‘.."‘

o 7
2 bea
L/

BEAWebLogic
Portal

Designing Portals for
Optimal Performance

BEA WebLogic Portal Version 8.1 Service Pack 5
Revised: October 2005

Copyright

Copyright © 2004-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA WebLogic Server, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic
Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic JRockit, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document

Product Documentation on the dev2dev Web Site. A\
ContaCt US . ..ottt \
Documentation COnvVeNntionsS v ittt et e e vi

Designing Portals for Optimal Performance

Control Tree Design.ot 2
How the Control Tree Works 2
How the Control Tree Affects Performance.............. 3

Using Multiple Desktops . . .o ottt e 4
WhythisisaGoodIdea i 4
Design Decisions for Using Multiple Desktops 6

Optimizing the Control Treeot e e e e 7
Enabling Control Tree Optimization.uttnt e, 7

Setting the Current Page i 9
How Tree Optimization Works.t 10
Limitations to Using Tree Optimization.o it iriienrnnenen... 11
Disabling Tree Optimization.ottt et e e 13

Other Ways to Improve Performance i nnnnnn.. 14
Use Entitlements Judiciously i i 14

How Entitlements Affect Performance 14

Recommendations for Using Entitlements 15

BEA WebLogic Portal Designing Portals for Optimal Performance iii

Optimize Page Flow Session Footprint, 16

Use File-based Portals for Simple Applications. 17
Why Use a File-based Portal?. 17
Limitations to Using File-based Portals 17

Create a Production Domain in Development 18

Use Remote Portlets. 18

Do Remote Portlets Really Provide a Performance Boost? 19
Customize Portlets to Take Advantage of Optimization Features 19

Use Backing Files e e e 22
Thoughtful Design Decisions Ensure Optimal Performance. 22

iv BEA WebLogic Portal Designing Portals for Optimal Performance

About This Document

This document investigates some of the reasons for inadequate portal performance and offers
suggestions and best practices for avoiding those problems. It explores:

e How portal taxonomy affects performance and describes some of the latest features
included in BEA WebLogic Portal 8.1 that leverage this taxonomy to improve
performance.

e Other performance-enhancing portal concepts, such as the use of entitlements, streaming
portals, remote portals, and optimizing page flow sessions.

Product Documentation on the dev2dev Web Site

BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev Web site:

http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the list on the
dev2dev page; the home page for the specified product is displayed. From the menu on the left
side of the screen, select Documentation for the appropriate release. The home page for the
complete documentation set for the product and release you have selected is displayed.

Contact Us

Your feedback on the BEA BEA WebLogic Portal 8.1 documentation is important to us. Send us
e-mail at docsupport@bea.com if you have questions or comments. Your comments will be

BEA WebLogic Portal Designing Portals for Optimal Performance v

http://dev2dev.bea.com

About This Document

reviewed directly by the BEA professionals who create and update the BEA WebLogic Portal 8.1
documentation.

In your e-mail message, please indicate that you are using the documentation for BEA WebLogic
Portal 8.1, and include the product version.

If you have any questions about this version of BEA WebLogic Portal 8.1, or if you have
problems installing and running BEA WebLogic Portal 8.1, contact BEA Customer Support at
http://support.bea.com. You can also contact Customer Support by using the contact
information provided on the quick reference sheet titled “BEA Customer Support,” which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:
e Your name, e-mail address, phone number, and fax number
e Your company name and company address
e Your machine type and authorization codes
e The name and version of the product you are using

e A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item
Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.

vi BEA WebLogic Portal Designing Portals for Optimal Performance

http://support.bea.com

Documentation Conventions

Convention Item

monospace Indicates user input, as shown in the following examples:

text + Filenames: config.xml
* Pathnames: BEAHOME/config/examples
* Commands: java -Dbea.home=BEA HOME
¢ Code: public TextMsg createTextMsg(
Indicates computer output, such as error messages, as shown in the following example:
Exception occurred during event
dispatching:java.lang.ArrayIndexOutOfBoundsException: No such
child: 0

monospace Identifies significant words in code.

boldface Example:

text
void commit ()

monospace Identifies variables in code.

italic Example:

text

String expr

{1}

Indicates a set of choices in a syntax line. The braces themselves should never be typed.

Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:

java utils.MulticastTest -n name [-p portnumber]

Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.
Example:
java weblogic.deploy [list]|deploy|updatel

BEA WebLogic Portal Designing Portals for Optimal Performance vii

About This Document

Convention

ltem

Indicates one of the following in a command line:

» That an argument can be repeated several times in a command line

» That the statement omits additional optional arguments

» That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name]l [-f "filel.cpp file2.cpp
file3.cpp . . ."

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

viii

BEA WebLogic Portal Designing Portals for Optimal Performance

Designing Portals for Optimal
Performance

Performance is always an issue in the acceptance of an enterprise-level software solution and
WebLogic Portal is not immune to these issues. However, many performance problems are not
the result of flaws in the product but rather the result of poor decisions made during the design
phase of application development. Proper planning allows you to take advantage of the inherent
strengths of WebLogic Portal to ensure optimal performance for your portals.

Portal performance is usually measured by the amount of time required to actually render that
portal and all of its constituent parts once a visitor clicks an object on the screen (that is, sends a
request to the portal servlet). Any number of reasons—all easily addressed and rectified by proper
design—can negatively impact the anticipated system response, although foremost among them
is portal layout and design.

Regardless of what version of WebLogic Portal you run, solutions to the challenge of control tree
design are available. This document describes the two most effective ways to manage your
control tree:

e Using Multiple Desktops

e Optimizing the Control Tree

Although improving your control tree design will resolve most of a portal’s performance
problems, other elements of ineffective design can also impact performance. These elements
include improper or ineffective use of entitlements, using a streaming portal when a file-based
portal will suffice and not taking advantage of the latest features now available with WebLogic
Portal, such as remote portals and optimizing page flow sessions. This document also examines
these concepts and offers tips and practices for how best to employ them to create
high-performing portals.

BEA WebLogic Portal Designing Portals for Optimal Performance 1

Control Tree Design

One of the most significant impediments to portal performance lies with the number of controls
on a portal. The more portal controls (pages, portlets, buttons, etc.) you have, the larger your
control tree. For a detailed description of the controls available for a portal, see Portal Controls at:

http://e-docs.bea.com/wlp/docs81/whitepapers/netix/body.html#1061553

How the Control Tree Works

When a portal is instantiated, it generates a taxonomy, or hierarchy of portal resources, such as
desktops, books, pages, and portlets. Each resource is represented as a node on the control tree,
as shown in Figure 1.

Figure 1 Simple Portal Schematic

. Desktop

. Shell
Main

. Book

QD))) () ()

D & O & 60 0 0 -0 0 O O O
AVAVAVAWAVAVAYANAWLVAYANY LYWLV AW AN AP AV LY AW AW AV AYA

Sub-
B:oks
Pages
A Portlets

This example depicts a single portal with a main book containing six sub-books, which in turn
contain two pages each, and each page contains two portlets each, for a minimum of 42 controls
in the portal; the inclusion of buttons, windows, menus, and layouts will increase the number of
controls on the portal significantly.

Note: This example is significantly oversimplified; enterprise portals might include thousands
of controls.

2 BEA WebLogic Portal Designing Portals for Optimal Performance

How the Control Tree Affects Performance

Once the control tree is built and all the instance variables are set on the controls, the tree must
run through the lifecycle for each control before the portal can be fully-rendered. The lifecycle
methods are called in depth-first order. That is, all the init () methods for each control are
called, followed by the 1oadstate () method for each control, and so on in an order determined
by the position of each control in the portal’s taxonomy. For example, the control tree illustrated
in Figure 2 depicts the taxonomy a simple portal comprised of a book (B1) containing two pages
(P1 and P2), which each contain two portlets (p1-p4; note that p2 also contains its own
subordinate book, page, and portlet hierarchy).

Figure 2 Control Tree with Lifecyle Methods

Portlet Lifecycle
Methods
Init()
loadState()
If _nfpb=true

handlePostBackData()
If handlePostBack-
Data()=true

If handleFostBack-
Data{)=false

\
raiseChangeEvents()

(=)
B2
SaveSilate() A A

Dispose()

preRender()

BEA WebLogic Portal Designing Portals for Optimal Performance 3

When this portal is rendered, the init () method (and handlePostBackData () if nfpb=true)
will be called first, for each control, in this order: B1, P1, p1, p2, B2, P3, p5, p6, P2, p3, and
finally p4. Next, the loadstate () method would be called in the same order, and so on for all
lifecyle methods through savestate().

Note: Control lifecycle methods preRender (), render (), and dispose () are called only on
visible controls.

Running each control through its lifecycle requires some overhead processing time, which, when
you consider that a portal might have thousands of controls, can grow exponentially. Thus, you
can see that larger the portal's control tree the greater the performance hit.

Using Multiple Desktops

With SP3 and earlier versions of WebLogic Portal, the simplest way to limit the size of the control
tree without limiting the flexibility of the portal is to split the portal into multiple desktops. In
portal taxanomics, a desktop is nothing more than a portal embedded into another portal. It
maintains the ability to leverage all of the features inherent in any portal and, within itself, can
contain additional desktops.

Why this is a Good ldea

When you split a complex portal into multiple desktops, you spread the controls among those
desktops. Since the control tree is scoped to the individual portal and since a desktop behaves
much like a portal, each desktop has its own tree and the controls on that tree are built only when
that desktop is opened. Thus, by splitting a complex portal with a large control tree into multiple
desktops, you reduce the number of controls on the tree to just that number necessary for the
active desktop. As you might guess, this will reduce the amount of time required to render the
portal as a single desktop and increase portal performance.

When a portal is rendered, about 15% of the processing time is dedicated to constructing the
control tree, 70% to running the lifecycle methods, and 15% in garbage collection (clearing dead
objects from the heap, thus releasing that space for new objects). While construction and garbage
collection are always performed, running the lifecycle methods is only necessary for visible
controls (that is, those on the exposed desktop). This results in considerable overhead savings and
improved system performance.

For example, the sample control tree depicted in Figure 1 shows a single portal with 42 controls.
Were we to split this portal up into multiple desktops, as in Figure 3, while we would increase the
number of control trees in the entire portal, each tree would be nearly two thirds smaller, and thus

4 BEA WebLogic Portal Designing Portals for Optimal Performance

be processed in roughly two-thirds the time, significantly reducing the time required to render the
portal.

Figure 3 Simple Portal Split into Multiple Desktops

. Desktop . Desktop . Desktop
() shen () shell () shell
Main Main Main
Book Book Book
) =)) 9 =) =9

OREOEN OO NG D B e O & ©
AVAVAVAWAVAVAVAWAVAVAVAWAVAVAVANWAVAVAVAWAVAVAVA'

Sub-
@ Books

Pages
A Portlets

Figure 4 shows how the example in Figure 3 might be rendered once opened.

BEA WebLogic Portal Designing Portals for Optimal Performance

Figure 4 How Multiple Desktops Reduces Control Tree Size

When this desktop is opened, a con-
trol tree will be constructed using
only the controls on that desktop...

o ...while all other controls will be ignored.

Design Decisions for Using Multiple Desktops

As these examples demonstrate, splitting a complex portal into multiple desktops can be very
rewarding in terms of improved performance; however, not all portals will benefit from the extra
effort required to split them into multiple desktops. Before implementing a portal using multiple
desktops, you need to consider some important design decisions. For example:

e How many controls does your portal use? If the portal is small (about ten pages or
less) or uses a limited number of controls, the extra effort necessary to create multiple
desktops might not be necessary.

e Can your portal be logically divided into multiple desktops? While splitting a
complex portal into multiple desktops might save rendering time, arbitrarily assigning
portlets to those desktops, with no thought to their interrelationships, can be dangerous.

BEA WebLogic Portal Designing Portals for Optimal Performance

Visitors might have a negative experience with the application if related information is not
easily located, particularly if it is on a desktop separate from where it might logically go.

e What sort of administrative overhead will be required once the multiple
desktops are deployed into production? For example, if you have 20 different
potential desktops, a big consideration is how common they will be and that will help
determine the strategy. If they are more alike than different, then fewer desktops is better
because of smaller administrative tasks to perform.

e Are there customization concerns? Each desktop will have to be customized
separately, which can add significant additional effort for portal developers and
administrators. However, note that portal administrators can make changes in the library
that will affect all desktops in the portal.

e Can you afford to lose some functionality in your portal? For example, if your
application relies on interportlet communication, either through Page Flows or backing
files, you might be better off not splitting-up the portal, as listeners and handlers on one
desktop cannot communicate with their counterparts on other desktops. For portlets to
communicate with each other, they will need to be on the same desktop and you portal
design must take this requirement into consideration.

For more information on creating desktops, please refer to Create a Desktop in the WebLogic
Portal Administration Portal online help system at:

http://e-docs.bea.com/wlp/docs8l/adminportal/help/PM DesktopCreate.html

Optimizing the Control Tree

Service Pack 4 of WebLogic Portal 8.1 introduced the concept of control tree optimization. Tree
optimization—as the name implies—means that control tree rendering is done in a way that
creates the least amount of system overhead while providing the user with as complete a set of
portal controls as that user will need to successfully use the portal instance.

Enabling Control Tree Optimization

You enable control tree optimization by setting the t reeOpt imizationEnabled flag in
the.portal file to true, as shown in Listing 1.

Listing 1 Enabling Tree Optimization in .portal

<desktop> element:

<netuix:desktop definitionLabel="defaultDesktopLabel"

BEA WebLogic Portal Designing Portals for Optimal Performance 1

markupName="desktop" treeOptimizationEnabled="true"
markupType="Desktop" title="SimplePortal"s><netuix:lookAndFeel
definitionLabel="defaultLookAndFeel">

<netuix:desktop/>

Note: IftreeOptimizationEnableds= is notincluded inthe .portal file, the portal defaults

to treeOptimizationEnabled=false.

When this flag set to “true”, the portal framework will generate a partial control tree instead of
the full control tree, basing this tree on just the controls that will be visible and active. Thus, with
fewer controls needing to be rendered, processing time and expense can be significantly reduced.

e For portals, you can enable this flag by setting Tree Optimization to true in the WebLogic
Workshop Properties Editor, as shown in Figure 5

Figure 5 Enabling Tree Optimization in WebLogic Workshop

|| Property Editar *
Desktop - Deskiop Attributes

Desktop Properties [=]
Title Avitek Intranet - A platform for Inl
Definition Label samplePortal
Backing File
Tree Cpkirization Erue i
Look and Feel true
Shell mﬁ:r-rmrm—:n:n—

e For desktops, you can set the flag from the Administration Portal, as shown in Figure 6.

BEA WebLogic Portal Designing Portals for Optimal Performance

Figure 6 Enabling Tree Optimization from the Administration Portal

Properties

Desktop Path (Partial URL): treeTest01
Default Shell: [visitor Tools Shell =
Look and Feel: ICIaSSiC vl

P
Primary Book: [hjey Blank Bookj Save]|[Edit Contents]

Enable Tree Optimization

URL to access Desktop: http:/ /localhost: 7001/ consumer¥eb;/ appmanager/ treeTest/ treeTest01

View Desktop

Note: For new desktops, treeOptimizationEnabled="true” is the default value, so you
really don’t need to set anything in that circumstance.

Setting the Current Page

Before the flag can actually work, the file url-template-config.xml (in
<PORTAL_ HOME>/webAppName/WEB-INF) must have {url:currentPage} set in the
<url-template> element, as shown in Listing 2.

Note: When you create a new project in WebLogic Workshop, currentPage is added
automatically; however, if you are migrating from an earlier version of WebLogic Portal,
you will need to manually update url-template-config.xml.

Listing 2 url-template-config.xml URL Templates Component

<!-- URL templates -->

<url-template name="default"s>
{url:scheme}://{url:domain}: {url:port}/{url:path}?{url:queryString}
{url:currentPage}
</url-templates>
<url-template name="proxyurl"s>
{url:scheme}://{url:domain}: {url:port}/{url:prefix}/{url:path}?
{url:queryString}{url:currentPage}
</url-template>
<url-template name="finurl"s>
https://fin.domain.com:7004/{url:prefix}/{url:path}?{url:queryString}
{url:currentPage}&dept=finance

BEA WebLogic Portal Designing Portals for Optimal Performance 9

</url-template>
<url-template name="default-complete">
{url:scheme}://{url:domain}: {url:port}/{url:prefix}/{url:path}?
{url:queryString}{url:currentPage}
</url-templates>
<url-template name="jpf-default"s>
http://{url:domain}: {url:port}/{url:path}?{url:queryString}
{url:currentPage}
</url-templates>
<url-template name="jpf-action">
http://{url:domain}: {url:port}/{url:path}?{url:queryString}
{url:currentPage}

</url-template>

How Tree Optimization Works

When the portal servlet receives a request (that is, a mouse-click) it will read the cache to
determine if a control tree factory exists. If one doesn’t, it calls controlTreeFactoryBuilder,
passing it the XML from the .portal file. This class returns a control tree factory to the servlet,
which passes the request to the CreateUIControlTree class.

Assuming pageLabel and treeOptimizationEnabled="true”,
CreateUIControlTreeFactoryCaﬂsﬂﬂzPartialUIControlTreeCreator()rndhodﬂvhmh
returns a control tree comprised of just the control identified by the page label and the set of active
page and book labels; this is a partial control tree.

For example, if tree optimizations were enabled for the portal depicted in Figure 1, when you
submit a request (that is, a mouse click), only the active controls would be rendered, as illustrated
in Figure 7.

10 BEA WebLogic Portal Designing Portals for Optimal Performance

Figure 7 How Tree Optimization Reduces Control Tree Size

With treeOptimizationEn- . Desktop ...while all other controls are

able="true”, only the controls that ignored.
are active in the session will be ren-

dered... \

Sub-
@ Books

Pages
Portlets

The set of active page and book labels for that session stored during the savestate () lifecycle
method execution tell PartialUIControlTreeCreator() which controls to build. Only these
controls will be built; all others in the portal will be ignored. As you can see, a significant amount
of processing overhead is eliminated when the control tree is optimized—since far fewer controls
need to be built—resulting in greatly improved performance.

Limitations to Using Tree Optimization

For WebLogic Portal 8.1 with SP4 users creating complex portals that require a large number of
controls, tree optimization is the easiest way to ensure optimal portal performance. Controls that
aren’t active in the current portal instance aren’t built, saving considerable time and overhead.
Nonetheless, you need to be aware that tree optimization slightly changes a portal’s behavior and
some portal implementations will not completely benefit from using it; for example:

e The backing file lifecycle methods init() and handlePostBackData(), which are
called when the backing file is executed—even for non-visible controls—are not called
when tree optimization is enabled, unless they appear on visible controls.

o If your portal uses backing files on any of their controls, some backing context
APIs are limited in their functionality. On DesktopBackingContext,

BEA WebLogic Portal Designing Portals for Optimal Performance 1

12

BookBackingContext, and PageBackingContext, the following methods will return null
if they are trying to access a page, book, or portlet that is not in the partial tree

public BookBackingContext getBookBackingContextRecursive (String
definitionLabel)

public PageBackingContext getPageBackingContextRecursive (String
definitionLabel)

public PortletBackingContext
getPortletBackingContextRecursive (String instanceLabel)

public PortletBackingContext []
getPortletsBackingContextRecursive (String definitionLabel)

You might experience the same behavior—or lack thereof—on
DesktopPresentationContext,BookPresentationContext,and
PagePresentationContext with the presentation versions of these methods:

public BookPresentationContext
getBookPresentationContextRecursive (String definitionLabel)

public PagePresentationContext
getPagePresentationContextRecursive (String definitionLabel)

public PortletPresentationContext
getPortletPresentationContextRecursive (String instancelabel)

public PortletPresentationContext []
getPortletsPresentationContextRecursive (String definitionLabel)

o If your portal uses multi-level menus you need to decide if the benefit of multilevel
menus outweigh any performance hit. If the menu is on an active book, every control
accessible from that menu must be created before the portal is completely rendered, thus
more overhead and a greater performance hit. On the other hand, because a multilevel
menu results in the creation of a skeletal control tree, it can reduce the number of request
cycles required to navigate to your desired destination, reducing the total overhead required
to accomplish a navigation.

o If your portal uses Programmatic Page Change Events called from a backing file
and the page to which the change is being directed is not within the partial control tree, it
does not exist in the instance and the page change will not occur. You can work around this
problem by doing one of the following (this is the preferred order):

a.
b.

C.

Use a link to perform the page change.
Use the new declarative interportlet communications model .

Implement a redirect from within the backing file.

BEA WebLogic Portal Designing Portals for Optimal Performance

d. Set nfto=false” inthe invoking link. This will cause the full control tree to be created
for that single request.

e. Turn off tree optimization altogether on the portal.

e If your portal uses “cookie” or “url” state locations, the partial control tree will
not work.

e If your portal uses non-visible portlets, the onDeactivation portlet events for
non-visible portlets may not work with portal tree optimization turned on.
When the “tree optimization” flag in a .portal file is turned on, not all non-visible portlets
for a given request are processed. (A non-visible portlet is one that lives on a page that is
not displayed for the given request.) This can be a problem if you are trying to catch an
onDeactivation event for a portlet—once the portlet has been deactivated, it is no longer
visible, and so the system doesn't process it to fire its deactivation event. The
recommended workaround is to set tree optimization to false for the portal in question.
However, there is a trick you can play if you need the tree optimization. For each portlet
that you want to catch deactivation events for, define a dummy event handler (for example,
create a custom event handler with event = “[some nonsense string]” and set the property
“Only If Displayed” to false. This will force the system to process the portlet whether
visible or not.

Mindful of these conditions, you should never set treeOptimizationEnabled to true without
first doing a complete regression test on the portal. If any of the above-listed problems occur, you
might want to rethink your portal design or disable tree optimization completely.

Disabling Tree Optimization

As discussed above, although control tree optimization can benefit almost any portal, behavioral
limitations might require that you disable it. When you disable optimization, the portal will create
a full control tree upon every request. Be aware that this could significantly impede the
performance of very large portal. You need to decide whether the anticipated performance hit is
offset by the improvement in functionality.

To disable tree optimization, do one of the following:
e Sect treeOptimizationEnabled= “false” inthe .portal file or on the desktop.

e Include nfto=false” in the request parameter of just that instance for which you want to
disable tree optimization. The parameter needs to be added to URL programmatically as
the URLSs are generated using framework classes GenericURL and PostbackURL; for more
information on these classes, see the WebLogic Portal Javadoc.

BEA WebLogic Portal Designing Portals for Optimal Performance 13

The following code shows one way to adding this parameter:

PostbackURL url = PostbackURL.createPostbackURL (request, response) ;
url.addParameter (GenericURL.TRE OPTIMIZATION PARAM, "false");

e Use one of the tags in the render tag libraries.

e Delete the pageLabel parameter from the request.

Other Ways to Improve Performance

14

In addition to managing the taxonomy of your portal through effective use of the control tree,
WebLogic Portal offers other ways to improve performance. These solutions can all be used in
concert with multiple desktops and control tree optimization, ensuring superior portal
performance. This section describes the most effective performance-enhancing solutions
available with WebLogic Portal.

Use Entitlements Judiciously

Entitlements determine who may access the resources in a portal application and what they may
do with those resources. This access is based on the role assigned to an application visitor,
allowing for flexible management of the resources. For example, if you have an Employee
Review portlet, you can assign the “Managers” visitor entitlement role you created to that portlet,
letting only logged in users who belong in that role view the portlet.

Users visiting an application are assigned roles based on an expression that can include their
name, the group that they are in, the time of day, or characteristics from their profile. For
example, the “gold member” role could be assigned to a user because they are part of the frequent
flyer program and have flown more than 50,000 miles in the previous year. This role is
dynamically assigned to the user when they log into the site.

How Entitlements Affect Performance

To ensure optimal portal performance, you should use entitlements judiciously. Too many
entitlements can significantly impact performance. This happens because the entitlement engine
is called during the render phase of an operation and is required to check system overhead and
rules. Because this checking represents additional system overhead, if it is required too often on
a portal, performance will suffer. In addition, the entitlements engine is also responsible for
managing administrative tasks, which increases that overhead, again causing degrading
performance.

BEA WebLogic Portal Designing Portals for Optimal Performance

With the release of WebLogic Portal 8.1 with Service Pack 4 and later, performance related to
entitlements has been improved by storing the entitlements in the database as opposed to LDAP.
Nonetheless, you should always be aware that too many entitlements will impede performance.

Recommendations for Using Entitlements

Here are some simple recommendation for using entitlements judiciously:

e Avoid the temptation to create a role for every node on an organizational
chart. In large organizations, granting entitlements would then become a serious burden
on the system. If you want to focus the user experience to a more granular level than that
provided by the role assigned a user, consider employing the personalization capabilities
available with WebLogic Portal 8.1.

e Disable entitlements if a portal is not using any security policies. If a portal is
using security policies enable it and set the value for the
<control-resource-cache-size=nn> attribute to equal the number of desktops +
number of books + number of pages + number of portlets + number of buttons (max, min,
help, edit) used in a portal. Use the default value if you are concerned about available
memory.

¢ Limit your entitlement request to only one resource at a time. Bundling a larger
number of resources (portlets, pages, books) with one entitlement request can cause an
unwanted performance hit.

o If your portal uses more than 5000 entitlements, customize the cache
settings for WebLogic Entitlements Engine. For details, see Tuning for
Entitlements in the WebLogic Portal Performance Tuning Guide, at:

http://edocs.bea.com/wlp/docs8l/perftune/4PortalApplication.html#1073678

Limit User Customizations

BEA recommends that you allow users (visitors) to modify only one page or a small set of pages,
and require that administrators control the remainder of pages.

When users customize a page, they get their own instance of that page. All other pages that have
not been customized point back to the original library instance. When an administrator makes a
change to a page, that change must iterate for each user who customized the page. If many users
customized that page, propagating the change might take a long time because of the required
database processing.

BEA WebLogic Portal Designing Portals for Optimal Performance 15

Optimize Page Flow Session Footprint

If your portal uses Page Flows portlets in a replicated clustering environment, you might
experience a performance issue because the request attributes you add to these portlets might be
persisted to the session as a component of a Page Flow portlet’s state. As more request attributes
are added, the session grows, often to sizes that can severely restrict performance.

Page Flow portlets are hosted within the Portal framework by the Scoped Servlet environment.
This environment effectively acts as a servlet container, but its behavior causes the request
attributes to be scoped to the session within a container class used to persist Page Flow state. This
can be particularly unwelcome in clustered environments, when large amounts of data—
including these Page Flow portlet request attributes—might be replicated across the cluster.

To improve performance in these circumstances, WebLogic Portal 8.1 with Service Pack 4 and
later provide the requestAttrPersistence attribute for Page Flow portlets.
requestAttrPersistence is included in the .portlet file and can be set by from the
Properties Editor in WebLogic Workshop.

requestAttrPersistence has these values:

e session: this is the existing behavior (this is the default). All existing Page Flow portlets
should not require changes by default.

e transient-session: places a non-serializable wrapper class around a persisted Page
Flow state object into the session. These portlets work just as the existing portlets, except
in failover cases, where the persisted request attributes will disappear on the failed-over-to
server. In these cases you will need to write the forward JSPs to gracefully handle this
contingency by, at minimum, not expecting any particular request attribute to be populated
and, ideally, by having a mechanism to either repopulate the request attributes
automatically or present the user with a link to re-run the last action to repopulate the
request attributes. For non-failover cases, request attributes will be persisted, providing a
performance advantage for non-postback portlets identical to default session persistence
portlets. While session memory will still be consumed in this case, there will be no
additional cluster replication costs for the persisted request attributes.

e none: performs no persistence operation. Since these portlets never have request attributes
available on refresh requests, you must write the forward JSPs to assume the request
attributes will not be available. This option is helpful when you want to remove completely
the framework-induced session memory loading for persisted request attributes.

To set the request attribute persistence attribute for a page flow portlet, open the Request
Attribute Persistence drop-down under the Page Flow Content group in the WebLogic Workshop
Properties Editor and select the desired value, as shown in Figure 8.

16 BEA WebLogic Portal Designing Portals for Optimal Performance

Figure 8 Selecting Request Attribute Persistence Attribute

Request Attribute Persistence Session hl
Administration Properties none

Markup Mame F i

Dracan Fakbinn Deanasl Fac

Use File-based Portals for Simple Applications

Portals come in two flavors: file-based and streaming. As the name implies, a file-based portal—

})

also called a “light portal”—obtains all of its resources from the user’s file system. Streaming
portals, on the other hand, derive their resources from one to many databases. Although file-based
portals are intended for development purposes, if you are creating a static portal (that is, a portal
that doesn’t require customization customized by the end user or administrator) or very simple
files, you might encounter some degree of performance improvement in a production
environment.

Why Use a File-based Portal?

For simple, static portals, deriving resources from the file system can result in improved
performance and bring these benefits:

e Source code control is easily manageable.
e Propagation to other environments is easy.

e They are easy to create in WebLogic Workshop.

Limitations to Using File-based Portals

While file-based portals might show some performance improvement over streaming portals,
their functionality is limited; for example, because no database is involved, you can’t take
advantage of things such as user customization or entitlements. Other features that are missing
from a file-based portal include:

e Delegated Administration
e Visitor Tools

e Preferences at the portal instance level and at the definition level.

Moreover, in the majority of cases, the performance improvement gained by using a file-based
portal is not so significant as to outweigh these limitations.

BEA WebLogic Portal Designing Portals for Optimal Performance 17

18

Create a Production Domain in Development

While this tip doesn’t directly improve performance at runtime, it nonetheless allows you to see
how your application will perform before you propagate it to production. By creating a
production domain in development, you can simulate and then evaluate how the portal will
perform in production. You can then make the necessary adjustments before actually deploying
the portal. If problems occur or performance is not optimal, you can rectify these situations before
the end user ever sees them.

To create a production domain, you will need to update the startup script settings by setting the
WLS_PRODUCTION MODE= flag to true and setting to false these flags:

® iterativeDevFlag

® debugFlag

® testConsoleFlag

® logErrorsToConsoleFlag
® pontbaseFlag

® verboseloggingFlag

Additionally, you will need to set default values for the threadcount and the
JDBCConnectionPool sizes. If you are threading portlets (that is, using forkable=true) ensure
that you configure a portalRenderQueue and/or portalPreRenderQueue in your
config.xml file so that the forked portlets use their own thread pools and not the WebLogic
thread pool. The following code sample describes how to set the thread count appropriately:

<ExecuteQueue Name="default" ThreadCount="15"/>
<ExecuteQueue Name="portalRenderQueue" ThreadCount="5"/>

<ExecuteQueue Name="portalPreRenderQueue" ThreadCount="5"/>

Use Remote Portlets

Implementing proxy, or “remote,” portlets might result in some performance improvement,
although this method also comes with its limitations. Remote portlets are made possible by Web
Services for Remote Portlets (WSRP), which was first integrated into WebLogic Portal 8.1 with
Service Pack 3. WSRP is a web services standard that allows you to “plug-and-play” visual,
user-facing web services with portals or other intermediary web applications. It allows you to
consume applications from WSRP-compliant Producers, even those far removed from your
enterprise and surface them in your portal.

For more information on using WSRP, please refer to Using WSRP with WebLogic Portal at:

BEA WebLogic Portal Designing Portals for Optimal Performance

http://edocs.bea.com/wlp/docs8l/wsrp/index.html

Do Remote Portlets Really Provide a Performance Boost?

While you can reduce development time by using a remote portlet—because you don’t have to

actually develop the contents of the portlet, just its container—the major performance benefit is
that any controls within the application (portlet) you are retrieving are rendered by the producer
and not by your portal. The expense of calling the control lifecycle methods is borne by resources
not associated with your portal.

Although using remote portlets can improve portal performance, it is not without its drawbacks.
For example:

e Fetching data from the producer can be expensive. You need to decide if that expense is
within reason given the resources locally available.

e Ifyou are using WebLogic Portal 8.1 with Service Pack 3 or earlier, you cannot establish
interportlet communications with remote portlets. Event listeners in your local portlets
cannot react to events on the remote portlet. Fortunately, this limitation has been overcome
with WebLogic Portal 8.1 with Service Pack 4 and later. If interportlet communications is
necessary to your application, you might either want to avoid using remote portlets or
upgrade your version of WebLogic Portal 8.1 to Service Pack 4 or later.

e Some features, such as customizations, are unavailable to the remote portlet.

If the expense of portal rendering sufficiently offsets the expense of transport and the other
limitations described above are inconsequential to your application, using remote portlets can
provide some performance boost to your portal.

Customize Portlets to Take Advantage of Optimization
Features

Customizing your portlet settings can help you avoid performance problems. Specifically you can
do the following:

e Cache portlets. Caching portlets allows you to cache the portlet within a session instead of
retrieving each time it recurs during a session (on different pages, and so on).

e Set process-expensive portlets to pre-render and/or render in a multi-threaded (forkable)
environment. If a portlet has been designed as forkable (multi-threaded) you have the
option of adjusting that setting when building your portal. This can increase performance
of portlets whose processing can be time-extensive, such as RSS feeds.

BEA WebLogic Portal Designing Portals for Optimal Performance 19

Note that if you are using page flows, the initial begin actions and refresh actions run
during the pre-render phase.

e Use backing files to handle preprocessing of portlet functionality.

Table 1, “Performance-related Portlet Properties,” on page -20 lists performance-related portlet
properties that are available when creating/modifying portlets in WebLogic Workshop. If portlets
are designed to allow portal administrators to adjust cache settings and rendering options, you can
modify those properties in the Administration Portal.

Table 1 Performance-related Portlet Properties

Portlet Property Use

Render Optional. To enhance performance, set to “true” to cache the portlet. For example,
Cacheable portlets that call Web services perform frequent, expensive processing. Caching Web
service portlets greatly enhances performance.

Do not set this to “true” if you are doing your own caching. This property must be set
to false if you want to allow portal administrators to modify the cache setting in the
Administration Portal.

Cache Expires Optional. When the “Render Cacheable” property is set to “true,” enter the number
(seconds) of seconds in which the portlet cache expires.

Fork Render Intended for use by a portal administrator when configuring or tuning a portal.

Setting to “true” tells the framework that it should attempt to multithread render the
portlet. This property can be set to true only if the “Forkable” property is set to “true.”

Fork Render Allows you to set a timeout value for rendering. If Fork Render is set to “true,” you
Timeout can set a timeout attribute to indicate that the portal framework should wait only as
(seconds) long as the timeout value for each fork render portlet. The default value is -1 (no

timeout). When a portlet rendering times out, an error is logged, but no markup is
inserted into the response for the timed-out portlet.

20 BEA WebLogic Portal Designing Portals for Optimal Performance

Table 1 Performance-related Portlet Properties

Portlet Property

Use

forkPreRender

Enables forking in the preRender lifecycle phase (see How the Control Tree Affects
Performance for more information about the control tree lifecycle). preRender
forking is supported by these portlet types:

« JSP

» Page Flow

» JSRI168

* WSRP (Consumer portlets, only)

Setting forkPreRender to true indicates that the portlet’s preRender phase should be
forked.

If you are using page flows, the initial begin actions and refresh actions run during
the preRender phase.

At this time, Fork PreRender is not supported in the WebLogic Workshop interface.
To implement it, please refer to the instructions in the topic “How Do I: Enable the
forkPreRender Attribute?” in the WebLogic Workshop online help system.

forkPreRender
Timeout

Takes an integer value and sets the timeout value, in seconds, for the forked
preRender phase. This attribute is applied only if forkPreRender="true”. Ifthe
time to execute the forked preRender phase exceeds the timeout value, the portlet
itself times out (that is, the rest of the lifecycle phases for this portlet are aborted; see
How the Control Tree Affects Performance for more information about the control
tree lifecycle), the portlet is removed from the page where it was to be displayed, and
an error level message is logged that looks similar to the following example.

<May 26, 2005 2:04:05 PM MDT> <Error> <netuixs>
<BEA-423350> <Forked render timed out for portlet with id
[t portlet 1 1 1]. Portlet will not be included in
response. >

At this time, forkPreRenderTimeout is not supported in the WebLogic Workshop
interface. To implement it, please refer to the instructions in the topic “How Do I:
Enable the forkPreRenderTimeout Attribute?” in the WebLogic Workshop online
help system.

Forkable

Optional. Lets a portlet developer determine whether or not the portlet is allowed to
be multithread rendered or pre-rendered.

When set to “true,” a portal administrator can use the “Fork Render” or “Fork
PreRender” property within the Administration Portal.

BEA WebLogic Portal Designing Portals for Optimal Performance

21

Use Backing Files

Backing files allow you to programmatically add functionality to a portlet by implementing (or
extending) a Java class, which enables preprocessing (for example, authentication) prior to
rendering the portal controls. Backing files can be attached to portals either by using WebLogic
Workshop or coding them directly into a .portlet file.

For more information see the Interportlet Communication Guide.

Thoughtful Design Decisions Ensure Optimal Performance

As we have discussed, a great many performance problems you might encounter with WebLogic
Portal can be attributed to poor design decisions. This paper has demonstrated that some of the
most serious performance issues—those dealing with portal rendering—can be resolved and
significant performance improvement can be realized by making just a few critical design
decisions:

e Ifyou are using a pre-Service Pack 4 version of WebLogic Portal, consider breaking up
complex portals into multiple desktops.

If you are using Service Pack 4 or later, enable control tree optimization.

e Use entitlements judiciously; too many can impact performance. Avoid the temptation of
granting a different role to every user. Instead, use WebLogic Portal’s personalization
capabilities to focus the user experience.

If your portal is small or relies only on static resources, you might experience some
performance boost by using a file-based portal rather than a streaming portal.

If you are using Page Flows in your portal, ensure their session footprint is optimized to
deliver the best performance.

Develop your portal in a production domain. This way, you can actually see what issues
might arise once the portal is propagated to production.

Remote portlets might provide improved performance, but be aware that they come with
some limitations.

22 BEA WebLogic Portal Designing Portals for Optimal Performance

../ipcguide/howworks.html#1001796
../ipcguide/howworks.html#1001796

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents

	About This Document
	Product Documentation on the dev2dev Web Site
	Contact Us
	Documentation Conventions
	Designing Portals for Optimal Performance
	Control Tree Design
	How the Control Tree Works
	Figure�1 Simple Portal Schematic

	How the Control Tree Affects Performance
	Figure�2 Control Tree with Lifecyle Methods

	Using Multiple Desktops
	Why this is a Good Idea
	Figure�3 Simple Portal Split into Multiple Desktops
	Figure�4 How Multiple Desktops Reduces Control Tree Size

	Design Decisions for Using Multiple Desktops

	Optimizing the Control Tree
	Enabling Control Tree Optimization
	Listing�1 Enabling Tree Optimization in .portal
	Figure�5 Enabling Tree Optimization in WebLogic Workshop
	Figure�6 Enabling Tree Optimization from the Administration Portal
	Setting the Current Page
	Listing�2 url-template-config.xml URL Templates Component

	How Tree Optimization Works
	Figure�7 How Tree Optimization Reduces Control Tree Size

	Limitations to Using Tree Optimization
	a. Use a link to perform the page change.
	b. Use the new declarative interportlet communications model.
	c. Implement a redirect from within the backing file.
	d. Set _nfto=false” in the invoking link. This will cause the full control tree to be created for...
	e. Turn off tree optimization altogether on the portal.

	Disabling Tree Optimization

	Other Ways to Improve Performance
	Use Entitlements Judiciously
	How Entitlements Affect Performance
	Recommendations for Using Entitlements

	Limit User Customizations
	Optimize Page Flow Session Footprint
	Figure�8 Selecting Request Attribute Persistence Attribute

	Use File-based Portals for Simple Applications
	Why Use a File-based Portal?
	Limitations to Using File-based Portals

	Create a Production Domain in Development
	Use Remote Portlets
	Do Remote Portlets Really Provide a Performance Boost?

	Customize Portlets to Take Advantage of Optimization Features
	Table�1 Performance-related Portlet Properties

	Use Backing Files
	Thoughtful Design Decisions Ensure Optimal Performance

