
BEAWebLogic
Portal®

Best Practices Guide

Version 8.1
July 2003
Revised: July 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy the
software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine readable form without prior consent, in writing, from
BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License Agreement
and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR 52.227-19; subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN
MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop
and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

WebLogic Portal 8.1 Best Practices Guide i

Contents

About This Document
What You Need to Know. i

Product Documentation on the dev2dev Web Site . i

Related Information . ii

Contact Us! . ii

Documentation Conventions . iii

Development Strategies
Developing for WebLogic Portal 8.1. 1-1

About Split Configuration . 1-1

Adding Visitor Tools to a Custom Application . 1-1

Authenticating Users . 1-2

Using the Anonymous User Profile . 1-3

Content Placeholders. 1-3

Page Flows and Portlets . 1-3

Processors . 1-4

Varying Content for Mobile Devices . 1-5

Samples of MultiChannel Functionality . 1-9

Working with Look and Feel Elements . 1-9

Look and Feel Files . 1-9

Creating a Look and Feel File . 1-9

Creating Skins and Skin Themes . 1-11

Creating a Skin . 1-11

Creating a Skin Theme . 1-12

Skeletons and Skeleton Themes. 1-13

When should you create a skeleton?. 1-14

Creating a Skeleton. 1-14

Creating a Skeleton Theme. 1-15

Layouts. 1-18

Creating a Layout . 1-19

Navigation Menus . 1-22

Modifying the Navigation Menu File . 1-23

Modifying The Skeleton JSP File . 1-23

Shells. 1-24

Creating a Shell. 1-24

Configuration and Administration
Configuring WebLogic Portal 8.1. 2-1

Split Configuration. 2-1

Deploying an EAR Versus an Exploded Application . 2-1

How to Use Active Directory. 2-2

Single Signon Between Two Portal Web Applications . 2-2

Performance
Performance Tuning . 3-1

Managing Caches. 3-1

How to Use Caching Tables. 3-2

Notes on Threads . 3-14

About the 8.1 Forkable Portlet Feature. 3-14

WebLogic Portal 8.1 Best Practices Guide i

About This Document

This document includes best practices information on BEA WebLogic Portal 8.1.

This document covers the following topics:

Chapter 1, “Development Strategies,” introduces some concepts for developers and
architects building portal Web applications.

Chapter 2, “Configuration and Administration,” includes instructions for content
management, deployment and configuration of WebLogic Portal 8.1.

Chapter 3, “Performance,” includes information on caching and threading in WebLogic
Portal 8.1 applications.

What You Need to Know
This document is intended for new or existing BEA customers interested in WebLogic Portal 8.1.

Product Documentation on the dev2dev Web Site
BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev Web site:

http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the list on the
dev2dev page; the home page for the specified product is displayed. From the menu on the left

http://dev2dev.bea.com

1-ii WebLogic Portal 8.1 Best Practices Guide

side of the screen, select Documentation for the appropriate release. The home page for the
complete documentation set for the product and release you have selected is displayed.

Related Information
Readers of this document may find the following documentation and resources especially useful:

For helpful information about programming with the Studio client, see the following books
in the WebLogic Integration document set:

– Using the WebLogic Integration Studio

– BEA WebLogic Integration Javadoc

For general information about Java applications, go to the Sun Microsystems, Inc. Java
Web site at http://java.sun.com.

For general information about XML, go to the O’Reilly & Associates, Inc. XML.com Web
site at http://www.xml.com.

Contact Us!
Your feedback on the BEA WebLogic Portal documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the WebLogic Portal documentation.

In your e-mail message, please indicate that you are using the documentation for BEA WebLogic
Portal 8.1.

If you have any questions about this version of BEA WebLogic Portal, or if you have problems
installing and running BEA WebLogic Portal, contact BEA Customer Support at
http://support.bea.com. You can also contact Customer Support by using the contact
information provided on the quick reference sheet titled “BEA Customer Support,” which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

http://support.bea.com

WebLogic Portal 8.1 Best Practices Guide 1-iii

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates user input, as shown in the following examples:
• Filenames: config.xml
• Pathnames: BEAHOME/config/examples
• Commands: java -Dbea.home=BEA_HOME
• Code: public TextMsg createTextMsg(

Indicates computer output, such as error messages, as shown in the following example:
Exception occurred during event
dispatching:java.lang.ArrayIndexOutOfBoundsException: No such
child: 0

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:
java utils.MulticastTest -n name [-p portnumber]

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

Example:

java weblogic.deploy [list|deploy|update]

1-iv WebLogic Portal 8.1 Best Practices Guide

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f "file1.cpp file2.cpp
file3.cpp . . ."

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item

WebLogic Portal 8.1 Best Practices Guide 1-1

C H A P T E R 1

Development Strategies

Developing for WebLogic Portal 8.1
This section includes some guidelines and solutions to problems developers often face working
with WebLogic Portal Platform Edition, and includes information on the following topics:

About Split Configuration

Adding Visitor Tools to a Custom Application

Varying Content for Mobile Devices

Working with Look and Feel Elements

About Split Configuration
WebLogic Portal does not support a split configuration, where servlet and EJB containers run on
separate server instances.

Adding Visitor Tools to a Custom Application
WebLogic Portal Platform Edition installs with a pre-built portal application called sampleportal,
which includes, among other things, a set of JSPs that enable visitors to set properties on
personalized view of the portal. Using the following procedure, these visitor tools can be added
to a new portal application and then customized.

1. In the native file system, copy the following directories inclusively:

Deve lopment S t ra tegies

1-2 WebLogic Portal 8.1 Best Practices Guide

– Copy the entire com/bea/jsptools/portal directory from the WEB-INF/classes
directory in sampleportal into the WEB-INF/classes directory of the new Web
application.

– Copy the entire com/bea/jsptools/portal directory from the WEB-INF/classes
directory in sampleportal to the WEB-INF/classes directory of the new Web
application.

– Copy the entire visitorTools directory from the sampleportal directory in portalApp
to the Portal Project directory of the new Web application.

2. In WebLogic Workshop Platform Edition, open the new Portal application.

3. In the Portal Designer, select the main book.

Figure 0-1 Selecting Main Book

4. In the Properties Designer, set the Editable property to Edit in Menu. The Mode
Properties heading is added to the available properties.

5. Click on the Content URI and browse to the /visitorTools/visitorTools.portion file.

6. When this portal runs, (not in development mode, but in a live desktop) the "edit" icon will
appear on the main book. Clicking this icon will take the user to the Visitor Tools.

Note: The Visitor Tools JSPs only work when the portal server is running, and must be
accessed by a user logged into the desktop.

Authenticating Users
The PortalServletFilter will guarantee that the correct user profile is configured in the session, so
you no longer need to write custom code to do so.

<um:login>
By default, this tag handles the post-user-login process of authenticating the user,
updating the profile in the session to the user's profile, and firing the
UserRegistrationEvent. Additionally, the PortalServletFilter will handle the
post-user-login process on the next request if the user is authenticated in another fashion
(e.g. form-based, j_security_check,ServletAuthentication.weak()).

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-3

<um:createUser>
By default, this tag handles the post-user-registration process of saving the anonymous
profile properties to the user's profile, logging in the user (which will authenticate the user,
update the profile in the session to the user's profile and fire a SessionLoginEvent) and
firing the UserRegistrationEvent.

Using the Anonymous User Profile
Take advantage of the anonymous user profile. Set properties in it. All user-based features can
operate against an anonymous profile (for example, <pz:div>, <pz:contentSelector>,
<ph:placeholder>), so you don't need to require a login for those features. Those properties will
get persisted to the user's profile via <um:createUser>. When writing self-registration pages, it's
best to set all the properties in the (anonymous) profile via <um:setProperty> before calling
<um:createUser>. This is easier than trying to do so after creating the user, and will make sure
the properties are set on the user's profile prior to firing the
SessionLoginEventandUserRegistrationEvent.

Content Placeholders
Content Placeholders now support queries that refer to user, request, and session properties. You
no longer need a campaign to just put customized queries in a placeholder for a user.
Additionally, content search queries in <cm:search> and <pz:contentQuery> can also refer to
user, request, and session properties (e.g. " color = userProperty('myPropSet', 'favoriteColor') ").

Page Flows and Portlets
When using Page Flows, it is recommended that you not use hrefs within the JSPs. Instead, use
an action by dragging an action into the flow and give it a name such as 'doClientRequest'. Link
from this to the page you wish to go to, so that the flow looks something like Figure 0-1:

Deve lopment S t ra tegies

1-4 WebLogic Portal 8.1 Best Practices Guide

Figure 0-1 pageflow1

On the JSP where you call the other page, which is index.jsp in Figure 0-1, open the JSP and edit
the anchor tag. Change it from an href to an action, as in Figure 0-2:

Figure 0-2 pageflow2

Processors
If you need to write a Processor (such as those used in a webflow) which adds data in the request,
you need to consider refresh of the page. For example, if a Processor gets data and stores in the
request, and then a JSP reads this data in the request to display information, an event refresh link

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-5

to the lastcontenturl of the master webflow will lose data stored by Input Processor in the
request.

As discussed in the section “Page Flows and Portlets,” you should never use HREFs with Page
Flows. You can react to the refresh event (one of the standard portlet webflow events) to invoke
an Input Processor or Pipeline Component. That way, the data is available for the JSP.

Although it is possible to write Pipeline Components that store the 'output data' in the pipeline
session at session scope, this can be inflexible as a design pattern. Pipelines should be agnostic
to the presentation; it is the webflow (Input Processors) that should prepare the rendering data and
therefore they should determine when to persist to session scope, e.g. to retain presentation data
after refreshes, etc.

Although it is a small overhead, it is recommended that Pipeline Components write output data
to request scope unless it is for "internal" state use so that the contract between the pipelines and
the webflows is the (pipeline session) request. This helps to ensure more portable/reusable portal
components.It is also good practice to actively maintain the data held at session scope, to prevent
session "memory leaks" and reduce the overhead on cluster replication.

Varying Content for Mobile Devices
There are many types of Web-enabled mobile devices that can access your portals. Since these
devices have different interfaces and different-sized viewing areas, each has a unique
requirement for the type of content they display.

With the multichannel framework provided in WebLogic Workshop Portal Extensions, you can
extend your portals to include support for mobile device access. This flexible framework lets you
create a single portal that serves content to Web-capable devices seamlessly and simultaneously.
You can also serve different content to different browsers, such as Mozilla, Netscape, Opera, and
Internet Explorer.

The multichannel framework allows the following processes to occur: You can build specific
content and look and feel elements for specific devices. When a device accesses a portal, the
portal knows what kind of device it is and automatically serves the device the content you created
for it.

When a device (whether a PC or a handheld) accesses a portal, it sends information about itself
to the portal in the HTTP header—information such as the type of browser being used and the
type of device. This combination of information defines a "client," which is equivalent to the
model of a device. Clients, in turn, can be grouped into "classifications." For example, there are
many models of Palm handheld devices, but they all fall under the classification of "Palm."
Classifications are the key element in enabling multichannel support in portals.

Deve lopment S t ra tegies

1-6 WebLogic Portal 8.1 Best Practices Guide

Figure 0-3 illustrates the multichannel framework and provide instructions for building content
and presentation for mobile devices. This illustration is annotated by the following numbered
section.

Figure 0-3 Multi-Channel Request Cycle

1. When a device accesses a portal-enabled server with a URL, the device sends a user-agent
string in the HTTP header that tells what kind of client it is. The server stores this user-agent
string in the "User-Agent" request property for the portal application.

The "User-Agent" request property is automatically included with any portal application
you create in WebLogic Workshop Platform Edition. To view this property, open the
following file in WebLogic Workshop:
<PORTAL_APP>\data\request\DefaultRequestPropertySet.req.

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-7

Portal developer tasks: None. This happens automatically.

2. To enable multichannel support for devices, a portal Web project must be able to map the
user-agent string stored in the "User-Agent" property to a classification. This mapping must
be created before portals are accessed by mobile devices.

Portal developer tasks: You must map clients to classifications in your portal Web project
WEB-INF\client-classifications.xml file. The default client-classifications.xml file contains
default client mappings.

For each client entry that maps to a classification, you can enter either an explicit
user-agent string that maps exactly to what a device sends, or you can enter a regular
expression that can encompass multiple user-agent strings.

The following example of a client classification mapping in client-classifications.xml
shows explicit mappings (with the <useragent> tag) and a regular expression mapping
(with the <useragent-regex> tag).

<classification name="pocketpc" description="For the PocketPC">

<useragent value="Mozilla/2.0 (compatible; MSIE 3.02; Windows CE;
240x320)"/>

<useragent value="Mozilla/2.0 (compatible; MSIE 3.02; Windows CE; PPC;
240x320)"/>

<useragent-regex value=".*PDA; Windows CE.*NetFront/3.*" priority="1"/>

</classification>

An explicit <useragent> value can be used for only one classification. If you use more than
one <useragent-regex> tag to map with regular expressions, it is possible that a device
accessing a portal could map to more than one classification. To determine which
classification the device is mapped to, use the priority attribute, as shown above. The value
"1" is the highest priority. Enter any whole number for the priority value.

Note: For portlets that are assigned client classifications, the classification "description" value is used in
the WebLogic Administration Portal to show which classifications the portlet is assigned to. Write
descriptions that are easily understood by portal administrators.

3. Because of the client-classification.xml mappings you defined, the user-agent string stored
in the "User-Agent" property is mapped to the classification name you provided. In the
example mapping above, the name is "pocketpc".

Portal developer tasks: None. This happens automatically.

4. After the client is successfully mapped to a classification, the classification name is stored
in the "Client Classification" property in the DefaultRequestPropertySet.

Deve lopment S t ra tegies

1-8 WebLogic Portal 8.1 Best Practices Guide

Portal developer tasks: None. This happens automatically.

5. The portal uses that client classification name stored in the DefaultRequestPropertySet
throughout the portal framework to identify the content and presentation tailored to the
device.

Portal developer tasks: The portal is where you develop and enable specific content and
presentation to be used for different mobile devices. The portal framework includes the
following touchpoints for creating device-specific content and presentation:

Portlet Development - When you create a portlet with the WebLogic Workshop Portal
Extensions, you can assign the portlet to be used by different devices (client
classifications). With the portlet open in the Portlet Designer, in the Property Editor
window, do the following:

a. Click the ellipsis icon [...] in the Client Classifications field to launch the Manage Portlet
Classifications dialog box.

b. In the dialog box, select whether you want to enable or disable classifications for the
portlet. (If you disable classifications, the portlet is automatically enabled for the
classifications you do not select for disabling.)

c. Move the classifications you want to enable/disable from the Available Classifications list
to the Selected Classifications list, and click OK. The list of classifications is read from
the client-classifications.xml file.

JSP Tags - The WebLogic Workshop Portal Extensions include a set of JSP tags for
creating device-specific inline content in JSPs. Only the content that meets the device
criteria defined by the JSP tag is delivered to the device.

The JSP tags have a required "client" attribute for mapping the JSP content to
classifications. For that client value in the JSP tag, you must use the exact value used for
the name in the client-classification.xml file (the value being stored in the "Client
Classification" property in the DefaultRequestPropertySet).

Look & Feel Development - The Look & Feels (skins and skeletons) provided with the
WebLogic Workshop Portal Extensions include support for a few mobile devices (nokia,
palm, and pocketpc). These skins and skeletons are included as subdirectories of the main
skins and skeletons in your portal Web projects. For example, a pocketpc skin is included
as part of the "default" skin in <project>\framework\skins\default\pocketpc.

You can also develop your own skins and skeletons to support different devices. When a
Look & Feel is selected for a desktop, the portal framework reads the "Client
Classification" property in the DefaultRequestPropertySet and uses the Look & Feel logic
to find skin and skeleton directories matching the name of the client classification.

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-9

Interaction Management Development - With the client classification name being stored in
the "Client Classification" property of the DefaultRequestPropertySet, you can build and
trigger personalization and campaigns for devices based on that property value.

6. Based on the mapping you set up to match user-agent (client) strings in the HTTP request to
classification names, the portal sends the device-specific content and presentation you
developed to the different devices that access the portal.

Portal developer tasks: None. This happens automatically.

Samples of MultiChannel Functionality
The Tutorial Portal, one of the Portal Samples provided with the WebLogic Workshop Portal
Extensions, includes examples of multichannel functionality. Also, when you create a portal Web
project, a WEB-INF\client-classifications.xml file is created automatically with default settings.

Any portal Web project you create also includes a default set of multichannel Look & Feels
located in skin and skeleton subdirectories (<project>\framework\skins and
<project>\framework\skeletons).

Working with Look and Feel Elements
This section includes instructions on creating Look and Feel elements to vary the presentation of
a portal at runtime. For a description of how these elements work together, consult the
Presentation Framework section of the WebLogic Portal Upgrade Guide.

Look and Feel Files
A Look and Feel is described by a simple XML file that determines the skin and skeleton used
for the Look and Feel. When you create a Look and Feel file, you can select the new Look and
Feel in the Portal Designer for your portal desktops.

The following topics describe the Look and Feel architecture and show you how to create and use
Look and Feels in your portals.

Creating a Look and Feel File
1. In WebLogic Workshop, with your portal application open, use the Application window to

open an existing Look and Feel file:
<project>\framework\markup\lookandfeel*.laf.

2. Choose File-->Save As and rename the file. Be sure to keep the .laf extension and store it in
the same directory as the other Look and Feel files.

Deve lopment S t ra tegies

1-10 WebLogic Portal 8.1 Best Practices Guide

3. In the <netuix:lookAndFeel> element, change the following attribute values to the name of
your Look and Feel: definitionLabel, title, description, and markupName. Each Look and
Feel must have a unique markupName. Do not modify the markupType value.

4. For the skin attribute value, enter the directory name of the skin you want to use.

5. For the skinPath attribute value, enter the relative path (relative to the project folder) of the
skin you want to use, up to the skin's parent folder.

For example, if you created a skin stored in <project>/framework/skins/modern (the name
of the skin is "modern"), your skin attributes would look like this:
skin="modern" skinPath="/framework/skins/"

The /framework/skins/ path is the default path used by the portal framework. If you did not
enter a value for skinPath, the default path would be used.

6. For the skeleton attribute value, enter the directory name of the skeleton you want to use.

7. For the skeletonPath attribute value, enter the relative path (relative to the project folder) of
the skeleton you want to use, up to the skeleton's parent folder.

For example, if you created a skeleton stored in <project>/framework/skeletons/modern
(the name of the skeleton is "modern"), your skeleton attributes would look like this:
skeleton="modern" skeletonPath="/framework/skeletons/"

The /framework/skeletons/ path is the default path used by the portal framework. If you did
not enter a value for skeletonPath, the default path would be used.

In many cases, you may just want to use the "default" skeleton stored in
<project>/framework/skeletons/default.

If you do not provide skeleton attributes, the skeleton identified in the skin.properties file is
used. See Creating Skins and Skin Themes.

8. You can also set the default icon to be used in portlet titlebars by setting the
defaultWindowIcon and defaultWindowIconPath attributes. For example, if the icon you
want to use is located at <project>/images/window-icon.gif, set the attributes like this:
defaultWindowIcon="window-icon.gif" defaultWindowIconPath="images/"

9. Save the file.

10. To use the Look and Feel for a portal, open the portal in WebLogic Workshop Platform
Edition, select the Desktop icon in the Document Structure window, and select the Look
and Feel in the Property Editor Look and Feel field.

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-11

Selecting a Look and Feel for a desktop in the Portal Designer simply gives the portal a
default Look and Feel setting. Portal administrators and end users can change the Look and
Feel used for a desktop.

The real key to Look and Feels working properly is in the correct creation and storage of
your skins and skeletons. Skin and skeleton property files must be set up correctly and
include all necessary paths, skeleton JSPs must be valid, and and skin resources (such as
images, CSS files, and JavaScript files) must be referenced correctly in your skeleton files.
For example, the icons for the portlet title bars must use the correct graphics names.

Creating Skins and Skin Themes
Skins are the graphics, cascading style sheets (CSS), and JavaScript behaviors that define button
graphics, text styles, mouseover actions, and other elements in the way a portal looks. Skins,
combined with skeletons, make up a portal desktop's Look and Feel. When you select a Look and
Feel for a portal desktop, the Look and Feel points to the skins and skeletons to use.

A skin is a unified collection of graphics, CSS files, and JavaScript files stored under a parent
skin directory. You can create as many skins as you need. Skins can also contain subdirectories
for mobile device-specific skins.

Skins can also contain themes. A skin theme is a subset of graphics, CSS styles, and/or JavaScript
behavior that can be used on books, pages, and portlets to give them a different look than the rest
of the portal desktop.

Creating a Skin
1. With your portal application open in WebLogic Workshop platform edition, duplicate an

existing skin directory in your Portal Web Project. For example, right-click
<project>\framework\skins\default and choose Duplicate.

The new skin directory appears with a number appended to the end of the name.

2. Rename the new skin directory.

3. Delete any skin subdirectories you do not plan to use.

4. In the images subdirectories, modify the button icons as desired. Do not rename any of the
files. The filenames are used in skeleton JSP and class files to render the buttons.

5. In the css subdirectories, modify the CSS files as desired. Do not rename any of the styles in
the CSS files. The style names are used in places like skeleton JSPs and layout files to
render the styles.

Deve lopment S t ra tegies

1-12 WebLogic Portal 8.1 Best Practices Guide

To support Multi Level Menus in mobile devices, delete the line display: none; in the
book.css file.

6. In the js subdirectories, modify the JavaScript as desired.

Do not put business logic in skins. Create separate JSPs for business logic and surface
those JSPs either in the portal shells (for the desktop headers or footers) or in portlets.

7. Modify the skin.properties file for the root skin and any sub skins.

The skin.properties file contains references to images, themes, stylesheet links, JavaScript
script entries, skeleton dependencies, and other information. The is self-documented to
guide you through the file modification process.

Entering all references in skin.properties is important because these references are inserted
into the HTML head when the portal is rendered. Missing references will cause the skin to
render incorrectly.

8. Open or create a Look and Feel file and associate the skin with the Look and Feel. See
Creating Look and Feel Files.

9. To use the skin for a portal, open the portal in WebLogic Workshop Platform Edition, select
the Desktop icon in the Document Structure window, and select the Look and Feel in the
Property Editor Look and Feel field.

Selecting a Look and Feel for a desktop in the Portal Designer simply gives the portal a default
Look and Feel setting. Portal administrators and end users can change the Look and Feel used for
a desktop.

Creating a Skin Theme
A theme is represented by a single .theme file that is shared between skins and skeletons. For
example, if you select a theme called "alert" for a portlet, the portal framework looks for skin and
skeleton subdirectories called "alert." If a theme already exists that you want to simply create a
skin for, start with step 5 of this procedure.

1. With your portal application open in WebLogic Workshop platform edition, duplicate an
existing theme file in your Portal Web Project. For example, right-click
<project>\framework\markup\theme\alert.theme and choose Duplicate.

The new theme file appears with a number appended to the end of the name.

2. Rename the new theme file. Be sure to retain the .theme extension.

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-13

3. With the new theme file open, modify the following attributes in the <netuix:theme>
element: name, title, description, markupName. The title attribute provides the name for
selecting the theme in a drop-down menu; the markupName must be unique among the
other themes.

4. Save the theme file.

5. In a skin directory, create a subdirectory with the same name as the theme.

6. Copy the appropriate skin directories and files from an existing skin into the new theme
directory.

7. Modify the skin files in the skin theme. Do not modify filenames.

8. Associate the new theme with the skins you want to use the theme. In the skin.properties
file of each skin, do the following:

a. Reference the theme in the "THEME IMAGES DIRECTORIES" section of the file.

b. If the theme includes unique stylesheets, reference those in the "LINK ENTRIES" section
of the file.

c. If the theme includes unique scripting, reference the scripts in the "SCRIPT ENTRIES"
section of the file.

9. Save the skin.properties file.

10. Modify the skin theme's skin.properties file.

11. Copy the skin theme directory as a subdirectory to other skin directories.

All available themes (identified by the .theme files) are selectable for books, pages, and portlets
regardless of whether or not a skin contains them. If the Look and Feel selected for the desktop
references a skin that does not contain the selected theme in its skin.properties file, as outlined in
the previous steps, no theme is used.

Skeletons and Skeleton Themes
A portal desktop is a collection of portal components, such as books, pages, and portlets, that have
a hierarchical relationship to each another. (Books contain pages, pages, contain portlets, and so
on.) Since portal components are largely XML files, rendering them in a browser requires a
conversion to HTML. That rendering is the function of skeletons.

Each portal component has one or more corresponding skeleton JSP files. When a portal desktop
is rendered, the skeleton JSPs for each portal component (in conjunction with any related classes)

Deve lopment S t ra tegies

1-14 WebLogic Portal 8.1 Best Practices Guide

perform their logic and insert the resulting HTML into the correct hierarchical locations of the
HTML file.

Skeletons can also contain themes. A skeleton theme is a subset of skeleton JSPs that can be used
on books, pages, and portlets to give them a different feel than the rest of the portal desktop.
Skeletons, combined with skins, make up a portal desktop's Look and Feel. When you select a
Look and Feel for a portal desktop, the Look and Feel points to the skeletons and skins to use.

When should you create a skeleton?
When you create a Portal Web Project in a portal application, the project includes predefined
skeletons you can use. In most cases you can use the predefined skeletons to suit your needs.
Changing the physical appearance and behavior of a portal desktop can be accomplished largely
by creating new skins and shells rather than creating new skeletons.

Create a skeleton if you need to:

Change the default behavior of an existing skeleton without modifying the existing
skeleton.

Create rendering behavior not provided in the default skeletons. For example, you can set
an "Orientation" attribute on books and portlets that determine the physical location of
Navigation Menus and titlebars. The default skins do not provide logic for changing
orientation, so you could create a new book.jsp or titlebar.jsp skeleton to perform the
desired behavior.

Create skeletons to support specific classifications of mobile devices (for example, Palm).

Creating a Skeleton
To create a skeleton, take the following steps:

1. With your portal application open in WebLogic Workshop Platform Edition, create a copy of
an existing skeleton directory. For example, right-click the
<project>\framework\skeletons\default directory and choose Duplicate. When the duplicate
directory appears, rename it.

If you are creating a skeleton to support a mobile device, move the new directory to a
subdirectory of the main skeleton. Give the new directory the exact name of the device's
classification name in the <project>\WEB-INF\client-classifications.xml file.

2. In the new skeleton directory, open the skeleton.properties file. (If you copied the default
skeleton directory, copy skeleton.properties from another skeleton into the root of your new
skeleton directory and open it.)

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-15

3. In skeleton.properties, make any necessary modifications to the skeleton search order. For
example:
jsp.search.path: ., ../default

With this entry, a skeleton file is first searched for in the current directory (.). If not found
in the current directory, the ../default directory is searched. If no skeleton is found in either
directory, the entire skeleton directory is searched until a skeleton is found.

4. Save skeleton.properties.

5. Modify the skeleton JSPs to perform the rendering you want. Use tags in the Portal
Skeleton Rendering JSP tag library. In particular, use the <render:beginRender> and
<render:endRender> tags.

For guidance on which skeleton JSPs to modify, see the following table under How Portal
Components Map to Skeletons.

Do not rename the skeleton files. The skeleton filenames are hard-coded in their respective
class files. The only exception to this is if you are creating a new rendering infrastructure
that uses its own backing class files and explicitly identifies the name of the skeleton you
are creating.

6. Save the skeleton JSPs.

7. Make any appropriate modifications to skeleton.properties or skeleton JSPs for any device
skeletons stored in subdirectories of your skeleton.

8. To use the new skeleton, reference it in a Look and Feel file. See Creating Look and Feel
Files.

Note: When working with portals in the WebLogic Workshop Portal Extensions Portal
Designer, each selected portal component has a Skeleton URI property you can set in the
Property Editor. This property lets you point to a specific skeleton file you want the
component to use instead of the skeleton identified in the selected Look and Feel for the
portal desktop.

Do not add business logic to skeletons. Skeletons are designed for physical rendering only. Add
business logic to shells (headers or footers).

Creating a Skeleton Theme
A theme is represented by a single .theme file that is shared between skins and skeletons. For
example, if you select a theme called "alert" for a portlet, the portal framework looks for skin and
skeleton subdirectories called "alert." If a theme already exists that you want to simply create a
skeleton for, start with step 5 of this procedure.

Deve lopment S t ra tegies

1-16 WebLogic Portal 8.1 Best Practices Guide

1. With your portal application open in WebLogic Workshop platform edition, duplicate an
existing theme file in your Portal Web Project. For example, right-click
<project>\framework\markup\theme\alert.theme and choose Duplicate.

The new theme file appears with a number appended to the end of the name.

2. Rename the new theme file. Be sure to retain the .theme extension.

3. With the new theme file open, modify the following attributes in the <netuix:theme>
element: name, title, description, markupName. The title attribute provides the name for
selecting the theme in a drop-down menu; the markupName must be unique among the
other themes.

4. Save the theme file.

5. In a skeleton directory, create a subdirectory with the same name as the theme.

6. Copy the appropriate skeleton JSPs from an existing skeleton directory into the new theme
directory. You need skeleton JSPs for only the portal components you want the theme to
affect. Portal components without corresponding theme skeleton JSPs will use the parent
skeleton JSPs.

7. Modify the skeleton JSP files in the skeleton theme. Do not modify filenames.

8. Copy the skeleton theme directory as a subdirectory to other skeleton directories.

All available themes (identified by the .theme files) are selectable for books, pages, and
portlets regardless of whether or not a skeleton contains them. If the Look and Feel
selected for the desktop references a skeleton that does not use the selected theme, no
theme is used.

Table 1 Portal Components and Skeleton JSPs

This portal component... uses this skeleton JSP... to:

Desktop desktop.jsp Insert the HTML document declarations and insert
<!-- Begin Desktop --> and <!-- End Desktop -->
comments.

Shell shell.jsp Insert the HTML document's opening and closing
<html> tag and insert <!-- Begin Shell --> and <!--
End Shell --> comments.

Shell - The <netuix:head>
tag in a .shell file

head.jsp Insert the HTML document's opening and closing
<head> tag and insert <!-- Begin Head --> and <!--
End Head --> comments.

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-17

Shell - The
<netuix:body> tag in a
.shell file

body.jsp Insert the HTML document's opening and closing
<body> tag and provide presentation logic.

Shell - The
<hetuix:header> tag in a
.shell file

header.jsp Render the desktop's header region.

Shell - The
<netuix:footer> tag in a
.shell file

footer.jsp Render the desktop's footer region.

Book book.jsp Render the book framework and styles.

Navigation Menu singlelevelmenu.jsp Render the Single Level Menu provided by WebLogic
Portal.

Navigation Menu multilevelmenu.jsp Render the Multi Level Menu provided by WebLogic
Portal.

Book, Navigation Menu submenu.jsp Render Navigation Menus for books within books.

Page page.jsp Render a page framework and styles.

Layout - The
<netuix:gridLayout> tag
in a .layout file

gridlayout.jsp Render placeholders in the layout using the Grid
Layout style.

Layout - The
<netuix:borderLayout>
tag in a .layout file

borderlayout.jsp Render placeholders in the layout using the Border
layout style.

Layout - The
<netuix:flowLayout> tag
in a .layout file.

flowlayout.jsp Render placeholders in the layout using the Flow
layout style.

Layout - The
<netuix:placeholder> tag
in the .layout file

placeholder.jsp Render an individual placeholder in a Layout.

Portlet titlebar titlebar.jsp Render a portlet titlebar.

Table 1 Portal Components and Skeleton JSPs

This portal component... uses this skeleton JSP... to:

Deve lopment S t ra tegies

1-18 WebLogic Portal 8.1 Best Practices Guide

There are no skeleton files for skins. Skeletons include references to skin resources to render their
components with appropriate graphics, styles, and JavaScript functionality. Though themes are
related to skins, themes require a skeleton because themes are inline styles that must be inserted
to override skin styles.

Layouts
Layouts provide the placeholders (table structure) for a page in which books, pages, and portlets
can be placed. For example, a layout that uses three table cells provides three placeholders in
which portlets can be placed on a page.

Portlet titlebar buttons for
floating windows

buttonfloat.jsp Render a button that launches separate portlet mode
windows (for example, Edit and Help).

Portlet titlebar toggle
buttons

togglebutton.jsp Render a button that toggles between portlet states (for
example, Minimize/Restore and Maximize/Restore).

Portlet titlebar Delete
button

togglebuttondelete.jsp Render a button that removes a portlet from a page.

Portlet error.jsp Display error messages in a portlet.

Portlet webflowportlet.jsp Rrender a Webflow portlet created in previous
versions of WebLogic Portal and running in a
compatibility domain.

Book, Page, and Portlet window.jsp Rendering the container for the content area.

Theme theme.jsp Render books, pages, and portlets in the themes
applied to them.

Table 1 Portal Components and Skeleton JSPs

This portal component... uses this skeleton JSP... to:

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-19

The WebLogic Workshop Portal Extensions provide the following three layout styles you can use
to create your own layouts:

A layout involves two files:

An XML file with a .layout extension - The actual layout that is rendered on a page.

An HTML file with a .html.txt extension - Used simply to simulate the layout in the
WebLogic Workshop Portal Extensions Portal Designer and in the WebLogic
Administration Portal.

There are also skeleton JSPs that are used to render each style of layout: gridlayout.jsp,
flowlayout.jsp, and borderlayout.jsp. Since these skeleton files govern the behavior of each style,
you do not have to modify the skeletons.

The following topics provide instructions on creating a layout, including specific instructions for
creating each type of layout.

Creating a Layout
1. With your portal application open in WebLogic Workshop Platform Edition, duplicate an

existing layout file in your Portal Web Project. For example, right-click
<project>\framework\markup\layout\fourcolumn.layout and choose Duplicate.

The new layout file appears with a number appended to the end of the name.

The Grid Layout automatically
positions the number of
placeholders you specify into the
number of columns and rows you
specify. This example sets
columns="3" to position 8
placeholders.

The Flow Layout automatically
positions the number of
placeholders used either
vertically or horizontally with no
wrapping.

The Border Layout lets you use
up to five placeholders. You can
position the placeholders with
the attributes "north," "south,"
"east," "west," and "center."

Deve lopment S t ra tegies

1-20 WebLogic Portal 8.1 Best Practices Guide

2. Rename the new layout file. Be sure to retain the .layout extension.

3. Duplicate an existing .html.txt file to use for the new layout. Rename it for easy association
with the .layout file. Be sure to retain the .html.txt extension. Structure the HTML table in
the .html.txt file so that it looks like what you expect the rendered layout to look like.

4. Inside the <netuix:markup> tag, insert opening and closing <netuix:gridLayout>,
</netuix:flowLayout>, or </netuix:borderLayout> tags, depending on the type of layout you
want to create. (Replace the existing opening and closing <netuix:*Layout> tag.)

5. Inside the opening <netuix:*Layout> tag, add (or modify) the following attributes:

title
Provides the name for selecting the layout in a drop-down menu.

description
Provides a description for the selected layout.

Grid Layout attributes columns

Determines the number of columns in the layout. The number of rows are
determined automatically. Do not use the "rows" attribute if you use the "columns"
attribute.

rows

Determines the number of rows in the layout. The number of columns is determined
automatically. Do not use the "columns" attribute if you use the "rows" attribute.

Flow Layout attributes orientation

Enter "vertical" or "horizontal" to determine the direction in which the placeholders
are positioned.

Border Layout
attributes

layoutStrategy

Enter "order" or "title".
• If you enter "order," the placeholders are ordered according to the value you put

in the <netuix:placeholder> tag (covered in the following steps).
For example: <netuix:placeholder>North</netuix:placeholder> makes the
placeholder the north placeholder.

• If you enter "title," the placeholders are ordered according to the
<netuix:placeholder> "title" attribute value.
For example: <netuix:placeholder title="south" ...></netuix:placeholder>
makes the placeholder the south placeholder.

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-21

htmlLayoutUri
Provides the path (relative to the project) to the .html.txt file you created.

For example, "/framework/markup/layout/yourNewLayout.html.txt"

iconUri
For compatibility domain administration only. When administering a portal running in a
compatibility domain, this provides a path (relative to the project) to an icon that
graphically represents the layout.

For example, “/framework/markup/layout/yourNewLayout.gif”

markupName
The markupName must be unique among the other layouts.

6. Inside the <netuix:*Layout> tag, add opening <netuix:placeholder> and closing
</netuix:placeholder> tags for each placeholder you want in the layout.

If you are creating a border layout, use no more than five placeholders.

7. In the opening <netuix:placeholder> tag of each placeholder, add the following attributes:

title
Enter a title for the placeholder. If you are using a border layout with the layoutStrategy
attribute set to "title," enter "north," "south," "east," "west," or "center" for the title to
determine which position of the placeholder in the border layout.

description

Enter a description for the placeholder.

flow

Optional. If you want to control the positioning of books and portlets in the placeholder,
enter "true."

usingFlow

Optional. If you set the "flow" attribute to "true," enter "vertical" or "horizontal" for this
attribute value. This value determines whether books and portlets are positioned on top of
each other in the placeholder (vertical) or side by side (horizontal).

width
Optional. Set a width for the placeholder.

Deve lopment S t ra tegies

1-22 WebLogic Portal 8.1 Best Practices Guide

markupType

Required. Enter "Placeholder".

markupName
Required. Used as an ID for the placeholder. Each placeholder must have a unique
markupName across all layouts.

8. If you are creating a border layout and the layoutStrategy attribute is set to "order," enter
"North," "South," "East," "West," or "Center" as the content in each <netuix:placeholder>
tag to determine each placeholder's position in the layout. For example,
<netuix:placeholder>North</netuix:placeholder> makes a placeholder the north
placeholder.

9. Save the layout file.

10. Modify the layout's *.html.txt file to create an HTML table that simulates the layout of the
.layout file.

11. To use the layout, in the Portal Designer select a page in the Document Structure window.
In the Property Editor window, select the new layout in the Layout Type field. (The server
must be running for the new layout to appear in the Layout Type drop-down list.)

Navigation Menus
Navigation Menus provide a way to select different pages in a portal desktop. WebLogic Portal
provides a default set of Navigation Menus:

Single Level Menu
Provides visible layering of book and page links. Any sub-books and pages appear in rows
below the main book navigation.

Multi Level Menu
Provides a single row of tab-like links for the books and pages at the level you apply the
Multi Level Menu. Any sub-books and pages appear in a drop-down list for selection. The
Multi Level Menu implements JavaScript functionality contained in the skins.

If you want navigation menu behavior other than what is provided with the default menus, you
can modify either of the default menus to suit your needs. The default navigation menus can be
modified using either of the following procedures: Modifying the Navigation Menu File and
Modifying The Skeleton JSP File.

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-23

Modifying the Navigation Menu File
To modify the navigation menu file, take the following steps:

1. Open either .menu file in <project>\framework\markup\menu\.

2. Inside the <netuix:markup> tag, modify the following attributes in the
<netuix:singleLevelMenu ... /> or the <netuix:multiLevelMenu ... /> tag. Do not change the
name of the tag.

title - Change the title of the menu. The title appears in drop-down lists. (Your
development server must be running to see the title change in the Property Editor
window.)

description - Change the description of the modified menu.

markupName - Change the markupName to better reflect the name of the menu.

Note: The align attribute is optional:

align - Set to "left," "center," or "right." This is a rendering hint to align the menu.
Neither default menu skeleton supports this functionality by default. You must
modify the skeleton to support this.

Be sure to leave the schema references in the file header.

3. Save the file.

Modifying The Skeleton JSP File
To modify the skeleton JSP file, take the following steps:

1. Back up the original skeleton JSP in case you want to revert back to it later. The skeleton files,
multilevelmenu.jsp and singlelevelmenu.jsp, are located in the following directory:
<project>\framework\skeletons\default.

These files are also located in other skeleton directories. You will replace those files with
the modified file when you are finished.

2. Modify the skeleton JSP. Do not rename the file.

The multilevelmenu.jsp skeleton file uses JavaScript functions contained in the menu.js,
located in different skin directories under <project>\framework\skins.

3. After you have finished modifying the JSP, copy it to the other relevant skeleton directories,
replacing the existing versions of that file.

Deve lopment S t ra tegies

1-24 WebLogic Portal 8.1 Best Practices Guide

To use the modified navigation menu, in the Portal Designer select a book in the Document
Structure window. In the Property Editor window, select the new navigation menu in the
Navigation field. (The server must be running for the new navigation menu to appear in the
Navigation drop-down list.)

Shells
A shell represents the rendered area surrounding a portal desktop's main content area (books,
pages, and portlets). Most importantly, a shell controls the content that appears in a desktop's
header and footer regions.

You can configure a shell to use specific JSPs or HTML files to display content-especially
personalized content-in a header or footer. For each set of different header/footer combinations,
create a new shell.

Creating a Shell
To create a shell, take the following steps:

1. Make sure the server is running on your development machine. If it is not, open the portal
application and choose Tools-->WebLogic Server-->Start WebLogic Server.

2. In WebLogic Workshop Platform Edition, open an existing shell (in the
<project>\framework\markup\shell directory).

3. In the <netuix:shell> element, modify the title, description, and markupName attributes.
The title attribute provides the name for selecting the shell in a drop-down menu; the
markupName must be unique among the other shells.

4. Use the <netuix:header> or <netuix:footer> elements to point to the JSPs or HTML file you
want to use for the header or footer using the following steps:

a. Change the element from an empty element to one with opening and closing tags.

For example:

Change

<netuix:header/>

to

<netuix:header>

</netuix:header>

Deve lopi ng f or WebLogic Po r ta l 8 .1

WebLogic Portal 8.1 Best Practices Guide 1-25

b. Add the <netuix:jspContent conentUri=" "> tag to the <netuix:header> or <netuix:footer>
tag, using the contentUri attribute to point to the JSP or HTML file you want to appear in
the header or footer. The path to this file is relative to the project.

For example, if you want your header to use the file
<project>\my_jsps\campaign_header.jsp, set up your shell header as follows:

<netuix:header>

<nexuix:jspContent contentUri="/my_jsps/campaign_header.jsp"/>

</netuix:header>

Make sure the JSP or HTML file does not contain <html>, <head>, <title>, or <body>
HTML tags, because the file will be inserted into a single HTML file that already has
these tags. You can format the file simply with <div>, <table>, <p>, or any other
nested HTML tags.

c. In the <netuix:jspContent> tag you can also point to an error JSP and a backing file to use
for the header or footer JSP, using the following attributes:

– errorUri - Enter the path (relative to the project) to an error JSP to be used if there are
problems with the contentUri JSP.

– backingFile - If you want to class for any preprocessing prior to the rendering of the
header or footer JSP (for example, authentication), enter the fully qualified name of that
class. That class should implement the interface
com.bea.netuix.servlets.controls.content.backing.JspBacking or extend
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking.

The following example shows a shell header that uses a JSP, an error JSP, and a
backing file:

Listing 0-1 Shell Header

<netuix:header>

<nexuix:jspContent contentUri="/my_jsps/campaign_header.jsp"

errorUri="/my_jsps/my_error.jsp"

backingFile="custom.portal.backing.campaignBacking" />

</netuix:header>

Deve lopment S t ra tegies

1-26 WebLogic Portal 8.1 Best Practices Guide

d. Save the shell file.

e. To select the shell for a desktop, select Desktop in the Document Structure window and
select the shell in the Property Editor Shell field. (The name of the new shell will not
appear if the server is not running.)

Selecting a Shell for a desktop in the Portal Designer simply gives the portal a default Shell
setting. Portal administrators can use the WebLogic Administration Portal to change the Shell
used for a desktop.

WebLogic Portal 8.1 Best Practices Guide 2-1

C H A P T E R 2

Configuration and Administration

Configuring WebLogic Portal 8.1
This section contains configuration suggestions for development as well as production, and
includes information on the following topics:

Split Configuration

Deploying an EAR Versus an Exploded Application

How to Use Active Directory

Single Signon Between Two Portal Web Applications

Split Configuration
Note on Split Configuration - WebLogic Portal does not support a split configuration, where
servlet and EJB containers run on separate server instances.

Deploying an EAR Versus an Exploded Application
Once the development of a Portal Web application has been completed, what remains is to deploy
it to the production environment. A number of choices need to be made at this point. For example,
the application can be deployed as an EAR if nothing inside it needs to be changed. For details
on the advantage to this approach, along with instructions, consult the "Packaging Enterprise
Applications" section of the WebLogic Platform documentation. Applications can also be
deployed without being archived into an EAR file. This enables some kinds of files within the

Conf i gura t i on and Admi nis t rat i on

2-2 WebLogic Portal 8.1 Best Practices Guide

application to be changed without having to un-deploy and re-deploy the entire application. For
instance, in an application that uses e-mail campaigns, certain JSPs may need to be altered during
production.

How to Use Active Directory
If you have used a third party single signon solution and they want to integrate to WebLogic
Portal 8.1, the single signon solution is to authenticate users in Active directory but store all
policy and group information in the RDBMS.

If the single signon solution is Netegrity Siteminder, for instance, Siteminder offers both the Web
Server Agent (authentication by Siteminder, Authorization by WebLogic Portal) and App Server
Agent integrations (both authentication and authorization by Siteminder). Currently, only the
Web Server Agent integration works with WebLogic Portal. Siteminder will provide the
Application Server Agent integration with WLP 8.1.

Single Signon Between Two Portal Web Applications
To implement single signon within two portal Web applications, set the cookie to be the same in
the WebLogic Server Console. That is, set the cookie name to be the same, with different cookie
paths, one for each application.

WebLogic Portal 8.1 Best Practices Guide 3-1

C H A P T E R 3

Performance

Performance Tuning
This section includes information on caching as well as portlet threading. The following topics
are covered in this section:

Managing Caches

How to Use Caching Tables

Notes on Threads

Managing Caches
Table 0-1 lists caches that might be used by your portal application. Use the list to assist in your
tuning. Keep in mind the memory that is available to your system. When modifying the maximum
cache sizes also monitor the system memory to determine the effects.

Statically defined caches are established in the application-config.xml file for the application.
These caches have dynamically, not statically, configurable attributes, which can be configured
in the Weblogic 8.1 Administration Portal by navigating to: Applications --> [Portal App
Name] --> Service Configuration --> Caches -> service configuration

Some caches listed below may not show up in the Weblogic 8.1 Administration Portal.
To configure such caches, you can create an entry in the Weblogic 8.1 Administration
Portal and redeploy the application. These caches will then be configurable from the
Weblogic 8.1 Administration Portal.

Per f ormance

3-2 WebLogic Portal 8.1 Best Practices Guide

How to Use Caching Tables
Table 0-1 and Table 0-2 list caches used to tune performance in WebLogic Portal 8.1 domain, and
Portal Compatibility Domain, respectively. Find a cache you need to adjust, then use the
WebLogic Administration Portal to adjust the cache settings.

Table 0-1 Configurable Caches in WebLogic Portal 8.1

Cache actionNameCache

Use Used to store the action classes for campaigns

Key The class name (java.lang.String)

Value The actual Class for the action (java.lang.Class)

Notes Not configured in application-config.xml but rather in
cache-actionNameCache.properties.

Default values should be okay.

Cache adServiceCache

Use Used by the AdHelper to increase the speed of ad queries.

Key Used by the AdHelper to increase the speed of ad queries.

Value The ad query (java.lang.String)

Notes Stores a Content[] of ads keyed off an ad query.

If the ads returned from a particular query do not change, consider increasing the
TTL.

Consider basing the maximum size on the total number of ad queries.

Per f ormance Tuning

WebLogic Portal 8.1 Best Practices Guide 3-3

Cache CategoryCache

Use Stores the root com.beasys.commerce.ebusiness.catalog.Category, the total
number of categories in the product catalog (java.lang.Integer) and the
CategoryInfo for each category.

Key The key for the root Category is a static final String variable in the
CategoryManagerImpl class. The key for the total number of categories is also
a static final String variable in the CategoryManagerImpl class. The key for a
given CategoryInfo object is a
com.beasys.commerce.ebusiness.catalog.CategoryKey.

Value The value for the root Category is
com.beasys.commerce.ebusiness.catalog.Category. The value for the total
number of categories is a java.lang.Integer. The value for the category info
objects is a
com.beasys.commerce.ebusiness.catalog.service.category.CategoryInfo.

Notes CategoryManagerImpl gets the cache name from the ejb-jar.xml in
commerce.jar

The root Category and the total number of categories occupy two slots in the
cache and the remaining slots are occupied by the CategoryInfo objects, so
consider the total number of categories in the product catalog plus 2 when setting
the maximum cache size.

Consider how often these categories will change when setting TTL.

Cache configurableEntityMethodCache

Use Stores method information for setter methods for explicit properties

Key Based on the class name and the method name (java.lang.String).

Value A com.bea.p13n.property.internal.CacheMethod object.

Notes When setting the maximum cache size, consider the number of explicit
properties in your application.

Consider how often explicit properties will change in your system when setting
TTL.

Per f ormance

3-4 WebLogic Portal 8.1 Best Practices Guide

Cache discountCache

Use Stores com.bea.commerce.ebusiness.discount.mgmt.QualificationDiscountDef
objects. These discounts are applicable to particular customers or customer
segments.

Key A com.bea.commerce.ebusiness.discount.mgmt.QualificationDiscountId.
Essentially this is a wrapper around a java.lang.Integer that represents the id of
the discount.

Value A com.bea.commerce.ebusiness.discount.mgmt.QualificationDiscountDef

Notes Set the maximum cache size based on the number of possible discounts.

Consider how often discounts change when setting the TTL.

Cache documentContentCache

Use Used by the DocumentManager to cache the actual bytes of content

Key Based on id, start, and length of content (an inner class called BytesKey).

Value byte[]

Notes This cache is only used with the WebLogic Portal 7.0 SP2 content repository.

By default, the maximum number of bytes that can be stored as a cache entry is
32K. This is adjustable and is set via the DocumentManagerMBean.

Applications with a large amount of content could benefit with a larger max
cache size. Keep memory consumption in mind here.

Applications with substantial static content might benefit from increasing the
TTL.

Per f ormance Tuning

WebLogic Portal 8.1 Best Practices Guide 3-5

Cache entityIdCache

Use Caches the id for an entity (user or group id, ENTITY.ENTITY_ID)

Key Object key is a com.bea.p13n.property.PropertyLocator. PropertyLocator is
based on a user or group name (ENTITY.ENTITY_NAME) and entity type
(ENTITY.ENTITY_TYPE).

Value The entity id (java.lang.Long).

Notes As in the entityPropertyCache uses the ENTITY table as a guide for the
maximum size. The object being stored is a Long, which is fairly small.
Therefore, it might be possible to set this cache’s maximum size to the number
of entries in the ENTITY table.

Consider how often the ENTITY table might change when setting the TTL.

Cache entityPropertyCache

Use Caches property values for users and groups

Key Object key is a com.bea.p13n.property.PropertyLocator. PropertyLocator is
based on the user or group name (ENTITY.ENTITY_NAME), entity type
(ENTITY.ENTITY_TYPE, user or group) and property set type
(PROPERTY_KEY.PROPERTY_SET_TYPE, usually USER).

Value A com.bea.p13n.property.EntityPropertyCache object. This object contains a
Map that stores property values keyed off the property set name and property
name.

Notes The larger you can afford to make this cache, the better.

Use the ENTITY table as a guide for maximum size. The number of entries in
this table should be the maximum number of cache entries that would ever be
created. In most cases, there will be more entries here than you would want for
a maximum cache size. So consider the average number of users you expect to
be using your application at the same time.

Consider a TTL based on how often new properties will be added to the property
sets. If they are not being modified often, then a higher TTL might be
appropriate.

Per f ormance

3-6 WebLogic Portal 8.1 Best Practices Guide

Cache globalDiscountCache

Use Stores a java.util.Set of QualificationDiscountDef objects. This is the set of
global discounts that is applicable to all users.

Key The globalDiscountSet name (java.lang.String)

Value The java.util.Set of global discounts

Notes Default maximum size of 10 should be fine.

Frequency of changes to the global discounts should determine TTL.

Cache ldapPropertyCache

Use Caches property values for users and groups when using LDAP for storing
properties.

Key Object key is a com.bea.p13n.property.PropertyLocator. PropertyLocator is
based on the user or group name, entity type and property set type.

Value A com.bea.p13n.property.EntityPropertyCache object. This object contains a
Map that stores property values. The Map is keyed off the property set name and
property name.

Notes Serves the same purpose as the entityPropertyCache. See Notes on
entityPropertyCache.

Cache ProductItemCache

Use Stores the total number of product items in the catalog as well as the product
items

Key The key for the total number of product items is a static final String variable in
ProductItemManagerImpl. The key for the product items is a
com.beasys.commerce.ebusiness.catalog.ProductItemKey.

Value The value for the total number of product items is a java.lang.Integer. The value
for the product item is a com.beasys.commerce.ebusiness.catalog.ProductItem.

Notes ProductItemManagerImpl gets the cache name from the ejb-jar.xml in
commerce.jar.

Consider the total number of product items when setting the maximum cache
size.

Consider how often these product items will change when setting the TTL.

Per f ormance Tuning

WebLogic Portal 8.1 Best Practices Guide 3-7

Cache profileTypeCache

Use Stores the profile type for a user. This profile type is used to lookup the correct
user profile manager when fetching the user’s Profile.

Key A username (java.lang.String)

Value The profile type (java.lang.String)

Notes Consider the number of users you expect to be logged into your system at a given
time when setting the maximum cache size.

Unless you plan on changing a user's profile manager during runtime, a high
TTL or one that never expires might be appropriate

Cache propertyKeyIdCache

Use Caches the unique id associated with a property set type, property set and
property name combination (primary key in the PROPERTY_KEY database
table).

Key Based on a property set type, property set, and property name combination (inner
class called PropertyKeyLocator).

Value The id (java.lang.Long)

Notes Maximum size should be set with an eye towards the maximum number of
properties in the application (use the PROPERTY_KEY table as an indicator).

Consider a TTL based on how often these unique id combinations are likely to
change.

Cache portalControlTreeCache

Use Used to store portal control trees

Key The combination of webapp, portal, desktop, locale and optional user name.

Value A portal control tree.

Notes Configured in application-config.xml

Default TTL value should be okay, Max Entries could be set to a number based
on number of users and available memory.

If there are any changes to portal this cache will be flushed.

Per f ormance

3-8 WebLogic Portal 8.1 Best Practices Guide

Cache portletControlTreeCache

Use Used to store portlet control trees.

Key The combination portletInstanceId and locale.

Value A portlet control tree.

Notes Configured in application-config.xml

Default TTL value should be okay, Max Entries could be set to a number based
on number of floatable portlet instances in a portal (Including user customized
portlets)and number of supported locales.

Cache portalContentUriCache

Use Used to store portal content URI for portal path.

Key The combination portal path and webAppName.

Value A portal content URI.

Notes Configured in application-config.xml

Default TTL value should be okay, Max Entries could be set to a number based
on number of portals that have associated content URIs.

Cache portalLocalizationResourceCache

Use Used to store localization resources.

Key The localizationIntersection.

Value A LocalizationResource.

Notes Configured in application-config.xml

Default TTL and Max Entries values could be set to a value based on total
number of localization resources in the system which is a combination of
non-customized and customized localization resources and amount of available
memory.

Per f ormance Tuning

WebLogic Portal 8.1 Best Practices Guide 3-9

Cache portalLocalizationlocaleCache

Use Used to store collection of LocalizationLocales.

Key The key is private static final string called "portalLocalizationLocaleCachekey"

Value A set of LocalizationLocales.

Notes Configured in application-config.xml

Default TTL value should be okay, Max Entries could be set to a number based
on number of rows in L10N_LOCALE table i.e. number of supported locales.

Cache portalMarkupdefinitionCache

Use Used to store MarkupDefinitions.

Key The MarkDefinitionId.

Value A MarkupDefinition.

Notes Configured in application-config.xml

Default TTL value should be okay, Max Entries could be set to a number based
on total number of rows in PF_MARKUP_DEFINITION table.

Cache portletPreferencesCache

Use Used to store portlet preferences.

Key An instance of PortletPreferenceId.

Value A map of preferences.

Notes Configured in application-config.xml

Default TTL and Max Entries values could be set to a value depending on
amount of available memory and total number of preferences (at application
level).

Per f ormance

3-10 WebLogic Portal 8.1 Best Practices Guide

Cache nodeCache.<Repository Name>

Use Caches Nodes for a Repository based on ID.

Key The Node ID as a String.

Value The actual Node instance (com.bea.content.Node).

Notes This cache can be configured using the WebLogic Administration Portal, or
programmatically through the P13N CacheManager. Each Repository has its
own separate Node cache. This cache is used by NodeOps when retrieving and
updating Nodes. Please use in conjunction with the Repository vendor's cache
architecture.

Default values:
• Maximum Entries: 50
• Time To Live(seconds): 6000
• Is Enabled: True

Cache binaryCache.<Repository Name>

Use Caches Binary properties for a Node.

Key The Node ID as a String + the unique Property ID as a String.

Value The byte array associated with the Binary property.

Notes This cache can be configured using the Portal Administration Tool or
programmatically through the P13N CacheManager. Each Repository has its
own separate Binary cache. Keep memory consumption in mind when setting
the Maximum Entries and Cache Size values as they may affect your server's
performance. Please use in conjunction with the Repository vendor's cache
architecture.

Default values:
• Maximum Entries: 10
• Time To Live(seconds): 6000
• Cache Size/Item(bytes): 1024
• Is Enabled: True

Per f ormance Tuning

WebLogic Portal 8.1 Best Practices Guide 3-11

Cache nodePathCache.<Repository Name>

Use Caches Nodes for a Repository based on path.

Key The Node path as a String.

Value The actual Node instance (com.bea.content.Node).

Notes This cache can be configured using the Portal Administration Tool or
programmatically through the P13N CacheManager. Each Repository has its
own separate Node Path cache. This cache is used by NodeOps when retrieving
and updating Nodes based on path. Please use in conjunction with the
Repository vendor's cache architecture.
• Default values-
• Maximum Entries: 50
• Time To Live(seconds): 6000
• Is Enabled: True

Cache searchCache

Use Caches the results of content searches for the Virtual Content

Repository.

Key The Search object containing the parameters for a query
(com.bea.content.expression.Search).

Value An ID array reflecting the Nodes that satisfy the query.

Notes This cache can be configured using the Portal Administration Tool under Service
Administration or programmatically through the P13N CacheManager. There is
only one search cache for all Repositories. This cache is used by SearchOps
when handling Search queries and results. Flush, enable, or disable this cache
based on your needs for real-time data and other system requirements.

Default values:
• Maximum Entries: 20
• Time To Live(seconds): 6000
• Is Enabled: True

Per f ormance

3-12 WebLogic Portal 8.1 Best Practices Guide

Table 0-2 Portal Compatibility Domain Caches

Cache actionNameCache

Use Used to store the action classes for campaigns

Key The class name (java.lang.String)

Value The actual Class for the action (java.lang.Class)

Notes Not configured in application-config.xml but rather in
cache-actionNameCache.properties.

Default values should be okay.

Cache https_cache

Use This cache is implimented as part of WebFlow, is not used in WebLogic
Portal 8.1 except in support of applications developed in WebLogic Portal 7.0
SP2 re-hosted to run in a Portal Compatibility Domain.

Key java.lang.String composed of the application name, namespace name, origin
name and event name

Value Java.lang.Boolean indicating if HTTPS is required.

Notes Caches a Boolean indicating if https should be used for a particular webflow
request. A value for each application, namespace, origin and event
combination may be cached.

This check occurs only if SSL is enabled in config.xml and the
HTTPSIND_DEFAULT_VALUE in web.xml is set to CALCULATE, or the
“httpsInd” attribute in a calculate weblflow URL tag is set to
“CALCULATE.”

Because a Boolean is a small and the HTTPS calculation can be expensive, it
is important to set this cache’s size large enough to avoid excess calculation.

Provided that you are not modifying the context param
HTTPS_URL_PATTERNS in web.xml and redeploying or you are not
modifying the webflows in a running server and re-synching then the TTL for
this cache could be set to never expire.

Only available in Portal Compatibility Domain.

Per f ormance Tuning

WebLogic Portal 8.1 Best Practices Guide 3-13

Cache interface-cache

Use Used by the PipelineExecutorImpl to improve performance when executing a
pipeline.

Key The pipeline component class name (java.lang.String)

Value An instance of the pipeline component

Notes Consider the total number of pipeline components in your application when
setting the maximum cache size.

If you do not plan on modifying pipeline components to a running server
consider setting a higher TTL or one that never expires.

Only available in Portal Compatibility Domain.

Cache MainPersistenceManager.GroupPortalP13nCache

Use Stores a java.util.List of group PortalPersonalizations for each portal

Key com.bea.portal.model.PortalIdentifier

Value java.util.List with each list entry containing personalizations for a particular
group portal.

Notes Consider the number of portals when setting the maximum cache size.
Generally, this can be set to a low number(e.g. If there is only one portal, this
size can be set to one).

Only available in Portal Compatibility Domain.

Cache MainPersistenceManager.PortalP13nCache

Use Stores the PortalPersonalization objects for groups and users

Key com.bea.portal.model.PortalPersonalizationIdentifier

Value com.bea.portal.model.PortalPersonalization

Notes Consider average number of concurrent users as well as the total number of
groups when setting the maximum cache size.

Only available in Portal Compatibility Domain.

Per f ormance

3-14 WebLogic Portal 8.1 Best Practices Guide

Notes on Threads
This section discusses portlet threading issues such as what happens when a portlet is spawned in
its own thread and then the calling system fails during execution.

About the 8.1 Forkable Portlet Feature
If the system calling a threaded portlet fails:

Although all of the forkable portlets for a page are processed in parallel, it is in the end still a
blocking operation. If one of the portlets gets hung up in its processing, it will block the entire
page render. Forked threads do not have a timeout setting, meaning that the effect of a failed
thread would depend on what the portlet is doing. If it fails gracefully (and quickly), there
shouldn't be a problem.

If the user leaves the site, or moves to another page:

In this case, processing will not stop by itself. The portal framework will continue to build that
response, even if the client has issued another request.

	About This Document
	What You Need to Know
	Product Documentation on the dev2dev Web Site
	Related Information
	Contact Us!
	Documentation Conventions
	Developing for WebLogic Portal 8.1
	About Split Configuration
	Adding Visitor Tools to a Custom Application
	Authenticating Users
	Using the Anonymous User Profile
	Content Placeholders
	Page Flows and Portlets
	Processors

	Varying Content for Mobile Devices
	Samples of MultiChannel Functionality

	Working with Look and Feel Elements
	Look and Feel Files
	Creating a Look and Feel File

	Creating Skins and Skin Themes
	Creating a Skin
	Creating a Skin Theme

	Skeletons and Skeleton Themes
	When should you create a skeleton?
	Creating a Skeleton
	Creating a Skeleton Theme

	Layouts
	Creating a Layout

	Navigation Menus
	Modifying the Navigation Menu File
	Modifying The Skeleton JSP File
	Shells
	Creating a Shell

	Configuring WebLogic Portal 8.1
	Split Configuration
	Deploying an EAR Versus an Exploded Application
	How to Use Active Directory
	Single Signon Between Two Portal Web Applications

	Performance
	Performance Tuning
	Managing Caches
	How to Use Caching Tables
	Notes on Threads
	About the 8.1 Forkable Portlet Feature

