
BEAWebLogic® Real
Time

Introduction to
WebLogic Real Time

Version 2.0
July 2007

Introduction to WebLogic Real Time iii

Contents

1. Overview of WebLogic Real Time 2.0
What is WebLogic Real Time? . 1-1

New JRockit Features in WebLogic Real Time 2.0. 1-2

JRockit Latency Analyzer Tool . 1-2

JRockit Memory Leak Detector . 1-3

Starting JRockit Mission Control . 1-3

Example Use Cases . 1-3

Derivative Exchange Defies Arbitrage Traders . 1-4

Competition-Beating Risk Calculation Infrastructure . 1-4

Software Components . 1-5

BEA JRockit 5.0 R27.3 JVM . 1-5

BEA JRockit 1.4.2 R27.3 JVM. 1-6

Deterministic Garbage Collection . 1-6

Enabling the Deterministic Garbage Collector . 1-7

JRockit Runtime Analyzer (JRA) . 1-7

Supported Configurations for WebLogic Real Time. 1-8

Terminology. 1-8

2. Tuning Real Time Applications for Deterministic Garbage
Collection

Basic Environment Tuning . 2-2

Basic Application Tuning . 2-2

iv Introduction to WebLogic Real Time

J2EE Application Tuning . 2-3

JMS Application Tuning . 2-3

JVM Tuning for Real-Time Applications . 2-4

Allow For a Warm-up Period. 2-4

Adjust Min/Max Heap Sizes . 2-4

Increase or Decrease Pause Targets . 2-5

Set the Page Size . 2-5

Determine Optimal Load . 2-5

Analyze GC With JRockit Verbose Output . 2-5

Limit Amount of Finalizers and Reference Objects . 2-6

Adjust the GC Trigger . 2-6

Adjust the Amount of GC Threads for Processors . 2-6

More Tuning Information . 2-7

JRockit JVM . 2-7

WebLogic Server . 2-7

Introduction to WebLogic Real Time 1-1

C H A P T E R 1

Overview of WebLogic Real Time 2.0

This section contains information on the following subjects:

“What is WebLogic Real Time?” on page 1-1

“New JRockit Features in WebLogic Real Time 2.0” on page 1-2

“Example Use Cases” on page 1-3

“Software Components” on page 1-5

“Supported Configurations for WebLogic Real Time” on page 1-8

“Terminology” on page 1-8

What is WebLogic Real Time?
WebLogic Real Time provides lightweight, front-office infrastructure for low latency,
event-driven applications. For companies in highly-competitive environments where
performance is key and every millisecond counts, WebLogic Real Time provides the first
Java-based real-time computing infrastructure.

For example, for certain types of applications, particularly in the Telecom and Finance industries,
stringent requirements are placed on transaction latency. When these applications are written in
Java, the unpredictable pause times caused by garbage collection can have a profound and
potentially harmful affect on this latency.

For this reason, WebLogic Real Time’s proprietary BEA JRockit R27.3 JVM features
deterministic garbage collection, a dynamic garbage collection priority that ensures extremely

Overv iew o f WebLog ic Rea l T ime 2 .0

1-2 Introduction to WebLogic Real Time

short pause times and limits the total number of those pauses within a prescribed window. Such
short pauses can greatly lessen the lessen the impact of the deterministic garbage collection when
compared to running a normal garbage collection.

WebLogic Real Time supports Java applications running in the following environments:

WebLogic Event Server 2.0

WebLogic Server 10.0 and later

WebLogic Server 8.1 (SP2 and later)

For a complete listing of supported configurations with WebLogic Server releases, see
“Supported Configurations for WebLogic Real Time” on page 1-8.

WebLogic Real Time also supports standalone Java applications running on J2SE 1.4.2 and 5.0
runtime environments, as well as Spring Framework-based applications, as described in
“Software Components” on page 1-5.

New JRockit Features in WebLogic Real Time 2.0
WebLogic Real Time 2.0 is bundled with BEA JRockit(R) JDK 5.0 R27.3.0. This version of
JRockit includes the full version of Mission Control, which is a suite of tools designed to
monitor, manage, profile, and gain insight into problems occurring in your Java application
without requiring the performance overhead normally associated with these types of tools.

Mission Control includes the following two tools that are of particular interest to WebLogic Real
Time 2.0 users:

JRockit Latency Analyzer Tool

JRockit Memory Leak Detector

JRockit Latency Analyzer Tool
The Latency Analyzer Tool, part of the JRockit Runtime Analyzer (JRA) helps you work your
way down to a Java application latency. You can use the Latency Graph to visually see how a
Java application that contains latencies looks like. This tool gives you great flexibility to pinpoint
where in the code waits and other latencies occur.

To record latency data, you need to create a JRA recording. Before you start the JRA recording,
you must select one of the Latency Recording profiles in order to record latency data.

Example Use Cases

Introduction to WebLogic Real Time 1-3

See BEA JRockit Runtime Analyzer for additional information about using the latency analyzer
tool and JRA recordings to record latency data. After you launch JRockit Mission Control, you
can also access additional documentation about this feature using online help.

JRockit Memory Leak Detector
The BEA Memory Leak Detector is a tool for discovering and finding the cause for memory leaks
in a Java application. The BEA JRockit Memory Leak Detector's trend analyzer discovers slow
leaks, it shows detailed heap statistics (including referring types and instances to leaking objects),
allocation sites, and it provides a quick drill down to the cause of the memory leak. The Memory
Leak Detector uses advanced graphical presentation techniques to make it easier to navigate and
understand the sometimes complex information.

See Introduction to JRockit Memory Leak Detector for additional information about using the
memory leak detector. After you launch JRockit Mission Control, you can also access additional
documentation about this feature using online help.

Starting JRockit Mission Control
To start JRockit Mission Control, follow these steps:

1. Ensure that your JAVA_HOME environment variable points to the root folder of the JRockit
JDK included in WebLogic Real Time 2.0.

This directory is called BEA_HOME\jrockit-realtime20_150_11, where BEA_HOME
refers to the main BEA Home directory into which you installed WebLogic Real Time 2.0,
such as d:\beahome_wlrt.

2. Open up a command window.

3. Execute the jrmc executable file, located in the %JAVA_HOME%\bin directory:

(Windows) prompt> %JAVA_HOME%\bin\jrmc

(Linux) prompt> ${JAVA_HOME}/bin/jrmc

Example Use Cases
These use cases provide examples of how WebLogic Real Time can provide solutions for
high-performance environments with response-time sensitive applications.

Overv iew o f WebLog ic Rea l T ime 2 .0

1-4 Introduction to WebLogic Real Time

Derivative Exchange Defies Arbitrage Traders
An investment arm of a large retail bank provides an exchange for derivatives of European
securities. It is an over-the-counter (OTC) request-for-quote and execution system (but provides
no settlement and clearing services). A broker submits a request for a quotation and includes the
investment identifier and quantity. The system accepts the quotation and applies certain business
rules. Depending upon the investment identifier and market conditions, the request is routed to a
particular third-party market-maker who then calculates and provides the bid and ask price for
the derivative. The response is returned to the broker via the OTC exchange. The broker can then
execute the trade of the derivative through a subsequent request, which is routed via the OTC
exchange to the appropriate market maker.

The complication with this arrangement is that arbitrage traders can take advantage of the latency
delay in the bank’s OTC exchange infrastructure because the arbitrage trader can measure the
latency that occurs during the small period in which the request for quotation is handled. In a fast
moving market, price changes of the derivative may occur within this latency period. This
presents an opportunity for an arbitrage trader to take advantage of inefficiency in the
marketplace and expose the investment bank to intolerable risk.

The investment bank requires a very high performance-driven software infrastructure, such as
WebLogic Real Time. It requires that the latency of the OTC exchange be extremely low.
Specifically, to combat arbitrage traders, the latency of the exchange’s infrastructure must be less
than the latency of the arbitrage traders’ infrastructure. In this way, the arbitrage traders’ data
becomes stale before the exchange’s, and therefore is not actionable.

Competition-Beating Risk Calculation Infrastructure
A large investment bank is a market-maker for fixed income securities. A request-for-quote
(RFQ) is received from an inter-dealer market electronic communication network (ECN), such
as TradeWeb. This RFQ would have been submitted to a number of entities. To be competitive,
it is vital that the quotation is returned as quickly as possible with the best possible price.
Therefore, a minimum amount of latency is necessary to ensure that the investment bank wins
customers, or at least, the latency is less than that of the organization’s competitors.

During the quotation process, a risk and pricing model is executed to determine the quote price
to provide to the customer. Because of the complexity of these calculations, they are currently
performed overnight. The result is a stratum of at least four grades of risk advisories that govern
fixed rate securities prices. Note that there is at least a twelve-hour lag in these risk calculations.
This leads to a risk window since the calculations are stale even at the start of next-day business.
To lower this risk, and potentially provide better rates to customers, a real-time risk and pricing

So f tware Components

Introduction to WebLogic Real Time 1-5

calculator would be required. WebLogic Real Time provides a latency-adverse infrastructure to
make this feasible.

Software Components
WebLogic Real Time supports Java applications running on WebLogic Event Server 2.0,
WebLogic Server 10.0 (or higher), and WebLogic Server 8.1 environments, as well as supporting
standalone Java applications running on J2SE 5.0 and 1.4.2 runtime environments.

WebLogic Real Time includes the following software components:

BEA JRockit 5.0 R27.3 JVM
The BEA JRockit® 5.0 R27.3 JVM is certified to be compatible with J2SE 5.0 (update 6),
WebLogic Event Server 2.0, and WebLogic Server 10.0 or higher. The 5.0 R27.3 JVM includes
the Deterministic Garbage Collector for dynamic garbage collection priority that ensures
extremely short pause times and limits the total number of those pauses within a prescribed
window, as described in “Deterministic Garbage Collection” on page 1-6. It also installs the
JRockit Runtime Analyzer (JRA) tool, latency analyzer tool (LAT), and memory leak detector,
which provide internal metrics that are useful for profiling JRockit, as described in “JRockit
Runtime Analyzer (JRA)” on page 1-7.

The realtime20_jdk1.5.0_XXX version of the installer kit can be installed in a WebLogic
Event Server 2.0 or WebLogic Server 10.0 environment to work with WebLogic Event Server
or WebLogic Server applications, as well as in standalone mode for standalone Java applications
or Spring Framework-based applications, with the following installation differences:

WebLogic Server 10.0 (and later) install mode — The installer includes a WebLogic
domain configuration template (wl-realtime.jar) for creating a 10.0 or later domain
with Deterministic GC enabled. The installer also includes sample startup scripts,
startRealTime (.cmd/.sh), that demonstrate how to start BEA JRockit with
Deterministic GC enabled, which may be useful for Spring-based applications that are
using some WebLogic Server facilities.

Standalone install mode — When installed in a BEA Home directory without WebLogic
Server, the installer still includes the sample Deterministic GC startup scripts, which may
be useful for Spring-based applications that are using some WebLogic Server facilities.
However, in this scenario, the WebLogic domain template is not installed.

For a listing of the hardware and software configurations supported by WebLogic Real Time, see
“Supported Configurations for WebLogic Real Time” on page 1-8.

Overv iew o f WebLog ic Rea l T ime 2 .0

1-6 Introduction to WebLogic Real Time

BEA JRockit 1.4.2 R27.3 JVM
The BEA JRockit® 1.4.2 R27.3 JVM is certified to be compatible with J2SE 1.4.2_14 and
WebLogic Server 8.1 SP2 and later. The 1.4.2 R27.3 JVM includes the Deterministic Garbage
Collector for dynamic garbage collection priority that ensures extremely short pause times and
limits the total number of those pauses within a prescribed window, as described in
“Deterministic Garbage Collection” on page 1-6. It also installs the BEA JRockit Runtime
Analyzer (JRA) tool, which provides internal metrics for Java developers using BEA JRockit as
their runtime JVM, as described in “JRockit Runtime Analyzer (JRA)” on page 1-7.

The realtime20_jdk1.4.2_XXX version of the installer kit can be installed in a WebLogic
Server 8.1 environment to work with WebLogic Server 8.1 SP2 and later applications, as well as
in standalone mode for standalone Java applications or Spring Framework-based applications,
with the following installation differences:

WebLogic Server 8.1 (SP2 and later) install mode — The installer includes a WebLogic
domain configuration template (wl-realtime.jar) for creating an 8.1 SP2 and later
domain with Deterministic GC enabled. The installer also includes sample startup scripts,
startRealTime (.cmd/.sh), that demonstrate how to start BEA JRockit with
Deterministic GC enabled, which may be useful for Spring-based applications that are
using some WebLogic Server facilities.

Standalone install mode — When installed in a BEA Home directory without WebLogic
Server, the installer still includes the sample startup scripts, startRealTime (.cmd/.sh),
that demonstrate how to start BEA JRockit with Deterministic GC enabled. However, in
standalone mode, the WebLogic domain template is not installed.

For a listing of the hardware and software configurations supported by WebLogic Real Time, see
“Supported Configurations for WebLogic Real Time” on page 1-8.

Deterministic Garbage Collection
Memory management relies on effective garbage collection, which is the process of clearing
dead objects from the heap, thus releasing that space for new objects. WebLogic Real Time uses
a dynamic “deterministic” garbage collection priority (-Xgcprio:deterministic) that is
optimized to ensure extremely short pause times and limit the total number of those pauses within
a prescribed window.

For certain types of applications, particularly in the Telecom and Finance industries, stringent
requirements are placed on transaction latency. When these applications are written in Java, the

So f tware Components

Introduction to WebLogic Real Time 1-7

unpredictable pause times caused by garbage collection can have a profound and potentially
harmful affect on this latency.

However, shorter deterministic pause times do not necessarily equal higher throughput. Instead
the goal of the deterministic garbage collection is to lower the maximum latency for applications
that are running when garbage collection occurs. Such shorter pause times should lessen the
impact of the deterministic garbage collection compared to running a normal garbage collection.

For more information on the deterministic garbage collector, see the BEA JRockit Diagnostics
Guide.

Enabling the Deterministic Garbage Collector
For standalone or Spring-Based Java applications, either:

– Enter the -Xgcprio:deterministic option from a Java command line.

– Use the sample startup scripts, startRealTime (.cmd/.sh), that demonstrate how to
start BEA JRockit with Deterministic GC enabled.

For WebLogic Server environments, either:

– Start WebLogic Server with the -Xgcprio:deterministic option in the startup
script.

– Use the Start menu > BEA Products > Tools > Configuration Wizard to create a
domain with Deterministic GC enabled.

JRockit Runtime Analyzer (JRA)
The JRockit Runtime Analyzer (JRA) tool is an application that helps you profile your
application and the Java runtime. It provides a wealth of useful metrics that are useful when using
BEA JRockit as your runtime VM.

The BEA JRockit Runtime Analyzer consists of two parts. One is running inside the JVM and
recording information about the JVM and the Java application currently running. This
information is saved to a file which is then opened in the other part: the analyzer tool. This is a
regular Java application used to visualize the information contained in the JRA recording file.

The JRocking Runtime Analyzer is packaged as part of the BEA JRockit Mission Control 2.0
tools suite. Documentation for Mission Control 2.0 is bundled with the tools as online
documentation. For general information about Mission Control 2.0, see Introduction to BEA
JRockit Mission Control.

Overv iew o f WebLog ic Rea l T ime 2 .0

1-8 Introduction to WebLogic Real Time

Supported Configurations for WebLogic Real Time
For information on supported configurations, see BEA WebLogic Real Time 2.0 in Supported
Configurations: WebLogic.

Terminology
Table 1-1 defines the terms and acronyms used this document:

Table 1-1 Terminology

Terms Definition

Real-time A level of computer responsiveness that a user senses as sufficiently immediate or that
enables the computer to keep up with some external process (for example, to present
visualizations of the weather as it constantly changes).

Latency An expression of how much time it takes for data to get from one designated point to
another.

Throughput The amount of work that a computer can do in a given time period.

Deterministic garbage
collection

Short, predictable pause times for memory heap garbage collection, which is the
process of clearing dead objects from the heap, thus releasing that space for new
objects.

Introduction to WebLogic Real Time 2-1

C H A P T E R 2

Tuning Real Time Applications for
Deterministic Garbage Collection

This section contains the following guidelines for tuning your applications for the JRockit
deterministic garbage collector that is included with WebLogic Real Time.

Note: For more information on adjusting other non-standard start-up commands available with
JRockit, see the JRockit Configuration and Tuning Guide.

“Basic Environment Tuning” on page 2-2

“Basic Application Tuning” on page 2-2

“J2EE Application Tuning” on page 2-3

“JMS Application Tuning” on page 2-3

“JVM Tuning for Real-Time Applications” on page 2-4

“More Tuning Information” on page 2-7

Tuning Rea l T ime Appl ica t ions fo r De te rmin is t ic Garbage Co l l ec t ion

2-2 Introduction to WebLogic Real Time

Basic Environment Tuning
Use these guidelines for configuring your environment to use WebLogic Real Time.

Ensure that CPUs are not at maximum capacity out on servers or clients
If an application takes a majority of the CPU, then the deterministic GC performance may
actually degrade the average latency. The reason is that deterministic GC will do
continuous GC and the GC will be competing with the application for CPU cycles. It is
best that the CPU is not fully utilized to get the best latency. A best practice is to run your
benchmarks at various loads (with and without deterministic GC) to determine the optimal
load.

Too many active threads can cause increased latency due to context switching
The “sweet-spot” number is generally one thread per virtual CPU (i.e., counting dual-core
and HyperTransport as separate CPUs), but leaving one CPU free for background GC
work. However, if you make external calls (e.g., to a database), then it does make sense to
allocating a few extra threads to utilize idle cycles.

For information on tuning JRockit GC threads, see “Adjust the Amount of GC Threads for
Processors” on page 2-6.

Basic Application Tuning
Use these guidelines when designing your applications for WebLogic Real Time.

Understand your application code and how to measure latency.

 Avoid making synchronous calls to slow back-office systems as part of a transaction as
this defeats the purpose of real-time. Conversely, make sure any non-critical calls are
handled asynchronously through work thread pools, or by using JMS.

Minimize memory allocation. If possible, allocate and free memory for a single transaction
in a chunk as this helps avoid fragmentation of the Java heap. Also, minimize the amount
and size of your objects.

Control memory utilization by avoiding rampant memory allocation and allocating many
large arrays.

Free all objects as soon as possible; otherwise, objects that become unreferenced during a
garbage collection might still be marked alive if they where referenced when the DetGC
marked all live objects.

J2EE Appl i ca t i on Tun ing

Introduction to WebLogic Real Time 2-3

Avoid long critical sections in your code, as synchronized blocks of Java code may cause a
transaction to block.

Avoid long linked structures; the deterministic GC needs to iterate through these objects.

If transactions span more than one highly-active JVM, each such JVM may need to run
Deterministic GC. For example, if a transaction is initiated by a Java client JVM, and the
transaction includes both JMS server and J2EE server operations, all three JVMs may
require Deterministic GC to reliably meet maximum latency criteria.

J2EE Application Tuning
Use these guidelines when tuning your J2EE applications for WebLogic Real Time.

For server-side EJBs, MDBs, and Servlets ensure that there are enough concurrent
instances configured to respond immediately to client requests (if all instances are active,
this is a sign that client requests are queuing up behind each-other on the server).

Make sure that resource pools contain enough instances so that threads are not forced to
wait for resources. In J2EE for example, tune the EJB max-beans-in-free-pool
property and tune thread pool sizes

JMS Application Tuning
Use these guidelines when using WebLogic JMS applications with WebLogic Real Time.

Consider using asynchronous consumers rather than synchronous consumers.

For more information on JMS consumers, see Best Practices for Application Design in
Programming WebLogic JMS.

Tune all JMS connection factory Messages Maximum settings to 1. This can potentially
provide better latency at the expense of possibly lowering throughput. Similarly, configure
your MDBs to refer to a custom connection factory with the following settings:

– Messages Maximum = 1

– XA Connection Factory Enabled = enabled

– Client Acknowledge Policy = ACKNOWLEDGE_PREVIOUS

For more information on configuring JMS connection factories, see Configure connection
factories in the Administration Console Online Help.

Tuning Rea l T ime Appl ica t ions fo r De te rmin is t ic Garbage Co l l ec t ion

2-4 Introduction to WebLogic Real Time

For consumers of non-persistent messages from queues, consider using the WebLogic JMS
WLSession NO_ACKNOWLEDGE extension.

Ensure that your Spring JMS Templates leverage resource reference pooling (otherwise,
they negatively impact response times as they implicitly create and close JMS connections,
sessions, and producers once per message).

Note: Resource reference pooling is not suitable if the target destination changes with each
call, in which case change application code to use regular JMS and cache the JMS
connections, sessions, producers, and consumers.

JVM Tuning for Real-Time Applications
These tuning suggestions can further improve performance and decrease pause times when using
the JRockit deterministic garbage collector. For more information on the deterministic garbage
collector, see the BEA JRockit Diagnostics Guide.

Allow For a Warm-up Period
There may be a warm-up period before response times achieve desired levels. During this
warm-up, JRockit will optimize the critical code paths. The warm-up period is application and
hardware dependent, as follows:

For smaller applications (in terms of amount of Java code) with high loads that are running
on fast hardware, there may be a warm-up period of one-to-three minutes.

For large applications (in terms of amount of Java code) with low loads that are running on
slow hardware (in particular, most SPARC hardware), there may be a warm-up period of
approximately thirty minutes.

Adjust Min/Max Heap Sizes
Setting the minimum heap size (-Xms) smaller or the maximum heap size (-Xmx) larger affects
how often garbage collection will occur and determines the approximate amount of live data an
application can have. To begin with, try using the following heap sizes:

 java -Xms1024m -Xmx1024m -XgcPrio:deterministic -XpauseTarget=30

For more information, see -X Command-line Options in the BEA JRockit Reference Manual.

JVM Tun ing fo r Rea l -T ime App l icat ions

Introduction to WebLogic Real Time 2-5

Increase or Decrease Pause Targets
If you specify -Xgcprio:deterministic without the pauseTarget option, it will be set
to a default value, which in this release is 30 milliseconds.

Running on slower hardware with a different heap size and/or with more live data may
break the deterministic behavior. In these cases, you might need to increase the default
pause time target (30 milliseconds) by using the -XpauseTarget option. The maximum
allowable value for the pauseTarget option is currently 5000 milliseconds.

Conversely, if you want to test your application for the lowest possible pause time, you can
lower the default -XpauseTarget value down to a minimum value. In this release, the
minimum value is 10 milliseconds.

For more information, see -X Command-line Options in the BEA JRockit Reference Manual.

Set the Page Size
Increasing the page size (-XXlargePages) can increase performance and lower pause times by
limiting cache misses in the translation look-aside buffer (TLB). See -XX Command-line Options
in the BEA JRockit Reference Manual.

Determine Optimal Load
Do not be overcautious in terms of load. The deterministic garbage collector can handle a fair
amount of load without breaking its determinism guarantees. Too little load means the JVM’s
optimizer and GC heuristics have too little information to work with, resulting in sub-par
performance. A best practice is to run your benchmarks at various loads (with and without
deterministic GC) to determine the optimal load.

Analyze GC With JRockit Verbose Output
JRockit verbose output normally doesn’t incur a measurable performance impact, and is quite
useful for analyzing JVM memory and GC activity. Table 2-1 defines recommended verbose
options for analyzing JVM memory and GC activity.

Tuning Rea l T ime Appl ica t ions fo r De te rmin is t ic Garbage Co l l ec t ion

2-6 Introduction to WebLogic Real Time

Limit Amount of Finalizers and Reference Objects
Try to limit the amount of Finalizers and reference objects that are used, such as Soft-, Weak-,
and Phantom- references. These types require special handling, and if they occur in large
numbers then pause times can become longer than 30ms.

Adjust the GC Trigger
Try adjusting the garbage collection trigger (-XXgctrigger) to limit the amount of heap space
used. This way, you can force the garbage collection to trigger more frequent garbage collections
without modifying your applications. The garbage collection trigger is somewhat deterministic,
since garbage collection starts each time the trigger limit is hit. See the BEA JRockit Diagnostics
Guide.

Note: If the trigger value is set to low, the heap might get full before the garbage collection is
finished, causing even longer pauses for threads since they have to wait for the garbage
collection to complete before getting new memory. Typically, memory is always
available since a portion of the heap is free and any pauses are just the small pauses when
the garbage collection stops the Java application.

Adjust the Amount of GC Threads for Processors
With the variety of sophisticated processing hardware currently available (HyperTransport,
Strands, Dual Core, etc.), JRockit may not be able to determine the appropriate number of GC
threads it should start. The current recommendation is to start one thread per physical CPU; that
is, one thread per chip not per core. However, having too many GC threads could affect the
latency of applications since more threads will be running on the system, which might saturate

Table 2-1 JRockit Verbose Output Options

Option What it does...

-Xverbose:opt,memory,memdbg,
gcpause,compact,license

For GC and memory analysis.

-Xverboselog:verbose-jrockit.log Redirects verbose output to the designated file.

-Xverbosetimestamp Prints a formatted date before each verbose line.

More Tun ing In fo rmat ion

Introduction to WebLogic Real Time 2-7

the CPUs, and thus affect the Java application. Conversely, setting them too low could increase
the mark phase of the GC, since less parallelism is possible. For example, on a dual core Intel
Woodcrest machine with four cores the recommended number of GC threads is two, which is the
same as the number of processors in the machine.

To see how many GC threads that JRockit uses on your machine, start JRockit with
-verbose:memdbg and then check for the following lines that are printed during startup:

 [memdbg] number of oc threads: <num>

 [memdbg] number of yc threads: <num>

If necessary, adjust the number of GC threads using the -XXgcthreads:<# threads>
parameter.

For more information, see -XX Command-line Options in the BEA JRockit Reference Manual.

More Tuning Information
This section contains pointers to additional performance and tuning information.

JRockit JVM
 BEA JRockit Memory Management Basics contains information on all of the JRockit
garbage collection options.

About Profiling and Performance Tuning provides information on tuning the JRockit JVM.

See BEA JRockit Diagnostics Guide for additional diagnostic information about BEA JRockit.

WebLogic Server
WebLogic Server Performance and Tuning contains information on monitoring and
improving the performance of WebLogic Server applications.

Best Practices for Application Design in Programming WebLogic JMS provides design
options for WebLogic JMS application behaviors to consider during the design process,
and recommended design patterns.

Tuning Rea l T ime Appl ica t ions fo r De te rmin is t ic Garbage Co l l ec t ion

2-8 Introduction to WebLogic Real Time

