
BEAWebLogic
Portal™®

Portal User Interface
Framework Guide

BEA WebLogic Portal Version 8.1 Service Pack 5
Document Revised: September 2004

Copyright
Copyright © 2004-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA WebLogic Server, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic
Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic JRockit, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Portal User Interface Framework Guide iii

Contents

About This Document
Product Documentation on the dev2dev Web Site. .v

Contact Us . vi

Documentation Conventions . vi

Portal User Interface Framework Guide
Overview .1

How Look & Feel Determines Rendering .3

Overview. .3

The Look & Feel File .7

The Portal File .10

Location of the Look & Feel Resources .12

The skin.properties File .13

Look & Feel Overrides .16

Summary .20

How the Shell Determines Header and Footer Content .20

Overview. .21

The Shell File .23

The Portal File .26

Location of the Shell Resources .27

How the Shell Relates to Look & Feel .28

Summary .31

iv Portal User Interface Framework Guide

How Portal Components Are Rendered . 31

Overview . 32

Single File vs. Streamed Rendering . 33

Rendering Lifecycle of a Book . 34

Summary . 55

The Look & Feel Editor . 55

Overview . 56

Application Window . 59

Style Hierarchy Window . 60

Style Description Window . 61

View Area . 64

Document Structure Window. 64

Property Editor Window . 66

Summary . 66

Portal User Interface Framework Guide v

About This Document

This document covers the following topics:

How Look & Feel Determines Rendering describes how look & feel determines how a
portal desktop is rendered and what it looks like.

How the Shell Determines Header and Footer Content describes how shells determine the
content of a desktop header and footer.

How Portal Components Are Rendered illustrates the rendering process, showing how a
portal component is converted to HTML.

The Look & Feel Editor discusses functional parts of the Look & Feel Editor and
important concepts that will help you use the Editor effectively, such as CSS inheritance.

Product Documentation on the dev2dev Web Site
BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev Web site:
http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the list on the
dev2dev page; the home page for the specified product is displayed. From the menu on the left
side of the screen, select Documentation for the appropriate release. The home page for the
complete documentation set for the product and release you have selected is displayed.

http://dev2dev.bea.com

About Th is Document

vi Portal User Interface Framework Guide

Contact Us
Your feedback on the BEA WebLogic Portal documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the WebLogic Portal documentation.

In your e-mail message, please indicate that you are using the documentation for BEA WebLogic
Portal 8.1 Service Pack 4.

If you have any questions about this version of BEA WebLogic Portal, or if you have problems
installing and running BEA WebLogic Portal, contact BEA Customer Support at
http://support.bea.com. You can also contact Customer Support by using the contact
information provided on the quick reference sheet titled “BEA Customer Support,” which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

http://support.bea.com

Documentat i on Convent ions

Portal User Interface Framework Guide vii

monospace
text

Indicates user input, as shown in the following examples:
• Filenames: config.xml
• Pathnames: BEAHOME/config/examples
• Commands: java -Dbea.home=BEA_HOME
• Code: public TextMsg createTextMsg(

Indicates computer output, such as error messages, as shown in the following example:
Exception occurred during event
dispatching:java.lang.ArrayIndexOutOfBoundsException: No such
child: 0

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:
java utils.MulticastTest -n name [-p portnumber]

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

Example:
java weblogic.deploy [list|deploy|update]

Convention Item

About Th is Document

viii Portal User Interface Framework Guide

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f "file1.cpp file2.cpp
file3.cpp . . ."

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item

Portal User Interface Framework Guide 1

1

Portal User Interface Framework Guide

Overview
This document details how the portal framework turns a portal you develop in WebLogic
Workshop (see Figure 1) into the portal desktop visitors see in a browser (see Figure 2). The goal
of describing the portal framework is to help you develop and troubleshoot your portals. These
topics enable you to look at a rendered portal in a browser and understand which pieces of the
underlying framework you need to modify to get the results you want. In addition, the Look &
Feel Editor is discussed. The Look & Feel Editor lets you interactively modify the text styles used
by a portal.

The topics in this document describe key portal framework components and walk you through
the portal rendering process. These topics include:

How Look & Feel Determines Rendering
Describes how look & feel determines how a portal desktop is rendered and what it looks
like.

How the Shell Determines Header and Footer Content
Describes how shells determine the content of a desktop header and footer.

How Portal Components Are Rendered
Illustrates the rendering process, showing how a portal component is converted to HTML.

The Look & Feel Editor
Discusses functional parts of the Look & Feel Editor and important concepts that will help
you use the Editor effectively, such as CSS inheritance.

Por ta l Use r I nter face F ramework Gui de

2 Portal User Interface Framework Guide

Figure 1 Portal file under development in WebLogic Workshop.

Figure 2 Portal rendered in HTML.

How Look & Fee l Det ermines Rende r ing

Portal User Interface Framework Guide 3

How Look & Feel Determines Rendering
When you build a portal in WebLogic Workshop, the look & feels you use are the key to how
your portal is rendered and what it looks like when it is rendered. This topic shows you how the
different pieces of the look & feel framework are combined and configured to provide what the
portal framework needs to render the look & feel in HTML.

This topic contains the following sections:

Overview

The Look & Feel File

The Portal File

Location of the Look & Feel Resources

The skin.properties File

Look & Feel Overrides

Summary

Overview
The look & feel encompasses the following:

Skin - A skin is a group of Cascading Style Sheet (CSS) files, framework images (mainly
for portlet title bar icons), and JavaScript functionality that is used in the portal desktop
when it is rendered in HTML. A portal Web project can have multiple skins. When you
select a look & feel for a desktop, a specific skin is used. Following are example skin
elements, Image, CSS Style, and JavaScript Functions:

Image

CSS Style

Por ta l Use r I nter face F ramework Gui de

4 Portal User Interface Framework Guide

Skeleton JSPs - A skeleton is a group of JSPs that are used to render each component of
the portal desktop as HTML, from the desktop to books and pages to portlet title bars. The
skeleton provides the physical boundaries of the portal components and provides references

.bea-portal-button-float

{

}

.bea-portal-button-float img

{

 vertical-align: top;

 margin: 1px;

 border-style: solid;

 border-width: 1px;

 border-color: #666699;

}

JavaScript Function

function initPortletFloatButtons()

{

 var links =

document.getElementsByTagName("a");

for (var i = 0; i < links.length; i++)

{

if (links[i].className &&

links[i].className ==

"bea-portal-button-float")

{

 initPortletFloatButton(links[i]);

}

}

}

Overv iew

Portal User Interface Framework Guide 5

to the images, CSS classes, and JavaScript functions from the skin needed to render the
portal. A portal Web project can have multiple skeletons. When you select a look & feel
for a desktop, a specific skin and skeleton is used.

A look & feel is represented by an XML file (with a .laf extension). As shown in the following
figure, the .laf (avitek.laf) file is located in the lookandfeel folder of a portal project. In
addition, the .laf file name (for example, avitek) can be selected in the Desktop properties
panel.

Figure 3 Portal rendered in HTML.

Developers building portals with WebLogic Workshop are not the only users who can select the
look & feel used by a portal desktop. While developers create look & feels and select the default
look & feel used by a portal, portal administrators and visitors may ultimately determine the
desktop look & feel. The following figures show how portal administrators and users can change
the look & feel used by the desktop.

Por ta l Use r I nter face F ramework Gui de

6 Portal User Interface Framework Guide

After a portal administrator creates a desktop in the WebLogic Administration Portal, the
administrator can change the desktop look & feel on the Desktop Properties page, as shown in the
following figure.

Figure 4 The Desktop Properties page

The Look & Fee l F i l e

Portal User Interface Framework Guide 7

If visitor tools are enabled for the desktop, visitors can click the "Customize My Portal" link and
change the desktop look & feel, as shown in the following figure.

Figure 5 Customizing a portal

The following section shows the contents of a look & feel XML-based .laf file and describes
how it is used as the basis of portal desktop rendering.

The Look & Feel File
Look & feel files point to the specific skin and skeleton to be used for the overall desktop look &
feel.

Look & feel files are stored in the following location:
<portal_Web_project>/framework/markup/lookandfeel. Following is the avitek.laf
provided by BEA. The key attributes are highlighted.

<?xml version="1.0" encoding="UTF-8"?>

<netuix:markupDefinition

xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Por ta l Use r I nter face F ramework Gui de

8 Portal User Interface Framework Guide

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/controls/netuix/

1.0.0 markup-netuix-1_0_0.xsd">

 <netuix:locale language="en"/>

 <netuix:markup>

 <netuix:lookAndFeel

 definitionLabel="avitek" title="avitek"

 description="The avitek look and feel"

 skin="avitek" skinPath="/framework/skins/"

 skeleton="default" skeletonPath="/framework/skeletons/"

 markupType="LookAndFeel" markupName="avitek"/>

 </netuix:markup>

</netuix:markupDefinition>

The following table describes the look & feel file’s key attributes.

Table 1 Look & Feel File Attributes

Attribute Description

definitionLabel Required. The unique label used to identify the look & feel for setting
entitlements. Each look & feel in the portal Web project must have a unique
definitionLabel. For best practices, use the same name as the
markupName.

title Required. The string used to display the name in the Look & Feel drop-down
fields in WebLogic Workshop, the WebLogic Administration Portal, and on the
visitor tools page.

description Optional. Description of the look & feel. The description is used in the WebLogic
Administration Portal; when you select a look & feel in the portal Library, the
description appears on the Look & Feel Properties page.

skin Optional. The name of the directory containing the skin you want to use.

If you do not set this attribute, the /framework/skins/default skin is used.

The Look & Fee l F i l e

Portal User Interface Framework Guide 9

When you select a Look & Feel in the WebLogic Workshop Property Editor for a selected
desktop, the look & feel XML is automatically added to the underlying XML in the .portal file,
as shown in the following section.

skinPath Optional. The path, relative to the portal Web project, to the parent directory of
the skin directory.

If you do not set this attribute, the
/framework/skins/<skin_attribute_name> skin is used.

If no skin attribute is set, the /framework/skins/default skin is used.

skeleton Optional. The name of the directory containing the skeleton JSPs you want to use.

If you do not set this attribute, the framework uses the default.skeleton.id
path in the skin.properties file of the skin used.

If you do not set this attribute and no default.skeleton.id path is set in
skin.properties, the /framework/skeletons/default skeleton is
used.

skeletonPath Optional. The path, relative to the portal Web project, to the parent directory of
the skeleton directory.

If you do not set this attribute, the framework uses the
default.skeleton.path in the skin.properties file of the skin is used.

If you do not set this attribute and no default.skeleton.path is set in
skin.properties, the
/framework/skeletons/<skeleton_attribute_name> skeleton is
used.

If you do not set this attribute and no skeleton attribute is set, the
/framework/skeletons/<default.skeleton.id> skeleton is used.

If you do not set this attribute and no skeleton attribute is set, and
skin.properties contains no default.skeleton.id, the
/framework/skeletons/default skeleton is used.

markupType Required. The name of the type of component. Must always be "LookAndFeel".

markupName Required. The name for the look & feel. Each look & feel in the portal Web
project must have a unique markupName. For best practices, use the same name
as the definitionLabel.

Table 1 Look & Feel File Attributes

Por ta l Use r I nter face F ramework Gui de

10 Portal User Interface Framework Guide

The Portal File
The following example portal file, created with the Portal Designer, shows the inserted look &
feel XML (in bold) from the .laf file. The portal file is a template with which multiple desktops
can be created in the WebLogic Administration Portal. When used as a template, the portal file
determines the default look & feel of any desktop created from it.

<?xml version="1.0" encoding="UTF-8"?>

<portal:root

xmlns:html="http://www.w3.org/1999/xhtml-netuix-modified/1.0.0"

xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1

.0.0

portal-support-1_0_0.xsd">

 <portal:directive.page contentType="text/html;charset=UTF-8"/>

 <netuix:desktop definitionLabel="defaultDesktopLabel"

markupName="desktop"

markupType="Desktop" title="New Portal Desktop">

 <netuix:lookAndFeel definitionLabel="avitek" description="The avitek look

and feel"

 markupName="avitek" markupType="LookAndFeel" skeleton="default"

 skeletonPath="/framework/skeletons/" skin="avitek"

skinPath="/framework/skins/" title="avitek"/>

<netuix:shell description="A header with a link and footer is included

in this shell."

 markupName="headerFooterVisitor" markupType="Shell"

title="Header-Footer Visitor Shell">

 <netuix:head/>

The Po r ta l F i l e

Portal User Interface Framework Guide 11

 <netuix:body>

 <netuix:header>

 <netuix:jspContent

contentUri="/portlets/header/header.jsp"/>

 </netuix:header>

 [XML for books, pages, and portlets...]

 <netuix:footer>

 <netuix:jspContent

contentUri="/portlets/footer/footer.jsp"/>

 </netuix:footer>

The look & feel XML is inserted when the Look & Feel property is set for the selected desktop
in the Property Editor. For example, in the following figure, the look & feel called avitek is
selected.

Figure 6 Selecting a Look & Feel

Por ta l Use r I nter face F ramework Gui de

12 Portal User Interface Framework Guide

When the .laf file is inserted into the .portal file, its job is finished in the rendering process
and the .portal file is used to set look & feel.

Location of the Look & Feel Resources
The look & feel attributes in the portal file tell the portal which skin and skeleton to use to render
the portal in HTML. The portal in the previous example will use the following skin and skeleton
resources:

Skin Skeleton

The sk in .p roper t i es F i l e

Portal User Interface Framework Guide 13

Note About Portlet Titlebar Icons
The icons used in portlet title bars are stored in the skin's /images directory. The portal
framework reads the portal Web project's WEB-INF/netuix-config.xml file to determine
which of these graphics to use for the portlet's different states and modes (minimize, maximize,
help, edit, and so on).

The skin.properties File
Each skin has a skin.properties file, which is used by the portal framework to populate the
<head> section of the rendered HTML, among other things. Included in skin.properties are
references to the images directory, the CSS files containing the styles to be used in the HTML,
and the JavaScript files containing the functions that will be used in the HTML.

Note: You can also create a file called skin_custom.properties in the same directory as
skin.properties. Any entries you include in skin_custom.properties are also added to the
HTML <head> region. This feature lets you customize the properties without having them
overwritten by product updates.

The following will not be rendered:

Style Sheet styles that do not exist in one of the .css files listed in the <head>.

JavaScript functions that do not exist in one of the .js files listed in the <head>.

The /css, /images, and /js directories
contain the CSS files, framework images
(mainly portlet titlebar icons), and JavaScript
files that will be used in the skin. The
skin.properties file (discussed in the
next section) contains references to these
resources, and at rendering time those resource
references are inserted into the HTML <head>
region. You can name your skin resource
directories anything you like as long as you
reference them correctly in
skin.properties (or
skin_custom.properties).

Skins can also contain subdirectories for
sub-skins, or themes (discussed in Look & Feel
Overrides).

The skeleton is made up of JSPs that map to and
convert each portal component to HTML. The
XML elements for the portal components in the
.portal file determine the order in which the
skeleton JSPs are called and rendered as
HTML.

This figure shows a clipped view of the skeleton
contents. The subdirectories shown are skeleton
themes and skeletons used for mobile devices.
The JSPs in the /default directory make up
the "default" skeleton.

Themes are discussed in Look & Feel
Overrides.

Por ta l Use r I nter face F ramework Gui de

14 Portal User Interface Framework Guide

That is why it is important to add references to all skin resources in skin.properties or
skin_custom.properties.

The skin.properties or skin_custom.properties files can also contain skeleton path
information that is used if skeleton attributes are omitted from the look & feel (.laf) file, as
described in The Look & Feel File.

The following table shows an example of how entries in skin.properties for the active skin
are converted to HTML <head> entries. Different skins may have different entries.

The sk in .p roper t i es F i l e

Portal User Interface Framework Guide 15

Table 2 How skin properties map to HTML entries

skin.properties Entries Rendered HTML <head> Entries

images.path: images content="/framework/skins/avitek/images"/>

link.body.href: css/body.css
link.body.rel: stylesheet

link.book.href: css/book.css
link.book.rel: stylesheet

link.button.href: css/button.css
link.button.rel: stylesheet

link.fix.href: css/fix.css
link.fix.rel: stylesheet

link.form.href: css/form.css
link.form.rel: stylesheet

link.layout.href: css/layout.css
link.layout.rel: stylesheet

link.portlet.href: css/portlet.css
link.portlet.rel: stylesheet

link.window.href: css/window.css
link.window.rel: stylesheet

link.window-plain.href:
css/plain/window.css
link.window-plain.rel: stylesheet

<link href="/sampleportal/framework/skins/avitek/
css/body.css"
rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/
css/book.css"
rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/
css/button.css"
rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/
css/fix.css"
rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/
css/form.css"
rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/
css/layout.css"
rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/
css/portlet.css"
rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/
css/window.css"
rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/
css/plain/window.css" rel="stylesheet"/>

Por ta l Use r I nter face F ramework Gui de

16 Portal User Interface Framework Guide

You can control the order in which the CSS and JavaScript entries are inserted into the HTML
<head> section by adding

link.input.index:1

to a CSS entry and

script.util.index:1

to a script entry, where the number is the order in which the entry should be inserted. All CSS
entries are inserted first, followed by all script entries.

Look & Feel Overrides
You can override the skin elements and skeletons on individual portal components so that those
components have a different look & feel than the other portal components. For example, you can
override the look & feel of a portlet so that it looks different than the other portlets on a page.

script.skin.src: skin.js
script.skin.type: text/javascript

script.menu.src: menu.js
script.menu.type: text/javascript

script.float.src: float.js
script.float.type: text/javascript

script.menufx.src: menufx.js
script.menufx.type: text/javascript

script.util.src: util.js
script.util.type: text/javascript

script.delete.src: delete.js
script.delete.type: text/javascript

script.search.path: js (Provides the
directory for the location of the
JavaScript files.)

<script type="text/javascript"
src="/sampleportal/framework/skins/avitek/js/skin.js"></scri
pt>

<script type="text/javascript"
src="/sampleportal/framework/skins/avitek/js/menu.js"></sc
ript>

<script type="text/javascript"
src="/sampleportal/framework/skins/avitek/js/float.js"></scr
ipt>

<script type="text/javascript"
src="/sampleportal/framework/skins/avitek/js/menufx.js"></
script>

<script type="text/javascript"
src="/sampleportal/framework/skins/avitek/js/util.js"></scri
pt>

<script type="text/javascript"
src="/sampleportal/framework/skins/avitek/js/delete.js"></s
cript>

Table 2 How skin properties map to HTML entries

Look & Fee l Ove r r ides

Portal User Interface Framework Guide 17

Overriding Look & Feel with Themes
As part of each skin or skeleton, you can create sub-skins and sub-skeletons called "themes."
Themes contain all or part of the resources contained in a skin or skeleton. For example, a skin
theme can contain a /css subdirectory with a single CSS file, and a skeleton theme can contain
a single JSP to render a portlet titlebar. Themes can be used on books, pages, and portlets.

Each theme requires a .theme file located in
<portal_Web_project>/framework/markup/theme/. Following is a sample theme file:

<?xml version="1.0" encoding="UTF-8"?>

<netuix:markupDefinition

xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/controls/netuix/

1.0.0 markup-netuix-1_0_0.xsd">

 <netuix:locale language="en"/>

 <netuix:markup>

 <netuix:theme

 name="alert"

 title="Alert Theme" description="A simple alert theme."

 markupType="Theme" markupName="alert"/>

 </netuix:markup>

</netuix:markupDefinition>

The theme file contains two key attributes:

name - The name attribute value tells the portal framework the name of the theme
directory to look in to apply theme resources to the book, page, or portlet.

title - The title attribute value is used to populate the Theme drop-down list where it
appears in the book, page, and portlet properties in the Portal Designer and in the
WebLogic Administration Portal.

The theme XML is inserted in the .portal around the XML for the book, page, or portlet to
which the theme applies.

Por ta l Use r I nter face F ramework Gui de

18 Portal User Interface Framework Guide

The following figures show where you set a theme in WebLogic Workshop and in the WebLogic
Administration Portal.

Theme selection for a book, page, or portlet does not depend on the look & feel selected for a
desktop. All themes are available for selection for all look & feels, whether or not the skins and
skeletons for the look & feels contain the selected theme. If a skin or skeleton does not contain
the selected theme, the theme is ignored. If both a skin and a skeleton theme exists for the selected
look & feel, both are used.

The following figures show an example theme directory structure for the theme file, a skin theme,
and a skeleton theme:

WebLogic Workshop WebLogic Administration Portal

Theme File Skin Theme Skeleton Theme

Look & Fee l Ove r r ides

Portal User Interface Framework Guide 19

If skin or skeleton resources are not explicitly contained in a theme, the parent skin or skeleton
resources are used. For example, if a skeleton theme uses only a JSP to render a portlet titlebar,
the parent skeleton JSPs are used to render the rest of the portlet.

For skeletons, the ability to use parent resources is dependent on a file in the skeleton theme
directory called skeleton.properties,which contains a single entry:

jsp.search.path: ., ..

where ., .. is a relative path to the theme's own skeleton JSPs and to the parent skeleton's JSPs.

In the parent skin, the skin.properties must contain path information to its skin themes in the
following format:

theme.alert.search.path: alert/images, images

The name of the theme directory is the second entry in the property. The path to the theme images
is set (alert/images), along with the path to the parent skin's images directory (images) in case
the theme images are an incomplete subset of the necessary images.

Overriding Look & Feel with Properties
For any selected component in the Portal Designer, you can override CSS properties and the
skeleton JSP used to render the component. With the portal component selected in the Portal
Designer, set the property overrides you want in the Property Editor under Presentation
Properties, as shown in the following figure.

Figure 7 Property Editor

When the portal desktop is rendered as HTML, the skeleton JSP you selected is used to render
the component, and the style overrides you entered are automatically inserted into the XML of
the .portal file.

Por ta l Use r I nter face F ramework Gui de

20 Portal User Interface Framework Guide

Summary
The look & feel selected for a portal desktop serves as the basis for how the desktop is rendered
in HTML. The look & feel XML file (.laf) points to a specific skin and a specific skeleton on
the file system to use for rendering.

Skins are made up of framework images (like portlet titlebar icons), CSS files, and script files,
such as JavaScript. Skeletons are JSPs that convert XML-based portal components to HTML.

Once a look & feel is selected, its XML is inserted into the .portal XML file, which is the
primary XML file used to control desktop rendering (.portlet XML files are used to render
portlets). The look & feel settings point to the file-based skin and skeleton resources that are used
to generate and used in the rendered HTML.

The skin used in a look & feel contains a skin.properties and an optional
skin_custom.properties file that contains references to all images, CSS files, and script files
that are used by the skin. The entries in skin.properties and skin_custom.properties are
converted to HTML <head> entries so that any framework images, CSS styles, and script
functions used in the HTML are recognized.

You can override the look & feel for any book, page, or portlet by using themes; and using the
Portal Designer and Portlet Designer Property Editor you can override CSS styles, attributes, and
the skeleton JSP used to render desktops, books, pages, and portlet title bars and windows.

How the Shell Determines Header and Footer Content
When you build a portal in WebLogic Workshop, the shell that you select determines the header
and footer content of the portal desktop. The shell can point to JSP or HTML files that contain
the content, personalization, or other behavior you want to include in your headers and footers.

This topic contains the following sections:

Overview

The Shell File

The Portal File

Location of the Shell Resources

How the Shell Relates to Look & Feel

Summary

Overv iew

Portal User Interface Framework Guide 21

Overview
The following figure shows the area of a portal desktop controlled by the shell:

Figure 8 Portal areas controlled by the shell

The shell could also be set up to include a left navigation region, as illustrated in the left
navigation sample in the WebLogic Workshop sample portal. So the shell really controls
everything outside the main page book in a portal.

Por ta l Use r I nter face F ramework Gui de

22 Portal User Interface Framework Guide

A shell is represented by an XML file (with .shell extension), as shown in the following figure.

Figure 9 Shell XML file

Developers building portals with WebLogic Workshop are not the only users who can determine
the shell used by a portal desktop. While developers create shells and select the default shell used
by a portal, portal administrators ultimately determine the desktop shell.

The She l l F i l e

Portal User Interface Framework Guide 23

After a portal administrator creates a desktop in the WebLogic Administration Portal, the
administrator can change the desktop shell on the Desktop Properties page.

Figure 10 Changing the desktop shell

The following section shows the shell XML file and describes how it is used to provide header
and footer content.

The Shell File
The shell provides paths to the JSP or HTML files to be used in the desktop header and footer.

Shell files are stored in the following location:
<portal_Web_project>/framework/markup/shell/. Following is the
headerFooterVisitor.shell provided by BEA with the key attributes highlighted.

<?xml version="1.0" encoding="UTF-8"?>

Por ta l Use r I nter face F ramework Gui de

24 Portal User Interface Framework Guide

<netuix:markupDefinition

xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/controls/netuix/

1.0.0 markup-netuix-1_0_0.xsd">

 <netuix:locale language="en"/>

 <netuix:markup>

 <netuix:shell

 title="Header-Footer Visitor Shell"

 description="A header with a link and footer is included in this shell."

 markupType="Shell" markupName="headerFooterVisitor">

 <netuix:head/>

 <netuix:body>

 <netuix:header>

 <netuix:jspContent contentUri="/portlets/header/header.jsp"/>

 </netuix:header>

 <netuix:break/>

 <netuix:footer>

 <netuix:jspContent contentUri="/portlets/footer/footer.jsp"/>

 </netuix:footer>

 </netuix:body>

 </netuix:shell>

 </netuix:markup>

</netuix:markupDefinition>

The following table describes the shell attributes and shows how they are used to put content in
the desktop header and footer:

The She l l F i l e

Portal User Interface Framework Guide 25

The shell XML is automatically added to the underlying XML in the .portal file.

Table 3 Shell Attributes

This <element> or attribute... does this

title Required. The string used to display the name in the shell drop-down
fields in WebLogic Workshop and the WebLogic Administration
Portal.

description Optional. Description of the shell. The description is used in the
WebLogic Administration Portal; when you select a shell in the portal
Library, the description appears on the Shell Properties page.

markupType Required. The name of the type of component. Must always be "Shell".

markupName Required. The name for the shell. Each shell in the portal Web project
must have a unique markupName.

<netuix:head/> Required. This element maps to the head.jsp skeleton file that
renders the boundaries of the HTML <head> region.

<netuix:body> Required. This element maps to the body.jsp skeleton file that
renders the boundaries of the HTML <body> region.

<netuix:header> Required. This element maps to the header.jsp skeleton file that
renders the boundaries of the header region in HTML.

<netuix:footer> Required. This element maps to the footer.jsp skeleton file that
renders the boundaries of the footer region in HTML.

<netuix:jspContent> Optional. Use this element to reference the JSPs or HTML files you
want to use for content in the header and/or footer (by way of the
contentUri attribute). To use this element, make sure the
<netuix:header> and <netuix:footer> tags have opening
and closing elements inside which this tag is inserted. Use the
contentUri attribute to reference the JSP or HTML file relative to
the portal Web project.

Por ta l Use r I nter face F ramework Gui de

26 Portal User Interface Framework Guide

The Portal File
Following is an example portal file, created with the Portal Designer, showing the inserted shell
XML from the .shell file (in bold). The shell XML was inserted when the Shell property was
set for the selected desktop in the Property Editor. When the .shell file is inserted into the
.portal file, its job is finished in the rendering process and the .portal file is used to set the
header and footer content.

<?xml version="1.0" encoding="UTF-8"?>

<portal:root

xmlns:html="http://www.w3.org/1999/xhtml-netuix-modified/1.0.0"

xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1

.0.0 portal-support-1_0_0.xsd">

 <portal:directive.page contentType="text/html;charset=UTF-8"/>

 <netuix:desktop definitionLabel="defaultDesktopLabel"

markupName="desktop" markupType="Desktop" title="New Portal Desktop">

 <netuix:lookAndFeel definitionLabel="avitek" description="The avitek

look

and feel"

 markupName="avitek" markupType="LookAndFeel" skeleton="default"

 skeletonPath="/framework/skeletons/" skin="avitek"

skinPath="/framework/skins/" title="avitek"/>

 <netuix:shell description="A header with a link and footer is included in

this shell."

 markupName="headerFooterVisitor" markupType="Shell"

title="Header-Footer Visitor Shell">

 <netuix:head/>

Locat ion of the She l l Resources

Portal User Interface Framework Guide 27

 <netuix:body>

 <netuix:header>

 <netuix:jspContent contentUri="/portlets/header/header.jsp"/>

 </netuix:header>

 [XML for books, pages, and portlets...]

 <netuix:footer>

 <netuix:jspContent contentUri="/portlets/footer/footer.jsp"/>

 </netuix:footer>

The portal file is a template with which multiple desktops can be created in the WebLogic
Administration Portal. When used as a template, the portal file determines the default shell of any
desktop created from it.

Location of the Shell Resources
The shell attributes in the portal file tell the portal which content to use for the portal header and
footer when the portal is rendered in HTML. The portal in the previous example will use the
following shell resources:

Figure 11 Shell resources

The headerFooterVisitor.shell example file contains two tags that point to the content to
use in the header and footer, one inside the <header> element and one inside the <footer>
element:

Por ta l Use r I nter face F ramework Gui de

28 Portal User Interface Framework Guide

<netuix:jspContent contentUri="/portlets/header/header.jsp"/>

<netuix:jspContent contentUri="/portlets/footer/footer.jsp"/>

The locations of those files are highlighted in the previous figure. When the portal is rendered,
those JSPs are converted to HTML and inserted into the header and footer regions of the portal.
The JSP files can contain any content or functionality allowed in a JSP, including personalization.

The JSPs referenced by this example shell do not have to be called header.jsp and
footer.jsp. They could be any JSPs in the portal Web project. However, the skeleton JSPs used
to render the boundaries of the header and footer regions are always called header.jsp and
footer.jsp in the skeleton framework. The skeleton JSPs are different than the JSPs referenced
by the shell. The following section explains the difference in more detail.

How the Shell Relates to Look & Feel
While the shell controls the content of the area surrounding the main book of a portal, the look &
feel determines which skeleton header.jsp and footer.jsp are used to render the boundaries
and styles of the header and footer areas.

In the following examples, do not be confused by the identically named header.jsp for both the
look & feel and the shell header. They are different files with different uses. The fact that both
have the same name is coincidence.

Look & Feel (header.jsp skeleton)
The "avitek" look & feel in the portal file uses the "default" skeleton located in
/sampleportal/framework/skeletons/default/. Included in the default skeleton is a file
called header.jsp that is used to render the <header> element in the portal file.

<%@ page

import="com.bea.netuix.servlets.controls.application.HeaderPresentationCon

text" %>

<%@ page session="false"%>

<%@ taglib uri="render.tld" prefix="render" %>

<%

 HeaderPresentationContext header =

HeaderPresentationContext.getHeaderPresentationContext(request);

%>

How the Shel l Re la tes to Look & Fee l

Portal User Interface Framework Guide 29

<render:beginRender>

 <%-- Begin Body Header --%>

 <div

 <render:writeAttribute name="id" value="<%=

header.getPresentationId() %>"/>

 <render:writeAttribute name="class" value="<%=

header.getPresentationClass() %>" defaultValue="bea-portal-body-header"/>

 <render:writeAttribute name="style" value="<%=

header.getPresentationStyle() %>"/>

 >

</render:beginRender>

[The JSP referenced in the shell <header> element is inserted here at

rendering.]

<render:endRender>

 </div>

 <%-- End Body Header --%>

</render:endRender>

This is a simple skeleton file that, when rendered, produces the following HTML:

<!-- Begin Body Header -->

<div

 class="bea-portal-body-header"

>

</div>

Por ta l Use r I nter face F ramework Gui de

30 Portal User Interface Framework Guide

<!-- End Body Header -->

The opening <div> tag uses a CSS class called bea-portal-body-header and then closes
itself. The ending </div> tag at the end of rendering closes the <div> section. The JSP
referenced in the shell header is inserted between the opening and closing <div></div> tags
where its content is rendered as shown in the following example:

<!-- Begin Body Header -->

<div

 class="bea-portal-body-header"

>

[The JSP referenced in the shell <header> element is inserted here at

rendering.]

</div>

<!-- End Body Header -->

The shell's header.jsp inserted into the <div> tag of the header region controls the content,
styles, and behavior of the header content. The only elements provided by the look & feel are the
<div> tag and the bea-portal-body-header style class.

For troubleshooting purposes, you could view the rendered portal and view the
bea-portal-body-header class (contained in the avitek skin's body.css) to find out which
style elements for which the look & feel is responsible. Following is the definition of
bea-portal-body-header:

Summary

Portal User Interface Framework Guide 31

.bea-portal-body-header, .bea-portal-body-footer

{

 margin: 0px;

 padding: 1px;

 color: #C3C6B1;

}

.bea-portal-body-header

{

 font-size: large;

 font-weight: bold;

}

Summary
The shell selected for a portal desktop determines the content of the area surrounding the portal's
main book. The shell XML file (.shell) includes references to the HTML or JSP files you want
to appear in the desktop header and footer.

HTML and JSP files used in a header or footer can contain any content or functionality allowed
in those types of files, including personalization in JSP files.

Once a shell is selected, its XML is inserted into the .portal XML file, which is the primary
XML file used to control desktop rendering (.portlet XML files are used to render portlets).

While look & feel determines the physical boundaries of the header and footer and can include
CSS styles and other skin elements generated by the skeleton header.jsp or footer.jsp files,
the HTML or JSP files inserted in the header or footer by the shell control the content, styles, style
overrides, and behavior of the header and footer.

How Portal Components Are Rendered
With the look & feel and shell selected for a portal desktop, the rendering service has the basic
information it needs to convert a .portal XML file into a final HTML file.

This topic shows the rendering lifecycle, step by step, for a single portal component. The same
rendering principles apply for all other portal components.

Por ta l Use r I nter face F ramework Gui de

32 Portal User Interface Framework Guide

This topic includes the following sections:

Overview

Single File vs. Streamed Rendering

Rendering Lifecycle of a Book

Summary

Overview
There are three basic stages in the portal rendering process—a process that ultimately results in
a portal desktop being displayed in a browser:

1. Building a portal in XML: In the portal development process, you use the Portal and Portlet
designers in WebLogic Workshop to build .portal and .portlet files. Both types are XML
files. As you build portals and portlets in WebLogic Workshop, the XML elements and attributes
are automatically built under the surface.

The previous topics, How Look & Feel Determines Rendering and How the Shell Determines
Header and Footer Content, described part of the XML-building process: how the look & feel and
shell XML files are added to the portal XML file to provide rendering instructions.

2. Portal XML elements mapped to JSP skeleton files: The portal framework maps specific XML
elements to specific JSP skeleton files. They are called skeleton files because they are used to
render the physical boundaries and structure—the skeleton—of their portal components. For
example, a portlet titlebar in a portlet XML file uses an element called <netuix:titlebar>. The
portal framework knows to use the titlebar.jsp skeleton file to render the portlet titlebar.

3. JSP skeleton files and skin.properties are rendered as HTML: Each skeleton JSP file performs
its own processing, such as retrieving property values you set in the WebLogic Workshop
Property Editor (and were automatically added to the portal XML file), and generates the
appropriate HTML for the portal component. The skin.properties and optional
skin_custom.properties files for the selected look & feel are converted to image path entries,
CSS file entries, and script file entries in the HTML <head> area.

The following figure is a simplified illustration of the rendering process.

S ingl e F i l e vs . S t reamed Render ing

Portal User Interface Framework Guide 33

Figure 12 Portal rendering process

This topic will expand on these three stages using the rendering lifecycle of a single portal
component as an example.

Before going into greater detail on the rendering process, it is important to understand the
difference between viewing a portal in the development environment (WebLogic Workshop) and
viewing it in the administration/end user environment (WebLogic Administration
Portal/browser). The three-stage rendering process occurs in slightly different ways in the two
different environments. The following section describes the basic principles of each.

Single File vs. Streamed Rendering
The .portal file you create in WebLogic Workshop is a template. In this template you create
books, pages and portlets and define defaults for them. When you view the .portal file with
your browser the portal is rendered in "single file mode," meaning that you are viewing the portal
from your file system as opposed to a database. The .portal file's XML is parsed and the
rendered portal is returned to the browser. The creation and use of a .portal is intended for
development purposes, but you can access a .portal file in production. Because there is no
database involved you cannot take advantage of features such as user customization or
entitlements.

Once you have created a .portal file you can use it to create desktops for a production
environment.

Por ta l Use r I nter face F ramework Gui de

34 Portal User Interface Framework Guide

A desktop is a particular view of a portal that visitors access. A portal can be made up of multiple
desktops, making the portal a container for desktops. A desktop contains all the portlets, content,
shells, layouts, and look & feel elements necessary to create individual user views of a portal.

When you create a desktop based on the .portal file in the WebLogic Administration Portal,
the .portal and its resources are placed into the database. The settings in the .portal file, such
as the look & feel, serve as defaults to the desktop. Once a new desktop is created from a .portal
template, the desktop is decoupled from the template, and modifications to the .portal file do
not affect the desktop, and vice versa. For example, when you change a desktop's look & feel in
the WebLogic Administration Portal, the change is made only to the desktop, not to the original
.portal file. When you view a desktop with a browser it is rendered in "streaming mode" (from
the database). Now that a database is involved, desktop customizations can be saved and
delegated administration and entitlements can be set on portal resources.

The following table compares streamed and file based portals in more detail:

Rendering Lifecycle of a Book
This section illustrates the rendering lifecycle of a book, which will help you understand the
rendering lifecycle of other portal components, such as pages and portlets.

Portal Feature File-based Portals (.portal XML file) Streamed (database generated) Portals

Adding Entitlements Run-time check only Yes—More easily set and configured

Setting Preferences

Number of

Instances

In portal definition

Limited

No

For individual portal instances

More than file-based portals

Yes

Customization No Yes (Through Visitor Tools and the
Admin Portal)

Internationalization Difficult—Requires changes to
skeleton files.

Easier

Performance Slight advantage Slightly less than file-based portals

Propagation (from test to
production environments)

Easy to accomplish by moving the
.portal file

More difficult. Requires utilities and
proper planning.

Development Process Easiest More difficult

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 35

This section contains the following topics:

1. Building a portal in XML

2. Portal XML elements mapped to JSP skeleton files

3. JSP skeleton files and skin.properties are rendered as HTML

1. Building a portal in XML
This section describes steps that populate and configure the .portal XML file.

Selecting Look & Feel
When you select the look & feel for a desktop, the look & feel file determines which skin and
skeleton is used to render all desktop components. In the following example, the "avitek" look &
feel has been selected, which uses the "avitek" skin and the "default" skeleton. The look & feel
XML is added to the .portal XML file.

The skin and skeleton come into play later in the rendering process, when the desktop is viewed
with a browser. Before that happens, the book that will be used to illustrate the rendering process
will be added to the portal.

<netuix:markup>

 <netuix:lookAndFeel

 definitionLabel="avitek" title="avitek"

 description="The avitek look and feel"

 skin="avitek" skinPath="/framework/skins/"

 skeleton="default"

skeletonPath="/framework/skeletons/"

 markupType="LookAndFeel"

markupName="avitek"/>

</netuix:markup>

Por ta l Use r I nter face F ramework Gui de

36 Portal User Interface Framework Guide

Adding a Book to a Portal
In this section a book is added to the desktop in the .portal file and configured. Books can also
be added by portal administrators in the WebLogic Administration Portal, which adds the book
directly to the database.

The following figure shows a book control being dragged onto the desktop.

Figure 13 Dragging a control to the Desktop

After the book is added to the desktop, the book title is changed from "New Book" to "My Book,"
and the navigation style is set to Multi Level Menu, as shown in the following figure.

Navigation controls the way a book's sub-books and pages are accessed. The single-level menu
provides text links/tabs to sub-books and pages, and the multi-level menu provides a drop-down
menu to access sub-books and pages. (Books must be added to books rather than to pages inside
books for drop-down navigation to work. So in the following example, for the multi-level menu
to produce a drop-down menu, you would need to drag a new book control into Main Page Book,
right next to Page 1, as shown in the following figure.)

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 37

Figure 14 Arranging portal components

After the Navigation style is set on My Book, the following is what the book looks like in XML
in the .portal file. If you add a book in the WebLogic Administration Portal, the XML is added
to the database. This XML is used as the basis for the rendering of the book.

<netuix:book defaultPage="newPage.1" definitionLabel="my_book_3"

 markupName="book" markupType="Book" title="My Book">

 <netuix:multiLevelMenu

 description="This menu can navigate across may nested books."

 markupName="multiLevelMenu" markupType="Menu" title="Multi Level

Menu"/>

 <!-- in this example, the nested page content has been removed -->

</netuix:book>

2. Portal XML elements mapped to JSP skeleton files
When the desktop is viewed in a browser, the portal framework reads the XML elements and uses
the skeleton path to map the desktop's XML elements to skeleton JSPs. The following examples
show which elements in the book XML are mapped to skeleton JSPs and which skeleton JSPs are
used to render the elements.

Por ta l Use r I nter face F ramework Gui de

38 Portal User Interface Framework Guide

Once rendering has been handed off to the JSPs, the JSPs perform the tasks necessary for
conversion to HTML. Following are the book.jsp, multilevelmenu.jsp, and submenu.jsp
used in this example. Comments are added to describe what the JSPs are doing.

book.jsp
The book.jsp serves as a high-level container for the book's menu and the book's child books
and pages. Comments in the JSP code are highlighted in bold text.

<%@ page

import="com.bea.netuix.servlets.controls.page.BookPresentationContext,

com.bea.netuix.servlets.controls.page.MenuPresentationContext"

book XML - The highlighted elements are mapped to skeleton JSPs.

<netuix:book defaultPage="newPage.1" definitionLabel="my_book_3"

 markupName="book" markupType="Book" title="My Book">

 <netuix:multiLevelMenu

 description="This menu can navigate across may nested books."

 markupName="multiLevelMenu" markupType="Menu" title="Multi Level

Menu"/>

 <!-- in this example, the nested page content has been removed -->

</netuix:book>

skeleton - Referenced in the look & feel

/framework/skeletons/default/

book.jsp

multilevelmenu.jsp

submenu.jsp (referenced in multilevelmenu.jsp)

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 39

%>

<%@ page session="false"%>

<%@ taglib uri="render.tld" prefix="render" %>

<render:beginRender>

<%-- The content inside the <render:beginRender> tag is processed first

 and ultimately renders whatever is inside it. In most cases, the

 skeletons produce an opening <div> HTML tag with specific attributes

 such as CSS classes.

 The following block determines where the book falls in the desktop

 hierarchy (whether it is the top-level book or a nested book). It

 also sets the base name of the CSS class to use (bea-portal-book)

 and appends different endings to the base class to apply a

 different CSS class for each book context. Only processing,

 not HTML rendering, occurs in this block.

--%>

<%

 BookPresentationContext book =

BookPresentationContext.getBookPresentationContext(request);

 MenuPresentationContext menu = (MenuPresentationContext)

book.getFirstChild("page:menu");

 String bookClass = "bea-portal-book";

 String useBookClass = bookClass;

 if (book.isDesktopBook())

 {

 bookClass += "-primary";

 useBookClass = bookClass;

Por ta l Use r I nter face F ramework Gui de

40 Portal User Interface Framework Guide

 }

 else if (book.isLikePage())

 {

 useBookClass += "-invisible";

 }

 String bookContentClass = bookClass + "-content";

%>

<%-- The next block begins the actual HTML rendering, beginning with

 the comment "Begin Book" followed by an opening <div> HTML

 tag. Notice the JSP tags used before the closing bracket of the

 <div> tag. These populate the div tag with style attributes.

 The methods retrieve any presentation property override values

 you entered in the WebLogic Workshop Property Editor for the book.

 For the "class" attribute, the default value is useBookClass,

 which earlier is set to "bea-portal-book". (If through getting

 the context the book was found to be the top-level book, the value

 of useBookClass would be "bea-portal-book-primary".)

 With no overrides, the useBookClass variable will produce the

 following HTML, because the book is acting like a page:

 <div

 class="bea-portal-book-invisible"

 >

 The style sheet class is provided by the skin, and the CSS file

 containing the class is referenced in the skin's skin.properties

 file and added to the HTML <head> region.

--%>

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 41

 <%-- Begin Book --%>

 <div

 <render:writeAttribute name="id" value="<%= book.getPresentationId()

%>"/>

 <render:writeAttribute name="class" value="<%=

book.getPresentationClass()%>" defaultValue="<%= useBookClass

%>"/>

 <render:writeAttribute name="style" value="<%=

book.getPresentationStyle() %>"/>

 >

<%-- The following JSP tag gets the names of the pages and books it will

 display in its navigation menu, and based on the navigation element

 used in the portal XML file (in this case netuix:multiLevelMenu),

 uses the corresponding menu JSP (multilevelmenu.jsp) to render the menu

 in this position of the HTML.

--%>

 <render:renderChild presentationContext="<%= menu %>"/>

<%-- The following block provides a <div> HTML container for the

 book's content area--the child books and pages. Again, it uses

 a JSP tag to set the style sheet "class" attribute.

--%>

 <%-- Begin Book Content --%>

 <div

 <render:writeAttribute name="class" value="<%=

book.getContentPresentationClass()%>" defaultValue="<%= bookContentClass

%>"/>

 <render:writeAttribute name="style" value="<%=

book.getContentPresentationStyle() %>"/>

Por ta l Use r I nter face F ramework Gui de

42 Portal User Interface Framework Guide

 >

</render:beginRender>

<%-- The closing </render:beginRender> tag signals the portal framework

 to stop rendering the book. After the book's children and their

 children are rendered, the portal framework uses the following

 <render:endRender> tag to close the book's parent HTML tags.

--%>

<render:endRender>

 </div>

 <%-- End Book Content --%>

 </div>

 <%-- End Book --%>

</render:endRender>

Following is a description of the multilevelmenu.jsp, which is used by the book to render the
navigation menu for the book's child books and pages.

multilevelmenu.jsp
The multilevelmenu.jsp is rendered inside the book container and provides the boundaries for
multi-level menus on books. This JSP also uses submenu.jsp to perform the actual rendering of
the menu links.Comments are highlighted in bold text.

<%@ page

import="com.bea.netuix.servlets.controls.window.WindowPresentationContext,

com.bea.netuix.servlets.controls.page.BookPresentationContext,

com.bea.netuix.servlets.controls.page.MenuPresentationContext,

 java.util.List,

 java.util.Iterator,

com.bea.netuix.servlets.controls.page.PagePresentationContext,

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 43

 com.bea.netuix.servlets.controls.window.WindowCapabilities"

%>

<%@ page session="false"%>

<%@ taglib uri="render.tld" prefix="render" %>

<%-- The following block determines where the book falls in the desktop

 hierarchy (whether it is the top-level book or a nested book). It

 also sets the base name of the CSS class to use (bea-portal-book)

 and defines different menu style classes by appending different

 endings to the base class. Only processing, not HTML rendering,

 occurs in this block.

--%>

<%

 BookPresentationContext book =

BookPresentationContext.getBookPresentationContext(request);

 MenuPresentationContext menu =

MenuPresentationContext.getMenuPresentationContext(request);

 String bookClass = "bea-portal-book";

 if (book.isDesktopBook())

 {

 bookClass += "-primary";

 }

 final String menuClass = bookClass + "-menu";

 final String menuContainerClass = menuClass + "-container";

 final String menuItemClass = menuClass + "-item";

 final String menuItemActiveClass = menuItemClass + "-active";

 final String menuItemLinkClass = menuItemClass + "-link";

 final String menuHookClass = menuClass + "-hook";

 final String menuButtonsClass = menuItemClass + "-buttons";

 List menuChildren = menu.getChildren();

%>

Por ta l Use r I nter face F ramework Gui de

44 Portal User Interface Framework Guide

<render:beginRender>

<%-- The content inside the <render:beginRender> tag is processed first

 and ultimately renders whatever is inside it, such as opening <div>

 HTML tags with specific attributes and tables.

 The following block creates a table cell, sets CSS styles on the <td>

 tag (based on the members defined in the previous block).

--%>

<%-- Begin Multi Level Menu --%>

 <div class="bea-portal-ie-table-buffer-div">

 <table border="0" cellpadding="0" cellspacing="0" width="100%">

 <tr>

 <td class="<%= menuContainerClass %>" align="left"

nowrap="nowrap">

<%-- The following block builds the menu in the table cell. It first adds an

 unordered list to the cell and sets its style class. Then, an IF

 statement checks to see if the book is in VIEW mode. If true, CSS styles

 are put in the request as attributes to be used by the menu.

 After the attributes are added to the request, the skeleton's

submenu.jsp

 is inserted, which does the following:

 * Gets the CSS styles from the request.

 * Gets the book's child pages and books.

 * Creates list items of the children and creates links out of

them.

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 45

 The menuHookClass at the end of the block is used by the skin's

menu.js file

 to insert the rendered menu. The that is generated is a menu

 structure description that is read and rewritten by menu.js.

 * Adds CSS styles to the request and includes submenu.jsp to handle

 the menus of nested books.

 After the menu is built, the CSS styles are removed from the request.

--%>

 <ul

 <render:writeAttribute name="id" value="<%=

menu.getPresentationId() %>"/>

 <render:writeAttribute name="class" value="<%=

menu.getPresentationClass() %>"

defaultValue="<%=

menuClass %>"/>

 <render:writeAttribute name="style" value="<%=

menu.getPresentationStyle() %>"/>

 ><%

 if

(book.getWindowMode().equals(WindowCapabilities.VIEW))

 {

request.setAttribute(BookPresentationContext.class.getName() +

".root-flag", Boolean.TRUE);

request.setAttribute(BookPresentationContext.class.getName() +

".menu-item", book);

request.setAttribute(BookPresentationContext.class.getName() +

".menu-class", menuClass);

Por ta l Use r I nter face F ramework Gui de

46 Portal User Interface Framework Guide

request.setAttribute(BookPresentationContext.class.getName() +

".menu-item-class", menuItemClass);

request.setAttribute(BookPresentationContext.class.getName() +

".menu-item-active-class", menuItemActiveClass);

request.setAttribute(BookPresentationContext.class.getName() +

".menu-item-link-class", menuItemLinkClass);

 %><jsp:include page="submenu.jsp"/><%

request.removeAttribute(BookPresentationContext.class.getName() +

".root-flag");

request.removeAttribute(BookPresentationContext.class.getName() +

".menu-item");

request.removeAttribute(BookPresentationContext.class.getName() +

".menu-class");

request.removeAttribute(BookPresentationContext.class.getName() +

".menu-item-class");

request.removeAttribute(BookPresentationContext.class.getName() +

".menu-item-active-class");

request.removeAttribute(BookPresentationContext.class.getName() +

".menu-item-link-class");

 }

 %>

 <div class="<%= menuHookClass %>"></div>

 </td>

<%-- The following block adds a table cell next to the menu table cell

 if a menu is present. The <render:endRender> contents are inserted

 in the HTML after all menu children are inserted, which closes

 the menu table.

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 47

--%>

<%

 if (menuChildren != null && menuChildren.size() > 0)

 {

%>

 <td class="<%= menuButtonsClass %>" align="right"

nowrap="nowrap">

<%

 }

%>

</render:beginRender>

<render:endRender>

<%

 if (menuChildren != null && menuChildren.size() > 0)

 {

%>

 </td>

<%

 }

%>

 </tr>

 </table>

 </div>

 <%-- End Multi Level Menu --%>

</render:endRender>

submenu.jsp
The submenu.jsp is inserted inside the multilevelmenu.jsp. It retrieves a book's child books and
pages and builds the navigation links to those children. Comments are shown in bold text.

<%@ page import="java.util.Iterator,

 java.util.List,

com.bea.netuix.servlets.controls.page.BookPresentationContext,

 com.bea.portlet.PageURL,

Por ta l Use r I nter face F ramework Gui de

48 Portal User Interface Framework Guide

com.bea.netuix.servlets.controls.page.PagePresentationContext"%>

<%@ page session="false"%>

<%-- The following block gets the CSS styles placed in the request by

 multilevelmenu.jsp.

--%>

<%

 Boolean isRoot

 = (Boolean)

request.getAttribute(BookPresentationContext.class.getName() +

".root-flag");

 BookPresentationContext bookCtx

 = (BookPresentationContext)

request.getAttribute(BookPresentationContext.class.getName() +

".menu-item");

 String menuClass

 = (String)

request.getAttribute(BookPresentationContext.class.getName() +

".menu-class");

 String menuItemClass

 = (String)

request.getAttribute(BookPresentationContext.class.getName() +

".menu-item-class");

 String menuItemActiveClass

 = (String)

request.getAttribute(BookPresentationContext.class.getName() +

".menu-item-active-class");

 String menuItemLinkClass

 = (String)

request.getAttribute(BookPresentationContext.class.getName() +

".menu-item-link-class");

%>

<%-- The following block checks to see if the book and its children

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 49

 are visible. If true, the labels of the children are retrieved,

 iterated over, and inserted as hyperlinked list items

 inside the unordered list inserted by multilevelmenu.jsp.

 Notice the nested at the end of the block, which provides

 for submenu nesting.

--%>

<%

 if (!bookCtx.isHidden() && bookCtx.isVisible())

 {

 if (bookCtx instanceof BookPresentationContext)

 {

 List bookChildren = bookCtx.getPagePresentationContexts();

 Iterator it = bookChildren.iterator();

 while (it.hasNext())

 {

 PagePresentationContext childPageCtx =

(PagePresentationContext)

it.next();

 if (!childPageCtx.isHidden() && childPageCtx.isVisible())

 {

%><li class="<%= isRoot.booleanValue() &&

childPageCtx.isActive() ? menuItemActiveClass :

menuItemClass

%>"><%

 %><a class="<%= menuItemLinkClass %>" href="<%=

PageURL.createPageURL(request, response,

childPageCtx.getDefinitionLabel()).toString() %>"><%=

childPageCtx.getTitle() %><%

 if (childPageCtx instanceof BookPresentationContext)

 {

 %><ul class="<%= menuClass %>"><%

Por ta l Use r I nter face F ramework Gui de

50 Portal User Interface Framework Guide

request.setAttribute(BookPresentationContext.class.getName()

+ ".root-flag", Boolean.FALSE);

request.setAttribute(BookPresentationContext.class.getName()

+ ".menu-item", childPageCtx);

 %><jsp:include page="submenu.jsp"/><%

request.removeAttribute(BookPresentationContext.class.getName() +

".root-flag");

request.removeAttribute(BookPresentationContext.class.getName() +

".menu-item");

 %><%

 }

 %><%

 }

 }

 }

 }

%>

JavaScript in Menus
The menus in a desktop use JavaScript functions for such functionality as drop-down menus and
rollovers. These JavaScript functions are called from the skeleton's body.jsp, which contains the
following entry:

<render:writeAttribute name="onload" value="<%= body.getOnloadScript()

%>"/>

The onload value is retrieved from the following property in the skin's skin.properties file:

document.body.onload: initSkin()

Following is the HTML written by the body.jsp:

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 51

<body

 class="bea-portal-body"

 onload="initSkin();"

>

The initSkin() JavaScript function is the base function that calls menu-rendering functions in
other JavaScript files. The initSkin() function is contained in the skin.js file. Other menu
functions are contained in the menu.js and menufx.js files. Since all of those JavaScript files
are listed in the skin's skin.properties file, they are automatically added to the HTML <head>
region at rendering, and the functions they contain are recognized.

The next section describes the final process of the skeleton JSPs and skin.properties being
converted to HTML.

3. JSP skeleton files and skin.properties are rendered as HTML
The previous section described the skeleton JSPs that are used to convert a book with a
multi-level menu to HTML. The descriptions in that section described briefly some of the HTML
generated by the JSPs.

This section shows the final HTML that is generated for a book, describes where it came from,
and shows where some of the CSS styles used are defined.

Not all HTML for the desktop is shown in the following table. Only the sections that relate to the
look & feel and the example book are shown.

skin.properties and skin_custom.properties - The paths to skeletons, skins, images, style
sheets, and JavaScript files in the HTML <head> region are inserted from the skin's
skin.properties and skin_custom.properties files. To see the original
skin.properties entries, see The skin.properties File in "How Look & Feel Determines
Rendering." The <head> tag is inserted by the head.jsp file used for the shell. The <title> is
inserted from the desktop title in the .portal file.

Por ta l Use r I nter face F ramework Gui de

52 Portal User Interface Framework Guide

The first three <meta> tags are for testing and debugging purposes. These can be removed from
skin.properties by setting the enable.meta.info property to false.

<head>

<title>New Portal Desktop</title>

<meta name="bea-portal-meta-skeleton"

content="/framework/skeletons/default"/>

<meta name="bea-portal-meta-skin" content="/framework/skins/avitek"/>

<meta name="bea-portal-meta-skin-images"

content="/framework/skins/avitek/images"/>

<link href="/sampleportal/framework/skins/avitek/css/body.css"

rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/css/button.css"

rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/css/window.css"

rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/css/plain/window.css"

rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/css/portlet.css"

rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/css/book.css"

rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/css/fix.css"

rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/css/layout.css"

rel="stylesheet"/>

<link href="/sampleportal/framework/skins/avitek/css/form.css"

rel="stylesheet"/>

<script type="text/javascript"

src="/sampleportal/framework/skins/avitek/js/menu.js"></script>

<script type="text/javascript"

src="/sampleportal/framework/skins/avitek/js/util.js"></script>

Render ing L i fecyc le o f a Book

Portal User Interface Framework Guide 53

<script type="text/javascript"

src="/sampleportal/framework/skins/avitek/js/delete.js"></script>

<script type="text/javascript"

src="/sampleportal/framework/skins/avitek/js/float.js"></script>

<script type="text/javascript"

src="/sampleportal/framework/skins/avitek/js/menufx.js"></script>

<script type="text/javascript"

src="/sampleportal/framework/skins/avitek/js/skin.js"></script>

</head>

The following section shows the HTML that is produced by each skeleton JSP.

book.jsp

<div

 class="bea-portal-book-invisible"

>

multilevelmenu.jsp

 <div class="bea-portal-ie-table-buffer-div">

 <table border="0" cellpadding="0" cellspacing="0" width="100%">

 <tr>

 <td class="bea-portal-book-menu-container" align="left"

nowrap="nowrap">

 <ul

 class="bea-portal-book-menu"

 >

submenu.jsp

<li class="bea-portal-book-menu-item-active"><a

class="bea-portal-book-menu-item-link"

href="http://localhost:7001/sampleportal/my.portal?_nfpb=true&_pageLabel=m

y_page_6">New Page

Por ta l Use r I nter face F ramework Gui de

54 Portal User Interface Framework Guide

 <div

 class="bea-portal-book-content"

 >

 <%-- The book content (sub-books and pages) is inserted here. -->

 </div>

</div>

 <div class="bea-portal-book-menu-hook"></div>

 </td>

 </tr>

 </table>

 </div>

When the desktop for this example is rendered, the following appears in the browser:

Figure 15 Rendered desktop

The circled area in this figure is the only content rendered for the book. The book contains only
one page, so there is only one menu item for the book. The "Page 1" and "My Book" tabs are
menu items rendered by the parent Main Page Book. That is why you do not see the "My Book"
in the previous HTML block: because the book is responsible for rendering only a menu of its
child books and pages.

If "New Page" contained a portlet, the portlet would appear in the browser. However, the
rendering of the page and portlet is handled by different skeleton JSPs: one to provide a container
for the page content, one to render the layout of the page (table cells that contain portlets and
sub-books), and a few to handle the rendering of the portlet.

The book is responsible for rendering only two things:

The menu of sub-books and pages it contains.

Summary

Portal User Interface Framework Guide 55

Opening and closing <div> tags to serve as the container for sub-books, pages, portlets,
and other sub-components contained in the book.

CSS Styles in the Example
As you can see from the previous example of rendered HTML code, the skeleton JSPs insert
many CSS styles. For example, the multilevelmenu.jsp inserts

<td class="bea-portal-book-menu-container" ...>

The style classes inserted by multilevelmenu.jsp are rewritten by the skin's menu.js file.

Also, some of the style classes inserted by the skeleton JSPs are not defined in any of the CSS
files provided by BEA. You can add these style classes to your custom CSS files to control those
styles in your portal desktops.

To determine which styles you want to modify, see The Look & Feel Editor.

Changing Look & Feel
If the look & feel is changed, a different skin and skeleton is referenced by the look & feel file,
and rendering is subject to that skin and skeleton. With a different skin and skeleton, CSS files
and script code can change completely.

Summary
There are three basic stages in the portal rendering process: building a portal in XML, portal XML
components being mapped to skeleton JSPs, and skeleton JSPs rendering the portal desktop in
HTML. The latter two stages are handled automatically by the portal framework.

There is a rendering difference between viewing a portal desktop in development mode and in
administration/end user mode. In development mode, when you view the .portal file in a
browser you see it in "single file" mode, meaning the desktop is being rendered from the file
system. In administration/end user mode, you view a portal desktop in a browser in "streamed"
mode, meaning the desktop components are being streamed from a database. When you create a
portal desktop in the WebLogic Administration Portal using a .portal file as a template for the
desktop, the portal components are added to the database and are decoupled from the original
.portal file.

The Look & Feel Editor
The Look & Feel Editor lets you interactively edit the text styles used by portal text elements.
Technically, the editor modifies Cascading Style Sheet (CSS) files that are referenced by a

Por ta l Use r I nter face F ramework Gui de

56 Portal User Interface Framework Guide

portal’s skin.properties file. For example, using the Look & Feel Editor, you can change the
size of a heading, the color of a list element, or the padding around a table cell for a portal.

The Look & Feel Editor also lets you change the properties of a portal’s look & feel file (.laf
file), such as the skin and skeleton files that it references.

In addition, the Editor shows you, at a glance:

The CSS cascade for a portal

The properties assigned to a selected CSS style

The inherited properties of a selected CSS style

The elements of the portal’s skin.properties file

This topic discusses the functional parts of the Look & Feel Editor in greater detail than the
corresponding online help topic. The goal is to offer additional insight into the purpose and use
of the Editor than is covered elsewhere. This topic includes the following sections:

Overview

Application Window

Style Hierarchy Window

Style Description Window

View Area

Document Structure Window

Property Editor Window

Summary

Note: To use the Look & Feel Editor successfully, you must have a basic understanding of CSS.
In this document, we provide minimal explanations of key CSS features, such as inheritance. If
you are new to CSS, we recommend reviewing a book that covers the subject in detail. Many
books and Websites are devoted exclusively to CSS.

Overview
With the Look & Feel Editor, you can easily experiment with a portal’s look & feel and see the
results immediately. The Look & Feel Editor lets you interactively edit the text styles used by a
portal. Using the Look & Feel Editor, you can select text in a portal and modify the text’s

Overv iew

Portal User Interface Framework Guide 57

characteristics, such as font size, color, padding, and so on. The changes you make are
immediately reflected in the Editor’s View Area.

Remember that a portal’s skin helps to define the overall look & feel of a portal. The portal’s
skin.properties file specifies one or more CSS files used by the skin. A portal’s HTML text
can reference these CSS files and use their style definitions. If you modify the font size for a
particular text style, the Look & Feel Editor changes the style’s definition inside a CSS file. The
change is then immediately reflected in the HTML displayed in the Editor’s View Area.

The following figure shows the parts of the Look & Feel Editor. This topic discusses each of these
parts in detail.

Por ta l Use r I nter face F ramework Gui de

58 Portal User Interface Framework Guide

Figure 16 Look & Feel Editor components

Appl icat ion Wi ndow

Portal User Interface Framework Guide 59

Application Window
The Application panel displays the file structure of a portal project. Use this panel to locate and
select the look & feel file for the portal that you wish to edit.

The look & feel (.laf) file contains references to the skins and skeletons that define a portal’s
look & feel. To use the Look & Feel Editor, you must use the Application panel to locate the .laf
file for the portal you wish to edit. Then, double-click the filename to open the Look & Feel
Editor. The .laf files for a portal are located in the portal’s lookandfeel folder. For example,
the avitek.laf file is shown selected in the Application Window in the following figure:

Figure 17 Selected Look & Feel file

For more information on the .laf file, see The Look & Feel File.

Por ta l Use r I nter face F ramework Gui de

60 Portal User Interface Framework Guide

Style Hierarchy Window
The Style Hierarchy panel shows the CSS cascade for the selected style. The cascade is a
hierarchy of CSS styles, defined by the HTML document structure. It’s useful to see the cascade
because it can help you to locate and appropriately handle inherited style properties. In the
following figure, the portlet-section-header style is selected. Note that the style
portlet-section-header is below bea-portal-window-content in the hierarchy:

Figure 18 Selected CSS Style

This means that portlet-section-header can inherit properties from
portal-window-content, and, potentially, from all other style classes higher up the hierarchy.
For more information on inheritance, see Understanding CSS Inheritance. When you select a
style in the Style Hierarchy panel, its style definitions and inherited style properties appear in the
Style Description panel, described in the next section.

Sty le Desc r i pt i on Wi ndow

Portal User Interface Framework Guide 61

Style Description Window
The Style Description panel lets you see at a glance the selected style’s properties and its inherited
style properties. The Style Info part, shown in the following figure, comes directly from the CSS
file in which the style is defined. The Inherited Styles list, also shown in the following figure, is
constructed directly from the document structure of the HTML text that is currently opened in the
Look & Feel Editor. The Inherited Styles list shows the style properties and their values that are
inherited from styles higher up in the document hierarchy. For instance, you can see that
portlet-section-header inherits the font-family property from the bea-portal-body
style.

Por ta l Use r I nter face F ramework Gui de

62 Portal User Interface Framework Guide

Figure 19 Window shows inherited styles

To understand the value of the Inherited Styles list, it helps to have a basic understanding of
HTML and CSS.

Understanding CSS Inheritance
Tip: This section is a very brief overview of CSS inheritance. Many books and Websites are
devoted to CSS and cover this important subject in greater depth.

Sty le Desc r i pt i on Wi ndow

Portal User Interface Framework Guide 63

HTML documents are hierarchically organized. In other words, each element of an HTML
document can have one or more child elements, one parent element and possibly many ancestor
elements. A central feature of CSS is that styles are inherited down the HTML document
hierarchy. For example, the following tree diagram depicts a simple HTML document hierarchy:

Figure 20 CSS Inheritance

If you would like all the text in this document to be blue, you could define the body tag to be blue.
Because of CSS inheritance, all of the elements below body (specifically, li and h1) will also be
blue. If, on the other hand, you would like everything to be blue except list elements, you could
define the ul tag to be another color, such as red. Then, all of the li elements will inherit the
color red from their parent, ul. At the same time, the h1 tags will be blue (h1 tags will still inherit
their color from body).

The Look & Feel Editor shows you all styles that a selected style inherits. Therefore, if you want
to change the font size of a style, but font size is not defined in that style, you can see at a glance
from which style font size is inherited. Then, you can easily edit the property, as explained in the
next section.

Tip: Without this convenient feature, it would be difficult to decide which styles a given style
inherited. Typically, you would have to open and examine the CSS files in the hierarchy to find
where a specific style property is defined or possibly overridden.

Using the Inherited Styles List
As mentioned in the previous section, in some cases, the property you wish to modify is not
defined in the specific CSS style class associated with the text you have selected. It is possible,
for instance, to select a heading in the Look & Feel Editor, but find that font size is not a property
of that heading's style. In this case, the property you wish to change may be an inherited property.

The Look & Feel Editor displays and lets you edit any inherited property for a given style. For
example, suppose you wish to change the font size of some text. After selecting the style you wish
to edit (for example, by clicking the text in the View Area), you then notice that font-size is

body

ul

li li li

h1

Por ta l Use r I nter face F ramework Gui de

64 Portal User Interface Framework Guide

not a property of that text's CSS style. Next you look at the Inherited Styles list, and you discover
a style higher up in the cascade in which font-size is defined.

At this point, you must decide whether you want to edit the font-size property where it is
currently defined (higher up in the cascade) or add the property directly to the style of the text
you wish to modify. Of course, if you modify a property up the cascade, you may inadvertently
change the properties of other text that inherits the same property. It is up to you to make this
decision. If you change it directly in the selected style, then the inherited property is overridden,
and only that style (and any styles down the hierarchy) receive the new property value (unless it
is once again overridden).

Tip: To add or modify a property in an inherited style, double-click the style name in the
Inherited Styles list. Then, use the CSS Style Wizard to make your changes.

View Area
The View Area displays the HTML that uses the CSS styles you wish to edit. When you start the
Look & Feel Editor, a default HTML page is displayed. This page is supplied with WebLogic
Workshop and contains a representative sample of text elements.

You can load any other HTML into the Editor by supplying a URL or path, or by entering HTML
directly. To select the HTML to display, use the Portal > Look And Feel menu. For example, to
edit the text styles for a portal, run the portal in a browser, copy its URL, and load the page into
the Editor using the menu function Portal > Look And Feel > Render Custom URL.

Note: Remember that you start the Look & Feel Editor by opening a look & feel (.laf) file. The
HTML file that is shown in the View Area must reference the same CSS files that the .laf file
references in its skin. If you load the default HTML page into the Editor, this connection is
automatically established. However, if you load HTML from a portal into the Editor, you must
be sure the portal references the same .laf file as the Editor.

Document Structure Window
The Document Structure Window shows a representation of the files that are referenced by the
portal’s skin.properties file. In this panel you can edit properties of:

The look & feel (.laf) file for the portal

The style properties located in each of the CSS (.css) files referenced by the portal’s skin

The following figure shows a portion of the Document Structure panel. In this figure, the
css/portlet.css file is expanded to reveal the styles defined in it. You can double-click a style

Document S t ruc tu re Wi ndow

Portal User Interface Framework Guide 65

to add or modify its properties. You can also single-click a .css file, style name, or style property
to display and edit values in the Property Editor panel.

Figure 21 Double-click a style to modify its properties

In addition to using this panel to access CSS styles, you can also access and edit the properties of
the look & feel (.laf) file associated with a portal, as shown in the following figure. You can
change any of these properties, including picking new skin and skeleton files. Note that the look
& feel file node (e.g., avitek) occurs at the top of the document structure.

Figure 22 Look & Feel file in the Document Structure window

Note: If you select a new skin file, Weblogic Workshop automatically saves the currently open
document. As a result, you will lose the ability to undo your most recent operations.

Por ta l Use r I nter face F ramework Gui de

66 Portal User Interface Framework Guide

Property Editor Window
The Property Editor panel lets you interactively modify values of the selected CSS style or look
& feel file. To display properties in the Property Editor, you can do one of the following:

Click on a text element in the HTML file in the View Area.

Click a CSS style or the look & feel filename in the Document Structure panel.

Click on a CSS filename in the Document Structure panel, then expand the CSS file in the
Property Editor to edit the properties, as shown in the following figure:

Figure 23 Displaying style properties in the Property Editor

Note: To see and edit values, you may have to expand the selected .css file or style by clicking
a + icon on the left side of the Property Editor. To add or modify properties, you can also click

the icon to the right of a style to bring up the CSS Style Wizard.

Summary
The Look & Feel Editor provides a convenient way to locate and edit the CSS-based styles that
define the look of text elements in a portal. In addition, the Editor lets you modify the properties
of the look & feel file associated with a portal.

	About This Document
	Product Documentation on the dev2dev Web Site
	Contact Us
	Documentation Conventions

	Portal User Interface Framework Guide
	Overview
	How Look & Feel Determines Rendering
	Overview
	The Look & Feel File
	The Portal File
	Location of the Look & Feel Resources
	The skin.properties File
	Look & Feel Overrides
	Summary

	How the Shell Determines Header and Footer Content
	Overview
	The Shell File
	The Portal File
	Location of the Shell Resources
	How the Shell Relates to Look & Feel
	Summary

	How Portal Components Are Rendered
	Overview
	Single File vs. Streamed Rendering
	Rendering Lifecycle of a Book
	Summary

	The Look & Feel Editor
	Overview
	Application Window
	Style Hierarchy Window
	Style Description Window
	View Area
	Document Structure Window
	Property Editor Window
	Summary

