
BEAWebLogic
Server®

Programming WebLogic
Resource Adapters

Version 10.0
Revised: March 30, 2007

Programming WebLogic Resource Adapters ii

1. Introduction and Roadmap
Document Scope and Audience. 1-1

Guide to This Document . 1-2

Related Documentation . 1-3

Examples for the Resource Adapter Developer. 1-3

New and Changed Features in This Release . 1-4

2. Understanding Resource Adapters
Overview of Resource Adapters . 2-1

Comparing WebLogic Server and WebLogic Integration Resource Adapters. 2-2

Inbound, Outbound, and Bidirectional Resource Adapters . 2-2

Comparing 1.0 and 1.5 Resource Adapters . 2-3

J2EE Connector Architecture . 2-4

J2EE Architecture Diagram and Components . 2-4

System-Level Contracts . 2-6

Resource Adapter Deployment Descriptors . 2-7

3. Creating and Configuring Resource Adapters
Creating and Configuring Resource Adapters: Main Steps. 3-1

Modifying an Existing Resource Adapter . 3-3

Configuring the ra.xml File . 3-4

Configuring the weblogic-ra.xml File . 3-4

Editing Resource Adapter Deployment Descriptors . 3-6

Editing Considerations . 3-6

Schema Header Information . 3-6

Conforming Deployment Descriptor Files to Schema . 3-7

Dynamic Descriptor Updates: Console Configuration Tabs 3-8

Dynamic Pool Parameters . 3-8

iii Programming WebLogic Resource Adapters

Dynamic Logging Parameters . 3-8

Automatic Generation of the weblogic-ra.xml File . 3-9

(Deprecated) Configuring the Link-Ref Mechanism . 3-9

4. Programming Tasks
Required Classes for Resource Adapters . 4-1

Programming a Resource Adapter to Perform as a Startup Class. 4-2

Suspending and Resuming Resource Adapter Activity . 4-7

Extended BootstrapContext. 4-13

Diagnostic Context ID . 4-13

Dye Bits . 4-14

Callback Capabilities . 4-14

5. Connection Management
Connection Management Contract . 5-1

Connection Factory and Connection . 5-2

Resource Adapters Bound in JNDI Tree . 5-2

Obtaining the ConnectionFactory (Client-JNDI Interaction) 5-2

Configuring Outbound Connections . 5-4

Connection Pool Configuration Levels . 5-4

Multiple Outbound Connections Example. 5-5

Configuring Inbound Connections . 5-9

Configuring Connection Pool Parameters. 5-11

initial-capacity: Setting the Initial Number of ManagedConnections 5-11

max-capacity: Setting the Maximum Number of ManagedConnections. 5-12

capacity-increment: Controlling the Number of ManagedConnections 5-12

shrinking-enabled: Controlling System Resource Usage. 5-12

shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim Unused
ManagedConnections . 5-13

Programming WebLogic Resource Adapters iv

highest-num-waiters: Controlling the Number of Clients Waiting for a Connection5-13

highest-num-unavailable: Controlling the Number of Unavailable Connections . . 5-13

connection-creation-retry-frequency-seconds: Recreating Connections 5-13

match-connections-supported: Matching Connections . 5-13

test-frequency-seconds: Testing the Viability of Connections 5-14

test-connections-on-create: Testing Connections upon Creation 5-14

test-connections-on-release: Testing Connections upon Release to Connection Pool5-14

test-connections-on-reserve: Testing Connections upon Reservation 5-15

Connection Proxy Wrapper - 1.0 Resource Adapters . 5-15

Possible ClassCastException . 5-15

Turning Proxy Generation On and Off. 5-16

Testing Connections . 5-16

Configuring Connection Testing . 5-16

Testing Connections in the Administration Console. 5-17

6. Transaction Management
Supported Transaction Levels . 6-1

XA Transaction Support . 6-2

Local Transaction Support . 6-2

No Transaction Support . 6-2

Configuring Transaction Levels . 6-3

7. Message and Transactional Inflow
Overview of Message and Transactional Inflow. 7-1

Architecture Components. 7-2

Inbound Communication Scenario . 7-4

How Message Inflow Works . 7-4

Handling Inbound Messages . 7-5

v Programming WebLogic Resource Adapters

Proprietary Communications Channel and Protocol . 7-6

Message Inflow to Message Endpoints (Message-driven Beans) 7-6

Deployment-Time Binding Between an MDB and a Resource Adapter 7-6

Binding an MDB and a Resource Adapter . 7-7

Dispatching a Message. 7-7

Activation Specifications . 7-8

Administered Objects. 7-8

Transactional Inflow . 7-9

Using the Transactional Inflow Model for Locally Managed Transactions 7-10

8. Security
Container-Managed and Application-Managed Sign-on . 8-1

Application-Managed Sign-on. 8-2

Container-Managed Sign-on . 8-2

Password Credential Mapping . 8-2

Authentication Mechanisms. 8-3

Credential Mappings . 8-3

Creating Credential Mappings Using the Console. 8-5

Security Policy Processing . 8-5

Configuring Security Identities for Resource Adapters . 8-6

default-principal-name: Default Identity . 8-8

manage-as-principal-name: Identity for Running Management Tasks 8-9

run-as-principal-name: Identity Used for Connection Calls from the Connector
Container into the Resource Adapter . 8-10

run-work-as-principal-name: Identity Used for Performing Resource Adapter
Management Tasks . 8-10

Configuring Connection Factory-Specific Authentication and Re-authentication
Mechanisms . 8-11

Programming WebLogic Resource Adapters vi

9. Packaging and Deploying Resource Adapters
Packaging Resource Adapters . 9-1

Packaging Directory Structure . 9-1

Packaging Considerations . 9-2

Packaging Limitation . 9-3

Packaging Resource Adapter Archives (RARs). 9-3

Deploying Resource Adapters . 9-4

Deployment Options. 9-4

Resource Adapter Deployment Names . 9-5

Production Redeployment . 9-5

Suspendable Interface and Production Redeployment . 9-6

Production Redeployment Requirements . 9-6

Production Redeployment Process . 9-6

A. weblogic-ra.xml Schema
weblogic-connector .A-2

work-manager .A-6

security. .A-10

default-principal-name .A-12

manage-as-principal-name .A-12

run-as-principal-name. .A-13

run-work-as-principal-name .A-13

properties .A-13

admin-objects. .A-14

admin-object-group .A-15

admin-object-instance .A-17

outbound-resource-adapter .A-18

default-connection-properties. .A-19

vii Programming WebLogic Resource Adapters

pool-params . A-22

logging . A-25

connection-definition-group. A-28

connection-instance . A-30

B. Resource Adapter Best Practices
Classloading Optimizations for Resource Adapters . B-1

Connection Optimizations. B-2

Thread Management . B-2

InteractionSpec Interface. B-2

Programming WebLogic Resource Adapters 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the contents and organization of this guide—Programming
WebLogic Resource Adapters.

“Document Scope and Audience” on page 1-1

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-3

“Examples for the Resource Adapter Developer” on page 1-3

“New and Changed Features in This Release” on page 1-4

Document Scope and Audience
This document is written for resource adapter users, deployers, and software developers who
develop applications that include J2EE resource adapters to be deployed to WebLogic Server.
This document also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of WebLogic Server resource
adapters for a particular application.

The topics in this document are relevant during the design and development phases of a software
project. The document also includes topics that are useful in solving application problems that are
discovered during test and pre-production phases of a project.

I n t roduct i on and Roadmap

1-2 Programming WebLogic Resource Adapters

This document does not address production phase administration, monitoring, or performance
tuning topics. For links to WebLogic Server documentation and resources for these topics, see
“Related Documentation” on page 1-3.

It is assumed that the reader is familiar with J2EE and resource adapter concepts. The foundation
document for resource adapter development is Sun Microsystems J2EE Connector Architecture
Specification, Version 1.5 Final Release (referred to in this guide as the J2CA 1.5 Specification):
http://java.sun.com/j2ee/connector/ . Resource adapter developers should become familiar with
the J2CA 1.5 Specification. This document emphasizes the value-added features provided by
WebLogic Server resource adapters and key information about how to use WebLogic Server
features and facilities to get a resource adapter up and running.

Guide to This Document
This section, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

Chapter 2, “Understanding Resource Adapters,” introduces you to the BEA WebLogic
Server implementation of the J2EE Connector Architecture as well as the resource adapter
types and XML schema.

Chapter 3, “Creating and Configuring Resource Adapters,” describes how to create
resource adapters using the BEA WebLogic Server implementation of the J2EE Connector
Architecture.

Chapter 4, “Programming Tasks,” describes programming tasks for resource adapters.

Chapter 5, “Connection Management,” introduces you to resource adapter connection
management.

Chapter 6, “Transaction Management,” introduces you to the resource adapter transaction
management.

Chapter 7, “Message and Transactional Inflow,” describes resource adapter messaging
inflow and transactional inflow.

Chapter 8, “Security,” describes how to configure security for resource adapters.

Chapter 9, “Packaging and Deploying Resource Adapters,” discusses packaging and
deploying requirements for resource adapters and provides instructions for performing
these tasks.

Rela ted Documentat ion

Programming WebLogic Resource Adapters 1-3

Appendix A, “weblogic-ra.xml Schema,” provides a complete reference for the schema for
the WebLogic Server-specific deployment descriptor, weblogic-ra.xml.

Appendix B, “Resource Adapter Best Practices,” provides best practices for resource
adapter developers.

Related Documentation
The foundation document for resource adapter development is Sun Microsystems J2EE
Connector Architecture Specification, Version 1.5 Final Release (referred to in this guide as the
J2CA 1.5 Specification): http://java.sun.com/j2ee/connector/ . This document assumes you are
familiar with the J2CA 1.5 Specification and contains design and development information that
is specific to developing WebLogic Server resource adapters.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

Developing Applications with WebLogic Server is a guide to developing WebLogic Server
applications.

Deploying Applications to WebLogic Serveris the primary source of information about
deploying WebLogic Server applications.

WebLogic Server Performance and Tuning contains information on monitoring and
improving the performance of WebLogic Server applications.

Examples for the Resource Adapter Developer
In addition to this document, BEA Systems provides resource adapter examples for software
developers. WebLogic Server optionally installs API code examples in
WL_HOME\samples\server\examples\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples server, and obtain
information about the samples and how to run them from the WebLogic Server Start menu.

The resource adapter examples provided with this release of WebLogic Server are compliant with
the J2CA 1.5 Specification. BEA recommends that you examine, run, and understand these
resource adapter examples before developing your own resource adapters.

I n t roduct i on and Roadmap

1-4 Programming WebLogic Resource Adapters

New and Changed Features in This Release
For information about new, changed, and deprecated features in this release of WebLogic Server,
see What’s New in WebLogic Server 10.0 in WebLogic Server Release Notes.

Programming WebLogic Resource Adapters 2-1

C H A P T E R 2

Understanding Resource Adapters

The following sections introduce WebLogic resource adapters, the BEA WebLogic Server
implementation of the J2EE Connector Architecture:

“Overview of Resource Adapters” on page 2-1

“J2EE Connector Architecture” on page 2-4

“Resource Adapter Deployment Descriptors” on page 2-7

Overview of Resource Adapters
A resource adapter is a system library specific to an Enterprise Information System (EIS) and
provides connectivity to an EIS; a resource adapter is analogous to a JDBC driver, which provides
connectivity to a database management system. The interface between a resource adapter and the
EIS is specific to the underlying EIS; it can be a native interface. The resource adapter plugs into
an application server, such as WebLogic Server, and provides seamless connectivity between the
EIS, application server, and enterprise application.

Multiple resource adapters can plug in to an application server. This capability enables
application components deployed on the application server to access the underlying EISes. An
application server and an EIS collaborate to keep all system-level mechanisms—transactions,
security, and connection management—transparent to the application components. As a result,
an application component provider can focus on the development of business and presentation
logic for application components and need not get involved in the system-level issues related to
EIS integration. This leads to an easier and faster cycle for the development of scalable, secure,
and transactional enterprise applications that require connectivity with multiple EISes.

Unders tanding Resource Adapte rs

2-2 Programming WebLogic Resource Adapters

Comparing WebLogic Server and WebLogic Integration
Resource Adapters
It is important to note the difference between BEA WebLogic Integration (WLI) resource
adapters and BEA WebLogic Server resource adapters. WebLogic Integration resource adapters
are written to be specific to WebLogic Server and, in general, are not deployable to other
application servers. However, WebLogic Server resource adapters written without WLI
extensions are deployable in any J2EE-compliant application server. This document discusses the
design and implementation of non-WLI resource adapters. For more information on WebLogic
Integration resource adapters, see BEA WebLogic Adapter 8.1 Documentation.

Inbound, Outbound, and Bidirectional Resource Adapters
WebLogic Server supports three types of resource adapters:

Outbound resource adapter (supported by J2EE 1.0 and 1.5 Connector Architecture)—
Allows an application to connect to an EIS system and perform work. All communication
is initiated by the application. In this case, the resource adapter serves as a passive library
for connecting to an EIS and executes in the context of the application threads.

Outbound resource adapters based on the J2EE 1.5 Connector Architecture can be
configured to have more than one simultaneous outbound connection. You can configure
each outbound connection to have its own WebLogic Server-specific authentication and
transaction support. See “Configuring Outbound Connections” on page 5-4.

Outbound resource adapters based on the J2EE 1.0 Connector Architecture are also
supported. These resource adapters can have only one outbound connection.

Inbound resource adapter (1.5 only)—Allows an EIS to call application components and
perform work. All communication is initiated by the EIS. The resource adapter may
request threads from WebLogic Server or create its own threads; however, this is not the
BEA-recommended approach. BEA recommends that the resource adapter submit work by
way of the WorkManager. See Chapter 7, “Message and Transactional Inflow.”

Note: The WebLogic Server thin-client JAR also supports the WorkManager contracts
and thus can be used by non-managed resource adapters (resource adapters not
running in WebLogic Server.)

Bi-directional resource adapter (1.5 only)—Supports both outbound and inbound
communication.

Overv i ew o f Resource Adapte rs

Programming WebLogic Resource Adapters 2-3

Comparing 1.0 and 1.5 Resource Adapters
WebLogic Server supports resource adapters developed under either the J2EE 1.0 Connector
Architecture or the J2EE 1.5 Connector Architecture. The J2EE 1.0 Connector Architecture
restricts resource adapter communication to a single external system using one-way outbound
communication. The J2EE 1.5 Connector Architecture lifts this restriction. Other capabilities
provided by and for a 1.5 resource adapter that do not apply to 1.0 resource adapters include:

Outbound communication from the application to multiple systems, such as Enterprise
Information Systems (EISes) and databases. See “Inbound, Outbound, and Bidirectional
Resource Adapters” on page 2-2.

Inbound communication from one or more external systems such as an EIS to the resource
adapter. See “Handling Inbound Messages” on page 7-5

Transactional inflow to enable a J2EE application server to participate in an XA
transaction controlled by an external Transaction Manager by way of a resource adapter.
See “Transactional Inflow” on page 7-9.

An application server-provided Work Manager to enable resource adapters to create threads
through Work instances. See “work-manager” on page A-6.

A life cycle contract for calling start() and stop() methods of the resource adapter by
the application server. See “Programming a Resource Adapter to Perform as a Startup
Class” on page 4-2.

Another important difference between 1.0 resource adapters and 1.5 resource adapters has to do
with connection pools. For 1.5 resource adapters, you do not automatically get one connection
pool per connection factory; you must configure a connection instance. You do so by setting the
connection-instance element in the weblogic-ra.xml deployment descriptor.

Although WebLogic Server is now compliant with the J2EE 1.5 Connector Architecture, it
continues to fully support the J2EE 1.0 Connector Architecture. In accordance with the J2EE 1.5
Connector Architecture, WebLogic Server now supports schema-based deployment descriptors.
Resource adapters that have been developed based on the J2EE 1.0 Connector Architecture use
Document Type Definition (DTD)-based deployment descriptors. Resource adapters that are
built on DTD-based deployment descriptors are still supported.

This document describes the development and use of 1.5 resource adapters. For more information
on WebLogic Server resources adapters that are based on the J2EE 1.0 Connector Architecture,
see the BEA WebLogic Server 8.1 version of Programming WebLogic Resource Adapters.

Unders tanding Resource Adapte rs

2-4 Programming WebLogic Resource Adapters

J2EE Connector Architecture
The J2EE Connector Architecture defines a standard architecture for connecting the J2EE
platform to heterogeneous Enterprise Information Systems (EISes), such as Enterprise Resource
Planning (ERP) systems, mainframe transaction processing (TP), and database systems

The resource adapter serves as a protocol adapter that allows any arbitrary EIS communication
protocol to be used for connectivity. An application server vendor extends its system once to
support the J2EE Connector Architecture and is then assured of seamless connectivity to multiple
EISes. Likewise, an EIS vendor provides one standard resource adapter that can plug in to any
application server that supports the J2EE Connector Architecture.

For a more detailed overview of the J2EE Connector Architecture, see Section 3 “The Connector
Architecture” of the J2CA 1.5 Specification.

J2EE Architecture Diagram and Components
Figure 2-1 and the discussion that follows describe a WebLogic Server implementation of the
J2EE 1.5 Connector Architecture.

J2EE Connecto r A rch i tec ture

Programming WebLogic Resource Adapters 2-5

Figure 2-1 Connector Architecture Overview

The connector architecture shown in Figure 2-1, “Connector Architecture Overview,” on
page 2-5 demonstrates a bi-directional resource adapter. The following components are used in
outbound connection operations:

A client application that connects to WebLogic Server, but also needs to interact with the
EIS.

An application component (an EJB or servlet) that the client application uses to submit
outbound requests to the EIS through the resource adapter

The WebLogic Server Connector container in which the resource adapter is deployed. The
container in this example holds the following:

Unders tanding Resource Adapte rs

2-6 Programming WebLogic Resource Adapters

– A deployed resource adapter that provides bi-directional (inbound and outbound)
communication to and from the EIS.

– One or more connection pools maintained by the container for the management of
outbound managed connections for a given ManagedConnectionFactory (in this case,
MCF-2—there may be more corresponding to different types of connections to a single
EIS or even different EISes)

– Multiple managed connections (MC1, MCn), which are objects representing the
outbound physical connections from the resource adapter to the EIS.

– Connection handles (C-handle) returned to the application component from the
connection factory of the resource adapter and used by the application component for
communicating with the EIS.

The following components are used for inbound connection operations:

One or more external message sources (MS1, MS2), which could be an Enterprise
Information System (EIS) or Message Provider, and which send messages inbound to
WebLogic Server.

One or more ActivationSpecs (Act Spec), each of which corresponds to a single
MessageListener type (MLT-i).

A MessageEndpointFactory created by the EJB container and used by the resource
adapter for inbound messaging to create proxies to MessageEndpoint instances (MDB
instances from the MDB pool).

A message endpoint application (a message-driven bean (MDB) and possibly other J2EE
components) that receives and handles inbound messages from the EIS through the
resource adapter.

System-Level Contracts
To achieve a standard system-level pluggability between WebLogic Server and an EIS,
WebLogic Server has implemented the standard set of system-level contracts defined by the J2EE
Connector Architecture. These contracts consist of SPI classes and interfaces that are required to
be implemented in the application server and the EIS, so that the two systems can work
cooperatively. The EIS side of these system-level contracts are implemented in the resource
adapter’s Java classes. The following standard contracts are supported:

Connection management contract—Enables WebLogic Server to pool connections to an
underlying EIS and enables application components to connect to an EIS. Also allows

Resource Adapte r Dep lo yment Descr ip to rs

Programming WebLogic Resource Adapters 2-7

efficient use of connection resources through resource sharing and provides controls for
associating and disassociating connection handles with EIS connections.

Transaction management contract—A contract between the transaction manager and an
EIS that supports transactional access to EIS resource managers. Enables WebLogic Server
to use its transaction manager to manage transactions across multiple resource managers.

Transaction inflow contract—Allows a resource adapter to propagate an imported
transaction to WebLogic Server. Allows a resource adapter to flow-in transaction
completion and crash recovery calls initiated by an EIS. Transaction inflow involves the
use of an external transaction manager to coordinate transactions.

Security contract—Provides secure access to an EIS and support for a secure application
environment that reduces security threats to the EIS and protects valuable information
resources managed by the EIS.

Life cycle management contract—Enables WebLogic Server to manage the life cycle of a
resource adapter. This allows bootstrapping a resource adapter instance during its
deployment or application server startup, and notification to the resource adapter instance
when it is undeployed or when the application server is being shut down.

Work management contract—Allows a resource adapter to do work (monitor network
endpoints, call application components, and so on) by submitting Work instances to
WebLogic Server for execution.

Message inflow contract—Allows a resource adapter to asynchronously or synchronously
deliver messages to message endpoints residing in WebLogic Server independent of the
specific messaging style, messaging semantics, and messaging infrastructure used to
deliver messages. Also serves as the standard message provider pluggability contract that
enables a wide range of message providers (Java Message Service, Java API for XML
Messaging, and so on) to be plugged into WebLogic Server through a resource adapter.

These system-level contracts are described in detail in the J2CA 1.5 Specification.

Resource Adapter Deployment Descriptors
The structure of a resource adapter and its run-time behavior are defined in deployment
descriptors. Programmers create the deployment descriptors during the packaging process, and
these become part of the application deployment when the application is compiled.

WebLogic Server resource adapters have two deployment descriptors, each of which has its own
XML schema:

Unders tanding Resource Adapte rs

2-8 Programming WebLogic Resource Adapters

ra.xml—The standard J2EE deployment descriptor. All resource adapters must be
specified in an ra.xml deployment descriptor file. The schema for ra.xml is
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd.

weblogic-ra.xml—This WebLogic Server-specific deployment descriptor contains
elements related to WebLogic Server features such as transaction management, connection
management, and security. This file is required for the resource adapter to be deployed to
WebLogic Server. The schema for the weblogic-ra.xml deployment descriptor file is
http://www.bea.com/ns/weblogic/90/weblogic-ra.xsd. For a reference to the
weblogic-ra.xml deployment descriptor, see Appendix A, “weblogic-ra.xml Schema.”

Programming WebLogic Resource Adapters 3-1

C H A P T E R 3

Creating and Configuring Resource
Adapters

The following sections describe how to create and configure a WebLogic Server resource
adapter:

“Creating and Configuring Resource Adapters: Main Steps” on page 3-1

“Modifying an Existing Resource Adapter” on page 3-3

“Configuring the ra.xml File” on page 3-4

“Configuring the weblogic-ra.xml File” on page 3-4

Creating and Configuring Resource Adapters: Main Steps
This section describes how to create a new WebLogic resource adapter. The next section,
“Modifying an Existing Resource Adapter” on page 3-3, describes how to take an existing
resource adapter and prepare it for deployment on WebLogic Server.

To create a new WebLogic resource adapter, you must create the classes for the particular
resource adapter (ConnectionFactory, Connection, and so on), write the resource adapter’s
deployment descriptors, and then package everything into an archive file to be deployed to
WebLogic Server.

The following are the main steps for creating a resource adapter:

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2CA 1.5
Specification. You will specify these classes in the ra.xml file. For example:

Creat ing and Conf igur ing Resource Adapte rs

3-2 Programming WebLogic Resource Adapters

– <managedconnectionfactory-class>com.sun.connector.blackbox.LocalTxMan
agedConnectionFactory</managedconnectionfactory-class>

– <connectionfactory-interface>javax.sql.DataSource</connectionfactory-
interface>

– <connectionfactory-impl-class>com.sun.connector.blackbox.JdbcDataSour
ce</connectionfactory-impl-class>

– <connection-interface>java.sql.Connection</connection-interface>

– <connection-impl-class>com.sun.connector.blackbox.JdbcConnection</con
nection-impl-class>

For more information, see Chapter 4, “Programming Tasks.”

2. Compile the Java code for the interfaces and implementation into class files, using a standard
compiler.

3. Create the resource adapter’s deployment descriptors. A WebLogic resource adapter uses two
deployment descriptor files:

– ra.xml describes the resource adapter-related attributes type and its deployment
properties using the standard XML schema specified by the J2CA 1.5 Specification.

– weblogic-ra.xml adds additional WebLogic Server-specific deployment information,
including connection and connection pool properties, security identities, Work Manager
properties, and logging.

For detailed information about creating WebLogic Server-specific deployment descriptors
for resource adapters, refer to “Configuring the weblogic-ra.xml File” on page 3-4 and
Appendix A, “weblogic-ra.xml Schema.”

4. Package the Java classes into a Java archive (JAR) file with a .rar extension.

Create a staging directory anywhere on your hard drive. Place the JAR file in the staging
directory and the deployment descriptors in a subdirectory called META-INF.

Then create the resource adapter archive by executing a jar command similar to the
following in the staging directory:

jar cvf myRAR.rar *

5. Deploy the resource adapter archive (RAR) file on WebLogic Server in a test environment
and test it.

During testing, you may need to edit the resource adapter deployment descriptors. You can
do this using the WebLogic Server Administration Console or manually using an XML
editor or a text editor. For more information about editing deployment descriptors, see
“Configuring the weblogic-ra.xml File” on page 3-4 and Configure resource adapter

Modi f y ing an Ex is t ing Resource Adapter

Programming WebLogic Resource Adapters 3-3

properties in the Administration Console online help. See also Appendix A,
“weblogic-ra.xml Schema” for detailed information on the elements in the deployment
descriptor.

6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in an
enterprise archive (EAR) file to be deployed as part of an enterprise application.

For information about these steps, see Chapter 9, “Packaging and Deploying Resource
Adapters.” See also Deploying WebLogic Server Applications for detailed information
about deploying components and applications in general.

Modifying an Existing Resource Adapter
In some cases, you may already have a resource adapter available for deployment to WebLogic
Server. This section describes how to take an existing resource adapter that is packaged in a RAR
file and modify it for deployment to WebLogic Server. This involves adding the
weblogic-ra.xml deployment descriptor and repackaging the resource adapter. The following
procedure supposes you have an existing resource adapter packaged in a RAR file named
blackbox-notx.rar.

1. Create a temporary directory anywhere on your hard drive to stage the resource adapter:
mkdir c:/stagedir

2. Extract the contents of the resource adapter archive:
cd c:/stagedir

jar xf blackbox-notx.rar

The staging directory should now contain the following:

A JAR file containing Java classes that implement the resource adapter

A META-INF directory containing the Manifest.mf and ra.xml files

Execute these commands to see these files:
c:/stagedir> ls

blackbox-notx.rar

META-INF

c:/stagedir> ls META-INF

Manifest.mf

Creat ing and Conf igur ing Resource Adapte rs

3-4 Programming WebLogic Resource Adapters

ra.xml

3. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor
for resource adapters. In this file, you specify parameters for connection factories, connection
pools, and security settings.

For more information, see “Configuring the weblogic-ra.xml File” on page 3-4 and also
refer to Appendix A, “weblogic-ra.xml Schema,” for information on the XML schema that
applies to weblogic-ra.xml.

4. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The
META-INF directory is located in the temporary directory where you extracted the RAR file
or in the directory containing a resource adapter in exploded directory format. Use the
following command:

cp weblogic-ra.xml c:/stagedir/META-INF

c:/stagedir> ls META-INF

 Manifest.mf

 ra.xml

 weblogic-ra.xml

5. Create the resource adapter archive:
jar cvf blackbox-notx.rar -C c:/stagedir

6. Deploy the resource adapter to WebLogic Server. For more information about packaging and
deploying the resource adapter, see Chapter 9, “Packaging and Deploying Resource
Adapters” and Deploying Applications to WebLogic Server.

Configuring the ra.xml File
If your resource adapter does not already contain a ra.xml file, you must manually create or edit
an existing one to set the necessary deployment properties for the resource adapter. You can use
a text editor or XML editor to edit the properties. For information on creating a ra.xml file, refer
to the J2CA 1.5 Specification.

Configuring the weblogic-ra.xml File
In addition to supporting features of the standard resource adapter configuration ra.xml file,
BEA WebLogic Server defines an additional deployment descriptor file, the weblogic-ra.xml
file. This file contains parameters that are specific to configuring and deploying resource adapters

Conf igur ing the web log ic- ra . xml F i l e

Programming WebLogic Resource Adapters 3-5

in WebLogic Server. This functionality is consistent with the equivalent weblogic-*.xml
extensions for EJBs and Web applications in WebLogic Server, which also add
WebLogic-specific deployment descriptors to the deployable archive. The basic RAR or
deployment directory can be deployed to WebLogic Server without a weblogic-ra.xml file. If
a resource adapter is deployed in WebLogic Server without a weblogic-ra.xml file, a template
weblogic-ra.xml file populated with default element values is automatically added to the
resource adapter archive. However, this automatically generated weblogic-ra.xml file is not
persisted to the RAR; the RAR remains unchanged.

The following summarizes the most significant features you can configure in the
weblogic-ra.xml deployment descriptor file.

Descriptive text about the connection factory.

JNDI name bound to a connection factory. (Resource adapters developed based on the
J2CA 1.5 Specification are bound in the JNDI as objects independently of their
ConnectionFactory objects.)

Reference to a separately deployed connection factory that contains resource adapter
components that can be shared with the current resource adapter.

Connection pool parameters that set the following behavior:

– Initial number of ManagedConnections that WebLogic Server attempts to allocate at
deployment time.

– Maximum number of ManagedConnections that WebLogic Server allows to be
allocated at any one time.

– Number of ManagedConnections that WebLogic Server attempts to allocate when
filling a request for a new connection.

– Whether WebLogic Server attempts to reclaim unused ManagedConnections to save
system resources.

– The time WebLogic Server waits between attempts to reclaim unused
ManagedConnections.

Logging properties to configure WebLogic Server logging for the
ManagedConnectionFactory or ManagedConnection.

Transaction support levels (XA, local, or no transaction support).

Principal names to use as security identities.

Creat ing and Conf igur ing Resource Adapte rs

3-6 Programming WebLogic Resource Adapters

For detailed information about configuring the weblogic-ra.xml deployment descriptor file,
see the reference information in Appendix A, “weblogic-ra.xml Schema.” See also the
configuration information in the following sections:

Chapter 5, “Connection Management”

Chapter 6, “Transaction Management”

Chapter 7, “Message and Transactional Inflow”

Chapter 8, “Security”

Editing Resource Adapter Deployment Descriptors
To define or make changes to the XML descriptors used in the WebLogic Server resource adapter
archive, you must define or edit the XML elements in the weblogic-ra.xml and ra.xml
deployment descriptor files. You can edit the deployment descriptor files with any plain text
editor. However, to avoid introducing errors, use a tool designed for XML editing.You can also
edit most elements of the files using the WebLogic Administration Console.

Editing Considerations
To edit XML elements manually:

If you use an ASCII text editor, make sure that it does not reformat the XML or insert
additional characters that could invalidate the file.

Use the correct case for file and directory names, even if your operating system ignores the
case.

To use the default value for an optional element, you can either omit the entire element
definition or specify a blank value. For example:
<max-config-property></max-config-property>

Schema Header Information
When editing or creating XML deployment files, it is critical to include the correct schema header
for each deployment file. The header refers to the location and version of the schema for the
deployment descriptor.

Although this header references an external URL at java.sun.com, WebLogic Server contains
its own copy of the schema, so your host server need not have access to the Internet. However,
you must still include this <?xml version...> element in your ra.xml file, and have it

Conf igur ing the web log ic- ra . xml F i l e

Programming WebLogic Resource Adapters 3-7

reference the external URL because the version of the schema contained in this element is used
to identify the version of this deployment descriptor.

Table 3-1 shows the entire schema headers for the ra.xml and weblogic-ra.xml files.

XML files with incorrect header information may yield error messages similar to the following,
when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier ‘identifier_name’

Conforming Deployment Descriptor Files to Schema
The contents and arrangement of elements in your deployment descriptor files must conform to
the schema for each file you use. The following links provide the public schema locations for
deployment descriptor files used with WebLogic Server:

connector_1_5.xsd contains the schema for the standard ra.xml deployment file,
required for all resource adapters. This schema is maintained as part of the J2CA 1.5
Specification. It is located at:
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd

weblogic-ra.xsd contains the schema used for creating weblogic-ra.xml, which
defines resource adapter properties used for deployment to WebLogic Server. This schema
is located at http://www.bea.com/ns/weblogic/90/weblogic-ra.xsd

Note: Your browser might not display the contents of files having the .xsd extension. In that
case, to view the schema contents in your browser, save the links as text files and view
them with a text editor.

Table 3-1 Schema Header

XML File Schema Header

ra.xml <?xml version="1.0" encoding="UTF-8"?>

<connector xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd"

version="1.5">

weblogic-ra.xml <?xml version = "1.0">

<weblogic-connector
xmlns="http://www.bea.com/ns/weblogic/90">

Creat ing and Conf igur ing Resource Adapte rs

3-8 Programming WebLogic Resource Adapters

Dynamic Descriptor Updates: Console Configuration Tabs
You can use the Administration Console to view, modify, and (when necessary) persist
deployment descriptor elements. Some descriptor element changes take place dynamically at
runtime without requiring the resource adapter to be redeployed. Other descriptor elements
require redeployment after changes are made. To use the Administration Console to configure a
resource adapter, open Deployments and click the name of the deployed resource adapter. Use
the Configuration tab to change the configuration of the resource adapter and the other tabs to
control, test, or monitor the resource adapter. For information about using the Administration
Console, see Configure Resource Adapter Properties in the console help.

Dynamic Pool Parameters
Using the Administration Console, you can modify the following weblogic-ra.xml pool
parameters dynamically, without requiring the resource adapter to be redeployed:

initial-capacity

max-capacity

capacity-increment

shrink-frequency-seconds

highest-num-waiters

highest-num-unavailable

connection-creation-retry-frequency-seconds

connection-reserve-timeout-seconds

test-frequency-seconds

Dynamic Logging Parameters
Using the Administration Console, you can modify the following weblogic-ra.xml logging
parameters dynamically, without requiring the resource adapter to be redeployed:

log-filename

file-count

file-size-limit

log-file-rotation-dir

rotation-time

file-time-span

Conf igur ing the web log ic- ra . xml F i l e

Programming WebLogic Resource Adapters 3-9

Automatic Generation of the weblogic-ra.xml File
A resource adapter archive (RAR) deployed on WebLogic Server must include a
weblogic-ra.xml deployment descriptor file in addition to the ra.xml deployment descriptor
file specified in the J2CA 1.5 Specification.

If a resource adapter is deployed in WebLogic Server without a weblogic-ra.xml file, a
template weblogic-ra.xml file populated with default element values is automatically added to
the resource adapter archive. However, this automatically generated weblogic-ra.xml file is
not persisted to the RAR; the RAR remains unchanged. WebLogic Server instead generates
internal data structures that correspond to default information in the weblogic-ra.xml file.

For a 1.0 resource adapter that is a single connection factory definition, the JNDI name will be
eis/ModuleName. For example, if the RAR is named MySpecialRA.rar, the JNDI name of the
connection factory will be eis/MySpecialRA.

For a 1.5 resource adapter with a ResourceAdapter bean class specified, the JNDI name of the
bean would be MySpecialRA. Each connection factory would also have a corresponding instance
created with a JNDI name of eis/ModuleName, eis/ModuleName_1, eis/ModuleName_2, and
so on.

(Deprecated) Configuring the Link-Ref Mechanism
The Link-Ref mechanism was introduced in the 8.1 release of WebLogic Server to enable the
deployment of a single base adapter whose code could be shared by multiple logical adapters with
various configuration properties. For 1.5 resource adapters in the current release, the Link-Ref
mechanism is deprecated and is replaced by the new J2EE libraries feature. However, the
Link-Ref mechanism is still supported in this release for 1.0 resource adapters. For more
information on J2EE libraries, see “Creating Shared J2EE Libraries and Optional Packages” in
Developing Applications with WebLogic Server. To use the Link-Ref mechanism, use the
<ra-link-ref> element in your resource adapter’s weblogic-ra.xml file.

The deprecated and optional <ra-link-ref> element allows you to associate multiple deployed
resource adapters with a single deployed resource adapter. In other words, it allows you to link
(reuse) resources already configured in a base resource adapter to another resource adapter,
modifying only a subset of attributes. The <ra-link-ref> element enables you to avoid—where
possible—duplicating resources (such as classes, JARs, image files, and so on). Any values
defined in the base resource adapter deployment are inherited by the linked resource adapter,
unless otherwise specified in the <ra-link-ref> element.

Creat ing and Conf igur ing Resource Adapte rs

3-10 Programming WebLogic Resource Adapters

If you use the optional <ra-link-ref> element, you must provide either all or none of the values
in the <pool-params> element. The <pool-params> element values are not partially inherited
by the linked resource adapter from the base resource adapter.

Do one of the following:

Assign the <max-capacity> element the value of 0 (zero). This allows the linked resource
adapter to inherit its <pool-params> element values from the base resource adapter.

Assign the <max-capacity> element any value other than 0 (zero). The linked resource
adapter will inherit no values from the base resource adapter. If you choose this option, you
must specify all of the <pool-params> element values for the linked resource adapter.

For further instructions on editing the weblogic-ra.xml file, see Appendix A,
“weblogic-ra.xml Schema.”

Programming WebLogic Resource Adapters 4-1

C H A P T E R 4

Programming Tasks

The following sections discuss programming tasks for WebLogic Server resource adapters:

“Required Classes for Resource Adapters” on page 4-1

“Programming a Resource Adapter to Perform as a Startup Class” on page 4-2

“Suspending and Resuming Resource Adapter Activity” on page 4-7

“Extended BootstrapContext” on page 4-13

Required Classes for Resource Adapters
A resource adapter requires the following Java classes, in accordance with the J2CA 1.5
Specification:

ManagedConnectionFactory

ConnectionFactory interface

ConnectionFactory implementation

Connection interface

Connection implementation

These classes are specified in the ra.xml file. For example:
– <managedconnectionfactory-class>com.sun.connector.blackbox.LocalTxMan
agedConnectionFactory</managedconnectionfactory-class>

Programming Tasks

4-2 Programming WebLogic Resource Adapters

– <connectionfactory-interface>javax.sql.DataSource</connectionfactory-
interface>

– <connectionfactory-impl-class>com.sun.connector.blackbox.JdbcDataSour
ce</connectionfactory-impl-class>

– <connection-interface>java.sql.Connection</connection-interface>

– <connection-impl-class>com.sun.connector.blackbox.JdbcConnection</con
nection-impl-class>

In addition, if the resource adapter supports inbound messaging, the resource adapter will require
an ActivationSpec class for each supported inbound message type. See Chapter 7, “Message
and Transactional Inflow.”

The specifics of these resource adapter classes depend on the nature of the resource adapter you
are developing.

Programming a Resource Adapter to Perform as a
Startup Class

As an alternative to using a WebLogic Server startup class, you can program a resource adapter
with a minimal resource adapter class that implements javax.resource.ResourceAdapter,
which defines a start() and stop() method.

Note: Because of the definition of the ResourceAdapter interface, you must also define the
endpointActivation(), Deactivation() and getXAResource() methods.

When the resource adapter is deployed, the start() method is invoked. When it is undeployed,
the stop() method is called. Any work that the resource adapter initiates can be performed in the
start() method as with a WebLogic Server startup class.

Because resource adapters have access to the Work Manager through the BootstrapContext in
the start() method, they should submit Work instances instead of using direct thread
management. This enables WebLogic Server to manage threads effectively through its self-tuning
Work Manager.

Once a Work instance is submitted for execution, the start() method should return promptly so
as not to interfere with the full deployment of the resource adapter. Thus, a scheduleWork() or
startWork() method should be invoked on the Work Manager rather than the doWork()
method.

The following is an example of a resource adapter having a minimum resource adapter class. It
is the absolute minimum resource adapter that you can develop (other than removing the

Programming a Resource Adapte r to Per fo rm as a Star tup C lass

Programming WebLogic Resource Adapters 4-3

println statements). In this example, the only work performed by the start() method is to
print a message to stdout (standard out).

Listing 4-1 Minimum Resource Adapter

import javax.resource.spi.ResourceAdapter;

import javax.resource.spi.endpoint.MessageEndpointFactory;

import javax.resource.spi.ActivationSpec;

import javax.resource.ResourceException;

import javax.transaction.xa.XAResource;

import javax.resource.NotSupportedException;

import javax.resource.spi.BootstrapContext;

/**

* This resource adapter is the absolute minimal resource adapter that anyone

can build (other than removing the println's.)

*/

public class ResourceAdapterImpl implements ResourceAdapter

{

 public void start(BootstrapContext bsCtx)

 {

 System.out.println("ResourceAdapterImpl started");

 }

 public void stop()

 {

 System.out.println("ResourceAdapterImpl stopped");

 }

 public void endpointActivation(MessageEndpointFactory

messageendpointfactory, ActivationSpec activationspec)

 throws ResourceException

Programming Tasks

4-4 Programming WebLogic Resource Adapters

 {

 throw new NotSupportedException();

 }

 public void endpointDeactivation(MessageEndpointFactory

messageendpointfactory, ActivationSpec activationspec)

 {

 }

 public XAResource[] getXAResources(ActivationSpec aactivationspec[])

 throws ResourceException

 {

 throw new NotSupportedException();

 }

}

The following is an example of a resource adapter that submits work instances to the Work
Manager. The resource adapter starts some work in the start() method, thus serving as a
J2EE-compliant startup class.

Listing 4-2 Resource Adapter Using the Work Manager and Submitting Work Instances

import javax.resource.NotSupportedException;

import javax.resource.ResourceException;

import javax.resource.spi.ActivationSpec;

import javax.resource.spi.BootstrapContext;

import javax.resource.spi.ResourceAdapter;

import javax.resource.spi.endpoint.MessageEndpointFactory;

import javax.resource.spi.work.Work;

import javax.resource.spi.work.WorkException;

Programming a Resource Adapte r to Per fo rm as a Star tup C lass

Programming WebLogic Resource Adapters 4-5

import javax.resource.spi.work.WorkManager;

import javax.transaction.xa.XAResource;

/**

* This Resource Adapter starts some work in the start() method, thus serving

as a J2EE compliant "startup class"

*/

public class ResourceAdapterWorker implements ResourceAdapter

{

 private WorkManager wm;

 private MyWork someWork;

 public void start(BootstrapContext bsCtx)

 {

 System.out.println("ResourceAdapterWorker started");

 wm = bsCtx.getWorkManager();

 try

 {

 someWork = new MyWork();

 wm.startWork(someWork);

 }

 catch (WorkException ex)

 {

 System.err.println("Unable to start work: " + ex);

 }

 }

 public void stop()

 {

 // stop work that was started in the start() method

 someWork.release();

Programming Tasks

4-6 Programming WebLogic Resource Adapters

 System.out.println("ResourceAdapterImpl stopped");

 }

 public void endpointActivation(MessageEndpointFactory

messageendpointfactory, ActivationSpec activationspec)

 throws ResourceException

 {

 throw new NotSupportedException();

 }

 public void endpointDeactivation(MessageEndpointFactory

messageendpointfactory, ActivationSpec activationspec)

 {

 }

 public XAResource[] getXAResources(ActivationSpec activationspec[])

throws ResourceException

 {

 throw new NotSupportedException();

 }

 // Work class

 private class MyWork implements Work

 {

 private boolean isRunning;

 public void run()

 {

 isRunning = true;

 while (isRunning)

 {

 // do a unit of work (e.g. listen on a socket, wait for an inbound msg,

 // check the status of something)

Suspending and Resuming Resource Adapte r Ac t iv i t y

Programming WebLogic Resource Adapters 4-7

 System.out.println("Doing some work");

 // perhaps wait some amount of time or for some event

 try

 {

 Thread.sleep(60000); // wait a minute

 }

 catch (InterruptedException ex)

 {}

 }

 }

 public void release()

 {

 // signal the run() loop to stop

 isRunning = false;

 }

 }

}

Suspending and Resuming Resource Adapter Activity
You can program your resource adapter to use the suspend() method, which provides custom
behavior for suspending activity. For example, using the suspend() method, you can queue up
all incoming messages while allowing in-flight transactions to complete, or you can notify the
Enterprise Information System (EIS) that reception of messages is temporarily blocked.

You then invoke the resume() method to signal that the inbound queue be drained and messages
be delivered, or notify the EIS that message receipt was re-enabled. Basically, the resume()
method allows the resource adapter to continue normal operations.

You initiate the suspend() and resume() methods by making a call on the resource adapter
runtime MBeans programmatically, using WebLogic Scripting Tool, or from the WebLogic

Programming Tasks

4-8 Programming WebLogic Resource Adapters

Server Administration Console. See Start, stop, and suspend resource adapters in the console help
for more information.

The Suspendable.supportsSuspend() method determines whether a resource adapter
supports a particular type of suspension. The Suspendable.isSuspended() method
determines whether or not a resource adapter is presently suspended.

A resource adapter that supports suspend(), resume(), or production redeployment must
implement the Suspendable interface to inform WebLogic Server that these operations are
supported. These operations are invoked by WebLogic Server when the following occurs:

Suspend is called by the suspend() method on the connector component MBean.

The production redeployment sequence of calls is invoked (when a new version of the
application is deployed that contains the resource adapter). See “Suspendable Interface and
Production Redeployment” on page 9-6.

Listing 4-3 contains the Suspendable interface for resource adapters:

Listing 4-3 Suspendable Interface

package weblogic.connector.extensions;

import java.util.Properties;

import javax.resource.ResourceException;

import javax.resource.spi.ResourceAdapter;

/**

* Suspendable may be implemented by a ResourceAdapter JavaBean if it

* supports suspend, resume or side-by-side versioning

* @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.

* @since November 14, 2003

*/

public interface Suspendable

{

/**

* Used to indicate that inbound communication is to be suspended/resumed

Suspending and Resuming Resource Adapte r Ac t iv i t y

Programming WebLogic Resource Adapters 4-9

*/

int INBOUND = 1;

/**

* Used to indicate that outbound communication is to be suspended/resumed

*/

int OUTBOUND = 2;

/**

* Used to indicate that submission of Work is to be suspended/resumed

*/

int WORK = 4;

/**

* Used to indicate that INBOUND, OUTBOUND & WORK are to be suspended/resumed

*/

int ALL = 7;

/**

* May be used to indicate a suspend() operation

*/

int SUSPEND = 1;

/**

* May be used to indicate a resume() operation

*/

int RESUME = 2;

/**

* Request to suspend the activity specified. The properties may be null or

* specified according to RA-specific needs

* @param type An int from 1 to 7 specifying the type of suspension being

* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of one

Programming Tasks

4-10 Programming WebLogic Resource Adapters

* or more of these, or the value Suspendable.ALL)

* @param props Optional Properties (or null) to be used for ResourceAdapter

* specific purposes

* @exception ResourceException If the resource adapter can't complete the

* request

*/

void suspend(int type, Properties props) throws ResourceException;

/**

* Request to resume the activity specified. The Properties may be null or

* specified according to RA-specific needs

*

* @param type An int from 1 to 7 specifying the type of resume being

* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of

* one or more of these, or the value Suspendable.ALL)

* @param props Optional Properties (or null) to be used for ResourceAdapter

* specific purposes

* @exception ResourceException If the resource adapter can't complete the

* request

*/

void resume(int type, Properties props) throws ResourceException;

/**

*

* @param type An int from 1 to 7 specifying the type of suspend this inquiry

* is about (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of

* one or more of these, or the value Suspendable.ALL)

* @return true iff the specified type of suspend is supported

*/

Suspending and Resuming Resource Adapte r Ac t iv i t y

Programming WebLogic Resource Adapters 4-11

boolean supportsSuspend(int type);

/**

*

* Used to determine whether the specified type of activity is currently

suspended.

*

* @param type An int from 1 to 7 specifying the type of activity

* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of

* one or more of these, or the value Suspendable.ALL)

* @return true iff the specified type of activity is suspened by this

resource adapter

*/

boolean isSuspended(int type);

/**

* Used to determine if this resource adapter supports the init() method used

for

* resource adapter versioning (side-by-side deployment)

*

* @return true iff this resource adapter supports the init() method

*/

boolean supportsInit();

/**

* Used to determine if this resource adapter supports the startVersioning()

method used for

* resource adapter versioning (side-by-side deployment)

*

* @return true iff this resource adapter supports the startVersioning()

method

*/

Programming Tasks

4-12 Programming WebLogic Resource Adapters

boolean supportsVersioning();

/**

* Used by WLS to indicate to the current version of this resource adapter

that a new

* version of the resource adapter is being deployed. This method can be used

by the

* old RA to communicate with the new RA and migrate services from the old

to the new.

* After being called, the ResourceAdapter is responsible for notifying the

Connector

* container via the ExtendedBootstrapContext.complete() method, that it is

safe to

* be undeployed.

*

* @param ra The new ResourceAdapter JavaBean

* @param props Properties associated with the versioning

* when it can be undeployed

* @exception ResourceException If something goes wrong

*/

void startVersioning(ResourceAdapter ra,

Properties props) throws ResourceException;

/**

* Used by WLS to inform a ResourceAdapter that it is a new version of an

already deployed

* resource adapter. This method is called prior to start() so that the new

resource adapter

* may coordinate its startup with the resource adapter it is replacing.

*

* @param ra The old version of the resource adapter that is currently running

Ex tended Boo ts t rapContext

Programming WebLogic Resource Adapters 4-13

* @param props Properties associated with the versioning operation

* @exception ResourceException If the init() fails.

*/

void init(ResourceAdapter ra, Properties props) throws ResourceException;

}

Extended BootstrapContext
If, when a resource adapter is deployed, it has a resource adapter JavaBean specified in the
<resource-adapter-class> element of its ra.xml descriptor, the WebLogic Server
connector container calls the start() method on the resource adapter bean as required by the
J2CA 1.5 Specification. The resource adapter code can use the BootstrapContext object that
is passed in by the start() method to:

Obtain a WorkManager object for submitting Work instances

Create a Timer

Obtain an XATerminator for use in transaction inflow

These capabilities are all prescribed by the J2CA 1.5 Specification.

In addition to implementing the required javax.resource.spi.BootstrapContext, the
BootstrapContext object passed to the resource adapter start() method also implements
weblogic.connector.extensions.ExtendedBootstrapContext, which gives the resource
adapter access to some additional WebLogic Server-specific extensions that enhance diagnostic
capabilities. These extensions are described in the following sections.

Diagnostic Context ID
In the WebLogic Server diagnostic framework, a thread may have an associated diagnostic
context. A request on the thread carries its diagnostic context throughout its lifetime, as it
proceeds along its path of execution. The ExtendedBootstrapContext allows the resource
adapter developer to set a diagnostic context payload consisting of a String that can be used, for
example, to trace the execution of a request from an EIS all the way to a message endpoint. This
capability can serve a variety of diagnostic purposes. For example, you can set the String to the
client ID or session ID on an inbound message from an EIS. During message dispatch, various

Programming Tasks

4-14 Programming WebLogic Resource Adapters

diagnostics can be gathered to show the request flow through the system. As you develop your
resource adapter classes, you can make use of the setDiagnosticContextID() and
getDiagnosticContextID() methods for this purpose. For more information about the
diagnostic context, see Configuring and Using the WebLogic Diagnostic Framework.

Dye Bits
The WebLogic Server diagnostic framework also provides the ability to dye a request. The
ExtendedBootstrapContext allows you to set and retrieve four dye bits on the current thread
for whatever diagnostic purpose the resource adapter developer chooses. For example, you might
set priority of a request using the dye bits. For more information about request dyeing, see
Configuring and Using the WebLogic Diagnostic Framework.

Callback Capabilities
You can use the ExtendedBootstrapContext.complete() method as a callback to the
connector container. For detailed information on this feature, see “Production Redeployment” in
Deploying WebLogic Server Applications.

Programming WebLogic Resource Adapters 5-1

C H A P T E R 5

Connection Management

The following sections describe connection management in WebLogic Server resource adapters.
For more information on connection management, see Chapter 6, “Connection Management,” of
the J2CA 1.5 Specification.

“Connection Management Contract” on page 5-1

“Configuring Outbound Connections” on page 5-4

“Configuring Inbound Connections” on page 5-9

“Configuring Connection Pool Parameters” on page 5-11

“Connection Proxy Wrapper - 1.0 Resource Adapters” on page 5-15

“Testing Connections” on page 5-16

Connection Management Contract
One of the requirements of the J2CA 1.5 Specification is the connection management contract.
The connection management contract between WebLogic Server and a resource adapter:

Provides a consistent application programming model for connection acquisition for both
managed and non-managed (two-tier) applications.

Enables a resource adapter to provide a connection factory and connection interfaces based
on the common client interface (CCI) specific to the type of resource adapter and EIS. This
enables JDBC drivers to be aligned with the J2EE 1.5 Connector Architecture with
minimum impact on the existing JDBC APIs.

Connect ion Management

5-2 Programming WebLogic Resource Adapters

Enables an application server to provide various services—transactions, security, advanced
pooling, error tracing/logging—for its configured set of resource adapters.

Supports connection pooling.

The resource adapter’s side of the connection management contract is embodied in the resource
adapter’s Connection, ConnectionFactory, ManagedConnection, and
ManagedConnectionFactory classes.

Connection Factory and Connection
A J2EE application component uses a public interface called a connection factory to access a
connection instance, which the component then uses to connect to the underlying EIS. Examples
of connections include database connections and JMS (Java Message Service) connections.

A resource adapter provides connection and connection factory interfaces, acting as a connection
factory for EIS connections. For example, thejavax.sql.DataSource and
java.sql.Connection interfaces are JDBC-based interfaces for connecting to a relational
database.

An application looks up a connection factory instance in the Java Naming and Directory Interface
(JNDI) namespace and uses it to obtain EIS connections. See “Obtaining the ConnectionFactory
(Client-JNDI Interaction)” on page 5-2.

Resource Adapters Bound in JNDI Tree
Version 1.5 resource adapters can be bound in the JNDI tree as independent objects, making them
available as system resources in their own right or as message sources for message-driven beans
(MDBs). In contrast, version 1.0 resource adapters are identified by their ConnectionFactory
objects bound in the JNDI tree.

In a version 1.5 resource adapter, at deployment time, the ResourceAdapter Bean (if it exists)
is bound into the JNDI tree using the value of the jndi-name element in the weblogic-ra.xml
file. As a result, administrators can view resource adapters as single deployable entities, and they
can interact with resource adapter capabilities publicly exposed by the resource adapter provider.
For more information, see “jndi-name” on page A-2 in Appendix A, “weblogic-ra.xml Schema.”

Obtaining the ConnectionFactory (Client-JNDI Interaction)
The application assembler or component provider configures the Connection Factory
requirements for an application component in the application’s deployment descriptor. For
example:

Connect ion Management Cont rac t

Programming WebLogic Resource Adapters 5-3

res-ref-name: eis/myEIS

res-type: javax.resource.cci.ConnectionFactory

res-auth: Application or Container

The resource adapter deployer provides the configuration information for the resource adapter.

An application looks up a ConnectionFactory instance in the Java Naming and Directory
Interface (JNDI) namespace and uses it to obtain EIS connections. The following events occur
when an application in a managed environment obtains a connection to an EIS instance from a
Connection Factory, as specified in the res-type variable.

Note: A managed application environment defines an operational environment for a
J2EE-based, multi-tier, Web-enabled application that accesses EISes.

1. The application server uses a configured resource adapter to create physical connections to
the underlying EIS.

2. The application component looks up a ConnectionFactory instance in the component’s
environment by using the JNDI interface, as shown in Listing 5-1.

Listing 5-1 JNDI Lookup

//obtain the initial JNDI Naming context

Context initctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory

javax.resource.cci.ConnectionFactory cxf =

(javax.resource.cci.ConnectionFactory)

initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as that
specified in the res-ref-name element of the deployment descriptor. The JNDI lookup
results in an instance of type java.resource.cci.ConnectionFactory as specified in
the res-type element.

Connect ion Management

5-4 Programming WebLogic Resource Adapters

3. The application component invokes the getConnection method on the
ConnectionFactory to obtain an EIS connection. The returned connection instance
represents an application level handle to an underlying physical connection. An application
component obtains multiple connections by calling the method getConnection on the
connection factory multiple times.

javax.resource.cci.Connection cx = cxf.getConnection();

4. The application component uses the returned connection to access the underlying EIS.

5. After the component finishes with the connection, it closes the connection using the close
method on the Connection interface:

cx.close();

If an application component fails to close an allocated connection after its use, that
connection is considered an unused connection. The application server manages the
cleanup of unused connections.

Configuring Outbound Connections
Outbound resource adapters based on the J2CA 1.5 Specification can be configured to have one
or more outbound connections, each having its own WebLogic Server-specific authentication and
transaction support. You configure outbound connection properties in the ra.xml and
weblogic-ra.xml deployment descriptor files.

Connection Pool Configuration Levels
You use the outbound-resource-adapter element and its subelements in the
weblogic-ra.xml deployment descriptor to describe the outbound components of a resource
adapter.

You can define outbound connection pools at three levels:

Global—Specify parameters that apply to all outbound connection groups in the resource
adapter using the default-connection-properties element. See
“default-connection-properties” on page A-19.

Group—Specify parameters that apply to all outbound connection instances belonging to a
particular connection factory specified in the ra.xml deployment descriptor using the
connection-definition-group element. A one-to-one correspondence exists from a
connection factory in ra.xml to a connection definition group in weblogic-ra.xml. The
properties specified in a group override any parameters specified at the global level. See
“connection-definition-group” on page A-28.

Conf igur ing Outbound Connect i ons

Programming WebLogic Resource Adapters 5-5

The connection-factory-interface element (a subelement of the
connection-definition-group element) serves as a required unique element (a key) to
each connection-definition-group. There must be a one-to-one relationship between
the connection-definition-interface element in weblogic-ra.xml and the
connectiondefinition-interface element in ra.xml.

Instance—Under each connection definition group, you can specify connection instances
using the connection-instance element of the weblogic-ra.xml deployment
descriptor. These correspond to the individual connection pools for the resource adapter.
You can use the connection-properties subelement to specify properties at the instance
level too; properties specified at the instance level override those provided at the group and
global levels. See “connection-instance” on page A-29.

Multiple Outbound Connections Example
The following is an example of a weblogic-ra.xml deployment descriptor that configures
multiple outbound connections:

Listing 5-2 weblogic-ra.xml Deployment Descriptor: Multiple Outbound Connections

<?xml version="1.0" ?>

<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">

<jndi-name>900eisaNameOfBlackBoxXATx</jndi-name>

 <outbound-resource-adapter>

 <connection-definition-group>

 <connection-factory-interface>javax.sql.DataSource

 </connection-factory-interface>

 <connection-instance>

 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME1

 </jndi-name>

 <connection-properties>

 <pool-params>

 <initial-capacity>2</initial-capacity>

 <max-capacity>10</max-capacity>

Connect ion Management

5-6 Programming WebLogic Resource Adapters

 <capacity-increment>1</capacity-increment>

 <shrinking-enabled>true</shrinking-enabled>

 <shrink-frequency-seconds>60</shrink-frequency-seconds>

 </pool-params>

 <properties>

 <property>

 <name>ConnectionURL</name>

<value>jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false</v

alue>

 </property>

 <property>

 <name>XADataSourceName</name>

 <value>OracleXAPool</value>

 </property>

 <property>

 <name>TestClassPath</name>

 <value>HelloFromsetTestClassPathGoodDay</value>

 </property>

 <property>

 <name>unique_ra_id</name>

 <value>eisablackbox-xa.oracle.900</value>

 </property>

 </properties>

 </connection-properties>

 </connection-instance>

 <connection-instance>

 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME2

Conf igur ing Outbound Connect i ons

Programming WebLogic Resource Adapters 5-7

 </jndi-name>

 <connection-properties>

 <pool-params>

 <initial-capacity>2</initial-capacity>

 <max-capacity>10</max-capacity>

 <capacity-increment>1</capacity-increment>

 <shrinking-enabled>true</shrinking-enabled>

 <shrink-frequency-seconds>60

 </shrink-frequency-seconds>

 </pool-params>

 <properties>

 <property>

 <name>ConnectionURL</name>

<value>jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false</v

alue>

 </property>

 <property>

 <name>XADataSourceName</name>

 <value>OracleXAPool</value>

 </property>

 <property>

 <name>TestClassPath</name>

 <value>HelloFromsetTestClassPathGoodDay</value>

 </property>

 <property>

 <name>unique_ra_id</name>

 <value>eisablackbox-xa.oracle.900</value>

Connect ion Management

5-8 Programming WebLogic Resource Adapters

 </property>

 </properties>

 </connection-properties>

 </connection-instance>

 </connection-definition-group>

 <connection-definition-group>

 <connection-factory-interface>javax.sql.DataSourceCopy

 </connection-factory-interface>

 <connection-instance>

 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME3</jndi-name>

 <connection-properties>

 <pool-params>

 <initial-capacity>2</initial-capacity>

 <max-capacity>10</max-capacity>

 <capacity-increment>1</capacity-increment>

 <shrinking-enabled>true</shrinking-enabled>

 <shrink-frequency-seconds>60</shrink-frequency-seconds>

 </pool-params>

 <properties>

 <property>

 <name>ConnectionURL</name>

<value>jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false</v

alue>

 </property>

 <property>

 <name>XADataSourceName</name>

 <value>OracleXAPoolB</value>

Conf igu r ing Inbound Connect ions

Programming WebLogic Resource Adapters 5-9

 </property>

 <property>

 <name>TestClassPath</name>

 <value>HelloFromsetTestClassPathGoodDay</value>

 </property>

 <property>

 <name>unique_ra_id</name>

 <value>eisablackbox-xa-two.oracle.900</value>

 </property>

 </properties>

 </connection-properties>

 </connection-instance>

 </connection-definition-group>

 </outbound-resource-adapter>

</weblogic-connector>

Configuring Inbound Connections
The J2CA 1.5 Specification permits you to configure a resource adapter to support inbound
message connections. The following are the main steps for configuring an inbound connection:

1. Provide a JNDI name for the resource adapter in the weblogic-ra.xml deployment
descriptor. See “jndi-name” on page A-2.

2. Configure a message listener and ActivationSpec for each supported inbound message type
in the ra.xml deployment descriptor. For information about requirements for an
ActivationSpec class, see Chapter 12, “Message Inflow” in the J2CA 1.5 Specification.

3. Within the packaged enterprise application, include a configured EJB message-driven bean
(MDB). In the resource-adapter-jndi-name element of the weblogic-ejb-jar.xml
deployment descriptor, provide the same JNDI name assigned to the resource adapter in the
previous step. Setting this value enables the MDB and resource adapter to communicate with
each other.

Connect ion Management

5-10 Programming WebLogic Resource Adapters

4. Configure the security identity to be used by the resource adapter for inbound connections.
When messages are received by the resource adapter, work must be performed under a
particular security identity. See “Configuring Security Identities for Resource Adapters” on
page 8-6.

5. Deploy the resource adapter as discussed in Deploying WebLogic Server Applications.

6. Deploy the MDB. For more information, see “Message-Driven EJBs” in Programming
WebLogic Enterprise JavaBeans and Deploying WebLogic Server Applications.

The following example shows how an inbound connection with two message listener/activation
specs could be configured in the ra.xml deployment descriptor:

Listing 5-3 Example of Configuring an Inbound Connection

<inbound-resourceadapter>

 <messageadapter>

 <messagelistener>

 <messagelistener-type>

 weblogic.qa.tests.connector.adapters.flex.InboundMsgListener

 </messagelistener-type>

 <activationspec>

 <activationspec-class>

 weblogic.qa.tests.connector.adapters.flex.ActivationSpecImpl

 </activationspec-class>

 </activationspec>

 </messagelistener>

 <messagelistener>

 <messagelistener-type>

 weblogic.qa.tests.connector.adapters.flex.ServiceRequestMsgListener

 </messagelistener-type>

 <activationspec>

Conf igu r ing Connect ion Poo l Pa rameters

Programming WebLogic Resource Adapters 5-11

 <activationspec-class>

weblogic.qa.tests.connector.adapters.flex.ServiceRequestActivationSpec

 </activationspec-class>

 </activationspec>

 </messagelistener>

 </messageadapter>

</inbound-resourceadapter>

Configuring Connection Pool Parameters
This section explains how to configure WebLogic Server resource adapter connection pool
parameters in the weblogic-ra.xml deployment descriptor. For more details, see Appendix A,
“weblogic-ra.xml Schema.”

initial-capacity: Setting the Initial Number of
ManagedConnections
Depending on the complexity of the Enterprise Information System (EIS) that the
ManagedConnection is representing, creating ManagedConnections can be expensive. You
may decide to populate the connection pool with an initial number of ManagedConnections
upon startup of WebLogic Server and therefore avoid creating them at run time. You can
configure this setting using the initial-capacity element in the weblogic-ra.xml
descriptor file. The default value for this element is 1 ManagedConnection.

Because no initiating security principal or request context information is known at WebLogic
Server startup, you create initial connections using a security subject that you specify in the
security element, as described in “Configuring Security Identities for Resource Adapters” on
page 8-6.

Connect ion Management

5-12 Programming WebLogic Resource Adapters

max-capacity: Setting the Maximum Number of
ManagedConnections
As more ManagedConnections are created, they consume more system resources—such as
memory and disk space. Depending on the Enterprise Information System (EIS), this
consumption may affect the performance of the overall system. To control the effects of
ManagedConnections on system resources, you can specify a maximum number of allocated
ManagedConnections in the max-capacity element of the weblogic-ra.xml descriptor file.

If a new ManagedConnection (or more than one ManagedConnection in the case of
capacity-increment being greater than one) needs to be created during a connection request,
WebLogic Server ensures that no more than the maximum number of allowed
ManagedConnections are created. Requests for newly allocated ManagedConnections beyond
this limit results in a ResourceAllocationException being returned to the caller.

capacity-increment: Controlling the Number of
ManagedConnections
In compliance with the J2CA 1.5 Specification, when an application component requests a
connection to an EIS through the resource adapter, WebLogic Server first tries to match the type
of connection being requested with an existing and available ManagedConnection in the
connection pool. However, if a match is not found, a new ManagedConnection may be created
to satisfy the connection request.

Using the capacity-increment element in the weblogic-ra.xml descriptor file, you can
specify a number of additional ManagedConnections to be created automatically when a match
is not found. This feature provides give you the flexibility to control connection pool growth over
time and the performance hit on the server each time this growth occurs.

shrinking-enabled: Controlling System Resource Usage
Although setting the maximum number of ManagedConnections prevents the server from
becoming overloaded by more allocated ManagedConnections than it can handle, it does not
control the efficient amount of system resources needed at any given time. WebLogic Server
provides a service that monitors the activity of ManagedConnections in the connection pool of
a resource adapter. If the usage decreases and remains at this level over a period of time, the size
of the connection pool is reduced to the initial capacity or as close to this as possible to adequately
satisfy ongoing connection requests.

Conf igu r ing Connect ion Poo l Pa rameters

Programming WebLogic Resource Adapters 5-13

This system resource usage service is turned on by default. However, to turn off this service, you
can set the shrinking-enabled element in the weblogic-ra.xml descriptor file to false.

shrink-frequency-seconds: Setting the Wait Time Between
Attempts to Reclaim Unused ManagedConnections
Use the shrink-frequency-seconds element in the weblogic-ra.xml descriptor file to
identify the amount of time (in seconds) the Connection Pool Manager will wait between attempts
to reclaim unused ManagedConnections. The default value of this element is 900 seconds.

highest-num-waiters: Controlling the Number of Clients
Waiting for a Connection
If the maximum number of connections has been reached and there are no available connections,
WebLogic Server retries until the call times out. The highest-num-waiters element controls
the number of clients that can be waiting at any given time for a connection.

highest-num-unavailable: Controlling the Number of
Unavailable Connections
When a connection is created and fails, the connection is placed on an unavailable list. WebLogic
Server attempts to recreate failed connections on the unavailable list. The
highest-num-unavailable element controls the number of unavailable connections that can
exist on the unavailable list at one time.

connection-creation-retry-frequency-seconds: Recreating
Connections
To configure WebLogic Server to attempt to recreate a connection that fails while creating
additional ManagedConnections, enable the
connection-creation-retry-frequency-seconds element. By default, this feature is
disabled.

match-connections-supported: Matching Connections
A connection request contains parameter information. By default, the connector container calls
the matchManagedConnections() method on the ManagedConnectionFactory to match the

Connect ion Management

5-14 Programming WebLogic Resource Adapters

available connection in the pool to the parameters in the request. The connection that is
successfully matched is returned.

It may be that the ManagedConnectionFactory does not support the call to
matchManagedConnections(). If so, the matchManagedConnections() method call throws
a javax.resource.NotSupportedException. If the exception is caught, the connector
container automatically stops calling the matchManagedConnections() method on the
ManagedConnectionFactory.

You can set the match-connections-supported element to specify whether the resource
adapter supports connection matching. By default, this element is set to true and the
matchManagedConnections() method is called at least once. If it is set to false, the method call
is never made.

If connection matching is not supported, a new resource is created and returned if the maximum
number of resources has not been reached; otherwise, the oldest unavailable resource is refreshed
and returned.

test-frequency-seconds: Testing the Viability of
Connections
The test-frequency-seconds element allows you to specify how frequently (in seconds)
connections in the pool are tested for viability.

test-connections-on-create: Testing Connections upon
Creation
You can set the test-connections-on-create element to enable the testing of connections as
they are created. The default value is false.

test-connections-on-release: Testing Connections upon
Release to Connection Pool
You can set the test-connections-on-release element to enable the testing of connections
as they are released back into the connection pool. The default value is false.

Connect i on Proxy Wrapper - 1 .0 Resource Adapte rs

Programming WebLogic Resource Adapters 5-15

test-connections-on-reserve: Testing Connections upon
Reservation
You can set the test-connections-on-reserve element to enable the testing of connections
as they are reserved from the connection pool. The default value is false.

Connection Proxy Wrapper - 1.0 Resource Adapters
The connection proxy wrapper feature is valid only for resource adapters that are created based
on the J2EE 1.0 Connector Architecture. When a connection request is made, WebLogic Server
returns to the client (by way of the resource adapter) a proxy object that wraps the connection
object. WebLogic Server uses this proxy to provide the following features:

Connection leak detection capabilities

Late XAResource enlistment when a connection request is made before starting a global
transaction that uses that connection

Possible ClassCastException
If the connection object returned from a connection request is cast as a Connection
implementation class (rather than an interface implemented by the Connection class), a
ClassCastException can occur. This exception is caused by one of the following:

The resource adapter performing the cast

The client performing the cast during a connection request

An attempt is made by WebLogic Server to detect the ClassCastException caused by the
resource adapter. If the server detects that this cast is failing, it turns off the proxy wrapper feature
and proceeds by returning the unwrapped connection object during a connection request. The
server logs a warning message to indicate that proxy generation has been turned off. When this
occurs, connection leak detection and late XAResource enlistment features are also turned off.

WebLogic Server attempts to detect the ClassCastException by performing a test at resource
adapter deployment time by acting as a client using container-managed security. This requires the
resource adapter to be deployed with security credentials defined.

If the client is performing the cast and receiving a ClassCastException, the client code can be
modified, as in the following example.

Assume the client is casting the connection object to MyConnection.

Connect ion Management

5-16 Programming WebLogic Resource Adapters

1. Rather than having MyConnection be a class that implements the resource adapter’s
Connection interface, modify MyConnection to be an interface that extends Connection.

2. Implement a MyConnectionImpl class that implements the MyConnection interface.

Turning Proxy Generation On and Off
If you know for sure whether or not a connection proxy can be used in the resource adapter, you
can avoid a proxy test by explicitly setting the use-connection-proxies element in the
WebLogic Server 8.1 version of weblogic-ra.xml to true or false.

Note: WebLogic Server still supports J2CA 1.0 resource adapters. For 1.0 resource adapters,
continue to use the WebLogic Server 8.1 deployment descriptors found in
weblogic-ra.xml. It contains elements that continue to accommodate 1.0 resource
adapters.

If set to true, the proxy test is not performed and connection properties are generated.

If set to false, the proxy test is not performed and connection proxies are generated.

If use-connection-proxies is unspecified, the proxy test is performed and proxies are
generated if the test passes. (The test passes if a ClassCastException is not thrown by the
resource adapter).

Note: The test cannot detect a ClassCastException caused by the client code.

Testing Connections
If a resource adapter’s ManagedConnectionFactory implements the
ValidatingManagedConnectionFactory interface, then the application server can test the
validity of existing connections. You can test either a specific outbound connection or the entire
pool of outbound connections for a particular ManagedConnectionFactory. Testing the entire
pool results in testing each connection in the pool individually. For more information on this
feature, see section 6.5.3.4 “Detecting Invalid Connections” in the J2CA 1.5 Specification.

Configuring Connection Testing
The following optional elements in the weblogic-ra.xml deployment descriptor allow you to
control the testing of connections in the pool.

test-frequency-seconds—The connector container periodically tests all the free
connections in the pool. Use this element to specify the frequency with which the
connections are tested. The default is 0, which means the connections will not be tested.

Test ing Connect ions

Programming WebLogic Resource Adapters 5-17

test-connections-on-create—Determines whether the connection should be tested
upon its creation. By default it is false.

test-connections-on-release—Determines whether the connection should be tested
upon its release. By default it is false.

test-connections-on-reserve—Determines whether the connection should be tested
upon its reservation. By default it is false.

Testing Connections in the Administration Console
To test a resource adapter's connection pools:

1. In the Administration Console, open the Deployments page and select the resource adapter in
the Deployments table.

2. Select the Test tab.

You will see a table of connection pools for the resource adapter and the test status of each
pool.

3. Select the connection pool you want to test and click Test.

See Test outbound connections in the console help.

Connect ion Management

5-18 Programming WebLogic Resource Adapters

Programming WebLogic Resource Adapters 6-1

C H A P T E R 6

Transaction Management

The following sections discuss the system-level transaction management contract that is used for
outbound communication from WebLogic Server to Enterprise Information Systems (EISes):

“Supported Transaction Levels” on page 6-1

“Configuring Transaction Levels” on page 6-3

For more information on transaction management, see Chapter 7 “Transaction Management” of
the J2CA 1.5 Specification. For information about transaction management for inbound
communication from EISes to WebLogic Server, see “Transactional Inflow” on page 7-9.

Supported Transaction Levels
A transaction is a set of operations that must be committed together or not at all for the data to
remain consistent and to maintain data integrity. Transactional access to EISes is an important
requirement for business applications. The J2EE 1.5 Connector Architecture supports the use of
transactions.

WebLogic Server utilizes the WebLogic Server Transaction Manager implementation and
supports resource adapters having XA, local, or no transaction support. You define the type of
transaction support in the transaction-support element in the ra.xml file; a resource adapter
can support only one type. You can use the transaction-support element in the
weblogic-ra.xml deployment descriptor to override the value specified in ra.xml. See
“Configuring Transaction Levels” on page 6-3 and “transaction-support” on page A-20 for
details.

Transac t i on Management

6-2 Programming WebLogic Resource Adapters

XA Transaction Support
XA transaction support allows a transaction to be managed by a transaction manager external to
a resource adapter (and therefore external to an EIS). When an application component demarcates
an EIS connection request as part of a transaction, the application server is responsible for
enlisting the XA resource with the transaction manager. When the application component closes
that connection, the application server cleans up the EIS connection once the transaction has
completed.

Local Transaction Support
Local transaction support allows WebLogic Server to manage resources that are local to the
resource adapter. Unlike XA transaction, local transaction generally cannot participate in a
two-phase commit protocol (2PC). The only way a local transaction resource adapter can be
involved in a 2PC transaction is if it is the only local transaction resource involved in the
transaction and if the WebLogic Server Connector container uses a Last Resource Commit
Optimization whereby the outcome of the transaction is governed by the resource adapter’s local
transaction.

A local transaction is normally started by using the API that is specific to that resource adapter,
or the CCI interface if it is supported for that adapter. When a resource adapter connection that is
configured to use local transaction support is created and used within the context of an XA
transaction, WebLogic Server automatically starts a local transaction to be used for this
connection. When the XA transaction completes and is ready to commit, prepare is first called on
the XA resources that are part of the XA transaction. Next, the local transaction is committed.

If the commit fails on the local transaction, the XA transaction and all the XA resources are rolled
back. If the commit succeeds, all the XA resources for the XA transaction are committed. When
an application component closes the connection, WebLogic Server cleans up the connection once
the transaction has completed.

No Transaction Support
If a resource adapter is configured to use no transaction support, the resource adapter can still be
used in the context of a transaction. However, in this case, the connections used for that resource
adapter are never enlisted in a transaction and behave as if no transaction was present. In other
words, operations performed using these connections are made to the underlying EIS
immediately, and if the transaction is rolled back, the changes are not undone for these
connections.

Conf igur ing T ransac t ion Leve ls

Programming WebLogic Resource Adapters 6-3

Configuring Transaction Levels
You specify a transaction support level for a resource adapter in the J2EE standard resource
adapter deployment descriptor, ra.xml. To specify the transaction support level:

For No Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>NoTransaction</transaction-support>

For XA Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>XATransaction</transaction-support>

For Local Transaction, add the following entry to the ra.xml deployment descriptor file:
<transaction-support>LocalTransaction</transaction-support>

The transaction support value specified in the ra.xml deployment descriptor is the default value
for all Connection Factories of the resource adapter. You can override this value for a particular
Connection Factory by specifying a value in the transaction-support element of the
weblogic-ra.xml deployment descriptor.

The value of transaction-support must be one of the following:

NoTransaction

LocalTransaction

XATransaction

For more information on specifying the transaction level in the ra.xml deployment descriptor,
see Section 17.6 “Resource Adapter XML Schema Definition” of the J2CA 1.5 Specification. For
more information on specifying the transaction level in the weblogic-ra.xml deployment
descriptor, see Appendix A, “weblogic-ra.xml Schema.”

Transac t i on Management

6-4 Programming WebLogic Resource Adapters

Programming WebLogic Resource Adapters 7-1

C H A P T E R 7

Message and Transactional Inflow

This section discusses how WebLogic resource adapters use inbound connections to handle
message inflow and transactional inflow.

“Overview of Message and Transactional Inflow” on page 7-1

“How Message Inflow Works” on page 7-4

“Message Inflow to Message Endpoints (Message-driven Beans)” on page 7-6

“Transactional Inflow” on page 7-9

Overview of Message and Transactional Inflow
Message inflow refers to inbound communication from an EIS to the application server, using a
resource adapter. Inbound messages can be part of a transaction that is governed by a Transaction
Manager that is external to WebLogic Server and the resource adapter, as described in
“Transactional Inflow” on page 7-9.

The following diagram provides an overview of how messaging and transaction inflow occurs
within a resource adapter and the role played by the Work Manager.

Message and T ransact iona l In f low

7-2 Programming WebLogic Resource Adapters

Figure 7-1 Messaging and Transactional Inflow Architecture

Architecture Components
Figure 7-1 contains the following components:

A client application, which connects to an application running on WebLogic Server, but
which also needs to connect to an EIS

An external system (in this case, an EIS or Enterprise Information System)

An application component (an EJB) that the client application uses to submit outbound
requests to the EIS through the resource adapter

Overv i ew o f Message and T ransact iona l In f l ow

Programming WebLogic Resource Adapters 7-3

A message endpoint application (a message-driven bean and possibly other J2EE
components) used for the receipt of inbound messages from the EIS through the resource
adapter

The WebLogic Server Work Manager and an associated thread (or threads) to which the
resource adapter submits Work instances to process inbound messages and possibly process
other actions.

An external Transaction Manager, to which the WebLogic Server Transaction Manager is
subordinate for transactional inflow of messages from the EIS

The WebLogic Server Connector container in which the resource adapter is deployed. The
container manages the following:

– A deployed resource adapter that provides bi-directional (inbound and outbound)
communication to and from the EIS.

– An active Work instance.

– Multiple managed connections (MC1, ..., MCn), which are objects representing the
outbound physical connections from the resource adapter to the EIS.

– Connection handles (C-handle) returned to the application component from the
connection factory of the resource adapter and used by the application component for
communicating with the EIS.

– One of perhaps many activation specifications. There is an activation specification
(ActivationSpec) that corresponds to each specific message listener type, MLT-j. For
information about requirements for an ActivationSpec class, see Chapter 12,
“Message Inflow” in the J2CA 1.5 Specification.

– One of the connection pools maintained by the container for the management of
managed connections for a given ManagedConnectionFactory (in this case, MCF-2.
A Connector container could include multiple connection pools, each corresponding to
a different type of connections to a single EIS or even different EISes).

– A MessageEndpointFactory created by the EJB container and used by the resource
adapter to create proxies to MessageEndpoint instances (MDB instances from the
MDB pool).

An external message source, which could be an EIS or Message Provider

Message and T ransact iona l In f low

7-4 Programming WebLogic Resource Adapters

Inbound Communication Scenario
This section describes a basic inbound communication scenario that may be described using the
diagram, showing how inbound messages originate in an EIS, flow into the resource adapter, and
are handled by a Message-driven Bean. For related information, see Figure 2-1.

A typical simplified inbound sequence involves the following steps:

1. The EIS sends a message to the resource adapter.

2. The resource adapter inspects the message and determines what type of message it is.

3. The resource adapter may create a Work object and submit it to the Work Manager. The Work
Manager performs the succeeding work in a separate Thread, while the resource adapter can
continue waiting for other incoming messages.

4. Based on the message type, the resource adapter (either directly or as part of a Work instance)
looks up the correct message endpoint to which it will send the message.

5. Using the message endpoint factory corresponding to the type of message endpoint it needs,
the resource adapter creates a message endpoint (which is a proxy to a message-driven bean
instance from the MDB pool).

6. The resource adapter invokes the message listener method on the endpoint, passing it message
content based on the message it received from the EIS.

7. The message is handled by the MDB in one of several possible ways:

a. the MDB may handle the message directly and possibly return a result to the EIS through
the resource adapter

b. the MDB may distribute the message to some other application component

c. the MDB may place the message on a queue to be picked up by the client

d. the MDB may directly communicate with the client application.

How Message Inflow Works
A resource adapter that supports inbound communication from an EIS to the application server
typically includes the following:

A proprietary communications channel and protocol for connecting to and communicating
with an EIS. The communications channel and protocol are not visible to the application

How Message In f l ow Works

Programming WebLogic Resource Adapters 7-5

server in which the resource adapter is deployed. See “Proprietary Communications
Channel and Protocol” on page 7-6.

One or more message types recognized by the resource adapter.

A dispatching mechanism to dispatch a message of a given type to another component in
the application server.

Handling Inbound Messages
A resource adapter may handle an inbound message in a variety of ways. For example, it may:

Handle the message locally, that is, within the ResourceAdapter bean, without involving
other components.

Pass the message off to another application component. For example, it may look up an
EJB and invoke a method on it.

Send the message to a message endpoint. Typically, a message endpoint is a
message-driven bean (MDB). For more information, see “Message Inflow to Message
Endpoints (Message-driven Beans)” on page 7-6.

Inbound messages may return a result to the EIS that is sending the message. A message requiring
an immediate response is referred to as synchronous (the sending system waits for a response).
This is also referred to as request-response messaging. A message that does not expect a response
as part of the same exchange with the resource adapter is referred to as asynchronous or event
notification-based communication. A resource adapter can support asynchronous or synchronous
communications for all three destinations listed above.

Depending upon the transactional capabilities of the resource adapter and the EIS, inbound
messages can be either part of a transaction (XA) or not (non-transactional). If the messages are
XA, the controlling transaction may be coordinated by an external Transaction Manager
(transaction inflow) or by the application server’s Transaction Manager. See “Transactional
Inflow” on page 7-9.

In most cases, inbound messages in a resource adapter are dispatched through a Work instance in
a separate thread. The resource adapter wraps the work to be done in a Work instance and submits
it to the application server’s Work Manager for execution and management. A resource adapter
can submit a Work instance using the doWork(), startWork(), or scheduleWork() methods
depending upon the scheduling requirements of the work.

Message and T ransact iona l In f low

7-6 Programming WebLogic Resource Adapters

Proprietary Communications Channel and Protocol
The resource adapter can expose connection configuration information to the deployer by various
means; for example, as properties on the ResourceAdapter bean or properties on the
ActivationSpec object. An alternative is to use the same communication channel for inbound
as well as outbound traffic. Thus you can also set configuration information on the outbound
connection pool.

Message Inflow to Message Endpoints (Message-driven
Beans)

Prior to EJB 2.1, a message-driven bean (MDB) supported only Java Message Service (JMS)
messaging. That is, an MDB had to implement the javax.jms.MessageListener interface,
including the onMessage(javax.jms.Message) message listener method. MDBs were bound
to JMS components and the JMS subsystem delivered the messages to MDBs by invoking the
onMessage() method on an instance of the MDB.

With EJB 2.1, the JMS-only MDB restriction has been lifted to accommodate the delivery of
messages from inbound resource adapters. The main ingredients for message delivery to an MDB
by way of a resource adapter are:

An inbound message of a certain type (determined by the resource adapter/EIS contract)

An ActivationSpec object implemented by the resource adapter

A mapping between message types and message listener interfaces

An MDB that implements a given message listener interface

A deployment-time binding between an MDB and a resource adapter

For more information about message-driven Beans, see “Message-Driven EJBs” in
Programming WebLogic Enterprise JavaBeans.

Deployment-Time Binding Between an MDB and a Resource
Adapter
A resource adapter can be deployed independently (as a standalone RAR) or as part of an
enterprise application (EAR). An MDB can also be deployed independently (as a standalone
JAR) or as part of an enterprise application (EAR). In either case, an MDB whose messages are

Message In f low to Message Endpo in ts (Message-dr i ven Beans)

Programming WebLogic Resource Adapters 7-7

derived from a resource adapter must be bound to the resource adapter. The following sections
describe binding the MDB and resource adapter and subsequent messaging operations.

Binding an MDB and a Resource Adapter
To bind an MDB and a resource adapter, you must:

1. Set the jndi-name element in the weblogic-ra.xml deployment descriptor for the resource
adapter. See “jndi-name” on page A-2.

2. Set the adapter-jndi-name element in the weblogic-ejb-jar.xml deployment
descriptor to match the value set in the corresponding jndi-name element in the resource
adapter.

3. Assume that the resource adapter is deployed prior to the MDB. (The MDB could be deployed
before the resource adapter is deployed; in that case, the deployed MDB polls until the
resource adapter is deployed.) When the resource adapter is deployed, the ResourceAdapter
bean is bound into JNDI using the name specified.

4. The MDB is deployed, and the MDB container invokes an application server-specific API
that looks up the resource adapter by its JNDI name and invokes the specification-mandated
endpointActivation(MessageEndpointFactory, ActivationSpec) method on the
resource adapter.

5. The MDB container provides the resource adapter with a configured ActivationSpec
(containing configuration information) and a factory for the creation of message endpoint
instances.

6. The resource adapter saves this information for later use in message delivery. The resource
adapter thereby knows what message listener interface the MDB implements. This
information is important for determining what kind of messages to deliver to the MDB.

Dispatching a Message
When a message arrives from the EIS to the resource adapter, the resource adapter determines
where to dispatch it. The following is a possible sequence of events:

1. A message arrives from the EIS to the resource adapter.

2. The resource adapter examines the message and determines its type by looking it up in an
internal table. The resource adapter determines the message type corresponds to a particular
pair (MessageEndpointFactory, ActivationSpec).

3. The resource adapter determines the message should be dispatched to an MDB.

Message and T ransact iona l In f low

7-8 Programming WebLogic Resource Adapters

4. Using the MessageEndpointFactory for that type of message endpoint (one to be
dispatched to an MDB), the resource adapter creates an MDB instance by invoking
createEndpoint() on the factory.

5. The resource adapter then invokes the message listener method on the MDB instance, passing
any required information (such as the body of the incoming message) to the MDB.

6. If the message listener does not return a value, the message dispatching process is complete.

7. If the message listener returns a value, the resource adapter determines how to handle that
value. This may or may not result in further communication with the EIS, depending upon the
contract with the EIS.

Activation Specifications
A resource adapter is configured with a mapping of message types and activation specifications.
The activation specification is a JavaBean that implements
javax.resource.spi.ActivationSpec. The resource adapter has an ActivationSpec class
for each supported message type. The mapping of message types and activation specifications is
configured in the ra.xml deployment descriptor, as described in “Configuring Inbound
Connections” on page 5-9. For more information about ActivationSpecs, see Chapter 12,
“Message Inflow” in the J2CA 1.5 Specification.

Administered Objects
As described in section 12.4.2.3 of the J2CA 1.5 Specification, a resource adapter may provide
the Java class name and the interface type of an optional set of JavaBean classes representing
administered objects that are specific to a messaging style or message provider. You configure
administered objects in the admin-objects elements of the ra.xml and weblogic-ra.xml
deployment descriptor files. As with outbound connections and other WebLogic resource adapter
configuration elements, you can define administered objects at three configuration scope levels:

Global—Specify parameters that apply to all administered objects in the resource adapter
using the default-properties element. See “default-properties” on page A-16.

Group—Specify parameters that apply to all administered objects belonging to a particular
administered object group specified in the ra.xml deployment descriptor using the
admin-object-group element. The properties specified in a group override any
parameters specified at the global level. See “admin-object-group” on page A-15.

The admin-object-interface element (a subelement of the admin-object-group
element) serves as a required unique element (a key) to each admin-object-group.

Transact iona l In f l ow

Programming WebLogic Resource Adapters 7-9

There must be a one-to-one relationship between the admin-object-interface element
in weblogic-ra.xml and the admin-object-interface element in ra.xml.

Instance—Under each admin object group, you can specify administered object instances
using the admin-object-instance element of the weblogic-ra.xml deployment
descriptor. These correspond to the individual administered objects for the resource
adapter. You can use the admin-object-properties subelement to specify properties at
the instance level too; properties specified at the instance level override those provided at
the group and global levels. See “admin-object-instance” on page A-17.

Transactional Inflow
This section discusses how transactions flow into WebLogic Server from an EIS and a resource
adapter. A transaction inflow contract allows the resource adapter to handle transaction
completion and crash recovery calls initiated by an EIS. It also ensures that ACID properties of
the imported transaction are preserved. For more information on transaction inflow, see Chapter
14, “Transaction Inflow” of the J2CA 1.5 Specification.

When an EIS passes a message through a resource adapter to the application server, it may pass
a transactional context under which messages are delivered or work is performed. The inbound
transaction will be controlled by a transaction manager external to the resource adapter and
application server. See “Message Inflow to Message Endpoints (Message-driven Beans)” on
page 7-6.

A resource adapter may act as a bridge between the EIS and the application server for
transactional control. That is, the resource adapter receives messages that it interprets as XA
callbacks for participating in a transaction with a external Transaction Manager.

WebLogic Server can function as an XA resource to a external Transaction Manager through its
interposed Transaction Manager. The WebLogic Server Transaction Manager maps external
transaction IDs to WebLogic Server-specific transaction IDs for such transactions.

The WebLogic Server Transaction Manager is subordinate to the external Transaction Manager,
which means that the external Transaction Manager ultimately determines whether the
transaction succeeds or is rolled back. See “Participating in Transactions Managed by a
Third-Party Transaction Manager” in Programming WebLogic JTA. As part of the J2EE 1.5
Connector Architecture, the ability for a resource adapter to participate in such a transaction is
now exposed through a J2EE standard API.

The following illustrates how a resource adapter would participate in a external transaction. For
more information, see section 14.4, “Transaction Inflow Model” of the J2CA 1.5 Specification.

Message and T ransact iona l In f low

7-10 Programming WebLogic Resource Adapters

1. The resource adapter receives an inbound message with a new external transaction ID.

2. The resource adapter decodes the external transaction ID and constructs an Xid
(javax.transaction.xa.Xid).

3. The resource adapter creates an instance of an ExecutionContext
(javax.resource.spi.work.ExecutionContext), setting the Xid it created and also
setting a transaction timeout value.

4. The resource adapter creates a new Work object to process the incoming message and deliver
it to a message endpoint.

5. The resource adapter submits the Work object and the ExecutionContext to the Work
Manager for processing. At this point, the Work Manager performs the necessary work to
enlist the transaction and start it with the WebLogic Server Transaction Manager.

6. Subsequent XA calls from the external Transaction Manager are sent through the resource
adapter and communicated to the WebLogic Server Transaction Manager. In this way, the
resource adapter acts as a bridge for the XA calls between the external Transaction Manager
and the WebLogic Server Transaction Manager, which is acting as a resource manager.

Using the Transactional Inflow Model for Locally Managed
Transactions
When the resource adapter receives requests from application components running in the same
server instance as the resource adapter that need to be delivered to an MDB as part of the same
transaction as the resource adapter request, the transaction ID must be obtained from the
transaction on the current thread and placed in an ExecutionContext.

In this case, WebLogic Server does not use the Interposed Transaction Manager but simply
passes the transaction on to the Work Thread used for message delivery to the MDB.

Programming WebLogic Resource Adapters 8-1

C H A P T E R 8

Security

Since a resource adapter needs to be able to establish connections with external systems, it needs
to be configured with authentication and other security information necessary to make the
connections. The following sections discuss WebLogic Server resource adapter security for
outbound communication:

“Container-Managed and Application-Managed Sign-on” on page 8-1

“Password Credential Mapping” on page 8-2

“Security Policy Processing” on page 8-5

“Configuring Security Identities for Resource Adapters” on page 8-6

“Configuring Connection Factory-Specific Authentication and Re-authentication
Mechanisms” on page 8-11

For more information about WebLogic security, see Understanding WebLogic Security and
Securing WebLogic Resources.

Container-Managed and Application-Managed Sign-on
When a resource adapter makes an outbound connection to an Enterprise Information System
(EIS), it needs to sign on with valid security credentials. In accordance with the J2CA 1.5
Specification, WebLogic Server supports both container-managed and application-managed
sign-on for outbound connections. At runtime, WebLogic Server determines the chosen sign-on
mechanism, based on the information specified in either the invoking client component’s
deployment descriptor or the res-auth element of the resource adapter deployment descriptor.

Secur i t y

8-2 Programming WebLogic Resource Adapters

A sign-on mechanism specified in a resource adapter’s deployment descriptor takes precedence
over one specified in the calling component’s deployment descriptor. Even when using
container-managed sign-on, any security information explicitly specified by the client component
is presented on the call to obtain the connection.

If the Weblogic Server J2EE 1.5 Connector Architecture implementation cannot determine which
sign-on mechanism is being requested by the client component, the connector container attempts
container-managed sign-on.

Application-Managed Sign-on
With application-managed sign-on, the client component supplies the necessary security
credentials (typically a user name and password) when making the call to obtain a connection to
an EIS. In this scenario, the application server provides no additional security processing other
than to pass along this information in the request for the connection.

Container-Managed Sign-on
WebLogic Server and an EIS each maintain independent security realms. A goal of
container-managed sign-on is to permit a user to sign on to WebLogic Server and be able to use
applications that access an EIS through a resource adapter without having to sign on separately
to the EIS. Container-managed sign-on in WebLogic Server uses credential mappings, which
map credentials (either username/password pairs or security tokens) of WebLogic security
principals (which may be either authenticated individual users or client applications) to the
corresponding credentials required to access the EIS. For any deployed resource adapter, you can
configure credential mappings for applicable security principals. For related information, see
“Credential Mappings” on page 8-3.

Password Credential Mapping
The J2CA 1.5 Specification requires storage of credentials in a
javax.security.auth.Subject. The credentials are passed to either the
createManagedConnection() or the matchManagedConnection() methods of the
ManagedConnectionFactory object. Credential mapping information is stored in the
WebLogic Server embedded LDAP storage. Credential mappings are specific to outbound
resource adapters.

Password Credent ia l Mapping

Programming WebLogic Resource Adapters 8-3

Authentication Mechanisms
WebLogic Server users must be authenticated whenever they request access to a protected
WebLogic Server resource. For this reason, each user is required to provide a credential (a
username/password pair or a digital certificate) to WebLogic Server.

Password authentication is the only authentication mechanism supported by WebLogic Server
out of the box. Password authentication consists of a user ID and password. Based on the
configured mappings, when a user requests connection to a resource adapter, the appropriate
credentials for that user are supplied to the resource adapter.

The SSL (or HTTPS) protocol can be used to provide an additional level of security to password
authentication. Because the SSL protocol encrypts the data transferred between the client and
WebLogic Server, the user ID and password of the user do not flow in clear text. Using SSL,
WebLogic Server can authenticate the user without compromising the confidentiality of the
user’s ID and password. For more information, see “Configuring SSL” in Securing WebLogic
Server.

Credential Mappings
Credential mappings are specific to outbound resource adapters. You configure credential
mappings using the WebLogic Server Administration Console. Before you can configure
credential mappings, however, you must successfully deploy the resource adapter. Note that the
first time you deploy a resource adapter, it has no credential mappings configured and initial
connections will fail until these are configured.

If the resource adapter requires credentials and is configured to create connections at deployment
time (meaning the initial-capacity element in the weblogic-ra.xml is set to greater than
0), this may cause the initial connection to fail. Therefore, BEA recommends that—for the initial
installation and deployment of this resource adapter—you set the initial-capacity element
to 0 for its connection pool. After you configure the appropriate credentials and after the initial
deployment of the resource adapter, you can change the value of the initial-capacity
element. For more information, see “initial-capacity: Setting the Initial Number of
ManagedConnections” on page 5-11.

You can configure credential mappings for individual outbound connection pools or globally for
all the connection pools in the resource adapter. When the resource adapter receives a request for
a connection, WebLogic Server searches for credential mappings configured for a specific
connection pool and then checks the mappings configured globally for the resource adapter. The
server searches for mappings in the following order:

Secur i t y

8-4 Programming WebLogic Resource Adapters

1. Specific mappings at the connection factory level.

2. Specific mappings at the global level.

3. Default mappings at the connection factory level.

4. Default mappings at the global level.

For example, consider two connection pools with the following credential mappings:

Listing 8-1 Credential Mapping Examples

poolA

system user name: admin

system password: adminpw

default user name: guest1

default password: guest1pw1

poolB

wlsjoe user name: harry

wlsjoe password: harrypw

global

system user name: sysman

system password: sysmanpw

wlsjoe user name: scott

wlsjoe password: tiger

default user name: viewer

default password: viewerpw

Secur i t y Po l i c y P rocess ing

Programming WebLogic Resource Adapters 8-5

Referring to the example provided in Listing 8-1, consider an application authenticated as
system that makes a connection request against poolA. Because a specific credential mapping is
defined for system for poolA, the resource adapter uses this mapping (admin/adminpw).

If the application makes the same request against poolB as system, there is no corresponding
specific credential mapping for system; therefore, the server searches for the credential mapping
at the global level where it finds a mapping (sysman/sysmanpw).

If another application authenticates as wlsjoe and makes a request against poolA, it finds no
mapping for wlsjoe defined for poolA. It then searches at the global level and finds a mapping
for wlsjoe (scott/tiger). Against poolB, the application would find the mapping defined for
poolB (harry/harrypw).

If an application authenticated as user1 makes a request against poolA, it finds no mapping for
user1 for poolA. The following sequence occurs:

1. The application searches at the global level, which also has no mapping for user1.

2. The application searches the poolA mappings for a default mapping and finds a default
mapping.

Creating Credential Mappings Using the Console
You can create credential maps with the WebLogic Server Administration Console. If you are
using the WebLogic Credential Mapping provider, the credential maps are stored in the
embedded LDAP server. For information about how to create a credential map, see Create
credential mappings in the Administration Console online help.

Security Policy Processing
A security policy is an association between a WebLogic resource and one or more users, groups,
or security roles and is designed to protect the WebLogic resource against unauthorized access.
The J2CA 1.5 Specification defines default security policies for resource adapters running in an
application server. It also defines how resource adapters can provide their own specific security
policies overriding the default. The weblogic.policy file that ships with WebLogic Server
establishes the default security policies as specified in the J2CA 1.5 Specification.

If the resource adapter does not have a specific security policy defined, WebLogic Server
establishes the runtime environment for the resource adapter with the default security policies
specified in the weblogic.policy file, which conforms to the defaults specified by the J2CA
1.5 Specification. If the resource adapter has defined specific security policies, WebLogic Server

Secur i t y

8-6 Programming WebLogic Resource Adapters

establishes the runtime environment for the resource adapter with a combination of the default
security policies for resource adapters and the specific policies defined for the resource adapter.
You define specific security policies for resource adapters using the
security-permission-spec element in the ra.xml deployment descriptor file.

For more information on security policy processing requirements, see the “Security Permissions”
section of Chapter 18, “Runtime Environment” in the J2CA 1.5 Specification. For more
information about security policies and the WebLogic security framework, see “ Security
Policies” in Securing WebLogic Resources.

Configuring Security Identities for Resource Adapters
This section describes how to configure various security identities for WebLogic Server resource
adapters in the weblogic-ra.xml deployment descriptor. Security identities determine which
security principals can perform particular resource adapter functions. In a WebLogic resource
adapter, you can either have a single security identity that can perform all functions, or use
separate identities for separate classes of functions. You can define the following four types of
security identities in the weblogic-ra.xml deployment descriptor:

default principal—a security principal that can perform all resource adapter tasks.

run-as principal—a security principal used by calls from the connector container into the
resource adapter code during connection requests.

run-work-as principal—a security principal used for Work instances launched by the
resource adapter.

manage-as principal—a security principal used for resource adapter management tasks,
such as startup, shutdown, testing, and transaction management.

Listing 8-2 is an excerpt from a weblogic-ra.xml deployment descriptor that illustrates how
you would configure all four of these available security identities for performing different
resource adapter tasks.

Listing 8-2 Configuring All Security Identities for Resource Adapters

<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">

 <jndi-name>900blackbox-notx</jndi-name>

 <security>

Conf igur ing Secur i t y Ident i t i es fo r Resource Adapte rs

Programming WebLogic Resource Adapters 8-7

 <default-principal-name>

 <principal-name>system</principal-name>

 </default-principal-name>

 <run-as-principal-name>

 <principal-name>raruser</principal-name>

 </run-as-principal-name>

 <run-work-as-principal-name>

 <principal-name>workuser</principal-name>

 </run-work-as-principal-name>

 <manage-as-principal-name>

 <principal-name>raruser</principal-name>

 </manage-as-principal-name>

 </security>

</weblogic-connector>

Listing 8-3 illustrates how you could use the <default-principal-name> element to configure
a single default principal security identity for performing all resource adapter tasks.

Listing 8-3 Configuring a Single Default Principal Identity for a Resource Adapter

<weblogic-connector xmlns="http://www.bea.com/ns/weblogic/90">

 <jndi-name>900blackbox-notx</jndi-name>

 <security>

 <default-principal-name>

 <principal-name>system</principal-name>

 </default-principal-name>

 </security>

</weblogic-connector>

Secur i t y

8-8 Programming WebLogic Resource Adapters

For more information on setting security identity properties, see “security” on page A-10.

default-principal-name: Default Identity
You can define a single security identity that can be used for all resource adapter purposes using
the default-principal-name element. If values are not specified for
run-as-principal-name, manage-as-principal-name, and
run-work-as-principal-name, they default to the value set for default-principal-name.

The value of default-principal-name can be set to a defined WebLogic Server user name
such as system or to use an anonymous identity (which is the equivalent of having no security
identity).

For example, you can create a single security identity that makes all calls from WebLogic Server
into the resource adapter and manages all resource adapter management tasks with a default
system identity as follows:

Listing 8-4 Using a Defined WebLogic Server Name

<security>

 <default-principal-name>

 <principal-name>system</principal-name>

 </default-principal-name>

</security>

You can set the default-principal-name element to anonymous as follows:

Listing 8-5 Setting Up an Anonymous Identity

<security>

 <default-principal-name>

 <use-anonymous-identity>true</use-anonymous-identity>

Conf igur ing Secur i t y Ident i t i es fo r Resource Adapte rs

Programming WebLogic Resource Adapters 8-9

 </default-principal-name>

</security>

manage-as-principal-name: Identity for Running
Management Tasks
You can define a management identity that is used for running various resource adapter
management tasks such as startup, shutdown, testing, shrinking, and transaction management
using the manage-as-principal-name element.

As with default-principal-name, the value of manage-as-principal-name can be set to a
defined WebLogic Server user name such as system or to use an anonymous identity (which is
the equivalent of having no security identity). If you do not set up a value for the
manage-as-principal-name element, it defaults to the value set up for
default-principal-name. If no value is set up for default-principal-name, it defaults to
the anonymous identity.

Listing 8-6 illustrates how you can configure a resource adapter to run management calls using
the WebLogic Server-defined user name system.

Listing 8-6 Using a Defined WebLogic Server Name

<security>

 <manage-as-principal-name>

 <principal-name>system</principal-name>

 </manage-as-principal-name>

</security>

Listing 8-7 illustrates how you can configure a resource adapter to run management calls using
an anonymous identity.

Secur i t y

8-10 Programming WebLogic Resource Adapters

Listing 8-7 Setting Up an Anonymous Identity

<security>

 <manage-as-principal-name>

 <use-anonymous-identity>true</use-anonymous-identity>

 </manage-as-principal-name>

</security>

run-as-principal-name: Identity Used for Connection Calls
from the Connector Container into the Resource Adapter
You define the principal name that should be used by all calls from the connector container into
the resource adapter code during connection requests in the run-as-principal-name element.
This principal name is used, for example, when resource adapter objects such as the
ManagedConnectionFactory are instantiated—in other words, when the WebLogic Server
connector container makes calls to the resource adapter, the identity defined in the
run-as-principal-name element is used. This may include calls as part of either inbound or
outbound requests or setup, or as part of initialization not specific to either inbound or outbound
resource adapters (for example, ResourceAdapter.start()).

The value of the run-as-principal-name element can be set in one of three ways:

To a defined WebLogic Server name

To use an anonymous identity

To use the security identity of the calling code.

If the value of the run-as-principal-name element is not defined, it defaults to the value of
the default-principal-name element. If the default-principal-name element is not
defined, it defaults to the identity of the requesting caller.

run-work-as-principal-name: Identity Used for Performing
Resource Adapter Management Tasks
For inbound resource adapters, BEA recommends that you use Work instances to execute
inbound requests. To establish the security identity for Work instances launched by a resource

Conf igur ing Connect ion Facto r y -Spec i f i c Authent i cat i on and Re-authent ica t i on Mechanisms

Programming WebLogic Resource Adapters 8-11

adapter, you specify this value using the run-work-as-principal-name element. However,
Work instances can also be created as part of outbound resource adapters to execute outbound
requests. If an adapter does not use Work instances to handle inbound requests, then inbound
requests are either run with no security context established (anonymous) or the resource adapter
can make WebLogic Server-specific calls to authenticate as a WebLogic Server user. In this case,
the WebLogic Server user security context is used.

The value of the run-work-as-principal-name element can be set in one of three ways:

To a defined WebLogic Server name

To use an anonymous identity

To use the security identity of the calling code

If the value of the run-work-as-principal-name element is not defined, it defaults to the
value of the default-principal-name element. If the default-principal-name element is
not defined, it defaults to the identity of the requesting caller.

To run work using the requesting caller’s identity, you specify the
run-work-as-principal-name element as follows:

Listing 8-8 Using the Requesting Caller’s Identity

<security>

 <run-work-as-principal-name>

 <use-caller-identity>true</use-caller-identity>

 </run-work-as-principal-name>

</security>

Configuring Connection Factory-Specific Authentication
and Re-authentication Mechanisms

You specify authentication and re-authentication mechanisms for a resource adapter in the J2EE
standard resource adapter deployment descriptor, ra.xml. These settings apply to all outbound
connection factories.

Secur i t y

8-12 Programming WebLogic Resource Adapters

The authentication-mechanism element specifies an authentication mechanism to be
used by all outbound connection factories.

The reauthentication-support element specifies whether outbound connection
factories support re-authentication of existing Managed-Connection instances. This is intended to
be the default value for all connection factories of the resource adapter.

You can override the authentication-mechanism and reauthentication-support values
in the ra.xml deployment descriptor by specifying them in the weblogic-ra.xml deployment
descriptor. Doing so allows you to apply these settings to a specific connection factory rather than
to all connection factories. See “authentication-mechanism” on page A-20 and
“reauthentication-support” on page A-21.

Programming WebLogic Resource Adapters 9-1

C H A P T E R 9

Packaging and Deploying Resource
Adapters

The following sections describe how to package and deploy resource adapters:

“Packaging Resource Adapters” on page 9-1

“Deploying Resource Adapters” on page 9-4

Deploying applications on WebLogic Server is covered in more detail in Deploying and
Packaging from a Split Development Directory in Developing Applications with WebLogic
Server.

Packaging Resource Adapters
For production and development purposes, BEA recommends packaging your assembled
resource adapter (RAR) as part of an enterprise application (EAR).

Packaging Directory Structure
A resource adapter is a WebLogic Server component contained in a resource adapter archive
(RAR) within the applications/ directory. The deployment process begins with the RAR or a
deployment directory, both of which contain the compiled resource adapter interfaces and
implementation classes created by the resource adapter provider. Regardless of whether the
compiled classes are stored in a RAR or a deployment directory, they must reside in
subdirectories that match their Java package structures.

Packaging and Dep loy ing Resource Adapte rs

9-2 Programming WebLogic Resource Adapters

Resource adapters use the same directory format, whether the resource adapter is packaged in an
exploded directory format or as a RAR. A typical directory structure of a resource adapter is
shown in Listing 9-1:

Listing 9-1 Resource Adapter Directory Structure

/META-INF/ra.xml

/META-INF/weblogic-ra.xml

/META-INF/MANIFEST.MF (optional)

/images/ra.jpg

/readme.html

/eis.jar

/utilities.jar

/windows.dll

/unix.so

Packaging Considerations
The following are packaging requirements for resource adapters:

Deployment descriptors (ra.xml and weblogic-ra.xml) must be in a directory called
META-INF.

An optional MANIFEST.MF also resides in META-INF. A manifest file is automatically
generated by the JAR tool and is always the first entry in the JAR file. By default, it is
named META-INF/MANIFEST.MF. The manifest file is the place where any
meta-information about the archive is stored.

A resource adapter deployed in WebLogic Server supports the class-path entry in
MANIFEST.MF to reference a class or resource such as a property.

The resource adapter can contain multiple JARs that contain the Java classes and interfaces
used by the resource adapter. (For example, eis.jar and utilities.jar.) Ensure that
any dependencies of a resource adapter on platform-specific native libraries are resolved.

Packaging Resource Adapte rs

Programming WebLogic Resource Adapters 9-3

The resource adapter can contain native libraries required by the resource adapter for
interacting with the EIS. (For example, windows.dll and unix.so.)

The resource adapter can include documentation and related files not directly used by the
resource adapter. (For example, readme.html and /images/ra.jpg.)

When a standalone resource adapter RAR is deployed, the resource adapter must be made
available to all J2EE applications in the application server.

When a resource adapter RAR packaged within a J2EE application EAR is deployed, the
resource adapter must be made available only to the J2EE application with which it is
packaged. This specification-compliant behavior may be overridden if required.

Packaging Limitation
If you reload a standalone resource adapter without reloading the client that is using it, the client
may cease to function properly. This limitation is due to the J2CA 1.5 Specification limitation of
not providing a remotable interface.

Packaging Resource Adapter Archives (RARs)
After you stage one or more resource adapters in a directory, you package them in a Java Archive
(JAR) with a .rar file extension.

Note: Once you have assembled the resource adapter, BEA recommends that you package it as
part of an enterprise application. This allows you to take advantage of the split
development directory structure, which provides a number of benefits over the traditional
single directory structure. See Creating a Split Development Directory Environment in
Developing Applications with WebLogic Server.

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top level of the
staging directory.

4. Create a META-INF subdirectory in the staging directory.

5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for
the resource adapter.

Packaging and Dep loy ing Resource Adapte rs

9-4 Programming WebLogic Resource Adapters

Note: Refer to the following Sun Microsystems documentation for information on the
ra.xml document type definition at:
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd

6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note: Refer to Appendix A, “weblogic-ra.xml Schema,” for information on the contents of
the weblogic-ra.xml file.

7. When the resource adapter classes and deployment descriptors are set up in the staging
directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebLogic Server or package in an
enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the staging-dir
directory so that the directory paths recorded in the JAR are relative to the directory where
you staged the resource adapters.

For more information on this topic, see “Creating and Configuring Resource Adapters: Main
Steps” on page 3-1.

Deploying Resource Adapters
Deployment of a resource adapter is similar to deployment of Web Applications, EJBs, and
Enterprise Applications. Like these deployment units, you can deploy a resource adapter in an
exploded directory format or as an archive file.

Deployment Options
You can deploy a stand-alone resource adapter (or a resource adapter packaged as part of an
enterprise application) using any one of these tools:

WebLogic Server Administration Console

weblogic.Deployer tool

wldeploy Ant task

WebLogic Scripting Tool (WLST)

Deploy ing Resource Adapte rs

Programming WebLogic Resource Adapters 9-5

For information about these application deployment techniques, see Deploying Applications and
Modules in Deploying Applications to WebLogic Server.

You can use a deployment plan to deploy a resource adapter deployment. For a resource adapter,
a WebLogic Server deployment plan is an optional XML document that resides outside of the
RAR and configures the resource adapter for deployment to a specific WebLogic Server
environment. A deployment plan works by setting deployment property values that would
normally be defined in the resource adapter’s deployment descriptors, or by overriding property
values that are already defined in the deployment descriptors. For information on deployment
plans, see Configuring Applications for Production Deployment in Deploying Applications to
WebLogic Server.

You can also deploy a resource adapter using auto-deployment. This may be useful during
development and early testing. For more information, see Auto-Deploying Applications in
Development Domains in Deploying Applications to WebLogic Server.

Resource Adapter Deployment Names
When you deploy a resource adapter archive (RAR) or deployment directory, you must specify a
name for the deployment unit, for example, myResourceAdapter. This name provides a
shorthand reference to the resource adapter deployment that you can later use to undeploy or
update the resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a deployment name
that matches the path and filename of the RAR or deployment directory. You can use this
assigned name to undeploy or update the resource adapter after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the server is
rebooted. Undeploying a resource adapter does not remove the associated deployment name; you
can use the same deployment name to redeploy the resource adapter at a later time.

Production Redeployment
Using WebLogic Server’s production redeployment feature, you can redeploy a new version of
a WebLogic Server application alongside an older version of the same application. By default,
WebLogic Server immediately routes new client requests to the new version of the application,
while routing existing client connections to the older version. After all clients using the older
application version complete their work, WebLogic Server retires the older application so that
only the new application version is active.

Packaging and Dep loy ing Resource Adapte rs

9-6 Programming WebLogic Resource Adapters

Suspendable Interface and Production Redeployment
Typically, a resource adapter bean implements the javax.resource.spi.ResourceAdapter
interface. This interface defines start() and stop() methods. This type of resource adapter is
not eligible for production redeployment. Resource adapters connect to one or more EISes for
incoming/outgoing communication. All communication is performed in a resource
adapter-proprietary way with no knowledge of the application server. If on-the-fly production
redeployment is attempted, the application server can only provide notifications to the resource
adapter to manage the migration of connections from the existing resource adapter to a new
instance. However, the resource adapter can implement the Suspendable interface, which
provides the capability to allow resource adapters to participate in production redeployment. For
information about implementing the Suspendable interface, see “Suspending and Resuming
Resource Adapter Activity” on page 4-7.

Production Redeployment Requirements
All of the following requirements must be met by both the old and new version of the resource
adapter in order for production redeployment to work; otherwise, the redeployment fails.

The resource adapter must be based on the J2CA 1.5 Specification. (Support for production
redeployment of 1.0 resource adapters is not available.)

The resource adapter must implement the Suspendable interface (see Listing 4-3).

The resource adapter must be packaged inside an enterprise application (EAR file).
Production redeployment of standalone resource adapters is not supported.

The Suspendable.supportsVersioning() method must return true when invoked by
WebLogic Server.

The enable-access-outside-app element in the weblogic-ra.xml descriptor
must be set to false.

Production Redeployment Process
The following process assumes the older version of the resource adapter is deployed and running.
It also assumes that the older version (named old) as well as the newer version (named new) of
the resource adapter meet all of the requirements mentioned in “Production Redeployment
Requirements” on page 9-6 as well as the application requirements described in Updating
Applications in a Production Environment in Deploying Applications to WebLogic Server.

The following calls are made into the resource adapters during production redeployment:

Deploy ing Resource Adapte rs

Programming WebLogic Resource Adapters 9-7

1. WebLogic Server calls new.init(old, null) to inform the new resource adapter that it is
replacing the old resource adapter.

2. WebLogic Server calls old.startVersioning(new, null) to inform the old resource
adapter to start its production redeployment operation with the new resource adapter.

3. WebLogic Server calls new.start(extendedBootstrapContext). See “Extended
BootstrapContext” on page 4-13.

4. When the old resource adapter is “finished” (meaning it has succeeded in migrating all clients
and inbound connections to the new resource adapter), it calls
(ExtendedBootstrapContext)bsCtx.complete(). This informs WebLogic Server that it
is safe to undeploy the old resource adapter.

5. When undeployment occurs, WebLogic Server calls old.stop() and production
redeployment is complete.

The calls to new.init() and old.startVersioning() give the old and new resource adapters
an opportunity to migrate inbound or outbound communications from the old to the new resource
adapter. How this is done is up to the individual resource adapter developer.

Packaging and Dep loy ing Resource Adapte rs

9-8 Programming WebLogic Resource Adapters

Programming WebLogic Resource Adapters A-1

A P P E N D I X A

weblogic-ra.xml Schema

The following sections in this appendix describe the deployment descriptor elements that can be
defined in the WebLogic Server-specific deployment descriptor weblogic-ra.xml. The schema
for weblogic-ra.xml is http://www.bea.com/ns/weblogic/90/weblogic-ra.xsd. If your resource
adapter archive (RAR) does not contain a weblogic-ra.xml deployment descriptor, WebLogic
Server automatically selects the default values of the deployment descriptor elements.

“weblogic-connector” on page A-2

“work-manager” on page A-6

“security” on page A-10

“properties” on page A-13

“admin-objects” on page A-14

“outbound-resource-adapter” on page A-18

weblog ic- ra . xml Schema

A-2 Programming WebLogic Resource Adapters

weblogic-connector
The weblogic-connector element is the root element of the WebLogic-specific deployment
descriptor for the deployed resource adapter. You can define the following elements within the
weblogic-connector element.

Table 9-1 weblogic-connector sublements

Element Required/
Optional

Description

native-libdir Required if native
libraries are
present.

Specifies the directory where all the native
libraries exist that are required by the resource
adapter.

jndi-name Required only if a
resource adapter
bean is specified.

Specifies the JNDI name for the resource
adapter. The resource adapter bean is registered
into the JNDI tree with this name. It is not a
required element if no resource adapter bean is
specified. It is not a functional element if a
JNDI name is specified for a resource adapter
without a resource adapter bean.

enable-access-outside-app Optional As stated by the J2CA 1.5 Specification, if
the resource adapter is packaged within an
application (in other words, within an EAR),
only components within the application should
have access to the resource adapter. This
element allows you to override this
functionality.

Note: This element does not apply for
stand-alone resource adapters.

Default Value: false
When set to false, the resource adapter can only
be accessed by clients that reside within the
same application in which the resource adapter
resides.

Note: For version 1.0 resource adapters
(supported in this release), the default
value for this element is set to true.

weblog ic -connec to r

Programming WebLogic Resource Adapters A-3

enable-global-access-to-
classes

Optional When set to false (default), the resource
adapter allows global access to its classes.

work-manager Optional This complex element is used to specify all the
configurable elements for creating the Work
Manager that will be used by the resource
adapter bean. The work-manager element is
imported from the weblogic-j2ee.xsd
schema.

The Work Manager dynamically adjusts the
number of work threads to avoid deadlocks and
achieve optimal throughput subject to
concurrency constraints. It also meets
objectives for response time goals, shares, and
priorities.

For subelements of work-manager, see
“work-manager” on page A-6.

security Optional This complex element is used to specify all the
security parameters for the operation of the
resource adapter.

See “security” on page A-10 for information on
the security defaults that will be taken by the
connector container.

properties Optional This complex element is used to override any
properties that have been specified for the
resource adapter bean in the ra.xml file.

For subelements of properties, see
“properties” on page A-13.

Table 9-1 weblogic-connector sublements

Element Required/
Optional

Description

weblog ic- ra . xml Schema

A-4 Programming WebLogic Resource Adapters

admin-objects Optional This complex element defines all of the admin
objects in a resource adapter. As with the
outbound-resource-adapter complex
element, the admin-objects complex
element has three hierarchical property levels
that specify the configuration scope:
1. Global level—at this level, you specify

parameters that apply to all admin objects
in the resource adapter; you do so using the
default-properties element. See
“default-properties” on page A-15.

2. Group level—at this level, you specify
parameters that apply to all admin objects
belonging to a particular admin object
group specified in the ra.xml deployment
descriptor; you do so using the
admin-object-group element. The
properties specified in the group override
any parameters that are specified at the
global level. See “admin-object-group” on
page A-15.

3. Instance level—Under each admin object
group, you can use the
admin-object-instance element to
specify admin object instances. These
correspond to the admin object instances
for the resource adapter. You can specify
properties at the instance level and override
those properties provided in the group and
global levels. See “admin-object-instance”
on page A-16.

For admin-objects subelements, see
“admin-objects” on page A-14.

Table 9-1 weblogic-connector sublements

Element Required/
Optional

Description

weblog ic -connec to r

Programming WebLogic Resource Adapters A-5

outbound-resource-adapter Optional This complex element is used to describe the
outbound components of a resource adapter. As
with the admin-objects complex element,
this element has three hierarchical property
levels that specify the configuration scope for
defining outbound connection pools:
1. Global level—at this level, you specify

parameters that apply to all outbound
connection pools in the resource adapter
using the
default-connection-properties
element. See
“default-connection-properties” on
page A-19.

2. Group level—at this level, you specify
parameters that apply to all outbound
connections belonging to a particular
connection factory specified in the
ra.xml deployment descriptor using the
connection-definition-group
element. A one-to-one correspondence
exists from a connection factory in
ra.xml to a connection definition group in
weblogic-ra.xml. The properties
specified in a group override any
parameters specified at the global level. See
“connection-definition-group” on
page A-28.

3. The instance level—Under each
connection definition group, you can
specify connection instances. These
correspond to the individual connection
pools for the resource adapter. Parameters
can be specified at this level too and these
override those provided at the group and
global levels. See “connection-instance” on
page A-29.

For outbound-resource-adapter
subelements, see “outbound-resource-adapter”
on page A-18.

Table 9-1 weblogic-connector sublements

Element Required/
Optional

Description

weblog ic- ra . xml Schema

A-6 Programming WebLogic Resource Adapters

work-manager
The work-manager element is a complex element that is used to specify all the configurable
elements for creating the Work Manager that will be used by the resource adapter bean. The
work-manager element is imported from the weblogic-j2ee.xsd schema. The following
subelements can be configured in the work-manager element.

Table 9-2 work-manager sublements

Element Required
Optional

Description

name Required Specifies the name of the Work Manager.

The J2CA 1.5 Specification describes how a
resource adapter can submit work threads to
the application server. These work threads
are managed by the WebLogic Server Work
Manager. The Work Manager dynamically
adjusts the number of work threads to avoid
deadlocks and achieve optimal throughput
subject to concurrency constraints. It also
meets objectives for response time goals,
shares, and priorities.

work-manager

Programming WebLogic Resource Adapters A-7

response-time-request-class
fair-share-request-class
context-request-class
request-class-name

Optional A work-manager element can include one
and only one of the following four elements:

response-time-request-class—
Defines the response time request class for
the application. Response time is defined
with attribute goal-ms in milliseconds. The
increment is ((goal - T) Cr)/R, where T is the
average thread use time, R the arrival rate,
and Cr a coefficient to prioritize response
time goals over fair shares.

fair-share-request-class—
Defines the fair share request class. Fair
share is defined with attribute percentage of
default share. Therefore, the default is 100.
The increment is Cf/(P R T), where P is the
percentage, R the arrival rate, T the average
thread use time, and Cf a coefficient for fair
shares to prioritize them lower than response
time goals.

context-request-class—Defines the
context class. Context is defined with
multiple cases mapping contextual
information, like current user or its role,
cookie, or work area fields to named service
classes.

request-class-name—Defines the
request class name.

Table 9-2 work-manager sublements

Element Required
Optional

Description

weblog ic- ra . xml Schema

A-8 Programming WebLogic Resource Adapters

min-threads-constraint

min-threads-constraint-name

Optional You can choose between the following two
elements:

min-threads-constraint—Used to
guarantee a number of threads the server
allocates to requests of the constrained work
set to avoid deadlocks. The default is zero. A
min-threads value of one is useful, for
example, for a replication update request,
which is called synchronously from a peer.

min-threads-constraint-name—
Defines a name for the
min-threads-constraint element.

max-threads-constraint

max-threads-constraint-name

Optional You can choose between the following two
elements:

max-threads-constraint—Limits the
number of concurrent threads executing
requests from the constrained work set. The
default is unlimited. For example, consider a
constraint defined with maximum threads of
10 and shared by 3 entry points. The
scheduling logic ensures that not more than
10 threads are executing requests from the
three entry points combined.

max-threads-constraint-name—
Defines a name for the
max-threads-constraint element.

Table 9-2 work-manager sublements

Element Required
Optional

Description

work-manager

Programming WebLogic Resource Adapters A-9

capacity

capacity-name

Optional You can choose between the following two
elements:

capacity—Constraints can be defined and
applied to sets of entry points, called
constrained work sets. The server starts
rejecting requests only when the capacity is
reached. The default is zero. Note that the
capacity includes all requests, queued or
executing, from the constrained work set.
This constraint is primarily intended for
subsystems like JMS, which do their own
flow control. This constraint is independent
of the global queue threshold.

capacity-name—Defines a name for the
capacity element.

Table 9-2 work-manager sublements

Element Required
Optional

Description

weblog ic- ra . xml Schema

A-10 Programming WebLogic Resource Adapters

security
The security complex element contains default security information that can be configured for
the connector container. For more information, see “Configuring Security Identities for Resource
Adapters” on page 8-6.

Table 9-3 security sublements

Element Required
Optional

Description

default-principal-name Optional Specifies the default secure ID to be used for
calls into the resource adapter.

If this value is not specified, the default is the
anonymous identity, which is the same as
no security identity.

See “default-principal-name” on page A-12
for subelements of this element.

manage-as-principal-name Optional Specifies the secure ID to be used for
running various resource adapter
management tasks, including startup,
shutdown, testing, shrinking, and transaction
management.

If not specified, it defaults to the
default-principal-name value. If
default-principal-name is not
specified, it defaults to the anonymous
identity.

See “manage-as-principal-name” on
page A-12 for subelements of this element.

secur i t y

Programming WebLogic Resource Adapters A-11

run-as-principal-name Optional Specifies the secure ID to be used by all calls
from the connector container into the
resource adapter code during connection
requests. (This element currently applies
only to outbound functions.)

If not specified, it defaults to the
default-principal-name value. If
default-principal-name is not
specified, it uses the identity of the
requesting caller.

See “run-as-principal-name” on page A-13
for subelements of this element.

run-work-as-principal-name Optional Specifies the secure ID to be used to run all
work instances started by the resource
adapter.

If not specified, it defaults to the
default-principal-name value. If
default-principal-name is not
specified, it uses the identity that was used to
start the work.

See “run-work-as-principal-name” on
page A-13 for subelements of this element.

Table 9-3 security sublements

Element Required
Optional

Description

weblog ic- ra . xml Schema

A-12 Programming WebLogic Resource Adapters

default-principal-name
The default-principal-name element contains the following subelements.

manage-as-principal-name
The manage-as-principal-name element contains the following subelements.

Table 9-4 default-principal-name sublements

Element Required
Optional

Description

use-anonymous-identity Required Specifies that the anonymous identity should
be used.

principal-name Required Specifies that the principal name should be
used. This should match a defined WebLogic
Server user name.

Table 9-5 manage-as-principal-name sublements

Element Required
Optional

Description

use-anonymous-identity Required Specifies that the anonymous identity should
be used.

principal-name Required Specifies that the principal name should be
used. This should match a defined WebLogic
Server user name.

proper t i es

Programming WebLogic Resource Adapters A-13

run-as-principal-name
The run-as-principal-name element contains the following subelements.

run-work-as-principal-name
The run-work-as-principal-name element contains the following subelements.

properties
The properties element, a subelement of weblogic-connector, is a container for properties
specified for the resource adapter bean in ra.xml. It holds one more or more property elements.

Table 9-6 run-as-principal-name sublements

Element Required
Optional

Description

use-anonymous-identity Required Specifies that the anonymous identity should
be used.

principal-name Required Specifies that the principal name should be
used. This should match a defined WebLogic
Server user name.

use-caller-identity Required Specifies that the caller’s identity should be
used.

Table 9-7 run-work-as-principal-name sublements

Element Required
Optional

Description

use-anonymous-identity Required Specifies that the anonymous identity
should be used.

principal-name Required Specifies that the principal name should be
used. This should match a defined WebLogic
Server user name.

use-caller-identity Required Specifies that the caller’s identity should be
used.

weblog ic- ra . xml Schema

A-14 Programming WebLogic Resource Adapters

You define property elements within the properties element as follows.

admin-objects
The admin-objects complex element defines all of the admin objects in the resource adapter.
As with the outbound-resource-adapter complex element, the admin-objects
complex element has three hierarchical property levels that you can specify.

Table 9-8 properties subelements

Element Required
Optional

Description

property Required The property element is used to override
a property that has been specified for the
resource adapter bean in the ra.xml file.

It holds two subelements:

name—Specifies the same name as the
config-property-name element (a
subelement of config-property in the
ra.xml deployment descriptor). Setting
this parameter causes the associated
config-property-value element in
ra.xml to be overridden. This is a required
element.

value—Specifies the value that overrides
config-property-value element (a
subelement of config-property in the
ra.xml deployment descriptor). This is an
optional element.

admin-ob jec ts

Programming WebLogic Resource Adapters A-15

The admin-objects element is a sub-element of the weblogic-connector element. You can define
the following elements within the admin-objects element.

admin-object-group
The admin-object-group element is used to define an admin object group. At the group level,
you specify parameters that apply to all admin objects belonging to a particular admin object
group specified in the ra.xml deployment descriptor. The properties specified in the group
override any parameters that are specified at the global level.

The admin-object-interface element (a subelement of the admin-object-group element)
serves as a required unique element (a key) to each admin-object-group. There must be a one-to-one
relationship between the weblogic-ra.xml admin-object-interface element and the ra.xml
adminobject-interface element

Table 9-9 admin-objects subelements

Element Required
Optional

Description

default-properties Optional Specifies the default properties that apply to
all admin objects (at the global level) in the
resource adapter.

The default-properties element can
contain one or more property elements,
each holding a name and value pair. See
“properties” on page A-13.

admin-object-group One or more Specifies the default parameters that apply to
all admin objects belonging to a particular
admin object group specified in the ra.xml
deployment descriptor. The properties
specified in the group override any
parameters that are specified at the global
level.

For admin-object-group subelements,
see “admin-object-group” on page A-15.

weblog ic- ra . xml Schema

A-16 Programming WebLogic Resource Adapters

The admin-object-group element is a sub-element of the weblogic-connector element.
You can define the following elements within the admin-object-group element.

Table 9-10 admin-object-group

Element Required
Optional

Description

admin-object-interface Required The admin-object-interface
element serves as a required unique element
(a key) to each admin-object-group.
There must be a one-to-one relationship
between the weblogic-ra.xml
admin-object-interface element and
the ra.xml adminobject-interface
element.

default-properties Optional Specifies all the default properties that apply
to all admin objects in this admin object
group.

The default-properties element can
contain one or more property elements,
each holding a name and value pair. See
“properties” on page A-13.

admin-object-instance One or more Specifies one or more admin object instances
within the admin object group,
corresponding to the admin object instances
for the resource adapter. You can specify
properties at the instance level and override
those provided in the group and global
levels. For subelements, see
“admin-object-instance” on page A-17.

admin-ob jec ts

Programming WebLogic Resource Adapters A-17

admin-object-instance
You can define the following subelements under admin-object-instance.

Table 9-11 admin-object-instance subelements

Element Required
Optional

Description

jndi-name / resource-link Required The admin object group that defines the
reference name for the admin object
instance. You can specify the reference name
to be the JNDI name or resource link of the
connection instance.

If the JNDI name is specified (by specifying
the jndi-name element), the connection
pool is bound into a JNDI that clients outside
the application can see.

Note: In order for this to work, the
enable-access-outside-a
pp element must be set to true.

For resource adapters that do not need to be
externally visible to other applications, you
would specify the resource-link value.

admin-object-properties Optional Defines all the properties that apply to the
admin object instance.

The admin-object-properties
element can contain one or more property
elements, each holding a name and value
pair. See “properties” on page A-13.

weblog ic- ra . xml Schema

A-18 Programming WebLogic Resource Adapters

outbound-resource-adapter
The outbound-resource-adapter element is a sub-element of the weblogic-connector
element. You can define the following elements within the outbound-resource-adapter
element.

Table 9-12 outbound-resource-adapter subelements

Element Required
Optional

Description

default-connection-properties Optional This complex element is used to specify the
properties at an global level. At this level, the
user is able to specify parameters that apply
to all outbound connection pools in the
resource adapter.

For subelements, see
“default-connection-properties” on
page A-19.

connection-definition-group One or more This element is used to specify all the
connection defintion groups. There must be a
one-to-one correspondence relationship
between the connection factories in the
ra.xml deployment descriptor and the
groups in the weblogic-ra.xml
deployment descriptor. A group does not
have to exist in the weblogic-ra.xml
deployment descriptor for every connection
factory in ra.xml. However, if a group
exists, there must be at least one connection
instance in the group.

The properties specified in the group
override any parameters that are specified at
the global level using
default-connection-properties.

For subelements, see
“connection-definition-group” on
page A-28.

outbound-resource-adapte r

Programming WebLogic Resource Adapters A-19

default-connection-properties
The default-connection-properties element is a sub-element of the
outbound-resource-adapter element. You can define the following elements within the
default-connection-properties element.

Table 9-13 default-connection-properties subelements

Element Required
Optional

Description

pool-params Optional Serves as the root element for providing
connection pool-specific parameters for this
connection factory. WebLogic Server uses
these specifications to control the behavior
of the maintained pool of
ManagedConnections.

This is an optional element. Failure to
specify this element or any of its specific
element items results in default values being
assigned. Refer to the description of each
individual element for the designated default
value.

For subelements, see “pool-params” on
page A-22.

logging Optional Contains parameters for configuring logging
of the ManagedConnectionFactory
and ManagedConnection objects of the
resource adapter.

For subelements, see “logging” on
page A-25.

weblog ic- ra . xml Schema

A-20 Programming WebLogic Resource Adapters

transaction-support Optional Specifies the level of transaction support for
a particular Connection Factory. It provides
the ability to override the transaction-support
value specified in the ra.xml deployment
descriptor that is intended to be the default
value for all Connection Factories of the
resource adapter.

The value of transaction-support must be one
of the following:

NoTransaction

LocalTransaction

XATransaction

For related information, see Chapter 5,
“Connection Management.”

authentication-mechanism Optional The authentication-mechanism
element specifies an authentication
mechanism supported by a particular
Connection Factory in the resource adapter.
It provides the ability to override the
authentication-mechanism value
specified in the ra.xml deployment
descriptor that is intended to be the default
value for all Connection Factories of the
resource adapter.

Note that BasicPassword mechanism
type should support the
javax.resource.spi.security.Pa
sswordCredential interface.

Table 9-13 default-connection-properties subelements

Element Required
Optional

Description

outbound-resource-adapte r

Programming WebLogic Resource Adapters A-21

reauthentication-support Optional A Boolean that specifies whether a particular
connection factory supports
re-authentication of an existing
ManagedConnection instance. It
provides the ability to override the
reauthentication-support value
specified in the ra.xml deployment
descriptor that is intended to be the default
value for all Connection Factories of the
resource adapter.

properties Optional The properties element includes one or
more property elements, which define name
and value subelements that apply to the
default connections.

res-auth Optional Specifies whether to use container- or
application-managed security. The values
for this element can be one of
Application or Container. The default
value is Container.

Table 9-13 default-connection-properties subelements

Element Required
Optional

Description

weblog ic- ra . xml Schema

A-22 Programming WebLogic Resource Adapters

pool-params
The pool-params element is a sub-element of the default-connection-properties
element. You can define the following elements within the pool-params element.

Table 9-14 pool-params subelements

Element Required
Optional

Description

initial-capacity Optional Specifies the initial number of
ManagedConnections, which WebLogic
Server attempts to create during deployment.

Default Value: 1

max-capacity Optional Specifies the maximum number of
ManagedConnections, which WebLogic
Server will allow. Requests for newly
allocated ManagedConnections beyond this
limit results in a
ResourceAllocationException
being returned to the caller.

Default Value: 10

capacity-increment Optional Specifies the maximum number of additional
ManagedConnections that WebLogic Server
attempts to create during resizing of the
maintained connection pool.

Default Value: 1

shrinking-enabled Optional Specifies whether unused
ManagedConnections will be destroyed and
removed from the connection pool as a
means to control system resources.

Default Value: true

shrink-frequency-seconds Optional Specifies the amount of time (in seconds) the
Connection Pool Management waits
between attempts to destroy unused
ManagedConnections.

Default Value: 900 seconds

outbound-resource-adapte r

Programming WebLogic Resource Adapters A-23

highest-num-waiters Optional Specifies the maximum number of threads
that can concurrently block waiting to
reserve a connection from the pool.

Default Value: 0

highest-num-unavailable Optional Specifies the maximum number of
ManagedConnections in the pool that can be
made unavailable to the application for
purposes such as refreshing the connection.

Note that in cases like the backend system
being unavailable, this specified value could
be exceeded due to factors outside the pool’s
control.

Default Value: 0

connection-creation-retry-fre
quency-seconds

Optional The periodicity of retry attempts by the pool
to create connections.

Default Value: 0

connection-reserve-timeout-se
conds

Optional Sets the number of seconds after which the
call to reserve a connection from the pool
will timeout.

Default Value: -1 (do not block when
reserving resources)

test-frequency-seconds Optional The frequency with which connections in the
pool are tested.

Default Value: 0

test-connections-on-create Optional Enables the testing of newly created
connections.

Default Value: false

test-connections-on-release Optional Enables testing of connections when they are
being released back into the pool.

Default Value: false

Table 9-14 pool-params subelements

Element Required
Optional

Description

weblog ic- ra . xml Schema

A-24 Programming WebLogic Resource Adapters

test-connections-on-reserve Optional Enables testing of connections when they are
being reserved.

Default Value: false

profile-harvest-frequency-sec
onds

Optional Specifies how frequently the profile for the
connection pool is being harvested.

ignore-in-use-connections-ena
bled

Optional When the connection pool is being shut
down, this element is used to specify
whether it is acceptable to ignore
connections that are in use at that time.

match-connections-supported Optional Indicates whether the resource adapter
supports the
ManagedConnectionFactory.match
ManagedConnections() method. If the
resource adapter does not support this
method (always returns null for this method),
then WebLogic Server bypasses this method
call during a connection request.

Default Value: true

Table 9-14 pool-params subelements

Element Required
Optional

Description

outbound-resource-adapte r

Programming WebLogic Resource Adapters A-25

logging
The logging element is a sub-element of the default-connection-properties element.
You can define the following elements within the logging element.

Table 9-15 logging subelements

Element Required
Optional

Description

log-filename Optional Specifies the name of the log file from which
output generated from the
ManagedConnectionFactory or a
ManagedConnection is sent.

The full address of the filename is required.

logging-enabled Optional Indicates whether or not the log writer is set
for either the
ManagedConnectionFactory or
ManagedConnection. If this element is
set to true, output generated from either the
ManagedConnectionFactory or
ManagedConnection will be sent to the
file specified by the log-filename
element.

Default Value: false

weblog ic- ra . xml Schema

A-26 Programming WebLogic Resource Adapters

rotation-type Optional Sets the file rotation type.

Possible values are bySize, byName,
none

bySize—When the log file reaches the size
that you specify in file-size-limit, the
server renames the file as FileName.n.

byName—At each time interval that you
specify in file-time-span, the server renames
the file as FileName.n. After the server
renames a file, subsequent messages
accumulate in a new file with the name that
you specified in log-filename.

none—Messages accumulate in a single
file. You must erase the contents of the file if
the log size becomes unwieldy.

Default Value: bySize

number-of-files-limited Optional Specifies whether to limit the number of files
that this server instance creates to store old
log messages. (Requires that you specify a
rotation-type of bySize). After the server
reaches this limit, it overwrites the oldest
file. If you do not enable this option, the
server creates new files indefinitely and you
must clean up these files as you require.

If you enable
number-of-files-limited by setting
it to true, the server refers to your
rotationType variable to determine how
to rotate the log file. Rotate means that you
override your existing file instead of creating
a new file. If you specify false for
number-of-files-limited, the server
creates numerous log files rather than
overriding the same one.

Default Value: false

Table 9-15 logging subelements

Element Required
Optional

Description

outbound-resource-adapte r

Programming WebLogic Resource Adapters A-27

file-count Optional The maximum number of log files that the
server creates when it rotates the log. This
number does not include the file that the
server uses to store current messages.
(Requires that you enable
number-of-files-limited.)

Default Value: 7

file-size-limit Optional The size that triggers the server to move log
messages to a separate file. (Requires that
you specify a rotation-type of bySize.)
After the log file reaches the specified
minimum size, the next time the server
checks the file size, it will rename the current
log file as FileName.n and create a new
one to store subsequent messages.

Default Value: 500

rotate-log-on-startup Optional Specifies whether a server rotates its log file
during its startup cycle.

Default Value: true

log-file-rotation-dir Optional Specifies the directory path where the
rotated log files will be stored.

Table 9-15 logging subelements

Element Required
Optional

Description

weblog ic- ra . xml Schema

A-28 Programming WebLogic Resource Adapters

connection-definition-group
The connection-definition-group element is used to define a connection definition group.
At the group level, you specify parameters that apply to all outbound connections belonging to a
particular connection factory specified in the ra.xml deployment descriptor using the
connection-definition-group element. A one-to-one correspondence exists from a connection
factory in ra.xml to a connection definition group in weblogic-ra.xml. The properties specified in a
group override any parameters specified at the global level.

The connection-factory-interface element (a subelement of the
connection-definition-group element) serves as a required unique element (a key) to each
connection-definition-group. There must be a one-to-one relationship between the
weblogic-ra.xml connection-definition-interface element and the ra.xml
connectiondefinition-interface element.

rotation-time Optional The start time for a time-based rotation
sequence of the log file, in the format k:mm,
where k is 1-24. (Requires that you specify a
rotation-type of byTime.) At the specified
time, the server renames the current log file.
Thereafter, the server renames the log file at
an interval that you specify in
file-time-span.

If the specified time has already past, then
the server starts its file rotation immediately.

By default, the rotation cycle begins
immediately.

file-time-span Optional The interval (in hours) at which the server
saves old log messages to another file.
(Requires that you specify a
rotation-type of byTime.)

Default Value: 24

Table 9-15 logging subelements

Element Required
Optional

Description

outbound-resource-adapte r

Programming WebLogic Resource Adapters A-29

The connection-definition-group element is a sub-element of the
outbound-resource-adapter element. You can define the following elements within the
connection-definition-group element.

Table 9-16 connection-definition-group subelements

Element Required
Optional

Description

connection-factory-interface Every connection definition group has a key
(a required unique element). This key is the
connection-factory-interface.

The value specified for
connection-factory-interface
must be equal to the value specified for
connection-factory-interface in
ra.xml.

default-connection-properties This complex element is used to define
properties for outbound connections at the
group level.

See “default-connection-properties” on
page A-19.

connection-instance Under each connection definition group, the
user can specify connection instances. These
correspond to the individual connection
pools for the resource adapter. Parameters
can be specified at this level too and these
override those provided in the group and
global levels.

This element specifies a description of the
connection pool. (A connection instance is
equivalent to a connection pool.) It is used to
document the connection pool.

See “connection-instance” on page A-30.

weblog ic- ra . xml Schema

A-30 Programming WebLogic Resource Adapters

connection-instance
You can define the following subelements under connection-instance.

Table 9-17 connection-instance subelements

Element Required
Optional

Description

description Optional Specifies a description of the connection
instance.

jndi-name

resource-link

Required The connection definition group that defines
the reference name for the connection
instance. The reference name can be a JNDI
name or a resource link.

connection-properties Optional Defines all the properties that apply to the
connection instance.

The connection-properties element
can contain one or more property
elements, each holding a name and value
pair. See “properties” on page A-13.

Programming WebLogic Resource Adapters B-1

A P P E N D I X B

Resource Adapter Best Practices

This appendix describes some best practices for resource adapter developers.

“Classloading Optimizations for Resource Adapters” on page B-1

“Connection Optimizations” on page B-2

“Thread Management” on page B-2

“InteractionSpec Interface” on page B-2

Classloading Optimizations for Resource Adapters
You can package resource adapter classes in one or more JAR files, and then place the JAR files
in the RAR file. These are called nested JARs. When you nest JAR files in the RAR file, and
classes need to be loaded by the classloader, the JARs within the RAR file must be opened and
closed and iterated through for each class that must be loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size, there will
be no significant performance impact. On the other hand, if there are many JARs and the JARs
are large in size, the performance impact can be great.

To avoid such performance issues, you can either:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of JARs and
hence reduces the performance hit involved in looking for classes.

Resource Adapte r Bes t P rac t ices

B-2 Programming WebLogic Resource Adapters

2. If deploying the resource adapter in exploded format is not an option, the JARs can be
exploded within the RAR file. This also eliminates the nesting of JARs and thus improves the
performance of classloading significantly.

Connection Optimizations
BEA recommends that resource adapters implement the optional enhancements described in
sections 7.14.2 and 7.14.2 of the J2CA 1.5 Specification. Implementing these interfaces allows
WebLogic Server to provide several features that will not be available without them.

Lazy Connection Association, as described in section 7.14.1, allows the server to automatically
clean up unused connections and prevent applications from hogging resources. Lazy Transaction
Enlistment, as described in 7.14.2, allows applications to start a transaction after a connection is
already opened.

Thread Management
Resource adapter implementations should use the WorkManager (as described in Chapter 10,
“Work Management” in the J2CA 1.5 Specification) to launch operations that need to run in a
new thread, rather than creating new threads directly. This allows WebLogic Server to manage
and monitor these threads.

InteractionSpec Interface
WebLogic Server supports the Common Client Interface (CCI) for EIS access, as defined in
Chapter 15, “Common Client Interface” in the J 2CA 1.5 Specification. The CCI defines a
standard client API for application components that enables application components and EAI
frameworks to drive interactions across heterogeneous EISes.

As a best practice, you should not store the InteractionSpec class that the CCI resource
adapter is required to implement in the RAR file. Instead, you should package it in a separate JAR
file outside of the RAR file, so that the client can access it without having to put the
InteractionSpec interface class in the generic CLASSPATH.

With respect to the InteractionSpec interface, it is important to note that when all application
components (EJBs, resource adapters, Web applications) are packaged in an EAR file, all
common classes can be placed in the APP-INF/lib directory. This is the easiest possible
scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the interface is
serializable (as is the case with InteractionSpec), then both the client and the resource adapter

I n te rac t i onSpec In te r face

Programming WebLogic Resource Adapters B-3

need access to the InteractionSpec interface as well as the implementation classes. However,
if the interface extends java.io.Remote, then the client only needs access to the interface class.

Resource Adapte r Bes t P rac t ices

B-4 Programming WebLogic Resource Adapters

