‘.."‘

o 7
2 bea
L/

BEAWebLogic
Portal~

Performance Tuning
Guide

Version 8.1 with Service Pack 5
WebLogic Portal 8.1 Performance Tuning Guide
Document Revised: October 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

General Performance Tuning Guidelines

Understanding Performance Tuning and BEA WebLogic Portal

General Architecture.t

WebLogic Portal
Tuning Your WebLogic Server i
Tuning Your JVM . ..o
Tuning Your Databaset
Tuning Your Operating Systemutt it et e eenn
Upgrading to the Latest Service Packs

Other ReSOUICESot i i e e e e

Tuning Your Portal Domain

Tuning Your Domain Configuration
Removing Debugging Tools from Your Domain

Tuning for Users and Groups.ttt et et e e

Tuning Your Portal Application
Managing Caches.ttt
Using the Portal Administration Tool to Configure Cache Settings.
Caching with JSP Tagsot i
Disabling Unused SErviCesttt et e
Tuning for Campaignsottt

Referencing Events. i

WebLogic 8.1 Performance Tuning Guide

Avoiding Firing Extraneous Events. i 3-3

Using Goal Checking for Campaignsuuiminminennnnenennn... 3-3
Using Ads During Campaigns« o .vvetn ettt et e 3-4
Tuning for Entitlements 3-5
Using Role Caching When Using Entitlements. 3-6
Tuning for Content Managementottt 3-7

4. Tuning Your Portal Web Application

Optimizing Your Portal Control Tree. 4-1
Modifying Your Portal Web Application Parameters. 4-2
Modifying Portal Framework Settings., 4-2
Modifying Web Application Settings.ot 4-3
Modifying WebLogic Server Settingst 4-4
Tuning Guidelines for WSRP 4-6
Enabling Caches for WSRP. 4-6
Tuning the Server for WSRP 4-6

A. Performance Tuning Checklists

Portal Framework Guidelines A-1
Administration Portal Guidelines A-2
Content Management Guidelines A-2
B. WebLogic Portal Cache Settings
Portal Framework Caches B-1
WSRP Cacheso B-5
Content and Ad Caches. B-6
User Management Caches.u ittt et B-8
Campaign and Discount Caches i, B-10
Commerce Caches. e B-11

1l WebLogic 8.1 Performance Tuning Guide

CHAPTERo

General Performance Tuning
Guidelines

Application performance is affected by many factors. This chapter discusses a few of the initial
aspects that can affect performance and provides links to documentation resources that can assist
you.

Understanding Performance Tuning and BEA WebLogic Portal

Tuning Your WebLogic Server

Tuning Your JVM
e Tuning Your Database

e Tuning Your Operating System

Upgrading to the Latest Service Packs

e Other Resources

Understanding Performance Tuning and BEA WebLogic Portal

Performance tuning is a process which spans development, staging and deployment. During all
phases, performance should be monitored and appropriate adjustments made. If you are new to
performance testing, see Approaches to Performance Testing on BEA’s dev2dev website.

BEA recommends that you establish an environment where you can performance test the
installation for the following reasons:

WebLogic Portal 8.1 Performance Tuning Guide 1-1

http://dev2dev.bea.com/pub/a/2005/09/performance_testing.html

General Performance Tuning Guidelines

1-2

e Testing your prototype under load will help you validate design decisions early in the
development cycle that may significantly alter the performance of your application.

e Any configuration change can dramatically affect application performance (hardware,
database, clustering environment, application tuning parameters, and so on). Load testing
your application whenever design changes are made provides a way to narrow down
performance problems to a particular area.

e Testing early and often increases the likelihood that your site implementation will be
successful and scalable.

The recommended approach for performance testing is to start with the simplest aspect of the
installation and then move into areas of increased complexity. If you observe slow behavior in
any portion of this testing process, you should begin a more thorough investigation into its causes.

General Architecture

First, perform the following steps to identify performance issues with your network, database, or
other software that is independent of WebLogic Portal.

1. Test your database (independent of any web components) to determine how well your schema
and SQL work. Note any areas where the schema or SQL may not be optimized for
performance. For more information about configuring database connection pools, see
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html#1106131

2. Test your network for sufficient bandwidth, and check that the TCP/IP parameters on the
server's operating system can sufficiently handle the application load you expect. It is
possible that the network is the slowest aspect of your deployment.

3. Test your web server, ensuring that it has sufficient capacity to serve static HTML pages
when many concurrent threads are running.

4. Ensure that you have enough resources available to meet application requirements.Most
large applications are clustered, but keep in mind that a clustering environment requires
resources to perform load-balancing tasks. For more information, see Understanding Cluster
Configuration and Application Deployment.

5. Test your servlet engine by running a load test against a trivial servlet such as a HelloWorld
servlet. If this simple servlet does not perform and scale horizontally (meaning that as you
add Java Virtual Machines, performance increases accordingly), the performance problems
you encounter may be related to an infrastructure or resource issue.

WebLogic Portal 8.1 Performance Tuning Guide

../../../wls/docs81/ConsoleHelp/jdbc_connection_pools.html#1106131
../../../wls/docs81/cluster/config.html
../../../wls/docs81/cluster/config.html

Tuning Your WebLogic Server

WebLogic Portal

Now, perform the following steps to identify performance issues with WebLogic Portal:

1. Verify that your BEA WebLogic Server database configuration is optimal. WebLogic Portal
makes extensive use of the database. Check that your connection pool is large enough, and
verify that your database handles connection failures in an efficient manner. For example, you
may want to increase the number of connections at start up, increase the wait time before
requesting new connections, determine whether your pool can shrink, and so on.

2. Verify that each portlet is optimized for speed as follows:

— Avoid using forms in a portlet that update the data within the portlet. This causes the
entire portal to refresh its data, which can be very time consuming.

— Place items that require heavy processing in an edit page or a maximized URL. If you
do not, the portal must wait for the portlet to process, and this considerably slows down
the eventual rendering of the portal.

— Avoid large amounts of data retrieval that can take significant time to process.

3. Test your application's components, starting from the data access layer. Then proceed
toward the GUI one step at a time. Pay attention to performance and scalability differences
at each component and between each layer of your application. Finally, do end-to-end
testing from a browser-based load-testing tool using a proxy server,

4. Test the behavior and performance of your application under simulated, real-world
conditions. (Many tools are available to help you do this.) Be sure to use both anonymous
and logged-in users simultaneously.

Tuning Your WebLogic Server

Because WebLogic Portal runs on WebLogic Server, factors impacting the performance of
WebLogic Server will also impact the performance of WebLogic Portal.

For more information about tuning WebLogic Server, see
http://edocs.bea.com/wls/docs81/perform/index.html.

Tuning Your JVM

Your Java Virtual Machine is key to running your Portal efficiently. For more information about
tuning WebLogic JRocket, see Tuning WebLogic JRocket JVM.

WebLogic Portal 8.1 Performance Tuning Guide 1-3

../../../wls/docs81/perform/index.html
../../../wljrockit/docs142/tuning/index.html

General Performance Tuning Guidelines

Recommendations

When using JRockit, adjust the -gcx:parallel flag, as mentioned in Identify the Best JVM
Settings as found in the WebLogic Server Performance and Tuning Guide. JRockit typically
gives better performance with WebLogic Server than SunMicrosystem’s HotSpot.

When using Sun Hotspot, adjust the -server and -client flags to see which offers the
maximum throughput for your application.

Tuning Your Database

Keeping your database tuned is an important part of using WebLogic Portal. Portal uses the
database to store content, rules, portal framework customizations, and user profile data.

See your vendor database documentation on how best to tune your database for your needs and
production environment.

For more information about database tuning for WebLogic Portal see, the WebLogic Portal
Database Administration Guide.

Tuning Your Operating System

Tune your operating system according to your operating system documentation. BEA certifies
WebLogic Server on multiple operating systems on the Supported Configurations pages.

For Windows platforms, the default settings are usually sufficient. However, the Solaris and
Linux platforms usually need to be tuned appropriately.

If you plan on using WSRP portlets, be sure to modify the file descriptor parameters in the
/etc/system/limits.conf file, as noted in the WebLogic Server Performance and Tuning
Guide.

Upgrading to the Latest Service Packs

1-4

Service packs almost always include improvements to some area of performance. Service packs
are available individually for download to Contract Support Customers. Go to the
http://support.bea.com to login to eSupport. Navigate to Product Download and Service packs in
the left navigation bar. Choose the product of interest and follow links to the version and service
pack you are interested in.

In addition to WebLogic Portal service packs, you should also check available improvements
with WebLogic Server. For example, the WebLogic Server proxy plug-in for SP4 contains

WebLogic Portal 8.1 Performance Tuning Guide

../db/index.html
../db/index.html
../../../wls/docs81/perform/topten.html#1120353
../../../wls/docs81/perform/topten.html#1120353
http://support.bea.com
http://e-docs.bea.com/platform/suppconfigs/index.html
../../../wls/docs81/perform/HWTuning.html#1105552
../../../wls/docs81/perform/HWTuning.html#1105552
../../../wls/docs81/perform/index.html

Upgrading to the Latest Service Packs

several performance improvements. For more information about proxy plug-ins, see Using Web
Server Plug-ins with WebLogic Server.

Table 1-1 lists the available services packs for WebLogic Portal 8.1 and the performance
improvements found in each.

Table 1-1 WebLogic Portal Service Pack Information

WebLogic Portal 8.1 SP2

Improved performance of 25%-35% over 8.1 GA
Faster control tree creation

Faster content repository operations in a cluster
Faster portal rendering when the first user logs in
More caching (for example, caching web . xm1)
Faster data binding engine (NetUI)

Faster User/Group tree performance in the Administration Portal for large
group hierarchies

WebLogic Portal 8.1 SP3

Faster portal rendering by bypassing servlet filters for framework JSPs
Faster entitlement evaluation, especially with a large number of entitlements
Faster algorithm for portal creation in the Administration Portal

New feature to replace the group tree with a text box in the Administration
Portal, useful when you have a very large number of groups

Optimized framework-related JSPs
Faster WSRP by caching registration handles in the producer

WebLogic Portal 8.1 SP4

Improved performance of 15%-70% over previous service packs.
Optimized entitlement role calculations.

Optimized content searches against the BEA repository. The degree of
improvement depends on the type of search and the complexity of the
expression.

Control tree optimization that allows partial generation of the tree where
appropriate; performance improvements are substantial with large portals.

More robust control tree state management that improves scalability and
performance in a clustered environment.

Improved Portal Preferences and Portlet Event/Event Handlers using a new
lightweight UIControlData object that reduces overhead

Reduced memory requirements for Portal customizations that reduce
memory requirements. User customizations are now internally optimized.
As a result, the memory requirements for customizations have been
significantly reduced from SP3.

WebLogic Portal 8.1 Performance Tuning Guide 1-5

../../../wls/docs81/plugins/index.html
../../../wls/docs81/plugins/index.html

General Performance Tuning Guidelines

Other Resources

Remember that WebLogic Portal uses many components from WebLogic Platform. See the
following documentation for more information about tuning WebLogic Portal.

e Designing Portals for Optimal Performance

WebLogic Portal Capacity Planning Guide

WebLogic Server Performance and Tuning Guide

WebLogic Server Capacity Planning Guide

Tuning WebLogic JRocket JVM

e dev2dev

1-6 WebLogic Portal 8.1 Performance Tuning Guide

../capacityplanning/index.html
../../../wls/docs81/perform/index.html
../../../wls/docs81/capplan/index.html
../../../wljrockit/docs142/tuning/index.html
http://dev2dev.bea.com/index.jsp
../taxonomy/index.html

Tuning Your Portal Domain

Key aspects of portal performance are managed at the domain level. These include:
e Tuning Your Domain Configuration
e Removing Debugging Tools from Your Domain

e Tuning for Users and Groups

WebLogic Portal 8.1 Performance Tuning Guide 2-1

Tuning Your Portal Domain

Tuning Your Domain Configuration

Optimally, when you deploy, you need to create a new domain that is configured for your
production environment, including clusters, production configuration settings, and so on.

However, if you have deployed a development domain and want to use it for production, you
must change your domain environment settings to optimize performance.

Note: It is not recommended to use a development domain for production, see
http://edocs.bea.com/platform/docs81/confgwiz/newdom.html#1059076 for more
information.

The domain settings are managed by the setDomainEnv.cmd (or setDomainEnv. sh) script
which is found in your domain directory. By default, the script is found in:
bea-home/user_projects/domain name/setDomainEnv.cmd/sh.

To edit this file, open it in a text editor.

Table 2-1 lists the start script settings and their appropriate values for a production domain.
Remember if you are using a domain that was created for production mode, you do not need to
modify the configuration.

Table 2-1 setDomainEnv Settings

Flag Name Production Notes
Mode Setting
DOMAIN_PRODUCTION_MODE true » Indicates whether you are in a production mode or

a development mode. Default is false for domains
created in development mode and true for domains
created in production mode.

iterativeDevFlag false * Checks for updated files, and if found, rebuilds and

redeploys the application. Disable this option to
prevent checking for changed WebLogic
Workshop files. Default is true for domains created
in development mode and false for domains
created in production mode.

2-2

WebLogic Portal 8.1 Performance Tuning Guide

../../../platform/docs81/confgwiz/newdom.html#1059076

Table 2-1 setDomainEnv Settings (Continued)

Tuning Your Domain Configuration

debugFlag

false

Used in start scripts to set debugging options and
indicate if the WebLogic Workshop Debugger
should be started. When switched to false, you save
the resource overhead used for debugging.

Defaultis debugFlag=true for domains created
in development mode; debugFlag=false for
domains created in production mode.

testConsoleFlag

false

Enables the JWS test view.

Verity by checking the log for: wlw.
testConsole = false.

Default is true for domains created in development

mode; false for domains created in production
mode.

logErrorsToConsoleFlag

false

Controls logging functionality.

Verify by checking the log for:
wlw.logErrorsToConsole = false

Saves you additional logging. The trade-off is that
you may see exceptions more easily when this is
set to true (without checking the log).

Default is true for domains created in development

mode and false for domains created in production
mode.

WebLogic Portal 8.1 Performance Tuning Guide 2-3

Tuning Your Portal Domain

Table 2-1 setDomainEnv Settings (Continued)

verboseLoggingFlag false o Iftrue, override the default
LOG4J CONFIG FILE
(workshopLogCfg.xml) with
workshopLogCfgVerbose.xml.

* Priority value in the default file is warn; in the
verbose version it is debug.

» Verify by checking the log for:
log4j.configuration = ..
workshopLogCfg.xml instead of
workshopLogCfgVerbose.xml

* You can also start in verbose mode using
startWebLogic.cmd verbose.

» Saves you debugging overhead.

e Default is false for both domains created in
development mode and in production mode.

pointbaseFlag= false » Indicates whether Pointbase should be started.
* Verify by checking for a running Pointbase
process.

« Saves you the resource overhead of starting
Pointbase when it is not needed.

¢ Default is true for domains created with
Pointbase as the database.

Removing Debugging Tools from Your Domain

When deploying a domain, you should remove the debug.properties file from the domain
directory. Although this file is helpful during development, debugging should not be done in
production environments.

Tuning for Users and Groups

Note: This feature is available for WebLogic Portal 8.1 SP4 and higher.

If you are using an authentication provider and have a large number of users and groups, it can
be beneficial to change the way the Portal Administration tools search for names.

If an authentication provider contains a few thousand groups, you may get better performance in
the user management interface by not building a group hierarchy tree for the provider. In the place

2-4 WebLogic Portal 8.1 Performance Tuning Guide

Tuning for Users and Groups

of a hierarchy tree, you must type the name of a known group in a text box to select that group,
as shown in Figure 2-2.

Figure 2-2 Defining a Group Name

Browse User-Groups from: | Defaultduthenticator s

Enter Group Mame: |[everyone

Once a group is selected this way, you can add and edit users and set up delegated administration
on the group. However, without a group hierarchy tree, you cannot create, delete, or rearrange

groups.

Conversely, you can also modify how often the server checks for changes in the hierarchy tree by
adjusting the cache sizes. See the online help topic entitled Authentication Hierarchy Service for
more information.

Note: In your server startup script(s), you can disable all group hierarchy trees by adding the
following to the JAVA_ OPTIONS line:

-Dcom.bea.jsptools.disableGroupTree=true

WebLogic Portal 8.1 Performance Tuning Guide 2-5

../adminportal/help/SA_AtnHierarchy.html

Tuning Your Portal Domain

2-6 WebLogic Portal 8.1 Performance Tuning Guide

CHAPTERa

Tuning Your Portal Application

Key aspects of portal performance are managed at the portal application level. These include:

e Managing Caches

Disabling Unused Services

Tuning for Campaigns

e Tuning for Entitlements

Tuning for Content Management

Managing Caches

WebLogic Portal provides a single framework for configuring, accessing, monitoring, and
maintaining caches. If configured properly, the caches can vastly reduce the time needed to
retrieve frequently used data. Keep in mind that caches are read-only and cluster-aware.

Many WebLogic Portal services use preconfigured caches that you can tune to meet your
performance needs. Some services use internally configured caches that you cannot configure or
access. If you extend or create additional services, you can use the cache framework to define and
use your own set of caches.

Appendix B, “WebLogic Portal Cache Settings” lists caches that might be used by your portal
application. Use the list to assist you in your tuning. Keep in mind the memory that is available
to your system. When modifying the maximum cache sizes, also monitor the system memory to
determine the effects.

WebLogic Portal 8.1 Performance Tuning Guide 3-1

Tuning Your Portal Application

Using the Portal Administration Tool to Configure Cache
Settings

You can use the Service Administration tools within the Portal Administration tool to configure
statically-defined caches. For a list of configurable caches, see Appendix B, “WebLogic Portal
Cache Settings.”

When you configure a cache, you modify its parameters to change its behavior or capability. Each
cache has a Max Size setting and a Time To Live setting. For example, you can set up a cache to
hold only the last 10,000 entries, and set the time they can remain in the cache. You can also flush
the cache so that all new requests for information come directly from the database.

For instructions on how to configure cache settings, see Configuring Cache Settings.

Caching with JSP Tags

Some WebLogic Portal JSP tags support caching results at various scopes such as session or page.
This allows for more control over the caching of individual content queries. Although this can be
seen as an advantage, remember that when you control caches with coding, any cache change will
require more maintenance, depending on the size (amount of code) of your application.

The following content management-related JSP tags include cache-related attributes:
® <cm:search>
® <cm:getNodes>
® <pz:contentSelectors>
® <pz:contentQuery>

For more information about these JSP tags and their attributes, see Portal JSP Tags in the
WebLogic Workshop online help.

Disabling Unused Services

3-2

When you create a new portal application, WebLogic Portal enables most services such as
commerce services, event listening and campaigns. If your portal application does not require
these services, you can improve performance by turning them off.

You can disable services by using the Administration Portal via the Service Administration page;
see Adding/Removing Configurable Items in the Administration Portal online help.

WebLogic Portal 8.1 Performance Tuning Guide

../adminportal/help/SA_CacheConfig.html
../../../workshop/docs81/doc/en/portal/taglib/JspWlpOverview.html
../../docs81/adminportal/help/SA_AddRemoveConfigItem.html

Tuning for Campaigns

The following services should be disabled if your application does not use features that are
dependent on them:

e Event services (used for behavior tracking)

e Behavior Tracking services

Tuning for Campaigns

Campaigns are powerful tools for personalization, letting you target users with specific web
content, e-mails, and discounts based on fine-grained rules. The following tips allow you to tune
your campaign settings to ensure better performance.

Referencing Events

Always make scenario rules dependent on a particular event. This allows optimizations based on
the event types referenced in the scenario rules.

Avoiding Firing Extraneous Events

Whenever possible, avoid firing any extraneous events. The campaign services must listen to all
events. Use events to signify important occurrences on the site.

Using Goal Checking for Campaigns

If you are using campaigns that take advantage of goal checking, set the goal checking
appropriately. Goal checking is used to determine if a campaign’s goals are met. When your
developers create campaigns, they can set them to end on a specific date or use a set of goals (for
example, number of views or clicks). You should set it according to the duration of your
campaign. If a campaign’s goal check mechanism is set too low, it will affect portal performance.
The default is 300000 milliseconds (five minutes).

You can adjust the goal check time for campaigns using the Administration Portal.

For more information about how to adjust this setting, see Configuring a Campaign Service in the
Administration Portal online help.

WebLogic Portal 8.1 Performance Tuning Guide 3-3

../adminportal/help/SA_CampCon.html
../interaction/campaigns.html

Tuning Your Portal Application

3-4

Using Ads During Campaigns

The Campaign service uses display counts to determine whether a campaign has met its end
goals. Each time an ad placeholder finds an ad to display as a result of a scenario action, the
Campaign service updates the display count.

By default, the Campaign service does not update the display count in the database until an ad
placeholder has found 10 ads to display as a result of one or more scenario actions. For
performance tuning you can change this default to decrease the database traffic needed to support
a campaign.

For sites with high traffic, increase this number to a range of 50 to 100.

To configure the Ad Service cache, use the Administration Portal to perform the following steps:
1. From the Administration Portal, choose Service Administration.
2. Inthe Application Configuration Settings Resource tree, select Ad Service Group.

3. Adjust the Display Flush Size to a number appropriate for your portal needs. The default
is 10.

4. Click Update.

WebLogic Portal 8.1 Performance Tuning Guide

Tuning for Entitlements

Tuning for Entitlements

If your portal uses entitlements, you will need to configure your application to recognize them.
You can do this by editing the netuix-config.xml file.

The netuix-config.xml file resides in the portal web application directory. For example, if you
are using the sample portal web application, the corresponding netuix-config.xml file is
located at:

//weblogic81l/samples/portal /portalApp/sampleportal /WEB-INF/netuix-config.xml

After making any changes, you must redeploy your web application for the changes to take effect.
For more information about modifying web descriptor files, see Preparing The EAR File for
Deployment in the Production Operations User Guide.

For more information about portal framework performance issues and the netuix-config.xml
file see http://e-docs.bea.com/wlp/docs8 1/whitepapers/netix/appendix.html#1052773
1. Edit the netuix-config.xml file to include the following text:
<entitlements control-resource-cache-size="200">
<enables>true</enables>

</entitlements>

2. Ifyour portal uses a large number of entitlements (more than 5000) it can be beneficial to
customize the cache settings for Weblogic Entitlements Engine.

a. Create an entitlement.properties file that contains the following:
weblogic.entitlement.engine.cache.max role count=2000
weblogic.entitlement.engine.cache.max_resource count=5000
weblogic.entitlement.engine.cache.max predicate count=200

These values are the default for each property. You can change these if necessary.

b. Edit your system classpath to include this new file. If the properties file resides in the web
application’s WEB- INF/classes directory it is automatically included in the classpath. If
for any reason you need to keep this file elsewhere, see
http://edocs/wls/docs81/admin_ref/weblogicServer.html#SettingClasspath for more
information about editing your system classpath.

3. After completing the changes, you need to redeploy your portal application.

WebLogic Portal 8.1 Performance Tuning Guide 3-5

../../../wls/docs81/admin_ref/weblogicServer.html#SettingClasspath
../prodOps/deployment.html#1003235
../prodOps/deployment.html#1003235
../whitepapers/netix/appendix.html#1052773

Tuning Your Portal Application

Using Role Caching When Using Entitlements

Starting with WebLogic Portal 8.1 SP4, role values are cached automatically. However, if you
decide to define roles with expressions whose evaluation changes within the course of processing
a request, you may need to disable this setting.

To disable role caching, you need to edit the web.xml file for the respective application.

Note: After making any changes, you must redeploy your web application for the changes to
take effect. For more information about modifying web descriptor files, see Preparing
The EAR File for Deployment in the Production Operations User Guide.

1. Navigate to the respective web.xm1l file. It is located in the WEB - INF subdirectory of your
portal application directory. For example, if you are using the sample portal application, the
corresponding web.xml file is located at:

<BEA home>/weblogic8l/samples/portal/portalApp/sampleportal /WEB-INF/web.xml.
2. Open the web.xml file in a text editor.

3. Add the following lines

<env-entrys>
<env-entry-name>pl3n.entitlements.disableRoleCache</env-entry-name>
<env-entry-valuesY</env-entry-value>
<env-entry-type>java.lang.String</env-entry-types>

</env-entrys>
4. Save the new web.xm1 file.

5. Redeploy your web application.

3-6 WebLogic Portal 8.1 Performance Tuning Guide

../prodOps/deployment.html#1003235
../prodOps/deployment.html#1003235

Tuning for Content Management

Tuning for Content Management

When you use a BEA repository for your content management, you can tune the cache settings
according to the needs of your portal applications.

Repository cache settings are accessed when you edit a repository.

You can adjust cache settings for nodes (content folders) or binaries (a content item) according
to how often your content is accessed and how much content you want to remain in the cache.
Keep in mind that your server must have enough memory to handle the cache settings you assign.

Tahle 3-1 Node Cache

Cache Setting Usage Notes

Maximum Entries Determines the maximum number of entries (folders) that can be cached.
Time To Live Determines how long the entries will be cached.

Enable Enables the cache. Mark this checkbox to enable this cache. To disable this

cache, unmark the checkbox.

Table 3-2 Binary Cache

Cache Setting Usage Notes

Maximum Entries Determines the maximum number of entries (content items) that can be
cached.

Time To Live Determines how long the entries will be cached.

Cache Size/Item Sets the maximum size of a single entry (content item) stored in the cache.

The default is 1024 bytes (1K). If your content items average a larger size
than this, you should consider changing this cache.

Enable Enables the cache. Mark this checkbox to enable this cache. To disable this
cache, unmark the checkbox.

WebLogic Portal 8.1 Performance Tuning Guide 3-7

../adminportal/help/CM_EditRepository.html

Tuning Your Portal Application

3-8 WebLogic Portal 8.1 Performance Tuning Guide

CHAPTERa

Tuning Your Portal Web Application

One of the key things you can do to ensure good performance for your web application is to
design appropriately, see Designing Portals for Optimal Performance for hints and tips that will
increase performance.

This chapter covers a few configuration settings and key areas that can be optimized according
to your needs and includes the following sections:

e Optimizing Your Portal Control Tree
e Modifying Your Portal Web Application Parameters
e Tuning Guidelines for WSRP

Optimizing Your Portal Control Tree

Portal web applications use a control tree to cache and access different functionality. For
example, portals use controls to access desktops, windows, books, pages, portlets, and menus.
With WebLogic Portal 8.1 SP4 and higher, users creating complex portals that require a large
number of controls, tree optimization is the easiest way to ensure optimal portal performance.
Controls that are not active in the current portal instance are not built, saving considerable time
and overhead.

For more information about how control trees work see
http://e-docs.bea.com/wlp/docs81/whitepapers/netix/body.html#1056016

For more information about when to optimize your control tree, see Designing Portals for
Optimal Performance.

WebLogic Portal 8.1 Performance Tuning Guide 41

http://e-docs.bea.com/wlp/docs81/whitepapers/netix/body.html#1056016
../taxonomy/index.html
../taxonomy/index.html
../taxonomy/index.html

Tuning Your Portal Web Application

Modifying Your Portal Web Application Parameters

Your portal application uses a configuration files to store application settings. Some default
settings may not be applicable to your particular portal application.

Each portal application uses unique configuration files to customize parameters that can affect
performance. Three configuration files that are key to portal performance include:
® netuix.config.xml (portal framework)

e web.xml (web application settings)

® weblogic.xml (server settings)

For most settings, you can adjust them using either the WebLogic Server Console or the
Administration Portal. However, many of the settings discussed in this section must be manually
entered in the configuration file.

Modifying Portal Framework Settings

The netuix-config.xml file resides in the portal web application directory. For example, if you
are using the sample portal web application, the corresponding netuix-config.xml fileis
located at:

//weblogic8l/samples/portal/portalApp/sampleportal /WEB-INF/netuix-config.xml

42

After making any changes, you must redeploy your web application for the changes to take effect.
For more information about modifying web descriptor files, see Preparing The EAR File for
Deployment in the Production Operations User Guide.

For more information about Portal Framework performance issues and the netuix-config.xml
file see http://e-docs.bea.com/wlp/docs81/whitepapers/netix/appendix.html#1052773.

Table 4-1 lists key performance tuning elements within the netui-config.xml fle.

Table 4-1 netui-config.xml

Element Usage Notes

<customization> A switchto indicate if a portal is customizable or not. If a portal is served from
a .portal file (rather than from a database) and users are not allowed to
customize it then customization can be disabled by setting enable element's
value to false. If a portal supports customizations then customization
should be enabled.

WebLogic Portal 8.1 Performance Tuning Guide

../prodOps/deployment.html#1003235
../prodOps/deployment.html#1003235
../whitepapers/netix/appendix.html#1052773

Modifying Your Portal Web Application Parameters

<pageflow> A switch to enable or disable page flows usage in a portal. Disable it if a portal
is not using any page flows.

<validations> A switch for validating portal related files such as .pinc, .portlet, and
.portal files. Disable validation when running portal server in production.

<entitlementss> The <entitlements> element is a switch to indicate that a portal is setup
to use entitlement policies (users to portal resources such as desktop, books,
pages, portlets, and so on). Disable entitlements if a portal is not using any
security policies. If a portal is using security policies, enable it and set the
value for <control -resource-cache-size> attribute using number of
desktops + number of books + number of pages + number of portlets +
number of buttons (max, min, help, edit) used in a portal. The default value
could be used if memory is a concern.

For more information, see “Tuning for Entitlements” on page 3-5.

<localizations> A switch to indicate that a portal supports multiple locales. This could be
disabled if a portal supports only one locale.

Modifying Web Application Settings

The web . xm1 file configures your web application. After making any changes, you must redeploy
your web application for the changes to take effect. For more information about modifying web
descriptor files, see Preparing The EAR File for Deployment in the Production Operations User
Guide.

The web . xm1 file is located in the WEB- INF subdirectory of your portal web application directory.
For example, if you are using the sample portal web application, the corresponding web . xm1 file
is located at:

<BEA home>/weblogic8l/samples/portal/portalApp/sampleportal /WEB-INF/web.xml.
Table 4-2 lists key elements of the web.xml file.

Table 4-2 weh.xml

Parameter Usage Notes

<createAnonymousProfiles Set this to false if your portal does not store or use user profile
information.

<enableTrackedAnonymous> Set this to false unless you are tracking anonymous users. When this is

set to false, only users who login to the portal are tracked.

WebLogic Portal 8.1 Performance Tuning Guide 4-3

../prodOps/deployment.html#1003235

Tuning Your Portal Web Application

Tahle 4-2 web.xml (Continued)

<fireSessionLoginEvent>

Set this to false unless using campaigns or behavior tracking. If this is set
to true, session login events are generated

<trackedAnonymousVisitDur
ation>

Set to determine the when during a session you start tracking anonymous
users. Ignored unless you are tracking anonymous users. This setting
allows you to determine when to start tracking anonymous users. The
longer you wait during a session to start tracking anonymous users, the
greater the performance.

<skipRequestPattern>

Set to determine which request patterns to skip. Each page displayed in
a web application may have many separate requests, several of which are
irrelevant to TAU. For example, the tutorial portal sends requests for
images, java script, and CSS files. Ignoring these requests for
PortalServletFilter processing increases performance and guarantees that
tracking anonymous users will behave as expected.

Modifying WebLogic Server Settings

You can modify the weblogic.xml file viathe WebLogic Server Console. For more information
on how to modify these settings see Viewing and Updating Run-Time Deployment Descriptors
in the WebLogic Server Console online help.

The following parameters can be adjusted for performance. For more information about the

weblogic.xml file, see

http://e-docs.bea.com/wls/docs81/webapp/weblogic xml.html#1037041 for a complete list of
the elements configured in the weblogic.xml file.

Table 4-3 lists key performance tuning elements in the weblogic.xml file.

Table 4-3 weblogic.xml

Parameter Usage Notes

<jspPageCheckSecond Sets the interval, in seconds, at which WebLogic Server checks to see if JSP files
s> have changed and need recompiling. Dependencies are also checked and
recursively reloaded if changed.

If set to 0, pages are checked on every request. This default is preset for a
development environment. If set to -1, page checking and recompiling is disabled.

In a production environment where changes to a JSP are rare, change the value of
pageCheckSeconds to 60 or greater, according to your tuning requirements, or
to -1 to disable page checking and recompiling.

4-4 WebLogic Portal 8.1 Performance Tuning Guide

http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#1037041
../../../wls/docs81/ConsoleHelp/applications.html#1108035

Table 4-3 weblogic.xml

Modifying Your Portal Web Application Parameters

<PersistentStoreTyp
e>

Must be edited manually.

Sets the persistent store method to one of the following options:

memory—Disables persistent session storage.
file—~Uses file-based persistence.
jdbc—1Uses a database to store persistent sessions.

replicated—Same as memory, but session data is replicated across the
clustered servers.

cookie—All session data is stored in a cookie in the user's browser.
replicated if clustered—Ifthe web application is deployed on a

clustered server, the in-effect PersistentStoreType will be replicated.
Otherwise, memory is the default.

<Timeout Secs>

Sets the time, in seconds, that WebLogic Server waits before timing out a session,
where x is the number of seconds between a session's activity.

Minimum value is 1, default is 3600, and maximum value is integer MAX VALUE.

On busy sites, you can tune your application by adjusting the timeout of sessions.
While you want to give a browser client every opportunity to finish a session, you
do not want to tie up the server needlessly if the user has left the site or otherwise
abandoned the session.

This attribute can be overridden by the session-timeout element (defined in
minutes) in web . xml.

WebLogic Portal 8.1 Performance Tuning Guide 4-5

Tuning Your Portal Web Application

Tuning Guidelines for WSRP

For more information about performance guidelines for Web Services Remote Portlets, see Best
Practices for Implementing WSRP.

Enabling Caches for WSRP

If you are using WSRP portlets, adjust your caches accordingly. For specific information about
WSRP caches, see “WSRP Caches” on page B-5.

Tuning the Server for WSRP

When using WSRP portlets from a server that is running on a Unix machine, be sure to modify
the parameters in the /etc/system file to match the minimum requirements, as noted in the
WebLogic Server Performance and Tuning Guide.

It is also recommended that you tune the Server Execute Queue using the instructions mentioned
Tuning the Default Execute Threads, in the WebLogic Server Performance and Tuning Guide.

Other recommendations include:

e Set the Server Execute Queue to a maximum of 25 threads. Additional threads do not
provide higher performance.

e Match the number of JDBC connection pools to the number of threads set in the Server
Execute Queue, see Configuring JDBC Connection Pools in the “Creating WebLogic
Configurations Using the Configuration Wizard” guide.

e Match the number of threads set in the portalRenderQueue to the threads set for the Server
Execute Queue.

4-6 WebLogic Portal 8.1 Performance Tuning Guide

../wsrp/bestprac.html#998975
../wsrp/bestprac.html#998975
../../../wls/docs81/perform/HWTuning.html#1105552
../../../wls/docs81/perform/WLSTuning.html#1140013
../../../platform/docs81/confgwiz/jdbc.html#1055502
../../../wls/docs81/perform/HWTuning.html#1105552

APPENDlxa

Performance Tuning Checklists

Portal Framework Guidelines

Table A-1 Portal Framework Guidelines

Guideline Question How to Verify

Is the portalControlTreeCache See “portletControl TreeCache” on page B-2.
MaxSize set to the correct size for your

portal?

Are entitlements enabled? See “Tuning for Entitlements” on page 3-5.

Ifyes, is control-resource-cache
size is set correctly?

If you do not need to support multiple See “Disabling Unused Services” on page 3-2.
locales, is localization disabled?

Is jspPageCheckSecs in See “Modifying WebLogic Server Settings” on

weblogic.xml is setto-1? page 4-4.

Is servletReloadCheckSecs in See “Modifying WebLogic Server Settings” on

config.xml is setto-1? page 4-4.

Is validation turned oft? See “Moditying Portal Framework Settings” on
page 4-2.

WebLogic Portal 8.1 Performance Tuning Guide A-1

Performance Tuning Checklists

Administration Portal Guidelines

When you create a new desktop in the Administration Portal, a list of . portal files is used to
populate the templates drop-down list. If all .portal files reside under the same directory under the
web application directory, this drop-down list can be created quickly.

To take advantage of higher performance in building the drop-down list, you must define the
portalFileDirectory in the web application’s web.xm1 file.

Note: After making any changes, you must redeploy your web application for the changes to
take effect. For more information about modifying web descriptor files, see Preparing
The EAR File for Deployment in the Production Operations User Guide.

1. Navigate to the respective web.xm1 file. It is located in the WEB- INF subdirectory of your
portal application directory. For example, if you are using the sample portal web application,
the corresponding web . xml file is located at:

<BEA home>/weblogic8l/samples/portal/portalApp/sampleportal /WEB-INF/web.xml.
2. Open the web.xml file in a text editor.

3. Add the following lines

<context-params>
<param-names>portalFileDirectory</param-name>
<param-value>/</param-value>

</context-params>
4. Save the new web.xml file.

5. Redeploy your web application.

Content Management Guidelines

Review “Tuning for Content Management™ on page 3-7.

A-2 WebLogic Portal 8.1 Performance Tuning Guide

../prodOps/deployment.html#1003235
../prodOps/deployment.html#1003235

APPENDIXG

WebLogic Portal Cache Settings

This appendix lists the available caches for WebLogic Portal that can be managed within the
Portal Administration tool.

e Portal Framework Caches
e WSRP Caches

Content and Ad Caches

User Management Caches
e Campaign and Discount Caches

e Commerce Caches

Portal Framework Caches

Table B-1 portalContentUriCache

Cache portalContentUriCache

Use Used to store portal content URIs for a combination of webapp, portal,
locale and optional user name.

Key Key is equal to portal path + name of web application.

WebLogic Portal 8.1 Performance Tuning Guide B-1

WebLogic Portal Cache Settings

Tahle B-1 portalContentUriCache (Continued)

Value

Portal content URI

Notes

Set this cache according the number of portals that have associated
content URIs. The default values are recommended.

Default values: MaxEntries=500; TimeToLive=-1

Table B-2 portalLocalizationLocaleCache

Cache portalLocalizationLocaleCache

Use Used to store collection of LocalizationLocale objects. Localization locale
specifies language, character encoding, country and variant.

Key The key is private static final String called portalLocalizationLocaleCachekey.

Value A set of LocalizationLocale objects.

Notes Default TTL value should be okay. Max Entries could be set to a number based

on the number of rows in the LION_LOCALE table, i.e. number of supported
locales.

Default values: MaxEntries=500; TimeToLive=-1

Tahle B-3 portletControlTreeCache

Cache portletControl TreeCache
Use Used to store portlet control trees for floating portlets.
Key The combination portletInstanceld and locale.

B-2 WebLogic Portal 8.1 Performance Tuning Guide

Portal Framework Caches

Table B-3 portletControlTreeCache (Continued)

Value A portlet control tree.

Notes Default TTL value should be okay, MaxEntries could be set to a number based
on number of floatable portlet instances in a portal (including user customized
portlets) and number of supported locales.

It is recommended that the TTL be left at -1 because the cached default desktop
needs to be kept in the cache indefinitely and the cached item for a logged in user
is removed when they log out so there is no need to expire a user's cached items.
To avoid having the LRU mechanism kick the cached default desktop out of the
cache, the MaxEntries should be set to at least (max # of concurrent logged in
users + 1) X (# of locales supported). If the cache is too small then LRU will kick
out the cached default desktop and the memory saving advantage of this
approach will be lost.

Default values: MaxEntries=500; TimeToLive=-1

Table B-4 portletPreferencesCache

Cache portletPreferencesCache

Use Used to store portlet preferences.

Key An instance of PortletPreferenceld.

Value A map of preferences.

Notes Default TTL and Max Entries values could be set to a value depending on
amount of available memory and total number of preferences (at the application
level).

Defaults: MaxEntries = 500, TimeToLive=60000 (one minute)

Table B-5 portallLocalizationResourceCache

Cache portalLocalizationResourceCache
Use Used to store localization resources.
Key The localizationIntersection.

WebLogic Portal 8.1 Performance Tuning Guide B-3

WebLogic Portal Cache Settings

Tahle B-5 portalLocalizationResourceCache (Continued)

Value

A LocalizationResource.

Notes

Default TTL and MaxEntries values could be set to a value based on total
number of localization resources in the system, which is a combination of
non-customized and customized localization resources, and the amount of
available memory.

Default values: MaxEntries=500; TimeToLive=-1

Table B-6 portalControlTreeCache

Cache portalControlTreeCache

Use Used to store portal control trees. Only used for streaming portals.

Key The combination of webapp, portal, desktop, locale and optional user name.
Value A portal control tree.

Notes Default TTL value should be okay. This cache will contain one entry for the

default portal, plus one entry for each user who has customized his or her portal.
Max Entries could be set to a number based on number of users and available
memory. If there are any changes to portal this cache will be flushed.

Default values: MaxEntries=500; TimeToLive=-1

Table B-7 portalMarkupDefinitionCache

Cache portalMarkupDefinitionCache
Use Used to store MarkupDefinition objects.
Key A MarkupDefintionID.

B-4 WebLogic Portal 8.1 Performance Tuning Guide

WSRP Caches

Table B-7 portalMarkupDefinitionCache (Continued)

Value

A MarkupDefinition.

Notes

Set this according to the number of rows in the
PF_MARKUP_Definition.

Markup is the blueprint for a portal library resource (desktop, book,
page, portlet, placeholder, menu, Look And Feel, layout, shell or
theme).

Default values: MaxEntries=500; TimeToLive=60000 (one minute).

WSRP Caches

Tahle B-8 remoteProducerinfoCache

Cache remoteProducerInfoCache

Use Caches the metadata for producers added to a consumer application.

Key Name of the consumer web application.

Value A java.util. HashMap containing producer metadata. This map is
keyed with the producerHandle of each producer.

Notes This cache is used to look for producer metadata when a user or

administrator is trying to interact with a remote portlet or a producer.

Default values: MaxEntries=500; TimeToLive=-1

Table B-9 registrationHandleCache

Cache registrationHandleCache

Use Used to store registrationHandles of all registered consumers, for all
producers.

Key The registrationHandle of the consumer.

WebLogic Portal 8.1 Performance Tuning Guide

B-5

WebLogic Portal Cache Settings

Tahle B-9 registrationHandleCache (Continued)

Value A java.lang.boolean object with a value of true/false.

Notes This cache is used to cache whether or not a particular
registrationHandle is valid.

Default values: MaxEntries=500;TimeToLive=-1.

Content and Ad Caches

Table B-10 hinaryCache.repository _name

Cache binaryCache.repository name
Use Used to store binary property values for a repository node.
Key String (node ID + Property ID)
Value A byte array associated with the binary property.
Notes Set this according to the number and size of binary property values.
Default values: MaxEntries: 10; TimeToLive:60000 (one minute)
Tahle B-11 adServiceCache

Cache adServiceCache

Use Used to store the results of searches for content rendered in a placeholder (ads).
Used by the AdHelper to increase the speed of ad queries.

Key The ad query (java.lang.String)

Value A Content []

Notes Set this according to the number of ad queries and the amount of content
expected to be retrieved. Consider basing the maximum size on the total number
of ad queries.

If the ads returned from a particular query do not change, consider increasing the
TTL.
Default values: MaxEntries=32; TimeToLive=300000 (five minutes)

B-6 WebLogic Portal 8.1 Performance Tuning Guide

Content and Ad Caches

Table B-12 nodePathCache.repository _name

Cache nodePathCache.repository _name

Use Used to store a list of nodes for a repository based on a path.
Key A String (NodelD).

Value A Node.

Notes Set according to the number of nodes in a repository.

Default values: MaxEntries=50; TimeToLive=60000 (one minute)

Tahle B-13 searchCache

Cache searchCache

Use Used to store an array of IDs for nodes that satisfy a content search.
Key A Search, which contain parameters for a query.

Value An ID array of nodes that satisfy a query.

Notes There is only one search cache used for all repositories.

Default values: MaxEntries=20; TimeToLive-=60000 (one minute)

Set the MaxEntries according to the amount of content expected to be
retrieved.

Set Time To Live according to how fresh the content should be. If your
content

Table B-14 nodeCache.repository_name

Cache nodeCache.repository_name>

Use Used to store repository nodes. Each repository has its own cache
setting.

Key A String representing the node ID.

WebLogic Portal 8.1 Performance Tuning Guide

B-7

WebLogic Portal Cache Settings

Tahle B-14 nodeCache.repository_name (Continued)

Value

A node.

Notes

Set this according to the number of nodes in a repository.

Default values: MaxEntries=50; TimeToLive=6000 (one minute)

User Management Gaches

B-8

Tahle B-15 entityldCache

Cache entityldCache

Use Caches the IDfor an entity (user or group ID)

Key A com.bea.pl3n.property.PropertyLocator. PropertyLocator is based on a user
or group name (ENTITY.ENTITY NAME) and entity type
(ENTITY.ENTITY_TYPE).

Value The entity ID (java.lang.Long).

Notes Use the ENTITY table as a guide for the maximum size. The object being stored

is a Long, which is fairly small. Therefore, it might be possible to set this cache’s
maximum size to the number of entries in the ENTITY table.

Consider how often the ENTITY table might change when setting the TTL.
Default values: MaxEntries=500;TimeToLive=600000

Table B-16 jndiNameCache

Cache jndiNameCache

Use Stores the JNDI names of entity property managers and UUP
managers.

Key An entity ID.

Value The home name, which is a string value.

Notes Set this according the combination of the number of entity property

managers and the number of UUP managers.
Default values: MaxEntries=500;TimeToLive=600000

WebLogic Portal 8.1 Performance Tuning Guide

User Management Caches

Table B-17 entityPropertyCache

Cache entityPropertyCache

Use Caches property values for users and groups.

Key A com.bea.p13n.property.PropertyLocator. PropertyLocator is based on the user
or group name (ENTITY.ENTITY_NAME)), entity type
(ENTITY.ENTITY_TYPE, user or group) and property set type
(PROPERTY_KEY.PROPERTY_SET TYPE, usually USER).

Value A com.bea.p13n.property.EntityPropertyCache object. This object contains a
Map that stores property values keyed off the property set name and property
name.

Notes The larger you can afford to make this cache, the better.

Use the ENTITY table as a guide for maximum size. The number of entries in
this table should be the maximum number of cache entries that would ever be
created. In most cases, there will be more entries here than you would want for
a maximum cache size. So consider the average number of users you expect to
be using your application at the same time.

Consider a TTL based on how often new properties will be added to the property
sets. If they are not being modified often, then a higher TTL might be
appropriate.

Default values: MaxEntries=500;TimeToLive=600000

Table B-18 profileTypeCache

Cache profileTypeCache

Use Caches user profile types that are used to look up the appropriate user
manager profile manager when retrieving a user profile.

Key A String (the user name).

Value A String (the profile type).

Notes This should be set based on the number of concurrent users. Set the

TimeToLive never to expire
Default values: MaxEntries=100;TimeToLive=3600000

WebLogic Portal 8.1 Performance Tuning Guide B-9

WebLogic Portal Cache Settings

Table B-19 propertyKeyldCache

Cache propertyKeyIdCache

Use Caches the unique ID associated with a property set type, property set and
property name combination (primary key in the PROPERTY KEY database
table).

Key Based on a property set type, property set, and property name combination (inner
class called PropertyKeyLocator).

Value The ID (java.lang.Long)

Notes Maximum size should be set with an eye towards the maximum number of

properties in the application (use the PROPERTY KEY table as an indicator).

Consider a TTL based on how often these unique ID combinations are likely to
change.

Default value: MaxEntries=500;TimeToLive=600000

Campaign and Discount Caches

B-10

Tahle B-20 globalDiscountCache

Cache globalDiscountCache

Use Stores computed global discount definitions. This is the set of global discounts
that is applicable to all users.

Key The globalDiscountSet name (java.lang.String)

Value The java.util.Set of qualificationDiscountDef objects.

Notes Set this to the number of global discounts in your application.

The frequency of changes to the global discounts should determine TTL.
Default values: MaxEntries=10; TimeToLive-=300000 (five minutes)

WebLogic Portal 8.1 Performance Tuning Guide

Commerce Caches

Table B-21 discountCache

Cache discountCache

Use Used to store computed discount definitions (applicable to individual customers
or to customer segments).

Key A QualificationDiscountld. This is essentially a wrapping around a
java.lang.Integer that represents the ID of a discount.

Value The java.util.Set of qualificationDiscountDef objects

Notes Set this to the number of discounts in your application.

Frequency of changes to the global discounts should determine TTL.
Default values: MaxEntries=100; TimeToLive-=300000 (five minutes)

Commerce Caches

Table B-22 globalDiscountAssocCache

Cache globalDiscountAssocCache

Use Stores computed global discount associations. This is the set of discount
associations that is applicable to all users.

Key CustomerPk, which is a unique identifier for a customer (java.lang.String).

WebLogic Portal 8.1 Performance Tuning Guide B-11

WebLogic Portal Cache Settings

B-12

Tahle B-22 globhalDiscountAssocCache (Continued)

Value A DiscountAssociation object. A discount association is the mapping of a
Customer to a Discount. It is used to track and limit how many times the discount
is used by a particular customer.

Notes Default values: MaxEntries=100; TimeToLive-=3600000 (one hour).

Set MaxEntries to the number of global discount associations in your
application.

The frequency of changes to the global discount associations should determine
TTL.

To use this cache, you must start the Weblogic server using the command line
option: -Denable.discount.assoc.caches=true

This enables caching of discount associations and global discount associations.

The default is false, which means a separate read is performed for every
pricing calculation for every line item in every shopping cart. Enabling the cache
reduces database load by storing associations in a cache after the first read.

You can use the Service Administration tools within the Portal Administration
Tool to manage this cache. First you must add the cache so that it is visible in the
Portal Administration Tool, as described in the online help for the Portal
Administration Tool.

You can also manage the cache using the p13n cache APIL.

Table B-23 discountAssocCache

Cache discountAssocCache

Use Stores computed discount associations (applicable to individual customers or to
customer segments).

Key CustomerPk, which is a unique identifier for a customer (java.lang.String).

WebLogic Portal 8.1 Performance Tuning Guide

Commerce Caches

Table B-23 discountAssocCache (Continued)

Value A DiscountAssociation object. A discount association is the mapping of a
Customer to a Discount. It is used to track and limit how many times the discount
is used by a particular customer.

Notes Default values: MaxEntries=100; TimeToLive-=3600000 (one hour).

Set MaxEntries to the number of discount associations in your application.
The frequency of changes to the discount associations should determine TTL.

To use this cache, you must start the Weblogic server using the command line
option: -Denable.discount.assoc.caches=true

This enables caching of discount associations and global discount associations.

The default is false, which means a separate read is performed for every
pricing calculation for every line item in every shopping cart. Enabling the cache
reduces database load by storing associations in a cache after the first read.

You can use the Service Administration tools within the Portal Administration
Tool to manage this cache. First you must add the cache so that it is visible in the
Portal Administration Tool, as described in the online help for the Portal
Administration Tool.

You can also manage the cache using the p13n cache API.

Table B-24 CategoryCache

Cache

categoryCache

Use

Stores the root com.beasys.commerce.ebusiness.catalog.Category, the
total number of categories in the product catalog (java.lang.Integer) and
the Categorylnfo for each category.

CategoryManagerImpl gets the cache name from the ejb-jar.xml in
commerce.jar

Key

The key for the root Category is a static final String variable in the
CategoryManagerImpl class. The key for the total number of categories is
also a static final String variable in the CategoryManagerImpl class. The
key for a given CategoryInfo object is a
com.beasys.commerce.cbusiness.catalog.CategoryKey.

WebLogic Portal 8.1 Performance Tuning Guide B-13

WebLogic Portal Cache Settings

Table B-24 CategoryCache (Continued)

Value

The value for the root Category is
com.beasys.commerce.ebusiness.catalog.Category. The value for the total
number of categories is a java.lang.Integer. The value for the category info
objects is a
com.beasys.commerce.ebusiness.catalog.service.category.Categorylnfo.

Notes

The root Category and the total number of categories occupy two slots in
the cache and the remaining slots are occupied by the CategoryInfo
objects, so consider the total number of categories in the product catalog
plus 2 when setting the maximum cache size.

Consider how often these categories will change when setting TTL.
Default values: MaxEntries:1000; TimeToLive: 8640000

Table B-25 ProductltemCache

Cache ProductltemCache (ProductltemManagerImpl gets the cache name
from the ejb-jar.xml in commerce.jar.)

Use Stores the total number of product items in the catalog as well as the
product items

Key The key for the total number of product items is a static final String
variable in ProductltemManagerImpl. The key for the product items is
a com.beasys.commerce.cbusiness.catalog.ProductltemKey.

Value The value for the total number of product items is a java.lang.Integer.
The value for the product item is a
com.beasys.commerce.ebusiness.catalog.ProductItem.

Notes Consider the total number of product items when setting the maximum

cache size.

Consider how often these product items will change when setting the
TTL.

Default values:MaxEntries=1000;TimeToLive=21600000

B-14 WebLogic Portal 8.1 Performance Tuning Guide

	General Performance Tuning Guidelines
	Understanding Performance Tuning and BEA WebLogic Portal
	General Architecture
	WebLogic Portal

	Tuning Your WebLogic Server
	Tuning Your JVM
	Recommendations

	Tuning Your Database
	Tuning Your Operating System
	Upgrading to the Latest Service Packs
	Other Resources
	Tuning Your Portal Domain
	Tuning Your Domain Configuration
	Removing Debugging Tools from Your Domain
	Tuning for Users and Groups

	Tuning Your Portal Application
	Managing Caches
	Using the Portal Administration Tool to Configure Cache Settings
	Caching with JSP Tags

	Disabling Unused Services
	Tuning for Campaigns
	Referencing Events
	Avoiding Firing Extraneous Events
	Using Goal Checking for Campaigns
	Using Ads During Campaigns

	Tuning for Entitlements
	Using Role Caching When Using Entitlements

	Tuning for Content Management

	Tuning Your Portal Web Application
	Optimizing Your Portal Control Tree
	Modifying Your Portal Web Application Parameters
	Modifying Portal Framework Settings
	Modifying Web Application Settings
	Modifying WebLogic Server Settings

	Tuning Guidelines for WSRP
	Enabling Caches for WSRP
	Tuning the Server for WSRP

	Performance Tuning Checklists
	Portal Framework Guidelines
	Administration Portal Guidelines
	Content Management Guidelines

	WebLogic Portal Cache Settings
	Portal Framework Caches
	WSRP Caches
	Content and Ad Caches
	User Management Caches
	Campaign and Discount Caches
	Commerce Caches

