
BEAWebLogic
Portal®

Portal Development
Guide

Version 9.2
Revised: June 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop for JSP, BEA Workshop Struts, BEA Workshop Studio, Dev2Dev,
Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated Knowledge Transfer, AKT, BEA
Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA Self Assessment are service marks
of BEA Systems, Inc.

All other names and marks are property of their respective owners.

BEA WebLogic Portal Portal Development Guide iii

Contents

1. Introduction to Portals
What is a Portal? . 1-1

What is the Portal Framework? . 1-3

Portal Development and the Portal Life Cycle . 1-3

Architecture . 1-4

Development . 1-4

Staging . 1-5

Production. 1-5

Getting Started . 1-6

Prerequisites . 1-6

Related Guides . 1-6

Part I. Architecture

2. Planning Your Portal
Production Operations (Propagation and Deployment) . 2-2

Portal Development in a Distributed Portal Team . 2-2

Federated Portals . 2-3

Security . 2-3

Content Management . 2-4

Interaction Management . 2-4

Performance . 2-5

iv BEA WebLogic Portal Portal Development Guide

Part II. Development

3. Understanding Portal Development
Portal Components . 3-1

Portal Component Hierarchy. 3-3

Portal Development Environment in Workshop for WebLogic . 3-5

WebLogic Portal and Shared J2EE Libraries . 3-7

File-Based Portals and Streaming Portals . 3-8

Java Controls in Portals. 3-9

JSP Tags in Portals . 3-11

Backing Files. 3-11

How Backing Files are Executed . 3-12

Thread Safety and Backing Files . 3-13

Scoping and Backing Files. 3-13

Using the Session to Pass Data Between Life Cycle Methods 3-14

Backing File Guidelines. 3-14

Page Flows in Portals . 3-16

State/Session Management . 3-16

4. Setting up Your Portal Development Environment
Roadmap for Environment Setup Tasks . 4-2

WebLogic Domain Configuration Wizard . 4-5

Portal EAR Project Wizard . 4-7

New Portal EAR Project – Select Project Facets Dialog . 4-9

Add and Remove Projects Dialog . 4-10

Portal Web Project Wizard . 4-12

New Portal Web Project – Portal Web Project . 4-13

New Portal Web Project – Select Project Facets dialog. 4-14

BEA WebLogic Portal Portal Development Guide v

New Portal Web Project - Web Module Dialog . 4-16

New Portal Web Project - WebLogic Web Module Dialog 4-17

Portal Datasync Project Wizard. 4-18

Portal Datasync Project Wizard - Create New Datasync Project Dialog 4-19

Create New Datasync Project – EAR Projects . 4-21

Using the Merged Projects View. 4-23

Running a Project on the Server . 4-25

Customizing a Perspective. 4-25

Setting WebLogic Portal Preferences in Workshop for WebLogic. 4-26

Preferences in the WebLogic Portal Section . 4-26

WebLogic Portal Preferences in the General Section. 4-26

5. Upgrading WebLogic Portal Projects to Version 9.2
Version 8.1 Features Not Supported in Version 9.2 . 5-2

Upgrade Considerations and Tips . 5-2

Command-Based and Ant Task Upgrade Not Supported. 5-2

Enabling Communities Features in Upgraded Visitor Tools 5-2

Upgrading Look & Feels . 5-3

Upgrading Custom Controls that Have Custom Properties . 5-4

Upgrading Tuned Thread Pools for Forked Portlets . 5-4

Upgraded Applications Use Struts 1.1 and Related J2EE Libraries 5-4

Changes in Behavior Between Struts 1.1 and 1.2 . 5-5

Ampersand Entities in Portal URLs . 5-5

Upgrading Individual application-config.xml Files Later . 5-6

Correcting Duplicate Portlet Category Names Before Propagating an Upgraded
Application . 5-7

6. Integrating Applications into WebLogic Portal
Integrating an Existing Web Application into Workshop for WebLogic 6-2

vi BEA WebLogic Portal Portal Development Guide

Integrating Struts Applications . 6-6

Preparing Your Struts Application for Integration . 6-7

Integration Steps. 6-9

Best Practices and Development Issues . 6-10

Integrating Java Server Faces . 6-11

JSF and the namingContainer JSP Tag . 6-11

Integrating Page Flows . 6-12

Adding Facets to an Existing Project . 6-12

Other Methods of Integrating an External Web Application into a Portal 6-14

7. User Interface Development with Look & Feel Features
Introduction . 7-2

Look & Feel File . 7-2

Skins. 7-4

Skeletons . 7-4

Themes . 7-4

Genes and Chromosomes. 7-6

Shells . 7-6

Layouts. 7-7

Menus. 7-7

Developing Look & Feels . 7-7

Using Legacy Look & Feels . 7-7

Creating a Look & Feel . 7-8

Working with Skins . 7-10

Working with Skeletons . 7-13

Working with Themes . 7-15

Working with Genes. 7-16

Overriding Existing Look & Feels . 7-18

BEA WebLogic Portal Portal Development Guide vii

Troubleshooting Look & Feels . 7-19

The Look & Feel Editor. 7-19

Overview . 7-20

Navigator View. 7-20

Style Hierarchy View . 7-20

Style Description Window . 7-21

View Area. 7-23

Outline View. 7-24

Properties View . 7-25

Using the Look & Feel API . 7-25

Working with Shells . 7-25

Working with Layouts . 7-27

Creating a Standard Layout . 7-27

Creating a Custom Layout . 7-30

Working with Navigation Menus . 7-35

Building User Interfaces to Address Accessibility Guidelines . 7-36

Accessibility Standards and the Internet . 7-36

Accessibility Checkpoints . 7-36

Industry Guidelines . 7-38

Government Regulations and Standards . 7-38

Accessibility Evaluation and Testing Tools . 7-38

8. Developing Portals Using Workshop for WebLogic
Creating a Portal . 8-2

Add a Page or Book to Your Portal . 8-4

Creating a Standalone Book or Page . 8-5

Adding a Book or Page Reference (Content) . 8-7

Rearranging Books and Pages . 8-8

viii BEA WebLogic Portal Portal Development Guide

Portal Component Properties . 8-9

Editing Portal Properties . 8-9

Tips for Using the Properties View . 8-10

Properties for All Portal Components . 8-11

Copying J2EE Library Files into a Project . 8-20

Viewing Files that Override Shared J2EE Library Files . 8-21

Creating a Utility Project. 8-22

Custom Controls in Page Flows . 8-25

Adding a Portal Control to a Page Flow . 8-26

Adding an Action to the Page Flow . 8-27

Portal Control Security. 8-28

Deploy and View a Portal . 8-28

Working with URLs . 8-30

Creating URLs to Portal Resources . 8-30

URL Compression . 8-31

URL Troubleshooting . 8-33

Ampersand Entities in Portal URLs. 8-34

Optional Look & Feel URL Templates . 8-34

Working with Encoding in HTTP Responses . 8-35

Cache Management in Workshop for WebLogic . 8-36

Changing Cache Settings in Workshop for WebLogic. 8-36

Improving WebLogic Server Administration Console Performance on a Managed Server. .
8-38

Behavior of the “Return to Default Page” Attribute . 8-38

Adding Commerce Services to an Existing Portal Web Project 8-40

9. Visitor Tools Configuration
About Visitor Tools. 9-1

BEA WebLogic Portal Portal Development Guide ix

Enabling Visitor Tools in Workshop for WebLogic . 9-2

Setting up a Desktop with Visitor Tools Using the Administration Console 9-4

10.Creating Portals for Multiple Device Types
Enabling Multichannel Features in a Portal Web Application . 10-1

Roadmap for Multichannel Processing . 10-3

Developing Portals for Use in a Multichannel Environment. 10-4

Manage Portlet Client Classifications . 10-4

Use the Client Attribute in JSP Tags . 10-6

Develop Appropriate Look & Feels . 10-7

Interaction Management Development . 10-7

11.Designing Portals for Optimal Performance
Control Tree Design . 11-1

How the Control Tree Works . 11-1

How the Control Tree Affects Performance. 11-2

Using Multiple Desktops . 11-3

Why This is a Good Idea . 11-4

Design Decisions for Using Multiple Desktops . 11-6

Optimizing the Control Tree . 11-7

Enabling Control Tree Optimization . 11-7

How Tree Optimization Works. 11-11

Multi Level Menus and Control Tree Optimization. 11-12

Limitations to Using Tree Optimization. 11-13

Disabling Tree Optimization . 11-15

Other Ways to Improve Performance . 11-16

Use Entitlements Judiciously . 11-16

Limit User Customizations. 11-17

x BEA WebLogic Portal Portal Development Guide

Optimize Page Flow Session Footprint . 11-17

Use File-Based Portals for Simple Applications . 11-19

Create a Production Domain in Development . 11-20

Optimize Portlet Performance . 11-20

12.Obtaining Debug Information
Introduction . 12-1

Configuring and Enabling Debug . 12-1

Using Debug in Your WLP Code. 12-2

Turning Debug Output On and Off . 12-3

Package-Level Debugging . 12-4

Directing Output to a File . 12-5

Reloading Debug Properties . 12-5

Example debug.properties File . 12-6

Public WLP Class Debug Reference. 12-8

WLP Framework Classes with Debug Support . 12-8

WLP Core Services Classes with Debug Support . 12-12

WLP Virtual Content Repository Classes with Debug Support 12-15

WLP Administration Console Classes with Debug Support 12-17

Part III. Staging

12.Managing Portal Desktops
Administration Console Overview . 12-2

Administration Console Library of Resources . 12-3

Starting and Logging In to the Administration Console . 12-4

Opening the Administration Console. 12-4

Logging In to the Administration Console . 12-5

Overview of Library Administration. 12-7

BEA WebLogic Portal Portal Development Guide xi

Overview of Portal Administration . 12-8

Portal Management . 12-9

Overview of the Library . 12-9

Desktop Templates . 12-9

Creating a Desktop Template . 12-9

Communities . 12-12

Portal Resources . 12-12

Updating Portal Resources . 12-12

Viewing Resources for a Portal Web Application (Update WebApp) 12-14

Deleting a Portal Resource . 12-14

Localizing a Portal Resource . 12-15

Portals . 12-15

Creating a Portal . 12-16

Modifying Portal Properties . 12-17

Desktops . 12-18

Creating a Desktop . 12-19

Modifying Desktop Properties . 12-25

Books . 12-26

Creating a Book . 12-26

Managing Book Content. 12-27

Modifying Library Book Properties and Contents . 12-28

Modifying Desktop Book Properties . 12-29

Pages . 12-30

Creating a New Page . 12-30

Managing Page Content . 12-33

Modifying Library Page Properties . 12-34

Modifying Desktop Page Properties. 12-35

Moving a Page or Book to Another Location on the Desktop 12-36

xii BEA WebLogic Portal Portal Development Guide

Portlets. 12-37

Copying a Portlet in the Library . 12-37

Deleting a Portlet . 12-37

Modifying Library Portlet Properties. 12-38

Modifying Desktop Portlet Properties . 12-39

Portlet Preferences. 12-40

Creating a Portlet Preference . 12-40

Editing a Portlet Preference . 12-41

Portlet Categories . 12-42

Creating a Portlet Category . 12-42

Adding Portlets to a Portlet Category . 12-43

Modifying Portlet Category Properties . 12-43

Look & Feels . 12-44

Modifying Look & Feel Properties . 12-45

Shells . 12-45

Modifying Shell Properties . 12-45

Themes . 12-46

Modifying Theme Properties . 12-46

Menus (Navigation). 12-47

Modifying Menu Properties . 12-47

Layouts . 12-48

Modifying Layout Properties . 12-48

13.Deploying Portals to Production
Shared J2EE Libraries . 13-1

Shared J2EE Library References in config.xml. 13-2

Overriding Shared J2EE Library Settings in the web.xml File 13-6

BEA WebLogic Portal Portal Development Guide xiii

Part IV. Production

14.Managing Portals in Production
Pushing Changes from the Library into Production . 14-1

Transferring Changes from Production Back to Development . 14-2

A. Facet-to-Library Reference Tables
WebLogic Portal Facet-to-Library Reference Tables .A-1

B. API Upgrade Cross-Reference
Packages to J2EE Libraries - Cross Reference Table . B-1

JAR Files to J2EE Libraries - Cross Reference Table. B-15

J2EE Libraries to Packages - Cross Reference Table . B-29

xiv BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 1-1

C H A P T E R 1

Introduction to Portals

This chapter introduces BEA WebLogic Portal® concepts and describes how the content of this
guide relates to the portal life cycle.

This chapter contains the following sections:

What is a Portal?

What is the Portal Framework?

Portal Development and the Portal Life Cycle

Getting Started

What is a Portal?
A portal represents a web site that provides a single point of access to applications and
information.

From an end user perspective, a portal is a web site with pages that are organized by tabs or some
other form of navigation. Each page contains a nesting of sub-pages, or one or more portlets—
individual windows that display anything from static HTML content to complex web services. A
page can contain multiple portlets, giving users access to different information and tools in a
single place. Users can also customize their view of a portal by adding their own pages, adding
portlets of their choosing, and changing the Look & Feel of the interface.

Technically speaking, a portal is a container of resources and functionality that can be made
available to end users. These portal views, which are called desktops in WebLogic Portal, provide

I n t roduct ion to Po r ta ls

1-2 BEA WebLogic Portal Portal Development Guide

the uniform resource location (URL) that users access. A portal presents diverse content and
applications to users through a consistent, unified web-based interface. Portal administrators and
users can customize portals, and content can be presented based on user preferences or rule-based
personalization. Each portal is associated with a web application that contains all of the resources
required to run portals on the web.

Portals provide the following benefits to the user:

Aggregation – The user can go to a single place for all content and applications.

Customization – The preferences for a user determine how the portal looks and feels.

Personalization – The user can obtain content that is specific to their interests and needs.

Organization – The user can arrange the content and applications to make better sense of
the information.

Integration – The user can work with multiple applications and content sources in a unified
fashion.

Portals typically include the following features and benefits:

Search – Enterprise and web-based search facilities

Content Management – Creation, management, and delivery of content

Content Repurposing – Including content from multiple disparate data sources

Portals optionally include the following features and benefits:

– Workflow – Business process management

– Single Sign-On – Allows users to log on once for all applications within the portal

WebLogic Portal supports development of portals through BEA Workshop for WebLogic
Platform, which is a client-based tool. You can also develop portals without Workshop for
WebLogic through coding in any tool of choice such as JBuilder, vi or Emacs. Portals can be
written in Java or JSP, and can include JavaScript for client-side operations. Although you can
create portals outside of Workshop for WebLogic, to realize the full development-time
productivity gains afforded to the WebLogic Portal customer, use Workshop for WebLogic as the
portal and portlet development platform.

After you create the parts of a portal using Workshop for WebLogic, you assemble it into a
desktop using the WebLogic Portal Administration Console. From an administrative standpoint,
a portal is a container that defines a portal application. When you create a new portal using the
Administration Console, you are really creating an empty portal to hold different versions of the

What i s the Por ta l F ramework?

BEA WebLogic Portal Portal Development Guide 1-3

portal (desktops) that can be targeted to specific users. A portal can contain one or more desktops,
or views, of a portal. It is the desktops to which you add the portal resources and navigation such
as books, pages, and portlets that make a dynamic portal.

Each portal is associated with a web application that contains all of the resources required to run
portals on the web.

What is the Portal Framework?
The portal framework is the portion of WebLogic Portal that is responsible for the rendering and
customization of the portal.

The portal framework turns a portal that you develop in Workshop for WebLogic into the HTML
page that desktop visitors see in a browser. When you are familiar with the portal framework tools
provided in WebLogic Portal, you can look at a rendered portal in a browser and understand
which pieces of the underlying framework you need to modify to obtain the results you want.

Portal Development and the Portal Life Cycle
The creation and management of a portal flows through a portal life cycle. The portal life cycle
contains four phases:

Architecture

Development

Staging

Production

The tasks described in this guide are organized according to the portal life cycle, which includes
best practices and sequences for creating and updating portals. For more information about the
portal life cycle, refer to the BEA WebLogic Portal Overview. Figure 1-1 shows a sampling of
tasks that occur at each phase.

I n t roduct ion to Po r ta ls

1-4 BEA WebLogic Portal Portal Development Guide

Figure 1-1 Portals and the Four Phases of the Portal Life Cycle

Architecture
During the architecture phase, you design and plan the configuration of your portal. For example,
you can create a detailed specification outlining the requirements for your portal, the specific
portlets you require, where those portlets will be hosted, and how they will communicate and
interact with one another. You might also consider the deployment strategy for your portal.
Security is another consideration for the portal architect.

This chapter describes tasks within the Architecture phase:

Chapter 2, “Planning Your Portal”

Development
Developers use Workshop for WebLogic to create portals, portlets, pages, and books. During
development, you can implement data transfer and interportlet communication strategies and
consider the security of the components.

In the development stage, careful attention to best practices is crucial. Wherever possible, this
guide includes descriptions and instructions for adhering to these best practices.

The chapters describing tasks within the Development phase include:

Production –
Roll out your portals to a
production environment,
making changes as needed

Staging –
Use the WebLogic Portal
Administration Console to create
and configure desktops

Development –
Use Workshop for WebLogic
to create portals, portlets,
pages, and books

Architecture –
Determine the basic
configuration of the portal

Po r ta l Deve lopment and the Por ta l L i fe Cyc le

BEA WebLogic Portal Portal Development Guide 1-5

Chapter 3, “Understanding Portal Development”

Chapter 4, “Setting up Your Portal Development Environment”

Chapter 5, “Upgrading WebLogic Portal Projects to Version 9.2”

Chapter 6, “Integrating Applications into WebLogic Portal”

Chapter 7, “User Interface Development with Look & Feel Features”

Chapter 8, “Developing Portals Using Workshop for WebLogic”

Chapter 9, “Visitor Tools Configuration”

Chapter 11, “Designing Portals for Optimal Performance”

Staging
BEA recommends that you deploy your portal to a staging environment where it can be
assembled and tested before going live. In the staging environment, you use the WebLogic Portal
Administration Console to assemble and configure desktops. You also test your portal in a
staging environment before propagating it to a live production system. In the testing aspect of the
staging phase, there is tight iteration between staging and development until the application is
ready to be released.

The chapters describing tasks within the Staging phase include:

Chapter 12, “Managing Portal Desktops”

Chapter 13, “Deploying Portals to Production”

Production
A production portal is live and available to end users. A portal in production can be modified by
administrators using the WebLogic Portal Administration Console and by users using Visitor
Tools. For instance, an administrator might add additional portlets to a portal or reconfigure the
contents of a portal.

The chapter describing tasks within the Production phase is:

Chapter 14, “Managing Portals in Production”

I n t roduct ion to Po r ta ls

1-6 BEA WebLogic Portal Portal Development Guide

Getting Started
This section describes the basic prerequisites to using this guide and lists guides containing
related information and topics.

Prerequisites
In general, this guide assumes that you have performed the following prerequisite tasks before
you attempt to use this guide to develop portlets:

Review the Related Guides and become familiar with the basic operation of the tools used
to create portals, portlets, and desktops,

Review the Workshop for WebLogic tutorials and documentation to become familiar with
the Eclipse-based development environment and the recommended project hierarchy.

Complete the tutorial Getting Started with WebLogic Portal.

Related Guides
BEA recommends that you review the following guides:

BEA WebLogic Portal Overview

BEA WebLogic Portal Portlet Development Guide

Whenever possible, this guide includes cross references to material in related guides.

../overview/index.html
../portlets/index.html
../tutorials/index.html

BEA WebLogic Portal Portal Development Guide

Part I Architecture

Part I includes the following chapters:

Chapter 2, “Planning Your Portal”

During the architecture phase, you design and plan the configuration of your portal. For example,
you can create a detailed specification outlining the requirements for your portal, the specific
portlets you require, where those portlets will be hosted, and how they will communicate and
interact with one another. You might also consider the deployment strategy for your portal.
Security is another consideration for the portal architect.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the
WebLogic Portal Overview.

../overview/index.html

1-2 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 2-1

C H A P T E R 2

Planning Your Portal

Proper planning is essential to portal development. While bypassing planning and moving
straight to development might reap short-term benefits in development speed, your projects may
suffer from confusion and inconsistency, have poor scalability and performance, and require
more time to manage.

The planning and design tasks that mark the architecture phase occur at multiple levels: the
domain and enterprise application, the web application, and the individual WebLogic Portal
feature areas.

Global inter-portal planning information is provided in the BEA WebLogic Portal Overview,
which summarizes the types of issues to consider in the architecture phase at all levels. The
various WebLogic Portal feature guides describe planning issues in detail for each feature area.

This chapter includes the following sections:

Production Operations (Propagation and Deployment)

Portal Development in a Distributed Portal Team

Federated Portals

Security

Content Management

Interaction Management

Performance

message URL ../overview/index.html

Planning Your Po r ta l

2-2 BEA WebLogic Portal Portal Development Guide

Production Operations (Propagation and Deployment)
Production operations encompasses the tools, procedures, methodologies, and best practices that
provide the backbone for managing the portal life cycle, from portal development to staging and
testing to live production environments. As Figure 2-1 shows, portals are typically developed in
a team development environment by developers using Workshop for WebLogic. Portal
components are then moved to a staging environment, where portal administrators use the
WebLogic Portal Administration Console to create desktops, add entitlements, set up content
repositories, and perform testing. The production environment is the live environment, where
users access and interact with portal applications. The arrows between environments indicate that
you can move portals and portal resources back and forth between each of these environments
using utilities provided by BEA. WebLogic Portal Utilities such as the WebLogic Portal
propagation tools allow you to easily and reliably move and merge changes between
environments.

Figure 2-1 Typical WebLogic Portal Environments

Just as you consider the architecture of a network or a software system, also consider and
carefully plan how you will address production operations for your portal system. It is important
to consider your particular portal system configuration, how your development team is organized,
how you will test and configure portals, how your server is configured, and how you plan to
manage the life cycle of your portal applications.

The Production Operations Guide describes the specific methodologies, tools, and best practices
to help you achieve the goal of creating solid, manageable environments for portal development,
staging, and production.

Portal Development in a Distributed Portal Team
If you will be creating portals within an environment that includes a remote (distributed)
development team, you must carefully plan your implementation. Considerations for team
development include:

Use of shared resources – You share common portlets, such as the login portlet.

../prodOps/index.html

Federated Po r ta ls

BEA WebLogic Portal Portal Development Guide 2-3

Sharing a common domain – Several techniques exist for sharing a common domain
among team members with different BEA home directories.

Integrating remotely developed portlets into the portal – Settings that are common to
the portal application must match across the entire development project.

Team development of a WebLogic Portal web site revolves around well-designed source control
and a correctly configured shared domain for development. For detailed instructions on setting
up your development environment, refer to the Team Development chapter of the Production
Operations Guide.

Federated Portals
A federated portal is a portal that includes remotely distributed resources, such as remote portlets.
These remote resources are collected and brought together at runtime to a portal application
called a consumer, which presents the federated portal to end users.

To implement a federated portal environment, you need to make decisions about how to organize
your applications. For example, rather than bundling all of a portal’s portlets into a single
application, you can deploy portlets in separate web applications running on remote systems
while the federated portal consumes them using WSRP. Because the federated portal is decoupled
from its portlets, you do not need to redeploy the portal every time a portlet changes. For most
WebLogic Portal projects, this decoupling represents an immediate and significant savings in
time and money. You also might find it useful in some situations to federate a portal within the
same server.

The Federated Portals Guide provides detailed instructions on how to set up a federated portal
environment.

Security
You can control access to portlet resources for two categories of users:

Portal visitors – You control access to portal resources using visitor entitlements. Visitor
access is determined based on visitor entitlement roles.

Portal administrators – You control portal resource management capabilities using
delegated administration. Administrative access is determined based on delegated
administration roles.

During the Architecture phase, you plan how to organize security policies and roles, and how that
fits into your overall security strategy. For an overall look at managing security for your portal

message URL ../prodOps/index.html
message URL ../prodOps/index.html
../federation/index.html

Planning Your Po r ta l

2-4 BEA WebLogic Portal Portal Development Guide

environment, refer to the Security Guide. Recommendations for security in WSRP-enabled
environments are contained in the Federated Portals Guide.

Content Management
WebLogic Portal’s content management system allows you to store content, track its progress,
and incorporate content in your portal applications. It provides an easy integration between
creating content and delivering that content to your users. Content creators can use WebLogic
Portal’s repositories to create content and portal developers use the content API and JSP tools to
deliver content to portal visitors.

You can use either a BEA repository or a third-party repository with your portal. BEA provides
a rich set of Java classes and APIs. If the vendor of your ECM system has implemented the SPI,
then adding your repository to the Virtual Content Repository will simply require a configuration
within the WebLogic Portal Administration Console. If your vendor has not implemented BEA's
SPI, then you can do so yourself.

When you use a third-party repository to store content, you also continue to use that repository’s
content tools to add and modify content, or you might be able to use BEA's content tools,
depending on your desired implementation.

For detailed information on managing the content for your portal, refer to the Content
Management Guide.

Interaction Management
You use WebLogic Portal’s Interaction Management features to control and enhance portal
visitor interactions with your portal application. You can set up personalized content that is
targeted to specific users or audiences. You can guide users through a process (such as signing
up for employee benefits or shopping online) that takes them to different locations based on their
personal preferences or characteristics. You can even record the path users take through your
portal to gauge the effectiveness of the portal, its design, or your process flows.

Developing Interaction Management features involves several interdependent tasks. For
example, if you want to target users with personalized content in an ad campaign, you have to add
content to BEA's Virtual Content Repository, create placeholders that display the content, set up
properties (such as user profile or session properties) that are used to define the conditions under
which users will be targeted with campaign content, and finally, create the campaign.

For detailed instructions, refer to the Interaction Management Guide.

../interaction/index.html
../security/index.html
../federation/index.html
../cm/index.html
../cm/index.html

Per fo rmance

BEA WebLogic Portal Portal Development Guide 2-5

Performance
Try to plan for good performance within your portal architecture to minimize the fine-tuning that
is required in a production environment. Many performance issues can be resolved and
significant performance improvement can be realized by making just a few critical design
decisions.

Here are some examples of performance optimizations that you can plan into your overall portal
strategy:

Enable control tree optimization.

Use entitlements judiciously; too many can impact performance. Avoid the temptation of
granting a different role to every user. Instead, use WebLogic Portal’s personalization
capabilities to focus the user experience.

If your portal is small or relies only on static resources, you might experience some
performance boost by using a file-based portal rather than a streaming portal.

If you are using page flows in your portal, ensure their session footprint is optimized to
deliver the best performance.

Plan performance optimizations before you begin developing your portal so that you can
implement any prerequisites that are required. For detailed instructions on developing a
high-performance portal, refer to Chapter 11, “Designing Portals for Optimal Performance.” For
overall WebLogic Portal performance recommendations that you can implement in a production
environment, refer to the Performance Tuning Guide, which will be available in a future
documentation release.

Planning Your Po r ta l

2-6 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide

Part II Development

Part II includes the following chapters:

Chapter 3, “Understanding Portal Development”

Chapter 4, “Setting up Your Portal Development Environment”

Chapter 5, “Upgrading WebLogic Portal Projects to Version 9.2”

Chapter 6, “Integrating Applications into WebLogic Portal”

Chapter 7, “User Interface Development with Look & Feel Features”

Chapter 8, “Developing Portals Using Workshop for WebLogic”

Chapter 9, “Visitor Tools Configuration”

Chapter 10, “Creating Portals for Multiple Device Types”

Chapter 11, “Designing Portals for Optimal Performance”

Developers use Workshop for WebLogic to create portals, portlets, pages, and books. During
development, you can implement data transfer and interportlet communication strategies and
consider the security of the components.

In the development stage, careful attention to best practices is crucial. Wherever possible, this
guide includes descriptions and instructions for adhering to these best practices.

2-2 BEA WebLogic Portal Portal Development Guide

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the
WebLogic Portal Overview.

../overview/index.html

BEA WebLogic Portal Portal Development Guide 3-1

C H A P T E R 3

Understanding Portal Development

This chapter provides conceptual and reference information that you might find useful as you
begin to develop portals.

This chapter contains the following sections:

Portal Components

Portal Component Hierarchy

Portal Development Environment in Workshop for WebLogic

WebLogic Portal and Shared J2EE Libraries

File-Based Portals and Streaming Portals

Java Controls in Portals

JSP Tags in Portals

Page Flows in Portals

State/Session Management

Portal Components
When you use Workshop for WebLogic to develop a portal, the portal definition exists as a single
XML file. Workshop for WebLogic creates the XML file automatically as you build a portal
using the editor.

Unders tand ing Por ta l Deve l opment

3-2 BEA WebLogic Portal Portal Development Guide

The portal file contains all the components that make up that particular instance of the portal, such
as books, pages, portlets, and Look & Feel components.

Many components have a hierarchical relationship to each other. For example, a book contains
pages and pages contain portlets. Figure 3-1 shows the relationships among the components in a
portal.

Desktop - A desktop provides an audience-specific view of portal components. It contains
the portal header, footer, and body. The body contains the bulk of the portal content:
books, pages, portlets, and Look & Feel elements. A portal can support one or more
desktops. After a portal administrator sets entitlements on the desktop and makes it ready
for public consumption, the desktop is the view of the portal accessed by end users. From
there, users can configure their own views through customization of the desktop, if you
enabled this feature.

Shell - The desktop's header and footer, controlled by a portal shell (.shell file), are the
areas that are typically above and below the main body. These areas usually display
elements such as personalized content, banner graphics, legal notices, and related links.

Book - A book is a component that provides high-level content organization and
navigation. Books contains pages or other books, providing a mechanism for hierarchical
nesting of pages and content.

Page - Pages contain the portlets that display the actual portal content. Pages can also
contain books.

Menu - Menus are optional components that are loosely coupled to books and pages. A
menu is responsible for displaying some type of navigation component, whether it is a set
of tabs, a set of links, or a tree structure. WebLogic Portal provides two types of menus:
single-level and multi-level. A single-level menu provides navigation (for example, a row
of tabs) for the book’s immediate pages and child books; a multi-level menu provides a
hierarchical menu for all the books and pages contained within a book.

Layout and Placeholder - Layouts and placeholders (not to be confused with
personalization placeholders) work together to structure the way portlets and books are
displayed on a page. A layout is an HTML table definition used by a page to determine the
physical locations of portlets on the page. Administrators and users can choose different
available layouts for pages. Placeholders are the individual cells in a layout in which
portlets are placed. WebLogic Portal ships with some predefined layouts, and you can also
create your own custom layouts.

Portlet - Portlets are the windows that surface your applications, information, and business
processes. The applications surfaced in portlets can be HTML pages, JSP files, Java (JSR

Por ta l Component H ie ra rchy

BEA WebLogic Portal Portal Development Guide 3-3

168) applications, page flows, and so on. For detailed information about developing
portlets for WebLogic Portal, refer to the Portlet Development Guide.

Portal Component Hierarchy
Whether you are building portal resources and templates in Workshop for WebLogic or creating
and administering portals with the WebLogic Portal Administration Console, you work with
individual components that are then unified by the portal framework.

Figure 3-1 illustrates the flexibility and extensibility of the WebLogic Portal architecture. In the
figure, the indicator (0...1) means 0 or 1, (1...n) means one or more, and (0...n) means zero or
more. For example, a portal can contain one or more desktops. For resources that occur only once,
like Look & Feel and Shell, you can still develop multiple versions even though only one at a time
is allowed.

../portlets/index.html

Unders tand ing Por ta l Deve l opment

3-4 BEA WebLogic Portal Portal Development Guide

Figure 3-1 Portal Component Hierarchy

Po r ta l Deve lopment Env i ronment in Workshop fo r WebLog ic

BEA WebLogic Portal Portal Development Guide 3-5

Portal Development Environment in Workshop for
WebLogic

BEA Workshop for WebLogic Platform is implemented as a plugin to the Eclipse Platform,
specifically including the Eclipse Workbench, Java Development Tools (JDT), a customized
version of the Web Tools Platform Project (WTP), and a Workshop for WebLogic-specific
plugin. Specific instructions on using the Workshop for WebLogic workbench are available in
the BEA Workshop for WebLogic Platform documentation. WebLogic Portal provides additional
features that facilitate portal and portlet development.

Before continuing, familiarize yourself with the features of Workshop for WebLogic by
reviewing the tutorial “Getting Started with BEA Workshop for WebLogic Platform,” which is
available in the help under BEA Workshop for WebLogic Programmer’s Guide or on e-docs.

When you set up your portal development environment as described in Chapter 4, “Setting up
Your Portal Development Environment,” your application generally consists of the components
shown in figure Figure 3-2:

Figure 3-2 Components that Comprise a Portal Development Environment

These are the basic parts that are required to develop and test a portal application.

http://e-docs.bea.com/workshop/docs92/platform.html
http://edocs.bea.com/workshop/docs92/platform.html

Unders tand ing Por ta l Deve l opment

3-6 BEA WebLogic Portal Portal Development Guide

WebLogic Portal uses a combination of standard Eclipse and Workshop for WebLogic views,
plus its own customized views, to simplify portal construction. Figure 3-3 shows an example of
how your Workshop for WebLogic workbench might look during development of a portal.

Figure 3-3 WebLogic Portal Portal Displayed in Workshop for WebLogic Portal Perspective

1. Package Explorer view – Shows the hierarchy of directories for the open project, and the
WebLogic Portal shared J2EE libraries being referenced by the project.

2. Merged Projects view – Shows a combined list of the actual files and referenced files in your
project; shared J2EE library files are shown in italic text. This view provides important
reference information for your portal development project.

3. Editor – Shows the primary visual working area for designing a portal.

4. Properties view – Shows properties for the portal component that is currently selected and
allows you to set or change them.

WebLogic Po r ta l and Shared J2EE L ib ra r i es

BEA WebLogic Portal Portal Development Guide 3-7

5. Palette view – Shows more detailed information that you can manipulate, based on the
current selection in the editor.

6. Outline view – Shows the components of the portlet interface in a hierarchical structure. To
see an example using the Outline view with style sheet development, refer to Chapter 7, “User
Interface Development with Look & Feel Features.”

You also use the Propagation perspective and Page Flow perspective during development. For
more information about the Propagation perspective, refer to the Production Operations Guide.
For more information about the Page Flow perspective, refer to the Workshop for WebLogic
help.

WebLogic Portal and Shared J2EE Libraries
Shared J2EE libraries (also referred to as library modules) let you deploy and use a single set of
resources rather than having to duplicate those resources in every EAR project and portal web
project. BEA recommends that you use shared J2EE libraries because of their significant
advantages in source control, file sharing, and patch application. WebLogic Portal supports only
configurations that implement shared J2EE libraries. For detailed information about shared J2EE
libraries, refer to “Creating Shared J2EE Libraries and Optional Packages” in the WebLogic
Server documentation.

As illustrated in Figure 3-2, your EAR projects and web projects contain references to shared
J2EE libraries that are actually stored at a domain level, and you can use those modules as if they
were packaged as part of the referencing application itself.

You can override a resource in a J2EE library by copying it from the library into your portal web
project and then customizing it. For example, if you want the default Look & Feel to look
different in a particular portal web project, you can copy the default Look & Feel from the library
into the portal web project and make your modifications.

When you copy a resource, WebLogic Portal puts that resource into the “matching” location
within your portal web project. When you deploy the project, WebLogic Server sees the copied
resource and uses that instance instead of the resource in the library.

WARNING: If you copy J2EE library resources into your project, keep in mind that with future
updates to the WebLogic Portal product, you might have to perform manual steps
in order to incorporate product changes that affect those resources. With any
future patch installations, WebLogic Portal supports only configurations that do
not have copied J2EE library resources in the project.

http://e-docs.bea.com/wls/docs92/programming/libraries.html
../prodOps/index.html

Unders tand ing Por ta l Deve l opment

3-8 BEA WebLogic Portal Portal Development Guide

For information on how to copy J2EE library resources into a project, refer to “Copying J2EE
Library Files into a Project” on page 8-20. For more information about how shared J2EE libraries
affect portal deployment, refer to Chapter 13, “Deploying Portals to Production.”

File-Based Portals and Streaming Portals
The .portal file you create in Workshop for WebLogic is a template. In this template you create
books, pages and portlets and define defaults for them. When you view the .portal file with
your browser the portal is rendered in “single file mode,” meaning that you are viewing the portal
from your file system as opposed to a database. The .portal file's XML is parsed and the
rendered portal is returned to the browser. The creation and use of a .portal is intended for
development purposes, but you can access a .portal file in production. Because there is no
database involved you cannot take advantage of features such as user customization or
entitlements.

Once you have created a .portal file you can use it to create desktops for a production
environment, using the WebLogic Portal Administration Console.

A desktop is a particular view of a portal that visitors access. A portal can be made up of multiple
desktops, making the portal a container for desktops. A desktop contains all the portlets, content,
shells, layouts, and Look & Feel elements necessary to create individual user views of a portal.

When you create a desktop based on the .portal file in the WebLogic Portal Administration
Console, the .portal and its resources are placed into the database. The settings in the .portal
file, such as the Look & Feel, serve as defaults to the desktop. Once a new desktop is created from
a .portal template, the desktop is decoupled from the template, and modifications to the
.portal file do not affect the desktop, and vice versa. For example, when you change a desktop's
Look & Feel in the WebLogic Portal Administration Console, the change is made only to the
desktop, not to the original .portal file. When you view a desktop with a browser it is rendered
in “streaming mode” (from the database). Now that a database is involved, desktop
customizations can be saved and delegated administration and entitlements can be set on portal
resources.

System performance is not significantly different between streamed portals and file-based
portals. The advantages of each portal type depend more on how many portlets you plan to
produce, the functionality you want to provide portal end users, and how you want to manage
your portal.

Table 3-1 compares streamed and file-based portals in more detail:

Java Cont ro ls in Po r ta ls

BEA WebLogic Portal Portal Development Guide 3-9

Note: You cannot set entitlements on a file-based portal, but once you create a desktop that is
based on that portal, and you set entitlements on those artifacts in the desktop, then the
.portal file will also pick them up at runtime. A .portal file does not go to the
database, but an entitlement check is still made at runtime; these entitlements are stored
in LDAP. If you don't want a file-based portal to run entitlement checks at runtime, you
can turn this off in the WEB-INF/netuix-config.xml file.

For performance-related recommendations, refer to “Use File-Based Portals for Simple
Applications” on page 11-19.

Java Controls in Portals
Java controls are visual components with events, methods, and properties that handle the
implementation details for connecting to existing data, systems, applications, and business logic.

Table 3-1 Performance/Feature Comparison of File-Based Portals and Streaming Portals

Portal Feature File-Based Portals Streamed Portals

Adding
Entitlements

Run-time check only Yes—More easily set and configured

Setting Preferences

Number of
Instances

In portal definition

Limited

No

For individual portal instances

More than file-based portals

Yes

Customization No Yes (through Visitor Tools and the
Administration Console)

Internationalization Difficult—requires changes to
skeleton files.

Easier

Performance Slight advantage Slightly less than file-based portals

Propagation (from
test to production
environments)

Easy to accomplish by moving the
.portal file

Requires proper planning but easy to
implement with propagation tools

Development
Process

Easiest More complex but more robust

Unders tand ing Por ta l Deve l opment

3-10 BEA WebLogic Portal Portal Development Guide

The controls provided with WebLogic Portal and Workshop for WebLogic fall into the following
three categories:

System controls, which are provided by Workshop for WebLogic to give easy access to
application resources, like databases and EJBs.

Custom Java controls, which could mean controls that the customer writes himself, or it
can mean custom Java controls that WebLogic Portal or Workshop for WebLogic provides.

Portal framework controls, otherwise known as the “netuix user interface controls;”
examples of these include portlets, desktops, books, pages, and so on.

A large set of Java controls is included with WebLogic Portal. In addition, you can create your
own custom Java controls to encapsulate your business logic.

The custom Java controls provided within WebLogic Portal are development objects with a
defined runtime interface and configurable properties that are used to render portal HTML at
runtime. WebLogic Portal’s custom controls empower you to manipulate portal runtime behavior
dynamically based on any available information the developer wishes to exploit. Upon each
request, the control tree is created, and you have an opportunity to manipulate the behavior of
each control in the tree, at the desktop, menu, page, or portlet level. WebLogic Portal’s custom
controls are abstracted by “contexts” in the WebLogic Portal architecture. These contexts give
you a well-defined set of APIs that can be used to achieve virtually any runtime behavior that you
desire.

WebLogic Portal’s custom controls for portlets are governed by a well-defined life cycle. This
life cycle provides plug-in points for desired control manipulation. For example, you might wish
to dynamically set the “hidden” property to “true” for a portlet during the init() life cycle stage,
to prevent the portlet from rendering.

WebLogic Portal’s custom controls for portals interoperate with page flow controls. The control
architecture interoperates with the page flow control architecture, empowering you to define
sophisticated interactions between page flow applications surfaced in portlets, and more general
portal windowing management. The integration between WebLogic Portal’s custom controls and
page flows is surfaced in Workshop for WebLogic workbench tools such as property sheets so
that you do not need to write code to “hook up” page flows and portlets.

For information about how to access controls when developing a portal, refer to “Custom
Controls in Page Flows” on page 8-25. For technical information about the controls and actions
provided with WebLogic Portal, refer to the Controls Javadoc.

http://edocs.bea.com/wlp/docs92/javadoc/controls/index.html

JSP Tags in Po r ta ls

BEA WebLogic Portal Portal Development Guide 3-11

JSP Tags in Portals
WebLogic Portal provides JSP tags that you can use within JSPs. Portlets can use JSPs as their
content nodes, enabling reuse and facilitating personalization and other programmatic
functionality. You can create JSPs with Workshop for WebLogic to provide a structure for other
elements to be added to a portlet.

To view the JSP tags available as you develop a portal, select Window > Show View > JSP
Design Palette.

For information about the classes associated with WebLogic Portal’s JSP tags, see the Javadoc.

Backing Files
A common means of influencing portal behavior within the portal framework control life cycle
is to use a backing file. A backing file is a Java class that can contain methods corresponding to
life cycle stages, such as init() and preRender(). A portal’s backing context, an abstraction of the
portal framework control itself, can be used to query and alter the portlet’s characteristics. For
example, in the init() life cycle method, a request parameter might be evaluated, and depending
on the parameter’s value, the portlet backing context can be used to specify whether the portlet is
visible or hidden. For more information about backing contexts, refer to the Portal Development
Guide.

Backing files can be attached to portals either by using Workshop for WebLogic or coding them
directly into the XML file for the particular framework control.

Backing files are simple Java classes that implement the
com.bea.netuix.servlets.controls.content.backing.JspBacking interface or extend
the com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking
interface abstract class. The methods on the interface mimic the controls life cycle methods
(refer to “How Backing Files are Executed” on page 3-12) and are invoked at the same time the
controls life cycle methods are invoked.

The following portal controls support backing files:

Desktops

Books

Pages

Portlets

../javadoc/index.html
../portals/index.html
../portals/index.html

Unders tand ing Por ta l Deve l opment

3-12 BEA WebLogic Portal Portal Development Guide

JspContent controls

The interportlet communication example in the Portlet Development Guide uses backing files.

This section contains the following topics:

How Backing Files are Executed

Thread Safety and Backing Files

Backing File Guidelines

Adding a Backing File Using Workshop for WebLogic

How Backing Files are Executed
All backing files are executed before and after the JSP is called. In its life cycle, each backing file
calls these methods:

init()

handlePostBackData()

preRender()

dispose()

Figure 3-4 illustrates the life cycle of a backing file.

Figure 3-4 Backing File Life Cycle

On every request, the following sequence occurs:

Note: In the following steps, the methods are called unless items on inactive pages have been
“optimized away” if tree optimization is enabled. For example, if tree optimization is
enabled and items on an inactive page are not included on the resulting partial control
tree, then the method is not called.

../portlets/index.html

Back ing F i l es

BEA WebLogic Portal Portal Development Guide 3-13

1. All init() methods are called on all backing files in depth-first order (that is, in the order
they appear in the tree). This method is called whether or not the control (the portal, page,
book, or desktop) is on an active page.

2. If the _nfpb parameter is set to true, all handlePostbackData() methods are called.

– If the _nfpb parameter is set to true in the request parameter of any called
handlePostbackData() methods, raiseChangeEvents() is called. This method
causes events to fire, which is necessary if the backing file tries to make any state or
mode changes.

Tip: You can use the method AbstractJspBacking.isRequestTargeted(request)
to determine if a request is for a particular portlet.

– If the backing file’s handlePostbackData() method returns true, the
raiseChangeEvents() method is called.

3. All preRender() methods are called for all portal framework controls on an active (visible)
page.

4. The JSPs are called and rendered on the active page.

5. The dispose() method is called on each backing file.

Thread Safety and Backing Files
A new instance of a backing file is created per request, so you do not have to worry about thread
safety issues. New Java VMs are specially tuned for short-lived objects, so this is not the
performance issue it was in the past. Also, JspContent controls support a special type of backing
file that allows you to specify whether or not the backing file is thread safe. If this value is set to
true, only one instance of the backing file is created and shared across all requests.

Scoping and Backing Files
You can cause different behaviors with backing files by varying their scope. For example, a
backing file used at a framework control scope has a different behavior than one used at a JSP
content scope.

If you have the backing file on the portlet itself using <netuix: portlet backingfile
=some_value> you can actually stop the portlet from rendering. If you have the backing file as
part of <netuix: jspContent backingfile=some_value>, the portlet portion of the control

Unders tand ing Por ta l Deve l opment

3-14 BEA WebLogic Portal Portal Development Guide

tree has already run; you would use this scope if you want to run processes that are specifically
for the JSP in the portlet.

Using the Session to Pass Data Between Life Cycle Methods
The HTTPRequest object is volatile. BEA recommends that you pass data between life cycle
methods using the session rather than the request object.

Backing File Guidelines
Follow these guidelines when creating a backing file:

Ensure netuix_servlet.jar is included in the in the project classpath; otherwise,
compilation errors occur.

When implementing the init() method, avoid any heavy processing.

Listing 3-1shows an example backing file. In this example, the AbstractJspBacking class is
extended to provide the backing functionality required by the portlet. The example uses a session
attribute because of the volativity of the HTTPRequest object; BEA recommends that you pass
data between life cycle methods using the session rather than the request object.

Listing 3-1 Backing File Example

package backing;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import com.bea.netuix.events.Event;

import com.bea.netuix.events.CustomEvent;

import

com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;

public class ListenCustomerName extends AbstractJspBacking

{

public void listenCustomerName(HttpServletRequest request,

HttpServletResponse response, Event event)

{

Back ing F i l es

BEA WebLogic Portal Portal Development Guide 3-15

CustomEvent customEvent = (CustomEvent) event;

String message = (String) customEvent.getPayload();

HttpSession mySession = request.getSession();

mySession.setAttribute("customerName", message);

}

}

Adding a Backing File Using Workshop for WebLogic
You can add a backing file either from within Workshop for WebLogic or by coding it directly
into the file with which you are associating it. Simply specify the backing file in the Backing File
field of the Properties view, as shown in Figure 3-5. You need to specify the backing directory
and, following a dot-separator, only the backing file name. Do not include the backing file
extension; for example enter this:
backing.ListenCustomerName

not this:
backing.ListenCustomerName.java

For the preceding example, if you include the file extension, the application interprets it as the
file name—because the file path is specified by a dot-separator—and looks for a non-existent file
called java in a non-existent directory called ListenCustomerName.

Figure 3-5 Adding a Backing File Using Workshop for WebLogic

Adding the Backing File by Editing the XML File
To add the backing file by coding it into an XML file for the portal framework control, you can
use use the backingFile parameter within the <netuix:jspContent> element, as shown in
example Listing 3-2.

Unders tand ing Por ta l Deve l opment

3-16 BEA WebLogic Portal Portal Development Guide

Listing 3-2 Adding a Backing File to a .portlet File

<netuix:content>

 <netuix:jspContent

 backingFile="portletToPortlet.pageFlowSelectionDisplayOnly.menu.

 backing.MenuBacking"

 contentUri="/portletToPortlet/pageFlowSelectionDisplayOnly/menu/

 menu.jsp"/>

</netuix:content>

Page Flows in Portals
Java Page Flow is a feature set built on a Struts-based web application programming model. Java
Page Flow leverages the power and extensibility of Struts while also eliminating the difficulties
and challenges of building Struts-based applications. Java Page Flow features include runtime
support for the web application programming model and tools that enable developers to quickly
and easily build applications based upon the model.

Basically, a page flow is a directory of web application files that work together to implement a
user interface feature. For example, a page flow could implement a web application’s user
registration wizard feature.

You can manage state, data and navigation flow between pages using Java Page Flow (JPF) files.
Page flows use the same programming model as other Workshop for WebLogic applications,
include one-click generation of Java Controls, and offer a standard Struts framework plug-in.
JPFs also offer “WYSIWYG” development with a two-way JSP/HTML editor. JPFs can bind to
data, web services using controls & data binding tags, drag and drop controls and data to create
forms and data-bound web pages.

If you have a page flow, you can easily generate a page flow portlet to encapsulate it. For detailed
instructions on this process, refer to the Portlet Development Guide.

For information on creating page flows using Workshop for WebLogic, refer to the BEA
Workshop for WebLogic Platform Programmer’s Guide on e-docs.

State/Session Management
WebLogic Portal provides multiple mechanisms for managing state, including the HTTP Session,
HTTP Request and Sessions. WebLogic Portal’s Java Page Flow also provides flexible, powerful

../portlets/index.html
http://edocs.bea.com/workshop/docs92/platform.html
http://edocs.bea.com/workshop/docs92/platform.html

State /Sess ion Management

BEA WebLogic Portal Portal Development Guide 3-17

state management capabilities within a Struts-based framework. Page flow state management
bridges the chasm between request and session state management. For many projects the request
lifetime is too short and the session lifetime too long and heavy to meet the needs of the
application. With page flow, state lifetime lasts only as long as necessary.

Unders tand ing Por ta l Deve l opment

3-18 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 4-1

C H A P T E R 4

Setting up Your Portal Development
Environment

Use this chapter as you prepare your Workshop for WebLogic environment for portal
development. This chapter describes the Portal EAR Project Wizard, Portal Web Project Wizard,
Datasync Project Wizard, the Add/Remove a Project dialog, and a subset of the WebLogic
Domain Configuration Wizard. This chapter also describes some features in the Workshop for
WebLogic interface that you might find useful as you use it to develop portals.

For a step by step example of how to perform the tasks related to each wizard, see the Getting
Started with WebLogic Portal tutorials.

Tip: You can find detailed information about how these setup tasks are related to the
deployment of your project in the Production Operations Guide.

This chapter contains the following sections:

Roadmap for Environment Setup Tasks

WebLogic Domain Configuration Wizard

Portal EAR Project Wizard

Add and Remove Projects Dialog

Portal Web Project Wizard

Portal Datasync Project Wizard

Using the Merged Projects View

../tutorials/index.html
../tutorials/index.html
../prodOps/index.html

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-2 BEA WebLogic Portal Portal Development Guide

Running a Project on the Server

Customizing a Perspective

Setting WebLogic Portal Preferences in Workshop for WebLogic

Roadmap for Environment Setup Tasks
The required environment setup options vary depending on whether you want to develop a
“conventional portal,” a collaboration portal, or a “development-free” GroupSpace application.
Table 4-1 describes the basic tasks that you should perform in each case:

Table 4-1 Task Roadmap According to Development Goals

If you want to... Then in this task... Select these options...

Develop a “conventional”
portal application that does not
involve collaboration or
GroupSpace

WebLogic Configuration
Wizard

In Select Domain Source, select the
Weblogic Portal check box. Do not
select GroupSpace Framework or
GroupSpace Application.

Portal EAR Project Wizard Default WebLogic Portal facets.

Portal Web Project Wizard Default WebLogic Portal facets.

Note: You should not include
GroupSpace in a conventional
portal application. For more
information, refer to the
GroupSpace Guide.

Copying J2EE library files into
your project (for instructions,
refer to “Copying J2EE Library
Files into a Project” on
page 8-20)

As needed; no specific J2EE libraries
required.

../groupspace/index.html

Roadmap fo r Env i ronment Se tup Tasks

BEA WebLogic Portal Portal Development Guide 4-3

Develop a collaboration portal
application that uses the
Collaboration Portlets but does
not involve GroupSpace

WebLogic Configuration
Wizard

In Select Domain Source, select the
Weblogic Portal GroupSpace
Framework check box.

Note: If you do not want to use the
Shared Content Repository that
the GroupSpace Framework
configures, other methods of
setting up a repository exist. For
details, refer to the Communities
Guide.

The wizard automatically selects the
WebLogic Portal check box; keep it
selected.

Portal EAR Project Wizard In addition to the default facets, select the
WebLogic Portal Collaboration facet
and these sub-features:
• Collaboration API
• Collaboration Portlets Application

Libraries

Portal Web Project Wizard In addition to the default facets, select the
WebLogic Portal Collaboration facet
and this sub-feature:
• Collaboration Portlets

Copying J2EE library files into
your project (for instructions
refer to “Copying J2EE Library
Files into a Project” on
page 8-20).

As needed; no specific J2EE libraries
required.

Table 4-1 Task Roadmap According to Development Goals (Continued)

If you want to... Then in this task... Select these options...

../communities/index.html
../communities/index.html

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-4 BEA WebLogic Portal Portal Development Guide

Develop a customized
Community application using
Workshop for WebLogic,
starting from the OOTB sample
GroupSpace application

WebLogic Configuration
Wizard

In Select Domain Source, select the
Weblogic Portal GroupSpace
Application check box.

The wizard automatically selects the
WebLogic Portal and GroupSpace
Framework check boxes; keep them
selected.

Portal EAR Project Wizard In addition to the default facets, select the
WebLogic Portal Collaboration facet
and these sub-features:
• Collaboration API
• Collaboration Portlets Application

Libraries
• GroupSpace Application Libraries

Portal Web Project Wizard In addition to the default options, select
the WebLogic Portal Collaboration
facet and these sub-features:
• Collaboration Portlets
• GroupSpace

Note: If GroupSpace is enabled in a
portal web project, only
GroupSpace applications can
reside in that web project. If you
want to create custom
Communities, you must create a
separate portal web project that
does not include GroupSpace.
For more information, refer to
the GroupSpace Guide.

Copying J2EE library files into
your project (for instructions
refer to “Copying J2EE Library
Files into a Project” on
page 8-20).

Copy all GroupSpace-related J2EE
libraries into your project. For a list of
application libraries, refer to “WebLogic
Portal J2EE Library Descriptions” on
page A-1.

Table 4-1 Task Roadmap According to Development Goals (Continued)

If you want to... Then in this task... Select these options...

../groupspace/index.html

WebLog ic Domain Conf igura t i on Wi za rd

BEA WebLogic Portal Portal Development Guide 4-5

WebLogic Domain Configuration Wizard
This section describes the sections of the Configuration Wizard that are interesting from a
WebLogic Portal perspective.

A domain is a group of WebLogic Server resources that contain the application server. You must
have a server domain that is WebLogic Portal – enabled in order to test the portal that you create.
This customized domain is generally called a portal domain.

A sample portal domain comes with WebLogic Portal and is, by default, located at
WebLogic_HOME/samples/domains/portal. This sample domain is configured for use with a
GroupSpace application.

You can start the Domain Configuration Wizard in several ways. Here are summaries of two
methods:

From the Workshop for WebLogic interface (workbench)

a. From the Servers view, right-click and select New > Server.

b. From the New Server - Define a New Server dialog, click Next and then click the
hyperlink to start the wizard.

From the Start menu in Windows XP.

Select Start > All Programs > BEA Products >Tools > Configuration Wizard.

Set up a standard GroupSpace
application for which you will
not perform any development
tasks within Workshop for
WebLogic (you will use the
WebLogic Portal
Administration Console to
implement your application).

WebLogic Configuration
Wizard

In Select Domain Source, select the
Weblogic Portal GroupSpace
Application check box.

The wizard automatically selects the
WebLogic Portal and GroupSpace
Framework check boxes; keep them
selected.

Portal EAR Project Wizard Not applicable

Portal Web Project Wizard Not applicable

Copying J2EE library files into
your project

Not applicable

Table 4-1 Task Roadmap According to Development Goals (Continued)

If you want to... Then in this task... Select these options...

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-6 BEA WebLogic Portal Portal Development Guide

The first dialog in the wizard looks like the example in Figure 4-1.

Figure 4-1 BEA WebLogic Server Configuration Wizard

Table 4-2 shows the values that you would typically enter in the wizard, along with some useful
notes that you might find useful as you set up your portal domain.

Por ta l EAR Pro jec t Wi za rd

BEA WebLogic Portal Portal Development Guide 4-7

Portal EAR Project Wizard
This section describes the dialogs of the WebLogic Portal Enterprise Application Archive (EAR)
Project Wizard.

An EAR project collects the component projects of the application for deployment; you create
one EAR project per enterprise application. The EAR project contains JAR files, deployment

Table 4-2 Configuration Wizard Values for a Portal Domain

In this Wizard Page... Select or Enter...

Welcome Create a new WebLogic domain (the default)

Select Domain Source Select the appropriate check boxes depending on the type of
project you want to develop.

For example, you can select the WebLogic Portal GroupSpace
Framework and WebLogic Portal GroupSpace Application
check boxes to create a domain that is GroupSpace-enabled;
projects based on the GroupSpace sample application must have
a GroupSpace-enabled domain.

For more information on the options available here, refer to
“Roadmap for Environment Setup Tasks” on page 4-2.

Configure Administrator Username
and Password

(Default) user name: weblogic

User password:

Confirm user password:

You might want to use this WebLogic Server administrator
login when using the WebLogic Portal Administration Console,
so keep track of what you enter here.

Configure Server Start Mode and JDK • Development Mode (the default) or Production Mode
For information on the implications of using either of these
options, refer to the Production Operations Guide.

• JRockit SDK (recommended)

Customize Environment and Services
Settings

No (the default)

Create WebLogic Domain Domain location: Accept the default, or specify another
directory on your system.

../prodOps/index.html

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-8 BEA WebLogic Portal Portal Development Guide

descriptors, build files, and auto-generated files. For more information about EAR projects and
their relationship to the other projects in the Workshop for WebLogic workbench, refer to the
“Applications and Projects” topic in the Workshop for WebLogic Programmers’s Guide.

The Portal EAR Project is an EAR project that is customized for WebLogic Portal. EAR projects
appear as siblings to the other projects in a workspace but functionally, they link together projects
and do not contain any of the content of your web application.

To start the Portal EAR Project Wizard, perform these steps:

1. From the File menu, select New > Project...

The New Project – Select a Wizard dialog displays.

Select WebLogic Portal > Portal EAR Project, as shown in Figure 4-2.

Figure 4-2 New Project – Select a Wizard Dialog with Portal EAR Project Selected

2. Click Next.

Por ta l EAR Pro jec t Wi za rd

BEA WebLogic Portal Portal Development Guide 4-9

The New Portal EAR Project dialog displays. When you enter a name for your project
and click Next, the Select Project Facets dialog displays.

New Portal EAR Project – Select Project Facets Dialog
Figure 4-3 shows an example of the New Portal Web Project – Select Project Facets dialog.

Figure 4-3 New Portal EAR Project – Select Project Facets Dialog

Table 4-3 describes each WebLogic Portal–related field of the Select Project Facets dialog. The
selections that you make here cause WebLogic Portal to create files that you can use as you create
your project, and associate the project with the correct set of shared J2EE libraries. For more
information about shared J2EE libraries, see “WebLogic Portal and Shared J2EE Libraries” on
page 3-7.

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-10 BEA WebLogic Portal Portal Development Guide

Add and Remove Projects Dialog
This section describes the Add and Remove Projects dialog, which you use to associate an EAR
project with a portal domain. If your EAR Project already exists when you create you domain,
you can make this association when you create the server domain. If not, you can do it later using
the steps outlined in this section.

To associate the Portal EAR Project with the server, perform these steps:

1. In the Servers view, right-click BEA WebLogic v9.2 Server @ localhost, then select Add
and Remove Projects.

Table 4-3 New Portal EAR Project Dialog Data Fields - WebLogic Portal Information

Field Description

Presets dropdown
menu

The value automatically displayed in this dropdown menu corresponds to
the selections made in the tree view of project facets. You can select a
preset group of facets from the dropdown menu, or select and unselect
specific check boxes in the tree display. If you select a customized set of
facets, <custom> displays in the field.

Project Facet Display Tree

WebLogic Portal
primary

Select the WebLogic Portal facets that you want to install. If certain facets
depend on others, messages appear to describe these dependencies and
your selections must conform to these requirements.
• Admin Framework
• Admin Portal
• Portal Application Services
• Portal Customizations Framework
• Propagation Service

WebLogic Portal
(Optional)

This selection adds Commerce Services to the project.

WebLogic Portal
Collaboration

Check this box (and one or more of its sub-features) to enable this project
as a collaboration-enabled, and potentially GroupSpace-enabled EAR.

For details about creating a GroupSpace application, refer to the
Communities Guide and the GroupSpace Guide.

../communities/index.html
../groupspace/index.html

Add and Remove P ro j ec ts D ia log

BEA WebLogic Portal Portal Development Guide 4-11

The Add and Remove Projects dialog displays, as shown in Figure 4-4.

Figure 4-4 Add and Remove Projects Dialog

2. Click to select the desired EAR project in the Available projects column and then click Add.

The project is added to the Configured projects column on the right.

3. Click Finish.

The Portal EAR Project is now associated with the server. To verify this, in the Servers
view you can expand the server node to view the server’s associated projects. The
myPortalEAR project should be shown as a subordinate node.

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-12 BEA WebLogic Portal Portal Development Guide

Portal Web Project Wizard
You use the Portal Web Project Wizard to create the web project that contains portal files. When
you create a Portal Web Project, WebLogic Portal creates a set of shared J2EE libraries and files
that you can use as you create your portal.

To start the wizard, perform these steps:

1. Select File > New > Project.

The New Project – Select a Wizard dialog box displays.

2. Select WebLogic Portal > Portal Web Project, as shown in Figure 4-5.

Figure 4-5 New Project – Select a Wizard Dialog with Portal Web Project Selected

3. Click Next.

Po r ta l Web Pro jec t Wi za rd

BEA WebLogic Portal Portal Development Guide 4-13

The New Portal Web Project dialog displays.

New Portal Web Project – Portal Web Project
Figure 4-6 shows an example of the New Portal Web Project dialog.

Figure 4-6 New Portal Web Project Dialog

Table 4-4 describes each field of the New Portal Web Project – Portal Web Project dialog.

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-14 BEA WebLogic Portal Portal Development Guide

New Portal Web Project – Select Project Facets dialog
The New Portal Web Project – Select Project Facets dialog is shown in Figure 4-7.

Table 4-4 New Portal Web Project Dialog Data Fields

Field Description

Project name The name of the portal web project.

Project contents area -

Use default check box and
file browser

You can use the content area that WebLogic Portal creates by
default, or point to another directory where your project contents
are stored.

Add project to an EAR
check box and file browser

If you have not yet created a Portal EAR Project, leave this check
box unselected; you can associate the project with an EAR later by
right-clicking the web project in the Package Explorer tree
and selecting Properties; then use the J2EE Module
Dependencies setting to associate the project with the
EAR.
If you have an existing EAR to associate with the project, select
the check box; the dropdown menu displays an auto-filled
EAR name corresponding to the EAR project(s) that you
created in the Portal EAR Project Wizard. Click to select the
appropriate EAR file, or click Browse to navigate to an
existing EAR file.
A portal web project must be associated with an EAR for the build
to work successfully.

Po r ta l Web Pro jec t Wi za rd

BEA WebLogic Portal Portal Development Guide 4-15

Figure 4-7 New Portal Web Project – Select Project Facets Dialog

Table 4-5 describes each WebLogic Portal–specific field of the dialog.

Table 4-5 New Portal Web Project Dialog Data Fields - WebLogic Portal Information

Field Description

Presets
dropdown menu

The value automatically displayed in this dropdown menu corresponds to
the selections made in the tree view of project facets. You can select a
preset group of facets from the dropdown menu, or select and unselect
specific check boxes in the tree display. If you select a customized set of
facets, <custom> displays in the field.

Project Facet Display Tree

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-16 BEA WebLogic Portal Portal Development Guide

New Portal Web Project - Web Module Dialog
The New Portal Web Project – Web Module dialog is shown in Figure 4-7.

WebLogic Portal
primary

Select the WebLogic Portal facets that you want to install. If certain facets
depend on others, messages appear to describe these dependencies and
your selections must conform to these requirements.
• Portal Customizations Framework
• Portal Framework
• Portal Framework Struts
• Portal Visitor Tools
• Portal Web Application Services
• WSRP Producer

For more information about each of these sub-features, refer to “WebLogic
Portal J2EE Library Descriptions” on page A-1.

WebLogic Portal
(Optional)

This selection adds Commerce Tag Libraries to the project.

WebLogic Portal
Collaboration

Check this box (and one or both of its sub-features) to add the collaboration
portlets to the project, or to enable the project as a GroupSpace project.
• Collaboration Portlets - causes the J2EE library

wlp-collab-portlets-app-lib to be associated with your project. You can
use these portlets outside a GroupSpace environment.

• GroupSpace - causes the GroupSpace-related J2EE libraries to be
associated with the project. If you select this option, you must also
select the Collaboration Portlets sub-feature.

For detailed instructions on creating a GroupSpace-based application, refer
to the Communities Guide

Note: Do not add GroupSpace to portal web projects that already contain
non-GroupSpace portals. For more information, refer to the
Communities Guide.

Table 4-5 New Portal Web Project Dialog Data Fields - WebLogic Portal Information (Continued)

Field Description

../communities/index.html
../communities/index.html

Po r ta l Web Pro jec t Wi za rd

BEA WebLogic Portal Portal Development Guide 4-17

Figure 4-8 New Portal Web Project – Web Module dialog

Table 4-6 describes each field of the dialog.

New Portal Web Project - WebLogic Web Module Dialog
The New Portal Web Project – WebLogic Web Module dialog is shown in Figure 4-9.

Table 4-6 New Portal Web Project – Web Module Data Fields

Field Description

Context Root The context root of the web application.

Content Directory The default web content directory name WebContent is automatically
displayed; you can change it if you wish.

As a best practice, you should locate your portal file(s) and other
portal resources in a web content directory that is subordinate to the
web project directory.

Java Source
Directory

The default Java source directory name src is automatically displayed;
you can change it if you wish.

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-18 BEA WebLogic Portal Portal Development Guide

Figure 4-9 New Portal Web Project – WebLogic Web Module Dialog

Table 4-7 describes the dialog.

Portal Datasync Project Wizard
A datasync project is an optional project that stores general purpose portal services data that is
used in the development of personalized applications and portals. These portal services include
User Profiles, Session Properties, Campaigns and others. You can share a single datasync project
among several EAR projects if you wish.

Table 4-7 New Portal Web Project – WebLogic Web Module Dialog Description

Field Description

Shared J2EE Libraries
selection buttons

If you select the Use Shared J2EE Libraries radio button, WebLogic
Portal creates associations with shared J2EE libraries rather than copying
the complete set of JAR files into your project. BEA recommends that you
use shared J2EE libraries because of their significant advantages in source
control, file sharing, and patch application. With any future patch
installations, WebLogic Portal supports only configurations that do not
have copied J2EE library resources in the project. For more information
about shared J2EE libraries, refer to “WebLogic Portal and Shared J2EE
Libraries” on page 3-7.

If you select not to use shared J2EE libraries, all of the necessary JAR files
will be copied directly into the project.

Po r ta l Datasync Pro jec t Wi za rd

BEA WebLogic Portal Portal Development Guide 4-19

To create the datasync project, perform these steps:

1. Select File > New > Project.

The Select a Wizard dialog box displays.

2. In the dialog, select WebLogic Portal > Datasync Project, as shown in Figure 4-10.

Figure 4-10 New—Select a Wizard Dialog with Datasync Project Selected

3. Click Next.

The Create New Datasync Project dialog displays.

Portal Datasync Project Wizard - Create New Datasync
Project Dialog
The Create New Datasync Project dialog is shown in Figure 4-11.

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-20 BEA WebLogic Portal Portal Development Guide

Figure 4-11 Create New Datasync Project Dialog

Table 4-8 describes each field of the dialog. When you click Next, the EAR Projects dialog
displays.

Table 4-8 New Datasync Project Data Fields

Field Description

Project name The name that you want to assign to this datasync web project.

Project Contents The default web content directory name WebContent is automatically
displayed; you can change it if you wish.

You must locate your portal file(s) and other portal resources in a web
content directory that is subordinate to the web project directory.

Po r ta l Datasync Pro jec t Wi za rd

BEA WebLogic Portal Portal Development Guide 4-21

Create New Datasync Project – EAR Projects
The Create New Datasync Project – EAR Projects dialog is shown in Figure 4-12.

Figure 4-12 Create New Datasync Project – EAR Projects Dialog

Datasync source folder The default Java source directory name src is automatically displayed;
you can change it if you wish.

Create default project
directories

This check box is selected by default.

Create default project files This check box is selected by default.

Table 4-8 New Datasync Project Data Fields (Continued)

Field Description

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-22 BEA WebLogic Portal Portal Development Guide

This dialog allows you to select the check box for the appropriate Portal EAR project.

Tip: If you create a datasync project without associating it with an EAR, you can do this step
later by right-clicking the datasync project in the Package Explorer tree and selecting
Properties; then expand the Datasync node in the tree and select EAR Projects to
associate the project with the EAR.

If you add a Datasync Project with the default settings, it will look similar to the Package Explorer
tree shown in Figure 4-13.

Using the Merged Pro jec ts V i ew

BEA WebLogic Portal Portal Development Guide 4-23

Figure 4-13 Datasync Project Added to the Package Explorer

Using the Merged Projects View
The WebLogic Portal Merged Projects View is included by default in the Portal Perspective. This
view shows a combined list of the files in your project, including the associated shared J2EE
libraries. This view provides important reference information for your portal development
project.

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-24 BEA WebLogic Portal Portal Development Guide

If you are not using the Portal Perspective, you should open the Merged Projects view in the
workbench. To do so, perform these steps:

1. Select Window > Show View > Other.

2. Expand the WebLogic Portal node in the tree if it is not already expanded, and click to select
Merged Projects, as shown in Figure 4-14.

Tip: Some items listed in the Merged Projects view are italicized. The italicized items
represent entities that are stored in shared J2EE libraries. All entities that are stored
on your filesystem, such as the portal file you created, are shown in regular type.

Figure 4-14 Show View Dialog with Merged Projects View Selected

Notice that other useful portal-specific views are available here. Experiment to find the
best combination of views that you want to have available as you develop portals.

3. Click OK.

The additional view is added to the workbench.

Note: You can view a Properties dialog for a file in the Merged Projects view by right-clicking
the file and selecting Properties. The dialog shows the J2EE library information for the
file, including the shared J2EE library name and version.

Running a P ro jec t on the Serve r

BEA WebLogic Portal Portal Development Guide 4-25

Caution: If you use the Merged Projects view to copy a J2EE library resource into your project,
keep in mind that with future updates to the WebLogic Portal product, you might have
to perform manual steps in order to incorporate product changes that affect those
projects.

Running a Project on the Server
You can use either of two options for running and viewing the results of your project
development; the selection you make depends on the changes you have made in your project and
whether or not your server is already started.

The following list describes each option available from the context menu in the Project Explorer
view:

Run as > Run on Server - starts the server if not already started and, only if needed,
performs a full publish/republish of the application; then it opens a web browser. You must
use this selection if you have changed a backing class, page flow, EJB, descriptor, Java
file, control, or web service.

Tip: You can customize the browser setting so that an external browser displays the
application; to do this, select Window > Preferences > General > Web Browser and
select the appropriate external browser application.

Refresh button in a currently displayed browser view- refreshes the current display based
on changes made in the currently selected portal, but does not start the server; this option
takes no action if you stopped the server at some point after displaying the initial browser.
This selection requires that you previously performed an initial Run on Server process. You
can use this option if your changes were limited to JSPs, HTML, .portal files, or .portlet
files.

Customizing a Perspective
Optionally, you can create a personally customized combination of views, so that you can easily
return to it any time.

To save the current workbench layout as a perspective, select Window > Save Perspective As,
enter a name for your customized perspective in the Name field, and click OK. Your new
perspective is added to the list, in the Other category.

You can also set this perspective as the default perspective for Workshop for WebLogic, using
the Window > Preferences options. For more information, refer to your Eclipse documentation.

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-26 BEA WebLogic Portal Portal Development Guide

Setting WebLogic Portal Preferences in Workshop for
WebLogic

You can set preferences for the behavior of the various editors and features of WebLogic Portal.
The following sections describe how to access WebLogic Portal-specific settings within
Workshop for WebLogic.

Preferences in the WebLogic Portal Section
1. Select Window > Preferences and then select WebLogic Portal in the tree display.

2. Click the WebLogic Portal node to see settings that are specific to WebLogic Portal.

A dialog similar to the example in Figure 4-15 displays:

Figure 4-15 WebLogic Portal Product Preferences

3. Expand the desired section in the dialog to set options for that editor.

WebLogic Portal Preferences in the General Section
1. Select Window > Preferences.

Set t ing WebLogic Po r ta l P re fe rences in Workshop fo r WebLog ic

BEA WebLogic Portal Portal Development Guide 4-27

2. Expand the General node in the tree display.

3. WebLogic Portal settings are available in both the Appearance > Colors and Fonts and the
Appearance > Label Decorations sections.

For example, if you select Appearance > Colors and Fonts, and then select WebLogic
Portal > Propagation Tool, a dialog similar to the example in Figure 4-16 displays:

Figure 4-16 Workshop for WebLogic Appearance – Colors and Fonts Preferences

In the Propagation Tool node, you can change the assigned colors for status indicators.

In the Rules Editor Font node, you can change the font, style, and size for the Rules Editor
that is used for campaigns, user segments, placeholders, and content selectors.

Se t t ing up Your Po r ta l Deve lopment Env i ronment

4-28 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 5-1

C H A P T E R 5

Upgrading WebLogic Portal Projects to
Version 9.2

The BEA Workshop for WebLogic Platform Programmer’s Guide, available as part of the
Workshop for WebLogic help, contains several useful topics that you should review as you
prepare to upgrade your portal application. The Workshop for WebLogic documentation includes
step-by-step instructions for using the Import Wizard, and detailed information about what
happens during the upgrade process and any required manual pre- or post-upgrade tasks.

It is extremely important that you become familiar with the Workshop for WebLogic upgrade
steps, and any related limitations, before you attempt to upgrade a WebLogic Portal application
from Version 8.1 4 or 8.1.5 to Version 9.2. Before proceeding, refer to the Workshop for
WebLogic documentation on e-docs or by choosing Help > Help Contents > BEA Workshop for
WebLogic Platform Programmer’s Guide in the main menu of the product.

The Workshop for WebLogic upgrade documentation assumes that your application was
developed using WebLogic Workshop Version 8.1. If it was not, you must refactor your code so
that it builds and runs in the WebLogic Workshop IDE Version 8.1 SP4 or SP5 before using the
tools described here to upgrade to Workshop for WebLogic Version 9.2.

This chapter focuses on topics that are specifically related to upgrading WebLogic Portal
applications, and contains the following sections:

Version 8.1 Features Not Supported in Version 9.2

Upgrade Considerations and Tips

http://edocs.bea.com/workshop/docs92/platform.html
http://edocs.bea.com/workshop/docs92/platform.html
http://edocs.bea.com/workshop/docs92/platform.html

Upgrading WebLogic Po r ta l P ro jec ts t o Vers ion 9 .2

5-2 BEA WebLogic Portal Portal Development Guide

Version 8.1 Features Not Supported in Version 9.2
Webflows and pipelines were deprecated in Version 8.1 and are no longer supported; use page
flows in place of these deprecated features.

Upgrade Considerations and Tips
The following sections describe some considerations and tips that might be useful when you
upgrade portal applications, and it describes some situations where you might need to perform
some manual tasks after upgrading your portal application.

This section contains the following topics:

Command-Based and Ant Task Upgrade Not Supported

Enabling Communities Features in Upgraded Visitor Tools

Upgrading Look & Feels

Upgrading Custom Controls that Have Custom Properties

Upgrading Tuned Thread Pools for Forked Portlets

Upgraded Applications Use Struts 1.1 and Related J2EE Libraries

Changes in Behavior Between Struts 1.1 and 1.2

Ampersand Entities in Portal URLs

Upgrading Individual application-config.xml Files Later

Correcting Duplicate Portlet Category Names Before Propagating an Upgraded Application

Command-Based and Ant Task Upgrade Not Supported
Workshop for WebLogic provides a command-driven upgrade (upgradeStarter) and an ant
task-based upgrade. WebLogic Portal does not support these upgrade alternatives; you must use
the Import Wizard.

Enabling Communities Features in Upgraded Visitor Tools
Unmodified Visitor Tools code from WebLogic Portal 8.1.4 or later is upgraded as part of Import
Wizard processing. However, the new Version 9.2 communities-based components are disabled
by default, because projects developed using Version 8.1.x are not communities-aware.

Upgrade Cons ide ra t i ons and T ips

BEA WebLogic Portal Portal Development Guide 5-3

As part of the upgrade process, the Import Wizard creates a communities-config.xml file in
the EAR project /META-INF directory that defines whether or not the communities-related
Visitor Tools are enabled. To enable this functionality, set the flag in the
enable-community-tools attribute to true, as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>

<communities-config
xmlns="http://www.bea.com/ns/portal/90/communities-config">

<enable-community-tools>true</enable-community-tools>

</communities-config>

Upgrading Look & Feels
Portal Look & Feels in WebLogic Portal 8.1 used two configuration files for skins and skeletons
(in the /skins/skin_name and /skeletons/skeleton_name directories): skin.properties
and skeleton.properties. Both were text files, and skeleton.properties was optional.

In WebLogic Portal 9.2, both files are now XML.

For Version 9.2, it is necessary to use skin.xml and skeleton.xml to take advantage of new
Look & Feel features, although you can still use legacy configurations. Upgrading your old
.properties files is required.

To upgrade a WebLogic Portal 8.1 Look & Feel to the WebLogic Portal 9.2 format:

1. Make sure the portal application containing the Look & Feel has been converted to WebLogic
Portal 9.2, as described in this chapter and in the Workshop for WebLogic documentation.

2. Open the Look & Feel file (.laf file).

WebLogic Portal automatically upgrades the associated .properties file; informational
messages describe the change that occurs during upgrade. Figure 5-1 shows an example:

Figure 5-1 Conversion of Properties File when Look & Feel File is Opened

Upgrading WebLogic Po r ta l P ro jec ts t o Vers ion 9 .2

5-4 BEA WebLogic Portal Portal Development Guide

3. Click OK to complete the upgrade.

Upgrading Custom Controls that Have Custom Properties
Version 8.1 custom control annotation definitions are not upgraded to Version 9.2. The means for
defining annotations is based on the Java 5 annotations model. To upgrade controls written for
version 8.1, you must rewrite the annotations definition in keeping with the new model.

For more information on upgrading your custom annotations, take a look at the Apache Beehive
source code for its system controls. These provide annotations that use the new model.

For information on how the control context APIs have changed from Version 8.1, see “Handling
Context API Changes” in the Workshop for WebLogic online help.

Upgrading Tuned Thread Pools for Forked Portlets
If you optimized the thread pool used for an 8.1 application that uses forked rendering or forked
pre-rendering, and you want to keep those optimizations in the upgraded application, you will
need to perform some manual tasks after upgrading.

In Version 9.2, WebLogic Portal uses WebLogic Server's CommonJ WorkManager
infrastructure for forked portlet pre-render and render. WorkManagers have similar but not
identical configuration parameters, behavior, and deployment options. When you upgrade an
8.1.4+ application, any existing customizations to the portalRenderQueue thread pool will not be
automatically applied to the default WorkManager used for forking. To tune this WorkManager,
configure a WorkManager and associate it with the name
wm/portalRenderQueueWorkManager. For more information about WorkManagers and thread
usage in WebLogic Server 9.2, refer to “Using Work Managers to Optimize Scheduled Work” in
the WebLogic Server documentation.

Upgraded Applications Use Struts 1.1 and Related J2EE
Libraries
The Import Wizard includes the Struts 1.1 shared J2EE library for upgraded applications. The
Struts 1.1 J2EE library is used to maintain the operability of your upgraded application; before
an upgraded application can use Struts 1.2, any code in page flows or portlets with explicit
dependencies on Struts 1.1 would need to be manually updated. (For more information, refer to
“Changes in Behavior Between Struts 1.1 and 1.2” on page 5-5.

For new portal web projects, the Struts 1.2 shared J2EE library is included by default, but you can
choose Struts 1.1 if desired. BEA strongly recommends that you keep the default setting to use

http://e-docs.bea.com/wls/docs92/config_wls/self_tuned.html

Upgrade Cons ide ra t i ons and T ips

BEA WebLogic Portal Portal Development Guide 5-5

Struts 1.2 with new applications. Even with upgraded applications, it would be beneficial to use
Struts 1.2 if possible, and you might want to experiment with Struts1.2 to see if any explicit
dependencies on Struts 1.1 actually exist.

Changes in Behavior Between Struts 1.1 and 1.2
WebLogic Portal support for Struts is slightly different if you upgrade to Struts 1.2.

Struts 1.1 support in WebLogic Portal will be the same as in previous releases, with the
struts-adapter taglibs mapped to URIs using web.xml. In this case, you should use the
struts-1.1.war J2EE library instead of the new struts-1.2.war J2EE library.

For applications upgrading to Struts 1.2, instead of mapping the struts and struts-adapter taglibs
using web.xml, WebLogic Portal now relies on the JSP 1.2 implicit taglib mapping, wherein any
.tld files in the META-INF directory in a JAR are implicitly mapped by the web container to the
URI specified in the tld. In the case of WebLogic Portal, these are in struts-adapter.jar, in
the path META-INF/tlds.

You can choose to use one of these two methods to upgrade to Struts 1.2:

Modify all JSPs that use the struts taglibs to reference
http://bea.com/struts/adapter/tags-html and
http://bea.com/struts/adapter/tags-nested for the HTML and nested taglibs, and
http://struts.apache.org/tags-* for the remainder of the taglibs that the portal
adapter does not override.

Extract the .tlds from both struts.jar (in struts-1.1.war) and from
struts-adapter.jar and copy them to WEB-INF/tlds. This allows for the case where
you want to continue using the explicit tld mapping via web.xml.

Ampersand Entities in Portal URLs
In past releases, WebLogic Portal used the configuration file url-template-config.xml for
configuring the form of WebLogic Portal-generated URLs. WebLogic Portal now uses the
Beehive equivalent: beehive-url-template-config.xml. The previous configuration file
contained an element (generate-xml-amp-entity) that caused URLs to be generated with
ampersand entities instead of characters for parameter separators, that is:
http://www...?arg1=foo&arg2=bar (entity)

instead of:
http://www...?arg1=foo&arg2=bar (character)

Upgrading WebLogic Po r ta l P ro jec ts t o Vers ion 9 .2

5-6 BEA WebLogic Portal Portal Development Guide

In the absence of this configuration element, URLs were generated with ampersand characters.

The Beehive equivalent configuration element for ampersand entities is located in the NetUI
configuration file, beehive-netui-config.xml. The Beehive default for ampersand entities is
the opposite of the previous Portal default; in the absence of the configuration element, URLs are
generated with ampersand entities.

Portal Framework now uses the NetUI configuration file as the source for this configuration
element, and also uses the Beehive semantics. This means that by default, URLs generated by
Portal contain ampersand entities. Note that this applies only to HTML configurations – XHTML
configurations force ampersand entities in URLs, regardless of configuration setting.

If cases exist where you want to ensure that URLs are generated with characters rather than
ampersand entities, you must add that configuration element to the
beehive-netui-config.xml file.

Upgrading Individual application-config.xml Files Later
Applications created using WebLogic Portal Version 8.1.x used the file
META-INF/application-config.xml for configuration of various MBeans. In Version 9.2,
MBeans have been changed to descriptor beans. Settings previously contained within
application-config.xml are now in the appropriate descriptor bean configuration files,
including:

content-config.xml

p13n-config.xml

p13n-cache-config.xml

p13n-security-config.xml

wps-config.xml

When you import a Version 8.1.4 or later application into Workshop for WebLogic, the import
process performs the necessary conversion. For individual instances of the Version 8.1
application-config.xml file that you might want to use, you can right-click the file name in
the Package Explorer to access the Upgrade context menu, which will convert the file.

Upgrade Cons ide ra t i ons and T ips

BEA WebLogic Portal Portal Development Guide 5-7

Correcting Duplicate Portlet Category Names Before
Propagating an Upgraded Application
In past releases of WebLogic Portal it was possible, though not recommended, to create more
than one portlet category with the same name, at the same level in the hierarchy. In Version 9.2
this operation is not permitted. (You can use the same name for more than one category, but they
must not be “peers” in the hierarchy.)

When you upgrade a portal application to Version 9.2, any duplicate portlet category names that
were used previously are preserved. It is extremely important that you edit these category names
to be unique; otherwise the WebLogic Portal propagation tools might cause unexpected results,
or errors might occur during the propagation process.

Upgrading WebLogic Po r ta l P ro jec ts t o Vers ion 9 .2

5-8 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 6-1

C H A P T E R 6

Integrating Applications into WebLogic
Portal

You can use the instructions presented in this chapter to add WebLogic Portal functionality to
existing applications. For example, you can:

Integrate WebLogic Portal into an existing Workshop for WebLogic web application

You can easily transform an existing Workshop for WebLogic web application into a Portal
web project by installing the necessary WebLogic Portal–specific facets into it. Then you
can give the web application a portal user interface, add personalization and campaign
functionality, and take advantage of WebLogic Portal's content and user management
services.

Add more facets into an existing WebLogic Portal application

You might originally have selected not to install Commerce Taglibs in your portal project;
you can add that feature later if desired.

Note: Do not add GroupSpace to portal web projects that already contain non-GroupSpace
portals. For more information, refer to the Communities Guide.

Incorporate pieces of existing applications into a portal, using portlets.

Regardless of how the application is surfaced, it will maintain the full functionality intended in
its design.

This chapter contains the following sections:

Integrating an Existing Web Application into Workshop for WebLogic

Integrating Struts Applications

In tegrat ing App l icat ions in to WebLog ic Po r ta l

6-2 BEA WebLogic Portal Portal Development Guide

Integrating Java Server Faces

Integrating Page Flows

Adding Facets to an Existing Project

Other Methods of Integrating an External Web Application into a Portal

Integrating an Existing Web Application into Workshop
for WebLogic

Integrating a web application into a WebLogic Portal environment involves the following steps:

Adding WebLogic Portal project facets into the EAR project.

Adding WebLogic Portal project facets into the web application project.

Adding a Datasync project (if you want to use the general service portal services data such
as user profiles, user segments, request properties, session properties, and so on).

Associating your EAR project with a WebLogic Portal-enabled server.

Note: These instructions assume that you have an existing web application that conforms to the
requirements of the Workshop for WebLogic Version 9.2 environment, and includes an
EAR Project and a Workshop for WebLogic Dynamic Web Project.

To integrate an existing web application into Workshop for WebLogic and add WebLogic Portal
functionality, follow these steps:

1. In the Package Explorer view, right-click the EAR Project and choose Properties.

2. Select Project Facets in the tree that is displayed in the left pane of the dialog.

The project facets associated with this EAR project display in the table, as shown in
Figure 6-1.

I n teg rat ing an Ex is t ing Web App l i cat ion in to Workshop fo r WebLog ic

BEA WebLogic Portal Portal Development Guide 6-3

Figure 6-1 Project Facets Associated with Non-Portal EAR Project

3. Click Add/Remove Project Facets.

The Add/Remove Project Facets - Select Project Facets dialog displays.

4. Select the WebLogic Portal check box.

All the features for the WebLogic Portal facet are selected by default; the example in
Figure 6-2 shows the expanded tree with the WebLogic Portal facet selected.

In tegrat ing App l icat ions in to WebLog ic Po r ta l

6-4 BEA WebLogic Portal Portal Development Guide

Figure 6-2 Select Project Facets Dialog with WebLogic Portal Facet Selected (and Expanded)

5. Click Finish.

The Project Facets table in the properties dialog displays the facets that you just added, as
shown in Figure 6-3.

I n teg rat ing an Ex is t ing Web App l i cat ion in to Workshop fo r WebLog ic

BEA WebLogic Portal Portal Development Guide 6-5

Figure 6-3 Updated Project Facets Display including WebLogic Portal Features

6. Click OK.

The Package Explorer view includes the new portal-related content.

7. Repeat steps 1 through 6 to add WebLogic Portal facets to the Web Project.

When you are finished, the display in the Properties view includes the WebLogic Portal
facets, and the tree in the Package Explorer view shows the added portal-specific shared
J2EE libraries.

Figure 6-4 shows an example of the new portal-related content that is added for the EAR
project and web project.

In tegrat ing App l icat ions in to WebLog ic Po r ta l

6-6 BEA WebLogic Portal Portal Development Guide

Figure 6-4 Package Explorer View of Web Application Before and After Integrating Portal

8. Associate your portal-enabled project with a WebLogic server that is customized for use with
WebLogic Portal. If you need to create a new server that is enabled for use with WebLogic
Portal, refer to “WebLogic Domain Configuration Wizard” on page 4-5.

You can now use WebLogic Portal features to create, assemble, and manage a portal
environment.

Note: Do not add GroupSpace to portal web projects that already contain non-GroupSpace
portals. For more information, refer to the Communities Guide.

Integrating Struts Applications
You can integrate, or import, a Struts application into an enterprise application in Workshop for
WebLogic. Once in Workshop for WebLogic, you can give the Struts application a portal user

Before
installing
Portal facets

After
installing
Portal facetsPortal facets

../communities/index.html

I n teg ra t ing St ruts App l i cat i ons

BEA WebLogic Portal Portal Development Guide 6-7

interface by creating portlets, add personalization and campaign functionality, and take
advantage of WebLogic Portal's content and user management services.

This topic contains the following sections:

Preparing Your Struts Application for Integration

Integration Steps

Best Practices and Development Issues

Preparing Your Struts Application for Integration
Follow the guidelines presented in this section as you prepare your existing Struts application for
integration with WebLogic Portal:

Refactor
If you have a top-level Struts application, you must refactor it before you can integrate it. Any
Struts applications that are intended for use in a portal must be developed as Struts modules,
including the usage of the html:link tag for any URLs used in JSPs. Without this, it is
impossible for WebLogic Portal to perform the necessary URL rewriting that is required to
transparently modify links when the Struts application is used within a portlet.

As part of this process, modify your application to use WebLogic Portal tags using either of these
methods:

Rely on the taglib mapping in web.xml to map the WebLogic Portal struts adapter tags to
the URI that you already have in your JSPs; this allows you to use your existing JSPs.

To use Struts 1.2, which is the default version of Struts used for new portal web projects,
BEA recommends that you change your JSPs to use WebLogic Portal taglib URIs; this
prevents you from having to change your web.xml file, and provides the benefit that these
taglibs are automatically deployed.

Add Tags if Needed
If a Struts application used within a Portal also needs to support stand-alone operation, JSPs
referenced by Action forwards must be authored to use several optional tags in the HTML tag
library found in struts.jar and struts-adapter.jar (a file that is created by BEA). The first
of these, <html:html>, is found in both Struts and the Struts-adapter. The Struts-adapter version
overrides the Struts version of the tag and adds support for detecting whether or not to inhibit
rendering of the tag output text if it is used from within a portal, where outputting the HTML text

In tegrat ing App l icat ions in to WebLog ic Po r ta l

6-8 BEA WebLogic Portal Portal Development Guide

would result in non-well-formed HTML. Two additional tags are provided in the Struts-adapter
version of the HTML tag library; use them in JSPs that also need to be used standalone:
<html:head> and <html:body>. These two tags have the same portal-aware rendering behavior
as the <html:html> tag.

Override Certain Behaviors of a RequestProcessor
Some Struts applications use a custom RequestProcessor. WebLogic Portal Struts integration
requires that you override certain behaviors of a RequestProcessor. The class
com.bea.struts.adapter.action.AdapterRequestProcessor, located in
struts-adapter.jar, provides this standard behavior and must be used in all Struts
applications used within a portal. Any custom RequestProcessors must either extend this class or
use a utility class to perform the same required operation that this RequestProcessor performs.
When extending this class, overrides of doForward() must call the superclass doForward() and
also must not attempt to write to the response. Custom RequestProcessors that do not extend
AdapterRequestProcessor must call
com.bea.struts.adapter.action.AdapterRequestProcessorUtil.forwardUsingRequ

est() to perform any forwarding operations. (This method replaces an actual RequestDispatcher
forward request with an operation that simply captures the forward URI for later use in including
the URI into the portal output.)

Refactor any Existing Custom Action Servlet
If a Struts application depends on the use of a custom Action servlet, it must be refactored to use
a custom RequestProcessor instead, as outlined above, and as recommended by the Struts
implementation. Since the page flow functionality in WebLogic Portal uses a custom Action
servlet, and since there can be only one Action servlet in a portal web project, portal Struts
integration requires that the Action servlet not be customized. For more information on
refactoring an Action servlet customization into a RequestProcessor customization, see the Struts
documentation at http://jakarta.apache.org/struts/.

Remove the <html:link> Tag
The StrutsContent control supports module switching using Action forwards. If the Action
forward returned by an invoked Action results in a content URI that resides in another module,
the current module is switched to the corresponding new module, and all further requests to the
Struts portlet containing the control are performed using the new module. Perform module
switching using only Action forwards, not by using the <html:link> tag to directly link to a JSP
in another module; doing so might prevent the portal and Struts frameworks from correctly
setting up and selecting the module.

I n teg ra t ing St ruts App l i cat i ons

BEA WebLogic Portal Portal Development Guide 6-9

Integration Steps
Perform these steps to integrate your refactored Struts application:

1. Create a portal application and portal web project to which you will add the Struts application.
For instructions, refer to Chapter 4, “Setting up Your Portal Development Environment.”
Struts support is added automatically when you create a portal web project.

2. You may or may not need to perform this step. In order for URLs in the Struts pages to resolve
correctly, page flow support must be enabled. By default, page flow support is enabled, but if
the page flow setting has been disabled at some point, you must edit the portal web project's
WEB-INF/netuix-config.xml file to enable it. Listing 6-1 shows the syntax of the tag that
you might need to add to the netuix-config.xml file. Notice that the <enable> element is
set to true.

Listing 6-1 Enabling and Disabling Page Flow Support Using the <pageflow> Tag

<!-- Enable or disable Pageflow support -->

<pageflow>

 <enable>true</enable>

</pageflow>

If this block is not present in netuix-config.xml, do not add it. Without the block, the
setting defaults to true.

3. Deploy the Struts application to the portal web project.

Note: The following steps assume a deployment structure that is not based on split-source;
your specific steps might differ from these example steps.

a. Copy any JSP, HTML, or image files into the portal web project following the standard
Struts module directory structure (the module path is the directory path relative to the web
application root).

b. Copy any supporting Java source used by the Struts application into the project's source
folder, typically Web_Project_Name/src.

c. Copy any necessary custom JARs for the Struts application into WEB-INF/lib folder.

In tegrat ing App l icat ions in to WebLog ic Po r ta l

6-10 BEA WebLogic Portal Portal Development Guide

d. Copy the Struts application module's struts-config.xml or module configuration file
into WEB-INF, but rename it struts-auto-config-<module-path>.xml, where
<module-path> is the module path to the Struts application relative to the web
application root, with all instances of '/' or '\' changed to '-'.

For example, if the module path is /struts/my/module, then rename
struts-config.xml to struts-auto-config-struts-my-module.xml. Naming
the module configuration file in this manner enables the PageFlowActionServlet
used as the Action Servlet to automatically register the module without explicitly
registering it with an init-param in web.xml. If you don't want to take advantage of
this functionality, you can rename struts-config.xml arbitrarily, but you must
manually register the module in web.xml as usual for a Struts 1.1 or 1.2 (Beehive)
module.

e. In the module configuration file, add the following line to configure the RequestProcessor
that is required for portal integration:

<controller processorClass="com.bea.struts.adapter.action
.AdapterRequestProcessor"/>

(unless the Struts application requires a custom RequestProcessor).

4. Create a portlet that contains a StrutsContent control that specifies the module and the default
action for the Struts application. For instructions, refer to the Portlet Development Guide.

5. Add the new portlet to the portal. For instructions, refer to the Portlet Development Guide.

Best Practices and Development Issues
Use the following guidelines for integrating Struts applications in portals:

It is highly recommended that you fully develop and test a Struts application before
attempting to host it within a portal. This helps to separate the complexities of simply
developing a working Struts application from the additional issues involved in putting the
Struts application into a portlet.

If you encounter stack traces or messages in the Struts application portlet showing that an
action cannot be found, ensure that the module is correctly configured, named correctly,
and registered in web.xml. This can be tested by running the Struts application
stand-alone.

If you encounter resource not found exceptions or class not found exceptions for dependent
classes:

../portlets/index.html
../portlets/index.html

In tegrat ing Java Serve r Faces

BEA WebLogic Portal Portal Development Guide 6-11

– Make sure that all dependent Java source exists in WEB-INF/src, and that it has
successfully been built into the corresponding class files in WEB-INF/classes.

– If more than one message-resource element is specified in the Struts configuration file
for the module, any module files that reference a non-default message bundle must
append the module path to the bundle key. For example, if the bundle key is alternate,
and the module is /my/module, any users of the bundle must fully qualify it as
alternate/my/module.

If following action links in a Struts portlet results in full-screen, stand-alone Struts pages,
make sure that struts-adapter JSP tag libraries are in the project's WEB-INF/lib directory
and that they are registered in web.xml.

If the “No ActionResult returned for action” error is returned when the action attribute of
an html:form element contains a query parameter, use a hidden html:text input field.

Integrating Java Server Faces
Generally the integration process for JSF is simple, requiring only that you follow the instructions
accompanying the distribution of JSF that you are using. The portal-specific tasks for
incorporating a JSF application into WebLogic Portal are:

Create a .portlet file with a facesContent control.

Insert the namingContainer JSP tag as an immediate child of the JSF view tag.

This step is optional but BEA highly recommends it. For more information about this tag,
refer to “JSF and the namingContainer JSP Tag” on page 6-11.

The following section contains more information about the namingContainer JSP tag.

JSF and the namingContainer JSP Tag
The purpose of the namingContainer JSP tag is to ensure generation of unique IDs on a page.
Currently the JSF architecture does not provide an explicit hooking mechanism to override
default component ID generation. JSF uses a hierarchical namespace for components on a page,
and JSF automatically generates unique IDs for the components on a page; however, because JSF
is not “aware” of the portal, it might generate non-unique component IDs on a page. For simple
forms you would not likely experience this problem, but if you use JavaScript on a page and
non-unique IDs are generated, the Javascript might target the wrong component.

For more detail on the implementation of JSF in WebLogic Portal, refer to the Javadoc for the
package com.bea.portlet.adapter.faces.

../javadoc/index.html

In tegrat ing App l icat ions in to WebLog ic Po r ta l

6-12 BEA WebLogic Portal Portal Development Guide

Integrating Page Flows
If you have an existing non-portal application with page flows, you can integrate those page flows
into a portal by installing the WebLogic Portal-related facets using the steps described in
“Integrating an Existing Web Application into Workshop for WebLogic” on page 6-2; then you
surface those page flows using portlets. You can also build new page flows within the portal web
project before creating page flow portlets.

For instructions on creating a page flow, refer to the documentation for Workshop for WebLogic.
For instructions on creating page flow portlets, refer to the “Building Portlets” chapter in the
Portlet Development Guide.

In order for URLs in the page flows to resolve correctly, page flow support must be enabled. By
default, page flow support is enabled, but if the page flow setting has been disabled at some point,
you must edit the portal web project's WEB-INF/netuix-config.xml file to enable it.
Listing 6-2 shows the syntax of the tag that you might need to add to the netuix-config.xml
file. Notice that the <enable> element is set to true.

Listing 6-2 Syntax of the <pageflow> Tag to Enable Page Flow Support

<!-- Enable or disable Page Flow support -->

<pageflow>

 <enable>true</enable>

</pageflow>

If this block is not present in netuix-config.xml, do not add it. Without the block, the setting
defaults to true.

Adding Facets to an Existing Project
You can add a project facet to your EAR project or portal web project later, after you have created
it. For example, in your portal web project you might originally have selected not to install the
facet that enables visitor tools, but you might decide later that you want to use this feature.

Note: Do not add GroupSpace facets to portal web projects that already contain
non-GroupSpace portals. For more information, refer to the Communities Guide.

To add a facet to an existing EAR project or portal web project, follow these steps:

../portlets/index.html
../communities/index.html

Add ing Facets to an Ex is t ing P ro jec t

BEA WebLogic Portal Portal Development Guide 6-13

1. Right-click the EAR project or portal web project to which you want to add a facet, and select
Properties.

The Properties dialog displays; an example is shown in Figure 6-5.

Figure 6-5 Example Properties Dialog Displaying Installed Project Facets

2. Click Add/Remove Project Facets.

The Add/Remove Project Facets dialog displays.

3. Expand the Project Facet nodes in the tree as needed and select the check boxes for any facets
that you want to add.

Figure 6-6 shows an example for a typical portal web project with Collaboration Portlets
selected for addition.

In tegrat ing App l icat ions in to WebLog ic Po r ta l

6-14 BEA WebLogic Portal Portal Development Guide

Figure 6-6 Example Add/Remove Project Facets Dialog with Collaboration Portlets Selected

4. Click Finish.

The facets are added and then displayed in the list of facets in the Properties dialog.

5. Click OK to close the dialog. The new facets are now available to your project.

Other Methods of Integrating an External Web
Application into a Portal

A recommended method of integrating a web application’s functionality into a portal is to
incorporate the application into Java page flow portlets, but this implementation could be difficult
if the application is not based on the MVC architecture, Java, or Struts. In these cases you can
continue to host the application externally from the portal project but surface its content within
WebLogic Portal.

The alternative implementations generally rely on a JSP portlet acting as a sort of proxy, which
allows the existing web application to remain intact. Some possible implementations for JSP
“proxy” portlets include:

Creating a JSP portlet that is identical to the home page of the web application, but altering
each link to use JavaScript that pops up a new browser window. This allows you to
leverage the existing application while providing a way to interact with the portal.

Othe r Methods o f In tegrat ing an Ex te rna l Web Appl ica t i on in to a Por ta l

BEA WebLogic Portal Portal Development Guide 6-15

Using an IFRAME in the portlet to contain the web application. The internal frame acts as
an embedded browser window that the user interacts with independently of the parent
browser.

Using a third-party screen scraping product such as Kapow within the portlet.

Web Services for Remote Portlets (WSRP) provides another alternative implementation, but this
implementation requires the legacy server to support SOAP and WSDL, and works best with
existing applications designed using MVC.

WebLogic Portal supplies a utility JSP tag called uriContent that you can use to retrieve an
HTTP response document from a given URI. The browser portlet uses the uriContent tag
(Content URL) to surface an external web application in a portal, using a portlet. For more
information about the browser portlet, refer to the Portlet Development Guide.

../portlets/index.html

In tegrat ing App l icat ions in to WebLog ic Po r ta l

6-16 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 7-1

C H A P T E R 7

User Interface Development with Look
& Feel Features

This chapter describes how to use the portal framework to develop the overall appearance and
behavior of the portal you develop in Workshop for WebLogic. You will be able to look at a
rendered portal in a browser and understand which pieces of the underlying framework that you
need to modify to obtain the results you want. In addition, the Look & Feel editor is discussed.
The Look & Feel editor lets you interactively modify the text styles used by a portal.

This chapter includes the following sections:

Introduction

Developing Look & Feels

Overriding Existing Look & Feels

Troubleshooting Look & Feels

The Look & Feel Editor

Using the Look & Feel API

Working with Shells

Working with Layouts

Working with Navigation Menus

Building User Interfaces to Address Accessibility Guidelines

User In te r face Deve lopment w i th Look & Fee l Features

7-2 BEA WebLogic Portal Portal Development Guide

Introduction
At the heart of WebLogic Portal’s rendering framework is the Look & Feel framework. Look &
Feel determines the appearance of your portal applications, from the placement and behavior of
elements on a portal page to the colors used in the portlet title bars.

As part of the dynamic portal rendering framework, the Look & Feel can be modified by portal
developers in their application code, portal administrators in the staging and production
environments, and even by end users in the production environment with WebLogic Portal’s
visitor tools, providing a powerful level of user interface customization.

Following are the key elements involved in the Look & Feel framework:

Look & Feel file

Skins

Skeletons

Themes

Chromosomes and Genes

Shells

Layouts

Menus

This section briefly describes each component. The sections that follow describe how to create
and work with these components.

Look & Feel File
A Look & Feel file (.laf) is an XML block that is inserted into the overall .portal XML file. The
Look & Feel file is relatively simple. It references a specific skin and skeleton. The skin provides
a set of images, JavaScript functions, and CSS files, which are in turn referenced by the skeleton
JSPs that convert the portal XML components to the final HTML output, as shown in Figure 7-1.

When you select a different Look & Feel for a portal, you potentially change the skin and skeleton
that is used to render the portal.

In t roduct ion

BEA WebLogic Portal Portal Development Guide 7-3

Figure 7-1 Look & Feel Framework

Look & Feel files also optionally let you reference skin and skeleton chromosomes, described
later.

User In te r face Deve lopment w i th Look & Fee l Features

7-4 BEA WebLogic Portal Portal Development Guide

Skins
Skins provide the overall colors, graphics, and styles used by all components in a desktop
interface. From the perspective of WebLogic Portal, skins are collections of images, cascading
style sheets (CSS), and JavaScript files that allow changes to be made to the Look & Feel of a
portal without modifying the portal components directly. References to images and styles are
made in the skin rather than being hard coded into the portal definition.

The skeleton JSPs that convert the portal XML to HTML include references to specific image
names (portlet titlebar buttons, for example), CSS styles, and JavaScript functions.

Skeletons
The portal rendering framework turns the XML that makes up a portal file into HTML that end
users see in a browser. The conversion to HTML happens through JSPs. These JSPs make up a
skeleton.

The skeleton provides the physical boundaries of the portal components and provides references
to the images, CSS classes, and JavaScript functions from the skin needed to render the portal. A
portal web project can have multiple skeletons. When you select a Look & Feel for a desktop, a
specific skin and skeleton is used.

Each type of portal component, from a desktop to a portlet’s title bar, has an associated JSP file,
called a skeleton file that renders it. Some skeleton files are simple, others are more complex. For
example, each desktop uses a skeleton file called shell.jsp that provides the opening and closing
<HTML> tags to render the desktop. A portlet title bar, on the other hand, has a skeleton file
called titlebar.jsp that is more complex. It references the button graphics to use on the title bar
and contains logic to determine the relative placement of title bar elements.

Themes
Themes provide a way to override the Look & Feel on books, pages, or portlets, allowing those
components to look or behave differently than the rest of the portal desktop Look & Feel. For
example, you can set a theme on a portlet that displays a jagged portlet border, turns the portlet
title bar red, and displays different portlet title bar buttons.

You can use themes in the skins and/or skeletons. In the previous example, the skeleton theme
would control the jagged portlet border, and the skin theme would contain the modified CSS and
title bar images.

Skin and skeleton themes are made up of the same types of resources as regular skins and
skeletons. The theme skins and skeletons typically provide only the files necessary to override

In t roduct ion

BEA WebLogic Portal Portal Development Guide 7-5

the overall Look & Feel, though full look and feels can also be used as themes. Themes can also
be used as Look & Feels. Figure 7-2 shows the types of resources included in a theme:

The .theme file is a simple XML file that provides the name of a theme, and provides that
theme name in drop-down menus for selection by developers, portal administrators, or end
users.

The theme resources. In this example, the “alert” theme is a subdirectory of the “default”
skin, which in turn contains its own Look & Feel resources. If the alert theme is selected
for a book, page, or portlet, the portal framework looks in the structure.xml file in the Look
& Feel’s /skin or /skeleton directories for theme locations. If no structure.xml file is
present, the framework looks for /alert skin and skeleton subdirectories under whichever
Look & Feel is being used. If found, the files in the /alert subdirectory take precedence
over or are used in addition to the files used in the parent Look & Feel.

For example, if the alert theme provides a titlebar.jsp skeleton file, the portal framework
uses that skeleton file instead of the parent skeleton’s titlebar.jsp file.

Figure 7-2 Theme Resources

User In te r face Deve lopment w i th Look & Fee l Features

7-6 BEA WebLogic Portal Portal Development Guide

Genes and Chromosomes
Genes, an optional feature in a Look & Feel, give you an extra level of flexibility, control, and
ease of maintenance in working with Look & Feels. A gene defines a particular characteristic of
a Look & Feel, such as a CSS color property, that can be referenced as a variable in your Look
& Feels.

If, for example, a Look & Feel is defined to have a gene named wlp.portlet.border.color, you can
use that gene name in your CSS files rather than a literal color definition. If that gene is defined
to be the color value #ff0000, any CSS that uses that gene variable gets that color value. You only
have to modify the color value in the gene definition to automatically update all CSS files that
use that gene.

Chromosomes are simply the files that contain one or more genes. You can create multiple
chromosome files that contain the same gene names, though with different gene values. By
simply referencing a different chromosome in your Look & Feel file, you can simulate a
completely different Look & Feel without changing any of your core Look & Feel files.

You can also use genes in your JavaScript functions.

Using genes provides the following advantages in your Look & Feels:

Simplified Look & Feel customization for minor modifications such as color scheme
changes.

Convenient facility to support the generation of dynamic values in associated CSS files or
JavaScript files.

Easier implementation of branding, allowing one Look & Feel to be used for multiple
brands. For example, by creating a new chromosome that provides different values for
genes that are used in the Look & Feel, you can reference that new chromosome in the
Look & Feel file and provide different appearance and behavior for the existing Look &
Feel.

Global parameterization capabilities. For example, genes can be used to share a set of
global properties to toggle the rendering of certain portal-wide features.

Shells
Shells define the header and footer regions of a portal. You can include portlets, JSPs, and HTML
files in a shell to define the content displayed in the header or footer.

Deve lop ing Look & Fee ls

BEA WebLogic Portal Portal Development Guide 7-7

Layouts
Layouts, used by portal pages, provide structure that determines where you can place portlets and
books within a page. Layouts can be implemented, for example, using HTML Tables or
CSS-based approaches.

Menus
Menus determine the navigation style used for your portal pages. WebLogic Portal provides two
types of menus: single-level for single rows of tabs and multi-level for nested, drop-down style
page navigation.

Developing Look & Feels
WebLogic Portal provides a few default Look & Feels you can use in your applications. You can
modify these existing Look & Feels to meet your needs, or you can create your own Look &
Feels.

This section describes how to develop custom Look & Feels. However, if you simply want to
make small modifications to an existing Look & Feel, you do not need to develop a custom Look
& Feel. See “Overriding Existing Look & Feels” on page 7-18.

For GroupSpace applications, you can find information on modifying the default Look & Feel or
creating a new new Look & Feel in the GroupSpace Guide.

Using Legacy Look & Feels
You can use Look & Feels created in WebLogic Portal 8.1 by simply importing them into your
9.2 portal web project (into the proper directories). You do not need to upgrade your legacy Look
& Feels unless you want to use new features such as genes.

To upgrade a legacy Look & Feel, open the .laf file in Workshop for WebLogic Platform 9.2 from
your portal web project. You are prompted to create the skin.xml and skeleton.xml files used in
9.2. After creating these new files, you are ready to use the new WebLogic Portal Look & Feel
features.

Note: In WebLogic Portal 8.1, skin.properties files could also contain settings for themes. In
WebLogic Portal 9.2, themes are stand-alone Look & Feels that use their own skin.xml
files. If your WebLogic 8.1 skin.properties files contain theme details that you want to
reuse in your WebLogic 9.2 Look & Feels, you must manually add those theme settings
to your theme skin.xml files.

../groupspace/development.html#wp1028187

User In te r face Deve lopment w i th Look & Fee l Features

7-8 BEA WebLogic Portal Portal Development Guide

Creating a Look & Feel
When you create a new Look & Feel, you use an existing Look & Feel as the basis for your new
Look & Feel. Using an existing Look & Feel—especially one of WebLogic Portal’s predefined
Look & Feels—ensures that you always have the necessary Look & Feel files necessary for
properly rendering your portals.

Before you create a Look & Feel file, decide which existing skin and skeleton provides the best
basis for your new Look & Feel.

To create a Look & Feel:

1. In Navigator view, right-click your portal web project and choose New > Other > WebLogic
Portal > Look & Feel. A wizard appears to guide you through the rest of the process.

2. After you name your new Look & Feel, you see the window shown in Figure 7-3.

Figure 7-3 Creating a Look & Feel

In this window, you can select an existing Look & Feel to use as the basis for your new
Look & Feel. Use the following instructions for guidance:

Deve lop ing Look & Fee ls

BEA WebLogic Portal Portal Development Guide 7-9

– Click the ellipsis icon next to skin and skeleton to select which skin and skeleton you
want to use as the basis of your new Look & Feel. To select a skin, you must select the
skin.properties or skin.xml file. To select a skeleton, you must only select the skeleton
directory.

If you want to make a large number of skin and/or skeleton overrides:

– You can optionally copy all the skin and/or skeleton resources for the selected resource.
This copies all the files from the template skin or skeleton to your file system, into a
directory you specify. Select the “Copy as template” option, and click the ellipsis icon
to select or create your skin and/or skeleton directories. This copies all the Look & Feel
files from the template skin or skeleton to your file system, where all the files override
the files in the template skin or skeleton. If you delete one or more of the files in your
Look & Feel, those files in the template Look & Feel are used by the portal framework.

You can use this option for just the skin, just the skeleton, or both.

If you want to make relatively few overrides to the selected skin and/or skeleton:

– If you do not select the “Copy as template” option, you must manually create your skin
and skeleton directories and files in the /skins/<your_skin> and
/skeletons/<your_skeleton> directories. In this case, you do not have to create a full set
of skin or skeleton files. You need to create only the skin or skeleton files that will
override the files in the base skin or skeleton you selected.

For example, if you use the “classic” skin as the basis of your new Look & Feel, and
you create only a <your_skin>/images/titlebar-button-edit.gif file, that graphic overrides
the graphic in the classic skin. All other classic skin resources are used for your Look
& Feel.

3. After you click Finish, you may be prompted to create a skeleton.xml file. Click OK. If you
are copying a legacy Look & Feel that uses a skin.properties file, you are prompted to create
a skin.xml file. Click OK.

Each Look & Feel must have a skin.xml and skeleton.xml file.

4. The new Look & Feel is opened in the Look & Feel editor.

5. Create a 100x75 px .gif that represents the Look & Feel in the same directory as the .laf file.
This image appears in the visitor tools when end users select Look & Feels for their own
customized view of a portal desktop.

The following sections provide guidance on working with your new Look & Feel, including the
Look & Feel editor.

User In te r face Deve lopment w i th Look & Fee l Features

7-10 BEA WebLogic Portal Portal Development Guide

Working with Skins
Skins are the graphics, cascading style sheets (CSS), and JavaScript behaviors that define button
graphics, text styles, colors, mouseover actions, and other elements in the way a portal looks and
behaves. Skins, combined with skeletons, make up a portal desktop's Look & Feel.

Each skin has its own /images, /css, and /js (JavaScript) subdirectories that contain its skin
resources. Create and store your Look & Feel images, CSS files, and JavaScript files in these
directories. You can also store global Look & Feel resources in a common location outside of a
skin’s root directory. A skin knows which resources to use based on its skin.xml file, stored in
the skin’s root directory. The skin.xml tells the skin which paths to look in to find image, CSS,
and JavaScript files that the Look & Feel uses.

Use the following guidelines when configuring a skin.xml file:

The <target-skeleton> section specifies the skeleton to use if no skeleton is specified in the
Look & Feel file.

The <images> section lets you set the paths the skin should use to find images. For
example:

<skin>
<images>
 <search-path>
 <path-element>images</path-element>
 <path-element>../default/images</path-element>
 </search-path>
</images>
</skin>

This block tells the skin to look in the skin’s images subdirectory, and for any files it
cannot find in that directory to look for in the default skin’s images directory.

Search paths are relative to the skin directory.

The <render-dependencies> section lets you determine how CSS styles and JavaScript
functions are inserted into the <head> region of the HTML.

– The <search-path> child element of <links>, <scripts>, and <styles> serves the same
purpose and behaves the same as it does for images.

– Use the <links> section if you want to insert references to CSS files in the HTML
<head> area.

To reference JavaScript files:

Deve lop ing Look & Fee ls

BEA WebLogic Portal Portal Development Guide 7-11

<html>
<scripts>
 <script src=”my.js” type="text/javascript" />
 <search-path>
 <path-element>js</path-element>
 <path-element>../default/js</path-element>
 </search-path>
</scripts>
</html>

If you want to inline JavaScript functions in the HTML output (for example, if you are
using genes), use the following types of entries:

<html>
<scripts>
 <script content-uri=”my.js” type="text/javascript" />
</scripts>
</html>

or

<html>
<scripts>
 <script type="text/javascript">
 alert("Hello World!");
 </script>
</scripts>
</html>

If you want to inline CSS style definitions in the HTML output (for example, if you are
using genes), use the following types of entries:

<html>
<styles>
 <style content-uri=”my.css” type="text/css" />
 <search-path>
 <path-element>css</path-element>
 <path-element>../default/css</path-element>
 </search-path>
</styles>
</html>

or

<html>
<styles>
 <style type="text/css">
 .bea-portal-body
 {
 margin: 0px;
 padding: 0px;

User In te r face Deve lopment w i th Look & Fee l Features

7-12 BEA WebLogic Portal Portal Development Guide

 background-color: #ffffff;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 color: #000000;
 }
 </style>
 <search-path>
 <path-element>css</path-element>
 <path-element>../default/css</path-element>
 </search-path>
</styles>
</html>

Create a structure.xml file in the skin’s root directory, which lets you specify:

– The paths to any themes that correspond to the skin. You can also set paths to Look &
Feel’s that you want to use as themes, assuming you have created a .theme file that
corresponds to that Look & Feel.

– The paths to any resources that correspond to different device classification.

– Any localization subdirectories.

Following is a sample structure.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<structure
xmlns="http://www.bea.com/servers/portal/framework/laf/1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/servers/portal/framework/laf/1.0
.0 laf-structure-1_0_0.xsd">
 <specializations>
 <localizations>
 <localization locale="ja"/>
 </localizations>
 <classifications path="classifications">
 <classification name="nokia"/>
 <classification name="mozilla"/>
 </classifications>
 </specializations>
 <themes>
 <theme name="red_theme" path="../../redtheme"/>
 <theme name="holiday" path="holiday"/>
 </themes>
</structure>

Deve lop ing Look & Fee ls

BEA WebLogic Portal Portal Development Guide 7-13

Best Practices
Create a structure.xml file in each skin directory. Using this file gives you flexibility in the
location of the themes and classification Look & Feel files, and supports Look & Feel
localization.

For best performance, reference your CSS and JavaScript files rather than inlining them in
the HTML.

If you are using genes (see “Working with Genes” on page 7-16), you must inline the CSS
styles and JavaScript functions that use genes.

Note: Skeletons hard code the names of Look & Feel resources, such as CSS style names,
JavaScript functions, and image names. If you rename resources from their default
names, you must also modify those names throughout your skeleton JSPs.

About Portlet Title Bar Icons
The icon graphics used in portlet title bars are stored in a skin /images directory. The names of
these graphics are declared in the portal web project's WEB-INF/netuix-config.xml file to
determine which of these graphics to use for the portlet's different states and modes (minimize,
maximize, help, edit). If you want to change the name of the graphics used for the portlet title bar
icons, change the filenames and the corresponding entries for those graphics in
netuix-config.xml.

Working with Skeletons
A portal desktop is a collection of portal components, such as books, pages, and portlets, that have
a hierarchical relationship to each another. (Books contain pages, pages contain portlets, and so
on.) Since portal components are largely XML files, rendering them in a browser requires a
conversion to HTML. That rendering is the function of skeletons.

Each portal component has one or more corresponding skeleton JSP files, located in the
<web_project>/framework/skeletons directories. For example, a portlet title bar has a
corresponding skeleton JSP file that renders it. When a portal desktop is rendered, the skeleton
JSPs for each portal component (in conjunction with any related classes) perform their logic and
insert the resulting HTML into the correct hierarchical locations of the HTML file.

Skeletons, combined with skins, make up a portal desktop's Look & Feel. When you select a Look
& Feel for a portal desktop, the Look & Feel points to the skeletons and skins to use.

If you open a skeleton JSP, you will notice that it contains <render:beginRender> and
<render:endRender> sections. During the rendering process, each skeleton is called twice. This

User In te r face Deve lopment w i th Look & Fee l Features

7-14 BEA WebLogic Portal Portal Development Guide

allows the HTML hierarchy to be properly built. For example, a portlet title bar’s own
beginRender section is output, followed by the beginRender of the title bar’s children, the
buttons. Since buttons do not have children, their endRender sections are then output. Finally,
after all buttons have fully rendered, the title bar’s own endRender section is output.

Skeletons also use the WebLogic Portal API to get specific types of information, such as
presentation context and style overrides that developers may enter in the Properties view for a
selected component.

In summary, skeleton JSPs combine API calls, JSP tags, and HTML snippets to ultimately render
a portal desktop in HTML.

WebLogic Portal provides a set of skeletons in the Look & Feels it provides. This section
provides guidance on developing your own skeletons for your own Look & Feels. One example
of when you might want to create your own skeleton is if you want to provide appropriate
rendering on a particular mobile device.

Each skeleton you create must have its own skeleton.xml file in the your skeleton’s root directory.

Use the following guidelines when developing your own skeletons:

If you want to use CSS styles and JavaScript functions in your skeletons to help control
behavior, reference those CSS files/styles and JavaScript files/functions in the skeleton.xml
file the same way you reference them in a skin.xml file.

In skeleton.xml, you can also control content types or doctypes to help ensure proper
rendering. For example:

<skeleton>
<render-format>
 <preset>HTML_4_01_TRANSITIONAL</preset>
</render-format>
</skeleton>

The <preset> elements allows values for XHTML_1_0_STRICT,
XHTML_1_0_TRANSITIONAL, HTML_4_01_STRICT,
HTML_4_01_TRANSITIONAL, HTML_4_01_STRICT_NO_SYSTEM_ID,
HTML_4_01_TRANSITIONAL_NO_SYSTEM_ID, HTML_3_2, and NONE.

– You can define your own <custom-htmlType> or <custom-xhtmlType>, using
<doctype-public-id> and <doctype-system-id> child elements. In addition, the
<custom-xhtmlType> element provides <namespace-uri> and <schema-system-id>
child elements.

– You can provide content type overrides for individual types of devices, such as mobile
devices, using:

Deve lop ing Look & Fee ls

BEA WebLogic Portal Portal Development Guide 7-15

<content-type-overrides>
 <override classification=”nokia”
content-type=”application/xhtml+xml” />
</content-type-overrides>

where classification is the name of a device type defined in
WEB-INF/client-classifications.xml; and content-type can also use the value
“text/html”.

Keep in mind that JSPs are rendered literally. That is, if there are blank lines in the JSP,
there will be blank lines in the HTML. At times you may need to sacrifice JSP readability
for quality HTML output.

Create a structure.xml file in the skeleton directory, as described in “Working with Skins”
on page 7-10. This file lets you reference skeleton themes, skeleton resources for different
types of devices (classifications), and localized skeleton subdirectories.

Working with Themes
Themes let you override a portal desktop’s overall Look & Feel on individual books, pages, and
portlets, allowing a “themed” component to appear or behave differently than the other
components in a portal desktop. Also use themes to develop Look & Feels for specific devices,
such as mobile devices, to be used in conjunction with WebLogic Portal’s multichannel
framework.

Themes are made up of the following resources:

A .theme file

Theme skin or skeleton directories that contain the same types of resources as skins and
skeletons. For example, a skeleton theme directory contains skeleton JSP files, and a skin
theme contains subdirectories such as /images, /css, and /js.

You can also use a Look & Feel as a theme, as long as you create a .theme file for it, described
in the following steps.

To develop a theme:

1. In Merged Projects view, navigate to your portal web project’s framework/markup/theme
directory, and copy an existing theme to your file system.

2. Open the copied theme, and modify the name, title, description, and markupName. Each
theme must have a unique markupName.

3. Save the file with a new filename.

User In te r face Deve lopment w i th Look & Fee l Features

7-16 BEA WebLogic Portal Portal Development Guide

4. Create a 100x75 px .gif that represents the theme in the same directory as the .theme file. This
image appears in the visitor tools when end users select themes for their own customized view
of a portal desktop.

5. Create the theme directory (using the same, case-sensitive name as the theme markupName)
and subdirectories. You can create the theme resources anywhere in the portal web project,
where it can be used in by any Look & Feel. Create any unique resources that the theme will
use, or duplicate and modify any resources you want to override in the parent skin or skeleton.

6. For any skin or skeleton, be sure to create a structure.xml file that specifies the path to the
current them, as described in “Working with Skins” on page 7-10.

You can also create a structure.xml in the theme directory if you also plan to use the theme
as a full Look & Feel.

If you do not use the structure.xml file in your Look & Feel /skin and /skeleton directories,
store your themes as subdirectories of those skins and skeletons.

Note: If you create any unique resources, be sure to reference them either in the parent skin
or skeleton, or in the theme skin or skeleton.

After you create a theme, you can select it in the Properties view for any selected book, page, or
portlet.

Working with Genes
Genes are implemented as simple text strings that are inserted into CSS styles or JavaScript files
as variables. You define genes in an XML .chromosome file.

Important: In order to use genes, you must configure the CSS and JavaScript entries in your
skin.xml or skeleton.xml to be inlined in the HTML rather than referenced, as described in
“Working with Skins” on page 7-10.

Following is an example that highlights one of the primary benefits of genes.

Gene Example
In a .chromosome file, you could define a gene called “bodyColor” and assign it a value of “red,”
like this:

<gene name=”bodyColor”>

 <value>#FF0000</value>

</gene>

In your CSS file, you could use bodyColor as a variable:

Deve lop ing Look & Fee ls

BEA WebLogic Portal Portal Development Guide 7-17

body {

 border:1px solid ${bodyColor}

 };

When the page is rendered in a browser, the inlined style definition becomes:

body {

 border:1px solid #FF0000

 };

When you use this gene in your CSS files, you only need to modify the gene value itself to
cascade the change throughout all configured CSS files rather than changing the value manually
in each CSS file.

You can also use the same gene names in multiple Look & Feels, and provide different gene
values in each Look & Feel.

Creating a Chromosome and Genes
Each skin, skeleton, and theme that uses genes must have its own chromosomes, even if they are
simply duplicates of each other. Chromosome files are stored in the same directory as skin.xml
and skeleton.xml.

To create and use genes:

1. Copy a .chromosome from the WebLogic Portal shared J2EE libraries to use as the basis for
your .chromosome file. In the Merged Projects view, navigate to your portal web project’s
framework/skins/legacy directory, and copy the default.chromosome to the file system.

2. Copy the file to your skin, skeleton, or theme directory. Keep the filename
default.chromosome.

3. Add genes to the chromosome, using the structure shown in “Gene Example” on page 7-16.

Note: Gene values can be defined by references to other genes.

4. In your skin or skeleton CSS files, replace the appropriate hard-coded style values with the
related gene names, using the ${geneName} syntax.

5. In your skin.xml or skeleton.xml files, make sure you reference your CSS or JavaScript files
so that they appear inline in the final HTML output, as described in “Working with Skins” on
page 7-10.

6. If you want to create multiple versions of chromosomes that provide identically named genes
with different values, copy the default.chromosome, give it a new filename (such as

User In te r face Deve lopment w i th Look & Fee l Features

7-18 BEA WebLogic Portal Portal Development Guide

holiday.chromosome). Delete all but the genes in that file you want to override, and provide
different values for those genes. Copy the new .chromosome file to any skin or skeleton
directories for which it will be used.

7. Open your Look & Feel file in the XML editor, and add specify the chromosome you want to
use for the Look & Feel by adding one or both of the following attributes to the
<netuix:lookAndFeel> element:

<netuix:lookAndFeel
 skinChromosome=”holiday”
 skeletonChromosome=”holiday”

By creating a master default.chromosome file, you can keep all your genes in one place and
provide gene overrides in other .chromosome file. If the Look & Feel framework does not find a
gene in the chromosome you specify in the .laf file, it looks for it in the default.chromosome file.

The Look & Feel framework does not check to see if a gene you reference is defined in a
chromosome. If the framework cannot find a gene, it simply prints the gene variable in the HTML
output.

Overriding Existing Look & Feels
Rather than creating new Look & Feels, consider the following possibilities for overriding
existing Look & Feels.

Themes
Themes let you override the Look & Feel for individual books, pages, and portlets.

Genes
Genes let you define different values for variables used in CSS and JavaScript files, which can
simulate different Look & Feels with relatively little development effort.

Overriding Shared J2EE Library Look & Feel Resources
Copy skin, skeleton, or theme files from the WebLogic Portal shared J2EE libraries (copy to the
file system from the Merged Projects view). The file-based, modified copies of the files are used
at run time instead of the library resources.

Troub leshoo t ing Look & Fee ls

BEA WebLogic Portal Portal Development Guide 7-19

Using the Workshop Properties View
In the Properties view for a selected portal component, you can enter presentation property
overrides (such as CSS values).

Troubleshooting Look & Feels
To troubleshoot or fine tune a Look & Feel, use the following guidance:

Use the Look & Feel editor to determine which CSS properties you need to modify. See
“The Look & Feel Editor” on page 7-19 for details.

When viewing a portal desktop in a browser, view the HTML source to help determine
where a problem is occurring and where it needs to be fixed, in a skin or skeleton.

– If the problem is a CSS-related issue, use the HTML source to locate the CSS style that
needs to be modified.

– If the problem is a structural issue, use the HTML source to help pinpoint which shell
resource or skeleton JSP needs to be modified.

The Look & Feel Editor
The Look & Feel editor lets you interactively edit the text styles used by portal text elements.
Technically, the editor modifies Cascading Style Sheet (CSS) files that are referenced by a
portal’s skin.xml file. For example, using the Look & Feel editor, you can change the size of a
heading, the color of a list element, or the padding around a table cell for a portal.

The Look & Feel editor also lets you change the properties of a portal’s Look & Feel file (.laf
file), such as the skin and skeleton files that it references.

In addition, the editor shows you, at a glance:

The CSS cascade for a portal

The properties assigned to a selected CSS style

The inherited properties of a selected CSS style

The elements of the portal’s skin.xml file

User In te r face Deve lopment w i th Look & Fee l Features

7-20 BEA WebLogic Portal Portal Development Guide

Overview
With the Look & Feel editor, you can easily experiment with a portal’s Look & Feel and see the
results immediately. The Look & Feel editor lets you interactively edit the text styles used by a
portal. Using the Look & Feel editor, you can select text in a portal and modify the text’s
characteristics, such as font size, color, padding, and so on. The changes you make are
immediately reflected in the editor’s view area.

Remember that a portal’s skin helps to define the overall Look & Feel of a portal. The portal’s
skin.xml file specifies one or more CSS files used by the skin. A portal’s HTML text can
reference these CSS files and use their style definitions. If you modify the font size for a particular
text style, the Look & Feel editor changes the style’s definition inside a CSS file. The change is
then immediately reflected in the HTML displayed in the editor’s view area.

The following figure shows the parts of the Look & Feel editor. This section discusses each of
these parts in detail.

Figure 7-4 Look & Feel Editor Components

Navigator View
The Navigator panel displays the file structure of a portal project. Use this panel to locate and
select the Look & Feel file for the portal that you wish to edit.

The Look & Feel (.laf) file contains references to the skins and skeletons that define a portal’s
Look & Feel. To use the Look & Feel editor, you must use the Navigator view to locate the .laf
file for the portal you wish to edit. Then, double-click the filename to open the Look & Feel
editor. The .laf files for a portal are located in the portal web project
framework/markup/lookandfeel folder. For example, the mycustom.laf file is shown selected in
the Navigator view in Figure 7-5.

Figure 7-5 Selected Look & Feel File

Style Hierarchy View
The Style Hierarchy view shows the CSS cascade for the selected style. The cascade is a
hierarchy of CSS styles, defined by the HTML document structure. It is useful to see the cascade,
because it can help you to locate and appropriately handle inherited style properties. In
Figure 7-6, the portlet-section-header style is selected. Note that the style portlet-section-header
is below bea-portal-window-content in the hierarchy.

The Look & Fee l Ed i to r

BEA WebLogic Portal Portal Development Guide 7-21

Figure 7-6 Selected CSS Style

This means that portlet-section-header can inherit properties from portal-window-content, and,
potentially, from all other style classes higher up the hierarchy. For more information on
inheritance, see CSS Inheritance. When you select a style in the Style Hierarchy view, its style
definitions and inherited style properties appear in the Style Description window, described in the
next section.

Style Description Window
The Style Description window lets you see at a glance the selected style’s properties and its
inherited style properties. The Style Info section, shown in Figure 7-7, comes directly from the
CSS file in which the style is defined. The Inherited Styles list, also shown, is constructed directly
from the document structure of the HTML text that is currently opened in the Look & Feel editor.
The Inherited Styles list shows the style properties and their values that are inherited from styles
higher up in the document hierarchy. For instance, you can see that portlet-section-header inherits
the font-family property from the bea-portal-body style.

Figure 7-7 Window Shows Inherited Styles

To understand the value of the Inherited Styles list, it helps to have a basic understanding of
HTML and CSS.

CSS Inheritance

Tip: This section is a very brief overview of CSS inheritance. Many books and web sites are
devoted to CSS and cover this important subject in greater depth.

HTML documents are hierarchically organized. In other words, each element of an HTML
document can have one or more child elements, one parent element and possibly many ancestor
elements. A central feature of CSS is that styles are inherited down the HTML document
hierarchy. For example, Figure 7-8 depicts a simple HTML document hierarchy:

User In te r face Deve lopment w i th Look & Fee l Features

7-22 BEA WebLogic Portal Portal Development Guide

Figure 7-8 CSS Inheritance

If you would like all the text in this document to be blue, you could define the body tag to be blue.
Because of CSS inheritance, all of the elements below body (specifically, li and h1) will also be
blue. If, on the other hand, you would like everything to be blue except list elements, you could
define the ul tag to be another color, such as red. Then, all of the li elements inherit the color
red from their parent, ul. At the same time, the h1 tags will be blue (h1 tags still inherit their color
from body).

The Look & Feel editor shows you all styles that a selected style inherits. Therefore, if you want
to change the font size of a style, but font size is not defined in that style, you can see at a glance
from which style font size is inherited. Then, you can easily edit the property, as explained in the
next section.

Tip: Without this convenient feature, it would be difficult to decide which styles a given style
inherited. Typically, you would have to open and examine the CSS files in the hierarchy
to find where a specific style property is defined or possibly overridden.

Using the Inherited Styles List
As mentioned in the previous section, in some cases, the property you wish to modify is not
defined in the specific CSS style class associated with the text you have selected. It is possible,
for instance, to select a heading in the Look & Feel editor, but find that font size is not a property
of that heading's style. In this case, the property you wish to change might be an inherited
property.

The Look & Feel editor displays and lets you edit any inherited property for a given style. For
example, suppose you wish to change the font size of some text. After selecting the style you wish
to edit (for example, by clicking the text in the View Area), you then notice that font-size is
not a property of that text's CSS style. Next you look at the Inherited Styles list, and you discover
a style higher up in the cascade in which font-size is defined.

At this point, you must decide whether you want to edit the font-size property where it is currently
defined (higher up in the cascade) or add the property directly to the style of the text you wish to

body

ul

li li li

h1

The Look & Fee l Ed i to r

BEA WebLogic Portal Portal Development Guide 7-23

modify. Of course, if you modify a property up the cascade, you might inadvertently change the
properties of other text that inherits the same property. It is up to you to make this decision. If you
change it directly in the selected style, then the inherited property is overridden, and only that
style (and any styles down the hierarchy) receive the new property value (unless it is once again
overridden).

Tip: To add or modify a property in an inherited style, double-click the style name in the
Inherited Styles list. Then, use the CSS Style Wizard to make your changes.

HTML documents are hierarchically organized. In other words, each element of an HTML
document can have one or more child elements, one parent element and possibly many ancestor
elements. A central feature of CSS is that styles are inherited down the HTML document
hierarchy. For example, the following tree diagram depicts a simple HTML document hierarchy:

If you would like all the text in this document to be blue, you could define the body tag to be blue.
Because of CSS inheritance, all of the elements below body (specifically, li and h1) will also be
blue. If, on the other hand, you would like everything to be blue except list elements, you could
define the ul tag to be another color, such as red. Then, all of the li elements will inherit the color
red from their parent, ul. At the same time, the h1 tags will be blue (h1 tags still inherit their color
from body).

The Look & Feel editor shows you all styles that a selected style inherits. Therefore, if you want
to change the font size of a style, but font size is not defined in that style, you can see at a glance
from which style font size is inherited. Then, you can easily edit the property, as explained in the
next section.

View Area
The View Area displays the HTML that uses the CSS styles you wish to edit. When you start the
Look & Feel editor, a default HTML page is displayed, showing a representative sample of text
elements.

Note: Remember that you start the Look & Feel editor by opening a Look & Feel (.laf) file.
The HTML file that is shown in the View Area must reference the same CSS files that
the .laf file references in its skin. If you load the default HTML page into the editor,
this connection is automatically established. However, if you load HTML from a portal
into the editor, you must be sure the portal references the same .laf file as the editor.

User In te r face Deve lopment w i th Look & Fee l Features

7-24 BEA WebLogic Portal Portal Development Guide

Outline View
The Outline view shows a representation of the files that are referenced by the portal’s skin.xml
file. In this panel you can edit properties of:

The Look & Feel (.laf) file for the portal

The style properties located in each of the CSS (.css) files referenced by the portal’s skin

Figure 7-9 shows a portion of the Document Structure panel. In this figure, the css/portlet.css file
is expanded to reveal the styles defined in it. You can double-click a style to add or modify its
properties. You can also single-click a .css file, style name, or style property to display and edit
values in the Properties view.

Figure 7-9 Double-click a style to modify its properties

In addition to using this panel to access CSS styles, you can also access and edit the properties of
the Look & Feel file associated with a portal, as shown in Figure 7-10. You can change any of
these properties, including picking new skin and skeleton files. Note that the Look & Feel file
node occurs at the top of the document structure.

Figure 7-10 Look & Feel file in the Outline View

Using the Look & Fee l AP I

BEA WebLogic Portal Portal Development Guide 7-25

Properties View
The Properties view lets you interactively modify values of the selected CSS style or Look & Feel
file. To display properties in the Properties view, you can do one of the following:

Click on a text element in the HTML file in the View Area.

Click a CSS style or the Look & Feel filename in the Outline view.

Click on a CSS filename in the Outline view, then expand the CSS file in the Properties
view to edit the properties.

Using the Look & Feel API
The following packages, documented in Javadoc, let you perform many programmatic operations
on Look & Feels:

com.bea.netuix.laf

com.bea.netuix.laf.genes

com.bea.netuix.laf.genes.mutators

Working with Shells
A shell represents the rendered area surrounding a portal desktop's main content area (books,
pages, and portlets). Most importantly, a shell controls the content that appears in a desktop's
header and footer regions.

You can configure a shell to use specific JSPs, page flows, HTML files, and portlets to display
content in a header or footer.

For each set of different header/footer combinations, create a new shell.

To create a shell:

1. In Merged Projects view, copy an existing shell from your portal web project’s
framework/markup/shells directory to your file system.

If GroupSpace is enabled in your portal web project, you can also copy
communityFiles/shell/communityHeaderFooter.shell.

2. Rename the shell file and open it. Modify the title, description, and markupName attributes.

../javadoc/index.html

User In te r face Deve lopment w i th Look & Fee l Features

7-26 BEA WebLogic Portal Portal Development Guide

3. To include content in the header or footer, make sure you use opening and closing
<netuix:header> and <netuix:footer> tags.

4. Insert references to the JSPs, page flows, HTML files, or portlets you want to use, using the
following syntax. Paths are relative to the portal web project.

JSP or HTML File

<netuix:jspContent contentUri="/my_jsps/campaign_header.jsp"/>

Make sure the JSP or HTML file does not contain <html>, <head>, <title>, or <body>
HTML tags, because the file is inserted into a single HTML file that already has these tags.
You can format the file simply with <div>, <table>, <p>, or any other nested HTML tags.

In the <netuix:jspContent> tag you can also point to an error JSP and a backing file to use
for the header or footer JSP, using the following attributes:

errorUri - Enter the path (relative to the project) to an error JSP to be used if there are
problems with the contentUri JSP.

backingFile - If you want to class for any preprocessing prior to the rendering of the header
or footer JSP (for example, authentication), enter the fully qualified name of that class.
That class implements the interface
com.bea.netuix.servlets.controls.content.backing.JspBacking or extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking.

Page Flow

<netuix:pageflowContent action="showHeader" backingFile=""
contentUri="/communityFiles/shell/CommunityShellController.jpf"
refreshAction="showHeader"/>

Portlet

<netuix:portletInstance
 title="Visitor Tools Menu"
 markupType="Portlet"
 markupName="portlet"
 instanceLabel="instLblVisitorToolsMenu"
 contentUri="/visitorTools/visitorMenu.portlet"/>

5. Save the shell. You can now select the shell for your portal desktops.

Note: Do not use functionality designed to work inside a portlet in the shell. For example,
content controls are designed to be used inside portlets rather than directly in a shell. If
you want to use portlet-based functionality in a shell, include a portlet in the shell.

Work ing w i th Layouts

BEA WebLogic Portal Portal Development Guide 7-27

Working with Layouts
Layouts are the areas of a portal page where you can place books or portlets, letting you arrange
these resources in different ways. WebLogic Portal provides a set of predefined layouts you can
use in your portals, available for selection in the Properties view when you select a page in the
portal editor.

In addition to the predefined layout files WebLogic Portal provides, you can create custom
layouts in the following ways:

Creating a Standard Layout

Creating a Custom Layout

For the purposes of creating layouts, a layout includes the following files:

An XML file with a .layout extension - This file maps to a skeleton JSP that renders the
final layout in HTML.

An HTML file with a .html.txt extension - Used to simulate the layout in the portal editor
and WebLogic Portal Administration Console.

Creating a Standard Layout
WebLogic Portal provides the following three standard layout possibilities for creating your own
layouts: border layout, flow layout, and grid layout, as shown in Figure 7-11.

Figure 7-11 Standard Layouts: Border, Flow, and Grid

You create each type of layout by configuring the .layout file to suit your needs. For example,
you could create a border layout that uses only North (N), West (W), and East (E) areas.

Border Layout Flow Layout Grid Layout

User In te r face Deve lopment w i th Look & Fee l Features

7-28 BEA WebLogic Portal Portal Development Guide

Each type of standard layout has a corresponding skeleton JSP to render it as HTML:
borderlayout.jsp, flowlayout.jsp, and gridlayout.jsp.

If you want to create a layout beyond what the standard layouts provide, you must create a custom
layout. See “Creating a Custom Layout” on page 7-30.

To create a standard layout:

1. In Merged Projects view, copy an existing .layout file and its corresponding .html.txt file from
your portal web project’s framework/markup/layouts in the shared J2EE libraries.

2. Open the layout, and rename it. Be sure to retain the .layout extension. Rename the .html.txt
file using the same name as the new layout, but retain the .html.txt extension.

3. In the .html.txt file, create an HTML table structure that provides the layout configuration you
want.

4. In the .layout file, inside the <netuix:markup> tag, insert opening and closing
<netuix:gridLayout>, <netuix:flowLayout>, or <netuix:borderLayout> tags, depending on
the type of layout you want to create. (Replace the existing opening and closing
<netuix:*Layout> tag.)

5. Inside the opening <netuix:*Layout> tag, add (or modify) the following attributes:

title – Provides the name for selecting the layout in a drop-down menu.

description – Provides a description for the selected layout.

Border layout attributes layoutStrategy – Enter order or title.

If you enter order, the placeholders are ordered according to the value
you put in the <netuix:placeholder> tag (covered in the following steps).
For example:

<netuix:placeholder>North</netuix:placeholder> makes the placeholder
the north placeholder.

If you enter title, the placeholders are ordered according to the
<netuix:placeholder> title attribute value. For example:

<netuix:placeholder title=“south” ...></netuix:placeholder> makes the
placeholder the south placeholder.

Work ing w i th Layouts

BEA WebLogic Portal Portal Development Guide 7-29

For example, if you are modifying a copy of the fourcolumn.layout to create a border
layout, replace the columns attribute with the layoutStrategy attribute and change its value.

htmlLayoutUri – Provides the path (relative to the project) to the .html.txt file you
created. For example, /framework/markup/layout/yourNewLayout.html.txt.

markupName – The markupName must be unique among the other layouts.

6. Inside the <netuix:*Layout> tag, add opening <netuix:placeholder> and closing
</netuix:placeholder> tags for each placeholder you want in the layout.

If you are creating a border layout, use no more than five placeholders.

7. In the opening <netuix:placeholder> tag of each placeholder, add the following attributes:

title – Enter a title for the placeholder. If you are using a border layout with the
layoutStrategy attribute set to title, enter north, south, east, west, or center for the
title to determine which position of the placeholder in the border layout.

description – Enter a description for the placeholder.

flow – Optional. If you want to control whether the books and portlets are automatically
positioned vertically or horizontally when they are added to a layout, enter true.

usingFlow – Optional. If you set the flow attribute to true, enter vertical or
horizontal for this attribute value. This value determines whether books and portlets are
positioned on top of each other in the placeholder (vertical) or side by side (horizontal).

width – Optional. Set a width for the placeholder.

markupType – Required. Enter Placeholder.

markupName – Required. Used as an ID for the placeholder. Each placeholder must have
a unique markupName across all layouts.

Flow layout attributes orientation – Enter vertical or horizontal to determine the
direction in which the placeholders are positioned.

Grid layout attributes columns – Determines the number of columns in the layout. The number
of rows are determined automatically. Do not use the rows attribute if you
use the columns attribute.

rows – Determines the number of rows in the layout. The number of
columns is determined automatically. Do not use the columns attribute if
you use the rows attribute.

User In te r face Deve lopment w i th Look & Fee l Features

7-30 BEA WebLogic Portal Portal Development Guide

8. If you are creating a border layout and the layoutStrategy attribute is set to order, enter
North, South, East, West, or Center as the content between the opening and closing
<netuix:placeholder> tag to determine each placeholder's position in the layout. For example,
<netuix:placeholder>North</netuix:placeholder> makes a placeholder the north placeholder.

9. Save the layout file.

10. Create a 100x75 px .gif that represents the layout in the same directory as the .layout file. This
image appears in the visitor tools when end users select layouts for their own customized view
of a portal desktop.

You can now use the layout in your portals, by selecting a page in the portal editor and selecting
the layout in the Properties view.

Creating a Custom Layout
If none of WebLogic Portal’s standard layouts suits your needs, you can create a custom layout.
When creating a custom layout you need to create three things:

The Layout File

The html.txt File

The Skeleton JSP

The Layout File
The layout file for a custom layout is the same type of file used in creating standard layouts. It is
a block of XML that defines the layout parameters. A layout file must have a .layout extension
and can live anywhere in the web application directory except /WEB-INF.

You must create the .layout files by hand (using a text or XML editor). The best way to get
started is by copying an existing layout, located in the shared J2EE library in your portal web
project’s /framework/markup/layout directory.

Example of a Custom Layout
The easiest way to describe how to create a custom layout is to give an example. The following
example uses a custom layout with a spanning row at the top with two columns underneath. The
two columns split the real estate in a 30%-70% fashion.

Our layout looks something like this:

Work ing w i th Layouts

BEA WebLogic Portal Portal Development Guide 7-31

1. The first step is to create a layout file (again the easiest way is to copy one from another
layout).

We will call our layout file spanningtwocolumn.layout, and it looks something like
this:

Listing 7-1 Sample Code for a Layout File

<netuix:layout title="Spanning Two Column" description="One row and two
columns."
 type="spanning"
 skeletonUri="/customskeletons/spanningtwocolumnlayout.jsp"
 htmlLayoutUri="/framework/markup/layout/spanningtwocolumn.html.txt"
 iconUri="/framework/markup/layout/spanningtwocolumn.gif"
 markupType="Layout" markupName="spanningTwoColumnLayout">
 <netuix:placeholder title="top" description="The top spanning
placeholder."
 markupType="Placeholder"
 markupName="spanningTwoColumn_top">
 </netuix:placeholder>
 <netuix:placeholder title="left" description="The bottom left
placeholder"
 markupType="Placeholder"
 markupName="spanningTwoColumn_left">
 </netuix:placeholder>
 <netuix:placeholder title="right" description="The bottom right
placeholder"
 markupType="Placeholder"
 markupName="spanningTwoColumn_right">
 </netuix:placeholder>
</netuix:layout>

Top

Bottom
Left

Bottom Right

User In te r face Deve lopment w i th Look & Fee l Features

7-32 BEA WebLogic Portal Portal Development Guide

This example uses the generic <netuix:layout> tag instead of one of the three standard layout tags,
such as <netuix:gridLayout>. The example also uses three placeholders, which represent the table
cells.

Note: The skeletonUri attribute is important for custom layouts, because you will often develop
a custom skeleton JSP to render your custom layout. This attribute tells the portal
rendering framework which JSP to use.

The <netuix:markupDefinition>, <netuix:locale/> and <netuix:markup/> elements
were left out of the example for the sake of clarity. Do not forget to include these in your .layout
file.

The Skeleton JSP
This example requires a custom skeleton to do the rendering (as specified by the skeletonUri
attribute). You must create this JSP, copying it to any Look & Feels in which the layout is to be
used. As with the layout file, the easiest way to create a custom layout JSP is to copy an existing
one.

All skeleton files should have the following JSP tags:

<render:beginRender></render:beginRender>

<render:endRender></render:endRender>

The body of the beginRender tag is evaluated during the begin render phase only; the body of
the endRender tag is evaluated during the end render phase.

Here is what the custom skeleton JSP (/customskeletons/spanningtwocolumnlayout.jsp)
looks like

Listing 7-2 New Skeleton JSP

%@ page import="com.bea.netuix.servlets.util.RenderToolkit,
com.bea.netuix.servlets.controls.layout.LayoutPresentationContext,
java.util.List,

com.bea.netuix.servlets.controls.layout.PlaceholderPresentationContext"
%>
<%@ taglib uri="render.tld" prefix="render" %>
<%
 RenderToolkit toolkit = RenderToolkit.htmlInstance();
 LayoutPresentationContext layout =
 LayoutPresentationContext.getLayoutPresentationContext(request);
%>

Work ing w i th Layouts

BEA WebLogic Portal Portal Development Guide 7-33

<render:beginRender>
 <table
 <% toolkit.writeId(out, layout.getPresentationId()); %>
 <% toolkit.writeAttribute(out, "class", layout.getPresentationClass(),
"layout-custom"); %>
 cellspacing="0"
 >
 <tbody>
 <%
 List children = layout.getChildren("layout:placeholder");

 // Could get optional properties here to help with rendering
 // String property = layout.getProperty("myProperty");

 for (int i = 0; i < children.size(); i++)
 {
 PlaceholderPresentationContext placeholderPresentationContext =
 (PlaceholderPresentationContext)children.get(i);
 if (i == 0)
 {
 %>
 <tr>
 <td colspan="2" width="100%" valign="top"
class="layout-placeholder-container">
 <% toolkit.renderChild(placeholderPresentationContext,
request); %>
 </td>
 </tr>
 <%
 }
 else if (i == 1)
 {
 %>
 <tr>
 <td width="30%" valign="top" class="layout-placeholder-container">
 <% toolkit.renderChild(placeholderPresentationContext,
request); %>
 </td>
 <%
 }
 else if (i == 2)
 {
 %>
 <td width="70%" valign="top" class="layout-placeholder-container">
 <% toolkit.renderChild(placeholderPresentationContext,
request); %>
 </td>
 </tr>

User In te r face Deve lopment w i th Look & Fee l Features

7-34 BEA WebLogic Portal Portal Development Guide

 <%
 }
 }
 %>
</render:beginRender>

<render:endRender>
 </tbody>
 </table>
</render:endRender>

Note: In this example, the widths are hard coded in the JSP. Instead, these widths should be
specified in the layout file as an attribute to the placeholder. Then you can reference the
widths in the skeleton as follows:
<render:writeAttribute name="width" value="<%=
placeholderPresentationContext != null ?
placeholderpresentationContext.getWidth() : null %>"/>

Also, you can pass other properties like rowspan=2 as name/value pairs on the properties
attribute and endtop to create a more generic row/column spanning layout.

The custom layout is now functionally complete. The html.txt file has not yet been created, but
you can test the layout. To do this, create a portal file, select a page, and in the Properties view
select the custom layout in the Layout field.

Note: If you change your .layout file after you have used it in the .portal file, changes are
not reflected in the .portal file. This happens because when you use a layout in the .portal
it copies the markup from the layout. You must choose another layout and then choose
the original one again to see the changes.

The html.txt File
The .html.txt is an HTML snippet strictly used by the tools to give a visual representation of
what the layout looks like, so the developer or administrator can place the portlets in the correct
placeholders.

In this example, the custom .html.txt file is
/framework/markup/layout/spanningtwocolumn.html.txt should look something like
this:

Listing 7-3 Sample html.txt Code

<table class="portalLayout" id="thePortalLayout" width="100%" height="100%">
 <tr>

Work ing wi th Nav igat ion Menus

BEA WebLogic Portal Portal Development Guide 7-35

 <td class="placeholderTD" valign="top" width="100%" colspan="2">
 <placeholder number="0"></placeholder>
 </td>
 </tr>
 <tr>
 <td class="placeholderTD" valign="top" width="30%">
 <placeholder number="1"></placeholder>
 </td>
 <td class="placeholderTD" valign="top" width="70%">
 <placeholder number="2"></placeholder>
 </td>
 </tr>
</table>

Working with Navigation Menus
Navigation Menus provide a way to select different pages in a portal desktop. WebLogic Portal
provides a default set of Navigation Menus:

Single Level Menu - Provides visible layering of book and page links. Any sub-books and
pages appear in rows below the main book navigation.

Multi Level Menu - Provides a single row of tab-like links for the books and pages at the
level you apply the Multi Level Menu. Any sub-books and pages appear in a drop-down
list for selection. The Multi Level Menu implements JavaScript functionality contained in
the skins.

If you want navigation menu behavior other than what is provided with the default menus, modify
the singlelevelmenu.jsp or multilevelmenu.jsp skeletons in your Look & Feel /skeletons directory
by copying those file from the shared J2EE library to your file system and making the desired
modifications. If you are modifying the multi-level menu behavior, you may also need to modify
the skin’s menu.js file located in your skin’s /js subdirectory.

Using Images for Page Tabs
To use images on page tabs (Rollover Image, Selected Image, Unselected Image in the Properties
view for a selected book), enter a path to the images that is relative to the Look & Feel’s image
search paths specific in the skin.xml file.

For example, if you skin.xml image search path is <path-element>images</path-element>, and
your menu images are stored in your skin’s /images directory, simply enter the name of the image

User In te r face Deve lopment w i th Look & Fee l Features

7-36 BEA WebLogic Portal Portal Development Guide

file in the Properties view. If your menu images are stored in an /images subdirectory of your
portal web project, enter a path to the graphic like this: ../../../../images/my_rollover.gif.

Building User Interfaces to Address Accessibility
Guidelines

This section contains information on the following subjects:

* Accessibility Standards and the Internet

* Accessibility Checkpoints

* Industry Guidelines

* Government Regulations and Standards

* Accessibility Evaluation and Testing Tools

Accessibility Standards and the Internet
The Internet provides you with the ability to communicate with a diverse audience from a single
point using a portal or web site. Many organizations are required to provide web sites that meet
industry or government standards for supporting people with special needs. And even if you do
not have specific requirements, it is just good business to design your site to serve the needs of a
diverse audience.

WebLogic Portal provides a flexible architecture that supports the design, development, and
management of accessible portals and applications, for example, the ability to target specific user
interfaces based on user preferences or browser and request attributes.

To learn more about building user interfaces with WebLogic Portal see Creating Look & Feels.

Accessibility Checkpoints
When you develop web sites, you can use the following general guidelines to facilitate
accessibility. For a complete list, refer to the industry or government regulation relevant for your
implementation.

Text Tags – Provide a text equivalent for every non-text element (for example, using “alt”,
“longdesc”, or in element content).

Multimedia Presentations – Synchronize equivalent alternatives for any multimedia presentation.

Bui ld ing User In te r faces to Address Access ib i l i t y Gu ide l ines

BEA WebLogic Portal Portal Development Guide 7-37

Color – Design web pages so that all information conveyed with color is also available without
color. (for example, from context or markup.)

Readability (style sheets) – Organize documents so they are readable without requiring an
associated style sheet.

Server-Side Image Maps – Provide redundant text links for each active region of a server-side
image map.

Client-Side Image Maps – Provide client-side image maps instead of server-side image maps
except where the regions cannot be defined with an available geometric shape.

Data Table (simple row and column headers) – Identify row and column headers for data tables

Data Tables (multiple levels of row and column headers) – Use markup associate data cells and
header cells for data tables that have two or more logical levels of row or column headers.

Frames – Entitle frames with text that facilitates frame identification and navigation.

Flicker Rate – Design pages to avoid causing the screen to flicker with a frequency greater than
2 Hz and lower than 55 Hz.

Text-Only Alternative – Provide a text-only page, with equivalent information or functionality,
to make a web site comply with the provisions of this section when compliance cannot be
accomplished in any other way. You must remember to update the content of the text-only page
whenever the primary page changes.

Scripts – When pages use scripting languages to display content, or to create interface elements,
you must identify the information provided by the script with functional text that can be read by
assistive technology.

Applets and Plug-ins – When a web page requires that an applet, plug-in or other application be
present on the client system to interpret page content, you must provide a link in the page to a
plug-in or applet that complies with Section 508 §1194.21(a) through (l).

Electronic Forms – When electronic forms are designed to be completed online, you must create
the form to allow people using assistive technology to access the information, field elements, and
functionality required for completion and submission of the form, including all directions and
cues.

Navigation Links – Provide a method that permits users to skip repetitive navigation links.

Time Delays – When a timed response is required, you must alert users and give them sufficient
time to indicate more time is required.

User In te r face Deve lopment w i th Look & Fee l Features

7-38 BEA WebLogic Portal Portal Development Guide

Industry Guidelines
W3C Web Content Accessibility Guidelines

* http://www.w3.org/WAI/w3c.htm - Checklist of Checkpoints for Web Content Accessibility
Guidelines 1.0

* http://www.w3.org/TR/WCAG10/full-checklist.html

Government Regulations and Standards

UNITED STATES
Section 508

http://www.section508.gov

CLF Accessibility best practices

http://www.cio-dpi.gc.ca/clf-upe/1/1d_e.asp

CANADA
Adaptive Computer Technology Training Center (Canada)

http://www.cio-dpi.gc.ca/clf-upe/standards/1-1/references/references_e.asp

UNITED KINGDON
Guidelines for U.K. Government Web Sites

http://www.web-access.org.uk/

Accessibility Evaluation and Testing Tools
These tools allow you to validate web page code. They do not repair your code, but they do
provide reports on what does and doesn't need to be fixed, as relating to HTML 4.0, W3C, Section
508 and general Accessibility issues.

W3C Web Accessibility Initiative
* W3C Web Accessibility Initiative's Web Tools Page - Evaluation, Repair, and Transformation
Tools for Web Content Accessibility

http://www.w3.org/WAI/ER/existingtools.html

Bui ld ing User In te r faces to Address Access ib i l i t y Gu ide l ines

BEA WebLogic Portal Portal Development Guide 7-39

* W3C HTML Validator - The W3C HTML Validation Service checks HTML documents for
conformance to W3C HTML and XHTML recommendations and other HTML standards.

http://validator.w3.org/

* CSS Validator - If you are using Cascading Style Sheets (CSS), then use the CSS Validator.
http://jigsaw.w3.org/css-validator/

For more information, visit the W3C's Evaluation & Repairs Tools page.
http://www.w3.org/TR/2000/WD-AERT-20000426

Bobby
The Bobby tool identifies W3C accessibility issues by priority level and Section 508 issues.
http://bobby.watchfire.com/bobby/html/en/index.jsp

Note: The free version of Bobby allows you to test one page at a time.

Lynx Viewer
The Lynx Viewer generates an HTML page that indicates how much of the content of your page
would be available to Lynx, which is a text-only browser. In addition to showing how useful a
site would be for a visually-impaired person, it is also a good indicator for anyone with older
technology. http://www.delorie.com/web/lynxview.html.

User In te r face Deve lopment w i th Look & Fee l Features

7-40 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 8-1

C H A P T E R 8

Developing Portals Using Workshop for
WebLogic

Before you perform the tasks described in this chapter, make sure you have already performed
the setup steps described in Chapter 4, “Setting up Your Portal Development Environment.” Also
keep in mind that you must have the framework for your portal interface in place, including Look
& Feel elements, any required CSS files, and so on, before you start building your portal.

This chapter includes the following sections:

Creating a Portal

Portal Component Properties

Copying J2EE Library Files into a Project

Creating a Utility Project

Custom Controls in Page Flows

Deploy and View a Portal

Working with URLs

Working with Encoding in HTTP Responses

Cache Management in Workshop for WebLogic

Improving WebLogic Server Administration Console Performance on a Managed Server

Behavior of the “Return to Default Page” Attribute

Adding Commerce Services to an Existing Portal Web Project

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-2 BEA WebLogic Portal Portal Development Guide

Creating a Portal
When you create a portal, WebLogic Portal creates a portal file—an XML file with a .portal
file extension. The .portal file is the central defining file of a portal, with references to all the
major components of the portal: the desktops, books, pages, portlets, and so on.

To create a portal and its accompanying .portal file, perform these steps:

1. If the Portal perspective is not already open, select it by choosing Window > Open
Perspective > Portal.

2. Navigate to the web content directory of your Portal Web Project (by default it is named
WebContent); right-click and then select New > Portal.

The New Portal dialog displays, as shown in Figure 8-1.

Because you started this wizard by right-clicking the web content directory, the parent
folder field automatically displays that directory name.

Figure 8-1 New Portal Dialog

You must locate your portal file in a web content directory that is subordinate to the web
project directory. The default web content directory name is WebContent, and is assigned

Creat ing a Po r ta l

BEA WebLogic Portal Portal Development Guide 8-3

when you use the Portal Web Project Wizard. You can change the name of your web
content directory if you wish; for more information, refer to “New Portal Web Project -
Web Module Dialog” on page 4-16.

3. In the File name field, enter the name that you want to assign to the portal.

A file type of .portal is required for portals; you can type the .portal extension to the
portal’s name if you wish, but WebLogic Portal automatically adds the extension if you
don’t enter it.

4. Click Finish.

The wizard adds the portal to the specified folder in the Portal Web Project and a view of
the portal displays in the editor, as shown in Figure 8-2.

Figure 8-2 Portal Displayed in Workbench

The created portal includes a desktop, header, footer, book, and page. A desktop is a
user-specific view of the portal content. A portal can support many desktops. A single portal
might support an employee-specific desktop, a customer-specific desktop, and others, where each
desktop exposes different kinds of content to different sets of users. Any part of a portal can be

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-4 BEA WebLogic Portal Portal Development Guide

included or excluded from a desktop, including a book, a page, a specific application, or an
individual link.

Desktops can also define the Look & Feel attributes of a portal. Desktops can be associated with
a particular skin that defines the color scheme, fonts, and images used. Desktops also contain a
header and footer—you can place images, text, or any web content in these areas to give
consistency to the Look & Feel of a desktop.

Typically, you use Workshop for WebLogic to develop a portal and its key components; then you
use the WebLogic Portal Administration Console to create specific desktops using the portal as
a template. For information about creating desktops in the next phase of development, refer to
“Managing Portal Desktops” on page 12-1.

You use books to organize your content and navigation in a hierarchical manner. Books can
contain other books or pages. In a browser, a book is rendered as a set of tabs or links. Each portal
contains a main book called, by default, “Main Page Book.” A page consists of a set of columns
and/or windows that organize the actual content of your portal. You navigate to a page by clicking
on an individual tab or a link. You can create books and pages using either Workshop for
WebLogic or the WebLogic Portal Administration Console.

Add a Page or Book to Your Portal
This section describes how to add a second page to the portal’s main book. When the portal is
rendered in a browser, the two pages will appear as two clickable tabs. You can add a new page
using a few different methods; this description describes a drag and drop method.

Note: The procedure for adding a book to a portal is almost identical to the procedure for adding
a page. Rather than include both procedures here, we explain how to add a page and,
where appropriate, highlight any differences between the two tasks.

To add a page to a portal, perform these steps:

1. From the Palette view, drag and drop the Page icon to the location where you want to add it.
Figure 8-3 shows the result when you add a new page to the right of the default portal page.

Tip: If you do not see the Palette view, select Window > Show View > Palette.

Creat ing a Po r ta l

BEA WebLogic Portal Portal Development Guide 8-5

Figure 8-3 Adding a Page to a Portal in the Workbench

Creating a Standalone Book or Page
You can create a standalone book or page; when you do this, the book or page information is kept
in a separate .book or .page file and is not embedded within the .portal file. Standalone books
and pages are very useful elements in your portal development environment. For example, in a
team development environment, developers can create individual books or pages that can be
managed separately and then added to the portal at a later time. Also, if you want to create books
and pages that are accessible to remote consumer applications, you must create the book or page
as a standalone .book or .page file using Workshop for WebLogic.

Note: The procedure for creating a standalone book is almost identical to the procedure for
creating a standalone page. Rather than explain both procedures here, we explain how to
create a standalone page and, where appropriate, highlight any differences between the
two procedures.

To create a standalone page in a portal, perform these steps:

1. In your portal web project, navigate to the web content folder (typically named WebContent)
or to a folder within the web content folder.

You must locate books and pages in a web content directory or sub-directory that is
subordinate to the web project directory. The default web content directory name is

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-6 BEA WebLogic Portal Portal Development Guide

WebContent, and is assigned when you use the Portal Web Project Wizard. You can
change the name of your web content directory if you wish; for more information, refer to
“New Portal Web Project - Web Module Dialog” on page 4-16.

2. Select File > New > Other.

3. In the New – Select a Wizard dialog, open the WebLogic Portal folder, select Page, and
click Next.

In the New Page dialog, note that the parent folder auto-fills the path from which you
started the wizard.

4. Enter a name for the new page; an example is shown in Figure 8-4.

A file type of .page is required for standalone pages (or .book for standalone books); you
can type the .page extension if you wish, but WebLogic Portal automatically adds the
extension if you don’t enter it.

Figure 8-4 New Page Dialog

5. Click Finish.

Creat ing a Po r ta l

BEA WebLogic Portal Portal Development Guide 8-7

The new page is added to the portal web project in the folder you specified, as shown in
Figure 8-5.

Figure 8-5 A New Page File

In addition, the page opens in the editor, as shown in Figure 8-6.

Figure 8-6 Page File Displayed in the Editor

Adding a Book or Page Reference (Content)
Use this selection to add a reference to an existing book or page, into a book or page in your
portal.

Page file

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-8 BEA WebLogic Portal Portal Development Guide

Adding a Book or Page Reference from the Portal Editor
Perform these steps:

1. Highlight the portal element to which you want to add a book or page reference.

An orange border appears around a selected element.

2. Right-click and select Insert > New Book Content or Insert > New Page Content.

The Choose a Book dialog or Choose a Page dialog displays, as appropriate; all
.book/.page files for the web project are listed.

Note: The Insert menu option appears only when this selection is valid, depending on the
selected portal element.

3. Select the desired .book or .page file, then click OK.

The Workshop for WebLogic window updates, adding a Book (or Page) Content node in
the Outline view and displaying the content properties in the Properties view.

Adding a Book or Page Reference Using the Outline View
Perform these steps:

1. Right-click the element to which you want to add book or page content and select Insert >
New Book Content or Insert > New Page Content.

The Choose a Book dialog or Choose a Page dialog displays, as appropriate; all
.book/.page files for the web project are listed.

Note: The Insert menu option appears only when this selection is valid, depending on the
selected portal element.

2. Select the desired .book or .page file, then click OK.

The Workshop for WebLogic window updates, adding a Book (or Page) Content node in
the Outline view and displaying the content properties in the Properties view.

Rearranging Books and Pages
You can change the order of books and pages. For example, if the main page book contains a page
and a book in the following order:

Home Page | My Book

you can change the order to:

Por ta l Component P roper t i es

BEA WebLogic Portal Portal Development Guide 8-9

My Book | Home Page

To change the order of books and pages, right-click the book or page that you want to move in
the Outline view, and choose Move Up or Move Down. The book or page moves up or down in
the Outline view, and the horizontal reordering occurs in the portal editor.

Rearranging books and pages does not rearrange them in any portal desktops that you already
created with the WebLogic Portal Administration Console. For instructions on rearranging those
books and pages, refer to Chapter 12, “Managing Portal Desktops.”

Portal Component Properties
Portal properties are named attributes of the portal that uniquely identify it and define its
characteristics. Some properties—such as title and definition label—are required; many optional
properties allow you to enable specific functions for the portal such as presentation properties,
rollover images, and control tree optimization. The specific properties that you use for a portal
vary depending on your expected use for that portal.

During the development phase of the portal life cycle, you generally edit portal properties using
Workshop for WebLogic; this section describes properties that you can edit using Workshop for
WebLogic.

During staging and production phases, you typically use the WebLogic Portal Administration
Console to edit portal properties; only a subset of properties are editable at that point. For
instructions on editing portal properties from the WebLogic Portal Administration Console, refer
to Chapter 12, “Managing Portal Desktops.”

This section contains the following topics:

Editing Portal Properties

Tips for Using the Properties View

Properties for All Portal Components

Editing Portal Properties
To edit portal properties, follow these steps:

1. Navigate to the location of the portal whose properties you want to edit, and double-click the
.portal file to open it in the editor.

2. Click the border of the desired component to display its properties in the Properties view.

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-10 BEA WebLogic Portal Portal Development Guide

The displayed properties vary according to the active area that you select. If you click the
outer (desktop) border, properties for the entire desktop appear; if you click inside a
placeholder, properties for that placeholder appear, and so on.

3. Navigate to the Properties view to view the current values for that component’s properties.
Figure 8-7 shows a segment of a portal header’s Properties view:

Figure 8-7 Portal Properties Example - Header Properties

4. Double-click the field that you want to change.

If you hover the mouse over a property field, a description of that field displays in a popup
window.

Values for some properties are not editable after you create the portal.

In some cases, from the property field you can view associated information pertaining to
that property; for example, the Skeleton URI property provides an Open button to
view the associated file. For more information about options available in the Properties
view, refer to “Tips for Using the Properties View” on page 8-10.

Tips for Using the Properties View
The behavior of the Properties view varies depending on the type of field you are editing. The
following tips might help you as you manipulate the content of the data fields in the Properties
view.

If a file is associated with a property, the Properties view includes an Open button in
addition to a Browse button; you can click Open to display the appropriate editor/view for
the file type.

If you have edited a markup file that is associated with a property, you can cause the
property to "reload" the content of that markup file so that it is available for selection in
the Properties view. To reload a markup file for a property, navigate to the property for
which you want to reload the markup file contents and click Reload. The Reload button is
available only for properties that have an associated markup file; for example, layout, shell,
theme, menu, and so on.

Por ta l Component P roper t i es

BEA WebLogic Portal Portal Development Guide 8-11

If you want to edit the XML source for a portal file, you can right-click the .portal file in
the Package Explorer view and choose Edit with > XML Editor to open the file using the
basic XML editor that Eclipse provides.

Properties for All Portal Components
The properties described in this section are contained within the .portal file and are editable in
the Properties view. The values you enter here override the corresponding value in the .portal
file, if a value exists there.

When you click a border in the portal editor view, an orange outline appears around that section
of the portal, and a related set of properties appears in the Properties view. The displayed
properties vary according to the selected border in the view. Figure 8-8 shows the highlighted
Header area and its related properties.

Figure 8-8 Highlighted Portal Header and Related Properties in the Properties View

Table 8-1 describes portal properties and their values. This table lists the properties in
alphabetical order.

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-12 BEA WebLogic Portal Portal Development Guide

Table 8-1 Properties in the Portal Properties View

Property Type Description

Backing File
(Backable Properties
section; Book and
Page section))

Optional If you want to use a class for preprocessing (for example,
authentication) prior to rendering the portlet, enter the fully
qualified name of that class. That class must implement the
interface
com.bea.netuix.servlets.controls.content.backing.JspBacking or
extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBac
king.

Backing File (Header
and Footer
Properties)

Read-only The class referenced in a shell that is used for preprocessing prior
to rendering a shell's header or footer JSP. This value is read from
the <netuix:jspContent> "backingFile" attribute in the
.shell file <header> or <footer> tag. If you select a
different shell for the desktop, you might see a different value
here.

Content Presentation
Class

Optional A CSS class that overrides any default CSS class used by the
component’s skeleton.

For proper rendering, the class must exist in a cascading style sheet
(CSS) file in the Look & Feel’s selected skin, and the skin’s
skin.xml file must reference the CSS file.

Sample: If you enter “my-custom-class”, the rendered HTML
from the default skeletons looks like this:
<div class="my-custom-class">

The properties you enter are added to the component's parent
<div> tag. On books, pages, and portlets, use the Content
Presentation Class property to set properties on the component's
content/child <div> tag, especially for setting a style class that
enables content scrolling and height-setting.

Por ta l Component P roper t i es

BEA WebLogic Portal Portal Development Guide 8-13

Content Presentation
Style

Optional Optional. The primary uses are to allow content scrolling and
content height-setting.

For scrolling, enter one of the following attributes:
• overflow-y:auto - Enables vertical (y-axis) scrolling
• overflow-x:auto - Enables horizontal (x-axis) scrolling
• overflow:auto - Enables vertical and horizontal scrolling

For setting height, enter the following attribute:
• height:200px

where 200px is any valid HTML height setting.

You can also set other style properties for the content as you would
using the Presentation Style property. The properties are applied to
the component's content/child <div> tag.

Content URI Read-only The JSP file referenced in a shell that is used to display content in
the desktop header or footer. This value is read from the
<netuix:jspContent> "contentUri" attribute in the
.shell file <header> or <footer> tag. If you select a
different shell for the desktop, you might see a different value
here.

Default Page Required Select the page that appears by default when the desktop is
accessed. The list is populated with Definition Labels of all pages
in the portal.

Table 8-1 Properties in the Portal Properties View (Continued)

Property Type Description

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-14 BEA WebLogic Portal Portal Development Guide

Definition Label Required Each component must have a unique identifier. A default value is
entered automatically, but you can change the value. Definition
labels can be used to navigate to books, pages, or portlets. Also,
components must have definition labels for entitlements and
delegated administration.

As a best practice, you should edit this value in Workshop for
WebLogic to create a meaningful value. This is especially true
when offering books, pages, or portlets remotely, as it makes it
easier to identify them from the producer list.

When you create a portal resource instance on a desktop in the
WebLogic Portal Administration Console, the generated
definition label is not editable.

About .book and .page definition labels: Avoid including
multiple occurrences of the same .book or .page file (with the same
definition label) within a portal. For example, if you use nested
embeds of the same .book or .page file within a portal, then
rendering problems will occur due to the existence of duplicated
definition labels.

Editable Optional A dropdown menu displays these selections:
• Not Editable
• Edit in Menu
• Edit in Titlebar

If you have visitor tools enabled so that users can modify book
properties, setting Editable to "Edit in Title Bar" or "Edit in Menu"
puts a visitor tool link in that location.

"Edit in Menu" is available only if you select a menu type for the
Navigation property. When you select "Edit in Title Bar" or "Edit
in Menu," a group of Mode Properties appears in the Property
Editor.

Table 8-1 Properties in the Portal Properties View (Continued)

Property Type Description

Por ta l Component P roper t i es

BEA WebLogic Portal Portal Development Guide 8-15

Encoding Optional This selection is available when you select the desktop element
from the portal view or outline view while editing a .portal file.

Select the encoding used to display the portal. The default is
UTF-8. You can select a value using the drop-down menu, which
provides five common IANA encoding selections, or you can type
a value into the field. The values presented in the combobox are
descriptive display names that are converted to actual IANA
names when saved to the .portal file.

You can enter a name from the extended encoding set as an IANA
name, alias, or canonical name for the encoding. If you type in a
value that does not appear in the drop-down menu, a validator
checks the entry when you press Enter or click outside the field. If
the encoding fails validation, a warning message displays; you can
either change the value or accept it anyway. The value is stored as
shown in the field, in the .portal file.

The character set is based on these resources, generally in the
following order:
1. Encoding of the portal (the “encoding” attribute of the

desktop)
2. Default encoding set in netuix-config.xml.
3. Encoding set in <jsp-descriptor> element of

weblogic.xml.
4. Internal WebLogic Server/WebLogic Portal defaults.

Error Page URI Read-only The file referenced in a shell that is used to display an error
message in the desktop header or footer if the contentUri JSP
encounters errors. This value is read from the
<netuix:jspContent> "errorUri" attribute in the .shell
file <header> or <footer> tag. If you select a different shell
for the desktop, you might see a different value here.

Flow Read-only If the Using Flow property is set to true, this value can be
vertical or horizontal. Flow determines whether books or
portlets put in the placeholder are positioned on top of each other
(vertical) or beside each other (horizontal). This value is read from
the .layout file for the page's selected Layout Type.

Table 8-1 Properties in the Portal Properties View (Continued)

Property Type Description

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-16 BEA WebLogic Portal Portal Development Guide

Hidden Optional Hides the navigation tab for the portal component to prevent direct
access. For pages or books, you can provide access with a link (to
the definition label) or by using a backing file.

Layout Type Required Select the page layout style for positioning books and portlets in
placeholders on a page. A dropdown menu provides the following
selections:
• Two Column Layout
• Three Column Layout
• Single Column Layout
• Four Column Layout

Look & Feel Required Select the Look & Feel to determine the default desktop
appearance (combination of skins and skeletons).

Navigation Required Select the default type of menu to use for navigation among books
and pages. The dropdown menu displays these selections:
• Single Level Menu – Provides a single row of tabs for the

book's immediate pages and child books.
• Multi Level Menu – Recursively provides a hierarchical menu

for all the books and pages contained within a book. This
menu does not stop at the first set of children. It continues
down the tree. If the parent book uses a multi-level menu, then
the child books should not use a menu as the multi-level menu
will cover them. For performance considerations associated
with multi-level menus, refer to Chapter 11, “Designing
Portals for Optimal Performance.”

• No Navigation

Offer As Remote
(new in Version 9.2)

Optional Indicates whether or not this resource is to be offered to a WSRP
consumer. The default value is true.

This attribute is visible in the Properties view when you select any
page or book within the editor, when a .page or .book file is open.
Pages and books of .portal files do not cause this attribute to
display.

Table 8-1 Properties in the Portal Properties View (Continued)

Property Type Description

Por ta l Component P roper t i es

BEA WebLogic Portal Portal Development Guide 8-17

Orientation Optional Hint to the skeleton to position the navigation menu on the top,
bottom, left, or right side of the book. You must build your own
skeleton to support this property. Following are the numbers used
in the .portal file for each orientation value: top=0, left=1, right=2,
bottom=3.

Packed Optional Rendering hint that can be used by the skeleton to render the book
or page in either expanded or packed mode. You must build your
own skeleton to support the property.

When packed="false" (the default), the book or page takes up as
much horizontal space as it can.

When packed="true," the book or page takes up as little horizontal
space as possible.

From an HTML perspective, this property is most useful when the
window is rendered using a table. When packed="false," the
table's relative width would likely be set to "100%." When
packed="true," the table width would likely remain unset.

Placeholder Width Read-only Displays the width set for the placeholder. This value is read from
the .layout file for the page's selected Layout Type.

Presentation Class Optional A CSS class that overrides any default CSS class used by the
component’s skeleton.

For proper rendering, the class must exist in a cascading style sheet
(CSS) file in the Look & Feel’s selected skin, and the skin’s
skin.xml file must reference the CSS file.

Sample: If you enter “my-custom-class”, the rendered HTML
from the default skeletons looks like this:
<div class="my-custom-class">

The properties you enter are added to the component's parent
<div> tag. On books, pages, and portlets, use the Content
Presentation Class property to set properties on the component's
content/child <div> tag, especially for setting a style class that
enables content scrolling and height-setting.

Table 8-1 Properties in the Portal Properties View (Continued)

Property Type Description

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-18 BEA WebLogic Portal Portal Development Guide

Presentation ID Optional A unique ID inserted in the rendered HTML tag for the
component. The value you enter (which must be unique among all
presentation IDs in the portal) overrides the ID that might
otherwise be inserted by the component's skeleton. An example
use would be inserting a unique ID that JavaScript could operate
on.

Sample: If you enter 12345, the rendered HTML from the default
skeletons looks like this:
<div id="12345">

Presentation Style Optional HTML style attribute to insert for the portal component. This
attribute is equivalent to a style sheet class attribute and overrides
any attributes in the style sheet class. Separate multiple entries
with a semicolon.

Sample: If you enter {background-color: #fff} for a
portlet title bar, the rendered HTML from the default skeletons
looks like this:
<div class="bea-portal-window-titlebar"
style="{background-color: #fff}">**

and the portlet title bar will have a white background. The
background-color attribute you entered overrides the
background-color attribute in the bea-portal-window-titlebar
class.

The properties you enter are added to the component's parent
<div> tag. On books, pages, and portlets, use the Content
Presentation Style property to set properties on the component's
content/child <div> tag, especially for setting content scrolling
and height.

Properties Optional A semicolon-separated list of name-value pairs to associate with
the object. This data can be utilized by the skeletons to affect
rendering.

Public Access (new
in Version 9.2)

Optional Indicates whether or not this resource is to be publicly visible. The
default value is true.

This attribute is visible in the Properties view when you select any
standalone page or book within the editor, when the .page or
.book file is open. Pages and books of .portal files do not
cause this attribute to display.

Table 8-1 Properties in the Portal Properties View (Continued)

Property Type Description

Por ta l Component P roper t i es

BEA WebLogic Portal Portal Development Guide 8-19

Return to Default
Page

Optional Determines the page displayed when a book is selected.

When Return to Default Page="false" (the default), the last page
that was active in a book is displayed when the book is selected.

When Return to Default Page="true," the page selected in the
Default Page property is always displayed when a book is selected.

For more information about the behavior of this option, refer to
“Behavior of the “Return to Default Page” Attribute” on
page 8-38.

Rollover Image Optional Path to a rollover image for the icon that appears next to the book
or page title.

Because the specified path might not be relative to the project, the
image file cannot be located by Workshop for WebLogic and is
not rendered on book or page tabs in the portal editor. Image paths
must be relative to the image search paths specified in the
skin.xml file associated with the selected Look & Feel.

Selected Image Optional Select an image to override the icon that appears next to the book
or page title. This image appears on the tab of selected pages.

Because the specified path might not be relative to the project, the
image file cannot be located by Workshop for WebLogic and is
not rendered on book or page tabs in the portal editor. Image paths
must be relative to the image search paths specified in the
skin.xml file associated with the selected Look & Feel.

Shell Required Select the default shell for the area outside of the books, pages, and
portlets. Shells determine the content for the desktop header and
footer.

Skeleton URI Optional The path (relative to the project) to a skeleton JSP that is used to
render the portal component. This JSP overrides the skeleton JSP
that would otherwise be used by the selected Look & Feel for the
desktop. For example, enter
/frameworks/myskeletons/mytitlebar.jsp.

Theme Optional Applicable for books and pages. Select a theme to give the book
or page a different Look & Feel from the rest of the desktop.

Table 8-1 Properties in the Portal Properties View (Continued)

Property Type Description

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-20 BEA WebLogic Portal Portal Development Guide

Copying J2EE Library Files into a Project
You can override a resource in a shared J2EE library by copying the resource into your portal web
project and then customizing it.

Title Required
(Read-only
for
placeholder
s)

Enter a title for the portal component. Page titles appear on page
tabs and portlet titles appear on portlet title bars.

For a placeholder, the name of the placeholder. This value is
read-only, and is obtained from the .layout file for the page's
selected Layout Type.

Tree Optimization Optional Using this function improves performance, especially for portals
that have large control trees (books, pages, portlets). If this flag is
set to true, the portal framework generates a partial control tree
rather than the full tree. Tree optimization causes slight changes in
the behavior of the portal; do not use it without first performing a
complete regression test on the portal. For more information, refer
to Chapter 11, “Designing Portals for Optimal Performance.”

Unselected Image Optional Select an image to override the icon that appears next to the book
or page title. This image appears on the tab of unselected pages.

Because the specified path might not be relative to the project, the
image file cannot be located by Workshop for WebLogic and is
not rendered on book or page tabs in the portal editor. Image paths
must be relative to the image search paths specified in the
skin.xml file associated with the selected Look & Feel.

Using Flow Read-only If true, books and portlets put in the placeholder are positioned
according to the value of the Flow property. If this value is set to
false, the default flow is used (vertical). This value is read from
the .layout file for the page's selected Layout Type.

Visible Optional Makes the edit icon in the titlebar or menu invisible (false) or
visible (true). Set Visible to "false" when, for example, you want
to provide an edit URL in a desktop header.

When you select a placeholder in the Portal Designer, the
following read-only properties appear in the Property Editor
window. The property values are read in from the .layout file that
corresponds to the selected Layout Type for the page.

Table 8-1 Properties in the Portal Properties View (Continued)

Property Type Description

Copy ing J2EE L ib rar y F i l es in to a P ro jec t

BEA WebLogic Portal Portal Development Guide 8-21

WARNING: If you copy J2EE library resources into your project, keep in mind that with future
updates to the WebLogic Portal product, you might have to perform manual steps
in order to incorporate product changes that affect those resources. With any
future patch installations, WebLogic Portal supports only configurations that
do not have copied J2EE library resources in the project.

To copy a J2EE library resource into your project, follow these steps:

1. Add the Merged Projects view if it is not currently visible. To do so:

Select Window > Show View > Merged Projects View.

The Merged Projects View is part of the default Portal Perspective, displaying in the same
area as the Package Explorer view.

2. Select the Merged Projects view if it is not already selected.

Italicized items in the Merged Projects View represent entities that are stored in shared
J2EE libraries. All entities that are stored on your filesystem, such as any portal files that
you create, are shown in regular type.

3. Expand the display tree to view the resource that you want to copy to the project.

You can copy a single file, set of files, or an entire folder, to your project.

4. Right-click the resource(s) that you want to copy, and select Copy To Project.

The resources are copied to the web content folder of your project, and reflect the
hierarchy of their location in the J2EE library.

Note: You can view a Properties dialog for a file in the Merged Projects View by right-clicking
the file and selecting Properties. The dialog shows the J2EE library information for the
file, including the J2EE library name and version.

Viewing Files that Override Shared J2EE Library Files
You can view local file overrides of J2EE library files in either of these ways:

In the Merged Projects view in Workshop for WebLogic, files that you copied to the
project are shown in plain (non-italic) text.

Optionally, you can choose to superimpose a small marker icon on file icons in the display
tree to indicate that a local file in your portal web project is overriding a file of the same
name and path that exists in one of your shared J2EE libraries.

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-22 BEA WebLogic Portal Portal Development Guide

The icon indicating J2EE library overrides is turned off by default, due to the processing
time involved in updating the information, and the fact that using it causes the WebLogic
Portal plugins to always load at startup.

To activate the library override marker icons, follow these steps:

a. Navigate to Window > Preferences > General > Appearance > Label Decorations.

b. Check the box labeled WebLogic Library Module File Override.

c. Click Apply and then click OK.

A small arrow displays in the icon for files that were copied from the J2EE library to
the project.

Creating a Utility Project
A utility project is generally used to develop general-purpose Java code that is not directly part
of special entities, such as web services, controls, or EJBs. Table 8-2 lists a few WebLogic Portal
J2EE libraries that can be added as utility projects.

Table 8-2 Common WebLogic Portal Libraries To Add To Utility Projects

J2EE Library Purpose Library Dependencies

p13n-app-lib Base library required for
all other WebLogic Portal
libraries.

None.

wlp-services-app-lib Contains portal
application classes that are
need to create custom
placeholders.

p13n-app-lib

wlp-framework-full-app-lib Contains the Portal
Framework customization
classes.

p13n-app-lib

wlp-tools-app-lib Contains the controls and
classes related to the
Portal Administration
Console framework.

wlp-services-app-lib

wlp-framework-full-app-lib

Creat ing a Ut i l i t y P ro jec t

BEA WebLogic Portal Portal Development Guide 8-23

The steps in this section refer to the src folder in the Package Explorer View. Your src directory
might be named differently.

Perform the following steps to create a utility project:

1. Create a utility project in Workshop for WebLogic by performing the following steps:

a. In the Portal Perspective, choose File > New > Project.

b. In the New Project - Select a Wizard window, expand the J2EE folder and select Utility
Project. Click Next.

c. In the New Java Utility Module - Utility Module dialog, enter a name for the utility project
and ensure that the Use default check box is selected. Select the Add project to an EAR
check box and click Next, as shown in Figure 8-9.

Figure 8-9 Enter a Project Name

d. In the New Java Utility Module - Select Project Facets dialog, select the facets that you
want to enable and click Finish. Your new utility project is automatically associated with
your EAR project.

2. To ensure that the project sees utility project resources as the server will see them, add the
WebLogic Portal Server and the appropriate J2EE library CLASSPATH containers to the
project. Perform the following steps:

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-24 BEA WebLogic Portal Portal Development Guide

a. In Package Explorer, right-click the portal utility project you created and choose
Properties.

b. In the Properties dialog, select Java Build Path and select the Libraries tab.

c. Click Add Library, as shown in Figure 8-10.

Figure 8-10 Add a Library

d. In the Add Library dialog, select BEA WebLogic Portal Server as the library type and
click Next, as shown in Figure 8-11.

Custom Cont ro ls in Page F lows

BEA WebLogic Portal Portal Development Guide 8-25

Figure 8-11 Select BEA WebLogic Portal Server

e. In the Add Library - BEA WebLogic Portal Server dialog, configure the server
CLASSPATH entries by selecting All Configured entries and clicking Finish.

f. In the Properties dialog, click Add Library in the Libraries tab.

g. In the Add Library dialog, select WebLogic J2EE Library and click Next.

h. In the Add Library -WebLogic J2EE Library dialog, click Browse and select the library
you need and click OK. The Specification Version, and Implementation Version fields are
populated. Select the Allow newer versions check box and click Finish.

i. In the Properties dialog, click OK.

Custom Controls in Page Flows
WebLogic Portal provides custom Java controls—collections of actions (Java methods) that you
can drag and drop into your page flows—to make development easier and more automated. You
can add actions in a graphical interface and configure the actions with the Workshop for
WebLogic editor, insulating you from working directly with Java code (although you can still
work directly with the code in Source View). Even if you want to work directly with code,
working initially with the graphical interface automates code entry and makes it more syntax
error free.

For example, the custom controls provided with WebLogic Portal provide built-in forms on some
methods. If you want an action that creates a user, you can use the createUser method in the User

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-26 BEA WebLogic Portal Portal Development Guide

Provider control. If you add the createUser method into the control's action area, the control
provides a CreateUserForm bean that can be added to a JSP and linked to the action
automatically.

For information about creating page flows using Workshop for WebLogic, refer to the BEA
Workshop for WebLogic Platform Programmer’s Guide. For more information about the specific
controls provided with WebLogic Portal, refer to the Controls Javadoc.

The following sections provide more information about using controls provided by WebLogic
Portal in page flows.

Adding a Portal Control to a Page Flow
To add a control to a page flow:

1. Open an existing page flow (.jpf file) or create a new page flow.

For information about creating page flows using Workshop for WebLogic, refer to the BEA
Workshop for WebLogic Platform Programmer’s Guide.

2. If you are not already using the Page Flow Perspective, Workshop for WebLogic asks if you
want to switch to it. Do so.

3. Right-click in the source view for the page flow and select Insert > Control, as shown in
Figure 8-12.

Figure 8-12 Insert > Control Menu Selection

The Select Control dialog box displays, as shown in Figure 8-13.

http://edocs.bea.com/wlp/docs92/javadoc/controls/index.html

Custom Cont ro ls in Page F lows

BEA WebLogic Portal Portal Development Guide 8-27

Figure 8-13 Select Control Dialog

4. Expand the desired folder and select the control that you want to add.

5. Click OK to add the control to the page flow.

All the methods in the control are now available to your page flow.

Adding an Action to the Page Flow
You can add a method (action) to your page flow by dragging a method from the Page Flow
Explorer view into the Flow View in the page flow editor, as shown in Figure 8-14.

Figure 8-14 Adding an Action to a Page Flow Using the Flow View

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-28 BEA WebLogic Portal Portal Development Guide

Portal Control Security
Many portal framework controls have secured methods, meaning that any control attempting to
execute such a method would need to be in an authorized security role. You can specify security
roles in a page flow on each action. A user must be a member of the designated role(s) for the
action to be fired. For example, the User Provider Control has a removeUser() action that requires
the caller to be in the role of "Framework SystemAdministrator" or "Admin."

For user and group management actions, the roles you specify in the WebLogic Portal
Administration Console Authentication Security Provider Service determine whether or not the
user can perform the action.

You can add security roles to a domain using the WebLogic Server Administration Console.

Deploy and View a Portal
You can deploy (publish) a portal to the server and view it in a browser window.

Caution: Due to a problem in Eclipse, some JSP tags are marked as containing an error when
they are actually correct; although no error actually exists, Eclipse will not publish
(deploy) the application. If this situation occurs, you must turn off JSP validation
before publishing. Leave JSP validation on until you have fixed any problems except
those caused by these tags; before deploying, select Window > Preferences, select
Validation in the tree, and uncheck the JSP Syntax Validator check box.

To deploy (publish) and view your portal project, follow these steps:

1. Right-click the.portal file for the portal in the Package Explorer view and select Run As >
Run on Server, as shown in Figure 8-15.

Note: In many cases you are not required to redeploy a portal to see changes that you have
made. For more information, refer to “Running a Project on the Server” on page 4-25.

Deploy and V i ew a Po r ta l

BEA WebLogic Portal Portal Development Guide 8-29

Figure 8-15 Selecting to Run the Portal on the Server

The Run On Server - Define a New Server dialog displays. Make sure the server that you
want to use is highlighted.

2. Click Finish to begin the deployment process.

Wait while Workshop for WebLogic starts the server, deploys files to the server, and runs
the application. While deployment is in process, you can view status messages in the status
bar at the bottom of the window.

The results appear in a new tab in the editor view, as shown in Figure 8-16.

Tip: If you previously deployed a project of the same name and that project is in a different
location, you need to undeploy that project from the server. To do this, double-click
the server in the Servers view, and delete the appropriate portal web project (not the
shared J2EE libraries) from the Published Modules list. For more information about
this task, refer to the “Managing Servers” section of the BEA Workshop for WebLogic
Platform Programmer’s Guide.

Figure 8-16 Portal Display in the Workbench Editor View

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-30 BEA WebLogic Portal Portal Development Guide

Tip: You can choose to always use an external web browser to view your portal if you
wish. To do so, select Window > Preferences and select General > Web Browser
in the property tree; then select the Use external Web browser radio button.

Working with URLs
The following sections describe how to work with URLs in WebLogic Portal:

Creating URLs to Portal Resources

URL Compression

URL Troubleshooting

Ampersand Entities in Portal URLs

Optional Look & Feel URL Templates

Creating URLs to Portal Resources
WebLogic Portal provides a convenient, extensible mechanism for creating URLs to your portal
resources in a portal web project that can transfer from domain to domain without breaking,
especially when server names and port numbers change. This URL-creation mechanism also lets
you switch between secure and non-secure URLs (http and https).

The two pieces involved in creating portable URLs are:

The <render:*Url> JSP tags in the Portal Rendering JSP tag library.

A portal web project's WEB-INF/beehive-url-template-config.xml file.

The beehive-url-template-config.xml file contains multiple URL “templates,” each with
a unique name. Those template URLs contain variables such as url:domain and url:port that
are read in from the active server. The <render:*Url> JSP tags have a “template” attribute in
which you can specify the name of a URL template in beehive-url-template-config.xml.

Table 8-3 shows how the JSP tags use the templates to create URLs.

Work ing w i th URLs

BEA WebLogic Portal Portal Development Guide 8-31

You can use any of the URL templates in beehive-url-template-config.xml provided by
WebLogic Portal, and you can add as many templates as you want into the file.

The following variables are available for use in URL template building:

{url:domain} - Reads the name of the server from the current request.

{url:port} - Reads the listen port number of the server from the current request. (See
Troubleshooting below.)

{url:securePort} - Reads the SSL port number of the server from the current request.
(See Troubleshooting below.)

{url:path} - Reads the name of the web application. The URLs to all resources in a web
application are relative to the web application directory.

{url:queryString} - Reads a queryString variable for the URL.

{url:compression} - Allows you to use the pluggable compression mechanism to create
shorter, more readable, URLs. For details, refer to “URL Compression” on page 8-31.

URL Compression
URL strings can take up a large percentage of the response HTML. WebLogic Portal’s URL
compression mechanism provides a pluggable means of creating shorter URLs. For example:

Before implementing URL compression, a URL would look like this:

Table 8-3 Examples of JSP Tags Using the Templates to Create URL

beehive-url-template-config.xml <render:resourceUrl>

The following is a sample URL template in
beehive-url-template-config.xml.
<url-template name="secure-url">

https://{url:domain}:{url:securePo
rt}/{url:path}?{url:queryString}

</url-template>

The following is how the <render:resourceUrl>
JSP tag would create a URL using the template.
<% String reportpath =
"reports/report1.html"; %>

<a href="<render:resourceUrl
template="secure-url"
path="<%=reportpath%>"/>">
View the Report

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-32 BEA WebLogic Portal Portal Development Guide

http://abc.com/webapp/portletEvents/activatePage/activatePage.portal?_nfpb
=true&_windowLabel=pfTPC_source_1&pfTPC_source_1_actionOverride=%2Fportlet
Events%2FactivatePage%2FtoPage1

After implementing URL compression, a URL would look like this:
http://abc.com/wlp.c?__c=7f6

WebLogic Portal implements URL compression by mapping strings to the database. You set up
URL compression using a web application-level setting; processing is invoked through the
GenericURL class.

The default algorithm uses two of the p13n caches for the mapping -
wlp.urlCompression.compressed and wlp.urlCompression.expanded - which are located in
p13n-cache-config.xml in the framework-full-app library module.

Implementing URL Compression
To configure a webapp to use url compression, follow these steps:

1. Define the compression servlet in web.xml; for example
<servlet>

<servlet-name>UrlCompressionServlet</servlet-name>
<servlet-class>com.bea.portlet.compression.UrlCompressionServlet
</servlet-class>
<init-param>

<param-name>defaultPage</param-name>
<param-value>/index.jsp</param-value>

</init-param>
<init-param>

<param-name>errorPage</param-name>
<param-value>/errors/error.jsp</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

2. Map the compression pattern; for example:
<servlet-mapping>

<servlet-name>UrlCompressionServlet</servlet-name>
<url-pattern>wlp.c</url-pattern>

</servlet-mapping>

3. Add the token {url:compression} to the templates for which you want to apply
compression.

Work ing w i th URLs

BEA WebLogic Portal Portal Development Guide 8-33

URL Compression Special Considerations
The following sections describe some special considerations to keep in mind as you implement
URL compression.

URL Compression and AJAX
URL compression interferes with some of the AJAX-specific mechanisms for page refreshes that
are associated with asynchronous portlet rendering. Because of this, URL compression must be
disabled whenever asynchronous content rendering is disabled to force page refreshes. WebLogic
Portal disables URL compression automatically except when file upload forms are used; in this
situation, you must explicitly disable it. For instructions, refer to the Portlet Development Guide.

A successful implementation of URL compression depends on portal developers following best
practices and using supported URL tags and classes to generate URLs.

URL Compression and Off-Site URLs
An off-site URL is a URL to a resource that is not hosted in the web application of the code
generating the URL. In a web application that has compression enabled, you must specify a URL
template with compression disabled when using GenericURL, its subtypes, or the corresponding
JSP tags to generate off-site URLs.

Use the following code fragment as a guide:
GenericURL redirectURL = GenericURL.createGenericURL(request, response);
redirectURL.setDomain("www.yahoo.com"); redirectURL.setPort(80);
redirectURL.setPath("/compressedUrl/index.html");
redirectURL.setTemplate("no_compression_template");

where "no_compression_template" is the name of a URL template that excludes the
{url:compression} pseudo-token.

URL Troubleshooting
If you are using a proxy server or switching back and forth between non-secure and secure ports,
you might find that URLs do not resolve if you use the {url:port} or {url:securePort} variables.
This is because the variables for those values are read from the request. For example, if a user in
a non-secure port (port number 80) clicks a secure https link that was created with a URL template
that uses the {url:securePort} variable, the port number of the request (80) is used for the
{url:securePort} variable, which would create a secure request (https) on an non-secure port. The
same could happen if a user on a proxy server (port 80) clicks a link to a resource outside the
proxy server (port 443).

../portlets/index.html

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-34 BEA WebLogic Portal Portal Development Guide

In both of those cases, you need to hard code port numbers in the URL templates to get URLs to
resolve correctly.

URL Templates and Web Services for Remote Portlets (WSRP)
The beehive-url-template-config.xml file is automatically included (through a J2EE Shared
Library) in all portal web projects. This file contains URL templates that are required to support
URL rewriting in consumers. If you intend to use a web application as a WSRP producer, do not
remove these URL templates and variables from the beehive-url-template-config.xml file.

Ampersand Entities in Portal URLs
WebLogic Portal uses the Beehive configuration file beehive-url-template-config.xml for
configuring the form of WebLogic Portal-generated URLs. The Beehive configuration element
for using ampersand entities (&) or ampersand characters (&) is located in the NetUI
configuration file beehive-netui-config.xml. In an HTML configuration, the default is to
generate URLs with ampersand entities, in the absence of a configuration element specifying the
use of ampersand characters.

XHTML configurations force ampersand entities in URLs regardless of the configuration setting.

You can manually override the configuration setting using the useAmpEntity method and the
setForcedAmpForm method in the GenericURL class. For more information about these
methods, refer to the Javadoc.

For a discussion of how previous releases of WebLogic Portal handled ampersands in URLs,
refer to “Ampersand Entities in Portal URLs” on page 5-5.

Optional Look & Feel URL Templates
The WebLogic Portal Look & Feel uses ResourceURLs (and thus, URL rewriters) for resource
(CSS, Javascript, images, and so on) paths under two conditions:

When optional URL templates are present

When resource paths are generated by remote portlets

URL templates that are specific to Look & Feel resources may be specified in a reference group
named "lookandfeel-url-templates." This group is expected to contain one or both of the
following keys: "laf-resource" and "window-resource". The "laf-resource" key is used for
resources related to a skin or skeleton; the "window-resource" key is used for resources related
to window dependencies. The resolved (relative) resource path will be used to replace the

../javadoc/index.html

Work ing wi th Encod ing in HTTP Responses

BEA WebLogic Portal Portal Development Guide 8-35

"{url:path}" parameter in the corresponding URL template. The following portion of the
beehive-url-template-config.xml file shows the syntax of an example URL template:
<url-template>

<name>laf-resource-template</name>
<value>http://my.domain.com/resources/laf/{url:path}</value>

</url-template>

<url-template-ref-group>
<name>lookandfeel-url-templates</name>
<url-template-ref>

<key>laf-resource</key>
<template-name>laf-resource-template</template-name>

</url-template-ref>
</url-template-ref-group>

In the absence of the Look & Feel URL templates, Look & Feel resource paths will remain
relative, with one exception: when generated within the context of a remote portlet, such paths
will use the standard "resource" URL template.

The optional LookAndFeel URL templates can be used to "offload" resources to a different
server. However, such resources MUST be copied (not moved) and be resolvable using URLs
with the same relative resource path as the Portal Web Application (for example,
.../framework/skins/default/css/book.css). Look & Feel path resolution continues to
rely on local filesystem access to resources.

The GetSkinPath tag in the render taglib will not be influenced by the optional Look & Feel URL
templates. Paths produced by this tag will be relative in all cases.

Working with Encoding in HTTP Responses
This section describes how the encoding is set on the HTTP response.

WebLogic Portal uses the following method of setting encoding based on the information in the
.portal file:

1. Examine the netuix:desktop element for an encoding attribute and use that value if
present.

2. If the first check is not applicable, examine the .portal file for the directive.page
element. Note that this mechanism is deprecated. If that element is present, pick up the
encoding from an attribute there.

3. Examine netuix-config.xml for a <defaultEncoding> element, and use the encoding
attribute there.

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-36 BEA WebLogic Portal Portal Development Guide

4. If the previous check is not applicable, fall back to the <encoding> element in the
<jsp-param> section of the web.xml file. Note that this mechanism is deprecated.

This implementation differs from that of previous versions of WebLogic Portal. For more
information, refer to the “Functional Changes” appendix of the Upgrade Guide.

The following examples show how to use the encoding settings.

<netuix:desktop ... encoding="UTF-8" /> in your .portal file

or

<defaultEncoding encoding="UTF-8" /> in your netuix-config.xml file

Cache Management in Workshop for WebLogic
If configured properly, caches can vastly reduce the time needed to retrieve frequently used data.
You can use Workshop for WebLogic to change settings for the current running instance of
existing caches, or to flush caches. When you configure a cache, you modify its parameters to
change its behavior or capacity. For example, you can set up a cache to hold only the most recent
200 entries and set the amount of time (in milliseconds) to remain in the cache. You can also flush
a cache so that all new requests for information come from the database.

You cannot add a new cache using the Workshop for WebLogic user interface. However, you can
add a cache by manually editing the META-INF/p13n-content-config.xml cache
configuration file in the in the content directory (named EarContent by default) of the EAR
project. You can also copy a cache file from the Merged Project view into your project if desired.

For details on using JSP tags or other methods of managing caches, refer to the Performance
Tuning Guide, which will be available in a future documentation release.

The cache changes that you make using Workshop for WebLogic are not persisted and will be
lost the next time you publish the application or restart the server. To make persistent changes,
use the WebLogic Portal Administration Console.

Caches are read-only and cluster-aware.

Changing Cache Settings in Workshop for WebLogic
Note: Before you can perform the steps in this section, your server must be running.

To change cache settings in Workshop for WebLogic:

1. Select Run > Portal Cache Manager.

../upgrade/index.html

Cache Management in Workshop fo r WebLog ic

BEA WebLogic Portal Portal Development Guide 8-37

The Portal Cache Manager dialog displays, including a list of the current “live” caches.
The caches displayed in this dialog comprise a superset of the caches that you can display
in the Administration Console; the list in the Portal Cache Manager dialog includes the
configured caches as well as caches that are triggered dynamically based on the processes
that you are using in your portal.

2. Select a cache to change its settings.

Use the table below as a guide to the settings that you can change:

Table 8-4 Configurable Cache Settings in Workshop for WebLogic

Field/Button Description

Is Enabled check box Select this check box to enable or disable the cache. If you disable a cache,
it still exists, but any requests to that cache would return a null value.

You might want to disable a cache if, for example, you are testing
placeholders or content selectors and you want to make sure that a value
returned to you is the value from the database and not a cached value.

Is Configured This read-only field indicates whether or not the cache has been configured
using the Administration Console or using shared library or application
descriptors.

Max Entries The maximum number of entries (keys) that the cache should hold; after
this limit is reached, the cache eliminates the least recently used keys.

Time-To-Live The amount of time that an entry should remain in the cache, in
milliseconds; for example, a value of 3600000 equals one hour, in
milliseconds.

Description This read-only field displays the description as it was entered in the
Administration Console or using shared library or application descriptors.

Hit Rate This read-only field displays statistics about cache activity, if this
information is returned by the server.

Reset Click this button to reset the dialog to the values that were previously
displayed.

Set Values If you change a value in the dialog, click Set Values to save your changes.
Changing a value here changes it only for the running instance, not for the
configured cache.

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-38 BEA WebLogic Portal Portal Development Guide

3. Click Close when finished.

For detailed descriptions of each cache, refer to the documentation for the specific feature that is
related to that cache. For example, personalization-related caches are described in the Interaction
Management Guide.

Improving WebLogic Server Administration Console
Performance on a Managed Server

If you are running your portal application on a Managed Server, you can improve the
performance of the WebLogic Server Administration Console by using the <context-param>
parameter in the web.xml file, as shown in this example:

<context-param>

<param-name>portalFileDirectory</param-name>

<param-value>/</param-value>

</context-param>

This parameter takes advantage of an optimized call that returns EAR content information.
Without this parameter, the call recursively searches for .portal files. If you use this parameter,
you must place all of the .portal files in the same directory under the portal web application.
Use the <param-value> to specify the directory. In the example above, all .portal files reside
in the web application’s root directory (/).

Behavior of the “Return to Default Page” Attribute
When a Book's 'Return To Default Page' attribute is set to true, the portal should display the
Book's default page when the book is the target of a navigation URL. The behavior might not be
what you expect. The purpose of this section is to clarify the behavior.

Flush Click this button to clear the contents of the cache.

Flush allows you to clear the contents of any displayed cache. From the
Administration Console, you can flush only configured caches.

Refresh Click this button to reset the dialog to show any new caches or cache
updates that might have occurred.

Table 8-4 Configurable Cache Settings in Workshop for WebLogic (Continued)

Field/Button Description

../interaction/index.html
../interaction/index.html

Behav io r o f the “Retu rn to De fau l t Page” A t t r ibute

BEA WebLogic Portal Portal Development Guide 8-39

This section addresses the nesting of books where the immediate children of the Main Book are
books and the return to default only applies when moving between books, not within books. Here
is a simple portal hierarchy where each page has a portlet that contains a URL to Book2.

Main Book - Book 2 is the default book for the main book

Book 2 - Return To Default = true with default page = Page 2

Page 2

Page 3

Book 3

Page 4

Page 5

When the above portal is rendered, Book 2 and Page 2 are displayed.

1. The user clicks on Page 3, moving off of the default page

2. The user clicks on Book 3 (which results in Page 4 being displayed and moving into a
different book).

3. The user clicks on the URL for Book 2 and Page 2 is displayed

This works as expected as Page 2 is the default for Book 2 and the last active page in Book2 was
Page 3.

When the above portal is rendered, Book 2 and Page 2 are displayed.

1. The user clicks on Page 3, moving off of the default page

2. The user clicks on the URL for Book2 and Page 3 is displayed

The reason for this is because Page 3 is within the same book and therefore, the return to default
is not applied.

In the following hierarchy where pages are the children of the main book, the Return to Default
feature does not apply.

Main Book - Page 1 is the default page for the main book

Page 1

Book 2 - Return To Default = true with default page = Page 2

Page 2

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-40 BEA WebLogic Portal Portal Development Guide

Page 3

Page 6

Book 3

Page 4

Page 5

Using the above hierarchy, the user is returned to the last active page in Book 2.

Adding Commerce Services to an Existing Portal Web
Project

If you created a portal EAR project or portal web project without adding commerce-related
features, you can enable them later by adding the commerce-related facets to your project.

The J2EE shared libraries directly associated with commerce functionality are:

To add commerce functionality to your portal application, follow these steps:

1. Add the Commerce facet to your portal EAR project by following the instructions in “Adding
Facets to an Existing Project” on page 6-12.

The commerce facet is shown in Figure 8-17:

wlp-commerce-app-lib Provides overall commerce support.

wlp-commerce-tools-support-app-lib Provides Workshop for WebLogic (workbench)
support for commerce (catalog).

wlp-commerce-web-lib Provides JSP tag libraries.

Add ing Commerce Se rv ices to an Ex is t ing Por ta l Web P ro jec t

BEA WebLogic Portal Portal Development Guide 8-41

Figure 8-17 Commerce Facet in the Portal EAR Project Wizard

2. Add the Commerce facet to your portal web project by following the instructions in “Adding
Facets to an Existing Project” on page 6-12.

The commerce facet is shown in Figure 8-18:

Deve lop ing Po r ta ls Us ing Workshop fo r WebLog ic

8-42 BEA WebLogic Portal Portal Development Guide

Figure 8-18 Commerce Facet in the Portal Web Project Wizard

For technical details on Commerce Services, see the WebLogic Portal Javadoc for the packages
com.bea.commerce.* and com.beasys.commerce.*.

BEA WebLogic Portal Portal Development Guide 9-1

C H A P T E R 9

Visitor Tools Configuration

Portal visitors can use browser-based tools to personalize the makeup and appearance of their
portal if you enable this feature. This chapter describes how to set up your portal to allow visitor
customization.

This chapter includes the following sections:

About Visitor Tools

Enabling Visitor Tools in Workshop for WebLogic

Setting up a Desktop with Visitor Tools Using the Administration Console

The GroupSpace Guide provides information about Visitor Tools from an end user’s perspective;
if you want to create a customized user guide for your portal visitors, you might want to use that
content as a starting point.

About Visitor Tools
You can add functionality to your portal desktops that allows portal visitors to modify the content
and appearance of their desktops, books, and pages. In order to use these Visitor Tools, visitors
must be logged in to a desktop that is running in streaming mode. For more information about
streaming portals, refer to “File-Based Portals and Streaming Portals” on page 3-8.

WebLogic Portal includes a “customize” menu that portal visitors can use to access the visitor
tools; for example, the GroupSpace sample application’s Customize menu contains a drop-down
menu of links (the three menu items are Page Contents, Colors, and Pages). Figure 9-1 shows the
Customize menu (circled in red).

../groupspace/using.html#wp1013059

Vis i t o r Too ls Conf igurat ion

9-2 BEA WebLogic Portal Portal Development Guide

Figure 9-1 GroupSpace Desktop Showing the Customize Menu (Visitor Tools)

Tip: A “Communities” menu is also provided for use in the context of a community
application; for more information, refer to the Communities Guide.

Enabling Visitor Tools in Workshop for WebLogic
A portal web project includes a set of JavaServer Pages (JSPs) and other files that enable visitors
to set properties on personalized views of the portal, if you enable this capability.

The following sample procedure shows you the steps involved in adding visitor tools to a portal
web project.

Notes: Your portal must include authentication (for example, a login portlet) to use visitor tools.

The Visitor Tools are not visible when running the .portal file in the Workshop for
WebLogic development environment.

1. Verify that the Visitor Tools project facet is installed in your portal web project.

To do this, right-click the portal web project, and select Properties. Choose Project
Facets from the tree on the left side of the dialog and look for the library Portal Visitor
Tools. The dialog should look similar to the example shows in Figure 9-2:

../communities/index.html

Enabl ing V is i to r Too ls in Workshop fo r WebLog ic

BEA WebLogic Portal Portal Development Guide 9-3

Figure 9-2 Project Facet List, Including Visitor Tools

If the facet is not in the list, add it by following the instructions in “Adding Facets to an
Existing Project” on page 6-12.

2. In Workshop for WebLogic, open the .portal for which you want to enable Visitor Tools.

3. In the editor, select the Desktop.

4. In the Properties view, locate the Shell property in the Desktop Properties section and set the
value to Visitor Tools Desktop Shell.

Figure 9-3 shows an example.

Vis i t o r Too ls Conf igurat ion

9-4 BEA WebLogic Portal Portal Development Guide

Figure 9-3 Select Desktop and Edit Shell Property

Visitor Tools are now enabled.

Setting up a Desktop with Visitor Tools Using the
Administration Console

You can use the WebLogic Portal Administration Console to create a streaming desktop using
the .portal file as a template. After you complete this task, you can then visit the desktop and
view the Visitor Tools.

Perform these steps:

1. In Workshop for WebLogic, if the server is not running, start it by clicking the Start icon
in the Servers view menu.

2. When the server is running, select the .portal file in the Package Explorer and choose Run
> Open Portal Administration Console to start the WebLogic Portal Administration
Console.

3. Log in to the Administration Console.

4. In the Administration Console, create a new desktop using the .portal created previously as
the basis for the new desktop.

When you use the portal that you created in Workshop for WebLogic as the basis for the
new desktop, that desktop inherits the usage of the Visitor Tools Desktop shell. This
provides access to Visitor Tools from the desktop.

For instructions on creating a desktop, refer to “Creating a Desktop” on page 12-19.

To confirm that visitor tools are enabled:

1. From the Administration Console Portal Resources tree, select the new desktop, go to the
Details tab, and click View Desktop.

Set t ing up a Desk top w i th V is i to r Too ls Us ing the Admin is t rat ion Conso le

BEA WebLogic Portal Portal Development Guide 9-5

2. When the desktop displays, log in and access the Visitor Tools.

Vis i t o r Too ls Conf igurat ion

9-6 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 10-1

C H A P T E R 10

Creating Portals for Multiple Device
Types

Many types of web-enabled mobile devices can access your portals. Each type has unique
requirements for the content that it can display.

With the multichannel framework provided in WebLogic Portal, you can extend your portals to
include support for different mobile devices. This flexible framework lets you create a single
portal that serves content to multiple web-capable devices seamlessly and simultaneously. You
can also serve different content to different browsers, such as Mozilla Firefox, Netscape, and
Internet Explorer.

When a device accesses a portal, the portal detects the device type and automatically serves the
content you created for it within the assigned Look & Feel.

This chapter contains the following sections:

Enabling Multichannel Features in a Portal Web Application

Roadmap for Multichannel Processing

Developing Portals for Use in a Multichannel Environment

Enabling Multichannel Features in a Portal Web
Application

When a device (whether a PC or a handheld) accesses a portal, it sends information about itself
to the portal in the HTTP header, including the type of browser being used and the type of device.
This combination of information defines a client, which is equivalent to the model of a device.

Creat ing Por ta ls fo r Mul t ip le Dev i ce T ypes

10-2 BEA WebLogic Portal Portal Development Guide

You define a client in the WebLogic Portal classifications configuration file using a user agent
element. You can group several clients into a classification. For example, there are many models
(client types) of Palm handheld devices, but they all fall under the classification of “Palm.”

To enable the multichannel framework in your portal web project, you create an XML
configuration file that maps clients to classifications. You must name the file
client-classifications.xml and place it in the WEB-INF directory. You can create the XML
file from within Workshop for WebLogic by selecting File > New > Other > XML and following
the steps in the wizard.

For each client entry that maps to a classification, you can include either an explicit user agent
string that maps exactly to what a device sends, or you can enter a regular expression that
encompasses multiple user agent strings.

Listing 10-1 shows an example of a client classification mapping in
client-classifications.xml using explicit mappings (with the <useragent> tag) and a
regular expression mapping (with the <useragent-regex> tag).

Listing 10-1 Example of a Client Classification Mapping in the client-classifications.xml File

<classification name="pocketpc" description="For the PocketPC">
<useragent value="Mozilla/2.0 (compatible; MSIE 3.02; Windows CE; 240x320)"/>
<useragent value="Mozilla/2.0 (compatible; MSIE 3.02; Windows CE; PPC;
240x320)"/>
<useragent-regex value=".*PDA; Windows CE.*NetFront/3.*" priority="1"/>

</classification>

You can use an explicit <useragent> value for only one classification. If you use more than one
<useragent-regex> tag to map with regular expressions, it is possible that a device accessing
a portal could map to more than one classification. To determine which classification the device
is mapped to, use the priority attribute, as shown in Listing 10-1. The value 1 is the highest
priority. Enter any whole number for the priority value.

Note: For portlets that are assigned client classifications, the value you enter for the
description element is displayed in the WebLogic Portal Administration Console to
show the classifications to which the portlet is assigned. Make sure you create
descriptions that are easily understood by portal administrators.

Roadmap fo r Mul t i channe l P rocess ing

BEA WebLogic Portal Portal Development Guide 10-3

Based on the mappings you define in the client-classifications.xml file, the user agent
value in the <useragent> property is mapped to the classification name you provide. The
classification name in Listing 10-1 is pocketpc.

Roadmap for Multichannel Processing
Figure 10-1 shows the sequence of multichannel framework processing that occurs when a device
accesses a portal.

Figure 10-1 Multichannel Framework Processing Sequence

When a device accesses a portal-enabled server with a URL, the device sends a user agent string
in the HTTP header to identify the client type. Because of the mappings you defined in the
client-classification.xml file, the user agent string stored in the <useragent> property is

Creat ing Por ta ls fo r Mul t ip le Dev i ce T ypes

10-4 BEA WebLogic Portal Portal Development Guide

mapped to the classification name you provided. As shown in Figure 10-1, the name is
pocketpc.

The user agent request property is automatically included with any portal application that you
create in Workshop for WebLogic. You can view this property by opening the following file in
your Workshop for WebLogic workspace:
Portal_Web_Project\Data_Dir\src\request\DefaultRequestPropertySet.req

The portal uses that client classification name stored in the DefaultRequestPropertySet.req
file throughout the portal framework to identify the content and presentation tailored to the
device.

Based on the mapping you set up to match user agent strings in the HTTP request to classification
names, the portal sends device-specific content and presentation to the different devices that
access the portal.

Developing Portals for Use in a Multichannel
Environment

The following sections describe how to use the portal framework to create device-specific content
and presentation.

Manage Portlet Client Classifications
When you create a portlet, you can assign the portlet to be used by different devices (client
classifications). With the portlet open in the editor, go to the Properties view and perform the
following steps:

1. Click the ellipsis button in the Client Classifications field, as shown in Figure 10-2.

Figure 10-2 Portlet Properties View Showing the Client Classifications Property

Deve lop ing Po r ta l s fo r Use in a Mu l t i channe l Env i ronment

BEA WebLogic Portal Portal Development Guide 10-5

The Manage Portlet Classifications dialog displays. Figure 10-3 shows an example:

Figure 10-3 Example of the Manage Portlet Classifications Dialog

Note: The client-classifications.xml file must already exist in the project’s
WEB-INF directory in order for this dialog to display.

2. In the Manage Portlet Classifications dialog, you select either to enable or to disable a subset
of your client classifications; any classifications that you do not identify will automatically
fall into the opposite category. Decide whether you want to enable a subset of your
classifications and leave the remainder disabled, or disable a subset of classifications and
leave the rest enabled.

The instructions for this step assume that you want to disable a subset of classifications and
leave the rest enabled.

a. Select the Disabled Classifications radio button to disable the portlet for any
classifications.

b. Use the Add button to move desired classifications into the Selected Classifications
column.

By default, a classification is enabled unless you disable it.

3. When you are finished, click OK to save your settings.

Creat ing Por ta ls fo r Mul t ip le Dev i ce T ypes

10-6 BEA WebLogic Portal Portal Development Guide

Use the Client Attribute in JSP Tags
WebLogic Portal includes JSP tags for creating device-specific inline content in JSPs. Only the
content that meets the device criteria defined by the JSP tag is delivered to the device.

The relevant JSP tags have a required client attribute for mapping the JSP content to
classifications. For the client value in the JSP tag, you must use the exact value that you used
for the name in the client-classifications.xml file.

Listing 10-2 shows some possible uses of the client tag.

Listing 10-2 Example JSP File Showing Possible Uses of the Client Tag

<%@ taglib uri="http://www.bea.com/servers/portal/tags/client/cscm"
prefix="client" %>
<%@ taglib uri="http://www.bea.com/servers/portal/tags/netuix/render"
prefix="render" %>

This is a sample of manipulating content using the client-classification tag
library.
<p/>
<client:default>

<img style="padding: 10;" align="Bottom" src="<render:jspUri/>images
/sunset-big.gif"/>

</client:default>

Different versions of the same image will be selected based on the client
classification. For the "default" client, a large image will appear.
For the "palm" and "pocketpc", a smaller version of the image
will be used. For the "nokia" classification, a greyscale image will
be used (purely as an example).

<p/>
<client:when client="palm,pocketpc"><img src="<render:jspUri/>images
/sunset-small.gif"/><p/></client:when>
<client:when client="nokia"><img src="<render:jspUri/>images
/sunset-small-greyscale.gif"/><p/></client:when>

Image placement is also altered slightly for the different classifications.

<client:when-not client="palm,nokia">
<p/>
This additional content is also included if the client is not a "nokia"
or "palm" classification.
<p/></client:when-not>

Deve lop ing Po r ta l s fo r Use in a Mu l t i channe l Env i ronment

BEA WebLogic Portal Portal Development Guide 10-7

Develop Appropriate Look & Feels
The Look & Feels (skins and skeletons) provided with WebLogic Portal include support for a few
mobile devices (Nokia, Palm, and Pocket PC).

You can develop your own skins and skeletons to support different devices. When a Look & Feel
is selected for a desktop, the portal framework reads the client classification property in the
DefaultRequestPropertySet.req file and uses the Look & Feel logic to find skin and
skeleton directories matching the name of the client classification.

Any portal web project that you create includes a default set of multichannel Look & Feels
located in skin and skeleton subdirectories (\framework\skins\default and
\framework\skeletons\default).

For instructions on creating skins and skeletons for Look & Feels, refer to “User Interface
Development with Look & Feel Features” on page 7-1.

Interaction Management Development
Using the client classification name stored in the DefaultRequestPropertySet.req file, you
can build and trigger personalization and campaigns for devices based on that property value.

For information on developing personalization and campaigns, refer to the Interaction
Management Guide.

../interaction/index.html
../interaction/index.html

Creat ing Por ta ls fo r Mul t ip le Dev i ce T ypes

10-8 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 11-1

C H A P T E R 11

Designing Portals for Optimal
Performance

The process of optimizing your portlets for the best possible performance spans all phases of
development. You should continually monitor performance and make appropriate adjustments.

This chapter describes performance optimizations that you can incorporate as you develop
portlets.

This chapter contains the following sections:

Control Tree Design

Using Multiple Desktops

Optimizing the Control Tree

Control Tree Design
One of the most important variables that affects portal performance is portal framework controls.
The more portal framework controls (pages, portlets, buttons, and so on) you have, the larger your
control tree.

How the Control Tree Works
When a portal is instantiated, it generates a taxonomy, or hierarchy of portal resources, such as
desktops, books, pages, and portlets. Each resource is represented as a node on the control tree,
as shown in Figure 11-1.

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-2 BEA WebLogic Portal Portal Development Guide

Figure 11-1 Simple Portal Schematic Example

This example depicts a single portal with a main book containing six sub-books, which in turn
contain two pages each, and each page contains two portlets each, for a minimum of 42 controls
in the portal; the inclusion of buttons, windows, menus, and layouts increases the number of
controls on the portal significantly.

Note: This example is significantly oversimplified; enterprise portals might include thousands
of controls.

How the Control Tree Affects Performance
Once the control tree is built and all the instance variables are set on the controls, the tree must
run through the life cycle for each control before the portal can be fully-rendered. The life cycle
methods are called in depth-first order. That is, all the init() methods for each control are
called, followed by the loadState() method for each control, and so on in an order determined
by the position of each control in the portal’s taxonomy. For example, the control tree illustrated
in Figure 11-2 depicts the taxonomy a simple portal comprised of a book (B1) containing two
pages (P1 and P2), which each contain two portlets (p1-p4; note that p2 also contains its own
subordinate book, page, and portlet hierarchy).

Us ing Mul t ip le Desktops

BEA WebLogic Portal Portal Development Guide 11-3

Figure 11-2 Control Tree with Life Cycle Methods

When this portal is rendered, the init() method (and handlePostBackData() if _nfpb=true)
is called first, for each control, in this order: B1, P1, p1, p2, B2, P3, p5, p6, P2, p3, and finally
p4. Next, the loadState() method would be called in the same order, and so on for all life cycle
methods through saveState().

Note: Control life cycle methods preRender(), render(), and dispose() are called only on
visible controls.

Running each control through its life cycle requires some overhead processing time, which, when
you consider that a portal might have thousands of controls, can grow exponentially. Thus, you
can see that larger the portal's control tree the greater the performance hit.

Using Multiple Desktops
The simplest way to limit the size of the control tree without limiting the flexibility of the portal
is to split the portal into multiple desktops. In portal taxonomy, a desktop is nothing more than a
portal embedded into another portal. It maintains the ability to leverage all of the features inherent
in any portal and, within itself, can contain additional desktops.

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-4 BEA WebLogic Portal Portal Development Guide

Why This is a Good Idea
When you split a complex portal into multiple desktops, you spread the controls among those
desktops. Since the control tree is scoped to the individual portal and since a desktop behaves
much like a portal, each desktop has its own tree and the controls on that tree are built only when
that desktop is opened. Thus, by splitting a complex portal with a large control tree into multiple
desktops, you reduce the number of controls on the tree to just that number necessary for the
active desktop. As you might guess, this reduces the amount of time required to render the portal
as a single desktop and increase portal performance.

When a portal is rendered, about 15% of the processing time is dedicated to constructing the
control tree, 70% to running the life cycle methods, and 15% in garbage collection (clearing dead
objects from the heap, thus releasing that space for new objects). While construction and garbage
collection are always performed, running the life cycle methods is necessary only for visible
controls (that is, those on the exposed desktop). This results in considerable overhead savings and
improved system performance.

For example, the sample control tree depicted in Figure 11-1 shows a single portal with 42
controls. Were we to split this portal up into multiple desktops, as in Figure 11-3, while we would
increase the number of control trees in the entire portal, each tree would be nearly two thirds
smaller, and thus be processed in roughly two-thirds the time, significantly reducing the time
required to render the portal.

Us ing Mul t ip le Desktops

BEA WebLogic Portal Portal Development Guide 11-5

Figure 11-3 Simple Portal Split into Multiple Desktops

Figure 11-4 shows how the example in Figure 11-3 might be rendered once opened.

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-6 BEA WebLogic Portal Portal Development Guide

Figure 11-4 How Multiple Desktops Reduce Control Tree Size

Design Decisions for Using Multiple Desktops
As these examples demonstrate, splitting a complex portal into multiple desktops can be very
rewarding in terms of improved performance; however, not all portals benefit from the extra
effort required to split them into multiple desktops. Before implementing a portal using multiple
desktops, you need to consider some important design decisions. For example:

How many controls does your portal use? If the portal is small (about ten pages or less)
or uses a limited number of controls, the extra effort necessary to create multiple desktops
might not be necessary.

Can your portal be logically divided into multiple desktops? While splitting a complex
portal into multiple desktops might save rendering time, arbitrarily assigning portlets to
those desktops, with no thought to their interrelationships, can be dangerous. Visitors might
have a negative experience with the application if related information is not easily located,
particularly if it is on a desktop separate from where it might logically go.

When this desktop is opened, a
control tree is constructed using only the
controls on that desktop...

...while all other controls are ignored.

Opt imiz ing the Cont ro l T ree

BEA WebLogic Portal Portal Development Guide 11-7

What sort of administrative overhead is required once the multiple desktops are
deployed into production? For example, if you have 20 different potential desktops, a big
consideration is how common they will be. If they are more alike than different, then using
fewer desktops is better because there will be fewer administrative tasks to perform.

Are there customization concerns? Each desktop must be customized separately, which
can add significant additional effort for portal developers and administrators. However,
note that portal administrators can make changes in the library that will affect all desktops
in the portal.

Can you afford to lose some functionality in your portal? For example, if your
application relies on interportlet communication, either through page flows or backing
files, you might be better off not splitting up the portal, as listeners and handlers on one
desktop cannot communicate with their counterparts on other desktops. For portlets to
communicate with each other, they must be on the same desktop; your portal design must
take this requirement into consideration.

For more information on creating desktops, please refer to “Desktops” on page 12-18.

Optimizing the Control Tree
Tree optimization, as the name implies, means that control tree rendering is done in a way that
creates the least amount of system overhead while providing the user with as complete a set of
portal controls as that user needs to successfully use the portal instance.

Note: Asynchronous portlet rendering can be used with control tree optimization. For more
information about asynchronous portlet rendering, refer to the Portlet Development
Guide.

Enabling Control Tree Optimization
You enable control tree optimization by setting the treeOptimizationEnabled flag in the
.portal file to true, as shown in Listing 11-1.

Listing 11-1 Enabling Tree Optimization in .portal

<desktop> element:

<netuix:desktop definitionLabel="defaultDesktopLabel"

 markupName="desktop" treeOptimizationEnabled="true"

 markupType="Desktop" title="SimplePortal"><netuix:lookAndFeel

../portlets/index.html
../portlets/index.html

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-8 BEA WebLogic Portal Portal Development Guide

 definitionLabel="defaultLookAndFeel">

<netuix:desktop/>

Notes: If treeOptimizationEnabled= is not included in the .portal file, the portal defaults
to treeOptimizationEnabled=false.

When this flag set to true, the portal framework generates a partial control tree instead
of the full control tree, basing this tree on just the controls that are visible and active.
Thus, with fewer controls needing to be rendered, processing time and expense can be
significantly reduced.

For portals, you can enable this flag by setting Tree Optimization to true in the Workshop for
WebLogic Properties view, as shown in Figure 11-5.

Figure 11-5 Enabling Tree Optimization in Workshop for WebLogic

For desktops, you can set the flag from the Administration Console, as shown in
Figure 11-6.

Opt imiz ing the Cont ro l T ree

BEA WebLogic Portal Portal Development Guide 11-9

Figure 11-6 Enabling Tree Optimization from the Administration Portal

Note: For new desktops, treeOptimizationEnabled="true" is the default value.

Setting the Current Page
Before the flag can actually work, the file beehive-url-template-config.xml (in
Portal_Web_Project/webAppName/WEB-INF) must have {url:currentPage} set in the
<url-template> element, as shown in Listing 11-2.

Note: When you create a new project in Workshop for WebLogic, currentPage is added
automatically; however, if you are migrating from an earlier version of WebLogic Portal,
you must manually update beehive-url-template-config.xml.

Listing 11-2 beehive-url-template-config.xml URL Templates Component

<!-- URL templates -->

 <url-template>

 <name>default</name>

<value>{url:scheme}://{url:domain}:{url:port}/{url:path}?{url:queryString}

{url:currentPage}</value>

 </url-template>

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-10 BEA WebLogic Portal Portal Development Guide

 <url-template>

 <name>default-complete</name>

<value>{url:scheme}://{url:domain}:{url:port}/{url:prefix}/{url:path}?{url

:queryString}{url:currentPage}</value>

 </url-template>

 <url-template>

 <name>jpf-default</name>

<value>http://{url:domain}:{url:port}/{url:path}?{url:queryString}{url:cur

rentPage}</value>

 </url-template>

 <url-template>

 <name>jpf-action</name>

<value>http://{url:domain}:{url:port}/{url:path}?{url:queryString}{url:cur

rentPage}</value>

 </url-template>

 <url-template>

 <name>jpf-secure-action</name>

<value>https://{url:domain}:{url:securePort}/{url:path}?{url:queryString}{

url:currentPage}</value>

 </url-template>

 <url-template>

 <name>jpf-resource</name>

<value>http://{url:domain}:{url:port}/{url:path}?{url:queryString}{url:cur

rentPage}</value>

 </url-template>

 <url-template>

 <name>jpf-secure-resource</name>

<value>https://{url:domain}:{url:securePort}/{url:path}?{url:queryString}{

url:currentPage}</value>

Opt imiz ing the Cont ro l T ree

BEA WebLogic Portal Portal Development Guide 11-11

 </url-template>

 <url-template-ref-group>

<name>default-url-templates</name>

<url-template-ref>

<key>action</key>

<template-name>jpf-action</template-name>

</url-template-ref>

<url-template-ref>

<key>secure-action</key>

<template-name>jpf-secure-action</template-name>

</url-template-ref>

<url-template-ref>

<key>resource</key>

<template-name>jpf-resource</template-name>

</url-template-ref>

<url-template-ref>

<key>secure-resource</key>

<template-name>jpf-secure-resource</template-name>

</url-template-ref>

</url-template-ref-group>

How Tree Optimization Works
When the portal servlet receives a request (that is, a mouse-click) it reads the cache to determine
if a control tree factory exists. If one doesn’t, it calls controlTreeFactoryBuilder, passing it
the XML from the .portal file. This class returns a control tree factory to the servlet, which
passes the request to the CreateUIControlTree class.

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-12 BEA WebLogic Portal Portal Development Guide

Assuming _pageLabel and treeOptimizationEnabled="true",
CreateUIControlTreeFactory calls the PartialUIControlTreeCreator() method, which
returns a control tree comprised of just the control identified by the page label and the set of active
page and book labels; this is a partial control tree.

For example, if tree optimizations were enabled for the portal depicted in Figure 11-4, when you
submit a request (that is, a mouse click), only the active controls would be rendered, as illustrated
in Figure 11-7.

Figure 11-7 How Tree Optimization Reduces Control Tree Size

The set of active page and book labels for that session stored during the saveState() life cycle
method execution tell PartialUIControlTreeCreator() which controls to build. Only these
controls will be built; all others in the portal are ignored. As you can see, a significant amount of
processing overhead is eliminated when the control tree is optimized—since far fewer controls
need to be built—resulting in greatly improved performance.

Multi Level Menus and Control Tree Optimization
Single Level Menus provide significantly better performance in very large portals than Multi
Level Menus. Although every environment is different, an example of a very large portal might

With
treeOptimizationEnable=true,
only the controls that are active in the
session will be rendered...

...while all other controls are
ignored.

Opt imiz ing the Cont ro l T ree

BEA WebLogic Portal Portal Development Guide 11-13

include one that contains 40 books, with each book having 10 pages, and each page having 10
portlets, for a total of 4000 portlets; a typical user load might be 2000 concurrent users.

With Single Level Menus enabled in an example environment, the response time of the system is
at least twice as fast when compared with portals having Multi Level Menus. The reason for this
is that the Multi Level Menu must traverse the control tree to be able to build the menu, regardless
of whether control tree optimization is turned on. There is still an advantage to using control tree
optimization with a multi level menu, but system performance is not a primary reason to do so.

Limitations to Using Tree Optimization
If you are creating complex portals that require a large number of controls, tree optimization is
the easiest way to ensure optimal portal performance. Controls that aren’t active in the current
portal instance aren’t built, saving considerable time and overhead. Nonetheless, you need to be
aware that tree optimization slightly changes a portal’s behavior and some portal
implementations will not have substantial benefit; for example:

The backing file life cycle methods init() and handlePostBackData(), which are called
when the backing file is executed—even for non-visible controls—are not called when tree
optimization is enabled, unless they appear on visible controls.

If your portal uses backing files on any of their controls, some backing context APIs are
limited in their functionality.

On DesktopBackingContext, BookBackingContext, and PageBackingContext, the
following methods return null if they are trying to access a page, book, or portlet that is not
in the partial tree
– public BookBackingContext getBookBackingContextRecursive(String
definitionLabel)

– public PageBackingContext getPageBackingContextRecursive(String
definitionLabel)

– public PortletBackingContext
getPortletBackingContextRecursive(String instanceLabel)

– public PortletBackingContext[]
getPortletsBackingContextRecursive(String definitionLabel)

You might experience the same behavior—or lack thereof—on
DesktopPresentationContext, BookPresentationContext, and
PagePresentationContext with the presentation versions of these methods:
– public BookPresentationContext
getBookPresentationContextRecursive(String definitionLabel)

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-14 BEA WebLogic Portal Portal Development Guide

– public PagePresentationContext
getPagePresentationContextRecursive(String definitionLabel)

– public PortletPresentationContext
getPortletPresentationContextRecursive(String instanceLabel)

– public PortletPresentationContext[]
getPortletsPresentationContextRecursive(String definitionLabel)

If your portal uses multi-level menus you need to decide if the benefit of multi-level menus
outweigh any performance hit.

If the menu is on an active book, every control accessible from that menu must be created
before the portal is completely rendered, thus more overhead and a greater performance hit.
On the other hand, because a multi-level menu results in the creation of a skeletal control
tree, it can reduce the number of request cycles required to navigate to your desired
destination, reducing the total overhead required to accomplish a navigation.

Overall, single-level menus provide significantly better performance in very large portals
than multi-level menus. Although every environment is different, an example of a very
large portal might include one that contains 40 books, with each book having 10 pages, and
each page having 10 portlets, for a total of 4000 portlets; with a typical user load of 2000
concurrent users. With single-level menus enabled in an example environment, the
response time of the system is at least twice as fast when compared with the same portal
using multi-level menus.

If your portal uses Programmatic Page Change Events called from a backing file and the
page to which the change is being directed is not within the partial control tree, it does not
exist in the instance and the page change will not occur.

You can work around this problem by doing one of the following (this is the preferred
order):

a. Use a link to perform the page change.

b. Use the new declarative interportlet communications model.

c. Implement a redirect from within the backing file.

d. Set _nfto=”false” in the invoking link. This causes the full control tree to be created
for that single request.

e. Turn off tree optimization altogether on the portal.

If your portal uses “cookie” or “url” state locations, the partial control tree will not work.

Opt imiz ing the Cont ro l T ree

BEA WebLogic Portal Portal Development Guide 11-15

If your portal uses non-visible portlets, the onDeactivation portlet events for non-visible
portlets might not work with portal tree optimization turned on.

When the “tree optimization” flag in a .portal file is turned on, not all non-visible portlets
for a given request are processed. (A non-visible portlet is one that lives on a page that is
not displayed for the given request.) This can be a problem if you are trying to catch an
onDeactivation event for a portlet—once the portlet has been deactivated, it is no longer
visible, and so the system doesn't process it to fire its deactivation event. The
recommended workaround is to set tree optimization to false for the portal in question.
However, there is a trick you can play if you need the tree optimization. For each portlet
that you want to catch deactivation events for, define a dummy event handler (for example,
create a custom event handler with event = "[some nonsense string]" and set the property
“Only If Displayed” to false. This forces the system to process the portlet whether visible
or not.

Mindful of these conditions, never set treeOptimizationEnabled to true without first doing
a complete regression test on the portal. If any of the above-listed problems occur, you might
want to rethink your portal design or disable tree optimization completely.

Disabling Tree Optimization
As discussed above, although control tree optimization can benefit almost any portal, behavioral
limitations might require that you disable it. When you disable optimization, the portal creates a
full control tree upon every request. Be aware that this could significantly impede the
performance of very large portal. You need to decide whether the anticipated performance hit is
offset by the improvement in functionality.

To disable tree optimization, do one of the following:

Set treeOptimizationEnabled= “false” in the .portal file or on the desktop.

Include nfto=”false” in the request parameter of just that instance for which you want to
disable tree optimization. The parameter needs to be added to URL programmatically as the
URLs are generated using framework classes GenericURL and PostbackURL; for more
information on these classes, see the WebLogic Portal Javadoc.

The following code shows one way to adding this parameter:

PostbackURL url = PostbackURL.createPostbackURL(request, response);

 url.addParameter(GenericURL.TRE_OPTIMIZATION_PARAM, "false");

Use one of the tags in the render tag libraries.

Delete the _pageLabel parameter from the request.

../javadoc/index.html

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-16 BEA WebLogic Portal Portal Development Guide

Other Ways to Improve Performance
In addition to managing the taxonomy of your portal through effective use of the control tree,
WebLogic Portal offers other ways to improve performance. These solutions can all be used in
concert with multiple desktops and control tree optimization, ensuring superior portal
performance. This section describes the most effective performance-enhancing solutions
available with WebLogic Portal.

Use Entitlements Judiciously
Entitlements determine who can access the resources in a portal application and what they can do
with those resources. This access is based on the role assigned to an application visitor, allowing
for flexible management of the resources. For example, if you have an Employee Review portlet,
you can assign the “Managers” visitor entitlement role you created to that portlet, letting only
logged in users who belong in that role view the portlet.

Users visiting an application are assigned roles based on an expression that can include their
name, the group that they are in, the time of day, or characteristics from their profile. For
example, the “gold member” role could be assigned to a user because they are part of the frequent
flyer program and have flown more than 50,000 miles in the previous year. This role is
dynamically assigned to the user when they log into the site.

How Entitlements Affect Performance
To ensure optimal portal performance, use entitlements judiciously. Too many entitlements can
significantly impact performance. This happens because the entitlement engine is called during
the render phase of an operation and is required to check system overhead and rules. Because this
checking represents additional system overhead, if it is required too often on a portal,
performance degrades. In addition, the entitlements engine is also responsible for managing
administrative tasks, which increases that overhead, again causing degrading performance.

By default, entitlements are stored in the database as opposed to LDAP. Nonetheless, always be
aware that too many entitlements can impede performance.

Recommendations for Using Entitlements
Here are some simple recommendation for using entitlements judiciously:

Avoid the temptation to create a role for every node on an organizational chart. In
large organizations, granting entitlements would then become a serious burden on the
system. If you want to focus the user experience to a more granular level than that

Othe r Ways to Improve Per fo rmance

BEA WebLogic Portal Portal Development Guide 11-17

provided by the role assigned a user, consider employing the personalization capabilities
available with WebLogic Portal.

Disable entitlements if a portal is not using any security policies. If a portal is using
security policies enable it and set the value for the
<control-resource-cache-size=nn> attribute to equal the number of desktops +
number of books + number of pages + number of portlets + number of buttons (max, min,
help, edit) used in a portal. Use the default value if you are concerned about available
memory.

Limit your entitlement request to only one resource at a time. Bundling a larger
number of resources (portlets, pages, books) with one entitlement request can cause an
unwanted performance hit.

If your portal uses more than 5000 entitlements, customize the cache settings for
WebLogic Entitlements Engine. For details, see the Performance Tuning Guide, which
will be available in a future documentation release.

Limit User Customizations
BEA recommends that you allow portal visitors to modify only one page or a small set of pages,
and require that administrators control the remainder of pages.

When users customize a page, they obtain their own instance of that page. All other pages that
have not been customized point back to the original library instance. When an administrator
makes a change to a page, that change must iterate for each user who customized the page. If
many users customized that page, propagating the change might take a long time because of the
required database processing.

Optimize Page Flow Session Footprint
If your portal uses page flows portlets in a replicated clustering environment, you might
experience a performance issue because the request attributes you add to these portlets might be
persisted to the session as a component of a page flow portlet’s state. As more request attributes
are added, the session grows, often to sizes that can severely restrict performance.

Page flow portlets are hosted within the Portal framework by the Scoped Servlet environment.
This environment effectively acts as a servlet container, but its behavior causes the request
attributes to be scoped to the session within a container class used to persist page flow state. This
can be particularly unwelcome in clustered environments, when large amounts of data—
including these page flow portlet request attributes—might be replicated across the cluster.

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-18 BEA WebLogic Portal Portal Development Guide

WebLogic Portal provides the Request Attribute Persistence (requestAttrPersistence)
property for page flow portlets. This property is included in the .portlet file and can be set
using the Properties view in Workshop for WebLogic.

The Request Attribute Persistence property has these values:

session: this is the existing behavior (this is the default). All existing page flow portlets
should not require changes by default.

transient-session: places a non-serializable wrapper class around a persisted page flow
state object into the session. These portlets work just as the existing portlets, except in
failover cases, where the persisted request attributes disappear on the failed-over-to server.
In these cases you must write the forward JSPs to gracefully handle this contingency by, at
minimum, not expecting any particular request attribute to be populated and, ideally, by
having a mechanism to either repopulate the request attributes automatically or present the
user with a link to re-run the last action to repopulate the request attributes. For
non-failover cases, request attributes are persisted, providing a performance advantage for
non-postback portlets identical to default session persistence portlets. While session
memory is still consumed in this case, there will be no additional cluster replication costs
for the persisted request attributes.

none: performs no persistence operation. Since these portlets never have request attributes
available on refresh requests, you must write the forward JSPs to assume the request
attributes will not be available. This option is helpful when you want to remove completely
the framework-induced session memory loading for persisted request attributes.

To set the request attribute persistence attribute for a page flow portlet, open the Request
Attribute Persistence drop-down under the Page Flow Content group in the Properties view and
select the desired value, as shown in Figure 11-8.

Figure 11-8 Selecting Request Attribute Persistence Attribute

Othe r Ways to Improve Per fo rmance

BEA WebLogic Portal Portal Development Guide 11-19

Use File-Based Portals for Simple Applications
Portals come in two flavors: file-based and streaming. As the name implies, a file-based portal—
also called a “light portal”—obtains all of its resources from the user’s file system. Streaming
portals, on the other hand, derive their resources from one or more databases.

A key difference between the two implementations is in the method you use to create and manage
multiple portlet instances. Using a streamed portal, managed using the WebLogic Portal
Administration Console, you can manage a single instance of a portlet while reusing it in many
places; you can also easily create a large number of portlet instances and configure each one
differently. Using a file-based portal you need to create individual source portlets within .portal
files.

Streaming portals also provide you with the management capabilities of the Administration
Console. For example, if you want to disable a portlet, you can do this task easily from the
Administration Console; otherwise, you must directly access the production servers to change
.portal files. The Administration Console also provides management functionality for book and
page contents, and the ability to user visitor entitlements and delegated administration on
different instances of resources.

Why Use a File-based Portal?
For simple, static portals, deriving resources from the file system can result in improved
performance and bring these benefits:

Source code control is easily manageable.

Propagation to other environments is easy.

They are easy to create in Workshop for WebLogic.

Limitations to Using File-based Portals
While file-based portals might show some performance improvement over streaming portals,
their functionality is limited; for example, because no database is involved, you cannot take
advantage of things such as user customization or entitlements. Other features that are missing
from a file-based portal include:

Delegated Administration

Visitor Tools

Preferences at the portal instance level and at the definition level.

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-20 BEA WebLogic Portal Portal Development Guide

Moreover, in the majority of cases, the performance improvement gained by using a file-based
portal is not so significant as to outweigh these limitations.

Create a Production Domain in Development
While this tip doesn’t directly improve performance at runtime, it nonetheless allows you to see
how your application will perform before you propagate it to production. By creating a
production domain in development, you can simulate and then evaluate how the portal will
perform in production. You can then make the necessary adjustments before actually deploying
the portal. If problems occur or performance is not optimal, you can rectify these situations before
the end user ever sees them.

To create a production domain, you must update the startup script settings by setting the
WLS_PRODUCTION_MODE= flag to true and setting to false these flags:

iterativeDevFlag

debugFlag

testConsoleFlag

logErrorsToConsoleFlag

pontbaseFlag

verboseLoggingFlag

Additionally, you must set default values for the threadcount and the JDBCConnectionPool sizes.
If you are threading portlets (that is, using forkable=true) ensure that you configure a
portalRenderQueue and portalPreRenderQueue in your config.xml file so that the forked
portlets use their own thread pools and not the WebLogic thread pool. The following code sample
describes how to set the thread count appropriately:

<ExecuteQueue Name="default" ThreadCount="15"/>

<ExecuteQueue Name="portalRenderQueue" ThreadCount="5"/>

Optimize Portlet Performance
You can optimize the performance of the portlets in your portal in several ways, including the
following:

Editing performance-related portlet properties to optimize performance

Caching portlets

Using remote portlets

Othe r Ways to Improve Per fo rmance

BEA WebLogic Portal Portal Development Guide 11-21

Pre-rendering and rendering portlets in parallel

Rendering portlet content asynchronously

Using backing files

You can find more detail on each of these alternatives in the Portlet Development Guide.

../portlets/index.html

Des ign ing Po r ta ls f o r Opt imal Pe r fo rmance

11-22 BEA WebLogic Portal Portal Development Guide

Oracle WebLogic Portal Portal Development Guide 12-1

C H A P T E R 12

Obtaining Debug Information

This chapter explains how to obtain debug information from public WLP classes and add
debugging calls to your own code. This chapter includes the following sections:

Introduction

Configuring and Enabling Debug

Public WLP Class Debug Reference

For details on how to use Oracle Enterprise Pack for Eclipse to debug your web application
project, see "Deploying or Debugging the Application" in Oracle Fusion Middleware Quick Start
Guide for Oracle WebLogic Portal.

Introduction
The class com.bea.p13n.util.debug.Debug is used throughout WLP classes to print
information that can be useful in debugging. You can use the Debug class in your own code. By
default, debugging is turned off. For information on turning debug output on and off, see
“Turning Debug Output On and Off” on page 12-3.

Configuring and Enabling Debug
The com.bea.p13n.util.debug.Debug class provides methods for printing and information
messages from WLP code. This section explains how to use Debug in your own code and to turn
Debug output on and off. This section includes these topics:

Obta in ing Debug In fo rmat ion

12-2 Oracle WebLogic Portal Portal Development Guide

Using Debug in Your WLP Code

Turning Debug Output On and Off

Package-Level Debugging

Directing Output to a File

Reloading Debug Properties

Example debug.properties File

Using Debug in Your WLP Code
Use the com.bea.p13n.util.debug.Debug class to add debugging information calls to
your WLP code. The Debug class lets you:

Turn debugging on and off without recompiling code.

Enable debugging output for a single class or entire package.

Discover where debugging messages are coming from.

Listing 12-1 illustrates the basic pattern for using Debug in your classes. For detailed information
on Debug methods, refer to the Javadoc (Oracle Fusion Middleware Java API Reference for
Oracle WebLogic Portal).

Listing 12-1 Using Debug in a Class

 package com.bea.example;

 import com.bea.p13n.util.debug.Debug;

 class MyClass

 {

 // Instance of debug object for debugging (if turned on)

 // Using this pattern makes it easy to know the debug "switch"

 // for any class

 private static final Debug debug = Debug.getInstance(MyClass.class);

 MyClass()

 {

 // debug class creation event

 debug.here()

Conf igu r ing and Enab l ing Debug

Oracle WebLogic Portal Portal Development Guide 12-3

 }

 void myMethod()

 {

 // output a debugging message along with class, method & line number

 debug.out("This is some message");

 // output a debugging message followed by object value

 // use this rather than ("message" + val) to avoid

 // expression evaluation (string concatenation) when debug is off

 debug.out("The value is:", val);

 // Avoid expression evaluations by using debug.ON or debug.isOn()

 if (debug.ON)

 {

 Object thing = doSomeCalculations();

 debug.out("The thing " + thing + " is the calculation result.");

 }

 }

 }

The output includes class, method, line number, and variable information. When debugging is
turned on, the debug output for the above example looks something like this.

*** com.bea.example.MyClass.(MyClass.java:<13>) ***

[com.bea.example.MyClass.myMmethod():18] This is some message

[com.bea.example.MyClass.myMmethod():23] The value is 42

[com.bea.example.MyClass.myMmethod():29] The thing kryten is the

calculation result.

By default, output is sent to System.err. For information on directing the output to a file, see
“Directing Output to a File” on page 12-5.

Turning Debug Output On and Off
Debug messages are turned off by default. To switch debugging on, create a file named
debug.properties in the directory where your domain’s startup scripts reside. For an
example debug.properties file, see “Example debug.properties File” on page 12-6.

Obta in ing Debug In fo rmat ion

12-4 Oracle WebLogic Portal Portal Development Guide

Alternately, you can set the Java system property debug.properties to the name of your
debug properties file. For example:

java -Ddebug.properties=/home/me/mydebug.properties ...

com.bea.example.MyClass: on

Tip: Technically, you can set the debug property to any value except false, off, no or 0 (these
are values that can be used to turn logging off). For clarity and consistency, Oracle
suggests that you use the values on and off in the debug.properties file.

Package-Level Debugging
To turn on debugging for all of the classes in a package, set the debug property
usePackageNames to on. Then, you can turn on debugging for an entire package (and its
child packages). For example, to turn on debugging for all classes in the com.bea.example.*
package, add the following to debug.properties:

turn on debugging by package names

usePackageNames: on

turn on debugging for everything under com.bea.example package

Note that you do not use wildcards, just mention the package

com.bea.example: on

Using package names enables you to have finer control because more specific names take
precedence over less specific names. For example, if you want to turn on debugging for the entire
com.bea.example.* package except for MyClass and the com.bea.example.internal package (with
the exception of one class), add the following to debug.properties:

turn on package names for debugging

usePackageNames: on

turn on debugging for everyting under com.bea.example package

com.bea.example: on

turn off debugging for MyClass

com.bea.example.MyClass: off

Conf igu r ing and Enab l ing Debug

Oracle WebLogic Portal Portal Development Guide 12-5

turn off debugging in the entire internal package

com.bea.example.internal: off

Except turn debugging back on for internal.DebugThisClass

com.bea.example.internal.DebugThisClass: on

For an example debug.properties file, see “Example debug.properties File” on page 12-6

Directing Output to a File
By default, Debug output is sent to System.err. To redirect debug output to a file, set the
debug property out.file to the name of an output file. The debug output will be appended to
the end of that file unless you also set out.file.append=off, in which case the file is
deleted first. For example:

append output to mydebug.log file rather than System.err

out.file = mydebug.log

send this debugging to mydebug.log

com.bea.example.DebugMeToFile: on

If you want to direct output by using system properties instead of the debug.properties file,
you can do so by adding a debug prefix to the property name. For example:

 java -Ddebug.out.file=mydebug.log -Ddebug.com.bea.example.MyClass=on ...

Reloading Debug Properties
For performance reasons, Debug is by default not reloadable. The debug properties settings
are in effect for the life of the JVM. To change the debugging configuration (for example, to
change which classes or packages are turned on or off), you normally have to restart the JVM with
different debug properties.

You can change the default reloading behavior with the debug property reloadable set to on
in debug.properties or with -Ddebug.reloadable=on on the Java command line. If
reloadable is set when the JVM is initially started, then debugging properties that are loaded
from debug.properties (or system properties) can be changed at runtime without restarting

Obta in ing Debug In fo rmat ion

12-6 Oracle WebLogic Portal Portal Development Guide

the JVM. The reloadable property itself can not be changed at runtime; it must be set at JVM
startup to take effect.

To change debug properties at runtime, edit the debug.properties file and call
Debug.reload() from a JSP page or other runtime component.

Note that reloadable debug can be convenient for development, but even when it is not
outputting any messages it does come at some cost, and thus should not be used in production or
other performance-sensitive systems, such as load or performance tests.

Example debug.properties File
You enable output of WLP class debug information by either creating a debug.properties
file or by using a system variable, as described in “Configuring and Enabling Debug” on
page 12-1.

Following is an example of a debug.properties file, including enabled Level 1 and Level
2 debugging for WLP Virtual Content Repository classes.

Example properties file for WebLogicPortal debug output

Place this file in the directory where you start the server

(the domain directory) or set -Ddebug.properties=debugFileName.

The presence of this file turns debug on overall, and the

properties in here control what debug is output.

Most properties are booleans, and convention is to use "on" or "off" for

the values

Debug can be reloadable - use debug.jsp to change things at runtime

The default is off.

reloadable: off

append output to mydebug.log file rather than System.err

#out.file = D:/debugOutput

#out.file.append= off

Turn on debug for entire packages (recursively) rather than only naming

desired classes. This is normally desired as it allows for debugging

Conf igu r ing and Enab l ing Debug

Oracle WebLogic Portal Portal Development Guide 12-7

whole sets of things, without having to name individual classes

The default is off.

usePackageNames: off

Example debug configurations

Debugging for an individual class

#com.bea.netuix.servlets.manager.PortalServlet: on

com.bea.content.federated.internal.CapabilityManagerImpl: on

com.bea.content.federated.internal.NodeManagerImpl: on

com.bea.content.federated.internal.SearchManagerImpl: on

com.bea.content.federated.internal.TypeManagerImpl: on

com.bea.content.federated.internal.VersionManagerImpl: on

com.bea.content.federated.internal.VirtualRepositoryManagerImpl: on

com.bea.content.federated.internal.WorkflowManagerImpl: on

com.bea.content.federated.internal.delegate.NodeLogic: on

com.bea.content.federated.internal.delegate.ObjectClassLogic: on

com.bea.content.federated.internal.delegate.RepositoryLogic: on

com.bea.content.federated.internal.delegate.SearchLogic: on

com.bea.content.federated.internal.delegate.VersionLogic: on

com.bea.content.federated.internal.delegate.WorkflowLogic: on

spi.com.bea.content.federated.internal.filter.logging.NOPSLoggingFilter:

on

spi.com.bea.content.federated.internal.filter.logging.OCOPSLoggingFilter:

on

spi.com.bea.content.federated.internal.filter.logging.RCOPSLoggingFilter:

on

spi.com.bea.content.federated.internal.filter.logging.SOPSLoggingFilter:

on

spi.com.bea.content.federated.internal.filter.logging.WOPSLoggingFilter:

on

Debug an entire package

Obta in ing Debug In fo rmat ion

12-8 Oracle WebLogic Portal Portal Development Guide

#com.bea.qa.apps.controls: on

This setup turns on debug for the entire com.bea.netuix.servlets package,

but excludes com.bea.netuix.servlets.l10n (and its subpackages).

#com.bea.netuix.servlets: on

#com.bea.netuix.servlets.l10n: off

Public WLP Class Debug Reference
Many of the public WLP classes use Debug methods to produce information that might be helpful
when debugging an application. You enable WLP class debug information by editing a
debug.properties file (or by using a System variable), as described in “Configuring and
Enabling Debug” on page 12-1.

This section lists the public WLP classes that use Debug methods to output informational
messages. The classes are grouped by feature/functional area.

This section contains the following sections:

WLP Framework Classes with Debug Support

WLP Core Services Classes with Debug Support

WLP Virtual Content Repository Classes with Debug Support

WLP Administration Console Classes with Debug Support

WLP Framework Classes with Debug Support
The following table lists the WLP Framework classes that support debugging and their associated
features.

Note: The WLP classes listed in the table below include only debug Level 1 output.

Publ i c WLP C lass Debug Refe rence

Oracle WebLogic Portal Portal Development Guide 12-9

Table 12-1 WLP Framework Classes That Support Debug

Feature Class

WSRP - Transport com.bea.wsrp.bind.markup

WSRP - URL Rewriting • com.bea.wsrp.producer.adapter
• com.bea.wsrp.producer.adapter.context

Portlet Containers - Beehive • com.bea.portlet.adapter.scopedcontent
• com.bea.netuix.servlets.controls.content.PageFlowContent

Portlet Containers - Struts • com.bea.struts.adapter
• com.bea.netuix.servlets.controls.content.StrutsContent

Portlet Containers - JSF • com.bea.portlet.adapter.faces
• com.bea.netuix.servlets.controls.content.FacesContent

Portlet Containers - JSP com.bea.netuix.servlets.controls.content.JspContent

Portlet Containers - Clipper • com.bea.netuix.servlets.controls.content.JspContent
• com.bea.netuix.clipper.ClipperBacking
• com.bea.netuix.clipper.Clipper

Portlet Containers - Browser Note: There is no debug for the Portlet Containers - Browser feature. However,
the control is rendered using a DirectFeature with the name
ASYNC_CONTENT_FEATURE = "portleturicontent". You can add
debug statements to
framework/features/portleturicontent.jspx to troubleshoot
this feature.

Portlet Containers - Java
(168/286)

com.bea.portlet.container

Framework - Caching • com.bea.netuix.nf.ControlTreeWalker
• com.bea.netuix.nf.container.jsp.BufferedJspContext

Framework - Threading • com.bea.netuix.nf.ControlTreeWalker
• com.bea.netuix.nf.container.jsp.BufferedJspContext
• com.bea.netuix.nf.concurrency

Obta in ing Debug In fo rmat ion

12-10 Oracle WebLogic Portal Portal Development Guide

Framework - LAF • com.bea.netuix.servlets.controls.application.laf
• com.bea.netuix.servlets.controls.application.laf.ConfigurationTools
• com.bea.netuix.servlets.controls.application.laf.StructureTools
• com.bea.netuix.servlets.controls.application.laf.DependenciesConfiguration
• com.bea.netuix.servlets.controls.application.laf.SkeletonConfiguration

Framework - Customization com.bea.netuix.application

Note: Supporting database query properties files are under netuix/copysrc
com.bea.netuix.application.manager.persistence.jdbc.
sql.

Framework - Async • ajax – Enable the ajax debug using the following code: ajax: on. The
ajax debug is used by:
– om.bea.netuix.nf.UIContext
– com.bea.netuix.nf.container.jsp.BufferedJspContext
– com.bea.netuix.nf.container.jsp.ServletOutputStreamImpl
– com.bea.netuix.servlets.controls.window.Window

• com.bea.netuix.servlets.controls.ajax.AjaxHelper
• ajaxRequest – Enable the ajaxRequest debug using the following code:

ajaxRequest: on. The ajaxRequest debug is used by
com.bea.netuix.servlets.manager.UIServlet

Note: Because debug output is highly verbose, you should use the ajax and
ajaxRequest debug switches judiciously, enabling these switches only when told
to do so by the users who will be interpreting the debug output. To gain a better
understanding of the debug output, we recommend that you view the debug
output along with the source code for the debug statements.

Table 12-1 (Continued)WLP Framework Classes That Support Debug

Feature Class

Publ i c WLP C lass Debug Refe rence

Oracle WebLogic Portal Portal Development Guide 12-11

Framework - Control Tree,
Lifecycle

• com.bea.netuix.servlets.manager.UIServlet.dumpControlTree
• com.bea.netuix.servlets.manager.UIServletInternal

Note: The com.bea.netuix.servlets.manager.UIServlet.dumpControlTree
switch is used in com.bea.netuix.servlets.manager.UIServletInternal, which
does not have its own debug. Because debug output is highly verbose, you
should use this switch judiciously, enabling this switch only when told to do so
by the users who will be interpreting the debug output. To gain a better
understanding of the debug output, we recommend that you view the debug
output along with the source code of the debug statements.
• com.bea.netuix.servlets.manager.PortalServlet
• com.bea.netuix.servlets.manager.SingleFileServlet
• com.bea.netuix.servlets.manager.UIServlet
• com.bea.netuix.nf.Lifecycle
• com.bea.netuix.nf.ControlTreeWalker
• com.bea.netuix.nf.ControlLifecycle
• com.bea.netuix.state (and the classes in this package)
• com.bea.netuix.nf.state.StateManagementFactory
• com.bea.netuix.nf.ControlLifecycle

The class com.bea.netuix.nf.ControlLifecycle uses the following debug
switches to dump the control tree during a given render phase:

– ControlLifecycle.init
– ControlLifecycle.loadState
– ControlLifecycle.saveState
– ControlLifecycle.preRender
– ControlLifecycle.render
– CControlLifecycle.resource
– ControlLifecycle.dispose

Framework - File Poller • com.bea.netuix.servlets.util.IFilesystemChangeDetector
• com.bea.netuix.servlets.services.P13nFilesystemChangeDetector
• com.bea.netuix.servlets.services.SimpleFilesystemChangeDetector

Framework - Timing netuix.timing

Table 12-1 (Continued)WLP Framework Classes That Support Debug

Feature Class

Obta in ing Debug In fo rmat ion

12-12 Oracle WebLogic Portal Portal Development Guide

The following table lists WLP Framework features and the command line environmental JVM
switches that you can use to debug them. Note that the WSRP security debugging feature uses a
Oracle WebLogic Server pattern of accessing debug information with system properties.

WLP Core Services Classes with Debug Support
The following table lists the WLP Core Services classes that support debugging, along with their
associated features and debug levels.

Note: For WLP Core Services classes, Level 2 output includes additional information that is not
included in Level 1 output. To view all debugging information, you must enable both
Level 1 and Level 2 debugging.

Framework - Events • com.bea.netuix.events.internal
• com.bea.netuix.events.manager.EventManager
• com.bea.netuix.events.manager.PortletBasedSubscription

Framework - Preferences • com.bea.portlet.prefs
• com.bea.portlet.prefs.spi

Table 12-1 (Continued)WLP Framework Classes That Support Debug

Feature Class

Table 12-2 WLP Framework Command Line Environmental Switches That Support Debug

Feature Command Line Switch

WSRP - Security • -Dweblogic.debug.DebugSecuritySAMLCredMap=true
• -Dweblogic.debug.DebugSecuritySAMLAtn=true
• -Dweblogic.debug.DebugSecuritySAMLLib=true
• -Dweblogic.log.StdoutSeverity=Debug
• -Dweblogic.xml.crypto.dsig.verbose=true
• -Dweblogic.wsee.verbose=*
• -Dweblogic.debug.DebugSecurityCredMap=true
• -Dweblogic.xml.crypto.wss.verbose=true

Publ i c WLP C lass Debug Refe rence

Oracle WebLogic Portal Portal Development Guide 12-13

Table 12-3 WLP Core Services Classes That Support Debug

Feature Level 1 Level 2

Cache • com.bea.p13n.cache.CacheFactory
• com.bea.p13n.cache.CacheManager

• com.bea.p13n.cache.CacheImpl
• com.bea.p13n.cache.CacheImpl.Asynchronou

sReloadRequest

Entitlements • com.bea.p13n.entitlements.management.R
olePolicyManager

For the
com.bea.p13n.entitlements.management.R
olePolicyManager class, you can use the
PolicyPredLocation to enable more
detailed debug output. For example:
PolicyPredLocation.com.bea.p1
3n.entitlements.management.Ro
lePolicyManager.

• com.bea.p13n.entitlements.management.R
olePolicyManager

• com.bea.p13n.delegation.management.Del
egationPolicyManager

• com.bea.p13n.entitlements.management.S
ecurityPolicyManager

• com.bea.p13n.delegation.management.Del
egationRoleManager

• com.bea.p13n.entitlements.Authorization

For the
com.bea.p13n.entitlements.Authorization class,
you can use the following prefixes to choose the
type of debug output:

– Unprotected
– Protected
– PolicyTaxonomy
– AnonDebug

For example:
Unprotected.com.bea.p13n.entitl
ements.Authorization
• com.bea.p13n.delegation.DelegationService
• com.bea.p13n.entitlements.management.inter

nal.RDBMSRolePolicyManager

You can use the following prefixes to choose
the type of debug output:

– PolicyPredLocation
– PolicyCreateLocation

• com.bea.p13n.entitlements.management.inter
nal.RDBMSSecurityPolicyManager

You can use the following prefixes to choose
the type of debug output:

– PolicyPredLocation
– PolicyCreateLocation

Rules
Expression

N/A • com.bea.p13n.expression.internal.EvaluatorI
mpl

• com.bea.p13n.expression.internal.ExecutorIm
pl

Obta in ing Debug In fo rmat ion

12-14 Oracle WebLogic Portal Portal Development Guide

Job Manager • com.bea.p13n.jobmanager.internal.JobMa
nagerImpl

• com.bea.p13n.jobmanager.internal.JobCo
ntextImpl

N/A

Quiescence com.bea.p13n.management.quiescence.Qui
escenceManagementServiceImpl

• com.bea.p13n.management.quiescence.Quies
cenceRunt imeServiceImpl

• com.bea.p13n.management.quiescence.Quies
cenceState Impl

Rules N/A • com.bea.p13n.rules.internal.ActionImpl
• com.bea.p13n.rules.internal.RuleImpl

Credential
Vault

N/A N/A

SSO com.bea.p13n.security.sso.services.AuthSe
rvletFilter

com.bea.p13n.security.sso.services.UsernameT
okenService

Util JDBC com.bea.p13n.util.jdbc.SequencerFactory com.bea.p13n.util.jdbc.internal.JdbcSequencer

Tracked
Anonymous

com.bea.p13n.usermgmt.profile.internal.Tr
ackedAnonymousLocator

• com.bea.p13n.usermgmt.profile.internal.Anon
ymousProfileWrapperImpl

• com.bea.p13n.usermgmt.profile.internal.Trac
kedAnonymousBean

PropertySetM
anager

• com.bea.p13n.property.internal.PropertyS
etManagerImpl

• com.bea.p13n.property.internal.PropertyS
etPersistenceManager

• com.bea.p13n.property.internal.PropertySetR
epositoryRegistry

• com.bea.p13n.property.internal.PropertySetR
epositoryImpl

Entity
Property
Manager

com.bea.p13n.property.internal.EntityProp
ertyManagerImpl

com.bea.p13n.property.internal.EntityProperty
CacheImpl

Property Set
Web Service

com.bea.p13n.property.webservice.internal
.PropertySetWebServiceImpl

N/A

Rules
Manager

com.bea.p13n.rules.manager.internal.Rules
ManagerImpl

com.bea.p13n.rules.manager.internal.RuleSetP
ersistenceManager

Table 12-3 (Continued)WLP Core Services Classes That Support Debug

Feature Level 1 Level 2

Publ i c WLP C lass Debug Refe rence

Oracle WebLogic Portal Portal Development Guide 12-15

WLP Virtual Content Repository Classes with Debug Support
The following table lists the WLP Virtual Content Repository classes that support debugging and
their associated features.

Note: For WLP Virtual Content Repository classes, Level 2 output includes all of the
information included in Level 1, but at a more verbose level. Additionally, Level 2
includes information that is not included in Level 1 output.

Realm
Configuration

com.bea.p13n.usermgmt.config.internal.Re
almConfigurationImpl

N/A

User Profile
Manager

com.bea.p13n.usermgmt.profile.internal.Pr
ofileManagerImpl

N/A

Group Profile
Manager

com.bea.p13n.usermgmt.profile.internal.Gr
oupProfileManagerImpl

N/A

Mixed Profile
Manager

com.bea.p13n.usermgmt.profile.internal.M
ixedProfileManagerImpl

N/A

Custom
Profile
Manager

com.bea.p13n.usermgmt.profile.internal.C
ustomProfileManagerImpl

N/A

Event Service • com.bea.p13n.events.internal.EventServic
eBean

• com.bea.p13n.events.internal.EventHandl
er

• com.bea.p13n.events.Event
• com.bea.p13n.events.internal.EventServiceLis

tenerConfig

Internal Data
Refresh Proxy

• com.bea.p13n.management.data.repositor
y.internal.ejbproxy.RefreshProxyImpl

• com.bea.p13n.management.data.repositor
y.internal.ejbproxy.EjbProxyDataRepo
sitory

• com.bea.p13n.management.data.repository.int
ernal.RefreshFromClientSynchronizer

• com.bea.p13n.management.data.repository.int
ernal.RefreshFromServerSynchronizer

Analytics • com.bea.analytics.AnalyticsFilter
• com.bea.analytics.AnalyticsListener

com.bea.analytics.AnalyticsP13nEventListener

Table 12-3 (Continued)WLP Core Services Classes That Support Debug

Feature Level 1 Level 2

Obta in ing Debug In fo rmat ion

12-16 Oracle WebLogic Portal Portal Development Guide

Table 12-4 WLP Virtual Content Repository Classes That Support Debug

Feature or
Component

Level 1 Level 2

Repository
Capabilities

com.bea.content.federated.internal.Capabilit
yManagerImpl

N/A

Node
Activities

com.bea.content.federated.internal.NodeMa
nagerImpl

N/A

Search
Activities

com.bea.content.federated.internal.SearchM
anagerImpl

N/A

Type
Management
Activities

com.bea.content.federated.internal.TypeMa
nagerImpl

N/A

Versioning
Activities

com.bea.content.federated.internal.Version
ManagerImpl

N/A

Repository
Management
Activities

com.bea.content.federated.internal.VirtualR
epositoryManagerImpl

N/A

Workflow
Activities

com.bea.content.federated.internal.Workflo
wManagerImpl

N/A

Node activities com.bea.content.federated.internal.delegate.
NodeLogic

N/A

Type
Management
Activities

com.bea.content.federated.internal.delegate.
ObjectClassLogic

N/A

Repository
Management
Activities

com.bea.content.federated.internal.delegate.
RepositoryLogic

N/A

Search
activities

com.bea.content.federated.internal.delegate.
SearchLogic

N/A

Versioning
Activities

com.bea.content.federated.internal.delegate.
VersionLogic

N/A

Publ i c WLP C lass Debug Refe rence

Oracle WebLogic Portal Portal Development Guide 12-17

WLP Administration Console Classes with Debug Support
The following table lists the WLP Administration Console classes that support debugging, along
with their associated features and debug levels.

Workflow
Activities

com.bea.content.federated.internal.delegate.
WorkflowLogic

N/A

SPI Node
Operations

N/A spi.com.bea.content.federated.internal.filter.l
ogging.NOPSLoggingFilter

SPI Type
Operations

N/A spi.com.bea.content.federated.internal.filter.l
ogging.OCOPSLoggingFilter

SPI
Repository
Management
Operations

N/A spi.com.bea.content.federated.internal.filter.l
ogging.RCOPSLoggingFilter

SPI Search
Operations

N/A spi.com.bea.content.federated.internal.filter.l
ogging.SOPSLoggingFilter

SPI Workflow
Operations

N/A spi.com.bea.content.federated.internal.filter.l
ogging.WOPSLoggingFilter

Table 12-4 (Continued)WLP Virtual Content Repository Classes That Support Debug

Feature or
Component

Level 1 Level 2

Obta in ing Debug In fo rmat ion

12-18 Oracle WebLogic Portal Portal Development Guide

Table 12-5 WLP Administration Console Classes That Support Debug

Feature Level 1 Level 2

General
Navigation, Menus,
and
Componentization

• com.bea.jsptools.common.EditorBookBac
king

• com.bea.jsptools.common.ToolsFramewor
kUtilities

• com.bea.jsptools.common.ToolsMenuTag
• com.bea.jsptools.patterns.list.PagedResult

ServiceTag
• com.bea.jsptools.patterns.tree.TreeBuilder
• com.bea.jsptools.patterns.xmlhttp.PagedR

esultSearchHandler
• com.bea.jsptools.patterns.xmlhttp.Session

AttributeHandler
• com.bea.jsptools.util.GenerateResourceLi

nkTag
• com.bea.jsptools.util.ToolsResourceLink

• com.bea.jsptools.common.PatDesktopBa
cking

• com.bea.jsptools.content.helpers.Shared
Actions

• com.bea.jsptools.laf.SkinImageService
• com.bea.jsptools.patterns.item.ItemServi

ce
• com.bea.jsptools.patterns.xmlhttp.TextB

oxValidationHandler
• com.bea.jsptools.util.PagedResultUtility
• com.bea.portal.tools.patterns.ajax.servlet

.XMLHttpRequestServlet
• com.bea.portal.tools.resource.ResourceI

DBuilderCache
• global.internal.PageFlowHelper
• util.tree.TreeController

Help N/A • com.bea.jsptools.patterns.help.HelpLink
Tag

• com.bea.jsptools.patterns.help.HelpServi
ce

• com.bea.jsptools.patterns.help.HelpTag

Publ i c WLP C lass Debug Refe rence

Oracle WebLogic Portal Portal Development Guide 12-19

Portal Management com.bea.jsptools.portal.helpers.PortletHelp
er

• com.bea.jsptools.common.PagePosition
Helper

• com.bea.jsptools.portal.helpers.DotPorta
l

• com.bea.visitortools.MenuContext
• portalTools.definitions.portletProducers.

wizard.AddProducerWizardControlle
r

• portalTools.instances.communities.wizz
y.AddCommunityWizardController

• portalTools.instances.desktops.wizzy.Ad
dDesktopWizardController

• portalTools.instances.portlets.preference
s.PreferencesController

• portalTools.instances.templates.desktops
.browse.BrowseTemplatesDesktopCo
ntroller

Content
Management

N/A com.bea.jsptools.content.ContentTreeBui
lder

Role Editor N/A roleTools.expressions.RoleExpressionsC
ontroller

Delegated
Administration

• com.bea.jsptools.deladmin.IsAccessAllow
edTag

• com.bea.jsptools.deladmin.SharedDaActio
ns

• com.bea.portal.tools.portal.util.SecurityP
olicyCleanupHelper

• daTools.common.DAController
• daTools.details.DaRoleDetailsController
• daTools.popupsAndButtons.DaPopupBu

ttonController

Entitlements • com.bea.jsptools.vent.EnttitlementService
• com.bea.jsptools.vent.helpers.VentShared

Actions
• com.bea.portal.tools.entitlements.controls.

DelegatedRolePolicyManagerControlF
acadeImpl

ventTools.policies.VentBrowsePoliciesC
ontroller

Table 12-5 (Continued)WLP Administration Console Classes That Support Debug

Feature Level 1 Level 2

Obta in ing Debug In fo rmat ion

12-20 Oracle WebLogic Portal Portal Development Guide

User/Group
Management

• com.bea.jsptools.usermgmt.AtnProviderLi
stTag

• com.bea.jsptools.usermgmt.GroupDescrip
tionTag

• com.bea.jsptools.usermgmt.UserDescripti
onTag

• com.bea.jsptools.usermgmt.helpers.Group
Helper

• com.bea.jsptools.usermgmt.helpers.Share
dActions

• com.bea.jsptools.usermgmt.UGMTreeB
acking

• com.bea.jsptools.usermgmt.validation.N
RNWGroupNameValidator

• com.bea.jsptools.usermgmt.validation.N
RNWUserNameValidator

• ugmTools.nrnwTree.NrnwTreeControlle
r

Table 12-5 (Continued)WLP Administration Console Classes That Support Debug

Feature Level 1 Level 2

Publ i c WLP C lass Debug Refe rence

Oracle WebLogic Portal Portal Development Guide 12-21

Service
Administration

com.bea.jsptools.serviceadmin.wsrp.import
Tool.ImportProcessor

• serverTools.serviceAdmin.ads.AdServic
eBaseFlowController

• serverTools.serviceAdmin.maintenance
Mode.MaintenanceModeDetailsFlow
.MaintenanceModeDetailsFlowContr
oller

Visitor Tools • com.bea.visitortools.helpers.CreateComm
unityHelper

• com.bea.visitortools.invitation.AbstractIn
viterInvoker

• com.bea.visitortools.VisitorStateBean
• com.bea.visitortools.backing.VisitorDes

ktopBacking
• com.bea.visitortools.forms.CreateVisitor

CommunityForm
• com.bea.visitortools.helpers.BaseHelper
• com.bea.visitortools.helpers.ColorsHelp

er
• om.bea.visitortools.helpers.ManageCom

munityHelper
• com.bea.visitortools.tags.GeneratePlacea

bleViewDataTag
• com.bea.visitortools.tags.IsAccessAllow

edTag
• visitorTools.communities.manage.Mana

geController
• visitorTools.communities.manage.memb

ers.MembersController
• visitorTools.communities.manage.prope

rties.PropertiesController
• visitorTools.contents.ContentsController
• visitorTools.pages.PagesController

Table 12-5 (Continued)WLP Administration Console Classes That Support Debug

Feature Level 1 Level 2

Obta in ing Debug In fo rmat ion

12-22 Oracle WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide

Part III Staging

Part III includes the following chapters:

Chapter 12, “Managing Portal Desktops”

Chapter 13, “Deploying Portals to Production”

BEA recommends that you deploy your portal to a staging environment where it can be
assembled and tested before going live. In the staging environment, you use the WebLogic Portal
Administration Console to assemble and configure desktops. You also test your portal in a
staging environment before propagating it to a live production system. In the testing aspect of the
staging phase, there is tight iteration between staging and development until the application is
ready to be released.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the
WebLogic Portal Overview.

../overview/index.html

12-2 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 12-1

C H A P T E R 12

Managing Portal Desktops

You perform the tasks described in this chapter to prepare your portal application for public
consumption.

From an administrative standpoint, a portal is a container that defines a portal application. When
you create a new portal in the administration portal, you are really creating an empty portal to
hold different versions of the portal (desktops) that can be targeted to specific users. A portal can
contain one or more desktops, or views, of a portal. It is the desktops to which you add the portal
resources and navigation such as books, pages, and portlets that make a dynamic portal.

After you assemble the desktops, you can test the application as a whole, and then deploy it to the
production environment when it is ready for public access. For detailed instructions on how to
progress through the stages of portal development and deployment, refer to the Production
Operations Guide.

The primary tool used in this chapter is the WebLogic Portal Administration Console.

This chapter contains the following sections:

Administration Console Overview

Administration Console Library of Resources

Starting and Logging In to the Administration Console

Overview of Library Administration

Overview of Portal Administration

Portal Management

../prodOps/index.html
../prodOps/index.html

Managing Po r ta l Desk tops

12-2 BEA WebLogic Portal Portal Development Guide

Overview of the Library

Desktops

Desktop Templates

Communities

Portal Resources

Books

Pages

Portlets

Portlet Preferences

Portlet Categories

Look & Feels

Shells

Themes

Menus (Navigation)

Layouts

Administration Console Overview
The WebLogic Portal Administration Console is the tool that portal administrators use to not only
control the behavior, content, and appearance of portals, but to perform many traditional system
administration activities such as user management and security management.

The WebLogic Portal Administration Console is organized according to the following categories
of tasks:

Portal Management – Portals, desktops, books, pages, portlets, and other portal resources.

This guide and the Portlet Development Guide provide details about Portal Management
tasks.

User, Groups, & Roles – User and group management, security provider configuration,
Delegated Administration, and Visitor Entitlements.

../portlets/index.html

Admin is t ra t ion Conso le L ib rary o f Resources

BEA WebLogic Portal Portal Development Guide 12-3

The User Management Guide and Security Guide provides detailed information about the
tasks in this category.

Configuration Settings – Server settings for Cache Management, Server Maintenance
Mode, Personalization, Security, Unified User Profiles, and WSRP.

This guide, Security Guide, Federated Portals Guide, Interaction Management Guide, and
User Management Guide provide detailed information about the tasks in this category.

Interaction Management – Campaigns, placeholders, user segments, and content
selectors.

The Interaction Management Guide provides detailed information about the tasks in this
category.

Content Management – Content and repositories.

The Content Management Guide provides detailed information about the tasks in this
category.

Administration Console Library of Resources
When you create a new desktop using the Administration Console, you can use an existing portal
template. Using a template means that you take the portal resources for your desktop directly
from a .portal file that was created in Workshop for WebLogic. (The .portal file is also called
the primary instance.) When you create a desktop, the portal assets are removed from the
.portal file, placed in a database, and surfaced in both the Library and desktop trees of the
Administration Console. Taking the assets from a new desktop instance and placing them in the
Library is called disassembling.

At this point, the assets (books, pages, and so on) in the Library (Library instances) are
hierarchically related to their corresponding desktop instances. A change to a Library resource,
such as a name change, is automatically inherited by the corresponding desktop asset. On the
other hand, a change to the desktop asset is not reflected back up the hierarchy.

Note: Changes made to assets are never “reverse inherited” up the hierarchy. A change to a
desktop asset is never inherited by its corresponding Library instance. Likewise, a change
to a Visitor instance is never inherited by a desktop or Library instance.

New books and pages that you create in a desktop are not disassembled—they are considered to
be private to that desktop.

../users/index.html
../security/index.html
../security/index.html
../federation/index.html
../interaction/index.html
../users/index.html
../interaction/index.html
../cm/index.html

Managing Po r ta l Desk tops

12-4 BEA WebLogic Portal Portal Development Guide

Plan your implementation to make the best use of this WebLogic Portal functionality. Refer to
the Production Operations Guide for more details about disassembling and decoupling of
resources in the Administration Console.

Starting and Logging In to the Administration Console

Opening the Administration Console
Before you can begin using the WebLogic Portal Administration Console, the server must be
running. Depending on the state of your Workshop for WebLogic workbench, you might need to
start the server before opening the Administration Console.

Follow these steps:

1. Start Workshop for WebLogic and open a workspace:

2. In the Servers view, click the server to select it.

3. Click Start in the Servers view toolbar.

Wait while Workshop for WebLogic starts the server. This process might take some time,
depending on the speed of your system. When the process completes, the Status column in
the Servers view displays Started and the square Stop the Server button becomes
active.

4. In the Package Explorer view, select the .portal file for the portal you want to manage with
the Administration Console.

5. From the main menu, select Run > Open Portal Administration Console, as shown in the
example in Figure 12-1.

../prodOps/index.html

Sta r t ing and Logg ing In to the Admin is t rat ion Conso le

BEA WebLogic Portal Portal Development Guide 12-5

Figure 12-1 Menu Selection for Run > Open Portal Administration Console

The Administration Console window opens in a new tab in the workbench editor view,
with the login dialog displayed, as Figure 12-2 shows.

Note: If you set up your Workshop for WebLogic preferences to open external browsers
instead of the internal browser, a separate window opens to display the
Administration Console login dialog.

Figure 12-2 WebLogic Portal Administration Console Login Dialog

Logging In to the Administration Console
The Administration Console login dialog requires a WebLogic Server system administrator or a
WebLogic Portal administrator user name and password. WebLogic Server system
administrators have full security privileges for the entire domain and can log in to and use the

Managing Po r ta l Desk tops

12-6 BEA WebLogic Portal Portal Development Guide

WebLogic Server Administration Console tools. WebLogic Portal administrators have full
security privileges for a Portal Web Project, which can include multiple portals.

Table 12-1 shows the default system administrator user names and passwords:

To log in to the WebLogic Portal Administration Console, follow these steps:

1. Type the appropriate user name and password into the dialog and click Sign In.

The main menu of the Administration Console displays.

2. To get a better view of the console and its functions, click Maximize in the editor view
toolbar. Your display should look like the example in Figure 12-3.

Note: If you set up your Workshop for WebLogic preferences to open external browsers
instead of the internal browser, you do not need to perform this step.

Table 12-1 Default User Names and Passwords for the WebLogic Portal Administration Console

User Name Password Description

portaladmin portaladmin Administrator for the portal domain

weblogic weblogic WebLogic Server system administrator with full
privileges in the domain

Overv iew o f L ib ra ry Admin is t rat ion

BEA WebLogic Portal Portal Development Guide 12-7

Figure 12-3 Administration Console Main Page, Maximized

Overview of Library Administration
In some cases, changes to a definition in the library can be propagated to deployed portal
resources. The portal library is the repository for portal components, including the following:

Shells

Themes

Menus

Books

Pages

Layouts

Look & Feels

Portlets

Managing Po r ta l Desk tops

12-8 BEA WebLogic Portal Portal Development Guide

Portlet Categories

Portlet Producers

As the Library Administrator, you can modify the definitions in the Resource library. These
modifications are global in scope and carry with them a higher degree of administration
responsibility. When you create new portal instances of portal resources and put them in the
Portal Library, they have the following characteristics:

Your resource show up in the Portal Library so that portal administrators can create
instances of them to use as templates.

Your resource can be localized.

Your resource can be entitled at the enterprise application level. This means that when
these resources are entitled, they are entitled for every instance.

Visitors can add these resources to their personal views of a portal using the Visitor Tools
because they can choose them from the Library.

If an administrator or visitor deletes this resource from a portal, the resource can easily be
retrieved from the Library.

Overview of Portal Administration
Portal administrators work with portal resources to assemble portals and entitle parts of the portal
to end users and other administrators. A portal represents a Web site that can be one of many
within an Enterprise Application. Each portal can support multiple desktops using shared
components. The administration of the portals, desktops, and components can be delegated to the
distinct administrators who have the correct Delegated Administration privileges.

You can assemble your portal using portal resources that exist in the Portal Library, or in some
cases you can create your own resources. If you create portal resources outside of the Portal
library, you are creating “one-off” versions that have the following restrictions:

Your resource do not show up in the Portal Library

Your resource cannot have entitlements that are scoped to the enterprise applications. You
can entitle your resource to your Desktop level.

Visitors are not able to add these resources to their personal views of a portal using the
Visitor Tools because they are not available in the Library.

Po r ta l Management

BEA WebLogic Portal Portal Development Guide 12-9

If you delete this resource, it is permanently deleted since no version of it exists in the
Library.

Portal Management
Portal administrators work with portal resources to assemble portals and entitle parts of the portal
to end users and other administrators. A portal represents a web site that can be one of many
within an enterprise application. Each portal can support multiple desktops using shared
components. You can delegate the administration of the portals, desktops, and components to
administrators who have the appropriate Delegated Administration privileges.

For more information, refer to BEA Weblogic Portal e-docs.

Overview of the Library
The portal library is the repository for portal components. The definitions in the library are used
as templates for portal administrators to create and assemble portals and desktops for end users.
In order to have access to the library, you must have delegated administration rights to its
resources.

For more information on library administration, refer to the Portal Development Guide on e-docs.

Desktop Templates
A desktop template is a pre-defined set of portal resources that you can use to quickly build a
desktop.

Creating a Desktop Template
You can create a desktop template in either of these ways: select available resources in the
Library and provide additional desktop properties, or select an existing .portal file on which to
base the template.

Perform these steps:

1. In the Portal Resources tree, select Portals and navigate to the portal for which you want to
create the desktop.

2. Navigate to Templates > Desktop Templates.

3. In the Browse Desktops tab, click Create Desktop Template. The Create Desktop Template
wizard displays.

Managing Po r ta l Desk tops

12-10 BEA WebLogic Portal Portal Development Guide

4. Complete the first page of the wizard by selecting how you want to create a desktop template:

– Select resources in the Library: You can choose the primary book, shell, and Look &
Feel for your desktop from available resources and provide additional desktop
properties.

– Select a .portal file: You can select from a list of .portal files in the current web
application, and provide additional desktop properties.

5. Click Next. The information you need to enter on the remaining pages of the wizard vary
according to the selection you made in the first page. Use the following table as a guide.

Select resources in the
Library

1. You can either search for an existing book or create a
new one. To use an existing book, you can search for
a primary book by entering a search string and
clicking Search, or display all books by clicking
Show All. If you choose to create a new book, enter a
Book Name (required), and a Description and Menu
option if desired.

2. Enter additional template properties, including Title,
Description, and Desktop Template Resources. If you
want to add this template to the Library, select the
check box.

3. Click Next.
4. Review the summary of properties and click Next.

The desktop template is created.
5. Click Finish.

Select a .portal file 1. Either search for a .portal file by entering a search
string and clicking Search, or display all .portal files
by clicking Show All.

2. Select a .portal file in the list.
3. Click Next.
4. Enter the desired desktop properties, including Title,

Description, and Desktop Template Resources. If you
want to add this template to the Library, select the
check box.

5. Click Next.
6. Review the summary of properties and click Next.

The desktop template is created.
7. Click Finish.

Desktop Templates

BEA WebLogic Portal Portal Development Guide 12-11

Modifying Desktop Template Properties
You can modify some desktop template properties from the Details tab. You can also edit the title,
description, and locale information from the Title & Description tab, as described below.

To modify desktop template properties, perform these steps:

1. In the Portal Resources tree, expand the Library node or the Portals node and select a desktop
template.

2. If you are starting this task from the Library node, click Edit this Template.

3. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

Title and Description

Change title and
description of the template
in the current locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the Add a

Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Add a localized title for the
portlet

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title & Description

dialog appears.
3. Enter a Language and Country identifier, Variant if applicable, Title,

and a Description for the localized title.
4. Click Create.

Edit Appearance 1. Click Edit Appearance; the Update Desktop dialog displays.
2. In the Default Shell drop-down menu, select a shell.
3. In the Look and Feel drop-down menu, select a Look & Feel.
4. In the Primary Book drop-down menu, select a book as the primary

book for the template.
5. Click Update.

Managing Po r ta l Desk tops

12-12 BEA WebLogic Portal Portal Development Guide

Communities
Communities are WebLogic Portal desktops that let users with common goals and interests work
together in—and manage—their own web-based portal environment. Whether for specific
events, work groups, partners, or for any other groups that need to share information,
communities provide a dedicated, secure, self-managed place to collaborate.

For more information, refer to the Communities Guide.

Portal Resources
A portal is a web application that provides a unified user interface to aggregated content and
integrated applications. When you "create a portal" using the tools in the WebLogic Portal
Administration Console, you are essentially creating a "container" for desktops, which represent
customized views of the portal. To the desktops you add other portal resources such as books,
pages, and portlets. You can then entitle these desktops and resources for specific users.

For more information on portal resources, refer to the Portal Development Guide on e-docs.

Updating Portal Resources
When you create a desktop using a template (.portal file) in WebLogic Portal Administration
Console, each resource of that desktop (such as books, pages, and portlets) has a Definition Label
that serves as a unique ID for that component in the database.

If you create a new desktop using a template that contains portal resources with Definition Labels
that are identical to resources already stored in the database, a dialog similar to the following
displays:

Edit Primary Book
Contents

1. Click Edit Primary Book Contents; the Browse Contents tab displays.
2. Click Add Contents.
3. Follow the instructions in Managing Book Content.

Control Tree
Optimization

1. Click Advanced Properties.
2. In the Enable Tree Optimization drop-down menu, select True or False.
3. Click Update.

../communities/index.html

Por ta l Resources

BEA WebLogic Portal Portal Development Guide 12-13

Figure 12-4 Update Portal Resources Dialog

Use the following information for guidance in updating portal resources when you receive this
warning:

Table 12-2 Updating Portal Resources- Conflict Resolution Options

Option Description

Don't replace Ignores the resources in the template and leaves the database version of the
resources intact, including any user customizations that have been made.

Don't replace, but update
properties

Uses the template to replace the database version of all conflicting
resources and adds new, non-conflicting resources to the database.

Replace Keeps user customizations but allows replacement of resource XML
markup; for example, a change in a portlet's modes or a change in a portlet's
Content URI.

Managing Po r ta l Desk tops

12-14 BEA WebLogic Portal Portal Development Guide

If you want to replace specific portal resources, use Workshop for WebLogic to create a
“dummy” .portal file containing the portal resources that you want to update (portal
components with the Definition Labels you want to update in the database), use the
Administration Console to create a new desktop using that template, and select the appropriate
“Replace” option in the dialog that appears.

Viewing Resources for a Portal Web Application (Update
WebApp)
To change the “active” portal web application so that you can work with a different web
application's resources, perform these steps:

1. Above the Portal Resources tree, click Update WebApp. The Update Current WebApp
dialog displays.

2. Use a search string to find web applications, or click Show All to display all web applications.

3. Select a web application and click Save.

Deleting a Portal Resource
As a portal resource librarian, you can delete certain portal resources from the library, or remove
them from a desktop (which does not delete them from the library).

Resources that can be deleted include: pages, books, portlets (only those created using the
Administration Console), and portlet categories.

To delete a portal resource:

1. In the Portal Resources tree, select the type of resource that you want to delete. A list of
elements in that category is displayed.

2. To delete an element from the library, select the check box for any elements that you want to
delete, and click Delete. The items are deleted and removed from the list.

If you try to delete an element from the library that is being used within a desktop, a
warning dialog displays. You can choose either to delete the element and any referencing
instances, or cancel the deletion task.

3. To delete an element from a desktop, select the check box for any elements that you want to
delete, and click Remove. The items are removed from the list.

Po r ta ls

BEA WebLogic Portal Portal Development Guide 12-15

Localizing a Portal Resource
You use the WebLogic Portal Administration Console to localize individual portal resources so
that they render in different languages. When you assign a language to a portal resource, you
assign the preferred language to the name of that resource. Resources localized in the portal
library will be propagated through the portals in which they are used.

If the end user's browser supports the selected language, the portal resource is rendered in that
language. If the end user's browser does not support that language, the system works through a
list of available languages until it finds one that is supported in both your portal and the end user's
browser.

Perform these steps:

1. In the Portal Resources tree, expand the Library node to find the resource that you want to
localize; for example:

– Theme

– Book

– Page

– Layout

– Look & Feel

– Portlet

2. Select the Title & Description tab for the resource.

3. Click Add Localized Title.

4. Complete the data entry fields for the Language, Title, and other fields as applicable.

5. Click Create.

Note: For information about localization standards, see
http://java.sun.com/j2se/1.3/l10n-notes.html.

Portals
From an end user perspective, a portal is a web site with pages that are organized by tabs or some
other form of navigation. Each page contains a nesting of sub-pages, and one or more portlets—
individual windows that display anything from static HTML content to complex web services. A
page can contain multiple portlets, giving users access to different information and tools in a

Managing Po r ta l Desk tops

12-16 BEA WebLogic Portal Portal Development Guide

single place. Users can also customize their view of a portal by adding their own pages, adding
portlets of their choosing, and changing the Look & Feel of the interface.

Technically, a portal is a container of resources and functionality that can be made available to
end users. These portal views, which are called desktops in WebLogic Portal, provide the uniform
resource location (URL) that users access. A portal presents diverse content and applications to
users through a consistent, unified web-based interface. Portal administrators and users can
customize portals, and content can be presented based on user preferences or rule-based
personalization. Each portal is associated with a web application that contains all of the resources
required to run portals on the web.

Creating a Portal
When you create a new portal, you are creating an empty portal “container” into which you can
add as many desktops (versions of the portal) as you need. You can then entitle specific users with
access to the desktops. Each portal is associated with a web application that contains all of the
resources required to run the portal on the web.

To create a portal, follow these steps:

1. Click the Portal Management menu shortcut on the Administration Console home page.

The Portal Management page displays; the Portal Resources tree displays in the left pane
of the page, as shown in Figure 12-5.

Figure 12-5 Portal Resources Tree in the Administration Console

Notice that the display is based on the portal that you selected before you opened the
Administration Console. If you expand the Library > Portlets portion of the tree, you can
see any portlets that exist for that portal.

2. Click Portals in the tree.

Po r ta ls

BEA WebLogic Portal Portal Development Guide 12-17

The Portals page displays, with the Browse Portals tab active. If no portals exist yet, the
table containing portals is empty.

3. Click Create New Portal.

The Create a New Portal dialog displays, Figure 12-6 shows an example.

Figure 12-6 Create a New Portal Dialog in Administration Console

4. Enter values for the portal properties.

5. Click Create New Portal.

When the Portals page displays again, the Browse Portals table includes the portal you
created, and the Portal Resources tree includes the new portal.

6. You can click the portal name in the Browse Portals table to view the details for this portal.

The Portals page displays, with the Browse Desktops tab active. Because no desktops exist
yet, the table containing desktops is empty.

You can now add desktops to your portal.

Modifying Portal Properties
You can modify some portal properties from the Details tab. You can also edit the title,
description, and locale information from the Title & Description tab, as described below.

To modify portal properties:

1. In the Portal Resources tree, expand the Portals node and select a portal.

Managing Po r ta l Desk tops

12-18 BEA WebLogic Portal Portal Development Guide

2. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

Desktops
A desktop is a view of the portal that a visitor accesses. A portal is effectively a container for its
desktops. A desktop contains all the portlets, content, and Look & Feel elements necessary to
create individual user views of a portal.

A hierarchy summary is shown in the following figure:

Title and Description

Change title and
description of the portal in
the current locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the Add a

Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Add a localized title for the
portal

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title & Description

dialog appears.
3. Enter a Language and Country identifier, Variant if applicable, Title,

and a Description for the localized title.
4. Click Create.

Portal Location 1. Click Portal Location; the Update URI dialog displays.
2. Enter the URI for the portal.
3. Click Update.

You can view the portal if desired by clicking View Portal.

Desktops

BEA WebLogic Portal Portal Development Guide 12-19

Figure 12-7 Desktop Hierarchy Summary

You can create one or more desktops for a portal, and tailor each desktop for a target audience.

Note: Book and page resources are often created by developers in Workshop for WebLogic. In
order to make these resources visible in the library, you must create a desktop in the
WebLogic Portal Administration Console using the portal created in Workshop for
WebLogic as the template. For example, if a developer creates book and page resources
in a portal called TestPortal in Workshop for WebLogic, you must create a new desktop
and select TestPortal as your template for the desktop.

Creating a Desktop
You can create desktops in one of these ways: use a desktop template, select existing resources
from the Library, or base the desktop on an existing .portal file.

Before you create a desktop, you must already have created a portal to contain it.

To create a desktop, follow these steps:

1. Click the Portal Management menu shortcut on the Administration Console home page.

The Portal Management page displays; the Portal Resources tree displays in the left pane
of the page, as shown in Figure 12-8.

Managing Po r ta l Desk tops

12-20 BEA WebLogic Portal Portal Development Guide

Figure 12-8 Portal Resources Tree in the Administration Console

Notice that the display is based on the portal that you selected before you opened the
Administration Console. If you expand the Library > Portlets portion of the tree, you can
see any portlets that exist for that portal.

2. Navigate to the portal for which you want to create a desktop.

The Portals page displays, with the Browse Portals tab active. If no portals exist yet, the
table containing portals is empty.

3. In the Browse Desktops tab, click Create New Desktop.

The Create Desktop wizard displays, as shown in Figure 12-9.

Desktops

BEA WebLogic Portal Portal Development Guide 12-21

Figure 12-9 Create Desktop Wizard in Administration Console

4. Complete the first page of the wizard by choosing the method of creating the desktop:

– Use a Desktop Template: You can choose from a list of templates that define the
desktops's shell, Look & Feel, and contents to quickly get your desktop up and running.

– Select resources in the Library: You can choose the primary book, shell, and Look &
Feel for your desktop from available resources and provide

– Select a .portal file: You can select from a list of .portal files in the current web
application, and provide additional desktop properties.

5. Enter values for the desktop in the appropriate wizard pages, using Table 12-3 as your guide:

Managing Po r ta l Desk tops

12-22 BEA WebLogic Portal Portal Development Guide

Table 12-3 Create Desktop Wizard Field Descriptions

Field or Selection Value/Description

Use a Desktop Template 1. Either search for a template by entering a search string and clicking
Search, or display all templates by clicking Show All.

2. Select a template in the list.
3. Click Next.
4. Enter additional desktop properties, including Title, Description,

Partial URL, and Desktop Resources.
5. Click Next.
6. Review the summary of properties and click Next. The desktop is

created.
7. Click Finish.

Desktops

BEA WebLogic Portal Portal Development Guide 12-23

The Browse Desktops table includes the desktop you created, and the Portal Resources tree
includes the new desktop, similar to the example shown in Figure 12-10.

Select Resources in the
Library

1. You can either search for an existing book or create a new one. To use
an existing book, you can search for a primary book by entering a
search string and clicking Search, or display all books by clicking
Show All. If you choose to create a new book, enter a Book Name
(required), and a Description and Menu option if desired.

2. Enter additional template properties, including Title, Description,
Partial URL, and Desktop Resources.

3. Click Next.
4. Review the summary of properties and click Next. The desktop is

created.
5. Click Finish.

Select a portal file 1. Either search for a .portal file by entering a search string and clicking
Search, or display all .portal files by clicking Show All.

2. Select a file in the list.
3. Click Next.
4. Enter the desired desktop properties, including Title, Description,

Partial URL, and Desktop Resources.
5. Click Next.
6. Review the summary of properties and click Next.
7. If some of the selected resources already exist in the library, a

Conflict Resolution page displays. Select an option to indicate the file
replacement method that you want to use; for more information, refer
to Updating Portal Resources.

8. Click Next. The desktop is created.
9. Click Finish.

Table 12-3 Create Desktop Wizard Field Descriptions (Continued)

Field or Selection Value/Description

Managing Po r ta l Desk tops

12-24 BEA WebLogic Portal Portal Development Guide

Figure 12-10 New Desktop in Portal Resources Tree

Disassembling to the Library
When you create a new desktop using the WebLogic Portal Administration Console, you can use
an existing portal template. Using a template means that you will be taking the portal resources
for your desktop directly from a .portal file that was created in Workshop for WebLogic. (The
.portal file is also called the primary instance.) When you create a desktop, the portal assets are
removed from the .portal file, placed in a database, and surfaced in both the Library and desktop
trees of the Administration Console. Taking the assets from a new desktop instance and placing
them in the Library is called disassembling.

At this point, the assets (books, pages, and so on) in the Library (Library instances) are
hierarchically related to their corresponding desktop instances. A change to a Library resource,
such as a name change, is automatically inherited by the corresponding desktop asset. On the
other hand, a change to the desktop asset is not reflected back up the hierarchy.

Note: Changes made to assets are never "reverse inherited" up the hierarchy. A change to a
desktop asset is never inherited by its corresponding Library instance. Likewise, a change
to a Visitor instance is never inherited by a desktop or Library instance.

New books and pages that you create in a desktop are not disassembled—they are
considered to be private to that desktop.

Decoupling of Property Settings
If an administrator or a visitor (using Visitor Tools) changes the book properties of a book or the
page properties of a page in a desktop, those property settings become decoupled from the
settings in the parent book or page in the Library. Page properties include layout and theme, while
book properties include menus and layout. These properties can be modified in the

Desktops

BEA WebLogic Portal Portal Development Guide 12-25

Administration Console. When a portal is propagated, any assets that are decoupled in the source
application will remain decoupled in the destination.

Modifying Desktop Properties
To modify the properties of a desktop, perform these steps:

1. In the Portal Resources tree, select Portals and navigate to a desktop.

2. In the Details tab, you can choose to edit properties in each section. Use the following table
as a guide.

Title and Description

Change title and
description of the portlet in
the current locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the

Add a Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Add a localized title for the
portlet

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title &

Description dialog appears.
3. Enter a Language and Country identifier, Variant if

applicable, Title, and a Description for the localized title.
4. Click Create.

Managing Po r ta l Desk tops

12-26 BEA WebLogic Portal Portal Development Guide

3. To verify your changes in a browser, click View Desktop.

Books
A book is a portal component that provides high-level content organization and navigation.
Books contain pages or other books, providing a mechanism for hierarchical nesting of pages and
content.

Creating a Book
If you have Library Administration privileges, you can create a new book in the portal Library
that can be used as a component in multiple portals. If you have Portal Administrator privileges,
you can create books to use in customized portals, but these books are not reusable (and are not
listed in the portal Library).

To create a book in the portal Library, perform these steps:

1. In the Portal Resources tree, expand the Library folder and select Books. The Browse Books
tab displays.

Shell, Look & Feel,
Primary Book

1. Click Appearance And Contents; the Update Desktop
dialog displays.

2. From the Default Shell drop-down menu, select a shell.
3. From the Look And Feel drop-down menu, select a Look

& Feel.
4. From the Default Primary Book drop-down menu, select

a book. The primary book is the main visual and
navigational infrastructure for a particular desktop view of
a portal.

5. Click Update.

Control Tree
Optimization

1. Click Advanced Properties.
2. In the Enable Tree Optimization drop-down menu, select

True or False. Changing this value might change the
behavior of the portal and should not be performed
without first doing a complete test. For more information
about the tree optimization feature, refer to the Portal
Development Guide on e-docs.

3. Click Update.

Books

BEA WebLogic Portal Portal Development Guide 12-27

2. Click Create New Book. The Create New Book dialog displays.

3. Enter a title, description, menu, and theme for the book.

Note: The Multi Level Menu is a pull-down menu, and the Single Level Menu is a tabbed
menu.

4. Click Create Book.

To create a book on an individual desktop, perform these steps:

1. In the Portal Resources tree, expand the Portals node and select the book or page where you
want to create a book.

2. Click the appropriate tab depending on whether you are working on a page or a book, as
follows:

– For pages, click the Edit Contents tab

– For books, click the Browse Contents tab.

3. Click Add New Book. The Create New Book dialog displays.

4. Enter a title, description, menu, and theme for the book.

5. Click Create.

The book is added for the desktop but will not be added to the Library.

Managing Book Content
The contents of a book include pages and books. You can view the books and pages that are
already on your book, and add and remove pages and books to construct your book.

Adding Portal Elements to a Book
Library: To add a content to a book, perform these steps:

1. In the Portal Resource tree, expand the Library node and navigate to a book. The Details tab
displays.

2. Click Add Book Contents. The Add Books and Pages dialog displays.

3. Display the books or pages that you want to choose from, using the Search area if needed.

4. Choose the elements that you want to add by selecting the desired check boxes, and click
Add.

Managing Po r ta l Desk tops

12-28 BEA WebLogic Portal Portal Development Guide

5. When finished, click Save.

Desktop: To add a content to a book, perform these steps:

1. In the Portal Resource tree, expand the Portals node and navigate to a book. The Details tab
displays.

2. Click Browse Contents. In the Browse Book Contents section, you can choose to add
existing elements using the Add Contents button, or create a new page/book using the Add
New Page button or Add New Book button.

3. If you want to create a new book and add it to this book, click Add New Book; the Create
New Book dialog displays. Fill in the fields of this dialog as described in “Creating a Book”
on page 12-26.

4. If you want to create a new page and add it to this book, click Add New Page; the Create New
Page dialog displays. Fill in the fields of this dialog as described in “Creating a New Page”
on page 12-30.

5. If you want to add an existing book or page to the book, click Add Contents; search for
existing books or pages if needed, then select the elements that you want, and click Add.
When finished, click Save.

Positioning or Removing Portal Elements on a Book
Perform these steps:

1. In the Portal Resource tree, expand either the Library node or the Portals node as desired, and
select a book. The Details tab displays.

2. Click Add Book Contents. The Add Books and Pages to Book dialog displays.

3. If you want to remove a page or book, select the check box for that element in the Contents
of Book column and click Remove Selected.

4. To change the order of an element on the page, select the check box for that element in the
Contents of Book column; then click the up arrow or down arrow as needed.

5. When finished, click Save.

Modifying Library Book Properties and Contents
To modify the properties of a book that resides in the library, perform these steps:

1. In the Portal Resources tree, expand the Library node and select the desired book.

Books

BEA WebLogic Portal Portal Development Guide 12-29

2. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

Modifying Desktop Book Properties
To modify the properties of a book that resides on a desktop, perform these steps:

1. In the Portal Resources tree, expand the Portals node and select the desired book.

2. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

Title and Description

Change title and
description of the book in
the current locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the Add

a Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Add a localized title for the
book

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title &

Description dialog appears.
3. Enter a Language and Country identifier, Variant if

applicable, Title, and a Description for the localized title.
4. Click Create.

Book Contents 1. Click Book Contents; the Browse Contents tab displays.
2. Select books and pages to add, following the instructions in

“Managing Book Content” on page 12-27.

Menu and Theme 1. Click Appearance; the Edit Appearance dialog displays.
2. From the Menu drop-down menu, select a Menu.
3. From the Theme drop-down menu, select a Theme.
4. Click Update.

Managing Po r ta l Desk tops

12-30 BEA WebLogic Portal Portal Development Guide

Pages
Pages contain the portlets that display the actual portal content. Pages can also contain books and
other pages.

Creating a New Page
A page is a portal resource that acts as container for portlets. If you have appropriate Delegated
Administration privileges, you can create a new page in the portal library that can be used as a
component in multiple portals. If you have Portal Administrator privileges, you can create pages
to use in customized portals, but these pages are not reusable (and are not listed in the portal
Library).

In this task, you will create a new page in the library of resources for your project.

Follow these steps:

1. Expand the Library folder for your portal web project and select the Pages folder;
Figure 12-11 shows an example of the tree.

Title and Description You must edit these values within the Library resource tree. Expand the
Library node, select the book that you want to edit, and follow the
instructions in “Modifying Library Book Properties and Contents” on
page 12-28.

Book Contents 1. Click Book Contents; the Browse Contents tab displays.
2. Click Add Contents.
3. Select books and pages to add, following the instructions in

“Managing Book Content” on page 12-27.

Menu and Theme 1. Click Appearance; the Edit Appearance dialog displays.
2. From the Menu drop-down menu, select a Menu.
3. From the Theme drop-down menu, select a Theme.
4. Click Update.

Pages

BEA WebLogic Portal Portal Development Guide 12-31

Figure 12-11 Expanded Portal Resources Tree Showing Library Pages

The Browse Pages tab displays in the right pane, as shown in Figure 12-12.

Figure 12-12 Browse Pages Tab

2. Click Create New Page.

The Create New Page dialog displays, as shown in Figure 12-13.

Managing Po r ta l Desk tops

12-32 BEA WebLogic Portal Portal Development Guide

Figure 12-13 Create New Page Dialog in Administration Console

3. Enter a title, description, layout, and theme for the page.

4. Click Create.

The new page is added, and is included in the Details page for the library; the Portal
Resources tree updates to include the new page, as shown in Figure 12-14.

Figure 12-14 New Page Added to the Portal Resources Tree

To create a page on an individual desktop, perform these steps:

1. In the Portal Resources tree, expand the Portals node and select the book or page where you
want to create a page.

2. With the Browse Contents tab active, click Add New Page. The Create New Page dialog
displays.

Pages

BEA WebLogic Portal Portal Development Guide 12-33

3. Enter a title, description, layout, and theme for the page.

4. Click Create.

The page is added for the desktop but will not be added to the Library.

Managing Page Content
The contents of a page include portlets and books. You can view the books and portlets that are
already on your page, and add and remove portlets and books to construct your page.

Adding Elements on a Page
Library: To add a content to a page, perform these steps:

1. In the Portal Resource tree, expand the Library node and navigate to a page. The Details tab
displays.

2. Click Page Contents. The Edit Contents tab displays.

3. Click Add Contents. The Add Books and Portlets to Placeholder dialog displays.

4. Display the books or pages that you want to choose from, using the Search area if needed.

5. Choose the elements that you want to add by selecting the desired check boxes, and click
Add.

6. When finished, click Save.

Desktop: To add content to a page, perform these steps:

1. In the Portal Resource tree, expand the Portals node and navigate to a page. The Details tab
displays.

2. Click Page Contents. The Edit Contents tab displays. In the Edit Contents tab, you can
choose to add existing elements using the Add Contents button, or create a new book using
the Add New Book button.

3. If you want to create a new book and add it to this page, click Add New Book; the Create
New Book dialog displays. Fill in the fields of this dialog as described in “Creating a Book”
on page 12-26.

4. If you want to add an existing book or portlet to the book, click Add Contents; search for
existing books or portlets if needed, then select the elements that you want, and click Add.

5. When finished, click Save.

Managing Po r ta l Desk tops

12-34 BEA WebLogic Portal Portal Development Guide

Positioning Elements on a Page
The page layout is the grid structure of a page that holds placeholders for portlets on the page.
You can select a layout for your portlets/books, and drag and drop portlets or books between the
placeholders to customize the layout of each page.

Perform these steps:

1. In the Portal Resource tree, expand either the Library node or the Portals node as applicable,
and select a page. The Details tab displays.

2. Click Page Contents. The Edit Contents tab displays.

3. If you want to change to a different layout, select a layout in the Layout drop-down menu.

4. Select the method that you want to use to position the elements on the page by selecting an
option in the Position Elements area. The default is Drag & Drop.

5. Move portlets or books between placeholder columns.

6. If you want to prevent users from moving or deleting elements from a placeholder, select the
Lock Placeholder check box.

7. When finished, click Save Changes.

Modifying Library Page Properties
To modify the properties of a page that resides in the library, perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to a page.

2. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

Title and Description

Change title and
description of the page in
the current locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the Add

a Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Pages

BEA WebLogic Portal Portal Development Guide 12-35

Modifying Desktop Page Properties
To modify the properties of a page that resides on a desktop, perform these steps:

1. Expand the Portals node in the Portal Resources tree and navigate to a page.

2. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

Add a localized title for the
page

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title &

Description dialog appears.
3. Enter a Language and Country identifier, Variant if

applicable, Title, and a Description for the localized title.
4. Click Create.

Page Contents 1. Click Page Contents; the Edit Contents tab displays.
2. To add books or portlets, click Add Contents. To move

content, select a positioning option by clicking one of the
Position Elements radio buttons, then move elements as
desired. Follow the instructions in “Managing Page
Content” on page 12-33.

Layout and Theme 1. Click Appearance; the Edit Appearance dialog displays.
2. From the Layout drop-down menu, select a Layout.
3. From the Theme drop-down menu, select a Theme.
4. Click Update.

Title and Description You must edit these values within the Library resource tree. Expand the
Library node, select the page that you want to edit, and follow the
instructions in “Modifying Library Page Properties” on page 12-34.

Managing Po r ta l Desk tops

12-36 BEA WebLogic Portal Portal Development Guide

Moving a Page or Book to Another Location on the Desktop
Within a desktop, you can move a book or page to a different location within the desktop; for
example, you can move page1 from book1 to book2 within a single desktop. You must have "can
manage" privileges on both the source and destination location for the resource. You can perform
this task for any book or page, except the main book.

Note: You cannot change the inheritance structure of a resource when you move it; for
example, if a book's parent is another book, you may move it only underneath another
book - not to a page. If the parent is a page, you can only move the resource under another
page.

Perform these steps:

1. In the Portal Resource tree, expand the Portals node as desired, and select the book or page
that you want to move.

2. Click Move. The Move dialog displays, instructing you to select the node in the Portal
resources tree where you want to place the element.

3. Click OK.

4. In the Portal Resources tree, click the book or page under which you want to paste the element
that you selected in step 2.

5. Click Paste. The Paste confirmation dialog displays.

6. Click OK.

Page Contents 1. Click Page Contents; the Edit Contents tab displays.
2. To add books or portlets, click Add Contents. To move content,

select a positioning option by clicking one of the Position Elements
radio buttons, then move elements as desired. Follow the
instructions in “Managing Page Content” on page 12-33.

Layout and Theme 1. Click Appearance; the Edit Appearance dialog displays.
2. From the Layout drop-down menu, select a Layout.
3. From the Theme drop-down menu, select a Theme.
4. Click Update.

Por t l e ts

BEA WebLogic Portal Portal Development Guide 12-37

Portlets
Portlets are the visible components that act as the interface to applications and content. They are
the actual components with which a user interacts in a portal. Portlets can be arranged in pages
to provide users access to multiple applications within a single page.

Portlets also support application-to-application communication and can be used to provide users
access to composite applications - a single portlet interface that combines data and tasks from
multiple sources.

Copying a Portlet in the Library
You can use this feature of the WebLogic Portal Administration Console to duplicate an existing
portlet and use it as a template for a "new" portlet.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to copy.

2. Click Copy Portlet. The Copy Portlet dialog displays.

3. Enter a title and description for the copied portlet.

4. Click OK. The portlet is added at the bottom of the portlet list.

You can now customize the copied portlet by modifying its properties and preferences.

Deleting a Portlet
You can delete portlets from the Administration Console only if they were created there; for
example, if you used the Copy Portlet feature to duplicate the portlet. Portlets created in
Workshop for WebLogic cannot be deleted using the Administration Console.

Perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to delete.

2. Click Delete Portlet.

Managing Po r ta l Desk tops

12-38 BEA WebLogic Portal Portal Development Guide

Modifying Library Portlet Properties
Portlet properties include all of the features and elements that make up the portlet. As a portal
administrator, you can modify some of these properties from the Details tab. You can also edit
the title, description, and locale information from the Title & Description tab, as described below.

To modify the properties of a portlet that resides in the library, perform these steps:

1. Expand the Library node in the Portal Resources tree and navigate to the portlet that you want
to modify.

2. From the Details tab, select the type of property that you want to change. Use the table below
for guidance.

Title and Description

Change title and
description of the portlet in
the current locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the Add a

Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Add a localized title for the
portlet

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title &

Description dialog appears.
3. Enter a Language and Country identifier, Variant if applicable,

Title, and a Description for the localized title.
4. Click Create.

Portlet Preferences Refer to “Creating a Portlet Preference” on page 12-40 and “Editing a
Portlet Preference” on page 12-41.

Por t l e ts

BEA WebLogic Portal Portal Development Guide 12-39

Modifying Desktop Portlet Properties
Portlet properties include all of the features and elements that make up the portlet. As a portal
administrator, you can modify some of these properties from the Details tab. You can also edit
the title, description, and locale information from the Title & Description tab, as described below.

To modify the properties of a portlet that resides on a desktop, perform these steps:

1. Expand the Portals node in the Portal Resources tree and navigate to the portlet that you want
to modify.

2. From the Details tab, select the type of property that you want to change. Use the table below
as a guide.

Portlet Theme 1. Click Appearance; the Edit Appearance dialog displays.
2. From the drop-down menu, select a Theme.
3. Click Update.

Render caching and
timeout

1. Click Advanced Properties.
2. In the Render Caching Enabled drop-down menu, select True or

False.
3. If you selected True, enter a cache expiration value in the Cache

Expiration field.
4. Click Update.

Title and Description You must edit these values within the Library resource tree. Expand the
Library node, select the portlet that you want to edit, and follow the
instructions in “Modifying Library Portlet Properties” on page 12-38.

Portlet Preferences Refer to “Creating a Portlet Preference” on page 12-40 and “Editing a
Portlet Preference” on page 12-41.

Portlet Theme 1. Click Appearance; the Edit Appearance dialog displays.
2. From the drop-down menu, select a Theme.
3. Click Update.

Managing Po r ta l Desk tops

12-40 BEA WebLogic Portal Portal Development Guide

Portlet Preferences
A portlet preference is a property in a portlet that can be customized by either an administrator or
a user. Your portlet might already have preferences, but if you have the appropriate Delegated
Administration privileges you can create additional portlet preferences.

Creating a Portlet Preference
To create a portlet preference, perform these steps:

1. Expand the Portals node or the Library node in the Portal Resources tree, as appropriate, and
navigate to the portlet for which you want to create a preference. The Details tab displays.

2. Click Add Portlet Preference.

3. Fill in the information in the fields. Use the table below as a guide.

4. Click Save.

5. For library instances of portlets, when you add a preference it automatically proliferates to
library page instances and desktop page instances if the instances have not been decoupled.

6. If you want to force proliferation of this preference to every instance of this portlet, click
Propagate to Instances; WebLogic Portal overwrites all desktop instance's preferences with

Table 12-4 Creating a Portlet Preference - Data Entry Fields

For this field... Enter this information...

Name The name you want to give this preference.

Description A description of this preference.

Value(s) A value for a preference. For example: True or False.

Is Modifiable?
(checkbox)

Select this check box if you want to allow end users to modify this
preference.

Is Multi-Valued?
(checkbox)

Select this check box if you want to enter multiple values for the
preference. If you select this box, an additional data entry field
displays for you to enter additional values. Click Add Another Value
after entering each value, until you are finished.

Por t le t P re fe rences

BEA WebLogic Portal Portal Development Guide 12-41

the library preferences are. When complete, a message appears at the top of the
Administration Console.

Here are some tips related to portlet preferences that you might find useful:

When desktop instances of a portlet have no preferences, they automatically inherit the
preferences from the library instance of the portlet.

When desktop instances of a portlet have their own preferences set, they will not
automatically inherit preferences from the library instance.

If a desktop instance of a portlet has its own preferences set and these preferences are
removed, it will automatically inherit all preferences from the library instance.

If a desktop instance of a portlet has inherited preferences from the library instance and the
desktop instance of this preference has been modified, it will no longer automatically
inherit new preferences from the library or updates made to the library portlet's instance of
this preference.

If a desktop instance of a portlet has inherited the preferences from the library instance and
no desktop instance specific preferences have been set, and the inherited preferences have
not been modified in the desktop instance, the desktop instance will inherit all updates to
the library preferences.

Editing a Portlet Preference
If you have the appropriate Delegated Administration rights, you can edit a portlet's preferences
to change the way a portlet behaves.

To edit a portlet preference:

1. Expand the Portals node or the Library node in the Portal Resources tree, as appropriate, and
navigate to the portlet for which you want to edit a preference. The Details tab displays.

2. Click Portlet Preferences.

3. Select the portlet preference by clicking its name in the Name column.

4. Edit the information in the fields. Use the table below as a guide.

Managing Po r ta l Desk tops

12-42 BEA WebLogic Portal Portal Development Guide

5. Click Save.

6. For library instances of portlets, when you edit a preference it automatically proliferates to
library page instances and desktop page instances if the instances have not been decoupled. If
you want to force proliferation of this change to every instance of this portlet, click Propagate
to Instances. When complete, a message appears at the top of the Administration Console.

Portlet Categories
Portlet categories provide for the classification of portlets, which is useful when organizing a
large collection of portlets into meaningful groupings. The portlet categories are similar to other
hierarchical structures in that parent “folders” can contain child folders and/or portlets. You must
first create a portlet category, and then you can manage portlets by adding them to a category or
moving them between categories.

Creating a Portlet Category
Portlet categories provide for the classification of portlets, which is useful when organizing a
large collection of portlets into meaningful groupings. The portlet categories are similar to other
hierarchical structures in that parent “folders” can contain child folders and/or portlets. You must
first create a portlet category, and then you can manage portlets by adding them to a category or
moving them between categories.

Table 12-5 Editing a Portlet Preference - Data Entry Fields

For this field... Enter this information...

Name The name you want to give this preference.

Description A description of this preference.

Value(s) A value for a preference.

Is Modifiable?
(checkbox)

Select this check box if you want to allow end users to modify this
preference.

Is Multi-Valued?
(checkbox)

Select this check box if you want to enter multiple values for the
preference. If you select this box, an additional data entry field
displays for you to enter additional values. Click Add Another
Value after entering each value, until you are finished.

Por t le t Catego r i es

BEA WebLogic Portal Portal Development Guide 12-43

To create a portlet category:

1. In the Portal Resources tree, expand the Library folder and select Portlet Categories. The
Browse Category tab displays.

2. Click Create New Category.

3. Type a title and description for the new category in the pop-up window.

4. Click Create.

Adding Portlets to a Portlet Category
To add portlets into a category:

1. Expand the Library node in the Portal Resources tree and navigate to a portlet category. The
Summary tab displays.

2. Click Portlets In Category.

3. Click Add Portlets.

4. In the Available Portlets area, select the portlets that you want to add, and click Add to list
them in the Selected Portlets area.

5. Click Save.

Modifying Portlet Category Properties
Portlet category properties include all of the features and elements that make up the category. As
a portal administrator, you can modify some of these properties from the Summary tab. You can
also edit the title, description, and locale information from the Titles & Descriptions tab, as
described below.

Perform these steps:

1. In the Portal Resources tree, expand the Library node and navigate to a portlet category.

2. From the Summary tab, select the type of property that you want to change. Use the table
below as a guide.

Managing Po r ta l Desk tops

12-44 BEA WebLogic Portal Portal Development Guide

Look & Feels
The physical appearance of a portal is determined by the Look & Feel selected for the portal
desktop. Look & Feels are a combination of skins, themes, and skeletons that control the
structure, portlet title bar graphics, JavaScript behavior, and HTML styles in your portal
desktops.

Developers use Workshop for WebLogic to assemble skeletons, skins, and other elements to
create Look & Feels. A Look & Feel is a portal resource that you "apply" to a portal desktop using
the WebLogic Portal Administration Console.

You can change a the Look & Feel of an entire desktop or of individual components in the
desktop by editing that element’s properties:

Title and Description

Change title and
description of the category
in the current locale

1. Click Title & Description.
2. Click the locale (for example, en) in the Locale cell; the Add

a Localized Title & Description dialog displays.
3. Enter a new Title and/or Description.
4. Click Update.

Add a localized title for the
category

1. Click Title & Description.
2. Click Add Localized Title; the Add a Localized Title &

Description dialog appears.
3. Enter a Language and Country identifier, Variant if

applicable, Title, and a Description for the localized title.
4. Click Create.

Portlets in Category Refer to “Adding Portlets to a Portlet Category” on page 12-43.

Categories in Category 1. Click Categories In Category; the Browse Category tab
displays.

2. Click Create New Category; the Create New Category
dialog displays.

3. Enter a Title and Description for the new category.
4. Click Create. The category is created and added to the

currently selected category

She l l s

BEA WebLogic Portal Portal Development Guide 12-45

Modifying Look & Feel Properties
Look & Feels are created using Workshop for WebLogic. You can modify some Look & Feel
properties using the WebLogic Portal Administration Console.

Perform these steps:

1. In the Portal Resources tree, select Library and navigate to a Look & Feel. The Details tab
displays, showing the current information for the Look & Feel.

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new localized
title for the Look & Feel. Use the table below as a guide:

Shells
A desktop's header and footer, controlled by a portal shell, are the areas that are typically above
and below the main body. These areas usually display such things as personalized content, banner
graphics, legal notices, and related links. When a portal is accessed by a user, each of the
components in the shell are rendered to form the frame that contains the books, pages, and
portlets.

Shells are created using Workshop for WebLogic. You can modify some shell properties using
the WebLogic Portal Administration Console.

Modifying Shell Properties
You can modify the title, description, and locale information for shells.

Change title and description of the
Look & Feel in the current locale

1. Click the locale (for example, en) in the Locale cell; the
Add a Localized Title & Description dialog displays.

2. Enter a new Title and/or Description.
3. Click Update.

Add a localized title for the Look &
Feel

1. Click Add Localized Title; the Add a Localized Title &
Description dialog appears.

2. Enter a Language and Country identifier, Variant if
applicable, Title, and a Description for the localized title.

3. Click Create.

Managing Po r ta l Desk tops

12-46 BEA WebLogic Portal Portal Development Guide

To modify shell properties:

1. In the Portal Resources tree, expand the Library node and navigate to the desired shell.

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new localized
title for the shell. Use the table below as a guide:

Themes
Themes allow you to customize specific portal resources such as books, pages, or portlets.
Developers create themes using Workshop for WebLogic; for example, a skin theme is a subset
of graphics, CSS styles, and/or JavaScript behaviors that you can use on books, pages, and
portlets to give them a different look from the rest of the portal desktop.

For more information, refer to Chapter 7, “User Interface Development with Look & Feel
Features.”

You can select from predefined themes as you design portal desktops.

Modifying Theme Properties
Themes are created using Workshop for WebLogic. You can modify a subset of theme properties
using the WebLogic Portal Administration Console.

Perform these steps:

1. In the Portal Resources tree, expand the Library node and navigate to the desired theme.

Change title and description of
the shell in the current locale

1. Click the locale (for example, en) in the Locale cell; the
Add a Localized Title & Description dialog displays.

2. Enter a new Title and/or Description.
3. Click Update.

Add a localized title for the shell 1. Click Add Localized Title; the Add a Localized Title &
Description dialog appears.

2. Enter a Language and Country identifier, Variant if
applicable, Title, and a Description for the localized title.

3. Click Create.

Menus (Nav igat i on)

BEA WebLogic Portal Portal Development Guide 12-47

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new localized
title for the theme. Use the table below as a guide:

Menus (Navigation)
Menus are optional components that are loosely coupled to books and pages. A menu provides a
navigation component, whether it is a set of tabs, a set of links, or a tree structure. WebLogic
Portal provides the following types of menus:

Single Level Menu - Provides a single row of tabs for navigation among books and pages.

Multi Level Menu - Provides multiple levels of nested tabs for navigating among books
and pages. Sub-books and pages are accessed through a cascading drop-down menu.
Drop-down functionality occurs when books are added directly to books rather than to
placeholders on pages.

No Navigation - Suppresses the sub-book and pages tabs in the book. This option is
useful, for example, if you use the Targeted Menu Portlet or the Left Navigation Shell for
book navigation.

If you created your own navigation menus by copying and modifying the default menus, they are
also available for selection when you are editing @@@.

Modifying Menu Properties
A menu's properties are all of the features and elements that make up the menu. As a portal
administrator, you can modify some of these properties.

Change title and
description of the theme
in the current locale

1. Click the locale (for example, en) in the Locale cell; the Add a
Localized Title & Description dialog displays.

2. Enter a new Title and/or Description.
3. Click Update.

Add a localized title for
the theme

1. Click Add Localized Title; the Add a Localized Title & Description
dialog appears.

2. Enter a Language and Country identifier, Variant if applicable, Title,
and a Description for the localized title.

3. Click Create.

Managing Po r ta l Desk tops

12-48 BEA WebLogic Portal Portal Development Guide

Perform these steps:

1. In the Portal Resources tree, select Library and navigate to a menu. The Details tab displays,
showing the current information for the menu.

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new localized
title for the menu. Use the table below as a guide:

Layouts
Layouts are used to control the positions of the components in your portal, providing placeholders
(in a table structure) for a page in which books, pages, and portlets can be placed. Different
layouts display books and portlets on a page in different areas. For example, a layout that uses
three table cells provides three placeholders in which portlets can be placed.

You cannot add a layout using the WebLogic Portal Administration Console. Layouts are created
using Workshop for WebLogic. However, you can modify some layout properties and add
localized titles and descriptions for your layouts using the Administration Console.

Modifying Layout Properties
Layouts are created using Workshop for WebLogic. You can modify some layout properties
using the WebLogic Portal Administration Console.

Perform these steps:

1. In the Portal Resources tree, select Library and navigate to a layout. The Details tab displays,
showing the current information for the layout.

Change title and description of
the menu in the current locale

1. Click the locale (for example, en) in the Locale cell; the
Add a Localized Title & Description dialog displays.

2. Enter a new Title and/or Description.
3. Click Update.

Add a localized title for the menu 1. Click Add Localized Title; the Add a Localized Title &
Description dialog appears.

2. Enter a Language and Country identifier, Variant if
applicable, Title, and a Description for the localized title.

3. Click Create.

Layouts

BEA WebLogic Portal Portal Development Guide 12-49

2. Click Title & Description.

3. You can either update the title and description for the current locale, or add a new localized
title for the layout. Use the table below as a guide:

Change title and description of
the layout in the current locale

1. Click the locale (for example, en) in the Locale cell; the
Add a Localized Title & Description dialog displays.

2. Enter a new Title and/or Description.
3. Click Update.

Add a localized title for the
layout

1. Click Add Localized Title; the Add a Localized Title &
Description dialog appears.

2. Enter a Language and Country identifier, Variant if
applicable, Title, and a Description for the localized title.

3. Click Create.

Managing Po r ta l Desk tops

12-50 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 13-1

C H A P T E R 13

Deploying Portals to Production

Propagation refers to the process of moving the database and LDAP contents of one portal
domain environment to another. BEA provides tools to help with portal propagation. These tools
not only move database assets and LDAP information, but they also report differences and
potential conflicts between the source and the target environments. You can define policies to
automatically resolve conflicts, or an administrator can view a list of differences and decide the
appropriate actions to take on a case-by-case basis.

Propagation tools are described in detail in the Production Operations Guide. The Production
Operations Guide also helps you through the process of planning a strategy for propagation and
provides detailed information on best practices.

This chapter contains information you might find useful as you are propagating (deploying) your
portal from the staging environment to the production environment, when it is ready for public
access.

The primary tools used in this chapter are the WebLogic Portal propagation tools (to move
database and LDAP data between staging, development, and production), WebLogic Server
application deployment tools, and any external content or security providers you are using.

Shared J2EE Libraries
The following sections provide more information about J2EE libraries and their behavior during
portal deployment. For detailed instructions on how to work with J2EE libraries during
deployment, refer to the Production Operations Guide.

../prodOps/index.html
../prodOps/index.html

Deploy ing Por ta ls to P roduc t i on

13-2 BEA WebLogic Portal Portal Development Guide

To view a detailed diagram depicting the dependencies among WebLogic Portal shared libraries,
refer to the Shared J2EE Library Dependency Diagrams.

Shared J2EE Library References in config.xml
Figure 13-1 highlights the separation between your application code and shared J2EE libraries.
The config.xml file resides in the domain, and it specifies the relationships between the web
application and the J2EE libraries. Listing 13-1 shows an example <library> element from the
config.xml file in a WebLogic Portal domain. As you can see, the library file is an EAR file
located in the WebLogic installation area. This library is available to applications deployed on
the target server.

Listing 13-1 J2EE Library Referenced in config.xml File

<library>

 <name>p13n-app-lib#9.2.0@9.2.0</name>

 <target>AdminServer</target>

 <source-path>D:/bea/weblogic92/common/deployable-libraries/

p13n-app-lib.ear

</source-path>

 <deployment-order>1</deployment-order>

 <security-dd-model>DDOnly</security-dd-model>

</library>

When the application is deployed, these relationships provide a plan by which the application and
J2EE library code are merged into a single enterprise application.

../datadictionarydiagrams/images/shared-lib-diagram.pdf

Shared J2EE L ib ra r i es

BEA WebLogic Portal Portal Development Guide 13-3

Figure 13-1 Application Referencing a Shared J2EE Library

Tip: You can create a deployment plan to configure what gets mapped at runtime when the
files merge. Deployment plans are described in the Production Operations Guide.

J2EE libraries can be:

Included by reference

Perhaps the most important thing to know about shared J2EE libraries is that they are
included in your application by reference. Within your WebLogic Portal application is a
configuration file that references all of the J2EE libraries that your application requires.
When you deploy your application, the library files are automatically located and included
with your application.

Independently versioned

Another important thing to know about J2EE libraries is that they are independently
versioned. This means that each J2EE library includes within it a descriptor file that lists
the module’s version number. At deploy time, these descriptors are located, read, and
merged automatically, ensuring that your application retrieves the correct version of each
J2EE library that it requires.

Shared across multiple applications

A set of shared J2EE libraries is installed when you create a WebLogic Portal domain. This
set of J2EE libraries is used by all applications running in that domain.

../prodOps/index.html

Deploy ing Por ta ls to P roduc t i on

13-4 BEA WebLogic Portal Portal Development Guide

Separately deployed

Because J2EE libraries are separately deployed, applications can be upgraded easily by
replacing a single J2EE library.

An application can include multiple J2EE libraries, assigning each a deployment order, which
determines which version of a given file takes precedence if the same file is contained in multiple
libraries. (Files contained in the referencing application always take precedence over library
files.) Conceptually, J2EE libraries can be viewed as effectively overlaying (or more precisely,
under-laying) the application in which they are included.

J2EE libraries can be employed at either the enterprise or web application level. They use the
same file and directory structure as the applications in which they are included—the files
contained in a J2EE library are effectively merged into the referencing application at deploy-time.

After deployment, the merged application functions as a standard J2EE application. As a
consequence, the deployment information for assets in a library must be merged into the
descriptors for the referencing application either prior to (or as part of) the deployment process.

Anatomy of a Shared J2EE Library
A J2EE library is a collection of libraries, resources, and configuration files packaged in an EAR
or WAR file. EAR-based J2EE libraries are enterprise application scoped, while WAR-based
modules are web application scoped.

Figure 13-2 shows an exploded J2EE library. The J2EE library’s name is p13n-app-lib.

Shared J2EE L ib ra r i es

BEA WebLogic Portal Portal Development Guide 13-5

Figure 13-2 Example of an Exploded Shared J2EE Library

In the META-INF directory is a Manifest.mf file; an example is shown in Listing 13-2. This file
includes three elements that define the archive as a J2EE library:

Extension-name – Specifies the name of the J2EE library.

Specification-Version – Specifies the initial version of the J2EE library.

Implementation-Version – (optional) Specifies the current version of the J2EE library.
You increment this version number each time the J2EE library is updated. When an
application is deployed, deployment descriptors specify which J2EE libraries to deploy.
This version number can be referenced in deployment descriptors so that the intended
version of the module is included.

Listing 13-2 Manifest.mf File for a J2EE Library

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.6.2

Created-By: 1.5.0_04-b05 (Sun Microsystems Inc.)

Extension-Name: p13n-app-lib

Specification-Version: 9.2.0

Implementation-Version: 9.2.0

p13n-app-lib
p13n-ejb.jar
datasync.war
META-INF/

p13n-cache-config.xml
p13n-config.xml
p13n-profile-config.xml
p13n-security-config.xml
weblogic-application.xml

APP-INF/lib/
p13n_app.jar

Manifest.mf
application.xml

Deploy ing Por ta ls to P roduc t i on

13-6 BEA WebLogic Portal Portal Development Guide

Overriding Shared J2EE Library Settings in the web.xml File
At runtime, the web.xml files in all the shared J2EE libraries are merged, along with the web.xml
file in your portal web project. The content of your WEB-INF/web.xml file overrides anything in
the shared J2EE libraries, so if you want to change particular settings, you can do it there.

There are many other files for which file contents are merged; these can be overridden in the same
way. These files include not only WEB-INF/web.xml but also WEB-INF/weblogic.xml and any
files mentioned in weblogic-extension.xml from either the users' application or the shared
libraries.

Servlet filters and servlets deployed in the shared libraries' web.xml files can be disabled if
desired by deploying the null servlet filter (com.bea.p13n.servlets.NullFilter) or 404
servlet (com.bea.p13n.servlets.SendErrorServlet) in their place. For more information,
refer to the Javadoc.

Servlet Mapping Overrides
The web.xml servlet mappings provided by WebLogic Portal reside in J2EE libraries. For
example, the showBinaryServlet is defined in
WebLogic_Home/portal/lib/modules/wlp-services-web-lib.war

If you want to add to or modify these servlet mappings, you can add your mappings or provide
mapping overrides in your portal web project's file-based web.xml file located in the following
path:
PortalWebProject/WebContent/WEB-INF/web.xml

For example, if you want to call the ShowPropertyServlet when /ShowBinaryServlet/* is used in
a URL, add the following entry to your file system web.xml file:
<servlet-mapping>

<servlet-name>ShowPropertyServlet</servlet-name>

<url-pattern>/ShowBinaryServlet/*</url-pattern>

</servlet-mapping>

../javadoc/index.html

BEA WebLogic Portal Portal Development Guide

Part IV Production

Part IV includes the following chapter:

Chapter 14, “Managing Portals in Production”

In the production phase of the portal life cycle, your portal is live. In this phase, you can use the
WebLogic Portal Administration Console to perform some management functions, such as
adding portlets.

For a view of how the tasks in this section relate to the overall portal life cycle, refer to the
WebLogic Portal Overview.

.

../overview/index.html

13-2 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide 14-1

C H A P T E R 14

Managing Portals in Production

A production portal is live and available to end users. A portal in production can be modified by
administrators using the WebLogic Portal Administration Console and by users using Visitor
Tools. For instance, an administrator might add additional portlets to a portal or reconfigure the
contents of a portal.

During the life cycle of a WebLogic Portal application, it moves back and forth between
development, staging, and production environments. This chapter contains information about
managing portals that are on a production system.

This chapter contains the following sections:

Pushing Changes from the Library into Production

Transferring Changes from Production Back to Development

Pushing Changes from the Library into Production
Proliferation refers to the process by which changes made to the Library instance of a portal asset
on the WebLogic Portal Administration Console are pushed into user-customized instances of
that asset. For example, if a portal administrator deletes a portlet from a desktop, that change must
be reflected into user-customized instances of that desktop. Before you propagate a portal,
consider the way in which proliferation is configured for your portal.

If your desktops include a large number of user customizations, we recommend that you change
the Portal Resources Proliferation of Updates Configuration setting to either Asynchronous or
Off. This change reduces the amount of time required to complete the propagation.

Managing Po r ta l s in P roduct ion

14-2 BEA WebLogic Portal Portal Development Guide

You can do this in the WebLogic Portal Administration Console under Configuration Settings
> Service Administration > Portal Resources > Portal Resources Proliferation of Updates
Configuration. The proliferation settings include Asynchronous, Synchronous, or Off.

For more information on proliferation and propagation, refer to the Production Operations
Guide. For database setup requirements related to using the Asynchronous proliferation setting,
refer to the Database Administration Guide.

Transferring Changes from Production Back to
Development

WebLogic Portal utilities such as the propagation tools and the Export/Import Utility allow you
to reliably move and merge changes between environments. The Export/Import Utility allows a
full round-trip development life cycle, where you can easily move portals from a production
environment back to your WebLogic Workshop development environment.

For instructions on using the propagation tools and Export/Import Utility, refer to the Production
Operations Guide.

../prodOps/index.html
../prodOps/index.html
../prodOps/index.html
../prodOps/index.html
../db/index.html

BEA WebLogic Portal Portal Development Guide A-1

A P P E N D I X A

Facet-to-Library Reference Tables

This appendix contains reference tables that show the relationships between WebLogic Portal
facets and Shared J2EE libraries.

To view a detailed diagram depicting the dependencies among WebLogic Portal shared libraries,
refer to the Shared J2EE Library Dependency Diagrams.

WebLogic Portal Facet-to-Library Reference Tables
Refer to the following tables to view the relationships between WebLogic Portal facets and their
associated Shared J2EE Libraries:

Figure A-1, “WebLogic Portal Application Facets and Associated J2EE Libraries,” on
page A-2

Figure A-2, “WebLogic Portal Web Application Facets and Associated J2EE Libraries,” on
page A-3

../datadictionarydiagrams/images/shared-lib-diagram.pdf

Facet-to-Library R
eference Tables

A-2
BEA W

ebLogic Portal Portal Developm
ent Guide

Figure A-1 WebLogic Portal Application Facets and Associated J2EE Libraries

W
ebLogic Portal Facet-to-Library R

eference Tables

BEA W
ebLogic Portal Portal Developm

ent Guide
A-3

FigureA-2 WebLogic Portal Web Application Facets and Associated J2EE Libraries

Facet- to -L ib rary Re fe rence Tab les

A-4 BEA WebLogic Portal Portal Development Guide

BEA WebLogic Portal Portal Development Guide B-1

A P P E N D I X B

API Upgrade Cross-Reference

This appendix contains the following cross-reference tables, which show the relationships
between Version 8.1.5 JAR files, API packages, and Version 9.2 shared J2EE libraries:

Packages to J2EE Libraries - Cross Reference Table

JAR Files to J2EE Libraries - Cross Reference Table

J2EE Libraries to Packages - Cross Reference Table

Packages to J2EE Libraries - Cross Reference Table
Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

com/bea/campaign wlp-services-app-lib wps.jar

com/bea/campaign wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/campaign/action wlp-services-app-lib wps.jar

com/bea/campaign/mbeans N/A N/A

com/bea/campaign/rules wlp-services-app-lib wps.jar

com/bea/campaign/servlets wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/campaign/tracking/events wlp-services-app-lib wps.jar

API Upgrade Cross-Refe rence

B-2 BEA WebLogic Portal Portal Development Guide

com/bea/campaign/webservice wlp-services-app-lib wps.jar

com/bea/commerce/common N/A N/A

com/bea/commerce/ebusiness/campaign wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/customer wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/discount wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/discount/associati
on

wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/discount/mgmt wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/discount/util wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/price/engine wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/price/engine/pool wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/price/quote wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/price/service wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/tax wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/tracking/events wlp-commerce-app-lib commerce.jar

com/bea/commerce/ebusiness/tracking/tags wlp-commerce-web-lib WEB-INF/lib/productTracking_t
aglib.jar

com/bea/commerce/mbeans N/A N/A

com/bea/content wlp-groupspace-common-app-lib APP-INF/lib/extensible_controls.
jar

com/bea/content wlp-services-app-lib content.jar

com/bea/content wlp-services-app-lib content_repo.jar

com/bea/content wlp-services-app-lib content_system.jar

com/bea/content wlp-propagation-web-lib WEB-INF/lib/content_prop.jar

com/bea/content wlp-propagation-web-lib WEB-INF/lib/content_prop_onli
ne.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

Packages to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-3

com/bea/content wlp-services-web-lib WEB-INF/lib/content_servlet.jar

com/bea/content/expression wlp-services-app-lib content.jar

com/bea/content/loader wlp-services-app-lib content.jar

com/bea/content/loader/bulk wlp-services-app-lib content.jar

com/bea/content/manager wlp-services-app-lib content.jar

com/bea/content/manager wlp-services-app-lib content_system.jar

com/bea/content/manager wlp-services-web-lib WEB-INF/lib/content_servlet.jar

com/bea/content/manager/propertysets wlp-services-app-lib content.jar

com/bea/content/manager/servlets wlp-services-web-lib WEB-INF/lib/content_servlet.jar

com/bea/content/manager/servlets/jsp/taglib wlp-services-web-lib WEB-INF/lib/content_servlet.jar

com/bea/content/manager/sort wlp-services-app-lib content.jar

com/bea/content/mbeans N/A N/A

com/bea/content/spi wlp-services-app-lib content.jar

com/bea/content/spi wlp-services-app-lib content_repo.jar

com/bea/content/virtual wlp-services-app-lib content.jar

com/bea/content/virtual wlp-services-app-lib content_system.jar

com/bea/content/virtual/version wlp-services-app-lib content.jar

com/bea/content/virtual/lifecycle wlp-services-app-lib content.jar

com/bea/jsptools/portal wlp-tools-app-lib APP-INF/lib/tools-framework.jar

com/bea/jsptools/portal wlp-tools-app-lib APP-INF/lib/wlptools_en.jar

com/bea/jsptools/portal wlp-tools-admin-web-lib WEB-INF/lib/wlp-admin.jar

com/bea/netuix/application/definition wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/exception N/A WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

API Upgrade Cross-Refe rence

B-4 BEA WebLogic Portal Portal Development Guide

com/bea/netuix/application/identifier N/A WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

com/bea/netuix/application/instance wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/localization/definiti
on

wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/localization/identifi
er

wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/localization/manage
r

wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/localization/view wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/localization/manage
r/persistence

wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/manager wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/manager/persistence wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/transform/disassem
bler

wlp-framework-full-app-lib netuix.jar

com/bea/netuix/application/view wlp-framework-full-app-lib netuix.jar

com/bea/netuix/client/classifier N/A WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

com/bea/netuix/client/jsp/clienttaglib wlp-light-web-lib WEB-INF/lib/client_taglib.jar

com/bea/netuix/events wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/events wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/netuix/servlets/controls wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/netuix/servlets/l10n wlp-light-web-lib WEB-INF/lib/l10n_taglib.jar

com/bea/netuix/servlets/l10n wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

Packages to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-5

com/bea/netuix/servlets/controls/application wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/application/ba
cking

wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/content wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/content wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/netuix/servlets/controls/layout wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/page wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/portlet wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/portlet wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/netuix/servlets/controls/portlet/backing wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/portlet/events wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/portlet/events wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/netuix/servlets/controls/window wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/window wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/netuix/servlets/controls/content/backin
g

wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/controls/window/backi
ng

wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/manager wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

com/bea/netuix/servlets/manager wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/p13n/ad wlp-services-app-lib wps.jar

com/bea/p13n/ad wlp-services-web-lib WEB-INF/lib/ad_taglib.jar

com/bea/p13n/ad wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

API Upgrade Cross-Refe rence

B-6 BEA WebLogic Portal Portal Development Guide

com/bea/p13n/ad/render wlp-services-app-lib wps.jar

com/bea/p13n/ad/servlets wlp-services-web-lib WEB-INF/lib/ad_taglib.jar

com/bea/p13n/ad/servlets wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/p13n/ad/servlets/jsp/taglib wlp-services-web-lib WEB-INF/lib/ad_taglib.jar

com/bea/p13n/advisor wlp-services-app-lib wps.jar

com/bea/p13n/cache p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/cache wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/p13n/cache/servlets wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/p13n/common p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/content wlp-services-app-lib wps.jar

com/bea/p13n/content/adapter N/A N/A

com/bea/p13n/content/admin N/A N/A

com/bea/p13n/content/advislets wlp-services-app-lib wps.jar

com/bea/p13n/content/document N/A N/A

com/bea/p13n/content/document/jdbc N/A N/A

com/bea/p13n/content/document/ref N/A N/A

com/bea/p13n/content/document/ref/loader N/A N/A

com/bea/p13n/content/document/spi N/A N/A

com/bea/p13n/content/expression wlp-services-app-lib wps.jar

com/bea/p13n/content/query wlp-services-app-lib wps.jar

com/bea/p13n/content/servlets N/A N/A

com/bea/p13n/content/servlets/jsp/taglib N/A N/A

com/bea/p13n/controls/createUser wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/exceptions wlp-services-app-lib APP-INF/lib/p13n_controls.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

Packages to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-7

com/bea/p13n/controls/login wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/profile wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/userInfoQuery wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/events/generic wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/events/standard wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/ejb/events wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/ejb/property wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/ejb/usermgmt wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/ejb/usermgmt/profile wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/rules wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/controls/securityProvider wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/entitlements p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/entitlements p13n-app-lib p13n_ejb.jar

com/bea/p13n/entitlements wlp-services-app-lib wps.jar

com/bea/p13n/entitlements p13n-web-lib WEB-INF/lib/auth_taglib.jar

com/bea/p13n/entitlements/common p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/entitlements/common p13n-app-lib p13n_ejb.jar

com/bea/p13n/entitlements/common wlp-services-app-lib wps.jar

com/bea/p13n/entitlements/management p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/entitlements/management p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/entitlements/policy p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/entitlements/resource wlp-services-app-lib wps.jar

com/bea/p13n/entitlements/service N/A N/A

com/bea/p13n/events p13n-app-lib p13n_ejb.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

API Upgrade Cross-Refe rence

B-8 BEA WebLogic Portal Portal Development Guide

com/bea/p13n/events/listeners p13n-app-lib p13n_ejb.jar

com/bea/p13n/exceptions N/A N/A

com/bea/p13n/expression p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/expression/operator p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/expression/operator/collection p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/expression/operator/comparative p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/expression/operator/logical p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/expression/operator/math p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/expression/operator/string p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/http p13n-app-lib p13n_ejb.jar

com/bea/p13n/license N/A N/A

com/bea/p13n/mail wlp-services-app-lib wps.jar

com/bea/p13n/mail wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/p13n/mail/servlets wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/p13n/management p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/management p13n-app-lib p13n_ejb.jar

com/bea/p13n/management p13n-datasync-web-lib WEB-INF/lib/classes.jar

com/bea/p13n/management wlp-propagation-web-lib WEB-INF/lib/netuix_prop.jar

com/bea/p13n/management wlp-propagation-web-lib WEB-INF/lib/netuix_prop_onlin
e.jar

com/bea/p13n/management wlp-propagation-web-lib WEB-INF/lib/p13n_prop.jar

com/bea/p13n/management wlp-propagation-web-lib WEB-INF/lib/p13n_prop_online.
jar

com/bea/p13n/mbeans N/A N/A

com/bea/p13n/placeholder wlp-services-app-lib wps.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

Packages to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-9

com/bea/p13n/placeholder wlp-services-web-lib WEB-INF/lib/ph_taglib.jar

com/bea/p13n/placeholder wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/p13n/placeholder/servlets wlp-services-web-lib WEB-INF/lib/ph_taglib.jar

com/bea/p13n/placeholder/servlets wlp-services-web-lib WEB-INF/lib/wps_servlet.jar

com/bea/p13n/placeholder/servlets/jsp/taglib wlp-services-web-lib WEB-INF/lib/ph_taglib.jar

com/bea/p13n/property p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/property p13n-app-lib p13n_ejb.jar

com/bea/p13n/property wlp-commerce-app-lib commerce.jar

com/bea/p13n/property p13n-web-lib WEB-INF/lib/ps_taglib.jar

com/bea/p13n/rules/advislets wlp-services-app-lib wps.jar

com/bea/p13n/rules/manager p13n-app-lib p13n_ejb.jar

com/bea/p13n/security p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/security p13n-app-lib p13n_ejb.jar

com/bea/p13n/security wlp-services-app-lib APP-INF/lib/p13n_controls.jar

com/bea/p13n/security/management p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/security/management p13n-app-lib p13n_ejb.jar

com/bea/p13n/security/management/authenticat
ion

p13n-app-lib p13n_ejb.jar

com/bea/p13n/security/management/rolemapper p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/security/management/rolemapper p13n-app-lib p13n_ejb.jar

com/bea/p13n/servlets p13n-app-lib p13n_ejb.jar

com/bea/p13n/servlets wlp-services-app-lib wps.jar

com/bea/p13n/servlets wlp-services-web-lib WEB-INF/lib/pz_taglib.jar

com/bea/p13n/servlets/jsp wlp-services-app-lib wps.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

API Upgrade Cross-Refe rence

B-10 BEA WebLogic Portal Portal Development Guide

com/bea/p13n/servlets/jsp wlp-services-web-lib WEB-INF/lib/pz_taglib.jar

com/bea/p13n/servlets/jsp/taglib wlp-services-web-lib WEB-INF/lib/pz_taglib.jar

com/bea/p13n/tracking p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/tracking p13n-app-lib p13n_ejb.jar

com/bea/p13n/tracking p13n-web-lib WEB-INF/lib/tracking_taglib.jar

com/bea/p13n/tracking/clickthrough p13n-app-lib p13n_ejb.jar

com/bea/p13n/tracking/events p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/tracking/events p13n-app-lib p13n_ejb.jar

com/bea/p13n/tracking/listeners p13n-app-lib p13n_ejb.jar

com/bea/p13n/user p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/usermgmt p13n-app-lib p13n_ejb.jar

com/bea/p13n/usermgmt wlp-services-app-lib wps.jar

com/bea/p13n/usermgmt p13n-web-lib WEB-INF/lib/profile_taglib.jar

com/bea/p13n/usermgmt p13n-web-lib WEB-INF/lib/ugm_taglib.jar

com/bea/p13n/usermgmt wlp-services-web-lib WEB-INF/lib/um_taglib.jar

com/bea/p13n/usermgmt p13n-app-lib p13n_ejb.jar

com/bea/p13n/usermgmt/config p13n-app-lib p13n_ejb.jar

com/bea/p13n/usermgmt/profile p13n-app-lib p13n_ejb.jar

com/bea/p13n/usermgmt/profile wlp-services-app-lib wps.jar

com/bea/p13n/usermgmt/profile p13n-web-lib WEB-INF/lib/profile_taglib.jar

com/bea/p13n/usermgmt/profile/ldap N/A N/A

com/bea/p13n/usermgmt/profile/taglib p13n-web-lib WEB-INF/lib/profile_taglib.jar

com/bea/p13n/usermgmt/taglib p13n-web-lib WEB-INF/lib/ugm_taglib.jar

com/bea/p13n/util p13n-app-lib APP-INF/lib/p13n_app.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

Packages to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-11

com/bea/p13n/util/debug N/A N/A

com/bea/p13n/util/jdbc p13n-app-lib APP-INF/lib/p13n_app.jar

com/bea/p13n/xml/schema N/A N/A

com/bea/p13n/xml/util N/A N/A

com/bea/portal wlp-tools-app-lib APP-INF/lib/common-editors.jar

com/bea/portal wlp-tools-app-lib APP-INF/lib/tools-framework.jar

com/bea/portal wlp-tools-app-lib APP-INF/lib/wlptools_en.jar

com/bea/portal/admin N/A N/A

com/bea/portal/admin/ejb N/A N/A

com/bea/portal/appflow N/A N/A

com/bea/portal/appflow/processor N/A N/A

com/bea/portal/appflow/processor/security N/A N/A

com/bea/portal/jsp N/A N/A

com/bea/portal/manager N/A N/A

com/bea/portal/manager/ejb N/A N/A

com/bea/portal/model N/A N/A

com/bea/portal/render/servlets/jsp N/A N/A

com/bea/portlet wlp-framework-full-app-lib netuix.jar

com/bea/portlet wlp-framework-full-app-lib prefs.jar

com/bea/portlet wlp-framework-common-web-lib WEB-INF/lib/faces-adapter.jar

com/bea/portlet wlp-framework-common-web-lib WEB-INF/lib/netui-adapter.jar

com/bea/portlet wlp-framework-common-web-lib WEB-INF/lib/netuix_common_w
eb.jar

com/bea/portlet wlp-light-web-lib WEB-INF/lib/netuix_servlet.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

API Upgrade Cross-Refe rence

B-12 BEA WebLogic Portal Portal Development Guide

com/bea/portlet wlp-light-web-lib WEB-INF/lib/portlet-container.ja
r

com/bea/portlet wlp-light-web-lib WEB-INF/lib/prefs-spi.jar

com/bea/portlet wlp-light-web-lib WEB-INF/lib/prefs_taglib.jar

com/bea/portlet wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/portlet/ext wlp-light-web-lib WEB-INF/lib/portlet-container.ja
r

com/bea/portlet/jsp wlp-light-web-lib WEB-INF/lib/portlet-container.ja
r

com/bea/portlet/prefs wlp-framework-full-app-lib netuix.jar

com/bea/portlet/prefs wlp-framework-full-app-lib prefs.jar

com/bea/portlet/prefs wlp-light-web-lib WEB-INF/lib/prefs-spi.jar

com/bea/portlet/prefs wlp-light-web-lib WEB-INF/lib/prefs_taglib.jar

com/bea/portlet/prefs wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/query autonomy-compat-web-lib WEB-INF/lib/autonomySupport.j
ar

com/bea/struts/adapter/action wlp-framework-struts-1.1-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/action wlp-framework-struts-1.2-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/taglib/html wlp-framework-struts-1.1-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/taglib/html wlp-framework-struts-1.2-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/taglib/naming wlp-framework-struts-1.1-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/taglib/naming wlp-framework-struts-1.2-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/taglib/nested/html wlp-framework-struts-1.1-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/taglib/nested/html wlp-framework-struts-1.2-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/taglib/tiles/ext wlp-framework-struts-1.1-web-lib WEB-INF/lib/struts-adapter.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

Packages to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-13

com/bea/struts/adapter/util wlp-framework-struts-1.1-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/util wlp-framework-struts-1.2-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/util/rewriter wlp-framework-struts-1.1-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/struts/adapter/util/rewriter wlp-framework-struts-1.2-web-lib WEB-INF/lib/struts-adapter.jar

com/bea/wsrp/config N/A WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

com/bea/wsrp/consumer/management/portlet wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/wsrp/consumer/management/producer wlp-framework-full-web-lib WEB-INF/lib/netuix_servlet-full.
jar

com/bea/wsrp/ext/holders N/A WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

com/bea/wsrp/logging N/A WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

com/bea/wsrp/security N/A WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

com/bea/wsrp/util N/A WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

com/beasys/commerce/axiom/units wlp-commerce-app-lib commerce.jar

com/beasys/commerce/axiom/util wlp-commerce-app-lib commerce.jar

com/beasys/commerce/axiom/util/helper wlp-commerce-app-lib commerce.jar

com/beasys/commerce/axiom/util/weblogic/hel
per

N/A N/A

com/beasys/commerce/bridge/bmp wlp-commerce-app-lib commerce.jar

com/beasys/commerce/bridge/bmp/jdbc wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog wlp-commerce-web-lib WEB-INF/lib/cat_taglib.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

API Upgrade Cross-Refe rence

B-14 BEA WebLogic Portal Portal Development Guide

com/beasys/commerce/ebusiness/catalog/advisl
ets

wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/rules wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/servic
e

wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/servic
e/category

wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/servic
e/data

wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/servic
e/item

wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/servic
e/query

wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/sql wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/tags wlp-commerce-web-lib WEB-INF/lib/cat_taglib.jar

com/beasys/commerce/ebusiness/catalog/util wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/catalog/webse
rvice

wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/customer wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/customer/jaas wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/order wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/order/exceptio
n

wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/payment wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/security wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/shipping wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/shoppingcart wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/tags wlp-commerce-web-lib WEB-INF/lib/eb_taglib.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

JAR F i l es to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-15

JAR Files to J2EE Libraries - Cross Reference Table

com/beasys/commerce/ebusiness/tax wlp-commerce-app-lib commerce.jar

com/beasys/commerce/ebusiness/util wlp-commerce-app-lib commerce.jar

com/beasys/commerce/foundation wlp-commerce-app-lib commerce.jar

com/beasys/commerce/foundation wlp-services-app-lib wps.jar

com/beasys/commerce/foundation/exception wlp-commerce-app-lib commerce.jar

com/beasys/commerce/foundation/expression wlp-services-app-lib wps.jar

com/beasys/commerce/util wlp-commerce-app-lib commerce.jar

com/beasys/commerce/util wlp-services-app-lib wps.jar

com/beasys/commerce/util/dom wlp-commerce-app-lib commerce.jar

Table B-1 Mapping of Version 8.1.5 Packages/JARs to Version 9.2 Shared J2EE Libraries, Sorted by Package

8.1.5 Package 9.2 J2EE Library 9.2 JAR File

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name

9.2 JAR File 9.2 J2EE library 8.1.5 Package

N/A N/A com/bea/campaign/mbeans

N/A N/A com/bea/commerce/common

N/A N/A com/bea/commerce/mbeans

N/A N/A com/bea/content/mbeans

WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

N/A com/bea/netuix/application/exception

WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

N/A com/bea/netuix/application/identifier

WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

N/A com/bea/netuix/client/classifier

API Upgrade Cross-Refe rence

B-16 BEA WebLogic Portal Portal Development Guide

N/A N/A com/bea/p13n/content/adapter

N/A N/A com/bea/p13n/content/admin

N/A N/A com/bea/p13n/content/document

N/A N/A com/bea/p13n/content/document/jdbc

N/A N/A com/bea/p13n/content/document/ref

N/A N/A com/bea/p13n/content/document/ref/loader

N/A N/A com/bea/p13n/content/document/spi

N/A N/A com/bea/p13n/content/servlets

N/A N/A com/bea/p13n/content/servlets/jsp/taglib

N/A N/A com/bea/p13n/entitlements/service

N/A N/A com/bea/p13n/exceptions

N/A N/A com/bea/p13n/license

N/A N/A com/bea/p13n/mbeans

N/A N/A com/bea/p13n/usermgmt/profile/ldap

N/A N/A com/bea/p13n/util/debug

N/A N/A com/bea/p13n/xml/schema

N/A N/A com/bea/p13n/xml/util

N/A N/A com/bea/portal/admin

N/A N/A com/bea/portal/admin/ejb

N/A N/A com/bea/portal/appflow

N/A N/A com/bea/portal/appflow/processor

N/A N/A com/bea/portal/appflow/processor/security

N/A N/A com/bea/portal/jsp

N/A N/A com/bea/portal/manager

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

JAR F i l es to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-17

N/A N/A com/bea/portal/manager/ejb

N/A N/A com/bea/portal/model

N/A N/A com/bea/portal/render/servlets/jsp

WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/bea/wsrp/config

WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/bea/wsrp/ext/holders

WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/bea/wsrp/logging

WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/bea/wsrp/security

WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/bea/wsrp/util

N/A N/A com/beasys/commerce/axiom/util/weblogic/h
elper

APP-INF/lib/common-editors.jar wlp-tools-app-lib com/bea/portal

APP-INF/lib/extensible_controls.jar wlp-groupspace-common-app-lib com/bea/content

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/cache

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/common

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/entitlements

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/entitlements/common

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/entitlements/management

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/entitlements/management

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/entitlements/policy

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/expression

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/expression/operator

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/expression/operator/collection

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

API Upgrade Cross-Refe rence

B-18 BEA WebLogic Portal Portal Development Guide

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/expression/operator/comparati
ve

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/expression/operator/logical

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/expression/operator/math

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/expression/operator/string

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/management

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/property

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/security

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/security/management

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/security/management/rolemap
per

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/tracking

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/tracking/events

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/user

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/util

APP-INF/lib/p13n_app.jar p13n-app-lib com/bea/p13n/util/jdbc

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/createUser

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/exceptions

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/login

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/profile

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/userInfoQuery

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/events/generic

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/events/standard

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/ejb/events

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/ejb/property

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

JAR F i l es to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-19

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/ejb/usermgmt

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/ejb/usermgmt/profile

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/rules

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/controls/securityProvider

APP-INF/lib/p13n_controls.jar wlp-services-app-lib com/bea/p13n/security

APP-INF/lib/tools-framework.jar wlp-tools-app-lib com/bea/jsptools/portal

APP-INF/lib/tools-framework.jar wlp-tools-app-lib com/bea/portal

APP-INF/lib/wlptools_en.jar wlp-tools-app-lib com/bea/jsptools/portal

APP-INF/lib/wlptools_en.jar wlp-tools-app-lib com/bea/portal

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/campaign

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/customer

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/discount

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/discount/assoc
iation

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/discount/mgmt

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/discount/util

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/price/engine

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/price/engine/p
ool

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/price/quote

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/price/service

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/tax

commerce.jar wlp-commerce-app-lib com/bea/commerce/ebusiness/tracking/event
s

commerce.jar wlp-commerce-app-lib com/bea/p13n/property

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

API Upgrade Cross-Refe rence

B-20 BEA WebLogic Portal Portal Development Guide

commerce.jar wlp-commerce-app-lib com/beasys/commerce/axiom/units

commerce.jar wlp-commerce-app-lib com/beasys/commerce/axiom/util

commerce.jar wlp-commerce-app-lib com/beasys/commerce/axiom/util/helper

commerce.jar wlp-commerce-app-lib com/beasys/commerce/bridge/bmp

commerce.jar wlp-commerce-app-lib com/beasys/commerce/bridge/bmp/jdbc

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/adv
islets

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/rule
s

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice/category

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice/data

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice/item

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice/query

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/sql

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/util

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/we
bservice

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/customer

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/customer/ja
as

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/order

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

JAR F i l es to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-21

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/order/excep
tion

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/payment

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/security

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/shipping

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/shoppingca
rt

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/tax

commerce.jar wlp-commerce-app-lib com/beasys/commerce/ebusiness/util

commerce.jar wlp-commerce-app-lib com/beasys/commerce/foundation

commerce.jar wlp-commerce-app-lib com/beasys/commerce/foundation/exception

commerce.jar wlp-commerce-app-lib com/beasys/commerce/util

commerce.jar wlp-commerce-app-lib com/beasys/commerce/util/dom

content.jar wlp-services-app-lib com/bea/content

content.jar wlp-services-app-lib com/bea/content/expression

content.jar wlp-services-app-lib com/bea/content/loader

content.jar wlp-services-app-lib com/bea/content/loader/bulk

content.jar wlp-services-app-lib com/bea/content/manager

content.jar wlp-services-app-lib com/bea/content/manager/propertysets

content.jar wlp-services-app-lib com/bea/content/manager/sort

content.jar wlp-services-app-lib com/bea/content/spi

content.jar wlp-services-app-lib com/bea/content/virtual

content.jar wlp-services-app-lib com/bea/content/virtual/version

content.jar wlp-services-app-lib com/bea/content/virtual/lifecycle

content_repo.jar wlp-services-app-lib com/bea/content

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

API Upgrade Cross-Refe rence

B-22 BEA WebLogic Portal Portal Development Guide

content_repo.jar wlp-services-app-lib com/bea/content/spi

content_system.jar wlp-services-app-lib com/bea/content

content_system.jar wlp-services-app-lib com/bea/content/manager

content_system.jar wlp-services-app-lib com/bea/content/virtual

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/definition

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/instance

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/localization/defin
ition

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/localization/ident
ifier

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/localization/man
ager

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/localization/view

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/localization/man
ager/persistence

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/manager

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/manager/persiste
nce

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/transform/disasse
mbler

netuix.jar wlp-framework-full-app-lib com/bea/netuix/application/view

netuix.jar wlp-framework-full-app-lib com/bea/portlet

netuix.jar wlp-framework-full-app-lib com/bea/portlet/prefs

p13n_ejb.jar p13n-app-lib com/bea/p13n/entitlements

p13n_ejb.jar p13n-app-lib com/bea/p13n/entitlements/common

p13n_ejb.jar p13n-app-lib com/bea/p13n/events

p13n_ejb.jar p13n-app-lib com/bea/p13n/events/listeners

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

JAR F i l es to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-23

p13n_ejb.jar p13n-app-lib com/bea/p13n/http

p13n_ejb.jar p13n-app-lib com/bea/p13n/management

p13n_ejb.jar p13n-app-lib com/bea/p13n/property

p13n_ejb.jar p13n-app-lib com/bea/p13n/rules/manager

p13n_ejb.jar p13n-app-lib com/bea/p13n/security

p13n_ejb.jar p13n-app-lib com/bea/p13n/security/management

p13n_ejb.jar p13n-app-lib com/bea/p13n/security/management/authenti
cation

p13n_ejb.jar p13n-app-lib com/bea/p13n/security/management/rolemap
per

p13n_ejb.jar p13n-app-lib com/bea/p13n/servlets

p13n_ejb.jar p13n-app-lib com/bea/p13n/tracking

p13n_ejb.jar p13n-app-lib com/bea/p13n/tracking/clickthrough

p13n_ejb.jar p13n-app-lib com/bea/p13n/tracking/events

p13n_ejb.jar p13n-app-lib com/bea/p13n/tracking/listeners

p13n_ejb.jar p13n-app-lib com/bea/p13n/usermgmt

p13n_ejb.jar p13n-app-lib com/bea/p13n/usermgmt

p13n_ejb.jar p13n-app-lib com/bea/p13n/usermgmt/config

p13n_ejb.jar p13n-app-lib com/bea/p13n/usermgmt/profile

prefs.jar wlp-framework-full-app-lib com/bea/portlet

prefs.jar wlp-framework-full-app-lib com/bea/portlet/prefs

WEB-INF/lib/ad_taglib.jar wlp-services-web-lib com/bea/p13n/ad

WEB-INF/lib/ad_taglib.jar wlp-services-web-lib com/bea/p13n/ad/servlets

WEB-INF/lib/ad_taglib.jar wlp-services-web-lib com/bea/p13n/ad/servlets/jsp/taglib

WEB-INF/lib/auth_taglib.jar p13n-web-lib com/bea/p13n/entitlements

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

API Upgrade Cross-Refe rence

B-24 BEA WebLogic Portal Portal Development Guide

WEB-INF/lib/autonomySupport.jar autonomy-compat-web-lib com/bea/query

WEB-INF/lib/cat_taglib.jar wlp-commerce-web-lib com/beasys/commerce/ebusiness/catalog

WEB-INF/lib/cat_taglib.jar wlp-commerce-web-lib com/beasys/commerce/ebusiness/catalog/tag
s

WEB-INF/lib/classes.jar p13n-datasync-web-lib com/bea/p13n/management

WEB-INF/lib/client_taglib.jar wlp-light-web-lib com/bea/netuix/client/jsp/clienttaglib

WEB-INF/lib/content_prop.jar wlp-propagation-web-lib com/bea/content

WEB-INF/lib/content_prop_online.jar wlp-propagation-web-lib com/bea/content

WEB-INF/lib/content_servlet.jar wlp-services-web-lib com/bea/content

WEB-INF/lib/content_servlet.jar wlp-services-web-lib com/bea/content/manager

WEB-INF/lib/content_servlet.jar wlp-services-web-lib com/bea/content/manager/servlets

WEB-INF/lib/content_servlet.jar wlp-services-web-lib com/bea/content/manager/servlets/jsp/taglib

WEB-INF/lib/eb_taglib.jar wlp-commerce-web-lib com/beasys/commerce/ebusiness/tags

WEB-INF/lib/faces-adapter.jar wlp-framework-common-web-lib com/bea/portlet

WEB-INF/lib/l10n_taglib.jar wlp-light-web-lib com/bea/netuix/servlets/l10n

WEB-INF/lib/netui-adapter.jar wlp-framework-common-web-lib com/bea/portlet

WEB-INF/lib/netuix_common_web.ja
r

wlp-framework-common-web-lib com/bea/portlet

WEB-INF/lib/netuix_prop.jar wlp-propagation-web-lib com/bea/p13n/management

WEB-INF/lib/netuix_prop_online.jar wlp-propagation-web-lib com/bea/p13n/management

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/events

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/l10n

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/application

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

JAR F i l es to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-25

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/application/
backing

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/content

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/layout

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/page

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/portlet

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/portlet/back
ing

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/portlet/even
ts

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/window

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/content/bac
king

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/controls/window/bac
king

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/netuix/servlets/manager

WEB-INF/lib/netuix_servlet.jar wlp-light-web-lib com/bea/portlet

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/netuix/events

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/netuix/servlets/controls

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/netuix/servlets/controls/content

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/netuix/servlets/controls/portlet

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/netuix/servlets/controls/portlet/even
ts

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/netuix/servlets/controls/window

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/netuix/servlets/manager

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/portlet

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/portlet/prefs

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

API Upgrade Cross-Refe rence

B-26 BEA WebLogic Portal Portal Development Guide

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/wsrp/consumer/management/portlet

WEB-INF/lib/netuix_servlet-full.jar wlp-framework-full-web-lib com/bea/wsrp/consumer/management/produc
er

WEB-INF/lib/p13n_prop.jar wlp-propagation-web-lib com/bea/p13n/management

WEB-INF/lib/p13n_prop_online.jar wlp-propagation-web-lib com/bea/p13n/management

WEB-INF/lib/ph_taglib.jar wlp-services-web-lib com/bea/p13n/placeholder

WEB-INF/lib/ph_taglib.jar wlp-services-web-lib com/bea/p13n/placeholder/servlets

WEB-INF/lib/ph_taglib.jar wlp-services-web-lib com/bea/p13n/placeholder/servlets/jsp/taglib

WEB-INF/lib/portlet-container.jar wlp-light-web-lib com/bea/portlet

WEB-INF/lib/portlet-container.jar wlp-light-web-lib com/bea/portlet/ext

WEB-INF/lib/portlet-container.jar wlp-light-web-lib com/bea/portlet/jsp

WEB-INF/lib/prefs_taglib.jar wlp-light-web-lib com/bea/portlet

WEB-INF/lib/prefs_taglib.jar wlp-light-web-lib com/bea/portlet/prefs

WEB-INF/lib/prefs-spi.jar wlp-light-web-lib com/bea/portlet

WEB-INF/lib/prefs-spi.jar wlp-light-web-lib com/bea/portlet/prefs

WEB-INF/lib/productTracking_taglib.
jar

wlp-commerce-web-lib com/bea/commerce/ebusiness/tracking/tags

WEB-INF/lib/profile_taglib.jar p13n-web-lib com/bea/p13n/usermgmt

WEB-INF/lib/profile_taglib.jar p13n-web-lib com/bea/p13n/usermgmt/profile

WEB-INF/lib/profile_taglib.jar p13n-web-lib com/bea/p13n/usermgmt/profile/taglib

WEB-INF/lib/ps_taglib.jar p13n-web-lib com/bea/p13n/property

WEB-INF/lib/pz_taglib.jar wlp-services-web-lib com/bea/p13n/servlets

WEB-INF/lib/pz_taglib.jar wlp-services-web-lib com/bea/p13n/servlets/jsp

WEB-INF/lib/pz_taglib.jar wlp-services-web-lib com/bea/p13n/servlets/jsp/taglib

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/action

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

JAR F i l es to J2EE L ib rar ies - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-27

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/action

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/taglib/html

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/taglib/html

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/taglib/naming

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/taglib/naming

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/taglib/nested/html

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/taglib/nested/html

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/taglib/tiles/ext

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/util

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/util

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/util/rewriter

WEB-INF/lib/struts-adapter.jar wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/util/rewriter

WEB-INF/lib/tracking_taglib.jar p13n-web-lib com/bea/p13n/tracking

WEB-INF/lib/ugm_taglib.jar p13n-web-lib com/bea/p13n/usermgmt

WEB-INF/lib/ugm_taglib.jar p13n-web-lib com/bea/p13n/usermgmt/taglib

WEB-INF/lib/um_taglib.jar wlp-services-web-lib com/bea/p13n/usermgmt

WEB-INF/lib/wlp-admin.jar wlp-tools-admin-web-lib com/bea/jsptools/portal

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/campaign

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/campaign/servlets

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/p13n/ad

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/p13n/ad/servlets

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/p13n/cache

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/p13n/cache/servlets

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/p13n/mail

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

API Upgrade Cross-Refe rence

B-28 BEA WebLogic Portal Portal Development Guide

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/p13n/mail/servlets

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/p13n/placeholder

WEB-INF/lib/wps_servlet.jar wlp-services-web-lib com/bea/p13n/placeholder/servlets

wps.jar wlp-services-app-lib com/bea/campaign

wps.jar wlp-services-app-lib com/bea/campaign/action

wps.jar wlp-services-app-lib com/bea/campaign/rules

wps.jar wlp-services-app-lib com/bea/campaign/tracking/events

wps.jar wlp-services-app-lib com/bea/campaign/webservice

wps.jar wlp-services-app-lib com/bea/p13n/ad

wps.jar wlp-services-app-lib com/bea/p13n/ad/render

wps.jar wlp-services-app-lib com/bea/p13n/advisor

wps.jar wlp-services-app-lib com/bea/p13n/content

wps.jar wlp-services-app-lib com/bea/p13n/content/advislets

wps.jar wlp-services-app-lib com/bea/p13n/content/expression

wps.jar wlp-services-app-lib com/bea/p13n/content/query

wps.jar wlp-services-app-lib com/bea/p13n/entitlements

wps.jar wlp-services-app-lib com/bea/p13n/entitlements/common

wps.jar wlp-services-app-lib com/bea/p13n/entitlements/resource

wps.jar wlp-services-app-lib com/bea/p13n/mail

wps.jar wlp-services-app-lib com/bea/p13n/placeholder

wps.jar wlp-services-app-lib com/bea/p13n/rules/advislets

wps.jar wlp-services-app-lib com/bea/p13n/servlets

wps.jar wlp-services-app-lib com/bea/p13n/servlets/jsp

wps.jar wlp-services-app-lib com/bea/p13n/usermgmt

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

J2EE L ib rar ies to Package s - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-29

J2EE Libraries to Packages - Cross Reference Table

wps.jar wlp-services-app-lib com/bea/p13n/usermgmt/profile

wps.jar wlp-services-app-lib com/beasys/commerce/foundation

wps.jar wlp-services-app-lib com/beasys/commerce/foundation/expressio
n

wps.jar wlp-services-app-lib com/beasys/commerce/util

Table B-2 Mapping of Version 8.1.5 JARs to Version 9.2 J2EE Libraries, Sorted by JAR File Name (Continued)

9.2 JAR File 9.2 J2EE library 8.1.5 Package

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

N/A com/bea/campaign/mbeans N/A

N/A com/bea/commerce/common N/A

N/A com/bea/commerce/mbeans N/A

N/A com/bea/content/mbeans N/A

N/A com/bea/netuix/application/exception WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

N/A com/bea/netuix/application/identifier WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

N/A com/bea/netuix/client/classifier WebLogic_HOME/platform/lib
/wlp/netuix_system.jar

N/A com/bea/p13n/content/adapter N/A

N/A com/bea/p13n/content/admin N/A

N/A com/bea/p13n/content/document N/A

N/A com/bea/p13n/content/document/jdbc N/A

N/A com/bea/p13n/content/document/ref N/A

API Upgrade Cross-Refe rence

B-30 BEA WebLogic Portal Portal Development Guide

N/A com/bea/p13n/content/document/ref/loader N/A

N/A com/bea/p13n/content/document/spi N/A

N/A com/bea/p13n/content/servlets N/A

N/A com/bea/p13n/content/servlets/jsp/taglib N/A

N/A com/bea/p13n/entitlements/service N/A

N/A com/bea/p13n/exceptions N/A

N/A com/bea/p13n/license N/A

N/A com/bea/p13n/mbeans N/A

N/A com/bea/p13n/usermgmt/profile/ldap N/A

N/A com/bea/p13n/util/debug N/A

N/A com/bea/p13n/xml/schema N/A

N/A com/bea/p13n/xml/util N/A

N/A com/bea/portal/admin N/A

N/A com/bea/portal/admin/ejb N/A

N/A com/bea/portal/appflow N/A

N/A com/bea/portal/appflow/processor N/A

N/A com/bea/portal/appflow/processor/security N/A

N/A com/bea/portal/jsp N/A

N/A com/bea/portal/manager N/A

N/A com/bea/portal/manager/ejb N/A

N/A com/bea/portal/model N/A

N/A com/bea/portal/render/servlets/jsp N/A

N/A com/bea/wsrp/config WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

J2EE L ib rar ies to Package s - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-31

N/A com/bea/wsrp/ext/holders WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/bea/wsrp/logging WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/bea/wsrp/security WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/bea/wsrp/util WebLogic_HOME/platform/lib
/wlp/wsrp-common.jar

N/A com/beasys/commerce/axiom/util/weblogic/
helper

N/A

autonomy-compat-web-lib com/bea/query WEB-INF/lib/autonomySupport.j
ar

p13n-app-lib com/bea/p13n/cache APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/common APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/entitlements APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/entitlements p13n_ejb.jar

p13n-app-lib com/bea/p13n/entitlements/common APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/entitlements/common p13n_ejb.jar

p13n-app-lib com/bea/p13n/entitlements/management APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/entitlements/management APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/entitlements/policy APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/events p13n_ejb.jar

p13n-app-lib com/bea/p13n/events/listeners p13n_ejb.jar

p13n-app-lib com/bea/p13n/expression APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/expression/operator APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/expression/operator/collection APP-INF/lib/p13n_app.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

API Upgrade Cross-Refe rence

B-32 BEA WebLogic Portal Portal Development Guide

p13n-app-lib com/bea/p13n/expression/operator/comparati
ve

APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/expression/operator/logical APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/expression/operator/math APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/expression/operator/string APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/http p13n_ejb.jar

p13n-app-lib com/bea/p13n/management APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/management p13n_ejb.jar

p13n-app-lib com/bea/p13n/property APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/property p13n_ejb.jar

p13n-app-lib com/bea/p13n/rules/manager p13n_ejb.jar

p13n-app-lib com/bea/p13n/security APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/security p13n_ejb.jar

p13n-app-lib com/bea/p13n/security/management APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/security/management p13n_ejb.jar

p13n-app-lib com/bea/p13n/security/management/authenti
cation

p13n_ejb.jar

p13n-app-lib com/bea/p13n/security/management/rolemap
per

APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/security/management/rolemap
per

p13n_ejb.jar

p13n-app-lib com/bea/p13n/servlets p13n_ejb.jar

p13n-app-lib com/bea/p13n/tracking APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/tracking p13n_ejb.jar

p13n-app-lib com/bea/p13n/tracking/clickthrough p13n_ejb.jar

p13n-app-lib com/bea/p13n/tracking/events APP-INF/lib/p13n_app.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

J2EE L ib rar ies to Package s - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-33

p13n-app-lib com/bea/p13n/tracking/events p13n_ejb.jar

p13n-app-lib com/bea/p13n/tracking/listeners p13n_ejb.jar

p13n-app-lib com/bea/p13n/user APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/usermgmt p13n_ejb.jar

p13n-app-lib com/bea/p13n/usermgmt p13n_ejb.jar

p13n-app-lib com/bea/p13n/usermgmt/config p13n_ejb.jar

p13n-app-lib com/bea/p13n/usermgmt/profile p13n_ejb.jar

p13n-app-lib com/bea/p13n/util APP-INF/lib/p13n_app.jar

p13n-app-lib com/bea/p13n/util/jdbc APP-INF/lib/p13n_app.jar

p13n-datasync-web-lib com/bea/p13n/management WEB-INF/lib/classes.jar

p13n-web-lib com/bea/p13n/entitlements WEB-INF/lib/auth_taglib.jar

p13n-web-lib com/bea/p13n/property WEB-INF/lib/ps_taglib.jar

p13n-web-lib com/bea/p13n/tracking WEB-INF/lib/tracking_taglib.jar

p13n-web-lib com/bea/p13n/usermgmt WEB-INF/lib/profile_taglib.jar

p13n-web-lib com/bea/p13n/usermgmt WEB-INF/lib/ugm_taglib.jar

p13n-web-lib com/bea/p13n/usermgmt/profile WEB-INF/lib/profile_taglib.jar

p13n-web-lib com/bea/p13n/usermgmt/profile/taglib WEB-INF/lib/profile_taglib.jar

p13n-web-lib com/bea/p13n/usermgmt/taglib WEB-INF/lib/ugm_taglib.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/campaign commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/customer commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/discount commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/discount/assoc
iation

commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/discount/mgm
t

commerce.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

API Upgrade Cross-Refe rence

B-34 BEA WebLogic Portal Portal Development Guide

wlp-commerce-app-lib com/bea/commerce/ebusiness/discount/util commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/price/engine commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/price/engine/p
ool

commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/price/quote commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/price/service commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/tax commerce.jar

wlp-commerce-app-lib com/bea/commerce/ebusiness/tracking/event
s

commerce.jar

wlp-commerce-app-lib com/bea/p13n/property commerce.jar

wlp-commerce-app-lib com/beasys/commerce/axiom/units commerce.jar

wlp-commerce-app-lib com/beasys/commerce/axiom/util commerce.jar

wlp-commerce-app-lib com/beasys/commerce/axiom/util/helper commerce.jar

wlp-commerce-app-lib com/beasys/commerce/bridge/bmp commerce.jar

wlp-commerce-app-lib com/beasys/commerce/bridge/bmp/jdbc commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/adv
islets

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/rul
es

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice/category

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice/data

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice/item

commerce.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

J2EE L ib rar ies to Package s - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-35

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/ser
vice/query

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/sql commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/util commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/catalog/we
bservice

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/customer commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/customer/ja
as

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/order commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/order/exce
ption

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/payment commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/security commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/shipping commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/shoppingca
rt

commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/tax commerce.jar

wlp-commerce-app-lib com/beasys/commerce/ebusiness/util commerce.jar

wlp-commerce-app-lib com/beasys/commerce/foundation commerce.jar

wlp-commerce-app-lib com/beasys/commerce/foundation/exception commerce.jar

wlp-commerce-app-lib com/beasys/commerce/util commerce.jar

wlp-commerce-app-lib com/beasys/commerce/util/dom commerce.jar

wlp-commerce-web-lib com/bea/commerce/ebusiness/tracking/tags WEB-INF/lib/productTracking_t
aglib.jar

wlp-commerce-web-lib com/beasys/commerce/ebusiness/catalog WEB-INF/lib/cat_taglib.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

API Upgrade Cross-Refe rence

B-36 BEA WebLogic Portal Portal Development Guide

wlp-commerce-web-lib com/beasys/commerce/ebusiness/catalog/tag
s

WEB-INF/lib/cat_taglib.jar

wlp-commerce-web-lib com/beasys/commerce/ebusiness/tags WEB-INF/lib/eb_taglib.jar

wlp-framework-common-web-lib com/bea/portlet WEB-INF/lib/faces-adapter.jar

wlp-framework-common-web-lib com/bea/portlet WEB-INF/lib/netui-adapter.jar

wlp-framework-common-web-lib com/bea/portlet WEB-INF/lib/netuix_common_w
eb.jar

wlp-framework-full-app-lib com/bea/netuix/application/definition netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/instance netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/localization/defin
ition

netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/localization/ident
ifier

netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/localization/man
ager

netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/localization/view netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/localization/man
ager/persistence

netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/manager netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/manager/persiste
nce

netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/transform/disasse
mbler

netuix.jar

wlp-framework-full-app-lib com/bea/netuix/application/view netuix.jar

wlp-framework-full-app-lib com/bea/portlet netuix.jar

wlp-framework-full-app-lib com/bea/portlet prefs.jar

wlp-framework-full-app-lib com/bea/portlet/prefs netuix.jar

wlp-framework-full-app-lib com/bea/portlet/prefs prefs.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

J2EE L ib rar ies to Package s - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-37

wlp-framework-full-web-lib com/bea/netuix/events WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/netuix/servlets/controls/content WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/netuix/servlets/controls/portlet WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/portlet WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/portlet/prefs WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/wsrp/consumer/management/portlet WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/wsrp/consumer/management/produ
cer

WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/netuix/servlets/controls WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/netuix/servlets/controls/portlet/even
ts

WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/netuix/servlets/controls/window WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-full-web-lib com/bea/netuix/servlets/manager WEB-INF/lib/netuix_servlet-full.
jar

wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/action WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/taglib/html WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/taglib/naming WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/taglib/nested/html WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/taglib/tiles/ext WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/util WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.1-web-lib com/bea/struts/adapter/util/rewriter WEB-INF/lib/struts-adapter.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

API Upgrade Cross-Refe rence

B-38 BEA WebLogic Portal Portal Development Guide

wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/action WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/taglib/html WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/taglib/naming WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/taglib/nested/html WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/util WEB-INF/lib/struts-adapter.jar

wlp-framework-struts-1.2-web-lib com/bea/struts/adapter/util/rewriter WEB-INF/lib/struts-adapter.jar

wlp-groupspace-common-app-lib com/bea/content APP-INF/lib/extensible_controls.
jar

wlp-light-web-lib com/bea/netuix/client/jsp/clienttaglib WEB-INF/lib/client_taglib.jar

wlp-light-web-lib com/bea/netuix/events WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/l10n WEB-INF/lib/l10n_taglib.jar

wlp-light-web-lib com/bea/netuix/servlets/l10n WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/application WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/application/
backing

WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/content WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/layout WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/page WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/portlet WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/portlet/back
ing

WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/portlet/even
ts

WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/window WEB-INF/lib/netuix_servlet.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

J2EE L ib rar ies to Package s - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-39

wlp-light-web-lib com/bea/netuix/servlets/controls/content/bac
king

WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/controls/window/bac
king

WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/netuix/servlets/manager WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/portlet WEB-INF/lib/netuix_servlet.jar

wlp-light-web-lib com/bea/portlet WEB-INF/lib/portlet-container.ja
r

wlp-light-web-lib com/bea/portlet WEB-INF/lib/prefs-spi.jar

wlp-light-web-lib com/bea/portlet WEB-INF/lib/prefs_taglib.jar

wlp-light-web-lib com/bea/portlet/ext WEB-INF/lib/portlet-container.ja
r

wlp-light-web-lib com/bea/portlet/jsp WEB-INF/lib/portlet-container.ja
r

wlp-light-web-lib com/bea/portlet/prefs WEB-INF/lib/prefs-spi.jar

wlp-light-web-lib com/bea/portlet/prefs WEB-INF/lib/prefs_taglib.jar

wlp-propagation-web-lib com/bea/content WEB-INF/lib/content_prop.jar

wlp-propagation-web-lib com/bea/content WEB-INF/lib/content_prop_onli
ne.jar

wlp-propagation-web-lib com/bea/p13n/management WEB-INF/lib/netuix_prop.jar

wlp-propagation-web-lib com/bea/p13n/management WEB-INF/lib/netuix_prop_onlin
e.jar

wlp-propagation-web-lib com/bea/p13n/management WEB-INF/lib/p13n_prop.jar

wlp-propagation-web-lib com/bea/p13n/management WEB-INF/lib/p13n_prop_online.
jar

wlp-services-app-lib com/bea/campaign wps.jar

wlp-services-app-lib com/bea/campaign/action wps.jar

wlp-services-app-lib com/bea/campaign/rules wps.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

API Upgrade Cross-Refe rence

B-40 BEA WebLogic Portal Portal Development Guide

wlp-services-app-lib com/bea/campaign/tracking/events wps.jar

wlp-services-app-lib com/bea/campaign/webservice wps.jar

wlp-services-app-lib com/bea/content content.jar

wlp-services-app-lib com/bea/content content_repo.jar

wlp-services-app-lib com/bea/content content_system.jar

wlp-services-app-lib com/bea/content/expression content.jar

wlp-services-app-lib com/bea/content/loader content.jar

wlp-services-app-lib com/bea/content/loader/bulk content.jar

wlp-services-app-lib com/bea/content/manager content.jar

wlp-services-app-lib com/bea/content/manager content_system.jar

wlp-services-app-lib com/bea/content/manager/propertysets content.jar

wlp-services-app-lib com/bea/content/manager/sort content.jar

wlp-services-app-lib com/bea/content/spi content.jar

wlp-services-app-lib com/bea/content/spi content_repo.jar

wlp-services-app-lib com/bea/content/virtual content.jar

wlp-services-app-lib com/bea/content/virtual content_system.jar

wlp-services-app-lib com/bea/content/virtual/version content.jar

wlp-services-app-lib com/bea/content/virtual/lifecycle content.jar

wlp-services-app-lib com/bea/p13n/ad wps.jar

wlp-services-app-lib com/bea/p13n/ad/render wps.jar

wlp-services-app-lib com/bea/p13n/advisor wps.jar

wlp-services-app-lib com/bea/p13n/content wps.jar

wlp-services-app-lib com/bea/p13n/content/advislets wps.jar

wlp-services-app-lib com/bea/p13n/content/expression wps.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

J2EE L ib rar ies to Package s - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-41

wlp-services-app-lib com/bea/p13n/content/query wps.jar

wlp-services-app-lib com/bea/p13n/controls/createUser APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/exceptions APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/login APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/profile APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/userInfoQuery APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/events/generic APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/events/standard APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/ejb/events APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/ejb/property APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/ejb/usermgmt APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/ejb/usermgmt/profile APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/rules APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/controls/securityProvider APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/entitlements wps.jar

wlp-services-app-lib com/bea/p13n/entitlements/common wps.jar

wlp-services-app-lib com/bea/p13n/entitlements/resource wps.jar

wlp-services-app-lib com/bea/p13n/mail wps.jar

wlp-services-app-lib com/bea/p13n/placeholder wps.jar

wlp-services-app-lib com/bea/p13n/rules/advislets wps.jar

wlp-services-app-lib com/bea/p13n/security APP-INF/lib/p13n_controls.jar

wlp-services-app-lib com/bea/p13n/servlets wps.jar

wlp-services-app-lib com/bea/p13n/servlets/jsp wps.jar

wlp-services-app-lib com/bea/p13n/usermgmt wps.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

API Upgrade Cross-Refe rence

B-42 BEA WebLogic Portal Portal Development Guide

wlp-services-app-lib com/bea/p13n/usermgmt/profile wps.jar

wlp-services-app-lib com/beasys/commerce/foundation wps.jar

wlp-services-app-lib com/beasys/commerce/foundation/expressio
n

wps.jar

wlp-services-app-lib com/beasys/commerce/util wps.jar

wlp-services-web-lib com/bea/campaign WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/campaign/servlets WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/content WEB-INF/lib/content_servlet.jar

wlp-services-web-lib com/bea/content/manager WEB-INF/lib/content_servlet.jar

wlp-services-web-lib com/bea/content/manager/servlets WEB-INF/lib/content_servlet.jar

wlp-services-web-lib com/bea/content/manager/servlets/jsp/taglib WEB-INF/lib/content_servlet.jar

wlp-services-web-lib com/bea/p13n/ad WEB-INF/lib/ad_taglib.jar

wlp-services-web-lib com/bea/p13n/ad WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/p13n/ad/servlets WEB-INF/lib/ad_taglib.jar

wlp-services-web-lib com/bea/p13n/ad/servlets/jsp/taglib WEB-INF/lib/ad_taglib.jar

wlp-services-web-lib com/bea/p13n/cache/servlets WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/p13n/mail WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/p13n/mail/servlets WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/p13n/placeholder WEB-INF/lib/ph_taglib.jar

wlp-services-web-lib com/bea/p13n/placeholder WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/p13n/placeholder/servlets WEB-INF/lib/ph_taglib.jar

wlp-services-web-lib com/bea/p13n/placeholder/servlets WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/p13n/placeholder/servlets/jsp/taglib WEB-INF/lib/ph_taglib.jar

wlp-services-web-lib com/bea/p13n/servlets WEB-INF/lib/pz_taglib.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

J2EE L ib rar ies to Package s - Cross Refe rence Tab le

BEA WebLogic Portal Portal Development Guide B-43

wlp-services-web-lib com/bea/p13n/servlets/jsp WEB-INF/lib/pz_taglib.jar

wlp-services-web-lib com/bea/p13n/servlets/jsp/taglib WEB-INF/lib/pz_taglib.jar

wlp-services-web-lib com/bea/p13n/usermgmt WEB-INF/lib/um_taglib.jar

wlp-services-web-lib com/bea/p13n/ad/servlets WEB-INF/lib/wps_servlet.jar

wlp-services-web-lib com/bea/p13n/cache WEB-INF/lib/wps_servlet.jar

wlp-tools-admin-web-lib com/bea/jsptools/portal WEB-INF/lib/wlp-admin.jar

wlp-tools-app-lib com/bea/jsptools/portal APP-INF/lib/tools-framework.jar

wlp-tools-app-lib com/bea/jsptools/portal APP-INF/lib/wlptools_en.jar

wlp-tools-app-lib com/bea/portal APP-INF/lib/common-editors.jar

wlp-tools-app-lib com/bea/portal APP-INF/lib/tools-framework.jar

wlp-tools-app-lib com/bea/portal APP-INF/lib/wlptools_en.jar

Table B-3 Mapping of Version 9.2 J2EE Libraries to Packages, Sorted by J2EE Library (Continued)

9.2 J2EE Library 8.1.5 Package 9.2 JAR File

API Upgrade Cross-Refe rence

B-44 BEA WebLogic Portal Portal Development Guide

	Introduction to Portals
	What is a Portal?
	What is the Portal Framework?
	Portal Development and the Portal Life Cycle
	Architecture
	Development
	Staging
	Production

	Getting Started
	Prerequisites
	Related Guides

	Part I Architecture
	Planning Your Portal
	Production Operations (Propagation and Deployment)
	Portal Development in a Distributed Portal Team
	Federated Portals
	Security
	Content Management
	Interaction Management
	Performance

	Part II Development
	Understanding Portal Development
	Portal Components
	Portal Component Hierarchy
	Portal Development Environment in Workshop for WebLogic
	WebLogic Portal and Shared J2EE Libraries
	File-Based Portals and Streaming Portals
	Java Controls in Portals
	JSP Tags in Portals
	Backing Files
	How Backing Files are Executed
	Thread Safety and Backing Files
	Scoping and Backing Files
	Using the Session to Pass Data Between Life Cycle Methods
	Backing File Guidelines

	Page Flows in Portals
	State/Session Management

	Setting up Your Portal Development Environment
	Roadmap for Environment Setup Tasks
	WebLogic Domain Configuration Wizard
	Portal EAR Project Wizard
	New Portal EAR Project - Select Project Facets Dialog

	Add and Remove Projects Dialog
	Portal Web Project Wizard
	New Portal Web Project - Portal Web Project
	New Portal Web Project - Select Project Facets dialog
	New Portal Web Project - Web Module Dialog
	New Portal Web Project - WebLogic Web Module Dialog

	Portal Datasync Project Wizard
	Portal Datasync Project Wizard - Create New Datasync Project Dialog
	Create New Datasync Project - EAR Projects

	Using the Merged Projects View
	Running a Project on the Server
	Customizing a Perspective
	Setting WebLogic Portal Preferences in Workshop for WebLogic
	Preferences in the WebLogic Portal Section
	WebLogic Portal Preferences in the General Section

	Upgrading WebLogic Portal Projects to Version 9.2
	Version 8.1 Features Not Supported in Version 9.2
	Upgrade Considerations and Tips
	Command-Based and Ant Task Upgrade Not Supported
	Enabling Communities Features in Upgraded Visitor Tools
	Upgrading Look & Feels
	Upgrading Custom Controls that Have Custom Properties
	Upgrading Tuned Thread Pools for Forked Portlets
	Upgraded Applications Use Struts 1.1 and Related J2EE Libraries
	Changes in Behavior Between Struts 1.1 and 1.2
	Ampersand Entities in Portal URLs
	Upgrading Individual application-config.xml Files Later
	Correcting Duplicate Portlet Category Names Before Propagating an Upgraded Application

	Integrating Applications into WebLogic Portal
	Integrating an Existing Web Application into Workshop for WebLogic
	Integrating Struts Applications
	Preparing Your Struts Application for Integration
	Integration Steps
	Best Practices and Development Issues

	Integrating Java Server Faces
	JSF and the namingContainer JSP Tag

	Integrating Page Flows
	Adding Facets to an Existing Project
	Other Methods of Integrating an External Web Application into a Portal

	User Interface Development with Look & Feel Features
	Introduction
	Look & Feel File
	Skins
	Skeletons
	Themes
	Genes and Chromosomes
	Shells
	Layouts
	Menus

	Developing Look & Feels
	Using Legacy Look & Feels
	Creating a Look & Feel
	Working with Skins
	Working with Skeletons
	Working with Themes
	Working with Genes

	Overriding Existing Look & Feels
	Troubleshooting Look & Feels
	The Look & Feel Editor
	Overview
	Navigator View
	Style Hierarchy View
	Style Description Window
	View Area
	Outline View
	Properties View

	Using the Look & Feel API
	Working with Shells
	Working with Layouts
	Creating a Standard Layout
	Creating a Custom Layout

	Working with Navigation Menus
	Building User Interfaces to Address Accessibility Guidelines
	Accessibility Standards and the Internet
	Accessibility Checkpoints
	Industry Guidelines
	Government Regulations and Standards
	Accessibility Evaluation and Testing Tools

	Developing Portals Using Workshop for WebLogic
	Creating a Portal
	Add a Page or Book to Your Portal
	Creating a Standalone Book or Page
	Adding a Book or Page Reference (Content)
	Rearranging Books and Pages

	Portal Component Properties
	Editing Portal Properties
	Tips for Using the Properties View
	Properties for All Portal Components

	Copying J2EE Library Files into a Project
	Viewing Files that Override Shared J2EE Library Files

	Creating a Utility Project
	Custom Controls in Page Flows
	Adding a Portal Control to a Page Flow
	Adding an Action to the Page Flow
	Portal Control Security

	Deploy and View a Portal
	Working with URLs
	Creating URLs to Portal Resources
	URL Compression
	URL Troubleshooting
	Ampersand Entities in Portal URLs
	Optional Look & Feel URL Templates

	Working with Encoding in HTTP Responses
	Cache Management in Workshop for WebLogic
	Changing Cache Settings in Workshop for WebLogic

	Improving WebLogic Server Administration Console Performance on a Managed Server
	Behavior of the “Return to Default Page” Attribute
	Adding Commerce Services to an Existing Portal Web Project

	Visitor Tools Configuration
	About Visitor Tools
	Enabling Visitor Tools in Workshop for WebLogic
	Setting up a Desktop with Visitor Tools Using the Administration Console

	Creating Portals for Multiple Device Types
	Enabling Multichannel Features in a Portal Web Application
	Roadmap for Multichannel Processing
	Developing Portals for Use in a Multichannel Environment
	Manage Portlet Client Classifications
	Use the Client Attribute in JSP Tags
	Develop Appropriate Look & Feels
	Interaction Management Development

	Designing Portals for Optimal Performance
	Control Tree Design
	How the Control Tree Works
	How the Control Tree Affects Performance

	Using Multiple Desktops
	Why This is a Good Idea
	Design Decisions for Using Multiple Desktops

	Optimizing the Control Tree
	Enabling Control Tree Optimization
	How Tree Optimization Works
	Multi Level Menus and Control Tree Optimization
	Limitations to Using Tree Optimization
	Disabling Tree Optimization

	Other Ways to Improve Performance
	Use Entitlements Judiciously
	Limit User Customizations
	Optimize Page Flow Session Footprint
	Use File-Based Portals for Simple Applications
	Create a Production Domain in Development
	Optimize Portlet Performance

	Obtaining Debug Information
	Introduction
	Configuring and Enabling Debug
	Using Debug in Your WLP Code
	Turning Debug Output On and Off
	Package-Level Debugging
	Directing Output to a File
	Reloading Debug Properties
	Example debug.properties File

	Public WLP Class Debug Reference
	WLP Framework Classes with Debug Support
	WLP Core Services Classes with Debug Support
	WLP Virtual Content Repository Classes with Debug Support
	WLP Administration Console Classes with Debug Support

	Part III Staging
	Managing Portal Desktops
	Administration Console Overview
	Administration Console Library of Resources
	Starting and Logging In to the Administration Console
	Opening the Administration Console
	Logging In to the Administration Console

	Overview of Library Administration
	Overview of Portal Administration
	Portal Management
	Overview of the Library
	Desktop Templates
	Creating a Desktop Template

	Communities
	Portal Resources
	Updating Portal Resources
	Viewing Resources for a Portal Web Application (Update WebApp)
	Deleting a Portal Resource
	Localizing a Portal Resource

	Portals
	Creating a Portal
	Modifying Portal Properties

	Desktops
	Creating a Desktop
	Modifying Desktop Properties

	Books
	Creating a Book
	Managing Book Content
	Modifying Library Book Properties and Contents
	Modifying Desktop Book Properties

	Pages
	Creating a New Page
	Managing Page Content
	Modifying Library Page Properties
	Modifying Desktop Page Properties
	Moving a Page or Book to Another Location on the Desktop

	Portlets
	Copying a Portlet in the Library
	Deleting a Portlet
	Modifying Library Portlet Properties
	Modifying Desktop Portlet Properties

	Portlet Preferences
	Creating a Portlet Preference
	Editing a Portlet Preference

	Portlet Categories
	Creating a Portlet Category
	Adding Portlets to a Portlet Category
	Modifying Portlet Category Properties

	Look & Feels
	Modifying Look & Feel Properties

	Shells
	Modifying Shell Properties

	Themes
	Modifying Theme Properties

	Menus (Navigation)
	Modifying Menu Properties

	Layouts
	Modifying Layout Properties

	Deploying Portals to Production
	Shared J2EE Libraries
	Shared J2EE Library References in config.xml
	Overriding Shared J2EE Library Settings in the web.xml File

	Part IV Production
	Managing Portals in Production
	Pushing Changes from the Library into Production
	Transferring Changes from Production Back to Development

	Facet-to-Library Reference Tables
	WebLogic Portal Facet-to-Library Reference Tables

	API Upgrade Cross-Reference
	Packages to J2EE Libraries - Cross Reference Table
	JAR Files to J2EE Libraries - Cross Reference Table
	J2EE Libraries to Packages - Cross Reference Table

