
BEAWebLogic
Portal™

Using Rules in Portal
Applications

Version 8.1 with Service Pack 3
Document Revised: July 2004

Copyright
Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using Rules in Portal Applications iii

Contents

Using Rules in Portal Applications
Overview .2

Personalization Components. .2

Rules Overview. .5

The Rules Service Process. .5

Why is the Rules Service better than if/then? .7

Using the Rules Service .7

1. Create a Rule Set. .8

Example: Using a Method in a Rule .11

Working with Invalid Rule Sets. .13

2. Deploy a Rule Set .13

3. Add Objects to Working Memory. .14

Adding a Credit Score to Working Memory from an Integer14

Adding a Credit Score to Working Memory from a User Profile14

Type Mappings .15

4. Invoke the Rules Service to Evaluate Objects .16

Prerequisites for the Example .16

Insert the Control in the Page Flow .17

Using the Control to Determine the User’s Path in the Page Flow20

Rules Examples .22

5. Filter the Results .23

Filtering with the RulesManager EJB .23

Using Rules in Portal Applications iv

6. Use the Results in Your Applications. 24

Rules Service Samples . 24

Using Rules in Portal Applications 1

Using Rules in Portal Applications

WebLogic Portal gives you a powerful set of tools with which to personalize the user experience
in your portal applications. You have dynamic, pinpoint control over the content each user sees,
any automatic e-mail messages each receives, and, in a commerce application, what kind of
discounts each user receives. To achieve these personalization results, you create user segments,
content selectors, and campaigns in the WebLogic Workshop designers provided by WebLogic
Portal. Developing personalization with these tools is easy and involves very little Java coding
(only using JSP tags). Once this type of personalization is developed, portal administrators can
use the WebLogic Administration Portal to modify the behavior of the personalization with no
coding at all.

There may be times, however, when you want even more power and flexibility in the
personalization you develop. For example, you may want to use personalization to control each
user’s path through a Page Flow or use runtime information as dynamic input to conditional logic
in your code. This type of advanced personalization development is the focus of this guide.
(Procedures for creating personalization with user segments, content selectors, and campaigns
can be found in the WebLogic Workshop help system.)

To build this type of advanced personalization, you must have a working knowledge of XML and
schemas (an advanced version of DTDs), and you must have an intermediate understanding of
Java development.

This guide includes the following sections:

Overview

Using the Rules Service

Using Ru les in Po r ta l App l i cat i ons

2 Using Rules in Portal Applications

Overview
This guide shows you how to use the WebLogic Portal Rules Service to develop advanced
personalization.

You can access the Rules Service using two components: the rules controls and the
RulesManager EJB. The rules controls (the Rules Executor control and the Rules Manager
control), which you can use in Page Flows or Web services, provide a convenient way to add rules
functionality to your code without having to write code. For example, using a drag-and-drop
interface, you can add a rules control to a Page Flow, select the methods in the control you want
to use, and configure the control in the WebLogic Workshop Property Editor.

The rules controls, which delegate calls to the underlying RulesManager EJB, are the preferred
way to interact with the Rules Service. However, if you want to use the Rules Service somewhere
besides a Page Flow or Web service, you can use the RulesManager EJB directly in your code to
access the Rules Service.

This overview section includes the following topics:

Personalization Components

Rules Overview

Personalization Components
The following table describes the personalization tools provided by WebLogic Portal. While user
segments, campaigns, content selectors, and personalization JSP tags are not the focus of this
guide, they are described to highlight the increased programmatic power you have in directly
accessing the Rules Service. The Input Objects and Action columns show the increased flexibility
and power you have with the rules controls and the RulesManager EJB.

Overv iew

Using Rules in Portal Applications 3

Table 1 WebLogic Portal personalization components

Component Description Input Objects Action (if the input
objects match the rules
criteria)

User Segments Dynamically assign users to a
grouping, or segment, when
the users meet specific
conditions.

Segment rules are created in
WebLogic Workshop with the
User Segment Designer. Rules
are modifiable in the
WebLogic Administration
Portal.

Segment rules can be
defined with user profile
properties, HTTP
session/request
properties, and date/time
values and ranges.

One action: If all
conditions evaluate to
true, the user is
considered a member of
the segment. Segments
can be used in
campaigns, content
selectors, and in the
<pz:div> JSP tag.

Campaigns Trigger personalized actions to
occur for users who meet
specific conditions or perform
specific actions.

Campaign rules are created in
WebLogic Workshop with the
Campaign Designer. Rules are
modifiable in the WebLogic
Administration Portal.

Campaign rules can be
defined with user
segments, user profile
properties, HTTP
session/request
properties, event
characteristics, date/time
values and ranges,
shopping cart/catalog
conditions, and random
sampling.

Up to three types of
actions: Show a single
personalized content
item, automatically send
a predefined e-mail,
provide a discount.

Content
Selectors

Show specific content items to
users who meet specific
conditions.

Content selector rules are
created in WebLogic
Workshop with the Content
Selector Designer. Rules are
modifiable in the WebLogic
Administration Portal.

Content selector rules
can be defined with user
segments, user profile
properties, HTTP
session/request
properties, and date/time
values and ranges.

One action: Show one or
more personalized
content items.

Using Ru les in Po r ta l App l i cat i ons

4 Using Rules in Portal Applications

Personalization
(Interaction
Management)
JSP Tags

Some of these tags are used to
render the results of segment,
campaign, and content selector
rules.

Displayed content is
based user segment,
campaign, or content
selector rules.

One action: Show
personalized content
items.

Rules Controls The Rules Executor control
lets you evaluate any input
objects (such as a user’s
profile properties) against a
predefined set of rules (rule
set). If the rules evaluate to
“true” based on the input
objects, any predefined
action(s) can be triggered
(such as assigning the user to a
certain classification). The
Rules Manager control lets
you look up information about
rule sets. The rules controls
serve as an interface to the
RulesManager EJB.

You add and configure rules
controls in your Page Flows or
Web services with a graphical
user interface in WebLogic
Workshop. You create rules by
hand in XML.

Unlimited types of
input objects: You can
use the rules you create
in XML to evaluate any
object put into working
memory (discussed
later).

Unlimited types of
actions: Can filter
objects in working
memory (discussed
later) and perform any
action defined in the
rule set XML.

RulesManager
EJB

Provides the same capabilities
as the rules controls in areas of
your application other than
Page Flows and Web services.
Using the RulesManager EJB
to access the Rules Service
involves Java coding.

Table 1 WebLogic Portal personalization components (Continued)

Component Description Input Objects Action (if the input
objects match the rules
criteria)

Overv iew

Using Rules in Portal Applications 5

Rules Overview
This guide focuses on using the WebLogic Portal rules controls and the RulesManager EJB to
add personalization to your applications. The development of personalization with user segments,
campaigns, content selectors, and personalization JSP tags, which involves an intuitive user
interface that is more abstracted from the Rules Service architecture, is covered in the WebLogic
Workshop help system.

The Rules Service works by reading objects you have put into working memory and evaluating
those objects against a set of rules you have predefined in an XML file. (You can think of
“working memory” as the place where objects are temporarily stored as the Rules Service is
processing the rules.) If the objects in memory match the conditions defined in the rule set (which
can be made up of multiple rules), the corresponding rule set actions are triggered. For example,
if you put a user’s credit score into working memory (from the user profile, from the return of a
Web service calculation, or any other way), a rule in the rule set can be defined to say (in XML),
“If the user has a credit score equal to or greater than 10, classify that user as a ‘gold customer’.”
The results of that rule processing can be used in your applications any way you choose. For
example, if you are developing a Page Flow, you can send a “gold customer” to the gold.jsp
and send all other customers to another JSP.

Rules Controls – WebLogic Portal provides two rules controls that you can use to invoke
the Rules Service from a Page Flow or Web service. The Rules Executor control lets you
evaluate objects in working memory against a rule or set of rules, filter the results, and
perform actions if the rules evaluate to “true”; and the Rules Manager control provides
methods for getting rule set information.

Note: The Rules Manager control is most useful as a rules development debugging tool.

RulesManager EJB – The RulesManager EJB is the interface into the Rules Service. The
rules controls delegate calls to the RulesManager EJB. Use the RulesManager EJB if you
want to use the Rules Service in code outside of a Page Flow or Web service.

The Rules Service Process
The Rules Service is based on the Rete algorithm, which is optimized for forward chaining
reasoning. Following is the order for the rule evaluation process. In this process, the Rules
Executor control is used as an example.

1. The Portal Rules Service is initialized, creating its “working memory.”

Using Ru les in Po r ta l App l i cat i ons

6 Using Rules in Portal Applications

2. The Rules Executor control will identify which rule set to use, which rules to evaluate
(defaults to all), and optionally, whether to filter the results. These are all parameters that
can be configured on the control.

3. The developer creates and adds objects to “working memory.” Example objects might be
the user's profile, the Request, and so on. These parameters are passed in as an argument to
the rule control's evaluate*() method.

4. The Rules Service is invoked by the Rules Executor control and uses the following
algorithm.

a. Match: Evaluates the left hand side (LHS) of the rules to determine which are satisfied
given the current contents of working memory.

b. Conflict resolution: Selects one rule with a satisfied LHS. If no rules have satisfied the
LHSs, halts the interpreter.

c. Act: Performs the actions in the right hand side (RHS) of the selected rule.

d. Go to step a.

5. The Rules Service fires repeatedly, executing rules according to the state of the input
objects and rule conditions. Only one rule can be fired at a time. As conditions are met and
rules are fired, more objects may be added to working memory for evaluation.

6. After the Rules Service has reached a state where no more rules will fire, it halts. In
addition to the original input objects, new objects created as a result of the rule evaluation
may also be in working memory.

7. Because the input objects are part of the results, you may choose to filter the results based
on a class. For example, you can specify that only results of class
com.bea.p13n.usermgmt.profile.ProfileWrapper are returned.

8. The objects are returned to the caller, who then decides what to do with the returned data.
For example, the user may be directed to a new page, or the user’s profile may have its
properties updated.

Figure 1 provides a basic illustration of the previous process with the Rules Executor control used
in a Page Flow. The returned results from the Rules Service process are used to determine the
user’s path through the Page Flow. In the figure, natural language is used instead of code for
illustration purposes. (To see the actual parameterization and invocation of the control in a Page
Flow, see Using the Control to Determine the User’s Path in the Page Flow on page 20.)

Using the Ru les Se rv ice

Using Rules in Portal Applications 7

Figure 1 Using Rules to control a Page Flow

Why is the Rules Service better than if/then?
The Rules Service is more dynamic than a simple conditional in your code. Once a Web
application or some other application component has been hard-coded with condition statements
(if/then), there is no way to change that without recompiling the code and re-deploying the
application. In comparison, rules can be changed and loaded as the Portal server is running. This
means the administrator may get the business logic from domain experts, formulate a rule to
reflect that logic, and load the rule into the application without ever having to stop the server.

Using the Rules Service
This section shows you how to develop personalization using the rules controls and
RulesManager EJB. The following steps are involved:

1. Create a Rule Set

2. Deploy a Rule Set

3. Add Objects to Working Memory

4. Invoke the Rules Service to Evaluate Objects

5. Filter the Results

6. Use the Results in Your Applications

Using Ru les in Po r ta l App l i cat i ons

8 Using Rules in Portal Applications

1. Create a Rule Set
Rule sets are sets of instructions written in XML that the Rules Service uses to evaluate objects
in working memory. A rule set says, in essence, “if something in working memory meets these
conditions, then do this.”

WebLogic Portal does not currently have a rules editor, so you must create rule sets by hand. Rule
sets must conform to particular schema. (The rule set schemas are located in p13n_ejb.jar in
your application root directory.) The language of the rules is actually a usage of the WebLogic
Portal expressions package, extended to meet additional requirements for the Rules Service. (See
the com.bea.p13n.expression.operator.* packages in WebLogic Portal Javadoc for
descriptions of the expressions you can use.)

Rule set XML files, which must end in .rls, contain the following required base elements:

<rule-set> - Includes all references to schema used in the rule set

<rule> - Contains the definition of the rule, which consists of one or more conditions and
one or more actions. A rule set can have more than one <rule>.

<conditions> and <actions> - Each <rule> contains its own if/then clauses that consist of
one or more <conditions> (if) and one or more <actions> (then). The Rules Service
evaluates the objects in working memory against the conditions. If an object meets a
condition, the related actions are executed.

Following is a simple rule set example that says, “If the string ‘Make an Integer 10’ is in working
memory, add the object ‘10’ to working memory.”

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Your Name (Your

Company) -->

<rule-set xmlns="http://www.bea.com/servers/p13n/xsd/rules/core/2.1.1"

xmlns:exp="http://www.bea.com/servers/p13n/xsd/expression/expressions/2.1.

1"

xmlns:literal="http://www.bea.com/servers/p13n/xsd/expression/literal/1.0.

1"

xmlns:string="http://www.bea.com/servers/p13n/xsd/expression/string/1.0.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/p13n/xsd/rules/core/2.1.1

rules-core-2_1_1.xsd" is-complete="true">

 <rule is-complete="true">

../../../workshop/docs81/doc/en/portal/java-class/navPortalJavaDoc.html

Using the Ru les Se rv ice

Using Rules in Portal Applications 9

 <name>Add Integer</name>

 <description>Test Rule</description>

 <conditions>

 <exp:equal-to>

 <exp:variable>

 <exp:type-alias>java.lang.String</exp:type-alias>

 </exp:variable>

 <literal:string>Make an Integer 10</literal:string>

 </exp:equal-to>

 </conditions>

 <actions>

 <add-object>

 <exp:type-alias>java.lang.Integer</exp:type-alias>

 <exp:arguments>

 <literal:string>10</literal:string>

 </exp:arguments>

 </add-object>

 </actions>

 </rule>

</rule-set>

Unless you are adept at reading schemas and manually constructing valid XML according to the
schema’s rules, use an XML editor such as XMLSpy (which can be installed from the WebLogic
Platform product CD). An XML editor reads a schema, as well as all the schemas the schema
imports, and shows you elements and attributes that can be added to an XML document at any
given location, showing you available elements and attributes and helping you create a valid
XML rule set.

Note: Perhaps the easiest way to create a rule set is to start with an existing one and modify it.
There are several example rule sets on the dev2dev site at
http://dev2dev.bea.com/products/wlportal81/articles/portalrulesservice.jsp.

http://dev2dev.bea.com/products/wlportal81/articles/portalrulesservice.jsp

Using Ru les in Po r ta l App l i cat i ons

10 Using Rules in Portal Applications

Use the following guidelines to create a rule set (or modify an existing rule set) with an XML
editor.

Before you begin creating the rule set in XML, write out the rule in natural language to
understand all its pieces (conditions and actions) and types of data. What is being put into
working memory? What conditions do you want the objects to meet, and what should happen
(actions) when objects in working memory meet the conditions?

1. Extract the following schemas from the p13n_ejb.jar file in your portal application root
into the same directory in which you will create your rule set:

lib/schema/expression*.xsd
lib/schema/rules*.xsd

Start a new document (or open an existing document) in your XML editor and associate
the document with the rules-core-2_1_1.xsd schema. This schema also includes imports of
other schemas, especially expression schemas, helpful in building rule sets.

In a new XML document, your XML editor should automatically insert the XML header,
automatically import any schemas listed for import, and insert required base elements, such
as <rule-set>, <rule>, <name>, <conditions>, and <actions>.

2. Select the <conditions> and <rules> elements and begin building (or modifying) the
conditions and rules.

The following figure shows a rule set being built in XMLSpy. With the
<exp:greater-than-or-equal-to> element selected, the Elements pane shows which elements
can be added as children. The Attributes pane shows the attributes that can be set on the
element.

Using the Ru les Se rv ice

Using Rules in Portal Applications 11

Figure 2 Building a rule with an XML editor

3. After you finish building the rule set, use the XML editor’s features to first check for
well-formedness and then for validation against the schema. (In XMLSpy, press F7 and F8
respectively.)

See Working with Invalid Rule Sets for information on fixing invalid rule sets.

4. Save the rule set. (XMLSpy prompts you if you are trying to save an invalid rule set, but it
lets you save it.)

5. Copy the rule set to your portal application’s META-INF/data directory, or to on of its
subdirectories. For example, create a META-INF/data/rulesets directory and save the
rule set there.

Example: Using a Method in a Rule
The following illustration shows how rule set XML uses a method to retrieve a user profile
property value so it can be evaluated by the Rules Service:

Using Ru les in Po r ta l App l i cat i ons

12 Using Rules in Portal Applications

Details about the mapping between the XML and the method:

– The <exp:type-alias> identifies the type of object the method will work on.

For a list of object type mappings defined in the parser-mapping-type.properties
file in p13n_ejb.jar, see Type Mappings on page 15.

– The <exp:instance-method> indicates a method, and the <exp:name> provides the
name of the method.

Table 2 How an XML rule uses a method

Condition

<exp:greater-than-or-equal-to>

 <literal:integer>10</literal:integer>

 <exp:instance-method>

 <exp:variable>

 <exp:type-alias>User</exp:type-alias>

 </exp:variable>

 <exp:name>getProperty</exp:name>

 <exp:arguments>

 <literal:string>CreditPropertySet</literal:string>

 <literal:string>CreditScore</literal:string>

 </exp:arguments>

 </exp:instance-method>

</exp:greater-than-or-equal-to>

Method the condition maps to

The following take an Object of type User:

ProfileWrapper pw = SessionHelper.getProfile(request);

Object value = pw.getProperty(“CreditPropertySet”, “CreditScore”);

Using the Ru les Se rv ice

Using Rules in Portal Applications 13

Note: In order to invoke methods from a rule, the appropriate classes must be imported
in the calling code.

– The <exp:argument> includes two <literal:string> elements that provide the String
arguments to the method.

– The <literal:integer> identifies a value that the Rules Service will use. The evaluation
of the object in working memory (in this case the user profile CreditScore value)
determines whether or not the rule’s action will be fired.

– The result is that the rule’s condition (in XML) retrieves the value of the user’s
CreditScore. If the value is greater than or equal to 10, in this example, the associated
actions are fired.

Working with Invalid Rule Sets
If a rule set won’t validate, you’ll be shown the area that is invalid. Now you can do the following:

Make sure you have imported all schemas referenced in the .rls file. Those schemas are
listed at the top of the *.rls file. The schemas must be in the same directory as the .rls
file.

Make sure the XML sections defined in your .rls are valid according to the schema. You
can open the schema in XMLSpy to check your .rls against the schema definitions. In
XMLSpy, you can view the schema in design view for a graphical representation of the
schema. You can view the .rls in text view and enhanced grid view.

Note: There is no guarantee that a rule set validated in an XML editor will be validated in
the Rules Service.

2. Deploy a Rule Set
After you create a rule set and store it in your application’s META-INF/data directory (or in a
subdirectory you create, such as META-INF/data/rulesets), the rule set is automatically
deployed if the server is running. If the server is not running, the rule set is automatically
deployed at server startup. (META-INF/data is called the DataSync directory, which also
contains the user segments, content selectors, campaigns, and other application metadata you
have created.) Rule sets must be deployed to the DataSync directory, and rule set filenames must
have an .rls extension to be picked up by the Rules Service.

When you modify a rule set in the DataSync directory, the rule set is automatically refreshed on
the running server.

Using Ru les in Po r ta l App l i cat i ons

14 Using Rules in Portal Applications

3. Add Objects to Working Memory
Rule sets are useless unless they have objects in working memory to evaluate.For example, a rule
set may contain a rule that has the following condition: “If the user’s credit score is greater than
10.” This implies there is either the credit score input, or there is a way to get at the credit score.
We could add a credit score to working memory in one of two ways:

Adding a Credit Score to Working Memory from an Integer
You could simply provide a credit score value in your code, either directly (as shown in the
following example) or indirectly, for example, through a form input value.

Integer value = new Integer(10);

Object [] inputObjects = { value }; (This is a required argument to the evaluate*()
methods.)

You could then create a rule condition that evaluates the “value” Integer.

Adding a Credit Score to Working Memory from a User Profile
Retrieving a credit score from a user profile is much more flexible and dynamic.

First, you would use code to retrieve the user profile and put it into working memory:

ProfileWrapper pw = SessionHelper.getProfile(request);

Object [] inputObjects = { pw }; (This is a required argument to the evaluate*()
methods.)

Then, in your rule set, you would create a condition that uses a method (getProperty) that retrieves
a specific property (CreditScore) from a specific property set (CreditPropertySet). Note that this
is the same example used previously in Table 2.

<exp:greater-than-or-equal-to>

 <literal:integer>10</literal:integer>

 <exp:instance-method>

 <exp:variable>

 <exp:type-alias>User</exp:type-alias>

 </exp:variable>

 <exp:name>getProperty</exp:name>

Using the Ru les Se rv ice

Using Rules in Portal Applications 15

 <exp:arguments>

 <literal:string>CreditPropertySet</literal:string>

 <literal:string>CreditScore</literal:string>

 </exp:arguments>

 </exp:instance-method>

</exp:greater-than-or-equal-to>

This condition checks to see if the retrieved CreditScore is greater than or equal to the
<literal:integer> value of 10.

Note: The User type is actually an alias for an object of class ProfileWrapper. This mapping of
User to “ProfileWrapper,” along with the mappings of other well-known types, are
defined in the parser-mapping-type.properties file in p13n_ejb.jar,
shown in the following section.

Type Mappings
The following object type mappings are from the parser-mapping-type.properties file in
p13n_ejb.jar:

Mappings for <type-alias> Tags
User=com.bea.p13n.usermgmt.profile.ProfileWrapper

Classifier=com.bea.p13n.user.Classification

Capability=com.bea.p13n.entitlements.common.Capability

Role=com.bea.p13n.entitlements.common.Role

Context=com.bea.p13n.rules.internal.engine.Context

Email=com.bea.campaign.rules.MailActionDef

Placeholders=com.bea.campaign.rules.AddAdToPlaceholderActionDef

Discount=com.bea.commerce.ebusiness.campaign.AddUserDiscountActionDef

EndScenario=com.bea.campaign.rules.EndScenarioActionDef

CatalogQuery=com.beasys.commerce.ebusiness.catalog.rules.CatalogQueryWrapp

er

ContentQueryAdvice=com.bea.p13n.content.advislets.ContentQueryAdvice

Using Ru les in Po r ta l App l i cat i ons

16 Using Rules in Portal Applications

ShoppingCartFacade=com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart

RulesFacade

The previous example, and the example in Table 2 on page 12 shows the <type-alias> element
with a User type.

Mappings for <variable> Tags
user=com.bea.p13n.usermgmt.profile.ProfileWrapper

request=com.bea.p13n.http.Request

session=com.bea.p13n.http.Session

event=com.bea.p13n.events.Event

randomNumber=java.lang.Number

classification=com.bea.p13n.user.Classification

date=com.bea.p13n.xml.schema.Date

time=com.bea.p13n.xml.schema.Time

timeInstant=com.bea.p13n.xml.schema.TimeInstant

role=com.bea.p13n.entitlements.common.Role

resource=java.lang.String

shoppingCart=com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart

4. Invoke the Rules Service to Evaluate Objects
After you have created a rule set and you have objects in working memory, you can invoke the
Rules Service to evaluate the objects in working memory with the rule(s) you created.

This section provides an example that shows you how to invoke the Rules Service with the Rules
Executor control in a Page Flow.

Prerequisites for the Example
In the example throughout this section, it is assumed a rule set already exists in the
/data/rulesets directory that classifies users as “GoldCardMembers” or
“SilverCardMembers” by reading a user’s profile, in a similar way to the example used in Adding
a Credit Score to Working Memory from a User Profile on page 14. The Page Flow example in
this section shows the user profile being added to working memory. Since the user’s profile is

Using the Ru les Se rv ice

Using Rules in Portal Applications 17

needed in this example, it is assumed the Profile control has already been added to an existing
Page Flow to enable the getting and setting of user profile properties.

This sample also uses the User Login control for authentication so that the Page Flow knows
which user profile to retrieve.

For details on creating a Page Flow, see the Guide to Building Page Flows in the WebLogic
Workshop online help system. For details on adding a Portal control to a Page Flow, see Adding
Portal Controls to Page Flows in the WebLogic Workshop online help system.

Insert the Control in the Page Flow
When you insert a control in a Page Flow (a .jpf file in WebLogic Workshop), all the actions
(methods) that are part of that control are available for use. The Rules Executor control has two
actions to choose from:

evaluateRule – Lets you evaluate the objects in working memory against a single rule in
a rule set.

evaluateRuleSet – Lets you evaluate the objects in working memory against all rules in
a rule set.

When you are looking at a Page Flow in Action View, you can select a control you have inserted
(by selecting the control’s border) and set properties on that control in the Property Editor, as
shown in Figure 3.

Figure 3 Setting properties on a control

The Property Editor is a convenient way to send arguments to the RulesManager EJB (which
interfaces directly with the Rules Service) without writing Java code.

../../../workshop/docs81/doc/en/workshop/guide/netui/guide/navGuidetoBuildingWebApplications.html
../../../workshop/docs81/doc/en/portal/controls/navUnderstandingPortalControls.html
../../../workshop/docs81/doc/en/portal/controls/navUnderstandingPortalControls.html

Using Ru les in Po r ta l App l i cat i ons

18 Using Rules in Portal Applications

For example, Table 3 shows how the Rules Executor control properties shown in Figure 3 map
to method and constructor arguments in the RulesManager EJB.

Notice the RulesManager EJB has the same methods contained in the Rules Executor control:
evaluateRule() and evaluateRuleSet(). The difference is that the Rules Executor control
methods take only one argument—for example, evaluateRuleSet(Object[]
inputObjects)—and provide the rule and filter arguments through the control properties.

On the Rules Executor control, if you set the filterResults property on to “true,” the EJB method
with the filter argument is used, and the filtering properties you enter are automatically sent to
that argument.

The filterClassName and filterClassNames properties are simply different options for populating
the filter argument (with one or more types of filters). Set either filterClassName or
filterClassNames on the control, not both.

Use the filterRuleName property to filter on the results of a specific rule in a rule set that has fired.
If you use this property, the RuleResultClassFilter constructor is called. Notice that the
constructor is overloaded to use either a single class filter (that you entered in the
filterClassName) property or multiple class filters (that you entered in the filterClassNames)

Table 3 How control properties map to method and constructor arguments

Rules Executor
control properties

RulesManager EJB methods (see com.bea.p13n.rules.manager)

rulesetUri

ruleName

filterResults

filterClassName

filterClassNames

evaluateRule(String ruleSetUri, String ruleName,
Object[] inputObjects)

evaluateRule(String ruleSetUri, String ruleName,
Object[] inputObjects, ObjectFilter filter)

evaluateRuleSet(String ruleSetUri, Object[]
inputObjects)

evaluateRuleSet(String ruleSetUri, Object[]
inputObjects, ObjectFilter filter)

filterRuleName Filter constructors (see com.bea.p13n.rules.manager.RuleResultClassFilter)
RuleResultClassFilter(String ruleName, Class
targetClass)

RuleResultClassFilter(String ruleName, Class
targetClassArray)

../../../workshop/docs81/doc/en/portal/java-class/com/bea/p13n/rules/manager/RulesManager.html
../../../workshop/docs81/doc/en/portal/java-class/com/bea/p13n/rules/manager/RuleResultClassFilter.html

Using the Ru les Se rv ice

Using Rules in Portal Applications 19

property. The result of using the filterRuleName property is that you not only filter the results of
a specific rule that has fired, you can also filter on specific data types.

Following are more detailed definitions of the control properties.

rulesetUri (required) URI of the rule set to use. This is relative to the application's
META-INF/data directory. For example, if you created a rule set called myruleset.rls
and stored it in a data/rulesets directory, the URI would be
/rulesets/myruleset.rls. Use the Rules Manger control to list rule sets and rules.

ruleName (optional) Name of the rule to use. The rule must be contained in the rule set
specified in the rulesetUri property. If not specified, all the rules in the rule set will be
evaluated. Defaults to null.

filterResults (optional) Whether to filter the results after the rules have been evaluated. If
false, all objects remaining in working memory will be returned. Defaults to false. For
information on filtering, see 5. Filter the Results.

filterClassName (optional) Enter class name (for example, java.lang.String) of the
type of results to return. If left empty, results will not be filtered. Specify either this or the
filterClassNames, but not both.

filterClassNames (optional) Enter a comma-separated list of class names of the types of
results to return (for example, java.lang.String,java.lang.Integer). If left empty,
results will not be filtered. Specify either this or the filterClassName, but not both.

filterRuleName (optional) Filter results of a specific rule that was fired. If this is left empty,
results from all rules will be returned. Otherwise, results from only this rule will be
returned. This filter is applied in conjunction with the Class filters, if those are specified.

Benefits of the Control
The previous discussion of how properties map to methods and constructors shows the benefits
of using the Rules Executor control. By simply filling in property values:

You do not have to write Java code.

If you are filtering the results, the filter is constructed automatically for you.

For more information on the Rules Executor control, see the Rules Executor Control Javadoc at
com.bea.p13n.controls.rules.RulesExecutorControl.

../../../workshop/docs81/doc/en/portal/java-class/com/bea/p13n/controls/rules/RulesExecutorControl.html

Using Ru les in Po r ta l App l i cat i ons

20 Using Rules in Portal Applications

Using the Control to Determine the User’s Path in the Page Flow
After you have added the Rules Executor control to the Page Flow and set the properties on the
control, selected one of the control’s execute* actions to use, and all other prerequisite details
are in place (see Prerequisites for the Example), you can add code to the Page Flow that sends a
user to a different page depending on the classification they receive from the rule evaluation
process.

The following sample Page Flow code shows how a user is directed to a particular page based on
the results from the Rules Service running. A similar sample is included in “The Portal Rules
Service” on dev2dev at
http://dev2dev.bea.com/products/wlportal81/articles/portalrulesservice.jsp (in the
examples/pageFlows/classifyAndFlow subdirectory).

public class Controller extends PageFlowController

{

 /**

 * @common:control

 */

 private com.bea.p13n.controls.login.UserLoginControl userLoginControl;

 /**

 * @common:control

 */

 private com.bea.p13n.controls.profile.ProfileControl myProfileControl;

// The Rules Executor control is added. Properties are configured

// in the Property Editor.

// This is all done in the Page Flow’s Action View.

 /**

 * @common:control

 * @jc:rules-executor filterClassName="com.bea.p13n.user.Classification"

filterResults="true" rulesetUri="/rulesets/myruleset.rls"

 */

 private com.bea.p13n.controls.rules.RulesExecutorControl

 myRulesExecutorControl;

 /**

 * @jpf:action

 * @jpf:forward name="default" path="default.jsp"

 * @jpf:forward name="goldCard" path="goldCard.jsp"

 * @jpf:forward name="silverCard" path="silverCard.jsp"

http://dev2dev.bea.com/products/wlportal81/articles/portalrulesservice.jsp

Using the Ru les Se rv ice

Using Rules in Portal Applications 21

 * @jpf:catch

type="com.bea.p13n.controls.exceptions.P13nControlException"

path="error.jsp"

 * @jpf:forward name="error" path="error.jsp"

 */

 protected Forward evaulateRuleSetAction(EvaluateRuleSetActionForm form)

 throws P13nControlException

 {

// Start with an empty list into which we add objects to populate

// the working memory of the Rules Service

 List wmObjects = new ArrayList();

 ProfileWrapper pw =

myProfileControl.getProfileFromRequest(this.getRequest());

 if (pw == null)

 {

 throw new P13nControlException("Undable to retrieve profile from

 request. " + "Make sure PortalServletFilter is configured

 in web.xml for an anonymous user, " + "or that a user

 has logged in.");

 }

// This one will be the condition that fires the rule

 Integer value = new Integer(6);

 myProfileControl.setProperty(pw, "FooPropertySet", "CreditScore",

value);

 wmObjects.add(pw);

// Evaulate all rules in the rule set. Parameters have been declared on the

// control in the Page Flow Property Editor (in Action View).

 Iterator iter =

myRulesExecutorControl.evaluateRuleSet(wmObjects.toArray());

 List results = new ArrayList();

// Let's say we're looking for GoldCardMembers

 Classification goldCardMembers = new

Classification("GoldCardMembers");

 Classification silverCardMembers = new

Classification("SilverCardMembers");

// And we'll direct them to a certain page depending

// on how the rule evaluates

Using Ru les in Po r ta l App l i cat i ons

22 Using Rules in Portal Applications

 Classification classification = (Classification)iter.next();

// Now you would do something with that,

// like show them a different page

 if (classification.equals(goldCardMembers))

 {

// Direct them to high-price stuff

 return new Forward("goldCard");

 }

 else if (classification.equals(silverCardMembers))

 {

// Direct them to lower-price stuff

 return new Forward("silverCard");

 }

// Otherwise, it defaults. Something went wrong.

// Check the rule conditions or turn off filtering on the control

// to see what's in working memory

 }

 }

 return new Forward("default");

}

If you want to use only a specific type of object in working memory after the Rules Service has
stopped running, you can filter the objects in working memory. Filtering is set using Java types.
On the Rules Executor control, you can set the filter type in the Property Editor. See 5. Filter the
Results.

For more information on the Rules Executor control, see the WebLogic Portal Javadoc at
com.bea.p13n.controls.rules.RulesExecutorControl. For more information on the RulesManager
EJB, see the com.bea.p13n.rules.manager package.

Rules Examples
For more examples of using rules controls and the RulesManager EJB, see “The Portal Rules
Service” on dev2dev at
http://dev2dev.bea.com/products/wlportal81/articles/portalrulesservice.jsp.

../../../workshop/docs81/doc/en/portal/java-class/com/bea/p13n/controls/rules/RulesExecutorControl.html
../../../workshop/docs81/doc/en/portal/java-class/com/bea/p13n/rules/manager/package-summary.html
http://dev2dev.bea.com/products/wlportal81/articles/portalrulesservice.jsp

Using the Ru les Se rv ice

Using Rules in Portal Applications 23

5. Filter the Results
When you execute the Rules Service to evaluate objects in working memory, as described in
4. Invoke the Rules Service to Evaluate Objects, you can filter the objects in working memory
when the Rules Service has stopped running to return only the objects of a specific type.

Objects exist in working memory as a result of either:

The caller puts them there (in the inputObjects array).

A new object is instantiated in one of the rules’ actions.

When the Rules Service has halted, several objects may remain in working memory, including
those the user initially added. For example, your rule may instantiate a new Classification object
into working memory if the rule evaluates to true. Or a rule action might have updated the user’s
profile, so you’ll need to retrieve the profile from working memory.

The API of the Rules Service, when executing a rule, will return an Iterator over the entire
contents of working memory unless you filter the results. If you are looking only for
Classification objects, then you may specify a filter that will return only Classification objects.
This filter may be designed based on a single class name, multiple class names, or a given rule,
as described in Insert the Control in the Page Flow.

Filtering with the Rules Executor control is easy, since the control implementation takes care of
constructing the filter automatically. You need only specify whether to filter, and the filter class
name(s) as control properties. The filter will be applied for you automatically by the control if
specified.

Filtering with the RulesManager EJB
Filtering with the RulesManager EJB is a bit more cumbersome, as you must design the filter
yourself:

String filterRuleName = null;

Class filterClass = com.bea.p13n.user.Classification.class;

ObjectFilter filter = new RuleResultClassFilter(filterRuleName,

filterClass);

Class [] filterClasses = { java.lang.String.class,

com.bea.p13n.usermgmt.profile.ProfileWrapper.class};

ObjectFilter filter = new RuleResultClassFilter(filterRuleName,

filterClasses);

Using Ru les in Po r ta l App l i cat i ons

24 Using Rules in Portal Applications

The filter can then be used as part of the RulesManager EJB, as shown in the following example:

public Iterator evaluateRule(String ruleSetUri, String ruleName, Object[]

inputObjects, ObjectFilter filter)

If you've filtered the results as shown above, the Iterator should only contain results of the class
type(s) you specified. So you can do something like this:

while (iter.hasNext())

{

Classification c = (Classification)iter.next();

 if (c.equals(silverCardMembers))

 {

 // do something

 }

}

6. Use the Results in Your Applications
Presumably, you had a good reason to invoke the Rules Service: to let it make decisions for you
at runtime. Note the benefit of doing things this way rather than hard-coding logic (if/then) into
your components.

Here are some examples of using rules and rule results:

If the time is between 8-5, then direct them to pages relating to brokerage services, else
direct them to pages related to investment research.

If the user lives in Boulder and is female, then show them an advertisement for the Boulder
Rock Club.

If the user’s credit score is > 10, then update their profile (set a property) to classify them
as a Gold Member.

If the date is between December 1 and December 31, send them to the New Year’s
promotional JSP.

Rules Service Samples
For samples of the rules controls and RulesManager EJB, besides the example provided in
4. Invoke the Rules Service to Evaluate Objects, see “The Portal Rules Service” on dev2dev at
http://dev2dev.bea.com/products/wlportal81/articles/portalrulesservice.jsp.

http://dev2dev.bea.com/products/wlportal81/articles/portalrulesservice.jsp

	Overview
	Personalization Components
	Rules Overview
	The Rules Service Process
	Why is the Rules Service better than if/then?

	Using the Rules Service
	1. Create a Rule Set
	Example: Using a Method in a Rule
	Working with Invalid Rule Sets

	2. Deploy a Rule Set
	3. Add Objects to Working Memory
	Adding a Credit Score to Working Memory from an Integer
	Adding a Credit Score to Working Memory from a User Profile
	Type Mappings

	4.�Invoke the Rules Service to Evaluate Objects
	Prerequisites for the Example
	Insert the Control in the Page Flow
	Using the Control to Determine the User’s Path in the Page Flow
	Rules Examples

	5. Filter the Results
	Filtering with the RulesManager EJB

	6. Use the Results in Your Applications
	Rules Service Samples

