterized by frequent reads,
and occasional updates (for instance, a catalog)—a
combination of read-only and read-write beans that extend the
read-only beans is suitable. The read-only bean provides fast,
weakly consistent reads, while the read-write bean provides
strongly consistent writes.

Configure methods to be
idempotence to support
failover during method calls.
(Failover is default behavior
if failure occurs between
method calls.or if the method
fails to connect to a server).

The methods on read-only
entity beans are
automatically set to be
idempotent.

Using WebLogic Server Clusters

11-5

11-6

Cluster-Related Configuration Options
The following table lists key behaviors that you can configure for a cluster, and the associated

method of configuration.

Table 11-2 Cluster-Related Configuration Options

Configurable Behavior or
Resource

How to Configure

clusterable homes

Set home-is-clusterable inweblogic-ejb-jar.xml to
“true.

idempotence

At bean level, set
stateless-bean-methods-are-idempotent in
weblogic-ejb-jar.xml to “true”.

At method level, set idempotent-methods in
weblogic-ejb-jar.xml

in-memory replication for EJBs

Set replication-type inweblogic-ejb-jar.xml to
“InMemory”.

Cluster Address

The cluster address identifies the Managed Servers in the cluster.

The cluster address is used in entity and stateless beans to construct
the host name portion of URLSs. The cluster address can be assigned
explicitly, or generated automatically by WebLogic Server for each
request. For more information, see “Cluster Address” on page 10-6.

clients-on-same-
server

Setclients-on-same-server inweblogic-ejb-jar.xml
to “True” if all clients that will access the EJB will do so from the
same server on which the bean is deployed.

If clients-on-same-server is “True” the server instance will
not multicast JNDI announcements for the EJB when it is deployed,
hence reducing the startup time for a large clusters.

Load balancing algorithm for
entity bean and entity EJBs
homes

home-load-algorithminweblogic-ejb-jar.xml
specifies the algorithm to use for load balancing between replicas of
the EJB home. If this element is not defined, WebLogic Server uses
the algorithm specified by the
weblogic.cluster.defaultLoadAlgorithm attribute in
config.xml.

Using WebLogic Server Clusters

State Management in a Cluster

Tahle 11-2 Cluster-Related Configuration Options

Configurable Behavior or
Resource

How to Configure

Custom load balancing for
entity EJBs, stateful session
EJBs, and stateless session

Use home-cal l-router-class-name in
weblogic-ejb-jar.xml to specify the name of a custom class
to use for routing bean method calls for these types of beans. This
class must implement weblogic.rmi.cluster.
CallRouter (). For more information, see “The WebLogic
Cluster API” on page A-1.

Custom load balancing for
stateless session bean

Use stateless-bean-call-router-class-name in
weblogic-ejb-jar.xml to specify the name of a custom class
to use for routing stateless session bean method calls. This class
must implement weblogic.rmi.cluster.CallRouter().
For more information, see “The WebLogic Cluster API” on

page A-1.

Configure stateless session
bean as clusterable

Set stateless-bean-is-clusterable in
weblogic-ejb-jar.xml to “true” to allow the EJB to be
deployed to a cluster.

Load balancing algorithm for
stateless session beans.

Use stateless-bean-load-algorithmin
weblogic-ejb-jar .xml to specify the algorithm to use for load
balancing between replicas of the EJB home. If this property is not
defined, WebLogic Server uses the algorithm specified by the
weblogic.cluster.defaultLoadAlgorithm attribute in
config.xml.

Machine

The WebLogic Server Machine resource associates server instances
with the computer on which it runs. For more information, see
“Configure Machine Names” on page 10-34.

Replication groups

Replication groups allow you to control where HTTP session
States are replicated. For more information, see “Configure
Replication Groups” on page 10-22

State Management in a Cluster

Different services in a WebLogic Server cluster provide varying types and degrees of state
management. This list defines four categories of service that are distinguished by how they
maintain state in memory or persistent storage:

Using WebLogic Server Clusters 1-1

e Stateless services—A stateless service does not maintain state in memory between
invocations.

e Conversational services—A conversational service is dedicated to a particular client for the
duration of a session. During the session, it serves all requests from the client, and only
requests from that client. Throughout a session there is generally state information that the
the application server must maintain between requests. Conversational services typically
maintain transient state in memory, which can be lost in the event of failure. If session state
is written to a shared persistent store between invocations, the service is stateless. If
persistent storage of state is not required, alternatives for improving performance and
scalability include:

— Session state can be sent back and forth between the client and server under the covers,
again resulting in a stateless service. This approach is not always feasible or desirable,
particularly with large amounts of data.

— More commonly, session state may be retained in memory on the application server
between requests. Session state can be paged out from memory as necessary to free up
memory. Performance and scalability are still improved in this case because updates are
not individually written to disk and the data is not expected to survive server failures.

e Cached services—A cached service maintains state in memory and uses it to process
requests from multiple clients. Implementations of cached services vary in the extent to
which they keep the copies of cached data consistent with each other and with associated
data in the backing store.

e Singleton services—A singleton service is active on exactly one server in the cluster at a
time and processes requests from multiple clients. A singleton service is generally backed
by private, persistent data, which it caches in memory. It may also maintain transient state
in memory, which is either regenerated or lost in the event of failure. Upon failure, a
singleton service must be restarted on the same server or migrated to a new server.

Table 11-3 summarizes how Java EE and WebLogic support different each of these categories of
service.

Note: InTable 11-3, support for stateless and conversational services is described for two types
of clients:

e Loosely-coupled clients include browsers or Web Service clients that communicate
with the application server using standard protocols.

e Tightly-coupled clients are objects that run in the application tier or in the
client-side environment, and communicate with the application server using
proprietary protocols.

Using WebLogic Server Clusters

State Management in a Cluster

Table 11-3 Java EE and WebLogic Support for Service Types

Service

Java EE Support

WebLogic Server Scalability and Reliability Features
for...

Stateless Service
with
loosely-coupled
clients

All Java EE APIs are either
stateless or may be
implemented in a stateless
manner by writing state
information to a shared
persistent store between
invocations.

Java EE does not specify a
standard for load balancing
and failover. For loosely
coupled clients, load
balancing must be must be
performed by external
IP-based mechanisms

WebLogic Server increases the availability of stateless
services by deploying multiple instances of the service to
a cluster.

For loosely-coupled clients of a stateless service,
WebLogic Server supports external load balancing
solutions, and provides proxy plug-ins for session failover
and load balancing.

For more information, see:
e “Stateless Session Beans” on page 6-27

e “Load Balancing HTTP Sessions with an External
Load Balancer” on page 5-2

e “Load Balancing with a Proxy Plug-in” on page 5-2

Stateless Service
with
tightly-coupled
clients

These Java EE APIs
support tightly coupled

access to stateless services:

« JNDI (after initial
access)

* Factories, such as EJB
homes, JDBC
connection pools, and
JMS connection
factories

» Stateless session beans

« Entity beans, if written
to a shared persistent
store between
invocations

WebLogic Server increases the availability of stateless
services by deploying multiple instances of the service to
a cluster.

For tightly-coupled clients of a stateless service,
WebLogic Server supports load balancing and failover in
its RMI implementation.

The WebLogic Server replica-aware stub for a clustered
RMI object lists the server instances in the cluster that
currently offer the service, and the configured load
balancing algorithm for the object. WebLogic Server uses
the stub to make load balancing and failover decisions.

For more information, see:
e “Stateless Session Beans” on page 6-27

» “Load Balancing for EJBs and RMI Objects” on
page 5-4

Using WebLogic Server Clusters 11-9

Tahle 11-3 Java EE and WebLogic Support for Service Types

Service Java EE Support WebLogic Server Scalabhility and Reliability Features
for...
Conversational These Java EE APIs WebLogic Server increases the reliability of sessions

services with
loosely-coupled
clients

support loosely-coupled
access to conversational
services:

e Servlets
* Web Services

Java EE does not specify a
standard for load balancing
and failover.

Load balancing can be
accomplished with external
IP-based mechanisms or
application server code in
the presentation tier.
Because protocols for
conversations services are
stateless, load balancing
should occur only when the
session is created.
Subsequent requests should
stick to the selected server.

with:

e Failover, based on in-memory replication of session
state, and distribution of primaries and secondaries
across the cluster.

e Configurable replication groups, and the ability to
specify preferred replication groups for hosting
secondaries.

e Load balancing using external load balancers or
proxy-plug-ins.

For more information, see

e “HTTP Session State Replication” on page 6-3

e “Load Balancing for Servlets and JSPs” on page 5-1.

11-10 Using WebLogic Server Clusters

State Management in a Cluster

Tahle 11-3 Java EE and WebLogic Support for Service Types

Service Java EE Support WebLogic Server Scalabhility and Reliability Features
for...
Conversational The Java EE standard WebLogic Server increases the availability and reliability

services with
tightly-coupled
clients

provides EJB stateful
session beans to support
conversational services
with tightly-coupled
clients.

of stateful session beans with these features:

Caching
Persistent storage of passivated bean state.

Initial load balancing occurs when an EJB home is
chosen to create the bean. The replica-aware stub is
hard-wired to the chosen server, providing session
affinity.

When primary/secondary replication is enabled, the
stub keeps track of the secondary and performs
failover.

Updates are sent from the primary to the secondary
only on transaction boundaries.

For more information, see “Stateful Session Beans” on
page 6-28.

Using WebLogic Server Clusters

1-1

Tahle 11-3 Java EE and WebLogic Support for Service Types

Service

Java EE Support

WebLogic Server Scalabhility and Reliability Features
for...

Cached Services Java EE does not specify a

standard for cached
services.

Entity beans with
Bean-Managed-Persistence
can implement custom
caches.

Weblogic Server supports caching of:
Stateful session beans

For a list of WebLogic features that increase scalability
and reliability of stateful session beans, see description in
the previous row.

Entity beans

Weblogic Server supports these caching features for entity
beans.

» Short term or cross-transaction caching
e Relationship caching

* Combined caching allows multiple entity beans that
are part of the same Java EE application to share a
single runtime cache

Consistency between the cache and the external data store
can be increased by:

o flushing the cache

« refreshing cache after updates to the external data
store

« invalidating the cache
e concurrency control
“read-mostly pattern”

WebLogic Server supports the “read-mostly pattern” by
combining read-only and read-write EJBs.

JSPs

WebLogic Server provides custom JSP tags to support
caching at fragment or page level.

11-12

Using WebLogic Server Clusters

Application Deployment Considerations

Tahle 11-3 Java EE and WebLogic Support for Service Types

Service Java EE Support WebLogic Server Scalabhility and Reliability Features
for...

Singleton Java EE APIs used to WLS features for increasing the availability of

Services implement singleton singleton services include:

services include: e Support for multiple thread pools for servers, to

¢ JMS Destinations, harden individual servers against failures

+ JTA transaction « Health monitoring and lifecycle APIs to support
managers detection restart of failed and ailing servers

+ Cached entity beans « Ability to upgrade software without interrupting
with pessimistic services

concurrency control « Ability to migrate JMS servers and JTA transaction

Scalability can be recovery services.
increased by

“partitioning” the

service into multiple

instances, each of which

handles a different slice

of the backing data and

its associated requests

Application Deployment Considerations

Deploy clusterable objects to the cluster, rather than to individual Managed Servers in the cluster.
For information and recommendations, see Deploying Applications to WebLogic Server.

Architecture Considerations

For information about alternative cluster architectures, load balancing options, and security
options, see “Cluster Architectures” on page 9-1.

Avoiding Problems

The following sections present considerations to keep in mind when planning and configuring a
cluster.

Using WebLogic Server Clusters 11-13

http://e-docs.bea.com/wls/docs100/deployment

11-14

Naming Considerations

For guidelines for how to name and address server instances in cluster, see “Identify Names and
Addresses” on page 10-3.

Administration Server Considerations

To start up WebLogic Server instances that participate in a cluster, each Managed Server must be
able to connect to the Administration Server that manages configuration information for the
domain that contains the cluster. For security purposes, the Administration Server should reside
within the same DMZ as the WebL ogic Server cluster.

The Administration Server maintains the configuration information for all server instances that
participate in the cluster. The config.xml file that resides on the Administration Server contains
configuration data for all clustered and non-clustered servers in the Administration Server’s
domain. You do not create a separate configuration file for each server in the cluster.

The Administration Server must be available in order for clustered WebLogic Server instances to
start up. Note, however, that once a cluster is running, a failure of the Administration Server does
not affect ongoing cluster operation.

The Administration Server should not participate in a cluster. The Administration Server should
be dedicated to the process of administering servers: maintaining configuration data, starting and
shutting down servers, and deploying and undeploying applications. If the Administration Server
also handles client requests, there is a risk of delays in accomplishing administration tasks.

There is no benefit in clustering an Administration Server; the administrative objects are not
clusterable, and will not failover to another cluster member if the administrative server fails.
Deploying applications on an Administration Server can reduce the stability of the server and the
administrative functions it provides. If an application you deploy on the Administration Server
behaves unexpectedly, it could interrupt operation of the Administration Server.

For these reasons, make sure that the Administration Server’s IP address is not included in the
cluster-wide DNS name.

Firewall Considerations

If your configuration includes a firewall, locate your proxy server or load-balancer in your DMZ,
and the cluster, both Web and EJB containers, behind the firewall. Web containers in DMZ are
not recommended. See “Basic Firewall for Proxy Architectures” on page 9-17.

Using WebLogic Server Clusters

Avoiding Problems

If you place a firewall between the servlet cluster and object cluster in a multi-tier architecture,
bind all servers in the object cluster to public DNS names, rather than IP addresses. Binding those
servers with IP addresses can cause address translation problems and prevent the servlet cluster
from accessing individual server instances.

If the internal and external DNS names of a WebLogic Server instance are not identical, use the
External DNSName attribute for the server instance to define the server's external DNS name.
Outside the firewall the External DNSName should translate to external IP address of the server.
Set this attribute in the Administration Console using the Server—>Configuration—>General
tab. See Server—>Configuration—>General in Administration Console Online Help.

In any cluster architecture that utilizes one or more firewalls, it is critical to identify all WebL ogic
Server instances using publicly-available DNS names, rather than IP addresses. Using DNS
names avoids problems associated with address translation policies used to mask internal IP
addresses from untrusted clients.

Notes: Use of External DNSName is required for configurations in which a firewall is
performing Network Address Translation, unless clients are accessing WebLogic Server
using t3 and the default channel. For instance, ExternalDNSName is required for
configurations in which a firewall is performing Network Address Translation, and
clients are accessing WebLogic Server using HTTP via a proxy plug-in.

The following figure describes the potential problem with using IP addresses to identify
WebLogic Server instances. In this figure, the firewall translates external IP requests for the
subnet “xxx” to internal IP addresses having the subnet “yyy.”

Using WebLogic Server Clusters 11-15

11-16

Figure 11-1 Translation Errors Can Occur When Servers are Identified by IP Addresses

WebLogic Server
Cluster

HTTP
JSp | e

Servlet
\ JIDBC
\
\ 205.20.xxx.100:7001
|
| - 205.20.yyy.300:7001

l Request Object C a
| 205.2o.yyy.300:700>(

3 HTTP_
& L

Servlet
|
JDBC

Client

1
| -

/ HTTP
) JSP
P Servlet

I
JDBC

7 ?irewall

-EJB
C

The following steps describe the connection process and potential point of failure:

1. The client initiates contact with the WebLogic Server cluster by requesting a connection to
the first server at 205.20.xxx.100:7001. The firewall translates this address and connects the
client to the internal IP address of 205.20.yyy.100:7001.

2. The client performs a JNDI lookup of a pinned Object C that resides on the third WebLogic
Server instance in the cluster. The stub for Object C contains the internal IP address of the
server hosting the object, 205.20.yyy.300:7001.

3. When the client attempts to instantiate Object C, it requests a connection to the server hosting
the object using IP address 205.20.yyy.300:7001. The firewall denies this connection, because

the client has requested a restricted, internal IP address, rather than the publicly-available
address of the server.

If there was no translation between external and internal IP addresses, the firewall would pose no
problems to the client in the above scenario. However, most security policies involve hiding (and
denying access to) internal IP addresses.

Using WebLogic Server Clusters

Avoiding Problems

Evaluate Cluster Capacity Prior to Production Use

The architecture of your cluster will influence the capacity of your system. Before deploying
applications for production use, evaluate performance to determine if and where you may need
to add servers or server hardware to support real-world client loads. Testing software such as
LoadRunner from Mercury Interactive allows you to simulate heavy client usage.

Using WebLogic Server Clusters 1-17

11-18 Using WebLogic Server Clusters

CHAPTERa

Troubleshooting Common Problems

This chapter provides guidelines on how to prevent cluster problems or troubleshoot them if they
do occur.

Before You Start the Cluster

You can do a number of things to help prevent problems before you boot the cluster.

Check the Server Version Numbers

All servers in the cluster must have the same major version number, but can have different minor
version numbers and service packs.

The cluster’s Administration Server is typically not configured as a cluster member, but it should
run the same major version of WebLogic Server used on the managed servers.

Check the Multicast Address

A problem with the multicast address is one of the most common reasons a cluster does not start
or a server fails to join a cluster.

A multicast address is required for each cluster. The multicast address can be an IP number
between 224.0.0.0 and 239.255.255.255, or a host name with an IP address within that range.

You can check a cluster’s multicast address and port on its Configuration-->Multicast tab in the
Administration Console.

Using WebLogic Server Clusters 1241

12-2

For each cluster on a network, the combination of multicast address and port must be unique. If
two clusters on a network use the same multicast address, they should use different ports. If the
clusters use different multicast addresses, they can use the same port or accept the default port,
7001.

Before booting the cluster, make sure the cluster’s multicast address and port are correct and do
not conflict with the multicast address and port of any other clusters on the network.

The errors you are most likely to see if the multicast address is bad are:
Unable to create a multicast socket for clustering

Multicast socket send error
Multicast socket receive error

Check the CLASSPATH Value

Make sure the value of CLASSPATH is the same on all managed servers in the cluster. CLASSPATH
is set by the setEnv script, which you run before you run startManagedwebLogi c to start the
managed servers.

By default, setEnv sets this value for CLASSPATH (as represented on Windows systems):

set WL_HOME=C:\bea\wlserver_10.00
set JAVA_HOME=C:\bea\jdk131

set CLASSPATH=%JAVA_HOME%\lib\tools.jar;
%WL_HOME%\server\lib\weblogic_sp.jar;
%WL_HOME%\server\lib\weblogic.jar;
%CLASSPATH%

If you change the value of CLASSPATH on one managed server, or change how setEnv sets
CLASSPATH, you must change it on all managed servers in the cluster.

Check the Thread Count

Each server instance in the cluster has a default execute queue, configured with a fixed number
of execute threads. To view the thread count for the default execute queue, choose the Configure
Execute Queue command on the Advanced Options portion of the Configuration> General tab
for the server. The default thread count for the default queue is 15, and the minimum value is 5.
If the value of Thread Count is below 5, change it to a higher value so that the Managed Server
does not hang on startup.

Using WebLogic Server Clusters

After You Start the Cluster

After You Start the Cluster
Check Your Commands

If the cluster fails to start, or a server fails to join the cluster, the first step is to check any
commands you have entered, such as startManagedWebLogic or a java interpreter command,
for errors and misspellings.

Generate a Log File

Before contacting BEA Technical Support for help with cluster-related problems, collect
diagnostic information. The most important information is a log file with multiple thread dumps
from a Managed Server. The log file is especially important for diagnosing cluster freezes and
deadlocks.

Remember: a log file that contains multiple thread dumps is a prerequisite for diagnosing your
problem.

1. Stop the server.

2. Remove or back up any log files you currently have. You should create a new log file each
time you boot a server, rather than appending to an existing log file.

3. Start the server with this command, which turns on verbose garbage collection and redirects
both the standard error and standard output to a log file:

% java -ms64m -mx64m -verbose:gc -classpath $CLASSPATH
-Dweblogic.domain=mydomain -Dweblogic.Name=clusterServerl
-Djava.security.policy==$WL_HOME/lib/weblogic.policy
-Dweblogic.admin.host=192.168.0.101:7001

weblogic.Server >> logfile.txt

Redirecting both standard error and standard output places thread dump information in the
proper context with server informational and error messages and provides a more useful
log.

4. Continue running the cluster until you have reproduced the problem.

5. If aserver hangs, use kill -3 or <Ctrl>-<Break> to create the necessary thread dumps to
diagnose your problem. Make sure to do this several times on each server, spaced about 5-10
seconds apart, to help diagnose deadlocks.

Note: If you are running the JRockit JVM under Linux, see “Getting a JRockit Thread
Dump Under Linux” on page 12-4.

Using WebLogic Server Clusters 12-3

12-4

6. Compress the log file using a Unix utility:
% tar czf logfile_tar logfile.txt
- or zip it using a Windows utility.

7. Attach the compressed log file to an e-mail to your BEA Technical Support representative. Do
not cut and paste the log file into the body of an e-mail.

8. If the compressed log file is too large, you can use the BEA Customer Support FTP site.

Getting a JRockit Thread Dump Under Linux

If you use the JRockit JVM under Linux, use one of the following methods to generate a thread
dump.

e Use the weblogic.admin THREAD_DUMP command.

o If the JVM’s management server is enabled (by starting the JVM with the -Xmanagement
option), you can generate a thread dump using the JRockit Management Console.

e UseKill -3 PID, where PID is the root of the process tree.
To obtain the root PID, perform a:
ps -efHl | grep "java®™ **. **

using a grep argument that is a string that will be found in the process stack that matches
the server startup command. The first PID reported will be the root process, assuming that
the ps command has not been piped to another routine.

Under Linux, each execute thread appears as a separate process under the Linux process
stack. To use Kill -3 on Linux you supply must match PID of the main WebLogic execute
thread, otherwise no thread dump will be produced.

Check Garbage Collection

If you are experiencing cluster problems, you should also check the garbage collection on the
managed servers. If garbage collection is taking too long, the servers will not be able to make the
frequent heartbeat signals that tell the other cluster members they are running and available.

If garbage collection (either first or second generation) is taking 10 or more seconds, you need to
tune heap allocation (the msmx parameter) on your system.

Using WebLogic Server Clusters

After You Start the Cluster

Run utils.MulticastTest

You can verify that multicast is working by running utils.MulticastTest from one of the
managed servers. See “Using the WebLogic Server Java Utilities” in WebLogic Server Command
Reference.

If you have problems with running multicast, see “Debugging Multicast.”

For more information on troubleshooting multicast within a cluster, see “Troubleshooting
Multicast Configuration.”

Using WebLogic Server Clusters 12-5

http://e-docs.bea.com/wls/docs100/admin_ref/utils.html

12-6 Using WebLogic Server Clusters

Troubleshooting Multicast
Configuration

Using IP multicasting, WebLogic Server instances in a cluster can share a single IP address and
port number. This capability enables all members of a cluster to be treated as a single entity and
enables members of the cluster to communicate among themselves.

The following sections provide suggestions for troubleshooting IP multicast configuration
problems:

“Verifying Multicast Address and Port Configuration” on page 13-2
“Identifying Network Configuration Problems” on page 13-2
“Using the MulticastTest Utility” on page 13-3

“Tuning Multicast Features” on page 13-3

“Debugging Multicast” on page 13-5

“Miscellaneous Issues” on page 13-7

“Other Resources for Troubleshooting Multicast Configuration” on page 13-7

For general information on using and configuring multicast within a cluster, see “Cluster
Configuration and config.xml.”

For information on configuring multicast address from the console, see Multicast in the
Administration Console Online Help.

Using WebLogic Server Clusters 13-1

http://e-docs.bea.com/wls/docs100/ConsoleHelp/core/index.html
http://e-docs.bea.com/wls/docs100/ConsoleHelp/core/index.html

Verifying Multicast Address and Port Configuration

The first step in troubleshooting multicast problems is to verify that you have configured the
multicast address and port correctly. A multicast address must be correctly configured for each
cluster.

Multicast address and port configuration problems are among the most common reasons why a
cluster does not start or a server fails to join a cluster. The following considerations apply to
multicast addresses:

e The multicast address must be an IP address between 224.0.0.0 and 239.255.255.255 or a
hostname with an IP address in this range.

e The default multicast address used by WebLogic Server is 239.192.0.0.

e Do not use any x.0.0.1 multicast address where x is between 0 and 9, inclusive.

Possible Errors

The following types of errors commonly occur due to multicast configuration problems:
e Unable to create a multicast socket for clustering
e Multicast socket send error

e Multicast socket receive error

Checking the Multicast Address and Port

To check the multicast address and port:

e Check the cluster multicast address and port through the WebL ogic Server Console, or

e Check the multicast information of the <cluster> element in config.xml.

Identifying Network Configuration Problems

13-2

After you verify that the multicast address and port are configured correctly, determine whether
network problems are interfering with multicast communication.

Physical Connections

Ensure that no physical problems exist in your network.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/ConsoleHelp/pagehelp/Corecoreclusterclusterconfigmulticasttitle.html

Using the MulticastTest Utility

o \ferify the network connection for each machine that hosts servers within the cluster.

o Verify that all components of the network, including routers and DNS servers, are
connected and functioning correctly.

Address Conflicts

Address conflicts within a network can disrupt multicast communications.

e Use the netstat utility to verify that no other network resources are using the cluster
multicast address.

o \ferify that each machine has a unique IP address.

nsswitch.conf Settings on UNIX Systems

On UNIX systems, you may encounter the unkownHostExceptions error. This error can occur
at random times even when the server is not under a heavy load. Check /etc/nsswitch.conf
and change the orderto ‘files,DNS,NIS’ to avoid this error.

For more information, see the nsswitch.conf man page for your system.

Using the MulticastTest Utility

After you verify that the multicast address and port are configured correctly and there are no
physical or configuration problems with your network, you can use utils.MulticastTest t0

verify that multicast is working and to determine if unwanted traffic is occurring between
different clusters.

If MulticastTest fails and the machine is multihomed, ensure that the primary address is being
used. See “Multicast and Multihomed Machines” on page 13-5.

Tuning Multicast Features

The following sections describe how to tune various features of WebLogic Server to work with
multicasting.

Multicast Timeouts

Multicast timeouts can occur during a Network Interface Card (NIC) failover. Timeouts can
result in an error message like the following:

Using WebLogic Server Clusters 13-3

13-4

<Error><Cluster><Multicast socket receive error:

java.io.InterruptedIOException: Receive timed out>

When this error occurs, you can:

e Disable the NIC failover.

e Disable the igmp snooping switch. This switch is part of the Internet Group Management
Protocol (IGMP) and is used to prevent multicast flood problems on the managed switch.

e On Windows 2000, check the IGMP level to ensure that multicast packets are supported.

e Set the Multicast Time-To-Live to the following:
MulticastTTL=32

For more information, see “Configure Multicast Time-To-Live (TTL).”

Cluster Heartbeats

Each WebLogic Server instance in a cluster uses multicast to broadcast regular heartbeat
messages that advertise its availability. By monitoring heartbeat messages, server instances in a
cluster determine when a server instance has failed.

The following sections describe possible solutions when cluster heartbeat problems occur.

Multicast Send Delay

Multicast Send Delay specifies the amount of time the server waits to send message fragments
through multicast. This delay helps to avoid OS-level buffer overflow. This can be set via the
MulticastSendDelay attribute of the Cluster MBean. For more information, see the Cluster
Mbean Javadocs.

Operating System Parameters

If problems still occur after setting the Multicast Send Delay, you may need to set the following
operating system parameters related to UDP settings:

® xdp_xmit_hiwat

® udp_recv_hiwat

If these parameters are set to a lower value (8K for example) there may be a problem if the
multicast packet size is set to the maximum allowed (32K). Try setting these parameters to 64K.

Using WebLogic Server Clusters

Debugging Multicast

Multicast Storms

A multicast storm is the repeated transmission of multicast packets on a network. Multicast
storms can stress the network and attached stations, potentially causing end-stations to hang or
fail.

Increasing the size of the multicast buffers can improve the rate at which announcements are
transmitted and received, and prevent multicast storms. See “Configure Multicast Buffer Size.”

Multicast and Multihomed Machines

The following considerations apply when using multicast in a multihomed environment:

e Ensure that you have configured a unixMachine instance from the WebLogic Server
console and have specified an I1nterfaceaddress for each Server instance to handle
multicast traffic.

e Run /usr/sbin/ifconfig -a to check the MAC address of each machine in the
multihomed environment. Ensure that each machine has a unique MAC address. If
machines use the same MAC address, this can cause multicast problems.

Multicast in Different Subnets

If multicast problems occur when cluster members are in different subnets you should configure
Multicast-Time-To-Live. The value of the Multicast Time-To-Live (TTL) parameter for the
cluster must be high enough to ensure that routers do not discard multicast packets before they
reach their final destination.

The Multicast TTL parameter sets the number of network hops a multicast message makes before
the packet can be discarded. Configuring the Multicast TTL parameter appropriately reduces the
risk of losing the multicast messages that are transmitted among server instances in the cluster.

For more information, see “Configure Multicast Time-To-Live (TTL).”

Debugging Multicast

If you are still having problems with the multicast address after performing the troubleshooting
tips above, gather debugging information for multicast.

Debugging Utilities

The following utilities can help you debug multicast configuration problems.

Using WebLogic Server Clusters 13-5

13-6

MulticastMonitor

MulticastMontior is a stand-alone Java command line utility that monitors multicast traffic on a
specific multicast address and port. The syntax for this command is:

java weblogic.cluster.MulticastMonitor <multicast_address>

<multicast_port> <domain_name> <cluster_name>

MulticastTest

The MulticastTest utility helps you debug multicast problems when you configure a WebLogic
cluster. The utility sends out multicast packets and returns information about how effectively
multicast is working on your network.

For more information on MulticastTest utility, see “Using the WebLogic Server Java Utilities”
in WebLogic Server Command Reference.

Debugging Flags
The following debug flags are specific to multicast:

® DebugCluster
® DebugClusterHeartBeats

® DebugClusterFragments

Setting Debug Flags on the Command Line

Set these flags from the command line during server startup by adding the following options:

® -Dweblogic.debug.DebugCluster=true
® -Dweblogic.debug.DebugClusterHeartBeats=true

® -Dweblogic.debug.DebugClusterFragments=true

Setting Debug Flags by Using weblogic.Admin
Set debug flags using the weblogic.Admin utility. For example:

java weblogic.Admin -url t3://localhost:7001 - username weblogic -password

weblogic SET -type ServerDebug -property DebugCluster true

Turn off debug flags by running the same command and setting the parameter to false.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/admin_ref/utils.html#wp1199798

Miscellaneous Issues

Miscellaneous Issues

The following sections describe miscellaneous multicast issues you may encounter.

Multicast on AIX

AlX version 5.1 does not support IPv4 mapped multicast addresses. If you are using an IPv4
multicast address, you cannot join a multicast group even if you are switching to IPv6. When
running MulticastTest on AlX, use the order on the command line specified in the following
example:

java -Djava.net.preferIPv4Stack=true utils.Multicast <options>

Additionally, verify the following settings on AlX to properly configure cluster operations:

e Set the MTU size to 1500 by executing the following command and rebooting the
machine:

chdev -1 100 -a mtu=1500 -P
e Ensure that the following has been added to /etc/netsvc.conf:
hosts=1local,bind4

This line is required to ensure that only IPv4 addresses are sent to name services for IP
resolution.

File Descriptor Problems

Depending on the operating system, there may be problems with the number of file descriptors
open. On UNIX, you can use 1oses to determine how many files on disk a process has open. If
a problem occurs, you may need to increase the number of file descriptors on the machine.

Other Resources for Troubleshooting Multicast Configuration

For more information on troubleshooting cluster problems, see “Troubleshooting Common
Problems.”

The following resources may be helpful in resolving multicast problems:
e \WebLogic Server Release Notes
e http://support.bea.com

e http://newsgroups.bea.com

Using WebLogic Server Clusters 13-1

13-8 Using WebLogic Server Clusters

The WebLogic Cluster AP

The following sections describe the WebLogic Cluster API.
e How to Use the API

e Custom Call Routing and Collocation Optimization

How to Use the API

The WebLogic Cluster public API is contained in a single interface,
weblogic.rmi.cluster._CallRouter.

Class java.lang.Object
Interface weblogic.rmi.cluster.CallRouter
(extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to enable
parameter-based routing. Run rmiic on the service implementation using these options (to be
entered on one line):

$ java weblogic.rmic -clusterable -callRouter
<callRouterClass> <remoteObjectClass>

The call router is called by the clusterable stub each time a remote method is invoked. The router
is responsible for returning the name of the server to which the call should be routed.

Using WebLogic Server Clusters A-1

A-2

Each server in the cluster is uniquely identified by its name as defined with the WebLogic Server
Console. These are the names that the method router must use for identifying servers.

Example: Consider the ExampleImpl class which implements a remote interface Example, with
one method foo:

public class Examplelmpl implements Example {
public void foo(String arg) { return arg; }
}

This Cal IRouter implementation ExampleRouter ensures that all foo calls with ‘arg’ <*“n” go
to serverl (or server3 if serverl is unreachable) and that all calls with ‘arg’ >=*“n” go to server2
(or server3 if server2 is unreachable).

public class ExampleRouter implements CallRouter {
private static final String[] aToM = { "serverl", "server3" };
private static final String[] nToz = { "server2", "server3" };

public String[] getServerList(Method m, Object[] params) {
it (n.GetName().equals(*foo™)) {
ifT (((String)params[0]).charAt(0) < *n*) {
return aToM;
} else {
return nToZ;
}
} else {
return null;
}
}
}

This rmic call associates the ExampleRouter with ExamplelImpl to enable parameter-based
routing:

$ rmic -clusterable -callRouter ExampleRouter Examplelmpl

Using WebLogic Server Clusters

Custom Call Routing and Collocation Optimization

Custom Call Routing and Collocation Optimization

If a replica is available on the same server instance as the object calling it, the call will not be
load-balanced, because it is more efficient to use the local replica. For more information, see
“Optimization for Collocated Objects” on page 5-12.

Using WebLogic Server Clusters A-3

A-4 Using WebLogic Server Clusters

APPENDlxa

Configuring BIG-IP™ Hardware with
Clusters

This section describes options for configuring an F5 BIG-IP controller to operate with a
WebLogic Server cluster. For detailed setup and administration instructions, refer to your F5
product documentation.

e Configuring Session Persistence

e Configuring URL Rewriting

For information about how WebLogic Server works with external load balancers, see “Load
Balancing HTTP Sessions with an External Load Balancer” on page 5-2.

Configuring Session Persistence

BIG-IP supports multiple types of cookie persistence. To work with a WebLogic Cluster, you
must configure BIG-IP for the Insert Mode form of HTTP Cookie Persistence. Insert mode
insures that the WebLogic Server cookie is not overwritten, and can be used in the event that a
client fails to connect to its primary WebLogic Server.

To configure Insert mode for BIG-IP cookies:
1. Open the BIG-IP configuration utility.
Select the Pools option from the navigation pane.

Select the an available pool to configure.

> won

Select the Persistence tab.

Using WebLogic Server Clusters B-1

5. Select Active HTTP Cookie to begin configuring cookies.
6. Choose Insert mode from the list of methods.

7. Enter the timeout value for the cookie. The timeout value specifies how long the inserted
cookie remains on the client before expiring. Note that the timeout value does not affect the
WebLogic Server session cookie—it affects only the inserted BIG-IP cookie.

To load balance requests on a round-robin basis, set the timeout value to zero—this ensures
that multiple requests from the same client are directed to the same managed server, and
that a request from a different client is routed to another managed server in the cluster, in
round-robin fashion.

When the timeout value is set to a value greater than zero, the load balancer sends all
requests from all clients to the same managed server in the WebLogic Server cluster for the
duration of the timeout period—in other words, requests from different clients will not be
load balanced for the duration of the timeout.

8. Apply your changes and exit the utility.

Configuring URL Rewriting

B-2

BIG-IP Version 4.5 provides support for URL rewriting.

Configuring WebLogic Server for URL Rewriting

In its default configuration, WebLogic Server uses client-side cookies to keep track of the
primary and secondary server that host the client's servlet session state. In addition, WebLogic
Server can also keep track of primary and secondary servers using URL rewriting. With URL
rewriting, both locations of the client session state are embedded into the URLSs passed between
the client and proxy server. To support this feature, you must ensure that URL rewriting is
enabled on the WebL ogic Server cluster. For instructions on how to enable URL rewriting, see
“Using URL Rewriting Instead of Cookies”, in Developing Web Applications for WebLogic
Server.

Configuring BIG-IP for URL Rewriting

Use of URL rewriting with BIG-1P and WebLogic Server instances requires BIG-IP version 4.5
or higher, configured for Rewrite cookie persistence. Failover may not succeed if BIG-IP
is set for other persistence settings.

Using WebLogic Server Clusters

http://e-docs.bea.com/wls/docs100/webapp/sessions.html#url-rewriting

Configuring URL Rewriting

For instructions to configure WebLogic Server for URL rewriting, see “Using URL Rewriting”
in Assembling and Configuring Web Applications.

Using WebLogic Server Clusters B-3

http://e-docs.bea.com/wls/docs100/webapp/sessions.html#url-rewriting

B-4 Using WebLogic Server Clusters

APPENDlxa

Configuring F5 Load Balancers for
MAN/WAN Failover

WebLogic Server provides failover within MAN and WAN networks. This feature provides more
reliability by allowing failover to occur across a larger geographic area. It also provides failover
across multiple WebLogic Server domains.

To provide failover within a MAN/WAN environment, you must use hardware load balancers.
This document outlines the procedures for configuring F5 hardware load balancers to work with
WebLogic Server.

For information on configuring WebLogic Server to use MAN/WAN, see Session State
Replication Across Clusters. For information on configuring F5 hardware load balancers, see
www.F5.com.

The following sections describe how to configure F5 hardware load balancers.
e “Requirements” on page A-1
e “Configure Local Load Balancers” on page A-2
e “Configure the 3-DNS Global Hardware Load Balancer” on page A-4

e “Configuring WebLogic Server Components” on page A-6

Requirements

Before performing the procedures described in this appendix, you must have performed the
following:

Using WebLogic Server Clusters Cc-1

e Installed and configured your WebLogic Server environment. This includes creating and
configuring clusters and managed servers.

e Installed and configured at least one F5 3-DNS global load balancer and at least two F5
BIG-IP local load balancers. This is the minimum hardware requirement for failover in a
MAN/WAN environment

e Ensured that your network and DNS are configured correctly

Once these requirements are met, perform the following procedures to configure your load
balancers to work within a MAN/WAN environment.

Configure Local Load Balancers

This section describes the procedures for configuring F5 local load balancers to work with
WebLogic Server in a MAN/WAN environment.

Virtual Server IPs and Pools

On each local load balancer you must configure two virtual server IPs as well as a multi-layer
pool and a failover trigger pool. The following diagram shows how these pools and virtual server
IPs work within a MAN/WAN environment.

Figure 0-1 Hardware Load Balancers in a MAN/WAN Environment

Global Load Bal

Y
Local Load Balancer 2 (NY)

Y
Local Load Balancer 1 (SF)

Wirtual Server IP Virtual Server |P

Multi-layer Pool Multi-layer Pool

C-2

sl_server_1 (ip address:port)
sf_server_2 (ip address:port)
sf_server_3 (ip address:port)
failover_trigger

Virtual Server IP

Failover Trigger Pool

sf_servar_1 (ip addrass:port)
sf_server_2 (ip address:port)
sf_server_3 (ip address:port)

ny_server_1 {ip address:port)
ny_servar_2 (ip address:port)
ny_server_3 {ip address:port)
failover_trigger

Virtual Server |P

Failover Trigger Pool

ny_server_1 {ip address:port)
ny_server_2 (ip address:port)
ny_server_3 {ip address:port)

Using WebLogic Server Clusters

Configure Local Load Balancers

In this diagram, multiple managed servers are distributed across separate physical locations. This
diagram shows individual managed servers, but this could also represent a clustered
configuration as well.

Each local load balancer contains a virtual server IP that references a multilayer pool. The
multilayer pool references each of the local WebLogic Server IP addresses and host names and
the virtual server of the failover trigger pool. The failover trigger is used to indicate that a site is
down. This triggers failover to the other local load balancer.

The following sections describe how to configure multi-layer and failover trigger pools.

Create a Failover Trigger Virtual Server and Pool

Create a new BIG-IP pool on the local load balancer that references each of the local WLS server
hostnames and ports to be load-balanced. Then, create a new virtual server that specifies this pool.
This virtual server will be utilized by the 3-DNS global load balancer for health monitoring and
will later be embedded inside another local load balancer pool/virtual server.

1. Inthe BIG-IP navigation panel, click Pools.
2. Add a pool name

3. Add all the WLS server host:port combinations to be load balanced

The default priority may used. Session persistence does not need to be configured.
4. In the BIG-IP navigation panel, click Virtual Servers
5. Add a virtual server that references your new pool.

a. You should specify a port that by convention would be a failover-trigger port, for example
17001.

b. Specify an IP address for the Virtual Server, for example 10.254.34.151.

Create a Multi-layered Virtual Server and IP Pool

Using the F5 administration utility, create a new BIG-IP pool on the local load balancer that
references each of the local WLS server host:ports and also the failover-trigger virtual server. The
failover-trigger virtual server must be a lower priority than the WLS Servers. By assigning a
lower priority, the failover-trigger virtual server will never receive client requests unless all the
WLS servers have failed. Session persistence should be configured also.

Using WebLogic Server Clusters c-3

1. Inthe BIG-IP navigation panel, click on Pools
2. add a pool name, for example mul tilayeredPool

a. Add all the WLS server host:port combinations to be load balanced. All host:port
combinations should be configured with priority=10.

b. Add the failover-trigger virtual server with priority=1.
c. Specify persistence attributes on the pool (active with insert mode)
d. Inthe BIG-IP navigation panel, click on Virtual Servers

3. Create a Virtual Server that references your new pool, for example: 10.254.34.151:7001

Configure the 3-DNS Global Hardware Load Balancer

C-4

A global load balancer type of network hardware that acts as an authoritative DNS server and can
distribute web requests across multiple BIG-IP virtual servers based on chosen criteria. Clients
send http requests to the global load balancer, which uses built in health monitors to direct the
web requests to the optimal server based on the chosen method of load balancing.

The global load balancer must be an authoritative source of DNS because a regular DNS server
is incapable of the monitoring that the global load balancer can perform. A regular DNS server
would still send http requests to a server that was down if it were next in the default round robin
load balancing method. In order to compensate for the multiple shortcomings of a regular DNS
server, many vendors (including F5) have created specialized hardware and software that is
capable of performing not only DNS resolution but also intelligent routing of network traffic.

The primary steps of configuring an F5 3-DNS global load balancer are: defining its DNS name,
configuring the BIG-IP hosts, configuring data centers, and configuring the 3-DNS distribution
of work to the virtual servers (VIPs). These are covered in the following sections.

Configure DNS Zones

The global server load balancer must be configured to manage its own DNS zone. This is done
by creating a new delegation on the local DNS management machine. The following procedures
describe how to configure DNS zones.

1. On your DNS management machine, create a new delegation, for example: gslb

2. Specify the fully qualified name of your 3-DNS machine as a hame server

Using WebLogic Server Clusters

Configure the 3-DNS Global Hardware Load Balancer

3. Specify the IP address of your 3-DNS machine as a name server

Configure BIG-IP Addresses Managed hy 3-DNS

The 3-DNS global balancer needs to be configured with the addresses of the BIG-IP local load
balancers. The following procedures outline how to configure BIG-1P addresses:

1. Inthe 3-DNS navigation panel, click Servers, then BIG-IP.
Add BIG-IP
Specify a name for the BIG-IP box, and its IP address.

A v Dp

When you revisit the list of BIG-IP boxes, the 3-DNS device should display a column with a
count of virtual servers available on each BIG-IP box. Click on this count of virtual servers.

o

Find your multi-layered virtual server, and click dependencies.

6. Specify the associated failover-trigger virtual server as a dependency.

Configure Data Centers

In most cases, global load balancers spread service requests to virtual servers in multiple physical
sites. These sites are called data centers and you must create two of them. Data centers resolve to
the two different subnets of BIG-IP local load balancers.

Configure Wide IPs

It is recommended that you configure the 3-DNS device so it will distribute requests evenly to

servers in a VIP in one data center. If these servers fail, they should fail requests over toa VIP in
the other data center. In order to do this, a wideip address must be created. This wideip address
will be the target of client requests, and can be given a fully qualified domain name. The Wide
IP defines how connections are distributed to local load balancer virtual servers.

The following procedures describe how to configure wide IPs:
1. Inthe 3-DNS navigation panel, click Wide IPs, and then Add Wide IP

2. Specify an available network address for the Wide IP, a port (e.g. 7001) for the Wide IP, and
an associated fully qualified domain name (e.g. cs.gslb.bea.com).

3. Add a 3-DNS pool that should specify the virtual servers on the local load balancers. The
3-DNS global load balancer automatically identifies the virtual servers available on each local
load balancer after the BIG-IP hosts are configured. Specify the multi-layered Virtual Servers.

Using WebLogic Server Clusters C-5

4. Create two entries in the DNS database on your DNS nameserver that resolve to the wideip.

Configuring WebLogic Server Components

After you have configured your F5 devices, you must configure WebLogic Server to use
MAN/WAN failover. For information on configuring WebLogic Server to use MAN/WAN, see
“Session State Replication Across Clusters in a MAN/WAN” on page 6-14.

C-6 Using WebLogic Server Clusters

Configuring Radware Load Balancers

APPENDlxa

for MAN/WAN Failover

WebLogic Server provides failover within MAN and WAN networks. This feature provides more
reliability by allowing failover to occur across a larger geographic area. It also provides failover
across multiple WebLogic Server domains.

To provide failover within a MAN/WAN environment, you must use hardware load balancers.
This document outlines the procedures for configuring Radware hardware load balancers to work
with WebLogic Server.

For information on configuring WebLogic Server to use MAN/WAN, see Session State

Replication Across Clusters. For information on configuring Radware hardware load balancers,
see www.Radware.com.

The following sections describe how to configure Radware hardware load balancers:

“Requirements” on page A-2

“Step 1: Configure an Authoritative Delegation Zone” on page A-2
“Step 2: Configure Farm Virtual IPs and Servers” on page A-2
“Step 3: Configure Port Multiplexing” on page A-4

“Step 4: Configure HTTP Redirects” on page A-4

“Step 5: Configure Session ID Persistency” on page A-5

“Step 6: Configure LRP” on page A-5

“Step 7: Configure WebLogic Server Components” on page A-6

Using WebLogic Server Clusters

D-1

Requirements

Before performing the procedures described in this appendix, ensure that you have performed the
following:

e Installed and configured your WebLogic Server environment. This includes creating and
configuring clusters and managed servers.

e Installed and configured at least two Radware Web Server Director load balancers. This is
the minimum hardware requirement for using Radware devices within a MAN/WAN
environment. At least one of these must be configured as a global load balancer

e Ensured that your network and DNS are configured correctly

Once these requirements are met, use the following procedures to configure your load balancers
to work within a MAN/WAN environment.

Step 1: Configure an Authoritative Delegation Zone

The first step in configuring Web Server Director is to create an Authoritative Delegation Zone
within the local DNS. To do this, perform the following using the Radware administration utility:

1. Click on the name of your local DNS
Click New Delegation

Enter a name for the new delegation zone

> L DN

Add the IP address for each Radware device

Step 2: Configure Farm Virtual IPs and Servers

D-2

Web Server Director balances load among servers within a server farm. Clients access a server
using a virtual IP address. Web Server Director directs traffic from this virtual IP address to the
appropriate server. The following sections describe how to create and configure server farm
virtual IPs.

Create a Farm IP

To create a farm IP, perform the following using the Radware administration utility:

1. Select WSD

Using WebLogic Server Clusters

Step 2: Configure Farm Virtual IPs and Servers

Select Farms

Select Farm Table

Click Create a Farm

Enter an IP address and DNS alias for the farm

Ensure that Admin Status is enabled

N oo g &~ D

Click Set

Configure the Dispatch Method for the Server Farm

To configure the dispatch method for the server farm, perform the following procedures using the
Radware configuration utility:

1. Select WSD

Select Farms

Select Farm Table

Select the farm you want to configure

In the Farm Properties window, select the menu next to Dispatch Method

Select the desired algorithm

N o g ~ w D

Click Set

Creating Farm Servers

To configure a farm server, perform the following procedures using the Radware administration
utility:

1. Select WSD

Select Servers

Select Application Servers
Select the Farm IP created above

Add the server IP address

o g~ WD

Add the server name

Using WebLogic Server Clusters D-3

7.

Ensure that Admin Status is enabled

Step 3: Configure Port Multiplexing

Use the following procedures to configure port multiplexing:

D-4

1.

© © N o o »~ W DN

Select WSD

Select Farms

Select Farm Table

Select the farm you want to configure

In the Properties window, enter a value in the Multiplexed Port field
Select WSD

Select Servers

Select Application Servers

For each local server, select the server from the table and enter the application port in the
Multiplexed Server Port field

10. Click Set

Step 4: Configure HTTP Redirects

You must configure HTTP redirects in order to configure global load balancers to work within a
MAN/WAN environment. HTTP redirects ensure proper distribution of traffic across Web
Server Director devices.

To configure HTTP redirect, perform the following procedures using the Radware administration
utility:

1.

o ~ w DN

Select WSD

Select Farms

Select Farm Table

Select the farm that you want to configure

Select HTTP Redirection in the Redirection Mode section

Using WebLogic Server Clusters

© © N o

Step 5: Configure Session ID Persistency

Select HTTP Redirection in the DNS Redirection Fallback section
Click Set
Select WSD

Select Servers

10. Select Application Servers

11. Select the server in the farm that represents the distributed farm on the remote WSD

Step 5: Configure Session ID Persistency

Server persistence is based on HTTP session IDs. Web Server Director inspects incoming traffic
to a farm, then selects the appropriate server based on session information in the HTTP header.
To configure session 1D persistency, perform the following procedures using the Radware
administration utility:

1.

© N o 0o &~ w0 Db

Select WSD

Select L7 Load Balancing

Select Session Persistency

Click Create.

Select the farm you want to configure

Set the application port of your farm

Set Persistency Identification to JESESSIONID

Set Value Offset to 53.

9. Set Stop Charsto :!

10. Set Inactivity Timeout to the value of your session time-out.

Step 6: Configure LRP

Configuring the LRP component ensures that traffic is correctly distributed to remote locations.
To configure LRP, perform the following:

1.

Select WSD

Using WebLogic Server Clusters D-5

Select Distributed Systems

Select Report Configuration

Click Create Distributed Farm Address

Set Distributed Farm Address to the remote farm IP address.

Set Remote WSD Address to the IP address of the second Radware device.

N oo g s~ w DN

Click Set

Step 7: Configure WebLogic Server Components

After you have configured your Radware devices, you must configure WebLogic Server to use
MAN/WAN failover. For information on configuring WebLogic Server to use MAN/WAN, see
“Session State Replication Across Clusters in a MAN/WAN” on page 6-14.

D-6 Using WebLogic Server Clusters

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Related Documentation
	New and Changed Clustering Features in This Release

	Understanding WebLogic Server Clustering
	What Is a WebLogic Server Cluster?
	How Does a Cluster Relate to a Domain?
	What Are the Benefits of Clustering?
	What Are the Key Capabilities of a Cluster?
	What Types of Objects Can Be Clustered?
	Servlets and JSPs
	EJBs and RMI Objects
	JDBC Connections
	Getting Connections with Clustered JDBC
	Failover and Load Balancing for JDBC Connections

	JMS and Clustering

	What Types of Objects Cannot Be Clustered?

	Communications In a Cluster
	WebLogic Server Communication In a Cluster
	Using IP Multicast for Backward Compatibility
	Multicast and Cluster Configuration

	One-to-Many Communication Using Unicast
	Unicast Configuration
	Considerations When Using Unicast

	Peer-to-Peer Communication Using IP Sockets
	Pure-Java Versus Native Socket Reader Implementations
	Configuring Reader Threads for Java Socket Implementation

	Client Communication via Sockets

	Cluster-Wide JNDI Naming Service
	How WebLogic Server Creates the Cluster-Wide JNDI Tree
	How JNDI Naming Conflicts Occur
	Deploy Homogeneously to Avoid Cluster-Level JNDI Conflicts

	How WebLogic Server Updates the JNDI Tree
	Client Interaction with the Cluster-Wide JNDI Tree

	Understanding Cluster Configuration
	Cluster Configuration and config.xml
	Role of the Administration Server
	What Happens if the Administration Server Fails?

	How Dynamic Configuration Works
	Application Deployment for Clustered Configurations
	Deployment Methods
	Introduction to Two-Phase Deployment
	First Phase of Deployment
	Second Phase of Deployment

	Guidelines for Deploying to a Cluster
	WebLogic Server Supports “Relaxed Deployment” Rules

	Methods of Configuring Clusters

	Load Balancing in a Cluster
	Load Balancing for Servlets and JSPs
	Load Balancing with a Proxy Plug-in
	How Session Connection and Failover Work with a Proxy Plug-in

	Load Balancing HTTP Sessions with an External Load Balancer
	Load Balancer Configuration Requirements
	Load Balancers and the WebLogic Session Cookie
	Related Programming Considerations
	How Session Connection and Failover Works with a Load Balancer

	Load Balancing for EJBs and RMI Objects
	Round Robin Load Balancing
	Weight-Based Load Balancing
	Random Load Balancing
	Server Affinity Load Balancing Algorithms
	Server Affinity and Initial Context
	Server Affinity and IIOP Client Authentication Using CSIv2
	Round-Robin Affinity, Weight-Based Affinity, and Random-Affinity

	Parameter-Based Routing for Clustered Objects
	Optimization for Collocated Objects
	Transactional Collocation

	Load Balancing for JMS
	Server Affinity for Distributed JMS Destinations
	Initial Context Affinity and Server Affinity for Client Connections

	Load Balancing for JDBC Connections

	Failover and Replication in a Cluster
	How WebLogic Server Detects Failures
	Failure Detection Using IP Sockets
	The WebLogic Server “Heartbeat”

	Replication and Failover for Servlets and JSPs
	HTTP Session State Replication
	Requirements for HTTP Session State Replication
	Using Replication Groups

	Accessing Clustered Servlets and JSPs Using a Proxy
	Proxy Connection Procedure
	Proxy Failover Procedure

	Accessing Clustered Servlets and JSPs with Load Balancing Hardware
	Connection with Load Balancing Hardware
	Failover with Load Balancing Hardware

	Session State Replication Across Clusters in a MAN/WAN
	Network Requirements for Cross-cluster Replication
	Configuration Requirements for Cross-Cluster Replication
	Configuring Session State Replication Across Clusters
	Configuring a Replication Channel
	MAN HTTP Session State Replication
	WAN HTTP Session State Replication

	Replication and Failover for EJBs and RMIs
	Clustering Objects with Replica-Aware Stubs
	Clustering Support for Different Types of EJBs
	Clustered EJBHomes
	Clustered EJBObjects
	Entity EJBs

	Clustering Support for RMI Objects
	Object Deployment Requirements
	Other Failover Exceptions

	Failover and JDBC Connections

	Whole Server Migration
	Understanding Whole Server and Service Migration
	Migration Terminology
	Leasing
	Features That Use Leasing
	Leasing Versions
	Determining Which Leasing Type to Use
	High-availability Database Leasing
	Non-database Consensus Leasing

	Automatic Whole Server Migration
	Preparing for Automatic Whole Server Migration
	Configuring Automatic Whole Server Migration
	Using High Availability Storage for State Data
	Server Migration Processes and Communications
	Startup Process in a Cluster with Migratable Servers
	Automatic Migration Process
	Manual Migration Process
	Administration Server’s Role in Whole Server Migration
	Migratable Server Behavior in a Cluster
	Node Manager’s Role in Whole Server Migration
	Cluster Master’s Role in Whole Server Migration

	Service-Level Migration
	Understanding the Service-Level Migration Framework
	Migratable Services
	Messaging/JMS-related Services
	JTA Transaction Recovery Service
	User-defined Singleton Services

	Understanding Migratable Targets In a Cluster
	User-Preferred Servers and Candidate Servers
	Targeting Rules for JMS Servers
	Targeting Rules for SAF Agents
	Targeting Rules for Path Service
	Targeting Rules for Custom Stores
	Migratable Targets For the JTA Transaction Recovery Service

	Migration Processing Tools
	Administration Console
	WebLogic Scripting Tool

	Automatic Service Migration Infrastructure for JTA
	Leasing for Migratable Services
	Node Manager
	Service Health Monitoring

	Migrating a Service From an Unavailable Server

	Pre-Migration Requirements
	Custom Store Availability for JMS Services
	Default File Store Availability for JTA
	Server State and Manual Service Migration

	Roadmap for Configuring Manual Migration of JMS-Related Services
	Step 1: Configured Managed Servers
	Step 2: Configure Migratable Targets
	Configuring a Migratable Server As a Migratable Target
	Create a New Migratable Target

	Step 3: Configure and Target Custom Stores
	Step 4: Target the JMS Services
	Special Considerations When Targeting SAF Agents or Path Service

	Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies
	Step 6: Manually Migrating JMS Services

	Roadmap for Configuring Automatic Migration of the JTA Transaction Recovery Service
	Step 1: Configured Managed Servers and Node Manager
	Step 2: Configure the Migration Basis
	Step 3: Enable Automatic JTA Migration
	Step 4: Configure the Default Persistent Store For Transaction Recovery Service Migration
	Step 5: Restart the Administration Server and Managed Servers With Modified Migration Policies
	Step 6: Automatic Failback of the Transaction Recovery Service Back to the Original Server

	Manual Migration of the JTA Transaction Recovery Service
	Automatic Migration of User-Defined Singleton Services
	Overview of Singleton Service Migration
	Migration Master
	Migration Failure

	Implementing the Singleton Service Interface
	Deploying a Singleton Service and Configuring the Migration Behavior
	Packaging and Deploying a Singleton Service Within an Application
	Deploying a Singleton Service As a Standalone Service in WebLogic Server
	Configuring Singleton Service Migration

	Cluster Architectures
	Architectural and Cluster Terminology
	Architecture
	Web Application Tiers
	Combined Tier Architecture
	De-Militarized Zone (DMZ)
	Load Balancer
	Proxy Plug-In

	Recommended Basic Architecture
	When Not to Use a Combined Tier Architecture

	Recommended Multi-Tier Architecture
	Physical Hardware and Software Layers
	Web/Presentation Layer
	Object Layer

	Benefits of Multi-Tier Architecture
	Load Balancing Clustered Objects in a in Multi-Tier Architecture
	Configuration Considerations for Multi-Tier Architecture
	IP Socket Usage
	Hardware Load Balancers

	Limitations of Multi-Tier Architectures
	No Collocation Optimization
	Firewall Restrictions

	Recommended Proxy Architectures
	Two-Tier Proxy Architecture
	Physical Hardware and Software Layers

	Multi-Tier Proxy Architecture
	Proxy Architecture Benefits
	Proxy Architecture Limitations
	Proxy Plug-In Versus Load Balancer

	Security Options for Cluster Architectures
	Basic Firewall for Proxy Architectures
	Firewall Between Proxy Layer and Cluster
	DMZ with Basic Firewall Configurations
	Combining Firewall with Load Balancer
	Expanding the Firewall for Internal Clients

	Additional Security for Shared Databases
	DMZ with Two Firewall Configuration

	Setting up WebLogic Clusters
	Before You Start
	Understand the Configuration Process
	Determine Your Cluster Architecture
	Consider Your Network and Security Topologies
	Choose Machines for the Cluster Installation
	WebLogic Server Instances on Multi-CPU machines
	Check Host Machines’ Socket Reader Implementation
	Setting Up a Cluster on a Disconnected Windows Machine

	Identify Names and Addresses
	Avoiding Listen Address Problems
	Assigning Names to WebLogic Server Resources
	Administration Server Address and Port
	Managed Server Addresses and Listen Ports
	Cluster Multicast Address and Port
	Cluster Address

	Cluster Implementation Procedures
	Configuration Roadmap
	Install WebLogic Server
	Create a Clustered Domain
	Starting a WebLogic Server Cluster

	Configure Node Manager
	Configure Load Balancing Method for EJBs and RMIs
	Specifying a Timeout Value For RMIs
	Configure Server Affinity for Distributed JMS Destinations
	Configuring Load Balancers that Support Passive Cookie Persistence
	Configure Proxy Plug-Ins
	Set Up the HttpClusterServlet

	Configure Replication Groups
	Configure Migratable Targets for Pinned Services
	Configure Clustered JDBC
	Clustering Data Sources

	Clustering Multi Data Sources
	Package Applications for Deployment
	Deploy Applications
	Deploying to a Single Server Instance (Pinned Deployment)
	Cancelling Cluster Deployments
	Viewing Deployed Applications
	Undeploying Deployed Applications

	Deploying, Activating, and Migrating Migratable Services
	Deploying JMS to a Migratable Target Server Instance
	Activating JTA as a Migratable Service
	Migrating a Pinned Service to a Target Server Instance

	Configure In-Memory HTTP Replication
	Additional Configuration Topics
	Configure IP Sockets
	Configure Multicast Time-To-Live (TTL)
	Configure Multicast Buffer Size
	Configure Multicast Data Encryption
	Configure Machine Names
	Configuration Notes for Multi-Tier Architecture
	Enable URL Rewriting

	Clustering Best Practices
	General Design Considerations
	Strive for Simplicity
	Minimize Remote Calls
	Session Facades Reduce Remote Calls
	Transfer Objects Reduce Remote Calls
	Distributed Transactions Increase Remote Calls

	Web Application Design Considerations
	Configure In-Memory Replication
	Design for Idempotence
	Programming Considerations

	EJB Design Considerations
	Design Idempotent Methods
	Follow Usage and Configuration Guidelines
	Cluster-Related Configuration Options

	State Management in a Cluster
	Application Deployment Considerations
	Architecture Considerations
	Avoiding Problems
	Naming Considerations
	Administration Server Considerations
	Firewall Considerations
	Evaluate Cluster Capacity Prior to Production Use

	Troubleshooting Common Problems
	Before You Start the Cluster
	Check the Server Version Numbers
	Check the Multicast Address
	Check the CLASSPATH Value
	Check the Thread Count

	After You Start the Cluster
	Check Your Commands
	Generate a Log File
	Getting a JRockit Thread Dump Under Linux

	Check Garbage Collection
	Run utils.MulticastTest

	Troubleshooting Multicast Configuration
	Verifying Multicast Address and Port Configuration
	Possible Errors
	Checking the Multicast Address and Port

	Identifying Network Configuration Problems
	Physical Connections
	Address Conflicts
	nsswitch.conf Settings on UNIX Systems

	Using the MulticastTest Utility
	Tuning Multicast Features
	Multicast Timeouts
	Cluster Heartbeats
	Multicast Send Delay
	Operating System Parameters

	Multicast Storms
	Multicast and Multihomed Machines
	Multicast in Different Subnets

	Debugging Multicast
	Debugging Utilities
	MulticastMonitor
	MulticastTest

	Debugging Flags
	Setting Debug Flags on the Command Line
	Setting Debug Flags by Using weblogic.Admin

	Miscellaneous Issues
	Multicast on AIX
	File Descriptor Problems

	Other Resources for Troubleshooting Multicast Configuration

	The WebLogic Cluster API
	How to Use the API
	Custom Call Routing and Collocation Optimization

	Configuring BIG-IP™ Hardware with Clusters
	Configuring Session Persistence
	Configuring URL Rewriting
	Configuring WebLogic Server for URL Rewriting
	Configuring BIG-IP for URL Rewriting

	Configuring F5 Load Balancers for MAN/WAN Failover
	Requirements
	Configure Local Load Balancers
	Virtual Server IPs and Pools
	Create a Failover Trigger Virtual Server and Pool
	Create a Multi-layered Virtual Server and IP Pool

	Configure the 3-DNS Global Hardware Load Balancer
	Configure DNS Zones
	Configure BIG-IP Addresses Managed by 3-DNS
	Configure Data Centers
	Configure Wide IPs

	Configuring WebLogic Server Components

	Configuring Radware Load Balancers for MAN/WAN Failover
	Requirements
	Step 1: Configure an Authoritative Delegation Zone
	Step 2: Configure Farm Virtual IPs and Servers
	Create a Farm IP
	Configure the Dispatch Method for the Server Farm
	Creating Farm Servers

	Step 3: Configure Port Multiplexing
	Step 4: Configure HTTP Redirects
	Step 5: Configure Session ID Persistency
	Step 6: Configure LRP
	Step 7: Configure WebLogic Server Components

