‘.."‘

o 7
2 bea
L/

BEAWebLogic
Porta

T™M®

White Paper: WebLogic
Portal Framework

Version 1
Document Revised: September 2004
By: Chris Jolley and Babu Naidu

Copyright

Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

ADSITACE .« ot 1
Definition of Terms, Acronyms, and Abbreviationsc.cou.... 1
N O UIX .« o ettt et et e e e e e 3
Controls. . . oot 3
Portal Controls 6
eSO .« ottt 6
WINdOWS ..o 6

BoOOK. . . 7

Page . . o 7

Portlet. . ..o 7

MENUS . ..ot 8

Layouts . .. 8
Information for Creating a Custom Layout 8
The Layout File. oo e 9
Layout File Elements. oot 9

Basic Layout Controls.oi i 9
Example of a Custom Layout 13

The Skeleton JSP o 15

The htmlixt File 17
Interacting With UT Controls e 18
COnteXt . .ot 18
Backing ConteXttt ettt e 18

BEA WebLogic Portal 8.1 Framework White Paper 1

Presentation CONteXt.ottt e e 19

Backing Files 19
SKEIEtonsot 20
Bvents. . ..o 20
CUSTOMIZALION ottt et et e e e 22

Appendix

netuix-config.xml 1
Performance e 4
Running Weblogic Portal Server in Production SETUP 4
Configuration in netuix-config.xml. i 5
Cache Configurationttt 5
Static Fileso 6
Portal Size 6
Portlet Contentttt e 6
JVM Parameter Values.oot 6
Hardware Configurationsoo ittt 7

High Performing JVM parametersoouieuninnennennenneennn. 7

BEA WebLogic Portal 8.1 Framework White Paper

BEA WebLogic Portal Framework

Abstract

This document is intended to give an in depth overview of the technical underpinnings of the
portal framework. It is targeted towards developers who have a deep J2EE background and are
already familiar with WebLogic Portal.

This document is intended to be used as a supplement to the online documentation and assumes
you have already immersed your self in it and are looking for more technical substance. This
document will only discuss portal framework and not directly talk about the interaction with
WebLogic Workshop, the WebLogic Administration Portal or any of the other features that come
with WebLogic Portal; namely: Personalization, Campaigns, Content Management, Commerce
Components, Entitlements and User Management. Many features described in this document
have not made their way into WebLogic Workshop or the WebLogic Administration Portal as of
this writing. Nonetheless, we encourage you to explore these features.

Definition of Terms, Acronyms, and Abbreviations

It is important that we first define a set of terminology, as we will be using these terms throughout
the document. Please take the time to become familiar with these concepts.

Netui
Also called Page Flows, a programming model for building model 2 type applications.
Netui is built on top of the popular Struts framework.

BEA WebLogic Portal 8.1 Framework White Paper 1

Netuix

An XML framework for rendering applications. Netuix was originally contrived as an
extension to Netui. However, today netuix is no longer based on Netui nor dependant on
it. They are completely different technologies. Only the names are similar. With that said,
netuix can seamlessly host netui applications.

Customization

Portal

The term used to modify a portal through an API. This API is typically called from our
WebLogic Administration Portal and Visitor Tools pages but is also available to
developers who whish to modify the desktop.

The API provides all the CRUD operations needed to modify a desktop and all of its
components (Portlets, Books, Pages, Menus, and so on). Customization is different than
Personalization. With Customization, someone is making a conscious decision to change
the makeup of the desktop. With Personalization, changes are made based on rules and
behavior (display an ad for Broncos tickets because it’s Friday and the visitor lives in
Denver).

Framework
The portion of Weblogic Portal that is responsible for the rendering and Customization of
the portal-what this document is all about.

Light Portal (File-based Portal)

UICon

Single

A stripped down version of WebLogic Portal that does not deploy any EJBs or database.
The light portal supports all the functionality in the portal framework with the exception
of Customization. Light Portal can only render portal files, it cannot go to the database
for a Customized desktop. Light portal rendering occurs in WebLogic Workshop in the
development environment, but it may also be used in production systems.

trol

A netuix user interface control, not to be confused with business controls in WebLogic
Workshop. Each element in the XML document (.portal, .portal, .shell, .layout,
.laf and .menu) represents an instance ofa Ul control. Typical controls are Books,
Pages, Menus, Portlets, and so on.

File vs. Streamed Rendering

The .portal file you create in WebLogic Workshop is a fully functioning portal, however,
it can also be used as a template to create a desktop. In this template you create books,
pages and references to portlets and define defaults for them.

When you view the . portal file with your browser the portal is rendered in “single file
mode,” meaning that you are viewing the portal from your file system as opposed to a
database. The .portal file's XML is parsed and the rendered portal is returned to the

BEA WebLogic Portal 8.1 Framework White Paper

Netuix

browser. The creation and use of a . portal is intended for development purposes and for
static portals (portals that are not customized by the end user or administrator). Because
there is no database involved you cannot take advantage of things such as user
customization or entitlements.

Note: Externally, entitlements still run, they are just difficult to set.

Once you have created a . portal file, you can use it to create a desktop (streamed portal).
A desktop is a particular view of a portal that visitors access. Desktops can be updated by
administrators and end users.

A portal can be made up of multiple desktops, making the portal a container for desktops.
A desktop contains all the portlets, content, shells, layouts, and look and feel elements
necessary to create individual user views of a portal. When you create a desktop based on
the .portal file in the WebLogic Administration Portal, a desktop and it’s books and
pages are placed into the database.

The desktop, books and pages reference shells, menus, look and feels and portlets. The
settings in the .portal file, such as the look & feel, serve as defaults to the desktop. Once
a new desktop is created from a .portal template, the desktop is decoupled from the
template, and modifications to the . portal file do not affect the desktop, and vice versa.

For example, when you change a desktop's look & feel in the WebLogic Administration
Portal, the change is made only to the desktop, not to the original . portal file. When you
view a desktop with a browser it is rendered in "streaming mode" (from the database).
Now that a database is involved, desktop customizations can be saved and delegated
administration and entitlements can be set on portal resources.

Library
The library is a home for a set of public controls that are not associated with a desktop. In
other words Books, Pages, Portlets, can be created and modified outside the scope of a
desktop and then later added to a desktop. Changes to objects in the library are cascade
down through the desktops and user customizations.

Netuix

Controls

As stated earlier, netuix is an XML framework for rendering applications, whether these
applications look like portals or not. Many customers who use our product today create
applications from our framework that look nothing like a portal. Typically when people think of

BEA WebLogic Portal 8.1 Framework White Paper 3

portals they think of “My Yahoo!”. While many applications developed with netuix look like My
Yahoo!, many do not.

A netuix application is represented by one or more XML documents, the most familiar being the
.portal file (an XML file with a . portal extension). This portal file may or may not include
other portal include files, called .pinc files for short (files with the extension .pinc). Just like
a JSP can include other JSP files to distribute functionality, a portal file can include other portal
files.

A .pinc file is different from a portal file in that a portal includes the root elements or controls
while the .pinc file does not. We will discuss this in more detail later. However, for this
discussion the portal file is the parent, and it may in turn include one or more . pinc files, which
in turn may include other .pinc files. One other important note: a . pinc file must begin with a
Book or a Page element as the root element. More on what Books and Pages are in a bit.

In the portal file, you can think of each element representing an instance of a UI control.
(UIControls are not to be confused with business controls in Workshop.)These controls are wired
in a hierarchical tree. In other words, each control has a parent and zero or more children. The
controls can discover each other at runtime and can modify the tree by adding new children or
removing existing children. All controls run through a lifecycle (a set of methods called on the
control in a particular order). All the methods are called in turn in a depth first order.

To best illustrate this, let’s walk through the sequence of events that happen when a person
requests a portal in single file mode from the browser. But before we do that, we first need to
cover a few architectural issues with the portal framework. All requests for a portal or desktop
come in through the PortalServlet. The PortalServlet is registered in the web.xml file under the
url-patterns appmanager and *.portal. If the PortalServlet detects a request ending with
.portal it knows the request is for a locale file and does not need to go to the persistence API
for the XML.

The first thing the PortalServlet must do is parse the XML file (. portal) and generate a control
tree from it. Every element in the portal file represents a control in the control tree, and every
attribute on the element represents an instance variable on the control. The same hierarchy is
maintained in the XML document as in the control tree. A control is simply a Java class that
extends another Java class, namely the UIControl class. In this release we don’t explicitly expose
controls to developers, but developers can interact with the controls using backing files, context,
and skeleton JSPs. This is discussed later.

Note: The PortalServlet doesn’t actually parse the XML document on each request. A lot of
caching and magic is going on behind the scenes to get the desired performance for the
enterprise applications.

BEA WebLogic Portal 8.1 Framework White Paper

Controls

Once the control tree is built and all the instance variables are set on the controls, the control tree
is run through its lifecycle. The lifecycle can be thought of as a set of methods on the controls that
are called on in a well-defined order. The lifecycle methods are as follows:

init ()

loadState ()

handlePostbackData ()

raiseChangeEvents ()

preRender ()

saveState ()

render ()

dispose ()

These methods are called in depth first order. In other words, all the init () methods are called,
followed by the 1oadstate () methods, and so on. They will also be called depth first. Example,
given the following control tree, the order in which the init () method would be called is: C1,
C2, C5,C3, C6, C7, C4, then the 1oadstate () method would be called in the same order, and
SO on.

The last method to be called would be C4’s dispose () :

BEA WebLogic Portal 8.1 Framework White Paper 5

Portal Controls

This section describes all the netuix controls that make up the portal framework. The control
relationship is driven by the XML schema definition controls-netuix-1_0_0.xsd. The
following figure summarizes the schema definition.

Desktop

The Desktop control is the parent control that hosts all the other netuix controls. Every portal
must have one Desktop control. The Desktop control actually provides little functionality above
and beyond entitlement checking and a place to go to discover other controls.

The most important use of the Desktop control from a developer perspective is that it has a
PresentationContext that can be traversed to get references to all the child controls, like
books, pages, and portlets. A DesktopBackingContext was added in 8.1 sp3 along with a richer
set of methods for locuting child controls.

Windows

A Window control provides functionality similar to the windowing concept on your computer.
Windows support States and Modes. States affect the rendering of the Window, like minimize,
maximize, float, and delete. Modes affect the content, like Edit and Help. (Custom modes are also
supported.) Windows can also act as a container for other Windows. For example, a book can
contain a page.

All Window controls must have a Content control. The Content control is responsible for hosting
the actual content inside the window. The Window control is an abstract class that is one of the
three derived classes that must be used in the portal. These derived classes are: Books, Pages and
Portlets. The figure below shows the relationship between Windows, Books, Pages and Portlets.

BEA WebLogic Portal 8.1 Framework White Paper

Portal Controls

Book

A Book aggregates a set of navigables. A navigable is a Book or a Page. A Book may have an
optional menu control that provides navigation among navigables. From a code standpoint,
Navigable is an interface that Book and Page implement.

Page

A Page is used to display a set of Placeables. A Placeable is a Portlet or Book. The Page has a
layout which has one or more Placeholders which can host zero or more Placeables.

Portlet

Portlets are used as windows to host may different types of applications. As of this writing the
applications can be any one of following: HTML pages, JSP files, .pinc files, Page Flows,
Struts, Webflows, JSR 168 Portlets, and WSRP proxy portlets.

BEA WebLogic Portal 8.1 Framework White Paper 1

Menus

Menus are optional components that are loosely coupled to books and pages. A menu is
responsible for displaying some type of navigation component, whether it is a set of tabs, a set of
links, or some tree structure. The menu fires PageChaneEvents that the Pages themselves listen
to and activate accordingly.

At the time of this writing, WebLogic Portal provides two types of menus: singlelevel and
multilevel. Future service packs and releases may include more. You can also create you own
menus by using JSPs and the <render :pageUrl/> tag, or from a backing file call the
setupPageChangeEvent method an a Book, Page or Portlet backing context before the
preRender method.

SingleLevelMenu

Provides a single row of tabs for the book’s immediate pages and child books.

MultiLevelMenu

Recursively provides a hierarchical menu for all the books and pages contained within a book.
This menu does not stop at the first set of children. It continues down the tree. If the parent book
uses a multilevelmenu, then the child books should not use a menu as the multilevelmenu
will cover them.

Layouts

Layouts and Placeholders (not to be confused with personalization placeholders) are used to
structure the way portlets and books are displayed on a page. Layout placeholders are rendered
as HTML table cells.

WebLogic Portal ships with some predefined layouts and the ability to create your own custom
layouts. More layouts will probably be shipped in future service packs and future releases. If the
supplied layouts don’t meet your needs, you will have to create your own custom layout. The next
section describes that process in detail.

Information for Creating a Custom Layout

When creating a custom layout you will need to create three things:
e The Layout File

e The html.txt File

8 BEA WebLogic Portal 8.1 Framework White Paper

The Layout File

e The Skeleton JSP

The Layout File

The layout file contains the snippet of XML that describes the controls that make up the layout.
The markup from this file is what gets copied into the .portal file and into the database for
reassembly. A layout file must have a . layout extension and can live anywhere in the Web
application directory except WEB- INF.

Note: Changes made to a layout file after it has been created get picked up automatically in the
database but will not automatically update the layout in the . portal files. This is
because the .portal file contains a copy of the markup and not a reference to it.

The . 1layout files must be created by hand (text or XML editor). The best way to get started is
by copying an existing layout. Layout files shipped with the portal are located in the
/framework/markup/layout directory.

Layout File Elements
The parent element for all markup types is:
<netuix:markupDefinition/>
This parent element has two child elements:
® <netuix:locale language="nn” [country="nn”] [variant="nnnn”]/>

Defines the working local for the title and description attributes defined later.

® <netuix:markup>

Defines the outer envelope stanza that marks the beginning and end of the XML that will
define this layout.

Basic Layout Controls

The next set of elements are unique to a layout. When creating your own layout you will have to
choose from one of these four base layout controls. The <netuix:layout/> is the most generic
of the four and all others are derived from it. The <netuix:layout/> control provides the most
flexibility but is also the most difficult to implement.

9999 9995

e <netuix:layout title=""" [description=""] type =" htmlLayoutUri="" [iconUri="""]
markupName=""" markupType="Layout” [skeletonUri="""] [properties=";"]/>

e <netuix:gridLayout columns="(1-n)” [rows = “1-n”"] /> Attributes

BEA WebLogic Portal 8.1 Framework White Paper 9

e <netuix:borderLayout [layoutStrategy="order | title”] /> Attributes
e <netuix:flowLayout [orientation="vertical | horizontal]/> Attributes

e <netuix:placeholder title="" [description="""] [flow="horizontal | vertical”] [usingFlow="""]
[width=""] markupName=""" markupType="Placeholder” [skeletonUri=""]/>

nn

<netuix:layout title="" [description=""] type = """ htmlLayoutUri="" [iconUri=""]
markupName="" markupType="Layout” [skeletonUri=""] [properties=";"1/>

This is the base control for all layouts. This control can be used directly or you can use one of the
following three derived controls.

0 1 2 0 or 0 1 2 N
3 4 5 1 WY C E
3 7 2 S
. Flow Layout
Grid L_ayout The flow layout automatically positions ?hoerﬁgg'eaxglgm lets vou
;Eteogr?actjilc?lfﬁauéositioms the ine number of placefoldsrs used sither use up to fivevplacehoIZGrs
vertically or horizontally with no ’
number of placeholders i ¥ ‘You can position the
e Wrapping.
you specify into the number placeholders with the
of columns and rows you attributes "north," "south,"
specify. This examples sets "east,” "west," and "center.”
columns="3"to position 3
Flaceholders
Attribute Description
title This is the internationalized title displayed to the user and administrators

when selecting the layout they want to use.

Note: The developer only works in one language as defined in the
<netuix:locales> element described previously. More
internationalized versions of the title and description can be
added later with the WebLogic Administration Portal.

description An optional internationalized description of your layout.

10 BEA WebLogic Portal 8.1 Framework White Paper

The Layout File

Attribute Description

type The type of layout. This is hard coded for the three derived layouts. If you
create a custom come up with your own type.

htmlLayoutUri A fully qualified path (from the top of the Web application) to the html.txt
file to be used by the WebLogic Administration Portal.

properties “name/value pairs that can be passed to the skeleton as hints. These
properties can be separated using a semicolon “;”.

iconUrl A fully qualified path (from the top of the Web application) to the . gif
file to be used by the WebLogic Administration Portal.

markType This field is required and must be “Layout”.

markupName This field is required and must be unique per Web application. If you
copied the XML from another layout you must change this name.

skeletonUri A fully qualified path (from the top of the Web application) to the skeleton
JSP to be used for runtime rendering.

presentationClass Optionally provides a generic presentation "class," such as a CSS class,
for use by external rendering devices.

presentationStyle Optionally provides a generic presentation "style," such as a CSS style, for
use by external rendering devices.

presentationld Optionally provides a generic presentation "id" for use by external

rendering devices.

<netuix:gridLayout columns="(1-n)" [rows = “1-n"] /> Attributes

This layout defines a grid where you can specify the number of columns and rows. This layout is
typically used to create one, two , three, ... column layouts.

Attribute Description

columns A required attribute that identifies the number of columns in the
grid

rows An optional attribute specifying the number of rows in the grid.

If this attribute is omitted then the default one row will be used

BEA WebLogic Portal 8.1 Framework White Paper 1

12

<netuix:borderLayout [layoutStrategy="order | title”] /> Attributes
This layout has four border placeholders and one center placeholder. The north and south
placeholders span the length of the table. The west, center, and east placeholders comprise the

middle row and have respective widths of 25, 50, and 25 percent. The north and south portlets
flow horizontally in the placeholders, and the others flow vertically.

Attribute Description

layoutStragety Defines what placeholder will be the north, west, center, east
and south. If “title” is specified then each placeholders must
specify the correct title.

<netuix:flowLayout [orientation="vertical | horizontal”]/> Attributes

A layout that just flows the contents in a vertical or horizontal fashion.

Attribute Description

orientation Flow the contents vertical or horizontal.

Layout controls contain one or more child placeholder controls. These
controls have the following attributes.

<netuix:placeholder title=""[description=""] [flow="horizontal | vertical”] [usingFlow=""]

_nmm

[width=""] markupName=""markupType="Placeholder” [skeletonUri=""1/>

Placeholders are child elements of the above four types of layouts. Every layout must have at least
one placeholder child element. Each placeholder has a “layout location.” Thie loayout location is
defined by its position inside the layout files. Layout locations start at 0, 1, 2.

BEA WebLogic Portal 8.1 Framework White Paper

The Layout File

Attribute Description

title This is the internationalized title displayed to the user and administrators
when selecting the placeholder they want to use.

Note: The developer only works in one language as defined in the
<netuix:locale> element described above. More internationalized
versions of the title and description can be added later using the
WebLogic Administration Portal.

description An optional internationalized description of your placeholder.
markType This field is required and must be “Placeholder”.
markupName This field is required and must be unique per Web application. If you copied

the XML from another layout you must change this name. The naming
convention is layoutMarkupName placeholdersName, but you can use
what you want as long as it is unique.

skeletonUri A fully qualified path (from the top of the Web application) to the skeleton
JSP to be used for runtime rendering. Typically the default skeleton will
suffice for all custom layouts, but you have the option to create your own.

flow An optional value specifying the direction of content flow; default is
"vertical."

usingFlow An optional value specifying whether or not flow should be used; default is
"true."

width An optional hint attribute to tell the parent layout how much width this

placeholder wishes to have allocated.

properties Name/value pairs that can be passed to the skeleton as hints. These
properties can be separated using a semicolon “;”. Example:
properties=“rowspan=2;columnspan=3;myprop=hello”

Example of a Custom Layout

Now that we have described the four basic layout controls and child placeholder controls, you
will have to choose which one of these to base your custom layout on. Unless you are tweaking
one of the parameters in the three sub-class layout controls, you may want to choose the
<netuix:layouts> control.

BEA WebLogic Portal 8.1 Framework White Paper 13

The easiest way to describe how to create a custom layout is to give an example. Lets create a
custom layout with a spanning row at the top with two columns underneath. The two columns
will split the real estate in a 30%-70% fashion.

Our layout will look something like this:

Top

Bottom Bottom Right
Left

1. The first thing we need to do is create a layout file (again the easiest way is to copy one from
another layout).

We will call our layout file spanningtwocolumn.layout, and it will look something like
this:

Listing 1 Sample Code for a Layout File

<netuix:layout title="Spanning Two Column" description="One row and two columns."

type="spanning"
skeletonUri="/customskeletons/spanningtwocolumnlayout.jsp"
htmlLayoutUri="/framework/markup/layout/spanningtwocolumn.html.txt"
iconUri="/framework/markup/layout/spanningtwocolumn.gif"
markupType="Layout" markupName="spanningTwoColumnLayout">
<netuix:placeholder title="top" description="The top spanning placeholder."
markupType="Placeholder"
markupName="spanningTwoColumn_top">
</netuix:placeholder>
<netuix:placeholder title="left" description="The bottom left placeholder"
markupType="Placeholder"
markupName="spanningTwoColumn left">
</netuix:placeholder>
<netuix:placeholder title="right" description="The bottom right placeholder"
markupType="Placeholder"
markupName="spanningTwoColumn_ right">
</netuix:placeholder>

</netuix:layout>

14

BEA WebLogic Portal 8.1 Framework White Paper

The Skeleton JSP

The <netuix:markupDefinitions, <netuix:locale/> and <netuix:markup/> elements
were left out of the example for the sake of clarity. DON’T forget to include these in your .layout
file.

In the previous layout example we are using the <netuix: layout/> element, and we have three
placeholders underneath it. Other things to note are the markupNames are unique, and we have
identified our own custom skeleton to do the rendering.

The Skeleton JSP

Since a custom skeleton is being used to do the rendering (as specified by the skeletonUri
attribute) this JSP needs to be created. Again, the easiest way is to copy an existing one.

Note: The skeleton JSP for the control is called twice: once during “begin render” and once for
“end render.” Between the begin render and end render phase the children are rendered.
This allows you to start HTML tables in the begin render section and close them in the
end render section. All skeleton files should have the following JSP tags:

® <render:beginRender></render:beginRenders>
® <render:endRender></render:endRenders>.

The body of the beginRender tag is only evaluated during the begin render phase, and the body
of the endRender tag is only evaluated during the end render phase.

Here is what our new skeleton JSP (/customskeletons/spanningtwocolumnlayout . jsp)
will look like

Listing 2 New Skeleton JSP

%@ page import="com.bea.netuix.servlets.util.RenderToolkit,

com.bea.netuix.servlets.controls.layout.LayoutPresentationContext,

java.util.List,
com.bea.netuix.servlets.controls.layout.PlaceholderPresentationContext"

o
\%

<%@ taglib uri="render.tld" prefix="render" %>
<

o

RenderToolkit toolkit = RenderToolkit.htmlInstance() ;
LayoutPresentationContext layout =
LayoutPresentationContext.getLayoutPresentationContext (request) ;

o

>

<render:beginRender>

BEA WebLogic Portal 8.1 Framework White Paper 15

<table

<% toolkit.writeId(out, layout.getPresentationId()); %>
<% toolkit.writeAttribute (out, "class", layout.getPresentationClass(),
"layout-custom"); %>

\2

N
o°

o°

cellspacing="0"
<tbody>
List children = layout.getChildren ("layout:placeholder") ;

// Could get optional properties here to help with rendering
// String property = layout.getProperty ("myProperty") ;

for (int 1 = 0; i < children.size(); i++)
PlaceholderPresentationContext placeholderPresentationContext =
(PlaceholderPresentationContext)children.get (1) ;
if (i == 0)

{

<tr>
<td colspan="2" width="100%" valign="top"

class="layout-placeholder-container">

o

N
o°

o°
\2

N
o

o
5>

o

<% toolkit.renderChild(placeholderPresentationContext, request) ;
</td>
</tr>

}

else if (i == 1)

{

<tr>

<td width="30%" valign="top" class="layout-placeholder-container">
<% toolkit.renderChild(placeholderPresentationContext, request) ;

</td>

}

else if (i == 2)

{

<td width="70%" valign="top" class="layout-placeholder-container"s>
<% toolkit.renderChild(placeholderPresentationContext, request) ;

</td>

</tr>

}

</render :beginRender>

<render:endRender>

16

</tbody>

</table>
</render:endRender>

BEA WebLogic Portal 8.1 Framework White Paper

o°
\2

o
5>

o
5>

The html.txt File

Note: This example the widths are hard coded in the JSP. Instead, these widths should be
specified in the layout file as an attribute to the placeholder. The widths can then be
referenced in the skeleton as follows:

<render:writeAttribute name="width" value="<%=
placeholderPresentationContext != null ?
placeholderpresentationContext.getWidth() : null %>"/>
Also, other properties like “rowspan=2"’ can be passed as name/value pairs on the properties
attribute and “endtop” to create a more generic row/column spanning layout.

The custom layout is now functionally complete. The html.txt file has not yet been created, but
the layout can be tested. To do this, start WebLogic Workshop, open or create a portal file, select
a page, and in the Property Editor window select the custom layout in the Layout field.

Note: if you change your . layout file after you have used it in the . portal file, changes won’t
be reflected in the .portal file. This happens because when you use a layout in the .portal it copies
the markup from the layout. You will need to chooses another layout and then choose the original
one back again to see the changes.

The html.txt File

The .html.txt is an HTML snippet strictly used by the WebLogic Administration Portal and
Weblogic Workshop to give a visual representation of what the layout looks like, so the
administrator can place the portlets in the correct placeholders. Typically this is the last file you
will create, because it is not used by the rendering framework.

The last thing to do is create the html . txt file so the WebLogic Administration Portal can
provide a visual representation of the layout. The
/framework/markup/layout/spanningtwocolumn.html . txt should look something like
this:

Listing 3 Sample html.txt Code

<table class="portallLayout" id="thePortallLayout" width="100%" height="100%">
<tbody>

<td class="placeholderTD" valign="top" width="100%" colspan="2">
<placeholder number="0"></placeholder>

BEA WebLogic Portal 8.1 Framework White Paper 17

</tr>

<tr>
<td class="placeholderTD" valign="top" width="30%">
<placeholder number="1"></placeholder>

</td>
<td class="placeholderTD" valign="top" width="70%">
<placeholder number="2"></placeholder>

</td>
</tr>
</tbody>
</table>

Interacting With Ul Controls

Since controls are not exposed directly to developers, developers need a way to directly interact
with and affect the behavior of the controls. To accomplish this, WebLogic Portal exposes
context, backing files, skeletons, and events. Developers should use these components when
trying to alter the behavior of or interact with the portal framework.

Context

A context is nothing more then a delegate to the underlying control. This delegate only exposes
the supported methods on the control.

Contexts are broken down into two types: backing context and presentation context. Backing
contexts are available from the backing files, and presentation contexts are available from the
JSPs.

Two types of context are required because certain methods apply at certain times in the lifecycle.
For example, it doesn’t make sense to have a setTitle () method on the Presentation context
because the portal has already started to render and it would have no effect. Calling this method
from a backing file, however, is appropriate.

Backing Context

BackingContext is available from backing files. A reference to a Backing context can be obtained
in one of two ways:

e The first way is to use the static method getXxxXBackingContext on the context class.
This method will return the active backing context for that type. To be more specific, if |
call this method from portlet A’s backing file, I will get the backing context for portlet A
not portlet B.

18 BEA WebLogic Portal 8.1 Framework White Paper

Backing Files

Similarly, if I call getPageBackingContext (request) from portlet A, I will get the page
backing context for the page portlet A is located on.

e The second way to obtain a backing context is from another context. This can be useful
when you want a context that is not the active context. Example would be, I want to obtain
portlet Bs backing context from portlet A.

If portlet A is contained within the same page as Portlet B then one could use:

PortletBackingContext portletB =
PageBackingContext .getPageBackingContext (request) . PortletBackingContext
getPortletBackingContextRecursive (“Portlet Bs instance label”);

If Portlet A does not know where portlet B is located then you can delegate to the
DesktopBackingContext

PortletBackingContext portletB =
DesktopBackingContext .getPageBackingContext (request) . PortletBackingCont
ext getPortletBackingContextRecursive (“Portlet Bs instance label”);

Refer to the javadoc on these and other backing context for more information.

com.bea.netuix.servlets.controls.page.PageBackingContext

com.bea.netuix.servlets.controls.application.backing.DesktopBackingContext

Presentation Context

PresentationContext are available from Jsp files. A reference to a presentation context can be
obtained in one of two ways:

e The first way is to use the static method getXXXPresentationContext on the context class.
This method will return the active presentation context for that type. To be more specific, if
I call this method from portlet A’s content JSP, I will get the presentation context for
portlet A not portlet B. Similarly, if I call getPagePresentationContext (request)
from portlet A, I will get the page Presentation context for the page portlet A is located on.

e The second way to obtain a presentation context is from another context. This can be
useful when you want a context that is not the active context. For example, I want to obtain
portlet Bs presentation context from portlet A.

Backing Files

Backing files are simple Java classes that implement the
com.bea.netuix.servlets.controls.content.backing.JspBacking interface or extend
the com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking
abstract class (in retrospect it should have been called a backing class). The methods on the

BEA WebLogic Portal 8.1 Framework White Paper 19

20

interface mimic the controls lifecycle methods and are invoked at the same time the controls
lifecycle methods are invoked.

The controls as of this writing that support backing files are:
e Books
e Pages
e Portlets

e JspContent controls.
Note: Desktops also support backing files as of Service Pack 3

A new instance of a backing file is created per request, so you don’t have to worry about thread
safety issues. New Java VMs are specially tuned for short-lived objects, and this is not the
performance issues it once was in the past. Also JspContent controls support a special type of
backing file that allows you to specify if the backing file is thread safe. If this value is set to true,
only one instance of the backing file is created and shared across all requests.

Skeletons

Skeletons are JSPs that are used during the render phase. The render phase is actually broken into
two parts: begin render and end render. The parent control’s begin render is called, followed by
its children’s begin render, their children's begin render, and so on. After the last begin render is
called, the children’s end renders are called, ending with the parent’s end render. This allows the
parent to provide a container, such as an HTML table, and the children to provide the table
contents.

Each skeleton is actually called twice. There are special tags in the skeleton that only evaluate to
true depending on which render phase you are in.

Events

There are four types of events in the system:

Window Mode

Window State

Page Change

Generic Portlet Events.

BEA WebLogic Portal 8.1 Framework White Paper

Events

The Mode, State and Page Change Events are not exposed directly to the developer but can be
configured through special methods on the Window backing files. Namely:
setupModeChangeEvent, setupStateChangeEvent, and setupPageChangeEvent (). The
methods must be called before the preRender method as events are fired just after
handlePostbackData method. They will also only work if the handlePostbackData method
returns true (see javadoc).

Note: When calling one of the setupxxevent methods, it must be done on the backing context
that the backing file is tied to. If you do no do this the event may not get fired.

Portlet Events (not to be confused with page flow events) allow portlets to communicate. One
portlet can create an event and other portlets can listen for that event. These Portlet events can
also carry payloads.

Here is an example of one portlet firing and event from a backing file and other portlets listening
for the event:

Listing 4 Sample Code for Portlet Firing and Event from a Backing File

/**
* This is the implementation on the backing file of the portlet that wants to fire the
event.
*/
public boolean handlePostbackData (HttpServletRequest request, HttpServletResponse
response)
{
// Create a new portlet event with the results in the paylod
PortletEvent portletEvent = new PortletEvent (new MyPayload(“Hello From portlet A”));

// Get a hold of the portlet event manager and fire the event.
PortletBackingContext portletBackingContext =
PortletBackingContext.getPortletBackingContext (request) ;
PortletEvent.Manager portletEventManager =
PortletEvent.getEventManager (this, portletBackingContext) ;
portletEventManager.fireEvent (portletEvent) ;

// Needed for the event to fire.
return true;

/**
* This is the implementation of the portlet that wants to receive the event.
*/
public class ResultBacking extends AbstractJspBacking implements PortletEventListener

{

MyPayload result;

BEA WebLogic Portal 8.1 Framework White Paper 21

public void init (HttpServletRequest request, HttpServletResponse response)

{

result = null;

// Register for Portlet Events
PortletBackingContext portletBackingContext =
PortletBackingContext.getPortletBackingContext (request) ;
PortletEvent.addGloballListener (portletBackingContext, this) ;
CustomPortletEvent .Manager portletEventManager =
CustomPortletEvent .getEventManager (this, portletBackingContext) ;

}

public void handleEvent (Object source, AbstractEvent event)
// Can check the source of the event
if (source instanceof PortletA)

{

result = (MyPayload) ((PortletEvent)event) .getPayload() ;

Note: The tutorial portal contains examples of portlets communicating via events.

Customization

Customization is the term used to describe Administrators and End Users making modifications
to a desktop. Normally this is done through the Administration tools or the Visitor Tools web
application. However, these API can be called directly from within the developer’s code. For
additional information on these API refer to the javadoc

22 BEA WebLogic Portal 8.1 Framework White Paper

Appendix

This appendix contains information on the following subjects:
e netuix-config.xml

e Performance

netuix-config.xml

The netuix-config.xml file is governed by the XML schema definition file
netuix-config.xsd. This file contains settings that can be modified to change the behavior of
the portal framework. This file is Web application scoped, and the Web application must be
redeployed to pick up changes to the file. The file contains the following elements and attributes:

customization
Enable (default) or disable customization. The portal has two modes of operation. In one
mode, users and administrators are allowed to customize the portal using a browser
(add/delete portlets, pages, books, etc.).

In this mode the portal EJBs and a database must be deployed. In the second mode (the

browser hitting the . portal file directly) no customization is allowed, so no database or
portal EJBs are required. This flag is an indicator to the system what mode of operation
the portal is in. To run “light portal” this element must be set to false. To pick up portlets,
layouts, shells, look and feels, and themes in the database, this element must be set to true.

pageflow
Enable (default) or disable Page Flow components. In order to run Page Flow portlets in
the portal, this element must be enabled. If you are not running Page Flow applications

BEA WebLogic Portal 8.1 Framework White Paper A-1

Appendix

you can set this element to false and pick up some performance improvements especially
during iterative development.

entitlements
Turn entitlement checking off at runtime. The value of the resource-cache-size attribute is
a size for the control resources cache. This size depends on the number of desktops,
portlets, pages, placeholders, and books contained in a portal. The size can be determined
by enabling debug for
com.bea.netuix.servlets.entitlements.ControlResource in the
debug.properties file located in the domain directory. Debug prints out the size for a
portal when clicked on all the pages of a portal. The size to be used is from the last line
that is printed on the console after clicking on all the pages (all top-level and inner pages).

localization
Enable (default) or disable localization. When localization is enabled, the portal
framework attempts to deliver localized content based on a directory search. Set the
enable element to "true" to enable localization. Disable localization by setting this element
to "false". For performance reasons, if the portal Web application is prepared to deliver
localized content, disable localization. To specify a locale provider, include the
locale-provider element with value set to the class of the desired LocaleProvider
implementation.

default-locale
Default local used thought the system.

propagate-preferences-on-deploy
The propagate-preferences-on-deploy element specifies if portlet preferences should be
propagated to the underlying preference store or not. If this element is present, portlet
preferences will be propagated to the underlying preference store. If the attribute
propagate-to-instances is true, portlet preferences will also be propagated to instances
created out of portlets.

reload-database-on-redeploy
Because of the way iterative development redeploys the Web application on any changes
to a control or Page Flow, this will stop the database from being reloaded if you are in
development mode (i.e. ! AppDescriptor.isProductionModeEnabled). This defaults
to 'false'. If you are in development mode and you want the database to be reloaded from
the Web application on a redeploy, set to 'true’'.

window-state
The window-state element describes properties of container-supported window states.
This element has child elements for each of the different states. You can specify image
names and localized alternate text.

A-2 BEA WebLogic Portal 8.1 Framework White Paper

netuix-config.xml

window-mode
The window-mode element describes properties of container-supported window modes.
This element has child elements for each of the supplied modes, and you can define your
own modes.

<!-- Example of a custom mode in two languages -->
<window-mode name="SourceViewToggleButton">
<activate-image>titlebar-button-source.gif</activate-images>
<deactivate-image>titlebar-button-source-exit.gif</deactivate-image>
<alt-text>
<locale language="en"s>
<activates>Source View</activates>
<deactivatesLeave Source View</deactivates>
</locale>
<locale language="es">
<activatesla vista de la fuente</activates>
<deactivate>Salga la fuente la vista</deactivate>
</locale>
</alt-text>

</window-mode>

To use the above custom mode in a portlet or book you can do the following:

<netuix:titlebar>
<netuix:modeToggleButton name="SourceViewToggleButton"
contentUri="/source.jsp" />
<netuix:minimize/>

</netuix:titlebars>

validation
Determines whether XML schema validation is performed on the different XML
documents that WebLogic Portal parses.

include-files
Enable (default) or disable validation of ".pinc' files.

dot-files
Enable (default) or disable validation of '." files (portlet, theme, layout, laf). Turing this off
can speed up WebLogic Portal start times and redeployment times. However, turning
validation off and allowing invalid files causes error.

BEA WebLogic Portal 8.1 Framework White Paper A-3

Appendix

control-state-location

The control-state-location element specifies the location for storing control state. All the
state for the portal framework can be configured to be stored in different ways; each
having advantages and disadvantages. The state includes: current page, active pages,
window state (minimize, maximized, etc.). Control state is is not the same as application
state. Application state is up to each developer.

session

url

cookie

Stores the control state in the user's HTTP session. This is the default control state
location. The control state can be preserved until the end of the session.

Encodes the control state in portal framework generated links. The control state can be
preserved forever. However, clients (browsers) may have limits on the maximum number
of characters. When the control state length exceeds the specified maximum number of
characters, the portal framework automatically switches the state location to HTTP
session.

Stores the control state as cookies. The expires attributes may be used to specify the
lifetime (in seconds) of cookies user for storing control state.

desktop-not-entitled-error-code

The desktop-not-entitled-code element defines the error code to return for access to a
desktop denied by an entitlement. The valid options for code are:

401 - Unauthorized
403 - Forbidden (default)

404 - Not found - use if you don't want to let the user know the
resource exists.

Performance

A4

Running Weblogic Portal Server in Production SETUP

1.

To start portal server, use this command “startWebLogic.cmd/startWebLogic.sh nodebug
production notestconsole noiterativedev noLogErrorsToConsole nopointbase”.

In workshopLogCfg.xml and workshopLogCfgVerbose.xml files change priority value
to “warn” for all the categories. These files contain configuration information for logging
by log4j framework. These files can be found under
<install-dir>/bea/weblogic8l2/common/lib.

BEA WebLogic Portal 8.1 Framework White Paper

Performance

3. Deploy all the portal web-applications with servlietReloadCheckSecs setto “-1” in
config.xml.

Configuration in netuix-config.xml

The netuix-config.xml contains portal framework related configuration information. It is
web-application scoped.

e The “customization” element is a switch to indicate if a portal is customizable or not. If a
portal is served from a .portal file (rather than from a database) and users are not
allowed to customize it then customization could be disabled by setting “enable” element’s
value to “false”. If a portal supports customizations then customization should be enabled.

e The pageflow element is a switch to enable or disable pageflows usage in a portal, disable
it if a portal is not using any pageflows.

e The “validation” element is a switch for validating portal related files such as

® .pinc, .portlet, and .portal files. Disable validation when running portal server in
production setup.

e The “entitlements” element is a switch to indicate that a portal is setup to use entitlement
policies (users to portal resources such as desktop, books, pages, portlets, etc). Disable
entitlements if a portal is not using any security policies. If a portal is using security
policies enable it and set the value for “control-resource-cache-size” attribute using
“control-resource-cache-size” = num of desktops + num of books + num of pages + num of
portlets + num of buttons (max, min, help, edit) used in a portal. The default value could
be used if memory is a concern.

Note: By default, the entitlements switch is off in the netuix-config.xml file. See the
Performance Tuning Guide for instructions on how to enable entitlements.

e The “localization” element is a switch to indicate that a portal supports multiple locales.
This could be disabled if a portal supports only one locale.

Cache Configuration

The application-config.xml file contains settings for all the caches, it can be found under
<enterprise-application-dir>/META-INF/. For a database based (streaming) portal, the
max entries for “portalControlTreeCache” cache should be set to a value based on num of users,
available memory and portal size. An ideal value is equal to number of users plus one. If a portal
has floatable portlets the above rule should be applied in finding an optimal value for max entries
for “portletControlTreeCache” cache.

BEA WebLogic Portal 8.1 Framework White Paper A-5

../../perftune/index.html
../../perftune/index.html

Appendix

A-6

Note: Don’t change “TimeToLive”; it is set to “-1” by default.

Static Files

The look and feel of a portal uses css, js and gif files. The performance and scalability will
improve if these static files are served from a different web server.

Portal Size

The performance and scalability of a portal application also depends on a portal size, number of
books, number of pages, number of portlets and number of buttons. The time taken to serve a
portal from file or database depends on portal’s size as it involves XML parsing.

A portal served from database is cached (portalControl TreeCache) to avoid going to the portal
database from second time onwards. The portal is cached for each user, if users have customized
their portals. The memory usage goes up as the number of users with customizations increase.
Download the portal size.jartool athttp://edocs.bea.com/wlp/docs81/interm/portal size.jar
to find out memory and response statistics for a portal.

Note: The memory size calculated is not accurate.

Portlet Content

The portlet’s content is referenced by contentUri element in .portlet file, if it is expensive to
compute content every time, consider using renderCacheable portlet attributes to cache portlet’s
content or if the portlet’s content type is j sp, consider using wl:cache jsp tags to cache static
portions within a jsp.

JVM Parameter Values

The following JVM parameters shown in the following tables:

BEA WebLogic Portal 8.1 Framework White Paper

../../interm/portal_size.jar

Hardware Configurations

Performance

JWM W2K Linux Solaris

BEA -Xms1024 Xms1024 -Xms1024

jrockit81sp2 141 05 -Xmx1024 -Xmx1024 -Xmx1024
-Xgc:parallel -Xgc:parallel -Xgc:parallel

JDK 1.4.1 05 -Xms1024 -Xms1024 -Xms1024

server VM -Xmx1024 -Xmx1024 -Xmx1024
-XX:NewRatio=2 -XX:NewRatio=2 -XX:NewRatio=2
-XX:MaxPermSize=12 -XX:+UseParallelGC -XX:+UseParallelGC

8m

-XX:MaxPermSize=12
8m

-XX:MaxPermSize=12
8m

High Performing JVM parameters

Platform CPUs*CPU CPU type Physical CPU hits Hardware 0S

Name speed Memory Model

W2K 1 *3.0GHz Intel 2048MB 32 Dell 650 Microsoft Windows
PentiumZE 2000, Advanced
4 Server

Linux 1 *3.0GHz Intel 2048MB 32 Dell 650 Red Hat Linux
Pentium& Advanced Server
4 release 2.1AS/i686

(Pensacola)
Solaris 2% Sun’s 2048MB 64 Sun 240V SunOS 5.9
1002MHz sparcv9

processor

BEA WebLogic Portal 8.1 Framework White Paper

A-1

Appendix

A-8 BEA WebLogic Portal 8.1 Framework White Paper

	Copyright
	Abstract
	Definition of Terms, Acronyms, and Abbreviations
	Netuix
	Controls
	Portal Controls
	Desktop
	Windows
	Book
	Page
	Portlet
	Menus
	Layouts

	Information for Creating a Custom Layout
	The Layout File
	Layout File Elements
	Basic Layout Controls
	Example of a Custom Layout

	The Skeleton JSP
	The html.txt File

	Interacting With UI Controls
	Context
	Backing Context
	Presentation Context

	Backing Files
	Skeletons
	Events

	Customization

	Appendix
	netuix-config.xml
	Performance
	Running Weblogic Portal Server in Production SETUP
	Configuration in netuix-config.xml
	Cache Configuration
	Static Files
	Portal Size
	Portlet Content
	JVM Parameter Values
	Hardware Configurations
	High Performing JVM parameters

