‘."

.,
S’ 7
L/

BEAWebLogic
Personal
Messaging
AP

Administration Guide

Version 4.2
Document Revised: October 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Table of Contents

Introduction
What's Included 1-1
Java APl . . . 1-2

Architecture and Concepts

Software COMPONENLESttt ettt et ettt 2-1
Schemaso 2-2
Providerso 2-4
The collab.xml File o 2-5
Determining the Version Number i, 2-6
Minimal Java Security Policy 2-6
Providers
Exchange Providers i 3-1
Exchange/MAPI Provider. e 3-2
Exchange/WebDAV Provider., 3-5
Reporting Problems with Exchange Messages., 3-7
Domino Provider 3-8
Connectivity to DOMINOo ot 3-9
Network/Firewall Requirements. i, 3-9
Sizing Information 3-9

Administration Guide iii

iv Administration Guide

About This Guide

This guide is intended for administrators and software developers who want to leverage the BEA
WebLogic Personal Messaging API to integrate personal messaging and communication
functionality into their enterprise applications and business process workflow.

This chapter contains the following sections:
e Prerequisites

e Documentation Conventions

Prerequisites
Before you install the BEA WebLogic Personal Messaging API, perform the following steps:
e Install Java Development Kit (JDK) 1.3.1 12 or higher
e Obtain a basic understanding of Microsoft Exchange, Lotus Domino, and Java

e Refer to the BEA WebLogic Personal Messaging API Supported Configurations Guide for
information on supported versions of Microsoft Exchange and Lotus Domino

Documentation Conventions

The Windows convention of “\” as a path separator is used wherever necessary.

Also, since system software and configurations can vary from one system to another, portions of
the command syntax displayed in this document may include sample parameters or variables that
represent the actual command syntax you would need to enter. These entries are indicated by

Administration Guide v

About This Guide

parameters in uppercase placed between percent signs (¥PARAMETER%), as shown in the following

table.
Parameter Definition
$COMPOZE_HOME% The complete directory specification for the product. For

example, c: \Program Files\compoze.

$COMPOZE_COLLAB HOME% The complete directory specification for the BEA WebLogic Per-
sonal Messaging API. For example, c¢: \Program
Files\compoze\collab-4.2.

$JAVA HOME$% The complete directory specification for the Java Development
Kit. For example, c:\jdk1.3.1 03.

vi Administration Guide

Introduction

BEA WebLogic Personal Messaging API is a single Application Programming Interface (API)
for the integration of PIM/groupware into enterprise applications and business processes. The
Personal Messaging API offers a way to access groupware systems, such as Microsoft Exchange
and Lotus Domino using a unified programming interface. Personal Messaging APl is a
collection of Java API libraries that can be integrated into Java-based applications, such a portals,
web applications or standalone Java applications.

This chapter includes the following sections:
e What's Included

e Java API

What's Included

The Personal Messaging API installation includes the files for the Java API libraries, plus other
pieces to support deploying, developing, and working with the API. See Table 1-1 for a list of

directories and files.

Table 1-1 Personal Messaging Directories

Directory Description

$COMPOZE_HOME%\collab-4.2 BEA WebLogic Personal Messaging API
files.

$COMPOZE_HOMES%$\1lib Third-party Java libraries.

Administration Guide 1-1

Introduction

Table 1-1 Personal Messaging Directories (Continued)

$COMPOZE_HOME%\license

The license file should be placed here
(license.bea).

$COMPOZE_COLLAB HOME%\docs

Documentation, including JavaDoc.

$COMPOZE_COLLAB_HOME%\1lib

The core Personal Messaging API product
JAR file libraries.

$COMPOZE_COLLAB HOMES%\scripts

ANT scripts.

$COMPOZE_COLLAB_ HOME%\domino_service

Domino Service installer (setup . exe and
setup.bin).

$COMPOZE_COLLAB HOMES%\exchange service

Exchange Service installer (setup . exe)
and associated files.

$COMPOZE_COLLAB HOMES%\example

Example code.

Java API

The Personal Messaging API is segmented in different Java packages. The primary package is
com. compoze .collab. See Table 1-2 for a list of Java API packages.

1-2

Table 1-2 Java APl Packages

Package Name

Description

com.compoze.collab

The core package containing concepts and classes
common to the entire API.

com.compoze.collab.messaging

The package containing functionality common to both
groupware and messaging.

com.compoze.collab.groupware

The package containing classes common to all groupware
providers.

com. compoze.collab.domino

The package containing classes for accessing groupware
functionality in Lotus Domino.

com. compoze.collab.exchange

The package containing classes for accessing groupware
functionality in Microsoft Exchange via MAPI or
WebDAV.

Administration Guide

Java API

The complete Java API Documentation (JavaDoc) can be found at
$COMPOZE_COLLAB HOMES%\docs\api\index.html.

Administration Guide 1-3

Introduction

1-4 Administration Guide

Architecture and Concepts

This chapter provides information on the architecture and concepts that are useful for
understanding the high-level ideas and terminology used with the BEA WebLogic Personal
Messaging API.

This chapter contains the following sections:
e Software Components
e Schemas

Providers

e The collab.xml File

e Determining the Version Number

Minimal Java Security Policy

Software Components

Figure 2-1 shows the various components of the BEA WebLogic Personal Messaging API and
what JAR file the classes for these components are located in. When setting up the BEA
WebLogic Personal Messaging API to run within your Java application, the appropriate JAR files
must be placed on the CLASSPATH as shown in the diagram. For example, for an application that
requires connectivity to Exchange, the collab.jar and collab exchange.jar files should
both be in the cLASSPATH. In lieu of selecting multiple individual JAR files, there is a JaR file
called collab all.jar that contains all schemas, providers, and supporting classes.

Administration Guide 2-1

Architecture and Concepts

Note: Ifthe collab all.jar file is used, no other BEA WebLogic Personal Messaging API
JAR files need to be placed on the CLASSPATH.

Note: Include the 1icense.bea file in the CLASSPATH.

Figure 2-1 Personal Messaging APl Software Components

. ™
Java Application

Ty
A

Messaging and Groupware Schemas (collab.jar)

T
A

Service Provider Interface (collab.jar)

A

h,
P =~ RV

ExchangeMebDAN Exchange/lMAPI
Provider Provider
{collab_exchange.jar) | (collab_exchange.jar)

Domino Provider
{collab_domino.jar)

AN AN

AN

l“-.
.
Java Virtual Machine version 1.3 or Later

. ,-r'

Schemas

The schema is an insulating layer between the application and a specific provider
implementation. For example, because an application uses the groupware schema, rather than an
Exchange implementation directly, the same application can be used with Domino simply by
switching provider implementations.

Your Java application uses a schema to access functionality and can leverage the groupware
schema, exchange schema, or domino schemas—or some combination of all of them. The
schema is backed by a provider implementation, which is chosen when the programmer creates

2-2 Administration Guide

Schemas

a com.compoze.collab.ISession using the API. For more information on providers, see
“Providers” on page 2-4.

Schemas consist of a hierarchy of abstract items and containers. Each item contains one or more
properties, which are key/value pairs. Containers hold both items and other containers. Root
containers are obtained available from ISession, which is instantiated with a particular service
provider. Specific item classes exist for the different entities in the schema. For example, the
groupware schema contains item classes for tasks, appointments, contacts and mail messages.
Regardless of what item class you are using, the programming interface for manipulating its
properties it is the same.

The main schemas are the groupware, exchange and domino schemas. All inherit from the
messaging schema. To say that a schema inherits from another schema means that it has all of
the same item classes and container classes, plus additional ones. Providers may also contain their
own schema extensions. For example, the exchange schema extends the groupware schema to
add Exchange-specific groupware functionality. The domino schema extends the groupware
schema to add Domino-specific groupware functionality.

Figure 2-2 shows several of the schema-related API classes and their functions.

Figure 2-2 Schema-Related API Classes

! Examples: ltemClass
= Property manipulation Message i) .
- Listeners -] Appointment Available properties
o il et - Default properties
i Copy, mave and delate Attachment - Parant item class
- Attributes = Implementing Java class
= Parent item
'
Property
- Key and value ContainarClass
- Keys defined in / fied to item i
classes - Default itemn class
- Types: String, short, int, bool,
|Containas double, binary, date, item, enum
element
= Add items - Walues can be aither null or
- Addiremove subcontainers imvalid
- Container class
- Container name | renarme

Administration Guide 2-3

Architecture and Concepts

The packages and classes for the groupware and messaging schemas are found in the
collab.jar file. Schema definitions are stored in the collab.xm1l file. For more information,
see “The collab.xml File” on page 2-5.

Providers

2-4

A provider is an implementation of one or more schemas that makes that schema interact with a
specific back-end system. For example, the Exchange/MAPI Provider is an implementation of
the groupware schema that connects to a MS Exchange server.

Providers often implement extended schemas for access to the higher-level schemas that the
extended schema implements. For example, the exchange schema contains additional item
classes that are MS Exchange specific and thus not supported in the groupware schema. However,
because the exchange schema extends the groupware schema, the Exchange/MAPI Provider still
fully supports the groupware schema.

Table 2-1 lists the available providers. For more information, see “Exchange Providers” on
page 3-1.

Table 2-1 Providers

Provider Description

Domino Provider Groupware system: Lotus Domino
Implements schema: domino
Extends schema: groupware
Internal Name: domino

For more information, see “Domino Provider” on page 3-8
s

Administration Guide

The collab.xml File

Table 2-1 Providers (Continued)

Exchange/MAPI Provider Groupware system: Microsoft Exchange
Implements schema: mapi
Extends schema: exchange, groupware
Internal Name: exchange mapi

For more information, see “Exchange/MAPI Provider” on
page 3-2

Exchange/WebDAV Provider Groupware system: MS Exchange
Implements schema: webdav
Extends schema: exchange, groupware
Internal Name: exchange webdav

For more information, see “Exchange/WebDAV Provider”
on page 3-5

Note: There are multiple providers that support connectivity to MS Exchange. For more
information, see “Exchange Providers” on page 3-1.

Each provider has an internal name, which is a string representation of that provider. When
viewing the output log and the collab.xml file, you will encounter references to the provider by
internal name.

The collah.xml File

Each BEA WebLogic Personal Messaging API Jar file that contains providers and schemas
contains a collab.xml file in the META- INF directory. The collab.xml file contains sections
for schemas and providers depending on what the JAR file contains.

For the accurate information on what configuration information is stored in the collab.xml file,
see the collab.dtd file in the META- INF directory of collab.jar. This Document Type
Definition (DTD) is used for collab.xml validation and has comments that describe each of the
nodes in a collab.xml file.

Note: Editing the collab.xml file is not required to run the BEA WebLogic Personal
Messaging API.

Administration Guide 2-5

Architecture and Concepts

Determining the Version Number

The BEA WebLogic Personal Messaging API version may be determined by executing any of
the delivered JaRr files, such as collab.jar or collab all.jar. Alternatively, run the class
com.compoze.collab.version.Version. The version of the product in the form x.v.z will
be printed to System.out and displayed in a Swing dialog. For maximum compatibility, all
versions of the JAR files should be the same or collab all.jar should be used.

Minimal Java Security Policy

2-6

In production environments, the BEA WebLogic Personal Messaging API can run in a virtual
machine with the Java security manager enabled. The code in Listing 2-1 contains a section for
java.policy (or similar) is the minimum needed to run.

Listing 2-1 Sample Code for java.policy

// read access to the license.bea file

permission java.io.FilePermission "/path/to/license.bea", "read"; // license file

// WebDAV, MAPI Remote and Domino providers all need either or both of these,
depending on whether SSL is used or not
permission java.net.SocketPermission "*:80", "connect";

permission java.net.SocketPermission "*:443", "connect";

Administration Guide

Providers

The following providers are included with the Personal Messaging API:
e Exchange/MAPI Provider
e Exchange/WebDAV Provider
e Domino Provider
This chapter contains the following sections:
e Exchange Providers

e Domino Provider

Exchange Providers

The Personal Messaging API offers two separate providers for connectivity to MS Exchange.
Your decision on which provider to use may be affected by the need to support MS Exchange 5.5.
In addition, consider the performance, latency and functionality requirements for your
application. With a few exceptions, the exchange schema can be used in the same way regardless
of which provider you choose. See Table 3-1 for more detail on both Exchange Providers.

Administration Guide 3-1

Providers

Table 3-1 Exchange Providers

Provider / MS Exchange 5.5 2000 2003 Comments
Exchange/MAPI Provider X X X Better overall performance vs.
WebDAV

Compatibility with 5.5
Support for task requests

Less load on Exchange server vs.
WebDAV

Requires installation and
configuration of an Exchange Service

Exchange/WebDAV Provider X X Less stringent network latency
requirements

Easier installation with no MAPI
subsystem or Exchange Service
required

Support for multiple public folder
trees

Requires installation of IIS and
Outlook Web Access (OWA) on
Exchange servers

Note: Insome cases, the optimal way to decide which provider is better in your environment is
to test both with your application and evaluate the IT requirements of your deployment
against the results of that test.

This section contains the following topics:
e Exchange/MAPI Provider
e Exchange/WebDAV Provider

e Reporting Problems with Exchange Messages

Exchange/MAPI Provider

The Exchange/MAPI Provider offers an implementation of the groupware schema (and an
extended exchange schema) for interacting with MS Exchange. The Exchange/MAPI Provider

3-2 Administration Guide

Exchange Providers

uses the low-level MAPI interfaces to MS Exchange to provide groupware functionality. These
low level interfaces offer the best potential performance when interacting with MS Exchange.
Much of the complexity of Exchange groupware functionality is exposed in MAPI but is
implemented in the Outlook client. The Exchange/MAPI Provider hides these details while
making the Java application appear as though it were an Outlook client to the Exchange server.

This section contains the following topics:
e Exchange Service

e Connectivity to Exchange

Network/Firewall Requirements

Sizing Information

Exchange Service

To use the Exchange/MAPI Provider, you must install and configure the Exchange Service. The
Exchange Service provides connectivity to Exchange as an intermediary between Java and the
MAPI subsystem.

Refer to the BEA WebLogic Exchange Service Setup Guide for more information on installing and
configuring the Exchange Service.

Administration Guide 3-3

Providers

3-4

Figure 3-1 Configure the Exchange Service to Use the Exchange/MAPI Provider

b

=
|E55,.FE2I{,-'E2I(3
‘ | Server

L T

Same Domain

MAPI/RPC ar
Trusted Domain

LY | A p
Exchange
| Service
Network J “
{mflhtt_ps " Personal |

Messaging
API

Connectivity to Exchange

The Exchange Service is implemented using the MAPI subsytem to communicate with an
Exchange server. Refer to the BEA WebLogic Exchange Service Setup Guide for more
information on installing and configuring the Exchange Service and the MAPI subsytem.

Network/Firewall Requirements

HTTP or HTTPS traffic must be able to pass between the Java application machine (where the
API is running) and the Exchange Service machine. This could be port 80, port 443, or whatever
port you have chosen for your Exchange Service. The network connection for the traffic between
the application and service machine does not require as low a latency as the MSRPC connection.
50-100 ms ping times should be tolerable given reasonable bandwidth.

The network link between the Java application API and the Exchange Service machine can be
over wide area networks to traverse larger distances between your application and the Exchange

Administration Guide

Exchange Providers

server. However, the Exchange Service machine should be as close to Exchange as possible. If
you have Exchange servers in different locations, try to group them together and place the
Exchange Service machines as close as possible on the network to each cluster of Exchange
servers.

Refer to the BEA WebLogic Exchange Service Setup Guide for more information on installing and
configuring the Exchange Service.

Sizing Information

A guideline is approximately 250 active users per machine running the Exchange Service.
Potentially more users than that could have sessions open on the machine, but a limit of around
250 in-use sessions exists for the process running MAPI. If more than 250 sessions are open, the
Exchange/MAPI Provider closes and opens any underlying sessions to Exchange as needed, but
performance will suffer if many of these opens and closes need to occur.

Additional processors on the Exchange Service machine will minimize response time
degradation as more simultaneous active users are added to the machine, but there will be a point
of diminishing returns. Testing suggests that a dual processor machine is the best combination of
scalability vs. cost when running the Exchange Service. Using a faster machine for the Exchange
Service will simply allow the MAPI/RPCs with Exchange to occur faster and the Exchange
Service to run faster; however at a certain point you will be limited by the speed with which the
Exchange server can respond to your MAPI/RPC requests.

A recommended configuration for a fully loaded Exchange Service machine is one GByte of
RAM. Minimum configuration for low-load configurations is 128 MBytes of RAM.

Refer to the BEA WebLogic Exchange Service Setup Guide for more information on installing and
configuring the Exchange Service.

Exchange/WebDAV Provider

As shown in Figure 3-2, the Exchange/WebDAV Provider uses the WebDAYV protocol directly
against the Exchange server to provide groupware functionality. This allows the Java application
and no MAPI subsystem installation or intermediary service machine, regardless of which
operating system your applications runs on. Much of the complexity of Exchange groupware
functionality is actually exposed in the published WebDAYV protocol, but is implemented in the
Outlook client. The Exchange/WebDAYV Provider hides these details while interacting with
Exchange using the same protocol as Outlook Web Access 2000 or 2003.

Administration Guide 3-5

Providers

3-6

Figure 3-2 The Exchange/WehDAV Provider

E2ZK/E2K3
Server

Firewall /
WehDAV

Network
{ http/https)

L TSy
" v Personal
Messaging
API
b -

Network/Firewall Requirements

The Java application connects directly to the OWA-enabled Exchange server using the HTTP or
HTTPS protocol over any TCP port (typically the standard 80 or 443). The only firewall
requirement is that traffic on whichever port is to be used may pass between the application and
the Exchange server.

For more information on network requirements you may wish to see the Outlook Web Access
(OWA) Planning Chapter available at:
http://www.microsoft.com/technet/prodtechnol/exchange/2000/deploy/upgrademigrate/series/pl
anningguide/p 10 _ttl.mspx. Additionally, there are many other resources available on
Microsoft’s site regarding OWA deployment and scalability.

One important note regarding WebDAV performance and networking is that when connecting to
Exchange 2000 you will experience a delay associated with TCP delayed acknowledgements that
can hinder the performance of your application. Windows waits 200 milliseconds to acknowledge
the small TCP packets that come from Exchange 2000 server. This can be fixed by applying the

Administration Guide

http://www.microsoft.com/technet/prodtechnol/exchange/2000/deploy/upgrademigrate/series/planningguide/p_10_tt1.mspx
http://www.microsoft.com/technet/prodtechnol/exchange/2000/deploy/upgrademigrate/series/planningguide/p_10_tt1.mspx

Exchange Providers

workaround in the following Microsoft article:
http://support.microsoft.com/default.aspx?scid=kb;en-us;321098.

Sizing Information

A guideline is approximately 250 active WebDAYV users on a CPU running the Java application
(an active user defined not as a thread, but as a user using an application with typical user delays
between each request). Unlike MAPI, there is no per-process limit. Adding additional CPUs to
the hardware will increase the scalability of the application, with diminishing returns. A potential
guideline is going from one to two CPUs increases the number of users that could be supported
by about 75%. Going from two to four CPUs increased the two CPU number by about 50%.
However, each application and environment may be different.

A fully loaded machine should need no more than one GByte of RAM to run the virtual machine
with the WebDAYV provider. Low load configurations can get away with 128 MBytes of RAM.

Reporting Problems with Exchange Messages

You might find that a particular message or folder is causing problems. In this case, it is possible
to export the original messages for support to import in order to reproduce the problem.

Perform the following steps to export the messages:

1. Open Outlook 2000 or above to the account with the problem messages.
2. Choose File > Import and Export.

3. In the Import and Export Wizard screen, choose Export to a file.

4. Inthe Export to a File screen, choose Personal Folder File (.pst).

5. In the Export Personal Folders screen, choose the folder that you wish to export.

It is easiest to export an entire folder (such as the calendar folder), but you may also click Filter
and restrict what is exported by date range, subject, attendees, created time, etc. Be sure that the
offending messages get included by the filter you have chosen. Provide this file to support along
with a small readme . txt file that explains the problem with the message/s and any filter that was
used for the export in step 5 .

Administration Guide 3-7

ttp://support.microsoft.com/default.aspx?scid=kb;en-us;321098

Providers

Domino Provider

The Personal Messaging API leverages native Domino Service to expose Lotus Domino
groupware functionality from the Domino mail database. The Domino Service machine acts as
an intermediary between the Java API and Lotus Domino, as shown in Figure 3-3.

See the BEA WebLogic Domino Service Setup Guide for more information on installing and
configuring the Domino Service.

Figure 3-3 The Domino Service Machine Acts as an Intermediary Between the Java APl and Lotus Domino

o 1
|' Lotus
| Domino
‘ Server |
i A Domino Domain/
Motes Connection
RPC Documents
;yix - _
Domino
Service
o u
XML - -
{over http) P .

x_l_; Personal

Messaging
API

A

This section contains the following topics:
e Connectivity to Domino
e Network/Firewall Requirements

e Sizing Information

3-8 Administration Guide

Domino Provider

Connectivity to Domino

The Domino Service is implemented using a combination of Notes RPC and Notes DSAPI and
runs within Lotus Domino as part of the HTTP task. The details of this do not need to be
understood by the application programmer, but this is the reason the Lotus Domino install is a
prerequisite of the installation. This is where Notes RPC and the Notes DSAPI filter for Domino
are obtained.

Network/Firewall Requirements

The Domino Service must be located on a machine running Lotus Domino that is part of the same
Notes Domain as the Domino server to access. It is possible to put the Domino Service on an
existing Domino server, but be aware of the additional processor and memory burden that will be
placed on Domino.

HTTP traffic must be able to pass between the Java client and the Domino Service. Traversing
an HTTP proxy is OK as long as it is able to pass the POST requests used by the XML protocol.
Although a high bandwidth, low-latency connection will improve performance, the protocol has
been designed to reduce the number of round trips made on the network. Therefore, packet round
trip times of 50-100ms should be tolerable for the application. The amount of bandwidth required
will depend on the number of users simultaneously using the application. Each user may consume
roughly 1K/sec. on average, with this number increasingly dramatically if users do a lot of work
with large file attachments.

Notes RPC traffic must be able to pass between the Domino Service and Lotus Domino. Notes
RPC requires TCP port 1352 to be open. The network connection for this Notes RPC traffic must
have a low latency (less than 10 milliseconds, and preferably a 100 megabit LAN with less then
one millisecond response times). Round trips are made over the network for each Notes RPC,
therefore the Domino Service machine must be located as close as possible to Domino on the
network.

Sizing Information

A guideline is approximately 250 active Domino users on a CPU running the Java application (an
active user defined not as a thread, but as a user using an application with typical user delays
between each request). Adding additional CPUs to the hardware will increase the scalability of
the application, with diminishing returns. A potential guideline is going from one to two CPUs
increases the number of users that could be supported by about 75%. Going from two to four
CPUs increased the two CPU number by about 50%. However, each application and environment
may be different.

Administration Guide 3-9

Providers

A fully loaded machine should need no more than one GByte of RAM to run the virtual machine
with the Domino provider. Low load configurations can get away with 128 MBytes of RAM.

3-10 Administration Guide

	Introduction
	What's Included
	Java API

	Architecture and Concepts
	Software Components
	Schemas
	Providers
	The collab.xml File
	Determining the Version Number
	Minimal Java Security Policy

	Providers
	Exchange Providers
	Exchange/MAPI Provider
	Exchange/WebDAV Provider
	Reporting Problems with Exchange Messages

	Domino Provider
	Connectivity to Domino
	Network/Firewall Requirements
	Sizing Information

