0?7,

r
S’ 7
L/

BEAWebLogic
Portal~

Deploying Portal
Applications

Version 8.1 with Service Pack 4
Documen t Revised: December 2004

Copyright

Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document

Product Documentation on the dev2dev Web Site. v
Related Information i v
Contact Us! .o e v
Documentation CONVENtIONS vttt ettt et ettt e e e vii

Deploying Portal Applications

Preparing Your Portal Application 2
Configuring Portal Application Deployment Descriptors 2
Application Deployment Descriptorsouiiintenenennnan .. 2

Web Application Deployment Descriptors, 2
Workshop Deployment Descriptors.covu vt iee e 4
Creating Content Management Repositories., 4
Compile with Your Runtime JVM i 4
Building a Portal Application with WebLogic Workshop 4
Building Inthe Command Line 5
Configuring a Portal Cluster ot e e e 5
Setup a Production Database 5
Reading the wiw-manifestxml File 6
Choosing a Cluster Architecture.ttt 6
Single CIUStert e 6

Multi CIUSEETot 7

WebLogic Portal 8.1 Deploying Portal Applications i

Configuringa Domaint 9

Using the Configuration Wizard, 9
Creating a Production Cluster Environment with the Configuration Wizard. 9
Configuring the Administration Server.coviuiiineen. .. 14

Setting up JIMS Servers.o it 15
Creating Managed Server Directories., 17

Deploy a New Applicationottt 19

Starting Managed Servers. 23
Configuring Your Proxy Server.t 23
Troubleshooting Unresolved URLSs., 23
Deploying a Portal Applicationtothe Cluster.o, 24
Redeploying Applicationso.uut ittt e e 24
Redeploying a Portal Application with weblogic.Deployer. 24
Partial Redeployment with weblogic.Deployer 25
Iterative Datasync Deployment 26
Portal Datasync Definitionsttt 27
Datasync Definition Usage During Development. 27
Compressed Versus Exploded EAR 27

Rules for Deploying Datasync Definitions, 37
Propagating LDAP and Portal Database Data 38
About the Propagation Utility Files 41

Setting Up and Deploying the Propagation Utility 41

Starting and Using the Propagation Utility 48
Understanding Portal Resources e 48
Portlet Deployment Lifecycle. i 49
Database Structure for Storing Portlets 50
Removing Portlets from Production. 51
Zero Downtime Architecturesttt 51

WebLogic Portal 8.1 Deploying Portal Applications

Single Database Instancettt

Portal Cache

WebLogic Portal 8.1 Deploying Portal Applications

WebLogic Portal 8.1 Deploying Portal Applications

About This Document

This document explains how to deploy your WebLogic Portal.

Product Documentation on the dev2dev Web Site

BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev Web site:

http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the list on the
dev2dev page; the home page for the specified product is displayed. From the menu on the left
side of the screen, select Documentation for the appropriate release. The home page displays the
complete documentation set for the product and release that you select.

Related Information

See the following documentation for more information about developing and deploying
WebLogic Portal:

e WebLogic Portal Team Development Guide

Contact Us!

Your feedback on the BEA WebLogic Portal documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments are reviewed
directly by the BEA professionals who create and update the WebLogic Portal documentation.

WebLogic Portal 8.1 Deploying Portal Applications v

http://dev2dev.bea.com
../deploy/index.html
../teamdev/index.html

About This Document

vi

In your e-mail message, please indicate that you are using the documentation for BEA WebLogic
Portal 8.1.

If you have any questions about this version of BEA WebLogic Portal, or if you have problems
installing and running BEA WebLogic Portal, contact BEA Customer Support at
http://support.bea.com. You can also contact Customer Support by using the contact
information provided on the quick reference sheet titled “BEA Customer Support,” which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:
e Your name, e-mail address, phone number, and fax number
e Your company name and company address
e Your machine type and authorization codes
e The name and version of the product you are using

e A description of the problem and the content of pertinent error messages

WebLogic Portal 8.1 Deploying Portal Applications

http://support.bea.com

Documentation Conventions

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace Indicates user input, as shown in the following examples:

text * Filenames: config.xml
* Pathnames: BEA HOME/config/examples
* Commands: java -Dbea.home=BEA HOME
¢ Code: public TextMsg createTextMsg (
Indicates computer output, such as error messages, as shown in the following example:
Exception occurred during event
dispatching:java.lang.ArrayIndexOutOfBoundsException: No such
child: 0

monospace Identifies significant words in code.

boldface Example:

text
void commit ()

monospace Identifies variables in code.

italic Example:

text
String expr

{1} Indicates a set of choices in a syntax line. The braces themselves should never be typed.

Indicates optional items in a syntax line. The brackets themselves should never be typed.
Example:

java utils.MulticastTest -n name [-p portnumber]

Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.
Example:
java weblogic.deploy [list]|deploy|updatel

WebLogic Portal 8.1 Deploying Portal Applications vii

About This Document

Convention

ltem

Indicates one of the following in a command line:

» That an argument can be repeated several times in a command line

» That the statement omits additional optional arguments

» That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name]l [-f "filel.cpp file2.cpp
file3.cpp . . ."

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

viii

WebLogic Portal 8.1 Deploying Portal Applications

Deploying Portal Applications

This document covers the intricacies of deploying your WebLogic Portal application into a
production environment. There are a number of different options for configuring your production
portal application and domain. This document outlines some of your options but focuses
primarily on the best practices for production environments, including using a enterprise-quality
database and a clustered environment for redundancy and scalability.

In a domain running a Portal application, the administration server is key in the following ways:
e Deployment — To enable application updates and data propagation to a cluster, the
application must be deployed on the administration server. Deployment (and

re-deployment) happens on the administration server, and updates are automatically pushed
to the managed servers in the cluster.

e Running the application — Applications running on managed servers in a cluster rely on
administration MBeans from the administration server, so the administration server must be
running at all times.

This document contains the following sections:

e Preparing Your Portal Application

Configuring a Portal Cluster

Deploying a Portal Application to the Cluster

Understanding Portal Resources

e Zero Downtime Architectures

Deploying Portal Applications

Deploying Portal Applications

For details on setting up a development environment and shared development domain, see the
Team Development Guide at http://edocs.bea.com/wlp/docs81/teamdev/index.html.

Preparing Your Portal Application

To bring your portal online in a production environment, it is first necessary to prepare your
portal application. Typical preparation steps include modifying deployment descriptors for
product, building the enterprise archive (EAR) with all its pre-compiled classes, and determining
if you want to compress that EAR into an archive or leave it exploded.

Configuring Portal Application Deployment Descriptors

Similar to any J2EE application, a portal application has a number of deployment descriptors that
you may want to tune for your production environment.

Application Deployment Descriptors

Within the Portal application is the /META- INF directory which contains a number of deployment
descriptors, including application-config.xml, a portal-specific deployment descriptor that
contains cache configuration, behavior tracking, campaign, and commerce tax settings. If these
values are different for your production environment than for your existing development settings,
modify this file appropriately before building the portal application.

Web Application Deployment Descriptors
Within any portal Web application is a /WEB- INF directory that contains a number of deployment

descriptors you may need to modify for your production environment.

e web.xml is a J2EE standard deployment descriptor. Among other settings, it has a set of
elements for configuring security for the Web application. You can read more about
web . xml here: http://edocs.bea.com/wls/docs81/webapp/web_xml.html.

Note: If you are running your portal application on a managed server, you can greatly
improve the performance of the WebLogic Administration Tools Portal by adding the
following parameter to the web.xm1 file:

<context-param>
<param-names>portalFileDirectory</param-name>
<param-value>/</param-value>

</context-param>

2 Deploying Portal Applications

../../../wls/docs81/webapp/web_xml.html
../teamdev/index.html

Preparing Your Portal Application

If you use this parameter, you must place all of the .portal files in the same
directory under the portal Web application. Use the <param-values to specify the
directory.

e weblogic.xml is a standard WebLogic deployment descriptor for Web applications that
has a number of important descriptor entries. Detailed information on this file can be found
here: http://e-docs.bea.com/wls/docs81/webapp/weblogic xml.html.

Note:

In a clustered production environment, it is important that you configure the
<session-params> descriptor element in weblogic.xml to enable session
replication to take place across the cluster. Without this setting, you will not have
failover of a user’s state information if a server in the cluster is stopped. You may
need to add the following block to weblogic.xml.

<session-descriptors

<session-params>

<param-name>PersistentStoreType</param-names>

<param-values>replicated if clustered</param-value>

</session-param>

</session-descriptors>

By default if PersistentStoreType is not set, it defaults to disabling persistent session
storage.

The other commonly modified element in weblogic.xml for production environments

is

the <jsp-descriptors. For production, it is common modifications include:
e Turn off debugging by setting debug to false.
e Precompile the JSPs in the Web application to reduce the time needed to display

pages on their first invocation by setting precompile to true.

Also set precompileContinue to true, because if any JSPs do not compile,
deployment of the Web application stops.

You may need to add these elements to weblogic.xml inside the existing
<jsp-descriptors section. For example:

<jsp-param>
<param-names>precompile</param-name>
<param-values>true</param-values>
<param-names>precompileContinue</param-name>

Deploying Portal Applications 3

../../../wls/docs81/webapp/weblogic_xml.html

Deploying Portal Applications

<param-values>true</param-values>
</jsp-param>

e In a compressed EAR environment, set pageCheckSeconds to -1 to disable polling
of JSP pages for changes.

Workshop Deployment Descriptors

WebLogic Workshop has a number of additional deployment descriptors that are important if you
are developing Web services. Information on these can be found on dev2dev in the WebLogic
Workshop Internals document under “Application Customization” at:
http://dev2dev.bea.com/products/wilworkshop81/articles/wlw _internals.jsp#9.

Creating Content Management Repositories

Before packaging your application into an EAR file, use the WebLogic Administration Portal to
create any content management repositories you want to use in your application. This means
creating only the root repositories, not the content nodes and content items. After you create
repositories, they are registered in the application-config.xml deployment descriptor. When
you create the application EAR, application-config.xml becomes read-only and cannot be
modified within the EAR. That is, you cannot add or remove repositories in the WebLogic
Administration Portal when the application is in an EAR file.

For information on creating repositories, see the “Add a New Repository Connection” in the
WebLogic Administration Portal help system at
http://e-docs.bea.com/wlp/docs81/adminportal/help/CM_CreateNewRepository.html.

Compile with Your Runtime JVM

If you are going to use a particular Java Virtual Machine (JVM) in your production environment,
it is a good idea to compile the EAR application with the JDK for that JVM. You can change the
JVM for your WebLogic Workshop project by going to Tools > Application Properties,
selecting WebLogic Server, and specifying the path to the JDK Home (root directory) you want
to use.

Building a Portal Application with WebLogic Workshop

To deploy a portal application to a production environment, you must first build the application
in WebLogic Workshop to compile necessary classes in the portal application. There are two
options:

4 Deploying Portal Applications

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp#9
../adminportal/help/CM_CreateNewRepository.html

Configuring a Portal Cluster

e Build > Build EAR — Most common. Use this option to compile the classes and build the
portal application as a compressed EAR.

or

e Build > Build Application — Use this option to compile the classes and build the portal
application as an exploded (uncompressed) EAR. This option, however, many not invoke
all the same processing as Build EAR. Review how Workshop treats deployment
descriptors when Build EAR is run and determine if there is an impact. See the WebLogic
Workshop Internals document at
http://dev2dev.bea.com/products/wlworkshop81/articles/wlw _internals.jsp.

Alternatively, to generate an uncompressed EAR, you can run Build > Build EAR and
then uncompress the generated EAR file.

After you create an exploded EAR, rename the application directory so that it has a .ear
extension. For example, if the application directory is called myPortalApp, rename the
directory to myPortalApp.ear. Adding the .ear extension to the directory name prevents
deployment exceptions for exploded EARs.

Building In the Command Line

You can build your portal application from the command line using the wlwBuild command. This
can make it easier for you to automate the process of building your application. See
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/reference/commands/cmdWIwBuild.
html.

Configuring a Portal Cluster

This section provides the steps necessary to set up a cluster across which your portal application
is deployed.

Set up a Production Database

To deploy a portal application into production, it is necessary to set up an enterprise-quality
database instance. PointBase is supported only for the design, development, and verification of
applications. It is not supported for production server deployment.

Details on configuring your production database can be found in the Database Administration
Guide at http://edocs.bea.com/wlp/docs81/db/index.html.

Deploying Portal Applications 5

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp
../../../workshop/docs81/doc/en/workshop/reference/commands/cmdWlwBuild.html
../../../workshop/docs81/doc/en/workshop/reference/commands/cmdWlwBuild.html
../db/index.html

Deploying Portal Applications

Once you have configured your enterprise database instance, it is possible to install the required
database DDL and DML from the command line as described in the Database Administration
Guide. A simpler option is to create the DDL and DML from the domain Configuration Wizard
when configuring your production environment, as this guide will show.

Reading the wiw-manifest.xml File

When configuring your production servers or cluster with the domain Configuration Wizard, you
will need to deploy some JMS queues that are required by WebLogic Workshop-generated
components that are deployed at run time. To find the JMS queue names you need, open the
wlw-manifest.xml file in the portal application’s /META- INF directory.

In the file, find the IMS queue JNDI names that are the defined values in elements named
<con:async-request-queues and <con:async-request-error-queue>. Record the JNDI
names of the JMS queues found in those definitions for use when configuring your production
system.

You may also need to configure other settings in wlw-manifest .xml. For more information, see
“How Do I: Deploy a WebLogic Workshop Application to a Production Server?” at
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howDeployWebLogic
WorkshopWebServicestoaProductionServer.html.

Choosing a Cluster Architecture

By clustering a portal application, you can attain high-availability and scalability for that
application. Use this section to help you choose which cluster configuration you want to use.

Single Cluster

When setting up an environment to support a production instance of a portal application, the most
common configuration is to use the WebLogic Recommended Basic Architecture documented
here: http://e-docs.bea.com/wls/docs81/cluster/planning.html#1090621.

Figure 1 shows a WebLogic Portal-specific version of the recommended basic architecture.

6 Deploying Portal Applications

../../../wls/docs81/cluster/planning.html#1090621
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howDeployWebLogicWorkshopWebServicestoaProductionServer.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howDeployWebLogicWorkshopWebServicestoaProductionServer.html

Configuring a Portal Cluster

Figure 1 WebLogic Portal single cluster architecture

Load Balancer
Proxy

Cluster / \

Managed Server 1 Managed Server 2

Administration Server

WebLogic WebLogic Portal WebLogic Portal

Server

Administraion WebLogic WebLogic
Administration Administration
Portal Portal

WehblLogic Portal

[Portal Application | [Portal Application |
WebLogic

Administration
Portal

[JsPsandEJBs | [JspsandEsBs |

WebLogic Server WebLogic Server

Portal Application
J5Ps and EJBs

WehLogic Server

Enterprise -
Quality
Database

Note: WebLogic Portal does not support a split configuration architecture where EJBs and JSPs
are split onto different servers in a cluster. The basic architecture provides significant
performance advantages over a split configuration for Portal.

Even if you will be running a single server instance in your initial production deployment, this
architecture allows you to easily configure new server instances if and when needed.

Multi Cluster

A multi-clustered architecture can be used to support a zero-downtime environment when your
portal application needs to be accessible 365x24. While a portal application can run indefinitely
in a single cluster environment, deploying new components to that cluster or server will result is
some period of time where the portal is inaccessible. This is due to the fact that while a new EAR
application is being deployed to a WebLogic Server, HTTP requests cannot be handled.
Redeployment of a portal application also results in the loss of existing sessions.

A multi-cluster environment involves setting up two clusters, typically a primary cluster and
secondary cluster. During normal operations, all traffic is directed to the primary cluster. When
some new components (such as portlets) need to be deployed, the secondary cluster is used to

Deploying Portal Applications 1

Deploying Portal Applications

handle requests while the primary is updated. The process for managing and updating a
multi-clustered environment is more complex than with a single cluster and is addressed in “Zero
Downtime Architectures” on page 51. If this environment is of interest you may want to review

that section now.

Figure 2 Weblogic Portal multi-cluster architecture

Proxy

& Administration Server 1

N

WehbLogic Portal

| Portal Application

Weblogic Server

Load Balancer

Proxy

Administration Server 2

WehbLogic Portal

Portal Application

WehLogic Server

8 Deploying Portal Applications

Primary Cluster

Managed Server 1

WebLogic Portal
Portal Application

Weblogic Server
MWlanaged Server 2

WehbLogic Portal
Portal Application

WehLogic Server

Secondary Cluster

Managed Server 1

WehblLogic Portal
Portal Application

WeblLogic Server
MWlanaged Server 2

WebLogic Portal
Portal Application

Weblogic Server

Enterprise-
Quality

Datahase

Configuring a Portal Cluster

Configuring a Domain

You should determine the network layout of your domain before building your domain with the
Configuration Wizard. Determine the number of managed servers you will have in your cluster—
the machines they will run on, their listen ports, and their DNS addresses. Decide if you will use
WebLogic Node Manager to start the servers. For information on Node Manager, see
Configuring and Managing WebLogic Server at
http://e-docs.bea.com/wls/docs81/adminguide/nodemgr.html.

WebLogic Portal must be installed on the cluster’s administration server machine and on all
managed server machines.

Using the Configuration Wizard

Create your new production environment with the domain Configuration Wizard. See Creating
WebLogic Configurations Using the Configuration Wizard at
http://edocs.bea.com/platform/docs81/confgwiz/intro.html.

Creating a Production Cluster Environment with the Configuration Wizard

This section walks you through the creation of a production cluster environment for WebLogic
Portal.

In addition, you can see a demo of how a production environment is configured.

1. Start the Configuration Wizard. In Windows, choose Start >Programs > BEA WebLogic
Platform 8.1 > Configuration Wizard.

2. In the Create or Extend a Configuration window, select Create a new WebLogic
configuration and click Next.

3. In the Select a Configuration Template window, select Basic WebLogic Portal Domain
and click Next.

4. In the Choose Express or Custom Configuration window, select Custom and click Next.
5. In the Configure the Administration Server window:

a. Enter a name for your administration server.

b. Inthe Listen Address field, leave the default “All Local Addresses” selection.

c. Enter the listen port.

Deploying Portal Applications 9

../../../wls/docs81/adminguide/nodemgr.html
../../../platform/docs81/confgwiz/intro.html
viewlets/deployWiz/deployWiz.viewlet/deployConfigWizard_viewlet_swf.html

Deploying Portal Applications

10

6.

d. If you want to use the Secure Sockets Layer (SSL) protocol for secure access to portal
application resources, select the SSL enabled option and enter an SSL listen port.

e. Click Next.

In the Managed Servers, Clusters, and Machines Options window, select Yes to customize
the configuration settings, and click Next.

In the Configure Managed Servers window, add your managed servers. The number of
managed servers you want in your cluster(s) will vary depending on your choice of
hardware.

In the Listen Address field, enter the IP address for each managed server. Do not leave the
default “All Local Addresses” setting.

When you are finished adding managed servers, click Next.

In the Configure Clusters window, add your cluster(s). Choose a multicast address that is
not currently in use. Choose the Cluster addresses for the managed servers in this cluster.
These take the form of a comma-separated list of the DNS alias names of the managed
servers.

See “Cluster Address” in Using WebLogic Server Clusters at
http://edocs.bea.com/wls/docs81/cluster/setup.html#ClusterAddress for more information.

When you are finished, click Next.

In the Assign to Clusters window, choose all the managed servers you want to associate
with each cluster by moving the server names from the left pane to the right pane. Click
Next.

10. In the Configure Machines window, you can create logical representations of the systems

11.

that host your server instances. Host information is used for locality routing, especially
during session replication. If you are running more than one managed server per machine, it
is important that you configure host information so that WebLogic server does not replicate
a session on the same machine.

Also, if you will be using Node Manager to manage starting and stopping your servers, you
should specify that information here.

Click Next.

If you choose to Configure Machines, in the Assign Servers to Machines window, target the
servers to the appropriate machines.

Deploying Portal Applications

../../../wls/docs81/cluster/setup.html#ClusterAddress

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

Configuring a Portal Cluster

In the Database (JDBC) Options window, select Yes to define JDBC components, and click
Next.

In the Configure JDBC Connection Pools window, there will be a cgPool tab. Change the
cgPool Vendor to use your production database type, and then specify the information
needed to connect to that database instance such as the host and port information.

Make the same changes on the cgJMSPool-nonXA and portalPool tabs.
For cgIMSPool-nonXA, in the Driver field, be sure to select the non-XA driver.
Click Next.

In the Configure JDBC Multipools window, click Next.

In the Configure JDBC Data Sources window, you should see a list of JDBC Data Sources
configured. Click Next.

In the Test JDBC Connection Pool and Setup JDBC Database window, select cgPool in the
Available JDBC Connection Pools pane and click Test Connection.

If you have not already created the database objects for the portal application in your
database instance, select your database version in the DB Version field and click Load
Database.

Warning: Exercise caution when loading the database, as the scripts will delete any portal
database objects from the database instance if they already exist. You will see a
large number of SQL statements being executed. It is normal for the scripts to
have a number of statements with errors on execution, because the script drops
objects that may not have been created before.

Click Next.

In the Messaging (JMS) Options window, select Yes to define JMS components, and click
Next.

In the Configure JMS Connection Factories window, you should see the cgQueue. Its
Default delivery mode should be set to Persistent. Click Next.

In the Configure JMS Destination Key(s) window, click Next.
In the Configure JMS Template(s) window, click Next.

In the Configure JMS File Stores window, validate that FileStore exists, and click Next.

Deploying Portal Applications 1

Deploying Portal Applications

12

22.

23.

24.

25.
26.
27.
28.

In the Configure JMS JDBC Store window, validate that you have JMS stores for the
administration server and for each of the managed servers, typically named
cgIMSStore auto 1, cgJMSStore auto 2, and so on. To create a JMS store:

a. Click Add.
b. Specify a name, such as cgdMSStore auto_a for the administration server.

c. Inthe Connection Pool field, select the same connection pool used for all stores (such as
cgIMSPool-nonXA).

d. In the Prefix Name field, specify a unique JMS prefix name (such as por a for the
administration server).

If you are using Oracle as a database, specify the Oracle schema name before the prefix
name. For example, OSCHEMA . por_a.

e. Click Next.

In the Configure JMS Servers window, validate that you have servers (including the
administration server) that correspond to the JMS stores created, typically named
cgIMSServer_auto 1, cg]MSServer_auto 2, and so on. To create a JMS server:

a. Click Add.
b. Specify a name, such as cggMSServer auto_a for the administration server.

c. In the Store field, select the corresponding JMS JDBC store you created in the previous
window.

d. Click Next.

In the Assign JMS Servers to WebLogic Servers window, assign the JMS Servers to the
administration server and to each of the managed servers. Click Next.

In the Configure JMS Topics window, click Next.
In the Configure JMS Queues window, click Next.
In the Configure JMS Distributed Topics window, click Next.

In the Configure JMS Distributed Queues window, you need to add new queues that are
required by WebLogic Workshop. The JNDI names for these queues can be found in your
application’s /META-INF/wlw-manifest.xml file, as described in “Reading the
wlw-manifest.xml File” on page 6.

Deploying Portal Applications

29.

30.

31.
32.

33.
34.

Configuring a Portal Cluster

These names will be something like <WEB_APP>. queue .AsyncDispacher and
<WEB_APP>.queue.AsyncDispacher error. For each queue, add a new JMS Distributed
Queue with the Add button. Set the Name entry and JNDI name entry to the name listed in
wlw-manifest.xml. Set the Load balancing policy and Forward delay as appropriate for
your application.

A pair of queue entries exists for each Web application (portal Web project) in your portal
application. When you are finished, you should have a distributed queue for each queue. In
other words, if your enterprise application has three Web applications, you should have
added six distributed queues—two for each Web application.

You do not need to create queues for the WebLogic Administration Portal Web application.

Note: If you are using multiple clusters, create an additional set of queues for each cluster.
For example, if you have a Web application called basicWebApp, and you are using
a second cluster, create a unique basicWebApp queue for that cluster named
something like basicWebApp.queue .AsyncDispatcher.2. When you do this, the
Configuration Wizard does not let you enter the same JNDI name for multiple
queues. In this example, enter a JNDI name that ends with a “. 2”. Later in the setup
procedures you will make all JNDI names the same in the WebLogic Administration
Console for each Web application.

Click Next.

In the Assign JMS Distributed Destinations to Servers or Clusters window, target your
newly defined queues to your cluster. In the right pane, select the cluster, in the left pane,
select the queue(s), and click the right arrow icon. Click Next.

In the JMS Distributed Queue Members window, click Next. You will create distributed
JMS queue members in “Setting up JMS Servers” on page 15.

In the Applications and Services Targeting Options window, select Yes and click Next.

In the Target Applications to Servers or Clusters window, target all applications to the
administration server as well as to the cluster. Click Next.

In the Target Services to Servers or Clusters window, click Next.

In the Configure Administrative Username and Password window, enter a username and
password for starting the administration server. You do not need to configure additional
users, groups, and global roles, so make sure No is selected at the bottom of the window.
Click Next.

Deploying Portal Applications 13

Deploying Portal Applications

14

35. If you are installing on Windows, in the Configure Windows Options window, select the
options you want for adding a shortcut to the Windows menu and installing the
administration server as Windows service. The wizard always creates a single default
shortcut on the windows menu regardless of what you select for the Create Start Menu
option. The option lets you create an additional shortcut with different settings.

If you chose to create a Windows menu shortcut for your domain, click Next in the Build
Start Menu Entries window.

Click Next.

For information on starting WebLogic Server, see “Creating Startup Scripts” at
http://e-docs.bea.com/wls/docs81/isv/startup.html.

36. In the Configure Server Start Mode and Java SDK window, select Production Mode and
select the SDK (JDK) you want to use. Click Next.

37. In the Create WebLogic Configuration window, browse to the directory where you want to
install your administration server domain and enter a Configuration Name.

To avoid path length exceptions, use a short path for the domain, such as
<drives:/ourDomain.

38. Click Create.

39. When the domain is created, click Done.

Configuring the Administration Server

At this point your administration server domain has been configured using the domain
Configuration Wizard. Before you start the administration server to do additional configuration
work, you may want to perform one or both of the following setup tasks: increasing the default
memory size allocated to the administration server and allowing server startup without requiring
authentication by creating a boot .properties file.

Increasing the Default Memory Size

To increase the default memory size allocated to the administration server, you will need to
modify your setDomainEnv script in the domain’s root directory and change the memory
arguments. For example:

In Windows, change:
set MEM_ARGS=-Xms256m %memmax% t0 set MEM_ARGS=-Xms512m -Xmx512m

In Unix, change:

Deploying Portal Applications

../../../wls/docs81/isv/startup.html

Configuring a Portal Cluster

MEM_ARGS="-Xms256m ${memmax}" to MEM ARGS="-Xms512m -Xmx512m"

The exact amount of memory you should allocate to the server will vary based on a number of
factors such as the size of your portal application, but in general 512 megabytes of memory is
recommended as a default.

Allowing Server Startup Without Requiring Authentication

To allow server startup without requiring authentication, create a boot . properties file in your
domain root directory that contains the username and password you want to log in with. For
example:

username=weblogic

password=weblogic
After the server starts for the first time using this file, the username and password are encrypted

in the file.

Setting up JMS Servers

In this procedure you will finish configuration of the JMS servers you began to configure in the
Configuration Wizard.

1. Start the administration server and log in to the WebLogic Server Administration Console,
found at http://<server>:<port>/console.

2. Configure the JMS distributed destinations.

a. Expand Services > JMS > Distributed Destinations. Perform the following sub-steps for
each queue you defined earlier for the WebLogic Workshop components.

Note: You do not need to configure the dist _cgdWSQueue auto queue.
b. Select the queue name and select the Auto Deploy tab.
c. Click Create members on the selected Servers (and JMS Servers).
d. Select your cluster(s) to target the JIMS queue to, and click Next.

e. Select all the managed servers in the cluster to create members for the queue, and click
Next.

f. Select all the IMS Servers where members will be created, and click Next.

g. Commit the changes by clicking Apply.

Deploying Portal Applications 15

Deploying Portal Applications

h. Ifyou are using multiple clusters, change the INDI names you assigned to the cluster

queues in Creating a Production Cluster Environment with the Configuration Wizard
step 28. Select each cluster queue (for example, select
basicWebApp.queue.AsyncDispatcher.2), click the General tab, and remove the
.27 suffix (or whatever unique identifier you used in the Configuration Wizard) so that
all INDI names are the same for each Web application. For example, all JNDI names for
the basicWebApp should be basicWebApp . queue.AsyncDispatcher. After each
change, click Apply.

3. Configure the JMS servers for the managed servers.

a.

Expand Services > JMS > Servers > managed server JMS server name > Destinations.
Perform the following sub-steps for each member queue ending in AsyncDispatcher
(but not for member queues ending in AsyncDispatcher error).

Select the queue, and select the Redelivery tab.
In the Error Destination field, select the companion error queue for the queue.

Click Apply.

4. Create JMS queues for the administration server.

a.
b.

C.

Select Services > JMS > Servers > administration JMS server name > Destinations.
Click Configure a New JMS Queue.

Create JMS queues and error queues for each Web application. Use any name, but for
convention you can make the Name the same as the JNDI Name.

View your application’s META-INF/wlw-manifest.xml file to see the queues you
must create. See “Reading the wlw-manifest.xml File” on page 6.

For example, if you have two Web applications, basicWebApp and bigWebApp, create
the following queues for the administration server JMS server:

basicWebApp.queue.AsyncDispatcher
basicWebApp.queue.AsyncDispatcher error
bigWebApp.queue.AsyncDispatcher
bigWebApp.queue.AsyncDispatcher error

You must also create a single queue named jws . queue if it does not already exist.

Click Create after you create each queue.

5. Retarget the JMS servers to “migratable” to support JMS failover.

a.

16

Expand Services > JMS > Servers. Perform the following sub-steps for each JMS server.

Deploying Portal Applications

Configuring a Portal Cluster

b. Select the JMS server, and select the Target and Deploy tab.

c. In the Target field, select the target (migratable) counterpart item for the previously
selected target. For example, if the target was managed1, select
managedl (migratable).

d. Click Apply.

Creating Managed Server Directories

Now that you have configured your domain, including defining your managed servers, you need
to create a server root directory for each managed server. There are many options for this,
depending on whether or not the managed server will reside on the same machine as the
administration server and whether or not you will use the Node Manager.

e Most of the files in the domain-level directory are not necessary for managed servers, so a
domain (files directly in the domain directory) is not required on each managed server,
especially if you are using the Node Manager to start and stop managed servers. For
example, config.xml in a managed server domain is not used. Instead, the config.xml
file in the administration server is used. The only requirement for managed servers is to
have the wsrpKeystore. jks file one directory above the server directory (in the
equivalent of a domain-level directory).

e If the managed server will run on a different machine than the administration server and
you will not use Node Manager, the easiest option is to use the Configuration Wizard to
create a full file system domain for the managed server, as described in the following
procedure.

WebLogic Portal must be installed on all managed servers.

In addition, you can see a demo of how to create a managed server.
1. To create a new managed server, launch the Configuration Wizard.
2. Choose to Create a new WebLogic configuration and click Next.

3. In the Select a Configuration Template window, select Basic WebLogic Portal Domain and
click Next.

4. In the Choose Express or Custom Configuration window, select Express and click Next.

5. In the Configure Administrative Username and Password window, enter a username and
password for the server and click Next.

Deploying Portal Applications 17

viewlets/managedServers/managedServers.viewlet/createPortalManagedServers_viewlet_swf.html

Deploying Portal Applications

18

10.

This information will not typically be used, because you will bind this server to the
administration server using the administration server’s credentials.

In the Configure Server Start Mode and Java JDK, select Production Mode and the
SDK (JDK) you will use with the domain. Click Next.

1t is important you choose the same JDK across all instances in the cluster.

In the Create WebLogic Configuration window, choose the directory you want to install to,
and in the Configuration Name field, enter a domain name to use. For best practices,
choose a domain name like ‘managedServerl’, ‘managedServer2’, and so on.

Click Create.
When the domain is created, click Done.

If you want to allow server startup without requiring authentication on each managed
server, create a boot .properties file in each managed server’s domain directory (or one
level above the server directory) that contains a username and password. For example:

username=weblogic
password=weblogic

After the initial server startup using boot .properties, the username and password are
encrypted in the file.

Once you have created a file system domain directory for a managed server, you can reuse the
same domain for your other managed server on the same machine by specifying different
servername parameters to your startManagedWebLogic script, or create new managed domains
using the domain Configuration Wizard.

Note: If you decide not to use a full domain for your managed servers (that is, not include all

files in the domain-level directory), be sure you keep or put a copy of
wsrpKeystore.jks in the directory directly above the server directory (in the
equivalent of the domain-level directory).

Increasing the Default Memory Size

To increase the default memory size allocated to a managed server (if you are not using Node
Manager), you will need to modify your setDomainEnv script in the managed server root
directory and change the memory arguments. For example:

In Windows, change:

set MEM_ARGS=-Xms256m %memmax% t0 set MEM_ARGS=-Xms512m -Xmx512m

In Unix, change:

Deploying Portal Applications

Configuring a Portal Cluster

MEM_ARGS="-Xms256m ${memmax}" to MEM ARGS="-Xms512m -Xmx512m"

The exact amount of memory you should allocate to the server will vary based on a number of
factors such as the size of your portal application, but in general 512 megabytes of memory is
recommended as a default.

Deploy a New Application
This section provides instructions for the initial deployment of your portal application.
In addition, you can see a demo of how to deploy a portal application.

At this point we can add deploy your portal application to the cluster. First, you should place the
.ear file (or exploded EAR) on the file system of the administration server. To make it easier to
redeploy changes to the application, place the file in a known location from which you will
always deploy the application, such as the root directory of the administration domain.

The steps for initial application deployment to the administration server and managed servers,
and the order with which you start the managed servers, differ in different scenarios. Table 1
describes different scenarios and the deployment/startup procedures that must be used for each.

Deploying Portal Applications 19

viewlets/deployApp/deployApp.viewlet/deployPortalApplication_viewlet_swf.html

Deploying Portal Applications

Table 1 Initial deployment/startup scenarios

Scenario Deployment/Startup Procedures

Application not previously deployed, 1. Make sure the EAR (compressed or exploded) is in the
only administration server running — location you want on the administration server.
application does not use commerce (no o)

commerce* . jar files in the 2. Start the administration server.

licati t direct . o
application root directory) 3. Inthe WebLogic Server Administration Console

(http://<adminserver>:<port>/console), select
Deployments > Applications.

4. Click Deploy a new Application, and select the archive
for the application from the file system. Click Target
Application.

5. Target the application to the administration server and the
cluster.

6. Deploy the application.

7. Once deployment has completed, start the managed servers
however you like, such as in parallel (simultaneously).

20 Deploying Portal Applications

Configuring a Portal Cluster

Table 1 Initial deployment/startup scenarios (Continued)

Scenario

Deployment/Startup Procedures

Application not previously deployed,
only administration server running —
application uses commerce (has the
commerce* . jar files in the
application root directory)

Perform the previous deployment steps except the last step. When you
start the managed servers, start a single managed server first. After this
managed server has started, you can start the remaining managed
servers in parallel.

Administration server and cluster up
and running (whether or not commerce
is being used)

1. Make sure the EAR (compressed or exploded) is in the
location you want on the administration server.

2. Inthe WebLogic Server Administration Console on the
administration server
(http://<adminserver>:<port>/console), select
Deployments > Applications.

3. Click Deploy a new Application, and select the archive
for the application from the file system. Click Target
Application.

4. Target the application to the administration server only.
5. Deploy the application on the administration server.

6. Once deployment has completed, select Deployments >
Applications > appName.

7. On the Targets tab, target the administration server and the
cluster, and click Apply.

8. On the Deploy tab, redeploy the application.

Most components must be targeted to the administration server as well as the cluster. Here
are the following exceptions:

— <AppName>Admin is not required on the administration server (though deploying
<AppName>Admin on the administration server will not cause any problems).

— <AppName>Datasync is not required on the target server or cluster (though deploying
<AppName>Datasync to the target server or cluster will not cause any problems).

This full level of deployment on the administration server and the cluster is required, and it
is the only supported configuration. There are several application design challenges

Deploying Portal Applications 21

Deploying Portal Applications

22

specific to clustering that WebLogic Portal solves to ensure that portal applications perform
properly and optimally in a cluster environment. The full targeting scheme described is part
of the solution to those design challenges.

If you want to reduce the number of modules deployed on the administration server and the
cluster, click Target Each Module in the deployment steps and untarget <AppName >Admin
from the administration server and <AppName>Datasync from the cluster.

While you need to deploy your portal application to the administration server, the
administration server is not typically used to serve pages for portal applications.

Using Targeted Deployment

In the previous steps, you targeted the entire application for deployment rather than targeting
individual modules to the administration server and to the cluster. This is the recommended
deployment approach. Since almost all modules must be deployed to both the administration
server and to the cluster, any performance or disk space benefits you want to achieve by targeting
individual modules is not significant.

However, if for some reason you want to use targeted deployment, use the following
recommendations, which are listed in order from easiest to most difficult.

e Avoid targeted deployment. Deploy the entire application to the administration server and
to the cluster.

e Use Netscape or Mozilla browsers to perform targeted deployment in the WebLogic
Administration Console.

e Perform multiple targeted deployments. Deploy half of the modules first, then deploy the
rest.

e Run the weblogic.Deployer utility in Linux or UNIX environments. For information on
using the weblogic.Deployer utility, see
http://e-docs.bea.com/wls/docs81/deployment/tools.html.

e Write Java code to call the weblogic.Deployer main () and pass in the module
arguments.

e Use the WebLogic Server Scripting Tool (WLST). This option has not been tested on
WebLogic Portal deployment. For information on WLST, see
http://dev2dev.bea.com/codelibrary/code/wlst.jsp.

Deploying Portal Applications

../../../wls/docs81/deployment/tools.html
http://dev2dev.bea.com/codelibrary/code/wlst.jsp

Configuring a Portal Cluster

Starting Managed Servers

The sequence with which you start managed servers is important and depends upon your
application deployment. See Table 1 for the startup sequences you must use.

If you are not deploying (a new application or an updated application), you can start all managed
servers in parallel (simultaneously).

There are numerous ways to start a managed server and bind it to your administration server,
including using Node Manager. For your initial setup, you may want to use the
startManagedWebLogic script in the domain root directory. You can run this script by
specifying the name of the managed server for this server instance and the URL of the
administration server. Before starting the script, you should edit it and give the managed server
more memory than it is allocated by default. This can be done by specifying a new MEM_ARGS
setting in the setDomainEnv. For example, change the memory allocation to -Xms512m
-Xmx512m.

After starting a managed server, you can browse your portal application by going to the
appropriate URL on the managed server instance. To provide your users a single point of entry
to your cluster, as well as support session failover, you will need to configure a proxy server.

Configuring Your Proxy Server

For instructions on configuring a proxy plugin for WebLogic, see “Configure Proxy Plugins” in
Using WebLogic Server Clusters at http://edocs.bea.com/wls/docs81/cluster/setup.html#684345.

There are no WebLogic Portal-specific configuration tasks when setting up a proxy plug-in.

Troubleshooting Unresolved URLs

If you are using a proxy server or switching back and forth between non-secure and secure ports,
you may find that URLs do not resolve if you use the {url:port} or {url:securePort}
variables. This is because the variables for those values are read from the request. For example,
if a user in a non-secure port (port 80) clicks a secure https link that was created with a URL
template that uses the {url:securePort} variable, the port number of the request (80) is used
for the {url:securepPort} variable, which would create a secure request (https) on an
non-secure port. The same could happen if a user on a proxy server (port 80) clicks a link to a
resource outside the proxy server (port 443).

In both of those cases, you need to hard code port numbers in the URL templates to get URLS to
resolve correctly.

Deploying Portal Applications 23

../../../wls/docs81/cluster/setup.html#684345

Deploying Portal Applications

For more information using URL templates, see Creating URLs to Portal Resources at
http://e-docs.bea.com/workshop/docs81/doc/en/portal/buildportals/url.html

Deploying a Portal Application to the Cluster

24

This section contains instructions for redeployment, partial redeployment, and iterative
deployment of datasync data, such as user profile properties, user segments, content selectors,
campaigns, discounts, and other property sets.

Redeploying Applications
Use the following procedure to redeploy an application.

1. Inthe WebLogic Server Administration Console on the administration server
(http://<adminserver>:<port>/console), select Deployments > Applications.

2. Inthe list of deployed applications, click the trash can icon next to the application you want
to redeploy. This undeploys the current version of the application.

3. After undeployment (when the application name disappears from the list of applications),
replace the EAR with the updated application on the file system.

4. Redeploy the application, targeting the administration server and the cluster.

5. Run the Datasync Web application if you have updated datasync files. See “Iterative
Datasync Deployment” on page 26.

Redeploying a Portal Application with weblogic.Deployer

You can use the WebLogic Server Administration Console or weblogic.Deployer tool to redeploy
an updated portal application to your production server. See “weblogic.Deployer Utility” in
Deploying WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/deployment/tools.html.

The following batch file is an example of how to use weblogic.Deployer to redeploy a portal
application to production.

@echo off
echo Redeploys a Portal Web Project to a Server or Cluster
echo First Parameter is the name of the Server or Cluster

echo Second Parameter is the name of the Application

Deploying Portal Applications

../buildportals/url.html
../../../wls/docs81/deployment/tools.html

Deploying a Portal Application to the Cluster

echo Third Parameter is the administrative username for the Portal Server
set SERVER=%1

set APPNAME=%2

set USERNAME=%3

echo server = %SERVER%

echo appname = %APPNAME%

echo username = $USERNAME%

java weblogic.Deployer -redeploy -username $USERNAME% -name $APPNAMES%
-targets %SERVER%

Partial Redeployment with weblogic.Deployer

In certain situations you can reduce the time needed to redeploy individual pieces of a portal
application by using the weblogic.Deployer tool.

If your updates are contained within a particular portal Web application, you can redeploy just
that Web application and greatly reduce the time spent in redeployment. This is of use if you have
new portlets and Page Flows, but no new EJBs, libraries, or modules (which are enterprise
application scoped).

Because a portal Web application has a number of dependencies on WebLogic Workshop control
classes, those needed to be redeployed as well. The following batch file can be used to help
simplify that process. You will need to have weblogic.Deployer in your classpath, which can be
addedlglnunﬂng<BEA_HOME>/weblogic81/common/bin/commEnvScﬁpt

@echo off

echo Redeploys a Portal Web Project to a Server or Cluster

echo First Parameter is the name of the Server or Cluster

echo Second Parameter is the name of the Application

echo Third Parameter is the name of the Portal Web Application

echo Fourth Parameter is the administrative username for the Portal Server
set SERVER=%1

set APPNAME=%2

set WEBAPPNAME=%3

Deploying Portal Applications 25

Deploying Portal Applications

26

set USERNAME=%4

echo server = %SERVER%

echo appname = %APPNAME%

echo webappname = %WEBAPPNAMES%
echo username = $USERNAME%

set TARGETS=%APPNAME%@%SERVER%

set
TARGETS=%TARGETS%, .workshop/%$APPNAMES /EJB/TimerControl -1livsjc6gp6ws@%SERV
ER%

set
TARGETS=%TARGETS$%, .workshop/$APPNAMES% /EJB/pl3controls_k3cw9vg6497r@$SERVER

)
s

set
TARGETS=%TARGETS%, .workshop/%$APPNAMES% /EJB/MDBListener -1x0154i4jz0he@%SERV
ER%

set TARGETS=%TARGETS%, .workshop/%$APPNAMES%/EJB/GenericStateless@%SERVERS
set TARGETS=%TARGETS%, .workshop/%$APPNAMES/EJB/ProjectBeans@%SERVER%S

java weblogic.Deployer -redeploy -username $USERNAME% -name $WEBAPPNAMES
-targets %TARGETS%

|lterative Datasync Deployment

This section provides instructions for updating portal application datasync data, such as user
profile properties, user segments, content selectors, campaigns, discounts, and other property
sets, which must be bootstrapped to the database in a separate deployment process.

Note: Ina WebLogic Portal cluster where the managed servers are running on different
computers than the administration server, the ListenAddress attribute of each managed
server must be set to its own IP address or DNS name; which allows datasync to
propagate updates throughout the cluster. Setting the cluster addresses to DNS addresses
is covered in “Creating a Production Cluster Environment with the Configuration
Wizard” on page 9.

Deploying Portal Applications

Deploying a Portal Application to the Cluster

Portal Datasync Definitions

Portal allows you to author a number of definition files, such as user profiles and content
selectors, that must be managed carefully when moving from development to production and
back.

Within WebLogic Workshop, portal definitions are created in a special Datasync Project,
exposed in the WebLogic Workshop Application window as a /data subdirectory. (On the file
system, the directory exists in the application’s /META-INF/data directory.) This project can
contain user profile property sets, user segments, content selectors, campaigns, discounts, catalog
property sets, event property sets, and session and request property sets.

Datasync Definition Usage During Development

During development, all files created in the datasync project are stored in the META-INF/data
directory of the portal application and exposed in WebLogic Workshop in the
<portalApplications>/data directory. To provide speedy access from runtime components to
the definitions, a datasync facility provides an in-memory cache of the files. This cache
intelligently polls for changes to definitions, loads new contents into memory, and provides
listener-based notification services when content changes, letting developers preview datasync
functionality in the development environment.

Datasync definition modifications are made not only by WebLogic Workshop developers, but
also by business users and portal administrators, who can modify user segments, campaigns,
placeholders, and content selectors with the Weblogic Administration Portal. In the development
environment, both WebLogic Workshop and the WebLogic Administration Portal write to the
files in the META- INF/data directory.

Compressed Versus Exploded EAR

When deployed into a production system, portal definitions often need to be modifiable using the
Weblogic Administration Portal. In most production environments, the portal application will be
deployed as a compressed EAR file, which limits the ability to write modifications to these files.
In a production environment, all datasync assets must be loaded from the file system into the
database so the application can be updated.

Figure 3 shows how the /data directory from the updated portal application is put into a
standalone JAR and bootstrapped to the database.

Deploying Portal Applications 21

Deploying Portal Applications

Figure 3 Loading updated datasync files to the database

Cluster
Managed Server 1 Managed Server 2
WehbLogic Portal WehbLogic Portal
| Portal Application | | Portal Application |
WehLogic Server WehbLogic Server

Administration Server @

F 3

WebLogic Portal

Enterprise-

Quality

Datahase

portalApp.ear
/data

....... M Portal Application

Weblogic Server

H —_— Data Sync
Bootstrap Tool
Alternatively, some production environments deploy their portal applications as exploded EARs.
In this case, the deployed portal application on the administration server is the primary store of

datasync definitions. Work done in the WebLogic Administration Portal on any managed server
is automatically synchronized with the primary store.

For both compressed and uncompressed EAR files, you can view and update datasync definitions
using the Datasync Web Application.

Datasync Web Application

Each portal application contains a Datasync Web Application located in datasync.war in the
application root directory. Typically, the URL to the Datasync Web application is
http://<server>:<port>/<appName>DataSync. For example,

http://localhost:7001/portal AppDataSync. You can also find the URL to your Datasync Web

28 Deploying Portal Applications

Deploying a Portal Application to the Cluster

application by loading the WebLogic Server Administration Console and selecting
Deployments > Applications > appName > *DataSync and clicking the Testing tab to view the
URL.

The Datasync Web application allows you to view contents of the repository and upload new
content, as shown in Figure 4.

Figure 4 Datasync Web application home page

Data Repository Browser

o®%%,
'c Z .,
2 bea

General Information

Host Name jlanninl
Host IP 10.36.33.74
Application colorsPortal
User weblogic
Production Mode true

M Master Data Repository

m Singleton Master Data Repository backed by a Database persistent store (Production Mode)

Author BEA Systems

@ Yersion 8.1

% Yersion Note weblogic Platform:Personalization: 8.1
Data Item Filter URI: (none)

E Schema URL {none)

01
Registered Data Repositories
+ Property Set Data Repository
+ Placeholder Data Repository
+ Campaign Data Repository
+ Scenario Data Repository
+ DiscountSet Data Repository
Registered Proxy Data Repositories

+ Managed Server Proxy

ems, Inc. All rights r

Working with the Repository Browser — When working with the Data Repository Browser, you
have the option to work with all the files in the repository using the icons on the left hand side of
the page, or drill down into a particular sub-repository, such as the repository that contains all
Property Set definitions.

View Contents — To view the contents of a repository, click on the binoculars icon to bring up
the window shown in Figure 5.

Deploying Portal Applications 29

Deploying Portal Applications

Figure 5 Browsing the Datasync repository

View Data Repository Contents

ors,
'l. 7
F w
% hea
ﬁ Return to Master Browser

Master Data Repository

Data Items
Count: 37
+ fcampaigns/discountCampaign.cam/scenario_0/rules.rls
+ fcampaigns/discountCampaign.cam
+ fcampaigns/discountCampaign.cam/scenario_0
+ fcontentselectors/GlobalContentSelectors/ArtistsContent.sel

+ fcontentselectors/GlobalContentSelectors /Painter'sContent.sel

From this list, click on a particular data item to see it’s contents, as shown in Figure 6.

30 Deploying Portal Applications

Deploying a Portal Application to the Cluster

Figure 6 Data item contents

View Data Repository Contents

ors,
'c' 7
2 "
% hea
ﬁ Return to Master Browser

Master Data Repository

Data Items
Count: 37
+ fcampaigns/discountCampaign.cam/scenario_0/rules.rls
- fcampaigns/discountCampaign.cam
Schema URI http://www.bea.com/ servers/ campaign/ xsd/ campaign/1.1.1
Creation Date 2003-12-01 11:39:16.0
Modification Datez003-10-10 14:21:32.0

MName META-INF/data/campaigns/discountCampaign. cam

Description colorsPortal i META-INF/data/campaigns/discountCampaign. cam

Author Administrator C:%Documents and Settings)Admwinistrator en America/Denver
Yersion 0.0 (Build: 1)

Yersion Note |

Data I:y <?xml wversion="1.0"2>

<garcampaign xmwlns:ca="http://www.bea.con/servers/canpaign/xsd/ campaign/
<garnamwe Xxmlns:ca="http://www.bea.con/servers/campaign/ xsd/ campaign/
<oarsponsor xmlns:ca="http://www.bea.com/servers/campaign/ xsd/ campai
<oardescription xmlns:ca="http://wvw.bea.com/servers/campaign/ xsd/ca
<oarvalue-proposition xmlns:ca="http://www.bea.com/servers/campaign/
<oargoal-description xmlns:ca="http://vvw.bea.com/servers/campaign/ x
<gargoals xmlns:ca="http://www.bea.conw/servers/ campaign/ xsd/ campaign
<oarvalid-date-times xmlns:ca="http://vvw.bea.com/servers/campaigns/ x
<oarstart-date-time xmlns:ca="http://wvv.bea.com/servers/campaiyg
<oarstop-date-time ®mlns:ca="http://wuv.bea.com/servers/campaign
<foarvalid-date-times:
<data:data-link><data:schema-urirhttp://www.bea.com/servers/ campaign
</caicampaign:>

As you can see in the previous figure, you can view the XML data for a particular content item.

Removing content

To remove content from a repository, click on the trash can icon on the left side of the page.

Working with Compressed

When the application is deployed, if the JDBC Repository is empty (no data), then the files in the
EAR will be used to bootstrap (initialize) the database. The Datasync assets are stored in the
following tables: DATA SYNC APPLICATION, DATA SYNC ITEM,

DATA_SYNC SCHEMA URI, and DATA SYNC VERSION. The bootstrap operation by

Deploying Portal Applications 3

Deploying Portal Applications

default only happens if the database is empty. When you want to do incremental updates, the
Datasync Web application provides the ability to load new definitions directly into the database.
This can be done as part of redeploying a portal application, or independently using a special JAR
file that contains your definitions, as shown in Figure 6, “Data item contents,” on page 31.

Upload new contents — In the Datasync Web application, there is a button on the left side that
looks like a document with 1's and 0's called Bootstrap Data. When you click this icon, the
following page appears, which lets you load data into the database.

Figure 7 Uploading new datasync data

Upload Data

v,
'J. 7
K ™
2 hea
ﬁ' Return to Master Browser

Master Data Repository

Bootstrap Source ‘Jar File on Server v
Path to Jar file containing data {if Jar source selected above) sync-bootstrap jar
Bootstrap Mode Overwrite ALL data in Master Data Repository A

Crverwrite ALL data in Master Data Repository

Bootstrap Bt anly if Master Data S\tD mpw(doesn I

)

emns, Inc. All rights reserved.

When you bootstrap, you can choose a bootstrap source, which is either your deployed portal
application or a stand-alone JAR file. For example, if you have an updated portal application that
you have redeployed to your production environment, you can add any new definitions it contains
to your portal. Alternatively, if you have authored new definitions that you want to load
independently, you can create a JAR file with just those definitions and load them at any point.

Either way, when you update the data repository, you can choose to “Overwrite ALL data in the
Master Data Repository,” “Bootstrap only if the Mastery Repository is empty,” or “Merge with
Master Data Repository—latest timestamp wins.”

Bootstrapping from an EAR —If you are redeploy an existing EAR application and want to load
any new definitions into the database, choose the Application Data (META-INF/data) as your
bootstrap source, and then choose the appropriate Bootstrap Mode. To ensure you do not lose any
information, you may want to follow the instructions in the section entitled, “Pulling Definitions

32 Deploying Portal Applications

Deploying a Portal Application to the Cluster

from Production” on page 33 to create a backup first. It is not possible to bootstrap definition data
from an EAR file that is not deployed.

Creating a JAR file — To bootstrap new definition files independently of updates to your portal
application, you can create a JAR file that is loaded onto the server that contains the files (content
selectors, campaigns, user segments, and so on) that you want to add to the production system.

To do this, you can use the jar command from your META- INF/data directory. For example:
jar -cvf myfiles.jar *

This example will create a JAR file called myfiles.jar that contains all the files in your data
directory, in the root of the JAR file. Then, you can bootstrap information from this JAR file by
choosing Jar File on Server as your data source, specifying the full physical path to the JAR file
and choosing the appropriate bootstrap mode. By running this process you can upgrade all the

files that are packaged in your JAR. Controlling the contents of your JAR allows you to be
selective in what pieces you want to update.

When creating the JAR file, the contents of the META- INF/data directory should be in the root
of the jar file. Do not jar the files into a META- INF/data directory in the JAR file itself.

Validating Contents — After bootstrapping data, it is a good idea to validate the contents of what
you loaded by using the View functionality of the Datasync Web application.

Pulling Definitions from Production

Developers and testers may be interested in bringing definitions that are being modified in a
production environment back into their development domains. As the modified files are stored in
the database, Portal provides a mechanism for exporting XML from the database back into files.

One approach is to use the browse capability of the Datasync web application to view all XML
stored in the database in a web browser. This information can then be cut and pasted into a file.

A better alternative is to use the DataRepositoryQuery Command Line Tool, which allows you
to fetch particular files from the database using an FTP-like interface.

The DataRepositoryQuery Command Line Tool supports a basic, FTP-style interface for
querying the data repository on a server.

The command line class is com.bea.pl3n.management .data.DataRepositoryQuery. In
order to use it, you must have the following in your CLASSPATH: p13n_ejb.jar,
pl3n_system.jar, and weblogic.jar.

Run the class with the argument help to print basic usage help.

For example:

Deploying Portal Applications 33

Deploying Portal Applications

set classpath=c:\bea\weblogic81l\pl3n\lib\pl3n system.jar;
c:\bea\weblogic81\pl13n\lib\pl3n ejb.jar;
C:\bea\weblogic8l\server\lib\weblogic.jar

java com.bea.pl3n.management.data.DataRepositoryQuery help

Options for Connecting to the Server

Several optional command arguments are used for connecting to the server. The default values
are probably adequate for samples provided by BEA. In real deployments, the options will be
necessary.

-username userid Username of a privileged user (an Default = weblogic
administrator)

-password password Password for the privileged user Default = weblogic

-app appName@host.:port Application to manage Default = @7001

-url url URL to DataRepositoryQuery servlet

34

Only one of -app or -url may be used, as they represent two alternate ways to describe how to
connect to a server.

The URL is the most direct route to the server, but it must point to the DataRepositoryQuery
servlet in the Datasync Web application. This servlet should have the URI of
DataRepositoryQuery, but you also need to know the hostname, port, and the context -root
used to deploy datasync.war in your application. So the URL might be something like
http://localhost:7001/datasync/DataRepositoryQuery if datasync.war was deployed
with a context-root of datasync.

The -app option allows you to be a bit less specific. All you need to know is the hostname, port
number, and the name of the application. If there is only one datasync.war deployed, you do
not even need to know the application name. The form of the -app description is
appnamee@host : port, but you can leave out some pieces if they match the default of a single
application on localhost port 7001.

The -app option can be slow, as it has to perform many queries to the server, but it will print the
URL that it finds, so you can use that with the -url option on future invocations.

Deploying Portal Applications

Deploying a Portal Application to the Cluster

Examples

Assuming CLASSPATH is set as previously described, and the default username/password of
weblogic/weblogic is valid):

Find the application named p13nBase running on localhost port 7001:
java com.bea.pl3n.management.data.DataRepositoryQuery -app pl3nBase
Find the application named p13nBase running on snidely port 7501:

java com.bea.pl3n.management.data.DataRepositoryQuery -app

pl3nBase@snidely:7501

Find the single application running on localhost port 7101:

java com.bea.pl3n.management.data.DataRepositoryQuery -app @7101

Find the single application running on snidely port 7001:

java com.bea.pl3n.management.data.DataRepositoryQuery -app @snidely

Find the single application running on snidely port 7501:

java com.bea.pl3n.management.data.DataRepositoryQuery -app @snidely:7501

In each of the examples, the first line of output will be something like this:
Using url: http://snidely:7001/myApp/datasync/DataRepositoryQuery

Usage

The easiest way to use the tool is in shell mode. To use this mode, you just invoke
DataRepositoryQuery without any arguments (other than those needed to connect as described
previously).

In this mode, the tool will start a command shell (you will see a drg> prompt) where you can
interactively type commands, similar to how you would use something like ftp.

Alternatively, you can supply a single command (and its arguments), and
DataRepositoryQuery will run that command and exit.

Commands

The HELP command will give you help on the commands you can use. Or use HELP command to
get help on a specific command.

The available commands are:

Deploying Portal Applications 35

Deploying Portal Applications

HELP

Basic Help

HELP OPTIONS

Help on command line options

HELP command

Help on a specific command

HELP WILDCARDS

Help on wildcards that can be used with URI arguments

LIST [-1] [uri(s)]

List available data items

INFO [-1] [-d]

Print repository info

PRINT uri

Print a data item (the xml)

GET [-f] uri [filename]

Retrieve a data item to a file

MGET [-f] [uri(s)]

Retrieve multiple data items as files. Not specifying a URI retrieves all files.

EXIT or QUIT

Exit the shell (shell only)

Commands are not case-sensitive, but arguments such as filenames and data item URIs may be.
More help than what is listed above can be obtained by using HELP command for the command

you are interested in.

Where multiple URIs are allowed (indicated by uri (s) in the help), you can use simple
wildcards, or you can specify multiple URIs. The result of the command includes all matching

data items.

Options in square brackets ([]) are optional and have the following meanings:

-1 Output a longer, more detailed listing
-d Include URIs of data items contained in each repository
-f Force overwrite of existing files

The following example retrieves all assets from the repository as files:

java com.bea.pl3n.management.data.DataRepositoryQuery -app mget

36 Deploying Portal Applications

Deploying a Portal Application to the Cluster

Working with Uncompressed

When working with a production server with an uncompressed EAR, the only difference from
development mode is that there is no poller thread.

When updating definition files using the WebLogic Administration Portal, the files are updated
on the administration server in the deployed uncompressed EAR directory automatically. This
means that the WebLogic Administration Portal can be used from any managed server in the
cluster, but the primary store always resides on the administration server. If the deployable EAR
directory is read-only, the WebLogic Administration Portal cannot be used to modify files.

Making sure you are not overwriting files — When working with an uncompressed EAR file in
production, special care needs to be taken when working with definition files. When you redeploy
your application to your production environment, the existing definition files are replaced. If you
have administrators updating definitions using the WebLogic Administration Portal, their
changes will be lost upon redeploying an updated application.

Copying back to development — To prevent overwriting any changes done by administrators to
definition files when redeploying a new portal application, you must first copy all the definition
files from the administration server back to development manually or using the Datasync Web
application.

Rules for Deploying Datasync Definitions

There are a number of general concepts to think about when iteratively deploying datasync
definitions into a production system. In general, adding new datasync definitions to a production
system is a routine process that you can do at any time. However, removing or making destructive
modifications to datasync definitions can have unintended consequences if you are not careful.

When removing or making destructive modifications to datasync definitions, you should first
consider whether there are other components that are linked to those components. There are
several types of bindings that might exist between definitions. For some of these bindings, it is
very important to understand that they may have been defined on the production server using the
WebLogic Administration Portal and may not be known by the developers.

One example of bindings is that you may have two datasync definitions bound together. An
example of this is a campaign that is based on a user property defined in a user property set. If
you remove the property set or the specify property, that campaign will no longer execute
properly. In this case, you should update any associated datasync definitions before removing the
property set or property.

A second scenario is that you have defined an entitlement rule that is bound to a datasync
definition. For example, you might have locked down a portlet based on a dynamic role that

Deploying Portal Applications 37

Deploying Portal Applications

38

checks if a user has a particular user property value. In this case, you should update that dynamic
role before removing the property set or property.

A third scenario is that there are in-page bindings between datasync items and Portal JSP tags.
An example is a <pz:contentSelector> tag that references a content selector. Update the content
selector tag in the production environment before you remove the content selector. This is one
type of binding that is only configured in WebLogic Workshop at development time rather than
in the WebLogic Administration Portal.

A good guideline for developers is to not remove or make significant changes to existing datasync
definitions that are in production. Instead, create new definitions with the changes that are
needed. This can be accomplished by creating new versions of, for example, campaigns where
there is no chance that they are being used in unanticipated ways. Additionally, do datasync
bootstraps of the production system’s existing datasync definitions back into development on a
regular basis.

Removing Property Sets

When you remove a property set, any existing values being stored locally by portal in the
database will NOT be removed automatically. You need to examine the PROPERTY KEY and
PROPERTY VALUE tables to clean up the data if desired.

Propagating LDAP and Portal Database Data

The previous sections provided instructions for deploying file-based portal enterprise
applications and updating datasync definitions. The WebLogic Portal Propagation Utility lets you
propagate application LDAP and database data from one server to another. The Propagation
Utility lets you propagate the following data:

Deploying Portal Applications

Deploying a Portal Application to the Cluster

Portal database data (DBMS) LDAP data

Any portal database data created or * Global roles
modified with the WebLogic .

He ; Enterprise application roles
Administration Portal

* Web application roles (delegated administration and
visitor entitlement roles)

* Delegated administration assignments/definitions
+ Visitor entitlement assignments/definitions
Note: The propagation utility lets you view, but

not propagate users and groups, because the
hashed passwords cannot be propagated.

The propagation utility is a portal Web application packaged inside an enterprise application
archive (.ear). The propagation utility is deployed on both the domain containing the LDAP and
database data (the source server) and the domain that will receive that data (destination server).

Figure 8 shows the propagation utility interface.

Deploying Portal Applications 39

Deploying Portal Applications

40

Figure 8 The WebLogic Portal Propagation Utility

a WYLP 8.1 Propagation - Microsoft Internet Explorer
File Edit View Favorites Tools Help ‘

EBack - = - (D it ‘ Qsearch [GEFavorites EMeda (4 | B-SEH-D W

Address I@.I http:ffzazen: 7001 /PortalPropagation/wlpG1Prop portal? _nfpb=truegportlet_8_5_actionOverride=/portlets/login/lagin ﬂ WGG Links >

®"%,

WebLogic Portal 8.1 Propagation .g:hea
DBMS L LDAP L RESOURCES '

Login ™ = M3

You are logged in Set up propagation destination server:
as: weblogic

URL: Ihttp Hlocalhost:7001/PortalPropagationfwebserices/LdapPropagation%|pLdapPropagationW¥'S. jws

Username: I
Password: I

Set Up & Test Connection |

Log Out

cpyright 2003, BEA Systems, Inc. AN rights reserved.

¥ of”

[&) ’7 ’7 ’7 E Lacal intranet 4

The propagation utility is a self-contained application that does not require you to open or
configure it using WebLogic Workshop.

The main use case for the propagation utility is moving data from a staging environment to a
production environment. However, another valid use case is moving data from production back
to staging in order to simulate the current production environment on staging.

In a clustered environment, propagate only from the source administration server to the
destination administration server. The data is then automatically propagated from the destination
administration server to the managed servers in the cluster.

Database Requirements — You must propagate between the same type of database, and you
must be able to simultaneously connect to the source and destination databases. You must also
have a non-transactional (non-XA) database driver for your database installed on the source
server.

The following sections show you how to download, deploy, and use the propagation utility.

Getting the Latest Portal Propagation Utility
Contact BEA Support for the latest version of the Propagation Utility.

Deploying Portal Applications

Deploying a Portal Application to the Cluster

About the Propagation Utility Files
The propagation utility download contains the following files:

e readme.html — Provides abbreviated overview and setup instructions, as well as known
issues related to the propagation utility.

e PortalPropagationEntApp.ear — The enterprise application archive containing the
propagation utility Web application, which must be deployed on the source and destination
servers.

e pdef.zip — The archive containing the following files to enable portal database propagation
(not LDAP propagation):

— pdef_81.xml — Contains the configuration for propagating portal database data. You
can modify this file to customize what is propagated. See the help on the Propagation
Utility’s DBMS portlet for details.

— portal-propagation_2_ 0.xsd — The scheme for pdef 81.xml. Do not modify this file.

Setting Up and Deploying the Propagation Utility

This section shows you how to set up and deploy the propagation utility. Table 2 provides an
overview of the configuration necessary on both the source and destination servers. Detailed
instructions follow the table.

Table 2 Propagation Portal configuration on source and destination servers

Source Server Destination Server

* Modify /pdef/pdef_ 81.xml: enter * Modify /pdef/pdef 81.xml: enter
unique values for the unique values for the
source-data-source-name and source-data-source-name and
destination-data-source-name destination-data-source-name
attributes to be used for the JDBC data attributes to be used for the JDBC data
sources. (This is not required if you are sources. (This is not required if you are
propagating only LDAP data.) propagating only LDAP data.)

Deploying Portal Applications 41

Deploying Portal Applications

42

Table 2 Propagation Portal configuration on source and destination servers

Source Server

Destination Server

* Set up non-XA JDBC connection pools and
data sources for the source and destination
servers. (This is not required if you are
propagating only LDAP data.)

This requires a non-XA database driver on
the source server.

No JDBC connection pools or data sources
are required, unless you want to propagate
from the destination server (such as the
production server) to another server (such as
a staging server), which would make this a
source server as well.

* Setup JMS queues for the propagation utility.
The propagation utility does not use
JMS.This step lets you prevent a harmless
server exception.

Setup JIMS queues for the propagation utility.
The propagation utility does not use
JMS.This step lets you prevent a harmless
server exception.

* Deploy PortalPropagationEntApp.ear.

Deploy PortalPropagationEntApp.ear.

In the following installation steps, starting with step 6., the order for setting up JDBC, JMS, and
deploying the propagation application is arbitrary. You can perform those steps in any order.

To install the WebLogic Portal Propagation Utility:
1.
2.

Make sure you have the latest version of the propagation utility from BEA Support.

On both the source and destination servers, create a directory for the utility from which you
want to deploy the utility’s enterprise application, and extract the utility to that directory.

After you extract the utility, you will see an archive called pdef . zip. Extract this archive to
the domain root directory on both the source and destination servers.

For example, if your destination domain directory on both servers is /myDomain, extract
pdef . zip into that directory on both servers. The /myDomain/pdef/ directory is created

automatically.

Open both the source and destination /pdef/pdef 81.xml files in an editor.

In the top-level <portal-propagation> element of both files, change the default values
of the source-data-source-name and destination-data-source-name attributes.
Make a note of the values you enter. You will use them in later steps to configure the

JDBC database connections on the source server.

Deploying Portal Applications

Deploying a Portal Application to the Cluster

For example:

<portal-propagation

xmlns="http://www.bea.com/portal /xsd/propagation/2.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bea.com/portal/xsd/propagation/2.0
portal-propagation 2 0.xsd"
source-data-source-name="srcDataSource"
destination-data-source-name="destDataSource"
insert-new-records="true"

update-existing-records="true">

Save and close the files.

Make sure the source and destination servers are running. If you are using clusters for your
source and destination, make sure the administration servers are running.

Add non-transactional (non-XA) JDBC connections and data sources on the source server.
In this step, you will set up a source JDBC connection and data source and a destination
JDBC connection and data source, both on the source server. This step requires that you
have a non-XA database driver installed for your database.

Note: The engine that propagates portal database data needs a non-XA connection pool and
data source on the source server for both the source and destination databases. Do not
attempt to reuse the existing WebLogic Portal connection pool and data source for
propagation, because the server will use a transaction manager and attempt to set up
the database propagation as a distributed transaction. Propagation will then fail
because the propagation engine needs to manage the transaction itself.

a. Start the WebLogic Server Administration Console on the source server. For example,
http://stagingAdminServer:7001/console.

b. Create the connection pool for the source server. In the left navigation pane, expand
Services > JDBC and click Connection Pools.

c. In the right pane, click Configure a new JDBC Connection Pool.

d. On the Configure a JDBC Connection Pool page, select your database type, select a
non-XA database driver for it, and click Continue.

e. On the page that appears, enter the following:

Deploying Portal Applications 43

Deploying Portal Applications

Name Any name for the source connection pool.

Database Name (PointBase) Enter the database name. The default is
workshop.

Host Name Enter the source database server name.

Port Enter the port number of the source database.

Database User Name Enter the database username for authentication.

Password/Confirm Enter/confirm the user’s password.

f. Click Continue. You can then test the database connection by clicking Test Driver
Configuration.

g. Configure the destination server connection pool on the source server. Click Connection
Pools in the left pane, click Configure a new JDBC Connection Pool in the right pane,
select your database type and the non-XA driver, and click Continue.

h. On the page that appears, enter the following:

Name Any name for the destination connection pool.

Database Name (PointBase) Enter the database name. The default is
workshop.

Host Name Enter the destination database server name.

Port Enter the database port on the destination server.

Database User Name Enter the database username for authentication.

Password/Confirm Enter/confirm the user’s password.

i. Click Continue. You can then test the database connection by clicking Test Driver
Configuration.

Your connection pools are configured. Now configure your data sources on the source
server to correspond to the connection pools.

44 Deploying Portal Applications

Deploying a Portal Application to the Cluster

j- Create the data source for the source database. In the left navigation pane, expand
Services > JDBC and click Data Sources.

k. In the right pane, click Configure a new JDBC Data Source.

1. On the Configure a JDBC Data Source page, in both the Name and JNDI Name fields,
enter the value of the source-data-source-name attribute you entered in the
/pdef/pdef 81.xml file. For example, enter srcDataSource.

m. Deselect the Honor Global Transactions option to make the data source non-XA, as
shown in Figure 9.

Figure 9 Deselect Honor Global Transactions to make the data source non-XA
Configure a JDBC Data Source
Configure the data source

Define your new JOBC data source.

Name: |SrcDataSource

The narme of this JOBC data source.

JHDI Hame: |SrCDataSource

The JMDI path to where this JDBC data source is bound.
"' Honor Glohal Transactions

Spetifies whether this data source will participate in existin

while creating the data source should be done rarely and w
data source is created.

n. Click Continue.

0. On the page that appears, select the corresponding source connection pool (for example,
srcPool), and click Continue.

p. On the page that appears, select the target server (the administration server in a cluster),
and click Create.

gq. Now create a second data source on the source server for the destination database. In the
left navigation pane, expand Services > JDBC and click Data Sources, and in the right
pane click Configure a new JDBC Data Source.

r. On the Configure a JDBC Data Source page, in both the Name and JNDI Name fields,
enter the value of the destination-data-source-name attribute you entered in the
/pdef /pdef 81.xml file. For example, enter destDataSource.

Deploying Portal Applications 45

Deploying Portal Applications

46

Deselect the Honor Global Transactions option to make the data source non-XA, as
shown in Figure 9.

Click Continue.

On the page that appears, select the corresponding source connection pool (for example,
destPool), and click Continue.

On the page that appears, select the target server (the administration server in a cluster),
and click Create.

Connection pool and data source setup is complete. Create connection pools and data
sources on any servers that will serve as source servers. For example, set up connection
pools and data sources on the production server if you want to propagate back to a staging
server.

. Create JMS queues for the propagation utility on both servers. While the propagation utility

does not use IMS, performing these steps eliminates JMS exceptions that do not affect
propagation.

a.

Start the WebLogic Server Administration Console on one of the servers. For example,
http://productionAdminServer:7001.

In the left navigation pane, expand Services > JMS > Servers > cgJMSServer (or the
server name you used when you set up the domain), and click Destinations.

Note: You may see a list of existing JMS queues you have configured. You must still
create the JMS queues for the propagation utility because it runs in its own Web
application.

In the right pane, click Configure a new JMS Queue.

In Create a New JMS Queue window, on the General tab, enter the following in the Name
and JNDI Name fields:

PortalPropagation.queue.AsyncDispatcher error

Click Create.
Click the Redelivery tab and change the Redelivery Limit value to 0 (zero).
Click Apply.

Create a second JMS Queue. Click Destinations in the left pane, and click Configure a
new JMS Queue in the right pane.

Enter the following in the Name and JNDI Name fields:

Deploying Portal Applications

Deploying a Portal Application to the Cluster

PortalPropagation.queue.AsyncDispatcher

Click Create.

Click the Redelivery tab, and in the Error Destination field select
PortalPropagation.queue.AsyncDispatcher error.

Click Apply. The JMS queues on the first server are configured.

. On the other server (source or destination), perform the previous steps to set up the two

IMS queues.

Deploy the propagation utility PortalPropagationEntApp.ear on the source and
destination servers.

a.

Start the WebLogic Server Administration Console on the source server. For example,
http://stagingAdminServer:7001/console.

In the left navigation pane, expand Deployments and click Applications.
In the right pane, click Deploy a new Application.

In the Deploy a New Application window, use the Location links to select the directory
containing PortalPropagationEntApp.ear (the directory to which you extracted the
propagation utility).

When PortalPropagationEntApp.ear appears in the list, select the option button next
to it and click Continue.

On the page that appears, click Deploy.

On the page that appears, deployment is complete when the Status of Last Action column
shows the message “Success.”

On the other server (source or destination), perform the previous steps to deploy
PortalPropagationEntApp.ear.

Note: Windows only — If you receive the following type of exception while trying to

deploy:
java.lang.InternalError: IO error while trying to compute name

from: <path>

it probably means the path to your server exceeds 254 characters. As a workaround,
shorten the path to the server for the domain receiving the exception. For example, if
your domain path is C: \bea\user projects\domains\destinationDomain,
move the domain to something like C:\destinationDomain.

Deploying Portal Applications 47

Deploying Portal Applications

Starting and Using the Propagation Utility

1.

Start the propagation utility on the source server. Enter the following URL in a browser:
http://<host>:<port>/PortalPropagation/wlp81Prop.portal. (The propagation utility does not
have to be started on the destination server. It must only be deployed.)

On the Login & Setup page, log in as a user in the Administrators user group.

In the Destination Server Setup portlet, change 1ocalhost:7001 to the host:port of the
destination domain, and enter the username and password of a member of the
Administrators group in the destination domain. Click Set Up & Test Connection to
connect to the destination server.

Go to the DBMS page to propagate portal database data to the destination server.

Go to the LDAP page to propagate roles, delegated administration definitions, and visitor
entitlement definitions, or view users and groups (read-only).

Help with the Portlets — The propagation portlets are self-documented. For information on using
a portlet, click the help icon on the portlet titlebar.

Understanding Portal Resources

The Portal Library contains books, pages, layouts, portlets, desktops, and other types of
portal-specific resources. Using the WebLogic Administration Portal, these resources can be
created, modified, entitled, and arranged to shape the portal desktops that end users access.

48

Figure 10 shows an image of the portal resource tree in the WebLogic Administration Portal. The
library contains the global set of portlets and other resources, while the Portals node contains
instances of those resources, such as the colorsSample desktop and its pages, books, and portlets.

Deploying Portal Applications

Understanding Portal Resources

Figure 10 Portal resources library

= Partal Resources

-3 Main Page Book
2 New Book,

Layouts
Look & Feels
= AII Partlets
- EveryanePartlet
Purchased Portlets
RestrictedPaortlet
- = Login
Portlet Categories
El-- Partals
E|-- colorsSample
EE colors
Bl Main Page Book
ED Login

=l Login
Bl EveryonePortlet
Bl propTestz
Bl PropTest1
Bl RestrictedPortlst
+1-[] User Management

-

-
-
-
=

m

Each of these resources is defined partially in the portal database so they can be easily modified
at run time. The majority of resources that exist are created by an administrator, either from
scratch or by creating a new desktop from an existing .portal template file that was created in
WebLogic Workshop.

However, portlets themselves are created by developers and exist initially as XML files. In
production, any existing .portlet files in a portal application are automatically read into the
database so they are available to the WebLogic Administration Portal.

The following section addresses the lifecycle and storage mechanisms around portlets, since their
deployment process is an important part of portal administration and management.

Portlet Deployment Lifecycle

During development time, . portlet files are stored as XML in any existing portal Web
application in the Portal EAR. As a developer creates new .portlet files, a file poller thread
monitors changes and loads the development database with the . portlet information.

In a production environment, .portlet files are loaded when the portal Web application that
contains them is redeployed on the administration server. This redeployment timing ensures that

Deploying Portal Applications 49

Deploying Portal Applications

50

the content of the portlet, such as a JSP or Page Flow, is available at the same time as the
.portlet file is available in the Portal Library. The administration server is the chosen master
responsible for updating the database so that there are no contention issues around every server
in the production cluster trying to write the new portlet information into the database at the same
time. When deploying new portlets to a production environment, target the portal application for
redeployment on the administration server.

Database Structure for Storing Portlets

When a portlet is loaded into the database, the portlet XML is parsed and a number of tables are
populated with information about the portlet, including PF PORTLET DEFINITION,
PF_MARKUP_DEFINITION, PF_PORTLET INSTANCE, PF_ PORTLET PREFERENCE,
L10N_RESOURCE, and L1ON_INTERSECTION.

PF PORTLET DEFINITION is the master record for the portlet and contains rows for
properties that are defined for the portlet, such as the definition label, the forkable setting, edit
URI, help URI, and so on. The definition label and Web application name are the unique
identifying records for the portlet. Portlet definitions refer to the rest of the actual XML for the
portlet that is stored in PE. MARKUP_ DEF.

PF_ MARKUP_DEF contains stored tokenized XML for the .portlet file. This means that the
.portlet XML is parsed into the database and properties are replaced with tokens. For example,
here is a snippet of a tokenized portlet:

<netuix:portlet $(definitionLabel) $(title) $ (renderCacheable)

$ (cacheExpires) >

These tokens are replaced by values from the master definition table in
PF_PORTLET DEFINITION, or by a customized instance of the portlet stored in
PF_PORTLET INSTANCE.

The following four types of portlet instances are recorded in the database for storing portlet
properties:

e Primary — Properties defined in development and stored in the .portlet file.

e Library — Properties defined in the Portal Library, which may be changed using the
WebLogic Administration Portal.

e Admin — A customized instance of the portlet in a desktop. This allows you to customize a
portlet in a particular way for a desktop without affecting other instances of the portlet in
other desktops.

Deploying Portal Applications

Zero Downtime Architectures

e User — User-customized instances of the portlet defined in the Visitor Tools.

PF_PORTET INSTANCE contains properties for the portlet for attributes such as
DEFAULT MINIMIZED, TITLE BAR ORIENTATION, and PORTLET LABEL.

Ifa portlet has portlet preferences defined, those are stored in the PF. PORTLET PREFERENCE
table.

Finally, portlet titles can be internationalized. Those names are stored in the LION RESOURCE
table which is linked using LION INTERSECTION to PF PORTLET DEFINITION.

Removing Portlets from Production

If a portlet is removed from a newly deployed portal application, and it has already been defined
in the production database, it is marked as IS PORTLET FILE DELETED in the
PF_PORTLET DEFINITION table. It will then show up as grayed out in the WebLogic
Administration Portal, and user requests for the portlet if it is still contained in a desktop instance
will return a message that says the portlet is unavailable.

Zero Downtime Architectures

One limitation of redeploying a portal application to a WebLogic cluster is that during
redeployment users cannot access the site. For enterprise environments where it is not possible to
schedule down time to update a portal application with new portlets and other components, a
multi-cluster configuration lets you keep your portal application up and running during
redeployment.

The basis for a multi-clustered environment is the notion that you have a secondary cluster to
which user requests are routed while you update the portal application in your primary cluster.

For normal operations, all traffic is sent to the primary cluster, as shown in Figure 11. Traffic is
not sent to the secondary cluster under normal conditions because the two clusters cannot use the
same session cache. If traffic was being sent to both clusters and one cluster failed, a user in the
middle of a session on the failed cluster would be routed to the other cluster, and the user’s session
cache would be lost.

Deploying Portal Applications 51

Deploying Portal Applications

Figure 11 During normal operations, traffic is sent to the primary cluster

Primary Cluster

Wanaged Server 1

Proxy |

WebLogic Portal

Portal Application

WebLogic Server

$

o

Administration Server 1 Managed Server 2

WebLogic Portal

Portal Application -

WebLogic Server

WebLogic Portal

Portal Application

WeblLogic Server

Enterprise -
Quality
Database

Load Balancer

Secondary Cluster

Managed Server 1

Proxy
WebLogic Portal
WebLogic Server
Administration Server 2 Managed Server 2
WehLogic Portal [WebLogic Portal

WebLogic Server WebLogic Server

Step 1 — All traffic is routed to the secondary cluster, then the primary cluster is updated with a
new Portal EAR, as shown in Figure 12. This EAR has a new portlet, which is loaded into the
database.

52 Deploying Portal Applications

Zero Downtime Architectures

Figure 12 Traffic is routed to the secondary cluster; the primary cluster is updated

Proxy

portalApp.ear

Hew Portiet

Administration Server 1

WebLogic Portal

Portal Application

Load Balancer

>

o

Proxy

WebLogic Server

Primary Cluster

Wanaged Server 1

WebLogic Portal

Portal Application

WebLogic Server

Wanaged Server 2

WehLogic Portal

Portal Application

WehbLogic Server

Secondary Cluster

tanaged Server 1

WebLogic Portal

Portal Application

Administration Server 2

WebLogic Portal

Portal Application

WebLogic Server

¥

WebLogic Server
hWlanaged Server 2

WebLogic Portal

Portal Application

WebLogic Server

Enterprise-
Quality
\ Database

Routing requests to the secondary cluster is a gradual process. Existing requests to the primary

cluster must first end over a period of time until no more requests exist. At that point, you can

update the primary cluster with the new portal application.

Step 2 — All traffic is routed back to the primary cluster, and the secondary cluster is updated with
the new EAR, as shown in Figure 13. Because the database was updated when the primary cluster

was updated, the database is not updated when the secondary cluster is updated.

Deploying Portal Applications

Deploying Portal Applications

Figure 13 Traffic is routed back to the primary cluster; the secondary cluster is updated

Primary Cluster

Managed Server 1

WebLogic Portal

Portal Application

WebLogic Server

L 3

Proxy

Administration Server 1 Managed Server 2

WebLogic Portal

Portal Application —

WebLogic Server

WehblLogic Portal

Portal Application

WebLogic Server

&
=
Py
&

Enterprise-

Load Balancer Secondary Cluster

Quality
Datahase

54

Managed Server 1

WebLogic Portal

Portal Application

WebLogic Server

Proxy

Administration Server 2 anaged Server 2

WebLogic Portal WebLogic Portal

Portal Application _Z..-—-I' Rl (il

WebLogic Server WebLogic Server

portalApp.ear

Hew Portiet

Even though the secondary cluster does not receive traffic under normal conditions, you must still
update it with the current portal application. When you next update the portal application, the
secondary cluster will temporarily receive requests, and the current application must be available.

In summary, to upgrade a multi-clustered portal environment, you switch traffic away from your
primary cluster to a secondary one that is pointed at the same portal database instance. You can
then update the primary cluster and switch users back from the secondary. This switch can happen
instantaneously, so the site experiences no down time. However, in this situation, any existing
user sessions will be lost during the switches.

A more advanced scenario is a gradual switchover, where you switch new sessions to the
secondary cluster, and after the primary cluster has no existing user sessions you upgrade it.
Gradual switchovers can be managed using a variety of specialized hardware and software load
balancers. For both scenarios, there are several general concepts that should be understood before

Deploying Portal Applications

Zero Downtime Architectures

deploying applications, including the portal cache and the impact of using a single database
instance.

Single Database Instance

When you configure multiple clusters for your portal application, they will share the same
database instance. This database instance stores configuration data for the portal. This can
become an issue, because when you upgrade the primary cluster it is common to make changes
to portal configuration information in the database. These changes are then picked up by the
secondary cluster where users are working.

For example, redeploying a portal application with a new portlet to the primary cluster will add
that portlet configuration information to the database. This new portlet will in turn be picked up
on the secondary cluster. However, the new content (JSP pages or Page Flows) that is referenced
by the portlet is not deployed on the secondary cluster.

Portlets are only invoked when they are part of a desktop, so having them available to the
secondary cluster will have no immediate effect on the portal that users see. However, adding a
new portlet to a desktop with the WebLogic Administration Portal will immediately affect the
desktop that users see on the secondary cluster. In this case, that portlet would show up, but the
contents of the portlet will not be found.

To handle this situation you have several options. First, you can delay adding the portlet to any
desktop instances until all users are back on the primary cluster. Another option is to entitle the
portlet in the library so that it will not be viewable by any users on the secondary cluster. Then
add the portlet to the desktop, and once all users have been moved back to the primary cluster,

remove or modify that entitlement.

A special case to be aware of is if you are updating an existing portlet’s content URI to a new
location that is not yet deployed. For this reason, updating the content URI of a portlet should be
done with care or as part of a multi-phase update.

Another important consideration when running two portal clusters simultaneously against the
same database is the portal cache.

Portal Cache

WebLogic Portal provides facilities for a sophisticated cluster-aware cache. This cache is used
by a number of different portal frameworks to cache everything from markup definitions to
portlet preferences. Additionally, developers can define their own caches using the portal cache
framework. The portal cache is configured in the WebLogic Administration under Configuration

Deploying Portal Applications 55

Deploying Portal Applications

56

Settings / Service Administration / Cache Manager. For any cache entry, the cache can be enabled
or disabled, a time to live can be set, the cache maximum size can be set, the entire cache can be
flushed, or you can invalidate a specific key.

When a portal framework asset that is cached is updated, it will typically write something to the
database and automatically invalidate the cache across all machines in the cluster. This process
keeps the cache in sync for users on any managed server.

When operating a multi-clustered environment for application redeployment, special care needs
to be taken with regard to the cache. The cache invalidation mechanism does not span both
clusters, so it is possible to make changes on one cluster that will be written to the database but
not picked up immediately on the other cluster. As this situation could lead to system instability,
itis recommended that during this user migration window the caches be disabled on both clusters.
This is important when you have a gradual switchover between clusters versus a hard switch that
drops existing user sessions.

Deploying Portal Applications

	Preparing Your Portal Application
	Configuring Portal Application Deployment Descriptors
	Application Deployment Descriptors
	Web Application Deployment Descriptors
	Workshop Deployment Descriptors
	Creating Content Management Repositories

	Compile with Your Runtime JVM
	Building a Portal Application with WebLogic Workshop
	Building In the Command Line

	Configuring a Portal Cluster
	Set up a Production Database
	Reading the wlw-manifest.xml File
	Choosing a Cluster Architecture
	Single Cluster
	Multi Cluster

	Configuring a Domain
	Using the Configuration Wizard
	Creating a Production Cluster Environment with the Configuration Wizard
	Configuring the Administration Server
	Setting up JMS Servers
	Creating Managed Server Directories
	Deploy a New Application
	Starting Managed Servers
	Configuring Your Proxy Server
	Troubleshooting Unresolved URLs

	Deploying a Portal Application to the Cluster
	Redeploying Applications
	Redeploying a Portal Application with weblogic.Deployer
	Partial Redeployment with weblogic.Deployer
	Iterative Datasync Deployment
	Portal Datasync Definitions
	Datasync Definition Usage During Development
	Compressed Versus Exploded EAR
	Rules for Deploying Datasync Definitions

	Propagating LDAP and Portal Database Data
	About the Propagation Utility Files
	Setting Up and Deploying the Propagation Utility
	Starting and Using the Propagation Utility

	Understanding Portal Resources
	Portlet Deployment Lifecycle
	Database Structure for Storing Portlets
	Removing Portlets from Production

	Zero Downtime Architectures
	Single Database Instance
	Portal Cache

