0?7,

r
S’ 7
L/

BEAWebLogic
Servere

WebLogic Weh Services:
Getting Started

Version 10.0
Revised: April 28, 2008

Contents

1. Introduction and Roadmap

Document Scope and AUdIENCEottt 1-1
WebLogic Web Services Documentation Set 1-2
Guide to ThiS DOCUMENE e e 1-2
Related DOCUMENTALIONo 1-3
Samples for the Web Services Developer i 1-4

Avitek Medical Records Application (MedRec) and Tutorials 1-4

Web Services Examples in the WebLogic Server Distribution. 1-5

Additional Web Services Examples Available for Download 1-5
Release-Specific WebLogic Web Services Information 1-5
Summary of WebLogic Web Services Features ..., 1-5

2. Understanding WebLogic Web Services

What Are WebD Services?.o 2-1
Why Use Web ServiCes? 2-2
Anatomy of a WebLogic Web Service i 2-3
Roadmap of Common Web Service Development Tasksot 2-5
Standards Supported by WebLogic Web Services, 2-7
BEA Implementation of Web Service Specifications. 2-9
Web Services Metadata for the Java Platform (JSR-181) 2.0................... 2-9
Enterprise Web Services 1.2. i 2-10
Java API for XML-Based Web Services (JAX-WS)2.0 2-10

WebLogic Web Services: Getting Started iii

Java Architecture for XML Binding JAXB) 2.0. i 2-10

SOAP 1.1 and L2, ..t 2-10
SA A L 2-11
WS DL L. L. . 2-12
JAX-RPC L L 2-13
Web Services Security (WS-Security) 1.1 2-14
UD DI 2.0 . 2-15
JAX-R L0, o 2-15
WS-Addressing (August 2004 Member Submission) 2-16
WS-Policy 1.2 (April 2006 Member Submission).......................... 2-16
WS-SecurityPolicy 1.2 (June 2006 Draft) oo 2-16
WS-ReliableMessaging 1.0 (February 2005 Member Submission)............. 2-16
WS-Trust 1.3 (February 2005 Member Submission). 2-17
WS-SecureConversation 1.3 (February 2005 Member Submission)............ 2-17
Additional Specifications Supported by WebLogic Web Services. 2-17

3. Common Web Services Use Cases and Examples

4.

Creating a Simple HelloWorld Web Service. o i 3-2
Creating a Web Service With User-Defined Data Typescoiiiin.... 3-7
Creating a Web Service fromaWSDL File it 3-15
Invoking a Web Service from a Stand-alone JAX-RPC Java Client. 3-23
Invoking a Web Service from a WebLogic Web Service 3-29

|terative Development of WebLogic Web Services

Overview of the WebLogic Web Service Programming Model 4-2
Configuring Your Domain For Web Services Features 4-3
Iterative Development of WebLogic Web Services Starting From Java: Main Steps . .. 4-4

Iterative Development of WebLogic Web Services Starting From a WSDL File: Main Steps
4-5

WebLogic Web Services: Getting Started

Creating the Basic Antbuild.xmlFile......... i 4-7

Running the jwsc WebLogic Web Services Ant Task., 4-8
Examples of USING JWSCo o 4-9
Advanced Uses Of JWSC.ot 4-11

Running the wsdlc WebLogic Web Services Ant Task. 4-11

Updating the Stubbed-Out JWS Implementation Class File Generated By wsdlc 4-13

Deploying and Undeploying WebLogic Web Services. 4-15
Using the wldeploy Ant Task to Deploy Web Services 4-16
Using the Administration Console to Deploy Web Services 4-17

Browsing to the WSDL of the Web Service 4-18

Configuring the Server Address Specified in the Dynamic WSDL. 4-19

Testingthe Web Serviceo e 4-21

Integrating Web Services Into the WebLogic Split Development Directory Environment . .
4-22

5. Programming the JWS File

Overview of JWS Files and JWS Annotations 5-2
Programming the JWS File: Java Requirementsiiiiininnn.n. 5-2
Programming the JWS File: Typical Steps i 5-3
Exampleof aJWS File. 5-5
Specifying That the JWS File Implements a Web Service..................... 5-6
Specifying the Mapping of the Web Service to the SOAP Message Protocol 5-7
Specifying the Context Path and Service URI of the Web Service 5-8
Specifying That a JWS Method Be Exposed as a Public Operation 5-8
Customizing the Mapping Between Operation Parameters and WSDL Parts 5-9

Customizing the Mapping Between the Operation Return Value and a WSDL Part 5-10
Accessing Runtime Information about a Web Service Using the JwsContext 5-11

Guidelines for Accessing the Web Service Context. 5-11

WebLogic Web Services: Getting Started v

Should You Implement a Stateless Session EJB? i, 5-17
Programming Guidelines When Implementing an EJB in Your JWS File. 5-18
Example of a JWS File That Implementsan EJB 5-19

Programming the User-Defined Java Data Type. 5-20

Throwing EXCEPLIONS. oot e 5-22

Invoking Another Web Service fromthe WS File. 5-25

Programming Additional Miscellaneous Features Using JWS Annotations and APIs. . 5-25
Sending Binary Data Using MTOM/XOPt 5-25
Streaming SOAP Attachments. 5-28
USINg SOAP L2 . 5-28
Specifying that Operations Run Inside of a Transaction 5-29
Getting the HttpServletRequest/Response Objectt 5-30

JWS Programming Best Practices.t 5-32

6. Implementing a JAX-WS 2.0 Web Service

Implementing a JAX-WS Web Service: OVErview., 6-1

Implementing a JAX-WS Web Service: Guidelines., 6-3

Simple Example of Implementing a JAX-WS Web Service. 6-4
Example of a JWS File That Implements a JAX-WS Web Service.............. 6-4
Specifying a JAX-WS Web Service to the jwsc and clientgen Ant Tasks. 6-5
Example of Invoking a JAX-WS Web Service L 6-5

/. Data Types and Data Binding

Overview of Data Typesand DataBinding. 7-1
Supported Built-In Data TYPeso v e 7-2
XML-to-Java Mapping for Built-InData Types, 7-2
Java-to-XML Mapping for Built-InData Typesccoiiiien... 7-5

vi WebLogic Web Services: Getting Started

Supported User-Defined Data TYPeS.o v 7-6
Supported XML User-Defined Data TYPeSovvi i 7-6
Supported Java User-Defined Data Typeso e 7-8

8. Invoking Web Services

Overview of Web Services Invocation 8-2
Types of Client Applications 8-2
JAXRPC 8-3
The clientgen ANt Task. oo e 8-3
Examples of Clients That Invoke Web Services. 8-4

Invoking a Web Service from a Stand-alone Client: Main Steps 8-4
Using the clientgen Ant Task To Generate Client Artifacts. 8-5
Getting Information Abouta Web Service il 8-6
Writing the Java Client Application Code to Invoke a Web Service 8-8
Compiling and Running the Client Application.............. 8-9
Sample Ant Build File for a Stand-Alone JavaClient 8-11

Invoking a Web Service from Another Web Service 8-12
Sample build.xml File for a Web Service Client 8-14
Sample JWS File That Invokes a Web Service., 8-16

Using a Stand-Alone Client JAR File When Invoking Web Services............... 8-18

Using a Proxy Server When Invoking a Web Service. 8-19
Using the HttpTransportinfo API to Specify the Proxy Server 8-19
Using System Properties to Specify the Proxy Server 8-22

Client Considerations When Redeploying a Web Service. 8-23

WebLogic Web Services Stub Properties i 8-23

Setting the Character Encoding For the Response SOAP Message. 8-26

WebLogic Web Services: Getting Started vii

9. Administering Web Services

Overview of WebLogic Web Services Administration Tasks. 9-1
AdmInistration TOOIS. 9-2
Using the Administration Console. i 9-3

Invoking the Administration Console i, 9-4

How Web Services Are Displayed In the Administration Console 9-5

Creating a Web Services Security Configuration. 9-7
Using the WebLogic Scripting Tool e 9-8
Using WebLogic ANt TasKs.ot e 9-8
Using the Java Management Extensions (JIMX), 9-8
Using the Java EE Deployment APL 9-9

Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads
9-10

10. Upgrading WebLogic Web Services From Previous Releases to
10.0

Upgrading a 9.2 WebLogic Web Serviceto 10.0 10-1
Upgrading a 9.0 or 9.1 WebLogic Web Serviceto 10.0. 10-1
Upgrading an 8.1 WebLogic Web Serviceto 10.0 i, 10-2

Upgrading an 8.1 Java Class-Implemented WebLogic Web Service to 10.0: Main Steps
10-3

Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 10.0: Main Steps 10-10

Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes. 10-20

viii WebLogic Web Services: Getting Started

Introduction and Roadmap

This section describes the contents and organization of this guide—WebLogic Web Services:
Getting Started.

“Document Scope and Audience” on page 1-1

“WebLogic Web Services Documentation Set” on page 1-2

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-3

“Samples for the Web Services Developer” on page 1-4
“Release-Specific WebLogic Web Services Information” on page 1-5

“Summary of WebLogic Web Services Features” on page 1-5

Document Scope and Audience

This document is a resource for software developers who develop WebLogic Web Services. It
also contains information that is useful for business analysts and system architects who are
evaluating WebLogic Server or considering the use of WebLogic Web Services for a particular
application.

The topics in this document are relevant during the design and development phases of Web
Services. The document also includes topics that are useful in solving application problems that
are discovered during test and pre-production phases of a project.

WebLogic Web Services: Getting Started 1-1

This document does not address production phase administration, monitoring, or performance
tuning Web Service topics. For links to WebL ogic Server® documentation and resources for
these topics, see “Related Documentation” on page 1-3.

It is assumed that the reader is familiar with Java Platform, Enterprise Edition (Java EE) Version
5 and Web Services concepts, the Java programming language, and Web technologies. This
document emphasizes the value-added features provided by WebLogic Web Services and key
information about how to use WebLogic Server features and facilities to get a WebLogic Web
Service application up and running.

WebLogic Web Services Documentation Set

This document is part of a larger WebLogic Web Services documentation set that covers a
comprehensive list of Web Services topics. The full documentation set includes the following
documents:

e \WebLogic Web Services: Getting Started—Describes the basic knowledge and tasks
required to program a simple WebLogic Web Service. This is the first document you
should read if you are new to WebLogic Web Services. The guide includes Web Service
overview information, use cases and examples, iterative development procedures, typical
JWS programming steps, data type information, and how to invoke a Web Service.

e WebLogic Web Services: Security—Describes how to program and configure
message-level (digital signatures and encryption), transport-level, and access control
security for a Web Service.

e WebLogic Web Services: Advanced Programming—Describes how to program more
advanced features, such as Web Service reliable messaging, callbacks, conversational Web
Services, use of JMS transport to invoke a Web Service, and SOAP message handlers.

e \WebLogic Web Services: Reference—Contains all WebLogic Web Service reference
documenation about JWS annotations, Ant tasks, reliable messaging WS-Policy assertions,
security WS-Policy assertions, and deployment descriptors.

Guide to This Document

This document is organized as follows:

e This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide and the features of WebLogic Web Services.

1-2 WebLogic Web Services: Getting Started

Related Documentation

e Chapter 2, “Understanding WebLogic Web Services,” provides an overview of how
WebLogic Web Services are implemented, why they are useful, and the standard
specifications that they implement or to which they conform.

e Chapter 3, “Common Web Services Use Cases and Examples,” provides a set of common
use case and examples of programming WebLogic Web Services, along with step by step
instructions on reproducing the example in your own environment.

e Chapter 4, “Iterative Development of WebLogic Web Services,” provides procedures for
setting up your development environment and iterative programming of a WebLogic Web
Service.

e Chapter 5, “Programming the JWS File,” provides details about using JWS annotations in a
Java file to implement a basic Web Service. The section discusses both standard (JSR-181)
JWS annotations as well as WebL ogic-specific ones.

e Chapter 7, “Data Types and Data Binding,” discusses the built-in and user-defined XML
Schema and Java data types that are supported by WebL ogic Web Services.

e Chapter 8, “Invoking Web Services,”describes how to write a client application
(stand-alone or inside a WebLogic Web Service) that invokes a Web Service using the
JAX-RPC stubs generated by the WebLogic Web Service Ant task clientgen.

e Chapter 9, “Administering Web Services,” provides information about the types of
administrative tasks you typically perform with WebLogic Web Services and the different
ways you can go about administering them: Administration Console, WebLogic Scripting
Tool, and so on.

e Chapter 10, “Upgrading WebLogic Web Services From Previous Releases to 10.0,”
describes how to upgrade an 8.1, 9.0, and 9.1Web Service to run on the new 10.0 Web
Services runtime environment.

Related Documentation

This document contains information specific to basic WebLogic Web Services topics. See
“WebLogic Web Services Documentation Set” on page 1-2 for a description of the related Web
Services documentation.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applicationssee the following documents:

e Developing WebLogic Server Applications is a guide to developing WebLogic Server
components (such as Web applications and EJBs) and applications.

WebLogic Web Services: Getting Started 1-3

e Developing Web Applications, Servlets, and JSPs for WebLogic Server is a guide to
developing Web applications, including servlets and JSPs, that are deployed and run on
WebLogic Server.

e Programming WebLogic Enterprise Java Beans is a guide to developing EJBs that are
deployed and run on WebL ogic Server.

e Programming WebLogic XML is a guide to designing and developing applications that
include XML processing.

e Deploying Applications to WebLogic Server is the primary source of information about
deploying WebLogic Server applications. Use this guide for both development and
production deployment of your applications.

e Configuring Applications for Production Deployment describes how to configure your
applications for deployment to a production WebLogic Server environment.

e WebLogic Server Performance and Tuning contains information on monitoring and
improving the performance of WebLogic Server applications.

e Overview of WebLogic Server System Administration is an overview of administering
WebLogic Server and its deployed applications.

Samples for the Web Services Developer

In addition to this document, BEA Systems provides a variety of code samples for Web Services
developers. The examples and tutorials illustrate WebLogic Web Services in action, and provide

practical instructions on how to perform key Web Service development tasks.

BEA recommends that you run some or all of the Web Service examples before programming

your own application that use Web Services.

Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec

application provides a framework for patients, doctors, and administrators to manage patient data

using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights

BEA-recommended best practices. MedRec is included in the WebLogic Server distribution, and
can be accessed from the Start menu on Windows machines. For Linux and other platforms, you

1-4 WebLogic Web Services: Getting Started

Release-Specific WebLogic Web Services Information

can start MedRec from the WL_HOME\samples\domains\medrec directory, where WL_HOME is
the top-level installation directory for WebLogic Server.

As companion documentation to the MedRec application, BEA provides development tutorials
that provide step-by-step procedures for key development tasks, including Web Service-specific
tasks. See Application Examples and Tutorials for the latest information.

Web Services Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in

WL_HOME\samples\server\examples\src\examples\webservices, where WL_HOME is the
top-level directory of your WebLogic Server installation. You can start the examples server, and
obtain information about the samples and how to run them from the WebLogic Server Start menu.

Additional Web Services Examples Available for Download

Additional API examples for download can be found at http://dev2dev.bea.com. These examples
include BEA-certified ones, as well as examples submitted by fellow developers.

Release-Specific WebLogic Web Services Information

For release-specific information, see these sections in WebLogic Server Release Notes:
e \WebL ogic Server Features and Changes lists new, changed, and deprecated features.

e WebL ogic Server Known and Resolved Issues lists known problems by general release, as
well as service pack, for all WebLogic Server APIs, including Web Services.

Summary of WebLogic Web Services Features

The following list summarizes the main features of WebLogic Web Services and provides links
for additional detailed information:

e Programming model based on metadata annotations. The Web Services programming
model uses JWS annotations, defined by the Web Services Metadata for the Java Platform
specification.

See Chapter 5, “Programming the JWS File.”

e Implementation of the Web Services for J2EE, Version 1.2 specification, which defines the
standard Java EE runtime architecture for implementing Web Services in Java.

WebLogic Web Services: Getting Started 1-5

1-6

See “Anatomy of a WebLogic Web Service” on page 2-3.

Implementation of the Java API for XML Web Services (JAX-WS), the centerpiece of a
newly rearchitected API stack for Web services, the so-called "integrated stack" that
includes JAX-WS 2.0, JAXB 2.0, and SAAJ 1.3. JAX-WS is designed to take the place of
JAX-RPC in Web services and Web applications.

Asynchronous, loosely-coupled Web Services that take advantage of the following
features, either separately or all together: Web Service reliable messaging, conversations,
buffering, asynchronous request-response, and JMS transport.

See:

Using Web Service Reliable Messaging

Invoking a Web Service Using Asynchronous Request-Response

Using Callbacks to Notify Clients of Events

Creating Conversational Web Services

Creating Buffered Web Services

Using JMS Transport as the Connection Protocol

Digital signatures and encryption of request and response SOAP messages, as specified by
the WS-Security, as well as shared security contexts as described by the
WS-SecureConversation specification.

See Configuring Message-Level Security (Digital Signatures and Encryption).

Use of WS-Policy files for the Web Service reliable messaging and digital
signatures/encryption features.

See Use of WS-Policy Files for Web Service Reliable Messaging Configuration and Using
WS-Policy Files for Message-Level Security Configuration.

Data binding between built-in and user-defined XML and Java data types.
See Chapter 7, “Data Types and Data Binding.”

SOAP message handlers that intercept the request and response SOAP message from an
invoke of a Web Service.

See Creating and Using SOAP Message Handlers.

e Ant tasks that handle JWS files, generate a Web Service from a WSDL file, and create the

JAX-RPC client classes needed to invoke a Web Service.

WebLogic Web Services: Getting Started

Summary of WebLogic Web Services Features

See Ant Task Reference.

e Implementation of and conformance with standard Web Services specifications.

See “Standards Supported by WebL ogic Web Services” on page 2-7.

WebLogic Web Services: Getting Started 1-1

1-8 WebLogic Web Services: Getting Started

CHAPTERa

Understanding WebLogic Web Services

The following sections provide an overview of WebLogic Web Services as implemented by
WebLogic Server:

e “What Are Web Services?” on page 2-1

e “Why Use Web Services?” on page 2-2

e “Anatomy of a WebLogic Web Service” on page 2-3

e “Roadmap of Common Web Service Development Tasks” on page 2-5

e “Standards Supported by WebLogic Web Services” on page 2-7

What Are Web Services?

A Web Service is a set of functions packaged into a single entity that is available to other systems
on a network and can be shared by and used as a component of distributed Web-based
applications. The network can be a corporate intranet or the Internet. Other systems, such as
customer relationship management systems, order-processing systems, and other existing
back-end applications, can call these functions to request data or perform an operation. Because
Web Services rely on basic, standard technologies which most systems provide, they are an
excellent means for connecting distributed systems together.

Traditionally, software application architecture tended to fall into two categories: monolithic

systems such as those that ran on mainframes or client-server applications running on desktops.
Although these architectures worked well for the purpose the applications were built to address,
they were closed and their functionality could not be easily incorporated into new applications.

WebLogic Web Services: Getting Started 2-1

Thus the software industry has evolved toward loosely coupled service-oriented applications that
interact dynamically over the Web. The applications break down the larger software system into
smaller modular components, or shared services. These services can reside on different
computers and can be implemented by vastly different technologies, but they are packaged and
accessible using standard Web protocols, such as XML and HTTP, thus making them easily
accessible by any user on the Web.

This concept of services is not new—RMI, COM, and CORBA are all service-oriented
technologies. However, applications based on these technologies require them using that
particular technology, often from a particular vendor. This requirement typically hinders
widespread integration of the application’s functionality into other services on the network. To
solve this problem, Web Services are defined to share the following properties that make them
easily accessible from heterogeneous environments:

e Web Services are accessed using widely supported Web protocols such as HTTP.
e \Web Services describe themselves using an XML-based description language.

e Web Services communicate with clients (both end-user applications or other Web Services)
through simple XML messages that can be produced or parsed by virtually any
programming environment or even by a person, if necessary.

Why Use Web Services?

2-2

Major benefits of Web Services include:

o Interoperability among distributed applications that span diverse hardware and software
platforms

e Easy, widespread access to applications through firewalls using Web protocols

e A cross-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications

Because you access Web Services using standard Web protocols such as XML and HTTP, the
diverse and heterogeneous applications on the Web (which typically already understand XML
and HTTP) can automatically access Web Services, and thus communicate with each other.

These different systems can be Microsoft SOAP ToolKit clients, Java Platform, Enterprise
Edition (Java EE) Version 5 applications, legacy applications, and so on. They are written in Java,
C++, Perl, and other programming languages. Application interoperability is the goal of Web
Services and depends upon the service provider's adherence to published industry standards.

WebLogic Web Services: Getting Started

Anatomy of a WebLogic Web Service

Anatomy of a WebLogic Weh Service

WebLogic Web Services are implemented according to the Enterprise Web Services 1.2
specification (JSR-109), which defines the standard Java EE runtime architecture for
implementing Web Services in Java. The specification also describes a standard Java EE Web
Service packaging format, deployment model, and runtime services, all of which are
implemented by WebLogic Web Services.

The Enterprise Web Services 1.1 specification describes that a Java EE Web Service is
implemented by one of the following components:

e A Java class running in the Web container.

e A stateless session EJB running in the EJB container.

The code in the Java class or EJB is what implements the business logic of your Web Service.
BEA recommends that, instead of coding the raw Java class or EJB directly, you use the JWS
annotations programming model instead, which makes programming a WebLogic Web Service
much easier.

This programing model takes advantage of the new JDK 5.0 metadata annotations feature in
which you create an annotated Java file and then use Ant tasks to compile the file into a Java class
and generate all the associated artifacts. The Java Web Service (JWS) annotated file is the core
of your Web Service. It contains the Java code that determines how your Web Service behaves.
A JWS file is an ordinary Java class file that uses annotations to specify the shape and
characteristics of the Web Service. The JWS annotations you can use in a JWS file include the
standard ones defined by the Web Services Metadata for the Java Platform specification as well
as a set of WebLogic-specific ones.

This release of WebLogic Server supports both Java APl for XML-Based RPC 1.1 (JAX-RPC)
and Java API for XML-Based Web Services 2.0 (JAX-JWS) Web Services. JAX-RPC, and older
specification, defined APIs and conventions for supporting XML Web Services in the Java
Platform as well support for the WS-I Basic Profile 1.0 to improve interoperability between
JAX-RPC implementations. JAX-WS is a follow up to JAX-RPC 1.1.

WARNING: Although both JAX-RPC 1.1 and JAX-WS 2.0 are supported in this release of
WebLogic Server, this document concentrates almost exclusively on describing
how to create JAX-RPC style Web Services. This is because, in this release, all
the WS-* specifications (such as WS-Security and WS-ReliableMessaging) and
WebLogic value-added features (such as asynchronous request-response and
callbacks) work only with JAX-RPC style Web Services. Therefore, unless

WebLogic Web Services: Getting Started 2-3

2-4

otherwise stated, you should assume that all descriptions and examples are for
JAX-RPC Web Services.

For specific information about creating JAX-WS Web Services, see Chapter 6,
“Implementing a JAX-WS 2.0 Web Service.”

For more information on the JWS programming model, see Chapter 5, “Programming the JWS
File,”

After you create the JWS file, you use the jwsc WebLogic Web Service Ant task to compile the
JWS file, as described by the Enterprise Web Services 1.1 specification. The jwsc Ant task
always compiles the JWS file into a plain Java class; the only time it implements a stateless
session EJB is if you explicitly implemented javax.ejb.SessionBean in your JWS file. The
Jwsc Ant task also generates all the supporting artifacts for the Web Service, packages everything
into an archive file, and creates an Enterprise Application that you can then deploy to WebLogic
Server.

By default, the jwsc Ant task packages the Web service in a standard Web application WAR file
with all the standard WAR artifacts, such as the web.xml and weblogic.xml deployment
descriptor files. The WAR file, however, contains additional artifacts to indicate that it is also a
Web Service; these additional artifacts include the webservices.xml and
weblogic-webservices.xml deployment descriptor files, the JAX-RPC data type mapping
file, the WSDL file that describes the public contract of the Web Service, and so on. If you
execute jwsc against more than one JWS file, you can chose whether jwsc packages the Web
Services in a single WAR file, or whether jwsc packages each Web Service in a separate WAR
file. In either case, jwsc generates a single Enterprise Application.

If you explicitly implement javax.ejb.SessionBean in your JWS file, then the jwsc Ant task
packages the Web Service in a standard EJB JAR file with all the usual artifacts, such as the
ejb-jar.xml and weblogic-ejb.jar.xml deployment descriptor files. The EJB JAR file also
contains additional Web Service-specific artifacts, as described in the preceding paragraph, to
indicate that it is a Web Service. Similarly, you can choose whether multiple JWS files are
packaged in a single or multiple EJB JAR files.

In addition to programming the JWS file, you can also configure one or more SOAP message
handlers if you need to do additional processing of the request and response SOAP messages used
in the invoke of a Web Service operation.

Once you have coded the basic WebLogic Web Service, you can program and configure
additional advanced features. These include being able to invoke the Web Service reliably (as
specified by the WS-ReliableMessaging specification, dated February 4, 2005) and also specify
that the SOAP messages be digitally signed and encrypted (as specified by the WS-Security

WebLogic Web Services: Getting Started

Roadmap of Common Web Service Development Tasks

specification). You configure these more advanced features of WebLogic Web Services using
WS-Policy files, which is an XML file that adheres to the WS-Policy specification and contains
security- or Web Service reliable messaging-specific XML elements that describe the security
and reliable-messaging configuration, respectively.

Roadmap of Common Web Service Development Tasks

The following table provides a roadmap of common tasks for creating, deploying, and invoking
WebLogic Web Services.

Table 2-1 Weh Services Tasks

Major Task Subtasks and Additional Information

Get started. “Understanding WebLogic Web Services” on page 2-1

“Anatomy of a WebLogic Web Service” on page 2-3

“Standards Supported by WebLogic Web Services” on page 2-7

“Creating a Simple HelloWorld Web Service” on page 3-2

“Common Web Services Use Cases and Examples” on page 3-1

WebLogic Web Services: Getting Started 2-5

Tahle 2-1 Weh Services Tasks

Major Task

Subtasks and Additional Information

Iteratively develop a basic WebLogic
Web Service.

“Iterative Development of WebLogic Web Services Starting From
Java: Main Steps” on page 4-4

“Iterative Development of WebLogic Web Services Starting From a
WSDL File: Main Steps” on page 4-5

“Integrating Web Services Into the WebLogic Split Development
Directory Environment” on page 4-22

“Programming the JWS File” on page 5-1

“Supported Built-In Data Types” on page 7-2

“Supported User-Defined Data Types” on page 7-6

“Programming the User-Defined Java Data Type” on page 5-20

“Throwing Exceptions” on page 5-22

“Accessing Runtime Information about a Web Service Using the
JwsContext” on page 5-11

“Should You Implement a Stateless Session EJB?” on page 5-17

“Creating the Basic Ant build.xml File” on page 4-7

“Running the jwsc WebLogic Web Services Ant Task” on page 4-8

Deploy the Web Service for testing
purposes.

“Deploying and Undeploying WebLogic Web Services” on page 4-15

“Browsing to the WSDL of the Web Service” on page 4-18

Invoke the Web Service.

“Invoking a Web Service from a Stand-alone Client: Main Steps” on
page 8-4

“Invoking a Web Service from Another Web Service” on page 8-12

Invoking a Web Service Using Asynchronous Request-Response

Creating and Using Client-Side SOAP Message Handlers

Using a Client-Side Security WS-Policy File

2-6 WebLogic Web Services: Getting Started

Standards Supported by WebLogic Web Services

Tahle 2-1 Weh Services Tasks

Major Task Subtasks and Additional Information
Add_advanced features to the Web Using Web Service Reliable Messaging
ervice Using Callbacks to Notify Clients of Events
Creating Conversational Web Services
Creating Buffered Web Services
Using JMS Transport as the Connection Protocol
Creating and Using SOAP Message Handlers3
Secure the Web Service. Configuring Message-Level Security (Digital Signatures and

Encryption)

Configuring Transport-Level Security

Configuring Access Control Security: Main Steps

Upgrade an 8.1, 9.0, or 9.1WebLogic “Upgrading a 9.0 or 9.1 WebLogic Web Service to 10.0” on page 10-1

Web Service to run in the 10.0
runtime. “Upgrading an 8.1 Java Class-Implemented WebLogic Web Service

to 10.0: Main Steps” on page 10-3

“Upgrading an 8.1 EJB-Implemented WebLogic Web Service to 10.0:
Main Steps” on page 10-10

Standards Supported by WebLogic Web Services

A Web Service requires the following standard specification implementations or conformance:

e A standard programming model used to develop the Web Service.

The WebLogic Web Services programming model uses standard metadata annotations, as
specified by the Web Services Metadata for the Java Platform specification (JSR-181). See
“Web Services Metadata for the Java Platform (JSR-181) 2.0” on page 2-9.

e A standard implementation hosted by a server on the Web.

WebLogic Web Services: Getting Started 2-1

2-8

WebLogic Web Services are hosted by WebLogic Server and are implemented using
standard Java EE components, as defined by the Implementing Enterprise Web Services 1.2
specification (JSR-109). See “Enterprise Web Services 1.2” on page 2-10.

A standard for transmitting data and Web Service invocation calls between the Web
Service and the user of the Web Service.

WebLogic Web Services use Simple Object Access Protocol (SOAP) as the message
format and HTTP as the connection protocol; both versions 1.1 and 1.2 are supported. See
“SOAP 1.1 and 1.2” on page 2-10.

WebLogic Web Services implement the SOAP with Attachments API for Java (SAAJ)
specification to access any attachments to the SOAP message. See “SAAJ” on page 2-11.

A standard for describing the Web Service to clients so they can invoke it.

WebLogic Web Services use Web Services Description Language (WSDL) 1.1, an
XML-based specification, to describe themselves. See “WSDL 1.1” on page 2-12.

WebLogic Web Services uses WS-Policy to describe additional functionality and
requirements not addressed in WSDL 1.1. WebLogic Web Services conform to the
WS-Policy specification when using policies to describe their reliable messaging and
security (digital signatures and encryption) functionality. See “WS-Policy 1.2 (April 2006
Member Submission)” on page 2-16.

A standard for client applications to invoke a Web Service.

WebLogic Web Services implement the Java API for XML-based RPC (JAX-RPC) 1.1 as
part of a client JAR that client applications can use to invoke WebLogic and
non-WebLogic Web Services. See “JAX-RPC 1.1” on page 2-13.

A standard for digitally signing and encrypting the SOAP request and response messages
between a client application and the Web Service it is invoking.

WebLogic Web Services implement the following OASIS Standard 1.0 Web Services
Security specifications, dated April 6 2004:

— Web Services Security: SOAP Message Security
— Web Services Security: Username Token Profile
— Web Services Security: X.509 Token Profile

For more information, see “Web Services Security (WS-Security) 1.1” on page 2-14.

e A standard way for two Web Services to communicate asynchronously.

WebLogic Web Services: Getting Started

Standards Supported by WebLogic Web Services

WebLogic Web Services conform to the WS-Addressing (August 2004 Member
Submission) and WS-ReliableMessaging 1.0 (February 2005 Member Submission)
specifications when asynchronous features such as callbacks, addressing, conversations,
and Web Service reliable messaging.

e A standard for client applications to find a registered Web Service and to register a Web
Service.

WebLogic Web Services implement two different registration specifications: UDDI 2.0 and
JAX-R 1.0.

BEA Implementation of Web Service Specifications

Many specifications that define Web Service standards are written so as to allow for broad use of
the specification throughout the industry. Thus the BEA implementation of a particular
specification might not cover all possible usage scenarios covered by the specification.

BEA considers interoperability of Web Services platforms to be more important than providing
support for all possible edge cases of the Web Services specifications. BEA complies with the
Basic Profile 1.1 specification from the Web Services Interoperability Organization and
considers it to be the baseline for Web Services interoperability. This guide does not necessarily
document all of the Basic Profile 1.1 requirements. This guide does, however, document features
that are beyond the requirements of the Basic Profile 1.1.

Web Services Metadata for the Java Platform (JSR-181) 2.0

Although it is possible to program a WebLogic Web Service manually by coding the standard
JSR-109 EJB or Java class from scratch and generating its associated artifacts by hand
(deployment descriptor files, WSDL, data binding artifacts for user-defined data types, and so
on), the entire process can be difficult and tedious. For this reason, BEA recommends that you
take advantage of the new JDK 5.0 metadata annotations feature and use a programming model
in which you create an annotated Java file and then use Ant tasks to convert the file into the Java
source code of a standard JSR-109 Java class or EJB and automatically generate all the associated
artifacts.

The Java Web Service (JWS) annotated file (called a JWS file for simplicity) is the core of your
Web Service. It contains the Java code that determines how your Web Service behaves. A JWS
file is an ordinary Java class file that uses JDK 5.0 metadata annotations to specify the shape and
characteristics of the Web Service. The JWS annotations you can use in a JWS file include the
standard ones defined by the Web Services Metadata for the Java Platform 2.0 specification
(JSR-181) as well as a set of WebLogic-specific ones.

WebLogic Web Services: Getting Started 2-9

2-10

Enterprise Web Services 1.2

The Implementing Enterprise Web Services 1.2 specification (JSR-109) defines the programming
model and runtime architecture for implementing Web Services in Java that run on a Java EE
application server, such as WebLogic Server. In particular, it specifies that programmers
implement Java EE Web Services using one of two components:

e A Java class running in the Web container, or

e A stateless session EJB running in the EJB container

The specification also describes a standard Java EE Web Service packaging format, deployment
model, and runtime services, all of which are implemented by WebLogic Web Services.

Java API for XML-Based Web Services (JAX-WS) 2.0

The Java API for XML Web Services (JAX-WS) is the centerpiece of a newly rearchitected API
stack for Web services, the so-called "integrated stack" that includes JAX-WS 2.0, JAXB 2.0, and
SAAJ 1.3. The integrated stack represents a logical rearchitecture of Web services functionality
in the Java WSDP. JAX-WS is designed to take the place of JAX-RPC in Web services and Web
applications.

Java Architecture for XML Binding (JAXB) 2.0

Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML schema
to a representation in Java code. This makes it easy for you to incorporate XML data and
processing functions in applications based on Java technology without having to know much
about XML itself.

Note: You can use JAXB only with JAX-WS 2.0 based Web Services. Because most of this
document describes how to create JAX-RPC 1.1-based Web Services, it is assumed that
you are using WebLogic’s own data binding features, as described in Chapter 7, “Data
Types and Data Binding.”

SOAP 1.1 and 1.2

SOAP (Simple Object Access Protocol) is a lightweight XML-based protocol used to exchange
information in a decentralized, distributed environment. WebL ogic Server includes its own
implementation of versions 1.1 and 1.2 of the SOAP specification. The protocol consists of:

e An envelope that describes the SOAP message. The envelope contains the body of the
message, identifies who should process it, and describes how to process it.

WebLogic Web Services: Getting Started

Standards Supported by WebLogic Web Services

e A set of encoding rules for expressing instances of application-specific data types.

e A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions (MIME)-encoded
package that can be transmitted over HTTP or other Web protocols. MIME is a specification for
formatting non-ASCII messages so that they can be sent over the Internet.

The following example shows a SOAP 1.1 request for stock trading information embedded inside
an HTTP request:

POST /StockQuote HTTP/1.1

Host: www.sample.com:7001

Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

SOAPAction: "Some-URI™

<SOAP-ENV:Envelope
xmIns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/'">
<SOAP-ENV:Body>
<m:GetLastStockQuote xmlns:m=""Some-URI"">
<symbolI>BEAS</symbol>
</m:GetLastStockQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
By default, WebLogic Web Services use version 1.1 of SOAP; if you want your Web Service to
use version 1.2, specify the weblogic.jws.Binding JWS annotation in the JWS file that

implements your service.
For more information, see SOAP at http://www.w3.0rg/TR/SOAP.

SAAJ

The SOAP with Attachments API for Java (SAAJ) specification describes how developers can
produce and consume messages conforming to the SOAP 1.1 specification and SOAP with
Attachments notes.

The single package in the API, javax.xml .soap, provides the primary abstraction for SOAP
messages with MIME attachments. Attachments may be entire XML documents, XML
fragments, images, text documents, or any other content with a valid MIME type. In addition, the
package provides a simple client-side view of a request-response style of interaction with a Web
Service.

WebLogic Web Services: Getting Started 2-11

For more information, see and SOAP With Attachments API for Java (SAAJ) at
http://java.sun.com/xml/saaj/index.html.

WSDL 1.1

Web Services Description Language (WSDL) is an XML-based specification that describes a
Web Service. A WSDL document describes Web Service operations, input and output
parameters, and how a client application connects to the Web Service.

Developers of WebLogic Web Services do not need to create the WSDL files; you generate these
files automatically as part of the WebLogic Web Services development process.

The following example, for informational purposes only, shows a WSDL file that describes the
stock trading Web Service StockQuoteService that contains the method GetLastStockQuote:

<?xml version="1.0"?>
<definitions name="StockQuote"

targetNamespace="http://sample.com/stockquote . wsdl"
xmlns:tns="http://sample.com/stockquote._wsdl"
xmIns:xsd=""http://www.w3.0rg/2000/10/XMLSchema""
xmIns:xsdl=""http://sample.com/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<message name="'GetStockPricelnput'>
<part name="symbol' element="xsd:string"/>
</message>
<message name="'GetStockPriceOutput'>
<part name="result" type='"'xsd:float"/>
</message>
<portType name="StockQuotePortType'>
<operation name="GetLastStockQuote'>
<input message=""tns:GetStockPricelnput"/>
<output message=""tns:GetStockPriceOutput"/>
</operation>
</portType>
<binding name="'StockQuoteSoapBinding" type=""tns:StockQuotePortType'>
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="'GetLastStockQuote'>
<soap:operation soapAction="http://sample.com/GetLastStockQuote"/>
<input>
<soap:body use="encoded" namespace="http://sample.com/stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/* />

2-12

</input>
<output>
<soap:body use="encoded" namespace="http://sample.com/stockquote"

WebLogic Web Services: Getting Started

Standards Supported by WebLogic Web Services

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>>
</binding>
<service name="'StockQuoteService'>
<documentation>My first service</documentation>
<port name="'StockQuotePort"™ binding=""tns:StockQuoteSoapBinding'>
<soap:address location="http://sample.com/stockquote"/>
</port>
</service>
</definitions>
The WSDL specification includes optional extension elements that specify different types of

bindings that can be used when invoking the Web Service. The WebLogic Web Services runtime:

e Fully supports SOAP bindings, which means that if a WSDL file includes a SOAP binding,
the WebL ogic Web Services will use SOAP as the format and protocol of the messages
used to invoke the Web Service.

e Ignores HTTP GET and POST bindings, which means that if a WSDL file includes this
extension, the WebLogic Web Services runtime skips over the element when parsing the
WSDL.

e Partially supports MIME bindings, which means that if a WSDL file includes this
extension, the WebLogic Web Services runtime parses the element, but does not actually
create MIME bindings when constructing a message due to a Web Service invoke.

For more information, see Web Services Description Language (WSDL) 1.1 at
http://www.w3.org/TR/wsdl.

JAX-RPC 1.1

The Java API for XML-based RPC (JAX-RPC) 1.1 is a Sun Microsystems specification that
defines the Java APIs for making XML-based remote procedure calls (RPC). In particular, these
APIs are used to invoke and get a response from a Web Service using SOAP 1.1, and XML-based
protocol for exchange of information in a decentralized and distributed environment.

WebLogic Server implements all required features of the JAX-RPC Version 1.1 specification.
Additionally, WebLogic Server implements optional data type support, as specified in:

e “Supported Built-In Data Types” on page 7-2
e “Supported User-Defined Data Types” on page 7-6

WebLogic Web Services: Getting Started 2-13

2-14

WebLogic Server does not implement optional features of the JAX-RPC specification, other than
what is described in these sections.

The following table briefly describes the core JAX-RPC interfaces and classes.

Table 2-2 JAX-RPC Interfaces and Classes

javax.xml.rpc Interface Description

or Class

Service Main client interface. Used for both static and dynamic
invocations.

ServiceFactory Factory class for creating Service instances.

Stub Represents the client proxy for invoking the operations of a Web
Service. Typically used for static invocation of a Web Service.

Call Used to invoke a Web Service dynamically.

JAXRPCEXxception Exception thrown if an error occurs while invoking a Web

Service.

For detailed information on JAX-RPC, see http://java.sun.com/xml/jaxrpc/index.html.

Web Services Security (WS-Security) 1.1

The following description of Web Services Security is taken directly from the OASIS standard
1.0 specification, titled Web Services Security: SOAP Message Security, dated March 2004:

This specification proposes a standard set of SOAP extensions that can be used when building
secure Web services to implement integrity and confidentiality. We refer to this set of extensions
as the Web Services Security Language or WS-Security.

WS-Security is flexible and is designed to be used as the basis for the construction of a wide
variety of security models including PKI, Kerberos, and SSL. Specifically WS-Security provides
support for multiple security tokens, multiple trust domains, multiple signature formats, and
multiple encryption technologies.

This specification provides three main mechanisms: security token propagation, message
integrity, and message confidentiality. These mechanisms by themselves do not provide a
complete security solution. Instead, WS-Security is a building block that can be used in

WebLogic Web Services: Getting Started

Standards Supported by WebLogic Web Services

conjunction with other Web service extensions and higher-level application-specific protocols to
accommodate a wide variety of security models and encryption technologies.

These mechanisms can be used independently (for example, to pass a security token) or in a
tightly integrated manner (for example, signing and encrypting a message and providing a
security token hierarchy associated with the keys used for signing and encryption).

WebLogic Web Services also implement the following token profiles:
e \Web Services Security: Username Token Profile
e Web Services Security: X.509 Certificate Token Profile

e Web Services Security: SAML Token Profile 1.0

For more information, see the OASIS Web Service Security Web page at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

ubDI 2.0

The Universal Description, Discovery and Integration (UDDI) specification defines a standard
for describing a Web Service; registering a Web Service in a well-known registry; and
discovering other registered Web Services.

For more information, see http://www.uddi.org.

JAX-R 1.0

The Java API for XML Registries (JAXR) provides a uniform and standard Java API for
accessing different kinds of XML Registries. An XML registry is an enabling infrastructure for
building, deploying, and discovering Web services.

Currently there are a variety of specifications for XML registries including, most notably, the
ebXML Registry and Repository standard, which is being developed by OASIS and
U.N./CEFACT, and the UDDI specification, which is being developed by a vendor consortium.

JAXR enables Java software programmers to use a single, easy-to-use abstraction API to access
a variety of XML registries. Simplicity and ease of use are facilitated within JAXR by a unified
JAXR information model, which describes content and metadata within XML registries.

For more information, see Java APl for XML Registries at
http://java.sun.com/xml/jaxr/index.jsp.

WebLogic Web Services: Getting Started 2-15

2-16

WS-Addressing (August 2004 Member Submission)

The WS-Addressing specification provides transport-neutral mechanisms to address Web
services and messages. In particular, the specification defines a number of XML elements used
to identify Web service endpoints and to secure end-to-end endpoint identification in messages.

All the asynchronous features of WebLogic Web Services (callbacks, conversations, and Web
Service reliable messaging) use addressing in their implementation.

See Web Services Addressing (WS-Addressing).

WS-Policy 1.2 (April 2006 Member Submission)

The Web Services Policy Framework (WS-Policy) specification provides a general purpose
model and corresponding syntax to describe and communicate the policies of a Web Service.
WS-Policy defines a base set of constructs that can be used and extended by other Web Services
specifications to describe a broad range of service requirements, preferences, and capabilities.

See Web Services Policy Framework (WS-Policy).

WS-SecurityPolicy 1.2 (June 2006 Draft)

WS-SecurityPolicy defines a set of security policy assertions for use with the WS-Policy
framework to describe how messages are to be secured in the context of WS-Security, WS-Trust
and WS-SecureConversation.

See Web Services Security Policy (WS-SecurityPolicy).

WS-ReliableMessaging 1.0 (February 2005 Member
Submission)

The WS-ReliableMessaging specification describes how two Web Services running on different
WebLogic Server instances can communicate reliably in the presence of failures in software
components, systems, or networks. In particular, the specification provides for an interoperable
protocol in which a message sent from a source endpoint to a destination endpoint is guaranteed
either to be delivered or to raise an error.

See Web Services Reliable Messaging Protocol (WS-ReliableMessaging).

WebLogic Web Services: Getting Started

Standards Supported by WebLogic Web Services

WS-Trust 1.3 (February 2005 Member Submission)

The WS-Trust specification defines extensions that build on Web Services Security
(WS-Security) 1.1 to provide a framework for requesting and issuing security tokens, and to
broker trust relationships.

See Web Services Trust Language (WS-Trust).

WS-SecureConversation 1.3 (February 2005 Member
Submission)

The WS-SecureConversation specification defines extensions that build on Web Services
Security (WS-Security) 1.1 and WS-Trust 1.3 (February 2005 Member Submission) to provide
secure communication across one or more messages. Specifically, this specification defines
mechanisms for establishing and sharing security contexts, and deriving keys from established
security contexts (or any shared secret).

See Web Services Secure Conversation Language (WS-SecureConversation).

Additional Specifications Supported by WebLogic Weh
Services

e XML Schema Part 1: Structures at http://www.w3.0rg/TR/xmlschema-1/

e XML Schema Part 2: Data Types at http://www.w3.org/TR/xmlschema-2/

WebLogic Web Services: Getting Started 2-11

2-18 WebLogic Web Services: Getting Started

CHAPTERa

Common Web Services Use Cases and
Examples

The following sections describe the most common Web Service use cases:

“Creating a Simple HelloWorld Web Service” on page 3-2

“Creating a Web Service With User-Defined Data Types” on page 3-7

“Creating a Web Service from a WSDL File” on page 3-15

“Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23

“Invoking a Web Service from a WebLogic Web Service” on page 3-29

These use cases provide step-by-step procedures for creating simple WebLogic Web Services and
invoking an operation from a deployed Web Service. Each use case includes basic Java code and
Ant build.xml files that you can use either in your own development environment to recreate
the example, or by following the instructions to create and run the example outside of an already
setup development environment.

WARNING: Although both JAX-RPC 1.1 and JAX-WS 2.0 are supported in this release of

WebLogic Server, this document concentrates almost exclusively on describing
how to create JAX-RPC style Web Services. This is because, in this release, all
the WS-* specifications (such as WS-Security and WS-ReliableMessaging) and
WebLogic value-added features (such as asynchronous request-response and
callbacks) work only with JAX-RPC style Web Services. Therefore, unless
otherwise stated, you should assume that all descriptions and examples are for
JAX-RPC Web Services.

WebLogic Web Services: Getting Started 3-1

For specific information about creating JAX-WS Web Services, see Chapter 6,
“Implementing a JAX-WS 2.0 Web Service.”

The use cases do not go into detail about the tools and technologies used in the examples. For
detailed information about specific features, see the relevant topics in this guide, in particular:

e |terative Development of WebLogic Web Services

Programming the JWS File

WebLogic Web Services: Advanced Programming

Invoking Web Services

o Ant Task Reference

Creating a Simple HelloWorld Weh Service

3-2

This section describes how to create a very simple Web Service that contains a single operation.
The JWS file that implements the Web Service uses just the one required JWS annotation:
@webService. A JWS fileis a standard Java file that uses JWS metadata annotations to specify
the shape of the Web Service. Metadata annotations are a new JDK 5.0 feature, and the set of
annotations used to annotate Web Service files are called JWS annotations. WebLogic Web
Services use standard JWS annotations, as defined by JSR-181, as well as WebLogic-specific
ones for added value.

The following example shows how to create a Web Service called Hel loworldService that
includes a single operation, sayHel loworld. For simplicity, the operation does nothing other
than return the inputted String value.

1. Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory:
prompt> mkdir /myExamples/hello_world

3. Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the JWS file (shown later in this procedure):

prompt> cd /myExamples/hello_world
prompt> mkdir src/examples/webservices/hello_world

WebLogic Web Services: Getting Started

Creating a Simple HelloWorld Web Service

. Create the JWS file that implements the Web Service by opening your favorite Java IDE or
text editor and creating a Java file called Hel loWorldImpl . java using the Java code
specified in “Sample HelloWorldIimpl.java JWS File” on page 3-5.

The sample JWS file shows a Java class called Hel lowor IdImpl that contains a single
public method, sayHel loWorld(String). The @webService annotation specifies that
the Java class implements a Web Service called Hel loWorldService. By default, all
public methods are exposed as operations.

. Save the HellowWorldImpl . java file in the src/examples/webservices/hello_world
directory.

. Create a standard Ant bui 1d.xml file in the project directory and add a taskdef Ant task to
specify the fully Java classname of the jwsc task:
<project name="'webservices-hello_world" default="all">

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

</project>

See “Sample Ant Build File for HelloWorldIimpl.java” on page 3-5 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, undeploy, client, and run. The full build.xml file also uses

properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

. Add the following call to the jwsc Ant task to the bui Id.xml file, wrapped inside of the
build-service target:
<target name="build-service">

<jwsc
srcdir="src"
destdir="output/helloWorldEar">

<jws File=""examples/webservices/hello_world/HelloWorldImpl.java" />
</jwsc>
</target>

The jwsc WebLogic Web Service Ant task generates the supporting artifacts (such as the
deployment descriptors, serialization classes for any user-defined data types, the WSDL
file, and so on), compiles the user-created and generated Java code, and archives all the
artifacts into an Enterprise Application EAR file that you later deploy to WebLogic Server.

Execute the jwsc Ant task by specifying the bui ld-service target at the command line:

WebLogic Web Services: Getting Started 3-3

3-4

10.

11.

prompt> ant build-service

See the output/hel loworldEar directory to view the files and artifacts generated by the
Jwsc Ant task.

Start the WebLogic Server instance to which the Web Service will be deployed.

Deploy the Web Service, packaged in an Enterprise Application, to WebL ogic Server, using
either the Administration Console or the wideploy Ant task. In either case, you deploy the
helloWor IdEar Enterprise application, located in the output directory.

To use the wideploy Ant task, add the following target to the bui ld.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management._WLDeploy"/>

<target name="deploy">

<wldeploy action="deploy"
name="helloWorldEar" source="output/helloWorldEar"
user="${wls.username}" password="${wls.password}"
verbose=""true"
adminurl="t3://${wls_hostname}:${wls_port}"
targets="${wls_server_name}" />

</target>

Substitute the values for wls.username, wls.password, wls_hostname,
wls.port, and wls.server.name that correspond to your WeblLogic Server
instance.

Deploy the WAR file by executing the deploy target:

prompt> ant deploy
Test that the Web Service is deployed correctly by invoking its WSDL in your browser:
http://host:port/HelloWorldimpl/HelloWor ld Impl?WSDL

You construct this URL by specifying the values of the contextPath and serviceUri
attributes of the WLHttpTransport JWS annotation; however, because the JWS file in this
use case does not include the WLHttpTransport annotation, specify the default values for
the two attributes: the name of the Java class in the JWS file. Use the hostname and port
relevant to your WebL ogic Server instance.

See “Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23 for an
example of creating a JAX-RPC Java client application that invokes a Web Service.

You can use the clean, bui ld-service, undeploy, and deploy targets in the build.xml file
to iteratively update, rebuild, undeploy, and redeploy the Web Service as part of your
development process.

WebLogic Web Services: Getting Started

Creating a Simple HelloWorld Web Service

Sample HelloWorldimpl.java JWS File

package examples.webservices.hello_world;

// Import the @WebService annotation

import javax.jws.WebService;

@WebService(name=""HelloWor ldPortType", serviceName="HelloWorldService')

/**
* This JWS file forms the basis of simple Java-class implemented WebLogic

* Web Service with a single operation: sayHelloWorld
*

* @author Copyright (c) 2005 by BEA Systems. All rights reserved.
*/

public class HelloWorldImpl {
// By default, all public methods are exposed as Web Services operation

public String sayHelloWorld(String message) {
System.out.printin(‘sayHelloWorld:" + message);
return "Here is the message: "' + message + ""'';

}
}

Sample Ant Build File for HelloWorldIimpl.java

The following bui 1d.xml file uses properties to simplify the file.

<project name="webservices-hello_world" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password"” value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server.name" value="myserver" />

<property name="ear.deployed.name" value="helloWorldEar" />

<property name="example-output" value="output" />

<property name="ear-dir" value="${example-output}/helloWorldEar" />

<property name="clientclass-dir" value="${example-output}/clientclasses™
/>

WebLogic Web Services: Getting Started 3-5

<path id="client.class.path">
<pathelement path="${clientclass-dir}'"/>
<pathelement path="${java.class.path}'"/>
</path>

<taskdef name="jwsc"
classname=""'weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>
<target name="all" depends="clean,build-service,deploy,client” />

<target name=''clean" depends="undeploy''>
<delete dir="${example-output}"/>
</target>

<target name="build-service'>

<jwsc
srcdir="src"
destdir="${ear-dir}">

<jws Ffile=""examples/webservices/hello_world/HelloWorldimpl.java" />
</jwsc>
</target>

<target name="deploy">
<wldeploy action="deploy" name="${ear.deployed.name}"
source=""${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose=""true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name="${ear.deployed.name}"
failonerror="false"
user="${wls.username}" password="${wls.password}" verbose='"true"
adminurl="t3://${wls_hostname}:${wls.port}"

3-6 WebLogic Web Services: Getting Started

Creating a Web Service With User-Defined Data Types

targets="${wls.server_name}" />
</target>

<target name='"'client'>

<clientgen

wsdl="http://${wls_hostname}:${wls.port}/HelloWorldImpl/Hel loWorldImpl?WSD

L
destDir="${clientclass-dir}"
packageName=""examples.webservices.hello_world.client"/>

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes=""**/*_java'/>
<javac
srcdir="src" destdir="${clientclass-dir}"
includes=""examples/webservices/hello_world/client/**/*_java"/>
</target>

<target name="run"'>
<java classname="examples.webservices.hello_world.client_Main"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${wls.hostname}:${wls._port}/HelloWorldImpl/HelloWoridImpl"
/>
</java> </target>

</project>

Creating a Web Service With User-Defined Data Types

The preceding use case uses only a simple data type, String, as the parameter and return value
of the Web Service operation. This next example shows how to create a Web Service that uses a
user-defined data type, in particular a JavaBean called BasicStruct, as both a parameter and a
return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in a Web
Service, other than to create the Java source of the data type and use it correctly in the JWS file.
The jwsc Ant task, when it encounters a user-defined data type in the JWS file, automatically

WebLogic Web Services: Getting Started 3-7

3-8

generates all the data binding artifacts needed to convert data between its XML representation
(used in the SOAP messages) and its Java representation (used in WebLogic Server.) The data
binding artifacts include the XML Schema equivalent of the Java user-defined type, the
JAX-RPC type mapping file, and so on.

The following procedure is very similar to the procedure in “Creating a Simple HellowWorld Web
Service” on page 3-2. For this reason, although the procedure does show all the needed steps, it
provides details only for those steps that differ from the simple HelloWorld example.

1. Open a command window and set your WebLogic Server environment.

2. Create a project directory:

prompt> mkdir /myExamples/complex

3. Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the JWS file (shown later in this procedure):

prompt> cd /myExamples/complex

prompt> mkdir src/examples/webservices/complex

4. Create the source for the BasicStruct JavaBean by opening your favorite Java IDE or text
editor and creating a Java file called BasicStruct. java, in the project directory, using the
Java code specified in “Sample BasicStruct JavaBean” on page 3-10.

5. Save the BasicStruct. java file in the src/examples/webservices/complex
sub-directory of the project directory.

6. Create the JWS file that implements the Web Service using the Java code specified in “Sample
ComplexImpl.java JWS File” on page 3-11.

The sample JWS file uses more JWS annotations than in the preceding example:
@webMethod to specify explicitly that a method should be exposed as a Web Service
operation and to change its operation name from the default method name echoStruct to
echoComp lexType; @WebParam and @WebResul t to configure the parameters and return
values; @SOAPBinding to specify the type of Web Service; and @WLHttpTransport to
specify the URI used to invoke the Web Service. The ComplexImpl . java JWS file also
imports the examples.webservice.complex.BasicStruct class and then uses the
BasicStruct user-defined data type as both a parameter and return value of the
echoStruct() method.

For more in-depth information about creating a JWS file, see Chapter 5, “Programming the
JWS File.”

WebLogic Web Services: Getting Started

Creating a Web Service With User-Defined Data Types

7. Save the ComplexImpl . java file in the src/examples/webservices/complex
sub-directory of the project directory.

8. Create a standard Ant bui Id.xml file in the project directory and add a taskdef Ant task to
specify the fully Java classname of the jwsc task:
<project name="webservices-complex" default="all">

<taskdef name="jwsc"
classname="'weblogic.wsee.tools.anttasks.JwscTask" />

</project>
See “Sample Ant Build File for Compleximpl.java JWS File” on page 3-12 for a full
sample build.xml file.
9. Add the following call to the jwsc Ant task to the bui Id.xml file, wrapped inside of the
build-service target:
<target name="build-service">
<jwsc
srcdir="src"
destdir="output/ComplexServiceEar" >

<jws File=""examples/webservices/complex/ComplexImpl.java" />
</jwsc>

</target>
10. Execute the jwsc Ant task:

prompt> ant build-service

See the output/ComplexServiceEar directory to view the files and artifacts generated by
the jwsc Ant task.

11. Start the WebLogic Server instance to which the Web Service will be deployed.

12. Deploy the Web Service, packaged in the ComplexServiceEar Enterprise Application, to
WebLogic Server, using either the Administration Console or the wldeploy Ant task.

13. Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

http://host:port/complex/ComplexService?WSDL

See “Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23 for an
example of creating a JAX-RPC Java client application that invokes a Web Service.

WebLogic Web Services: Getting Started 3-9

Sample BasicStruct JavaBean

package examples.webservices.complex;

/**
* Defines a simple JavaBean called BasicStruct that has integer, String,
* and String[] properties
*/

public class BasicStruct {
// Properties

private int intValue;
private String stringValue;
private String[] stringArray;

// Getter and setter methods

public int getintvValue() {
return intValue;

}

public void setlntValue(int intvValue) {
this.intvalue = intValue;

}

public String getStringValue() {
return stringValue;

}

public void setStringValue(String stringValue) {
this.stringvalue = stringValue;

}

public String[] getStringArray() {
return stringArray;

}

public void setStringArray(String[] stringArray) {
this._stringArray = stringArray;

}

public String toString() {
return "IntValue="+intValue+", StringValue="+stringValue;

3
}

3-10 WebLogic Web Services: Getting Started

Creating a Web Service With User-Defined Data Types

Sample ComplexImpl.java JWS File

package examples.webservices.complex;
// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface
import weblogic. jws_WLHttpTransport;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

// Standard JWS annotation that specifies that the portType name of the Web
// Service is "ComplexPortType', its public service name is "ComplexService",
// and the targetNamespace used in the generated WSDL is "http://example.org"

@WebService(serviceName="ComplexService", name="ComplexPortType",
targetNamespace="http://example.org"™)

// Standard JWS annotation that specifies this is a document-literal-wrapped
// Web Service

@SOAPBinding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and service
// URI used to build the URI of the Web Service is "complex/ComplexService"

@WLHttpTransport(contextPath="complex', serviceUri="ComplexService",
portName=""ComplexServicePort')

/**
This JWS File forms the basis of a WebLogic Web Service. The Web Services
has two public operations:

- echolnt(int)
- echoComplexType(BasicStruct)

The Web Service is defined as a "‘document-literal’ service, which means
that the SOAP messages have a single part referencing an XML Schema element
that defines the entire body.

ok % % ok % X ok % X

WebLogic Web Services: Getting Started 3-11

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public class Compleximpl {

// Standard JWS annotation that specifies that the method should be exposed
// as a public operation. Because the annotation does not include the

// member-value "operationName'™, the public name of the operation is the
// same as the method name: echolnt.

// The WebResult annotation specifies that the name of the result of the

// operation in the generated WSDL is "IntegerOutput', rather than the

// default name "return'. The WebParam annotation specifies that the input
// parameter name in the WSDL Ffile is "Integerlnput” rather than the Java
// name of the parameter, "input'.

@webMethod ()
@WebResult(name=""IntegerOutput",
targetNamespace=""http://example.org/complex’)
public int echolnt(
@WebParam(name=""Integerlnput",
targetNamespace=""http://example.org/complex’)
int input)

{
System.out.printin(*echolnt

return input;

}

// Standard JWS annotation to expose method "echoStruct' as a public operation
// called "echoComplexType"

// The WebResult annotation specifies that the name of the result of the

// operation in the generated WSDL is "EchoStructReturnMessage",

// rather than the default name "return'.

+ input + """ to you too!");

@WebMethod(operationName=""echoComplexType')
@WebResult(name="EchoStructReturnMessage",

targetNamespace="http://example.org/complex')
public BasicStruct echoStruct(BasicStruct struct)

{
System.out._printIn(*echoComplexType called");

return struct;
3
}

Sample Ant Build File for ComplexIimpl.java JWS File

The following bui Id.xml file uses properties to simplify the file.

3-12 WebLogic Web Services: Getting Started

Creating a Web Service With User-Defined Data Types

<project name="webservices-complex" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server._name" value="myserver" />

<property name="ear.deployed.name" value="complexServiceEAR" />
<property name="example-output" value="output" />

<property name="ear-dir" value="${example-output}/complexServiceEar" />
<property name="'clientclass-dir" value="${example-output}/clientclass" />

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>

<taskdef name=""jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends="clean,build-service,deploy,client'/>

<target name=''clean'" depends="undeploy'>
<delete dir="${example-output}"/>
</target>
<target name="build-service'>
<jwsc
srcdir="src"
destdir="${ear-dir}"
keepGenerated=""true"
>

<jws file="examples/webservices/complex/ComplexImpl.java" />
</jwsc>

WebLogic Web Services: Getting Started 3-13

3-14

</target>

<target name="deploy">
<wldeploy action="deploy"

name="${ear .deployed.name}"
source="${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server _name}'/>

</target>

<target name="undeploy">
<wldeploy action="undeploy" failonerror="false"
name=""${ear .deployed.name}"

user="${wls_username}" password=""${wls._password}" verbose="true"

adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server _name}"/>
</target>

<target name='"'client'>

<clientgen

wsdl="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"

destDir="${clientclass-dir}"
packageName=""examples.webservices.complex.client'/>

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/complex/client/**/*_java'/>
</target>

<target name="run" >
<java fork=""true"
classname=""examples.webservices.complex.client_Main"
failonerror="true" >
<classpath refid="client.class.path"/>

<arg line="http://${wls._hostname}:${wls.port}/complex/ComplexService"

/>

WebLogic Web Services: Getting Started

Creating a Web Service from a WSDL File

</java>
</target>

</project>

Creating a Web Service from a WSDL File

Another typical use case of creating a Web Service is to start from an existing WSDL file, often
referred to as the golden WSDL. A WSDL file is a public contract that specifies what the Web
Service looks like, such as the list of supported operations, the signature and shape of each
operation, the protocols and transports that can be used when invoking the operations, and the
XML Schema data types that are used when transporting the data over the wire. Based on this
WSDL file, you generate the artifacts that implement the Web Service so that it can be deployed
to WebLogic Server. These artifacts include:

e The JWS interface file that represents the Java implementation of your Web Service.

e Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the Web Service parameters and return values.

e A JWS file that contains a partial implementation of the generated JWS interface.

e Optional Javadocs for the generated JWS interface.

You use the wsdlc Ant task to generate these artifacts. Typically you run this Ant task one time
to generate a JAR file that contains the generated JWS interface file and data binding artifacts,
then code the generated JWS file that implements the interface, adding the business logic of your
Web Service. In particular, you add Java code to the methods that implement the Web Service
operations so that the operations behave as needed and add additional JWS annotations.

WARNING: The only file generated by the wsdlc Ant task that you update is the JWS
implementation file; you never need to update the JAR file that contains the JWS
interface and data binding artifacts.

After you have coded the JWS implementation file, you run the jwsc Ant task to generate the
deployable Web Service, using the same steps as described in the preceding sections. The only
difference is that you use the compi ledWsdl attribute to specify the JAR file (containing the JWS
interface file and data binding artifacts) generated by the wsdlc Ant task.

The following simple example shows how to create a Web Service from the WSDL file shown
in “Sample WSDL File” on page 3-19. The Web Service has one operation, getTemp, that returns
a temperature when passed a zip code.

WebLogic Web Services: Getting Started 3-15

3-16

5.

Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

Create a working directory:

prompt> mkdir /myExamples/wsdlc

Put your WSDL file into an accessible directory on your computer. For the purposes of this
example, it is assumed that your WSDL file is called TemperatureService.wsdl and is
located in the /myExamples/wsdlc/wsdl_files directory. See “Sample WSDL File” on
page 3-19 for a full listing of the file.

Create a standard Ant bui Id.xml file in the project directory and add a taskdef Ant task to
specify the fully Java classname of the wsdlc task:

<project name="'webservices-wsdlc" default="all">

<taskdef name="wsdlc"
classname="weblogic.wsee.tools.anttasks._WsdlcTask"/>

</project>

See “Sample Ant Build File for TemperatureService” on page 3-21 for a full sample
build.xml file that contains additional targets from those described in this procedure,
such as clean, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

Add the following call to the wsdlc Ant task to the bui ld.xml file, wrapped inside of the
generate-from-wsdl target:

<target name="'generate-from-wsdl'>

<wsdlc
srcWsdl="wsdl_files/TemperatureService._wsdl"
destJdwsDir="output/compiledWsdl"
destimpIDir="output/impl"
packageName=""examples.webservices.wsdlc" />

</target>

The wsdlc task in the examples generates the JAR file that contains the JWS interface and
data binding artifacts into the output/compiledwsdl directory under the current
directory. It also generates a partial implementation file

(TemperaturePortTypelmpl . java) of the JWS interface into the
output/impl/examples/webservices/wsdlc directory (which is a combination of the

WebLogic Web Services: Getting Started

Creating a Web Service from a WSDL File

output directory specified by destImpIDir and the directory hierarchy specified by the
package name). All generated JWS files will be packaged in the
examples.webservices.wsdlc package.

6. Execute the wsdlc Ant task by specifying the generate-from-wsdl target at the command
line:

prompt> ant generate-from-wsdl

See the output directory if you want to examine the artifacts and files generated by the
wsdlc Ant task.

7. Update the generated
output/impl/examples/webservices/wsdlc/TemperaturePortTypelmpl _java
JWS implementation file using your favorite Java IDE or text editor to add Java code to the
methods so that they behave as you want. See “Sample TemperaturePortType Java
Implementation File” on page 3-20 for an example; the added Java code is in bold. The
generated JWS implementation file automatically includes values for the @webService and
@WLHttpTransport JWS annotations that correspond to the values in the original WSDL
file.

WARNING: There are restrictions on the JWS annotations that you can add to the JWS
implementation file in the “starting from WSDL” use case. See wsdlc for
details.

For simplicity, the sample getTemp() method in TemperaturePortTypelmpl _java
returns a hard-coded number. In real life, the implementation of this method would actually
look up the current temperature at the given zip code.

8. Copy the updated TemperaturePortTypelmpl . java file into a permanent directory, such
as a src directory under the project directory; remember to create child directories that
correspond to the package name:

prompt> cd /examples/wsdlc

prompt> mkdir src/examples/webservices/wsdlc

prompt> cp output/impl/examples/webservices/wsdlc/TemperaturePortTypelmpl.java
\

src/examples/webservices/wsdlc/TemperaturePortTypelmpl . java

9. Add abuild-service target to the bui ld.xml file that executes the jwsc Ant task against
the updated JWS implementation class. Use the compi ledWwsdl attribute of jwsc to specify
the name of the JAR file generated by the wsdlc Ant task:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

WebLogic Web Services: Getting Started 3-17

3-18

10.

11.
12.

13.

<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws
file="examples/webservices/wsdlc/TemperaturePortTypelmpl._java"
compiledWsdI="output/compiledWsdl/TemperatureService_wsdl.jar"
/>
</jwsc>

</target>
Execute the bui ld-service target to generate a deployable Web Service:
prompt> ant build-service

You can iteratively keep rerunning this target if you want to update the JWS file bit by bit.
Start the WebLogic Server instance to which the Web Service will be deployed.

Deploy the Web Service, packaged in an Enterprise Application, to WebL ogic Server, using
either the Administration Console or the wideploy Ant task. In either case, you deploy the
wsdlIcEar Enterprise application, located in the output directory.

To use the wideploy Ant task, add the following target to the bui ld.xml file:

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management._WLDeploy"/>

<target name="deploy">

<wldeploy action="deploy" name="wsdlcEar""
source=""output/wsdlcEar” user="${wls._username}"
password="${wls.password}" verbose=""true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server_name}" />

</target>

Substitute the values for wls.username, wls.password, wls.hostname, wls_port, and
wls_server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:

prompt> ant deploy
Test that the Web Service is deployed correctly by invoking its WSDL in your browser:
http://host:port/temp/TemperatureService?WSDL

The context path and service URI section of the preceding URL are specified by the
original golden WSDL.. Use the hostname and port relevant to your WebLogic Server

WebLogic Web Services: Getting Started

Creating a Web Service from a WSDL File

instance. Note that the deployed and original WSDL files are the same, except for the host
and port of the endpoint address.

See “Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23 for an
example of creating a JAX-RPC Java client application that invokes a Web Service.

You can use the clean, build-service, undeploy, and deploy targets in the bui Id.xml file
to iteratively update, rebuild, undeploy, and redeploy the Web Service as part of your
development process.

Sample WSDL File

<?xml version="1.0"?>

<definitions
name=""TemperatureService"
targetNamespace=""http://www._bea.com/wls90"
xmIns:tns="http://www_bea.com/wls90"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmIns="http://schemas.xmlsoap.org/wsdl/" >

<message name="‘getTempRequest’'>
<part name="zip" type="'xsd:string"/>
</message>

<message name="‘getTempResponse’>
<part name="return' type='"xsd:float'/>
</message>

<portType name="TemperaturePortType'>
<operation name='‘getTemp"'>
<input message=""tns:getTempRequest"/>
<output message=""tns:getTempResponse'/>
</operation>
</portType>

<binding name="TemperatureBinding" type="tns:TemperaturePortType">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http'/>
<operation name="'getTemp'>
<soap:operation soapAction="""/>
<input>
<soap:body use="literal"
namespace="http://www.bea.com/wls90" />
</input>
<output>
<soap:body use="literal"

WebLogic Web Services: Getting Started 3-19

namespace="http://www.bea.com/wls90" />
</output>
</operation>
</binding>

<service name="TemperatureService'>
<documentation>
Returns current temperature in a given U.S. zipcode
</documentation>
<port name=""TemperaturePort" binding=""tns:TemperatureBinding'>
<soap:address
location="http://localhost:7001/temp/TemperatureService'/>
</port>
</service>

</definitions>

3-20

Sample TemperaturePortType Java Implementation File
package examples.webservices.wsdlc;

import javax.jws.WebService;

import weblogic.jws.*;

/**

* TemperaturePortTypelmpl class implements web service endpoint interface
TemperaturePortType */

@WebService(
serviceName="TemperatureService",
endpointinterface="examples.webservices.wsdlc.TemperaturePortType')

@WLHttpTransport(
contextPath="temp",
serviceUri="TemperatureService",
portName=""TemperaturePort')
public class TemperaturePortTypelmpl implements TemperaturePortType {

public TemperaturePortTypelmpl() {

}
public float getTemp(Java.lang.String zip)

{
return 1.234fF;

WebLogic Web Services: Getting Started

Creating a Web Service from a WSDL File

3
}

Sample Ant Build File for TemperatureService

The following bui 1d.xml file uses properties to simplify the file.
<project default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server._name" value="myserver" />

<property name="ear.deployed.name"™ value="wsdlcEar" />

<property name="example-output" value="output” />

<property name="'compiledWsdl-dir" value="${example-output}/compiledWsdl"
/>

<property name="impl-dir" value="${example-output}/impl"” />

<property name="ear-dir" value="${example-output}/wsdlcEar" />

<property name="clientclass-dir" value="${example-output}/clientclasses™
/>

<path id="client.class.path">
<pathelement path="${clientclass-dir}'"/>
<pathelement path="${java.class.path}"/>
</path>

<taskdef name="wsdlc"
classname="'weblogic.wsee.tools.anttasks.WsdlcTask"/>

<taskdef name="jwsc"
classname=""'weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

WebLogic Web Services: Getting Started 3-21

<target name="all"
depends="'clean,generate-from-wsdl ,build-service,deploy,client” />

<target name='"'clean'" depends="undeploy''>
<delete dir="${example-output}"/>
</target>

<target name=''generate-from-wsdl'>

<wsdlc
srcWsdl="wsdl_files/TemperatureService.wsdl"
destJwsDir="${compiledWsdl-dir}"
destimpIDir="${impl-dir}"
packageName=""examples.webservices.wsdlc" />

</target>
<target name="build-service'>

<jwsc
srcdir="src"
destdir="${ear-dir}">

<jws File="examples/webservices/wsdlc/TemperaturePortTypelmpl.java"
compi ledWsdl="${compiledWsdl-dir}/TemperatureService_wsdl.jar" />

</jwsc>
</target>

<target name="deploy'>
<wldeploy action="deploy" name="${ear.deployed.name}"
source="${ear-dir}" user="${wls._username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name="${ear.deployed.name}"
failonerror="false"
user="${wls._username}" password="${wls._password}" verbose='"true"
adminurl="t3://${wls_hostname}:${wls.port}"

3-22 WebLogic Web Services: Getting Started

Invoking a Web Service from a Stand-alone JAX-RPC Java Client

targets="${wls.server_name}" />
</target>

<target name='"'client'>

<clientgen

wsdI="http://${wls_hostname}:${wls.port}/temp/TemperatureService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.wsdlc.client'/>

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes=""**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/wsdlc/client/**/*_java"/>

</target>

<target name="run'>
<java classname="examples.webservices.wsdlc.client.TemperatureClient"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${wls_hostname}:${wls.port}/temp/TemperatureService"
/>
</java>

</target>

</project>

Invoking a Web Service from a Stand-alone JAX-RPC Java
Client

When you invoke an operation of a deployed Web Service from a client application, the Web
Service could be deployed to WebLogic Server or to any other application server, such as .NET.
All you need to know is the URL to its public contract file, or WSDL.

WebLogic Web Services: Getting Started 3-23

3-24

In addition to writing the Java client application, you must also run the clientgen WebLogic
Web Service Ant task to generate the artifacts that your client application needs to invoke the
Web Service operation. These artifacts include:

e Java source code for the JAX-RPC Stub and Service interface implementations for the
particular Web Service you want to invoke.

e Java classes for any user-defined XML Schema data types included in the WSDL file.

e JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java data types and their corresponding XML Schema types in the
WSDL file.

e Client-side copy of the WSDL file.

The following example shows how to create a Java client application that invokes the

e

choComp lexType operation of the ComplexService WebLogic Web Service described in

“Creating a Web Service With User-Defined Data Types” on page 3-7. The echoComplexType

0

peration takes as both a parameter and return type the BasicStruct user-defined data type. It

is assumed in this procedure that you have already created and deployed the ComplexService
Web Service.

1.

Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.
Create a project directory:

prompt> mkdir /myExamples/simple_client
Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the Java client application (shown later on in this procedure):

prompt> cd /myExamples/simple_client
prompt> mkdir src/examples/webservices/simple_client

Create a standard Ant bui Id.xml file in the project directory and add a taskdef Ant task to
specify the fully Java classname of the clientgen task:
<project name="webservices-simple_client"” default="all">

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

</project>

WebLogic Web Services: Getting Started

Invoking a Web Service from a Stand-alone JAX-RPC Java Client

See “Sample Ant Build File For Building Stand-alone Client Application” on page 3-28 for
a full sample build.xml file The full build.xml file uses properties, such as
${clientclass-dir}, rather than always using the hard-coded name output directory for
client classes.

. Add the following calls to the clientgen and javac Ant tasks to the bui ld_xml file,
wrapped inside of the build-client target:

<target name="build-client'>

<clientgen
wsdI="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="output/clientclass"
packageName=""examples.webservices.simple_client"/>

<javac
srcdir="output/clientclass" destdir="output/clientclass"
includes="**/*_java"/>

<javac
srcdir="src" destdir="output/clientclass"
includes="examples/webservices/simple_client/*_java'/>

</target>

The clientgen Ant task uses the WSDL of the deployed ComplexService Web Service
to generate the needed artifacts and puts them into the output/clientclass directory,
using the specified package name. Replace the variables with the actual hostname and
port of your WebLogic Server instance that is hosting the Web Service.

The clientgen Ant task also automatically generates the
examples.webservices.complex.BasicStruct JavaBean class, which is the Java
representation of the user-defined data type specified in the WSDL.

The bui ld-client target also specifies the standard javac Ant task, in addition to
clientgen, to compile all the Java code, including the stand-alone Java program described
in the next step, into class files.

The clientgen Ant task also provides the destFi le attribute if you want the Ant task to
automatically compile the generated Java code and package all artifacts into a JAR file.
For details and an example, see clientgen.

. Create the Java client application file that invokes the echoComplexType operation by
opening your favorite Java IDE or text editor, creating a Java file called Main - java using the
code specified in “Sample Java Client Application” on page 3-27.

WebLogic Web Services: Getting Started 3-25

3-26

10.

The Main client application takes a single argument: the WSDL URL of the Web Service.
The application then follows standard JAX-RPC guidelines to invoke an operation of the
Web Service using the Web Service-specific implementation of the Service interface
generated by clientgen. The application also imports and uses the BasicStruct
user-defined type, generated by the clientgen Ant task, that is used as a parameter and
return value for the echoStruct operation. For details, see Chapter 8, “Invoking Web
Services.”

Save the Main. java file in the src/examples/webservices/simple_client
sub-directory of the main project directory.

Execute the clientgen and javac Ant tasks by specifying the bui ld-client target at the
command line:

prompt> ant build-client

See the output/clientclass directory to view the files and artifacts generated by the
clientgen Ant task.

Add the following targets to the bui ld.xml file, used to execute the Main application:

<path id="client.class.path">
<pathelement path="output/clientclass'/>
<pathelement path="${java.class.path}'/>
</path>

<target name="run" >

<java fork="true"
classname=""examples.webservices.simple_client.Main"
failonerror=""true" >
<classpath refid="client.class.path"/>
<arg
line="http://${wls_hostname}:${wls.port}/complex/ComplexService"
/>
</java>

</target>

The run target invokes the Main application, passing it the WSDL URL of the deployed
Web Service as its single argument. The classpath element adds the clientclass
directory to the CLASSPATH, using the reference created with the <path> task.

Execute the run target to invoke the echoComplexType operation:
prompt> ant run

If the invoke was successful, you should see the following final output:

WebLogic Web Services: Getting Started

Invoking a Web Service from a Stand-alone JAX-RPC Java Client

run:
[Java] echoComplexType called. Result: 999, Hello Struct

You can use the build-client and run targets in the bui 1d.xml file to iteratively update,
rebuild, and run the Java client application as part of your development process.

Sample Java Client Application

package examples.webservices.simple_client;
import java.rmi.RemoteException;
import javax.xml_rpc.ServiceException;

// import the BasicStruct class, used as a param and return value of the
// echoComplexType operation. The class is generated automatically by
// the clientgen Ant task.

import examples.webservices.complex.BasicStruct;

/**
* This is a simple stand-alone client application that invokes the

* the echoComplexType operation of the ComplexService Web service.
*

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public class Main {

public static void main(String[] args)
throws ServiceException, RemoteException{

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
ComplexPortType port = service.getComplexServicePort();

BasicStruct in = new BasicStruct();

in.setintvalue(999);
in.setStringvValue(""Hello Struct");

BasicStruct result = port.echoComplexType(in);
System.out.printIn("echoComplexType called. Result: " + result._getintvalue()
+ ", " + result._getStringvValue());
}
}

WebLogic Web Services: Getting Started 3-21

Sample Ant Build File For Building Stand-alone Client
Application
The following bui 1d.xml file uses properties to simplify the file.
<project name="'webservices-simple_client" default="all'>
<I-- set global properties for this build -->

<property name="wls.hostname" value="localhost" />
<property name="wls.port"” value="7001" />

<property name="example-output" value="output” />
<property name="'clientclass-dir" value="${example-output}/clientclass" />

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<target name='"clean" >
<delete dir="${clientclass-dir}"/>
</target>

<target name="all" depends="clean,build-client,run" />
<target name="build-client'>

<clientgen
wsdl="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.simple_client"/>

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/simple_client/*.java'/>
</target>

3-28 WebLogic Web Services: Getting Started

Invoking a Web Service from a WebLogic Web Service

<target name="run" >
<java fork="true"
classname=""examples.webservices.simple_client_Main"
failonerror=""true" >
<classpath refid="client.class.path'/>
<arg line="http://${wls_hostname}:${wls._port}/complex/ComplexService"
/>
</java>
</target>

</project>

Invoking a Web Service from a WebLogic Web Service

You can also invoke a Web Service (WebLogic, .NET, and so on) from within a deployed
WebLogic Web Service, rather than from a stand-alone client.

The procedure is similar to that described in “Invoking a Web Service from a Stand-alone
JAX-RPC Java Client” on page 3-23 except that instead of running the clientgen Ant task to
generate the client stubs, you use the <clientgen> child element of <jws>, inside of the jwsc
Ant task, instead. The jwsc Ant task automatically packages the generated client stubs in the
invoking Web Service WAR file so that the Web Service has immediate access to them. You then
follow standard JAX-RPC programming guidelines in the JWS file that implements the Web
Service that invokes the other Web Service.

The following example shows how to write a JWS file that invokes the echoComplexType
operation of the ComplexService Web Service described in “Creating a Web Service With
User-Defined Data Types” on page 3-7; it is assumed that you have successfully deployed the
ComplexService Web Service.

1. Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/service_to_service

3. Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the JWS and client application files (shown later on in this procedure):

WebLogic Web Services: Getting Started 3-29

3-30

prompt> cd /myExamples/service_to_service
prompt> mkdir src/examples/webservices/service_to_service

. Create the JWS file that implements the Web Service that invokes the ComplexService Web

Service. Open your favorite Java IDE or text editor and create a Java file called
ClientServicelmpl.java using the Java code specified in “Sample
ClientServicelmpl.java JWS File” on page 3-32.

The sample JWS file shows a Java class called ClientServicelmpl that contains a single
public method, cal IComplexService(). The Java class imports the JAX-RPC stubs,
generated later on by the jwsc Ant task, as well as the BasicStruct JavaBean (also
generated by clientgen), which is data type of the parameter and return value of the
echoComplexType operation of the ComplexService Web Service.

The ClientServicelmpl Java class defines one method, cal IComplexService(), which
takes two parameters: a BasicStruct which is passed on to the echoComplexType
operation of the ComplexService Web Service, and the URL of the ComplexService
Web Service. The method then uses the standard JAX-RPC APIs to get the Service and
PortType of the ComplexService, using the stubs generated by jwsc, and then invokes
the echoComplexType operation.

. Save the ClientServicelmpl .java file in the

src/examples/webservices/service_to_service directory.

. Create a standard Ant bui Id.xml file in the project directory and add the following task:

<project name="‘webservices-service_to_service" default="all">

<taskdef name="jwsc"
classname=""weblogic.wsee.tools.anttasks.JwscTask" />

</project>
The taskdef task defines the full classname of the jwsc Ant task.

See “Sample Ant Build File For Building ClientService” on page 3-33 for a full sample
bui ld.xml file that contains additional targets from those described in this procedure,
such as clean, deploy, undeploy, client, and run. The full build.xml file also uses
properties, such as ${ear-dir}, rather than always using the hard-coded name for the
EAR directory.

. Add the following call to the jwsc Ant task to the bui Id.xml file, wrapped inside of the

build-service target:
<target name="build-service'>

<jwsc
srcdir="src"

WebLogic Web Services: Getting Started

10.

11.

Invoking a Web Service from a WebLogic Web Service

destdir="output/ClientServicekar"” >
<jws

file="examples/webservices/service_to_service/ClientServicelmpl_java">
<clientgen

wsdI=""http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
packageName=""examples.webservices.service_to_service" />
</jws>
</jwsc>
</target>

In the preceding example, the <clientgen> child element of the <jws> element of the
Jwsc Ant task specifies that, in addition to compiling the JWS file, jwsc should also
generate and compile the client artifacts needed to invoke the Web Service described by
the WSDL file.

Execute the jwsc Ant task by specifying the bui ld-service target at the command line:

prompt> ant build-service
Start the WebLogic Server instance to which you will deploy the Web Service.

Deploy the Web Service, packaged in an Enterprise Application, to WebLogic Server, using
either the Administration Console or the wideploy Ant task. In either case, you deploy the
ClientServiceEar Enterprise application, located in the output directory.

To use the wldeploy Ant task, add the following target to the bui Id.xml file:

<taskdef name="wldeploy"
classname="'weblogic.ant.taskdefs.management._WLDeploy"/>

<target name="deploy">

<wldeploy action="deploy" name='"ClientServiceEar"
source=""ClientServiceEar"” user="${wls.username}"
password="${wls.password}" verbose=""true"
adminurl="t3://${wls_hostname}:${wls._port}"
targets="${wls.server_name}" />

</target>

Substitute the values for wls.username, wls.password, wls_hostname, wls.port, and
wls.server.name that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the deploy target:
prompt> ant deploy

Test that the Web Service is deployed correctly by invoking its WSDL in your browser:

WebLogic Web Services: Getting Started 3-31

http://host:port/ClientService/ClientService?WSDL

See “Invoking a Web Service from a Stand-alone JAX-RPC Java Client” on page 3-23 for an
example of creating a JAX-RPC Java client application that invokes a Web Service.

Sample ClientServicelmpl.java JWS File

package examples.webservices.service_to_service;

import java.rmi.RemoteException;
import javax.xml_rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic. jws.WLHttpTransport;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

import examples.webservices.complex.BasicStruct;

// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

@WebService(name="ClientPortType", serviceName="ClientService",

targetNamespace=""http://examples.org")

@WLHttpTransport(contextPath="ClientService', serviceUri="ClientService",

portName="ClientServicePort')

public class ClientServicelmpl {

@webMethod ()

public String callComplexService(BasicStruct input, String serviceUrl)
throws ServiceException, RemoteException

{

// Create service and port stubs to invoke ComplexService
ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL'™);
ComplexPortType port = service.getComplexServicePort();

// Invoke the echoComplexType operation of ComplexService
BasicStruct result = port.echoComplexType(input);
System.out.printIn(*'Invoked ComplexPortType.echoComplexType.");

3-32 WebLogic Web Services: Getting Started

Invoking a Web Service from a WebLogic Web Service

return "Invoke went okay! Here"s the result: "' + result._getintvalue() + ",
o result_getstringvalue() + n-n;

}
}

Sample Ant Build File For Building ClientService

The following bui Id.xml file uses properties to simplify the file.

<project name="‘webservices-service_to_service" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server.name' value="myserver" />

<property name="ear.deployed.name”™ value="ClientServiceEar" />

<property name="‘example-output" value="output" />

<property name="ear-dir" value="${example-output}/ClientServiceEar" />
<property name="clientclass-dir" value="${example-output}/clientclasses" />

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}'"/>
</path>

<taskdef name="jwsc"
classname=""'weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends="clean,build-service,deploy,client” />

<target name=''clean'" depends="undeploy'>
<delete dir="${example-output}"/>
</target>

<target name="build-service'">
<jwsc

srcdir="src"
destdir="${ear-dir}" >

WebLogic Web Services: Getting Started 3-33

<jws
Ffile="examples/webservices/service_to_service/ClientServicelmpl_java'">
<clientgen

wsdI="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
packageName=""examples.webservices.service_to_service" />
</jws>

</jwsc>
</target>

<target name="deploy">
<wldeploy action="deploy" name=""${ear.deployed.name}"
source=""${ear-dir}" user="${wls.username}"
password="${wls_.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server._name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name=""${ear.deployed.name}"

failonerror="false"
user="${wls._username}"
password="${wls.password}" verbose="true"
adminurl="t3://%{wls_hostname}:${wls.port}"
targets="${wls.server_name}" />

</target>

<target name="client">

<clientgen
wsdl="http://${wls_hostname}:${wls.port}/ClientService/ClientService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.service_to_service.client"/>

<javac
srcdir="${clientclass-dir}" destdir="%{clientclass-dir}"
includes="**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/service_to_service/client/**/*_java"/>

</target>

<target name="run'>
<java classname=""examples.webservices.service_to_service.client_Main"
fork=""true"
failonerror=""true" >
<classpath refid="client.class.path"/>

3-34 WebLogic Web Services: Getting Started

Invoking a Web Service from a WebLogic Web Service

<arg
line=""http://${wls._hostname}:${wls.port}/ClientService/ClientService'/>
</java>
</target>

</project>

WebLogic Web Services: Getting Started 3-35

3-36 WebLogic Web Services: Getting Started

CHAPTERa

lterative Development of WebLogic Web
Services

The following sections describe the iterative development process for WebLogic Web Services:

“Overview of the WebLogic Web Service Programming Model” on page 4-2
“Configuring Your Domain For Web Services Features” on page 4-3

“Iterative Development of WebLogic Web Services Starting From Java: Main Steps” on
page 4-4

“Iterative Development of WebLogic Web Services Starting From a WSDL File: Main
Steps” on page 4-5

“Creating the Basic Ant build.xml File” on page 4-7
“Running the jwsc WebLogic Web Services Ant Task” on page 4-8
“Running the wsdlc WebLogic Web Services Ant Task” on page 4-11

“Updating the Stubbed-Out JWS Implementation Class File Generated By wsdlc” on
page 4-13

“Deploying and Undeploying WebLogic Web Services” on page 4-15

“Browsing to the WSDL of the Web Service” on page 4-18

“Configuring the Server Address Specified in the Dynamic WSDL” on page 4-19
“Testing the Web Service” on page 4-21

WebLogic Web Services: Getting Started 4-1

e “Integrating Web Services Into the WebLogic Split Development Directory Environment”
on page 4-22

WARNING: Although both JAX-RPC 1.1 and JAX-WS 2.0 are supported in this release of
WebLogic Server, this document concentrates almost exclusively on describing
how to create JAX-RPC style Web Services. This is because, in this release, all
the WS-* specifications (such as WS-Security and WS-ReliableMessaging) and
WebLogic value-added features (such as asynchronous request-response and
callbacks) work only with JAX-RPC style Web Services. Therefore, unless
otherwise stated, you should assume that all descriptions and examples are for
JAX-RPC Web Services.

For specific information about creating JAX-WS Web Services, see Chapter 6,
“Implementing a JAX-WS 2.0 Web Service.”

Overview of the WebLogic Web Service Programming
Model

42

The WebLogic Web Services programming model centers around JWS files (Java files that use
JWS annotations to specify the shape and behavior of the Web Service) and Ant tasks that execute
on the JWS file. JWS annotations are based on the metadata feature, introduced in Version 5.0 of
the JDK (specified by JSR-175), and include both the standard annotations defined by the Web
Services Metadata for the Java Platform specification (JSR-181), as well as additional
WebLogic-specific ones. For additional detailed information about this programming model, see
“Anatomy of a WebLogic Web Service” on page 2-3.

The following sections describe the high-level steps for iteratively developing a Web Service,
either starting from Java or starting from an existing WSDL file:

o “lIterative Development of WebLogic Web Services Starting From Java: Main Steps” on
page 4-4

o “Iterative Development of WebLogic Web Services Starting From a WSDL File: Main
Steps” on page 4-5

Iterative development refers to setting up your development environment in such a way so that
you can repeatedly code, compile, package, deploy, and test a Web Service until it works as you
want. The WebLogic Web Service programming model uses Ant tasks to perform most of the
steps of the iterative development process. Typically, you create a single bui ld.xml file that
contains targets for all the steps, then repeatedly run the targets, after you have updated your JWS
file with new Java code, to test that the updates work as you expect.

WebLogic Web Services: Getting Started

Configuring Your Domain For Web Services Features

Configuring Your Domain For Web Services Features

After you have created a WebLogic Server domain, you can use the Configuration Wizard to
update the domain, using a Web Services-specific extension template, so that the resources
required by certain WebLogic Web Services features are automatically configured. Although use
of this extension template is not required, it makes the configuration of JMS and JDBC resources
much easier.

The Web Services extension template automatically configures the resources required for the
following features:

e Web Services Reliable Messaging
e Buffering

e JMS Transport
To update your domain so that it is automatically configured for these Web Services features:

1. Start the Configuration Wizard.

In the Welcome window, select Extend an Existing WebLogic Domain.
Click Next.

Select the domain to which you want to apply the extension template.

Click Next.

o g ~ w DN

Select Extend My Domain Using an Existing Extension Template.

7. Enter the following value in the Template Location text box:
WL_HOME/common/templates/applications/wls_webservice.jar

where WL_HOME refers to the main WebLogic Server directory, such as
/bea_home/wlserver_10.0.

8. Click Next.

9. If you want to further configure the JMS and JDBC resources, select Yes. This is not typical.

Otherwise, click Next.
10. Verify that you are extending the correct domain, then click Extend.

11. Click Done to exit.

WebLogic Web Services: Getting Started 4-3

For detailed instructions about using the Configuration Wizard to create and update WebLogic
Server domains, see Creating WebLogic Domains Using the Configuration Wizard.

Iterative Development of WebLogic Web Services
Starting From Java: Main Steps

44

This section describes the general procedure for iteratively developing WebLogic Web Services
starting from Java, if effect, coding the JWS file from scratch and later generating the WSDL file
that describes the service. See Chapter 3, “Common Web Services Use Cases and Examples” for
specific examples of this process. The following procedure is just a recommendation; if you have
already set up your own development environment, you can use this procedure as a guide for
updating your existing environment to develop WebLogic Web Services.

This procedure does not use the WebLogic Web Services split development directory
environment. If you are using this development environment, and would like to integrate Web
Services development into it, see “Integrating Web Services Into the WebLogic Split
Development Directory Environment” on page 4-22 for details.

To iteratively develop a WebLogic Web Service starting from Java, follow these steps:

1. Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) command, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory that will contain the JWS file, Java source for any user-defined data
types, and the Ant bui Id.xml file. You can name this directory anything you want.

3. In the project directory, create the JWS file that implements your Web Service.

See Chapter 5, “Programming the JWS File.”

4. If your Web Service uses user-defined data types, create the JavaBean that describes it.

See “Programming the User-Defined Java Data Type” on page 5-20.

5. Inthe project directory, create a basic Ant build file called bui Id_xml.

See “Creating the Basic Ant build.xml File” on page 4-7.

6. Run the jwsc Ant task against the JWS file to generate source code, data binding artifacts,
deployment descriptors, and so on, into an output directory. The jwsc Ant task generates an

WebLogic Web Services: Getting Started

Iterative Development of WebLogic Web Services Starting From a WSDL File: Main Steps

Enterprise Application directory structure at this output directory; later you deploy this
exploded directory to WebLogic Server as part of the iterative development process.

See “Running the jwsc WebLogic Web Services Ant Task” on page 4-8.

7. Deploy the Web Service to WebLogic Server.
See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

8. Invoke the WSDL of the Web Service to ensure that it was deployed correctly.
See “Browsing to the WSDL of the Web Service” on page 4-18.

9. Test the Web Service using the WebLogic Web Services test client.
See “Testing the Web Service” on page 4-21.

10. To make changes to the Web Service, update the JWS file, undeploy the Web Service as
described in “Deploying and Undeploying WebL ogic Web Services” on page 4-15, then
repeat the steps starting from running the jwsc Ant task.

See Chapter 8, “Invoking Web Services” for information on writing client applications that
invoke a Web Service.

Iterative Development of WebLogic Web Services
Starting From a WSDL File: Main Steps

This section describes the general procedure for iteratively developing WebLogic Web Services
based on an existing WSDL file. See Chapter 3, “Common Web Services Use Cases and
Examples” for a specific example of this process. The procedure is just a recommendation; if you
have already set up your own development environment, you can use this procedure as a guide
for updating your existing environment to develop WebLogic Web Services.

This procedure does not use the WebLogic Web Services split development directory
environment. If you are using this development environment, and would like to integrate Web
Services development into it, see “Integrating Web Services Into the WebLogic Split
Development Directory Environment” on page 4-22 for details.

It is assumed in this procedure that you already have an existing WSDL file.

To iteratively develop a WebLogic Web Service starting from WSDL, follow these steps.

1. Open a command window and set your WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) command, located in the bin
subdirectory of your domain directory. The default location of WebLogic Server domains is

WebLogic Web Services: Getting Started 4-5

46

BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

. Create a project directory that will contain the generated artifacts and the Ant bui 1d . xml file.

You can name this directory anything you want.

In the project directory, create a basic Ant build file called bui ld.xml.

See “Creating the Basic Ant build.xml File” on page 4-7.

. Put your WSDL file in a directory that the bui Id.xml Ant build file is able to read. For

example, you can put the WSDL file in awsdl_fi les child directory of the project directory.

. Runthe wsdlc Ant task against the WSDL file to generate the JWS interface, the stubbed-out

JWS class file, JavaBeans that represent the XML Schema data types, and so on, into output
directories.

See “Running the wsdlc WebLogic Web Services Ant Task” on page 4-11.

. Update the stubbed-out JWS file generated by the wsdlc Ant task, adding the business code

to make the Web Service work as you want.

See “Updating the Stubbed-Out JWS Implementation Class File Generated By wsdlc” on
page 4-13.

. Run the jwsc Ant task, specifying the artifacts generated by the wsdlc Ant task as well as

your updated JWS implementation file, to generate an Enterprise Application that implements
the Web Service.

See “Running the jwsc WebLogic Web Services Ant Task” on page 4-8.

. Deploy the Web Service to WebLogic Server.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15.

Invoke the deployed WSDL of the Web Service to test that the service was deployed
correctly.

The URL used to invoke the WSDL of the deployed Web Service is essentially the same as
the value of the location attribute of the <address> element in the original WSDL
(except for the host and port values which now correspond to the host and port of the
WebLogic Server instance to which you deployed the service.) This is because the wsdlc
Ant task generated values for the contextPath and serviceURI of the
@WLHttpTransport annotation in the JWS implementation file so that together they create
the same URI as the endpoint address specified in the original WSDL.

WebLogic Web Services: Getting Started

Creating the Basic Ant build.xml File

See either the original WSDL or “Browsing to the WSDL of the Web Service” on
page 4-18 for information about invoking the deployed WSDL.

10. Test the Web Service using the WebL ogic Web Services test client.
See “Testing the Web Service” on page 4-21.

11. To make changes to the Web Service, update the generated JWS file, undeploy the Web
Service as described in “Deploying and Undeploying WebLogic Web Services” on page 4-15,
then repeat the steps starting from running the jwsc Ant task.

See Chapter 8, “Invoking Web Services” for information on writing client applications that
invoke a Web Service.

Creating the Basic Ant build.xml File

Ant uses build files written in XML (default name bui Id.xml) that contain a <project> root
element and one or more targets that specify different stages in the Web Services development
process. Each target contains one or more tasks, or pieces of code that can be executed. This
section describes how to create a basic Ant build file; later sections describe how to add targets
to the build file that specify how to execute various stages of the Web Services development
process, such as running the jwsc Ant task to process a JWS file and deploying the Web Service
to WebLogic Server.

The following skeleton bui 1d.xml file specifies a default al I target that calls all other targets
that will be added in later sections:

<project default=""all">

<target name="all"
depends="'clean,build-service,deploy" />

<target name="'clean'>
<delete dir="output" />
</target>

<target name="build-service">
<I--add jwsc and related tasks here -->
</target>

<target name="deploy">
<l--add wldeploy task here -->
</target>

</project>

WebLogic Web Services: Getting Started 4-7

Running the jwsc WebLogic Web Services Ant Task

The jwsc Ant task takes as input a JWS file that contains both standard (JSR-181) and
WebLogic-specific JWS annotations and generates all the artifacts you need to create a
WebLogic Web Service. The JWS file can be either one you coded yourself from scratch or one
generated by the wsdlc Ant task. The jwsc-generated artifacts include:

e Java source files that implement a standard JSR-109 Web Service.

e All required deployment descriptors. In addition to the standard webservices.xml and
JAX-RPC mapping files, the jwsc Ant task also generates the WebL ogic-specific Web
Services deployment descriptor (weblogic-wesbservices.xml), the web_xml and
weblogic.xml files for Java class-implemented Web Services and the ejb-jar.xml and
weblogic-ejb-jar.xml files for EJB-implemented Web Services.

e The XML Schema representation of any Java user-defined types used as parameters or
return values to the Web Service operations.

e The WSDL file that publicly describes the Web Service.

If you are running the jwsc Ant task against a JWS file generated by the wsd1c Ant task, the jwsc
task does not generate these artifacts, because the wsdlc Ant task already generated them for you
and packaged them into a JAR file In this case, you use an attribute of the jwsc Ant task to specify
this wsdlc-generated JAR file.

After generating all the required artifacts, the jwsc Ant task compiles the Java files (including
your JWS file), packages the compiled classes and generated artifacts into a deployable JAR
archive file, and finally creates an exploded Enterprise Application directory that contains the
JAR file.

To run the jwsc Ant task, add the following taskdef and bui ld-service target to the
build.xml file:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service'">

<jwsc
srcdir="src_directory"
destdir="ear_directory"
>
<jws File="JWS_Tfile"

4-8 WebLogic Web Services: Getting Started

Running the jwsc WebLogic Web Services Ant Task

compi ledWsdI="WSDLC_Generated_JAR" />
</jwsc>

</target>

where

e ear_directory refers to an Enterprise Application directory that will contain all the
generated artifacts.

e src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

e Jws_Tile refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

e WSDLC_Generated_JAR refers to the JAR file generated by the wsdlc Ant task that
contains the JWS interface file and data binding artifacts that correspond to an existing
WSDL file.

Note: You specify this attribute only in the “starting from WSDL” use case; this procedure
is described in “Iterative Development of WebLogic Web Services Starting From a
WSDL File: Main Steps” on page 4-5.

The required taskdef element specifies the full class name of the jwsc Ant task.

Only the srcdir and destdir attributes of the jwsc Ant task are required. This means that, by
default, it is assumed that Java files referenced by the JWS file (such as JavaBeans input
parameters or user-defined exceptions) are in the same package as the JWS file. If this is not the
case, use the sourcepath attribute to specify the top-level directory of these other Java files. See
jwsc for more information.

Examples of Using jwsc

The following bui 1d . xmlI excerpt shows an example of running the jwsc Ant task on a JWS file:

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service">

<jwsc
srcdir="src"
destdir="output/hel loWorldEar">

WebLogic Web Services: Getting Started 4-9

<jws
file="examples/webservices/hello_world/HelloWorldImpl.java" />
</jwsc>
</target>

In the example, the Enterprise Application will be generated, in exploded form, in
output/hel loWorIdEar, relative to the current directory. The JWS file is called
HelloworldImpl _java, and is located in the src/examples/webservices/hello_world
directory, relative to the current directory. This implies that the JWS file is in the package

examples.webservices.helloWorld

The following example is similar to the preceding one, except that it uses the compi ledWwsdl
attribute to specify the JAR file that contains wsd I c-generated artifacts (for the “starting with

WSDL" use case):

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<target name="build-service">

<jwsc
srcdir="src"
destdir="output/wsdlcEar'>

<jws
file="examples/webservices/wsdlc/TemperaturePortTypelmpl.java"

compiledWsdl="output/compiledWsdl/TemperatureService_wsdl.jar" />

</jwsc>
</target>

In the preceding example, the TemperaturePortTypelmpl . java file is the stubbed-out JWS

file that you previously updated to include the business logic to make your service work as you
want. Because the compi ledwsd1 attribute is specified and points to a JAR file, the jwsc Ant

task does not regenerate the artifacts that are included in the JAR.

To actually run this task, type at the command line the following:

prompt> ant build-service

4-10 WebLogic Web Services: Getting Started

Running the wsdlc WebLogic Web Services Ant Task

Advanced Uses of jwsc

This section described two very simple examples of using the jwsc Ant task. The task, however,
includes additional attributes and child elements that make the tool very powerful and useful. For
example, you can use the tool to:

e Process multiple JWS files at once. You can choose to package each resulting Web Service
into its own Web application WAR file, or group all of the Web Services into a single
WAR file.

e Specify the transports (HTTP/HTTPS/IMS) that client applications can use when invoking
the Web Service, possibly overriding any existing @WLXXXTransport annotations.

e Automatically generate the JAX-RPC client stubs of any other Web Service that is invoked
within the JWS file.

e Update an existing Enterprise Application or Web application, rather than generate a
completely new one.

See jwsc in WebLogic Web Services Reference for complete documentation and examples about
the jwsc Ant task.

Running the wsdic WebLogic Web Services Ant Task

The wsdlc Ant task takes as input a WSDL file and generates artifacts that together partially
implement a WebLogic Web Service. These artifacts include:

e The JWS interface file that represents the Java implementation of your Web Service.

e Data binding artifacts used by WebLogic Server to convert between the XML and Java
representations of the Web Service parameters and return values.

e A JWS file that contains a stubbed-out implementation of the generated JWS interface.

e Optional Javadocs for the generated JWS interface.

The wsdlc Ant task packages the JWS interface file and data binding artifacts together into a JAR
file that you later specify to the jwsc Ant task. You never need to update this JAR file; the only
file you update is the JWS implementation class.

To run the wsdlc Ant task, add the following taskdef and generate-from-wsd| targets to the
build.xml file:

<taskdef name="wsdlc"
classname=""weblogic.wsee.tools.anttasks.WsdlcTask"/>

WebLogic Web Services: Getting Started 4-1

4-12

<target name='‘generate-from-wsdl">

<wsdlc
srcWsdl="WSDL_TFfile"
destJwsDir="JWS_interface_directory"
destimpIDir="JWS_implementation_directory"
packageName=""Package_name" />
</target>

where

e WSDL_file refers to the name of the WSDL file from which you want to generate a partial

implementation, including its absolute or relative pathname.

JWS_interface_directory refers to the directory into which the JAR file that contains
the JWS interface and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFile_wsdl . jar, where WSDLFi le refers to the
root name of the WSDL file. For example, if the name of the WSDL file you specify to the
file attribute is MyService.wsdl, then the generated JAR file is MyService_wsdl . jar.

JWS_implementation_directory refers to the top directory into which the stubbed-out
JWS implementation file is generated. The file is generated into a sub-directory hierarchy
corresponding to its package name.

The name of the generated JWS file is PortTypelmpl . java, where PortType refers to
the name attribute of the <portType> element in the WSDL file for which you are
generating a Web Service. For example, if the port type name is MyServicePortType,
then the JWS implementation file is called MyServicePortTypelmpl . java.

Package_name refers to the package into which the generated JWS interface and
implementation files should be generated. If you do not specify this attribute, the wsdlc
Ant task generates a package name based on the targetNamespace of the WSDL.

The required taskdef element specifies the full class name of the wsdlc Ant task.

Only the srcwsdl and destJwsDir attributes of the wsdlc Ant task are required. Typically,
however, you also generate the stubbed-out JWS file to make your programming easier. BEA also
recommends you explicitly specify the package name in case the targetNamespace of the
WSDL file is not suitable to be converted into a readable package name.

The following bui Id.xml excerpt shows an example of running the wsdlc Ant task against a
WSDL file:

WebLogic Web Services: Getting Started

Updating the Stubbed-Out JWS Implementation Class File Generated By wsdlc

<taskdef name="wsdlc"
classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

<target name=''generate-from-wsdl">

<wsdlc
srcWsdl="wsdl_files/TemperatureService.wsdl"
destJwsDir="output/compiledWsdl"
destimpIDir="impl_output"
packageName=""examples.webservices.wsdlc" />

</target>

In the example, the existing WSDL file is called TemperatureService.wsdl and is located in
the wsdl_fi les subdirectory of the directory that contains the bui 1d.xml file. The JAR file that
will contain the JWS interface and data binding artifacts is generated to the
output/compiledwsdl directory; the name of the JAR file is

TemperatureService_wsdl . jar. The package name of the generated JWS files is
examples.webservices.wsdld. The stubbed-out JWS file is generated into the
impl_output/examples/webservices/wsdlc directory relative to the current directory.
Assuming that the port type name in the WSDL file is TemperaturePortType, then the name of
the JWS implementation file is TemperaturePortTypelmpl . java.

To actually run this task, type the following at the command line:
prompt> ant generate-from-wsdl

See wsdlc in WebLogic Web Services Reference for additional attributes of the wsdlc Ant task.

Updating the Stubbed-0ut JWS Implementation Class File
Generated By wsdic

The wsdlc Ant task generates the stubbed-out JWS implementation file into the directory
specified by its dest Imp1Dir attribute; the name of the file is PortTypelmpl . java, where
PortType is the name of the portType in the original WSDL. The class file includes everything
you need to compile it into a Web Service, except for your own business logic in the methods that
implement the operations.

The JWS class implements the JWS Web Service endpoint interface that corresponds to the
WSDL file; the JWS interface is also generated by wsdlc and is located in the JAR file that
contains other artifacts, such as the Java representations of XML Schema data types in the WSDL
and so on. The public methods of the JWS class correspond to the operations in the WSDL file.

WebLogic Web Services: Getting Started 4-13

The wsdlc Ant task automatically includes the @webService and @WLHttpTransport
annotations in the JWS implementation class; the values of the attributes correspond to equivalent
values in the WSDL. For example, the serviceName attribute of @webService is the same as
the name attribute of the <service> element in the WSDL file; the contextPath and
serviceUri attributes of @WLHttpTransport together make up the endpoint address specified
by the location attribute of the <address> element in the WSDL.

When you update the JWS file, you add Java code to the methods so that the corresponding Web
Service operations works as you want. Typically, the generated JWS file contains comments
where you should add code, such as:

//replace with your impl here

You can also add additional JWS annotations to the file, with the following restrictions:

e The only standard JWS annotations (in the javax. jws.* package) you can include in the
JWS implementation file are @webService, @HandlerChain, @S0OAPMessageHand ler,
and @SOAPMessageHandlers. If you specify any other standard JWS annotations, the
Jwsc Ant task returns error when you try to compile the JWS file into a Web Service.

e You can specify only the serviceName and endpointinterface attributes of the
@WebService annotation. Use the serviceName attribute to specify a different <service>
WSDL element from the one that the wsdlc Ant task used, in the rare case that the WSDL
file contains more than one <service> element. Use the endpointiInterface attribute to
specify the JWS interface generated by the wsdlc Ant task.

e You can specify any WebL ogic-specific JWS annotation that you want.

After you have updated the JWS file, BEA recommends that you move it to an official source
location, rather than leaving it in the wsdlc output location.

The following example shows the wsd I c-generated JWS implementation file from the WSDL
shown in “Sample WSDL File” on page 3-19; the text in bold indicates where you would add
Java code to implement the single operation (getTemp) of the Web Service:

package examples.webservices.wsdlc;

import javax.jws.WebService;
import weblogic.jws.*;

* TemperaturePortTypelmpl class implements web service endpoint interface
* TemperaturePortType */

WebLogic Web Services: Getting Started

Deploying and Undeploying WebLogic Web Services

@WebService(
serviceName="TemperatureService",
endpointinterface="examples.webservices.wsdlc.TemperaturePortType')

@WLHttpTransport(
contextPath="temp",
serviceUri="TemperatureService",
portName=""TemperaturePort')

public class TemperaturePortTypelmpl implements TemperaturePortType {
public TemperaturePortTypelmpl() {
}
public float getTemp(Java.lang.String zipcode)
{
//replace with your impl here

return O;

}

Deploying and Undeploying WebLogic Web Services

Because Web Services are packaged as Enterprise Applications, deploying a Web Service simply
means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the Administration
Console to using the weblogic.Deployer Java utility. There are also various issues you must
consider when deploying an application to a production environment as opposed to a
development environment. For a complete discussion about deployment, see Deploying
WebLogic Server Applications.

This guide, because of its development nature, discusses just two ways of deploying Web
Services:

e Using the wldeploy Ant Task to Deploy Web Services

e Using the Administration Console to Deploy Web Services

WebLogic Web Services: Getting Started 4-15

4-16

Using the wideploy Ant Task to Deploy Web Services

The easiest way to quickly deploy a Web Service as part of the iterative development process is
to add a target that executes the wldeploy WebLogic Ant task to your bui Id.xml file that

contains the jwsc Ant task. You can add tasks to both deploy and undeploy the Web Service so
that as you add more Java code and regenerate the service, you can redeploy and test it iteratively.

To use the wideploy Ant task, add the following target to your bui Id.xml file:
<target name="deploy">

<wldeploy action="deploy"
name=""DeploymentName"
source=""Source" user="AdminUser"
password=""AdminPassword"
adminurl="AdminServerURL"
targets="'ServerName'/>

</target>
where

e DeploymentName refers to the deployment name of the Enterprise Application, or the
name that appears in the Administration Console under the list of deployments.

e Source refers to the name of the Enterprise Application EAR file or exploded directory that
is being deployed. By default, the jwsc Ant task generates an exploded Enterprise
Application directory.

e AdminUser refers to administrative username.
e AdminPassword refers to the administrative password.

e AdminServerURL refers to the URL of the Administration Server, typically
t3://1ocalhost:7001.

e ServerName refers to the name of the WebLogic Server instance to which you are
deploying the Web Service.

For example, the following wldeploy task specifies that the Enterprise Application exploded
directory, located in the output/ComplexServiceEar directory relative to the current directory,
be deployed to the myServer WebLogic Server instance. Its deployed name is
ComplexServiceEar.

<target name="deploy">

WebLogic Web Services: Getting Started

Deploying and Undeploying WebLogic Web Services

<wldeploy action="deploy"
name=""ComplexServiceEar"
source=""output/ComplexServiceEar" user="weblogic"
password="weblogic" verbose="true"
adminurl="t3://1ocalhost:7001"
targets="myserver"/>

</target>
To actually deploy the Web Service, execute the deploy target at the command-line:
prompt> ant deploy

You can also add a target to easily undeploy the Web Service so that you can make changes to its
source code, then redeploy it:

<target name="undeploy">

<wldeploy action="undeploy"
name=""ComplexServiceEar"
user="weblogic"
password="weblogic" verbose=""true"
adminurl="t3://1ocalhost:7001"
targets="myserver"/>

</target>

When undeploying a Web Service, you do not specify the source attribute, but rather undeploy
it by its name.

Using the Administration Console to Deploy Web Services

To use the Administration Console to deploy the Web Service, first invoke it in your browser
using the following URL.:

http://[host]: [port]/console

where:

e host refers to the computer on which WebLogic Server is running.

e port refers to the port number on which WebLogic Server is listening (default value is
7001).

Then use the deployment assistants to help you deploy the Enterprise application. For more
information on the Administration Console, see the Online Help.

WebLogic Web Services: Getting Started 4-11

Browsing to the WSDL of the Web Service

You can display the WSDL of the Web Service in your browser to ensure that it has deployed
correctly.

The following URL shows how to display the Web Service WSDL in your browser:
http://[host]: [port]/[contextPath]/[serviceUri]?WSDL

where:

o host refers to the computer on which WebLogic Server is running.

e port refers to the port number on which WebLogic Server is listening (default value is
7001).

e contextPath refers to the context root of the Web Service. There are many places to set the
context root (the contextPath attribute of the @WLHttpTransport annotation, the
<WLHttpTransport>, <module>, or<jws> element of jwsc) and certain methods take
precedence over others. See How to Determine the Final Context Root of a WebLogic Web
Service for a complete explanation.

o serviceUri refers to the value of the serviceUri attribute of the @WLHttpTransport JWS
annotation of the JWS file that implements your Web Service or <WLHttpTransport>
child element of the jwsc Ant task; the second takes precedence over the first.

For example, assume you used the following @WLHttpTransport annotation in the JWS file that
implements your Web Service

@WLHttpTransport(contextPath="complex’,
serviceUri="ComplexService",
portName=""ComplexServicePort')

/**

* This JWS file forms the basis of a WebLogic Web Service.

*/

public class ComplexServicelmpl {

Further assume that you do not override the contextPath or serviceURI values by setting
equivalent attributes for the <WLHttpTransport> element of the jwsc Ant task. Then the URL

4-18 WebLogic Web Services: Getting Started

Configuring the Server Address Specified in the Dynamic WSDL

to view the WSDL of the Web Service, assuming the service is running on a host called ariel at
the default port number (7001), is:

http://ariel :7001/complex/ComplexService?WSDL

Configuring the Server Address Specified in the Dynamic
WSDL

The WSDL of a deployed Web Service (also called dynamic WSDL) includes an <address>
element that assigns an address (URI) to a particular Web Service port. For example, assume that
the following WSDL snippet partially describes a deployed WebLogic Web Service called
ComplexService:

<definitions name="ComplexServiceDefinitions"
targetNamespace="http://example.org">

<service name="ComplexService'>
<port binding="s0:ComplexServiceSoapBinding" name="ComplexServicePort">
<sl:address location=""http://myhost:7101/complex/ComplexService"/>
</port>
</service>

</definitions>

The preceding example shows that the ComplexService Web Service includes a port called
ComplexServicePort, and this port has an address of
http://myhost:7101/complex/ComplexService.

WebLogic Server determines the complex/ComplexService section of this address by
examining the contextPath and serviceURI attributes of the WLXXXTransport annotations
or jwsc elements, as described in “Browsing to the WSDL of the Web Service” on page 4-18.
However, the method WebLogic Server uses to determine the protocol and host section of the
address (http://myhost:7101, in the example) is more complicated, as described below. For
clarity, this section uses the term server address to refer to the protocol and host section of the
address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed Web
Service depends on whether the Web Service can be invoked using HTTP/S or JMS, whether you
have configured a proxy server, whether the Web Service is deployed to a cluster, or whether the
Web Service is actually a callback service. The following sections reflect these different
configuration options, and provide links to procedural information about changing the

WebLogic Web Services: Getting Started 4-19

4-20

configuration to suit your needs. It is assumed in the sections that you use the WebLogic Server
Administration Console to configure cluster and standalone servers.

Web Service is not a callback service and can be invoked using HTTP/S

1.

If the Web Service is deployed to a cluster, and the cluster Frontend Host, Frontend HTTP
Port, and Frontend HTTPS Port are set, then WebLogic Server uses these values in the
server address of the dynamic WSDL.

See Configure HTTP Settings for a Cluster.

If the preceding cluster values are not set, but the Frontend Host, Frontend HTTP Port,
and Frontend HTTPS Port values are set for the individual server to which the Web Service
is deployed, then WebLogic Server uses these values in the server address.

See Configure HTTP Protocol.

If these values are not set for either the cluster or an individual server, then WebL ogic Server
uses the server address of the WSDL request in the dynamic WSDL as well.

Web Service is not a callback service and can be invoked using JMS Transport

1.

If the Web Service is deployed to a cluster and the Cluster Address is set, then WebLogic
Server uses this value in the server address of the dynamic WSDL.

See Configure Clusters.

If the cluster address is not set, or the Web Service is deployed to a standalone server, and the
Listen Address of the server to which the Web Service is deployed is set, then WebLogic
Server uses this value in the server address.

See Configure Listen Addresses.

Web Service is a callback service

1.

If the callback service is deployed to a cluster, and the cluster Frontend Host, Frontend
HTTP Port, and Frontend HTTPS Port are set, then WebLogic Server uses these values in
the server address of the dynamic WSDL.

See Configure HTTP Settings for a Cluster.

If the callback service is deployed to either a cluster or a standalone server, and the preceding
cluster values are not set, but the Frontend Host, Frontend HTTP Port, and Frontend
HTTPS Port values are set for the individual server to which the callback service is deployed,
then WebLogic Server uses these values in the server address.

See Configure HTTP Protocol.

WebLogic Web Services: Getting Started

Testing the Web Service

3. If the callback service is deployed to a cluster, but none of the preceding values are set, but
the Cluster Address is set, then WebLogic Server uses this value in the server address.

See Configure Clusters.

4. If none of the preceding values are set, but the Listen Address of the server to which the
callback service is deployed is set, then WebLogic Server uses this value in the server address.

See Configure Listen Addresses.
Web Service is invoked using a proxy server.

Although not required, BEA recommends that you explicitly set the Frontend Host, FrontEnd
HTTP Port, and Frontend HTTPS Port of either the cluster or individual server to which the
Web Service is deployed to point to the proxy server.

See Configure HTTP Settings for a Cluster or Configure HTTP Protocol.

Testing the Web Service

After you have deployed a WebLogic Web Service, you can use the Web Services Test Client,
included in the WebLogic Administration Console, to test your service without writing code. You
can quickly and easily test any Web Service, including those with complex types and those using
advanced features of WebLogic Server such as conversations. The test client automatically
maintains a full log of requests allowing you to return to previous call to view the results.

To test a deployed Web Service using the Administration Console, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:
http://[host]:[port]/console

where:
— host refers to the computer on which WebLogic Server is running.

— port refers to the port number on which WebLogic Server is listening (default value is
7001).

2. Follow the procedure described in Test a Web Service.

WebLogic Web Services: Getting Started 41

Integrating Web Services Into the WebLogic Split
Development Directory Environment

This section describes how to integrate Web Services development into the WebLogic split
development directory environment. It is assumed that you understand this WebL ogic feature and
have already set up this type of environment for developing standard Java Platform, Enterprise
Edition (Java EE) Version 5 applications and modules, such as EJBs and Web applications, and
you want to update the single bui Id.xml file to include Web Services development.

4-22

For detailed information about the WebLogic split development directory environment, see
Creating a Split Development Directory for an Application and the splitdir/hellowWorldEar
example installed with WebLogic Server, located in the
BEA_HOME/wlserver_10.0/samples/server/examples/src/examples directory, where
BEA_HOME refers to the main installation directory for BEA products, such as c:/bea.

1.

In the main project directory, create a directory that will contain the JWS file that implements
your Web Service.

For example, if your main project directory is called /src/hel loWorIdEar, then create a
directory called /src/helloWorldEar/helloWebService:

prompt> mkdir /src/helloWorldEar/helloWebService

Create a directory hierarchy under the hel lowebService directory that corresponds to the
package name of your JWS file.

For example, if your JWS file is in the package examples_splitdir.hello package,
then create a directory hierarchy examples/splitdir/hello:

prompt> cd /src/helloWorldEar/helloWebService
prompt> mkdir examples/splitdir/hello

Put your JWS file in the just-created Web Service subdirectory of your main project directory
(/src/helloworldEar/hel loWebService/examples/splitdir/hello in this
example.)

In the bui Id.xml file that builds the Enterprise application, create a new target to build the
Web Service, adding a call to the jwsc WebLogic Web Service Ant task, as described in
“Running the jwsc WebLogic Web Services Ant Task” on page 4-8.

The jwsc srcdir attribute should point to the top-level directory that contains the JWS
file (hellowebService in this example). The jwsc destdir attribute should point to the
same destination directory you specify for wlcompi le, as shown in the following example:

<target name="build.helloWebService">

WebLogic Web Services: Getting Started

Integrating Web Services Into the WebLogic Split Development Directory Environment

<jwsc
srcdir="helloWebService"
destdir="destination_dir"
keepGenerated="yes" >

<jws File="examples/splitdir/hello/HelloWorldimpl._java" />
</jwsc>
</target>
In the example, destination_dir refers to the destination directory that the other split
development directory environment Ant tasks, such as wlappc and wlcompi le, also use.
Update the main build target of the bui Id.xml file to call the Web Service-related targets:
<!-- Builds the entire helloWorldEar application -->

<target name="build"
description="Compiles helloWorldEar application and runs appc"
depends=""build-helloWebService,compile,appc'” />

WARNING: When you actually build your Enterprise Application, be sure you run the
Jwsc Ant task before you run the wlappc Ant task. This is because wlappc
requires some of the artifacts generated by jwsc for it to execute successfully.
In the example, this means that you should specify the
build-helloWebService target before the appc target.

If you use the wlcompi le and wlappc Ant tasks to compile and validate the entire Enterprise
Application, be sure to exclude the Web Service source directory for both Ant tasks. This is
because the jwsc Ant task already took care of compiling and packaging the Web Service.
For example:

<target name="compile”>

<wlcompile srcdir="${src.dir}" destdir="${dest.dir}"
excludes=""appStartup,helloWebService'">

</wlcomplile>
</target>
<target name="appc''>

<wlappc source="${dest.dir}" deprecation="yes" debug="false"
excludes="hel loWebService'/>

</target>

Update the application.xml file in the META-INF project source directory, adding a <web>
module and specifying the name of the WAR file generated by the jwsc Ant task.

WebLogic Web Services: Getting Started 4-23

4-24

For example, add the following to the application.xml file for the helloWorld Web
Service:

<application>

<module>
<web>
<web-uri>examples/splitdir/hello/HelloWorldImpl .war</web-uri>
<context-root>/hello</context-root>
</web>
</module>

</application>

Caution: The jwsc Ant task always generates a Web Application WAR file from the JWS file
that implements your Web Service, unless your JWS file explicitly implements
javax.ejb.SessionBean. Inthatcase you mustadd an <ejb>module element to
the application.xml file instead

Your split development directory environment is now updated to include Web Service
development. When you rebuild and deploy the entire Enterprise Application, the Web Service
will also be deployed as part of the EAR. You invoke the Web Service in the standard way
described in “Browsing to the WSDL of the Web Service” on page 4-18.

WebLogic Web Services: Getting Started

Programming the JWS File

The following sections provide information about programming the JWS file that implements
your Web Service:

“Overview of JWS Files and JWS Annotations” on page 5-2

“Programming the JWS File: Java Requirements” on page 5-2

“Programming the JWS File: Typical Steps” on page 5-3

“Accessing Runtime Information about a Web Service Using the JwsContext” on page 5-11
“Should You Implement a Stateless Session EJB?” on page 5-17

“Programming the User-Defined Java Data Type” on page 5-20

“Throwing Exceptions” on page 5-22

“Invoking Another Web Service from the JWS File” on page 5-25

“Programming Additional Miscellaneous Features Using JWS Annotations and APIs” on
page 5-25

“JWS Programming Best Practices” on page 5-32

WARNING: Although both JAX-RPC 1.1 and JAX-WS 2.0 are supported in this release of

WebLogic Server, this document concentrates almost exclusively on describing
how to create JAX-RPC style Web Services. This is because, in this release, all
the WS-* specifications (such as WS-Security and WS-ReliableMessaging) and
WebLogic value-added features (such as asynchronous request-response and

WebLogic Web Services: Getting Started 5-1

callbacks) work only with JAX-RPC style Web Services. Therefore, unless
otherwise stated, you should assume that all descriptions and examples are for
JAX-RPC Web Services.

For specific information about creating JAX-WS Web Services, see Chapter 6,
“Implementing a JAX-WS 2.0 Web Service.”

Overview of JWS Files and JWS Annotations

One way to program a WebLogic Web Service is to code the standard JSR-109 EJB or Java class
from scratch and generate its associated artifacts manually (deployment descriptor files, WSDL
file, data binding artifacts for user-defined data types, and so on). This process can be difficult
and tedious. BEA recommends that you take advantage of the metadata annotations feature, new
in JDK 5.0, and use a programming model in which you create an annotated Java file and then
use Ant tasks to compile the file into the Java source code and generate all the associated artifacts.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains the Java
code that determines how your Web Service behaves. A JWS file is an ordinary Java class file
that uses JDK 5.0 metadata annotations to specify the shape and characteristics of the Web
Service. The JWS annotations you can use in a JWS file include the standard ones defined by the
Web Services Metadata for the Java Platform specification (JSR-181) as well as a set of
WebLogic-specific ones.

This topic is part of the iterative development procedure for creating a Web Service, described in
“Iterative Development of WebLogic Web Services Starting From Java: Main Steps” on page 4-4
and “Iterative Development of WebLogic Web Services Starting From a WSDL File: Main
Steps” on page 4-5. It is assumed that you have created a JWS file and now want to add JWS
annotations to it.

Programming the JWS File: Java Requirements

When you program your JWS file, you must follow a set of requirements, as specified by the
JSR-181 specification (Web Services Metadata for the Java Platform). In particular, the Java
class that implements the Web Service:

e Must be an outer public class, must not be final, and must not be abstract.
e Must have a default public constructor.

o Must not define a finalize() method.

5-2 WebLogic Web Services: Getting Started

Programming the JWS File: Typical Steps

e Must include, at a minimum, a @WebService JWS annotation at the class level to indicate
that the JWS file implements a Web Service.

e May reference a service endpoint interface by using the
@webService.endpointinterface annotation. In this case, it is assumed that the service
endpoint interface exists and you cannot specify any other JWS annotations in the JWS file
other than @webService.endpointinterface and @WebService.serviceName.

o |f JWS file does not implement a service endpoint interface, all public methods other than
those inherited from java. lang.Object will be exposed as Web Service operations. This
behavior can be overridden by using the @webMethod annotation to specify explicitly those
public methods that are to be exposed. If a @WebMethod annotation is present, only the
methods to which it is applied are exposed.

Programming the JWS File: Typical Steps

The following sections how to use standard (JSR-181) and WebLogic-specific annotations in
your JWS file to program basic Web Service features. The annotations are used at different levels,
or targets, in your JWS file. Some are used at the class-level to indicate that the annotation applies
to the entire JWS file. Others are used at the method-level and yet others at the parameter level.
The sections discuss the following basic JWS annotations:

e @WebService (standard)

e @SOAPBinding (standard)

e @WLHttpTransport (WebLogic-specific)
e @WebMethod (standard)

e @0Oneway (standard)

e @WebParam (standard)

e @WebResult (standard)

See WebLogic Web Services: Advanced Programming for information on using other JWS
annotations to program more advanced features, such as Web Service reliable messaging,
conversations, SOAP message handlers, and so on.

For reference documentation about the WebLogic-specific JWS annotations, see JWS
Annotation Reference.

WebLogic Web Services: Getting Started 5-3

5-4

The following procedure describes the typical basic steps when programming the JWS file that
implements a Web Service. See “Example of a JWS File” on page 5-5 for a code example.

1. Import the standard JWS annotations that will be used in your JWS file. The standard JWS
annotations are in either the javax. jws or javax. jws.soap package. For example:

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

2. Import the WebLogic-specific annotations used in your JWS file. The WebLogic-specific
annotations are in the weblogic. jws package. For example:

import weblogic. jws_WLHttpTransport;

3. Add the standard required @webService JWS annotation at the class level to specify that the
Java class exposes a Web Service.

See “Specifying That the JWS File Implements a Web Service” on page 5-6.

4. Optionally add the standard @SOAPBinding JWS annotation at the class level to specify the
mapping between the Web Service and the SOAP message protocol. In particular, use this
annotation to specify whether the Web Service is document-literal, RPC-encoded, and so on.

Although this JWS annotation is not required, BEA recommends you explicitly specify it
in your JWS file to clarify the type of SOAP bindings a client application uses to invoke
the Web Service.

See “Specifying the Mapping of the Web Service to the SOAP Message Protocol” on
page 5-7.

5. Optionally add the WebL ogic-specific @WLHttpTransport JWS annotation at the class level
to specify the context path and service URI used in the URL that invokes the Web Service.

Although this JWS annotation is not required, BEA recommends you explicitly specify it
in your JWS file so that it is clear what URL a client application uses to invoke the Web
Service.

See “Specifying the Context Path and Service URI of the Web Service” on page 5-8.

6. Foreach method in the JWS file that you want to expose as a public operation, optionally add
a standard @webMethod annotation. Optionally specify that the operation takes only input
parameters but does not return any value by using the standard @0neway annotation.

See “Specifying That a JWS Method Be Exposed as a Public Operation” on page 5-8.

7. Optionally customize the name of the input parameters of the exposed operations by adding
standard @webParam annotations.

WebLogic Web Services: Getting Started

Programming the JWS File: Typical Steps

See “Customizing the Mapping Between Operation Parameters and WSDL Parts” on
page 5-9.

8. Optionally customize the name and behavior of the return value of the exposed operations by
adding standard @webResul t annotations.

See “Customizing the Mapping Between the Operation Return Value and a WSDL Part” on
page 5-10.

9. Add business Java code to the methods to make the WebService behave the way you want.

Example of a JWS File

The following sample JWS file shows how to implement a simple Web Service.

package examples.webservices.simple;
// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interfaces
import weblogic. jws_WLHttpTransport;

// Standard JWS annotation that specifies that the porType name of the Web
// Service is "SimplePortType"™, the service name is "SimpleService", and the
// targetNamespace used in the generated WSDL is "http://example.org"

@webService(name="SimplePortType'", serviceName="SimpleService",
targetNamespace=""http://example.org"™)

// Standard JWS annotation that specifies the mapping of the service onto the
// SOAP message protocol. In particular, it specifies that the SOAP messages
// are document-literal-wrapped.

@SOAPBinding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

// WebLogic-specific JWS annotation that specifies the context path and
// service URI used to build the URI of the Web Service is
// "simple/SimpleService"

@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
portName="SimpleServicePort')

WebLogic Web Services: Getting Started 5-5

/**
* This JWS file forms the basis of simple Java-class implemented WeblLogic

* Web Service with a single operation: sayHello
*

*/
public class Simplelmpl {

// Standard JWS annotation that specifies that the method should be exposed
// as a public operation. Because the annotation does not include the

// member-value "operationName', the public name of the operation is the
// same as the method name: sayHello.

@webMethod ()

public String sayHello(String message) {
System.out._printIn(“'sayHello:" + message);
return "Here is the message: "' + message + ""'";

}
}

Specifying That the JWS File Implements a Web Service

Use the standard @webService annotation to specify, at the class level, that the JWS file
implements a Web Service, as shown in the following code excerpt:

@webService(name="SimplePortType'", serviceName="SimpleService",
targetNamespace=""http://example.org™)

In the example, the name of the Web Service is SimplePortType, which will later map to the
wsdl :portType element in the WSDL file generated by the jwsc Ant task. The service name is
SimpleService, which will map to the wsd 1 :service element in the generated WSDL file. The
target namespace used in the generated WSDL is http://example.org.

You can also specify the following additional attribute of the @webService annotation:

e endpointinterface—Fully qualified name of an existing service endpoint interface file.
If you specify this attribute, the jwsc Ant task does not generate the interface for you, but
assumes you have already created it and it is in your CLASSPATH.

None of the attributes of the @webService annotation is required. See the Web Services Metadata
for the Java Platform for the default values of each attribute.

5-6 WebLogic Web Services: Getting Started

Programming the JWS File: Typical Steps

Specifying the Mapping of the Web Service to the SOAP
Message Protocol

It is assumed that you want your Web Service to be available over the SOAP message protocol;
for this reason, your JWS file should include the standard @SOAPBinding annotation, at the class
level, to specify the SOAP bindings of the Web Service (such as RPC-encoded or
document-literal-wrapped), as shown in the following code excerpt:

@SOAPBiInding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBiInding.ParameterStyle . WRAPPED)

In the example, the Web Service uses document-wrapped-style encodings and literal message
formats, which are also the default formats if you do not specify the @S0APBinding annotation.

You can also use the WebL ogic-specific @weblogic. jws.soap.SOAPBinding annotation to
specify the SOAP binding at the method level; the attributes are the same as the standard
@javax. jws.soap.SOAPBinding annotation.

You use the parameterStyle attribute (in conjunction with the
style=SOAPBinding.Style.DOCUMENT attribute) to specify whether the Web Service
operation parameters represent the entire SOAP message body, or whether the parameters are
elements wrapped inside a top-level element with the same name as the operation.

The following table lists the possible and default values for the three attributes of the
@SOAPBinding (either the standard or WebLogic-specific) annotation.

Table 5-1 Attributes of the @SOAPBinding Annotation

Attribute

Possible Values

Default Value

style

SOAPBinding.Style.RPC
SOAPBinding.Style _.DOCUMENT

SOAPBinding.Style.DOCUMENT

use

SOAPBinding.Use.LITERAL
SOAPBinding.Use.ENCODED

SOAPBinding.Use.LITERAL

parameterStyle

SOAPBiInding.ParameterStyle.BARE
SOAPBinding.ParameterStyle . WRAP
PED

SOAPBinding.ParameterStyle WRAP
PED

WebLogic Web Services: Getting Started

5-1

5-8

Specifying the Context Path and Service URI of the Webh
Service

Use the WebLogic-specific @WLHttpTransport annotation to specify the context path and
service URI sections of the URL used to invoke the Web Service over the HTTP transport, as well
as the name of the port in the generated WSDL, as shown in the following code excerpt:

@WLHttpTransport(contextPath="simple", serviceUri="SimpleService",
portName="SimpleServicePort')

In the example, the name of the port in the WSDL (in particular, the name attribute of the <port>
element) file generated by the jwsc Ant task is SimpleServicePort. The URL used to invoke
the Web Service over HTTP includes a context path of simple and a service URI of
SimpleService, as shown in the following example:

http://host:port/simple/SimpleService

For reference documentation on this and other WebLogic-specific annotations, see JWS
Annotation Reference.

Specifying That a JWS Method Be Exposed as a Public
Operation

Use the standard @webMethod annotation to specify that a method of the JWS file should be
exposed as a public operation of the Web Service, as shown in the following code excerpt:

public class Simplelmpl {

@webMethod(operationName="sayHel loOperation')

public String sayHello(String message) {
System.out.printin(“sayHello:" + message);
return "Here is the message: "' + message + ""'";

}

In the example, the sayHel 1o() method of the Simplelmpl JWS file is exposed as a public
operation of the Web Service. The operationName attribute specifies, however, that the public
name of the operation in the WSDL file is sayHel loOperation. If you do not specify the
operationName attribute, the public name of the operation is the name of the method itself.

WebLogic Web Services: Getting Started

Programming the JWS File: Typical Steps

You can also use the action attribute to specify the action of the operation. When using SOAP
as a binding, the value of the action attribute determines the value of the SOAPAction header
in the SOAP messages.

You can specify that an operation not return a value to the calling application by using the
standard @oneway annotation, as shown in the following example:

public class OneWaylmpl {

@webMethod ()
@oneway ()

public void ping(Q {
System.out.printin("'ping operation');

}

If you specify that an operation is one-way, the implementing method is required to return void,
cannot use a Holder class as a parameter, and cannot throw any checked exceptions.

None of the attributes of the @webMethod annotation is required. See the Web Services Metadata
for the Java Platform for the default values of each attribute, as well as additional information
about the @webMethod and @oneway annotations.

If none of the public methods in your JWS file are annotated with the @webMethod annotation,
then by default all public methods are exposed as Web Service operations.

Customizing the Mapping Between Operation Parameters
and WSDL Parts

Use the standard @webParam annotation to customize the mapping between operation input
parameters of the Web Service and elements of the generated WSDL file, as well as specify the
behavior of the parameter, as shown in the following code excerpt:

public class Simplelmpl {

@webMethod ()
@WebResult(name=""IntegerOutput",
targetNamespace="http://example.org/docLiteralBare')
public int echolnt(
@webParam(name=""Integerlnput",
targetNamespace=""http://example.org/docLiteralBare')
int input)

WebLogic Web Services: Getting Started 5-9

5-10

System.out.printin(*'echolnt *" + input + "" to you too!");
return input;

In the example, the name of the parameter of the echolInt operation in the generated WSDL is
IntegerInput; if the @webParam annotation were not present in the JWS file, the name of the
parameter in the generated WSDL file would be the same as the name of the method’s parameter:
input. The targetNamespace attribute specifies that the XML namespace for the parameter is
http://example.org/docLiteralBare; this attribute is relevant only when using
document-style SOAP bindings where the parameter maps to an XML element.

You can also specify the following additional attributes of the @webParam annotation:

e mode—The direction in which the parameter is flowing (WebParam.Mode. IN,
WebParam.Mode . OUT, or WebParam.Mode . INOUT). The OUT and INOUT modes may be
specified only for parameter types that conform to the JAX-RPC definition of Holder
types. OUT and INOUT modes are only supported for RPC-style operations or for
parameters that map to headers.

e header—Boolean attribute that, when set to true, specifies that the value of the parameter
should be retrieved from the SOAP header, rather than the default body.

None of the attributes of the @webParam annotation is required. See the Web Services Metadata
for the Java Platform for the default value of each attribute.

Customizing the Mapping Between the Operation Return
Value and a WSDL Part

Use the standard @webResult annotation to customize the mapping between the Web Service
operation return value and the corresponding element of the generated WSDL file, as shown in
the following code excerpt:

public class Simple {

@webMethod ()
@WebResult(name=""IntegerOutput",
targetNamespace="http://example.org/docLiteralBare')
public int echolnt(
@webParam(name=""Integerlnput",

WebLogic Web Services: Getting Started

Accessing Runtime Information about a Web Service Using the JwsContext

targetNamespace=""http://example.org/docLiteralBare’)

int input)

{
System.out.printin(*'echolnt *" + input + "" to you too!");
return input;

¥

In the example, the name of the return value of the echoInt operation in the generated WSDL is
IntegerOutput; if the @webResul t annotation were not present in the JWS file, the name of the
return value in the generated WSDL file would be the hard-coded name return. The
targetNamespace attribute specifies that the XML namespace for the return value is
http://example.org/docLiteralBare; this attribute is relevant only when using
document-style SOAP bindings where the return value maps to an XML element.

None of the attributes of the @webResul t annotation is required. See the Web Services Metadata
for the Java Platform for the default value of each attribute.

Accessing Runtime Information about a Web Service
Using the JwsContext

When a client application invokes a WebLogic Web Service that was implemented with a JWS
file, WebLogic Server automatically creates a context that the Web Service can use to access, and
sometimes change, runtime information about the service. Much of this information is related to
conversations, such as whether the current conversation is finished, the current values of the
conversational properties, changing conversational properties at runtime, and so on. (See
Creating Conversational Web Services for information about conversations and how to
implement them.) Some of the information accessible via the context is more generic, such as the
protocol that was used to invoke the Web Service (HTTP/S or JIMS), the SOAP headers that were
in the SOAP message request, and so on.

You can use annotations and WebLogic Web Service APIs in your JWS file to access runtime
context information, as described in the following sections.

Guidelines for Accessing the Web Service Context

The following example shows a simple JWS file that uses the context to determine the protocol
that was used to invoke the Web Service; the code in bold is discussed in the programming
guidelines described after the example.

WebLogic Web Services: Getting Started 5-11

package examples.webservices.jws_context;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic. jws.Context;

import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws.Protocol;

@WebService(name="JwsContextPortType", serviceName="JwsContextService",
targetNamespace=""http://example.org™)

@WLHttpTransport(contextPath="contexts", serviceUri="JwsContext",
portName=""JwsContextPort')

/**
* Simple web service to show how to use the @Context annotation.
*/

public class JwsContextimpl {

@Context
private JwsContext ctx;

@webMethod ()
public String getProtocol() {

Protocol protocol = ctx.getProtocol();

System.out.printin(*protocol: + protocol);
return "This is the protocol: " + protocol;

}
}

Use the following guidelines in your JWS file to access the runtime context of the Web Service,
as shown in the code in bold in the preceding example:
e Import the @weblogic. jws.Context JWS annotation:

import weblogic. jws.Context;

e Import the weblogic.wsee. jws.JwsContext API, as well as any other related APIs that
you might use (the example also uses the weblogic.wsee. jws.Protocol API):

import weblogic.wsee.jws.JwsContext;
import weblogic.wsee.jws._Protocol;

See the weblogic.wsee. * Javadocs for reference documentation about the context-related
APIs.

5-12 WebLogic Web Services: Getting Started

Accessing Runtime Information about a Web Service Using the JwsContext

e Annotate a private variable, of data type weblogic.wsee. jws.JwsContext, with the
field-level @Context JWS annotation:

@Context
private JwsContext ctx;

WebLogic Server automatically assigns the annotated variable (in this case, ctx) with a
runtime implementation of JwsContext the first time the Web Service is invoked, which is
how you can later use the variable without explicitly initializing it in your code.

e Use the methods of the JwsContext class to get, and sometimes change, runtime
information about the Web Service. The following example shows how to get the protocol
that was used to invoke the Web Service:

Protocol protocol = ctx.getProtocol();

See “Methods of the JwsContext” on page 5-13 for the full list of available methods.

Methods of the JwsContext

The following table briefly describes the methods of the JwsContext that you can use in your
JWS file to access runtime information about the Web Service. See weblogic.wsee. * Javadocs
for detailed reference information about JwsContext, and other context-related APIs, as
Protocol and ServiceHandle.

Tahle 5-2 Methods of the JwsContext

Method Returns Description

isFinished() boolean Returns a boolean value specifying whether the current
conversation is finished, or if it is still continuing.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

finishConversation() void Finishes the current conversation.

This method is equivalent to a client application invoking a
method that has been annotated with the @Conversation
(Conversation._Phase.FINISH) JWS annotation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

WebLogic Web Services: Getting Started 5-13

Tahle 5-2 Methods of the JwsContext

Method Returns Description
setMaxAge(java.util.LD void Sets a new maximum age for the conversation to an absolute
ate) Date. If the date parameter is in the past, WebLogic Server

immediately finishes the conversation.

This method is equivalent to the maxAge attribute of the
@Conversational annotation, which specifies the default
maximum age of a conversation. Use this method to override this
default value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

setMaxAge(String) void Sets a new maximum age for the conversation by specifying a
String duration, suchas 1 day.

Valid values for the String parameter are a number and one of
the following terms:

= seconds

= minutes

= hours

- days

= years

For example, to specify a maximum age of ten minutes, use the
following syntax:

ctx.setMaxAge(*'10 minutes™)

This method is equivalent to the maxAge attribute of the
@Conversational annotation, which specifies the default

maximum age of a conversation. Use this method to override this
default value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getMaxAge() long Returns the maximum allowed age, in seconds, of a conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

5-14 WebLogic Web Services: Getting Started

Tahle 5-2 Methods of the JwsContext

Accessing Runtime Information about a Web Service Using the JwsContext

Method

Returns

Description

getCurrentAge()

long

Returns the current age, in seconds, of the conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

resetldleTime()

void

Resets the timer which measures the number of seconds since the
last activity for the current conversation.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

setMaxIdleTime(long)

void

Sets the number of seconds that the conversation can remain idle
before WebLogic Server finishes it due to client inactivity.

This method is equivalent to the max1dleTime attribute of the
@Conversational annotation, which specifies the default idle
time of a conversation. Use this method to override this default
value at runtime.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

WebLogic Web Services: Getting Started 5-15

Tahle 5-2 Methods of the JwsContext

Method Returns Description

setMaxIdleTime(Strin void Sets the number of seconds, specified as a String, that the

9) conversation can remain idle before WebLogic Server finishes it
due to client inactivity.
Valid values for the String parameter are a number and one of
the following terms:
= seconds
< minutes
< hours
= days
- years
For example, to specify a maximum idle time of ten minutes, use
the following syntax:
ctx.setMaxldleTime("'10 minutes')
This method is equivalent to the max 1dleTime attribute of the
@Conversational annotation, which specifies the default idle
time of a conversation. Use this method to override this default
value at runtime.
Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getMaxldleTime() long Returns the number of seconds that the conversation is allowed to
remain idle before WebLogic Server finishes it due to client
inactivity.
Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getCurrentldleTime() long Gets the number of seconds since the last client request, or since

the conversation's maximum idle time was reset.

Use this method only in conversational Web Services, or those
that have been annotated with the @Conversation or
@Conversational annotation.

getCallerPrincipal()

java.security.Pr
incipal

Returns the security principal associated with the operation that
was just invoked, assuming that basic authentication was
performed.

5-16 WebLogic Web Services: Getting Started

Should You Implement a Stateless Session EJB?

Tahle 5-2 Methods of the JwsContext

Method Returns Description

isCallerinRole(String) boolean Returns true if the authenticated principal is within the specified
security role.

getService() weblogic.wsee. Returns an instance of ServiceHandle, a WebLogic Web
jws.ServiceHan Service API, which you can query to gather additional information
dle about the Web Service, such as the conversation ID (if the Web

Service is conversational), the URL of the Web Service, and so on.

getLogger(String) weblogic.wsee. Gets an instance of the Logger class, which you can use to send
jws.util.Logger messages from the Web Service to a log file.

getinputHeaders() org.w3c.dom.E Returns an array of the SOAP headers associated with the SOAP
lement[] request message of the current operation invoke.
setUnderstoodInputHe void Indicates whether input headers should be understood.

aders(boolean)

getUnderstoodInputHe boolean Returns the value that was most recently set by a call to

aders() setUnderstoodInputHeader.

setOutputHeaders(Ele void Specifies an array of SOAP headers that should be associated with
ment([]) the outgoing SOAP response message sent back to the client

application that initially invoked the current operation.

getProtocol() weblogic.wsee. Returns the protocol (such as HTTP/S or JIMS) used to invoke the
jws.Protocol current operation.

Should You Implement a Stateless Session EJB?

The jwsc Ant task always chooses a plain Java object as the underlying implementation of a Web
Service when processing your JWS file.

Sometimes, however, you might want the underlying implementation of your Web Service to be
a stateless session EJB so as to take advantage of all that EJBs have to offer, such as instance
pooling, transactions, security, container-managed persistence, container-managed relationships,
and data caching. If you decide you want an EJB implementation for your Web Service, then
follow the programming guidelines in the following section.

WebLogic Web Services: Getting Started 5-11

5-18

Programming Guidelines When Implementing an EJB in Your
JWS File

The general guideline is to always use EJBGen annotations in your JWS file to automatically
generate, rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB. EJBGen annotations work in the
same way as JWS annotations: they follow the JDK 5.0 metadata syntax and greatly simplify your
programming tasks.

For more information on EJBGen, see the EJBGen Reference section in Programming WebLogic
Enterprise JavaBeans.

Follow these guidelines when explicitly implementing a stateless session EJB in your JWS file.
See “Example of a JWS File That Implements an EJB” on page 5-19 for an example; the relevant
sections are shown in bold:

e Import the standard Java Platform, Enterprise Edition (Java EE) Version 5 EJB classes:

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

e Import the EJBGen annotations, all of which are in the weblogic.ejbgen package. At a
minimum you need to import the @Session annotation; if you want to use additional
EJBGen annotations in your JWS file to specify the shape and behavior of the EJB, see the
EJBGen reference guide for the name of the annotation you should import.

import weblogic.ejbgen.Session;

e At a minimum, use the @Session annotation at the class level to specify the name of the
EJB:

@Session(ejbName="TransactionEJB'")

@Session is the only required EJBGen annotation when used in a JWS file. You can, if
you want, use other EJBGen annotations to specify additional features of the EJB.

e Ensure that the JWS class implements SessionBean:

public class Transactionlmpl implements SessionBean {...

e You must also include the standard EJB methods ejbCreate(), ejbActivate() and so
on, although you typically do not need to add code to these methods unless you want to
change the default behavior of the EJB:

public void ejbCreate() {}
public void ejbActivate() {}
public void ejbRemove() {}

WebLogic Web Services: Getting Started

Should You Implement a Stateless Session EJB?

public void ejbPassivate() {}
public void setSessionContext(SessionContext sc) {}

If you follow all these guidelines in your JWS file, the jwsc Ant task later compiles the Web
Service into an EJB and packages it into an EJB JAR file inside of the Enterprise Application.

Example of a JWS File That Implements an EJB

The following example shows a simple JWS file that implement a stateless session EJB. The
relevant code is shown in bold.

package examples.webservices.transactional;

import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic. jws.Transactional;

import weblogic.ejbgen.Session;
@Session(ejbName="TransactionEJB'")

@WebService(name="TransactionPortType', serviceName="TransactionService",
targetNamespace=""http://example.org™)

@WLHttpTransport(contextPath="transactions', serviceUri="TransactionService",
portName=""TransactionPort')

/**
* This JWS file forms the basis of simple EJB-implemented WebLogic
* Web Service with a single operation: sayHello. The operation executes

* as part of a transaction.
*

*/
public class Transactionlmpl implements SessionBean {

@webMethod ()
@Transactional (value=true)

public String sayHello(String message) {
System.out._printin('sayHello:" + message);
return "Here is the message: "' + message + ""';

}
// Standard EJB methods. Typically there"s no need to override the methods.

WebLogic Web Services: Getting Started 5-19

public void ejbCreate() {}

public void ejbActivate() {}

public void ejbRemove() {}

public void ejbPassivate() {}

public void setSessionContext(SessionContext sc) {}

}

Programming the User-Defined Java Data Type

The methods of the JWS file that are exposed as Web Service operations do not necessarily take
built-in data types (such as Strings and integers) as parameters and return values, but rather, might
use a Java data type that you create yourself. An example of a user-defined data type is
TradeResult, which has two fields: a String stock symbol and an integer number of shares
traded.

If your JWS file uses user-defined data types as parameters or return values of one or more of its
methods, you must create the Java code of the data type yourself, and then import the class into
your JWS file and use it appropriately. The jwsc Ant task will later take care of creating all the
necessary data binding artifacts, such as the corresponding XML Schema representation of the
Java user-defined data type, the JAX-RPC type mapping file, and so on.

Follow these basic requirements when writing the Java class for your user-defined data type:
e Define a default constructor, which is a constructor that takes no parameters.

e Define both getXxxX() and setxxx() methods for each member variable that you want to
publicly expose.

e Make the data type of each exposed member variable one of the built-in data types, or
another user-defined data type that consists of built-in data types.

These requirements are specified by JAX-RPC 1.1; for more detailed information and the
complete list of requirements, see the JAX-RPC specification at
http://java.sun.com/xml/jaxrpc/index.jsp.

The jwsc Ant task can generate data binding artifacts for most common XML and Java data
types. For the list of supported user-defined data types, see “Supported User-Defined Data
Types” on page 7-6. See “Supported Built-In Data Types” on page 7-2 for the full list of
supported built-in data types.

The following example shows a simple Java user-defined data type called BasicStruct:

package examples.webservices.complex;

5-20 WebLogic Web Services: Getting Started

Programming the User-Defined Java Data Type

/**
* Defines a simple JavaBean called BasicStruct that has integer, String,
* and String[] properties
*
/

public class BasicStruct {
// Properties

private int intvValue;
private String stringValue;
private String[] stringArray;

// Getter and setter methods

public int getintvValue() {
return intValue;

}

public void setIntValue(int intvValue) {
this_.intvValue = intValue;

}

public String getStringvValue() {
return stringValue;

}

public void setStringValue(String stringValue) {
this.stringValue = stringValue;

}

public String[] getStringArray() {
return stringArray;

}

public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;

}

}

The following snippets from a JWS file show how to import the BasicStruct class and use it as
both a parameter and return value for one of its methods; for the full JWS file, see “Sample
ComplexImpl.java JWS File” on page 3-11:

WebLogic Web Services: Getting Started 5-21

package examples.webservices.complex;

// Import the standard JWS annotation interfaces

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebResult;

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic-specific JWS annotation interface

import weblogic. jws_WLHttpTransport;

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

@webService(serviceName="ComplexService", name="ComplexPortType',

targetNamespace=""http://example.org")

public class ComplexImpl {

@webMethod(operationName="echoComplexType')
public BasicStruct echoStruct(BasicStruct struct)

{
}

return struct;

}

Throwing Exceptions

5-22

When you write the error-handling Java code in methods of the JWS file, you can either throw
your own user-defined exceptions or throw a javax.xml . rpc.soap.SOAPFaultException
exception. If you throw a SOAPFaul tException, WebLogic Server maps it to a SOAP fault and
sends it to the client application that invokes the operation.

If your JWS file throws any type of Java exception other than SOAPFaul tException, WebLogic
Server tries to map it to a SOAP fault as best it can. However, if you want to control what the
client application receives and send it the best possible exception information, you should
explicitly throw a SOAPFaul tException exception or one that extends the exception. See the
JAX-RPC 1.1 specification at http://java.sun.com/xml/jaxrpc/index.jsp for detailed information
about creating and throwing your own user-defined exceptions.

The following excerpt describes the SOAPFaul tException class:

WebLogic Web Services: Getting Started

Throwing Exceptions

public class SOAPFaultException extends java.lang.RuntimeException {

public SOAPFaultException (QName faultcode,
String faultstring,
String faultactor,
jJavax.xml .soap.Detail detail) {...}
public Qname getFaultCode() {---}
public String getFaultString() {---}
public String getFaultActor() {...}
public javax.xml.soap.Detail getDetail() {--.}

Use the SOAP with Attachments API for Java 1.1 (SAAJ)
javax.xml .soap.SOAPFactory.createDetai I () method to create the Detai I object, which

is a container for Detai IEntry objects that provide detailed application-specific information
about the error.

You can use your own implementation of the SOAPFactory, or use BEA's, which can be accessed
in the JWS file by calling the static method
weblogic.wsee.util .WLSOAPFactory.createSOAPFactory() which returns a

jJavax.xml .soap.SOAPFactory object. Then at runtime, use the

-Djavax.xml .soap.SOAPFactory flag to specify BEA’s SOAPFactory implementation as

shown:

-Djavax.xml .soap.SOAPFactory=weblogic.xml .saaj .SOAPFactorylImpl

The following JWS file shows an example of creating and throwing a SOAPFaul tException
from within a method that implements an operation of your Web Service; the sections in bold
highlight the exception code:

package examples.webservices.soap_exceptions;

import javax.
import javax.
import javax.
import javax.
import javax.

xml .namespace .QName;

xml _.soap.Detail;

xml _.soap - SOAPException;

xml .soap.SOAPFactory;

xml . rpc.soap.SOAPFaultException;

// Import the @WebService annotation

import javax.jws.WebService;

// Import WLHttpTransport

import weblogic. jws.WLHttpTransport;

@WebService(serviceName=""SoapExceptionsService",

name=""SoapExceptionsPortType",

targetNamespace=""http://example.org™)

WebLogic Web Services: Getting Started 5-23

@WLHttpTransport(contextPath="exceptions",

/**

serviceUri="SoapExceptionsService",
portName="'SoapExceptionsServicePort")

* This JWS file forms the basis of simple Java-class implemented WeblLogic
* Web Service with a single operation: sayHelloWorld

*

* @author Copyright (c) 2005 by BEA Systems. All rights reserved.

*/

public class SoapExceptionsimpl {

public SoapExceptionsimpl() {

}

public void tirarSOAPException() {

5-24

Detail detail = null;

try {

SOAPFactory soapFactory = SOAPFactory.newlnstance();
detail = soapFactory.createDetail();

} catch (SOAPException e) {
// do something
}

QName faultCode = null;

String faultString = "the fault string”;

String faultActor = "the fault actor";

throw new SOAPFaultException(faultCode, faultString, faultActor, detail);

The preceding example uses the default implementation of SOAPFactory.

WARNING: If you create and throw your own exception (rather than use
SOAPFaul tException) and two or more of the properties of your exception class
are of the same data type, then you must also create setter methods for these
properties, even though the JAX-RPC specification does not require it. This is
because when a WebLogic Web Service receives the exception in a SOAP
message and converts the XML into the Java exception class, there is no way of
knowing which XML element maps to which class property without the
corresponding setter methods.

WebLogic Web Services: Getting Started

Invoking Another Web Service from the JWS File

Invoking Another Web Service from the JWS File

From within your JWS file you can invoke another Web Service, either one deployed on
WebLogic Server or one deployed on some other application server, such as .NET. The steps to
do this are similar to those described in “Invoking a Web Service from a Stand-alone JAX-RPC
Java Client” on page 3-23, except that rather than running the clientgen Ant task to generate
the client stubs, you include a <clientgen> child element of the jwsc Ant task that builds the
invoking Web Service to generate the client stubs instead. You then use the standard JAX-RPC
APIs in your JWS file the same as you do in a stand-alone client application.

See “Invoking a Web Service from Another Web Service” on page 8-12 for detailed instructions.

Programming Additional Miscellaneous Features Using
JWS Annotations and APIs

The following sections describe additional miscellaneous features you can program by specifying
particular JWS annotations in your JWS file or using WebLogic Web Services APIs:

e “Sending Binary Data Using MTOM/XOP” on page 5-25

e “Streaming SOAP Attachments” on page 5-28

e “Using SOAP 1.2” on page 5-28

e “Specifying that Operations Run Inside of a Transaction” on page 5-29

e “Getting the HttpServletRequest/Response Object” on page 5-30

Sending Binary Data Using MTOM/XO0P

MTOMY/XOP describes a method for optimizing the transmission of XML data of type
xs:base64Binary in SOAP messages. When the transport protocol is HTTP, MIME
attachments are used to carry that data while at the same time allowing both the sender and the
receiver direct access to the XML data in the SOAP message without having to be aware that any
MIME artifacts were used to marshal the xs:base64Binary data.

MTOM/XOP support is standard in JAX-WS 2.0 via the use of JWS annotations. For details, see
the JAX-WS section in the Sun Developer Network. In this release of WebLogic Server,
JAX-RPC-style Web Services also support it.

The MTOM specification does not require that, when MTOM is enabled, the Web Service
runtime use XOP binary optimization when transmitting base64binary data. Rather, the

WebLogic Web Services: Getting Started 5-25

specification allows the runtime to choose to do so. This is because in certain cases the runtime
may decide that it is more efficient to send base64binary data directly in the SOAP Message;
an example of such a case is when transporting small amounts of data in which the overhead of
conversion and transport consumes more resources than just inlining the data as is. The
WebLogic Web Services implementation for MTOM for JAX-RPC service, however, always
uses MTOM/XOP when MTOM is enabled.

Support for MTOM/XOP in WebLogic JAX-RPC Web Services is implemented using the
pre-packaged WS-Policy file Mtom.xml. WS-Policy files follow the WS-Policy specification;
this specification provides a general purpose model and XML syntax to describe and
communicate the policies of a Web Service, in this case the use of MTOM/XOP to send binary
data. The installation of the pre-packaged Mtom.xml WS-Policy file in the types section of the
Web Service WSDL is as follows (provided for your information only; you cannot change this
file):

<wsp:Policy wsu:ld="myService_policy">
<wsp:ExactlyOne>
<wsp:All>
<wsoma:OptimizedMimeSerialization

xmIns:wsoma=""http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeseriali
zation" />
</wsp:All>
</wsp:ExactlyOne>
</wsp:Policy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file; the
snippet indicates that the Web Service uses MTOM/XOP:

<wsdl :binding name="BasicHttpBinding_IMtomTest""
type=""10: IMtomTest"">
<wsp:PolicyReference URI="#myService_policy" />
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

You can associate the Mtom.xml WS-Policy file with a Web Service at development-time by
specifying the @Pol icy metadata annotation in your JWS file. Be sure you also specify the
attachToWsdl=true attribute to ensure that the dynamic WSDL includes the required reference
to the Mtom.xml file; see the example below.

5-26 WebLogic Web Services: Getting Started

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

You can associate the Mtom.xml WS-Poligy file with a Web Service at deployment time by
modifying the WSDL by adding the Policy to the types section just before deployment.

You can also attach the file at runtime using by the Administration Console; for details, see
Associate a WS-Policy File With A Web Service. This section describes how to use the JWS
annotation.

WARNING: Inthis release of WebLogic Server, the only supported Java data type when using
MTOM/XOP is byte[]; other binary data types, such as image, are not
supported.

In addition, this release of WebLogic Server does not support using MTOM with
message-level security. In practical terms this means that you cannot specify the
Mtom.xml WS-Policy file together with the Encrypt._xml, Sign.xml,
Wssc-dk.xml, or Wssc-sct.xml WS-Policy files in the same JAX-RPC Web
Service.

To send binary data using MTOM/XOP, follow these steps:

1. Use the WebLogic-specific @weblogic. jws.Policy annotation in your JWS file to specify
that the pre-packaged Mtom.xml file should be applied to your Web Service, as shown in the
following simple JWS file (relevant code shown in bold):

package examples.webservices.mtom;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic.jws_WLHttpTransport;
import weblogic.jws.Policy;

@WebService(name="MtomPortType",
serviceName=""MtomService",
targetNamespace=""http://example.org")

@WLHttpTransport(contextPath="mtom",
serviceUri="MtomService",
portName=""MtomServicePort")

@Policy(uri="policy:Mtom.xml", attachToWsdl=true)
public class Mtomlmpl {

@WebMethod
public String echoBinaryAsString(byte[] bytes) {
return new String(bytes);

}

2. Use the Java byte[] data type in your Web Service operations as either a return value or input
parameter whenever you want the resulting SOAP message to use MTOM/XOP to send or

WebLogic Web Services: Getting Started 5-21

5-28

receive the binary data. See the implementation of the echoBinaryAsString operation
above for an example; this operation simply takes as input an array of byte and returns it as
a String.

3. The WebLogic Web Services runtime has built in MTOM/XOP support which is enabled if
the WSDL that the clientgen Ant task generates client-side artifacts for specifies
MTOM/XOP support. In your client application itself, simply invoke the operations as usual,
using byte[] as the relevant data type.

See the SOAP Message Transmission Optimization Mechanism specification for additional
information about the MTOM/XOP feature itself as well as the version of the specification
supported by WebLogic JAX-RPC Web Services.

Streaming SOAP Attachments

Using the @weblogic. jws.StreamAttachments JWS annotation, you can specify that a Web
Service use a streaming APl when reading inbound SOAP messages that include attachments,

rather than the default behavior in which the service reads the entire message into memory. This
feature increases the performance of Web Services whose SOAP messages are particular large.

See weblogic.jws.StreamAttachments for an example of specifying that attachments should be
streamed.

Using SOAP 1.2

WebLogic Web Services use, by default, VVersion 1.1 of Simple Object Access Protocol (SOAP)
as the message format when transmitting data and invocation calls between the Web Service and
its client. To specify that the Web Service use Version 1.2 of SOAP, use the class-level
@weblogic. jws.Binding annotation in your JWS file and set its single attribute to the value
Binding.Type.S0AP12, as shown in the following example (relevant code shown in bold):

package examples.webservices.soapl2;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic.jws.Binding;

@WebService(name=""SOAP12PortType",
serviceName=""SOAP12Service",
targetNamespace=""http://example.org")

WebLogic Web Services: Getting Started

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

@WLHttpTransport(contextPath="soapl2",
serviceUri="SOAP12Service",
portName=""SOAP12ServicePort')

@Binding(Binding.Type.SOAP12)

/**

* This JWS file forms the basis of simple Java-class implemented WebLogic
* Web Service with a single operation: sayHello. The class uses SOAP 1.2
* as its binding.

*

*/

public class SOAP12Impl {

@webMethod ()
public String sayHello(String message) {
System.out.printin(“sayHello:" + message);
return "Here is the message: "' + message + ""';
}
3

Other than set this annotation, you do not have to do anything else for the Web Service to use
SOAP 1.2, including changing client applications that invoke the Web Service; the WebLogic
Web Services runtime takes care of all the rest.

Specifying that Operations Run Inside of a Transaction

When a client application invokes a WebLogic Web Service operation, the operation invocation
takes place outside the context of a transaction, by default. If you want the operation to run inside
atransaction, specify the @weblogic. jws. Transactional annotation in your JWS file, and set
the boolean value attribute to true, as shown in the following example (relevant code shown in
bold):

package examples.webservices.transactional;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic. jws.Transactional;

WebLogic Web Services: Getting Started 5-29

@WebService(name="TransactionPojoPortType",
serviceName="TransactionPojoService",
targetNamespace=""http://example.org")

@WLHttpTransport(contextPath=""transactionsPojo",
serviceUri="TransactionPojoService",
portName="TransactionPojoPort')

/**

* This JWS File forms the basis of simple WebLogic

* Web Service with a single operation: sayHello. The operation executes
* as part of a transaction.

*

*/

public class TransactionPojolmpl {

@webMethod ()

@Transactional (value=true)

public String sayHello(String message) {
System.out.println('sayHello:" + message);
return "Here iIs the message: "' + message + ""'';

}
}

If you want all operations of a Web Service to run inside of a transaction, specify the
@Transactional annotation at the class-level. If you want only a subset of the operations to be
transactional, specify the annotation at the method-level. If there is a conflict, the method-level
value overrides the class-level.

See weblogic.jws.Transactional for information about additional attributes.

Getting the HttpServletRequest/Response Object

If your Web Service uses HTTP as its transport protocol, you can use the
weblogic.wsee.connection.transport.servlet.HttpTransportUtils API to get the
javax.servlet._http.HttpServletRequest and
javax.servlet.http.HttpServletResponse objects from the JAX-RPC
ServletEndpointContext object, as shown in the following example (relevant code shown in
bold and explained after the example):

package examples.webservices.http_transport_utils;

5-30 WebLogic Web Services: Getting Started

Programming Additional Miscellaneous Features Using JWS Annotations and APIs

import javax.xml_rpc.server.ServicelLifecycle;
import javax.xml._.rpc.server.ServletEndpointContext;
import javax.xml.rpc.ServiceException;

import javax.servlet.http_HttpServletRequest;
import javax.servlet.http_HttpServletResponse;

import javax.jws.WebMethod;
import javax.jws.WebService;

import weblogic. jws_WLHttpTransport;
import weblogic.wsee.connection.transport.servlet_HttpTransportUtils;

@webService(name="HttpTransportUtilsPortType",
serviceName=""HttpTransportUtilsService",
targetNamespace="http://example.org"™)

@WLHttpTransport(contextPath="servlet"”, serviceUri="HttpTransportUtils",
portName="HttpTransportUtilsPort')

public class HttpTransportUtilsimpl implements ServicelLifecycle {
private ServletEndpointContext wsctx = null;

public void init(Object context) throws ServiceException {
System.out.printIn(*"ServletEndpointContext inited...");
wsctx = (ServletEndpointContext)context;

}

public void destroy() {
System.out.printIn(*'ServletEndpointContext destroyed...");
wsctx = null;

}

@webMethod()
public String getServletRequestAndResponse() {

HttpServletRequest request =
HttpTransportUtils.getHttpServletRequest(wsctx.getMessageContext());

HttpServletResponse response =
HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());

System.out.printin("HttpTransportUtils APl used successfully.'™);
return "HttpTransportUtils APl used successfully';

The important parts of the preceding example are as follows:

WebLogic Web Services: Getting Started 5-31

e Import the required JAX-RPC and Servlet classes:

import javax.xml_rpc.server.ServicelLifecycle;
import javax.xml._.rpc.server.ServletEndpointContext;
import javax.xml.rpc.ServiceException;

import javax.servlet.http_HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

e Import the WebLogic HttpTransportuUti Is class:

import weblogic.wsee.connection.transport.servlet_HttpTransportUtils;

e Because you will be querying the JAX-RPC message context, your JWS file must
explicitly implement ServiceLifecycle:

public class HttpTransportUtilsimpl implements ServicelLifecycle

e Create a variable of data type ServletEndpointContext:

private ServletEndpointContext wsctx = null;

e Because the JWS file implements ServiceLifecycle, you must also implement the init
and destroy lifecycle methods:

public void init(Object context) throws ServiceException {
System.out.printIn(*"ServletEndpointContext inited...");
wsctx = (ServletEndpointContext)context;

}

public void destroy() {
System.out._printIn(*'ServletEndpointContext destroyed...");
wsctx = null;

}

e Finally, in the method that implements the Web Service operation, use the
ServletEndpointContext object to get the HttpServletRequest and
HttpServletResponse objects:

HttpServletRequest request =
HttpTransportUtils.getHttpServietRequest(wsctx.getMessageContext());

HttpServletResponse response =
HttpTransportUtils.getHttpServletResponse(wsctx.getMessageContext());

JWS Programming Best Practices

The following list provides some best practices when programming the JWS file:

5-32 WebLogic Web Services: Getting Started

JWS Programming Best Practices

e When you create a document-literal-bare Web Service, use the @webParam JWS annotation
to ensure that all input parameters for all operations of a given Web Service have a unique
name.

Because of the nature of document-literal-bare Web Services, if you do not explicitly use
the @webParam annotation to specify the name of the input parameters, WebLogic Server
creates one for you and run the risk of duplicating the names of the parameters across a
Web Service.

e In general, document-literal-wrapped Web Services are the most interoperable type of Web
Service.

e Use the @webResult JWS annotation to explicitly set the name of the returned value of an
operation, rather than always relying on the hard-coded name return, which is the default
name of the returned value if you do not use the @webResult annotation in your JWS file.

e Use soapraultExceptions in your JWS file if you want to control the exception
information that is passed back to a client application when an error is encountered while
invoking a the Web Service.

e Even though it is not required, BEA recommends you always specify the portName
attribute of the WebL ogic-specific @WLHttpTransport annotation in your JWS file. If
you do not specify this attribute, the jwsc Ant task will generate a port name for you when
generating the WSDL file, but this name might not be very user-friendly. A consequence
of this is that the getxXx() method you use in your client applications to invoke the Web
Service will not be very well-named. To ensure that your client applications use the most
user-friendly methods possible when invoking the Web Service, specify a relevant name of
the Web Service port by using the portName attribute.

WebLogic Web Services: Getting Started 5-33

5-34 WebLogic Web Services: Getting Started

CHAPTERa

Implementing a JAX-WS 2.0 Web
Service

The following topics describe why and how to implement a JAX-WS 2.0 Web Service:
e “Implementing a JAX-WS Web Service: Overview” on page 6-1
e “Implementing a JAX-WS Web Service: Guidelines” on page 6-3

e “Simple Example of Implementing a JAX-WS Web Service” on page 6-4

Implementing a JAX-WS Web Service: Overview

Although both Java API for XML-Based RPC (JAX-RPC) 1.1 and Java API for XML Web
Services (JAX-WS) 2.0 are supported in this release of WebLogic Server, the WebLogic Web
Services documentation concentrates almost exclusively on describing how to create
JAX-RPC-based Web Services. This is because all the WS-* specifications (such as WS-Security
and WS-ReliableMessaging) and the WebL ogic value-added features (such as asynchronous
request-response and callbacks) work only with JAX-RPC style Web Services. For this reason,
unless you specifically want to create a JAX-WS Web Service, it is assumed that you want to
create a JAX-RPC service so that you can take full advantage of all features provided by
WebLogic Server. This section, however, describes why and how to implement a JAX-WS 2.0
Web Service.

Reasons to implement a Web Service based on JAX-WS 2.0 include the following:

o JAX-WS 2.0 fully supports the Java Architecture for XML Binding (JAXB) 2.0
specification and thus provides full XML Schema support. JAXB provides a convenient
way to bind an XML schema to a representation in Java code. This makes it easy for you

WebLogic Web Services: Getting Started 6-1

6-2

to incorporate XML data and processing functions in applications based on Java
technology without having to know much about XML itself.

By contrast, the built-in and user-defined data types you can use in a JAX-RPC-style Web
Service, although extensive, is limited to those described in “Data Types and Data
Binding” on page 7-1.

The JAX-WS 2.0 programming model is very similar to that of JAX-RPC 1.1 Web
Services in that it uses metadata annotations described in the Web Services Metadata for
the Java Platform (JSR 181) specification and then Ant tasks to compile the annotated Java
file into a deployable enterprise application (EAR) file. However, the JAX-WS 2.0
programming model is more robust because it defines additional annotations, listed in the
JAX-WS 2.0 specification, that you can use to customize the mapping from Java to XML
schema/WSDL and to map Web Service operation parameter names to meaningful
part/element names in the WSDL file.

JAX-WS 2.0 defines two types of handlers: logical and protocol handlers. While protocol
handlers have access to an entire message such as a SOAP message, logical handlers deal
only with the payload of a message and are independent of the protocol being used.
Handler chains can now be configured on a per-port, per-protocol, or per-service basis. A
new framework of context objects has been added to allow client code to share information
easily with handlers.

By contrast, in JAX-RPC 1.1 Web Services you could program only SOAP handlers.

JAX-WS 2.0 supports MTOM (Message Transmission and Optimization Mechanism).
MTOM, together with XOP (XML Binary Optimized Packaging) defines how an XML
binary data such as xs:base64Binary or xs:hexBinary can be optimally transmitted
over the wire.

Note: In this release of WebLogic Server, MTOM is also supported for JAX-RPC 1.1 style
Web Services.

The JAX-WS 2.0 specification defines standard and portable XML-based customizations.
These customizations, or binding declarations, can customize almost all WSDL
components that can be mapped to Java, such as the service endpoint interface class,
method name, parameter name, exception class, etc. Using binding declarations you can
also control certain features, such as asynchrony, provider, wrapper style, and additional
headers.

Finally, the JAX-RPC specification is not evolving, and the future of Web Services is in
JAX-WS.

WebLogic Web Services: Getting Started

Implementing a JAX-WS Web Service: Guidelines

For additional documentation and examples about programming the preceding features in a
JAX-WS Web Service, see the JAX-WS 2.0 User's Guide on java.net.

Implementing a JAX-WS Web Service: Guidelines

Implementing a JAX-WS Web Service is similar to implementing a JAX-RPC Web Service, and
for the most part you can follow the procedures described in Chapter 4, “Iterative Development
of WebLogic Web Services.” There are, however, a few differences as described below:

e The set of metadata annotations you can use in your JWS file include those listed in the
following specifications:

— Web Services Metadata for the Java Platform (JSR 181)

— Java API for XML Web Services (JAX-WS) 2.0 (JSR 224)
— Java Architecture for XML Binding (JAXB) 2.0 (JSR 222)
— Common Annotations for the Java Platform (JSR 250)

See Java APl for XML Web Services Annotations for additional information.

e You cannot use any of the WebL ogic-specific annotations in your JWS file because they
apply to JAX-RPC 1.1 Web Services only. The WebLogic-specific JWS anntoations are
those described in JWS Annotation Reference.

e You cannot use any of the WebLogic Web Services APIs in a JAX-WS Web Service. An
example of a WebLogic Web Service API is weblogic.wsee.reliability.

e You cannot use any of the features described by a WS-* specification with a JAX-WS
Web Service. For example, you cannot make a JAX-WS Web Service reliable, as
specified by WS-ReliableMessaging.

e When you use the jwsc, wsdlc, or clientgen Ant tasks, be sure to use the new type
attribute to specify that the task should compile or generate client-side artifacts for a
JAX-WS Web Service rather than the default JAX-RPC Web Service. See “Specifying a
JAX-WS Web Service to the jwsc and clientgen Ant Tasks” on page 6-5 for an example.

e Depending on the type of Web Service you are generating (JAX-WS or JAX-RPC), some
of the attributes of the jwsc, wsdlc, and clientgen Ant tasks may not apply. See the
WebLogic Web Service Ant Task Reference for information about each attribute and
whether it applies to JAX-WS Web Services, JAX-RPC, or both.

WebLogic Web Services: Getting Started 6-3

Simple Example of Implementing a JAX-WS Web Service

The following sections show a simple example of implementing a JAX-WS Web Service

Example of a JWS File That Implements a JAX-WS Web
Service

The following Java file shows a simple example of implementing a JAX-WS Web Service.

The example uses the standard @javax- jws.WebService annotation to declare that it is a Web
Service, and then the common @javax.annotation.Resource annotation to inject the Web
Service context into the context variable. With the context one can get information about the
Web Service; in this case, the principal user that invokes the service.

package examples.webservices.jaxws;
import javax.jws.WebService;
import javax.xml.ws.WebServiceContext;
import javax.annotation.Resource;
@webService()
Jxx
* This JWS file forms the basis of simple JAX-WS WebLogic Web Service

*

*/
public class JaxWsImpl {

@Resource
private WebServiceContext context;

public String sayHello(String message) {
String principal = context.getUserPrincipal().getName();

System.out.printIn("*Hello! Here is the passed=in message: ' + message + "
And here is the user principal: " + principal + ".");

return "Here is the message: """ + message + "". And here is the user principal:
+ principal + """ ;

}

6-4 WebLogic Web Services: Getting Started

Simple Example of Implementing a JAX-WS Web Service

Specifying a JAX-WS Web Service to the jwsc and clientgen
Ant Tasks

The following excerpt from a bui Id.xml Ant build file shows how to use the type attribute of
the jwsc Ant task to specify that the task should generate a JAX-WS Web Service, rather than
the default JAX-RPC service:

<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws File="examples/webservices/jaxws/JaxWslImpl.java"

type=""JAXWS""
/>

</jwsc>

Similarly, the following call to clientgen shows how to specify that the task should generate
client-side artifacts used to invoke a JAX-WS Web Service:

<clientgen

type=""JAXWS""
wsdl=""http://${wls_hostname}:${wls.port}/JaxWsImpl/JaxWsImplService?WSDL"
destDir="${clientclass-dir}"

packageName=""examples.webservices. jaxws.client'/>

Example of Invoking a JAX-WS Web Service

The following simple standalone Java client shows how to invoke the Web Service implemented
in the preceding sections:

package examples.webservices.jaxws.client;
/**

* This is a simple standalone client application that invokes the
* the <code>sayHello</code> operation of the JaxWs Web service.

*

* @author Copyright (c) 2004 by BEA Systems. All Rights Reserved.
*/

public class Main {

WebLogic Web Services: Getting Started 6-5

public static void main(String[] args) {

JaxWsImplService service = new JaxWsImplService();
JaxWslImpl port = service.getJaxWsimplPort();

String result = null;
result = port.sayHello("'Hi there!™);
System.out.printin("Got result: " + result);

6-6 WebLogic Web Services: Getting Started

CHAPTERa

Data Types and Data Binding

The following sections provide information about supported data types (both built-in and
user-defined) and data binding:

e “Overview of Data Types and Data Binding” on page 7-1
e “Supported Built-In Data Types” on page 7-2
e “Supported User-Defined Data Types” on page 7-6

WARNING: Although both JAX-RPC 1.1 and JAX-WS 2.0 are supported in this release of
WebLogic Server, this document concentrates almost exclusively on describing
how to create JAX-RPC style Web Services. This is because, in this release, all
the WS-* specifications (such as WS-Security and WS-ReliableMessaging) and
WebLogic value-added features (such as asynchronous request-response and
callbacks) work only with JAX-RPC style Web Services. Therefore, unless
otherwise stated, you should assume that all descriptions and examples are for
JAX-RPC Web Services. In the case of supported data types and data binding, for
example, this document does not describe how to use JAXB.

For specific information about creating JAX-WS Web Services and JAXB, see
Chapter 6, “Implementing a JAX-WS 2.0 Web Service.”

Overview of Data Types and Data Binding

As in previous releases, WebLogic Web Services support a full set of built-in XML Schema,
Java, and SOAP types, as specified by the JAX-RPC 1.1 specification, that you can use in your

WebLogic Web Services: Getting Started 1-1

Web Service operations without performing any additional programming steps. Built-in data
types are those such as integer, string, and time.

Additionally, you can use a variety of user-defined XML and Java data types, including Apache
XmlBeans (in package org.-apache . xmlbeans), as input parameters and return values of your
Web Service. User-defined data types are those that you create from XML Schema or Java
building blocks, such as <xsd:complexType> or JavaBeans. The WebLogic Web Services Ant
tasks, such as jwsc and clientgen, automatically generate the data binding artifacts needed to
convert the user-defined data types between their XML and Java representations. The XML
representation is used in the SOAP request and response messages, and the Java representation is
used in the JWS that implements the Web Service. The conversion of data between its XML and
Java representations is called data binding.

WARNING: As of WebLogic Server 9.1, using XMLBeans 1.X data types (in other words,
extensions of com.bea.xml . XmIObject) as parameters or return types of a
WebLogic Web Service is deprecated. New applications should use XMLBeans
2.x data types.

Supported Built-In Data Types

1-2

The following sections describe the built-in data types supported by WebLogic Web Services and
the mapping between their XML and Java representations. As long as the data types of the
parameters and return values of the back-end components that implement your Web Service are
in the set of built-in data types, WebLogic Server automatically converts the data between XML
and Java.

If, however, you use user-defined data types, then you must create the data binding artifacts that
convert the data between XML and Java.WebLogic Server includes the jwsc and wsdl12c Ant

tasks that can automatically generate the data binding artifacts for most user-defined data types.
See “Supported User-Defined Data Types” on page 7-6 for a list of supported XML and Java data

types.

XML-to-Java Mapping for Built-In Data Types

The following table lists the supported XML Schema data types (target namespace
http://www.w3.0org/2001/XMLSchema) and their corresponding Java data types.

For a list of the supported user-defined XML data types, see “Java-to-XML Mapping for Built-In
Data Types” on page 7-5.

WebLogic Web Services: Getting Started

Supported Built-In Data Types

Table 7-1 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type

Equivalent Java Data Type
(lower case indicates a primitive data type)

boolean boolean

byte byte

short short

int int

long long

float float

double double

integer java.math.BigInteger
decimal java.math.BigDecimal
string java.lang.String
dateTime java.util.Calendar
base64Binary byte[]

hexBinary byte[]

duration java.lang.String
time java.util.Calendar
date java.util.Calendar
gYearMonth java.lang.String
gYear java.lang.String
gMonthDay java.lang.String
gDay java.lang.String
gMonth java.lang.String

WebLogic Web Services: Getting Started

1-3

Table 7-1 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)
anyURI java.net.URI
NOTATION java.lang.String
token java.lang.String

normalizedString

java.lang.String

language java.lang.String
Name java.lang.String
NMTOKEN java.lang.String
NCName java.lang.String
NMTOKENS java.lang.String[]
ID java.lang.String
IDREF java.lang.String
ENTITY java.lang.String
IDREFS java.lang.String[]
ENTITIES java.lang.String[]

nonPositivelnteger

java.math.BiglInteger

nonNegativelnteger

java.math.BigInteger

negativelnteger

java.math.BiglInteger

unsignedLong

java.math.BigInteger

positivelnteger

java.math.BiglInteger

unsignedint

long

unsignedShort

int

14 WebLogic Web Services: Getting Started

Supported Built-In Data Types

Tahle 7-1 Mapping XML Schema Data Types to Java Data Types

XML Schema Data Type Equivalent Java Data Type

(lower case indicates a primitive data type)
unsignedByte short
Qname javax.xml.namespace.QName

Java-to-XML Mapping for Built-In Data Types

For a list of the supported user-defined Java data types, see “Supported Java User-Defined Data
Types” on page 7-8.

Table 7-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates a Equivalent XML Schema Data Type
primitive data type)

int int
short short
long long
float float
double double
byte byte
boolean boolean
char string (with facet of length=1)
java.lang.Integer int
java.lang.Short short
java.lang.Long long
java.lang.Float float
java.lang.Double double

WebLogic Web Services: Getting Started

1-5

Table 7-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case indicates a

Equivalent XML Schema Data Type

primitive data type)
java.lang.Byte byte
java.lang.Boolean boolean

java.lang.Character

string (with facet of length=1)

java.lang.String string
java.math.BiglInteger integer
java.math.BigDecimal decimal
java.util.Calendar dateTime
java.util.Date dateTime

byte[]

base64Binary

javax.xml.namespace.QName

Qname

java.net.URI

anyURI

Supported User-Defined Data Types

The tables in the following sections list the user-defined XML and Java data types for which the
jJwsc and wsdlc Ant tasks can automatically generate data binding artifacts, such as the
corresponding Java or XML representation, the JAX-RPC type mapping file, and so on.

1-6

If your XML or Java data type is not listed in these tables, and it is not one of the built-in data
types listed in “Supported Built-In Data Types” on page 7-2, then you must create the

user-defined data type artifacts manually.

Supported XML User-Defined Data Types

The following table lists the XML Schema data types supported by the jwsc and wsd 1 c Ant tasks
and their equivalent Java data type or mapping mechanism.

WebLogic Web Services: Getting Started

Supported User-Defined Data Types

For details and examples of the data types, see the JAX-RPC specification.

Table 7-3 Supported User-Defined XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or Mapping
Mechanism

<xsd: complexType> with elements of both JavaBean

simple and complex types.

<xsd:complexType> with simple content. JavaBean

<xsd:attribute>in
<xsd:complexType>

Property of a JavaBean

Derivation of new simple types by restriction of
an existing simple type.

Equivalent Java data type of simple type.

Facets used with restriction element.

Facets not enforced during serialization
and deserialization.

<xsd:list>

Aurray of the list data type.

Aurray derived from soapenc:Array by
restriction using the wsdl zarrayType
attribute.

Aurray of the Java equivalent of the
arrayType data type.

Avrray derived from soapenc:Array by
restriction.

Aurray of Java equivalent.

Derivation of a complex type from a simple
type.

JavaBean with a property called _value
whose type is mapped from the simple
type according to the rules in this section.

<xsd:anyType>

java.lang.Object

<xsd:any>

Javax.xml .soap.SOAPElement or
org.apache.xmlbeans.XmlObjec
t

<xsd:any[]>

Javax.xml _soap.SOAPElement[]
or
org.apache.xmlbeans.XmlObjec

t[]

<xsd:union>

Common parent type of union members.

WebLogic Web Services: Getting Started 1-1

1-8

Tahle 7-3 Supported User-Defined XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or Mapping
Mechanism

<xsi:nil>and <xsd:nillable> attribute Java null value.

If the XML data type is built-in and
usually maps to a Java primitive data type
(such as int or short), then the XML
data type is actually mapped to the
equivalent object wrapper type (such as
jJava.lang. Integer or

java. lang.Short).

Derivation of complex types Mapped using Java inheritance.

Abstract types Abstract Java data type.

Supported Java User-Defined Data Types

The following table lists the Java user-defined data types supported by the jwsc and wsdlc Ant
tasks and their equivalent XML Schema data type.

Table 7-4 Supported User-Defined Java Data Types

Java Data Type Equivalent XML Schema Data Type

JavaBean whose properties are any supported <xsd:complexType> whose content

data type. model is a <xsd:sequence> of
elements corresponding to JavaBean
properties.

Array and multidimensional array of any An element in a <xsd:complexType>

supported data type (when used as a JavaBean with the maxOccurs attribute set to

property) unbounded.

java.lang.Object <xsd:anyType>

Note: The data type of the runtime object
must be a known type.

WebLogic Web Services: Getting Started

Supported User-Defined Data Types

Table 7-4 Supported User-Defined Java Data Types

Java Data Type Equivalent XML Schema Data Type

Apache XMLBeans (that are inherited from See Apache XMLBeans.
org.apache.xmlbeans.XmlObject

only)

Note: A Web Service that uses an Apache
XMLBeans data type as a return type
or parameter must be defined as
document-literal-wrapped or
document-literal-bare.

java.util.Collection Literal Array
java.util.List Literal Array
java.util. ArrayList Literal Array
java.util.LinkedList Literal Array
java.util.Vector Literal Array
java.util.Stack Literal Array
java.util.Set Literal Array
java.util. TreeSet Literal Array
java.utils.SortedSet Literal Array
java.utils.HashSet Literal Array

Note: The following user-defined Java data type, used as a parameter or return value of a
WebLogic Web Service in Version 8.1, is no longer supported:

e JAX-RPC-style enumeration class

Additionally, generics are not supported when used as a parameter or return value. For
example, the following Java method cannot be exposed as a public operation:

public ArrayList<String> echoGeneric(ArrayList<String> in) {
return in;

}

WebLogic Web Services: Getting Started 1-9

1-10 WebLogic Web Services: Getting Started

Invoking Web Services

The following sections describe how to invoke WebLogic Web Services:

“Overview of Web Services Invocation” on page 8-2

“Invoking a Web Service from a Stand-alone Client: Main Steps” on page 8-4
“Invoking a Web Service from Another Web Service” on page 8-12

“Using a Stand-Alone Client JAR File When Invoking Web Services” on page 8-18
“Using a Proxy Server When Invoking a Web Service” on page 8-19

“Client Considerations When Redeploying a Web Service” on page 8-23
“WebLogic Web Services Stub Properties” on page 8-23

“Setting the Character Encoding For the Response SOAP Message” on page 8-26

Note: The following sections do not include information about invoking message-secured Web

Services; for that topic, see the Web Services security guide, in particular Updating a
Client Application to Invoke a Message-Secured Web Service.

WARNING: Although both JAX-RPC 1.1 and JAX-WS 2.0 are supported in this release of

WebLogic Server, this document concentrates almost exclusively on describing
how to create JAX-RPC style Web Services. This is because, in this release, all
the WS-* specifications (such as WS-Security and WS-ReliableMessaging) and
WebLogic value-added features (such as asynchronous request-response and

WebLogic Web Services: Getting Started 8-1

callbacks) work only with JAX-RPC style Web Services. Therefore, unless
otherwise stated, you should assume that all descriptions and examples are for
JAX-RPC Web Services.

For specific information about creating and invoking JAX-WS Web Services, see
Chapter 6, “Implementing a JAX-WS 2.0 Web Service.”

Overview of Web Services Invocation

8-2

Invoking a Web Service refers to the actions that a client application performs to use the Web
Service. Client applications that invoke Web Services can be written using any technology: Java,
Microsoft .NET, and so on.

Note: Inthis context, a client application can be two types of clients: One is a stand-alone client
that uses the WebLogic client classes to invoke a Web Service hosted on WebLogic
Server or on other application servers. In this document, a stand-alone client is a client
that has a runtime environment independent of WebLogic Server. The other type of client
application that invokes a Web Service runs inside a Java Platform, Enterprise Edition
(Java EE) Version 5 component deployed to WebL ogic Server, such as an EJB or another
Web Service.

The sections that follow describe how to use BEA’s implementation of the JAX-RPC
specification (Version 1.1) to invoke a Web Service from a Java client application. You can use
this implementation to invoke Web Services running on any application server, both WebLogic
and non-WebL ogic. In addition, you can create a stand-alone client application or one that runs
as part of a WebLogic Server.

WARNING: You cannot use a dynamic client to invoke a Web Service operation that
implements user-defined data types as parameters or return values. A dynamic
client uses the JAX-RPC Call interface. Standard (static) clients use the Service
and Stub JAX-RPC interfaces, which correctly invoke Web Services that
implement user-defined data types.

Types of Client Applications

This section describes two different types of client applications:

e Stand-alone—A stand-alone client application, in its simplest form, is a Java program that
has the Main public class that you invoke with the java command. It runs completely
separately from WebLogic Server.

WebLogic Web Services: Getting Started

Overview of Web Services Invocation

e A Java EE component deployed to WebLogic Server—In this type of client application,
the Web Service invoke is part of the code that implements an EJB, servlet, or another
Web Service. This type of client application, therefore, runs inside a WebLogic Server
container.

JAX-RPC

The Java API for XML based RPC (JAX-RPC) is a Sun Microsystems specification that defines
the APIs used to invoke a Web Service. WebLogic Server implements the JAX-RPC 1.1
specification.

The following table briefly describes the core JAX-RPC interfaces and classes.

Table 8-1 JAX-RPC Interfaces and Classes

javax.xml.rpc Interface Description

or Class

Service Main client interface.

ServiceFactory Factory class for creating Service instances.

Stub Base class of the client proxy used to invoke the operations of a
Web Service.

Call Used to dynamically invoke a Web Service.

JAXRPCEXxception Exception thrown if an error occurs while invoking a Web
Service.

For detailed information on JAX-RPC, see http://java.sun.com/xml/jaxrpc/index.html.

The clientgen Ant Task

The clientgen WebLogic Web Services Ant task generates, from an existing WSDL file, the
client artifacts that client applications use to invoke both WebLogic and non-WebLogic Web
Services. These artifacts include:

e The Java source code for the JAX-RPC Stub and Service interface implementations for
the particular Web Service you want to invoke.

WebLogic Web Services: Getting Started 8-3

e The Java source code for any user-defined XML Schema data types included in the WSDL
file.

e The JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java user-defined data types and their corresponding XML Schema
types in the WSDL file.

e A client-side copy of the WSDL file.

For additional information about the clientgen Ant task, such as all the available attributes, see
Ant Task Reference.

WARNING: The fully qualified name of the clientgen Ant task supported in this release of
WebLogic Serverisweblogic.wsee.tools.anttasks.ClientGenTask. This
is different from the clientgen Ant task supported in version 8.1 of WebLogic
Server, which is weblogic.webservice.clientgen.

Although the 8.1 clientgen Ant task is still provided in this release of WebLogic
Server, itis deprecated. If you want to generate the client artifacts to invoke a 9.X
WebLogic Web Service, be sure you use the 9.X version of clientgen and not
the 8.1 version. For example, if you have upgraded an 8.1 Web Service to 10.0,
but your Ant scripts explicitly call the 8.1 clientgen Ant task by specifying its
fully qualified name, then you must update your Ant scripts to call the 9.X
clientgen instead.

Examples of Clients That Invoke Web Services

WebLogic Server includes examples of creating and invoking WebLogic Web Services in the
WL_HOME/samples/server/examples/src/examples/webservices directory, where
WL_HOME refers to the main WebLogic Server directory.

For detailed instructions on how to build and run the examples, open the
WL_HOME/samples/server/docs/index.html Web page in your browser and expand the
WebLogic Server Examples->Examples->API->Web Services node.

Invoking a Web Service from a Stand-alone Client: Main
Steps

In the following procedure it is assumed that you use Ant in your development environment to
build your client application, compile Java files, and so on, and that you have an existing
build.xml file that you want to update with Web Services client tasks.

8-4 WebLogic Web Services: Getting Started

Invoking a Web Service from a Stand-alone Client: Main Steps

For general information about using Ant in your development environment, see “Creating the
Basic Ant build.xml File” on page 4-7. For a full example of a bui Id_xml file used in this
section, see “Sample Ant Build File for a Stand-Alone Java Client” on page 8-11.

To create a Java stand-alone client application that invokes a Web Service:

1.

Open a command shell and set your environment.

On Windows NT, execute the setDomainEnv.cmd command, located in your domain
directory. The default location of WebLogic Server domains is
BEA_HOME\user_projects\domains\domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

On UNIX, execute the setDomainEnv.sh command, located in your domain directory.
The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

Update your bui Id.xml file to execute the clientgen Ant task to generate the needed
client-side artifacts to invoke a Web Service.

See “Using the clientgen Ant Task To Generate Client Artifacts” on page 8-5.

Get information about the Web Service, such as the signature of its operations and the name
of the ports.

See “Getting Information About a Web Service” on page 8-6.

Write the client application Java code that includes code for invoking the Web Service
operation.

See “Writing the Java Client Application Code to Invoke a Web Service” on page 8-8.

. Compile and run your Java client application.

See “Compiling and Running the Client Application” on page 8-9.

Using the clientgen Ant Task To Generate Client Artifacts

Update your bui ld.xml file, adding a call to the clientgen Ant task, as shown in the following
example:

<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<target name="build-client'>

WebLogic Web Services: Getting Started 8-5

8-6

<clientgen
wsdl="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="clientclasses"
packageName=""examples.webservices.simple_client"/>

</target>

Before you can execute the clientgen WebLogic Web Service Ant task, you must specify its
full Java classname using the standard taskdef Ant task.

You must include the wsdl and destDir attributes of the clientgen Ant task to specify the
WSDL file from which you want to create client-side artifacts and the directory into which these
artifacts should be generated. The packageName attribute is optional; if you do not specify it, the
clientgen task uses a package name based on the targetNamespace of the WSDL.

Note: The clientgen Ant task also provides the destFile attribute if you want the Ant task
to automatically compile the generated Java code and package all artifacts into a JAR file.
For details and an example, see clientgen.

If the WSDL file specifies that user-defined data types are used as input parameters or return
values of Web Service operations, clientgen automatically generates a JavaBean class that is
the Java representation of the XML Schema data type defined in the WSDL. The JavaBean
classes are generated into the destDir directory.

Note: The package of the Java user-defined data type is based on the XML Schema of the data
type in the WSDL, which is different from the package name of the JAX-RPC stubs.

See “Sample Ant Build File for a Stand-Alone Java Client” on page 8-11 for a full sample
bui ld.xml file that contains additional targets from those described in this procedure, such as
clean.

To execute the clientgen Ant task, along with the other supporting Ant tasks, specify the
build-client target at the command line:

prompt> ant build-client

See the clientclasses directory to view the files and artifacts generated by the clientgen Ant
task.

Getting Information About a Web Service

You need to know the name of the Web Service and the signature of its operations before you
write your Java client application code to invoke an operation. There are a variety of ways to find
this information.

WebLogic Web Services: Getting Started

Invoking a Web Service from a Stand-alone Client: Main Steps

The best way to get this information is to use the clientgen Ant task to generate the Web
Service-specific JAX-RPC stubs and look at the generated * . java files. These files are generated
into the directory specified by the destDi r attribute, with subdirectories corresponding to either
the value of the packageName attribute, or, if this attribute is not specified, to a package based on
the targetNamespace of the WSDL.

e The ServiceName. java source file contains the getPortName () methods for getting the
Web Service port, where ServiceName refers to the name of the Web Service and
PortName refers to the name of the port. If the Web Service was implemented with a JWS
file, the name of the Web Service is the value of the serviceName attribute of the
@WebService JWS annotation and the name of the port is the value of the portName
attribute of the @WLHttpTransport annotation.

e The PortType. java file contains the method signatures that correspond to the public
operations of the Web Service, where PortType refers to the port type of the Web Service.
If the Web Service was implemented with a JWS file, the port type is the value of the name
attribute of the @webService JWS annotation.

You can also examine the actual WSDL of the Web Service; see “Browsing to the WSDL of the
Web Service” on page 4-18 for details about the WSDL of a deployed WebLogic Web Service.

The name of the Web Service is contained in the <service> element, as shown in the following
excerpt of the TraderService WSDL.:

<service name="'TraderService'>
<port name="TraderServicePort"
binding="tns:TraderServiceSoapBinding">

</port>
</service>

The operations defined for this Web Service are listed under the corresponding <binding>
element. For example, the following WSDL excerpt shows that the TraderService Web
Service has two operations, buy and sel 1 (for clarity, only relevant parts of the WSDL are
shown):

<binding name="TraderServiceSoapBinding" ...>
<operation name="'sell'>
</operation>

<operation name="buy">

WebLogic Web Services: Getting Started 8-7

</operation>
</binding>

Writing the Java Client Application Code to Invoke a Weh
Service

In the following code example, a stand-alone application invokes a Web Service operation.

The client application takes a single argument: the WSDL of the Web Service. The application
then uses standard JAX-RPC API code and the Web Service-specific implementation of the
Service interface, generated by clientgen, to invoke an operation of the Web Service.

The example also shows how to invoke an operation that has a user-defined data type
(examples.webservices.complex.BasicStruct) as an input parameter and return value.
The clientgen Ant task automatically generates the Java code for this user-defined data type.

package examples.webservices.simple_client;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;

// import the BasicStruct class, used as a param and return value of the
// echoComplexType operation. The class is generated automatically by
// the clientgen Ant task.

import examples.webservices.complex.BasicStruct;

/**

* This is a simple stand-alone client application that invokes the
* the echoComplexType operation of the ComplexService Web service.

*

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.

*/

public class Main {

8-8

public static void main(String[] args)

throws ServiceException, RemoteException{

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL");
ComplexPortType port = service.getComplexServicePort();

BasicStruct in = new BasicStruct();

in.setintvalue(999);
in.setStringValue('Hello Struct™);

WebLogic Web Services: Getting Started

Invoking a Web Service from a Stand-alone Client: Main Steps

BasicStruct result = port.echoComplexType(in);
System.out.printIn("echoComplexType called. Result: " + result.getintvalue()
+ ", " + result._getStringvalue());

3
}

In the preceding example:

e The following code shows how to create a ComplexPortType stub:

ComplexService service = new ComplexService_Impl (args[0] + "?WSDL™);
ComplexPortType port = service.getComplexServicePort();

The ComplexService_Impl stub factory implements the JAX-RPC Service interface.

The constructor of ComplexService_Impl creates a stub based on the provided WSDL

URI (args[0] + "?WSDL"). The getComplexServicePort() method is used to return
an instance of the ComplexPortType stub implementation.

e The following code shows how to invoke the echoComplexType operation of the
ComplexService Web Service:

BasicStruct result = port.echoComplexType(in);
The echoComplexType operation returns the user-defined data type called BasicStruct.

The method of your application that invokes the Web Service operation must throw or catch
jJava.rmi .RemoteException and javax.xml .rpc.ServiceException, both of which are
thrown from the generated JAX-RPC stubs.

Compiling and Running the Client Application

Add javac tasks to the bui Id-client target in the bui 1d.xml file to compile all the Java files
(both of your client application and those generated by clientgen) into class files, as shown by
the bold text in the following example

<target name="build-client'>

<clientgen
wsdl="http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="clientclasses"
packageName=""examples.webservices.simple_client"/>

<javac
srcdir=""clientclasses"

destdir=""clientclasses"
includes="**/*_java'/>

WebLogic Web Services: Getting Started 8-9

8-10

<javac
srcdir="src"
destdir="clientclasses"
includes="examples/webservices/simple_client/*.java'/>

</target>

In the example, the first javac task compiles the Java files in the clientclasses directory that
were generated by clientgen, and the second javac task compiles the Java files in the
examples/webservices/simple_client subdirectory of the current directory; where it is
assumed your Java client application source is located.

In the preceding example, the clientgen-generated Java source files and the resulting compiled
classes end up in the same directory (clientclasses). Although this might be adequate for
proto-typing, it is often a best practice to keep source code (even generated code) in a different
directory from the compiled classes. To do this, set the destdir for both javac tasks to a
directory different from the srcdir directory. You must also copy the following
clientgen-generated files from clientgen’s destination directory to javac’s destination
directory, keeping the same sub-directory hierarchy in the destination:

packageName/ServiceName_internaldd.xml
packageName/ServiceName_java_wsdl_mapping.xml
packageName/ServiceName_saved_wsdl .wsdl

where packageName refers to the subdirectory hierarchy that corresponds to the package of the
generated JAX-RPC stubs and ServiceName refers to the name of the Web Service.

To run the client application, add a run target to the bui 1d.xml that includes a call to the java
task, as shown below:

<path id="client.class.path">
<pathelement path="clientclasses'"/>
<pathelement path="${java.class.path}'/>
</path>

<target name="run" >
<java
fork=""true"
classname=""examples.webServices.simple_client.Main"
failonerror="true" >
<classpath refid="client.class.path"/>

WebLogic Web Services: Getting Started

Invoking a Web Service from a Stand-alone Client: Main Steps

<arg
line=""http://${wls_hostname}:${wls.port}/complex/ComplexService" />
</java>

</target>

The path task adds the clientclasses directory to the CLASSPATH. The run target invokes
the Main application, passing it the URL of the deployed Web Service as its single argument.

See “Sample Ant Build File for a Stand-Alone Java Client” on page 8-11 for a full sample
build.xml file that contains additional targets from those described in this procedure, such as
clean.

Rerun the bui Id-client target to regenerate the artifacts and recompile into classes, then
execute the run target to invoke the echoStruct operation:

prompt> ant build-client run

You can use the build-client and run targets in the bui Id.xml file to iteratively update,
rebuild, and run the Java client application as part of your development process.

Sample Ant Build File for a Stand-Alone Java Client

The following example shows a complete bui Id.xml file for generating and compiling a
stand-alone Java client. See “Using the clientgen Ant Task To Generate Client Artifacts” on
page 8-5 and “Compiling and Running the Client Application” on page 8-9 for explanations of
the sections in bold.

<project name="'webservices-simple_client" default="all'>
<I-- set global properties for this build -->

<property name="wls.hostname" value="localhost" />
<property name="wls.port"” value="7001" />

<property name="example-output" value="output” />
<property name="clientclass-dir" value="${example-output}/clientclass” />

<path id="client.class.path">
<pathelement path="${clientclass-dir}'"/>
<pathelement path="${java.class.path}"/>
</path>

<taskdef name="'clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

WebLogic Web Services: Getting Started 8-11

<target name='"clean" >
<delete dir="${clientclass-dir}'"/>
</target>

<target name="all" depends="clean,build-client,run" />
<target name="build-client'>

<clientgen
wsdl=""http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.simple_client"/>

<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes=""**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/simple_client/*.java'/>

</target>

<target name="run" >
<java fork=""true"
classname=""examples.webservices.simple_client_Main"
failonerror="true" >
<classpath refid="client.class.path"/>
<arg line="http://${wls._hostname}:${wls.port}/complex/ComplexService"
/>
</java>
</target>

</project>

Invoking a Web Service from Another Web Service

Invoking a Web Service from within a WebLogic Web Service is similar to invoking one from a
stand-alone Java application, as described in “Invoking a Web Service from a Stand-alone Client:
Main Steps” on page 8-4. However, instead of using the clientgen Ant task to generate the
JAX-RPC stubs of the Web Service to be invoked, you use the <clientgen> child element of
the <jws> element, inside the jwsc Ant task that compiles the invoking Web Service. In the JWS
file that invokes the other Web Service, however, you still use the same standard JAX-RPC APIs

8-12 WebLogic Web Services: Getting Started

Invoking a Web Service from Another Web Service

to get Service and PortType instances to invoke the Web Service operations. This section
describes the differences between invoking a Web Service from a client in a Java EE component
and invoking from a stand-alone client.

It is assumed that you have read and understood “Invoking a Web Service from a Stand-alone
Client: Main Steps” on page 8-4. It is also assumed that you use Ant in your development
environment to build your client application, compile Java files, and so on, and that you have an
existing bui 1d.xml that builds a Web Service that you want to update to invoke another Web
Service.

The following list describes the changes you must make to the bui Id.xml file that builds your
client Web Service, which will invoke another Web Service. See “Sample build.xml File for a
Web Service Client” on page 8-14 for the full sample bui ld.xml file:

e Add a <clientgen> child element to the <jws> element that specifies the JWS file that
implements the Web Service that invokes another Web Service. Set the required wsdl
attribute to the WSDL of the Web Service to be invoked. Set the required packageName
attribute to the package into which you want the JAX-RPC client stubs to be generated.

The following bullets describe the changes you must make to the JWS file that implements the
client Web Service; see “Sample JWS File That Invokes a Web Service” on page 8-16 for the full
JWS file example.

e Import the files generated by the <clientgen> child element of the jwsc Ant task. These
include the JAX-RPC stubs of the invoked Web Service, as well as the Java representation
of any user-defined data types used as parameters or return values in the operations of the
invoked Web Service.

Note: The user-defined data types are generated into a package based on the XML Schema
of the data type in the WSDL, not in the package specified by clientgen. The
JAX-RPC stubs, however, use the package name specified by the packageName
attribute of the <clientgen> element.

e Update the method that contains the invoke of the Web Service to either throw or catch
both java.rmi.RemoteException and javax.xml .rpc.ServiceException.

e Get the Service and PortType JAX-RPC stubs and invoke the operation on the port as
usual; see “Writing the Java Client Application Code to Invoke a Web Service” on
page 8-8 for details.

WebLogic Web Services: Getting Started 8-13

Sample build.xml File for a Web Service Client

The following sample bui Id.xml file shows how to create a Web Service that itself invokes
another Web Service; the relevant sections that differ from the bui Id.xml for building a simple
Web Service that does not invoke another Web Service are shown in bold.

The bui Id-service target in this case is very similar to a target that builds a simple Web
Service; the only difference is that the jwsc Ant task that builds the invoking Web Service also
includes a <clientgen> child element of the <jws> element so that jwsc also generates the
required JAX-RPC client stubs.

<project name="‘webservices-service_to_service" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server._name" value="myserver" />

<property name="ear.deployed.name"™ value="ClientServiceEar" />

<property name="example-output" value="output" />

<property name="ear-dir" value="${example-output}/ClientServiceEar" />
<property name="clientclass-dir" value="${example-output}/clientclasses" />

<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}'"/>
</path>

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="'clientgen"
classname=""weblogic.wsee.tools.anttasks.ClientGenTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends="clean,build-service,deploy,client” />
<target name=''clean" depends="undeploy'>

<delete dir="${example-output}"/>
</target>

<target name="build-service">

8-14 WebLogic Web Services: Getting Started

Invoking a Web Service from Another Web Service

<jwsc
srcdir="src"
destdir="${ear-dir}" >

<jws
Ffile="examples/webservices/service_to_service/ClientServicelmpl.java">
<clientgen

wsdI=""http://${wls_hostname}:${wls.port}/complex/ComplexService?WSDL"
packageName=""examples.webservices.service_to_service" />
</jws>

</jwsc>
</target>

<target name="deploy">
<wldeploy action="deploy" name="${ear.deployed.name}"
source="${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls._port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy">
<wldeploy action="undeploy" name="${ear.deployed.name}"

failonerror="false"
user="${wls._username}"
password="${wls_.password}" verbose="true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server._name}" />

</target>

<target name="client">

<clientgen
wsdI="http://${wls_hostname}:${wls.port}/ClientService/ClientService?WSDL"
destDir="${clientclass-dir}"
packageName=""examples.webservices.service_to_service.client"/>

<javac
srcdir="${clientclass-dir}" destdir="%{clientclass-dir}"
includes="**/*_java'/>

<javac
srcdir="src" destdir="${clientclass-dir}"
includes=""examples/webservices/service_to_service/client/**/*_java"/>

</target>

WebLogic Web Services: Getting Started 8-15

<target name="run">
<java classname="examples.webservices.service_to_service.client.Main"
fork=""true"
failonerror="true" >
<classpath refid="client.class.path'/>
<arg

line="http://${wls_hostname}:${wls.port}/ClientService/ClientService'/>
</java>
</target>

</project>

Sample JWS File That Invokes a Web Service

The following sample JWS file, called ClientServicelmpl . java, implements a Web Service
called ClientService that has an operation that in turn invokes the echoComplexType
operation of a Web Service called ComplexService. This operation has a user-defined data type
(BasicStruct) as both a parameter and a return value. The relevant code is shown in bold and
described after the example.

package examples.webservices.service_to_service;

import java.rmi.RemoteException;
import javax.xml_rpc.ServiceException;

import javax.jws.WebService;
import javax.jws.WebMethod;

import weblogic. jws_WLHttpTransport;

// Import the BasicStruct data type, generated by clientgen and used
// by the ComplexService Web Service

import examples.webservices.complex.BasicStruct;

// Import the JAX-RPC Stubs for invoking the ComplexService Web Service.
// Stubs generated by clientgen

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

@WebService(name="ClientPortType'", serviceName="ClientService",
targetNamespace="http://examples.org')

8-16 WebLogic Web Services: Getting Started

Invoking a Web Service from Another Web Service

@WLHttpTransport(contextPath="ClientService', serviceUri="ClientService",
portName=""ClientServicePort")

public class ClientServicelmpl {

@webMethod ()
public String callComplexService(BasicStruct input, String serviceUrl)
throws ServiceException, RemoteException

{

// Create service and port stubs to invoke ComplexService
ComplexService service = new ComplexService_Impl(serviceUrl + "?WSDL'™);
ComplexPortType port = service.getComplexServicePort();

// Invoke the echoComplexType operation of ComplexService
BasicStruct result = port.echoComplexType(input);
System.out.printIn(*'Invoked ComplexPortType.echoComplexType.");

return "Invoke went okay! Here"s the result: " + result.getintvalue() + ",
o result.getStringValue() + n-n;

3
}

Follow these guidelines when programming the JWS file that invokes another Web Service; code
snippets of the guidelines are shown in bold in the preceding example:

e Import any user-defined data types that are used by the invoked Web Service. In this
example, the ComplexService uses the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

e Import the JAX-RPC stubs of the ComplexService Web Service; the stubs are generated
by the <cliengen> child element of <jws>:

import examples.webservices.service_to_service.ComplexPortType;
import examples.webservices.service_to_service.ComplexService_Impl;
import examples.webservices.service_to_service.ComplexService;

e Ensure that your client Web Service throws or catches ServiceException and
RemoteException

throws ServiceException, RemoteException
e Create the JAX-RPC Service and Port instances for the ComplexService:

ComplexService service = new
ComplexService_Impl(serviceUrl + "?WSDL™);
ComplexPortType port = service.getComplexServicePort();

WebLogic Web Services: Getting Started 8-11

e Invoke the echoComplexType operation of ComplexService using the port you just
instantiated:

BasicStruct result = port.echoComplexType(input);

Using a Stand-Alone Client JAR File When Invoking Webh
Services

It is assumed in this document that, when you invoke a Web Service using the client-side artifacts
generated by the clientgen or wsdlc Ant tasks, you have the entire set of WebLogic Server
classes in your CLASSPATH. If, however, your computer does not have WebLogic Server
installed, you can still invoke a Web Service by using the stand-alone WebLogic Web Services
client JAR file, as described in this section.

The standalone client JAR file supports basic client-side functionality, such as:

e Use with client-side artifacts created by both the clientgen Ant tasks

Processing SOAP messages

Using client-side SOAP message handlers

Using MTOM

Invoking both JAX-RPC 1.1 and JAX-WS 2.0 Web Services

e Using SSL

The stand-alone client JAR file does not, however, support invoking Web Services that use the
following advanced features:

e Web Services reliable SOAP messaging
e Message-level security (WS-Security)
e Conversations

e Asynchronous request-response

e Buffering

e JMS transport

To use the stand-alone WebLogic Web Services client JAR file with your client application,
follow these steps:

8-18 WebLogic Web Services: Getting Started

Using a Proxy Server When Invoking a Web Service

1. Copy the file WL_HOME/server/lib/wseeclient.zip from the computer hosting
WebLogic Server to the client computer, where WL_HOME refers to the WebLogic Server
installation directory, such as /bea/wlserver_10.0.

2. Unzip the wseeclient.zip file into the appropriate directory. For example, you might
unzip the file into a directory that contains other classes used by your client application.

3. Add the wseeclient.jar file (unzipped from the wseeclient.zip file) to your
CLASSPATH.

Note: Also be sure that your CLASSPATH includes the JAR file that contains the Ant
classes (ant.jar). This JAR file is typically located in the lib directory of the Ant
distribution.

Using a Proxy Server When Invoking a Web Service

You can use a proxy server to proxy requests from a client application to an application server
(either WebLogic or non-WebLogic) that hosts the invoked Web Service. You typically use a
proxy server when the application server is behind a firewall. There are two ways to specify the
proxy server in your client application: programmatically using the WebLogic
HttpTransportinfo API or using system properties.

For a complete example of using a proxy server when invoking a Web Service, see the example
on the dev2dev Code Example site.

Using the HttpTransportinfo API to Specify the Proxy Server

You can programmatically specify within the Java client application itself the details of the proxy
server that will proxy the Web Service invoke by using the standard java.net.* classes and the
WebLogic-specific HttpTransportinfo API. You use the java.net classes to create a Proxy
object that represents the proxy server, and then use the WebLogic APl and properties to set the
proxy server on the JAX-RPC stub, as shown in the following sample client that invokes the echo
operation of the HttpProxySampleService Web Service. The code in bold is described after
the example:

package dev2dev.proxy.client;
import javax.xml._rpc.Stub;

import java.net.Proxy;
import java.net.InetSocketAddress;

import weblogic.wsee.connection.transport_http._HttpTransportinfo;

WebLogic Web Services: Getting Started 8-19

/**

* Sample client to invoke a service through a proxy server via
* programmatic API

*/

public class HttpProxySampleClient {
public static void main(String[] args) throws Throwable{

assert args.length == 5;

String endpoint = args[0];

String proxyHost = args[1];

String proxyPort = args[2];

String user = args[3];

String pass = args[4];

//create service and port

HttpProxySampleService service = new HttpProxySampleService_Impl();

HttpProxySamplePortType port =
service.getHttpProxySamplePortTypeSoapPort();

//set endpoint address
((Stub)port) ._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, endpoint);

//set proxy server info

Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parselnt(proxyPort)));

HttpTransportinfo info = new HttpTransportinfo();

info.setProxy(p);

((Stub)port)._setProperty(""'weblogic.wsee.connection.transportinfo', info);

//set proxy-authentication info

((Stub)port)._setProperty(*'weblogic.webservice.client.proxyusername',user)

((Stub)port)._setProperty(*"weblogic.webservice.client.proxypassword",pass)

//invoke
String s = port.echo("Hello World!");
System.out.printin(*echo: " + s);

8-20 WebLogic Web Services: Getting Started

}

Using a Proxy Server When Invoking a Web Service

}

The sections of the preceding example to note are as follows:

Import the required java.net.* classes:

import java.net.Proxy;
import java.net.InetSocketAddress;

Import the WebLogic HttpTransportinfo API:

import weblogic.wsee.connection.transport._http.HttpTransportinfo;

Create a Proxy object that represents the proxy server:

Proxy p = new Proxy(Proxy.Type.HTTP, new InetSocketAddress(proxyHost,
Integer.parselnt(proxyPort)));

The proxyHost and proxyPort arguments refer to the host computer and port of the
proxy server.

Create an HttpTransportinfo object and use the setProxy() method to set the proxy
server information:

HttpTransportinfo info = new HttpTransportinfo();
info._setProxy(p);

Use the weblogic.wsee.connection. transportinfo WebLogic stub property to set
the HttpTransportinfo object on the JAX-RPC stub:

((Stub)port)._setProperty("'weblogic.wsee.connection.transportinfo", info

e Use weblogic.webservice.client.proxyusername and

weblogic.webservice.client.proxypassword WebLogic-specific stub properties to
specify the username and password of a user who is authenticated to access the proxy
server:

((Stub)port)._setProperty(""weblogic.webservice.client.proxyusername",us
er);

((Stub)port)._setProperty(""'weblogic.webservice.client.proxypassword",pa
ss);

Alternatively, you can use the setProxyUsername() and setProxyPassword() methods
of the HttpTransportinfo API to set the proxy username and password, as shown in the
following example:

WebLogic Web Services: Getting Started 8-21

8-22

info.setProxyUsername(*'juliet” _getBytes());
info.setProxyPassword("'secret' ._getBytes());

Using System Properties to Specify the Proxy Server

When you use system properties to specify the proxy server, you write your client application in
the standard way, and then specify the following system properties when you execute the client
application:

® proxySet=true

® proxyHost=proxyHost

e proxyPort=proxyPort

e weblogic.webservice.client.proxyusername=proxyUsername
e weblogic.webservice.client.proxypassword=proxyPassword

where proxyHost is the name of the host computer on which the proxy server is running,
proxyPort is the port to which the proxy server is listening, proxyUsername is the authenticated
proxy server user and proxyPassword is the user’s password.

The following excerpt from an Ant build script shows an example of setting these system
properties when invoking a client application called clients. InvokeMyService:

<target name="run-client">
<java fork="true"
classname="clients. InvokeMyService"
failonerror="true">
<classpath refid="client.class.path"/>
<arg line="${http-endpoint}"/>
<jvmarg line=
""-DproxySet=true
-DproxyHost=${proxy-host}
-DproxyPort=${proxy-port}
-Dweblogic.webservice.client.proxyusername=${proxy-username}
-Dweblogic.webservice.client.proxypassword=${proxy-passwd}"
/>
</java>
</target>

WebLogic Web Services: Getting Started

Client Considerations When Redeploying a Web Service

Client Considerations When Redeploying a Web Service

WebLogic Server supports production redeployment, which means that you can deploy a new
version of an updated WebL ogic Web Service alongside an older version of the same Web
Service.

WebLogic Server automatically manages client connections so that only new client requests are
directed to the new version. Clients already connected to the Web Service during the
redeployment continue to use the older version of the service until they complete their work, at
which point WebLogic Server automatically retires the older Web Service. If the client is
connected to a conversational or reliable Web Service, its work is considered complete when the
existing conversation or reliable messaging sequence is explicitly ended by the client or because
of a timeout.

You can continue using the old client application with the new version of the Web Service, as
long as the following Web Service artifacts have not changed in the new version:

o the WSDL that describes the Web Service

e the WS-Policy files attached to the Web Service

If any of these artifacts have changed, you must regenerate the JAX-RPC stubs used by the client
application by re-running the clientgen Ant task.

For example, if you change the signature of an operation in the new version of the Web Service,
then the WSDL file that describes the new version of the Web Service will also change. In this
case, you must regenerate the JAX-RPC stubs. If, however, you simply change the
implementation of an operation, but do not change its public contract, then you can continue
using the existing client application.

WebLogic Web Services Stub Properties

WebLogic Server provides a set of stub properties that you can set in the JAX-RPC Stub used to
invoke a WebLogic Web Service. Use the Stub._setProperty() method to set the properties,
as shown in the following example:

((Stub)port)._setProperty(WLStub.MARSHAL_FORCE_INCLUDE_XSI_TYPE,"true');

Most of the stub properties are defined in the WLStub class. See
weblogic.wsee. jaxrpc.WLStub for details.

WebLogic Web Services: Getting Started 8-23

The following table describes additional stub properties not defined in the WLStub class.

Table 8-2 Additional Stub Properties

Stub Property

Description

weblogic.wsee.transport.connection.timeout

Specifies, in milliseconds, how long a client application
that is attempting to invoke a Web Service waits to make
a connection. After the specified time elapses, if a
connection hasn’t been made, the attempt times out.

weblogic.wsee.transport.read.timeout

Specifies, in milliseconds, how long a client application
waits for a response from a Web Service it is invoking.
After the specified time elapses, if a response hasn’t
arrived, the client times out.

weblogic.wsee.security.bst.serverVerifyCert

Specifies the certificate that the client application uses to
validate the signed response from WebLogic Server. By
default, WebLogic Server includes the certification used
to validate in the response SOAP message itself; if this is
not possible, then use this stub property to specify a
different one.

This stub property applies only to client applications that
run inside of a WebLogic Server container, and not to
stand-alone client applications.

The value of the property is an object of data type
Java.security.cert.X509Certificate.

8-24 WebLogic Web Services: Getting Started

Tahle 8-2 Additional Stub Properties

WebLogic Web Services Stub Properties

Stub Property

Description

weblogic.wsee.security.bst.serverEncryptCert

Specifies the certificate that the client application uses to
encrypt the request SOAP message sent to WebLogic
Server. By default, the client application uses the public
certificate published in the Web Service’s WSDL; if this
is not possible, then use this stub property to specify a
different one.

This stub property applies only to client applications that
run inside of a WebLogic Server container, and not to
stand-alone client applications.

The value of the property is an object of data type
Java.security.cert._X509Certificate.

weblogic.wsee.marshal.forcelncludeXsiType

Specifies that the SOAP messages for a Web Service
operation invoke should include the XML Schema data
type of each parameter. By default, the SOAP messages
do not include the data type of each parameter.

If you set this property to True, the elements in the SOAP
messages that describe operation parameters will include
an xsi - type attribute to specify the data type of the
parameter, as shown in the following example:

<soapenv:Envelope>
<maxResults
xsi:type=""xs:int'">10</maxResults>

By default (or if you set this property to False), the
parameter element would look like the following
example:

<soapenv:Envelope>

<maxResults>10</maxResults>

Valid values for this property are True and False;
default value is False.

WebLogic Web Services: Getting Started 8-25

Setting the Character Encoding For the Response SOAP
Message

8-26

Use the weblogic.wsee. jaxrpc.WLStub.CHARACTER_SET_ENCODING WLStub property to
set the character encoding of the response (outbound) SOAP message. You can set it to the
following two values:

e UTF-8
e UTF-16

The following code snippet from a client application shows how to set the character encoding to
UTF-16:

Simple port = service.getSimpleSoapPort();

((Stub)
port) ._setProperty(weblogic.wsee. jaxrpc.WLStub.CHARACTER_SET_ENCODING,
"UTF-16");

port.invokeMethod();

See weblogic.wsee. jaxrpc_ WLStub for additional WLStub properties you can set.

WebLogic Web Services: Getting Started

Administering Web Services

The following sections describe how to administer WebLogic Web Services:
e “Overview of WebLogic Web Services Administration Tasks” on page 9-1
e “Administration Tools” on page 9-2
e “Using the Administration Console” on page 9-3
e “Using the WebLogic Scripting Tool” on page 9-8
e “Using WebLogic Ant Tasks” on page 9-8
e “Using the Java Management Extensions (JMX)” on page 9-8
e “Using the Java EE Deployment API” on page 9-9

e “Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute
Threads” on page 9-10

Overview of WebLogic Web Services Administration
Tasks

When you use the jwsc Ant task to compile and package a WebLogic Web Service, the task
packages it as part of an Enterprise Application. The Web Service itself is packaged inside the
Enterprise application as a Web application WAR file, by default. However, if your JWS file
explicitly implemented javax.ejb.SessionBean, then the Web Service is packaged as an EJB
JAR file. Therefore, basic administration of Web Services is very similar to basic administration

WebLogic Web Services: Getting Started 9-1

of standard Java Platform, Enterprise Edition (Java EE) Version 5 applications and modules.
These standard tasks include:

e Installing the Enterprise application that contains the Web Service.

e Starting and stopping the deployed Enterprise application.

e Configuring the Enterprise application and the archive file which implements the actual
Web Service. You can configure general characteristics of the Enterprise application, such
as the deployment order, or module-specific characteristics, such as session time-out for
Web applications or transaction type for EJBs.

e Creating and updating the Enterprise application’s deployment plan.
e Monitoring the Enterprise application.

e Testing the Enterprise application.

The following administrative tasks are specific to Web Services:
e Configuring the JMS resources used by Web Service reliable messaging and JMS transport

e Configuring the WS-Policy files associated with a Web Service endpoint or its operations.

WARNING: If you used the @Pol icy annotation in your Web Service to specify an
associated WS-Policy file at the time you programmed the JWS file, you
cannot change this association at run-time using the Administration Console
or other administrative tools. You can only associate a new WS-Policy file, or
disassociate one you added at run-time.

e Viewing the SOAP handlers associated with the Web Service.
e Viewing the WSDL of the Web Service.

e Creating a Web Service security configuration.

Administration Tools

There are a variety of ways to administer Java EE modules and applications that run on WebLogic
Server, including Web Services; use the tool that best fits your needs:

e Using the Administration Console
e Using the WebLogic Scripting Tool
e Using WebLogic Ant Tasks

9-2 WebLogic Web Services: Getting Started

Using the Administration Console

e Using the Java Management Extensions (JMX)

e Using the Java EE Deployment API

Using the Administration Console

The BEA WebLogic Server Administration Console is a Web browser-based, graphical user
interface you use to manage a WebLogic Server domain, one or more WebLogic Server
instances, clusters, and applications, including Web Services, that are deployed to the server or
cluster.

One instance of WebL ogic Server in each domain is configured as an Administration Server. The
Administration Server provides a central point for managing a WebLogic Server domain. All
other WebLogic Server instances in a domain are called Managed Servers. In a domain with only
a single WebLogic Server instance, that server functions both as Administration Server and
Managed Server. The Administration Server hosts the Administration Console, which is a Web
Application accessible from any supported Web browser with network access to the
Administration Server.

You can use the System Administration Console to:

e Install an Enterprise application.

Start and stop a deployed Enterprise application.

e Configure an Enterprise application.

Configure Web applications.

Configure EJBs.

e Create a deployment plan.

e Update a deployment plan.

e Test the modules in an Enterprise application.

e Configure JMS resources for Web Service reliable messaging.
e Associate the WS-Policy file with a Web Service.

e View the SOAP message handlers of a Web Service.

o View the WSDL of a Web Service.

WebLogic Web Services: Getting Started 9-3

9-4

e Create a Web Service security configuration

Invoking the Administration Console
To invoke the Administration Console in your browser, enter the following URL.:
http://host:port/console
where
e host refers to the computer on which the Administration Server is running.

e port refers to the port number where the Administration Server is listening for connection
requests. The default port number for the Administration server is 7001.

Click the Help button, located at the top right corner of the Administration Console, to invoke
the Online Help for detailed instructions on using the Administration Console.

The following figure shows the main Administration Console window.

WebLogic Web Services: Getting Started

Using the Administration Console

Figure 9-1 WebLogic Server Administration Console Main Window

) BEA WeblLogic Server Administration Console - Mozilla Firefox

Ele Edit Wiew Go Bookmarks Tools Help

WEBLOGIC SERVER
AD

10N CONSOLE

Change Center Welcome, weblogic Connected to: mydomain i Home: Log Out Preferences Help AskBEA
View changes and restarts Heane
Click the Lock & Edit button o Domain
rodify, add or delete iterms in
this domain.

Information and Resources

Lock & Edit Helpful Tools General Infoi

» Configure applications > Commaon Administration Task Descriptions
» Recent Task Status » Bet your console preferences
‘Dumain Structure | » Read the docurmentation
rmycomain
E-Environment

‘--Daplayments
Services
~Security Realms

teroperability Domain Services
#-Diagnostics

Domain Configurations

I B Domain B Messaging BWTC Servers
'How doI... » IMS Servers & Jolt Connection Pools

» Store-and-Forward Agents
B Use the Change Center

® Yiew pending changes

» IMS Modules

& Release the configuration lock N » Bridges el

& Change Console preferences LIl 2 8 IDRC HLog Files

B Maonitor servers B Virtual Hosts ShSeEaees B Diagnostic Modules
B Migratahle Targets S S © Diaghiostic Images

System Status | & Machines SOy Calee St & Archives

| Health of Running Servers | 8 WWork Managers W S B SNMP Agent

| Failer /0 8 Startup And Shutdown Classes

| | ; E © Path Services 2ErDxies _l;l
4 3

How Web Services Are Displayed In the Administration
Console

Web Services are typically deployed to WebLogic Server as part of an Enterprise Application.
The Enterprise Application can be either archived as an EAR, or be in exploded directory format.
The Web Service itself is almost always packaged as a Web Application; the only exception is if
your JWS file explicitly implements javax.ejb.SessionBean, in which case it is packaged as
an EJB. The Web Service can be in archived format (WAR or EJB JAR file, respectively) or as
an exploded directory.

It is not required that a Web Service be installed as part of an Enterprise application; it can be
installed as just the Web Application or EJB. However, BEA recommends that users install the

WebLogic Web Services: Getting Started 9-5

Web Service as part of an Enterprise application. The WebLogic Ant task used to create a Web
Service, jwsc, always packages the generated Web Service into an Enterprise application.

To view and update the Web Service-specific configuration information about a Web Service
using the Administration Console, click on the Deployments node in the left pane and, in the
Deployments table that appears in the right pane, find the Enterprise application in which the Web
Service is packaged. Expand the application by clicking the + node; the Web Services in the
application are listed under the Web Services category. Click on the name of the Web Service to
view or update its configuration.

The following figure shows how the HandlerChainService Web Service, packaged inside the
GlobalHandler Enterprise application, is displayed in the Deployments table of the
Administration Console.

Figure 9-2 Web Service Displayed in Deployments Table of Administration Console

"_) BEA WebLogic Server Administration Console - Mozilla Firefox

File:

dt Wew Go Bookmarks Tools Help

WEBLOGIC SERVER

e
Zbea souimistration consoLe

Change Center

Welcome, weblogic Conrectad to: mydomain fir Horme | Log Out Preferences | Help AskBE

iew changes and restarts

Click the Lock & Edit button to
modify, add or delete tems in
this domain,

Lock & Edit

Home = Summary of Deployments
Summary of Deployments
Confrol | Manitoring

This page displays a list of J2EE Applications and standalone application modules that have been installed to this
dormain. Installed applications and modules can be started, stopped, updated {redeployed), or deleted from the

domain by first selecting the application name and using the controls on this page.

Domain Structure

To install & new application or rodule for deployment t targets in this domain, click $he nstall button,

rmydomain
El-Enviranment

-~ Deployments

Deployments

[#-Services

~Security Realms
F-Interoperability
F-Diagnastics

| e [l

Showing 1 - 1of 1 Previous | MNext

Deployment
™ | Name State | Type Order
How do I... & ’
[T | 2 §GlobalHandler Active Enhili’f;tlis;n 100
8 Inetall an Enferprise application PP
& Configure an Enterprise application Modules

B Update (redeploy) an Enterprise Es

application

© Start and stop a deployed [weh Services

Enterprise application
& Monitor the modules of an

fiEHandlerChainService

Weh

Service

Enterprise application
© Deploy EJB modules

| sl o]

8 Install a Web application
|

Showing 1- 1 af 1 Previous | Next

9-6 WebLogic Web Services: Getting Started

Using the Administration Console

Creating a Web Services Security Configuration

When a deployed WebLogic Web Service has been configured to use message-level security
(encryption and digital signatures, as described by the WS-Security specification), the Web
Services runtime determines whether a Web Service security configuration is also associated with
the service. This security configuration specifies information such as whether to use an X.509
certificate for identity, whether to use password digests, the keystore to be used for encryption,
and so on. A single security configuration can be associated with many Web Services.

Because Web Services security configurations are domain-wide, you create them from the
domainName > WebService Security tab of the Administration Console, rather than the
Deployments tab. The following figure shows the location of this tab.

Figure 9-3 Web Service Security Configuration in Administration Console

'_) BEA WebLogic Server Administration Console - Mozilla Firefox
Edit W¥ew Go Bookmarks Tools Help

Change Center Welcome, weblogic

AskBEA

Connected 10! mydomain Log Out Preferences

G Homme

Help

. Home = Summary of Deployments > mydomain
YWigw changes and restarts ¥ R &

Click the Lock & Edit buton to settings for mydomain
rodify, add or delete tems in
this domain.

Lock & Edit

Configuration Monitoring Control - Security | \WebService Security | Notes

Thig page lists the \Web Service security configurations that have been created for this domain, Click on the security
configuration name to update it, such as create new credential providers, new token handlers, ar configure the
timestamp properties,

Domain Structure

mydomain
El-Environment
-Deployments

Web Service Security Configurations

Click the Lock & £dit button in the Change Center to activate all the buttons on this page.

Showing 1 - 1of 1 Previous | Next

[F-Diagnostics N 5 .
™ | Web Service Security Configuration Name

How do I... & T |default_wss

s Eéi;‘;?a;\;ib Service security Showing 1- 1 af 1 Previous | Next
& Create keystore used by SO&AP
meszage digital signatures
@ Create keystore used by S04P
ImEssage endryption
& Use a password digest in SOAP
IMESSA0ES
& Use X509 certificates to establish
identity

WebLogic Web Services: Getting Started 9-7

Using the WebLogic Scripting Tool

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you can use to
interact with and configure WebL ogic Server domains and instances, as well as deploy Java EE
modules and applications (including Web Services) to a particular WebLogic Server instance.
Using WLST, system administrators and operators can initiate, manage, and persist WebLogic
Server configuration changes.

Typically, the types of WLST commands you use to administer Web Services fall under the
Deployment category.

For more information on using WLST, see WebLogic Scripting Tool.

Using WebLogic Ant Tasks

WebLogic Server includes a variety of Ant tasks that you can use to centralize many of the
configuration and administrative tasks into a single Ant build script. These Ant tasks can:

e Create, start, and configure a new WebL ogic Server domain, using the wilserver and
wlconfig Ant tasks.

e Deploy a compiled application to the newly-created domain, using the wldeploy Ant task.

See Using Ant Tasks to Configure a WebLogic Server Domain and wideploy Ant Task Reference
for specific information about the non-Web Services related WebLogic Ant tasks.

Using the Java Management Extensions (JMX)

9-8

A managed bean (MBean) is a Java bean that provides a Java Management Extensions (JMX)
interface. IMX is the Java EE solution for monitoring and managing resources on a network. Like
SNMP and other management standards, JMX is a public specification and many vendors of
commonly used monitoring products support it.

BEA WebLogic Server provides a set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources through JMX. WebLogic Web Services also have their own
set of MBeans that you can use to perform some Web Service administrative tasks.

There are two types of MBeans: runtime (for read-only monitoring information) and
configuration (for configuring the Web Service after it has been deployed).

The configuration Web Services MBeans are:

® WebserviceSecurityConfigurationMBean

WebLogic Web Services: Getting Started

Using the Java EE Deployment API

® WebserviceCredentialProviderMBean
® WebserviceSecurityMBean

® WebserviceSecurityTokenMBean

® WebserviceTimestampMBean

® WebserviceTokenHandlerMBean

The runtime Web Services MBeans are:
® WseeRuntimeMBean

® WWseeHandlerRuntimeMBean

® WseePortRuntimeMBean

® WWseeOperationRuntimeMBean

® WseePolicyRuntimeMBean

For more information on JMX, see:
e Understanding WebLogic Server MBeans
e Accessing WebLogic Server MBeans with JIMX
e Managing a Domain’s Configuration with JMX

e WebLogic Server MBean Reference.

Using the Java EE Deployment API

In Java EE 1.4, the J2EE Application Deployment specification (JSR-88) defines a standard API
that you can use to configure an application for deployment to a target application server
environment.

The specification describes the Java EE Deployment architecture, which in turn defines the
contracts that enable tools or application programmers to configure and deploy applications on
any Java EE platform product. The contracts define a uniform model between tools and Java EE
platform products for application deployment configuration and deployment. The Deployment
architecture makes it easier to deploy applications: Deployers do not have to learn all the features
of many different Java EE deployment tools in order to deploy an application on many different
Java EE platform products.

See Deploying Applications to WebLogic Server for more information.

WebLogic Web Services: Getting Started 9-9

Using Work Managers to Prioritize Web Services Work
and Reduce Stuck Execute Threads

9-10

After a connection has been established between a client application and a Web Service, the
interactions between the two are ideally smooth and quick, whereby the client makes requests and
the service responds in a prompt and timely manner. Sometimes, however, a client application
might take a long time to make a new request, during which the Web Service waits to respond,
possibly for the life of the WebLogic Server instance; this is often referred to as a stuck execute
thread. If, at any given moment, WebLogic Server has a lot of stuck execute threads, the overall
performance of the server might degrade.

If a particular Web Service gets into this state fairly often, you can specify how the service
prioritizes the execution of its work by configuring a Work Manager and applying it to the
service. For example, you can configure a response time request class (a specific type of Work
Manager component) that specifies a response time goal for the Web Service.

The following shows an example of how to define a response time request class in a deployment
descriptor:

<work-manager>
<name>responsetime_workmanager</name>
<response-time-request-class>
<name>my_response_time</name>
<goal-ms>2000</goal-ms>
</response-time-request-class>
</work-manager>

You can configure the response time request class using the Administration Console, as described
in “Work Manager: Response Time: Configuration” in the Administration Console Online Help.

For more information about Work Managers in general and how to configure them for your Web
Service, see “Using Work Managers to Optimize Scheduled Work” in Configuring WebLogic
Server Environments.

WebLogic Web Services: Getting Started

CHAPTERm

Upgrading WebLogic Web Services
From Previous Releases to 10.0

The following sections describe how to upgrade a pre-10.0 WebLogic Server Web Service to run
in the 10.0 Web Service runtime environment:

e “Upgrading a 9.2 WebLogic Web Service to 10.0” on page 10-1
e “Upgrading a 9.0 or 9.1 WebLogic Web Service to 10.0” on page 10-1

e “Upgrading an 8.1 WebLogic Web Service to 10.0” on page 10-2

Upgrading a 9.2 WebLogic Web Service to 10.0

You do not need to do anything to upgrade a 9.2 WebLogic Web Service to 10.0; you can
redeploy it to WebLogic Server 10.0 without making any changes or recompiling it.

Upgrading a 9.0 or 9.1 WebLogic Weh Service to 10.0

If your 9.0/9.1 Web Service used any of the following features, then you must recompile the Web
Service before you redeploy it to WebLogic Server 10.0:

e Conversations
e @weblogic.jws.Context JWS annotation

e weblogic.wsee. jws.JwsContext API

To recompile, simply rerun the jwsc Ant task against the JWS file that implements your Web
Service.

WebLogic Web Services: Getting Started 10-1

If your 9.0/9.1 Web Service did not use these features, then you can redeploy it to WebLogic
Server 10.0 without making any changes or recompiling it.

Upgrading an 8.1 WebLogic Web Service to 10.0

10-2

This section describes how to upgrade an 8.1 WebL ogic Web Service to use the new Version 10.0
Web Services runtime environment. The 10.0 runtime is based on the Implementing Enterprise
Web Services 1.2 specification (JSR-109). The 10.0 programming model uses standard JDK 1.5
metadata annotations, as specified by the Web Services Metadata for the Java Platform
specification (JSR-181).

Note: 8.1 WebLogic Web Services will continue to run, without any changes, on Version 10.0
of WebLogic Server because the 8.1 Web Services runtime is still supported in 10.0,
although it is deprecated and will be removed from the product in future releases. For this
reason, BEA highly recommends that you follow the instructions in this chapter to
upgrade your 8.1 Web Service to 10.0.

Upgrading your 8.1 Web Service includes the following high-level tasks; the procedures in later
sections go into more detail:

e Update the 8.1 Java source code of the Java class or stateless session EJB that implements
the Web Service so that the source code uses JWS annotations.

Version 10.0 WebLogic Web Services are implemented using JWS files, which are Java
files that contains JWS annotations. The jwsc Ant task always implements the Web
Service as a plain Java file unless you explicitly implement javax.ejb.SessionBean in
your JWS file. This latter case is not typical. This programming model differs from that of
8.1, where you were required to specify the type of backend component (Java class or
EJB).

e Update the Ant build script that builds the Web Service to call the 10.0 WebLogic Web
Service Ant task jwsc instead of the 8.1 servicegen task.

In the sections that follow it is assumed that:
e You previously used servicegen to generate your 8.1 Web Service and that, more
generally, you use Ant scripts in your development environment to iteratively develop Web
Services and other Java Platform, Enterprise Edition (Java EE) Version 5 artifacts that run

on WebLogic Server. The procedures in this section direct you to update existing Ant
build.xml files.

e You have access to the Java class or EJB source code for your 8.1 Web Service.
This section does not discuss the following topics:

WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

e Upgrading a IMS-implemented 8.1 Web Service, because the 10.0 WebLogic Web
Services runtime does not support IMS-implemented services.

e Upgrading Web Services from versions previous to 8.1.

e Upgrading a client application that invokes an 8.1 Web Service to one that invokes a 10.0
Web Service. For details on how to write a client application that invokes a 10.0 Web
Service, see Chapter 8, “Invoking Web Services.”

Upgrading an 8.1 Java Class-Implemented WebLogic Web
Service to 10.0: Main Steps

To upgrade an 8.1 Java class-implemented Web Service to use the 10.0 WebLogic Web Services
runtime:

1. Open a command window and set your WebLogic Server 10.0 environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your 10.0 domain directory.

The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/upgrade_pojo

3. Create an src directory under the project directory, as well as sub-directories that correspond
to the package name of the new 10.0 JWS file (shown later in this procedure) that corresponds
to the old 8.1 Java class:

prompt> cd /myExamples/upgrade_pojo
prompt> mkdir src/examples/webservices/upgrade_pojo

4. Copy the old Java class that implements the 8.1 Web Service to the
src/examples/webservices/upgrade_pojo directory of the working directory. Rename
the file, if desired.

5. Edit the Java file, as described in the following steps. See the old and new sample Java files
in “Example of an 8.1 Java File and the Corresponding 10.0 JWS File” on page 10-5 for
specific examples.

a. Ifneeded, change the package name and class name of the Java file to reflect the new 10.0
source environment.

WebLogic Web Services: Getting Started 10-3

10-4

b. Add import statements to import both the standard and WebLogic-specific JWS
annotations.

c. Add, at a minimum, the following JWS annotation:

— The standard @webService annotation at the Java class level to specify that the JWS
file implements a Web Service.

BEA recommends you also add the following annotations:

— The standard @SOAPBinding annotation at the class-level to specify the type of Web
Service, such as document-literal-wrapped or RPC-encoded.

— The WebLogic-specific @WLHttpTransport annotation at the class-level to specify the
context and service URIs that are used in the URL that invokes the deployed Web
Service.

— The standard @webMethod annotation at the method-level for each method that is
exposed as a Web Service operation.

See Chapter 5, “Programming the JWS File,” for general information about using JWS
annotations in a Java file.

d. You might need to add additional annotations to your JWS file, depending on the 8.1 Web
Service features you want to carry forward to 10.0. In 8.1, many of these features were
configured with attributes of servicegen. See “Mapping of servicegen Attributes to JWS
Annotations or jwsc Attributes” on page 10-20 for a table that lists equivalent JWS
annotation, if available, for features you enabled in 8.1 using servicegen attributes.

6. Copy the old build.xml file that built the 8.1 Web Service to the 10.0 working directory.

7. Update your Ant bui Id.xml file to execute the jwsc Ant task, along with other supporting
tasks, instead of servicegen.

BEA recommends that you create a new target, such as build-service, in your Ant
build file and add the jwsc Ant task call to compile the new JWS file you created in the
preceding steps. Once this target is working correctly, you can remove the old
servicegen Ant task.

The following procedure lists the main steps to update your bui Id.xml file; for details on
the steps, see the standard iterative development process outlined in Chapter 4, “Iterative
Development of WebLogic Web Services.”

See “Example of an 8.1 and Updated 10.0 Ant Build File for Java Class-Implemented Web
Services” on page 10-7 for specific examples of the steps in the following procedure.

a. Add the jwsc taskdef to the bui ld.xml file.

WebLogic Web Services: Getting Started

pa
/>

*
*
*
*
*

*

pu

Upgrading an 8.1 WebLogic Web Service to 10.0

b. Create a build-service target and add the tasks needed to build the 10.0 Web Service,
as described in the following steps.

c. Add the jwsc task to the build file. Set the srdir attribute to the src directory
(/myExamples/upgrade_pojo/src, in this example) and the destdir attribute to the
root Enterprise application directory you created in the preceding step.

Set the File attribute of the <jws> child element to the name of the new JWS file,
created earlier in this procedure.

You may need to specify additional attributes to the jwsc task, depending on the 8.1
Web Service features you want to carry forward to 10.0. In 8.1, many of these features
were configured using attributes of servicegen. See “Mapping of servicegen
Attributes to JWS Annotations or jwsc Attributes” on page 10-20 for a table that
describes if there is an equivalent jwsc attribute for features you enabled using
servicegen attributes

8. Execute the build-service Ant target. Assuming all the tasks complete successfully, the
resulting Enterprise application contains your upgraded 10.0 Web Service.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15 and “Browsing to the
WSDL of the Web Service” on page 4-18 for additional information about deploying and testing
your Web Service.

Based on the sample Java code shown in the following sections, the URL to invoke the WSDL
of the upgraded 10.0 Web Service is:

http://host:port/upgradeP0JO/Hel loWor1d?WSDL

Example of an 8.1 Java File and the Corresponding 10.0 JWS File

Assume that the following sample Java class implemented a 8.1 Web Service:

ckage examples.javaclass;

*

Simple Java class that implements the HelloWorld Web service. It takes
as input an integer and a String, and returns a message that includes these
two parameters.

@author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
/

blic final class HelloWorld8l {

/**
* Returns a text message that includes the integer and String input

WebLogic Web Services: Getting Started 10-5

* parameters.

*/
public String sayHello(int num, String s) {

System.out.println('sayHello operation has been invoked with arguments " +
s + "™ and " + num);

String returnValue = "This message brought to you by the letter "+s+" and
the number "+num;

return returnValue;

An equivalent JWS file for a 10.0 Java class-implemented Web Service is shown below, with the
differences shown in bold. Note that some of the JWS annotation values are taken from attributes
of the 8.1 servicegen Ant task shown in “Example of an 8.1 and Updated 10.0 Ant Build File
for Java Class-Implemented Web Services” on page 10-7.

WARNING: Because the following JWS file uses WebL ogic-specific JWS annotations, the
generated Web Service will be based on JAX-RPC 1.1 rather than JAX-WS 2.0.

package examples.webservices.upgrade_pojo;
// Import standard JWS annotations

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;

// Import WebLogic JWS anntoation
import weblogic. jws.WLHttpTransport;
/**

* Simple Java class that implements the HelloWorld92 Web service. It takes

as input an integer and a String, and returns a message that includes these

* two parameters.
*

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

*

@WebService(name=""HelloWor 1d92PortType", serviceName="HelloWorld",
targetNamespace="http://example.org")

10-6 WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

@SOAPBinding(style=SOAPBinding.Style_DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle_WRAPPED)

@WLHttpTransport(contextPath=""upgradeP0J0O", serviceUri="HelloWorld",
portName=""Hel loWor 1d92Port')

public class HelloWorld92Impl {

/**
* Returns a text message that includes the integer and String input

* parameters.
*

*/

@webMethod()
public String sayHello(int num, String s) {

System.out.printIn('sayHello operation has been invoked with arguments " +
s + "™ and " + num);

String returnValue = "This message brought to you by the letter "+s+" and
the number *+numj;

return returnValue;

}
}

Example of an 8.1 and Updated 10.0 Ant Build File for Java
Class-Implemented Web Services
The following simple bui 1d.xml file shows the 8.1 way to build a WebLogic Web Service using

the servicegen Ant task; in the example, the Java file that implements the 8.1 Web Service has
already been compiled into the examples.javaclass.Hellowor1dsl class:

<project name="javaclass-webservice" default="all" basedir="_">
<I-- set global properties for this build -->
<property name="'source' value="_"/>

<property name="build" value="${source}/build"/>
<property name="war_Ffile" value="HelloWorldWS._war" />
<property name="ear_Ffile" value=""HelloWorldApp.ear" />
<property name="namespace' value="http://examples.org"” />

<target name="all" depends="clean, ear'/>

WebLogic Web Services: Getting Started 10-7

<target name="clean">
<delete dir="${build}"/>
</target>

<I-- example of old 8.1 servicegen call to build Web Service -->

<target name="ear">
<servicegen
desteEar=""${bui ld}/${ear_File}"
warName=""${war_file}">
<service
JavaClassComponents="examples.javaclass.Hel loWwor1d81"
targetNamespace=""${namespace}"
serviceName="HelloWorld"
serviceURI="/HelloWorld"
generateTypes="True"
expandMethods="True">
</service>
</servicegen>
</target>

</project>

An equivalent bui ld.xml file that calls the jwsc Ant task to build a 10.0 Web Service is shown
below, with the relevant tasks discussed in this section in bold. In the example, the new JWS file
that implements the 10.0 Web Service is called Hel lowor1d921Impl . java:

<project name="‘webservices-upgrade_pojo" default="all">
<I-- set global properties for this build -->

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server.name" value="myserver" />

<property name="ear.deployed.name" value="upgradePOJOEar" />
<property name="example-output" value="output" />
<property name="ear-dir" value="${example-output}/upgradePOJOEar" />

10-8 WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends='"'clean,build-service,deploy" />

<target name=''clean'" depends="undeploy''>
<delete dir="${example-output}"/>
</target>

<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}">

<jws File=""examples/webservices/upgrade_pojo/HelloWor1d92Impl.java" />
</jwsc>
</target>

<target name="deploy">
<wldeploy action="deploy" name="${ear.deployed.name}"
source=""${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose=""true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy"'>
<wldeploy action="undeploy" name="${ear.deployed.name}"
failonerror="false"
user="${wls.username}" password="${wls._password}" verbose='"true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

</project>

WebLogic Web Services: Getting Started 10-9

10-10

Upgrading an 8.1 EJB-Implemented WebLogic Web Service
to 10.0: Main Steps

The following procedure describes how to upgrade an 8.1 EJB-implemented Web Service to use
the 10.0 WebLogic Web Services runtime.

The 10.0 Web Services programming model is quite different from the 8.1 model in that it hides
the underlying implementation of the Web Service. Rather than specifying up front that you want
the Web Service to be implemented by a Java class or an EJB, the jwsc Ant task always picks a
plain Java class implementation, unless you have explicitly implemented
javax.ejb.SessionBean in the JWS file, which is not typical. For this reason, the following
procedure does not show how to import EJB classes or use EJBGen, even though the 8.1 Web
Service was explicitly implemented with an EJB. Instead, the procedure shows how to create a
standard JWS file that is the 10.0 equivalent to the 8.1 EJB-implemented Web Service.

1. Open a command window and set your 10.0 WebLogic Server environment by executing the
setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script, located in the bin
subdirectory of your 10.0 domain directory.

The default location of WebLogic Server domains is
BEA_HOME/user_projects/domains/domainName, where BEA_HOME is the top-level
installation directory of the BEA products and domainName is the name of your domain.

2. Create a project directory:

prompt> mkdir /myExamples/upgrade_ejb

3. Create a src directory under the project directory, as well as sub-directories that correspond
to the package name of the new 10.0 JWS file (shown later on in this procedure) that
corresponds to your 8.1 EJB implementation:

prompt> cd /myExamples/upgrade_ejb
prompt> mkdir src/examples/webservices/upgrade_ejb

4. Copy the 8.1 EJB Bean file that implemented javax.ejb.SessionBean to the
src/examples/webservices/upgrade_ejb directory of the working directory. Rename
the file, if desired.

Note: You do not need to copy over the 8.1 Home and Remote EJB files.

5. Edit the EJB Bean file, as described in the following steps. See the old and new sample Java
files in “Example of 8.1 EJB Files and the Corresponding 10.0 JWS File” on page 10-13 for
specific examples.

WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

a. Ifneeded, change the package name and class name of the Java file to reflect the new 10.0
source environment.

b. Optionally remove the import statements that import the EJB classes (javax.ejb.>).
These classes are no longer needed in the upgraded JWS file.

c. Add import statements to import both the standard and WebLogic-specific JWS
annotations.

d. Ensure that the JWS file does not implement javax.ejb.SessionBean anymore by
removing the implements SessionBean code from the class declaration.
e. Remove all the EJB-specific methods:
— ejbActivate()
— ejbRemove()
— ejbPassivate()
— ejbCreate()

f. Add, at a minimum, the following JWS annotation:

— The standard @webService annotation at the Java class level to specify that the JWS
file implements a Web Service.

BEA recommends you also add the following annotations:

— The standard @SOAPBinding annotation at the class-level to specify the type of Web
Service, such as document-literal-wrapped or RPC-encoded.

— The WebLogic-specific @WLHttpTransport annotation at the class-level to specify the
context and service URIs that are used in the URL that invokes the deployed Web
Service.

— The standard @webMethod annotation at the method-level for each method that is
exposed as a Web Service operation.

See Chapter 5, “Programming the JWS File,” for general information about using JWS
annotations in a Java file.

g. You might need to add additional annotations to your JWS file, depending on the 8.1 Web
Service features you want to carry forward to 10.0. In 8.1, many of these features were
configured using attributes of servicegen. See “Mapping of servicegen Attributes to
JWS Annotations or jwsc Attributes” on page 10-20 for a table that lists equivalent JWS
annotation, if available, for features you enabled in 8.1 using servicegen attributes.

6. Copy the old build.xml file that built the 8.1 Web Service to the 10.0 working directory.

WebLogic Web Services: Getting Started 10-11

10-12

7. Update your Ant bui Id.xml file to execute the jwsc Ant task, along with other supporting
tasks, instead of servicegen.

BEA recommends that you create a new target, such as build-service, in your Ant
build file and add the jwsc Ant task call to compile the new JWS file you created in the
preceding steps. Once this target is working correctly, you can remove the old
servicegen Ant task.

The following procedure lists the main steps to update your bui ld.xml file; for details on
the steps, see the standard iterative development process outlined in Chapter 4, “Iterative
Development of WebLogic Web Services.”

See “Example of an 8.1 and Updated 10.0 Ant Build File for an 8.1 EJB-Implemented Web
Service” on page 10-17 for specific examples of the steps in the following procedure.

a. Add the jwsc taskdef to the build.xml file.

b. Create a build-service target and add the tasks needed to build the 10.0 Web Service,
as described in the following steps.

c. Add the jwsc task to the build file. Set the srdir attribute to the src directory
(/myExamples/upgrade_ejb/src, in this example) and the destdir attribute to the
root Enterprise application directory you created in the preceding step.

Set the Fi le attribute of the <jws> child element to the name of the new JWS file,
created earlier in this procedure.

You may need to specify additional attributes to the jwsc task, depending on the 8.1
Web Service features you want to carry forward to 10.0. In 8.1, many of these features
were configured using attributes of servicegen. See “Mapping of servicegen
Attributes to JWS Annotations or jwsc Attributes” on page 10-20 for a table that
indicates whether there is an equivalent jwsc attribute for features you enabled using
servicegen attributes.

8. Execute the bui ld-service Ant target. Assuming all tasks complete successfully, the
resulting Enterprise application contains your upgraded 10.0 Web Service.

See “Deploying and Undeploying WebLogic Web Services” on page 4-15 and “Browsing to the
WSDL of the Web Service” on page 4-18 for additional information about deploying and testing
your Web Service.

Based on the sample Java code shown in the following sections, the URL to invoke the WSDL
of the upgraded 10.0 Web Service is:

http://host:port/upgradeEJB/HelloWorldService?WSDL

WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to

Example of 8.1 EJB Files and the Corresponding 10.0 JWS File

Assume that the Bean, Home, and Remote classes and interfaces, shown in the next three
sections, implemented the 8.1 stateless session EJB which in turn implemented an 8.1 Web
Service.

The equivalent 10.0 JWS file is shown in “Equivalent 10.0 JWS File” on page 10-16. The
differences between the 8.1 and 10.0 classes are shown in bold. Note that some of the JWS

10.0

annotation values are taken from attributes of the 8.1 servicegen Ant task shown in “Example

of an 8.1 and Updated 10.0 Ant Build File for an 8.1 EJB-Implemented Web Service” on
page 10-17.

8.1 SessionBean Class
package examples.statelessSession;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

/**
* HelloWorldBean is a stateless session EJB. It has a single method,
* sayHello(), that takes an integer and a String and returns a String.

* <p>

* The sayHello() method is the public operation of the Web service based on
* this EJB.

*

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.

*/

public class HelloWorldBean81 implements SessionBean {

private static final boolean VERBOSE = true;
private SessionContext ctx;

// You might also consider using WebLogic"s log service
private void log(String s) {
iT (VERBOSE) System.out.printin(s);

}

/**

* Single EJB business method.

*/

public String sayHello(int num, String s) {

System.out._printin(“'sayHello in the HelloWorld EJB has "+
"been invoked with arguments " + s + " and " + num);

WebLogic Web Services: Getting Started

10-13

String returnValue = "This message brought to you by the
"letter "+s+" and the number *+num;

return returnValue;

}

/**

* This method is required by the EJB Specification,
* but is not used by this example.

*

*/

public void ejbActivate() {

log('ejbActivate called™);

}

/**
* This method is required by the EJB Specification,
* but is not used by this example.
*
*/
public void ejbRemove() {
log('ejbRemove called™);

/**
* This method is required by the EJB Specification,
* but is not used by this example.
*/
public void ejbPassivate() {
log("'ejbPassivate called™);

/**

* Sets the session context.

*

* @param ctx SessionContext Context for session

*/

public void setSessionContext(SessionContext ctx) {
log(''setSessionContext called™);
this.ctx = ctx;

}

/**
* This method is required by the EJB Specification,
* but is not used by this example.

*/
public void ejbCreate () throws CreateException {

10-14 WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

log('ejbCreate called™);
}

8.1 Remote Interface
package examples.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

/**

The methods in this interface are the public face of HelloWorld.

The signatures of the methods are identical to those of the EJBean, except
that these methods throw a java.rmi.RemoteException.

* ok % X %

@author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public interface HelloWorld81 extends EJBObject {

/**

* Simply says hello from the EJB

*

* @param num int number to return

* @param s String string to return

* @return String returnValue

* @exception RemoteException if there is
*

a communications or systems failure
*/

String sayHello(int num, String s)

throws RemoteException;

8.1 EJB Home Interface
package examples.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb._EJBHome;

/**
* This interface is the Home interface of the HelloWorld stateless session EJB.

*

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/
public interface HelloWorldHome81 extends EJBHome {

WebLogic Web Services: Getting Started 10-15

/**
* This method corresponds to the ejbCreate method in the
* HelloWorldBean81.java file.
*/
HelloWorld81 create()
throws CreateException, RemoteException;

Equivalent 10.0 JWS File

The differences between the 8.1 and 10.0 files are shown in bold. The value of some JWS
annotations are taken from attributes of the 8.1 servicegen Ant task shown in “Example of an
8.1 and Updated 10.0 Ant Build File for an 8.1 EJB-Implemented Web Service” on page 10-17.

WARNING: Because the following JWS file uses WebLogic-specific JWS annotations, the
generated Web Service will be based on JAX-RPC 1.1 rather than JAX-WS 2.0.

package examples.webservices.upgrade_ejb;
// Import the standard JWS annotations

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

// Import the WebLogic specific annotation
import weblogic. jws_WLHttpTransport;
// Class-level annotations

@webService(name=""Hel loWor1d92PortType', serviceName="HelloWorldService",
targetNamespace=""http://example.org")

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
use=SOAPBiInding.Use.LITERAL,
parameterStyle=SOAPBiInding.ParameterStyle_ WRAPPED)

@WLHttpTransport(contextPath="upgradeEJB", serviceUri="HelloWorldService",
portName=""Hel loWor 1d92Port')

/**
* HelloWorld92Impl is the JWS equivalent of the HelloWorld81 EJB that
* implemented the 8.1 Web Service. It has a single method,

* sayHello(), that takes an integer and a String and returns a String.
* <p>

10-16 WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

* @author Copyright (c) 2005 by BEA Systems. All Rights Reserved.
*/

public class HelloWorld92Ilmpl {

/** the sayHello method will become the public operation of the Web
* Service.
*/

@webMethod()
public String sayHello(int num, String s) {

System.out.printin(sayHello in the HelloWorld92 Web Service has "+
"been invoked with arguments "™ + s + " and " + num);

String returnValue = "This message brought to you by the "+
"letter "+s+" and the number "‘+num;

return returnvValue;

Example of an 8.1 and Updated 10.0 Ant Build File for an 8.1
EJB-Implemented Web Service

The following simple bui I1d . xm1 file shows the 8.1 way to build an EJB-implemented WebL ogic
Web Service using the servicegen Ant task. Following this example is an equivalent
build.xml file that calls the jwsc Ant task to build a 10.0 Web Service.

<project name="ejb-webservice" default="all" basedir=".">
<I-- set global properties for this build -->
<property name="'source" value="_"/>

<property name="build" value="${source}/build"/>
<property name="ejb_Ffile" value="HelloWorldWS._jar" />
<property name="war_Ffile" value="HelloWorldWS.war" />
<property name="ear_File" value=""HelloWorldApp.ear" />
<property name="namespace'" value="http://examples.org"” />

<target name="all" depends="'clean,ear'/>

<target name='"'clean'>
<delete dir="${build}"/>
</target>

<I-- example of old 8.1 servicegen call to build Web Service -->

WebLogic Web Services: Getting Started 10-17

10-18

<target name="ejb">
<delete dir="${build}" />
<mkdir dir="${build}"/>
<mkdir dir="${build}/META-INF"/>
<copy todir="${build}/META-INF">
<fileset dir="${source}">
<include name="ejb-jar._.xml"/>
</fileset>
</copy>
<javac srcdir="${source}" includes="HelloWorld*.java"
destdir="${build}" />
<jar jarfile="${ejb_file}" basedir="${build}" />
<wlappc source="${ejb_Ffile}" />
</target>

<target name="‘ear" depends="'ejb"'>
<servicegen
destEar="${build}/${ear_Tfile}"
warName=""${war_file}">
<service
ejbJar="${ejb_Ffile}"
targetNamespace=""${namespace}"
serviceName="Hel loWorldService"
serviceURI="/HelloWorldService"
generateTypes="True"
expandMethods="True">
</service>
</servicegen>
</target>

</project>

An equivalent bui ld.xml file that calls the jwsc Ant task to build a 10.0 Web Service is shown
below, with the relevant tasks discussed in this section in bold:

<project name="webservices-upgrade_ejb" default="all">

<I-- set global properties for this build -->

WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

<property name="wls.username" value="weblogic" />
<property name="wls.password" value="weblogic" />
<property name="wls.hostname" value="localhost" />
<property name="wls.port" value="7001" />

<property name="wls.server._name" value="myserver" />

<property name="ear.deployed.name"™ value="upgradeEJB" />
<property name="example-output" value="output" />
<property name="ear-dir" value="${example-output}/upgradeEJB" />

<taskdef name="jwsc"
classname="weblogic.wsee.tools.anttasks.JwscTask" />

<taskdef name="wldeploy"
classname="weblogic.ant. taskdefs.management.WLDeploy"/>

<target name="all" depends='"'clean,build-service,deploy" />

<target name='"'clean'" depends="undeploy'>
<delete dir="${example-output}"/>
</target>

<target name="build-service">

<jwsc
srcdir="src"
destdir="${ear-dir}">

<jws File="examples/webservices/upgrade_ejb/HelloWorld92Impl _java" />

</jwsc>
</target>

<target name="deploy">
<wldeploy action="deploy" name="${ear.deployed.name}"
source="${ear-dir}" user="${wls.username}"
password="${wls.password}" verbose=""true"
adminurl="t3://${wls_hostname}:${wls.port}"
targets="${wls.server_name}" />
</target>

<target name="undeploy"'>
<wldeploy action="undeploy" name="${ear.deployed.name}"
failonerror="false"

WebLogic Web Services: Getting Started

10-19

10-20

user="${wls_username}" password=""${wls._password}" verbose="true"
adminurl="t3://%{wls_hostname}:${wls.port}"
targets="${wls.server._name}" />

</target>

</project>

Mapping of servicegen Attributes to JWS Annotations or
jwsc Attributes

The following table maps the attributes of the 8.1 servicegen Ant task to their equivalent 10.0
JWS annotation or jwsc attribute.

The attributes listed in the first column are a mixture of attributes of the main servicegen Ant
task and attributes of the four child elements of servicegen (<service>, <client>,
<handlerChain>, and <security>)

See JWS Annotation Reference, and jwsc for more information about the 10.0 JWS annotations
and jwsc Ant task.

Table 10-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of Equivalent JWS Annotation or jwsc Attribute
servicegen Attribute

contextURI contextPath attribute of the WebLogic-specific
@WLHttpTransport annotation.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web
Service, and not a JAX-WS 2.0 Web Service.

destEAR destdir attribute of the jwsc Ant task.

keepGenerated keepGenerated attribute of the jwsc Ant task.

mergeWithExistingWs No equivalent.

overwrite No equivalent.

warName name attribute of the <jws> child element of the jwsc Ant
task.

WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

Tahle 10-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

ejbJAR

(attribute of the service child
element)

No direct equivalent, because the jwsc Ant task generates Web
Service artifacts from a JWS file, rather than a compiled EJB or
Java class.

Indirect equivalent is the Fi le attribute of the <jws> child
element of the Jwsc Ant task that specifies the name of the JWS
file.

excludeEJBs

(attribute of the service child
element)

No equivalent.

expandMethods

(attribute of the service child
element)

No equivalent.

generateTypes

(attribute of the service child
element)

No equivalent.

ignoreAuthHeader

(attribute of the service child
element)

No equivalent.

includeEJBs

(attribute of the service child
element)

No equivalent.

JavaClassComponents

(attribute of the service child
element)

No direct equivalent, because the jwsc Ant task generates Web
Service artifacts from a JWS file, rather than a compiled EJB or
Java class.

Indirect equivalent is the Fi le attribute of the <jws> child
element of the jwsc Ant task that specifies the name of the WS
file.

JMSAction

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 10.0 release.

WebLogic Web Services: Getting Started 10-21

10-22

Tahle 10-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

JMSConnectionFactory

(attribute of the service child
element)

No equivalent because JMS-implemented Web Services are not
supported in the 10.0 release.

JMSDestination

(attribute of the service child
element)

No equivalent because JIMS-implemented Web Services are not
supported in the 10.0 release.

JMSDestinationType

(attribute of the service child
element)

No equivalent because JIMS-implemented Web Services are not
supported in the 10.0 release.

JMSMessageType

(attribute of the service child
element)

No equivalent because JIMS-implemented Web Services are not
supported in the 10.0 release.

JMSOperationName

(attribute of the service child
element)

No equivalent because JIMS-implemented Web Services are not
supported in the 10.0 release.

protocol

(attribute of the service child
element)

One of the following WebL ogic-specific annotations:
e @WLHttpTransport
e @WLImsTransport

Note: Because these are WebLogic-specific annotations, you
can use them to generate only a JAX-RPC 1.1-based

Web Service, and not a JAX-WS 2.0 Web Service.

serviceName

(attribute of the service child
element)

serviceName attribute of the standard @WebService
annotation.

servicelURI

(attribute of the service child
element)

serviceUri attribute of the WebLogic-specific
@WLHttpTransport or @WLJImsTransport annotations.

Note: Because these are WebLogic-specific annotations, you
can use them to generate only a JAX-RPC 1.1-based

Web Service, and not a JAX-WS 2.0 Web Service.

WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

Tahle 10-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

style

(attribute of service child element)

sty le attribute of the standard @SOAPBinding annoation.

typeMappingFile

(attribute of the service child
element)

No equivalent.

targetNamespace

(attribute of the service child
element)

targetNamespace attribute of the standard @WebService
annotation.

userS0AP12

(attribute of the service child
element)

value attribute of the WebL ogic-specific
@weblogic. jws.Binding JWS annotation

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web
Service, and not a JAX-WS 2.0 Web Service.

clientJarName

(attribute of client child element)

No equivalent.

packageName

(attribute of the client child
element)

No direct equivalent.

Use the packageName attribute of the cl ientgen Ant task to
generate client-side Java code and artifacts.

saveWSDL

(attribute of the client child
element)

No equivalent.

userServerTypes

(attribute of the client child
element)

No equivalent.

handlers

(attribute of the handlerChain
child element)

Standard @HandlerChain or @SOAPMessageHandlers
annotation.

WebLogic Web Services: Getting Started 10-23

10-24

Tahle 10-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

name

(attribute of the handlerChain
child element)

Standard @Hand lerChain or @SOAPMessageHandlers
annotation.

duplicateElimination

(attribute of the reliabi ity child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains Web Service reliable messaging
policy assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web

Service, and not a JAX-WS 2.0 Web Service.
See Using Web Service Reliable Messaging.

persistDuration

(attribute of the reliabi Lty child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains Web Service reliable messaging
policy assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web

Service, and not a JAX-WS 2.0 Web Service.
See Using Web Service Reliable Messaging.

enablePasswordAuth

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web

Service, and not a JAX-WS 2.0 Web Service.

See Configuring Message-Level Security (Digital Signatures
and Encryption).

WebLogic Web Services: Getting Started

Upgrading an 8.1 WebLogic Web Service to 10.0

Tahle 10-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

encryptKeyName

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web
Service, and not a JAX-WS 2.0 Web Service.

See Configuring Message-Level Security (Digital Signatures
and Encryption).

encryptKeyPass

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web
Service, and not a JAX-WS 2.0 Web Service.

See Configuring Message-Level Security (Digital Signatures
and Encryption).

password

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

See Configuring Message-Level Security (Digital Signatures
and Encryption).

WebLogic Web Services: Getting Started 10-25

10-26

Tahle 10-1 Mapping of servicegen Attributes to JWS Annotations or jwsc Attributes

servicegen or Child Element of
servicegen Attribute

Equivalent JWS Annotation or jwsc Attribute

signKeyName

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web

Service, and not a JAX-WS 2.0 Web Service.

See Configuring Message-Level Security (Digital Signatures
and Encryption).

signKeyPass

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Policy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web

Service, and not a JAX-WS 2.0 Web Service.

See Configuring Message-Level Security (Digital Signatures
and Encryption).

username

(attribute of the security child
element)

No direct equivalent.

Use WebLogic-specific @Pol icy attribute to specify a
WS-Policy file that contains message-level security policy
assertions.

Note: Because this is a WebLogic-specific annotation, you
can use it to generate only a JAX-RPC 1.1-based Web

Service, and not a JAX-WS 2.0 Web Service.

See Configuring Message-Level Security (Digital Signatures
and Encryption).

WebLogic Web Services: Getting Started

