0?7,

r
P i’
L/

BEAWebLogic
Portal®

Production Operations
Guide

Version 9.2
Document Revised: June 2006

Contents

1. Introduction

What Is Production Operations?iuuiiiti et 1-1
Overview of Production Operationscoueiirini i, 1-2
Setting Up a Team Development Environment 1-2
Configuring the Portal Cluster i e 1-3
Building and Deployingthe EARFile i 1-3
Propagating a Portal Application i 1-3
Performing Round-Trip Developmento 1-4
Getting Started o 1-5
Using this GUIdEot 1-5
Related GUIES 1-5

Part |. Configuration and Deployment
2. Managing a Team Development Environment

INtrOdUCTION . . oo e 2-2
Choosing a Source Control Vendor e 2-2
Creating a Shared WebLogic Portal Domain.o, 2-2
What is a WebLogic Portal Domain? i 2-3
Getting Started 2-3
Creating a WebLogic Portal Domain Template 2-4
Creating the Shared Domain. e 2-4
Starting WebLogic Server. 2-5

BEA WebLogic Portal Production Operations Guide iii

iv

Configuring and Tuning the Domain. 2-5

Managing Databasest 2-5
Developing Against an Enterprise-Quality Database 2-6
Using Different Databases in Development and Production. 2-6
Knowing When You are Making Changes to the Database. 2-7
Using the PointBase Databaset 2-7

Creating and Sharing the Portal Application. i ... 2-7
Create or Locate the Eclipse Workspace Directory 2-8
Create a Portal EAR Project.o 2-8
Create Portal Web Projects. 2-10
Check in the Portal Application. i 2-11
Check Out the Workshop for WebLogic Application 2-12

Using J2EE Shared Libraries ina Team Environment. 2-13
OVEIVIBW ot e 2-13
Shared Library Rules of Precedencecc .. 2-14
Deployment Descriptors and Shared Libraries 2-15

Sharing Portal Resources: Sample Scenario., 2-17
INtrOdUCEION . . . oo 2-17
Packaging Resourcesto Share. ...t 2-18
Receiving and Incorporating Shared Resourcesccovivvn... 2-19

WebLogic Portal Coding Best Practices. ... 2-20
Sharing Java Projectsot 2-20
Supporting Cross-Platform Development o, 2-21
Editing Definition Labels for Portal Components. 2-21
Testing a Cluster Configuration. it 2-21

Managing Binary Files in Source Control 2-22
General Procedure for Working with Binary Files 2-22
Updating Users, Groups, Roles, and Entitlements. 2-23

BEA WebLogic Portal Production Operations Guide

Updating Other Security-Related Files 2-23

Configuring Facets.t 2-24
Alternative Domain Sharing Techniques. i 2-24
Determining the BEA Home Directorycooiiiniiiiii 2-25
Creating and Sharing the Portal Domain 2-29

3. Configuring a Portal Cluster

OVBIVIBW .« o e e e 3-2
Prerequisite Tasks oo 3-2
Setup a Production Database.t 3-2
Locate JMS Queue and JDBC Data SOUICESo vt i i 3-3
Choose a Cluster ArchiteCturet e 3-3
Determine the Domain Network Layout 3-6
Install WebLogic Portal 3-7
Creating Your Clustered DOmMaint e e e 3-7
What isaDomain? 3-7
Creating the Customized Domain i 3-8
Configuring the Administration Server. i 3-13
Setting UP JMS SEIVEIS . . oo 3-13
Creating Managed Server DIireCtoriest e 3-13
INtroducCtion o 3-13
Creating the Managed Server Domains, 3-14
Zero-Downtime ArchiteCtures.ot 3-17
OVEIVIBW . ottt e 3-17
Single Database Instance 3-21
Portal Cache 3-22

BEA WebLogic Portal Production Operations Guide

4. Deploying Portal Applications

vi

Preparing to Deployo 4-2
Overview of Deployment Descriptors and Config Files. 4-2
DesCriptor Mergingo oot 4-3
Viewing Merged DesCriptors oot 4-3
Portal Web Application Deployment Descriptors 4-3
Enterprise Application Deployment Descriptors., 4-4
Configuration Files 4-6
Using Deployment Plans.o 4-6
Using Application-Scoped JDBCo 4-7
Building a Portal Application 4-7
Building in Workshop for WebLogic. i 4-8
Building from the Command Line. i 4-8
Deploying the EAR 4-8
Deploying to a Development Environmento ... 4-9
Deploying to a Staging or Production Environment 4-9
Redeploying to a Staging or Production Environment 4-9
Deploying J2EE Shared Libraries. 4-10
Library DesCriptorsottt e 4-10
Library Mersions. 4-12
Creating Content RepPOSItOrieSttt e 4-13
Using Multiple Enterprise Applications in a Single Domain 4-13
Application TUNING TIPS . .« v vt e 4-15
Deploying JSR-168 PortletsinaWARFileo o i 4-16
Starting the Import Utility 4-16
Using the Import Utility. 4-17
Accessingthe Portlets 4-18

BEA WebLogic Portal Production Operations Guide

Part |l. Propagation
5. Developing a Propagation Strategy

What is Propagation?.o 5-2
What Tools Does BEA Provide to Assist with Propagation? 5-3
WebLogic Server Administration Console (EAR Deployment) 5-3
Workshop for WebLogic Propagation Tools 5-3
Propagation Ant TasKst 5-4
Manual Propagation Steps 5-4
Export/Import Utility e 5-4
Database Vendor Tools (Not Supported) 5-5
What Kind of Data Can Be Propagated?. i, 5-5
Choosing the Right Propagation Tool i 5-8
Propagation ROAdmMapot 5-9
Development Environments. 5-11
Source Control oo 5-11
Moving from Developmentto Staging. i 5-11
Staging Environment 5-12
Source Control in the Staging Environment. 5-12
Perform Offline Tasks e 5-13
Committing the Final Inventory. i e 5-13
Assessing Your Portal System Configuration. 5-13
General Propagation SCENAriosovit ittt et et et 5-15
Production Mode Versus DevelopmentMode, 5-22
Propagation and Proliferation i 5-22

6. Propagation Topics

OV VI B & o ottt e e e e 6-2

BEA WebLogic Portal Production Operations Guide vii

viii

Before YOU Begino 6-3

Start the Administration Server 6-4
PerformaData BaCkupt 6-4
Plan to Inactivate the System During the Import Process 6-4
Install the Propagation ToOIS 6-4
Configure Log Files (Optional) e 6-5
Deploy the J2EE Application (EAR)ot 6-5
Make Required Manual Changes.t 6-6
Propagation Reference Table 6-7
Security Information and Propagationcco i 6-10
Understanding SCOPE.ottt 6-11
OVEIVIBW oottt e e 6-11
Why USe SCOPING?. . .ottt 6-12
What are the Risks of Scoping?. ... i 6-12
Best Practices for SCopingot 6-12
HOW T0 St SCOPE. . . . oo 6-13
The Effects of SCOPING.ot 6-15
Scope and Library Inheritance. 6-20
Using POLICIES . . . oo 6-22
INtrOdUCTIONo 6-22
Global Policy EXamples. 6-22
Local Policy OVerrides. 6-25
Using Local Policies with Desktopst 6-26
Reporting Changes Based on Policies i, 6-27
Previewing Changes and Tuning a Merged Inventory 6-28
User Customizations and Propagation, 6-28
Reviewing Log Files. o 6-29
Rolling Back an Import Processt 6-29

BEA WebLogic Portal Production Operations Guide

WSRP Propagationt 6-29

Overview of WSRP Propagationt 6-30
Propagating Consumer Applications i 6-31
Known Problems with WSRP Propagation i, 6-31
Increasing the Default Upload File Size o it 6-32
Copying the Inventory to the Servert 6-32
Modifying a Deployment Plan. i 6-33
Modifying theweb.xml File.o 6-34
Configuring the Propagation Servlet. i 6-35
Inventory EXport DIrectory 6-36
DESCrIPLION TEXE . . o ottt e 6-36
Verbose LOgging. . . . oot 6-37
Verbose Log File Location oo 6-37
BeSt PraCtiCes. . . . oo 6-38
Keep Portal Framework Definition Labels and Instance Labels 6-38
Do Not Manually Replicate Changes Between Environments. 6-38
Set the Scope to the Enterprise Application Level.......................... 6-38

/. Using Workshop for WebLogic Propagation Tools

OVBIVIBW o et e 7-2
Overview of the Propagation Perspective 7-3
Downloading an Inventory File. 7-4
Creating a Propagation Project 7-7
Create a Simple Projecto 7-7
Begin a Propagation Session 7-8
Import the Inventory Files 7-8
Create a Merged Inventory File o 7-12
Viewing and Tuning the Merged Inventory 7-14

BEA WebLogic Portal Production Operations Guide ix

Creating a Final Merged Inventory File i 7-16
Uploading the Final Inventory tothe Server. oo, 7-19
Enabling Verbose Loggingo ot 7-22

8. Using the Propagation Ant Tasks

INrOTUCTION . . . o oo 8-1
Before YOU Begin oo 8-2
Installing the Ant Tasks.o i e 8-2
Required JAR FIleso 8-3
Deploying the Propagation Servlet i 8-3
Testing the Ant Installation i 8-6
Overview of Online Tasks.o 8-7
Online Task SUMMANYot e 8-7
Using Online Tasks with HTTPS. e 8-8
Troubleshooting Online Tasksot 8-8
Overview of Offline Tasks e 8-8
Offline Task Summary 8-9
Troubleshooting Offline Tasks. o i 8-9
Scoping an INVENTONYo 8-10
Scoping With ANt Taskso oot 8-10
Sample Scoping Workflow 8-10
Understanding a Scope Property File. o i 8-12
UsSiNg POLICIESo 8-13
Understanding a Policies Property File i, 8-13
Combining and Committing Inventories. i 8-14

9. Propagation Ant Task Reference
ONlINE TaSKS . . ottt e 9-1

X BEA WebLogic Portal Production Operations Guide

OnlineCheckMUtEXTASKt vt e e e 9-2

OnlineCommItTasK.t 9-4
OnlineDownloadTaskot 9-8
OnlineMaintenanceModeTask 9-10
ONnliNePINgTask 9-12
OnlineUploadTask 9-14
Offline Taskso 9-16
OfflineCombineTask 9-16
OfflineDiffTask.o 9-18
OfflineElectionAlgebraTask. 9-20
OfflineEXIractTaskot 9-21
OfflinelnsertTask 9-23
OfflineListPoliciesTasko e 9-25
OfflineListSCopesTaskot 9-26
OfflineSearchTask 9-28
OfflineValidateTaskt 9-30
10.Using the Export/Import Utility
Installing the Export/Import Utility. 10-2
Overview of the Export/Import Utility i, 10-3
What the Utility MOVESo 10-4
What the Utility DoesSNOt Move e 10-5
Refining Rules for Exporting and Importing oL, 10-5
Basic Concepts and Terminologyc. it e 10-6
.portal Files Versus Desktops oo 10-6
Export and Import SCOPeo oo 10-7
CUSTOMIZAtION. . . oot 10-10
The Export/Import Utility Client Program i, 10-10

BEA WebLogic Portal Production Operations Guide Xi

Configuring the Export/Import Utility PropertiesFile 10-10

Specifying Parameters in the Properties File. 10-10
Specifying the Properties File Location. 10-11
EXporting @a DeskiOpot e 10-12
Editing the Properties File 10-12
Running the Build Script 10-14
Importinga .portal File 10-15
Editing the Properties File 10-15
Running the Build Script 10-19
EXPOrting @ Pageottt 10-20
Editing the Properties File 10-20
Running the Build Script 10-22
IMporting aPaget 10-23
Editing the Properties File 10-24
Running the Build Script 10-27
Controlling How Portal Assets are Merged When Imported 10-28
Controlling How Portal Assets are Moved When Imported. 10-30
INNEBIr MOVES . . . o 10-30
OUEEr MOVES. .« . et 10-31
Locating and Specifying Identifier Properties 10-32
The Webapp Property 10-32
The portal.path and desktop.path Properties 10-32
The page.label and book.label Properties, 10-33
Managingthe Cache 10-34

11.Using the Datasync Web Application
Portal Datasync Definitions i 11-2
Datasync Definition Usage During Development. 11-2

Xii BEA WebLogic Portal Production Operations Guide

Compressed Versus Uncompressed EAR 11-2

Datasync Web Application. e 11-3
Removing CONtENt 11-6
Working with a Compressed EAR File i, 11-6
Pulling Definitions from Production i, 11-8
Options for Connectingtothe Server. i 11-9
EXamplES .o 11-10
USB0E . . ittt e 11-10
COMMANGS . . .ot 11-11
Rules for Deploying Datasync Definitions it 11-12
Removing Property Sets. 11-13

A. Export/Import Utility Files

BEA WebLogic Portal Production Operations Guide Xiii

Xiv BEA WebLogic Portal Production Operations Guide

Introduction

The life cycle of a BEA WebLogic Portal® application requires careful planning and
management. During its lifetime, a typical portal moves back and forth between development,
staging, and production environments. The process of configuring and managing these
environments, and of moving portals between them, is called production operations.

This chapter includes the following topics:
e What Is Production Operations?
e Overview of Production Operations

e Getting Started

What Is Production Operations?

Production operations encompasses the tools, procedures, methodologies, and best practices that
allow you to manage the portal life cycle, including portal development, staging, and production
environments. As Figure 1-1 shows, portals are typically developed in a team development
environment by developers using Workshop for WebLogic. Portal components are then moved
to a staging environment, where portal administrators use the WebLogic Portal Administration
Console to create desktops, add entitlements, set up content repositories, and perform testing. The
production environment is the live environment, where users access and interact with portal
applications. The arrows between environments indicate that you can move portals and portal
resources back and forth between each of these environments using propagation features
provided with WebLogic Portal.

BEA WebLogic Portal Production Operations Guide 1-1

Introduction

Figure 1-1 Typical WebLogic Portal Environments

Team Development [4______»|

: Praduction Environment
Environment N V]

Staging Environment

Workshop for
Weblogic

Administration
Console

Administration
Console

Like considering the architecture of a network or a software system, you should also consider and
carefully plan how you will address production operations for your portal system. It is important
to consider your particular portal system configuration, how your development team is organized,
how you will test and configure portals, how your server is configured, and how you will plan to
manage the life cycle of your portal applications. This guide describes the specific
methodologies, tools, and best practices to help you achieve the goal of creating solid,
manageable environments for portal development, staging, and production.

Overview of Production Operations

1-2

This section offers a brief introduction to the major components of production operations:

e Setting Up a Team Development Environment

Configuring the Portal Cluster

Building and Deploying the EAR File

Propagating a Portal Application

e Performing Round-Trip Development

Setting Up a Team Development Environment

Team development of a WebLogic Portal revolves around good source control. Proper use of a
source control management system has many benefits, such as close integration between team
members, the ability to quickly scale the size of a development team, and protection against data
loss.

Chapter 2, “Managing a Team Development Environment” shows you how to configure, store,
and manage a common development domain, database data, and portal applications in source
control, letting you quickly and consistently develop, build, and update your portal applications.

BEA WebLogic Portal Production Operations Guide

Overview of Production Operations

Configuring the Portal Cluster

By clustering a portal application, you can attain high availability and scalability for that
application. Chapter 3, “Configuring a Portal Cluster,” discusses how to choose a cluster
architecture (single versus multi-cluster) and configure the clustered domain.

Building and Deploying the EAR File

Deployment refers to building an Enterprise archive file (EAR) and deploying it to a destination
server. Chapter 4, “Deploying Portal Applications,” describes how to prepare a portal
application’s deployment plans and deploy the EAR file.

Propagating a Portal Application

Propagation refers to the process of moving the database and LDAP contents of one portal
domain environment to another. During the typical portal life cycle, portals are moved between
the following environments:

e Development — In the development phase, developers use Workshop for WebLogic to
create portals and portal components, such as portlets.

e Staging — In a staging environment, administrators use the Administration Console to build
and configure portal desktops, create entitlements, and create content repositories.

e Production — A production, or live, environment can be modified by administrators using
the Administration Console and customized by users using Visitor Tools.

BEA provides tools to help with portal propagation. These tools not only move database assets
and LDAP information, but they also report differences and potential conflicts between the
source and the target environments. You can define policies to automatically resolve conflicts, or
an administrator can view a list of differences and decide the appropriate actions to take on a
case-by-case basis. These tools are described in detail in this guide, and they include:

e The propagation tools, described in Chapter 7, “Using Workshop for WebLogic
Propagation Tools” and Chapter 9, “Propagation Ant Task Reference.”

e Ant tasks, described in Chapter 8, “Using the Propagation Ant Tasks” and Chapter 9,
“Propagation Ant Task Reference.”

This guide also helps you through the process of planning a strategy for propagation and provides
detailed information on the best practices. See the following chapters for more information:

e Chapter 5, “Developing a Propagation Strategy”

BEA WebLogic Portal Production Operations Guide 1-3

Introduction

e Chapter 6, “Propagation Topics”

Performing Round-Trip Development

Round-trip development refers to moving portal assets back and forth between a Workshop for
WebLogic-based development environment and a staging environment where portal assets are
assembled with the WebLogic Portal Administration Console and stored in a database. The
Export/Import Utility lets you export portal assets from a database to -portal, -page, and
-book files that can be loaded into Workshop for WebLogic. The utility also lets you import
.portal, .book, and .page files into a database, as shown in Figure 1-2.

Figure 1-2 The Export/Import Utility Allows Round-Trip Development

WebLogic
Export Database
Wnrkshop_for to Files I_:'c_lrlal)
WeblLogic e Administration

r Console

Export/Import

_portal, book, LHility Database
page files
_ v
Impart Files
o Database

Tip: The Export/Import Utility is also known as the Xip tool (pronounced “zip”). Typically,
developers use this utility to move assets back and forth between a development and a
staging environment.

In addition, the Export/Import Utility allows you to:
e Merge _portal files into a database
e Specify rules to determine how objects are merged

e Specify scoping rules
The Export/Import Utility is described in Chapter 10, “Using the Export/Import Utility.”

1-4 BEA WebLogic Portal Production Operations Guide

Getting Started

Getting Started

This section contains the following topics:
e Using this Guide

o Related Guides

Using this Guide

Part | Configuration and Deployment includes topics of interest to managers, developers, and
administrators. This part includes information on setting up a team development environment,
deploying an EAR file, and configuring a portal cluster.

Part 11 Propagation includes information on propagating portals between staging and production
environments, and round-trip development. In addition, this part includes details on script-based
propagation.

Related Guides

For an in-depth discussion of the WebLogic Portal life cycle, see BEA WebLogic Portal
Overview.

BEA WebLogic Portal Production Operations Guide 1-5

../overview/index.html
../overview/index.html

Introduction

1-6 BEA WebLogic Portal Production Operations Guide

Part| Configuration and
Deployment

Part I includes the following chapters:

e Managing a Team Development Environment

This chapter explains how to configure, store, and manage a common development
domain, database data, and portal applications in source control, letting you quickly and
consistently develop, build, and update your portal applications.

e Deploying Portal Applications

This chapter discusses how to prepare your application’s Enterprise archive (EAR) file and
deploy it.

e Configuring a Portal Cluster

This chapter describes how to set up a cluster across which your portal application is
deployed.

BEA WebLogic Portal Production Operations Guide

BEA WebLogic Portal Production Operations Guide

CHAPTERa

Managing a Team Development
Environment

This chapter discusses how to configure and manage a common environment for WebLogic
Portal development. A common development environment allows developers to share the same
WebLogic Portal domain, database, and application configuration, and maintain these elements
in a source control system. A well-planned team environment allows you to quickly and
consistently develop, build, and update your WebL ogic Portal applications.

This chapter contains the following sections:
e Introduction

e Choosing a Source Control Vendor

Creating a Shared WebLogic Portal Domain

Managing Databases

Creating and Sharing the Portal Application

Using J2EE Shared Libraries in a Team Environment

Sharing Portal Resources: Sample Scenario

WebLogic Portal Coding Best Practices

Managing Binary Files in Source Control

Configuring Facets

e Alternative Domain Sharing Techniques

BEA WebLogic Portal Production Operations Guide 2-1

Managing a Team Development Environment

Introduction

The basic tasks required to configure a team development environment for WebL ogic Portal
include:

1. Choosing a Source Control Vendor

2. Creating a Shared WebLogic Portal Domain
3. Managing Databases

4. Creating and Sharing the Portal Application

These tasks are described in the following sections.

Choosing a Source Control Vendor

Team development of a WebLogic Portal web site revolves around good source control. Proper
use of a source control system has many benefits, such as close integration between team
members, the ability to quickly scale the size of a development team, and protection against data
loss.

There are a number of source control providers, such as CVS, Subversion (SVN), Perforce,
StarTeam, Visual Source Safe (VSS), and PVCS. This chapter assists you with using any of those
vendors. However, each vendor has different characteristics when it comes to storing code. An
important consideration when choosing your source control management system for team
development of portal applications is that it must support an unreserved checkout model for files.
This is because there are numerous files in the domain and application that need to be checked
into source control management but must be writable by the server. An unreserved checkout
model means that multiple users can check out and edit a file simultaneously—individual users do
not “lock” the file from other users when they check it out.

Tip: Forinformation on sharing project files using Workshop for WebLogic’s Eclipse-based
integrated source control features, see the Workshop for WebLogic document “Working
with Source Control.”

Creating a Shared WebLogic Portal Domain

This section describes the basic steps in creating a shared WebLogic Portal domain, and includes
the following topics:

2-2 BEA WebLogic Portal Production Operations Guide

../../../workshop/docs92/ws_platform/ideuserguide/conSourceControl.html
../../../workshop/docs92/ws_platform/ideuserguide/conSourceControl.html

Creating a Shared WebLogic Portal Domain

What is a WebLogic Portal Domain?

Getting Started

Creating a WebLogic Portal Domain Template

e Creating the Shared Domain

Starting WebLogic Server

Configuring and Tuning the Domain

What is a WebLogic Portal Domain?

A WebLogic Portal domain is the foundation upon which you build portals. The domain includes
the configuration files, database, and scripts that define and run your server environment,
provides a default security realm and predefined system administrators, and provides server
administration tools. The domain also includes files and services for building portals and related
functionality.

A basic domain infrastructure consists of one Administration Server and optional Managed
Servers and clusters. For a more detailed description of these components, as well as a more
complete introduction to domains, see the WebLogic Server document, “Creating WebLogic
Domains Using the Configuration Wizard.”

In a team development environment, domain-related files are stored in source control, and
checked out to individual development machines. Team members share these domain files using
source control so that all modifications to existing deployed applications, the addition of new
applications, and other settings stored in configuration files and scripts can be shared.

Tip: Itisarecommended practice to use domain templates, rather than the domain files
themselves, to create and distribute domains to members of a development team. Check
these templates into source control. For information on creating domain templates, see
“Creating a WebLogic Portal Domain Template” on page 2-4.

Getting Started

Every developer on the team must first install WebLogic Portal on their development machines.
It is a recommended practice, but not required, that all developers install WebLogic Portal in a
common home directory.

BEA WebLogic Portal Production Operations Guide 2-3

../../../common/docs92/confgwiz/intro.html
../../../common/docs92/confgwiz/intro.html

Managing a Team Development Environment

2-4

Creating a WebLogic Portal Domain Template

The recommended approach to distributing a commonly configured domain among team
members is to create a domain template and check it in to source control.

Tip: Ifmembers of your team only require a default WebLogic Portal domain, they can simply
create the default WebLogic Portal domain using the WebLogic Configuration Wizard
on their individual machines. In this case, no domain files need to be checked into source
control. On the other hand, if you need special domain configurations, such as JDBC,
JMS, or extra shared libraries, a custom domain template is recommended. For detailed
information on using the Configuration Wizard, see the WebLogic Server document
“Creating WebLogic Configurations Using the Configuration Wizard.”

A domain template is used to create a new domain. A domain template defines the full set of
resources within a domain, including infrastructure components, applications, services, security
options, and general environment and operating system parameters. You can create a domain
template from an existing template or from an existing domain. Given a shared domain template,
all developers on a team can effectively create the same domain configuration on their individual
development machines.

For detailed information on creating domain templates, see the WebLogic Server document
“Creating Configuration Templates Using the WebLogic Configuration Template Builder.”

Creating the Shared Domain

After a domain template is created and checked into source control, each developer can check out
the template and create their own local domain. Because developers use the same template to
create their domains, the contents of their domains are equivalent.

Each developer uses the domain template to create a local domain using either the WebLogic
Configuration Wizard or a script. For detailed information on using the Configuration Wizard,
see the WebLogic Server document “Creating WebLogic Configurations Using the
Configuration Wizard.” For an overview of the files that are installed with a domain, see the
WebLogic Server document “Domain Configuration Files.”

Tip: For detailed information on building a domain programmatically with a script, see the
WebLogic Server document, “Creating and Configuring WebLogic Domains Using
WLST Offline.”

BEA WebLogic Portal Production Operations Guide

../../../common/docs92/confgwiz/index.html
../../../common/docs92/confgwiz/index.html
../../../common/docs92/tempbuild/tempbuild.html
../../../wls/docs90/config_scripting/domains.html
../../../wls/docs90/config_scripting/domains.html
../../../wls/docs92/domain_config/config_files.html
../../../common/docs92/confgwiz/index.html

Managing Databases

Tip: A common activity in development is the creation of a base set of users that are used to
test the system. See also “Updating Users, Groups, Roles, and Entitlements” on
page 2-23.

Starting WebLogic Server

Start WebL ogic Server using the domain’s DOMAIN_ROOT/bin/startWeblogic command.

Configuring and Tuning the Domain

With the server running, you can configure the domain. Using the WebL ogic Server
Administration Console (http://server:port/console), you can set up the domain to
support the development effort, including the addition of needed data sources. For information
on server configuration, see the WebLogic Server document “System Administration for BEA
WebLogic Server.”

Common tuning activities for a development domain include setting the server logging mode to
Info from Warn (for more verbose console output and outputting JVM messages to the console).
In addition, you can limit the maximum size of the log files.

The changes you make are captured in the file DOMAIN_ROOT/config/config.xml. You can
check this file into source control to share it with members of the development team. Note,
however, that the config.xml file contains hard-coded paths that each developer might need to
modify locally. One technique for sharing this file is to create and check in a string-substitution
template and provide a script that each developer can run locally to create their own config.xml
file.

Managing Databases

WebL ogic Portal stores much of its configuration information in the database, and there are
occasions where development teams need to share access to this configuration. However,
WebLogic Portal does not support running multiple instances of a portal server against the same
single database or database schema. Although the default database for a WebLogic Portal domain
is PointBase, you might require an Enterprise-quality database for development efforts.

For detailed information on database management for WebL ogic Portal, including information
on size restrictions imposed by the evaluation version of PointBase that is distributed with
WebLogic Portal, see the WebLogic Portal Database Administration Guide. For more

BEA WebLogic Portal Production Operations Guide 2-5

../../../wls/docs92/admin.html
../../../wls/docs92/admin.html
../db/index.html

Managing a Team Development Environment

2-6

information on working with the PointBase database, see “Using the PointBase Database” on
page 2-7.

This section includes these sections:
e Developing Against an Enterprise-Quality Database

e Using Different Databases in Development and Production

Developing Against an Enterprise-Quality Database

Rather than share the PointBase database between developers as a binary files, it is common for
each developer to work against their own portal database using Oracle, SQL Server, or another
Enterprise-quality database.

Note: For Oracle and DB2, a separate database schema for each developer on a development
database is recommended. For Sybase and SQL Server, a separate database and database
log file for each developer on a development database instance is recommended.

Each development domain is configured through the domain template to use a specific database,
listed in multiple XML files in the directory DOMAIN_HOME/config/jdbc. For details, see the
WebLogic Portal Database Administration Guide.

Using Different Databases in Development and Production

Generally, it is a good practice to use the same Enterprise-quality DBMS in development that you
plan to use in staging and production. For example, if you plan to deploy your application on
Oracle it is a good practice to develop your application on Oracle as well. This methodology
allows greater performance and easier maintenance of a baseline of data (with proper support
from a database administrator and scripts).

It is also possible to use one type of database in development and another in staging and
production and use the propagation tools to move data between them. In this scenario, developers
might use PointBase in development while the staging and production systems use an Enterprise
quality database, such as Oracle. Using the propagation tools, you can export the database
inventory from the development system and import it into the staging or production system. For
detailed information on using the propagation tools, see Chapter 7, “Using Workshop for
WebLogic Propagation Tools.”

BEA WebLogic Portal Production Operations Guide

../db/index.html

Creating and Sharing the Portal Application

Knowing When You are Making Changes to the Database

In genera., must activities that are accomplished using the WebLogic Portal Administration
Console are persisted to the database, with the exception of entitlements, which are persisted to
the embedded LDAP. However, there may be times when you want to develop using test users
with user properties assigned to them.

These properties are stored in the database. In addition, service administration configurations are
persisted in the application’s deployment plan, not to the database. Content repository
configurations are also not persisted in the database, although actual content stored in the BEA
repository is in the database. (If you are using a File System Repository, only the content
metadata is stored in the database.)

For detailed information on entitlements, see the WebLogic Portal Security Guide.

Using the PointBase Database

A development licence for PointBase is installed with WebLogic Portal. Note that with the
development license, the database size is limited to 30 MB. To increase this limit, you need to
purchase a full license. Also, note that PointBase stores data in binary files that grow as you use
the database. For information on handling binary files in a team environment, see “Managing
Binary Files in Source Control” on page 2-22.

Creating and Sharing the Portal Application

After configuring the portal domain, you need to create a new portal application that will be
shared by all members of the development team.

Tip: To plan for the sharing of portal application code among team members, it is important
to understand the role of Shared J2EE Libraries in a WebLogic Portal application. See
the WebL ogic Server document “Creating Shared J2EE Libraries and Optional
Packages” for information on this important topic. Shared Libraries are also discussed in
the WebLogic Portal Development Guide and “Deploying J2EE Shared Libraries” on
page 4-10.

Like domain creation, application creation occurs in several steps. These steps are explained in
this section. They include:

1. Create or Locate the Eclipse Workspace Directory

BEA WebLogic Portal Production Operations Guide 2-1

../security/index.html
../../../wls/docs92/programming/libraries.html
../../../wls/docs92/programming/libraries.html
../portals/index.html

Managing a Team Development Environment

2-8

Create a Portal EAR Project
Create Portal Web Projects

Check in the Portal Application

o &~ w D

Check Out the Workshop for WebLogic Application

Create or Locate the Eclipse Workspace Directory

All projects created with Workshop for WebLogic are created inside a Workspace directory. For
more information on creating workspaces and projects, see the WebLogic Portal Development
Guide.

Create a Portal EAR Project

Use Workshop for WebL ogic to create one or more Portal EAR Projects. An EAR Project
primarily consists of configuration files that reference Web applications and J2EE Shared
Libraries.

When you create an EAR project, you select the Project Facets you want to include in the project,
including a set of WebL ogic Portal facets, as shown in Figure 2-1.

BEA WebLogic Portal Production Operations Guide

../portals/index.html
../portals/index.html

Creating and Sharing the Portal Application

Figure 2-1 WebLogic Portal Facets

W New Portal EAR Project @

R =

Select Project Facets
Enables the project to be deploved as an EAR module,

Presets; |WebL0gic Portal EAR Project Facets j
Project Facet | ‘ersion |
EJear]| L4..
|Z| WebLogic EAR Extensions 9.2.0
—-[A 2 weblogic Portal WebLogic Portal
|2 Admin Cansale 9.2.0 Facets
|2 Admin Framewark 9.2.0
|=| P13N Application Libraries 2.2.0
|=| Portal Application Services 2.2.0
|=| Portal Customizations Framewark. 2.2.0
|=| Propagation Service 9.2.0
+-[] 5| webLogic Portal {Optional)
+-[] |5 Weblogic Portal GraupSpace

<< Show Runtimes

< Back | Mexk = | Finish | Cancel |

A facet is a convenient way to group a set of J2EE Shared Libraries and IDE functionality that
are required for a specific feature. For example, the Admin Console facet groups the J2EE
Shared Libraries that are required to deploy and run the WebLogic Portal Administration
Console. If you do not want to include a facet, you can deselect it. Note that some facets depend
on other facets. If you try to remove a facet that has dependencies, the dialog box alerts you and
prohibits you from making that particular change.

Tip: Itisrecommended that, for development purposes, you select all of the WebL ogic Portal
facets when you create a Portal EAR Project. You can selectively remove some facet
components when you move your portal to a production environment. For example, you
can remove the WebLogic Portal Administration Console before you deploy to your
production environment. For more information, see “Using J2EE Shared Libraries in a
Team Environment” on page 2-13.

For more detailed information on creating Portal EAR Projects, see the WebLogic Portal
Development Guide.

BEA WebLogic Portal Production Operations Guide 2-9

../portals/index.html
../portals/index.html

Managing a Team Development Environment

Create Portal Web Projects

Use Workshop for WebLogic to create Portal Web Projects. A Portal Web Project includes your
portal’s source code and configuration files that reference J2EE Shared Libraries used by the
project.

When you create a Web project, you select the Project Facets you want to include in the project,
including the WebL ogic Portal facets, as shown in Figure 2-2.

Figure 2-2 WebLogic Portal Facets
D LD .

Select Project Facets
Enables the project to be deploved as a dynamic web mod%

Presets; |WebL0gic Portal Web Project Facets j
A~

Project Facet | ‘ersion |
|2 Beehive MetUI 1.0
: 1.1
1.1
3l 6o
| WebDoclet (¥Doclet) 1.23..
| Weblogic Control Extensions 9.2.0
| Weblogic Integrated CommonsLogging 9.2.0
| WebLogic Portal WebLogic Portal
=| P13M ‘Web Libraries 2.2.0 Facets
Paortal Customizations Framework. 2.2.0
Paortal Framework 2.2.0
Partal Framework Common APT 2.2.0
Partal Framework Struts 9.2.0-1.2 ...
Partal Visitor Tools 2.2.0
Portal Web Application Services 9.2.0
|=| WSRP Producer 2.2.0
+-[] 5| webLogic Portal {Optional)
+-[] [£| Weblogic Portal GraupSpace
+-[] 5| ¥MLBeans b

<< Show Runtimes

< Back Mexk = | Finish | Cancel |

Tip: Itisrecommended that, for development purposes, you select all of the WebL ogic Portal
facets when you create a Portal Web Project. You can selectively remove some facet
components (features) when you move your portal to a production environment. For

2-10 BEA WebLogic Portal Production Operations Guide

Creating and Sharing the Portal Application

more information, see “Using J2EE Shared Libraries in a Team Environment” on
page 2-13.

Any application code you write is stored in files within the web project. In a typical application,
your code is placed in the WwebContent directory of the web project. Any domain and application
specific code supplied by BEA is stored in J2EE Shared Libraries and referenced by your
application.

For more detailed information on creating Portal Web Projects, see the WebLogic Portal
Development Guide.

Check in the Portal Application

The code you write is physically separated from the domain and application code BEA provides
in J2EE Shared Libraries. You only need to store the application code written by you and
members of your team in a source control system. Be default, your application code is placed in
the WwebContent directory of your web application. Any Java source code is placed in the src
directory. Eclipse also stores project settings and other configurations in the project. These files
include:

e _project files — Contains the Eclipse project information.
e _classpath — Contains the Java classpath settings.

e _settings — Contains a list of files for the project’s facets, J2EE settings, Datasync
settings, and other project-specific information.

e _datasync-project.propeties — Used in Datasync projects.

As new components are created, many of these new components need to be checked into source
control. Developers need to be aware of which files that are created need to be shared in source
control.

Exclude from source control any Java output directories that are specific to the web project.
Typically, these directories are named bui Id or bin. Also, avoid checking in any files that
contain hard coded paths.

Tip: For more information on files to exclude from source control and on creating a portable
workspace ZIP file, see the Workshop for WebLogic document “Working with Source
Control.”

BEA WebLogic Portal Production Operations Guide 2-11

../portals/index.html
../portals/index.html
../../../workshop/docs92/ws_platform/ideuserguide/conSourceControl.html
../../../workshop/docs92/ws_platform/ideuserguide/conSourceControl.html

Managing a Team Development Environment

2-12

Three files that are commonly updated during development and need to be checked into source
control include the following. These files are located in the enterprise application’s META-INF
directory.

e application.xml — Lists the web applications associated with the enterprise application.

e weblogic-application.xml — Lists the J2EE Shared Libraries used by the enterprise
application.

e content-config.xml — Specifies the default content repository used by the application.

Tip: If you want to modify a file that is inside a J2EE Shared Library, you can copy it to your
filesystem and modify it. From that point on, the file-based copy takes precedence over
the version stored in the J2EE Shared Library. In a development environment, be careful
to check any copied J2EE Shared Library files into source control, so that they can be
shared by other developers.

Check Out the Workshop for WebLogic Application

The fundamental idea when working with source control management and a Workshop for
WebLogic application is that developers must be able to check out the application, initiate a build,
and start the server without error.

When the EAR project is deployed to the domain by Workshop for WebLogic, it is registered in
the domain’s DOMAIN_ROOT/config/config.xml. This deployment happens automatically
when the server is started and the application is built. At this point, the application is added to
config.xml in a new XML block.

Listing 2-1 shows the block added to config.xml for an enterprise application named
myPortal EAR.

Listing 2-1 Application Added to config.xml File

<app-deployment>
<name>myPortal EAR</name>
<target>AdminServer</target>
<module-type>ear</module-type>
<source-path>D:\users\projects\applications\myWorkspace\.metadata\.plugins\
org.eclipse.core.resources\.projects\myPortalEAR\beadep
</source-path>

BEA WebLogic Portal Production Operations Guide

Using J2EE Shared Libraries in a Team Environment

<security-dd-model>DDOnly</security-dd-model>
</app-deployment>

Because Workshop for WebLogic updates the config.xml for the domain automatically, it is not
necessary to check a config.xml that contains the application name XML block back into
source control. Instead, a developer checks out the application, performs a build, and starts the
server against a domain without this application reference. The developer’s application is then
published to the server. Workshop for WebLogic automatically updates it if necessary to add or
remove components.

After checking out an application from source control, each developer needs to import it into
Workshop for WebLogic. To do this, select File > Import. In the Import dialog, select Existing
Projects into Workspace. Then, follow the online help instructions to locate and import the
project.

Tip: Refer to the Eclipse documentation for additional information on sharing projects in
Eclipse.

Using J2EE Shared Libraries in a Team Environment
This section includes these topics:
e Overview
e Shared Library Rules of Precedence

e Deployment Descriptors and Shared Libraries

Overview

A J2EE Shared Library is a reusable portion of a J2EE application or web application. At the
enterprise application level, a J2EE Shared Library is an EAR file that can include Java classes,
EJB deployments, and web applications. At the web application level, a J2EE Shared Library is
a WAR file that can include servlets, JSPs, and tag libraries. The difference between a standard
EAR or WAR file and a J2EE Shared Library is that shared libraries can be included in an
application by reference, and multiple applications can reference a single J2EE Shared Library.

BEA WebLogic Portal Production Operations Guide 2-13

Managing a Team Development Environment

2-14

One of the most useful aspects of shared libraries for WebLogic Portal development teams is that
the code developed by your team and the code that is distributed by BEA remain physically
separated. When a WebLogic Portal upgrade or patch is distributed as shared libraries, all you
need to do is add the new libraries to the installation directory. The referencing applications, and
the code written by your developers, automatically pick up the new modules when the application
is redeployed.

Tip: For additional detailed information on J2EE Shared Libraries, see the WebLogic Server
document “Creating Shared J2EE Libraries and Optional Packages” and the WebLogic
Portal Development Guide.

Shared Library Rules of Precedence

Your WebLogic Portal application can reference multiple shared libraries. In turn, libraries can
reference other libraries, and so on. Because the J2EE Shared Library code and your own
application code is assembled at runtime, rules must exist to resolve potential conflicts. These
rules are:

e Any file that is located in your application takes precedence over a file that is in a J2EE
Shared Library.

e Conflicts arising between referenced libraries are resolved based on the order in which the
libraries are specified in the META-INF/weblogic-application.xml file (for enterprise
applications) or the WEB-INF/weblogic.xml file (for web applications).

These precedence rules have an important implication for the development team. For example,
the team can choose to copy specific files, such as CSS files, from a J2EE Shared Library. If
developers change those files in their development areas, those changes take precedence over the
original shared library versions.

Tip: Where possible, copy resources for shared libraries to a new name in your application.
This practice can avoid confusion about which version is being used: the local copy or
the shared library version. Sometimes this is not possible, and the precedence rules then

apply.

BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/programming/libraries.html
../portals/index.html
../portals/index.html

Using J2EE Shared Libraries in a Team Environment

Deployment Descriptors and Shared Libraries

In addition to code and other modules and resources, shared libraries include deployment
descriptors. The deployment descriptors describe the contents of the library. The following
example illustrates the basic structure of an enterprise application that references a J2EE Shared
Library.

For this example, assume there is an enterprise application called myApp . ear that has the
structure shown in Listing 2-2. The application includes two modules, myEjb. jar and
myWebApp .war, plus some additional Java code in myClasses. jar.

Listing 2-2 Example Application myApp.ear

META-INF/application.xml

<module>
<ejb> myEjb.jar </ejb>
</module>
<module>
<web>
<web-uri>myWebApp.war</web-uri>
<context-root>myWebApp</context-root>
</web>
</module>

META-INF/weblogic-application.xml

<library-ref>
<library-name>AppLibOne</library-name>

</library-ref> ————T

APP-INF/lib/myClasses. jar
myEjb.jar
myWebApp .war

Note the element shown in bold in the META-INF/weblogic-application.xml descriptor. The
<library-ref> element specifies a reference to a J2EE Shared Library called AppLibOne.

Listing 2-3 shows the actual J2EE Shared Library, AppLibOne . ear, referenced by the enterprise
application. As you can see, this library includes a META- INF/MANIFEST . MF file, shown in bold
type, which includes the library name and version information. After a shared library is deployed,
it is through this manifest that the server is able to identify it and to assemble it into the deployed
application.

BEA WebLogic Portal Production Operations Guide 2-15

Managing a Team Development Environment

Tip: For more information on deploying shared libraries, see “Deploying J2EE Shared
Libraries” on page 4-10.

Listing 2-3 Shared Library AppLibOne.ear

META-INF/MANIFEST .MF

Extension-Name: AppLibOne
Specification-Version: 1.0
Implementation-Version: 1.0

META-INF/application.xml

<module>
<ejb> libEjb.jar </ejb>
</module>

1%

APP-INF/1ib/code. jar
libEjb.jar

Listing 2-4 shows the effective configuration of the final deployed application, after the
deployment descriptors in the libraries have all been read and interpreted. The server deploys two
EJB JAR files. The file myEjb. jar comes from the myApp.ear archive, and the other
libEjb. jar comes from the J2EE Shared Library. Furthermore, the application’s classpath is
also ordered so that the classes in myApp’s myClasses. jar override any classes from the
code. jar file in the AppLibOne J2EE Shared Library.

2-16 BEA WebLogic Portal Production Operations Guide

Sharing Portal Resources: Sample Scenario

Listing 2-4 Final Deployed Application

META-INF/application.xml

<module>
<ejb> myEjb.jar </ejb>
</module>
<module>
<web>
<web-uri>myWebApp.war</web-uri>
<context-root>myWebApp</context-root>
</web>
</module>
<module>
<ejb> libEjb.jar </ejb>
</module>

APP-INF/lib/myClasses. jar

APP-INF/1ib/code. jar
myEjb.jar

myWebApp .war
libEjb.jar

Sharing Portal Resources: Sample Scenario

Shared libraries provide a convenient mechanism for development teams to share the portal
resources that they develop with other teams.

This section includes these topics:
e Introduction
e Packaging Resources to Share

e Receiving and Incorporating Shared Resources

Introduction

For example, suppose a team environment consists of one or more portlet development teams and
ateam that is responsible for assembling and maintaining the overall portal. Figure 2-3 illustrates
the example scenario. The portal development team delivers a Shared Library (WAR) file to a
portlet development team. This library file contains the portal and its associated resources, such
as the portal look & feel. The portlet team receives this file and imports it as a Shared Library into
its project space, making it available to the team members and providing a portal in which to test
their portlets.

BEA WebLogic Portal Production Operations Guide 2-11

Managing a Team Development Environment

2-18

After the portlet team builds a set of portlets, they deliver a Shared Library (WAR) file back to
the portal team. The portal team receives the WAR, imports it as a module, and adds the portlets
to the portal. For detailed information on creating J2EE Shared Libraries, see the WebLogic
Server document “Creating J2EE Libraries and Optional Packages.”

Figure 2-3 Sharing Portal Resources in a Team Environment

import Q Portal export
/" WAR Library Portal Team
Portal

Portlet

Team A
ortlet 1 (D portlet 1 portlet 3
i Portlet

portlet 3 WAR Library
portlet 2
portlet2
import
EAR
|_ WebApp

Packaging Resources to Share

The basic steps involved in sharing resources as shared libraries includes the following:
1. The portlet team develops and tests portlets using a test portal environment.

2. The portlet team adds appropriate stanzas to the Shared Library WAR file’s
MANIFEST/MANIFEST . MF file to enable the WAR as a J2EE Shared Library. See “Using J2EE
Shared Libraries in a Team Environment” on page 2-13 for information on enabling a WAR
as a J2EE Shared Library. For example:

META- INF/MANIFEST .MF

Extension-Name: SomePortlets
Specification-Version: 1.0
Implementation-Version: 1.0

BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/programming/libraries.html

Sharing Portal Resources: Sample Scenario

3. The portlet team uses Workshop for WebLogic to export a project as a WAR file (select File
> Export).

4. The portlet team removes from the Shared Library WAR file any files and code that are not
strictly required by the portlets. For instance, any test files used by the development team can
be excluded.

Tip: Choose a naming convention for your portlet development that includes consistent
subdirectory names. A consistent naming convention simplifies the process of
packaging and delivering your source files.

5. The portlet team sends the Shared Library WAR file to the portal team.

6. The portal team imports the library, as explained in the next section.

Receiving and Incorporating Shared Resources

Upon receiving the Shared Library WAR file, the portal team references the Shared Library
WAR file (and, optionally, its version number) in the appropriate configuration files. References
to the Shared Library WAR file go in the portal web application’s weblogic.xml and the
domain’s config.xml files.

The weblogic.xml file contains the library name (and, optionally, version number) and the
domain’s config.xml file contains the actual path of the Shared Library WAR file. See “Using
J2EE Shared Libraries in a Team Environment” on page 2-13 for information on referencing a
J2EE Shared Library.

Tip: Before beginning their development phase, the portlet team might receive from the portal
team a set of look & feel files, libraries, and menus to use with their portlets. If these
resources are delivered to the portlet team in a J2EE Shared Library file, the portlet team
can simply receive and install it by following the same procedures described in this
section. In this case, the portlet team may have fewer items to remove from its Shared
Library WAR file.

Importing the Shared Library into Workshop for WebLogic

You need to add the library to the Java Build Path of your project, as follows:

1. Right-click the project in the Package Explorer and select Build Path > Add Libraries.

BEA WebLogic Portal Production Operations Guide 2-19

Managing a Team Development Environment

2. Inthe Add Library dialog, select WebLogic J2EE Library and click Next.

3. Inthe WebLogic J2EE Library dialog, browse to the library file that you want to add and
select it. If you want to specify a version, enter the appropriate version information in the
dialog, and click Finish.

Importing the Shared Library into a Deployed Application

To incorporate the portlets into a deployed portal, the portal team uses the WebL ogic Server
Console to deploy the WAR file as a J2EE Shared Library.

WebLogic Portal Coding Best Practices

2-20

This section provides guidance for managing portal application source code in a team
development environment.

This section includes the following sections:
e Sharing Java Projects
e Supporting Cross-Platform Development
e Editing Definition Labels for Portal Components

e Testing a Cluster Configuration

Sharing Java Projects

Tip: For information on sharing project files using Workshop for WebLogic’s Eclipse-based
integrated source control features, see the Workshop for WebLogic document “Working
with Source Control.”

If you have a number of general-purpose Java libraries that will be used by your portals, it is
recommended that they be stored in a Java project inside the portal Enterprise archive or
packaged as J2EE Shared Libraries. This enables portability of your Java libraries across multiple
instances of the server and is a convenient mechanism for packaging libraries for reuse and
sharing.

The best practice is to place a JAR file containing your Java libraries in the APP-INF/1ib
directory of your enterprise application, or configure the JAR file as a J2EE Shared Library. For
detailed information on creating J2EE Shared Libraries, see the WebLogic Server document
“Creating J2EE Libraries and Optional Packages.”

BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/programming/libraries.html
../../../workshop/docs92/ws_platform/ideuserguide/conSourceControl.html
../../../workshop/docs92/ws_platform/ideuserguide/conSourceControl.html

WebLogic Portal Coding Best Practices

Supporting Cross-Platform Development

When coding to develop and deploy in a cross-platform environment, observe the following best
practices:

e Do not use spaces in filenames.

Keep pathnames short.

When possible, do not hard code pathnames.

Use forward slashes (/) in path strings when possible.

Be aware of the difference between case-sensitive operating systems (UNIX) and other
operating systems, such as Windows. For example, you could create a file called
myPortletContent. jsp and specify the file MyPortletContent. jsp as the Content
URI on windows without problems. However, when this same application is deployed on
UNIX, an error that the file MyPortletContent. jsp cannot be found is generated.

Editing Definition Labels for Portal Components

A unique identifier called a definition label is generated automatically for each book, page, and
portlet that you add to a portal in Workshop for WebLogic. You can view the definition label for
a component in Workshop for WebLogic in the Properties view.

With multiple developers creating new portal components, it is possible that different
components can have the same automatically generated definition label. To avoid duplicate
definition labels, manually change the definition label for each new component using your own
naming conventions.

For information on modifying definition labels, see the Portal Development Guide.

WARNING: Once you have used the propagation tools to propagate changes among your
environments, it is very important that you do not change the definition labels for
portlets, pages, and books. The propagation tools use definition labels and
instance labels to identify differences between source and destination systems;
inconsistent results might occur if you change these labels after propagating a
portal.

Testing a Cluster Configuration

Any code you write should be tested often in a clustered environment. Also, keep session data to
a manageable size and configure your web applications to support session sharing across the

BEA WebLogic Portal Production Operations Guide 2-21

../portals/index.html

Managing a Team Development Environment

cluster. Be sure that session data is serializable. For clustering information, see Chapter 3,
“Configuring a Portal Cluster.”

Tip: WebLogic Server provides a session monitor tool that is useful for debugging HTTP
session problems. See the WebLogic Server document “Class SessionMonitor” for more
information.

Managing Binary Files in Source Control

2-22

A number of binary files in the WebLogic Server domain need to be checked into source control
management for the domain to function properly. Some of these files, such as database files, can
be modified during the course of WebL ogic Portal development.

These binary files may change for various reasons: user-initiated reasons, automatic growth of
index files, and so on. It is important to understand what these files are, why they change, and
when to check them in and out.

This section explains how to determine when you need to update specific binary files in source
control management. Some of these files include: LDAP files, security-related files, and database
configuration files.

This section includes these topics:
e General Procedure for Working with Binary Files
e Updating Users, Groups, Roles, and Entitlements

e Updating Other Security-Related Files

General Procedure for Working with Binary Files

With all binary files, there is a consistent process to follow when you make changes to them so
they can be shared in source control. To reduce the chances of merge conflicts over the project
life cycle, it is recommended that changes to binaries be initiated consistently by a single user.

If, for any reason, you need to modify domain binary file(s) in source control, follow this
procedure:

1. Stop the server.

2. Perform a clean checkout of the binary files from source control to ensure you are working
from a common base.

BEA WebLogic Portal Production Operations Guide

../../../wlp/docs92/javadoc/com/bea/p13n/http/SessionMonitor.html

Managing Binary Files in Source Control

Start the server.
Modify the configuration stored in the binary file(s).
Stop the server.

Check-in any modified binary files to source control management.

N o g ~ W

Test a clean checkout from another machine.

Updating Users, Groups, Roles, and Entitlements

A common activity in development is the creation of a base set of users and groups that are used
to test the system. By default, WebL ogic Server stores users and groups in the PointBase
RDMBS. A relationship exists between LDAP policy data and database data to support user
entitlements. An embedded LDAP server is provided with WebLogic Portal. This LDAP server
persists its data store to the filesystem in the
DOMAIN_HOME/servers/AdminServerName/data/ Idap directory.

For information on BEA’s LDAP server, see the WebLogic Server document Managing the
Embedded LDAP Server.

Because the LDAP server contains information, including role and security policies, that needs
to be shared by team members, check the files in the LDAP directory into source control,
excluding backup and log files (see Table 2-2, “Domain Files to Exclude from Source Control,”
on page 2-30).

During project development, there may be occasion to modify the existing users, groups, roles,
and entitlements. You can configure users, groups, roles, and entitlements with the WebLogic
Portal Administration Console. It is important to maintain database and LDAP changes in source
control.

For detailed information on entitlements, see the WebLogic Portal Security Guide. For detailed
information on users and groups, see the WebLogic Portal User Management Guide. For
instructions on using the WebLogic Portal Administration Console, see WebLogic Portal
Administration Tools Guide.

Updating Other Security-Related Files

Other important security files located in the domain are the Serial izedSystemlni .dat,
DefaultAuthenticatorinit.ldift, DefaultAuthorizerinit.ldift, and
DefaultRoleMapperlInit. Idift files. These files are located in the DOMAIN_HOME/security
directory, where DOMAIN_HOME is the root directory for your domain.

BEA WebLogic Portal Production Operations Guide 2-23

../admintools/index.html
../admintools/index.html
../../../wls/docs92/secmanage/ldap.html
../../../wls/docs92/secmanage/ldap.html
../security/index.html
../users/index.html

Managing a Team Development Environment

These files contain essential security information needed to start the domain. While not typically
modified during the course of development, these files must exist for the server to start. The
DOMAIN_HOME/servers/AdminServer/security/boot.properties file contains encrypted
username and password information for starting the domain. That file is not mandatory, but it is
typically used in development environments to allow server startup without requiring
authentication.

For more information about security, see the WebLogic Portal Security Guide.

Configuring Facets

Using Shared J2EE Libraries to share resources among development teams, as well as third-party
development teams, will be sufficient for many cases. In some cases, however, you might want
to develop a project facet that includes a bundle of features you have developed and that can be
installed by developers when they create a new project in Workshop for WebLogic.

Before WebLogic Portal 9.2, you could create project templates and include them in your project
from WebLogic Workshop. The equivalent feature in WebLogic Portal 9.2 is handled using an

Eclipse plugin. Workshop for WebL ogic uses the concept of facets (from the Eclipse Web Tools
Platform (WTP): http://www._eclipse.org/webtools).

A facet is a set of functionality you can add to your project. The facets show up in the wizard
when you create a new project. When you select a facet, Workshop for WebL ogic installs all of
the facet’s components into your project.

Facet development is the next step for those partners and developers who want to integrate
features directly into Workshop for WebLogic.

WebLogic Portal includes a Library Modules for Project Features extension point, which allows
you to define a facet to include one or more J2EE Shared Libraries, as well as other resources to
go into the project classpath. Developing such a plugin is straightforward, and does not
necessarily involve any code. Typically, you just need to write a plugin.xml file. Of course, you
can also include code for views or editors or other tools in your plugin, but to simply have your
facet show up in Workshop for WebL ogic, no code is required.

Alternative Domain Sharing Techniques

2-24

If the recommended approach to creating and sharing a portal domain among team members, as
discussed in “Creating a Shared WebLogic Portal Domain” on page 2-2, is not sufficient, this
section presents alternative techniques.

BEA WebLogic Portal Production Operations Guide

../security/index.html

Alternative Domain Sharing Techniques

This section includes these topics:
e Determining the BEA Home Directory

e Creating and Sharing the Portal Domain

Determining the BEA Home Directory

The directory where WebL ogic Platform software is installed on a given system is called the BEA
home directory. Figure 2-4 shows an example of a home directory. Each development machine
in your team environment will have its own BEA home directory.

Figure 2-4 The BEA Home Directory

= S DATA (DD
+ | 2) BankingApp
=l) bea
5 jdk150_04
5 jrockitan_150_04
£ logs —— BEA Home Directory
+) utils
+) weblogicaz
|2 workshop9z

Because Workshop for WebLogic applications and domains each reference the BEA home
directory, it is important to carefully consider where to put the BEA home directory. The simplest
configuration occurs when every machine in your team environment uses exactly the same BEA
home directory (the same drive/directory name). If this is not the case, then you need to choose a
strategy for managing the different BEA home directory locations. These strategies are explained
in this section.

Importance of the BEA Home Directory

When creating a new portal domain with the domain Configuration Wizard, you choose which
BEA home directory you want to reference for that domain. The physical path to this directory is
contained in a portal domain’s config/config.xml file on each development machine, in
domain batch scripts such as startWeblogic-cmd, and in other domain files (see Table 2-1 for
a complete list).

For example, Listing 2-5 shows part of a config.xml file. In this example, the <source-path>
element points to a J2EE Shared Library file in a subdirectory of D:\myBeaHome. In this case
D:\myBeaHome is the BEA home directory.

BEA WebLogic Portal Production Operations Guide 2-25

Managing a Team Development Environment

Listing 2-5 BEA Home Directory Referenced in a config.xml File

<library>
<name>pl13n-app-1ib#9.2.009.2.0</name>
<target>AdminServer</target>
<source-path>D:\myBeaHome\weblogic92\common\deployable-libraries\pl3n-app-lib.ear
</source-path>
<deployment-order>1</deployment-order>
<security-dd-model>DDOnly</security-dd-model>

</library>

If the config.xml and other domain files are shared in source control, either all team members
must have installed WebL ogic Server to the BEA home directory path hard-coded in those files,
or another strategy must be used. Strategies for maintaining different BEA home directories on
different machines are discussed later in the next section “Managing Multiple BEA Home
Directory Locations for Your Team” on page 2-27.

Table 2-1 lists all of the files in a domain that contain hard-coded BEA home directory paths. The
files listed in Table 2-1 are relative to the root directory of the domain.

Table 2-1 Domain Files with Hard-Coded Paths

File Notes

create_db.* WL_HOME

pointbase.ini documentation.home property
config/config.xml <source-path> elements
bin/setDomainEnv.* WL_HOME, JAVA_HOME, DOMAIN_HOME

LONG_DOMAIN_HOME variables

bin/startManagedWebLogic.* trustedCAKeyStore, DOMAIN_HOME
bin/startPointBaseConsole.* DOMAIN_HOME
bin/startWeblLogic.* DOMAIN_HOME
bin/stopManagedWebLogic.* DOMAIN_HOME
bin/stopWebLogic.* DOMAIN_HOME

2-26 BEA WebLogic Portal Production Operations Guide

Alternative Domain Sharing Techniques

Tahle 2-1 Domain Files with Hard-Coded Paths (Continued)

File Notes

init-info/domain-info.xml Output of the Domain Configuration Wizard. This file is
needed if you want to use the Configuration Wizard to
update the domain.

init-info/startscript.xml Output of the Domain Configuration Wizard. This file is
needed if you want to use the Configuration Wizard to
update the domain.

The next section contains strategies to employ when not all team members can use the same BEA
home directory.

If all team members can use the same BEA home directory, skip to “Creating and Sharing the
Portal Domain” on page 2-29.

Managing Multiple BEA Home Directory Locations for Your Team

There are a number of different techniques for sharing a content-equivalent domain with team
members with different BEA home directories. These options are described in the following
sections.

Option 1: Modifying Configuration Files with String Substitution

You can use a string substitution script to execute search and replace activities on your
config.xml and other domain files. For example, you can use the Ant Copy task with a filter to
perform the string substitutions. You can make a copy of config.xml (for example, renaming it
config-subst.xml), replace hard-coded paths with variables, and check in the copy. Then, each
developer can check out the copy with the variables and run the string substitution script.

A string substitution script can be used for more than setting up machines with different BEA
home directories: it can provide a way for each developer to work with a separate database
instance that shares a common data source configuration.

Option 2: Using a Common Virtual Drive for BEA Home (Windows)

With this option, developers on a team each configure on their machines a common virtual drive
letter. This drive is then used as a substitute for the true BEA home directory, which any given
developer can place anywhere they wish. The configuration files and start scripts shown in
Table 2-1, “Domain Files with Hard-Coded Paths,” on page 2-26 can then be edited to use the

BEA WebLogic Portal Production Operations Guide 2-21

Managing a Team Development Environment

2-28

virtual drive in place of the BEA home directory, and these files can then be shared among all
team members.

For example, if your BEA home directory is currently D:\BEA-HOME, the general procedure for
creating a substitute drive letter to map to your BEA home directory is as follows:

1. Run the following command from a Windows Command Prompt:
subst newDrive: D:\BEA_HOME

where BEA_HOME is the name of your BEA home directory, for example: D-\myBEA. And
where newDrive is the letter of the drive to which you want to map the BEA home
directory, for example P.

2. Create a new domain.

3. When you want to use the domain, switch to the new drive and go into the domain directory.

Tip: If other developers install WebLogic Server to a different location, such as D:\bea, they
can make a similar substitution, such as subst P: d:\bea, and share the same
config.xml and start scripts.

Drawbacks of this option include the following:

e Users must run the subst command upon each reboot, though they can type the command
in a text file, save the text file with a .cmd extension, and put it in their program /Startup
folder so the command runs automatically at system startup.

e Users must run the created domain and application from the new virtual drive. Running the
domain from the “true” install drive and path will result in errors.

e This technique is Windows Operating System specific; however, UNIX developers can
follow a similar technique using symbolic links with the In command.

Option 3: Using Relative Paths

If the domain and application directories on each developer’s machine are located in a common
relative path to the BEA home directory, it is possible to change all file paths in config.xml and
your start scripts to be relative paths.

Assuming the domain is installed to D:\myBeaHome\user_projects\mydomain, where the
BEA home directory is D:\myBeaHome, the sample config.xml entries shown in Listing 2-5
would now look like Listing 2-6, with the changes highlighted in bold type:

BEA WebLogic Portal Production Operations Guide

Alternative Domain Sharing Techniques

Listing 2-6 BEA Home Directory Referenced in a config.xml File

<library>
<name>pl13n-app-1ib#9.2.009.2.0</name>
<target>AdminServer</target>
<source-path>. ./. ./weblogic92/common/deployable-libraries/pl3n-app-lib.ear
</source-path>
<deployment-order>1</deployment-order>
<security-dd-model>DDOnly</security-dd-model>
</library>

Of course, as with the previous option, all files listed in Table 2-1, “Domain Files with
Hard-Coded Paths,” on page 2-26 would have to be modified in the same way.

Drawbacks of this option include the following:
o No ability to span multiple drives.

e The domain directory must always be in the exact same relative location to the BEA home
directory,

Creating and Sharing the Portal Domain

This section explains an approach to sharing a portal domain among team members. This
approach is an alternative to the recommended approach discussed in “Creating a Shared
WebLogic Portal Domain” on page 2-2.

Plan a Common Directory for Domains

Create a common domain root directory (%#DOMAINNAME) in your source control system for the
domain.

Note: Domain creation is discussed in “Creating a Shared WebLogic Portal Domain” on
page 2-2. Application creation is discussed in detail in “Creating and Sharing the Portal
Application” on page 2-7.

Create the Domain

Create the domain using the WebLogic Configuration Wizard or a script. For detailed
information on using the Configuration Wizard, see the WebLogic Server document “Creating
WebLogic Configurations Using the Configuration Wizard.” For detailed information on
building a domain programmatically with a script, see the WebL ogic Server document, “Creating

BEA WebLogic Portal Production Operations Guide 2-29

../../../common/docs92/confgwiz/index.html
../../../common/docs92/confgwiz/index.html
../../../wls/docs90/config_scripting/domains.html

Managing a Team Development Environment

2-30

and Configuring WebLogic Domains Using WLST Offline.” For an overview of the files that are
installed with a domain, see the WebLogic Server document “Domain Configuration Files.”

Check the Domain into Source Control

Tip: For information on sharing project files using Workshop for WebLogic’s Eclipse-based
integrated source control features, see the Workshop for WebLogic document “Working
with Source Control.”

After you create the domain, but before you start the server, check the domain into source control.
WebLogic Server creates a number of temporary files and directories in the domain directory at
server startup that you are unlikely to want in source control. Table 2-2 lists some files that are
created after you start the server, and that you will want to exclude from source control.

Table 2-2 Domain Files to Exclude from Source Control

Path Relative to the Domain Root File or Files to Exclude from Source Control

/config/config.xml Exclude config.xml only if you are using a string
substitution script to generate the file.

/ *.log
/servers/AdminServer/logs *
/servers/AdminServer/cache * (including all subdirectories)
/servers/AdminServer/tmp/ * (including all subdirectories)
/servers/AdminServer/ldap/ *
log/

Start the Server

Start WebL ogic Server using the domain’s DOMAIN_ROOT/bin/startWeblogic command. You
can find this command in the domain’s root directory.

Configure and Tune the Domain
See “Configuring and Tuning the Domain” on page 2-5.

BEA WebLogic Portal Production Operations Guide

../../../workshop/docs92/ws_platform/ideuserguide/conSourceControl.html
../../../workshop/docs92/ws_platform/ideuserguide/conSourceControl.html
../../../wls/docs90/config_scripting/domains.html
../../../wls/docs92/domain_config/config_files.html

Configuring a Portal Cluster

Before you can deploy a WebLogic Portal application to a clustered environment, you need to
use the WebLogic Configuration Wizard to set up and configure a WebL ogic Portal domain
specifically for a clustered environment. This chapter explains the basic steps to configure a
clustered environment for your portal application.

Note: WebLogic Portal does not currently support the WebLogic Server feature called
production redeployment, also called side-by-side versioning. For information on this
WebLogic Server feature, see the WebLogic Server document “Overview of
Redeployment Strategies.”

Note: WebLogic Portal requires the use of WebLogic Server multicast clustering. Unicast
clustering, as described in the WebLogic Server document Using Clusters, is not
supported by WLP.

The topics discussed in this chapter include:
e Overview

e Prerequisite Tasks

Creating Your Clustered Domain

Configuring the Administration Server

Setting up JMS Servers

Creating Managed Server Directories

e Zero-Downtime Architectures

BEA WebLogic Portal Production Operations Guide 3-1

../../../wls/docs92/deployment/redeploy.html
../../../wls/docs92/deployment/redeploy.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/cluster/index.html

Configuring a Portal Cluster

Overview

This chapter describes a set of prerequisite tasks you need to perform before you set up a clustered
environment for WebL ogic Portal applications. After the prerequisite tasks are complete, this
chapter explains how to use the WebLogic Configuration Wizard to set up and configure the
cluster, including JMS servers and Managed Server directories.

Prerequisite Tasks

3-2

You need to perform several prerequisite tasks before you can configure a clustered production
environment for your WebL ogic Portal application. Detailed information on most of these
prerequisite tasks is beyond the scope of this chapter, and is documented elsewhere (typically in
WebLogic Server documentation). Where appropriate, cross-references to source and
supplemental documentation are provided.

Note: You can perform these tasks in any order, but they must be addressed before you proceed
to configure the cluster environment.

The prerequisite tasks include:

Set up a Production Database

Locate JMS Queue and JDBC Data Sources

e Choose a Cluster Architecture

Determine the Domain Network Layout

e Install WebLogic Portal

Set up a Production Database

To deploy a portal application into production, it is necessary to set up an enterprise-quality
database. For detailed information on setting up an enterprise-quality database, see “Managing
Databases” on page 2-5. For details on configuring your production database see the Database
Administration Guide.

Note: An instance of PointBase database is installed when you install WebLogic Server, and is
the default database. PointBase is supported only for the design, development, and
verification of applications. It is not supported for production server deployment.

Once you have configured your Enterprise database instance, it is possible to install the required
database DDL and DML from the command line as described in the Database Administration

BEA WebLogic Portal Production Operations Guide

../db/index.html
../db/index.html
../db/index.html

Prerequisite Tasks

Guide. You can also create the DDL and DML from the WebLogic Configuration Wizard when
configuring your production environment.

Locate JMS Queue and JDBC Data Sources

JMS queues and JDBC names for WebLogic Portal are referenced in the
DOMAIN_ROOT/config/config.xml file. JIMS queues for WebLogic Portal are configured in
DOMAIN_ROOT/config/jms/*_xml files. IDBC data sources are configured in
DOMAIN_ROOT/config/jdbc/*.xml files.

Tip: For detailed information on JMS queue configuration, see the WebLogic Server
document, “Configuring and Managing WebLogic JMS.” For detailed information on
JDBC, see the WebLogic Server document, “Configuring and Managing WebLogic
JDBC.”

Choose a Cluster Architecture

Note: WebLogic Portal requires the use of WebLogic Server multicast clustering. Unicast
clustering, as described in the WebLogic Server document Using Clusters, is not
supported by WLP.

A cluster consists of multiple WebLogic Server instances running simultaneously and working
together to provide increased scalability and reliability. A WebLogic Portal application deployed
to a cluster appears to clients to be a single application instance.

Note: Multiple managed servers running a WLP application must be deployed to a cluster.
Running a WLP application on multiple servers that are not configured as a cluster is not
supported.

By clustering a portal application, you can attain high availability and scalability for that
application. Use this section to help you choose which cluster configuration you want to use.

This section includes the following topics:
e Single Cluster

o Multi Cluster

Tip: For more detailed information on server clusters, see the WebLogic Server document
Using WebLogic Server Clusters.

BEA WebLogic Portal Production Operations Guide 3-3

../../../wls/docs92/cluster/planning.html
../db/index.html
../../../wls/docs92/jms_admin/basic_config.html
../../../wls/docs90/jdbc_admin/config.html
../../../wls/docs90/jdbc_admin/config.html
http://download.oracle.com/docs/cd/E12840_01/wls/docs103/cluster/index.html

Configuring a Portal Cluster

Single Cluster

When setting up an environment to support a production instance of a portal application, the
recommended configuration is to deploy your portal application directly to the cluster. For
detailed information on this configuration, refer to the WebLogic Server document, WebLogic
Recommended Basic Architecture.

Figure 3-1 shows a WebLogic Portal-specific version of the recommended basic architecture.

Figure 3-1 WebLogic Portal Single Cluster Architecture

Load BalancernProxy

Traffic
Y

l Cluster
v
Managed Server 1 Managed Server 2
WeblLogic Portal WeblLogic Portal
Administration S 1
ministration Server WebLogic Portal WebLogic Portal
Administration Console Administration Console

WeblLogic Portal

Weblogic Server

Portal Application Portal Application

J5Ps and EJBs J5Ps and EJBs

WebLogic Server WebLogic Server

Enterprize Quality
- Database -

Note: WebLogic Portal does not support a split-configuration architecture where EJBs and
JSPs are split onto different servers in a cluster. The basic architecture provides
significant performance advantages over a split configuration for WebL ogic Portal.

Even if you are running a single server instance in your initial production deployment, this
architecture allows you to easily configure new server instances if and when needed.

3-4 BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/cluster/planning.html
../../../wls/docs92/cluster/planning.html

Prerequisite Tasks

Multi Cluster

A multi-clustered architecture can be used to support a zero-downtime environment when your
portal application needs to be accessible continually. While a portal application can run
indefinitely in a single cluster environment, deploying new components to that cluster or server
will result in some period of time when the portal is inaccessible. This is due to the fact that while
a new EAR application is being deployed to a WebLogic Server, HTTP requests cannot be
handled. Redeployment of a portal application also results in the loss of existing sessions.

For more detailed information on the multi-cluster configuration, refer to the WebLogic Server
document, “Recommended Multi-Tier Architecture.”

A multi-cluster environment involves setting up two clusters, typically a primary cluster and
secondary cluster. During normal operations, all traffic is directed to the primary cluster. When
some new components (such as portlets) need to be deployed, the secondary cluster is used to
handle requests while the primary is updated. The process for managing and updating a
multi-clustered environment is more complex than with a single cluster and is addressed in
“Zero-Downtime Architectures” on page 3-17. If this environment is of interest, you may want
to review that section now.

BEA WebLogic Portal Production Operations Guide 3-5

http://e-docs.bea.com/wls/docs92/cluster/planning.html#wp1115757

Configuring a Portal Cluster

Figure 3-2 WebLogic Portal Multi-Cluster Architecture

Lead BalancernProxy

Y Traffic

Primary Cluster Secondary Cluster

-
Managed Server 1

-~

Managed Server 1

‘WeblLogic Portal ‘WeblLogic Portal
Paortal Application Portal Application
Administration Server 1 ion Server 2

WebLogic Portal

Weblogic Server

WebLogic Server

Managed Server 2

WeblLogic Server

WebLogic Server

Managed Server 2

WebLogic Portal

Weblogic Server

‘WeblLogic Portal ‘WeblLogic Portal

WebLogic Server

Enterprise Quality
- Database -

Determine the Domain Network Layout

Before you build your domain with the WebL ogic Configuration Wizard, you need to think about
the network layout of the domain. Before configuring the domain, consider the total number of
Managed Servers in the cluster, including:

e The machines they will run on
e Their listen ports

e Their DNS addresses

In addition, decide if you will use WebLogic Node Manager to start the servers. For information
on Node Manager, see Configuring and Managing WebLogic Server.

3-6 BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/server_start/nodemgr.html

Creating Your Clustered Domain

Install WebLogic Portal

WebLogic Portal must be installed on all Managed Server machines and the Administration
Server.

Note: The Administration Server must always be running when WebLogic Portal is running in
a clustered environment. This ensures that the cluster’s policy data stays in sync with the
references to that data that are stored by WebLogic Portal in the database.

Creating Your Clustered Domain

This section explains how to set up a clustered environment for a WebLogic Portal domain. This
section steps you through the process of setting up a cluster using the WebLogic Configuration
Wizard.

Note: To achieve greater scalability, it is common to run a WLP application on multiple
managed servers. Multiple managed servers running a WLP application must be
deployed to a cluster. Running a WLP application on multiple servers that are not
configured as a cluster is not supported.

For more information on clusters, see “Choose a Cluster Architecture” on page 3-3 and the
WebLogic Server document “Creating WebLogic Domains Using the Configuration Wizard.”

This section includes the following topics:
e What is a Domain?

e Creating the Customized Domain

What is a Domain?

To run applications on WebLogic Server you must define and create a domain. To run WebLogic
Portal applications, you must create a domain that includes the appropriate WebLogic Portal
components.

A domain is the basic administration unit for WebLogic Server. It consists of one or more
WebLogic Server instances, and logically related resources and services that are managed,
collectively, as one unit. A basic domain infrastructure consists of one Administration Server and
optional Managed Servers and clusters.

BEA WebLogic Portal Production Operations Guide 3-7

../../../common/docs92/confgwiz/intro.html

Configuring a Portal Cluster

3-8

Tip: For a more detailed description of these components, as well as a thorough introduction
to domains, see the WebLogic Server documents “Creating WebLogic Domains Using
the Configuration Wizard and “Understanding WebLogic Server Domains.”

The Configuration Wizard guides you through the process of creating or extending a WebL ogic
Portal domain for your target environment. This process is accomplished using predefined
configuration and extension templates containing the main attributes and files required for
building or extending a WebLogic Portal domain.

Tip: The Configuration Template Builder guides you through the process of creating custom
configuration and extension templates from existing templates or domains. These
templates can be used later for creating and updating domains using the Configuration
Wizard. For detailed information on domain templates and instructions on using the
Configuration Template Builder to create a domain template, see Creating Configuration
Templates Using the WebLogic Configuration Template Builder. It is a recommended
best practice to create a custom domain template for use in a team development
environment. For more information, see “Creating a WebLogic Portal Domain
Template” on page 2-4.

Creating the Customized Domain

You use the WebLogic Configuration Wizard to create a domain. The procedure for creating a
customized domain includes these tasks:

e Initial Configuration
e Customizing the Domain
e Configuring Database and JMS Options

e Completing the Configuration

Note: The following procedure reflects the scope of the WebLogic Configuration Wizard,
which handles many complex configuration tasks. We strongly recommend that you
review and refer to the document WebLogic Server document, “Creating
WebLogic Domains Using the Configuration Wizard,” before and during this
procedure. This document contains more detailed information than is presented here on
each of the wizard options.

BEA WebLogic Portal Production Operations Guide

../../../common/docs92/confgwiz/intro.html
../../../common/docs92/confgwiz/intro.html
../../../common/docs92/confgwiz/intro.html
../../../common/docs92/confgwiz/intro.html
../../../wls/docs92/domain_config/understand_domains.html
../../../common/docs92/tempbuild/index.html
../../../common/docs92/tempbuild/index.html

Creating Your Clustered Domain

Initial Configuration
This section explains how to get started configuring a WebL ogic Portal domain using the
WebLogic Configuration Wizard.

1. Start the Configuration Wizard. In Windows, choose Start > Programs > BEA Products >
Tools > Configuration Wizard. You can also start the wizard by executing the file
WEBLOGIC_HOME/common/bin/config.cmd (or config.sh). The Welcome dialog appears,
as shown in Figure 3-3.

Tip: You do not need to be running WebLogic Server to start the Configuration Wizard.

Figure 3-3 WebLogic Configuration Wizard Welcome Window

E) BEA Weblogic Configuration Wizard

Welcome

- ¥
Choose between creating and extending a domain, Based on your selection, a‘" llea'
the Configuration Wizard guides you through the steps to generate a new or extend an existing domain,

® Create a new WeblLogic domain

Create a Weblogic domain in your projects directory.

2 Extend an existing WeblLogic domain

Extend an existing WeblLogic domain.

Use this option to add applications and services, or to override existing database access (JDBC) and
messaging (JMS) settings. You can also incorporate additional functionality in your domain, for exarmple, by

including Aqualogic Service Bus.

(o] []

2. In the Welcome dialog, select Create a new WebLogic domain, and click Next.

3. In the Select Domain Source dialog, select one of the following and click Next.

BEA WebLogic Portal Production Operations Guide 3-9

Configuring a Portal Cluster

3-10

o If you have not defined a custom domain template, select Generate a domain configured

automatically to support the following BEA products, and select the WebL ogic Portal
checkbox.

If you previously defined a custom domain template, select Base this domain on an
existing template and use the Browse button to select the template file on your system.

In the Configure Administration Username and Password dialog, complete the User name
and User password fields and, optionally, a description, such as the name of the
administrator. This user is an administrator who can start and stop development mode servers.
Click Next.

In the Configure Server Start Mode and JDK dialog, make the following selections and click
Next:

Production Mode — Production mode is the recommended mode for running a production,
or live, WebL ogic Portal application. When running in production mode WebL ogic Server
takes advantage of optimizations that enhance performance.

JRockit SDK - The JRockit SDK is recommended for production environments. This JDK
affords better runtime performance and management.

Customizing the Domain

In the next set of steps, the Wizard guides you through the process of customizing the domain by
changing default settings.

Tip: For a more detailed description of each configuration setting, refer to the WebLogic

Server document “Customizing the Environment.”

In the Customize Environment and Services Settings dialog, select Yes and click Next, as
shown in Figure 3-4.

BEA WebLogic Portal Production Operations Guide

../../../common/docs92/confgwiz/custom.html

Creating Your Clustered Domain

Figure 3-4 Customize Environment and Services Settings Window

E) BEA WebLogic Configuration Wizard

Customize Environment and Services Settings

I desired, you can customize your domain by changing some of the configuration
settings already defined in your domain source,

Do you want to customize any of the following options?
The configuration of the Administration Server, including listen address and listen ports
The number of Managed Servers and attributes, including listen ports
The number of clusters and cluster attributes
The number of machines and machine attributes
The assignment of servers to clusters and machines
IDBEC data sources (if defined)
145 file store directories (if defined)

To keep the settings defined in the domain source and proceed directly to
creating your domain, leave Mo selected.

O No ® Yes

2. Follow the remaining Wizard steps to complete the domain customization. For detailed
information, see the WebLogic Server document “Customizing the Environment.”

Configuring Database and JMS Options

After you have customized the environment, the Configuration Wizard guides you through the

process of configuring database and JMS options.

For detailed information on each of the options in this section, see the WebLogic Server

document “Customizing Existing JDBC and JMS Settings.” See also “Configuring JDBC Data

Sources” in Configuring and Managing WebLogic JDBC.”

Note: For nonXA data sources, be sure to select a non-XA driver. For database setup
requirements related to using the Asynchronous proliferation setting, refer to the

Database Guide.

BEA WebLogic Portal Production Operations Guide

31

../../../common/docs92/confgwiz/service.html
../../../common/docs92/confgwiz/custom.html
../../../wls/docs92/jdbc_admin/jdbc_datasources.html
../../../wls/docs92/jdbc_admin/jdbc_datasources.html

Configuring a Portal Cluster

3-12

Completing the Configuration

After the database and JMS options are configured, the Configuration Wizard guides you through
the final steps in your domain configuration.

1. The Review WebLogic Domain window allows you to review the detailed configuration
settings of your domain before the Configuration Wizard creates it. Figure 3-5 shows a
sample window. Click Next when you have completed your review.

Tip: Ifyou need to change anything, click the Previous button to return to a previous window.

Figure 3-5 Review WebLogic Domain Window Sample

Review WeblLogic Domain Lot
- ¥
Please review the summary and make any corrections by returning ko a: Ilea'
(.
the associabed section in the Configuration Wizard, %
Diomain Summary: Click on an item in the Domain Summary pane on the left {such as an EJB) to inspect: its
. attributes in the Details pane below, If everything is satisfactory, click Mext; if you need
Summary Yiew: n . N
| Deployment | - to make changes click Previous to return to a prior panel,
™| Domain -
Details
= £ Cluster ;
5-£3 primary_chister Attribute \l'a|L.IE . .
£ servi Marme Basic WebLogic Server Domain
= ervice Description Create a basic WeblLogic Server domain without installing sample application
o ms Author BEA Systems, Inc.
[JoBC Location D:\BEA9D0Yweblogic90commontemplatesidomainsiwls, jar
= [Server

1 AdminServer
[managedserver_1
[managedserver_2

[l | [

2. The Create WebLogic Domain window is the final window. Enter a name for the domain and
a location for it. Click Create. A progress window appears indicating the progress of the
domain creation.

BEA WebLogic Portal Production Operations Guide

Configuring the Administration Server

3. Inthe progress window, click Done after the domain has been created.

Configuring the Administration Server

The Administration Server requires a WebL ogic Portal installation; however, do not deploy your
WebLogic Portal applications to the Administration Server.

Note: The Administration Server must always be running when WebLogic Portal is running in
a clustered environment. This ensures that the cluster’s policy data stays in sync with the
references to that data that are stored by WebLogic Portal in the database.

For detailed information on configuring startup scripts for the Administration Server, see the
WebLogic Server document “Managing Server Startup and Shutdown.”

Setting up JMS Servers

For detailed information and procedures to configure and manage basic JMS system resources,
such as JMS servers and JMS system modules, see the WebL ogic Server document “Configuring
and Managing WebLogic JMS.”

Creating Managed Server Directories

This section on creating Managed Server directories includes the following topics:

e Introduction

e Creating the Managed Server Domains

For more information on Managed Servers, see the WebLogic Server document “Understanding
WebLogic Server Domains.”

Introduction

Now that you have configured your domain, including defining your Managed Servers, you need
to create a server root directory for each Managed Server. There are many options for this,
depending on whether or not the Managed Server will reside on the same machine as the
Administration Server and whether or not you will use the Node Manager.

e Most of the files in the domain-level directory are not necessary for Managed Servers, so a
domain (files directly in the domain directory) is not required on each Managed Server,
especially if you are using the Node Manager to start and stop Managed Servers. For
example, config.xml in a Managed Server domain is not used. Instead, the config.xml

BEA WebLogic Portal Production Operations Guide 3-13

../../../wls/docs92/server_start/overview.html
../../../wls/docs92/domain_config/understand_domains.html
../../../wls/docs92/domain_config/understand_domains.html
../../../wls/docs92/jms_admin/basic_config.html
../../../wls/docs92/jms_admin/basic_config.html

Configuring a Portal Cluster

file in the Administration Server is used. The only requirement for Managed Servers is to
have the wsrpKeystore. jks file one directory above the server directory (in the
equivalent of a domain-level directory). This file is required if you want to use WSRP with
SAML security between WebLogic Portal 8.1x and 9.2 domains.

o |f the Managed Server will run on a different machine than the Administration Server and
you will not use Node Manager, the easiest option is to use the Configuration Wizard to
create a full filesystem domain for the Managed Server, as described in the following
procedure.

Note: WebLogic Portal must be installed on all Managed Servers.

Creating the Managed Server Domains

This section lists the basic procedure for creating WebLogic Portal domains on the Managed
Servers. For more information about Managed Servers, see the WebLogic Server document
“Understanding WebL ogic Server Domains.”

1. Start the Configuration Wizard. In Windows, choose Start > Programs > BEA Products >
Tools > Configuration Wizard. You can also start the wizard by executing the file
WEBLOGIC_HOME/common/bin/config.cmd (or config.sh). The Welcome dialog appears,
as shown in Figure 3-3.

Tip: You do not need to be running WebLogic Server to start the Configuration Wizard.

3-14 BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/domain_config/understand_domains.html

Creating Managed Server Directories

Figure 3-6 WebLogic Configuration Wizard Welcome Window

E) BEA Weblogic Configuration Wizard

Welcome Ty

- ¥
Choose between creating and extending a domain, Based on your selection, a‘" llea'
the Configuration Wizard guides you through the steps to generate a new or extend an existing domain,

® Create a new WeblLogic domain

Create a Weblogic domain in your projects directory.

2 Extend an existing WeblLogic domain

Extend an existing WeblLogic domain.

Use this option to add applications and services, or to override existing database access (JDBC) and
messaging (JMS) settings. You can also incorporate additional functionality in your domain, for exarmple, by
including Aqualogic Service Bus.

(o] []

2. In the Welcome dialog, select Create a new WebLogic domain, and click Next.

3. Inthe Select Domain Source dialog, select one of the following and click Next.

o |If you have not defined a custom domain template, select Generate a domain configured
automatically to support the following BEA products, and select the WebL ogic Portal

checkbox.

o |f you previously defined a custom domain template, select Base this domain on an
existing template and use the Browse button to select the template file on your system.

4. In the Configure Administration Username and Password dialog, complete the User name

and User password fields and, optionally, a description, such as the name of the

administrator. This user is an administrator who can start and stop development mode servers.

Click Next.

BEA WebLogic Portal Production Operations Guide

3-15

Configuring a Portal Cluster

5. Inthe Configure Server Start Mode and JDK dialog, make the following selections and click
Next:

e Production Mode — Production mode is the recommended mode for running a production,
or live, WebL ogic Portal application. When running in production mode WebL ogic Server
takes advantage of optimizations that enhance performance.

e JRockit SDK — The JRockit SDK is recommended for production environments. This JDK
affords better runtime performance and management.

Note: It is important you choose the same JDK across all instances in the cluster.

6. Inthe Customize Environment and Services Settings dialog, select No and click Next, as
shown in Figure 3-4.

Figure 3-7 Customize Environment and Services Settings Window

EBEA Weblogic Configuration Wizard

Customize Environment and Services Settings o
I desired, you can customize your domain by changing some of the configuration ;"] / - \
settings already defined in your domain source, Lod ea

Do you want to customize any of the following options?

The configuration of the Administration Server, including listen address and listen ports
The number of Managed Servers and attributes, including listen ports

The number of clusters and cluster attributes

The number of machines and machine attributes

The assignment of servers to clusters and machines

IDBEC data sources (if defined)

145 file store directories (if defined)

To keep the settings defined in the domain source and proceed directly to
creating your domain, leave Mo selected.

® No O Yes

7. Inthe Create WebLogic Domain dialog, enter a name for the domain and a directory for the
domain on the Managed Server, and click Create.

3-16 BEA WebLogic Portal Production Operations Guide

Zero-Downtime Architectures

8. Follow the remaining Wizard steps as detailed in the WebLogic Server document
“Customizing the Environment.”

Tip: For detailed information on configuring startup scripts for Managed Servers, see the
WebLogic Server document “Managing Server Startup and Shutdown.”

Once you have created a domain for a Managed Server, you can reuse the same domain for your
other Managed Server on the same machine by specifying different servername parameters to
your startManagedWebLogi c script, or create new managed domains using the domain
Configuration Wizard.

Note: If you decide not to use a full domain for your Managed Servers (that is, not include all
files in the domain-level directory), be sure you keep or put a copy of
wsrpKeystore. jks in the directory directly above the server directory (in the
equivalent of the domain-level directory). This file is required if you want to use WSRP
with SAML security between WebLogic Portal 8.1x and 9.2 domains.

Zero-Downtime Architectures

This section includes the following sections:
e Overview
e Single Database Instance

e Portal Cache

Note: WebLogic Portal does not currently support the WebLogic Server feature called
production redeployment, also called side-by-side versioning. For information on this
WebLogic Server feature, see “Overview of Redeployment Strategies.”

Overview

One limitation of redeploying a portal application to a WebLogic Server cluster is that during
redeployment, users cannot access the site. For Enterprise environments where it is not possible
to schedule down time to update a portal application with new portlets and other components, a
multi-cluster configuration lets you keep your portal application up and running during
redeployment.

The basis for a multi-clustered environment is the notion that you have a secondary cluster to
which user requests are routed while you update the portal application in your primary cluster.

BEA WebLogic Portal Production Operations Guide 3-17

../../../common/docs92/confgwiz/custom.html
../../../wls/docs92/server_start/overview.html
../../../wls/docs92/deployment/redeploy.html

Configuring a Portal Cluster

3-18

For normal operations, all traffic is sent to the primary cluster, as shown in Figure 3-8. Traffic is
not sent to the secondary cluster under normal conditions because the two clusters cannot use the
same session cache. If traffic was being sent to both clusters and one cluster failed, a user in the
middle of a session on the failed cluster would be routed to the other cluster, and the user’s session
cache would be lost.

Figure 3-8 During Normal Operations, Traffic Is Sent to the Primary Cluster

Administration Server 1

WebLogic Portal

Weblogic Server

Lead BalancernProxy

Primary Cluster

Y Traffic

-
Managed Server 1

Secondary Cluster

-~

Managed Server 1

‘WeblLogic Portal

Paortal Application

WebLogic Server

‘WeblLogic Portal

Portal Application

ion Server 2

Managed Server 2

WebLogic Server

‘WeblLogic Portal

Portal Application

Managed Server 2

WebLogic Portal

Weblogic Server

WeblLogic Server

‘WeblLogic Portal

WebLogic Server

Enterprise Quality
Database

When the primary cluster is being updated, all traffic is routed to the secondary cluster, then the
primary cluster is updated with a new Portal EAR, as shown in Figure 3-9. This EAR has a new
portlet, which is loaded into the database. Routing requests to the secondary cluster is a gradual
process. Existing requests to the primary cluster must first end over a period of time until no more
requests exist. At that point, you can update the primary cluster with the new portal application.

BEA WebLogic Portal Production Operations Guide

Zero-Downtime Architectures

Figure 3-9 Traffic Is Routed to the Secondary Cluster; The Primary Cluster Is Updated

portalApp.ear
Mew Portlet

Administration Server 1

‘WeblLogic Portal

Weblogic Server

Load Balancen/Proxy

Primary Cluster

-
Managed Server 1

WeblLogic Portal

Portal Application

WebLogic Server

Managed Server 2

portal&pp.ear
New Portlet

WebLogic Portal

Portal Application

Weblogic Server

e

Entarprise Quality

Traffic

o

Managed Server 1

WeblLogic Portal

Portal Application

WeblLagic Server

Secondary Cluster

Administration Server 2

Managed Server 2

WebLogic Portal

Weblogic Server

‘WeblLogic Portal

Portal Application

Weblogic Server

Database

After the primary cluster is updated, all traffic is routed back to the primary cluster, and the
secondary cluster is updated with the new EAR, as shown in Figure 3-10. Because the database
was updated when the primary cluster was updated, the database is not updated when the
secondary cluster is updated. After updating the secondary cluster, you will have to synchronize
LDAP servers. For details on LDAP synchronization, see WebLogic Server documentation
Exporting and Importing Information in the Embedded LDAP Server.

BEA WebLogic Portal Production Operations Guide 3-19

http://e-docs.bea.com/wls/docs92/secmanage/ldap.html#wp1102195

Configuring a Portal Cluster

3-20

Figure 3-10 Traffic Is Routed Back to the Primary Cluster; The Secondary Cluster Is Updated

Load Balancer/Proxy

Primary Cluster

Traffic

-
Managed Server 1

Secondary Cluster

-

Managed Server 1

~

portalApp ear
Mew Portlet

WebLogic Portal WeblLogic Portal
Portal Application Portal Application
Administration Server 1 Administration Server 2

WeblLogic Portal

Weblogic Server

WebLogic Server

Managed Server 2

Weblogic Server

WeblLogic Server

Managed Server 2

‘WebLogic Portal

Weblogic Server

Weblogic Server

WebLogic Portal WebLogic Portal
portalApp.ear
o

Enterprise Cuality
Database

Even though the secondary cluster does not receive traffic under normal conditions, you must still
update it with the current portal application. When you next update the portal application, the
secondary cluster temporarily receives requests, and the current application must be available.

In summary, to upgrade a multi-clustered portal environment, you switch traffic away from your
primary cluster to a secondary one that is pointed at the same portal database instance. You can
then update the primary cluster and switch users back from the secondary. This switch can happen
instantaneously, so the site experiences no down time. However, in this situation, any existing
user sessions will be lost during the switches.

A more advanced scenario is a gradual switchover, where you switch new sessions to the
secondary cluster, and after the primary cluster has no existing user sessions you upgrade it.
Gradual switchovers can be managed using a variety of specialized hardware and software load
balancers. For both scenarios, there are several general concepts that should be understood before

BEA WebLogic Portal Production Operations Guide

Zero-Downtime Architectures

deploying applications, including the portal cache and the impact of using a single database
instance.

Single Database Instance

When you configure multiple clusters for your portal application, they will share the same
database instance. This database instance stores configuration data for the portal. This can
become an issue because when you upgrade the primary cluster it is common to make changes to
portal configuration information in the database. These changes are then picked up by the
secondary cluster where users are working.

For example, redeploying a portal application with a new portlet to the primary cluster will add
that portlet configuration information to the database. This new portlet will in turn be picked up
on the secondary cluster. However, the new content (JSP pages or Page Flows) that is referenced
by the portlet is not deployed on the secondary cluster.

Portlets are invoked only when they are part of a desktop, so having them available to the
secondary cluster has no immediate effect on the portal that users see. However, adding a new
portlet to a desktop with the WebLogic Portal Administration Console will immediately affect
the desktop that users see on the secondary cluster. In this case, that portlet would show up, but
the contents of the portlet will not be found.

To handle this situation, you have several options:

e You can delay adding the portlet to any desktop instances until all users are back on the
primary cluster.

e You can entitle the portlet in the library so that it will not be viewable by any users on the
secondary cluster. Then add the portlet to the desktop, and once all users have been moved
back to the primary cluster, remove or modify that entitlement.

Tip: Itis possible to update an existing portlet’s content URI to a new location that is not yet
deployed. For this reason, exercise caution when updating the content URI of a portlet.
The best practice is to update the content URIs as part of a multi-phase update.

When running two portal clusters simultaneously against the same database, you must also
consider the portal cache, as described in the next section.

BEA WebLogic Portal Production Operations Guide 3-21

Configuring a Portal Cluster

3-22

Portal Cache

WebLogic Portal provides facilities for a sophisticated cluster-aware cache. This cache is used
by a number of different portal frameworks to cache everything from markup definitions to
portlet preferences. Additionally, developers can define their own caches using the portal cache
framework.

For detailed information on setting the portal cache, see the WebLogic Portal Development
Guide.

For any cache entry, the cache can be enabled or disabled, a time to live can be set, the cache
maximum size can be set, the entire cache can be flushed, or you can invalidate a specific key.

When a portal framework asset that is cached is updated, it will typically write something to the
database and automatically invalidate the cache across all machines in the cluster. This process
keeps the cache in sync for users on any Managed Server.

When operating a multi-clustered environment for application redeployment, special care needs
to be taken with regard to the cache. The cache invalidation mechanism does not span both
clusters, so it is possible to make changes on one cluster that is written to the database but not
picked up immediately on the other cluster. Because this situation could lead to system instability,
it is recommended that during this user migration window the caches be disabled on both clusters.
This is important when you have a gradual switchover between clusters versus a hard switch that
drops existing user sessions.

BEA WebLogic Portal Production Operations Guide

../portals/index.html
../portals/index.html

CHAPTERa

Deploying Portal Applications

The term application deployment refers to the process of making an application or module
available for processing client requests in a WebLogic Server domain. This chapter discusses
recommended procedures and best practices for deploying WebLogic Portal applications and
shared libraries to the server.

Note: WebLogic Portal does not currently support the WebLogic Server feature called
production redeployment, also called side-by-side versioning. For information on this
WebLogic Server feature, see “Overview of Redeployment Strategies.”

This chapter includes the following topics:
e Preparing to Deploy

e Overview of Deployment Descriptors and Config Files

Using Deployment Plans

Using Application-Scoped JDBC

Building a Portal Application

Deploying the EAR

Deploying J2EE Shared Libraries

Creating Content Repositories

Using Multiple Enterprise Applications in a Single Domain

e Application Tuning Tips

BEA WebLogic Portal Production Operations Guide 4-1

../../../wls/docs92/deployment/redeploy.html

Deploying Portal Applications

e Deploying JSR-168 Portlets in a WAR File

Preparing to Deploy

Tip: Before continuing, we recommend that you review the following WebLogic Server
document, “Understanding WebLogic Server Deployment.”

Before you deploy a WebL ogic Portal application, you need to configure the destination domain.
For detailed information on domain configuration, see “Creating Your Clustered Domain” on
page 3-7.

Overview of Deployment Descriptors and Config Files

42

In WebLogic Portal 8.1 and prior versions, an application configuration file named
META-INF/application-config.xml was used to configure WebLogic Portal components
such as cache, campaigns, behavior tracking, content management, and others.

As of WebLogic Portal 9.2, this configuration file has been removed and its contents moved to a
collection of new, schema-compliant, descriptors. These new descriptors are each focused on a
single service or group of related services. To view the complete set of descriptor files used by
an application in WebLogic Workshop, select the Merged Projects view.

These files are processed using the same infrastructure that WebL ogic Server uses to process all
the J2EE descriptors (like application.xml or web.xml). These descriptors support merging
from J2EE Shared Libraries and also support deployment plans. (For more information on
merging, see “Descriptor Merging” on page 4-3.) The WebLogic Portal descriptors are installed
with default settings that you can override by copying them into your application and editing
them. A significant benefit of this configuration is that the contents of your project’s EAR file is
focused on your project, and not on the WebLogic Portal product code.

This section includes these topics:
e Descriptor Merging
e Viewing Merged Descriptors

e Portal Web Application Deployment Descriptors

Enterprise Application Deployment Descriptors

Configuration Files

BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/deployment/understanding.html

Overview of Deployment Descriptors and Config Files

Descriptor Merging

When the server processes the deployment descriptors, it merges them. All descriptors from the
application and from the shared libraries that the application references are merged. For each
separate deployment descriptor, a merged “virtual” descriptor is created, which can be used by
the server to deploy the application. The rules that govern descriptor merging are explained in
“Shared Library Rules of Precedence” on page 2-14. Remember that the referencing application
and its deployment plan always override settings imported from a referenced library.

Viewing Merged Descriptors

If you want to see merge results without deploying an application, you can use the WebLogic
Server utility called weblogic.appmerge. This utility takes an application that references shared
libraries and creates a J2EE application including the merged contents and merged descriptors.
This utility is useful for debugging purposes. For details, see the WebLogic Server document,
“Using weblogic.appmerge to Merge Libraries.”

Workshop for WebLogic provides information about shared libraries (also called library
modules). You can use Workshop for WebL ogic to copy files from shared libraries to your
application. When you do this, you can then modify the copied file. From then on, the local copy
takes precedence over the library module copy. Using the Package Explorer view, you can view
and browse the contents of shared libraries.

Another utility, called ddbrowser, is included with the WebLogic Portal installation. This utility
inspects your application and shows you all the “mergeable” descriptors. For each descriptor in
the application, you can see the contributions from each library as well as the resulting merged

descriptor.

To use ddbrowser, set the WL_HOME environment variable to point to the weblogic92 directory
of your installation. Then run the following command:

java -jar $WL_HOME/common/pl3n/lib/ddbrowser.jar.

Portal Web Application Deployment Descriptors

A Portal Web Application includes several deployment descriptors. By default, these descriptors
are located in the WwebContent/WEB- INF directory of the web project. The deployment
descriptors are listed in Table 4-1.

BEA WebLogic Portal Production Operations Guide 4-3

../../../wls/docs92/programming/libraries.html#appmerge

Deploying Portal Applications

Tip: Foracomplete listing and detailed description of deployment descriptors associated with
WebLogic Server based applications, see the WebLogic Server document “Overview of
WebLogic Server Application Development.”

Tahle 4-1 WebLogic Portal Descriptor Files: Web Application Scoped

Descriptor Purpose

web._xml The web . xml file is a J2EE standard
deployment descriptor. Among other
settings, it has a set of elements for
configuring security for the web application.
For more details about web.xml see the
WebLogic Server document “web.xml
Deployment Descriptor Elements.”

weblogic.xml The WebLogic descriptor is a standard
WebLogic Server deployment descriptor for
web applications that has a number of
important descriptor entries. See the
WebLogic Server document, “weblogic.xml
Deployment Descriptor Elements” for

details.
wlp-template-config.xml Content display templates
wsrp-consumer-handler-config.xml SOAP Handlers and interceptors for WSRP
Consumer
wsrp-consumer-security-config.xml WSRP Consumer security configuration
wsrp-user-property-map.xml WSRP Producer/Consumer property
mappings

wsrp-producer-portlet-registry-config.xml WSRP Producer UDDI registries

Enterprise Application Deployment Descriptors

The J2EE specifications define standard, portable deployment descriptors for J2EE modules and
applications. BEA defines additional WebLogic-specific deployment descriptors for deploying a
module or application in the WebLogic Server environment. A WebLogic Portal enterprise

4-4 BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/webapp/web_xml.html
../../../wls/docs92/webapp/web_xml.html
../../../wls/docs92/webapp/weblogic_xml.html
../../../wls/docs92/webapp/weblogic_xml.html
../../../wls/docs92/programming/overview.html
../../../wls/docs92/programming/overview.html

Overview of Deployment Descriptors and Config Files

application, also called an EAR Project, includes the deployment descriptors listed in Table 4-2.
By default, these files are located in the EarContent/META-INF directory of the EAR project.

Tip: Foracomplete listing and detailed description of deployment descriptors associated with
WebLogic Server based applications, see the WebLogic Server document “Overview of
WebLogic Server Application Development.”

Table 4-2 WebLogic Portal Descriptor Files: Enterprise Application Scoped

Descriptor Purpose

application.xml This J2EE descriptor specifies the web
applications that are associated with an EAR
project.

weblogic-application.xml This WebLogic descriptor specifies the J2EE

Shared Libraries used by the enterprise
application. It also specifies web applications,
such as the Propagation Servlet, that are
deployed to the EAR. See also the WebLogic
Server document “Creating Shared J2EE
Libraries and Optional Packages.”

p13n-cache-config.xml This WebLogic descriptor specifies the cache
settings for all caches used by WebLogic
Portal. For more information on cache
settings, see the WebLogic Portal
Development Guide.

p13n-config.xml P13N features (events, behavior tracking, etc.)

pl3n-security-config.xml Security management, including group
hierarchy tree caches and role authorization
for management.

p13n-profile-config.xml Unified User Profile adapters (formerly in
pl3n-ejb.jar#ejb-jar.xml)

netuix-application-config.xml Portal Proliferation (sync)
communities-config.xml WebLogic Portal Communities
content-config.xml Content repositories

BEA WebLogic Portal Production Operations Guide 4-5

../../../wls/docs92/programming/libraries.html
../../../wls/docs92/programming/libraries.html
../portals/index.html
../portals/index.html
../../../wls/docs92/programming/overview.html
../../../wls/docs92/programming/overview.html

Deploying Portal Applications

Tahle 4-2 WebLogic Portal Descriptor Files: Enterprise Application Scoped

Descriptor Purpose

wps-config.xml Ads and Campaigns

wsrp-consumer-portlet-registry-config.xml Portlet UDDI registries for WSRP

Configuration Files

Table 4-3 lists Web application configuration files. These files are not descriptor files (they
cannot be used in deployment plans and they are not merged).

Tahle 4-3 WebLogic Portal Configuration Files: Web Application Scoped

Descriptor Purpose

wsrp-producer-registry.xml This file allows WSRP consumer
applications to configure registered producer
applications. For example, you can enable
local proxy support by setting
<enable-local-proxy> to true in
WEB- INF/wsrp-producer-registry.
xml in the consumer web application. For
more information on WSRP applications, see
the Federated Portals Guide.

beehive-netui-config.xml This descriptor specifies netui-specific tags
and handler classes. For detailed information
on the elements of this descriptor, refer to the
Apache Beehive Project reference
documentation.

Using Deployment Plans

Deployment plans let you easily tune an application’s deployment descriptors on a
deployment-by-deployment basis without actually modifying the descriptors themselves in the
application EAR file. For instance, you might use a deployment plan to adjust descriptors for a
staging environment and another plan to make adjustments for your production environment.
Typically, developers set initial baseline descriptor values.

4-6 BEA WebLogic Portal Production Operations Guide

../federation/index.html
http://beehive.apache.org/

Using Application-Scoped JDBC

Tip: See also “Application Tuning Tips” on page 4-15.

A deployment descriptor is an XML document used to define the J2EE behavior or WebLogic
Server configuration of an application or module at deployment time. A deployment plan is an
XML document that resides outside of an application's archive file, and can apply changes to
deployment properties stored in the application's existing WebLogic Server deployment
descriptors.

For detailed information on deployment plans, see the WebL ogic Server document “Configuring
Applications for Production Deployment.” This document describes deployment plans in detail,
discusses the XML schema for deployment plans, and explains how to create, edit, and use them.

Note: The WebLogic Portal Administration Console uses deployment plans to save runtime
changes to deployment descriptor values.

Using Application-Scoped JDBC

With application-scoped JDBC, it is possible to use more than one database in a WebLogic Portal
domain, allowing each application deployed in the domain to access its own database. WebLogic
Server enables this by providing the ability for you to scope JDBC pools to the application level.

Note: By default, JDBC pools are scoped to the domain level. If you want to scope JDBC pools
to the application level, some configuration is required.

When you package your enterprise application, you can include JDBC resources in the
application by packaging JDBC modules in the EAR and adding references to the JDBC modules
in all applicable descriptor files. When you deploy the application, the JDBC resources are
deployed, too. Depending on how you configure the JDBC modules, the JDBC data sources
deployed with the application will either be restricted for use only by the containing application
(application-scoped modules) or will be available to all applications and clients (globally-scoped
modules).

For detailed information on configuring application-scoped JDBC, see the WebLogic Server
document “Configuring JDBC Application Modules for Deployment.”

Building a Portal Application

This section explains how to build a portal application and create an EAR file using Workshop
for WebLogic or from the command line. This section discusses creating both EAR files and
exploded EARs.

BEA WebLogic Portal Production Operations Guide 4-1

../../../wls/docs92/jdbc_admin/packagedjdbc.html
http://edocs.bea.com/wls/docs92/deployment/config.html
http://edocs.bea.com/wls/docs92/deployment/config.html

Deploying Portal Applications

Building in Workshop for WebLogic

To deploy a portal application to a production environment, you must first build the application
in Workshop for WebLogic to compile necessary classes in the portal application and create a
deployable EAR file. The EAR can either be compressed (an EAR file) or uncompressed (an
exploded EAR directory).

For detailed information on building an application in Workshop for WebL ogic, see the
Workshop for WebLogic document “Understanding the Build Process.”

To create an exploded EAR directory, first build an EAR file, and then use the Java jar xf
command to uncompress the file.

Tip: After you create an exploded EAR, you might want to rename the application directory
so that it has a . ear extension. For example, if the application directory is called
myPortalApp, rename the directory to myPortalApp.ear. Adding the .ear makes the
configuration common for compressed and exploded deployments, but it is not required.

Building from the Command Line

You can export an Ant build file for your project using Workshop for WebLogic. For more
information, see the WebLogic Workshop document “Creating Custom Ant Build Files for an
Application.”

Deploying the EAR

4-8

This section provides instructions for the deployment of your portal application.

Note: Although it was required before WebLogic Portal version 9.2, deploying a WebLogic
Portal application to the Administration Server is no longer necessary and is not
specifically discussed here.

Tip: WebLogic Server documentation explains the deployment process and multiple
deployment scenarios in detail. We recommend you review the WebLogic Server
document “Deploying Applications to WebLogic Server” before continuing. For
information on automating deployment tasks with WLST see the WebLogic Server
document “WebLogic Scripting Tool.”

This section includes the following topics:

BEA WebLogic Portal Production Operations Guide

../../../workshop/docs92/ws_platform/ideuserguide/conBuildProcess.html
../../../wls/docs92/config_scripting/index.html
../../../workshop/docs92/ws_platform/ideuserguide/conUseCustomAntBuild.html
../../../workshop/docs92/ws_platform/ideuserguide/conUseCustomAntBuild.html
../../../wls/docs92/deployment/index.html

Deploying the EAR

e Deploying to a Development Environment
e Deploying to a Staging or Production Environment

e Redeploying to a Staging or Production Environment

Deploying to a Development Environment

In atypical development environment, developers use Workshop for WebL ogic to develop portal
components. They typically deploy and run against a local server domain that is configured in
Development mode. No Managed Servers are used. The best practice is to use Workshop for
WebLogic to deploy (publish) and test your application.

Deploying to a Staging or Production Environment

In adomain with an Administration Server and one Managed Server or multiple Managed Servers
in a cluster, it is strongly recommended that you deploy the portal EAR file to the Managed
Server or cluster. Do not deploy to the Administration Server; this reserves the Administration
Server for administration functions, allows the Administration Server to operate with a smaller
heap, and allows specific fire-walling of administration functions on this server.

The best practice is to configure your staging and production servers in Production mode rather
than Development mode.

The WebLogic Server feature that allows applications to be deployed directly to a Managed
Server is called Managed Server Independent (MSI) mode. See “Understanding Managed Server
Independent Mode” in the WebLogic Server documentation for information on MSI and several
limitations of MSI. One of the most important limitations is that security provider data cannot be
modified if the Administration Server is down. Another limitation is that any WebLogic Portal
configuration that must write to a deployment plan for persistence will not work if the
Administration Server is down.

Redeploying to a Staging or Production Environment

Redeploying means deploying a new version of an existing/running/deployed application. If you
redeploy a portal application to a staging or production environment, follow the same procedure
as deploying described in the previous section. However, on redeployment, you must propagate
datasync and other WebLogic Portal assets to the target database as a separate operation using the
propagation tools. See “General Propagation Scenarios” on page 5-15 for more information on
redeploying.

BEA WebLogic Portal Production Operations Guide 4-9

Deploying Portal Applications

Deploying J2EE Shared Libraries

4-10

WebLogic Portal product code is included in your application by referencing several J2EE
Shared Libraries. These libraries are part of the WebLogic Portal installation. You can also
develop your own shared libraries containing your application code. J2EE Shared Libraries allow
you to decouple the development life cycles of various portions of your application. These
libraries can be versioned and deployed independently, allowing each library to be developed and
distributed independently (rather than as a single large EAR file).

Tip: For detailed information on J2EE Shared Libraries, see the WebLogic Server document
“Creating Shared J2EE Libraries and Optional Packages.” See also “Using J2EE Shared
Libraries in a Team Environment” on page 2-13 and the WebLogic Portal Development
Guide.

This section discusses several aspects of shared libraries:
e Library Descriptors

e Library Versions

Library Descriptors

Listing 4-1 shows a sample enterprise application, myApp.ear. Note that the descriptor
weblogic-application.xml includes a reference (shown in bold) to a library called
p13n-app-lib. Note, too, that no other information, other than the name p13n-app-1lib, is
given to describe the library.

Listing 4-1 Example Application myApp.ear

META-INF/weblogic-application.xml

<library-ref>
<library-name>p13n-app-lib</library-name>

</library-ref> “

APP-INF/lib/myClasses. jar
myEjb.jar
myWebApp .war

BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/programming/libraries.html
../portals/index.html
../portals/index.html

Deploying J2EE Shared Libraries

The enterprise application locates the library because the <library-ref> element causes the
server at runtime to look for a deployed library with the same name. Since the <library-ref>
element does not specify any version information, the server looks for the latest, or highest,
version number available to it. The name and version number of a shared library is contained in
the library itself, in the META- INF/MANIFEST . MF file. For example:

META-INF/MANIFEST .MF
Extension-Name: pl3n-app-lib
Specification-Version: 9.2.0
Implementation-Version: 9.2.0

For more information, see “Library Versions” on page 4-12. Note that the same pattern applies
to the WEB- INF/weblogic.xml file for portal web applications.

To be located by the server, a shared library must be deployed as a library. This deployment
differs from the deployment of a runnable application. When a library is deployed as a library,
the library file is registered with the server, and is therefore available to referencing applications.

To deploy a library, use the WebL ogic Server Console, the weblogic.Deployer command, the
wldeploy Ant task, or with a WLST script. For information these methods, see the WebLogic
Server documents “The WebLogic Server Administration Console,” “weblogic.Deployer
Command Line Reference,” “wldeploy Ant Task Reference,” and “WLST Command and
Variable Reference.”

For example, you can use the WebL ogic Server Console to deploy a shared library in exactly the
same way you deploy an application, except that a checkbox is available that distinguishes the
shared library from a runnable application.

Listing 4-2 shows an entry in the server domain’s config/config.xml file for the shared library
referenced by the application in Listing 4-1.

Listing 4-2 Configuration File Entry

<library>
<name>pl3n-app-1ib#9.2.0@9.2.0</name>
<target>myServer</target>
<module-type>ear</module-type>
<source-path>/bea/weblogic92/deployable-libraries/pl3n-app-lib.ear
</source-path>
<security-dd-model>DDOnly</security-dd-model>

</library>

BEA WebLogic Portal Production Operations Guide 41

../../../wls/docs92/deployment/wldeployer.html
../../../wls/docs92/deployment/wldeployer.html
../../../wls/docs92/config_scripting/reference.html
../../../wls/docs92/config_scripting/reference.html
../../../wls/docs92/ConsoleHelp/

Deploying Portal Applications

4-12

Library Versions

You can deploy several libraries with the same name and different version numbers. The version
number that an application uses is specified in the application’s configuration file
META-INF/weblogic-application.xml or weblogic.xml for Web applications. If no
version number is specified, as in Listing 4-3, the server selects the highest-versioned available
deployed library named p13n-app-1lib.

Listing 4-3 Library Reference With No Version Specified

<library-ref>
<library-name>p13n-app-lib</library-name>
</library-ref>

If, on the other hand, you know that version 9.2.0 of p13n-app-lib is inadequate, and your
application needs to use version 9.2.1 or higher, you can reference the library as shown in
Listing 4-4.

Listing 4-4 Library Reference With Version Specified

<library-ref>
<library-name>p13n-app-lib</library-name>
<specification-version>9.2.1</specification-version>
</library-ref>

If you want to use a specific version, and no other version, then you can specify the
<exact-match> element, as shown in Listing 4-5.

BEA WebLogic Portal Production Operations Guide

Creating Content Repositories

Listing 4-5 Specifying an Exact Match

<library-ref>
<library-name>p13n-app-lib</library-name>
<specification-version>9.2.0</specification-version>
<exact-match>true</exact-match>

</library-ref>

Creating Content Repositories

If you are using a content repository, you need to create that repository or repositories on the
destination server. To do this, use the WebLogic Portal Administration Console as explained in
the Content Management Guide. This means creating only the root repositories, not the content
items and types. To move items and types between environments, use the WebLogic Portal
propagation tools. For more information on propagation tools, see Chapter 5, “Developing a
Propagation Strategy.”

You can also specify the default content repository for an enterprise application in the
configuration file META- INF/content-config.xml. See “Enterprise Application Deployment
Descriptors” on page 4-4 for more information.

Using Multiple Enterprise Applications in a Single Domain

You can create and run multiple enterprise applications in a single-cluster domain. As shown in
Figure 4-1, a single domain can host multiple enterprise applications (EARSs). Each EAR
deployment can host multiple web applications, and any number of desktops can be created based
on the web applications. The web applications and desktops associated with one enterprise
application (EAR) are not dependent on those in another enterprise application (they are
decoupled).

BEA WebLogic Portal Production Operations Guide 4-13

../cm/index.html

Deploying Portal Applications

Figure 4-1 Multiple Enterprise Applications in a Single Domain

| | |
| Desktop 1..n | | Desktop 1..n |

| |
| |

Web App 1..n Web App 1..n
EAR_1 EAR_n
Domain

The following restrictions apply to this configuration of multiple enterprise applications in a
single domain:

e Resource names — Names cannot conflict. For example, for each deployment, web
application names must be unique. This applies as well to context-root names and their
associated CookieName names. For each enterprise application, the WebLogic Portal
Administration Console shows all of the portal web applications that are contained in that
application.

Note: Each enterprise application must be managed through its respective WebL ogic Portal
Administration Console. Some domain-level resources, such as users and groups, can be
viewed and managed across enterprise applications from a single WebLogic Portal
Administration Console; however, be aware that data in one application may be cached,
and updates to the same data made from another application’s WebLogic Portal
Administration Console may not be immediately visible.

e Content — If you are deploying multiple enterprise applications within the same domain,
and plan to use content management’s library services for each application, you must
configure each BEA Repository datasource (one per BEA Repository) to be XA-enabled.
For more information regarding XA connections, see Creating WebLogic Configurations
Using the Configuration Wizard.

Note: Content for each enterprise application is managed through its respective WebLogic
Portal Administration Console and Virtual Content Repository. Virtual Content

4-14 BEA WebLogic Portal Production Operations Guide

../../../platform/docs92/confgwiz/index.html
../../../platform/docs92/confgwiz/index.html

Application Tuning Tips

Repositories (as well as the WebLogic Portal Administration Console) are unique to each
application cannot be shared.

e Hardware Limitations — Variables such as heap size, memory, and CPU usage can affect
this configuration if the applications are targeted to the same server.

e Personalization — The same local property sets cannot be shared between multiple
enterprise applications. If common properties must be shared among different enterprise
applications, then use Unified User Profile (UUP). Another alternative is to copy and
deploy the same property sets to multiple applications. For detailed information on user
profiles and property sets and personalization, see the Interaction Management Guide.

Application Tuning Tips

The best practice is to use deployment plans to modify descriptor values before deploying an
application. See “Using Deployment Plans” on page 4-6. See also the WebLogic Server
document “WebLogic Server Performance and Tuning.”

BEA WebLogic Portal Production Operations Guide 4-15

../../../wls/docs92/perform/index.html
../interaction/index.html

Deploying Portal Applications

Deploying JSR-168 Portlets in a WAR File

4-16

WebLogic Portal provides a utility for automatically deploying JSR-168 portlets that are
packaged in JSR-168 WAR files. This utility lets you import JSR-168 WAR files containing
JSR-168 portlets, and expose the portlets in WSRP producers.

This section explains how to use the import utility and includes these topics:
e Starting the Import Utility
e Using the Import Utility

e Accessing the Portlets

Starting the Import Utility

To start the utility, do the following:

1. Log into the WebLogic Portal Administration Console. You can do this by entering the
following URL in a browser:

http://servername:port/earProjectNameAdmin

where servername is the IP name of Administration Server, port is the port number, and
earProject is the name of the portal Enterprise application that is deployed on the server.
For example:

http://localhost:7001/myEarProjectAdmin
2. Inabrowser, enter the following URL.:
http://servername:port/earProjectAdmin/jsr168/jsrl68import.jsp

where servername is the IP name of Administration Server, port is the port number, and
earProject is the name of the portal Enterprise application that is deployed on the server.
For example:

http://localhost:7001/myEarProjectAdmin/jsrl68/jsrl68import.jsp

The utility is shown in Figure 4-1.

BEA WebLogic Portal Production Operations Guide

Deploying JSR-168 Portlets in a WAR File

Figure 4-1 JSR-168 WAR Import Utility

%) ISR168 .war Import Utility: Import .war - Mozilla, Firefox

File Edit Wiew Go Bookmarks Tools Help 0
Qil - LL:’ - @ |:| @ ||_| http: fflocalhost: 7001 fmyEarAdmingjsr 168} st 168import. jsp V| @ Go “Q, |
Getting Started T, Latest Headlines | | Struts Online Bankin... | | Installers | | Microsoft Windows ¥... | | 9.2 {src branch) CC ... »

E o &
JSR168 .war Import Utility: Import .war

orsy,
2 7
ot . 1
2. fea

[[Browse..] add JSR168 compliant .war:

MName of new Portal Application

Directory for new Portal Application (relative to server start directory, empty for default)
[suto-deploy to these targets (comma-separated): |AdminServer

Deploy as exploded wars,

Ferfarm Import

Done

Using the Import Utility

This section explains how to use the import utility to import JSR-168 WAR files into an
enterprise application.

1. Use the Browse buttons to select a WAR file containing the JSSR168 compliant portlets that
you want to deploy. The WAR file(s) must be physically located on the same WebL ogic
Server machine on which the utility is running. You can select multiple WAR files.

Tip: You can either locate the WAR file using the Browse button or by entering the path
directly in the Add JSR-168 compliant .war text field. If you enter the path in the
text field, press the Tab key to accept the path.

BEA WebLogic Portal Production Operations Guide 4-11

Deploying Portal Applications

4-18

2. Enter a name for the new portal application. The utility creates this application (an EAR
file). The EAR file is built using the selected templates in the same manner that WebLogic
Workshop builds an application. Each JSR-168 WAR file becomes a web application that is
packaged in the EAR. Use a unique name for the application. (Do not use a hame that
matches any existing applications deployed to the server.)

3. Enter a directory pathname in which to place the EAR file. This path is relative to the server
start directory. By default, the file is placed in the server start directory (the directory from
which the WebL ogic Server startup script startWebLogic.cmd or startWeblLogic.sh
was run.) For a single server environment, the server start directory is the domain directory.
For a managed server, the server start directory is the managed server directory.

4. If you select the Auto-deploy to these targets checkbox, the new portal application is
automatically deployed to the specified targets. By default, the EAR is deployed to the
Administration Server. Typically, this option is only used for simple development or test
deployments. If you want to upload the new application to a more complex environment,
such as a staging or production environment, it is recommended that you do not select this
checkbox. Instead, use the WebL ogic Server Console to deploy the EAR.

5. Select Deploy as exploded wars to deploy the WAR files exploded inside the EAR file.
Only do this if you plan to perform some additional manipulation on individual web
application files.

6. Click Perform Import to create the new application. If Auto-deploy to running server is
selected, the newly created EAR file is deployed automatically. If you did not select the
checkbox, you need to deploy the EAR using the WebL ogic Server Console. You can find
the new EAR file in the directory you specified previously in Step 3.

Accessing the Portlets

After the new EAR file is deployed, you can add the portlets contained in the imported WAR
file(s) to your application. To do this, you need to add the web application(s) as WSRP producers.
After a web application is added as a producer, you can incorporate the application’s portlets as
you would with any WSRP producer using the WebLogic Portal Administration Console. See the
Federated Portals Guide for details.

BEA WebLogic Portal Production Operations Guide

../federation/index.html

Part Il Propagation

Part Il includes the following chapters:

Developing a Propagation Strategy

This chapter explains what you need to consider before you attempt to move or propagate
portal assets. Tools for moving portal assets include the Workshop for WebLogic
propagation tools, the Export/Import Utility, and the Datasync web application.

Propagation Topics

This chapter provides information that you need to know before using the propagation
tools.

Using Workshop for WebL ogic Propagation Tools

This chapter explains how to use the propagation tools provided by Workshop for
WebLogic.

Using the Propagation Ant Tasks

This chapter gives an overview of the propagation Ant tasks and discusses related topics
such as scoping and policies.

Propagation Ant Task Reference

This chapter provides information about each page of the propagation Ant tasks.

Using the Export/Import Utility

BEA WebLogic Portal Production Operations Guide

This chapter explains how to use the Export/Import Utility. The chapter includes
background information on the utility and its purpose. In addition, detailed examples are
provided that illustrate common use cases.

e Using the Datasync Web Application
The Datasync Web Application is deprecated.

BEA WebLogic Portal Production Operations Guide

CHAPTERa

Developing a Propagation Strategy

The steps you take to successfully move a portal configuration from one environment to another
depend on many variables. It is impossible to prescribe a single procedure that applies to all
circumstances. Therefore, before you attempt to move or propagate a portal application, it is
important to plan your strategy, pick the appropriate tools, and develop a set of procedures based
on recommended best practices. This chapter explains what you need to consider before you
attempt to move or propagate portal assets.

The topics included in this chapter are:
e What is Propagation?
e What Tools Does BEA Provide to Assist with Propagation?
e What Kind of Data Can Be Propagated?
e Choosing the Right Propagation Tool
e Propagation Roadmap
e Assessing Your Portal System Configuration
e General Propagation Scenarios
e Production Mode Versus Development Mode

e Propagation and Proliferation

BEA WebLogic Portal Production Operations Guide 5-1

Developing a Propagation Strategy

What is Propagation?

Specifically, propagation refers to moving the database contents of a portal application from one
server environment to another. To accomplish this, BEA provides these tools:

e A Propagation Session feature in Workshop for WebLogic
e Ant tasks that let you develop propagation scripts

e The Export/Import Utility, for moving portal assets from the database of a staging
environment to files that can be imported back into Workshop for WebLogic. This utility
also lets you move and merge portal assets from a Workshop for WebLogic environment to
a staging environment’s database.

Each of these utilities are discussed further in the following section, What Tools Does BEA
Provide to Assist with Propagation?.

Figure 5-1 shows the three typical environments between which portal assets are moved.

Figure 5-1 Moving Portals Between Environments

Team Development [4______»|

: Praduction Environment
Environment N V]

Staging Environment

Administration
Console

Administration
Console

Workshop for
Weblogic

These three environments include:

e Development — In the development environment, a team of developers uses Workshop for
WebLogic to create portals and portal components, such as portlets.

e Staging — In the staging environment, administrators use the Administration Console to
build and configure portal desktops, create entitlements, and set up content repositories.

e Production — The production environment is the “live” website. In a production
environment users access the web application and, optionally, customize it using Visitor
Tools. Administrators can also use the WebLogic Portal Administration Console to modify
the production environment.

5-2 BEA WebLogic Portal Production Operations Guide

What Tools Does BEA Provide to Assist with Propagation?

What Tools Does BEA Provide to Assist with Propagation?

As you develop a propagation strategy, it is important that you know what tools are available to
help you propagate a portal from one environment to another. This section introduces the primary
tools at your disposal and their purposes.

WebLogic Server Administration Console (EAR Deployment)

Use the WebLogic Server Administration Console to deploy an Enterprise Application’s EAR
file to a target server. EAR deployment is almost always the first step in any propagation. The
EAR file must be redeployed any time changes are made using Workshop for WebL ogic. For
example, if developers add or remove pages from a . portal file, define content selectors, create
new portlets and related Java resources (such as JSPs), then the EAR file must be built and
deployed to propagate those changes to a new environment.

For detailed information on EAR deployment, see Chapter 4, “Deploying Portal Applications.”

Workshop for WebLogic Propagation Tools

Workshop for WebLogic provides tools that guide you through the process of propagating the
configuration contents, including portal framework, datasync, and security data, of one portal

domain environment to another. For example, you can create a Propagation Session to move a
portal application from a staging environment to the production environment.

Tip: Before propagating a portal, always deploy the EAR file in the target environment first.

Features of the propagation tools include:

e Exporting portal assets — Export the portal assets stored in the portal application’s
database into an XML file.

e Differencing — View the differences between portal assets in the source application and the
target application. For instance, you can tell at a glance if a particular page in a portal was
added or removed from the target configuration.

e Importing portal assets — Portal assets that have been exported from a source
configuration can be imported into the target. Before importing, you can view the
differences between the assets stored in the two configurations. On import, merge decisions
are made based on well-defined policies.

BEA WebLogic Portal Production Operations Guide 5-3

Developing a Propagation Strategy

5-4

e Setting Policies — Policies are user-definable rules that determine which source assets will
(or will not) be merged into a target configuration. For instance, a policy may state that if
an asset exists on the source, but not on the destination, add it to the destination. Another
policy may state that if an asset exists on the destination, but not on the source, delete it
from the destination. A Propagation Session allows you to customize the policies that
govern these merge operations. For more information on policies, see “Using Policies” on
page 6-22.

e Setting Scope — Scope defines which portal artifacts will be included in a propagation. By
default, scope is set to the entire Enterprise application, including the contents of content
repositories; however, you can modify the scope. For detailed information, see
“Understanding Scope” on page 6-11.

For detailed information on using the WebL ogic Workshop propagation tools, see Chapter 7,
“Using Workshop for WebLogic Propagation Tools.”

Propagation Ant Tasks

Instead of using Workshop for WebL ogic to propagate a portal, you can use Ant tasks to create
customized propagation scripts. In many cases, task based propagation provides an even greater
measure of control over your propagation than is provided by Workshop for WebLogic. In fact,
the Ant tasks underlie the Workshop for WebLogic propagation tools. For detailed information
on the Ant tasks, see Chapter 8, “Using the Propagation Ant Tasks” and Chapter 9, “Propagation
Ant Task Reference.”

Manual Propagation Steps

The propagation tools provided by BEA handle most of the work necessary to move a portal web
application from one environment to another. However, there are some manual steps that you
may need to perform to ensure a successful migration. In some cases, these steps are required by
design. For instance, some security data is intentionally not automatically propagated by the
tools.

For detailed information on manual propagation steps, see “Make Required Manual Changes” on
page 6-6.

Export/Import Utility

The Export/Import Utility allows you to export desktops, books, and pages from a database to a
-portal file. This . portal file can then be opened with Workshop for WebL ogic, modified, and
then merged back into the database using the Export/Import Utility. This utility allows developers

BEA WebLogic Portal Production Operations Guide

What Kind of Data Can Be Propagated?

to move portal assets in a “round trip” between a development environment and a staging
environment, or between development environments.

The utility lets you scope its operations to the following levels:

e Library level — Assets that exist in the Library of the WebLogic Portal Administration
Console

e Administration level — Assets that exist in desktops created in the WebLogic Portal
Administration Console

e Visitor level — Asset instances that have been customized by users through Visitor Tools or
user customizations

In addition, the utility lets you specify a set of rules to determine how the objects are merged. You
can also specify different scoping rules, from the Enterprise Application scope (at the highest
level) down to pages within books. This flexibility helps ensure that the user’s and
administrator’s customizations will not be lost when the assets are merged.

For detailed information on the Export/Import Utility, see Chapter 10, “Using the Export/Import
Utility.”

Datahase Vendor Tools (Not Supported)

BEA does not support the use of database vendor tools as a means of propagating any WebLogic
Portal assets from one database environment to another.

What Kind of Data Can Be Propagated?

Generally speaking, a WebLogic Portal application consists of an EAR file, an LDAP repository,
and a database. The EAR file contains application code, such as JSPs and Java classes, and portal
framework files that define portals, portlets, and datasync data. The embedded LDAP contains
security-related data, such as entitlements, roles, users, and groups. The database contains
representations of portal framework and datasync elements used by the portal runtime.

This section divides portal data into four categories, and lists the types of data that fall into each
category. The categories include:

e Portal Framework Data — Refers to desktops, books, pages, and other portal framework
elements that are created with the WebLogic Portal Administration Console.

e Datasync Data — Refers to definition files, such as user profiles and content selectors that
WebLogic Portal allows you to create. Within Workshop for WebL ogic, these definitions

BEA WebLogic Portal Production Operations Guide 5-5

Developing a Propagation Strategy

are placed within a Datasync Project folder. This data is deployed with the EAR file. If the
destination server is running in production mode, datasync data is placed in the database.

e Security Data — Refers to policy, role, and delegated administration data. This data is
generated by administrators using the WebLogic Portal Administration Console.

e EAR Data — Refers to the final product of Workshop for WebLogic development—a J2EE
EAR file. The EAR must be deployed to a destination server using the deployment feature
of the WebLogic Server Administration Console.

e Content Management Data — WebLogic Portal’s content management system allows you
to store content, track its progress, and incorporate content in your portal applications. It
provides an easy integration between creating content and delivering that content to your
users.

Table 5-1 lists the specific kinds of data that comprise each of these categories.

5-6 BEA WebLogic Portal Production Operations Guide

What Kind of Data Can Be Propagated?

Table 5-1 General Categories of Data to Propagate

Portal Datasync Data Security Data EAR Data Content
Framework Management
Data Data
» Desktops e Catalog data « Policies (visitor = _portal e items
+ Portals + Content selectors anltlemznt and = .portlet .« types
» Books « Discounts elegated = -shell « metadata
administration) e _theme
* Pages * FBvents ¢ Roles (global, visitor e _menu » folders
» Portlets e Placeholders entitlement, and) I ¢
- _layou
+ Portlet » Request properties delegated Y
Preferences Segments administration) R }af
+ Community . gession properties 1N following delegated © ISP
Templates) administration policies: = -class
» User profiles e _book
. » portal resources)
e Campaigns - _page

(Library and Desktop
level)

 content management

Uuser group management

e content selectors
e campaigns

e visitor roles

e placeholders

e segments

e security providers
Note that content

management workflows are

not supported.

Note: EAR data consists of files that are generated by developers using Workshop for
WebLogic. If you make a change to EAR data in Workshop for WebLogic (for instance,
modifying a theme), the only way to move those changes to a staging environment is to
redeploy the EAR file. Note, however, that desktops, books, pages that are created in the
WebLogic Portal Administration Console usually contain references to EAR data. For
instance, an administrator can assign a specific theme to a page using the WebL ogic
Portal Administration Console, and a reference to the actual theme file is maintained in

BEA WebLogic Portal Production Operations Guide 5-7

Developing a Propagation Strategy

the database. When you propagate a desktop to another environment using the
propagation tools, those references are propagated, but the actual file the reference points
to (for example, a . theme file) is not. EAR deployment and the propagation tools are
described in the following sections.

The following sections discuss the tools that WebLogic Portal provides for moving portal data

between environments.

Choosing the Right Propagation Tool

Table 5-2 shows the appropriate propagation tool to use depending on the type of propagation and
the specific kinds of changes to propagate. Items in the Changes to Propagate column are defined
in “What Kind of Data Can Be Propagated?” on page 5-5, and the tools listed are summarized in
“What Tools Does BEA Provide to Assist with Propagation?” on page 5-3.

For example, the first row of the table indicates that if you are making an initial deployment from
a development (Workshop for WebL ogic) environment to a staging environment, you simply
deploy the EAR file. However, on redeployment, you need to also use the propagation tools to
move datasync data to the target (see also “Moving the Datasync Data” on page 5-17).

Table 5-2 Choosing a Propagation Method

Source Environment Destination Environment Changes to Propagate Propagation Method
Development Staging * Portal framework Deploy EAR
+ Production mode * f'lss (I.(portal,
* Initial deployment -book etc.)
« Datasync data
e Other EAR data
(-Jsp, -Java, etc.)
Development Staging e Portal framework Deploy EAR

e Production mode *
* Redeployment

files (.portal,
-book, etc.)

e Other EAR data
(-Jsp, -jJava, etc.)

Development

Staging
* Production mode *
* Redeployment

« Datasync data

Propagation tools

BEA WebLogic Portal Production Operations Guide

Tahle 5-2 Choosing a Propagation Method

Propagation Roadmap

Source Environment

Destination Environment

Changes to Propagate

Propagation Method

Staging
¢ Production mode *

Development

* Portal framework
database data
(desktops, books, and

pages)

Export/Import Utility

Staging
¢ Production mode *

Development

« Datasync data

Propagation tools

Staging
¢ Productionmode*

e WebLogic Portal ~ *
Administration
Console changes

Production

Production mode *
WebLogic Portal
Administration
Console changes

e Portal Framework
data

e Datasync data
e Security data

Propagation tools

Note: The same EAR
file that was deployed
to the staging system
must also be deployed
at least once to the
production system.

* It is a best practice to always run staging and production servers in production mode. See also
“Production Mode Versus Development Mode” on page 5-22.

Propagation Roadmap

As you plan your propagation strategy, it is important to develop a roadmap of your system. This
section describes the interrelationships between a typical system that includes development,

staging, and production environments. The roadmap, Figure 5-2, shows how portals are moved
across these environments and the tools that are used to move them.

This section is intended to help you understand not only the connections between the different
systems on which portals exist, but the tools and methods used to move or propagate portals
between those systems. The numbered parts of the figure are described in detail in the remainder
of this section. Please refer to the figure as you read the following sections.

BEA WebLogic Portal Production Operations Guide 5-9

aping suoijesad(uonanpold [euod 21307990 Y39

01-6

Figure 5-2 Propagation Roadmap

\ FIREWALL
D 1 ",
WLW [N,
\\‘ Community
AN Admin Portal Admin
\\ Consale
Y FTP EAR and USE
Dev 2 WLS DEPLOY
sog';;r‘; > CHECKINEAR [—) ETp EARbind USE L
» WLS DEPLOY .
" / Staging Source . Production .
s = Control N
/ @ EAR | {Inventory
® :
Dev 3 N\ / _
WLw : EXPORT ', @
@ N / CHECKIN EXPORT ® commT
\ |
EXPORTED EXPORTED EINAL
Inventary Inventory Inventory
‘ /)
DOWNLOAD
I
Y
Source Destination
I Inventory Inventory
UPLOAD

Offlinel Tasks |

COMEINE

—

. -
g

FIREWALL

2

=

dewpeoy uoljegedoid

Propagation Roadmap

() Development Environments

Portal development is typically spread out among members of a team using Workshop for
WebLogic on individual client machines. Refer to Chapter 2, “Managing a Team Development
Environment” for detailed information on setting up a multi-developer portal development
environment.

It is important to remember that files are the primary, and often only, product of the IDE-based
environment. Workshop for WebLogic allows developers to create Java components that are used
by portals, such as Java Pageflows, Controls, and JSPs. Workshop for WebLogic also lets
developers create portlets, portals, look and feels, layouts, and so on. All of these components are
stored in files, such as . java, . jsp, -jpf, - jcs, .portal, .page, .book, .portlet, . laf, and
others.

(@) Source Control

Development typically occurs in conjunction with a source control system. As explained in
Chapter 2, “Managing a Team Development Environment,” a common domain is established for
the team, but the web application itself is checked into source control where individual
developers can check it out, create and modify files, and check them back into source control.
Once built, the EAR file can also be checked into source control.

(3)Moving from Development to Staging

When development is complete, an EAR file can be deployed to the staging environment. The
easiest way to do this is to use FTP to move the EAR to the staging server, and then to use the
WebLogic Server Deployment feature to deploy the EAR into the J2EE server environment. See
Chapter 4, “Deploying Portal Applications” for more details.

Note: Itis possible to run the Administration Console from Workshop for WebL ogic.
Whenever the Administration Console is used, the output is stored in a database, not in a
file. Therefore, if you are in development and use the Administration Console to create
Desktops, users, groups, entitlements, or other administrative features, that information
is stored in a database. Assets in the database are not included in the EAR file, and will
not be transferred when you move and deploy the EAR.

Tip: The best practice in portal development is to use the WebLogic Portal Administration
Console only in a staging or production environment. If you use the Administration

BEA WebLogic Portal Production Operations Guide 5-11

Developing a Propagation Strategy

5-12

Console in a development environment, then you must use the propagation tools to move
the database assets to the staging environment.

() Staging Environment

In the staging environment the WebLogic Portal Administration Console is used to assemble the
portal components that were created in development into desktops, to create users and groups,
assign administrative privileges, configure delegated administration rights, modify books and
pages, and so on. It is important to remember that anytime you use the WebL ogic Portal
Administration Console to modify a portal, all portal assets from that point on are stored in the
database: the connection to the original .portal and other files created in Workshop for
WebLogic is lost.

Tip: Itis possible to return portal framework assets stored in the database back to files using
the Export/Import Utility. To move portal assets to a production environment (database
to database), the best practice is to use the WebLogic Workshop propagation tools or Ant
tasks.

For details on the Export/Import Utility, see Chapter 10, “Using the Export/Import Utility.” For
details on the propagation tools, see Chapter 7, “Using Workshop for WebL ogic Propagation
Tools.”

(5) Source Control in the Staging Environment

Itis a best practice to employ source control in the staging environment. Two components to store
in source control are the web application’s EAR file and the application’s portal-specific assets,
or inventory. You can extract the inventory from a web application using the Workshop for
WebLogic based propagation tools or the propagation Ant tasks to export the inventory into a ZIP
file.

For details on the propagation tools, see Chapter 7, “Using Workshop for WebL ogic Propagation
Tools.” For details on the propagation Ant tasks, see Chapter 9, “Propagation Ant Task
Reference.”

BEA WebLogic Portal Production Operations Guide

Assessing Your Portal System Configuration

(s) Perform Offline Tasks

You work with exported inventories offline. That is, you work with them directly on the
filesystem, with no connection to the source or destination server. The offline tasks include
creating a merged inventory, viewing and tuning the merged inventory, and combining the
merged inventory into a final inventory.

Note: Atthis point, you can view the differences between the source and destination inventories
(the merged view) and decide whether or not to go ahead with the propagation.
Differences can include portal assets that have been added, deleted, or updated. For
example, if a page was added to a desktop in staging the propagation tools will report that
a page was added if it does not exist in the production environment. Similarly, if a page
was deleted from the production environment, the propagation tools will report that it
was deleted and give you the option of adding it back or not (if it still exists on the staging
server).

Before you can perform offline tasks, you need to download a source and a destination inventory.
When you finish the offline tasks, you upload the final inventory to the destination system. You
can upload and download inventories using the OnlineUploadTask and OnlineDownloadTask
Ant tasks or use the Import and Export features in Workshop for WebLogic.

() Committing the Final Inventory

After you have uploaded the final inventory to the destination server, you must commit it. You
can use the OnlineCommitTask Ant task to commit the final inventory, or use the Export feature
in Workshop for WebLogic.

Assessing Your Portal System Configuration

It is important for each site that deploys WebLogic Portal to develop a strategy for propagating
portal applications from one environment to another. When you plan a propagation strategy, it
helps to assess carefully the structure of your site and your methods of portal development. Some
questions to ask include:

e What is the portal life cycle pattern for your site? Will you be propagating primarily
from a development server to a production server, or is there also an intermediate
staging/testing environment? For example, in development, developers typically use
Workshop for WebLogic to create portal assets. In staging and production, administrators
use the WebLogic Portal Administration Console to create and configure portal desktops.
In addition, users of the production system can use Visitor Tools to customize portals.

BEA WebLogic Portal Production Operations Guide 5-13

Developing a Propagation Strategy

5-14

Also, extensive testing typically occurs in the staging environment. For an overview of the
environments you can propagate to and from, see the previous section, “Propagation
Roadmap” on page 5-9.

What mode is your production server in? For more information on modes, see
“Production Mode Versus Development Mode” on page 5-22.

Are you deploying your application for the first time, or are you redeploying it? For
details, see “General Propagation Scenarios” on page 5-15.

If you are redeploying an existing application, what kinds of changes were made to it,
and how were they made? Did developers use Workshop for WebLogic to modify, create,
or remove portal resources (such as adding a new book and pages to a portal, and adding
portlets to the pages)? Was your application modified in a staging environment by
administrators using the Administration Console? For details, see “General Propagation
Scenarios” on page 5-15.

What is the scope of your propagation? Do you wish to propagate the entire Enterprise
application, a single web application, or a desktop? For details on scope, see
“Understanding Scope” on page 6-11.

Do you want to push a portal from a staging or production environment back to a
Workshop for WebLogic environment? For information on accomplishing this task, see
Chapter 10, “Using the Export/Import Utility.”

Do you want to push a portal from a production environment back to a staging
environment? This can be accomplished with the propagation tools or the propagation Ant
tasks. See Chapter 7, “Using Workshop for WebLogic Propagation Tools” and Chapter 8,
“Using the Propagation Ant Tasks.”

Have you defined entitlements for portal assets, such as portlets? If so, you need to be
aware that users and groups are, by design never propagated by the propagation tools, and
you may need to manually recreate specific user and group definitions on the production
server. For information on how security elements are handled during propagation, see
“Security Information and Propagation” on page 6-10.

The next section discusses typical propagation scenarios and the tools and methods that are used
in each.

BEA WebLogic Portal Production Operations Guide

General Propagation Scenarios

General Propagation Scenarios

After you familiarize yourself with the available propagation tools, the next challenge is to decide
when and where to use them. This section presents several general propagation scenarios and
offers suggested best practices.

Note: Before you propagate a portal from a source system to a target system, you must deploy
the portal EAR file to the target system at least once. Furthermore, you must deploy the
EAR to the target system with the same name as it is deployed in the source system. If
you do not deploy the EAR using the same name, propagation can fail.

Example Environment

The scenarios outlined in this section assume an environment where there are separate
development, staging, and production servers, as shown in Figure 5-3.

Figure 5-3 Example of a Portal Development and Production Environment

Team Development [4______»|

: Praduction Environment
Environment N V]

Staging Environment

Administration
Console

Administration
Console

In a development environment, developers use Workshop for WebLogic to create portals and
portlets. In this environment, all portal-related data is file-based (stored in XML files, such as
.portal and .portlet files). At the completion of development, these file-based assets,
including Java and JSP files, configuration files, and datasync files, are assembled and
compressed into an EAR file.

A staging environment has been established on a server that is separated from the development
environment. The staging server will be used to test the application and to further configure it. In
the staging environment, administrators use the Administration Console to create and arrange

portal desktops, entitle portal resources, create users and groups for testing purposes, and so on.

The production environment is the “live” web site. In this environment, users are accessing and
using portal applications. Both administrators and users can make changes to the portal in the
production environment. Administrators use the Administration Console to effect changes, and
users use the Visitor Tools to customize their individual portal views.

BEA WebLogic Portal Production Operations Guide 5-15

Developing a Propagation Strategy

5-16

Scenario 1: Deploying the EAR file for the first time

If you are deploying an EAR file to a server for the first time, the procedure is relatively easy.
Typically, developers have used Workshop for WebL ogic to create portals, portlets, and other
application features, and they wish to deploy the new application to a staging server.

For detailed information on deploying an EAR file, see Chapter 4, “Deploying Portal
Applications.”

Note: When you begin using the WebLogic Administration Console, data stored in the EAR is
automatically pulled out of the EAR and stored in the staging server’s database. At this
point, all subsequent modifications to the portal occur in the database only. Changes are
not reflected back into the EAR file.

Scenario 2: Redeploying an EAR file

As with the first deployment described previously, the first steps in redeploying are to build the
EAR file, move it to the staging server, and use WebLogic Server Console to deploy the EAR on
the staging server.

Tip: For detailed information on using WebLogic Server Console to redeploy an application,
see “Redeploying to a Staging or Production Environment” on page 4-9.

When you redeploy the application, there are caveats depending on whether the server you are
deploying to is in development mode or production mode. Recall that you choose the server’s
mode when you create the domain. A server in production mode is optimized to run more
efficiently than one in development mode. The caveats are explained in the following sections.

If the Target Server is in Development Mode

e Any changes made to the EAR file, including datasync data, are automatically detected and
deployed to the target server.

o New portlets are automatically detected and moved into the Library of the Administration
Console.

e New books and pages added to a portal are not automatically added to the Library. They
are added only if you use the Administration Console to create a new Desktop that uses the
new books and pages. This includes .book and . page files that you add to your portal
project.

BEA WebLogic Portal Production Operations Guide

General Propagation Scenarios

If the Target Server is in Production Mode

e Datasync data is ignored if the EAR is redeployed to a server in production mode. In this
case, you must propagate the datasync data using one of the propagation tools. See the
following section, Moving the Datasync Data, for information on moving the datasync
data.

o New portlets are automatically detected and moved into the Library of the Administration
Console.

e New Books and Pages added to a portal are not automatically added to the Library. They
are added only if you use the Administration Console to create a new Desktop that uses the
new books and pages.

Moving the Datasync Data

The way in which datasync data is handled during deployment depends on whether the server is
in development mode or production mode. (See also “Production Mode Versus Development
Mode” on page 5-22.)

As Table 5-3 shows, when you deploy an Enterprise application, datasync data is placed in the
/data directory (it is deployed to the filesystem) except in the case where you redeploy an EAR
file to a server in production mode. In the latter case, use appropriate WebL ogic Portal
propagation tools to move the datasync assets to the target server’s database.

BEA WebLogic Portal Production Operations Guide 5-11

Developing a Propagation Strategy

Table 5-3 Where Datasync Data Is Stored When You Deploy an Enterprise Application

Mode of Target Server

Deploy an Exploded EAR

Deploy an EAR File

Development

Datasync data saved on

Not recommended because

Mode filesystem (META- INF/data) application files are not editable
* Not recommended for cluster ¢ Datasync data is read from the
deployment filesystem (read-only)
* Not recommended for cluster
deployment
Production « Generally, EAR files are On Initial Deployment
Mode preferred for production mode.

On Initial Deployment

Datasync data is bootstrapped
from the filesystem
(META-INF/data) to the
database. Thereafter, datasync
data is always in the database.

On Redeployment

Datasync data is stored in the
database.

You must propagate datasync
assets to the target database as a
separate operation, as
explained in this section.

Datasync data is bootstrapped
from the filesystem
(META-INF/data) to the
database. Thereafter, datasync
data is always in the database.

On Redeployment

Datasync data is stored in the
database.

You must propagate datasync
assets to the target database as a
separate operation, as explained
in this section.

When you redeploy an EAR file (not an exploded EAR) to a server that is in production mode,
you have to propagate the datasync data as a separate operation. To do this, use the propagation
tools to propagate the database from the source to the target server. The propagation tools let you
view the differences between the two environments and automatically handle merging those
differences based on configurable policies.

Scenario 3: Propagating from Staging to Production: Default Scope

When propagating a portal application that is scoped to the highest level (enterprise scope) from
a staging to a production environment, it is assumed that the target server is in production mode.
In this case, everything that can be propagated is propagated.

5-18 BEA WebLogic Portal Production Operations Guide

General Propagation Scenarios

Tip: For detailed information on scoping an inventory, see “Scoping an Inventory” on
page 8-10.

Having the production server in production mode is the best practice. However, nothing prevents
a site from running the “live” production server in development mode. Be aware that if the target
server is running in development mode, datasync data is automatically moved when the EAR is
redeployed. If the target is running in production mode, EAR-based datasync data is ignored.

The basic steps for propagating from staging to production environments are:
1. Deploy the EAR file.

2. Use the propagation tools to propagate the database assets from the staging server to the
production server.

Note: Typically, the two environments will be out of sync. It is possible that changes were made
to both the production and staging servers since the previous propagation. See the section
“Scenario 5: Propagating from Production to Staging: Both Have Changed” on
page 5-20.

Tip: Beaware that users and groups, by design, are not propagated. Therefore, typically, items
such as groups (which contain users) must be manually recreated on the production
server (Although, if the staging and production servers share the same LDAP directory,
and this authentication information is stored in LDAP, it is not necessary to recreate the
users and groups.). For more information on LDAP propagation, see “Security
Information and Propagation” on page 6-10.

Scenario 4: Propagating from Staging to Production: Desktop Scope

If you do not wish to propagate the entire enterprise application, you can adjust the scope. For
example, you can use the propagation tools to propagate only a desktop. In this case, you must be
aware that datasync data will not be propagated because it resides at the Enterprise application
scope and is not included in the propagation that is scoped to the desktop level. Therefore, you
need to propagate the datasync data separately in this circumstance using the propagation tools.

Tip: For detailed information on scoping an inventory, see “Scoping an Inventory” on
page 8-10.

BEA WebLogic Portal Production Operations Guide 5-19

Developing a Propagation Strategy

5-20

The basic steps for propagating an inventory that is scoped to the desktop level are the same as
enterprise scope, described in the previous section.

Note: Itisrecommended as a best practice to initially scope to the Enterprise application level,
and then to the desktop level.

Scenario 5: Propagating from Production to Staging: Both Have Changed

It is sometimes necessary to return a production environment configuration to a staging
environment. Typically, this allows administrators and developers to add new features and fix
known problems. The problem associated with this propagation is that both administrative and
user customizations could have been made to the production system. For instance, an
administrator may have added a new desktop, or removed a page. A user may have customized
her individual view of a portal using Visitor Tools.

To complicate the scenario, additional development and customization may have occurred in the
staging environment since the application was last propagated. The problem, then, is to identify
the differences between the two environments and decide which changes to keep and which to
remove.

The propagation tools report differences between the source and target environments. While the
propagation policies allow you to set rules for merging portal assets, it is up to you to review the
differences and verify that the changes you intend to make to the target are made.

Note: User customizations are not propagated, but they are preserved on the destination.
Changes introduced through the propagation tools have the same impact on user
customizations as similar changes made through the WebLogic Portal Administration
Console. For more information see “User Customizations and Propagation” on
page 6-28.

Tip: If you make a change to the staging environment using the WebLogic Portal
Administration Console, the changes you make are saved in the database if the EAR file
is compressed. If the EAR is uncompressed (exploded) changes are written to the
filesystem. If you redeploy the EAR file at a later time, you must be sure to propagate
datasync elements that have been changed. To do this, use the propagation tools. For
more information, see “Production Mode Versus Development Mode” on page 5-22.

BEA WebLogic Portal Production Operations Guide

General Propagation Scenarios

Scenario 6: Round-Trip Development

The Export/Import Utility allows you to propagate desktops, books, and pages back and forth
between development (Workshop for WebLogic) and staging environments. Propagating from
development to staging and back to development is called a round trip.

The Export/Import Utility exports desktops, books, and pages from the staging database to
.portal, .book, and .page files that can be read into Workshop for WebLogic. The utility also
allows you to import _portal, .book, and . page files into a staging database. You can set the
scope of imports and exports to the library, desktop, or visitor level.

WARNING: When a new asset, such as a new book or page, is created in the Administration
Console, a unique identifier is generated for that asset. It is a best practice to
avoid changing these definition labels once they have been propagated (or
moved with the Export/Import Utility) for the first time. If you change a
resource’s definition label, the Export/Import Utility views the resource as a new
resource rather than an updated resource. As a result, the Export/Import Utility
will perform an add operation rather than an update operation.

Figure 5-4 shows the definition label for a page, displayed in the Properties view in Workshop
for WebLogic.

Figure 5-4 Definition Label in the Properties View

Annotations = :=:€> B B
Property | Value

= Backable Properties
Backing File
Definition Label myPortal_portal_page_1
Hidden false
Packed false

Rollover Image
Selected Image

__;I'E;,me _\\‘,\No_ﬂThqpe___’___’_,___,_._,

\..,\-‘“'_ \ v

Tip: Animportant feature of the Export/Import Utility is that it allows you to merge file-based
assets from the development environment into a database-based staging environment. In
other words, if you export an application to a file-based development environment, and
then make changes in the development environment, you can use the Export/Import
Utility to merge those changes back into the database of the staging environment.

BEA WebLogic Portal Production Operations Guide 5-21

Developing a Propagation Strategy

Production Mode Versus Development Mode

When you configure a domain, you are given a choice between Development mode and
Production mode.

Tip: As abest practice, always run staging (testing) and production (live) environments in
production mode. For developers using Workshop for WebLogic, the best practice is to
run the server in development mode.

Knowing the server’s mode is important for understanding how certain portal assets are
propagated. For instance, when you deploy an EAR file to a server that is in production mode,
datasync data is ignored. See “Scenario 2: Redeploying an EAR file” on page 5-16.

Propagation and Proliferation

5-22

Proliferation refers to the process by which changes made to the Library instance of a portal asset
are pushed into user-customized instances of that asset. For example, if a portal administrator
deletes a portlet from a desktop, that change must be reflected into user-customized instances of
that desktop. Before you propagate a portal, consider the way in which proliferation is configured
for your portal.

If your desktops include a large number of user customizations, we recommend that you change
the Portal Resources Proliferation of Updates Configuration setting to either Asynchronous
or Off. This change reduces the amount of time required to complete the propagation.

You can do this in the WebLogic Portal Administration Console under Configuration Settings
> Service Administration > Portal Resources > Portal Resources Proliferation of Updates
Configuration. The proliferation settings include Asynchronous, Synchronous, or Off.

BEA WebLogic Portal Production Operations Guide

Propagation Topics

This chapter covers a range of topics related to WebLogic Portal propagation. We recommend
that you read this chapter before you attempt to propagate a portal.

This chapter includes the following topics:

Overview

Before You Begin

Propagation Reference Table

Security Information and Propagation
Understanding Scope

Using Policies

Previewing Changes and Tuning a Merged Inventory
User Customizations and Propagation
Reviewing Log Files

Rolling Back an Import Process

WSRP Propagation

Increasing the Default Upload File Size

Configuring the Propagation Servlet

BEA WebLogic Portal Production Operations Guide

6-1

Propagation Topics

e Best Practices

Overview

Figure 6-1 shows the basic flow of a propagation session. The basic steps in any propagation
session include:

1. First, you export the portal inventory from the source system and the destination system.

2. Merge the inventories. These propagation tools let you view and modify the merged inventory
files before producing a final inventory file.

3. Create a final merged inventory. The final inventory represents the combination of the two
inventories after all scoping and policy rules have been applied. Scoping is discussed in
“Understanding Scope” on page 6-11. Policies are discussed in “Using Policies” on
page 6-22.

4. The final inventory file is then uploaded and committed to the destination server.

6-2 BEA WebLogic Portal Production Operations Guide

Before You Begin

Figure 6-1 Flow of a Propagation Session

B

SOURCE

Merged

Inventory
Deploy

DESTINATION

Destination
Inventory

Final
Inventary

Before You Begin

The following sections describe some preparation tasks to perform before propagating a portal
application. For additional information about the propagation planning process, see Chapter 5,
“Developing a Propagation Strategy.”

Note: It is not recommended to propagate between source and destination systems that are
running JVMs with different default locales. If the locales differ between the source and
destination system, performance will be slower and the localization node of all Portal
Framework assets will always appear to be different in the change manifest.

This section includes these topics:
e Start the Administration Server
e Perform a Data Backup

e Plan to Inactivate the System During the Import Process

BEA WebLogic Portal Production Operations Guide 6-3

Propagation Topics

6-4

Install the Propagation Tools

Configure Log Files (Optional)

Deploy the J2EE Application (EAR)

e Make Required Manual Changes

Start the Administration Server

The Administration Server must be running when you perform a propagation to allow certain
LDAP data to be updated. A propagation can cause the following kinds of LDAP data to be
added, deleted, or updated: visitor roles, delegated administration roles, entitlement policies, and
delegated administration policies.

Perform a Data Backup

Back up your WebL ogic LDAP repository using the steps in the Recovering From Server Failure
section of the WebL ogic Server documentation.

Back up your database using the vendor tools appropriate for your environment. Save a copy of
the deployed application that you are propagating; you will be deploying an EAR to the existing
application, which will overwrite the current configuration.

Plan to Inactivate the System During the Import Process

Before you import a final inventory to a destination system, take steps to prevent users from
changing portal data. When the final inventory is being committed to the destination server, any
changes made through the WebL ogic Portal Administration Console can lead to unwanted side
effects, such as lost data.

The OnlineMaintenanceModeTask Ant task can be used to prevent changes to the destination
server. You can also use the WebLogic Portal Administration Console to place a server in
maintenance mode. To do this, select the Configuration Settings > Service Administration >
Maintenance Mode. For detailed information on OnlineMaintenanceModeTask, see
“OnlineMaintenanceModeTask” on page 9-10. Workshop for WebLogic does not provide a
maintenance mode feature.

Install the Propagation Tools

The Workshop for WebLogic propagation feature is installed automatically when you install
WebLogic Portal (unless you explicitly exclude it). The propagation Ant tasks require some

BEA WebLogic Portal Production Operations Guide

http://e-docs.bea.com/wls/docs92/server_start/failures.html

Before You Begin

additional configuration before you can use them. For information on installing and using the Ant
tasks, see Chapter 8, “Using the Propagation Ant Tasks.”

Configure Log Files (Optional)

For information on configuring verbose log files in Workshop for WebLogic, see “Enabling
Verbose Logging” on page 7-22.

Deploy the J2EE Application (EAR)

If you created new resources for your web application using Workshop for WebLogic, including
portlets, portals, books, pages, custom layouts, look and feels, menus, shells, themes, JSPs, or
Java classes, you must deploy the J2EE application from the source system to the destination
system at some point prior to committing the changes with the propagation tools.

Note: Before you propagate a portal from a source system to a target system, you must deploy
the portal EAR file to the target system at least once. Furthermore, you must deploy the
EAR to the target system with the same name as it is deployed in the source system. If
you do not deploy the EAR using the same name, propagation can fail.

Tip: Itisagood practice to deploy the EAR file before you export the destination inventory.
By doing this, you can reduce the number of manual changes you need to make after you
commit the final inventory to the destination.

When you deploy the J2EE application, changes reflected in the EAR file may or may not be
propagated automatically, depending on whether your server is in production mode or
development mode. For more information, see “General Propagation Scenarios” on page 5-15
and “Scenario 2: Redeploying an EAR file” on page 5-16. For detailed information on deploying
EAR files, see “Deploying Portal Applications” on page 4-1.

If you commit propagation changes without deploying the J2EE application, the inventory listing
includes the new resources, but the resources are not displayed in the portal library on the
destination system and the following destination database tables are not updated with new data:

e PF_MENU_DEFINITION

e PF_LAYOUT_DEFINITION

e PF_LOOK_AND_FEEL_DEFINITION
e PF_SHELL_DEFINITION

BEA WebLogic Portal Production Operations Guide 6-5

Propagation Topics

e PF_THEME_DEFINITION
e PF_PORTLET_DEFINITION

For more information on these database tables and how they are used, see the BEA WebLogic
Portal Database Administrator Guide.

Make Required Manual Changes

While the propagation tools propagate most portal data, there are some exceptions. Any portal
assets that are not propagated must be added to the destination server using the WebL ogic Portal
Administration Console.

What Kinds of Data Require Manual Changes?

In general, the propagation tools do not propagate the following kinds of data:

e Users and groups

Users and groups are, by design, not propagated.

e New content repositories

You must create the new content repositories on the destination system before you can
propagate content in those repositories.

e Out of scope dependencies

If you use the scoping mechanism to exclude assets that other assets depend upon, you
must manually add the dependencies to the destination server. See “Understanding Scope”
on page 6-11 for more information.

Tip: For a comprehensive list of propagated and non-propagated portal resources, see
“Propagation Reference Table” on page 6-7.

There might be cases where propagated data depends on other data that is not propagated. For
example, delegated administration roles are propagated to the destination but the related users and
groups are not, so you must manually add those related users and groups on the destination
system.

Where are Manual Changes Reported?
Manual changes are reported to you in the following places:

BEA WebLogic Portal Production Operations Guide

../db/index.html
../db/index.html

Propagation Reference Table

e The OfflineDiffTask and OfflineExtractTask propagation Ant tasks can optionally write a
list of manual changes to a file. For details on these tasks, see Chapter 9, “Propagation Ant
Task Reference.”

o All of the propagation Ant tasks allow you to optionally write messages to a log file. Any
manual changes that are required are listed in the log file.

e A Workshop for WebLogic propagation session reports manual changes in the following
ways:
— The Console view displays manual changes.

— In the Properties view, the Manual Steps field indicates if propagating the asset
requires any manual changes.

— In the Merged Files tab, the editor highlights assets that must be manually updated as
follows: the asset’s name is shown in yellow and an Eclipse warning badge is shown on
the asset’s icon.

Propagation Reference Table

Table 6-1 provides a comprehensive list of the categories and types of data that comprise a portal
and whether or not the propagation tools move them. Any type of data that is not propagated by
the propagation tools is noted in the Notes column. Data that is not propagated might require a
manual change to be made on the destination server. For more information on manual changes,
see “Make Required Manual Changes” on page 6-6.

Table 6-1 Data Propagation Reference Tahle

Data Category Data Notes
Framework Portals
Desktops
Books
Pages In addition, Look and Feel references, such as a dependency

between a page and its layout, are propagated.

Portlets

Portlet Preferences

Portlet Categories

BEA WebLogic Portal Production Operations Guide 6-7

Propagation Topics

Tahle 6-1 Data Propagation Reference Table (Continued)

Data Category Data Notes
Community Templates
Framework, Shells
continued
Themes
Menus
Layouts
Look and Feels
Framework, User Customizations Not propagated. User customizations are preserved on
continued the destination system, but may be modified when
imported changes are applied to the destination. For
more information, see “User Customizations and
Propagation” on page 6-28.
Datasync Catalog Property

Definitions

Content Selectors

Discount Definitions

Event Definitions

Placeholders

Request Properties

Segments

Session Properties

User Profile Definitions

Campaign Definitions

Runtime Data

Behavior Tracking Events Not propagated.

Orders Not propagated.

User Profiles Not propagated.

6-8 BEA WebLogic Portal Production Operations Guide

Propagation Reference Table

Tahle 6-1 Data Propagation Reference Table (Continued)

Data Category Data Notes

Security Global Roles (created using Note: Definitions that you create using public entitlement
WebLogic Server) APIs are not propagated.
Visitor Entitlement Policy ~ Note: Definitions that you create using your own custom
Definitions code (APIs) are not propagated.
Delegated Administration ~ Note: Only the roles that are required (that a given asset
Policy Definitions depends upon) are propagated.

These delegated administration policies are propagated:

« Portal resources (Library and Desktop level)

e Users and groups

« Content selectors

e Campaigns

* Visitor roles

e Placeholders

e Segments

e Security providers

Delegated Administration ~ Note: Only the roles that are required (that a given asset

and Visitor Entitlement depends upon) are propagated.

Roles Note: Roles that you create using your own custom code
(APIs) are not propagated.

Note: Users and groups are not propagated, but user and
group identification is preserved; you must manually
create users and groups that correspond with
propagated roles.

Users Not propagated; the hashed passwords cannot be propagated.
Groups Not propagated.

WSRP WSRP Registration Data For more information on WSRP propagation, see “WSRP
Remote portlets Propagation” on page 6-29.

Content All Content Management Propagation will not move the checkout status (if a user has

Management information, items, types, an item checked out in staging, the user will not have it

metadata, and folders

checked out in production after propagation).

Note: Workflows are not propagated.

BEA WebLogic Portal Production Operations Guide 6-9

Propagation Topics

Security Information and Propagation

Security information consists generally of authentication data and authorization data. As
Table 6-2 shows, authorization data consists of roles and policies, while authentication consists
of users and groups.

Tahle 6-2 Types of Security Data

Authorization Roles * Visitor entitlement Stored in internal providers or
« Delegated administration external providers, such as a
L . custom Authorization provider.
e Global (defined in WebLogic P

Server)
e Delegated role hierarchy

Policies * Visitor entitlements
* Delegated administration

Authentication e Users Stored in internal providers or

+ Groups external providers, such as an
RDBMS user store or an
OpenLDAP. Also stored in
provider configurations and audit
trails.

Users and groups are never propagated by the propagation tools. In addition to user and group
information, the propagation tools do not propagate the following:

e Provider configurations (although they are listed when an application is exported)
e Data from external providers

e Audit Trails

Because roles contain user and group information, you need to consider how user and group
information is stored for your staging and production system; these two systems may or may not
share the same authentication repositories.

If your systems do not share the same authentication repositories for managing users and groups,
then after propagating a portal, you must manually edit each role to add the appropriate users and
groups on the destination system. If the systems do share the same authentication repositories,
then no manual changes to roles need to be made after a propagation.

6-10 BEA WebLogic Portal Production Operations Guide

Understanding Scope

For more information on manual propagation changes, see “Make Required Manual Changes” on
page 6-6.

Note: It is a best practice to reference groups, but not specific users, in roles. This practice
makes it easier to maintain roles when users need to be added or removed from the
system.

Understanding Scope

You can think of a WebLogic Portal inventory as a large tree structure, with multiple levels of
parent and child nodes. Each node in the tree represents the inventory for a part of the portal
application. If a node is declared to be in scope, then that node and all of its descendents are in
scope. That is, they will be included in the exported inventory file.

This section includes these topics:
e Overview

e Why Use Scoping?

What are the Risks of Scoping?

Best Practices for Scoping

How to Set Scope

e The Effects of Scoping

Scope and Library Inheritance

Overview

If you do not want to propagate an entire portal application, you can use scoping to limit the
propagated assets. The most common use cases for scoping include:

e propagating only a content repository
e propagating part of a content repository, such as the contents of a folder

e propagating one or more specified desktops

The Workshop for WebLogic based propagation tools and the propagation Ant tasks both support
scoping. The propagation tools let you manually make scoping decisions by selecting and
unselecting nodes in the merged inventory tree. The Ant tasks let you control scoping with a
scope .properties file that specifies which portal items are considered to be in scope.

BEA WebLogic Portal Production Operations Guide 6-11

Propagation Topics

6-12

Tip: It’simportant to remember that scope defines which portal artifacts will be included in a
propagation. By default, scope is set to the entire Enterprise application, including
content repository data. When you specify scope either manually or in a properties file,
you are specifying what to include. If you specify a single desktop, for instance, only that
desktop and its contents (books, pages, and so on) are propagated. Any other desktops in
the portal, content, and other items are not propagated. If you limit the scope to a single
content folder, then that folder, its contents, and its parent folders are propagated;
however, the contents of parent folders are not propagated.

Why Use Scoping?

Performance is the primary use case for scoping. Because a scoped inventory reduces the overall
size of an exported WebLogic Portal inventory, propagation tasks typically run faster. If you have
a large content repository, you might not want to export it when you propagate a portal. In this
case, you can move the content repository, and all of its content, out of scope.

Another reason to scope is security-related. You may want to exclude certain sensitive content
from an inventory if you plan to transport that inventory through insecure channels.

What are the Risks of Scoping?

The primary risk associated with scoping is that a scoped inventory file can include assets with
dependencies that cannot be resolved. When an inventory is scoped, entire nodes (and
descendants of the nodes) are excluded from the inventory. As a result, if included artifacts
depend on excluded artifacts, those dependencies cannot be resolved, and the propagated portal
may not function properly.

Tip: If you want to exclude specific nodes from an inventory, we recommend that you use
policies instead of scoping. Policies are explained in “Using Policies” on page 6-22.

Best Practices for Scoping

The following are best practices if you intend to consider scoping an inventory:

o |f you want to selectively remove parts of a portal from an exported inventory, use policies
rather than scoping.

BEA WebLogic Portal Production Operations Guide

Understanding Scope

e Scope to the highest level possible. This ensures the that the destination environment will
closely mirror the source environment. If you scope to a lower level, such as a specific
desktop, additional quality assurance testing may be required on the destination.

o If at all possible, avoid using scoping on an inventory file that has already been exported. It
is preferable to use scoping only when you are extracting an inventory, such as with the
Ant task OnlineDownloadTask.

e Do not scope an exported file that has already been scoped. If you do this, you cannot use
the scoping features in the Workshop for WebL ogic based propagation tools.

e Use scoping to exclude content repository data from an exported inventory, while including
portal data.

e Use scoping to exclude portal data from an exported inventory, but include content
repository data.

How to Set Scope

You can set the scope of a propagation in the Workshop for WebLogic based propagation tools
and in the Ant tasks.

This section includes these topics:
e Using Workshop for WebLogic to Set Scope

e Setting Scope with Ant Tasks

Using Workshop for WebLogic to Set Scope

The propagation tools provide two methods of scoping. The first is in the New Propagation
Session wizard, and the second is in the Merged Inventory view.

Tip: Fordetailed information on using the propagation tools, see Chapter 7, “Using Workshop
for WebLogic Propagation Tools.”

Setting Global Scope in the New Propagation Session Wizard

When you create a new Propagation Session, you select a source and a destination inventory to
merge. Before the merge, however, you are given the chance to make scoping decisions in the
Select Global Scope dialog, shown in Figure 6-2. As shown in the figure, when you select a node
to be in scope, the node’s ancestors are automatically selected.

BEA WebLogic Portal Production Operations Guide 6-13

Propagation Topics

6-14

Note: Itisimportant to remember that when you select items in the Select Global Scope dialog,
you are selecting items to be in scope. All other items in the enterprise application will
be out of the scope of the propagation. Therefore, in Figure 6-2, only the selected shell
definition and its ancestors will be propagated. For example, a content item’s parent
folder is included, but content types on which the content item depend are not
automatically included.

To make selections in the Select Global Scope dialog, you must first select the Limit the scope
to the specified nodes checkbox.

Figure 6-2 Select Global Scope Dialog

o

“M\\\«ﬁ\‘\\‘\‘,h—’v“‘ bl

Select Global Scope

Set the initial global propagation scope.

[¥ Limnit the scope to the specified nodes

+- @] Content Service
+-[J5 Personalization Service
L[Portal Framework,
Ancestors +-] Portal Framework Webapp: tools, WebApp
Automatica”y + Dt:nﬁ Paortal Framework Webapp: webdav,Webdpp
Selected + DI:E Partal Framework Webapp: wps-toolSupport. Webapp
+-] Portal Framework Webapp: Datasync.Webapp
+-[J5 Portal Framework Webapp: oam.WebApp
+-[J5& Portal Framework Webapp: offline. Webapp
] Eig Portal Framework Webapp: portal_1.WebApp
=[5 Portal Framework Library

O Portal Framework Global Entitlements

Shell Definition /&) Portal Frameswork Global Admin Policies
. +-[#] [Shell Definition: _framewark_markup_shell_leftPaneHeaderFoater shell, Shell

Placed in SCOpe +-[] [shell Definition: _framewark_markup_shell_treeHeaderFoater,shell, Shell
I 1 shell DeFinEi_on: __Frgmew0rk_marlgun_shell_vi@rmols.sheII.SheIl

Scoping in the Merged Inventory View

You can refine the scope of a merged inventory in the Merged Inventory View. This view lets
you make final changes to the scope of the merged inventory before you generate a final
inventory file. Unlike the Select Global Scope dialog, all the nodes in the Merged Inventory View
are selected. That is, they are all considered to be in scope by default. In Figure 6-3, the
Desktop_update_1 desktop is deselected. This removes that desktop and its dependents from the
scope of the propagation.

BEA WebLogic Portal Production Operations Guide

Figure 6-3 Setting Scope in the Merged Inventory View

Merged Inventory:

Understanding Scope

+-[A&] Content Service
+ [5 Personalization Service
-I-[#AE=l Partal Framework

+ [5 Portal Framework Webapp:
+ [5 Portal Framework Webapp:
+ [5 Portal Framework Webapp:
+ [5 Portal Framework Webapp:
+ [5 Portal Framework Webapp:
+ [5 Portal Framework Webapp:
=[5 Portal Framework Webapp:

tools, Webapp
webday . Webapp
wps-toolSupport. Webapp
Datasync, Webspp
oam.Webapp

offline. Webapp
portal_1.Webspp

Deselected

+ [5 Portal Framework Library
—I-[Z] @y Portal: prop.Partal

Desktop

Deselected
Descendents

5 Destéan Defintion. deskion ypoiake_1.Dasktan

/ = [JB Desktop: deskton_ update_1.DefauttDesktop

=-CJ<8E Fook: book_1.ManSook
=-[J<8E Fook Mamber: pagel 2. Fooktamber
=15l Fage: pagel Z.Fage
0@ Fortal Framework Alacaholder Security Foicias
+- 5l Fage Member: dichianary_ 1. Pageiember
+- 5l Fage Member: news_I.Fagetamber
+- Bl Fage Member: pagefons_ 1.Pagevember
+- 5l Fage Member: guote 1 I.Pagetamber
+- 5l Fage Member: search_I.Pageiember
+- [Bl Fage Member: ampleCantrol 1.Pagetamber

Setting Scope with Ant Tasks

[0y ocalzation: deskion_updste 1.4 ocalzation
v Localization: .Localizati
- %_ocﬂza ion: prop.Locaizal 0 e e >

VPP ST T W, WE'E. W ST T Y

- o b

You can use the OnlineDownloadTask to scope an inventory file. This task takes a
scope.properties file attribute. You can edit this file to include the items you want to include
in the inventory file. If you do not specify a scope.properties file, then the entire enterprise
application is considered to be in scope. For detailed information on the OnlineDownloadTask
and other propagation Ant tasks, see Chapter 9, “Propagation Ant Task Reference.”

The Effects of Scoping

WebLogic Portal gives you a great deal of freedom to scope your portal inventories. When you
select an inventory node to be in or out of scope, that choice usually affects other nodes that are
either dependent on or a dependent of the selected node. WebLogic Portal automatically
determines these dependencies. In Workshop for WebL ogic, you can see the dependencies
visually: when you select a node, other related nodes are automatically selected.

This section helps you to understand the effects of four kinds of scoping decisions:

e Scoping to the Enterprise Application Level (the default)

e Scoping to the Desktop Level

BEA WebLogic Portal Production Operations Guide

6-15

Propagation Topics

e Scoping to a Repository
e Scoping to a Content Folder

Note: When you deploy the EAR file to a server in development mode, datasync data and some
portal framework data is automatically extracted and placed in the database. If you
intended to exclude some or all of the datasync data with scoping, then you will find that
it is added automatically by the EAR deployment, effectively negating the scoping
intention.

Scoping to the Enterprise Application Level

By default, all propagations are scoped to the Enterprise application level. This means that all of
the artifacts that make up the portal that can be propagated are propagated. By default, the entire
Enterprise application is in scope, as Figure 6-4 illustrates.

Figure 6-4 Scoping at the Enterprise Application Level

Enterprise Application

Portal Security Datasync Content
Framework

I—Enterprise L_C i Repositor Repositor

Portal Portal Roles amcpilgns P Y P Y
' —Web App c2 /\
Roles I—Events - Nod
Desktop_1 Desktop_2 . E1l ypes odes
I—Entitlements ED
Folder_1 Folder_2
Book_1 Book_2

N

Folder Content
Page 1 Page 2

There are no preset scoping levels. Both the propagation tools and Ant tasks let you specify
scoping however you want. The Ant tasks let you specify a scope.properties file, in which

6-16 BEA WebLogic Portal Production Operations Guide

Understanding Scope

you specify which artifacts to propagate. (See also “Understanding a Scope Property File” on
page 8-12.)

In Workshop for WebL ogic, you scope visually by selecting or deselecting nodes in the inventory
tree. The selected nodes are considered to be in scope and are propagated. All other nodes are not
propagated.

There are four major categories of portal artifacts that you can scope to:
e Content Service — Includes content repositories, folders, content, types, and entitlements.

e Personalization Service — Includes datasync data, such as campaigns, content selectors,
and events.

e Portal Framework — Includes portals, desktops, books, pages, and so on.

e Security — Includes delegated admin roles and policies, visitor roles, global roles, security
providers, and others.

Each of these top-level nodes are represented in the New Propagation Session wizard’s Select
Global Scope dialog, as shown in Figure 6-5. Using this dialog, you can drill into one of the
top-level categories to refine the level of scoping. However, as previously noted, the best practice
is to scope only to one of the top-level categories, such as the Content Service.

Figure 6-5 Select Global Scope Dialog
~ &)

Select Global Scope E@

Set the initial global propagation scope.

[¥ Limnit the scope ta the specified nodes

+-[[&] Content Service
+-[J5 Personalization Service
+- &= Portal Framewark

+- & Security

Refresh

< Back Mexk = | Finish | Cancel |

BEA WebLogic Portal Production Operations Guide 6-17

Propagation Topics

Scoping to the Desktop Level

One of the most common scoping use cases is scoping to the desktop level. This means that you
identify one or more specific desktops to be in scope. The rest of the enterprise application is then
considered to be out of scope and is not propagated. As Figure 6-6 illustrates, when you scope to
Desktop_1, the desktop and its children (books, pages, and so on) are placed in scope. Any other
desktops and the rest of the Enterprise application are then out of scope. See “What are the Risks
of Scoping?” on page 6-12 for information on the risks of scoping at this level.

Figure 6-6 Scoping to Desktop_1

Enterprise Application

Portal Security Datasync Content
Framework
/\ Enterprise | Campaians Reposito Repositor
Portal Portal Roles gl 9 P i P y
. /\ c2 /\
—Events
Desktop_1 Desktop_2 El Types Nodes

E2

\ Folder_1 Folder_2
BoOk_1 Book_2 Book_3 . /\

Folder Content

Page_1 Page 2

Scoping to a Repository

Another common use case it scoping to a repository. When you scope to a repository, the entire
repository is propagated, including all types, folders, and content, as illustrated in Figure 6-7.
Any other repositories are not propagated, and no other part of the Enterprise application is
propagated.

6-18 BEA WebLogic Portal Production Operations Guide

Understanding Scope

Figure 6-7 Scoping to a Repository

Enterprise Application

Portal Security Datasync Content

Framework

Enterprise | Campaigns Repository 1 Repository 2

Portal Portal Roles c1
. c2 A
— Events
Desktop_1 Desktop_2 E1 Types Nodes

RPN

Folder_1 Folder_2

N

Folder Content

Book_1 Book_2

Page 1 Page_2

Scoping to a Content Folder

When you scope to a folder in a content repository, that folder, its contents, and all of the folder’s
parent folders are propagated. Note that the contents of parent folders are not propagated, only
the parent folders themselves, as illustrated in Figure 6-8. See “What are the Risks of Scoping?”
on page 6-12 for information on the risks of scoping at this level.

BEA WebLogic Portal Production Operations Guide 6-19

Propagation Topics

Figure 6-8 Scoping to Content Folder_3

Enterprise Application

Portal Security Datasync Content
Framework
Enterprise L Campaians Repositor Repositor
Portal Portal Roles gl g P y P y
. c2 /\
— Events
Desktop_1 Desktop_2 El Types Nodes
E2 /\
Folder_1 Folder_2
Book_1 Book_2

e

Folder_3 Content

Page_1 Page_2 A

Content Content

Scope and Library Inheritance

When you propagate portal assets, such as desktops containing pages and books, new pages and
books are added to the Portal Library if they do not already exist there.

The WebL ogic Portal Administration Console organizes portal resources in a tree that consists of
Library resources and desktop resources. Understanding the relationship between Library and
desktop resources helps you to understand the effects and consequences of propagation.

Portal Asset Instances and Inheritance
The following text describes the relationships between the following instances of portal assets:

e Primary instance — Created in Workshop for WebLogic and stored in a .portal or
.portlet file

6-20 BEA WebLogic Portal Production Operations Guide

Understanding Scope

e Library instance — Created or updated in the WebLogic Portal Administration Console,
and displayed in the Portal Resources tree under the Library node

e Desktop instance — Created or updated in the WebLogic Portal Administration Console,
and displayed in the Portal Resources tree under the Portals node

e Visitor instance — Created or updated in the Visitor Tools

Creating a New Desktop and Disassembling to the Library

When you create a new desktop using the WebLogic Portal Administration Console, you can use
an existing portal template. Using a template means that you will be taking the portal resources
for your desktop directly from a _portal file that was created in Workshop for WebLogic. (The
-portal file is also called the primary instance.) When you create a desktop, the portal assets are
removed from the .portal file, placed in a database, and surfaced in both the Library and
desktop trees of the WebLogic Portal Administration Console. Taking the assets from a new
desktop instance and placing them in the Library is called disassembling.

At this point, the assets (books, pages, and so on) in the Library (Library instances) are
hierarchically related to their corresponding desktop instances. A change to a Library resource,
such as a name change, is automatically inherited by the corresponding desktop instance. On the
other hand, a change to the desktop instance is not reflected back up the hierarchy.

Note: Changes made to assets are never “reverse inherited” up the hierarchy. A change to a
desktop asset is never inherited by its corresponding Library instance. Likewise, a change
to a Visitor instance is never inherited by a desktop or Library instance.

New books and pages that you create in a desktop are not disassembled—they are considered to
be private to that desktop.

Decoupling of Property Settings

If an administrator or a visitor (using Visitor Tools) changes the Book Properties of a book or the
Page Properties of a page in a desktop, those property settings become decoupled from the
settings in the parent book or page in the Library. Page properties include layout and theme, while
Book Properties include menus and layout. These properties can be modified in the WebLogic
Portal Administration Console. When a portal is propagated, any assets that are decoupled in the
source application will remain decoupled in the destination.

For more details on the specific data propagated, see “Propagation Reference Table” on page 6-7.

BEA WebLogic Portal Production Operations Guide 6-21

Propagation Topics

Using Policies

Policies let you control how source and destination inventories are merged into a final inventory
file. This section describes policies and presents examples to help you understand how to apply
them.

This section includes the following topics:
e Global Policy Examples
e Local Policy Overrides

e Using Local Policies with Desktops

Introduction

Policies let you specify how to handle the following three merge cases:

e Additions — If an asset exists in the source inventory, but not in the destination inventory,
add it to the destination.

e Deletions — If an asset exists in the destination inventory, but not in the source inventory,
delete it from the destination.

e Updates — If an asset exists in the source inventory and in the destination inventory, update
the destination with the artifact in the source inventory.

Through the propagation tools, you can set two kinds of policies:

e Global - Global policies apply to all assets in the source inventory. During a merge, each
artifact in the source inventory is evaluated with respect to the destination inventory. The
global policies dictate the outcome of each evaluation.

e Local — Local policies apply to specific desktop and content management assets and
override global policies for those assets. You can elect to apply a local policy to any
desktop or content management asset in the source inventory. During a merge, the local
policy overrides the global policy for that asset.

Global Policy Examples

Figure 6-9 illustrates a simple, but common, example. In this case, the default global policies
define how two inventories are merged. Portlets 2 and 3 on Desktop A are added to the
destination’s Desktop A. Portlet 5 from Desktop B is also added. However, Portlet 6 on the
destination is deleted, because it did not exist in Desktop B on source system.

6-22 BEA WebLogic Portal Production Operations Guide

Using Policies

Tip: By default global policies are set to accept adds, deletes, and updates.

Figure 6-9 Accepting Adds and Deletes

SOURCE DESTINATION
Desktop A Desktop A
Portlet 1 Portlet 1
Portlet 2
Portlet 3
Desktop B Desktop B
Portlet 4 Portlet 4
Portlet 5 Portlet 6
Global Policies:
Accept Adds

Accept Deletes
Accept Updates

Merge

FINAL

Desktop A

Portlet 1
Portlet 2
Portlet 3

Desktop B

Portlet 4
Portlet 5

Figure 6-10 shows the same source and destination system; however, in this case the global
policy specifies that adds are ignored. In this case, Portlet 6 is removed from the destination
desktop because it did not exist in the source desktop. None of the additional portlets from the
source are added, because the global policy specifies that adds are to be ignored.

BEA WebLogic Portal Production Operations Guide 6-23

Propagation Topics

Figure 6-10 Ignoring Adds and Accepting Deletes
SOURCE

Desktop A

Portlet 1

Portlet 2

Portlet 3
Desktop B

Portlet 4
Portlet 5

Global Policies:

Ignore Adds

Merge

FINAL

DESTINATION

Desktop A
Portlet 1

Desktop B

Portlet 4
Portlet 6

Accept Deletes
Accept Updates

Desktop A
Portlet 1

Desktop B
Portlet 4

6-24 BEA WebLogic Portal Production Operations Guide

Using Policies

Local Policy Overrides

Figure 6-11 shows how a local policy overrides a global policy. In this example, the global policy
is to accept adds; however, a local policy is placed on Portlet 1 in Desktop A. The local policy
states that the portlet should be deleted from the destination. In this case, Portlet 1 on Desktop A
is not propagated. The local policy overrides the global policy.

Figure 6-11 Local Policy Overrides Global Policy

SOURCE DESTINATION
Desktop A Desktop A
Portlet 1 (Delete) Portlet 1
Portlet 2
Portlet 3
Desktop B Desktop B
Portlet 4 Portlet 4
Portlet 5 Portlet 6
Global Policies:
Accept Adds

Accept Deletes
Accept Updates

Merge

FINAL

Desktop A

Portlet 2
Portlet 3
Desktop B

Portlet 4
Portlet 5

BEA WebLogic Portal Production Operations Guide 6-25

Propagation Topics

6-26

Using Local Policies with Desktops

In WebLogic Portal, multiple desktops can contain instances of the same library object, such as
a portlet.

Tip: Itisimportant to understand the difference between a library instance and a desktop
instance of an artifact, such as a portlet. For a detailed summary of this difference, see
“Scope and Library Inheritance” on page 6-20 and “Export and Import Scope” on
page 10-7.

Because global policies can be overridden at the desktop level, it is possible that the policies for
instances of the same library object (such as a portlet) might conflict. The propagation software
resolves these conflicts as follows:

e Adds and Deletes — If after the application of global and local policies, any in-scope
desktop requires a specific library object, then the library object will be included in the
propagation.

e Updates — If after the application of global and local policies any in-scope desktop
requires a specific library object, then that library object will be updated during the
propagation.
For example, consider this scenario: A user adds Page 1 to Book 2 on the source system, but
another user adds the same Page 1 to Book 3 on the destination. The rules are defined such that
additions to the source are added to the destination, and “deletions” on the source are ignored (that
is, if an asset exists on the destination and not on the source, it remains on the destination).
Because WebLogic Portal requires that a given page cannot exist in more than one book, the
propagation tools resolve the conflict by adding Page 1 to Book 2, and removing it in Book 3 on
the destination system.

For another example, consider the following scenario:
e Desktops A and B both include instances of Portlet X.
e The global policy is set to accept adds.
e A local policy to ignore adds is set on Desktop A.

e There are no local policies set on Desktop B.

In this scenario, illustrated in Figure 6-12, there is a conflict between the local policy for Desktop
A and the global policy inherited by Desktop B with respect to additions. Because Desktop B
includes Portlet X, Portlet X is required in the propagation of Desktop B (Desktop B cannot be

BEA WebLogic Portal Production Operations Guide

Using Policies

propagated properly without this portlet). Therefore, according to the rules stated previously, the
library object for Portlet X will be included in the propagation, despite the policy override applied
to Desktop A indicating that adds should be ignored.

Figure 6-12 Local Policies and Library Instances

SOURCE DESTINATION
Desktop A (Ignore Adds) Desktop A
Portlet 1 Portlet 1
Portlet X
Portlet 3
Desktop B Desktop B
Portlet 4 Portlet 4
Portlet X Portlet 6
Global Policies:

Accept Adds
Accept Deletes
Accept Updates

Merge

FINAL

Desktop A

Portlet 1
Portlet X
Portlet 3

Desktop B

Portlet 4
Portlet X

Reporting Changes Based on Policies

When a propagation conflict is resolved by a propagation Ant task, the resolutions are listed in
the log file that is created during processing. The Workshop for WebLogic based interface lists
any changes that occurred in order to resolve conflicts in the Console view.

BEA WebLogic Portal Production Operations Guide 6-27

Propagation Topics

For information on log files, see “Reviewing Log Files” on page 6-29.

Previewing Changes and Tuning a Merged Inventory

The basic propagation process starts with a source inventory and a destination inventory. You
then merge these two files into a merged inventory file using either Workshop for WebLogic or
the propagation Ant tasks.

Before you generate and commit a final inventory file, you have an opportunity to examine the
pending changes that will be made to the destination server. You can view these changes in the
following ways:

e In a Workshop for WebLogic propagation session, click the Merged tab in the editor. This
tab displays the merged inventory and highlights assets that represent additions, deletions,
and updates. In addition, you can make last-minute changes to the inventory by selecting or
deselecting specific nodes in the inventory tree. For more information on “Viewing and
Tuning the Merged Inventory” on page 7-14.

e If you are using the Ant tasks, you can examine a change manifest file. This file is an
XML file that lists the adds, deletes, and updates that will be applied when the final
inventory is generated. The OfflineExtractTask can extract the change manifest file from a
merged inventory file. You can edit the manifest file to apply further changes before you
produce a final merged inventory file with the OfflineCombineTask. For details on these
tasks, see Chapter 9, “Propagation Ant Task Reference.”

User Customizations and Propagation

6-28

The typical propagation occurs from a staging environment to a production system. In this
scenario, users typically do not have access to the staging environment, and no user customization
changes that require propagation would exist. For this reason, user customizations are not
propagated.

In general, when changes on a staging system are propagated to the production system, the
merging of staged changes and user customizations will occur just as it would if the staged
changes were made directly on the production system using the Administration Console.

User customizations are preserved on the destination system, but when you propagate to a
destination system, those customizations might be removed or modified on the destination server
under certain conditions. For instance, an administrator might make changes through the
WebLogic Portal Administration Console that potentially conflict with a given user’s
customizations. For example, an administrator might delete a particular portlet from the portal

BEA WebLogic Portal Production Operations Guide

Reviewing Log Files

that has been added by a user to one of their pages using the Visitor Tools. In this situation, the
user’s customization is “lost” in the sense that the portlet no longer exists, and as such, will not
appear in the user’s portal upon the next login.

Reviewing Log Files
Propagation operations and tasks generate log messages in the following locations:

e The server log.

e The verbose log for the propagation application. For information on enabling, disabling
and configuring the verbose log file, see “Configuring the Propagation Servlet” on
page 6-35.

e Log files specified in the parameters of individual propagation Ant tasks. See Chapter 9,
“Propagation Ant Task Reference” for detailed information on the Ant tasks.

e You can enable verbose logging for the propagation tools in Workshop for WebLogic. For
more information, see “Enabling Verbose Logging” on page 7-22.

Rolling Back an Import Process

The propagation tools are not transactional, and therefore do not support roll-back capability. If
you must revert to a pre-propagated environment, use the backups that you created before
beginning the propagation process. For more information, see “Perform a Data Backup” on
page 6-4.

WSRP Propagation

One of the primary advantages of Web Services for Remote Portlets (WSRP) is that the WSRP
model decouples the producers and consumers of remote portlets. This section explains the
correct technique for propagating consumer portal applications (portals that contain remote
portlets). For detailed information on using WSRP with WebL ogic Portal, see the Federated
Portals Guide.

This section includes these topics:
e Overview of WSRP Propagation
e Propagating Consumer Applications

e Known Problems with WSRP Propagation

BEA WebLogic Portal Production Operations Guide 6-29

../federation/index.html
../federation/index.html

Propagation Topics

Remote

Portlet Consumer Consumer
\ Propagate

6-30

Overview of WSRP Propagation

Currently, the only supported configuration that lets you propagate a staged portal application
that is a WSRP consumer to a production environment is shown in Figure 6-13. In this
configuration, the consumer applications in staging and production both “point” to the same
producer.

Figure 6-13 Supported Configuration for WSRP Propagation

Staging Production

Y

X¥YE01 EYAQ]
Producer Handle = Producer Handle =
myPraducer myFProducer
Producer

XYZ01

To better understand how remote portlets are propagated, it helps to review some basic
information about the relationship between producer and consumer applications. Before adding
aremote portlet to a consumer portal application, you must register the consumer with a producer
if the producer requires registration. If registration is required, you must provide a name for the
producer, called the producer handle. This handle is the name by which the consumer recognizes
the producer. In Figure 6-13, the producer handle is myProducer.

When an administrator customizes remote portlets using the WebLogic Portal Administration

Console, the consumer may clone the remote portlet. When a consumer clones a remote portlet,
it receives a new portlet handle from the producer. The producer then stores the state of the cloned
portlet against the registration handle it assigned to the consumer. The portlet state managed by
the producer typically includes portlet preferences. Note that this scenario occurs whether or not

BEA WebLogic Portal Production Operations Guide

WSRP Propagation

producer registration was required. In Figure 6-13 the cloned portlet handle is XYz01. During a
propagation, this portlet handle is propagated from the source to the destination. For more
detailed information on adding remote portlets, see the Federated Portals Guide.

Propagating Consumer Applications

If your staging and production environments are configured as shown in Figure 6-13, you can use
the propagation tools to move the consumer application from staging to production. To propagate
a consumer portal application, follow these steps:

Note: The following steps apply whether or not the producer required the consumer to register
itself.

1. Before propagating, add the producer to the consumer application on the destination system.
If the producer requires registration, you must perform the necessary registration steps. The
producer handle you select must match the handle that was used to register the producer in
the source system. You only need to perform this step the first time you propagate the portal.

For example, if you added or registered the producer with the consumer in staging with the
producer handle myProducer, you must also use myProducer as the producer handle in
the production area. For detailed information on adding and registering a producer, see the
Federated Portals Guide.

2. Use the propagation tools to propagate the consumer portal application from the source
system to the destination system. Any remote (proxy) portlets in the source consumer portal
are propagated to the destination.

When the propagation is completed, the consumer portal in the production environment is
functionally equivalent to the consumer portal in the staging environment.

Note: Propagation of producer data is not necessary because both the source and destination
system point to the same producer.

Known Problems with WSRP Propagation

For propagation of portals that use WSRP, the only supported configuration is described in the
previous section, “Overview of WSRP Propagation” on page 6-30. This section lists known
problems with this propagation model. It is important that you be aware of these issues if you
intend to propagate portals that use remote portlets.

e Because the consumer applications in the staging and production environments both point
to the same producer, any changes made to the portlets in one consumer will be seen in the
other consumer. For example, if you change a preference value of a remote portlet in the

BEA WebLogic Portal Production Operations Guide 6-31

../federation/index.html
../federation/index.html

Propagation Topics

staging consumer, that change will immediately show up in the equivalent portlet on the
production consumer. This caveat makes it impossible to create and modify remote (proxy)
portlets in a staging environment in isolation from the production environment, assuming
that the same proxy portlet exists in both environments (that is, it was previously
propagated).

o |f a consumer unregisters or deletes a producer, then all portlet instances that were
associated with that consumer are removed from the producer. For example, if you
unregister a producer with the consumer portal in the staging area, remote portlets in the
consumer portals in both the staging and production environments will be lost.

Note: Currently, WebLogic Portal supports a model where the producer is not aware that
propagation is taking place. Under this model, producer-managed state is not propagated.
In the future, WebL ogic Portal will support the WSRP 2.0 standard. At that point,
WebLogic Portal will support a model where the consumer can propagate the
producer-managed portlet state. Under the new WSRP 2.0 based model, the restrictions
listed in this section will no longer apply.

Increasing the Default Upload File Size

6-32

The propagation management servlet has a configuration setting to help mitigate “denial of
service” attacks. The servlet is configured with a maximum size allowed for uploaded files (files
uploaded over HTTP). By default, this is set to 1 MB. If any given file inside the inventory ZIP
file is larger than this value, it will be rejected. This section explains how to either work around
this limitation or change the propagation servlet’s configuration to allow larger files.

e Copying the Inventory to the Server
e Modifying a Deployment Plan
e Modifying the web.xml File

Copying the Inventory to the Server

The simplest workaround to this file size limit is to physically copy your file, through FTP or
another means, from the source to the destination server. After you copy the file to the
destination, you can use the OnlineUploadTask’s readFromServerFileSystem attribute to
perform the upload. For information on this task, see “OnlineUploadTask” on page 9-14.

BEA WebLogic Portal Production Operations Guide

Increasing the Default Upload File Size

Modifying a Deployment Plan

You can override the 1MB default file upload limit using a deployment plan. A deployment plan
is an optional XML file that configures an application for deployment to WebLogic Server. A
deployment plan works by setting property values that would normally be defined in the
WebLogic Server deployment descriptors, or by overriding context parameter values already
defined in a WebLogic Server deployment descriptor.

Tip: The creation and use of deployment plans is thoroughly discussed in the WebLogic
Server documentation. For more information, see “Deployment Plan Reference and
Schema” and “Updating Applications in a Production Environment.”

To modify the file size limit using a deployment plan, follow these steps:

1. Create a deployment plan file. There are several ways to create a deployment plan, as
discussed in the WebLogic Server documentation. Listing 6-1 shows a sample deployment
plan configured to modify the propagation web application.

Tip: The location of the deployment plan must be specified in your domain’s config.-xml
file. A sample stanza is shown in Listing 6-2. Refer to the WebLogic Server
documentation for more information.

2. Add <variable-definition> and <variable-assignment> elements to change the
context deployment descriptor parameter maximum_inventoryfile_upload_size.
These elements are highlighted in bold type in Listing 6-1. In the example, the upload file size
limit is changed to 3 MB. Note that the overridden descriptor is associated with the
application’s web . xmlI file.

Listing 6-1 Sample Deployment Plan

<deployment-plan xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<application-name>drtApp</application-name>
<variable-definition>
<variable>
<name>CHANGEUPLOAD</name>
<value>3000000</value>
</variable>
</variable-definition>

BEA WebLogic Portal Production Operations Guide 6-33

../../../wls/docs92/deployment/plan.html
../../../wls/docs92/deployment/plan.html
../../../wls/docs92/deployment/redeploy.html

Propagation Topics

<module-override>
<module-name>propagation.war</module-name>
<module-type>war</module-type>
<module-descriptor external="false">
<root-element>weblogic-web-app</root-element>
<uri>WEB-INF/weblogic.xml</uri>
</module-descriptor>
<module-descriptor external="false'">
<root-element>web-app</root-element>
<uri>WEB-INF/web._xml</uri>
<variable-assignment>
<name>CHANGEUPLOAD</name>
<xpath>/web-app/context-param/
[param-name=""maximum_inventoryfile_upload_size']/param-value</xpath>
</variable-assignment>

</module-descriptor>
</module-override>
</deployment-plan>

Listing 6-2 Deployment Plan Location in Sample config.xml

<app-deployment>

<name>drtApp</name>

<target>portalServer</target>

<module-type>ear</module-type>

<source-path>/myProject/myApplication</source-path>
<deployment-order>101</deployment-order>
<plan-dir>/myProject/applications/plan</plan-dir>
<plan-path>plan.xml</plan-path>

<security-dd-model>Advanced</security-dd-model>

</app-deployment>

3. Redeploy the application, as described in the WebLogic Server document, “Updating
Applications in a Production Environment.”

Modifying the web.xml File

Note: This method is not recommended.

You can configure the file upload size directly in the propagation application’s web . xm1 file. To
modify this file, do the following:

6-34 BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/deployment/redeploy.html
../../../wls/docs92/deployment/redeploy.html

Configuring the Propagation Servlet

1. Locate the propagation application’s WAR file. This file is located in:
WEBLOGIC_HOME/portal/lib/modules/wlp-propagation-web-lib.war

2. Unpack the WAR file and open the web.xml file for editing.

3. Add the stanza to the web . xml file shown in Listing 6-3. In this example, the default file size
is changed to 3 MB.

Listing 6-3 Changing the Default Upload Size

<context-param>
<description>Maximum upload size (in bytes), if not specified
defaults to 1 MB.
</description>
<param-name>maximum_inventoryfile_upload_size</param-name>
<param-value>3000000</param-value>
</context-param>

4. Repackage the WAR file.

5. Redeploy the application.

Configuring the Propagation Servlet

A number of configuration parameters that affect the propagation servlet are specified in the
propagation web application’s web.xml file. The preferred method for modifying these
parameters is by using a deployment plan.

A deployment plan is an optional XML file that configures an application for deployment to
WebLogic Server. A deployment plan works by setting property values that would normally be
defined in the WebLogic Server deployment descriptors, or by overriding context parameter
values already defined in a WebLogic Server deployment descriptor.

Tip: The creation and use of deployment plans is thoroughly discussed in the WebLogic
Server documentation. For more information, see “Deployment Plan Reference and
Schema” and “Updating Applications in a Production Environment.”

BEA WebLogic Portal Production Operations Guide 6-35

../../../wls/docs92/deployment/plan.html
../../../wls/docs92/deployment/plan.html
../../../wls/docs92/deployment/redeploy.html

Propagation Topics

Tip: See also the section, “Increasing the Default Upload File Size” on page 6-32, for
information on configuring the propagation servlet using a deployment plan.

The following sections show context parameters for the propagation application’s web . xml file.
To override these parameters, use a deployment plan. The parameters are used to set the
following configurations:

e Inventory Export Directory
e Description Text
e \erbose Logging

e \erbose Log File Location

Inventory Export Directory

The example stanza shown in Listing 6-4 is used to specify a temporary directory in which to
place the exported inventory ZIP file.

Listing 6-4 Inventory Export Directory

context-param>

<description>Base folder path for runtime data, such as
inventory exports.
</description>
<param-name>inventoryWorkingFolder</param-name>
<param-value>D:\dev\src\wlp\propagation\test\inventories</param-value>

</context-param>

6-36

Description Text

The example stanza shown in Listing 6-5 is used to specify a short description to be placed in the
export.properties file. This file contains summary information about the inventory;
including who exported it, when it was exported, how many nodes are in the export, and other
information.

BEA WebLogic Portal Production Operations Guide

Configuring the Propagation Servlet

Listing 6-5 Description Text

<context-param>
<description>The name of the operating environment.</description>
<param-name>environment_name</param-name>
<param-value>Staging</param-value>
</context-param>

Verbose Logging

The example stanza shown in Listing 6-6 is used to enable or disable verbose logging.

Listing 6-6 Verbose Logging

<context-param>
<description>Enable verbose logging for the servlet.</description>
<param-name>enable_verbose_logging</param-name>
<param-value>true</param-value>
</context-param>

Verbose Log File Location

The example stanza shown in Listing 6-5 is used to specify the location of the verbose log file.
By default, this file is stored in a temporary directory in the domain.

Listing 6-7 Verbose Log File Location

<context-param>
<description>Specify the folder to put verbose logs.</description>
<param-name>verbose_log_folder</param-name>
<param-value>D:/dev/src/wlp/propagation/test/inventories</param-value>
</context-param>

BEA WebLogic Portal Production Operations Guide 6-37

Propagation Topics

Best Practices

6-38

The following sections describe some practices that you should follow to achieve the most
predictable and accurate results with the propagation tools.

This section includes these topics:
e Keep Portal Framework Definition Labels and Instance Labels
e Do Not Manually Replicate Changes Between Environments

e Set the Scope to the Enterprise Application Level

Keep Portal Framework Definition Labels and Instance
Labels

When you create new portals and portal resources in WebLogic Workshop, BEA recommends
that you change the definition labels and instance labels at that time, to create meaningful names
for these resources. Once you have used the propagation tools to propagate changes among your
environments, it is very important that you do not change these resource names. The propagation
tools use definition labels and instance labels in order to identify differences between source and
destination systems; inconsistent results might occur if you change these labels within Workshop
for WebLogic or the Administration Console.

Do Not Manually Replicate Changes Between Environments

Create portal framework and security assets in only one environment. If you make identical
changes in both the source and target environment, the propagation tools cannot identify them as
being the same changes—propagation is carried out as if they were two separate resources. This
advisory does not apply to datasync and content management assets; however, it is still a best
practice to create assets in one environment only.

Set the Scope to the Enterprise Application Level

Choosing the highest level of scoping for the propagation ensures the that the destination
environment will closely mirror the source environment. If you scope to a lower level, such as
web application or desktop, the source and destination will inherently be in different states. In this
case, additional quality assurance testing may be required on the destination.

Although you can restrict the scope of a propagation, sometimes the utility must implement a
higher-level change if a change at that narrower scope depends on a change that occurs at a higher

BEA WebLogic Portal Production Operations Guide

Best Practices

level. For example, if you propagate a desktop that depends on assets in the library, and changes
occur for those library assets, the propagation tools can cause changes to other desktops even
though you set the scope at a desktop level. For more information on the relationships among
Portal resources, see “Scope and Library Inheritance” on page 6-20.

An exception to this practice is using scope to include or exclude a content management system.
A common practice is to propagate only the content management system or to propagate
everything but the content management system.

BEA WebLogic Portal Production Operations Guide 6-39

Propagation Topics

6-40 BEA WebLogic Portal Production Operations Guide

CHAPTERa

Using Workshop for WebLogic
Propagation Tools

This chapter explains how to use Workshop for WebLogic propagation tools to propagate a
WebLogic Portal. Workshop for WebLogic provides propagation tools that guide you through the
process of downloading and uploading portal inventories, merging portal inventories, setting
scopes and policies, and committing a final inventory. If you would like to explore a more
programmatic, automated approach to propagation, see Chapter 8, “Using the Propagation Ant
Tasks.”

Tip: Before reading this chapter, we recommend that you review Chapter 5, “Developing a
Propagation Strategy” and Chapter 6, “Propagation Topics.”

This chapter includes these topics:

o Overview

Overview of the Propagation Perspective

Downloading an Inventory File

Creating a Propagation Project

Viewing and Tuning the Merged Inventory

Creating a Final Merged Inventory File

Uploading the Final Inventory to the Server

Enabling Verbose Logging

BEA WebLogic Portal Production Operations Guide 1-1

Using Workshop for WebLogic Propagation Tools

Overview

Workshop for WebLogic provides a set of tools that let you perform a complete portal
propagation. The tools provided in the Workshop for WebLogic Propagation let you:

1-2

Download a portal inventory from a source or destination system.
Merge source and destination inventories.

Set scopes and policies on merged inventories.

Upload a portal inventory to a destination system.

Commit a final inventory on the destination system.

Workshop for WebLogic lets you merge inventory files, graphically depicts this merged
inventory, and highlights the artifacts that have been added, removed, or updated during the
merge. You then have a chance to tune the merged inventory and produce a final inventory file
that you can upload to a destination server.

Tip: All of the propagation features that are available in Workshop for WebLogic are also

available through the propagation Ant tasks. The Ant tasks offer a programmatic
approach to propagation and offer additional features, such as the ability to place the
server in maintenance mode, that are not offered in Workshop for WebLogic. See
Chapter 8, “Using the Propagation Ant Tasks” for more information.

Propagating a portal using Workshop for WebLogic involves these major steps. Each step is
explained in this chapter.

1.

Use the import feature to download portal inventory files from the source and destination
systems.

Use the Propagation Session wizard to create a propagation project, import source and
destination inventory files, and create a merged inventory file.

Use the Propagation Perspective to view and tune the merged inventory file. This perspective
provides a graphical view of your merged inventory, highlighting additions, deletions, and
updates, and allowing you to make changes before generating the final merged inventory.

Create a final merged inventory file.

Upload and commit the final merged inventory file to the destination server.

BEA WebLogic Portal Production Operations Guide

Overview of the Propagation Perspective

Overview of the Propagation Perspective

Workshop for WebLogic provides a Propagation perspective which provides views for viewing
and editing inventory files. This section introduces the Propagation perspective.

Figure 7-1 shows an example Propagation Perspective. The numbered areas are described briefly

below the figure.

Figure 7-1 Example Propagation Perspective

YW Propagation - myPropSession. propsession - BEA Workshop

File Edit Mavigate Search Project Run Window Help
r9 - =l @ - @

ﬁ %Prupagatiun QWOr’kshop L Resource

BT Mavigakor 58

&

=1-1=% simple

= O ||F propagation Impact 52

|H| .project

% blankConfig.zip

defaultConfig.zip

myPro) iqn. merged.zip
B Py propsessian

= 33 Page: pagel_2Page
= 34 Page Member: search_1.Pa
= m Portlet: search_1.Portle
% Localization: search
E% Localization: deskiop_update_1.Localizatior
E‘% Localization: prop.Localization

Deskiop: deskiop_u..._1.DefaultDeskiop

+ @ Desktop Definition: deskiop_update
+-cgf Book: book_1 MainBook
F‘-% Localizal op_update_1.Loi

< >

"-T}_, Propagation Dependencies 3 =0

Dependencies of De..._1.DefaulDeskiop

5% outline 52 az e B =8 < 3
= E'l:}_' Propagation Session ~
= ki pplication Merged | Inventoties
&T‘%tpalzrjn::n?;tmrkwwapu: [l Properties &2 | Problems | Consols = }:9 ~ =0
=] @ Partal: prop.Paortal Property | Walue ~
= @ Desktop Definition: =1 General
= @ Deskbop: deskt Mame desktop_update_1.Defz
=-<%E Book: book Type Desktop
=I5 Book M Type ID PF_DESKTOP_MODE
= Pac =] Local Policy
S| Accept Change true
= Change Explanation This node's acceptance |
Change Type Add
8 Locoleaton: deyg| __[vlled Change = v
< > < *>

®

'5‘1_, Propagation Dependents &2 =0

Dependents of Desk, .._1.Defaulbeskiop

@

1. Navigator — Shows the contents of the propagation session, including source and destination
files, merged inventory files, and properties files.

2. Merged Inventory/Inventories — This view lets you switch between a hierarchical
representation of the merged inventory file or the source and destination inventories. To switch
between these two views, click the Merged or the Inventories tab below the view.

BEA WebLogic Portal Production Operations Guide

1-3

Using Workshop for WebLogic Propagation Tools

3. Propagation Impact — This view shows you the inventory nodes that are affected when you
modify a merged inventory file. For instance, if you deselect a node in the merged inventory, to
remove it from the propagation scope, the Propagation Impact view highlights nodes that are
dependent on the deleted node.

4. Outline — This view lets you view and navigate the portal inventory.

5. Properties — The Properties view displays information about the selected inventory node. This
view also lists the policy that applies to the node and any manual changes that will be required if
the policy is applied.

6. Propagation Dependencies — This view shows you assets upon which the selected asset
depend. Removing any of the dependent assets will make the selected asset invalid.

7. Propagation Dependents — This view shows you the assets that depend on the selected asset.
If you remove the selected asset, these dependent assets will become invalid.

Downloading an Inventory File

1-4

This section explains how to download a portal inventory file from a server. To propagate a
portal, you need to download the source and the destination inventories, combine them, and then
upload and commit the final combined inventory.

Note: This operation extracts the portal inventory and attempts to write it to a ZIP file. If the
ZIP file created exceeds 4 GB, this operation fails and a message is written to the server
log and the verbose log. If this occurs, try scoping your inventory to limit the size of the
resulting archive file. See “Understanding Scope” on page 6-11 for more information.

Tip: You can also use the OnlineDownloadTask Ant task to download an inventory file. See
Chapter 9, “Propagation Ant Task Reference” for more information.

1. Select File > Import.

2. Inthe Import — Select dialog, select Propagation Inventory from Server, as shown in
Figure 7-2, and click Next.

BEA WebLogic Portal Production Operations Guide

Figure 7-2 Import — Select Dialog

W Import

Select

Select an import source:

Import a propagation inventory from a BEA WeblLogic Portal Server,

Downloading an Inventory File

X

(=]

54, App Client 4R file

[E, archive file

25 Checkout Projects From CS
[FLEAR file

8, EJE JAR file

1 Existing Projects into \Workspace
L External Features

45, External Plug-ins and Fragments
[File system

Elpreferences

Erge Propagation Inventory from Server
&), RAR file

f‘%},Team Project Set

(T, WAR, file

22 web Service

| Mext = | |

Cancel |

3. Inthe Import Inventory from Server dialog, complete the Server URL, Username, and
Password fields. The server URL is the URL of the propagation servlet that is deployed on
the target server. This URL is formed as follows:

http://servername:portnumber/earProjectNamePropagation/inventorymanagement

Where earProjectName is the name of the EAR project that contains the portal
application that you are propagating. For example: myEARProjectPropagation. For

example:

http://1ocalhost:7001/myEARProjectPropagation/inventorymanagement

Tip:

The propagation servlet is deployed, by default, in all WebLogic Portal EAR projects.

This servlet enables communication with remote propagation clients, such as the
Workshop for WebLogic propagation tools and Propagation Ant Tasks. The servlet
allows remote clients to perform online operations, such as downloading, uploading,
and committing WebLogic Portal inventories.

A sample Import Inventory from Server dialog is shown in Figure 7-3.

BEA WebLogic Portal Production Operations Guide 1-5

Using Workshop for WebLogic Propagation Tools

Figure 7-3 Import From Server Parameters

¥ Import Inventory from Server

Import From Server Parameters Elg=|

Configure the parameters of the import,

—Remaote Server Information

Server URL: | http: fimyServer: 7001 /portalwebProjectPropagation/inventorymanagement
({e.g. http:/flocalhost: 7001 fportalAppPropagationfinventorymanagement)

Username: | weblogic

Password: | kA i

|+ Fail the build on any error
™ verbose output

™ save generated build File

| Save As... |

¥ Run generated build file

< Back I Mexk = I Finiish Cancel

4. Click Next. The Choose Inventory File dialog appears.

5. Inthe Choose Inventory File dialog, select the folder in which to place the inventory file, and
enter a name for the file, as shown in Figure 7-4.

Note: You can, if you want, add a . zip extension to this file. The extension is not added
automatically. The extension is not required.

1-6 BEA WebLogic Portal Production Operations Guide

Creating a Propagation Project

Figure 7-4 Choose Inventory File Dialog

YW Import Inventory from Server g|
Choose Inventory File E@

Select the location to save the resulting inventory file

Enter or select the parent folder:

| propagationiebProject

+-5=F portalEarProject
+ b‘J portalwebProject
r=d b opagation'WebProj

Inventory File Mame: | src.zip

< Back | | Finish | Cancel

Creating a Propagation Project

This section explains how to use the Propagation Session wizard to set up a propagation project
in Workshop for WebLogic. This section discusses the following tasks:

e Create a Simple Project
e Begin a Propagation Session
e Import the Inventory Files

e Create a Merged Inventory File

Create a Simple Project

A propagation project must reside in a project folder. If you do not currently have a project folder
in which to put your propagation project, you need to create one first. In this initial task, you
create a simple project for this purpose.

To create a simple project, do the following:

1. Start Workshop for WebL ogic.

BEA WebLogic Portal Production Operations Guide 1-1

Using Workshop for WebLogic Propagation Tools

1-8

2. Select File > New > Project.

3. Inthe New Project — Select a Wizard dialog, open the Simple folder, select Project, and click
Next.

4. Inthe New Project dialog, enter a name for the project and click Finish. The project appears
in the Package Explorer, as shown in Figure 7-5.

Figure 7-5 New Simple Project Folder

% Package Explorer X

E=Y sirmpleProject L New Simple
Project Folder

Begin a Propagation Session

A propagation session provides a wizard that guides you through the process of importing
inventory files, viewing them, and merging them.

To begin a propagation session, do the following:
1. Select File > New > Other.

2. Inthe New — Select a Wizard dialog, open the WebL ogic Portal folder, select Propagation
Session, and click Next.

3. Inthe New Propagation Session dialog, select a parent folder, and enter a name for the
session. The parent folder can be any project folder, such as the Simple Project folder you
created previously.

4. Click Next. The New Propagation Session — Choose source inventory files dialog appears.

Checkpoint: In the next task, you will import a source and a destination inventory file. Workshop
for WebLogic then lets you view these files, adjust the scope and policies, and merge the files
into a final merged inventory file that you can upload and commit to the destination server.

Import the Inventory Files

The propagation tools operate on a pair of WebLogic Portal inventory files: a source and a
destination file. In this task, you import a previously downloaded source inventory file into the
project.

BEA WebLogic Portal Production Operations Guide

Creating a Propagation Project

Tip: You can download a portal inventory using Workshop for WebLogic or the
OnlineDownloadTask Ant task. The Workshop for WebLogic method is described in
“Downloading an Inventory File” on page 7-4. The Ant task is described in Chapter 8,
“Using the Propagation Ant Tasks.”

The imported inventory file describes the entire Enterprise application environment, as contained
in the database, for that system. The source inventory file is stored in the form of XML files,
which are grouped into a single ZIP file.

WARNING: Never edit the individual XML files in the exported inventory ZIP file.

1. Inthe The New Propagation Session — Choose source inventory files dialog, select the link
Click to import files, as shown in Figure 7-6. The Import — Select dialog appears.

Figure 7-6 Choose Source Inventory File Dialog

W New Propagation Session §|

Choose source inventory file E%

Select the inventory file From the source WLP server,

Inventory File:

== simpleProject
|| .project

Inventory Properties:
Created By:

Created On:
Complete Expork:

& Count:
Environment:

Llick ko impart files,;

< Back | | | Cancel |

2. Inthe Import — Select dialog, select File system, as shown in Figure 7-7, and click Next.

BEA WebLogic Portal Production Operations Guide 1-9

Using Workshop for WebLogic Propagation Tools

Tip: If you select the Import Inventory from Server option, the wizard lets you import the
inventory directly from the server. If you choose this path, the basic steps are identical
to the steps outlined in “Downloading an Inventory File” on page 7-4.

Figure 7-7 Import — Select Dialog
¥, Import

Select

Y
Import resources From the local file system into an existing project. M

Select an import source:

54, App Client I8 file

[T, archive file

gﬁcheckout Projects from CYS
[ELEAR file

T, EJB JAR File

ﬁExisting Projects inko Workspace
Lk External Features

%External Plug-ins and Fragments

|

%Propagation Inventory from Server
@, RAR file

f‘%},Team Project Set

. WaR file

|

| Mexk = | | Cancel |

3. Inthe Import — File System dialog, click Browse to locate the folder containing the inventory
or inventories you want to import, and select the inventory files from the list box, as shown
in Figure 7-8.

1-10 BEA WebLogic Portal Production Operations Guide

Figure 7-8 Import — File System Dialog

Creating a Propagation Project

File system —
Import resources from the local file system, { .-_"
I <
From directary: |><:'|,bi||'|,invent0ries j Browse, ..
E._[_]blankCDnFig.zip
E._[_]defauItCDnFig.zip
Filter Types. .. | Select Al Deselect Al
Into folder: | simpleProject Browse, ..
Options
™ Owerwrite existing resources without warning
" Create complete Folder struckure
% Create selected Folders only
< Back | | Finish | Cancel |

4. Click Finish. This returns you to the New Propagation Session — Choose Source Inventory
File dialog. Do not close the dialog; you will continue using it in the next section.

5. Repeat this procedure to download the destination inventory file.

Tip:
system.

BEA recommends that you store all propagation session files within a source control

Checkpoint: You now have imported the source and destination inventory files into the
propagation project. Now you will create a merged inventory file from the source and destination

files.

BEA WebLogic Portal Production Operations Guide 1-11

Using Workshop for WebLogic Propagation Tools

1-12

Create a Merged Inventory File

In this task, you select the source and destination inventory files and generate a merged inventory
file. A merged inventory file contains all of the artifacts resulting in the union of the source and
destination files. Later, you can view and refine the merged inventory file before creating a final
inventory file.

The files are merged using a set of rules, which include:
e Global policies
e Global scope

e Local policy overrides

For detailed information on these rules, see Chapter 6, “Propagation Topics.” For the example in
this chapter, default rules are used.

Select the Source Inventory File

1. Inthe Choose Source Inventory File dialog, select the source inventory file, as shown in
Figure 7-9, and click Next.

Figure 7-9 Choose Source Inventory Dialog

B2 New Propagation Session g|
Choose source inventory file E%

Select the inventary file from the source WLP server,

Inventory File:

==+ propProject
X project

blankConfig.zip
defaultConfig.zip

Inventory Properties:

Created By: portaladmin

Created On: Ock 26, 2005 11:19:00 AM
Complete Export: true

MNode Count: 459

Environment: Production

Click to import files.

< Back | Mexk = | Cancel

BEA WebLogic Portal Production Operations Guide

Creating a Propagation Project

Select the Destination Inventory File

1. Inthe Choose Source Inventory File dialog, select the destination inventory file, as shown in
Figure 7-10.

Figure 7-10 Destination Inventory File Selected

B2 New Propagation Session §|
Choose destination inventory file E%

Select the inventary file from the destination WLP server,

Inventory File:

== propProject
X project

blankConfig. zip
defaultConfig.zip

Inventory Properties:

Created By: portaladmin

Created On: Ock 26, 2005 11:15:15 AM
Complete Export: true

MNode Count: 307

Environment: Production

Click to import files.

< Back | Mexk = | Finish | Cancel

2. Click Finish. The Open Associated Perspective dialog appears.

Tip: By clicking Finish, you bypass the remaining dialogs of the Propagation Session
wizard, accepting all of the default values. If you want to learn more about these
options, see Chapter 6, “Propagation Topics.”

3. Inthe Open Associated Perspective dialog, click Yes. This action causes the Propagation
Perspective to open. This perspective lets you view the merged inventory file and make
changes to it if you want.

Tip: You can always open the Propagation Perspective manually by selecting Window >
Open Perspective > Other, and selecting Propagation from the Select Perspective
dialog.

BEA WebLogic Portal Production Operations Guide 1-13

Using Workshop for WebLogic Propagation Tools

The interim merged inventory file is created. By default, this file is named:
propSessionName.merged.zip

where propSessionName is the name of the propagation session file you created
previously.

Checkpoint: At this point, you have imported a source and a destination inventory file into your
propagation session and generated a merged inventory file, which is the union of the contents of
the source and destination files. Next, you will view and tune the merged inventory file.

Viewing and Tuning the Merged Inventory

After you generate the merged inventory file, it appears in the Merged Inventory Tree View, as
shown in Figure 7-11.

Note: You must be in the Propagation Perspective to see the merged inventory. You can open
this perspective by selecting Window > Open Perspective > Other, and selecting
Propagation from the Select Perspective dialog.

The tree view is a hierarchical description of the content of the merged inventory files.

Figure 7-11 Viewing the Merged Inventory

T Mavigator 23

F

=I-1=F propProject £ 5 58] Fersonalization Service B .
%] .project +1- [Z]E Portal Framework & Merged inventory
blankConfig.zip ¥ & security tree
defaultConfig.zip —_
test.merged.zip

Ei hest.propsession

e W W ¥ LRy P

o BT - ——

By expanding the merged inventory tree, you can see the detailed contents of the inventory,
including the artifacts that have been added, deleted, or updated. Figure 7-12 shows that as you
drill down into an inventory view, added artifacts are indicated with a + (Plus) icon.

1-14 BEA WebLogic Portal Production Operations Guide

Figure 7-12 Expanded Inventory

Merged Inventory:

Viewing and Tuning the Merged Inventory

-1-[#AE=l Partal Framework
=[5 Portal Framework Webapp: portal_1.Webapp
=[5 Portal Framework Library

+-[#] =] Portlet Definition: dictionary Portlet
+-[#] =] Portlet Definition: news.Partlet
+-[#] =] Portlet Definition: links,Portlet
+-[F] =] Partlet Definition: search.Partlet
+-[#] =] Portlet Definition: wsrpcss,Partlet
+-[#] =] Partlet Definition: SimpleLabel.Partlet
+-[#] =] Partlet Definition: quote.Partlet
+-[#] =] Portlet Definition: time,Portlet
+-[#] =] Portlet Definition: threaded1.Portlet
+-[#] =] Portlet Definition: Struts.Portlet
+-[#] =] Portlet Definition: PageFlaws, Portlet

& Book Definition: book_1.Book
L33 Page Definition: pagel_2.Page
+- [y Portal: prop.Portal

F-[-[H
KEE

+ Gﬁ Book Definition: B2000286401 120079431368, Book.
= 3 Page Definition: P200023640112008260467 1. Page
t‘% Localization: P2000286401 120082604671 Localization
(@ Portal Framewark Placeholder Security Policies
= L33 Page Member: T2800242101 120766285651 . PageMember
+ E Paortlet: T2800242101120766285651, Portlet
3 Page Definition: P2200242101120766196974.Page

+ Icon indicates
additions

The merged inventory file graphically shows the state of each node with a combination of color

and special icons badges. These visual cues include:

Table 7-1 Default Colors and Icon Badges in Merged Inventories

Icon Badge Default Color Meaning

+ (Plus sign) Green The artifact exists in the source, but not the destination. It will
be added to the destination.

— (Minus sign) Red The artifact exists in the destination, but not the source. It will
be deleted from the destination.

[1(Square) Blue The artifact exists in the source and destination. It has
changed in the source and it will be updated in the
destination.

Standard Eclipse Red Error. Indicates that the change is impossible to make,

error badge

possibly because of a conflicting dependency. In addition, a
message is displayed in the Problems view.

BEA WebLogic Portal Production Operations Guide 1-15

Using Workshop for WebLogic Propagation Tools

Table 7-1 Default Colors and Icon Badges in Merged Inventories

Icon Badge Default Color Meaning

Standard Eclipse Yellow Warning. Indicates a manual change is required. In addition,
warning badge a message is displayed in the Problems view.

None Green Implicit change.

Tip: The default colors listed in Table 7-1 can be changed in the Eclipse IDE. To change the
default colors, go to: Window > Preferences > General > Appearance > Colors and
Fonts. Then, select WebLogic Portal > Propagation Tool.

Tuning the inventory refers to manually selecting or deselecting nodes in the inventory tree. If
you deselect a node, the node and any dependent nodes will not be included in the final merged
inventory file. Because many artifacts are dependent on other artifacts, deselecting one artifact
often results in other artifacts automatically becoming deselected. Because the dependencies
between portal artifacts are often complex, any discussion of modifying the merged inventory is
beyond the scope of this chapter. For more information on editing the inventory, see Chapter 6,
“Propagation Topics.”

Tip: You can right-click a node to access additional functions, such as view filters. For
example, you can filter the view to just show additions. Refer to online help in Workshop
for WebLogic for more information.

Tip: The Propagation Dependencies and Propagation Dependents views help you asses the
impact of adding or deleting portal assets from the merged view. For more information
on these views, see “Overview of the Propagation Perspective” on page 7-3.

Checkpoint: After viewing and modifying the merged inventory, you are ready to create a final
merged inventory file.

Creating a Final Merged Inventory File

1-16

After you are satisfied with the state of the interim merged inventory, you need to generate a final
version of the merged file. At this time, any changes you made to the interim file are executed
and a final, merged inventory file is created. The final inventory file is always smaller than the

BEA WebLogic Portal Production Operations Guide

Creating a Final Merged Inventory File

interim file. This is because the interim file has to maintain all of the artifacts resulting in the
union of the source and destination files, while the final file contains only the merged contents of

the two files.
1. Select File > Export. The Export — Select dialog appears.

2. Inthe Export — Select dialog, select Propagation Session to Inventory, as shown in
Figure 7-13, and click Next.

Figure 7-13 Export — Select Dialog

X

:: Export

Select A
Export a propagation session ko an inventary file, E // 5

Select an export destination:

& ant Buildfles

L app Client 38R file
[Earchive file

|4 Contral 1aR File
sﬁiDeponable features
ngeployable plug-ins and fragments
[EAR file
,EEcIipse product
JBEIE JAR File

[IFile system
JC3aR file

B 3avadae
lrreferences
l=‘l:1;,Pro|:|agation Inventory to Server
Ex] Propagation

BIRAR file

fEI Tearn Project Set
% WaR File

Advuiah Cavuica

| Mexk = | | Cancel |

3. Inthe Choose Propagation Session dialog, select the propagation session file for the
propagation session you are currently working on. To do this, you must open the project folder
and select the propagation session file, as shown in Figure 7-14. After selecting the
propagation file, click Next.

BEA WebLogic Portal Production Operations Guide 1-11

Using Workshop for WebLogic Propagation Tools

Figure 7-14 Choose Propagation Session Dialog

B Export Propagation Session

Choose Propagation Session

Select the propagation session {,propsession] file

Propagation Session File:

1=F Servers
1= anotherProject
'b” myDatasyncProject
= myEARProject
'bd myPortalwebProject
=% mySimpleProject
1= propProject
1= simpleProjectz
e L 2, propsession
1= testProject

1 [F-F-E- -

¥

< Back | Mexk = | | Cancel |

4. In the Choose Inventory File dialog, select the folder in which you want to put the final
inventory file, enter a name for the file, and click Finish.

The final inventory file appears in the Package Explorer in the folder you designated, as
shown in Figure 7-15.

Figure 7-15 Final Inventory File

@ | Bg

1= anotherProject }

'b” myDatasyncProject

= myEARProject)

'bd myPortalwebProject "

=% mySimpleProject)

1= propProject

1= Servers 3

1= simpleProjectz {
/

blankConfig.zip
defaultConfig.zip
@ myPropSessionz.merged. zip
%Ry Ben S SSinn propsl i an s e

1 [F-F-E- - E -

Final Inventory File

1-18 BEA WebLogic Portal Production Operations Guide

Uploading the Final Inventory to the Server

Uploading the Final Inventory to the Server

This section explains how to upload the final inventory to a destination server.

Note: Workshop for WebLogic does not automatically place the server in maintenance mode
to prevent users from changing portal data using the WebLogic Portal Administration
Console or Visitor Tools on the production system. If a user makes changes on the
production system after the inventory listing has been imported and validated,
propagation results might be inaccurate and changes could be unsuccessful. If you want
to place the destination system in maintenance mode, you can use the
OnlineMaintenanceModeTask Ant task, which is described in Chapter 9, “Propagation
Ant Task Reference.”

WARNING: Itis very important that you make no changes to the production system
during the final upload.

Deploy the EAR File

Before you upload the final inventory, the source application EAR file must be deployed on the
destination server. In other words, if you are propagating an application from the staging
environment to the production environment, you must deploy the EAR from staging to
production before you upload the inventory.

For more information, see “Deploy the J2EE Application (EAR)” on page 6-5.

Propagate the Final Inventory to the Destination Server

When you propagate the inventory to the server, Workshop for WebLogic propagates the
database assets in the final inventory file to the production server, according to the scope you
assigned and the policies you selected previously.

Tip: In this step, Workshop for WebLogic uploads the file to the server and commits it. The
propagation Ant tasks OnlineUploadTask and OnlineCommitTask can be used for the
same purpose.

1. Select File > Export. In the Export — Select dialog, select Propagation Inventory to Server,
as shown in Figure 7-16, and click Next.

BEA WebLogic Portal Production Operations Guide 1-19

Using Workshop for WebLogic Propagation Tools

Figure 7-16 Select Export Propagation Inventory to Server

;:: Export

Select }‘

Export a propagation inventory to a BEA Weblogic Portal Server, | E E |

Select an export destination:

[Earchive file

| Cantral J4R File

@Deployable features
%Deployable plug-ins and fragments
[EAR file

,EEcIipse product

BEIE JAR File

[IFile system

18R File

B 3avadac

Srreferences

‘Propagation Inventory to Server
%Propagation Session ko Inventory
BIRAR file

fEI Tearn Project Set

an Fila

>

|

= Back. I Mexk = I Finiish | Cancel |

2. In the Choose Propagation Inventory dialog, select the final merged inventory file, as shown
in Figure 7-17, and click Next.

1-20 BEA WebLogic Portal Production Operations Guide

Uploading the Final Inventory to the Server

Figure 7-17 Choose Propagation Inventory Dialog

) Export Inventory to Server PZ|
Choose Propagation Inventory E%

Selection the propagation inventory to export,

Inventory File:

+ b‘J myPortalwebProject ~
+-1=F mySimpleProject
+-1=F propProject
== simpleProject
X project

blankConfig.zip
defaultConfig.zip

myFinallmventory
@ myPropSessionz.merged. zip
E& myPropSessionZ, propsession
W

1T ek
Inventory Properties:

Created By: bwitman

Created On: Jan 31, 2006 1:14:41 PM
Complete Export: true

MNode Count: 364

Environment: Production

Click to import files.

< Back | Mexk = | | Cancel |

3. Inthe Export to Server Parameters dialog, enter the URL of the propagation servlet running
in the target web application, and the required username and password information, as shown
in Figure 7-18, and click Finish.

The servlet URL is:

http://servername:portnumber/earProjectNamePropagation/inventorymanagement

Where earProjectName is the name of the EAR project that contains the portal
application that you are propagating. For example: myEARProjectPropagation. For
example:

http://localhost:7001/myEARProjectPropagation/inventorymanagement

Tip: The propagation servlet is deployed, by default, in all WebLogic Portal EAR projects.
This servlet enables communication with remote propagation clients, such as the
Workshop for WebLogic propagation tools and Propagation Ant Tasks. The servlet

BEA WebLogic Portal Production Operations Guide 1-21

Using Workshop for WebLogic Propagation Tools

allows remote clients to perform online operations, such as downloading, uploading, and
committing WebLogic Portal inventories.

Figure 7-18 Export To Server Parameters Dialog

B x|

Export To Server Parameters E%

Configure the parameters of the export,

Remate Server Information

Server URL: | http: fflocalhost: 7001 /propServlet

Username: | weblogic

Password: | Hkdk Ak

Iv Fail the build on ary error
™ Werbose output
[Walidate the inventary upload

™ Save generated build file

| |

=

< Back | | Finish | Cancel

Workshop for WebLogic deploys the merged inventory file to the server.

Enabling Verbose Logging

Verbose logging is useful in the event that a problem occurs with your propagation. You can
choose to enable verbose logging in Workshop for WebLogic by following these steps:

1. Exit Workshop for WebLogic.

2. Open the following file in an editor:

WEBLOGIC_HOME\workshop4WP\workshop4WP . ini

3. Add the following property to the workshop4Wwp . ini file:

-Dcom.bea.wlp.eclipse.proptool.verbosefolder=D:\propagation\elogs

1-22 BEA WebLogic Portal Production Operations Guide

Enabling Verbose Logging

where D:\propagation\elogs is the directory in which you want the verbose logs to be
saved.

4. Restart Workshop for WebL ogic.

Note: The verbose logs will be written to the specified directory. You must purge this directory
from time to time, to avoid unwanted disk space use.

BEA WebLogic Portal Production Operations Guide 1-23

Using Workshop for WebLogic Propagation Tools

1-24 BEA WebLogic Portal Production Operations Guide

CHAPTERa

Using the Propagation Ant Tasks

The propagation Ant tasks provide a full set of tools that you can use to propagate WebLogic
Portal assets from one environment to another programmatically.

This chapter introduces the propagation Ant tasks and discusses related topics such as scoping
and policies. This chapter includes the following sections:

e Introduction

e Before You Begin

Installing the Ant Tasks

Overview of Online Tasks

e Overview of Offline Tasks

Scoping an Inventory

Using Policies

Combining and Committing Inventories

Introduction

The Ant tasks let you perform all of the functions that you can perform with the Workshop for
WebLogic propagation tools, plus additional options and functions, such as placing the server
into maintenance mode. The Ant tasks:

o Allow you to automate the propagation process.

BEA WebLogic Portal Production Operations Guide 8-1

Using the Propagation Ant Tasks

e Provide a richer set of features than the Workshop for WebLogic propagation tools.

e Let you perform a propagation entirely on the destination system.

Before You Begin

Note: The Administration Server must be running when you perform a propagation to allow
certain LDAP data to be updated. A propagation can cause the following kinds of LDAP
data to be added, deleted, or updated: visitor roles, delegated administration roles,
entitlement policies, and delegated administration policies.

Before you attempt to propagate a portal web application using the Ant tasks described in this
chapter, it is important to be familiar with the basic concepts of WebLogic Portal propagation.
For detailed information on planning a propagation strategy, see Chapter 5, “Developing a
Propagation Strategy.” The Ant tasks provide the same basic features as the Workshop for
WebLogic propagation tools. The basic concepts and considerations outlined in Chapter 6,
“Propagation Topics” apply to both the propagation tools and to the Ant tasks.

Tip: We also recommend that you read Chapter 7, “Using Workshop for WebLogic
Propagation Tools” before designing an Ant-based propagation script. This chapter
describes how to propagate a portal using the Workshop for WebL ogic propagation tools.
These tools step you through the propagation process and provides a visual interface for
merging, viewing, and tuning inventories. Reviewing and understanding the workflow
used by the propagation tools can be useful to you as you plan your Ant-based
propagation.

Installing the Ant Tasks

8-2

The Ant tasks are divided into two categories: online and offline. The online tasks interact with
a WebLogic Portal application that is deployed and running. For example, the
OnlineDownloadTask lets you extract a portal inventory from a live server and store it in a file.
To accomplish this, the task communicates with a servlet that is deployed with the enterprise
application. The online tasks are summarized in “Overview of Online Tasks” on page 8-7.

The offline tasks operate on inventory files that have already been extracted and saved. The
offline tasks do not require network connectivity. The offline tasks are summarized in “Overview
of Offline Tasks” on page 8-8.

BEA WebLogic Portal Production Operations Guide

Installing the Ant Tasks

To use either the online or offline Ant tasks, you need to put the JAR files containing the tasks in
your CLASSPATH. To use the online tasks, you also need to deploy a library module with the Portal
EAR Project on the source and destination systems.

This section includes these installation topics:
e Required JAR Files
e Deploying the Propagation Servlet

e Testing the Ant Installation

Required JAR Files

To run the propagation Ant tasks, you must place several JAR files in the CLASSPATH for the Ant
tasks on the system where you intend to use them, as described in this section.

1. Using a utility such as WinZip, open the following WAR file:
BEA_HOME/weblogic92/portal/lib/modules/wlp-propagation-web-lib.war

2. Extract the following JAR files and save them on your system, and add them to the
CLASSPATH for the Ant tasks on the system where you intend to use them:

— pl3n_prop.-jar
— netuix_prop.-jar
— content_prop.jar
3. Also add the following JAR files to the CLASSPATH for the Ant tasks:
— BEA_HOME/weblogic92/platform/lib/pl3n/pl3n_common.jar
— BEA_HOME/weblogic92/common/pl3n/1ib/pl3n_prop_ant.jar
4. If you are running the Offline Tasks, you also need the following JARs:
— BEA_HOME/weblogic92/server/lib/xbean.jar

— BEA_HOME/weblogic92/server/lib/api.jar

Deploying the Propagation Servlet

A servlet that handles propagation requests is provided with your WebLogic Portal installation.
If you intend to use the online Ant tasks, this servlet must be deployed in the Portal EAR Project
that contains the portal application(s) you want to propagate.

BEA WebLogic Portal Production Operations Guide 8-3

Using the Propagation Ant Tasks

8-4

By default, the Propagation Service facet is included in a Portal EAR Project, as shown in
Figure 8-1. This facet includes the propagation servlet. If you created the Portal EAR Project with
the Propagation Service facet selected, then the propagation servlet is automatically deployed
when you deploy the EAR to the server.

Figure 8-1 Propagation Service Module

W New Portal EAR Project @

Select Project Facets
Enables the project to be deploved as an EAR module,

Presets; |WebL0gic Portal EAR Project Facets j

Project Facet ‘ersion |
EJear]| L4..
|Z| WebLogic EAR Extensions 9.2.0
- |5 weblLogic Partal
|=| Admin Console 2.2.0
\=| Admin Framework. 2.2.0
|=| Portal Application Services 9.2.0
|=| Portal Customizations Frar 9.2.0 X
|=| Propagation Service 2.2.0 Propagation
+-[1 2 weblogic Portal (Optional) Service facet

+-[] |5 Weblogic Portal GraupSpace
<< Show Runtimes

HEEEA

< Back | Mexk = | Finish | Cancel |

When it is deployed, the name of the servlet is earProjectNamePropagation.

Where earProjectName is the name of the EAR project that contains the portal application that
you are propagating. For example: myEARProjectPropagation

Tip: You can see that the servlet has been added to your application by looking in the
application’s META-INF/weblogic-application.xml file. Listing 8-1 shows the
stanzas added for the example application, myEarProject.

Listing 8-1 Propagation Servlet Configuration

<library-ref>
<library-name>wlp-propagation-app-lib</library-name>

BEA WebLogic Portal Production Operations Guide

Installing the Ant Tasks

</library-ref>

<library-context-root-override>
<context-root>propagation</context-root>
<override-value>myEarProjectPropagation</override-value>

</library-context-root-override>

You need to know the name of the servlet when you use the online Ant tasks, because these tasks
use the servlet to process their requests. For example, the OnlinePingTask takes a serverURL
parameter that requires the servlet name:

servletURL="http://localhost:7001/myEarProjectPropagation/
inventorymanagement"*

You can check whether the propagation servlet is included in your EAR project by doing the
following:

1. Open Workshop for WebL ogic.

2. Right-click the EAR project in the Package Explorer, and select Properties. The Project
Facets dialog appears, as shown in Figure 8-2.

Figure 8-2 Checking the Propagation Service Facet

W Properties for portalEar L= [{5
type filker text - Project Facets P

Info

Builders Runtime : BEA WeblLogic v9.2
File Templates

JZEE

JZEE Module Dependencie

£

The following Facets are installed on this project:

5P Diesign Paletts Project Facet ersion
Merged Resource Adm!n Console 2.2.0
Profile Compliance and Ya il aTEWork Slrly
EAR. 1.4
Portal Application Services 9.2.0
Praject References Partal Custamizations Framewark 9.2.0
Server Propagation Service 9.2.0 Propag ation
Task Tags Weblogic EAR Extensions 2.2.0 Service
Walidation
‘WeblLogic Portal Server S
+- ¥Doclet
AddfRemove Project Facets, .. |
< ¥

BEA WebLogic Portal Production Operations Guide 8-5

Using the Propagation Ant Tasks

3. Inthe Project Facets dialog, be sure that the Propagation Service facet is included. If itisn’t,
select Add/Remove Project Facets and add this facet.

4. Click OK to complete the operation.

Testing the Ant Installation

WebLogic Portal provides a sample Ant build script that you can use to execute each of the
propagation Ant tasks. This section explains how to use the sample build script to test that the
propagation servlet is installed correctly. The sample build script is:

BEA_HOME/weblogic92/portal/bin/propagation/propagation_ant.xml
1. Start the WebLogic Portal server in which your portal EAR project is deployed.

2. Edit the sample build script appropriately to include correct values for your WebLogic Portal
installation directory, a directory in which to write script output, the propagation servlet URL,
and other information.

Tip: The script file includes detailed information about the variables you need to provide. Be
sure to read the instructions in the script carefully.

3. After you have properly configured the build script variables, run the OnlinePingTask. To do
this, enter the following command.

ant -f propagation_ant.xml pingSrc

If the operation succeeds, you will see the output shown in Listing 8-2.

Listing 8-2 Successful Ping Message

pingSrc:
[echo] ****** Start: pingSrc ******

[onlinePing] INFO: Using the logger delegate
(com.bea.pl3n.management. inventory.util . OfflinelnventorylLoggerDelegate)
specified in the propagation_context.properties file.

[onlinePing] WARNING: This command is using HTTP, which will transmit the
administrator password in plain text. It is recommended to set allowHttp to false.

[echo] ****** Finish: pingSrc ******

8-6

BEA WebLogic Portal Production Operations Guide

Overview of Online Tasks

Tip: You can copy the propagation_ant.xml build script and use it as a basis for creating
your own custom propagation build scripts. Note that the sample script includes
examples of running each task both with and without a condition property. The condition
property, provided by the Ant ConditionTask, allows you to implement simple flow
control in the Ant script.

Overview of Online Tasks

The online tasks operate on a WebLogic Portal application that is deployed and running. They
communicate with the portal application through a servlet that is deployed with the enterprise
application. For example, online tasks let you create and download inventory files from the server
to another machine. For information on the propagation servlet, see “Deploying the Propagation
Servlet” on page 8-3.

Note: The online Anttasks use HTTP or HTTPS to reach WebL ogic Server, therefore you must
make sure that the intervening firewalls allow that.

This section includes these topics:
e Online Task Summary

e Troubleshooting Online Tasks

Online Task Summary

Table 8-2 summarizes the online propagation Ant tasks.

Table 8-1 Online Tasks

OnlineCheckMutexTask Verifies that the propagation servlet is not currently in use by
another process.

OnlineCommitTask Performs a final inventory file merge and commits the final merged
inventory to the destination server.

OnlineDownloadTask Downloads the inventory from a currently running WebLogic Portal
application to a specified ZIP file.

OnlineMaintenanceModeTask Prevents administrators from making changes to the portal through
the WebLogic Portal Administration Console.

BEA WebLogic Portal Production Operations Guide 8-7

Using the Propagation Ant Tasks

Table 8-1 Online Tasks

OnlinePingTask Tests if the propagation management servlet is running on the
designated server.

OnlineUploadTask Uploads an inventory file to a temporary location associated
with a running WebLogic Portal application.

Using Online Tasks with HTTPS

To use HTTPS with the online Ant tasks, follow the standard WebLogic SSL instructions found
in the WebLogic Server document, “Configuring Identity and Trust.”

Note: When formatting the URL to the remote WebLogic server, be sure to specify the actual
host name of the system rather than localhost if you are on the same system. Also, be
sure to use the HTTPS port number for the server. The default is 7002.

Troubleshooting Online Tasks

If an online propagation Ant task fails, typically the failure is caused by one of these reasons:

e The server on which the source or destination portal application is deployed has not been
started. Verify that the server or cluster has been started.

e The propagation servlet is not deployed. Follow the instructions in “Deploying the
Propagation Servlet” on page 8-3 to deploy the servlet.

e There is a network problem. Use an operating system utility to make sure the server can be
reached.

e The propagation servlet is in use by another process. Only one thread can use the
propagation servlet at one time. You can use the OnlineCheckMutexTask to check to see if
another process is currently using the servlet.

Overview of Offline Tasks

Offline Ant tasks operate exclusively on previously exported inventory files. These tasks operate
on a single inventory file or on two inventory files to explore and manipulate the contents of the
inventor(ies). The offline tasks provide features similar to the Workshop for WebLogic
propagation tools.

8-8 BEA WebLogic Portal Production Operations Guide

../../../wls/docs92/secmanage/identity_trust.html

Overview of Offline Tasks

These tasks do not require connectivity to a live WebLogic Portal application. For instance, you
can use offline tasks to combine and compare source and destination inventory files.

This section includes these topics:

e Offline Task Summary

e Troubleshooting Offline Tasks

0ffline Task Summary

Table 8-2 lists the offline propagation Ant tasks.

Table 8-2 Offline Tasks

OfflineCombineTask

Combines src.zip and dest.zip into a new inventory,
combined.zip.

OfflineDiffTask

Differences src.zip and dest.zip and writes the results to
diff_cm.xml.

OfflineElectionAlgebraTask

Allows for algebraic operations on two change manifest files.

OfflineExtractTask

Extracts the working artifacts out of combined. zip for viewing.

OfflinelnsertTask

Inserts updated working artifacts into combined.zip.

OfflineListPoliciesTask

Exports the valid policies from an inventory file.

OfflineListScopesTask

Lists the scopes in src. zip that will be used to combine two
inventories.

OfflineSearchTask

Finds nodes with a specific string in their name, to help verify the wanted
node was exported.

OfflineValidateTask

Makes sure combined.zip is a valid ZIP file.

Troubleshooting Offline Tasks

If an offline propagation Ant task fails, typically the failure is caused by one of these reasons:

e The input parameters are not properly specified.

e An unexpected error occurred, such as encountering a full disk.

BEA WebLogic Portal Production Operations Guide 8-9

Using the Propagation Ant Tasks

Scoping an Inventory

8-10

Scoping refers to limiting the number of artifacts in an exported WebLogic Portal inventory, and,
therefore, the number of artifacts that must be added, deleted, or updated during propagation. In
general, scoping reduces both the duration and complexity of propagation operations.

Tip: Before continuing, we recommend you review the detailed discussion of scoping, in
“Understanding Scope” on page 6-11.

This section includes these topics:
e Scoping with Ant Tasks
e Sample Scoping Workflow

Scoping with Ant Tasks

Several of the Ant tasks either create or use a property file, by default called scope . properites,
that specifies scoping rules.

For example, you can edit the scope . properties file to adjust the propagation scope and then
use the file as a parameter to the OnlineDownloadTask. This file declares how the task is to treat
each node in the inventory as either in scope or out of scope. The task looks at the scoping rules
and applies them to the exported inventory. As a result, the scoped inventory file is usually a
subset of the full inventory. For more information on the scope .properties file, see
“Understanding a Scope Property File” on page 8-12.

Sample Scoping Workflow

This section explains the basic workflow for scoping an inventory using the Ant tasks. The
objective of this workflow is to reduce the size and complexity of an inventory file through
scoping. The result of this workflow is a scope.properties file. This file contains a set of
scoping rules that you can then use when you combine two inventories to produce a final merged
inventory.

The Ant tasks used in this workflow include:

e OnlineDownloadTask — This task is used to retrieve an inventory file from a WebLogic
Portal application that is running on a server.

BEA WebLogic Portal Production Operations Guide

Scoping an Inventory

o OfflineListScopesTask — This task exports the valid scopes from an inventory file. You
can specify the depth of the scope. The depth limits how far into the inventory tree the task
traverses. This task produces a scope.properties file, which you can edit.

o OfflineExtractTask — This task exports files that are stored in the top level of an inventory
ZIP file. One of these files is a scope . properties file.

Figure 8-3 illustrates the basic steps involved in scoping an inventory file. This procedure uses
Ant tasks in a chain to produce the final output: a scope - properties file containing the scoping
information needed to combine inventories.

Figure 8-3 Scoping a Source Inventory

1.
OnlineDownloadTask
[no scope] —

2.

OffinelistScopesTask & i

fulllnventory_zip

scope. properties (1)

[fullinventory.zip]

3

[seope. properties)

4,
OfflineExtraciTask
[scopedimentany.zip]

OnlineDownloadTask™ |

scopedinventory. zip

.

scope.properiies (2)

—

The steps shown in Figure 8-3 include the following:

1. Call the OnlineDownloadTask. The first time you call this task, do not specify the scopeFile
attribute. If you do not specify this attribute, the task retrieves the entire inventory from the
server. The retrieved inventory is stored in a ZIP file, which is shown in Figure 8-3 as

fulllnventory.zip.

BEA WebLogic Portal Production Operations Guide 8-11

Using the Propagation Ant Tasks

2. Use OfflineListScopesTask to extract a scope . properties file from the inventory file. The
scope. properties file specifies the scoping rules that were used to produce the inventory.
See “Understanding a Scope Property File” on page 8-12 for more information on the
contents of a scope . properties file. To produce a scoped inventory, edit the
scope.properties file and use the edited file as input to the OnlineDownloadTask again.

3. Run the OnlineDownloadTask again with the edited scope . properties file as input. The
result of this operation is a new inventory file that only includes the artifacts that were within
the specified scope.

4. The final step in this workflow is optional. It is included in Figure 8-3 to show that you can
extract the scope . properties file from the scoped inventory file. In fact, the properties file
that is returned is identical to the one that was used as input to the OnlineDownloadTask in
Step 3.

After you have obtained a scoped source inventory file, you can combine it with a destination
inventory file to produce a merged inventory file.

Understanding a Scope Property File

Listing 8-3 shows the first nine lines of a scope.properties file. The file lists the parts of the
application that are considered to be in scope. You can edit this file to remove assets that you do
not want to propagate. For example, to remove all content repository assets from the propagation,
you could remove lines labeled scope_2 through scope_8.

Listing 8-3 Excerpt from a scope.properties File

scope_O=Application

scope_1=Application\:ContentServices
scope_2=Application\:ContentServices\:Tools_Repository
scope_3=Application\:ContentServices\:Tools_Repository\:ContentNodes
scope_4=Application\:ContentServices\:Tools_Repository\:ContentTypes
scope_5=Application\:ContentServices\:Tools_Repository\:GlobalEntitlements
scope_6=Application\:ContentServices\:Tools_Repository\:GlobalDelegatedAdminPolicies
scope_7=Application\:ContentServices\:GlobalEntitlements
scope_8=Application\:ContentServices\:GlobalDelegatedAdminPolicies

scope_9=Application\:PersonalizationService

8-12 BEA WebLogic Portal Production Operations Guide

Using Policies

scope_10=Application\:PersonalizationService\:PlaceholderService

Using Policies

Policies let you control how source and destination inventories are merged when they are
combined into a final inventory file. To use policies, exporta policy.properties file using the
OfflineListPoliciesTask. This task lets you set global policies to apply to all assets in the
inventory. For example, you can elect to accept all additions, but reject deletions, and updates.
See “Understanding a Policies Property File” on page 8-13. You can then edit the
policy.properties file to modify the policy elections for specific assets, if you want to.

Tip: Before continuing, we recommend you review the detailed discussion of policies in
“Using Policies” on page 6-22.

Policies let you elect how to handle the following three merge cases. Each merge case can be set
to true or false in the policy file.

e Additions — If an asset exists in the source inventory, but not in the destination inventory,
add it to the destination.

e Deletions — If an asset exists in the destination inventory, but not in the source inventory,
delete it from the destination.

e Updates — If an asset exists in the source inventory and in the destination inventory, update
the destination with the artifact in the source inventory.

Understanding a Policies Property File

Listing 8-4 Shows an excerpt from a policies.properties file. As you can see, in every case,
the policy for this propagation is to accept (Y) adds and deletes, but to ignore (N) updates. A
policy is set on each asset of the portal. You can change the policy on an asset by editing this file.

Listing 8-4 Excerpt from a policies.properties File

policy_0O_taxonomy=Application

policy_O_adds=Y

policy_O_updates=N

policy_O_deletes=Y

policy_1 taxonomy=Application:ContentServices

BEA WebLogic Portal Production Operations Guide 8-13

Using the Propagation Ant Tasks

policy_1 adds=Y

policy_1 updates=N

policy_1_deletes=Y
policy_2_taxonomy=Application:ContentServices:Tools_Repository

policy_2_ adds=Y

policy_2_ updates=N

policy_2_deletes=Y

policy_3 taxonomy=Application:ContentServices:Tools_Repository:ContentNodes
policy_3 adds=Y

policy_3 updates=N

policy_3_deletes=Y

policy_4 taxonomy=Application:ContentServices:Tools_Repository:ContentTypes
policy_4 adds=Y

policy_4 updates=N

policy_4 deletes=Y
policy_5_taxonomy=Application:ContentServices:Tools_Repository:GlobalEntitlements
policy 5 adds=Y

policy_5_ updates=N

policy_5_deletes=Y

Combining and Committing Inventories

You can think of propagation as a combining operation. When you propagate a portal, you
combine the contents of a source inventory with a destination inventory. The combining is
governed by scoping and policy rules. The previous section, “Scoping an Inventory” on

page 8-10, explained how to create a scope . properties file, which contains the scoping rules
for an inventory. You can use this file as input to the OfflineCombineTask, which uses scoping

information to decide which artifacts to combine to produce the final inventory file.

This section explains the basic workflow for combining and committing inventories using
propagation Ant tasks. The Ant tasks used in this workflow include:

o OfflineCombineTask — Combines a source with a destination inventory file. Optional task

attributes let you specify a scope.properties and a policy.properties file. These
files control how the two inventories are combined.

e OnlineUploadTask — This task moves an inventory file to a specified server, and is similar

to an FTP transfer. The inventory file is stored in a temporary directory in the servlet
container.

e OnlineCommitTask — Replaces the existing inventory in the running server with the new
inventory.

8-14 BEA WebLogic Portal Production Operations Guide

Combining and Committing Inventories

Figure 8-4 shows the basic workflow for combining and committing inventories. The workflow
assumes that you have already exported (using the OnlineDownloadTask) a source and a
destination inventory file.

Figure 8-4 Combining and Committing an Inventory

F—

s
OfflineCombinaTask

[scope. properties]
[policy properties]

Y

Y

2.
OnlinelUploadTask

3
OnlineCommitTask

After you have a source and destination inventory file, you can combine them using the
OfflineCombineTask. The result of this task is a combined inventory file. This file is a
combination of the source and destination inventory files with scope and policy rules (if they
were specified) applied.

Use the OnlineUploadTask to move the combined inventory to the destination server. Use the
OnlineCommitTask to commit the combined inventory on the destination server.

The OfflineCombineTask, OnlineUploadTask, and OnlineCommitTask are explained in
Chapter 9, “Propagation Ant Task Reference.”

BEA WebLogic Portal Production Operations Guide 8-15

Using the Propagation Ant Tasks

8-16 BEA WebLogic Portal Production Operations Guide

CHAPTERa

Propagation Ant Task Reference

This chapter describes the attributes, modifiers, and usage of the propagation Ant tasks. The Ant
tasks are broken down into online and offline tasks. Online tasks interact directly with a
WebLogic Portal application that is running on a server. Offline tasks interact with previously
exported inventory files.

Tip: Forageneral overview of the Ant tasks, including use cases and examples, see Chapter 8,
“Using the Propagation Ant Tasks.”

This chapter includes the following sections:
e Online Tasks

o Offline Tasks

Online Tasks

This section describes each of the online propagation Ant tasks. For an introduction to online
tasks, see “Overview of Online Tasks” on page 8-7. The online tasks described in this section
include:

o OnlineCheckMutexTask
e OnlineCommitTask

e OnlineDownloadTask

BEA WebLogic Portal Production Operations Guide 9-1

Propagation Ant Task Reference

9-2

e OnlinePingTask

e OnlineMaintenanceModeTask

e OnlineUploadTask

OnlineCheckMutexTask

Ver

ify that the propagation servlet is not currently in use by another process. The mutex is scoped

to the application, and is cluster aware. This means that if anyone is using the servlet in a
particular application on any node in the cluster, the mutex is enforced: another user cannot use
the servlet for that application on another node.

Tip: The propagation servlet executes propagation tasks on the server. This servlet performs
operations on WebLogic Portal data, and therefore does not allow more than one thread
of execution at a time. For more information on the propagation servlet, see “Deploying
the Propagation Servlet” on page 8-3.

Attributes

allowHttp — (optional) If set to true, allows the propagation management servlet specified
by servletURL to use HTTP. If set to false, allows the URL to use HTTPS. Default:
false. See also “Using Online Tasks with HTTPS” on page 8-8 and “Deploying the
Propagation Servlet” on page 8-3.

failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

password — (required) The user’s password. The password can be specified either in plain
text or 3DES encoded form.

retryTimes — (optional) An integer that sets the number of times to retry obtaining the
mutex. Default = 1. A value of —1 indicates to retry indefinitely. After the specified number
of retries, the task fails, unless the fai IOnError attribute is set to false.

servletURL — (required) The URL of the propagation management servlet. This URL must
point to a specific managed node if in a cluster, not to a proxy. If the servlet is included in
your EAR project, it is automatically deployed when you start your server. The name of the
deployed servlet is:

BEA WebLogic Portal Production Operations Guide

Online Tasks

earProjectNamePropagation

Where earProjectName is the name of the EAR project that contains the portal
application that you are propagating. For example:

myEARProjectPropagation

See also “Using Online Tasks with HTTPS” on page 8-8 and “Deploying the Propagation
Servlet” on page 8-3.

e username — (required) The name of a user with access to the destination server.

Ant Condition Property

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — The servlet mutex is available for use.
o failure — The servlet mutex is locked by another thread. The task returns immediately

without blocking.

On Failure

If the Fai lOnError attribute is set to true (the default), the script terminates if another thread
has the mutex. The script must wait for the other thread to complete. See also “Troubleshooting
Online Tasks” on page 8-8.

Usage

Listing 9-1 checks to see if the propagation servlet is in use. The script retries 10 times.
Listing 9-2 uses an Ant conditional to test for success. If the task succeeds, a message is printed.

Listing 9-1 OnlineCheckMutexTask Example

<target name="checkMutexDest'" description="'checks to see if the mutex is available'">
<onlineCheckMutex
servletURL="http://localhost:7001/myProjectPropagation/inventorymanagement"
username="'weblogic"
password="weblogic"
allowHttp=""true"
failOnError="false"
retryTimes="10"
/>
</target>

BEA WebLogic Portal Production Operations Guide 9-3

Propagation Ant Task Reference

Listing 9-2 OnlineCheckMutexTask with Ant Conditional

<target name="‘checkMutexDest" description="checks to see if the mutex is available">
<condition property="mutex_success'>
<onlineMutex
servletURL="http://localhost:7001/myProjectPropagation/inventorymanagement"
username="weblogic"
password="weblogic"
allowHttp=""true"
failOnError="false"
retryTimes="10"
/>

</condition>
<antcall target="mutex_success" />
</target>

<target name="mutex_success" if="mutex_success">
<echo message="The mutex is available." />
</target>

OnlineCommitTask

This task performs two operations:

e Final Merge - If the differenceStrategy attribute is set to pessimistic, a final merge of the
source and destination inventories is performed, based scope or policy settings. The merge
is performed in a temporary directory on the destination system.

e Commit — The task commits the final merged inventory to the destination server. Before
you commit an inventory, you must upload it to the destination server using the
OnlineUploadTask. The OnlineUploadTask places the inventory in a predetermined
location, and the OnlineCommitTask always looks in that location. For this reason, you do
not have to specify the name of the inventory file you are committing with this task. See
also “OnlineUploadTask” on page 9-14.

WARNING: This task modifies the target application’s configuration. Any users with active
sessions may experience unwanted behavior depending on the changes that are
being committed. The risk to users is similar to the behavior they would see if an
administrator made the same changes with the WebLogic Portal Administration
Console.

9-4 BEA WebLogic Portal Production Operations Guide

Online Tasks

Attributes

o allowHttp — (optional) If set to true, allows the propagation management servlet specified
by servletURL to use HTTP. If set to False, allows the URL to use HTTPS. Default:
false. See also “Using Online Tasks with HTTPS” on page 8-8 and “Deploying the
Propagation Servlet” on page 8-3.

o failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e password — (required) The user’s password. The password can be specified either in plain
text or 3DES encoded form.

e servletURL - (required) The URL of the propagation management servlet. This URL must
point to a specific managed node in a cluster, not to a proxy. See also “Using Online Tasks
with HTTPS” on page 8-8 and “Deploying the Propagation Servlet” on page 8-3.

e username — (required) The username of a user with access to the destination server.

Modifiers

This section describes the <modi Fier> attributes available for this task. Each <modifier>
attribute has a name and a value. See the Usage section for an example of using modifiers.

e name = cm_checkinComment

Specifies a comment to use when new revisions of content are checked into a content
management repository as a result of the propagation.

value = A single line of text.

e name = cm_checkoutPolicy

Specifies what action to take when the task tries to update or delete a content item in a
content management repository if that content item is already checked out.

value = abort
(default) Do not update or delete the content item and write a message to the log.
value = revert

Overrides the checked out content item, and adds or updates the content in the repository.
This option reverts any changes made by the user who currently has the content item
checked out and the changes in the change manifest are applied.

BEA WebLogic Portal Production Operations Guide 9-5

Propagation Ant Task Reference

9-6

e name = cm_nodeWorkflowPolicy

Specifies what action to take if the name of a workflow on the source system does not
match the expected workflow name on the destination. This modifier lets you choose how
to handle the situations by letting you choose whether to retain the workflow on the
destination, or to abort the propagation of the source node that includes the workflow.

Tip: Because WebLogic Portal does not propagate workflows, it is a best practice to
ensure that the source and destination systems use exactly the same workflow. This
practice ensures that nodes and types can be propagated with the least risk.

value = retain

(default) If the workflow name associated with a content node differs between the source
and destination, retain the workflow on the destination.

value = abort

If the workflow name associated with a content node differs between the source and
destination, do not propagate the node. Note that if any nodes on the source system depend
on the aborted node, they cannot be propagated either.

name = cm_typeWorkflowPolicy

Specifies what action to take if a workflow name on the source system does not match the
expected workflow name on the destination. This modifier lets you choose how to handle
the situations by letting you choose whether to retain the workflow on the destination, or to
abort the propagation of the source content type that includes the workflow.

Tip: Because WebLogic Portal does not propagate workflows, it is a best practice to
ensure that the source and destination systems use exactly the same workflow. This
practice ensures that nodes and types can be propagated with the least risk.

value = retain

(default) If the workflow name associated with a content type differs between the source
and destination, retain the workflow on the destination.

value = abort

If the workflow name associated with a content type differs between the source and
destination, do not propagate the type. Note that if any types on the source system depend
on the aborted type, they cannot be propagated either.

BEA WebLogic Portal Production Operations Guide

Online Tasks

e name = differenceStrategy

Specifies how the propagation management servlet obtains the list of differences to process
before the final inventory is committed to the server.

value = pessimistic

(default) The propagation servlet computes the differences between the uploaded inventory
and the application inventory. It then applies those differences according to the policy and
scope settings provided with the uploaded inventory. Pessimistic causes differences to be
re-computed in real time based on the current state of the destination. Pessismistic
differencing generally takes longer than optimistic. See also “Understanding a Scope
Property File” on page 8-12 and “Understanding a Policies Property File” on page 8-13.

value = optimistic

The propagation servlet looks for the changemanifest.xml file in the inventory. If the
change manifest exists, it applies the specified elections from the manifest without
recomputing the differences. With this option, the servlet does not honor scope or policy
settings provided with the inventory. If this option is specified, but the
changemanifest.xml file does not exist, the servlet defaults to pessimistic.

Ant Conditional Support

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — This task succeeds if the inventory is successfully committed.
o failure — The inventory was not committed successfully. Check the log files for additional
information.

On Failure

If the fai IOnError attribute is set to true (the default), the script terminates if the inventory is
not committed successfully. Check the log files for additional information. See also
“Troubleshooting Online Tasks” on page 8-8.

Usage

The following example commits the inventory file uploaded to the destination server with the
OnlineUploadTask, which places the file in a standard location.

BEA WebLogic Portal Production Operations Guide 9-7

Propagation Ant Task Reference

Listing 9-3 OnlineCommitTask Example

<target name="‘commitOpt''>

<onlineCommit

servletURL="http://localhost:7001/myProjectPropagation/inventorymanagement"
username="weblogic"

password="weblogic"

al lowHttp=""true"

<modifier name="differenceStrategy' value="optimistic"” />
<modifier name="cm_checkinComment" value="My sample checkin comment." />

</onlineCommit>

</target>

9-8

OnlineDownloadTask

Download the inventory from a currently running WebL ogic Portal application to a specified ZIP
file.

Note: This task extracts the portal inventory and attempts to write it to a ZIP file. If the ZIP file

created exceeds 4 GB, this task fails and a message is written to the server log and the
verbose log. If this occurs, try scoping your inventory to limit the size of the resulting
archive file. See “Understanding Scope” on page 6-11 for more information.

Attributes

o allowHttp — (optional) If set to true, allows the propagation management servlet specified

by servletURL to use HTTP. If set to False, allows the URL to use HTTPS. Default:
false. See also “Using Online Tasks with HTTPS” on page 8-8 and “Deploying the
Propagation Servlet” on page 8-3.

failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

outputinventoryFile — (required) The file in which to write the inventory file. If
outputToServerFileSystem is false, the file is saved locally, the name can include a
relative or absolute path, and it must not already exist. If outputToServerFileSystem is
true, the file is written to the destination server system, you must supply an absolute path
on the server system, and the file must not already exist.

BEA WebLogic Portal Production Operations Guide

Online Tasks

e outputToServerFileSystem — (optional) If true, the output file is written to the server file
system. Use this attribute to avoid a lengthy HTTP download if the inventory file is large.
Default: false.

e password — (required) The user’s password. The password can be specified either in plain
text or 3DES encoded form.

e scopeFile — (optional) The pathname of the scope.properties file. If specified, this file
must exist or the task will fail. See “Scoping with Ant Tasks” on page 8-10.

e servletURL — (required) The URL of the propagation management servlet. This URL must
point to a specific managed node in a cluster, not to a proxy. See also “Using Online Tasks
with HTTPS” on page 8-8 and “Deploying the Propagation Servlet” on page 8-3.

e username — (required) The username of a user with access to the destination server.

Ant Conditional Support

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — The inventory downloaded successfully.

o failure — The download failed.

On Failure

If the fai IOnError attribute is set to true (the default), the script terminates if the inventory is
not downloaded successfully. Check the log files for more information. See also
“Troubleshooting Online Tasks” on page 8-8.

Usage
The following example downloads an inventory file called dest.zip.

Listing 9-4 OnlineDownloadTask Example

<target name="downloadDest'>
<onlineDownload
servletURL="http://localhost:7001/myProjectPropagation/inventorymanagement"
username="weblogic"
password="weblogic"
al lowHttp=""true"

BEA WebLogic Portal Production Operations Guide 9-9

Propagation Ant Task Reference

outputlnventoryFile="${portal .prop.home}/test/ant/dest.zip"
/>
</target>

OnlineMaintenanceModeTask

In order to maintain data integrity during a propagation session, the applications on the source
and destination servers must be placed into maintenance mode. Maintenance mode prevents
administrators from making changes to the portal through the WebLogic Portal Administration
Console. Maintenance mode takes effect for the entire enterprise application (not just a single
web application) and it takes effect for all nodes in a cluster. After the export of the finalized
inventory is complete, you can turn maintenance mode off to enable the applications on the server
for modifications.

This task toggles the state of maintenance mode on the server. This Ant task causes delegated
administration and entitlements to deny access to all resources with policies within the
application regardless of requested resource or capability.

Tip: You can also set Maintenance Mode in the WebLogic Portal Administration Console,
select Configurations > Service Administration. For more information, refer to the
online help.

Attributes

e allowHttp — (optional) If set to true, allows the propagation management servlet specified
by servletURL to use HTTP. If set to false, allows the URL to use HTTPS. Default:
false. See also “Using Online Tasks with HTTPS” on page 8-8 and “Deploying the
Propagation Servlet” on page 8-3.

e enable — (required) If set to true, turns maintenance mode on. To turn maintenance mode
off, and thereby allow users to modify portal resources, set this value to false.

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to False in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e password — (required) The user’s password. The password can be specified either in plain
text or 3DES encoded form.

9-10 BEA WebLogic Portal Production Operations Guide

Online Tasks

e servletURL — (required) The URL of the propagation management servlet. This URL must
point to a specific managed node if in a cluster, not to a proxy. For information on how to
form this URL, see “Deploying the Propagation Servlet” on page 8-3. See also “Using
Online Tasks with HTTPS” on page 8-8.

e username — (required) The username of a user with access to the destination server.

Ant Condition Property

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — Maintenance mode state was toggled successfully.
o fails — Maintenance mode state could not be toggled. Check the maintenance mode state in

the WebL ogic Portal Administration Console.

On Failure

If the Fai lOnError attribute is set to true (the default), the script terminates if maintenance
mode could not be toggled. Check the Maintenance mode state in the WebLogic Portal
Administration Console. See also “Troubleshooting Online Tasks” on page 8-8.

Usage

Listing 9-5 places the server into maintenance mode. Listing 9-6 uses an Ant conditional to place
the server in maintenance mode and print a message if the operation is successful.

Listing 9-5 OnlineMaintenanceModeTask Example

<target name="lockDest" description="lock the server">

<onlineMaintenanceMode
servletURL="http://localhost:7001/propagation/inventorymanagement"
username="weblogic"
password="weblogic"
al lowHttp=""true"
enable="true"

/>

</target>

BEA WebLogic Portal Production Operations Guide 9-11

Propagation Ant Task Reference

Listing 9-6 Using OnlineMaintenanceModeTask with an Ant Conditional

<target name="lockDestCl" description="lock the server'>
<condition property="lock_success'">
<onlineMaintenanceMode
servletURL="http://localhost:7001/propagation/inventorymanagement"
username="'weblogic"
password="weblogic"
allowHttp=""true"
enable=""true"
/>
</condition>
<antcall target="lock_success" />
</target>

<target name="locksuccess"
if="lock_success'">
<echo message="'"Maintenance mode has been toggled."/>
</target>

OnlinePingTask

Tests if the propagation management servlet is running on the designated server. This task
verifies that the propagation servlet can be contacted. For information on the propagation servlet,
see “Deploying the Propagation Servlet” on page 8-3.

Attributes

o allowHttp — (optional) If set to true, allows the propagation management servlet specified
by servletURL to use HTTP. If set to false, allows the URL to use HTTPS. Default:
false. See also “Using Online Tasks with HTTPS” on page 8-8 and “Deploying the
Propagation Servlet” on page 8-3.

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e password — (required) The user’s password. The password can be specified either in plain
text or 3DES encoded form.

e servletURL - (required) The URL of the propagation management servlet. This URL must
point to a specific managed node if in a cluster, not to a proxy. See also “Using Online
Tasks with HTTPS” on page 8-8 and “Deploying the Propagation Servlet” on page 8-3.

9-12 BEA WebLogic Portal Production Operations Guide

Online Tasks

e username — (required) The username of a user with access to the destination server.

Ant Conditional Support

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — The propagation management servlet was contacted successfully.
o failure — The servlet did not return a successful reply. See also “Troubleshooting Online
Tasks” on page 8-8.

On Failure

If the fai IOnError attribute is set to true (the default), the script terminates if the servlet does
not return a successful reply. See also “Troubleshooting Online Tasks” on page 8-8.

Usage

Listing 9-7 tests to see if the propagation servlet is running. Listing 9-8 uses an Ant conditional
to print a message if the task succeeds.

Listing 9-7 OnlinePingTask Example

<target name="pingDest" description="ping the server'>
<onlinePing
servletURL="http://localhost:7001/propagation/inventorymanagement"
username="weblogic"
password="weblogic"
allowHttp=""true"
/>
</target>

Listing 3-8 OnlinePingTask Example with Ant Conditional

<target name="pingDest" description="ping the server">
<condition property="ping_success'>

<onlinePing
servletURL="http://localhost:7001/propagation/inventorymanagement"
username="'weblogic"
password="weblogic"
allowHttp=""true"

/>

BEA WebLogic Portal Production Operations Guide 9-13

Propagation Ant Task Reference

</condition>
<antcall target='"ping_success" />
</target>

<target name="'ping_success" if="ping_success">
<echo message="The server is available." />
</target>

OnlineUploadTask

This task uploads an inventory file to a temporary location associated with a running WebLogic
Portal application. You must execute this task before you execute the OnlineCommitTask. Only
one inventory can be uploaded at a time.

This task overwrites an existing inventory file that exists in the upload location.

Note: Thistask only moves afile. It does not affect the configuration of the running application.
This operation is safe to do even with active users on the system.

Note: The propagation management servlet has a configuration setting to help mitigate “denial
of service” attacks. The servlet is configured with a maximum size allowed for uploaded
files (files uploaded over HTTP). By default, this is set to 1 MB. If any given file inside
the inventory ZIP file is larger than this value, it will be rejected. The simplest way to
work around this limit is to physically copy the inventory to the destination server, and
then use the readFromServerFi leSystem attribute of this task. For information on
changing the servlet configuration to allow larger files, see “Increasing the Default
Upload File Size” on page 6-32.

Attributes

o allowHttp — (optional) If set to true, allows the propagation management servlet specified
by servletURL to use HTTP. If set to false, allows the URL to use HTTPS. Default:
false. See also “Using Online Tasks with HTTPS” on page 8-8 and “Deploying the
Propagation Servlet” on page 8-3.

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e password — (required) The user’s password. The password can be specified either in plain
text or 3DES encoded form.

9-14 BEA WebLogic Portal Production Operations Guide

Online Tasks

readFromServerFileSystem — (optional) If true, the inventory file is read from the
destination server file system rather than from the source system. Use this attribute to
eliminate the HTTP upload overhead for large files. Default: false.

servletURL — (required) The URL of the propagation management servlet. This URL must
point to a specific managed node if in a cluster, not to a proxy. See also “Using Online
Tasks with HTTPS” on page 8-8 and “Deploying the Propagation Servlet” on page 8-3.

sourceFile — (required) The file to read the inventory file (relative or absolute path), must
exist. If readFromServerFileSystem is true, this file location is for the server file
system.

username — (required) The username of a user with access to the destination server.

Ant Condition Property

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — The inventory uploaded successfully.

e failure — The upload failed. Check the log files for more information.

On Failure

If the Fai lOnError attribute is set to true (the default), the script terminates if the upload fails.
Check log files for more information. See also “Troubleshooting Online Tasks” on page 8-8.

Usage

The following example uploads a file called combined.zip to the server.

Listing 9-9 OnlineUploadTask Example

<target name="upload'>
<onlineUpload

/>

servletURL="http://localhost:7001/propagation/inventorymanagement"
username="'weblogic"

password="weblogic"

allowHttp=""true"

sourceFile="${portal .prop.home}/test/ant/combined.zip"

</target>

BEA WebLogic Portal Production Operations Guide 9-15

Propagation Ant Task Reference

Offline Tasks

This section describes each of the offline propagation Ant tasks. For an introduction to offline
tasks, see “Overview of Offline Tasks” on page 8-8. The offline tasks described in this section
include:

o OfflineCombineTask

e OfflineDiffTask

e OfflineElectionAlgebraTask
o OfflineExtractTask

o OfflinelnsertTask

e OfflineListPoliciesTask

o OfflineListScopesTask

e OfflineSearchTask

o OfflineValidateTask

OfflineCombineTask

Combines two inventories and reports in a change manifest file the differences as a set of adds,
updates, and deletes.

Note: This task extracts the portal inventory and attempts to write it to a ZIP file. If the ZIP file
created exceeds 4 GB, this task fails and a message is written to the server log and the
verbose log. If this occurs, try scoping your inventory to limit the size of the resulting
archive file. See “Understanding Scope” on page 6-11 for more information. For
information on the verbose log, see “Reviewing Log Files” on page 6-29.

Note: This task extends the OfflineDiffTask task, so all attributes available for OfflineDiffTask
can be used with this task too.

Attributes

e combinedlnventoryFile — (required) The ZIP file in which to write the combined
inventory. The file must not already exist.

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,

9-16 BEA WebLogic Portal Production Operations Guide

Offline Tasks

you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e logFile — (optional) The name of a file. The task writes log messages to this file. If
specified the file must not already exist. By default, the file is placed in the directory from
which the task is run.

e sourceFile — (required) A valid inventory file.

e verboselLogFile — (optional) The name of a file. The task writes verbose log messages to
this file. If specified the file must not already exist. By default, the file is placed in the
directory from which the task is run.

Ant Condition Property

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — The inventory combination completed successfully.

e failure — Something failed during the operation.

On Failure

If the fai IOnError attribute is set to true (the default), the script terminates if no differences
were found between the two inventories. See also “Troubleshooting Offline Tasks” on page 8-9.

Usage

The following example combines two inventories. Note that some of the attributes are taken from
the OfflineDiffTask.

Listing 9-10 OfflineCombineTask Example

<target name="'combine' description="Combine two inventories with logging'>
<offlineCombine
sourceFile="${portal .prop.home}/test/ant/src.zip"
destFile=""${portal .prop.home}/test/ant/dest.zip"
combinedInventoryFile="${portal .prop.home}/test/ant/combined.zip"
changeManifestFile="${portal .prop.home}/test/ant/combine_cm.xml"
logFile="${portal .prop.home}/test/ant/combine_log.txt"
verboselLogFile="${portal .prop.home}/test/ant/combine_verboselog.txt"
/7>
</target>

BEA WebLogic Portal Production Operations Guide 9-17

Propagation Ant Task Reference

9-18

OfflineDiffTask

Compares two inventories and reports the differences in a change manifest file as a set of adds,
updates, and deletes.

Attributes

e changeManifestFile — (required) An XML file in which to write the differences found
between the source and destination inventory files. The change manifest file must not
already exist.

e destFile — (required) A valid inventory file. This file contains the inventory of the
destination portal application: the application you are propagating to.

o failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e globalAddFlag — (optional) The flag to indicate the default policy for Adds unless
overridden by the policies property file. Default: true. See also “Understanding a Policies
Property File” on page 8-13.

e globalDeleteFlag — (optional) The flag to indicate the default policy for Deletes unless
overridden by the policies property file. Default: true. See also “Understanding a Policies
Property File” on page 8-13.

e globalUpdateFlag — (optional) The flag to indicate the default policy for Updates unless
overidden by the policies property file. Default: true. See also “Understanding a Policies
Property File” on page 8-13.

o logFile — (optional) The name of a file. The task writes log messages to this file. If
specified the file must not already exist. By default, the file is placed in the directory from
which the task is run.

e policiesFile — (optional) A file with a .properties extension that contains the policies to
use when comparing or combining inventories. This file must exist if specified. See also
“Using Policies” on page 8-13.

BEA WebLogic Portal Production Operations Guide

Offline Tasks

e scopeFile — (optional) A file with a . properties extension that contains the scoping
information to use when comparing or combining inventories. This file must exist if
specified. See also “Scoping an Inventory” on page 8-10.

e sourceFile — (required) A valid inventory file. This file contains the inventory of the
source portal application: the application you are propagating from.

e verboseLogFile — (optional) The name of a file. The task writes verbose log messages to
this file. If specified the file must not already exist. By default, the file is placed in the
directory from which the task is run.

Ant Conditional Support

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — If one or more differences are found.

e failure — If no differences are found.

On Failure

If the fai lOnError attribute is set to true (the default), the script terminates if no differences
are found. See also “Troubleshooting Offline Tasks” on page 8-9.

Usage
Listing 9-11 writes the differences between two files to a change manifest file.

Listing 9-11 OfflineDiffTask Example

<target name="diff" description=""compare two inventories with logging">
<offlineDiff
sourceFile="${portal .prop.home}/test/ant/src.zip"
destFile="${portal .prop.home}/test/ant/dest.zip"
logFile="${portal .prop.home}/test/ant/diff_log.txt"
verboselLogFile="${portal .prop.home}/test/ant/diff_verboselog. txt"
/>
</target>

BEA WebLogic Portal Production Operations Guide 9-19

Propagation Ant Task Reference

9-20

OfflineElectionAlgebraTask

Allows for algebraic operations on two change manifest files. This task is not commonly used.

e Add Operation — Combines the two specified election lists. For any node that appears in
both lists, the entry from election list 1 is used.

e Subtract Operation — Removes any entry for a node in election list 1 if there exists an
entry for that node in election list 2.

Attributes

e electionListlFile — (required) The XML file that contains change manifest file 1. Use the
OfflineDiffTask to produce a change manifest file, or the OfflineExtractTask to extract a
change manifest file from an existing inventory.

e electionList2File — (required) The XML file that contains change manifest file 2.

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e operation — (required) The operation to apply; valid values are: add or subtract.

e outputFile — (required) The file in which to write the result elections.

Ant Condition Property

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — The algebraic operations completed successfully.

o failure — The operation failed.

On Failure

If the fai 1OnError attribute is set to true (the default), the script terminates if the algebraic
operation failed. See also “Troubleshooting Offline Tasks” on page 8-9.

BEA WebLogic Portal Production Operations Guide

Offline Tasks

Usage

Listing 9-12 adds the contents of two change manifests. Listing 9-13 subtracts the contents of two
change manifests.

Listing 9-12 OfflineElectionAlgebraTask Example: Add

<target name="electionsAdd" description="add the two election lists">
<offlineAlgebra
electionListlFile="${portal.prop.home}/test/ant/electionsl.xml"
electionList2File="${portal .prop.home}/test/ant/elections2.xml"
operation=""add"
outputFile="${portal .prop.home}/test/ant/addedElections.xml"
/>
</target>

Listing 9-13 OfflineElectionAlgebraTask Example: Subtract

<target name="electionsSubtract" description="subtract the two election lists'">
/>

<offlineAlgebra
electionListlFile="${portal.prop.home}/test/ant/electionsl.xml"
electionList2File="${portal .prop.home}/test/ant/elections2.xml"
operation="'subtract"
outputFile="${portal .prop.home}/test/ant/subtractedElections.xml"
/>

</target>

OfflineExtractTask

Extracts top level files from an inventory file. These files are stored in an inventory ZIP file at the
top level of the file, and can include a change manifest file, export file, manual changes file,
policy file, and scope file.

Attributes

e changeManifestfile — (optional) The file in which to write the changemanifest.xml file
from the inventory (if it exists). This XML file contains the change manifest file that

BEA WebLogic Portal Production Operations Guide 9-21

Propagation Ant Task Reference

9-22

describes all of the changes (adds, deletes, updates) made to the inventory. See also
“OfflineDiffTask” on page 9-18.

exportFile — (optional) The file in which to write the export.properties file from the
inventory. This file contains summary information about the inventory; including who
exported it, when it was exported, how many nodes are in the export, and other
information.

failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Default:
true.

logFile — (optional) The name of a file. The task writes log messages to this file. If
specified the file must not already exist. By default, the file is placed in the directory from
which the task is run.

manualChangesFile — (optional) The file in which to write the manualchanges . xml file
from the inventory (if it exists). This file is provided for convenience, and describes the
manual changes that are required to propagate the inventory. See also “Make Required
Manual Changes” on page 6-6.

policyFile — (optional) The file in which to write the policy.properties file from the
inventory (if it exists). This file contains the policy rules that were used to produce the
inventory. See also “Using Policies” on page 8-13.

sourceFile — (required) A valid inventory file.

scopeFile — (optional) The file in which to write the scope - properties file from the
inventory (if it exists). This file contains the scoping rules that were used to produce the
inventory. See also “Scoping an Inventory” on page 8-10.

verboseLogFile — (optional) The name of a file. The task writes verbose log messages to
this file. If specified the file must not already exist. By default, the file is placed in the
directory from which the task is run.

Ant Conditional Support

This task does not support the Ant condition task.

On Failure

If the fai IOnError attribute is set to true (the default), the script terminates if any problems
were encountered during the operation. See also “Troubleshooting Offline Tasks” on page 8-9.

BEA WebLogic Portal Production Operations Guide

Offline Tasks

Usage

The following example extracts specified files from an inventory file.

Listing 9-14 OfflineExtractTask Example

<target name="extractCombined” description="gather resources from the combined
inventory'>
<offlineExtract
sourceFile="${portal .prop.home}/test/ant/combined.zip"
exportFile="${portal .prop.home}/test/ant/extractCombined_export.properties"
scopeFile="${portal .prop.home}/test/ant/extractCombined_scope.properties"
policyFile="${portal .prop.home}/test/ant/extractCombined_policy.properties"
changemanifestfile="${portal .prop.home}/test/ant/extractCombined_change.xml"
logFile="${portal .prop.home}/test/ant/extractCombined_log. txt"
verboselLogFile="${portal .prop.home}/test/ant/extractCombined_verboselog.txt"
/>
</target>

OfflinelnsertTask

Inserts top level files into an inventory file. These files are stored in an inventory ZIP file at the
top level of the file, and can include a change manifest file, export file, manual changes file,
policy file, and scope file.

Attributes

e changeManifestFile — (optional) The file to insert as the changemanifest.xml file from
the inventory. This XML file contains the change manifest file that describes all of the
changes (adds, deletes, updates) made to the inventory. See also “OfflineDiffTask” on
page 9-18.

o logFile — (optional) The name of a file. The task writes log messages to this file. If
specified the file must not already exist. By default, the file is placed in the directory from
which the task is run.

e outputFile — (required) The ZIP file in which to write the new inventory. This file must
not already exist

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,

BEA WebLogic Portal Production Operations Guide 9-23

Propagation Ant Task Reference

you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e policyFile — (optional) The file to insert as the policy-properties file from the
inventory. See also “Using Policies” on page 8-13.

e scopeFile — (optional) The file to insert as the scope. properties file into the inventory.
See also “Scoping an Inventory” on page 8-10.

e sourceFile — (required) A valid inventory file.

e verboselLogFile — (optional) The name of a file. The task writes verbose log messages to
this file. If specified the file must not already exist. By default, the file is placed in the
directory from which the task is run.

Ant Conditional Support

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — If the insert succeeds.
o failure — If the operation fails.

On Failure

If the Fai lOnError attribute is set to true (the default), the script terminates if the operation
fails. See also “Troubleshooting Offline Tasks” on page 8-9.

Usage

The following example inserts specified files into an inventory.

Listing 9-15 OfflinelnsertTask Example

<target name="insertCombined"” description="insert resources into combined inventory'>
<offlinelnsert
sourceFile="${portal .prop.home}/test/ant/combined.zip"
policyFile="${portal .prop.home}/test/ant/extractCombined_policy.properties"
changemanifestfile="${portal .prop.home}/test/ant/extractCombined_change.xml"
outputFile="${portal .prop.home}/test/ant/newCombined.zip"
/>
</target>

9-24 BEA WebLogic Portal Production Operations Guide

Offline Tasks

OfflineListPoliciesTask

Exports the valid policies from an inventory file. These policies are written into a .properties
text file. You can later edit this property file and use it as an input into other tasks, such as
OfflineCombineTask. See also “Using Policies” on page 8-13.

Attributes

e depth — (optional) Specifies the number of levels into the inventory tree to examine for
policies. This attribute defaults to 3. This is a 0 based number, so a depth of 3 will examine
the inventory tree 4 levels deep.

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e globalAddFlag — (optional) The flag to indicate the default policy for Adds. Default:
true. See also “Understanding a Policies Property File” on page 8-13.

e globalDeleteFlag — (optional) The flag to indicate the default policy for Deletes. Default:
true. See also “Understanding a Policies Property File” on page 8-13.

e globalUpdateFlag — (optional) The flag to indicate the default policy for Updates. Default:
true. See also “Understanding a Policies Property File” on page 8-13.

o logFile — (optional) The name of a file. The task writes log messages to this file. If
specified the file must not already exist. By default, the file is placed in the directory from
which the task is run.

e policyFile — (required) The file in which to write the valid policies. Give this file a
.properties extension. This file must not already exist.

e sourceFile — (required) A valid inventory file.

e verboseLogFile — (optional) The name of a file. The task writes verbose log messages to
this file. If specified the file must not already exist. By default, the file is placed in the
directory from which the task is run.

Ant Conditional Support

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

BEA WebLogic Portal Production Operations Guide 9-25

Propagation Ant Task Reference

e success — The policy file is written successfully.

o failure — The operation failed.

On Failure

If the Fai IOnError attribute is set to true (the default), the script terminates if the operation
fails. The script can fail if there is a problem walking the inventory tree. See also
“Troubleshooting Offline Tasks” on page 8-9.

Usage

The following example writes the policy file for the portal application.

Listing 9-16 OfflineListPoliciesTask Example

<offlineListPolicies
sourceFile="${portal .prop.home}/test/ant/src.zip"
policyFile="${portal .prop.home}/test/ant/listPolicies_policies.properties"
globalAddFlag=""true"
globalUpdateFlag=""false"
globalDeleteFlag=""true"
logFile="${portal .prop.home}/test/ant/listPolicies_log.txt"
verboselLogFile="${portal .prop.home}/test/ant/listPolicies_verboselog.txt"

/>

9-26

OfflineListScopesTask

Exports the valid scoping information from an inventory file. Scopes are written into a
-properties text file. You can later edit this property file and use it as an input into other tasks,
such as OfflineCombineTask. See also “Using Policies” on page 8-13.

Attributes

e depth — (optional) Specifies the number of levels into the inventory tree to examine for
scopes. This attribute defaults to 3. This is a 0 based number, so a depth of 3 will examine
the inventory tree 4 levels deep.

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,

BEA WebLogic Portal Production Operations Guide

Offline Tasks

you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e logFile — (optional) The name of a file. The task writes log messages to this file. If
specified the file must not already exist. By default, the file is placed in the directory from
which the task is run.

e scopeFile — (required) The file in which to write the scope information. Give this file a
.properties extension. This file must not already exist.

e sourceFile — (required) A valid inventory file.

e verboselLogFile — (optional) The name of a file. The task writes verbose log messages to
this file. If specified the file must not already exist. By default, the file is placed in the
directory from which the task is run.

Ant Conditional Support

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — The scope file was created successfully.
o failure — The operation failed.

On Failure

If the Fai lOnError attribute is set to true (the default), the script terminates if there was a
problem traversing the inventory tree. See also “Troubleshooting Offline Tasks” on page 8-9.

Usage

The following example exports the scoped artifacts to a property file, using the default depth
value of 3.

Listing 9-17 OfflineListScopesTask Example

<target name="listScopes" description="lists the scopes found in the source inventory">
<offlineListScopes
sourceFile="${portal .prop.home}/test/ant/src.zip"
scopeFile="${portal .prop.home}/test/ant/listScopes_scopes.properties"
logFile="${portal .prop.home}/test/ant/listScopes_log.txt"
verboselLogFile="${portal .prop.home}/test/ant/listScopes_verboselog. txt"

BEA WebLogic Portal Production Operations Guide 9-27

Propagation Ant Task Reference

/>

</target>

9-28

OfflineSearchTask

Searches an inventory for node names that match the specified string. The search string is only
matched if it occurs in the node name (the last term in the taxonomy).

For example, consider the following inventory:

1. Application

2. Application:PersonalizationService

3. Application:PersonalizationService:EventService:redEvent.evt

4. Application:PersonalizationService:EventService:coloredEvent.evt
5. Application:PersonalizationService:EventService:blueEvent.evt

If you search this inventory for the string red, the task returns nodes 3 and 4. If you search for
PersonalizationService, the task returns just node 2.

Attributes

o failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e listFile — (required) The file in which to write the search results (the nodes that matched
the search string). This file must not already exist.

e logFile — (optional) The name of a file. The task writes log messages to this file. If
specified the file must not already exist. By default, the file is placed in the directory from
which the task is run.

e searchString — (required) The task matches nodes that contain all or part of this string.
e sourceFile — (required) A valid inventory file.

e verboselLogFile — (optional) The name of a file. The task writes verbose log messages to
this file. If specified the file must not already exist. By default, the file is placed in the
directory from which the task is run.

BEA WebLogic Portal Production Operations Guide

Offline Tasks

Ant Conditional Support

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

success — One or more matches are found.

failure — No matches are found.

On Failure

If the Fai lOnError attribute is set to true (the default), the script terminates if no matches are
found. See also “Troubleshooting Offline Tasks” on page 8-9.

Usage

Listing 9-18 searches the specified inventory for the string global. Listing 9-19 uses an Ant
conditional to print a message if the search succeeds.

Listing 9-18 OfflineSearchTask Example

<target name="'search'>
<offlineSearch]
searchString="global"
sourceFile="${portal .prop.home}/test/ant/src.zip"
listFile="${portal .prop.home}/test/ant/search.txt"
logFile="${portal .prop.home}/test/ant/search_log.txt"
verboseLogFile="${portal .prop.home}/test/ant/search_verboselog. txt"
/>
</target>

Listing 9-19 OfflineSearchTask Example with Ant Conditional

<target name='searchCl" description="finds the nodes that contain the search string in
the name'>

<condition property="search_success">
<offlineSearch
searchString="esktop"

sourceFile="${portal .prop.home}/test/ant/src.zip"
/>
</condition>

<antcall target="search_success" />
</target>

BEA WebLogic Portal Production Operations Guide 9-29

Propagation Ant Task Reference

<target name="'search_success" if="'search_success''><echo message="The search

succeeded." />

</target>

9-30

OfflineValidateTask

Verifies that the source ZIP file contains a valid portal application inventory. Use this task after
moving or downloading an inventory to ensure that it was transferred successfully. This task
ensures that the ZIP file’s internal structure adheres to an exported inventory. It does not validate
the XML of every node in the inventory tree.

Attributes

e failOnError — (optional) Specifies the task behavior if the task fails. If set to true, the
task ends in the event of an error. If set to false, the task does not terminate. Typically,
you set this attribute to false in cases where you use Ant conditionals to control the flow
in a series of propagation tasks. Default: true.

e logFile — (optional) The name of a file. The task writes log messages to this file. If
specified the file must not already exist. By default, the file is placed in the directory from
which the task is run.

e sourceFile — (required) A valid inventory file.

e verboselLogFile — (optional) The name of a file. The task writes verbose log messages to
this file. If specified the file must not already exist. By default, the file is placed in the
directory from which the task is run.

Ant Condition Property

This task supports the Ant condition task. The condition task’s property is set if the Ant task
succeeds.

e success — The file is a valid inventory file.
o failure — The file is not a valid inventory file.

On Failure

If the Fai lOnError attribute is set to true (the default), the script terminates if the file is not a
valid inventory file. See also “Troubleshooting Offline Tasks” on page 8-9.

BEA WebLogic Portal Production Operations Guide

Offline Tasks

Usage

The following example validates the inventory file called src.zip.

Listing 9-20 OfflineValidateTask Example

<target name="validateSrc" description="valid inventory, with logging">
<offlinevalidate
sourceFile="${portal .prop.home}/test/ant/src.zip"
logFile="${portal .prop.home}/test/ant/validateSrc_log.txt"
verboselLogFile="${portal .prop.home}/test/ant/validateSrc_verboselog. txt"
/>

</target>

BEA WebLogic Portal Production Operations Guide 9-31

Propagation Ant Task Reference

9-32 BEA WebLogic Portal Production Operations Guide

CHAPTERm

Using the Export/Import Utility

The Export/Import Utility allows a full round-trip development life cycle, where you can easily
move portals between a Workshop for WebLogic environment and a staging or production
environment, as shown in Figure 10-1.

This chapter explains how to use the Export/Import Utility. The chapter includes background
information on the utility and its purpose. In addition, detailed examples are provided that
illustrate common use cases.

This chapter includes the following topics:
e Installing the Export/Import Utility
e Overview of the Export/Import Utility

Basic Concepts and Terminology

The Export/Import Utility Client Program

Configuring the Export/Import Utility Properties File

Exporting a Desktop

Importing a .portal File

Exporting a Page

Importing a Page

e Controlling How Portal Assets are Merged When Imported

BEA WebLogic Portal Production Operations Guide 10-1

Using the Export/Import Utility

e Controlling How Portal Assets are Moved When Imported
e Locating and Specifying Identifier Properties

e Managing the Cache

Installing the Export/Import Utility

You only need to perform the following procedure if you intend to run the Export/Import Utility
as a stand-alone application. If you only want to run the Workshop for WebL ogic propagation
tools, then the following procedure is unnecessary.

1. Before installing the Export/Import Utility, be sure you have Ant 1.5 in your PATH
environment variable. Ant is part of the normal WebLogic Server installation. It is located in:

WEBLOGIC_HOME/server/bin/ant
where WEBLOGIC_HOME is BEA_HOME/weblogic92.

2. Stop WebLogic Server if it is running.

3. Open the file BEA_HOME/weblogic92/portal/bin/xip/build.xml, and edit the
following properties in the Installer section to point to the appropriate locations:

Property Description

bea.dir Points to WEBLOG IC_HOME (BEA_HOME/weblogic92)

wlp.lib.dir Points to the WEBLOGIC_HOME/portal/lib/netuix directory

4. Using a utility such as WinZip, open the following WAR file:
BEA_HOME/weblogic92/portal/lib/modules/wlp-propagation-web-lib._war

5. Extract the file p13n_prop. jar from the WAR and save it in
BEA_HOME/weblogic92/portal/lib.

Note: Ifyou place the p13n_prop.jar file in this directory, you do not need to add it to the
wlp.classpath in the build.xml file. If it is not in this directory, add it to the
wlp.classpath in build.xml.

6. Build the Export/Import Utility. To do this, run the following command from within the
BEA_HOME/weblogic92/portal/bin/xip directory:

ant

10-2 BEA WebLogic Portal Production Operations Guide

Overview of the Export/Import Utility

7. Extract netuix.jar into ${wlp.lib.dir} from
BEA_HOME/weblogic92/portal/lib/modules/wlp-framework-full-app-lib.ear

Note: ${wlp.lib.dir}/netuix.jar isinthe wlp.classpath in build.xml.

8. The variable xip.config.url in xip.properties uses port 7003, should make it 7001 to
match the port number set in the Configuration Wizard.

xip.config.url=t3://localhost:7001

The xip.properties file is located in BEA_HOME/weblogic92/portal/bin/xip.

9. wls.classpath in build.xml uses bea.dir instead of wls. lib.dir. It should use
wls.lib._dir as follows:

<property name="wls.classpath™ value="${wls_lib.dir}/wlclient.jar"” />

10. If you receive the following compile error in XipProperties.java, remove line 279:

[Javac] ?\xip\src\com\bea\wlp\xip\XipProperties.java:279: cannot find symbol
[Javac] symbol : method setEnableWSRPPortletlImport(boolean)

The full path name for XipProperties.java is:

BEA_HOME/weblogic92/portal/bin/xip/src/com/beas/wlp/xip/XipProperties.java

Overview of the Export/Import Utility

The Export/Import Utility allows a full round-trip development life cycle, where you can easily
move portals between a Workshop for WebLogic environment and a staging or production
environment, as shown in Figure 10-1.

BEA WebLogic Portal Production Operations Guide 10-3

Using the Export/Import Utility

10-4

Figure 10-1 Export/Import Utility Allows Round-Trip Development

Warkshop for
WeblLogic

portal, .book,
page files

Export Database
to Files

Export/lmgport
LHility

Import Files
to Database

v

WebLogic
Portal
Administration
Console

Database

This utility lets you import . portal, .pinc, and other portal framework files into the database,
and lets you export these files from the database. The exported files can be loaded back into
Workshop for WebLogic, or imported into another WebLogic Portal database.

The utility performs its work in a single database transaction. If the utility fails for some reason,

the database is not affected.

What the Utility Moves

The Export/Import Utility moves desktops, portlet references, books, pages, and localization
definitions. In other words, the utility exports .portal, .pinc, and other portal framework files
from a database, and imports the contents of those files back into a database.

Tip: For detailed information on the portal framework, see the Portal Development Guide.

Note: The actual definitions for portlets, look and feels, shells, menus, layouts, themes, JSPs,
and other code are contained in the EAR file. These files are stored in directories in portal
web applications, such as the framework/markup directory. If any of these file-based
elements change, you must rebuild and redeploy the EAR. The .portal and other portal
framework files simply refer to the definition files.

BEA WebLogic Portal Production Operations Guide

../portals/index.html

Overview of the Export/Import Utility

What the Utility Does Not Move

The Export/Import Utility does not handle the following items: campaigns, behavior tracking
events, content management assets, entitlements, WSRP producer registration, portlet categories,
localization resources, user profiles, and commerce data.

Refining Rules for Exporting and Importing

The Export/Import Utility allows you to select an object (desktop, book or page) at any level
(library, admin, visitor) and import it or export it, according to specified rules.

To refine and customize the export and import of _portal, -pinc, and other portal framework
files to and from the database, you can:

e Specify rules to determine how portal elements are merged. For instance, in a manner
similar to that of a source code control mechanism, changes in a . portal file can be
merged with changes in the database.

e Specify scoping rules. Scoping rules determine how new books and pages will be merged
into the new environment. Note that user and administrator customizations are preserved
when assets are merged.

As shown in Figure 10-2, the Export/Import Utility offers flexibility with respect to importing,
exporting, and scoping. You can scope changes to the library, admin (desktop), or visitor
(individual user) level. For instance, if you import a desktop at the admin scope, the imported
changes will be applied only to the specified desktop. If a user has customized that particular
desktop, then the changes will also be inherited by the user desktop. Note, however, that changes
are never inherited up the hierarchy. Elements in the library will not inherit changes made to a
desktop.

Tip: Foramore in depth discussion of the relationship between the library, desktops, and user
views, see “Scope and Library Inheritance” on page 6-20.

BEA WebLogic Portal Production Operations Guide 10-5

Using the Export/Import Utility

Figure 10-2 Import, Export, and Scoping Options Offered by the Export/Import Utility

Library ;Lb(:a;y
P p
Admin
T 1 OT 2 EH & Scope
L P
--"'-'--
i ST e~ 1
Visitor
User 2 Wr2 User 2 Scope \
Uzer 3 Uszer 3 Uzer 3

Basic Concepts and Terminology

10-6

Before you use the Export/Import Utility, it is important to understand some basic portal concepts
and terms. If you review this section, the explanations and examples provided in the rest of this
chapter will be more clear.

The concepts and terms described in this section include:
e .portal Files Versus Desktops
e Export and Import Scope

e Customization

.portal Files Versus Desktops

The .portal file that you create in Workshop for WebLogic is a fully functioning portal.

However, it can also be used as a template to create a desktop. In this template you create books,
pages and references to portlets. When you view the .portal file with your browser, the portal
is rendered in “single file mode,” meaning that you are viewing the portal from your filesystem
as opposed to a database; the .portal file’s XML is parsed and the rendered portal is returned
to the browser. The creation and use of a -portal is intended for development purposes and for

BEA WebLogic Portal Production Operations Guide

Basic Concepts and Terminology

static portals (portals that are not customized by the end user or administrator). Because there is
no database involved you cannot take advantage of functionality such as user customization or
entitlements.

Once you have created a - portal file you can use it as a template to create desktops for a staging
or production environment. A desktop is a particular view of a portal that visitors access. When
you create a desktop based on the . portal file in the WebLogic Portal Administration Console,
a desktop and its books and pages are placed into the database. The desktop, books, and pages
reference shells, menus, look and feels, and portlets. The settings in the .portal file template,
such as the look and feel, serve as defaults to the desktop. Once a new desktop is created from a
-portal template, the desktop is decoupled from the template, and modifications to the . portal
file do not affect the desktop, and vice versa. For example, when you change a desktop’s look and
feel in the WebLogic Portal Administration Console, the change is made only to the desktop, not
to the original . portal file. When you view a desktop with a browser it is rendered in “streaming
mode” (from the database). Now that a database is involved, desktop customizations can be saved
and delegated administration policies and entitlements can be set on portal resources.

Export and Import Scope

Exports and imports can be scoped to the following levels:
e Library Scope
e Admin Scope

e Visitor Scope

The first two levels correspond to the Library and Portals nodes in the Portal Resources tree of
the WebLogic Portal Administration Console, as shown in Figure 10-3. The visitor level includes
changes made by users to individual desktops using the Visitor Tools.

BEA WebLogic Portal Production Operations Guide 10-7

Using the Export/Import Utility

10-8

Update ‘Webdpp

Portal Resources for : portalWebProject

EE’J Portal Resources

E-fI Library

#-li5 Portlets

----- i Portlet Categories
]I Books

H- {5z Layouts

H-{ Look & Feels
H-{ = Menus

H- 7 Pages

H-{L 5 Remote Producers
H-{ = Shells

H-id Templates

i Thermes

b
b
b
b
b
b
b
b

Bl Portals
B rryPortal
[mCommunities
{4l Termplates
=5 myDesktop
=i Main Page Book
B[Page 1

:
|
}

BEA WebLogic Portal Production Operations Guide

Figure 10-3 Portal Resources Tree of the WebLogic Portal Administration Console

Library Scope

Admin Scope

The relationship between library, admin, and visitor views is hierarchical, and properties from
objects up the hierarchy can be inherited by objects down the hierarchy. For example, a change
to a library element is inherited by desktops that use that element and by visitor views that use
those desktops.

Figure 10-4 shows the hierarchy in which library, admin, and visitor instances are organized, the
direction in which changes are inherited, and the tools that are typically used to make
modifications at the different levels in the hierarchy.

Basic Concepts and Terminology

Figure 10-4 Scoping Hierarchy

o Admin Tools/
Definitions & Library File System/
Library Instances Definition EJBs
Admin Tools/
. Destiop | | Desktop | | Desktop | portalCustomizationMgr
Admin Instances

2
| User 2

|
=
|

[Us:ar 1 ”Ilqer 2 | Lizer 1 User 1 |Usar 2
User Instances [||d | |

Visitor Tools/
PortalCustomizationMgr

User 3

|User fll

User 5 | [User 6 Uiser 5

llJ.f.erH“Uscré |Uscr6‘

Library Scope

An object (book, page, or portlet) can exist in the library and not be referenced by any desktop.
A developer or administrator may create a page or book in the library only, outside the context of
a desktop. This page or book can then be placed on a desktop at a later point in time. Changes
made to objects in the library cascade down through all desktops that reference those objects. For
more information on library inheritance, see “Scope and Library Inheritance” on page 6-20.

Admin Scope

The admin scope represents the “default desktop.” This is where an administrator creates and
modifies individual desktops. Changes made by an administrator to a desktop may use elements
from the library, but desktop changes are never reflected back up into the library. Furthermore,
changes made to individual desktops do not affect other desktops. However, changes made to
desktops are cascaded down to the visitor views. See also “Scope and Library Inheritance” on
page 6-20.

Visitor Scope

Visitors (users who access desktops) may be permitted to customize their desktop. Changes made
to a visitor’s desktop are restricted to that visitor’s view. The changes do not show up in either

BEA WebLogic Portal Production Operations Guide 10-9

Using the Export/Import Utility

the admin-level desktop, which the visitor view references, or in the library level. The changes
also do not show up in other visitor’s views.

Customization

Customization refers to modifying a portal through an API. This API is typically called from the
WebLogic Portal Administration Console and Visitor Tools, but it is also exposed to developers
who wish to modify desktops. The API provides all the create, read, update, and delete (CRUD)
operations needed to modify a desktop and all of its components (for example, portlets, books,
pages, and menus).

Note: Customization and personalization are two distinctly different features. With
customization, someone is making a conscious decision to change the makeup of a
desktop. With personalization, desktops are modified based on rules and user behavior.

The Export/Import Utility Client Program

The Export/Import Utility client consists of a simple command-driven Java program. This
program reads a local properties file, which you must manually configure, as explained in
“Configuring the Export/Import Utility Properties File” on page 10-10. After parameters are read
from the properties file, the Java program calls an API that executes the appropriate actions on
the server. For instance, if you wish to import a page and scope the change to the admin level,
you must specify this in the properties file.

Tip: The Java program’s source code is freely available in the installation directory of the
Export/Import Utility. You are free to use this source code to develop your own client
interface.

Configuring the Export/Import Utility Properties File

10-10

As previously mentioned, the Export/Import Utility is a Java program that reads a properties file.
To use the utility, you must manually configure this properties file.

Specifying Parameters in the Properties File

In the properties file you can specify such things as server configuration information, export
import commands, objects, scoping rules, and propagation rules. The default properties file is
fully commented to help guide you in editing it. In addition, the examples discussed later in this

BEA WebLogic Portal Production Operations Guide

Configuring the Export/Import Utility Properties File

chapter, such as “Exporting a Desktop” on page 10-12, contain detailed information specific
properties.

An excerpt from the default xip.properties file is shown in Figure 10-5. You can find this file
in BEA_HOME/weblogic92/portal/bin/xip.

Figure 10-5 Excerpt from Default Properties File

Export/Import Propertises file. The propertises in this file are read by the XZip £
4 (pronounced zip) utility. ¥You may specify an alternate propertiss file wvia the -+
-properties command line argument.

¢
4 Server connfiguration information X
¥
xip.config.url=ti://localhost:70032 ¥ .
xip.config.usernare=weblogic -
xip.contig.password=weblogic :I: P
xip.config.application=mvEnterprise=App ¥
" 4
command - Are we exporting or importing. Walid walues are: "export", "import" r
4 1
$xip.command=export

xip.command=import r
E
4 object - The "thing" vou want to export/import {(desktop, book, pagel }
xip.ocbhbject=dasktop 1
#xip.ocbject=bock ;
#xip.object=pages

" }
Identifier propertiss, t=lls the import sxport utJ.J.J.ty how to identifw the

N e B e e an A e A g T AT e A expamishdentt e W

Tip: The complete default properties file is shown in Appendix A, “Export/Import Utility
Files.”

Specifying the Properties File Location

By default, the properties file that is used to configure the Export/Import Utility is called
xip.properties. It is located in the installation directory of the Export/Import Utility
(BEA_HOME/weblogic92/portal/bin/xip). You can specify an alternate properties file by
editing the Ant build file buiId.xml, which is also included in the installation directory of the
utility. Listing 10-1 shows the Ant target definition to edit:

BEA WebLogic Portal Production Operations Guide 10-11

Using the Export/Import Utility

Listing 10-1 Modifying the Location of the Properties File in the Ant Script

<target name="run" depends="jar" description="Run the Xip utility">
<java classname=""com.bea.wlp.xip.Xip" Ffork="true" failonerror="true">
<arg value="-verbose"/>
<arg value="-properties=my._properties"'/>
<classpath>
<pathelement path="${wls.classpath}"/>
<pathelement path="${wlp.classpath}"/>
<pathelement path="${jarfile}"/>
</classpath>
</java>
</target>

Exporting a Desktop

This section explains how to export a desktop using the Export/Import Utility. Exporting a
desktop means retrieving the attributes of a desktop from the database and restoring them in a
-portal file. The exported .portal file can then be loaded into Workshop for WebL ogic for
further development.

The basic steps for exporting a desktop include editing the xip . properties file and running an
Ant build script.

These steps are explained in the following sections:
1. Editing the Properties File
2. Running the Build Script

Editing the Properties File

To export an existing desktop as a -portal file you need to specify attributes in the
xip.properties file. This section highlights the required changes.

xip.config.application=portalProject

You must specify the name of Enterprise application from which you are exporting. In
Workshop for WebLogic, this value corresponds to the Portal EAR Project name, as
shown in the following figure:

10-12 BEA WebLogic Portal Production Operations Guide

Exporting a Desktop

Figure 10-6 Application Name Shown in the WebLogic Portal Administration Console

=

tg X Mavigator | Merged Projects]
= <'==={> =
Portal EAR Project

=& portalEarProject
== EarContent
=l-[= APP-INF
+- = classes
= lib
+-[= META-INF
= b‘J portalwebProject
+ [s
+-24, JRE System Library [BEA WeblLogic v9.2 JRE]
+-2), BEA Weblogic +9.2 [BEA Products (BEAHOME 23]
+p B, Enfarevise A'pplicatim Libra[ies[po‘[taIEQrProj?ft'I - -~

A Ay iy

L

=

xip.command=export

Specify that you wish to export, rather than import.

Xip.object=desktop

Specify the object you wish to export—in this example, a desktop.

xip.identifier._webapp=PortalWebApp_1
xip.identifier._portal.path=yourPortalPath
xip.identifier.desktop.path=yourDesktopPath

Note: These lines identify the objects you wish to export. For information on where to find the
values for these properties, if you do not know what they are, see “Locating and
Specifying ldentifier Properties” on page 10-32 for more information.

The web webapp property must always be specified.
If you scope the export to the admin or visitor level, then you must specify the

portal .path and desktop.path properties.
xip.output.file=myportal .portal

Specify where you wish to save the result (the exported . portal file). In this example,
the resulting file is called myportal .portal, and it is placed in a location relative to
where the utility was run.

Note: You do not need to specify the encoding as this information is in the database.

Xip.export.context.scope=admin

Specify the scope of the export. In this example, the admin scope is specified. For more
information on scope, see “Export and Import Scope” on page 10-7.

xip.export.context. locale. language=en

BEA WebLogic Portal Production Operations Guide 10-13

Using the Export/Import Utility

Specify the locale of the exported desktop (in this example, English). Only one locale can
be exported or imported at a time.

Running the Build Script

Once the property attributes are defined, you can run the Ant build script, as shown in
Listing 10-2. The build script’s task writes status information, also shown below, to the console
window.

Listing 10-2 Running the Ant Build Script

C:\dev\xip>ant run
Buildfile: build.xml
init:

compile:

jar:

run:

[Java] Using: Properties from file [xip.properties]

[Java]l Name [xip.config.url] Value [t3://1ocalhost:7003]

[Java]l Name [xip.config.username] Value [weblogic]

[Java]l Name [xip.config.password] Value [********]

[Java]l Name [xip.config.application] Value [portalProject]

[Java]l Name [xip.command] Value [export]

[Java]l Name [xip.object] Value [desktop]

[Java]l Name [xip.identifier.webapp] Value [PortalWebApp_1]

[Java]l Name [xip.identifier.portal.path] Value [yourPortalPath]
[Java]l Name [xip.identifier.desktop.path] Value [yourPortalDesktop]
[Java]l Name [xip.identifier.book.label] Value [mainBook]

[Java]l Name [xip.identifier.page.label] Value []

[Java]l Name [xip.input.file] Value [yourPortal.portal]

[Java]l Name [xip.output.file] Value [myportal._portal]

[Java]l Name [xip.import.context.deletes] Value [false]

[Java]l Name [xip.import.context.moves] Value [false]

[Java]l Name [xip.import.context.outermoves] Value [false]

[Java]l Name [xip.import.context.updates] Value [true]

[Java]l Name [xip.import.context.abort.on.collisions] Value [null]
[Java]l Name [xip.import.context.abort.if_portlets.missing] Value [false]
[Java]l Name [xip.import.context.scope] Value [admin]

[Java]l Name [xip.import.context.modify.definitions] Value [false]
[Java]l Name [xip.import.context.propagate.changes] Value [sync]
[Java]l Name [xip.import.context.create.portal] Value [true]
[Java]l Name [xip.import.context.portal._title] Value [My Portal]
[Java]l Name [xip.import.context.locale.language] Value [en]
[Java]l Name [xip.import.context.locale.country] Value []

10-14 BEA WebLogic Portal Production Operations Guide

Importing a .portal File

[Java]l Name [xip.import.context.locale.variant] Value []
[Java]l Name [xip.export.context.scope] Value [admin]

[ava]l Name [xip.export.context.locale.language] Value [en]
[Java]l Name [xip.export.context.locale.country] Value []
[Java]l Name [xip.export.context.locale.variant] Value []

[Java] Executing command: export

[Java] Exporting desktop [Webapp: [PortalWebApp_1] PortalPath: [yourPortalPath]
DesktopPath: [yourDesktopPath]] to file [myportal.portal]

[Java] Connection to host: t3://localhost:7003

[Java] Saving changes to: myportal .portal

[Java] Done. time taken 6 sec.

BUILD SUCCESSFUL
Total time: 8 seconds

C:\dev\xip>

The file myportal . portal can now be reloaded into Workshop for WebLogic or imported into
another staging or production (database) environment.

Importing a .portal File

This section explains how to import a . portal file into a desktop using the Export/Import
Utility. When importing a . portal file into a desktop, there are two possible cases: the desktop
already exists in the database or it does not. If the desktop does not already exist in the database,
then the Export/Import Utility automatically creates it. If, however, the desktop does already exist
in the database, you need to specify merging options.

The basic steps for importing a -portal file include editing the xip.properties file and
running an Ant build script.

These steps are explained in the following sections:
1. Editing the Properties File
2. Running the Build Script

Editing the Properties File

To import an existing .portal file into a desktop, you need to specify attributes in the
xip.properties file. This section highlights the required changes.

BEA WebLogic Portal Production Operations Guide 10-15

Using the Export/Import Utility

xip.config.application=portalProject

You must specify the name of Enterprise application you are importing to. In Workshop
for WebLogic, this value corresponds to the Portal EAR Project name, as shown in the
following figure:

Figure 10-7 Application Name

+-[= META-INF
= b‘J portalwebProject
+ [s
+-24, JRE System Library [BEA WeblLogic v9.2 JRE]
+-2), BEA Weblogic +9.2 [BEA Products (BEAHOME 23]
+p B, Enfarevise A'pplicatim Libra[ies[po‘[taIEQrProj?ft'I -

tg X Mavigator | Merged Projects =0 E
E
= <)==D = i

=& portalEarProject ’ Portal EAR Project
== EarContent
=2 APP-INF ;
+- = classes

P 4

= lib 4

F

o

k

L

=

F - »
Xip.command=import

Specify that you wish to import, rather than export.
Xip.object=desktop

The object you are interested in importing — in this example a desktop.

xip.identifier._webapp=PortalWebApp_1
xip.identifier.portal.path=yourPortalPath
xip.identifier.desktop.path=yourDesktopPath

Note: These lines identify the objects you wish to export. For information on where to find the
values for these properties, if you do not know what they are, see “Locating and
Specifying Identifier Properties” on page 10-32.

The web webapp property must always be specified.

If you scope the export to the admin or visitor level, then you must specify the
portal .path and desktop.path properties.

xip.input.file=myportal .portal

Specify the .portal file that you wish to import from. The utility looks for the file in a
location relative to where the utility is installed.

Note: You do not need to specify an encoding as that is defined in the . portal file itself.

Xip.import.context.scope=admin

10-16 BEA WebLogic Portal Production Operations Guide

xip-

Importing a .portal File

Specify the scope of the import. In this example, you wish to import a desktop at the
admin level. For detailed information on scope, see “Export and Import Scope” on
page 10-7.

-import.context.deletes=false

You must specify how to handle deletes. See “Controlling How Portal Assets are Merged
When Imported” on page 10-28 for detailed information.

- import.context.moves=false
-import.context.outermoves=true

You must specify how to handle moves. See “Controlling How Portal Assets are Moved
When Imported” on page 10-30 for detailed information.

-import.context.updates=true

If xip. import.context.updates is true then new portlets, books, and pages that do
not exist in the desktop but exist in the .portal will be added to the new desktop. Also
instance level resources will be updated.

-import.context.abort.if._portlets_missing=true

If xip.import.context.abort.if.portlets.missing is true then if a portlet is
referenced in the -portal file but does not exist in the web application then the import
is halted. If this flag is false a warning is logged and the import continues.

import.context.modify.definitions=true

If xip.import.context.modify.definitions is true, when updating books and
pages the utility also updates the library definition. A library definition consists of
markup, which includes backing files, activate, deactivate, and rollover images. Also
titles and descriptions for books and pages, and the is_hidden flag are stored in these
definitions.

Note: Be aware that if you modify a library definition, desktop instances that share that library

Xip-

definition could be affected. Therefore, if you scope to a particular desktop, you may
inadvertently affect other desktops if this property is set to true. For a detailed
discussion about the relationship between library definitions and desktop instances, see
“Scope and Library Inheritance” on page 6-20.

import.context.propagate.changes=sync

The xip. import.context.propagate.changes property lets you specify whether or
not to propagate changes down the hierarchy of portal elements. Valid values for this
property are sync or off.

BEA WebLogic Portal Production Operations Guide 10-17

Using the Export/Import Utility

10-18

When adding, removing, or moving portlets, pages or books, the changes typically are
propagated down the hierarchy. In other words, changes made in the library are seen in
all desktops, and changes made to the admin view (default desktop) are seen by all users.

A user’s desktop view initially points to (inherits its properties from) the default desktop
(admin view). If the default desktop changes, the changes are propagated downward to
the user view.

When users customize their views, each user’s view receives a copy of the customized
portions of their view, and the rest of the portal continues to reference the default, or
parent, desktop.

This property gives you the ability to control how changes are propagated down the
hierarchy when users have customized their portals. If a user’s or admin’s portal is never
customized, their views will always inherit changes from up the hierarchy, even if this
property is set to offF.

If, however, a user has customized a portion of a portal, and the same portion is modified
up the hierarchy, this property allows you to control whether or not the change is
propagated down the hierarchy. In this case, if you set this property to off, admin and
user views will not inherit updates made to parent components. If set to synch, changes
will be propagated downward, even if the user customized his or her view.

Tip: You may want to turn this property off if you do not want to modify the pages or books
that the user or administrator considers to be privately owned.
Tip: Itis considered good practice to allow your users to modify only a certain section of the

portal and lock down the rest (for instance, one page that they have full control over),
instead of allowing them free control over the entire portal. This promotes better
scalability and makes portals more manageable when a large number of users make
customizations.

Xip.import.context.create.portal=true

If xip.import.context.create.portal issetto true and a portal does not exist in the
database, one will be created for you. In addition, you must specify a title for the new
portal using the next property.

Xip.import._.context.portal.title=My Portal

If xip.import.context.create.portal (described previously) is set to true, then
you must specify a title using this property.

BEA WebLogic Portal Production Operations Guide

Importing a .portal File

Xip.import.context. locale. language=en
Xip.import.context. locale.country=
Xip.import.context. locale.variant=

These properties define the locale for the _portal file’s titles and descriptions.

Running the Build Script

Once the property attributes are defined, you can run the build script, as shown in Listing 10-3.
The build script’s task writes status information, also shown below, to the console window.

Listing 10-3 Running the Ant Build Script

C:\dev\xip>ant run

[Java] Using: Properties from file [xip.properties]

[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Javal
[Javal
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Javal
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Javal

Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name

[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-
[xip-

config.url] Value [t3://1ocalhost:7003]
config.username] Value [weblogic]
config.password] Value [weblogic]
config.application] Value [portalProject]
command] Value [import]

object] Value [desktop]

identifier.webapp] Value [PortalWebApp_ 1]
identifier.portal .path] Value [yourPortal]
identifier.desktop.path] Value [yourDesktop]
identifier.book. label] Value []
identifier.page.label] Value []

input_file] Value [myportal.portal]

output.file] Value []

import.context.deletes] Value [false]
import.context.moves] Value [false]
import.context.outermoves] Value [false]
import.context.updates] Value [true]
import.context.abort.on.collisions] Value [null]
import.context.abort.if._portlets.missing] Value [false]
import.context.scope] Value [admin]
import.context.modify.definitions] Value [false]
import.context.propagate.changes] Value [sync]
import.context.create.portal] Value [true]
import.context.portal.title] Value [My Portal]
import.context.locale. language] Value [en]
import.context.locale.country] Value []
import.context.locale.variant] Value []
export.context.scope] Value [admin]
export.context. locale.language] Value [en]

BEA WebLogic Portal Production Operations Guide 10-19

Using the Export/Import Utility

[Java]l Name [xip.export.context.locale.country] Value []
[Java]l Name [xip.export.context.locale.variant] Value []

[Java] Executing command: import

[Java] Importing desktop: Webapp: [PortalWebApp_1] PortalPath: [yourPortalPath]
DesktopPath: [yourDesktopPath]

[Java] Connection to host: t3://localhost:7003

[Java] Uploading file: myportal._portal

[Java] Done. time taken 40 sec.

BUILD SUCCESSFUL

Total time: 52 seconds

Exporting a Page
If you do not wish to export an entire desktop, you can configure the utility to export a single
page.

Tip: While this section explicitly deals with exporting pages, the same basic procedure applies
to exporting books.

This section explains how to export a page from a desktop. Exporting a page is another common
use case. When you export a page or a book, the result is a . pinc file.

Note: If you export a page or a book, all children of that page or book are exported as well.

The basic steps for exporting a page include editing the xip . properties file and running an Ant
build script.

These steps are explained in the following sections:
1. Editing the Properties File
2. Running the Build Script

Editing the Properties File

To export an existing page as a .pinc file you will need to specify attributes in the
xip.properties file. This section highlights the required changes.

xip.config.application=portalProject

10-20 BEA WebLogic Portal Production Operations Guide

Exporting a Page

You must specify the name of Enterprise application you are exporting from. In
Workshop for WebLogic, this value corresponds to the Portal EAR Project hame, as

shown in the following figure:

Figure 10-8 Application Name

B x|

Mavigator | Merged Projects

0

s

4,0

=& portalEarProject
== EarContent
=l-[= APP-INF
+- = classes
= lib
+-[= META-INF
= b‘J portalwebProject
+ [s
+-24, JRE System Library [BEA WeblLogic v9.2 JRE]
+-2), BEA Weblogic +9.2 [BEA Products (BEAHOME 23]

+p B, Enfarevise A'pplicatim Libra[ies[po‘[taIEQrProj?ft'I -

xip.command=export

o~

Portal EAR Project

g Ay iy

L

=

Specify that you wish to export, rather than import.

xip-object=page

The object you are interested in exporting — in this example a page.

xip.identifier._webapp=PortalWebApp_1

xip.identifier_portal.path=yourPortalPath
xip.identifier.desktop.path=yourDesktopPath

Note:

These lines identify the objects you wish to export. For information on where to find the

values for these properties (if you do not know what they are), see “Locating and
Specifying ldentifier Properties” on page 10-32.

The web webapp property must always be specified.

If you scope the export to the admin or visitor level, then you must specify the
portal . path and desktop . path properties. If you are exporting a book or a page, then
the book . 1abel or page . label properties must be specified.

If you scope the export to the library then you do not need to supply a portal . path and
desktop.path, but you still need to supply a webapp name.

xip.identifier._book. label=

xip.identifier.page.label=P200134591113965077078

You need to identify the page or book that you wish to export. To do this, specify the
definition label of the page or book using the xip.identifier.page. label property.

BEA WebLogic Portal Production Operations Guide

10-21

Using the Export/Import Utility

The definition label is typically supplied by the developer in Workshop for WebLogic,
but it could also have been automatically generated by the WebLogic Portal
Administration Console. See “Locating and Specifying Identifier Properties” on

page 10-32 for information on finding the definition label.

xip.output.file=mypage.pinc
Use this property to specify a file in which to save the result. In this example, the file
mypage.pinc is saved in the directory in which the utility is run.

Note: You do not need to specify the encoding as this information is in the database.

Xip.export.context.scope=admin

Specify the scope of the export. In this example, the page is exported from within a
desktop (admin scope). If you want to export a page from the library, set the scope to
library.

xip.export.context. locale. language=en

Specify the locale of the exported page.

Running the Build Script

Once the property attributes are defined, you can run the Ant build script, as shown in
Listing 10-4. The build script’s task writes status information, also shown below, to the console
window.

Listing 10-4 Running the Ant Build Script

C:\dev\xip>ant run
Buildfile: build.xml
init:

compile:

jar:

run:

[Java] Using: Properties from file [xip.properties]

[Java]l Name [xip.config.url] Value [t3://1ocalhost:7003]

[Java]l Name [xip.config.username] Value [weblogic]

[Java]l Name [xip.config.password] Value [********]

[Java]l Name [xip.config.application] Value [portalProject]
[Java]l Name [xip.command] Value [export]

[Java]l Name [xip.object] Value [page]

[Java]l Name [xip.identifier.webapp] Value [yourPortal]

[Java]l Name [xip.identifier.portal.path] Value [yourPortalPath]

10-22 BEA WebLogic Portal Production Operations Guide

[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Javal
[Java]l
[Java]l
[Java]l
[Javal
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l

Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name

[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-

Importing a Page

identifier.desktop.path] Value [yourDesktopPath]
identifier.book.label] Value []
identifier.page.label] Value [P200134591113965077078]
input.file] Value []

Ffile] Value [mypage.pinc]

output.
import.
import.
import.
import.
import.
import.
import.
import.
import.
import.
import.
import.
import.
import.
export.
export.
export.
export.

context.
context.
context.
context.

context
context

context
context

[Java] Executing command: export

deletes] Value [false]
moves] Value [false]
outermoves] Value [false]
updates] Value [true]

.abort.on.collisions] Value [null]
.abort.if.portlets.missing] Value [false]
context.
context.
context.
context.
context.
context.
context.

scope] Value [admin]
modify.definitions] Value [false]
propagate.changes] Value [sync]
create.portal] Value [true]
portal _title] Value [My Portal]
locale.language] Value [en]
locale.country] Value []

-locale.variant] Value []
.scope] Value [admin]

context.
context.
context.

locale.language] Value [en]
locale.country] Value []
locale.variant] Value []

[Java] Exporting page [mypage] scoped to desktop: Webapp: [PortalWebApp_1]
[yourPortalPath] DesktopPath: [yourDesktopPath]]

[Java] Connection to host: t3://localhost:7003

[Java] Saving changes to: mypage.pinc

[Java] Done. time taken 6 sec.

PortalPath:

BUILD SUCCESSFUL

Total time: 8 seconds

Importing a Page

This section explains how to import a single page.

Tip:

book.

While this section explicitly deals with pages, the same procedure applies to importing a

BEA WebLogic Portal Production Operations Guide

10-23

Using the Export/Import Utility

The imported page could have been created in Workshop for WebLogic or exported from another
staging or production environment. Either way you are importing a - pinc file into the database.

Note: When you import or export a page or book, all the children are imported as well.

The basic steps for importing a page include editing the xip.-properties file and running an
Ant build script.

These steps are explained in the following sections:
1. Editing the Properties File

2. Running the Build Script

Editing the Properties File

To import an existing .pinc file you must specify attributes in the xip.properties file. This
section highlights the required changes you must make to the properties file to import a page.

xip.config.application=portalProject

You must specify the name of Enterprise application you are importing to. In Workshop
for WebLogic, this value corresponds to the Portal EAR Project folder, as shown in the
following figure:

Figure 10-9 Application Name

tg X Mavigator | Merged Projects

i
4,0

A Ay iy

Portal EAR Project

=& portalEarProject
== EarContent
=l-[= APP-INF
+- = classes
= lib
+-[= META-INF
= b‘J portalwebProject
+ [s
+-24, JRE System Library [BEA WeblLogic v9.2 JRE]
+-2), BEA Weblogic +9.2 [BEA Products (BEAHOME 23]
+p B, Enfarevise A'pplicatim Libra[ies[po‘[taIEQrProj?ft'I - -~

L

=

Xip.command=import

Specify that you wish to import, rather than export.
Xip.object=page

The object you are interested in importing — in this example a page.

10-24 BEA WebLogic Portal Production Operations Guide

Xip-
Xip-
Xip-
Xip-
Xip-

Importing a Page

identifier.webapp=PortalWebApp_1
identifier.portal .path=yourPortalPath
identifier.desktop.path=yourDesktopPath
identifier.book. label=
identifier.page.label=

Note: These lines identify the objects you wish to export. For information on where to find the

values for these properties (if you do not know what they are), see “Locating and
Specifying ldentifier Properties” on page 10-32.

If you scope the import to the admin or visitor level, then you must specify the
portal . path and desktop . path properties. If you are importing a book or a page, then
the book . label or page. label properties must be specified.

The web webapp property must always be specified.

Note: The page. label property is not needed on imports. This is because the page label is

defined in the .pinc file as an attribute of the <netuix:page ... />element.

-input_file=mypage.pinc

Specify the . pinc file to import from. By default, the utility locates the file in a directory
relative to where you run the utility.

- import.context.scope=admin

Identify the scope of the import. In this example you are importing a page at the admin
level.

-import.context.deletes=false

You need to specify how to handle deletes. See “Controlling How Portal Assets are
Merged When Imported” on page 10-28 for more information on this property.

- import.context.moves=false

You need to specify how to handle moves. See “Controlling How Portal Assets are
Moved When Imported” on page 10-30 for more information on this property.

- import.context.updates=true

If xip.import.context.updates is true then new portlets, book and pages that don’t
exist in the desktop but exist in the .portal will be added to the new desktop. Also
instance level resources will be updated.

-import.context.abort.if_portlets_missing=true

BEA WebLogic Portal Production Operations Guide 10-25

Using the Export/Import Utility

10-26

If xip.import.context.abort.if_portlets.missing is true then if a portlet is
referenced in the .portal file but does not exist in the web application then the utility
will halt the import. If this flag is false then the utility logs a warning and continues.

Xip.import._.context_modify.definitions=true

Note:

If xip.import.context.modify.definitions is true, when updating books and
pages the utility also updates the library definition. A library definition consists of
markup, which includes backing files, activate, deactivate, and rollover images. Also
titles and descriptions for books and pages, and the is_hidden flag are stored in these
definitions.

Be aware that if you modify a library definition, desktop instances that share that library
definition could be affected. Therefore, if you scope to a particular desktop, you may
inadvertently affect other desktops if this property is set to true. For a detailed discussion
about the relationship between library definitions and desktop instances, see “Scope and
Library Inheritance” on page 6-20.

Xip.import.context.propagate.changes=sync

The xip.import.context.propagate.changes property lets you specify whether or
not to propagate changes down the hierarchy of portal elements. Valid values for this
property are sync or off.

When adding, removing, or moving portlets, pages or books, the changes typically are
propagated down the hierarchy. In other words changes made in the library are seen in
all desktops. And changes made to the admin view (desktop) are seen by all users.

A user’s desktop view inherits its properties from the default desktop (admin view). If
the default desktop changes, the changes are propagated downward to the user view.
When a users customize their views, each user’s view receives a copy of the customized
portions of their view, and the rest of the portal continues to reference the default, or
parent, desktop.

This property gives you the ability to control how changes are propagated down the
hierarchy when users have customized their portals. If a user’s or admin’s portal is never
customized, their views will always inherit changes from up the hierarchy, even if this
property is set to off.

If, however, they have customized a portion of a portal, and the same portion is modified
up the hierarchy, this property allows you to control whether or not the change is
propagated down the hierarchy. In this case, if you set this property to off, admin and
user views will not inherit updates made to parent components. If set to sync, changes
will be propagated downward, even if the user customized his or her view.

BEA WebLogic Portal Production Operations Guide

Importing a Page

Tip:

that the user or administrator considers to be privately owned.

You may wish to turn this property off if you do not want to modify the pages or books

Tip:

It is considered good practice to only allow your users to modify a certain section of the
portal and lock down the rest (for instance, one page that they have full control over),

instead of allowing them free control over the entire portal. This promotes better

scalability and makes portals more manageable when a large number of users make
customizations.

Xip
Xip
Xip

-import.context. locale.language=en
-import.context. locale.country=
-import.context.locale.variant=

These properties define the locale for the .pinc file’s titles and descriptions.

Running the Build Script

Once the property attributes are defined, you can run the build script, as shown in Listing 10-5.

The build script’s task writes status information, also shown below, to the console window.

Listing 10-5 Running the Ant Build Script

C:\dev\xip>ant run

[Java] Using: Properties from file [xip.properties]

[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Javal
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l
[Java]l

Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name
Name

[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-
[xip-
[xip.-
[xip-

config.url] Value [t3://1ocalhost:7003]
config.username] Value [weblogic]
config.password] Value [weblogic]
config.application] Value [portalProject]
command] Value [import]

object] Value [page]

identifier.webapp] Value [PortalWebApp_ 1]
identifier.portal _path] Value [yourPortalPath]
identifier.desktop.path] Value [yourDesktopPath]
identifier.book. label] Value []
identifier.page.label] Value []

input.file] Value [mypage.pinc]

output.file] Value []

import.context.deletes] Value [false]
import.context.moves] Value [false]
import.context.outermoves] Value [false]

BEA WebLogic Portal Production Operations Guide

10-27

Using the Export/Import Utility

[Java]l Name [xip.import.context.updates] Value [true]

[Javal Name [xip.import.context.abort.on.collisions] Value [null]
[Javal Name [xip.import.context.abort.if._portlets_missing] Value [false]
[Java]l Name [xip.import.context.scope] Value [admin]

[Java]l Name [xip.import.context.modify.definitions] Value [false]
[Javal Name [xip.import.context.propagate.changes] Value [sync]
[Java]l Name [xip.import.context.create.portal] Value [true]
[Javal Name [xip.import.context.portal.title] Value [My Portal]
[Javal Name [xip.import.context.locale.language] Value [en]
[Java]l Name [xip.import.context.locale.country] Value []

[Java]l Name [xip.import.context.locale.variant] Value []

[Javal Name [xip.export.context.scope] Value [admin]

[Java]l Name [xip.export.context.locale.language] Value [en]
[Java]l Name [xip.export.context.locale.country] Value []

[Javal Name [xip.export.context.locale.variant] Value []

[Java] Executing command: import

[Java] Importing page scoped to desktop: Webapp: [PortalWebApp_1] PortalPath:
[yourPortalPath] DesktopPath: [yourDesktopPath]

[Java] Connection to host: t3://localhost:7003
[Java] Uploading file: mypage.pinc

[Java] Done. time taken 20 sec.

BUILD SUCCESSFUL

Total time: 25 seconds

Controlling How Portal Assets are Merged When
Imported

The xip. import.context.deletes property lets you control how portal assets are merged
during an import. As shown in Figure 10-10, if you set this property to false, the contents of the
imported pages are combined with the existing pages.

Note: This example refers to portlets; however, the same merge operations would apply as well
for pages on a book.

10-28 BEA WebLogic Portal Production Operations Guide

Controlling How Portal Assets are Merged When Imported

Figure 10-10 Merge Results with Deletes = false

== myportal.portal ————————— -

Page A

- Existing Desktop

Page A

Portlet 1

Portlet 3

Portlet 1

Portlet 2

5

r Merged Desktop

\\/'

Page A

Portlet 1

Portlet 2 | |Portlet 3

As shown in Figure 10-11, if you set this property to true, any portlets that do not exist in the
.portal file but do exist in the desktop are deleted.

BEA WebLogic Portal Production Operations Guide

10-29

Using the Export/Import Utility

Figure 10-11 Merge Result with Deletes = true

-= myportal.portal —

Page A

Portlet 1 Portlet 3

- Existing Desktop

Page A

Portlet 1 Portlet 2

r Merged Desktop
Page A
Portlet 1 Portlet 3 —

Portlet 2
was deleted

Controlling How Portal Assets are Moved When Imported

The xip. import.context.moves and xip. import.context.outermoves properties let you
specify how moves are handled when portal assets are imported. To understand how moves
operate, you need to understand the meaning of inner moves and outer moves. These terms are
explained in the following sections.

10-30

Inner Moves

When an asset such as a portlet or a page is moved within the context of a single parent, the move
is called an inner move. For example, if you move a portlet to a different placeholder within a
page, it is an inner move because the parent (the page) remains the same. Likewise, if you move

BEA WebLogic Portal Production Operations Guide

Controlling How Portal Assets are Moved When Imported

a page to a different position in a book, it is an inner move because the parent (the book) remains

the same. The following figure illustrates this concept:

Figure 10-12 Inner Move: Pages P1 and P2 Swap Positions Within the Same Book

P1 | P2 | P3 —
Inner
Move

Book 1

Set the xip. import.context.moves property to true to allow inner moves. If the property is

set to false, the positions of assets will not change; however, the contents will be updated

appropriately. If you want to move books, pages, or portlets across different parents, then use the
xip.import.context.outermoves property, described in the next section.

Outer Moves

When an asset such as a portlet or a page is moved from one parent to another, the move is called
an outer move. For example, if you move a page from one book to a different book, that is an

outer move because the parent (the book) is different. The following figure illustrates this

concept:

Figure 10-13 Outer Move: Pages P1 and P4 Swap Positions Across Different Books

PL | P2 | P3
Book 1

P4 | Ps | Pe
Book 2

4>

Outer
Move

P4 | P2 | P3
Book 1

PL | Ps | Ps
Book 2

Set the xip. import.context.outermoves property to true to allow outer moves. If the
property is set to fal se, then the operation handles the requested move as a deletion and addition

operation.

BEA WebLogic Portal Production Operations Guide

10-31

Using the Export/Import Utility

Note: Move operations preserve customizations. When a deletion/addition operation is
performed, some customizations are lost.

If you want to move books, pages, or portlets across the same parent, then use the
xip.import.context.moves property, described in the previous section.

Locating and Specifying Identifier Properties

This section explains how to find the values for the identifier properties in the
xip.properties file. These properties help to identify the portal element to export or import.
This section discusses the following properties:

The webapp Property
The portal.path and desktop.path Properties
The page.label and book.label Properties

The webapp Property

The web xip. identifier.webapp property must always be specified. The web application
name is listed in the WebLogic Portal Administration Console, as shown in the following figure:

Figure 10-14 The Web Application Name

Home = Portal = Portal Management

Web Application Name

Portal Resources for : portalWebProject

Update ‘Webipp

EE’J Portal Resources
= Library
Bl Portals
Bl rryPortal

-1l Templates

=5 myDesktop

=i Main Page Book
26

| BT
el
(]
[m}
3
Ef
=
3
5
T e T L W g

A n - »

The portal.path and desktop.path Properties

If you scope the export to the admin or visitor level, then you must specify the
xip.identifier.portal .path and xip. identifier.desktop.path properties. You can

10-32 BEA WebLogic Portal Production Operations Guide

Locating and Specifying Identifier Properties

find the correct value in the WebLogic Portal Administration Console. The portal path is shown
in the Portal Details tab, and the desktop path is shown in the Desktop Details tab. For example,
the portal path is shown in the following figure:

Figure 10-15 The Portal Path Value As Shown in the Portal Details Tah

Portal Path: myPortal 4
al URI: {
) 1
URL to Access Portal: http://localhost: 7001 /portalwebProject/appmanager fmyPortal -
1.
o
E
L 4
Date Details 4
» (

- T S e P - »

s qtad e - 20, 2005 o> o o

The page.label and book.label Properties

If you are exporting or importing a page or book, you need to specify the definition label of the
page or book using the xip.identifier.page.label or xip.identifier.book. label
property. Definition labels are typically supplied by the developer in Workshop for WebL ogic;
however, they can also be created in the WebLogic Portal Administration Console. If the page
was created using the Administration Console, a definition label is assigned automatically.

Note: If you are exporting a book or a page, then the book. label or page. label properties
must be specified. If you are importing a book or a page, the book. label or
page. label properties are not needed, because these values are obtained directly from
the .pinc files.

Locating the Definition Label for a Page

You can locate the definition label for a page in the Administration Console on the Details tab of
the page window (click on the page in the Library tree to display the page window). Figure 10-16
shows the definition label for a page.

BEA WebLogic Portal Production Operations Guide 10-33

Using the Export/Import Utility

Figure 10-16 The Location of a Page’s Definition Label in the WebLogic Portal Administration Console

Label 8 Date Details

[
Label: P200233051146236407146 Page definition #
Created On: Apr 28, 2006 label r
Modified On: Apr 28, 2006 y
¢
L
E—— — - - o 7

-

Locating the Definition Label for a Book

To find the definition label of a book, you need to look at the Manage Book Contents tab of the
book’s parent book. You will find the labels of all of the child books listed there.

Managing the Cache

10-34

Proper cache management greatly improves portal performance. Whenever a cache is
invalidated, the portal API must retrieve fresh data from the database. It is inefficient when the
API retrieves data that has not changed. The Export/Import Utility invalidates only the caches
(specifically, the portalControlTreeCache) for portal resources that have changed. The
invalidation of the cache is governed by the following properties:

xip.config.application
xip.identifier.webapp
xip.identifier.portal _path
xip.identifier._desktop.path
Xip.import.context.scope
Xip.import.context.modify.definitions

Be sure to understand these properties and how they affect the invalidation of the cache.
Understanding your changes, scoping them correctly, and tuning these properties correctly will
greatly improve your production system’s performance.

These properties are described below.

xip.config.application

Specifies the name of the Enterprise application. Only portals under this Enterprise
application will be affected. In Workshop for WebLogic, this value corresponds to the
name of an Portal EAR Project folder, as shown in the following figure:

BEA WebLogic Portal Production Operations Guide

Managing the Cache

Figure 10-17 Application Name

tg X Mavigator | Merged Projects

i
4,0

NS A, N e

Portal EAR Project

=& portalEarProject
== EarContent
=l-[= APP-INF
+- = classes
= lib
+-[= META-INF
= b‘J portalwebProject
+ [s
+-24, JRE System Library [BEA WeblLogic v9.2 JRE]
+-2), BEA Weblogic +9.2 [BEA Products (BEAHOME 23]
[md, Enbarevise Applicatign Libraries [portalEarProject] . e

xip.identifier._.webapp

Specifies the name of the web application. Only portals under this web application will
be affected. See also “Locating and Specifying Identifier Properties” on page 10-32.

Xip.import.context.scope

Specifies the scope of the change. If the scope is set to library then all
portalControlTree caches for the entire web application are invalidated. If the scope
is set to admin then only the cache for the desktop defined by
xip.identifier_portal.path and xip. identifier.desktop.path is affected,
leaving the other desktop caches intact. If the scope is set to visitor then only the cache
of an individual user’s view is invalidated. See also “Locating and Specifying Identifier
Properties” on page 10-32.

Xip.import.context.modify.definitions

Note:

If set to true, library definitions may be modified. Since definitions are shared across all
instances of library resources, the entire web application cache must be invalidated, even
if the scope is set to admin. If you are just adding pages or portlets to the books and pages
there is no reason to update the definitions.

A library definition consists of markup, which includes backing files, activate,
deactivate, and rollover images. Also titles and descriptions for books and pages, and the
is_hidden flag are stored in these definitions.

WARNING: Be aware that if you modify a library definition, desktop instances that share that

library definition could be affected. Therefore, if you scope to a particular
desktop, you may inadvertently affect other desktops if this property is set to true.
For a detailed discussion about the relationship between library definitions and
desktop instances, see “Scope and Library Inheritance” on page 6-20.

BEA WebLogic Portal Production Operations Guide 10-35

Using the Export/Import Utility

10-36 BEA WebLogic Portal Production Operations Guide

cHAPTERa

Using the Datasync Web Application

Note: The Datasync Web Application is deprecated. It is recommended that you use the
propagation tools to propagate datasync data. If you want to use the Datasync Web
Application in a browser, you need to add the following WAR file to your application:

WEBLOGIC_HOME/common/pl3n/lib/deprecated/datasync.war

This chaper provides instructions for updating portal application datasync data, such as user
profile properties, user segments, content selectors, campaigns, discounts, and other property
sets, which must be bootstrapped to the database in a separate deployment process.

Note: InaWebLogic Portal cluster where the Managed Servers are running on different
computers than the Administration Server, the ListenAddress attribute of each Managed
Server must be set to its own IP address or DNS name; this allows datasync to propagate
updates throughout the cluster. Setting the cluster addresses to DNS addresses is covered
in the WebLogic Server document “Setting Up WebLogic Clusters.”

This chapter includes the following topics:

Portal Datasync Definitions

Datasync Definition Usage During Development

Compressed Versus Uncompressed EAR

Rules for Deploying Datasync Definitions

BEA WebLogic Portal Production Operations Guide 111

../../../wls/docs92/cluster/setup.html

Using the Datasync Web Application

Portal Datasync Definitions

WebLogic Portal allows you to author a number of definition files, such as user profiles and
content selectors, that must be managed carefully when moving from development to production
and back.

Within Workshop for WebL ogic, portal definitions are created in a special datasync project. This
project can contain user profile property sets, user segments, content selectors, campaigns,
discounts, catalog property sets, event property sets, and session and request property sets.

Datasync Definition Usage During Development

During development, all files created in the datasync project are stored in a datasync project. To
provide optimum access from runtime components to the definitions, a datasync facility provides
an in-memory cache of the files. This cache intelligently polls for changes to definitions, loads
new contents into memory, and provides listener-based notification services when content
changes, letting developers preview datasync functionality in the development environment.

Datasync definition modifications are made not only by Workshop for WebLogic developers, but
also by business users and portal administrators, who can modify user segments, campaigns,
placeholders, and content selectors with the WebLogic Portal Administration Console. In the
development environment, both Workshop for WebLogic and the WebLogic Portal
Administration Console write to the files in the datasync project directory.

Compressed Versus Uncompressed EAR

11-2

When deployed into a production system, portal definitions often need to be modifiable using the
WebLogic Portal Administration Console. In most production environments, the portal
application will be deployed as a compressed EAR file, which limits the ability to write
modifications to these files. In a production environment, all datasync assets must be loaded from
the filesystem into the database so the application can be updated.

Figure 11-1 shows how the /data directory from the updated portal application is put into a
standalone JAR and bootstrapped to the database.

BEA WebLogic Portal Production Operations Guide

Compressed Versus Uncompressed EAR

Figure 11-1 Loading Updated Datasync Files to the Database

Cluster

Managed Server 1 Managed Server 2

WebLogic Portal WebLogic Portal
| Portal Application | | Portal Application |

Weblogic Server Weblogic Server

Enterprise-
Quality

Database

portalApp.ear
/data

: Dat
CHatajor >——w| | P oo
Alternatively, some production environments deploy their portal applications as uncompressed
EARs.

For both compressed and uncompressed EAR files, you can view and update datasync definitions
using the Datasync Web Application.

Datasync Web Application

Note: If you want to use the Datasync Web Application in a browser, you need to add the
following WAR file to your application:

WEBLOGIC_HOME/common/pl3n/1ib/deprecated/datasync.war

Each portal application contains a Datasync Web Application located in datasync.war in the
application root directory. Typically, the URL to the Datasync web application is
http://server:port/appNameDataSync. For example,

BEA WebLogic Portal Production Operations Guide 11-3

Using the Datasync Web Application

11-4

http://localhost:7001/portal AppDataSync. You can also find the URL to your Datasync web
application by loading the WebL ogic Server Administration Console and selecting

Deployments > Applications > appName > *DataSync and clicking the Testing tab to view the
URL.

The Datasync web application allows you to view the contents of the repository and upload new
content, as shown in Figure 11-2.

Figure 11-2 Datasync Web Application Home Page

Data Repository Browser

ors,
'l. 7
F; n
2 bea
General Information
Host Name jlanninl
Host IP 10.36.33.74
Application colorsPortal
User weblogic
Production Mode true
M Master Data Repository
m Singleton Master Data Repository backed by a Database persistent store (Production Mode)
Author BEA Systems
@ Yersion 2.1
% Yersion Note weblogic Platform:Personalization: 8.1
Data Item Filter URI: (none)
@ Schema URIL (none)

Registered Data Repositories

+ Property Set Data Repository
+ Placeholder Data Repository
+ Campaign Data Repository

+ Scenario Data Repository

+ DiscountSet Data Repository

Registered Proxy Data Repositories

+ Managed Server Proxy

Working with the Repository Browser — When working with the Data Repository Browser, you
have the option to work with all the files in the repository using the icons on the left hand side of
the page, or drill down into a particular sub-repository, such as the repository that contains all
Property Set definitions.

BEA WebLogic Portal Production Operations Guide

Compressed Versus Uncompressed EAR

View Contents — To view the contents of a repository, click on the 4 icon to bring up the
window shown in Figure 11-3.

Figure 11-3 Browsing the Datasync Repository

View Data Repository Contents

ors,
'c' 7
F w
% hea
ﬁ Return to Master Browser

Master Data Repository

Data Items
Count: 37
+ fcampaigns/discountCampaign.cam/scenario_0/rules.rls
+ fcampaigns/discountCampaign.cam
+ fcampaigns/discountCampaign.cam/scenario_0
+ fcontentselectors/GlobalContentSelectors/ArtistsContent.sel

+ fcontentselectors/GlobalContentSelectors /Painter'sContent.sel

From this list, click on a particular data item to see its contents, as shown in Figure 11-4.

BEA WebLogic Portal Production Operations Guide 11-5

Using the Datasync Web Application

11-6

Figure 11-4 Data Item Contents

View Data Repository Contents

ors,
'c' 7
2 "
% hea
ﬁ' Return to Master Browser

Master Data Repository

Data Items
Count: 37
+ fcampaigns/discountCampaign.cam/scenario_0/rules.rls
- fcampaigns/discountCampaign.cam
Schema URI http://www.bea.com/ servers/ campaign/ xsd/ campaign/1.1.1
Creation Date 2003-12-01 11:39:16.0
Modification Datez003-10-10 14:21:32.0

MName META-INF/data/campaigns/discountCampaign. cam

Description colorsPortal i META-INF/data/campaigns/discountCampaign. cam

Author Administrator C:%Documents and Settings)Admwinistrator en America/Denver
Yersion 0.0 (Build: 1)

Yersion Note |

Data I:y <?xml wversion="1.0"2>

<garcampaign xmwlns:ca="http://www.bea.con/servers/canpaign/xsd/ campaign/
<garnamwe Xxmlns:ca="http://www.bea.con/servers/campaign/ xsd/ campaign/
<oarsponsor xmlns:ca="http://www.bea.com/servers/campaign/ xsd/ campai
<oardescription xmlns:ca="http://wvw.bea.com/servers/campaign/ xsd/ca
<oarvalue-proposition xmlns:ca="http://www.bea.com/servers/campaign/
<oargoal-description xmlns:ca="http://vvw.bea.com/servers/campaign/ x
<gargoals xmlns:ca="http://www.bea.conw/servers/ campaign/ xsd/ campaign
<oarvalid-date-times xmlns:ca="http://vvw.bea.com/servers/campaigns/ x
<oarstart-date-time xmlns:ca="http://wvv.bea.com/servers/campaiyg
<oarstop-date-time ®mlns:ca="http://wuv.bea.com/servers/campaign
<foarvalid-date-times:
<data:data-link><data:schema-urirhttp://www.bea.com/servers/ campaign
</caicampaign:>

As you can see in Figure 11-4, you can view the XML data for a particular content item.

Removing Content

To remove content from a repository, click the trash can icon on the left side of the page.

Working with a Compressed EAR File

When the application is deployed, if the JDBC Repository is empty (contains no data), then the
files in the EAR will be used to bootstrap (initialize) the database. The Datasync assets are stored
in the following tables: DATA_SYNC_APPLICATION, DATA_SYNC_ITEM,
DATA_SYNC_SCHEMA_URI, and DATA_SYNC_VERSION. The bootstrap operation by default

BEA WebLogic Portal Production Operations Guide

Compressed Versus Uncompressed EAR

happens only if the database is empty. When you want to do incremental updates, the Datasync
web application provides the ability to load new definitions directly into the database. This can
be done as part of redeploying a portal application, or independently using a special JAR file that
contains your definitions, as shown in Figure 11-4, “Data Item Contents,” on page 11-6.

Uploading new contents

When you click the [icon, the following page appears, which lets you load data into the
database.

Figure 11-5 Uploading New Datasync Data

Upload Data

*o%

a" /

K, w

% bea

ﬁ Return to Master Browser

Master Data Repository

Bootstrap Source |.JarFiIe on Server v
Path to Jar file containing data (if Jar source selected above) |sync-bootstrap.jar
Bootstrap Mode Owerwrite ALL data in Master Data Repository w

Overvrite ALL data in Master Data Repositary
Boatstrap anly if Master Data Repositary is empty (does nothing otherwise)
Merge with Master Data Repositary - Newest Timestamp Wins

Bootstrap

A Systems, Inc. All rights reserved.

When you bootstrap, you choose a bootstrap source, which is either your deployed portal
application or a stand-alone JAR file. For example, if you have an updated portal application that
you have redeployed to your production environment, you can add any new definitions it contains
to your portal. Alternatively, if you have authored new definitions that you want to load
independently, you can create a JAR file with only those definitions and load them at any point.

Either way, when you update the data repository, you can choose to “Overwrite ALL data in the
Master Data Repository,” “Bootstrap only if the Mastery Repository is empty,” or “Merge with
Master Data Repository—latest timestamp wins.”

Bootstrapping from an EAR

If you are redeploy an existing EAR application and want to load any new definitions into the
database, choose the Application Data (META-INF/data) as your bootstrap source, and then
choose the appropriate Bootstrap Mode. To ensure that you do not lose any information, you may

BEA WebLogic Portal Production Operations Guide 1-1

Using the Datasync Web Application

11-8

want to follow the instructions in the section entitled, “Pulling Definitions from Production” on
page 11-8 to create a backup first. It is not possible to bootstrap definition data from an EAR file
that is not deployed.

Creating a JAR file

To bootstrap new definition files independently of updates to your portal application, you can
create a JAR file that is loaded onto the server that contains the files (content selectors,
campaigns, user segments, and so on) that you want to add to the production system.

To do this, you can use the jar command from your META-INF/data directory. For example:
jar -cvf myfiles_jar *

This example will create a JAR file called myfiles. jar that contains all the files in your data
directory, in the root of the JAR file. Then, you can bootstrap information from this JAR file by
choosing Jar File on Server as your data source, specifying the full physical path to the JAR file
and choosing the appropriate bootstrap mode. By running this process you can upgrade all the
files that are packaged in your JAR. Controlling the contents of your JAR allows you to be
selective in what pieces you want to update.

When creating the JAR file, the contents of the META-INF/data directory should be in the root
of the JAR file. Do not jar the files into a META- INF/data directory in the JAR itself.

Validating Contents

After bootstrapping data, it is a good idea to validate the contents of what you loaded by using
the View functionality of the Datasync web application.

Pulling Definitions from Production

Developers and testers may be interested in bringing datasync definitions that are being modified
in a production environment back into their development domains. As the modified files are
stored in the database, WebLogic Portal provides a mechanism for exporting XML from the
database back into files.

One approach is to use the browse capability of the Datasync web application to view all XML
stored in the database in a web browser. This information can then be cut and pasted into a file.

A better alternative is to use the DataRepositoryQuery Command Line Tool, which allows you
to fetch particular files from the database using an FTP-like interface.

BEA WebLogic Portal Production Operations Guide

Compressed Versus Uncompressed EAR

The DataRepositoryQuery Command Line Tool supports a basic, FTP-style interface for
querying the data repository on a server.

The command line class is com.bea.pl3n.management.data.DataRepositoryQuery. In
order to use it, you must have the following in your CLASSPATH: p13n_ejb.jar,
p13n_system. jar, and weblogic. jar.

Run the class with the argument help to print basic usage help.
For example:

set classpath=c:\bea\weblogic92\p13n\lib\pl3n_system.jar;
C:\bea\weblogic92\p13n\lib\pl3n_ejb.jar;
C:\bea\weblogic92\server\lib\weblogic. jar

jJava com.bea.pl3n.management.data.DataRepositoryQuery help

Options for Connecting to the Server

Several optional command arguments are used for connecting to the server. The default values
are probably adequate for samples provided by BEA. In real deployments, the options will be

necessary.
-username userid Username of a privileged user (an Default = weblogic
administrator)
-password password Password for the privileged user Default = weblogic
—-app appName@host:port Application to manage Default = @7001
-urlurl URL to DataRepositoryQuery servlet

Only one of -app or -url may be used, as they represent two alternate ways to describe how to
connect to a server.

The URL is the most direct route to the server, but it must point to the DataRepositoryQuery
servlet in the Datasync web application. This servlet should have the URI of
DataRepositoryQuery, but you also need to know the hostname, port, and the context-root
used to deploy datasync.war in your application. So the URL might be something like
http://1ocalhost:7001/datasync/DataRepositoryQuery if datasync.war was
deployed with a context-root of datasync.

BEA WebLogic Portal Production Operations Guide 11-9

Using the Datasync Web Application

11-10

The -app option allows you to be a bit less specific. All you need to know is the hostname, port
number, and the name of the application. If there is only one datasync.war deployed, you do
not even need to know the application name. The form of the -app description is
appname@host:port, but you can leave out some pieces if they match the default of a single
application on localhost port 7001.

The -app option can be slow, as it has to perform many queries to the server, but it will print the
URL that it finds, so you can use that with the -url option on future invocations.

Examples

This section lists examples of using the DataRepositoryQuery command.

Assuming CLASSPATH is set as previously described, and the default username/password of
weblogic/weblogic is valid):

Find the application named p13nBase running on localhost port 7001:
Jjava com._bea.pl3n.management.data.DataRepositoryQuery -app pl3nBase
Find the application named p13nBase running on snidely port 7501:

Jjava com._bea.pl3n.management.data.DataRepositoryQuery -app
pl3nBase@snidely:7501

Find the single application running on localhost port 7101:

jJjava com.bea.pl3n.management.data.DataRepositoryQuery -app @7101

Find the single application running on snidely port 7001:

java com.bea.pl3n.management.data.DataRepositoryQuery -app @snidely

Find the single application running on snidely port 7501:

java com.bea.pl3n.management.data.DataRepositoryQuery -app @snidely:7501

In each of the examples, the first line of output will be something like this:
Using url: http://snidely:7001/myApp/datasync/DataRepositoryQuery

Usage

The easiest way to use the tool is in shell mode. To use this mode, invoke
DataRepositoryQuery without any arguments (other than those needed to connect as described
previously).

BEA WebLogic Portal Production Operations Guide

Compressed Versus Uncompressed EAR

In this mode, the tool starts a command shell (you will see a drg> prompt) where you can
interactively type commands, similar to how you would use something like ftp.

Alternatively, you can supply a single command (and its arguments), and
DataRepositoryQuery will run that command and exit.

Commands

The HELP command gives you help on the commands you can use. Or use HELP command to get
help on a specific command.

The available commands are:

Command Description

HELP Basic Help

HELP OPTIONS Help on command line options

HELP command Help on a specific command

HELP WILDCARDS Help on wildcards that can be used with URI arguments
LIST [-1] [uri(s)] List available data items

INFO [-1] [-d] Print repository info

PRINT uri Print a data item (the xml)

GET [-f] uri [Ffilename] Retrieve adata item to a file

MGET [-Ff] [uri(s)] Retrieve multiple data items as files. Not specifying a URI retrieves all files.

EXIT or QUIT Exit the shell (shell only)

Commands are not case-sensitive, but arguments such as filenames and data item URIs may be.
More help than what is listed above can be obtained by using HELP command for the command
you are interested in.

Where multiple URIs are allowed (indicated by uri (s) in the help), you can use simple
wildcards, or you can specify multiple URIs. The result of the command includes all matching
data items.

Options in square brackets ([1) are optional and have the following meanings:

BEA WebLogic Portal Production Operations Guide 1-1

Using the Datasync Web Application

Output a longer, more detailed listing

-d

Include URIs of data items contained in each repository

-T

Force overwrite of existing files

The following example retrieves all assets from the repository as files:

Jjava com._bea.pl3n.management.data.DataRepositoryQuery -app mget

Rules for Deploying Datasync Definitions

11-12

There are a number of general concepts to think about when iteratively deploying datasync
definitions into a production system. In general, adding new datasync definitions to a production
system is a routine process that you can do at any time. However, removing or making destructive
modifications to datasync definitions can have unintended consequences if you are not careful.

When removing or making destructive modifications to datasync definitions, you should first
consider whether there are other components that are linked to those components. There are
several types of bindings that might exist between definitions.

Note: For some of these bindings, it is very important to understand that they may have been
defined on the production server using the WebLogic Portal Administration Console and
may not be known by the developers.

One example of bindings is that you may have two datasync definitions bound together. An
example of this is a campaign that is based on a user property defined in a user property set. If
you remove the property set or the specify property, that campaign will no longer execute
properly. In this case, you should update any associated datasync definitions before removing the
property set or property.

A second scenario is that you have defined an entitlement rule that is bound to a datasync
definition. For example, you might have locked down a portlet based on a dynamic role that
checks if a user has a particular user property value. In this case, you should update that dynamic
role before removing the property set or property.

A third scenario is that there are in-page bindings between datasync items and Portal JSP tags.
An example is a <pz:contentSelector> tag that references a content selector. Update the
content selector tag in the production environment before you remove the content selector. This

BEA WebLogic Portal Production Operations Guide

Rules for Deploying Datasync Definitions

is one type of binding that is only configured in Workshop for WebLogic at development time
rather than in the WebL ogic Portal Administration Console.

A good guideline for developers is not to remove or make significant changes to existing datasync
definitions that are in production. Instead, create new definitions with the changes that are
needed. This can be accomplished by creating new versions of, for example, campaigns where
there is no chance that they are being used in unanticipated ways. Additionally, perform datasync
bootstraps of the production system’s existing datasync definitions back into development on a
regular basis.

Removing Property Sets

When you remove a property set, any existing values being stored locally by WebLogic Portal in
the database will NOT be removed automatically. You need to examine the PROPERTY_KEY and
PROPERTY_VALUE tables to clean up the data if desired.

BEA WebLogic Portal Production Operations Guide 11-13

Using the Datasync Web Application

11-14 BEA WebLogic Portal Production Operations Guide

Export/Import Utility Files

This appendix shows the default properties file for the Export/Import Utility.

Listing A-1 shows the default xip.properties file.

Listing A-1 The Default xip.properties File

Export/Import Properties file. The properties in this file are read by the Xip
(pronounced zip) utility. You may specify an alternate properties file via the
-properties command line argument.

#

Server connfiguration information

#

xip.config.url=t3://localhost:7003

xip.config.username=weblogic

xip.config.password=weblogic

xip.config.application=myEnterpriseApp

#

command - Are we exporting or importing. Valid values are: "export'”, "import"
#

#xip.command=export

Xip.command=import

#

object - The "thing" you want to export/import (desktop, book, page)
Xip.object=desktop

#xip.object=book

#xip.object=page

#

ldentifier properties, tells the import export utility how to identify the

artifacts to be retrieved or updated. When importing and exporting books and

BEA WebLogic Portal Production Operations Guide A-1

Export/Import Utility Files

pages. If scoping changes to the admin desktop (default desktop)

or visitor desktop then "portal.path” and "desktop.path™ must be specified. If
you are exporting a book or page then the book.label or page.label need to be
specified.

#

#page. label and book.label are not used on import as the labels are pulled from
#the .pinc Files themselves.

#

The webapp must always be specified. This is the webapp name not necessarily
the directory name. IT you are export or importing this is where you are export
from or importing to respectively.

#

xip. identifier._webapp=myPortal

xip.identifier.portal .path=myPortal

xip.identifier.desktop.path=myDesktop

xip.identifier.book.label=

xip.identifier.page.label=

#

Input and output files -- _pinc or.portal files. These files are
relative to the "xip" directory

#

#xip.input.file=Bookl.pinc
xip.input.file=myPortal .portal
xip.output. file=myPortall._portal
xip.output.encoding=UTF-8

Import options - these options are used as rules to the export/import utility

scope - Changes can be scoped to the "library', "admin"™, or "visitor" when
importing a .pinc file, and "admin" or "visitor' when

exporting a .portal file.

IT this property # has a value of "admin'" or "visitor"™ then a
xip.identifier._portal.path and xip.identifier.desktop.path # must be specified
above. OF course to scope exports to the "library” or "admin" you must be in
the Admin or PortalSystemAdministrator Role.

deletes - If true, then books, pages and portlets that are currently on the
existing desktop in the database but not in the new import file (.portal or
-pinc) will be removed from exiting desktop.

moves - (innerMoves) If true, then existing books, pages and portlets that are
in different locations on the same parent will be moved to the correct location.
IT you want to move books, pages and portlets across different parents

then see outermoves

outermoves - If true, then existing books, pages and portlets that are moved
from different parents will be moved to the new parent. If this is not set then

HHIFHITHITHRIFHITH HFHRIFHRFHRIFHRIFHRHHT

A-2 BEA WebLogic Portal Production Operations Guide

HFHEXXXXXXXXXXXXXHHHFHEHFHRFAHR ISR TR FHRFEHRFEHRFEHREHREHEH

it will be handled as a remove and add (different customizations are lost)

updates - If true, then books, pages and portlets that are currently not on
the existing desktop will be added, and any instance attributes on the books,
page, and portlet will be updated in the database.

abort._if.portlets_missing - if true, then if the new _.portal or .pinc
File references a portlet that is not in the current webapp then
abort, otherwise skip the portlet and continue on.

modify.definitions - IF this flag is set to true then any changes in the import
file will effect the defintions and not just the instances. These include
things like markup (backing files, rollover images, isHidden, ... for a more]|
complete list refer to the database schema). It is important to note that these
changes may effect other desktops outside the one you are scoping it to.

propagate.changes - Typically all changes that are made to Library artifacts
are cascaded down to the admin®s desktop and subsequently cascaded down to the
visitor®ss view. If this property is set to 'sync" then

these changes will occur synchronously as part of this transaction. If this
property is set to "off" then changes will not get cascaded for the artifacts
which have been modified. For books, pages and portlets that have not

been modified at the admin or visitor level, then these will always receive
the changes as they point to the default.

create.portal - If this flag is set then when importing a desktop and the given
portal is not already create then one will be created for you.

portal .title - ITf the above flag is set and a new portal is being created it
needs a title. This property value will be the new portal®s title.

locale - the locale of the titles and descriptions in the .portal
or .pinc file. Note the encoding is defined in the file itself.

p-import.context.scope=admin
p.import.context.deletes=false

p. import.context.moves=false
p-import.context.outermoves=false
p.import.context.updates=true
p.import.context.abort.if._portlets.missing=false
p-import.context.modify.definitions=true

p. import.context.propagate.changes=off
p.import.context.create.portal=true
p-import.context.portal.title=My Green Portal
p.import.context.locale.language=en
p.import.context.locale.country=
p.-import.context.locale.variant=

E

xport Options

BEA WebLogic Portal Production Operations Guide A-3

Export/Import Utility Files

scope - Changes can be scoped to the "library', "admin"™, or "visitor" when
importing a .pinc file, and "admin"™ or "visitor"™ when exporting a

-portal file.

IT this property has a value of "admin' or "visitor" then a
xip.identifier_portal .path and xip.identifier.desktop.path

must be specified above. Of course to scope exports to the "library" or "admin"
you must be in the Admin or PortalSystemAdministrator Role.

locale - the locale of the titles and descriptions in the _portal or.pinc
file.

ip.export.context.scope=admin
ip-export.context. locale.language=en
ip.export.context. locale.country=
ip.export.context.locale._variant=

XXX X H#HHHFHHFHHFHRHEHHHR

A-4 BEA WebLogic Portal Production Operations Guide

	Introduction
	What Is Production Operations?
	Overview of Production Operations
	Setting Up a Team Development Environment
	Configuring the Portal Cluster
	Building and Deploying the EAR File
	Propagating a Portal Application
	Performing Round-Trip Development

	Getting Started
	Using this Guide
	Related Guides

	Part I Configuration and Deployment
	Managing a Team Development Environment
	Introduction
	Choosing a Source Control Vendor
	Creating a Shared WebLogic Portal Domain
	What is a WebLogic Portal Domain?
	Getting Started
	Creating a WebLogic Portal Domain Template
	Creating the Shared Domain
	Starting WebLogic Server
	Configuring and Tuning the Domain

	Managing Databases
	Developing Against an Enterprise-Quality Database
	Using Different Databases in Development and Production
	Knowing When You are Making Changes to the Database
	Using the PointBase Database

	Creating and Sharing the Portal Application
	Create or Locate the Eclipse Workspace Directory
	Create a Portal EAR Project
	Create Portal Web Projects
	Check in the Portal Application
	Check Out the Workshop for WebLogic Application

	Using J2EE Shared Libraries in a Team Environment
	Overview
	Shared Library Rules of Precedence
	Deployment Descriptors and Shared Libraries

	Sharing Portal Resources: Sample Scenario
	Introduction
	Packaging Resources to Share
	Receiving and Incorporating Shared Resources

	WebLogic Portal Coding Best Practices
	Sharing Java Projects
	Supporting Cross-Platform Development
	Editing Definition Labels for Portal Components
	Testing a Cluster Configuration

	Managing Binary Files in Source Control
	General Procedure for Working with Binary Files
	Updating Users, Groups, Roles, and Entitlements
	Updating Other Security-Related Files

	Configuring Facets
	Alternative Domain Sharing Techniques
	Determining the BEA Home Directory
	Creating and Sharing the Portal Domain

	Configuring a Portal Cluster
	Overview
	Prerequisite Tasks
	Set up a Production Database
	Locate JMS Queue and JDBC Data Sources
	Choose a Cluster Architecture
	Determine the Domain Network Layout
	Install WebLogic Portal

	Creating Your Clustered Domain
	What is a Domain?
	Creating the Customized Domain

	Configuring the Administration Server
	Setting up JMS Servers
	Creating Managed Server Directories
	Introduction
	Creating the Managed Server Domains

	Zero-Downtime Architectures
	Overview
	Single Database Instance
	Portal Cache

	Deploying Portal Applications
	Preparing to Deploy
	Overview of Deployment Descriptors and Config Files
	Descriptor Merging
	Viewing Merged Descriptors
	Portal Web Application Deployment Descriptors
	Enterprise Application Deployment Descriptors
	Configuration Files

	Using Deployment Plans
	Using Application-Scoped JDBC
	Building a Portal Application
	Building in Workshop for WebLogic
	Building from the Command Line

	Deploying the EAR
	Deploying to a Development Environment
	Deploying to a Staging or Production Environment
	Redeploying to a Staging or Production Environment

	Deploying J2EE Shared Libraries
	Library Descriptors
	Library Versions

	Creating Content Repositories
	Using Multiple Enterprise Applications in a Single Domain
	Application Tuning Tips
	Deploying JSR-168 Portlets in a WAR File
	Starting the Import Utility
	Using the Import Utility
	Accessing the Portlets

	Part II Propagation
	Developing a Propagation Strategy
	What is Propagation?
	What Tools Does BEA Provide to Assist with Propagation?
	WebLogic Server Administration Console (EAR Deployment)
	Workshop for WebLogic Propagation Tools
	Propagation Ant Tasks
	Manual Propagation Steps
	Export/Import Utility
	Database Vendor Tools (Not Supported)

	What Kind of Data Can Be Propagated?
	Choosing the Right Propagation Tool
	Propagation Roadmap
	Development Environments
	Source Control
	Moving from Development to Staging
	Staging Environment
	Source Control in the Staging Environment
	Perform Offline Tasks
	Committing the Final Inventory

	Assessing Your Portal System Configuration
	General Propagation Scenarios
	Production Mode Versus Development Mode
	Propagation and Proliferation

	Propagation Topics
	Overview
	Before You Begin
	Start the Administration Server
	Perform a Data Backup
	Plan to Inactivate the System During the Import Process
	Install the Propagation Tools
	Configure Log Files (Optional)
	Deploy the J2EE Application (EAR)
	Make Required Manual Changes

	Propagation Reference Table
	Security Information and Propagation
	Understanding Scope
	Overview
	Why Use Scoping?
	What are the Risks of Scoping?
	Best Practices for Scoping
	How to Set Scope
	The Effects of Scoping
	Scope and Library Inheritance

	Using Policies
	Introduction
	Global Policy Examples
	Local Policy Overrides
	Using Local Policies with Desktops
	Reporting Changes Based on Policies

	Previewing Changes and Tuning a Merged Inventory
	User Customizations and Propagation
	Reviewing Log Files
	Rolling Back an Import Process
	WSRP Propagation
	Overview of WSRP Propagation
	Propagating Consumer Applications
	Known Problems with WSRP Propagation

	Increasing the Default Upload File Size
	Copying the Inventory to the Server
	Modifying a Deployment Plan
	Modifying the web.xml File

	Configuring the Propagation Servlet
	Inventory Export Directory
	Description Text
	Verbose Logging
	Verbose Log File Location

	Best Practices
	Keep Portal Framework Definition Labels and Instance Labels
	Do Not Manually Replicate Changes Between Environments
	Set the Scope to the Enterprise Application Level

	Using Workshop for WebLogic Propagation Tools
	Overview
	Overview of the Propagation Perspective
	Downloading an Inventory File
	Creating a Propagation Project
	Create a Simple Project
	Begin a Propagation Session
	Import the Inventory Files
	Create a Merged Inventory File

	Viewing and Tuning the Merged Inventory
	Creating a Final Merged Inventory File
	Uploading the Final Inventory to the Server
	Enabling Verbose Logging

	Using the Propagation Ant Tasks
	Introduction
	Before You Begin
	Installing the Ant Tasks
	Required JAR Files
	Deploying the Propagation Servlet
	Testing the Ant Installation

	Overview of Online Tasks
	Online Task Summary
	Using Online Tasks with HTTPS
	Troubleshooting Online Tasks

	Overview of Offline Tasks
	Offline Task Summary
	Troubleshooting Offline Tasks

	Scoping an Inventory
	Scoping with Ant Tasks
	Sample Scoping Workflow
	Understanding a Scope Property File

	Using Policies
	Understanding a Policies Property File

	Combining and Committing Inventories

	Propagation Ant Task Reference
	Online Tasks
	OnlineCheckMutexTask
	OnlineCommitTask
	OnlineDownloadTask
	OnlineMaintenanceModeTask
	OnlinePingTask
	OnlineUploadTask

	Offline Tasks
	OfflineCombineTask
	OfflineDiffTask
	OfflineElectionAlgebraTask
	OfflineExtractTask
	OfflineInsertTask
	OfflineListPoliciesTask
	OfflineListScopesTask
	OfflineSearchTask
	OfflineValidateTask

	Using the Export/Import Utility
	Installing the Export/Import Utility
	Overview of the Export/Import Utility
	What the Utility Moves
	What the Utility Does Not Move
	Refining Rules for Exporting and Importing

	Basic Concepts and Terminology
	.portal Files Versus Desktops
	Export and Import Scope
	Customization

	The Export/Import Utility Client Program
	Configuring the Export/Import Utility Properties File
	Specifying Parameters in the Properties File
	Specifying the Properties File Location

	Exporting a Desktop
	Editing the Properties File
	Running the Build Script

	Importing a .portal File
	Editing the Properties File
	Running the Build Script

	Exporting a Page
	Editing the Properties File
	Running the Build Script

	Importing a Page
	Editing the Properties File
	Running the Build Script

	Controlling How Portal Assets are Merged When Imported
	Controlling How Portal Assets are Moved When Imported
	Inner Moves
	Outer Moves

	Locating and Specifying Identifier Properties
	The webapp Property
	The portal.path and desktop.path Properties
	The page.label and book.label Properties

	Managing the Cache

	Using the Datasync Web Application
	Portal Datasync Definitions
	Datasync Definition Usage During Development
	Compressed Versus Uncompressed EAR
	Datasync Web Application
	Removing Content
	Working with a Compressed EAR File
	Pulling Definitions from Production
	Options for Connecting to the Server
	Examples
	Usage
	Commands

	Rules for Deploying Datasync Definitions
	Removing Property Sets

	Export/Import Utility Files

