0?7,

r
S’ 7
L/

BEAWebLogic
Portal~

Team Development Guide

Version 8.1 with Service Pack 3
Documen t Revised: August 2004

Copyright

Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

Team Development Guide

Choosing a Source Control Vendor.t ii e 1
Creating a Shared Portal Domain. 2
The BEA Home Directoryvt ittt e et ee e eees 2
Why a Common BEA Home Matterscoiiiiininnno... 2
Managing Multiple BEA Home Locations for Your Team 5
Creating and Sharing the Portal Domain 7
Best Practices for Creating a Portal Domain to Share witha Team 7
Excluding Domain Files From Source Control Management................. 9

Binary Files in Source Control Management 9
Developing Against an Enterprise-Quality Database 12
Creating and Sharing the Portal Application................ i, 13
Where to Create the Workshop Application.ciiuvnon... 14
Checking in the Workshop Application i, 14
Excluding Portal Application Files From Source Control Management. 14
Managing Checkouts of the Workshop Application. 15
Portal Coding Practices. it 16
Java ProJectS ..ottt 16
Cross-Platform Support.t 17
Definition Labels for Portal Componentsc..o.... 17

Cluster Configurationttt 17

Setting up Config Templating (config-template.xml) 17

Team Development Best Practices iii

Team Development Guide

Team development of a portal Web site revolves around good source control. Proper use of a
source control management system has many benefits, such as close integration between team
members, the ability to quickly scale the size of a development team, and protection against data
loss.

This guide shows you how to configure, store, and manage a common development domain,
database data, and portal applications in source control, letting you quickly and consistently
develop, build, and update your portal applications.

Use this guide in conjunction with the guide to “Deploying Portal Applications” at
http://e-docs.bea.com/wlp/docs81/deploy/index.html for full coverage of deployment issues.

This document contains the following sections:
e Choosing a Source Control Vendor
e Creating a Shared Portal Domain

e Creating and Sharing the Portal Application

Choosing a Source Control Vendor

There are a number of source control providers, such as CVS, Perforce, Starteam, Visual Source
Safe (VSS), and PVCS. This guide should assist you with using any of those vendors. However,
each vendor has different characteristics when it comes to storing code. An important
consideration when choosing your source control management system for team development of
portal applications is that it must support an unreserved checkout model for files. There are

Team Development Guide 1

../deploy/index.html

Team Development Guide

numerous files in the domain and application that need to be checked into source control
management but must be writable by the server.

Note: Even if your source control management tool does not directly integrate with WebLogic
Workshop (see http://dev2dev.bea.com for information on “Visual Studio Source
Control Provider for WebLogic Workshop”), you can still use it to manage your
WebLogic domains and applications.

Creating a Shared Portal Domain

The first activity to be done with a source control management system is to have the development
team lead create the appropriate portal domain for the group. The important consideration before
creating and storing domain assets is determining the BEA home directory—where the team will
install WebLogic.

The BEA Home Directory

There are a number of implications around where you create your BEA home that affect any
WebLogic Workshop applications and domains that reference that location. When installing
WebLogic, each developer can determine which drive and directory to install to.

When creating a new portal domain with the domain Configuration Wizard, you choose which
BEA home directory you want to reference for that domain. The physical path to this directory is
contained in any portal domain’s config.xml file on each development machine and in domain
batch scripts such as startWeblogic.cmd.

Why a Common BEA Home Matters

Team members will share these domain files using source control, so that all modifications to
existing deployed applications, the addition of new applications, and other settings stored in
config.xml and the start scripts can be shared.

Note: When development environments require different domain configuration settings, and
you want to use config templating as a solution, do not store config.xml in source
control. For more information see “Setting up Config Templating (config-template.xml)”
on page 17.

Following are snippets from config.xml and startWebLogic.cmd that show hard-coded paths:

2 Team Development Guide

http://dev2dev.bea.com

Creating a Shared Portal Domain

config.xml

<Application Name="JWSQueueTransport" Deployed="true"
LoadOrder="1000" Path="C:\bea8l2\weblogic8l\server\lib\" TwoPhase="true">
<EJBComponent Name="QueueTransportEJB" Targets="portalServer"
URI="QueueTransportEJB.jar"/>

</Applications>

startWebLogic.cmd

set DOMAIN HOME=C:\bea8l2\weblogic8l\samples\domains\portal

Ifthe config.xml and startWeblogic. cmd files are shared in source control, all team members
must have installed WebLogic to the path shown in those files. However, there are circumstances
where developers cannot install WebLogic to a particular drive, such as when they have multiple
partitions with not enough space left on their C drive.

In addition, pointbase. ini in the domain root directory is a configuration file that may contain
a documentation.home property that points to a hard-coded location on the file system.

Table 1 shows which files in a domain contain hard-coded paths.

Team Development Guide 3

Team Development Guide

Table 1 Domain files with hard-coded paths

backup config.xml
config.xml

create db.*
installService.cmd
set-dbenv. *
setDomainEnv. *
setDomainEnvQs. *
startManagedWebLogic. *
startManagedWebLogicQS. *
startPointBaseConsole. *
startPointBaseConsoleQS. *
startWebLogic. *
startWebLogicQS.*
stopManagedWebLogic. *
stopManagedWebLogicQsS. *
stopWebLogic.*
stopWebLogicQS. *
uninstallService.*
webappCompile. *
webappCompileQs. *
domain-info.xml (in /_cfgwiz_ donotdelete)

startscript.xml (in /_cfgwiz donotdelete)

The next section contains strategies to employ when not all team members can use the same BEA
home.

If all team members can use the same BEA home, you may skip “Creating and Sharing the Portal
Domain” on page 7.

4 Team Development Guide

Creating a Shared Portal Domain

Managing Multiple BEA Home Locations for Your Team

There are a number of different techniques for sharing a common domain with team members
with different BEA home directories, described in the following sections.

Option 1: Config Templating BEA Home

Config templating avoids many of the problems associated with other solutions, but it requires
you to implement search and replace activities on your config.xml and other files. By creating
a template for your config.xml which contains tokens that represent your BEA home directory,
you can create a process to create a config.xml from a combination of the template and
developer specified token values.

Config templating can be used for much more than setting up machines with different BEA home
directories: It can provide a way for each developer to work with a separate database instance that
shares a common data source configuration.

With config templating, config.xml is not stored in source control. For information on setting
up config templating, see “Setting up Config Templating (config-template.xml)” on page 17.

Option 2: (Windows) Using a Common Virtual Drive for BEA Home

Windows developers may consider setting up a substitute drive letter to map to their BEA home
directory.

From the command prompt, the Windows OS lets you create a virtual drive and map it to an
existing drive and path using the subst command. Your team can configure a common virtual
drive letter not currently in use and use that drive for application and domain activities.

For example, you can create a drive letter P: that maps to a directory on the ¢ drive, such as
C:\bea812, by executing the following command from a DOS prompt:

subst P: C:\bea8l2

Now, after creating a new domain, you can change all references to C: \beag12 to P: in the
domain files listed in Table 1.

The previously listed config.xml and startWebLogic.cmd entries would now look like the
following:

Team Development Guide 5

Team Development Guide

config.xml

<Application Name="JWSQueueTransport" Deployed="true"
LoadOrder="1000" Path="P:\weblogic8l\server\lib\" TwoPhase="true">
<EJBComponent Name="QueueTransportEJB" Targets="portalServer"
URI="QueueTransportEJB.jar"/>

</Applications>

startWebLogic.cmd

set DOMAIN HOME=P:\weblogic8l\samples\domains\portal

Note: The new hard-coded paths do not contain \beag12, because C: \beag812 was mapped to
P: using the subst command.

When you want to use the domain, switch to the P drive and go into the domain directory. If
another developer installs WebLogic to D: \bea, he can simply substitute that directory for p: \
by executing subst P: d:\bea and share the same config.xml and start scripts with ease.

This virtual drive option has a number of drawbacks:

e Users must run the subst command upon each reboot, though they can type the command
in a text file, save the text file with a . cmd extension, and put it in their program \Startup
folder so the command runs automatically at system startup.

e The created domain and application must be run from the new virtual drive. Running the
domain from the “true” install drive and path will result in errors.

e Does not support UNIX developers, though UNIX developers can use the 1ink command.

Option 3: Using Relative Paths

If team members need to install different paths on the same drive, and the domain and application
are located in a common relative path to the WebLogic directory, it is possible to change all file
paths in config.xml and your start scripts to be relative. However, this solution is limited in its
scope.

Assuming the domain is installed to C:\bea812\user projects\mydomain, the previously
listed config.xml and startWebLogic.cmd entries would now look like the following:

config.xml

<Application Name="JWSQueueTransport" Deployed="true"
LoadOrder="1000" Path="..\..\weblogic8l\server\lib\" TwoPhase="true">
<EJBComponent Name="QueueTransportEJB" Targets="portalServer"
URI="QueueTransportEJB.jar"/>

</Applications>

6 Team Development Guide

Creating a Shared Portal Domain

startWebLogic.cmd

set DOMAIN HOME=..\..\weblogic8l\samples\domains\portal

Problems with this solution include:
e No ability to span multiple drives.

e Project domain directory must always be in the exact same relative location to the server,
even in a deployed production environment.

Creating and Sharing the Portal Domain

The first step the team lead needs to take is the creation of the new portal domain. There are
several phases of domain creation, including the possible creation of your own domain template,
the domain Configuration Wizard process, initial check-in to source control, and domain
configuration tasks.

Best Practices for Creating a Portal Domain to Share with a Team

e Before creating a domain with the domain Configuration Wizard, you can create a custom
template that determines what is in the domain you create, and you can store that template
in source control. The domain Configuration Wizard builds the domain using your
template. For instructions on using the Configuration Template Builder to create a domain
template, see “Creating Configuration Templates Using the WebLogic Configuration
Template Builder” at http://e-docs.bea.com/platform/docs81/confgwiz/tempbuild.html.

e When creating a new domain for team development using the Configuration Wizard, be
sure to select “development mode.” For instructions on running the Configuration Wizard
to create a new portal domain, see “Creating WebLogic Configurations Using the
Configuration Wizard” at http://e-docs.bea.com/platform/docs81/confgwiz/index.html.

e To avoid path length exceptions, store the domain directory in a short path. For example,
<drives:\ourDomain.

e Creating the domain and the application so that they are peers to each and share a common
parent directory makes sharing them with source control management systems easier to
manage.

For example, install your domain to
<BEA HOME>\<WEBLOGIC HOME>\user projects\<PROJECT>\domain\<DOMAIN>

And your application to
<BEA_HOME>\<WEBLOGIC_ HOME>\user projects\<PROJECT>\application\<APP>

Team Development Guide 1

../../../platform/docs81/confgwiz/tempbuild.html
../../../platform/docs81/confgwiz/index.html

Team Development Guide

Note: Your paths can be shorter and outside the BEA installation hierarchy.

This approach lets you have a common root directory (Y% PROJECTNAME) in your source
control system’s project for both the domain and application.

e After you create the domain, but before you start the server, check the domain into source
control. WebLogic server creates a number of temporary files and directories in the domain
directory at server startup that you are unlikely to want in source control. Table 2 lists the
post-startup files to exclude.

e If you have a shared parent directory for your domains and applications, use that as your
root in source control.

e To enable file logging so that WebLogic Portal messages are sent to a file instead of just
the screen, add an environment variable entry to the start script. Open the startWebLogic
script in a text editor and add a path for the wLS REDIRECT LOG file before the
if “$WLS REDIRECT LOG%” line. For example:

WLS_REDIRECT LOG=D:\logs\admin

if "S$WLS_REDIRECT LOG%"=="" (

o After establishing your initial baseline for the domain in source control, check the domain
back out of source control and start the domain using the startWeblogic command. With
the server running, you may want to configure the domain so it is ready to use for your
project. Using the WebLogic Server Administration Console
(http://<server>:<port>/console), you can set up the domain to support the development
team, including the addition of needed data sources.

Common tuning activities for a development domain include setting the server logging
mode to ‘Info’ from “Warn’ (for more verbose console output and outputting JVM
messages to the console). Additionally, you may want to limit the file size of the logging.
Most developers do not want endless growth of their log files.

For information on server configuration, see WebLogic Server “System Administration” at
http://e-docs.bea.com/wls/docs81/admin.html.

After you make changes to the server configuration, check in config.xml (or a
hand-modified version of a templated config-template.xml).

e Before configuring your portal application, have another developer validate the changes by
checking out the domain and starting the server without error.

8 Team Development Guide

../../../wls/docs81/admin.html

Creating a Shared Portal Domain

Excluding Domain Files From Source Control Management

Exclude the following domain files from source control:

Table 2 Domain files to exclude from source control

Path Wildcard

/ (domain root) config.xml
(ONLY if you are using config templating. See “Setting up Config
Templating (config-template.xml)” on page 17.)

/ config.xml.booted

/ config.xml.original
/ *.log

/logs *
/portalServer/pstore/ *

(persistent file store for session beans)

/<servernames/ *.log

/<servername>/ .app_poller lastrun

/<servernames>/.wlnotdelete/ *

/<servernames>/.internal/ *
/<servername>/ldap/ *LDAPBackup*.zip
/<servername>/ldap/log/ *
/<servername>/logs/ *

Binary Files in Source Control Management

There are a number of binary files in the WebLogic domain that need to be checked into source
control management for the domain to function properly. These binary files may change over
time for user-initiated reasons, automatic growth of index files, and so on. For this reason, it is
important that developers have a good understanding of what these files are, why they change,
and when to check them in and out. The emphasis of this section is explaining how to determine
when you will need to update those files in source control management.

Team Development Guide 9

Team Development Guide

10

Examples of binary files that are updated are LDAP, security, and database configuration files.

Working with Binary Files

With all binary files, there is a consistent process to follow when you make changes to them so
they can be shared in source control. Changes to binaries should be initiated by a single user,
typically the team lead. This reduces the chances of merge conflicts over the project lifecycle. To
modify domain binary files in source control:

1. Stop the server.

2. Do a clean checkout of the binary files from source control to ensure you are working from
a common base.

3. Start the server.

4. Make your changes.

5. Stop the server.

6. Check-in any modified binary files to source control management.

7. Test a clean checkout from another machine.

Users, Groups, Roles, and Entitlements — Updating LDAP

A common activity in development is the creation of a base set of users that are used to test the
system. By default, WebLogic stores user, group, role, and entitlement information in an LDAP
server provided by BEA. This LDAP server persists its data store to the file system in the
<domains>/ldap directory.

For information on BEA’s LDAP server, see “Managing the Embedded LDAP Server” at
http://edocs.bea.com/wls/docs81/secmanage/ldap.html.

As the LDAP server contains information that needs to be shared by team members, check the
files in the LDAP directory into source control, excluding backup and log files (see Table 2).
During project development, there may be occasion to modify the existing users, groups, roles,
and entitlements. You can configure users, groups, roles, and entitlements with the WebLogic
Administration Portal and check in the updated LDAP files to source control.

For instructions on using the WebLogic Administration Portal, see “Getting Started with Portal
Administration” at http://e-docs.bea.com/wlp/docs81/startadm/index.html.

Team Development Guide

../../../wls/docs81/secmanage/ldap.html
../startadm/index.html

Creating a Shared Portal Domain

Other Security Information

Other important security files located in the domain are the SerializedSystemIni.dat,
DefaultAuthenticatorInit.ldift, DefaultAuthorizerInit.ldift, and
DefaultRoleMapperInit.ldift files, which contain essential security information needed to
start the domain. While not typically modified during the course of development, these files must
exist for the server to be started. The boot .properties file in the domain root contains
encrypted username and password information for starting the domain. That file is not
mandatory, but it is typically used in development environments to allow server startup without
requiring authentication.

Databases

Portal stores much of its configuration information in the database, and there are occasions where
development teams need to share access to this configuration. However, WebLogic Portal does
not support running multiple instances of a portal server against the same single database or
database schema. Although the default database for a WebLogic Portal domain is PointBase, it is
recommended that an enterprise-quality database be used for most development efforts. This is
key because moving data between heterogeneous databases can be a labor-intensive manual
effort. See “Developing Against an Enterprise-Quality Database” on page 12.

PointBase

When creating a new portal domain, an instance of a PointBase database is created that is
persisted in the root directory of the domain. New domains can also create the database objects
necessary for an enterprise-quality database. For details on configuring an Oracle, SQL Server,
DB2 or Sybase database, see the Database Administration Guide at
http://edocs.bea.com/wlp/docs81/db. For details on creating new domains, see Creating
WebLogic Configurations Using the Configuration Wizard at
http://edocs.beasys.com/platform/docs81/confgwiz/index.html.

The database contains a number of tables that store base WebLogic Portal and WebLogic
Workshop data. For a description of the database objects for each component of WebLogic
Portal, see the “Data Dictionary” at http://edocs.bea.com/wlp/docs81/db/4Schemas.html. In
addition, WebLogic Workshop stores some of its internal state in the database. The topic “How
Do I: Configure WebLogic Workshop to Use a Different Database for Internal State?” at
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUs
eADifferentDBForInternalState.html in the WebLogic Workshop help system addresses how to
move that internal state store to another database.

PointBase Development Considerations

Team Development Guide 1

../db/index.html
../../../platform/docs81/confgwiz/index.html
../db/4Schemas.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUseADifferentDBForInternalState.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUseADifferentDBForInternalState.html

Team Development Guide

12

PointBase uses two files to persist the database to the file system: workshops1.wal and
workshop . dbn. Since the database is persisted to the file system, sharing copies of the database
can easily be accomplished using source control management. However, PointBase files grows
incrementally over time when PointBase is used, which means that the files always appear to have
been modified by the user. Over time, the PointBase files can grow from about 3 MB to 10 or
more. Developers need to be aware that they should not check in the database unless they
explicitly are making changes to the underlying data directly through the WebLogic
Administration Portal or the PointBase console. When a change does need to be made, there is a
process to follow to keep the size of the updates to a minimum, which is outlined in the following
paragraph steps:

To make changes to the database:
1. Stop the servers (WebLogic and PointBase).

2. Do a clean checkout of the binary files from source control to ensure you are working from
a common base.

This is especially important as your PointBase files may have grown significantly since the
last checkout, so a new checkout will reduce the size of those files before making your
additions.

3. To modify those files in source control, follow the procedure in “Working with Binary
Files” on page 10.

Knowing When You Are Making Changes to PointBase — In general, most activities that are
accomplished using the WebLogic Administration Portal are persisted to the database, with the
exception of user, group, and entitlements, which are persisted to LDAP. As the guide to
Deploying Portal Applications points out at
http://e-docs.bea.com/wlp/docs81/deploy/index.html, most of the work with the WebLogic
Server Administration Console is done in a staging or production environment. However, there
may be times when you want to develop against a portal desktop or have test users with user
property values (the values are stored in the database).

Developing Against an Enterprise-Quality Database

Rather than share the PointBase database between developers as a binary file, it is common for
each developer to work against their own unique instance of the portal database using Oracle,
SQL Server, or another enterprise-quality database.

Team Development Guide

../deploy/index.html

Creating and Sharing the Portal Application

The same enterprise quality DBMS used in production should be used for development. In other
words, if you plan to deploy your application on Oracle you should develop your application on
Oracle as well.

Note: For Oracle and DB2, a separate database schema for each developer on a development
database instance is recommended. For Sybase and SQL Server, a separate database and
database log file for each developer on the development database instance is
recommended.

There are several advantages to using this methodology: greater performance, easier maintenance
of a baseline of data (with proper support from a database administrator and scripts), and the
ability to propagate database data from a production or staging environment to a development
environment using the WebLogic Portal Propagation Utility, assuming the production or staging
environments use the same type of database as the development environment.

Each development machine is configured to use a specific database, contained in config.xml,
which is a shared file in source control management. “Setting up Config Templating
(config-template.xml)” on page 17 can help provide some mechanisms for allowing developers
to share config.xml while still pointing to their unique database instance.

Sharing Information Using Unique Enterprise Quality Database Instances

To share information, a database administrator sets up a process where a developer can snapshot
his database schema. This snapshot can then be applied to other developer schemas as part of a
process that those developers can initiate. Snapshots of partial pieces of the database, or the
storing of a common set of DDL scripts, are also common practices.

For a description of the database objects for each component of WebLogic Portal, see the “Data
Dictionary” at http://edocs.bea.com/wlp/docs81/db/4Schemas.html.

In addition, WebLogic Workshop stores some of its internal state in the database. The following
topic in the WebLogic Workshop help system, “How Do I: Configure WebLogic Workshop to
Use a Different Database for Internal State?” addresses how to move that internal state store to
another database:
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUs
eADifferentDBForInternalState.html.

Creating and Sharing the Portal Application

After configuring the portal domain, the team lead needs create a new portal application. There
are several phases of application creation, including creating the application and any number of
portal Web projects with WebLogic Workshop and initial check-in to source control.

Team Development Guide 13

../db/4Schemas.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUseADifferentDBForInternalState.html
../../../workshop/docs81/doc/en/workshop/guide/howdoi/howConfigWLWToUseADifferentDBForInternalState.html

Team Development Guide

For instructions on creating a new portal application and Web project, see “Creating a Portal
Application and Portal Web Project” at
http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/addPortal App.html.

Be sure to install any services necessary to your application, such as Commerce and Pipeline, as
well as any necessary tag libraries in each portal Web project, such as Commerce and Webflow
(for compatibility with legacy portal Web applications).

Where to Create the Workshop Application

As mentioned in the domain configuration section, creating the domain and the application so that
they are peers to each and share a common parent directory makes sharing them in source control
management systems easier to manage.

For example, install your domain to: <drives:\ourDomain
and your application to: <drives: \ourApp

This approach lets you have a common root directory (Y%PROJECTNAME) in your source
control system’s project for both the domain and application.

Note: To avoid path length exceptions, store the domain and application directories in a short
path. For example, <drive>:\ourDomain.

Checking in the Workshop Application

Once the Workshop application has been constructed, the team lead should check the application
into source control. This should be done before doing a build of the application, because there are
a number of files which are created during a build which should not be checked into source
control.

Excluding Portal Application Files From Source Control Management

Exclude the following application files from source control:

Table 3 Application files to exclude from source control

Path Wildcard

/ (portal application root) Each “EJB Project” contains a . jar file. These should be excluded.
/ .beabuild.txt

/APP-INF/1lib/ Each “Java Project” contains a . jar file. These should be excluded.

14 Team Development Guide

../../../workshop/docs81/doc/en/portal/buildportals/addPortalApp.html

Creating and Sharing the Portal Application

Table 3 Application files to exclude from source control (Continued)

Path Wildcard

/<project>/WEB-INF/ *
.pageflow-struts-generated/

/ .workshop/

Files that are excluded from source control include compiled JARs, temporary configuration
files, and the output directory for workshop.

Managing Checkouts of the Workshop Application

The fundamental idea when working with source control management and a WebLogic
Workshop application is that developers should be able to check out the application, initiate a
build, and start the server without error.

A background on what is created when a build is executed is important to review. When a build
is initiated in Workshop, a number of JAR files and temporary directories are created inside the
WebLogic Workshop application itself. These files are listed in Table 3. In addition, WebLogic
Workshop creates some additional files such as stateless session beans for controls in the
.workshop directory of the application. These stateless beans often have names like

TimerControl -1n8kn2z7skxv.

When the application is deployed to the domain by WebLogic Workshop, it is registered in
config.xml. This deployment happens automatically when the server is started and the
application is built. At this point, the application is added to config.xml in a new XML block.
The following example shows the block added to config.xml for an application named portalpm.

<Application Name="portalpm" Path="P:\user projects\applications"
StagingMode="nostage" TwoPhase="true">
<WebAppComponent Name="portalpmAdmin" Targets="portalServer"
URI="adminPortal.war"/>
<EJBComponent Name="content.jar" Targets="portalServer"
URI="content.jar"/>
<EJBComponent Name="content repo.jar" Targets="portalServer"
URI="content repo.jar"/>
<WebAppComponent Name="portalpmDatasync" Targets="portalServer"
URI="datasync.war"/>
<EJBComponent Name="netuix.jar" Targets="portalServer"
URI="netuix.jar"/>
<EJBComponent Name="pl3n ejb.jar" Targets="portalServer"
URI="pl3n ejb.jar"/>

Team Development Guide 15

Team Development Guide

16

<EJBComponent Name="prefs.jar" Targets="portalServer"
URI="prefs.jar"/>
<WebServiceComponent Name="portalpmTool" Targets="portalServer"
URI="wps-toolSupport.war"/>
<EJBComponent Name="wps.jar" Targets="portalServer" URI="wps.jar"/>
<ApplicationConfiguration Name="portalpm" Targets="portalServer"/>
</Application>
As WebLogic Workshop will update the config.xml for the domain automatically, it is not
necessary to check in a config.xml that contains the application name XML block. Instead, a
developer checks out the application, does a build, and starts the server against a domain without
this application reference. His application is then deployed to config.xml with all the required
references to the newly built application components. If the application name XML block is
checked in with config.xml, WebLogic Workshop will automatically update it if necessary to
add or remove components.

Note about config templating — If you are using config templating (page 17), the basic
config.xml has already been created on each development machine using the config template,
and application modifications or additions are correctly added to each developer’s config.xml
file.

There are two other files that store the components for the application: application.xml and

weblogic-application.xml, which are found in the application's META-INF directory. These
files need to be shared in source control, and when new components are added to the application
(such as a new EJB), the updated application.xml and weblogic-application.xml must

be checked back in to source control.

Portal Coding Practices

This section provides best practices guidance for portal application source code storage.

Java Projects

If you have a number of general-purpose Java libraries that will be used by your portals, it is
recommended that they be stored in a Java project inside the portal enterprise archive. This
enables portability of your Java libraries across multiple instances of the server and is a
convenient mechanism for packaging libraries for reuse.

Team Development Guide

Creating and Sharing the Portal Application

Cross-Platform Support

When coding to develop and deploy in a cross-platform environment, you observe the following
best practices:

e Do not use spaces in filenames.
e Keep filenames short (older versions of TAR do not support long filenames).
e Use forward slashes in paths when possible.

e Be aware of the difference between case-sensitive operating systems (Unix) and
case-preservative operating systems (Windows). For example, you could create a file called
myPortletContent.jsp and specify the file MyPortletContent . jsp as the Content
URI on windows without problems. However, when this same application is deployed on
UNIX, an error that the file MyPortletContent.jsp cannot be found will be generated.

Definition Labels for Portal Components

As you add books, pages, and portlets to portal desktops in WebLogic Workshop, a Definition
Label (unique ID) is automatically generated for each component (which appears in the Property
Editor window). With multiple developers creating new portal components, it is possible that
different components can have the same automatically generated Definition Labels. To avoid
duplicate Definition Labels, manually change the Definition Label for each new component using
your own naming conventions.

Cluster Configuration

Any code you write should be tested often in a clustered environment. Also important is keeping
session data to a manageable size and configuring your Web applications to support session
sharing across the cluster. For clustering information, see “Deploying Portal Applications” at
http://e-docs.bea.com/wlp/docs81/deploy/index.html.

Setting up Config Templating (config-template.xml)

When working in a team development environment, your team members need to work with the
same config.xml file so that all modifications to existing deployed applications, the addition of
new applications, and other settings stored in config.xml file can be shared. However, there are
configuration settings that may need to vary from user to user. The most common variations are
when developers are using different BEA home directories or their own database instances.
Developers typically have different database logins and need different settings for their JDBC
connection pools.

Team Development Guide 17

../deploy/index.html

Team Development Guide

18

Config templating addresses this problem by letting you distribute a templatized domain
configuration file, config-template.xml. Developers share this config-template.xml file
through source control.

Exclude config.xml From Source Control

When you need unique domain configurations in each developer environment, exclude the
config.xml file from source control. Check in config-template.xml instead.

You can use ant or other script language to set up a process that copies the
config-template.xml over the config.xml file. Next, certain strings in the config.xml file
are replaced with strings that the user defines in a properties file.
For example, we can start with a config-template.xml file that contains the following:
<JDBCConnectionPool DriverName="weblogic.jdbc.oci.Driver"

MaxCapacity="10" Name="Arcadia"

Properties="user=ARCADIAUSER; password=ARCADIAPASSWORD; server=arcadia"

RefreshMinutes="10" Targets="myserver"

URL="jdbc:weblogic:oracle"/>

and a particular user has a local.configtemplate.properties file with the following two
entries:

ARCADIAUSER=john

ARCADIAPASSWORD=mypassword

After running the replacement process, that user ends up with a config.xm1l file that reads:
<JDBCConnectionPool DriverName="weblogic.jdbc.oci.Driver"
MaxCapacity="10" Name="Arcadia"
Properties="user=john;password=mypassword; server=arcadia"
RefreshMinutes="10" Targets="myserver"
URL="jdbc:weblogic:oracle"/>
Each user need only keep his own copy of the local.configtemplate.properties file,
which should not be checked into source control. A file named configtemplate.properties

should be distributed in source control to serve as an example of a valid
local.configtemplate.properties file.

Team Development Guide

	Choosing a Source Control Vendor
	Creating a Shared Portal Domain
	The BEA Home Directory
	Why a Common BEA Home Matters
	Managing Multiple BEA Home Locations for Your Team

	Creating and Sharing the Portal Domain
	Best Practices for Creating a Portal Domain to Share with a Team
	Excluding Domain Files From Source Control Management
	Binary Files in Source Control Management
	Developing Against an Enterprise-Quality Database

	Creating and Sharing the Portal Application
	Where to Create the Workshop Application
	Checking in the Workshop Application
	Excluding Portal Application Files From Source Control Management

	Managing Checkouts of the Workshop Application
	Portal Coding Practices
	Java Projects
	Cross-Platform Support
	Definition Labels for Portal Components
	Cluster Configuration
	Setting up Config Templating (config-template.xml)

