0?7,

r
S’ 7
L/

BEA Weblogic
Portal

Development Guide

Release 7.0 Service Pack 4
Document Date: August 2003

Copyright

Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

WebLogic Portal Development Guides

Part Number Date Software Version

N/A April 2004 7.0 Service Pack 5

Contents

1. Introduction to WebLogic Portal Development

A Developer’s Portal Primer.......c.cccveevieieieiierecee e 1-2
POTtal FEAtUIESeveeiiieeienieetieiieiteeie ettt ettt e s enneenees 1-2
Personalization and AuthOorizationcccueevveereeereerieniiesee e 1-2

GIOUP POTTALS ..ottt 1-2

JSPS and JSP tagSccueevieeieiieiieieeeeee e 1-3

EJBS oottt ettt r e nae e 1-3

Unified User Profile.........cccooveieeieiiieieiieeeeee e 1-3

Other Useful FEaturesccoocvevviiierenienieeieie e 1-4

Portal Component File LoCations..........cccveviiereerieiiieiieeie e sieeiee e eseeenenn 1-4
Roadmap for Building a Portal...........ccocceviriiniiiiiieecce e 1-6
How do I Build @ Portal?...........cccoeieiirieiiieseeeeeeee e 1-6
How Can I Extend these Portals?............cccoevveiiieiienieeiecieeee e 1-7
How Do I Get Started?c.ooveeueiieieiieieee ettt 1-8

Part 1. Developing Portals - Tutorials

2. (Creating a New Portal in a New Domain

Step 1: Create the New DOmainccceevvieniieienieeieieiieieeeee e 2-1
Step 2: Create the New Portalcccvevieieeiieieiieeeeeeeeee e 2-11
Step 3: Add @ POTIEt.....cvieeiiiieeieece et e 2-23
Step 4: Make New Portlet Visiblecocevveienieiiiniinininiciciccieeecneceeee 2-31

3. Adding Portal to an Existing Domain

AbOut YOUr DOMAIN ..ot 3-1
Before YOU BeZIN.....cccuiiiiiiiieiieciiciteseeee ettt st e 3-2
Preserve or Replace the Existing Domain..........c.ccceevevieninincncnincncnene. 3-2

WebLogic Portal Development Guide iii

ProCedUIE Ao 33

Procedure B.......cuooieiiiee s 33
Use or Replace Existing Databasec.ccooeeveninieninieniiienceeenceeeene 33
Procedure C.......c.ooociieiieiicieeeee ettt e 34
Procedure D.......ccuevieiiiiee et 34
Locate or Install Enterprise Applicationcc.eecvereeerveeneenveenieennenene 3-11
Procedure E.......ocvieieiiee e 3-11
Procedure F.......ovieiiiiiee e 3-12

4. Deploying Portals

Hot Deploying With the Portal Wizardcccoooiniinininiinecceeeee 4-1
Deploying Without the Portal Wizard...........ccoocvevviriienenieieieeeeee e 4-2
Deploying a Portal without Hot Deploy......c.cccceecuieiiiirieenieiieceeic e 4-3
Manually Deploying a Portal Web Application..........cccceeevuveriiecieeneennnenn 4-3
Step 1: Move J2EE RESOUICEScc.eeeviierieriieiieieeiieeeeeeee e 4-4

Step 2: Synchronize Metadata............cceeeveerieiiiienieeiieceeceeee e 4-8

Step 3: Deploy in the WebLogic Server Consoleccceecvveeeveennennns 4-8

Best Practice Guidelines for Deploying Your Portalccccoeveeieniniennnnen. 4-13
Stage 1: Deploy to a Server on Your Own Machine............ccccene.. 4-14

Stage 2: Deploy From a Local Computer to a Staging Server.......... 4-14

Stage 3: Deploy From the Testing Environment to a Live Production

Part Il. Extending Portals

5. Building Custom Templates

Introducing TemPlates.........ecveieriieeieriieiene ettt eee 5-1
Three Types of TemPlates........cccveeieerieiieeiieie et 5-2
The Domain Wizard Template..........cccccveevreciienieeeiienieeiee e eeeenn 5-2

The Portal Wizard Template...........ccoeieeiinienieniieienieieeeeeee e 5-4

The Group Portal Template..........cccoevveeeciieniinieeie e 5-6

USING TEMPIALES.....veeiiieiieeieeiiecieet ettt te et eaee e 5-8
Creating a Domain Template...........coccvevieiieriieneeieie e 5-8
Step 1: Instantiate a Portal Domain...........cccceeeeeeeiienieniienieeeeeciieeeeve e 5-9
Step 2: Customize the Portal Domainccecceevveveieerieiciieneeeieeeeeeeeee, 59
Supporting Two-Phase Deployment.............ccevvvievenieiieeiienieeienne 5-9

WebLogic Portal Development Guide iv

Adding All Portal Services to Your Domaincccceeeeeencncenennee. 5-10

Adding an EJB to your WebLogic Portal Domainc..ccccecceuenene 5-17
Step 3: Apply General Configuration..........cecceeevverveecieerieeeseeseesiieeneeens 5-18
Adding a Custom Layout to a Domain Templatecccccoceennee. 5-19
Adding a Custom Skin to a Domain Templatec.ccoceverencnennne 5-20
Step 4: Package the New Domain as a Template...........cccceeveervencieenennns 5-21
Open the template.Xml File.........ccoocveviviiiiiiieicieee e 5-22
Edit the config.xml filecooveiiieiiieieie e 5-22
Edit the Application.xml file.........cceovveviiriieniiicieieeeeeee e 5-24
Check Shell Scripts for String Substitutionc.ccoceveeevercnennnn 5-25
Create the ATChIVE ..c..ooviviivieiiiiicieee e 5-28
Creating a Portal Template.........cccvecvieeiieriieiiieieesee e 5-29
Instantiate @ New Portalcccooieiiiiinnininecccccccseene 5-29
Customize the New Portal........c.ccccccerininininininiicieicccncecsese e 5-29
Apply Basic Configuration............ceceeeceeeeueerieeeiieneeeieeiesieeieeseeesve e 5-29
Package the New Portal as a Templatec.ccoeeveeienninienencnencnencnnens 5-29
Step 1: Make Staging Dir€Ctory........cecveeeveriereeresieneeieie e eeeenns 5-30
Step 2: Locate Source DIir€Ctories.ccuerierveerieervrenieeneesieesieeseeens 5-30
Step 3: Move Portal RESOUICESc..ccevueeerireniniinienienieieiceeeeieae 5-30
Step 4: Edit template. Xml.........ccccoeeveririiiniieieeeeeeeee e 5-31
Step 5: Create a Thumbnail........c.ccoeeeevieiiiiniieiieie e 5-32
Step 6: Create Archive File ..o, 5-32
Step 7: Make the Archive Available..........cccccevieinininiencncnicnicnne. 5-32

Implementing User Profiles

Creating a Unified User Profile..........cccocoiiniiniiiniiieeeeeeee 6-1
Create an EntityPropertyManager EJB to Represent External Data.......... 6-2
Recommended EJB Guidelines.........ccecevevuieiivieneieiiicinicencceeseeneee 6-2

Deploy a ProfileManager That Can Use the New EntityPropertyManager6-4
Modifying the Existing ProfileManager Deployment Configuration. 6-5

Configuring and Deploying a New ProfileManager 6-10
Retrieving User Profile Data from LDAP.........cccceovvevienciierieeinnne, 6-15
Creating a Property Set Definitionccoeveeieiieienieeiese e 6-18
Registering Custom User Profiles..........ccccovvveeiienieeiiiniinieciee e, 6-18
Properties with Boolean or a Single Value and Single Default........ 6-22

WebLogic Portal Development Guide v

vi

Properties with Multiple Values and Single, Multiple, or All Defaults...

6-25
Properties with Date and Time Values..........ccccevvecienievienenienienene 6-27
Updating a Registered Custom Event...........c.ccoceverieiinenieneninieneee, 6-29
Enabling Visitor Self-Registrationcceceveveierieienieeeeccee e 6-32
Implementing Customer Profile JSPs.........cccceciiieiiiiieiee e 6-33
LOZIN.JSP c.vveeteeiie ettt ettt ettt et ste e e te et et eenbeeeaeentaesabaenbeesraeens 6-33
DAALOZINJSP -vevveeveeieienieiieeeieie ettt ettt sae et eneenes 6-35
DIEWUSCE.JSP c-vevveevreeeanreseressenseensenseesenseensesssansesseessesseessesseessesseensenseenes 6-36
NEWUSETCTEALION.JSP vveevvrerreerrearreesieesreesseessreesseeesseesseessseessessssesssessssessens 6-45
NEWUSEITOTWATE.JSP v.vveveeeiiiieieeiieieeieie ettt 6-48
USErcreationforward.JSPeevereeverieeieie et 6-50
EVENES .ot 6-51
Webflow Components Used in Visitor Self-Registrationc.c......... 6-51
INPUL PTOCESSOTS ...ttt e 6-52
Pipeline COMPONENLS........eeuierieiiieriieeriesieeeieesiresieeveeereeseesneeneees 6-55
7. Adding Security to a Portal
Implementing Portal SECUTILYccvevvieeieriieiere e 7-2
Integrating with an LDAP Security Realm...........cccocoiiiiinininiiiiiicceee 7-2
Supported LDAP SEIVETSocvieriiieiieeiieeeeeieeite e e sve e seveeveesee s 7-2
Integrating an LDAP Security Realm............cocevvvieniiiiiiieieeee, 7-3
Configuring the LDAP Server for Integrationc.ccocceeerveencenennen. 7-3
Configuring LDAP-based Security Realms for WebLogic Server and

POTtal 7.0 e e 7-5
Supported Server Templatesccveieririereeierieeseee e 7-7
Using Wildcards for User Lookup in an LDAP Realm 7-9
Adding User Profile Information to LDAP Users........ccccceeeveevvennenn. 7-12
Switching to a WebLogic 7.0 Security Framework Security Realm............... 7-12

Upgrading a Portal from Compatibility Security to WebLogic Server 7.0
Security With RDBMS ..ot 7-13
Core Groups required for WebLogic Portal...........ccccoeoeevinienrncnne. 7-15
Running the WLP Samplesc..cccoevirinineneniiiiceeeencncecene 7-15

Upgrading a Portal from Compatibility Security to WebLogic Server 7.0
Security with Embedded LDAP.......cccoovviviiiniieeeeeceeee e 7-16

Upgrading a Portal from Compatibility Security to WebLogic Server 7.0

WebLogic Portal Development Guide

Security with a Commercial LDAP Providercccceeeeevivenvennnnn, 7-19

Multiple Authentication Providers Support in WebLogic Portal 7.0 SP4....... 7-22
How WebLogic Portal 7.0 uses the WebLogic Server Security Framework...
7-22
Limited Support of Multiple Authentication Providers in WebLogic Portal
T SPA et e 7-23
What Is Not Supported for Multiple Authentication Providers in WebLogic
Portal 7.0 SPA ..o 7-23
Other Supported Security Realmscccoecueeviieriiinieiieeieiecreeeee e 7-24
Enabling Secure Sockets Layer SeCUIity........ccovreierirrienieniereeieie e 7-25
config.xml Requirements for SSL..........ccoecveiiirienenieiieiee e 7-25
web.xml Requirements for SSLoccovviiieiiiiiiieeee e 7-26
Enabling HTTPS URL PATTERNScccociiiiiriiciicireeencseseseene 7-27
Enabling Single Sign-Omn..........ccooiiviiriieiiiiieieiieieeee e 7-28
Setting the CooKie NAIME........cccveeiieeriieiiieieeiee et e e eieesaeeseneens 7-28
Setting the USer Propertiescoovevvieierieeeenieeiesieeiieie e seesee e 7-29

Portal Content Management

Adding Content by Using the Bulk Loader...........ccccoooeviininiiniininiicie, 8-1
BulkLoader Performance TipsSccccceevuverieerieeeiieeriiesieesieeeveesee s 8-5
Configuring the Content Managerccoecvereeeiereienieniienee et 8-7
Configuring the DocumentManager EJB Deployment Descriptor 8-7
Configuring the PropertySetManager EJB Deployment Descriptor for
Content Managementcooereeuirienieenieniieie et 8-9
Configuring DocumentManager MBeansccoceveevenieciennecieeeeienns 8-9
Using the WebLogic Server Administration Console to Modify
DocumentManager MBEansccccccveeeeereenieenieeneeenieesneennes 8-10
Disabling an MBean...........ccceevviiviiereeiiicieeee e 8-15
Restoring a Disabled MBeanccccoeveeieeeienieeieeieieeeeeeee e 8-18
Setting Up Document Connection PoolS.........ccccceevveeciieiiiienieeniieieeneene 8-18
Editing a DocumentConnectionPool MBean in the WebLogic Console. 8-19
Configuring the Web Application..........ccocceevvieienieeieniieieceeesceee e 8-24
Using Content-Selector Tags and Associated JSP Tags.......ccccceeeeervencieennennne 8-25
Using the <pz:contentSelector™ Tag........cccceeeueerierieeiieneeeieeierveenieene 8-25
Identify the Content Selector Definition...........cccceeveienercceccncncnnene 8-26
Identify the JNDI Home for the Content Management System........ 8-27

WebLogic Portal Development Guide vii

viii

Define the Array That Contains Query Resultscccoocvvervennvennnen. 8-27

Create and Configure the Cache to Improve Performance 8-28
Associated Tags That Support Content Selectorscccceveereeieneencenne. 8-30
Using Content Selector Tags and Associated Tags........ccceeeeeveeveneeencenne. 8-32

Retrieving and Displaying Text-Type Documents............c.cceveueeee. 8-33

Retrieving and Displaying Image-Type Documents 8-34

Retrieving and Displaying a List of Documentsccccoeeeevenene. 8-36

Accessing a Content Selector Cache on a Different JSP 8-37

Integrating External Content Management SyStemsccceeeervereveenvennenns 8-39
INtegration StrAtC@ICS........ccuervierieeieieeieie et ettt e et e e eeeee e e naeeneas 8-39
Adding Content by Implementing a DocumentProvider Interface........... 8-40

Step 1. Ensure that the CMS Meets the Minimum Use Requirements....

8-40

Step 2. Write the SPI Implementation............ccoceevererveneeeenereenne. 8-42

Step 3. Place Code Into the Applicationceceeveeeeeereecienireenne. 8-44

Step 4. Make the .jar Accessible to the Applicationcccce....... 8-48

Step 5. Restart the Server........ocvvcveeveieriiieeeceeeeeee e 8-48

Step 6. Apply the Portalc.ocveiiiiiieieeeeeee e 8-48
Publishing to Reference Implementationcccceevveeveeneennieeneenvennnen. 8-48

Constructing Content QUETIEScocevereeuierereririnierieneenrete st esreseesaeneeeeieene 8-49
SrUCtULING QUETICS. .. .eeuveeeeietieiiesieeiteeteeiereeete e eeesaesaesressenseeneeseeseenes 8-49
Using Comparison Operators to Construct QUEriesccccveveveerverevenenenn 8-51
Constructing Queries USING JAVAccvvveriirieriieieeie e 8-53
Using the Document ServIet..........ooevverieieiiiininininineniiceeeeeeee 8-54

Example 1: Usage in @ JSP......cooviiiiiiieee e 8-55

Example 2: Usage in @ JSP......cccoeveiieiicieeceeeeeeeee e 8-55

9. Setting Up Portal Navigation

Building @ WebfloOW........couiiiiiiiiiieeeee e 9-2
Understanding Webflow COmMPONENntscccoerveriereienienieneeienieeieneeenns 9-2
Nodes and TTanSItionsco.eeueverireerirerienienenesene et 9-3

TYPES OF INOGES....evieevieeiie ettt ettt e e e ees 9-3

Types of TTanSItionS........cccveeevierieeriie e ere ettt esiee e sae e seeeeeeee e 9-5

TYPES Of EVENLSviiiiiiiiieceieieciie et s 9-5
Encoding Webflow URLSccccocviiiieiieiiierieeieeiee et 9-6

WebLogic Portal Development Guide

Webflow Tools and BUttonS............coovvuveiiiiiieiieiee e 9-9

Step 1. Create the WebfloW......c.ocveiiriiiiiieiieecee e 9-11
Step 2. Add Nodes to the Webflow Canvas..........cccceevveeneenceeinienieennnns 9-14
Step 3. Identify the Begin NOdecccceevieeiieiiiiiiiiciie e 9-16
Step 4. Create Transitions Between Nodescoceevevierieniecieecienieeenne, 9-17
Adding an Event Transitionccceccveeeveereeeieeneenieeseeneeesieesve s 9-17
Adding an Exception Transitionccecceeeeereeveenieseeeeeneeeeeneenenes 9-18
Creating a Pipeline and Adding it to @ Webflow........ccccceeverieviiiceeneiieee 9-22
Understanding the Pipeline Eitorcccceevviecienieicieniecie e 9-23
Step 1: Create a New Pipeline Component...........coccvevvereeeeeceeneeneeenene. 9-26
Step 2: Add the New Pipeline Component to the Webflow..................... 9-34
Synchronizing the Webflow to the Applicationcceecvevvveneenceeeriienieenenne 9-36
Creating a New Input ProCesSOr.......ccvevieriieiieeieiieieieseere e 9-37
Creating an Input Processor with the InputProcessor Interface................ 9-38
Naming an Input ProcesSor.......ccuvvvierieiciieiienieciie e sveeiee e 9-39
Executing Business Logic with Input Processorsc.cccccceeeenenen. 9-39
Extending the InputProcessorSupport Classccccceeeveierieieneerennenne 9-39
Extending Webflow by Creating Extension Presentation and Processor Nodes.....
9-40
How to Create an Extension Presentation Nodeccccoecvevncecinienncnnens 9-40
How to Create an Extension Processor Node........c.cccecvevivercenininiencnnens 9-41
Making Your Extension Presentation and Processor Nodes Available in the
Webflow and Pipeline Editorsccoeevveviiieciienieeiiieieeie e 9-42
Registering an Extension Presentation Node.........cccccceeeererincncnnne 9-43
Registering an Extension Processor Nodec.ccccooevenenieneniencnnns 9-43

10. Creating a Look-and-Feel

Portal Look-and-Feel Structurec..coccovveviiiiininieneneeeeccceceee e 10-1
USING SKINS....eetieiieieieieiieieeitesie ettt ete st esaeseeesaesteesseseensesseensesssenseeneanses 10-2
Creating SKINScveeieiieiiene ettt 10-2
Skins Provided by BEA.........ccoiiiiiiieciie ettt 10-4
STOFING SKINS ...vvivieieiieieeieit ettt ettt et ese s esaeennas 10-4
Making Skins Availableccocvvieviiiiieeiieeiieieeeeree e 10-5
USING LAYOULS...ceuiiitieeiieiie et et e sie et eeteeteeeeeetaesbeeseessseesseesssesssessseesseeans 10-5
Creating LaAYOULSc.coovieierieiieeie ettt sttt eneeeas 10-6

WebLogic Portal Development Guide ix

StOTING LAYOULS ..ecuvieeiieiieeie ettt et stee e seaeesreeesaeeeeeeene 10-8

Making Layouts Availableccoecveririeniieiienieesecie e 10-9
11. Extending Portlets

Basic Portlet Customizationceceeeereeienieiene ettt 11-1
Moving a Portlet Between Portal Web Applicationscccceeveeennenne. 11-2
Step 1: Copy J2EE Resources into New Web Application............... 11-3

Step 2: Edit the Target Web Application Metadatacccceeennee. 11-4

Step 3: Synchronize the Projectccceeeveveveceenenieneeieeeeeeene, 11-5

Step 4: Make the New Portlet Visible and Available........................ 11-5

Moving a Portlet Between Domains...........ccceeveeivieeneeniienieencee e 11-8
Creating Categories for POrtletsccocvvvevirieneniieieciee e 11-10
Preparing to Work With Categories.........ccveevueeeverieeneesiieereeeieenne 11-10
Creating Portlets and Categories.......cccuvvvierveecreenieeneenieeieeeeeeees 11-10

Moving Portlets and Categoriescecverveveeeesierieereseeee e 11-12

Adding Portlets to Existing Categoriesccceevvervrereerieeeneeniennne 11-16

Portlets and the Framework..........ccccooioiiniiiiniieeecee 11-18
SIMPIE JSP POIIETSeeveiieiieieieeieeee et 11-18

The scriptDemo Portletcoecvviiiienieiieieeiecie e 11-18

Calling ActiveX Components from a Portlet..........cccceevveeivennnnen. 11-22
WEDFIOW POTEIELS ..c..oviiiiiiiiiieieccccrec e 11-23
Three Webflow Portletscoccoveeveniiiiiiiiiiieeeeec e, 11-24

How a Portlet Handles a Refresh Event.........ccccocooeiiiininnnne. 11-49

Making a Portlet Respond to a Custom Eventccocceeveeennnee. 11-53

Sharing State from One Portlet to Another..........ccceceeeverireieennnn. 11-57

Web Service POrtletscocoviiiiiiiieiiiieeciecee e 11-57
Using the Portlet Wizard to Create Web Services Portlets.............. 11-58
Creating a Simple Form-Driven Web Service Portlet..................... 11-59
Creating a Call-Generation Web Service Portletccccuvenneeeee. 11-68
Creating a Web Services Interface Portletccocevevivniiicncnnns 11-74
Deploying the Web Services Portlets........cccooceevceiivenieenieenieeieens 11-78
Viewing the Web Services Portlets.........cooceevievvieeiieecieiieenieeniene 11-81

Calling Web Services Asynchronously........c.ccccecveevenenicnincncnnns 11-82

Error Handling within Web Services Portlets.........cccceecvevveenennen. 11-90
Portalizing an Existing Web Applicationccccceevveevveercieinieenieenieseeeieenne 11-90

WebLogic Portal Development Guide

Getting Started.......ceeveeeieeiierieciieeeeee et ete e stee e e sreebeesreeseeennreenne 11-90

REQUITCIMENLS ...ceviiieiiiiieieeieee ettt 11-91
Process OVEIVIEWcouivuieiieiieniieiiete ettt sttt 11-92
Step 1: Create a Portal Web Applicationccccceevevvevveeieenieenveeieenne, 11-92
Step 2: Build a 2-page WebFlow Portlet..........ccooceviiiieiiniiieiieiene 11-92
Step 3: Edit Portlet Code......c.ooviieiieiieiiieieecie et 11-93
Replace Portlet JSPS......cooviiiiiieieeceee e 11-93
Save Properties Fies for Internationalizationccccccoevenennene 11-100
Step 4: Load Content RESOUICESeccveerirereeriesiieieeeeeseeeveeiee e 11-100
Step 5: Test the applicationecvveeieriieieneriere e 11-101
Performance TUNINGcccvevvieieriieieeeee e 11-103
Using Caches to Tune Performance............ccooceevveenirecieeeceesneesveeieens 11-103
Adjust Caching for Content Managementcccceceeenenenuennes 11-103
Property Caching in a Clustered Environmentccccoccecenenee. 11-106
Adjust Caching for the Discount Service.........cccceervveerrvervrenreennnn. 11-107
Adjusting the discountCachecccceecveririeiieiieieeee e, 11-107
Adjusting the globalDiscountCache............ccccoevevieriecieneeniinnenne. 11-108
Discount-Service Caches in Clustered and Non-Clustered Environments
11-108

Adjust Group Membership TTL in the Caching Realm 11-108
Tuning Thread / Connection Parameters in JDBC........................ 11-109

12. Setting Up Personalization and Interaction Management

Using the Advisor to Personalize a Portal Application..........ccceevvvevveeveennnn. 12-2
Creating a Personalized Portal Application with Advisor JSP Tags........ 12-3
Classifying Users with the JSP <pz:div> Tag.......c.cccoceevenvercnnnene 12-4
Selecting Content with the <pz:contentQuery> JSP Tag.................. 12-4
Matching Content to Users with the <pz:contentSelector> JSP Tag 12-5
Creating Personalized Applications with the Advisor Session Bean....... 12-6
Classifying Users with the Advisor Session Bean..............ccoeeueenee. 12-8
Querying a Content Management System with the Advisor Session Bean
12-9
Matching Content to Users with the Advisor Session Bean............ 12-10
Personalizing Applications with HTTP Request and Session Properties
12-11
HTTP Request-Based Personalization..............ccecveeveveerienieneennnns 12-12

WebLogic Portal Development Guide xi

xii

HTTP Session-Based Personalization............ccceevvvevievinnieeeiinnnne.n. 12-13

Special Considerationsc.ecveevereeeieriirienierresreeeeseeseesseeneneens 12-14
Triggering Campaign Actions with Session, Request, and Event
PrOPEILIES ...veeeieeiiieiieeieecee ettt et et e et eeebeenes 12-15
Working with the Rules Frameworkccccccceeiieviiniiiniiiieie e 12-17
Validating Rules EXPressions.........ccvevereieieninienesiesiesieieeeesieeeeneens 12-17
Rules Engine Error Handling and Reporting...........ccccoeevvevviiniiencvencnennns 12-18
Personalization with Content Selectorsccevueevierirciereeiereeieeeeeeeeenees 12-19
Using an Edit .jsp to Personalize a Portlet..........cccoeeverivieneiieiieieieeee 12-24
Step 1. Create the EAit JSP.....coooiiiiiiiieeceeeeeee e 12-24
Step 2. Enable Portlet EQItingccccveevveeieriiiieieiececeeeee e 12-25
Personalizing a Portal or Portlet by Using Placeholderscccceevveuenenne. 12-26
How Placeholders are USed........c..ceoueririiniiiiniieneeieneeneceeee 12-26
Placeholder JSP Tag: <ph:placeholder>.........c.ccceeevireienciiceninieeeens 12-27
EXAMPIC...ouiiiiiiiiieie ettt 12-28
Implementing the Placeholder.............cccoveeiieiieniiniieieeeee e, 12-29
Creating Placeholder Files...........ccooiioiiiienieniieieeeeeec e 12-29

13. Setting Up Campaign Services

What are Campaign SEIVICES?ccuueeiierieeereeiiereeerteesieeseenseesreesseessessseessees 13-2
Building Placeholders for Campaignscoceecuereenenierienenieneeceeeesieeeeene 13-3
Using Attributes to Specify Display and Clickthrough Behavior 13-3
Loading Ads Into Your Content Management SyStemccceecvereveerevennnenne 13-4
Loading Ads into the Reference Content Management System............... 13-4
Step 1. Set Up Attributes in HTML Documents...........cccceceeereeneennee 13-5

Step 2. Set Up Attribute Files for Image and Shockwave Documents

13-6

Step 3. Move Files Into the dmsBase/Ads Directory Tree.............. 13-10

Step 4. Run the loadads Scriptccceeveeeiivieeiiiieieeeeeeeee 13-10
Creating Personalized E-mails for Campaigns..........ccceeevverveeneeniesieennneenne. 13-11
Step 1. Configure the E-mail Properties.........cccocueeveerieereenienieeieeenen 13-11
Step 2. Find Names of User Propertiesccoeveveveriecienieceeee e 13-12
Step 3. Create E-mail JSPS.....c.oooiiiiiiiieiecieeece e 13-13
E-mail Parameterscoccecererieiienieniieesiese e 13-13
Disabling Session GEnerationecceeeeerveeeerieseenesveruesieesseneens 13-14

WebLogic Portal Development Guide

Sample E-mail JSP......cccoioviiiiiiieecteeeee e 13-14

Saving E-Mail JSPS.......cccivieiiieieceie e 13-15

Sending Bulk Mail.........ccoooiiiiiiiiiiie et s 13-16
Sending Mail from a Remote Host or in a Clustered Environment 13-16
Modify the Send-Mail Script to Work from a Remote Host........... 13-17

Modify the Send-Mail Script to Work in a Clustered Environment 13-17

Sending Bulk E-mailccocveiiiiiiiiiiiieieeee e 13-18
Scheduling Bulk E-mail Deliveryccooceveeeiiiciniienieeieeeeeeeee 13-18
Deleting E-mail BatChes.........cccooveeiiiniiieieeiieiecieccee e 13-18

14. Setting Up Commerce Services

Integrating a Portal with Business Transaction Servicescccvecvereveenne. 14-1
Integrating with a TaXation SEIVICEccceeeuierveriiieriieeie e 14-2
If the Third-Party Vendor Hosts the Web Service...........ccceveenenee. 14-2

If Your Organization Hosts the Web Serviceccccocevevienciencnnne 14-3
Integrating with a Payment Serviceccccoevevieereeniienieeie e 14-5
If the Third-Party Vendor Hosts the Web Service...........ccceveennenee. 14-5
Important Security Informationccoevevieniecienieneeeeeeeeee e 14-6

If Your Organization Hosts the Web Servicecccoeevevveeveennnnnn. 14-6
Guidelines for Modifying the Credit Card Web Service EJB........... 14-8
Supporting a Product Catalog..........cccuevieieriieiieiieiereee e 14-9
Loading Your Product Data Into the Product Catalog Database Schema 14-9
Step 1: Prepare to Use DBLoaderccceeeveeiiiiiieniecie e, 14-10
Step 2: Edit the databaseload.properties File.........c.ccecervenienenen. 14-12
Step 3: Load Data by Running the DBLoader Program 14-14
Step 4: Troubleshoot Using the DBLoader Log Files..................... 14-16
Showing a Catalog in @ JSP........ccovieiiiieiet e 14-18
Using the <catalog:getProperty™> Tagccceevvrviierceencieeireeeenenn 14-18
Using the <catalog:iterateViewlterator> Tagc.cccceevvvervennnenee. 14-21
Using the <catalog:iterateThroughView> Tagc..ccccoevvveerencnn 14-23
Hooking Up a Catalog to a Shopping Cart..........ccceeveerveecieenieeneennenns 14-24
Implementing ShOPPINGCAIT.JSP ..vevvveereeriieiienieerieeeieeeesreeeee e 14-25
How shoppingcart.jsp Works..........coocevievieiiiieiineieeeeeeee 14-25
DESCTIPLION ...ttt ettt ette ettt e eere e e s e e be e bbeesseesnae e 14-26
Location in Default Webflowccccovievininiiiiiiiieceic 14-29

WebLogic Portal Development Guide xiii

Xiv

EVEINLS ot 14-30

How shoppingcart.jsp Displays Dataccceceeverienerienercennenen. 14-31
shoppingcart.jsp Form Fieldscccccoeeviiiiiieniieniieiecicieeieen 14-34
shoppingcart.jsp Input Processorsscceeevvevveeviesieeecienveeieennnn. 14-35
shoppingcart.jsp Pipeline Componentscceeveevervenerveniennnens 14-39
UpdateShoppingCartQuantitiesTrackerPCcccoecvveviencveeninne 14-45
Integrating Services With the Catalog Cache.........ccccccevveercrincnennenne. 14-45

15. Event and Behavior Tracking

How Events Work in Campaignscccceoeeeenerieneiiineeienceie e 15-2
How the Event Service Works.........cocueviiiiriiienieienceie e 15-3
How Event Sequences Workcoceeieiiniienenienie e 15-5
How to Use Standard EVentscccocueririiiiiienieeneeienee e 15-8
Servlet Lifecycle Events and Servlet Filter Events..........ccccccvevviicveennen. 15-9
Generating Login and Creation EVentscccceevevienieciinienieeeeene, 15-10
Adding or Customizing Event Generatorscccecverveecreercveerveniuennns 15-11
Creating Custom EVENtScccoeeeiiiiiiiieiii e 15-12
Writing the Custom Event Classc.cccveeeviiecieniecieiieeieecee e 15-13
Writing the Custom Event LiStener........c.cccccevvveevieniiiniieniie e, 15-16
Installing the Listener Class in the Event Service........cccocceevvenveeneennen. 15-19
Writing a Behavior Tracking Event Class........cc.ccccvevininicnincnccncnnnee. 15-20
Configuring Events Buffer Sweepingcccevvveeievveecienieeieenen. 15-21
Facilitating OffLine Processingcccceeevveerieeiieenieenieenieeseeeieenne 15-21

Writing a TrackingEvent Base Class Constructor...........coccecevuee. 15-27

How to Enable Behavior Trackingccceevveevieenieenieniieieeeie e sve e 15-32
Converting Behavior Tracking Events to XMLccccceeevevienienieenen. 15-33
Creating Custom Behavior Tracking Event Listeners...........c.ccccecevenen. 15-36
Writing Custom Event GENneratorsc.eccvvevveerieereenveeneeseeeeseennenens 15-36
Debugging the EVent SErviceccccvevieiieeiiieiiicieeeee e 15-38
Registering Custom EVENtsccccoecueroieiiiiieieiienie e 15-39
When to Register an EVent.........ccccevveeiiieiiiiinienieciieeeee e 15-39
EVENt PrOPerties....cccvieuiiiieeiiieeieeiieieeieeetee ettt e eae e sebeensee e 15-40
Instructions for Registering a Custom Event...........ccccceeveeinierirecennne. 15-41
Updating a Registered Custom Event...........ccccceevveriiiniieeieeneenieeieenne, 15-44
Activating Behavior Trackingcccoccevviieriiniienieeeesie e e e 15-47

WebLogic Portal Development Guide

Procedure for Activating Behavior Tracking.........cccccevcveeciieiieeneennenns 15-47
Configuring the Behavior Tracking Service in WebLogic Server......... 15-48
Configuring a Data SOUICEcocueiuieiieiiiiiinieeceeeee e 15-50

16. Using the Expression Package

What Is the Expression Package?...........ccooceveviviieiiiniienenieieeee e 16-1
Using Rules o1 EXPIeSsions......ccueiieverienierientiienceeeniceie e 16-6
Expression Package Classes........coceevireererienenieienceniceeese e 16-10
The Package Structure for the Expression Package..........ccccovvvevennnnen. 16-11

Assembling and Managing EXpressions.........cecceveeeereeieneeieneenenceenenne 16-12
Maintaining Parent-child Relationships.........c.ccocvoeniiiiiniiiienienincene, 16-13
Managing the Expression Cache..........ccocoveveviecienienenieneeiee e 16-14

Working with EXPIeSSIONsc.cccvieriieereeiieiiienieesieesieeeiesieesieeeveesneeveenes 16-15
The EXpression FACtOry.....cccecviiiierieiie ettt 16-15
Expression Package SErviCescccvvververierieeiienienieseeie e seeenes 16-16

Unification SEIVICEccuevieririierieniieieeieeeeee e e 16-16
OPptIMIZATION SETVICE....ccuvierieeieeiierireeieesieeeeeereesreeaeesreeeaeeveenes 16-16
Validation SerVICe.......cceveeiiriiieireeirierreseese et 16-17
Evaluation SeIviCecccevieiiriiiiieniieniericee e 16-17
EXECUtION SEIVICE ..eeutiiiiiieiiiriieietcee et 16-18
Code EXAMPIES.....oooiiiiiiieieciieieceete ettt ens 16-19
Stateful Evaluation of a Simple Expression.........ccccoeceeveenvenneennen. 16-19
Stateful Evaluation of an Expression Containing Variables........... 16-20

Stateless Validation and Evaluation of an Expression
Containing Variablesc.coceeveriiniriineneneneeneeeeeeeeee 16-22

Stateful Validation and Evaluation of an Expression

Containing Variablesccceecvereeeniienieeeiieiee e 16-23
Configuring the Expression Package.........ccocvevieiniiicieeiieniieieecie e 16-25

A. Event Descriptions

SESSION EVENLSiiiiiieiieiieieieee ettt sttt A-1
User Registration EVENt...........cocoiiiiiiiiiiiiiincee e A-3
Product EVENLS.......ccviiieieiieeieeeeeee ettt ettt s A-4
Content EVENTS.....coc.eiiiiiiiiiiiiiieie ettt ettt st A-5
Cart EVENLS .ooviiiiieiie ettt ettt et e e te e stte st e e steesveenseesbeensaesseesnseensnennseens A-6
BUY EVENL ..ot st A-9

WebLogic Portal Development Guide XV

xvi

RUIES EVENL ..ottt
Campaig@n EVENTScocviviiiiiiieie e

Index

WebLogic Portal Development Guide

CHAPTER

Preface

Welcome to the BEA WebLogic Portal Development Guide. In addtion to this
document, we encourage you to use the following resources, as well.

Finding documentation online BEA product documentation is available on the
BEA corporate Web site. From the BEA Home page, click on Product Documentation
or go directly to the “e-docs” Product Documentation page at http://e-docs.bea.com.

Providing documentation feedback Your feedback on the BEA WebLogic
Portal documentation is important to us. Send us e-mail at docsupport@bea.com if
you have questions or comments. Please indicate that you are using the documentation
for the WebLogic Portal version Product Version:

Contacting BEA WebSUPPORT If you have any questions about this version of
WebLogic Portal, or if you have problems installing and running WebLogic Portal,
contact BEA Customer Support through BEA WebSUPPORT at http://www.bea.com
or by using the contact information provided on the Customer Support Card in the
product package.

WebLogic Portal Development Guide xvii

xviii ~ WebLogic Portal Development Guide

CHAPTER

1

Introduction to

WebLogic Portal
Development

Welcome to the WebLogic Portal Development Guide. This guide shows you how to
develop and deploy portals and portlets and create the resources necessary to extend
their capabilities. The portal development activities described in this guide comprise
the initial phase of a portal’s lifecycle: creating a portal and the resources used to
extend that portal. Once portal development is complete, portal administration
becomes the primary concern. Administrative tasks are described in the WebLogic
Portal Administration Guide.

This section includes information on the following subjects:
m A Developer’s Portal Primer

m Portal Component File Locations

m Roadmap for Building a Portal

m How Do I Get Started?

WebLogic Portal Development Guide 1-1

1 Introduction to WebLogic Portal Development

A Developer’s Portal Primer

A portal is a feature-rich Web site. It provides a single point of access to enterprise data
and applications, presenting a unified and personalized view of that information to
employees, customers, and business partners.

Portals allow you to have multiple Web applications within a single Web interface. In
addition to regular Web content that appears in a portal, portals provide the ability to
display portlets—self-contained applications or content—all in a single Web interface.

Portals support multiple pages with tab-based navigation, with each page containing
its own content and portlets.

Portal Features

While a fully-functioning portal offers many features to the portal user that enhance
their experience when using WebLogic Portal many development features likewise
enhance your experience when developing portals and portal resources. This section
describes some of these features.

Personalization and Authorization

Because WebLogic Portal comes with robust authentication and personalization
features, administrators can determine what content a visitor can interact with and how
that information will appear to the specific visitor. Visitors themselves can leverage
WebLogic Portal’s personalization features to select their own content and create their
own look and feel. A major component of the Portal development process is to create
the resources that make such authorization and personalization possible.

Group Portals

Portals are designed either for single users or for groups. With group portals you can
set up delegated administration for portals and restrict portal access to specific users.
You can create multiple group portals within a portal Web Application. The group

portals can share portal resources, such as layouts and portlets, but can be configured

1-2 WebLogic Portal Development Guide

A Developer’s Portal Primer

differently to satisfy the needs of each group separately. Because users are designated
individually as members of a group, the group portal uses a static form of
personalization.

JSPs and JSP tags

EJBs

As a portal developer, you can use JavaServer Pages (JSPs) to rapidly develop and
easily maintain dynamic web pages that leverage existing business systems. By using
JSPs, you can quickly develop web-based applications that are platform independent.
By separating the user interface from content generation, JSPs allow you to change the
overall page layout without altering the underlying dynamic content.

Key components of a JSP are the JSP tags, simple code that allows you to easily
develop JSPs without using any Java code. JSP tags are XML-like tags and scriptlets
written in Java that encapsulate the logic that generates the content for the page.
WebLogic Portal ships with a vast library of JSP tags for use in such tasks as creating
webflows and pipelines, building a product catalog, developing campaigns, and
integrating content management systems.

Enterprise Java Beans (EJBs) allow you to write software components that execute
business logic that runs on the server. With EJB transaction and state management,
multithreading, and resource pooling are left to the server implementation. In
WebLogic Portal, EJBs comprise the enterprise application layer shown in Figure 1-2
and perform such functions are loading pipelines into Web applications.

Unified User Profile

In WebLogic Portal, users are represented by user profiles. A user profile employs a
user’s ID to access such properties for that user as age or e-mail address. A Unified
User Profile incorporates user data from external data sources in addition to or instead
of LDAP servers, such as a legacy system or database, so that the user can access data
from many different sources through a single profile. During portal development, you
will create this profile so that your Portal application can retrieve data from multiple
external sources.

WebLogic Portal Development Guide 1-3

1

Introduction to WebLogic Portal Development

Other Useful Features

WebLogic Portal also provides these other features that facilitate portal development:

A layout paradigm for dynamic, interactive, personalized content

Content modules called portlets, laid out in rectangular grids

The ability to personalize portlets at many levels

The ability to save customized layout settings made by a visitor to your Web site
The ability to define multiple views for the same group portal

The ability to designate and customize color schemes called skins

Delegated administration, which enables complex, distributed security
implementations

Portal Component File Locations

1-4

When you install WebLogic Portal, you automatically create a file structure that
represents your development environment. Figure 1-1 shows the relationship between
generic portal architecture and where the files that compose the various levels reside
in the file structure.

WebLogic Portal Development Guide

Portal Component File Locations

Figure 1-1 Portal Component File Locations

=] bea
w0 dk131_03
] logs
=20 user_projects
=] myNEW domain
] applications
=11 beatpps
#-_] paymentwSApp
=0 portalapp
-] datasync
] METAINF
=] NewPWapp
@] framework
-] portlets
-] WEBANF
@] tools
-] toolSupport
@] portaldpp-project

Portlet

Paortlet M Partlet

Paortal
ersonaliz; ules

Web Application

Enterprise Application (EJBs) ‘
' |

Domain (Servers and Clusters)

m Everything is built upon a domain, which is composed of an application server
(for example WebLogic Server) and clustered servers. All files and directories
that make up the full portal architecture are contained in the domain folder
(myNEWdomain).

m The enterprise application sits on top of the domain. A domain can have
multiple enterprise applications, which are characterized by a set of EJBs you
can implement to create functionality in your Web applications and portals. The
files and directories that make up the enterprise application are contained in the
portalApp folder.

m Each enterprise application can host multiple Web applications, the basis for
your portals. The files that comprise a Web application include deployment
descriptors, configuration files, and the Java Archive (.jar) files that contain
the logic and formatting instructions for the web application and the portal it
supports. Files and subdirectories that comprise a Web application are contained
in the Web application folder (newPWApp).

WebLogic Portal Development Guide 1-5

1

Introduction to WebLogic Portal Development

m The Web application also contains the logic that administers and enforces the
personalization rules that help to channel the desired content to a specific visitor.
These rules determine what content a visitor can interact with and how that
information will appear to the specific visitor. The files that define the
personalization layer of the WebLogic Portal architecture are contained in
subdirectories of the portalApp-project file. These files are used in the
E-Business Control Center and include configuration files for Webflow and
Pipeline, events, portals and portlets, properties, and skins layouts.

m A Web application can have only one portal. This layer is the user interface of
WebLogic Portal: it contains the components the visitor actually sees and
interacts with when using WebLogic Portal. The files that comprise the Portal
application include deployment descriptors, configuration files, and the Java
Archive (.jar) files that contain the logic and formatting instructions for the
Portal application. Files and subdirectories that comprise a Portal application are
contained in the same folder as the Web application (newPWApp).

m The top layer of the WebLogic Portal architecture are the portlets, subsets of
portals. The files that make up portlets include . sp files and image files, such
as .gif files. These files are contained in the portlets folder.

Roadmap for Building a Portal

This section describes the tasks required to create a portal and portal ressources and
shows you how WebLogic Portal helps you complete those tasks. It answers these
questions:

m How do I Build a Portal?

m How Can I Extend these Portals?

How do 1 Build a Portal?

1-6

WebLogic Portal makes developing portals and portal applications easy, whether you

are building a portal for a new domain or for an existing domain. BEA provides

“Wizards”— GUIs in to which you enter portal configuration and setup information—

WebLogic Portal Development Guide

Roadmap for Building a Portal

that enable you to create and configure portals and portlets without having to know
Java, XML, or HTML. You simply complete the data requested by these wizards and
the portal, with its requisite domain, enterprise application, Web application, and
portlet, are created.

For example, if you are creating a portal for a new domain with the Domain
Configuration wizard, you:

1. Create an enterprise application that will support your Web application.

2. Create a new domain for your portal application

Then, by using the Portal wizard, you:

3. Create the Web application to support your portal.

4. Create a new portal and add a portlet to that portal.

5. Deploy the portal and portlet.

Additionally, by using the Portlet wizard, you can add more portlets to your portal.
By using these wizards, you can build a functional portal in less than an hour.

Part 1 of this guide, “Portal Development Tutorial” walks you through the steps
outlined above to build a new portal with a new domain and then deploy that portal. In
addition, it will show you how to enable an existing domain to host a new portal.

How Can I Extend these Portals?

Once you have a portal in place, you can extend it by adding features and functionality
to increase its value to your enterprise. Among the ways you can extend a portal are:

m Adding more portlets
®m Adding static or dynamic content
m Personalizing it for a specific user

m Creating a navigation scheme called a webflow and enhancing the functionality
of the webflow by adding a pipeline to it

m Integrating it with third party systems and services, such as LDAP servers and
search engines

WebLogic Portal Development Guide 1-7

1

Introduction to WebLogic Portal Development

Integrating it with commerce services such as payment and taxation services

Modifying its default look-and-feel by adding skins or changing the layout.

These and many other ways of extending a portal are described in Part I, “Extending
Portals” on page -15

How Do I Get Started?

1-8

With the basic background on portals and portlets presented in this section, you can
now begin building portals. This guide is structured to allow you to both develop a
portal and extend its functionality.

While the procedures contained in this guide will show you what you need to know to
develop portals and portlets, you should also do some advanced planning to enable
your portal to fully support your enterprise.

The following list suggests some activities you need to consider before building your
portal. This list is not a comprehensive planning guide for a new portal, however it
should provide sufficient guidance for getting you started.

Before actually developing a portal, you should:

Determine the tools you will use to create, test, debug, and deploy your portals.

Determine which business needs the portal will address and whether you need to
build a new portal or modify an existing one.

Identify the portal audience by defining users and groups.
Identify the portal components; that is, what will be available in the portal.

Identify portal management roles and responsibilities; that is, who are the
administrators (SA, PA, GA) and what are they required to do?

If you are developing a new portal, build the wireframes for the portal and its
portlets.

Create the HTML mock-ups of the portal and portlets to model the desired
look-and-feel.

WebLogic Portal Development Guide

How Do | Get Started?

m Collect or identify the specific content and determine what processes will be
required to make it available in the portal and portlets.

You are now ready to begin building your portal.

WebLogic Portal Development Guide 1-9

1 introduction to WebLogic Portal Development

1-10 WebLogic Portal Development Guide

Part | Developing
Portals -
Tutorials

Part I, “Developing Portals — Tutorials,” shows you how to build and deploy portals.
You will learn how to create and deploy a portal both for a new domain and for an
existing domain, alongside another Web application, for example. By the time you
are finished using these tutorials, you will be able to quickly create and deploy a
portal, with portlets, using BEA-supplied resources.

This section includes information on the following subjects:
m Creating a New Portal in a New Domain

m Adding Portal to an Existing Domain

m Deploying Portals

After you have created and deployed portals, you can extend and add functionality
to those portals. For those procedures, see the Extending Portals section of this
guide.

CHAPTER

2 Creating a New Portal
in a New Domain

Step 1: Create the New Domain

This section shows how to run the Domain Configuration Wizard to create a new
complete set of enterprise applications which include all the administration,

commerce, personalization and portal functionality offered by the WebLogic Portal
platform.

1. On the Windows platform, select Start —Programs —BEA WebLogic Platform
7.0 — Domain Configuration Wizard.

You can also launch the Domain Configuration Wizard by executing dmwiz . cmd
(or dmwiz.sh on UNIX) from the following directory:

<BEA_HOME>\weblogic700\common\bin

WebLogic Portal Development Guide 2-1

2 Creating a New Portal in a New Domain

2. From the list of domain templates on the left, select WLP Domain as shown in
Figure 2-1. Name the domain; examples in this procedure use the name
myNewDomain. Click Next.

Figure 2-1 Select the WLP Domain

BEA Configuration Wizard - WebLogic Platform 7.0.0.1

Choose Domain Type and Name

Select 2 domain bype from the available ternplates
and enter the domain name.

Select a ternplate: i Drescription:
‘I iebLogic Portal starting domain with no custom
Workshop o 2
pottals

Flatfora
Diomain

Author:
= ’7 BEA Systems, Inc. ‘

[Mame:

}nyNewhomain

Exit | Ereyious | IMext I

2-2 WebLogic Portal Development Guide

Step 1: Create the New Domain

3. Inthe Choose Server Type page, verify that Single Server (StandAlone Server)
is selected, as shown in Figure 2-2, and click Next.

Figure 2-2 Choose Server Type

®)BEA Configuration Wizard - WebLogic Platform 7.0.0.1

Choose Server Type

Select a single server or multiple server configuration,

{* Single Server [Standalone Server)
(" Admin Server with Managed Server(s)
(" Admin Server with Clustered Managed Server(s)

{~ Managed Server (with awning Admin Server configuration)

Exit | Previous Mext

Development Guide 2-3

2 Creating a New Portal in a New Domain

4. Verify that the domain location is correct in the Choose Domain Location page.
For this example, it should be <BEA HOME>\user projects, as shown in
Figure 2-3. Click Next.

Figure 2-3 Choose Domain Location

BEA Configuration Wizard - WebLogic Platform 7.0.0.1

Choose Domain Location

Choose a base directary For your domain(s),

Specify directory for "partalDomain” domain:

k:\bea\user}rojects\ Browse |

The Fallowing directory will be created:

Cihbealuszer_projectstportalDomain

Exit | Previous | Mext I

2-4 WebLogic Portal Development Guide

Step 1: Create the New Domain

5. Check the displayed server information in the Configure

Standalone/Administrative Server page. If you are running WebLogic Portal

locally, the information should be as shown in Figure 2-4. Click Next.

Figure 2-4 Configure Server

EBEA Configuration Wizard - WebLogic Platform 7.0.0.1

Configure Standalone /Administrative Server

Enter basic server configuration infarmation,

Server Marne: FortaISer\rer
Server Listen Address: iocalhost

Server Listen Port: co1

Server SS5L Listen Port: [F502

Exit |

Previous |

Note: For more information on options in the Domain Configuration Wizard, consult

“Using the Configuration Wizard” at

http://edocs.bea.com/platform/docs70/confgwiz/index.html.

Development Guide

2-5

2 Creating a New Portal in a New Domain

6. Create the administrative user by entering an administrator user name and
password. A typical choice is weblogic/weblogic, as shown in Figure 2-5.
Click Next.

Figure 2-5 Create Administrative User

BEA Configuration Wizard - WebLogic Platform 7.0.0.1

Create Administrative User

Supply a username and passwoard,

User Marme: }Neblogic

Paszword: r********

Werify Password: r********

Mote: Password must be at least & characters.

Exit | Previous | Mext I

2-6 WebLogic Portal Development Guide

Step 1: Create the New Domain

7. Select Yes on the Create Start Menu Entry for Server page, as shown in
Figure 2-6, then click Next.

Figure 2-6 Create Start Menu Entry

BEA Configuration Wizard - WebLogic Platform 7.0.0.1

Create Start Menu Entry For Server

Create a start menu entry for your standalone or adminstrative server,

Do you want ta install this server in Windows Start Menu?

Exit | Previous | Mext I

Development Guide 2-7

2 Creating a New Portal in a New Domain

8. Verify the settings in the Configuration Settings window, as shown in Figure 2-7,
and click Create. The Wizard runs for a moment, processing and creating files.

Figure 2-7 Verify Configuration Summary

BEA Configuration Wizard - WebLogic Platform 7.0.0.1

Configuration Summary

Werify the information you supplied is accurate,
Click. Create to construct the domain.

Domain Name: rriyTew Do main ;I
Server Type: Single Serwver [(Standalone Serwver)
Domain Template Name: WLFP Domain

Server Name: portal server

Install Directory: Civbeasuser_projectshportalbDomain
Listen Address: Tocalhost

Listen Part: FEOL

S5L Listen Port: 7ROz

windows Start Menu: yes

User Name: system

Fassword: FEEEEREE

Create

Exit | Previous |

2-8 WebLogic Portal Development Guide

Step 1: Create the New Domain

9. The Configuration Wizard Complete page appears. Make sure End
Configuration Wizard is selected and click Done, as shown in Figure 2-8.

Figure 2-8 End Configuration Wizard

"I BEA Configuration Wizard - WebLogic Platform 7.0.0.1

Configuration Wizard Complete

Sonfigurstion Wizard has successfully crested
et ew Dormsin' domain.

{~ Run Configuration Wizard again.

Exit | FEVIOUS | Done I

You are now ready to create a new portal and an associated portal Web application.

Notes on the Resources You Just Created

Site Infrastructure Provided by the Configuration Wizard: As part of
creating the new domain, the domain wizard also creates a complete enterprise
application called portalapp. With the portalApp-project file open in the
E-Business Control Center, click the Site Infrastructure tab and select User Profiles,
as shown in Figure 2-9. Notice that a user property set called CustomerProperties
is already in place.

Development Guide 2-9

2 Creating a New Portal in a New Domain

2-10

Figure 2-9 User Profiles

ﬁh"l BEA E-Business Control Center - portalApp-project

File Tools Window Help

=8 R @]
Retrieved list of User Profiles.
|-|i| Explorer [Site Infrastructure] B

-z X

Mame Filter (partial names allowed)

User Profiles

[CyustomerProperties

WSl = L s er profiles for the custamers |

J2EE Resources Provided by the Configuration Wizard: The new enterprise
application, as yet a blank template, includes built-in support for foundation services,
personalization, interaction management, intelligent administration, and integration
services. A look into the newly created directory shows the JARs used to implement
these services, as shown in Figure 2-10.

WebLogic Portal Development Guide

Step 2: Create the New Portal

Figure 2-10 JARs in the New Enterprise Application Directory

J File Edit View Favorites Tools Help |

J Address I@ portaldpp j @Go

: nc
COMETA-INF
Ctoals
[toolSupport
carnpaign. jar
catalogws. jar
commerce_campaign_bridge_util jar
commerce_util. jar
% customer, jar
document, jar
ebusiness, jar
% ejbadvisor. jar
events.jar
ldapprofile. jar
mail. jar
pl3n_util.jar
payment, jar
% pipeline. jar
placeholder . jar
portal.jar
portal_util. jar
property,jar
rules. jar
tanc.jar
usermgmt. jar

4 |

|25 abject(s) 3,62 mB [\ My computer

sl

Step 2: Create the New Portal

With the supporting enterprise application resources in place, take the following steps
to create and deploy a new portal.

1. Start the server by selecting Start —Programs —BEA WebLogic Platform 7.0 —
User Projects —<new domain name> Start Portal Server. (If you followed the
examples in this procedure, the new domain name is myNewDomain.)

Development Guide 2-11

2 Creating a New Portal in a New Domain

2-12

Note:

2. When prompted for credentials, enter the username and password you created in

Figure 2-5, such as weblogic/weblogic. The login is shown in Figure 2-11.

Figure 2-11 Entering the Username and Password You Created for the Domain

W Start Portal Server - ea'‘\user_projects’,portalDomai

* To start WebLogic Server, use a username and
* password assigned to an admin—level user. By
* default, this is user: webhlogic

* and password: weblogic

* These should both be changed using the

* WebLogic Server console at

3 http:s/[hostname1: [port l/console

C:xbhea‘user_projectssportalDomain>'"C:xbeasjdki31_@3vbinsjava'" —hotspot —Hmsl128m
—amx128m —HB:MaxPerm8ize=128m —Dcommerce.properties=""C:xbea*weblogic?@8 portalw|
eblogiccommerce . properties" —Dweblogic.Mame=portalServer —Dbea.home= shea' —Du
eblogic.management .username= —Dueblogic.management .password= —Dweblogic.Producti]
onModeEnabled=true —-Dweblogic.management.discover=false -Djava.security.policy==|
"C:sbeasweblogic?88sserverslibvweblogic.policy" weblogic.Server

;Jun 1?7, 2?32 3:88:43 PM MDT> <{Info> {Security> <{B?8B65> {Getting boot identity
PFOM USEr.

Enter username to bhoot WebLogic server:webhlogic

Enter password to boot WebLogic server:

For UNIX platform only: By default, none of the new domain scripts have
executable privileges, so they must be granted these privileges by a system
administrator.

3. Launch the E-Business Control Center by selecting Start — Programs — BEA
WebLogic Platform 7.0 — WebLogic Portal 7.0 — E-Business Control Center.

4. When it has started, choose File — Open and open the
portalApp-project.eaprj project file inside the <BEA HOME>
user projects\<new domain name>\beaApps\portalApp-project
directory, as shown in Figure 2-12 and Figure 2-13.

Figure 2-12 A: Opening a Project File

AW Tools Window Help
KNewEmject
Close Project !
e »
Close

WebLogic Portal Development Guide

Step 2: Create the New Portal

Figure 2-13 B: Opening a Project File

ﬁh"l Open Project

Look in: L] portalApp-project
: = ci =
| application lbea
[l user_projects
| myMewDomain
| heafpps
[r | portalApp-praoj

& portaltpp-p

= DA

File name: [,=_I'Ej‘ —— a Open |
Files of type: IEEICC FProject File {.eaprj) LI Cancel |

5. Click the Presentation tab of the E-Business Control Center.

6. Click the New icon in the Explorer toolbar and select Portal, as shown in
Figure 2-14.

Figure 2-14 Opening the New Portal dialog

ﬁh"l BEA E-Business Control Center - portalApp-project

File Tools Window Help
e R @O

Create new portal failed.

|-|i| Explorer [Presentation]

- & K
M: Entittement Segment jwed)

I_ Content Selector & 2

Flacehaolder tals

|o— |

Development Guide 2-13

2 Creating a New Portal in a New Domain

7. Be sure the Use the Portal Wizard option is selected, as shown in Figure 2-15.
Click OK.

Figure 2-15 Portal Wizard Screen

i New Portal jjf:: |

& Lse the Portal Wizard to create a new portal
from scratch.

Use the Portal Editor to create a new portal
with existing resources (e.g. sking, layouts).

Ok I Cancel |

8. Name the new portal, as shown in Figure 2-16. Examples in this procedure use
the portal name ThisNewPortal.

Figure 2-16 Naming the New Portal

ﬁh"l Portal Wizard[Untitled]

1. Portal Name
2. Portal Templates Portal Name
3. Resource Files Location
4. SBummary
A, Mext Steps

Portal Mame:
[ThisMewPortal

2-14 WebLogic Portal Development Guide

Step 2: Create the New Portal

9. Click the New button shown in Figure 2-17 to create a new portal Web
application.

10. Enter the portal name; in this procedure, the example name NewPortalWebApp
is used. Click OK.

Figure 2-17 Naming the New Portal Web Application

ﬁl-"l Portal Wizard[Untitled]

1. Portal Name
2. Portal Templates Portal Name
3. Resource Files Location
4. Bummary
A, Mext Steps

Portal Mame:
[ThisMewPortal

Wieb Application:
I LI e

il New Portal Web Application: =

Enter a name far the portal YWeh application.

Wieb Application Name:

Ok Cancel |

Mext = | Cancel |

Development Guide 2-15

2 Creating a New Portal in a New Domain

11. Select a portal template, as shown in Figure 2-18. Click Next.

Figure 2-18 Select a Portal Template

ﬁh"l Portal Wizard[ThisNewPortal]

1. Portal N
2.PEnZ|TZ$;|ates Portal Templates

3. Resource Files Location
4. SBummary
A, Mext Steps

Choose a template to hase your partal on.

Fortal Templates:

hasepartal

Template Description:
Description: Base Portal Template

= Back | Mext = I Cancel |

12. In the Resource Files Location window (Figure 2-19), verify that the location for
J2EE resources for the new Portal Web Application is correct.

Note: If you are running the E-Business Control Center on the server machine, the

default location should be correct.

2-16 WebLogic Portal Development Guide

Step 2: Create the New Portal

13. Click Create.

Figure 2-19 Select a Location for Resource Files

iui Portal Wizard[ThisMewPortal] i x|

1. Portal Mame . .

2 Portal Templates Resource Files Location
3. Resource Files Location

4. 5ummary

A, Mext Steps

Choose a location inwhich to create the Web application directory
for storing this portal's resource files (1SPs, sking, etc). This will
usually he your enterprise application root directary.

Farent directory of Web application:
er_projectsimyNewDomaintbeasppsipartalApp

= Back | Create | Cancel

Development Guide — 2-17

2 Creating a New Portal in a New Domain

14. The Portal Wizard creates files and lists them in the Summary page shown in
Figure 2-20. Click Next.

Figure 2-20 Summary

ﬁh"l Portal Wizard[ThisNewPortal]

1. Portal Mame

2. Portal Templates Summary
3. Resource Files Location

4. Summary

4. Mext Steps

The following portal resource files have been created.

File List:
ul:cuapp:i\puj_l.,cu.npp—pj_uJl:l.,b\clppJ.J.L,cu..J.uu—a_'(uLa\wcuclppa;l
bealkppsiportaldpp-projecthapplication-sync\webapps

A) s applicati ehapp

beadppsiportalippNewPortalWebdppy framework’ skins
beadppsiportalippNewPortalWebdppy framework’ skins
beadppsiportalippNewPortalWebdppy framework’ skins
beadppsiportaldppiNewPortalWebdpp WEE-INFY libyes_t
beadppsiportalippNewPortalWebdppy framework’ skins
beadppsiportalippNewPortallWebdppiportlets\portlet

beadppsiportalippNewPortalWebdpp’ framework’ sk ini\l_vl
_‘I »

Copyto Cliphoard |

Note: Listing 2-1 includes examples of two types of files are created
automatically by the Portal Wizard; J2EE resources such as
select page view.gif, and metadata used by the portal framework,

such as security.wf. Notice the different directories used to store these
files.

Listing 2-1 Different Types of Portal Resources

\portalApp\NewPortalWebApp\framework\skins\futurism\images\select page view.gif

\portalApp-project\application-sync\webapps\NewPortalWebApp\security.wf

2-18 WebLogic Portal Development Guide

Step 2: Create the New Portal

15. Deploy the new portal: Select the Yes, Hot Deploy Now radio button and click

Deploy, as shown in Figure 2-21.

Figure 2-21 Hot Deploying the New Portal

ﬁh"l Portal Wizard[ThisNewPortal]

1. Portal Mame

2. Poartal Templates

3. Resource Files Location
4. SBummary

5. Next Steps

Next Steps

Haot Deploy this portal weh application now?

About Hot Deployment ws. Mortnal Deployment. .

Mo, |will deploy this portal web application manually.

Howr to manually deploy thiz portal web application. ..
&

Additional infarmation provided by this termplate:

[Open the portal definition after pressing "Finish®

Drescription: Wizard is complete. Follow these instructions.

= Back | Deplay

16. When prompted, enter the administrator username and password you created in

Figure 2-5, weblogic/weblogic.

Figure 2-22 Enter the Administrator Username and Password

s Logon E

Connection: Default

Server: hitpilocalhost ¥ 401

Username:

x|

}weblogic

Password:

Ia—a—a—a—wa—a—a—|

Connect I

Cancel

Development Guide 2-19

2 Creating a New Portal in a New Domain

17. The deployment process runs for a moment, displaying the window in
Figure 2-23. Click Details to view the deployment log.

Figure 2-23 Processing Message During Hot Deployment

ﬁh"l Hot Deployment Status E

Hot deplaying portal to YWeblLogic Server...

Status: Invoking WebLogic Deployer...

n

This may take several minutes depending
oh your server's configuration.

ClnEE | " Details == |

18. When the new portal has been deployed successfully, click Close, as shown in
Figure 2-24.

Figure 2-24 Hot Deploy Success Message

i Hot Deployment Status |

Hot deplaying portal to YWeblLogic Server...

Status: Complete

This may take several minutes depending
oh your server's configuration.

Close |

19. Confirm that the new portal is visible from within the WebLogic Portal
Administration Tools, as shown in Figure 2-27, by navigating to the following
URL:

http://<hostname>:<port>/portalAppTools/

If you are running the tools locally, the URL should be:

http://localhost:7501/portalAppTools/

2-20 WebLogic Portal Development Guide

Step 2: Create the New Portal

20. You will be prompted to log in, as shown in Figure 2-25. Log in as

administrator/password.
Note: Do not use weblogic/weblogic.

Figure 2-25 Logging Into the Administration Tools

Username and Password Required E

Enter username for weblogic at localhost: 7501

User Name: Iadministrator

Password: I""""""""

()8 I Cancel |

21. The main Administration Tools window appears, as shown in Figure 2-26. Click

the icon to the right of the Portal Management heading.

Figure 2-26 Clicking the Portal Management Icon

%% Weblogic Portal Administration Tools - Netscape

File Edit Miew Go Communicater Help

| 4 & 3 4 - @ &S & O &

Back Fowed PRelbad Home Seach Netscaps Pint Secuity Shop Gon

o " Bookmarks A Ln:annn-|hnp-mﬂ:a\mt TE0 /potalbppT ools/index. jsp =l @&l what's Related

to view the developer's guide.

GCatalog Management

User Management

Create and administer catalog cortent and

Administer uzers and groups and their
i structure more explanstion.

proparties more

Order Management Payment Management

View and administer order payments more

Viaw and manage product orders more
explanation

explanation

Portal Management

Crests and administer portals snd portists
move axplsnstion

= EE= |http: #localhost; 7501 /portaléppT ools/application Tnamespace=admin_m: = -3

Development Guide

Instant Message WwebMail Radio Quote.com LiveC Vellow Pages People ‘fahoo! Finance Dowr

»?7%,
» 7
Fs y (oo . VL v,
2y ﬂa BEA WebLogic Portal
o j
tlick the icons () to launch the administration taols. To getmore See the Personalization
’ . e et : Aduisor for tags and tips
help as you work with the tools, click 7 to view onfine help, or the book icon s

sample application.

2-21

2 Creating a New Portal in a New Domain

22. The Portal Management page appears, displaying the name of your portal Web
application, as shown in Figure 2-27.

Figure 2-27 Information About the Portal You Created in the Wizard, Viewed
in the Administrator Tools

H Portal Management Home - Netscape [_[O]
Edit Miew Go Communicator Help
¥ o A 4 4 & @ #
Back Foad Reload Home Search Metscaps Print Secuity Shop Stop

j " Bookmarks f Lonstinre [s/application?nsmsspase—sdmin_maingorgin-nips_home jspievent-lnk portsl_heme =] @017 What's Relaied
Instant Message ebMail Radio Quote.com LiveC Vellow Pages People ‘fahoo! Finance Download

Poi
BEA WeblLogic Portal

Portal Management Home
Toedit an existing group portal, click its name in the list below.

T create a new group portal, click the "Create group portal” link for a portal application
To delete a group portal, click the trash can icon () next to its name.

Portal Management

|’NewPortaIWebApp A Edit portal administratars 5 Create group portal)\
Default group portal

default (everyone

e == |Dacument: Done

23. The new empty portal should be visible through your browser, though no content
has been placed inside this portal. View the portal by entering the following in

your browser.

http://<hostnames:<port>/<newportalwebappname/index.jsp

If you are running the tools locally and used the sample names provided, the
URL should be:

http://localhost:7501/NewPortalWebApp/index. jsp

2-22 WebLogic Portal Development Guide

Step 3: Add a Portlet

Figure 2-28 New Portal Viewed Through Your Browser

H default - Netscape M= |
Fie Edi View Go Communicator Help
¢ ow A 4 e W oF & B &
Fack Gonsad Relbad Home Seach Metscaps Print Secwiy Shop Sion
l € Bookmarks i Location [rttp: eallst: 7501 AsiPortatutsbi pp e sl =] F7 Whal's Related
{ Instant Message WebMai Radio Quate.com LiveC ‘ellow Pages People “Yahoo! Finance Download

e

Built On (gl 1%

|
[== [Document. Done

Step 3: Add a Portlet

Now that the portal is deployed and running, use the Portlet Wizard to add a new
portlet to the portal.

1. From the Presentation Tab in the E-Business Control Center, click the New icon in
the Explorer and select Portlet, as shown in Figure 2-29.

Development Guide — 2-23

2 Creating a New Portal in a New Domain

Figure 2-29 Choosing to Create a new Portlet

ﬁh"l BEA E-Business Control Center - portalApp-project

File Tools Window Help
|8 R @

Creating new portlet...

fE Explorer [Presentation] 1
H-@ X & aw
EtitlementSegment e}

Iz
I_ Content Selector @& i
Flacehaolder ltlats
Portlets
Potlat ey Portett

2. Be sure Use the Portlet Wizard is selected, as shown in Figure 2-30, and click
OK.

Figure 2-30 Portlet Wizard Screen

i New Portlet |

& Use the Portlet Wizard to create a new partlet
from scratch.

Lse the Portlet Editor to create a new partlet
with existing resources (e.g. JSP's, Gif's).

Ok I Cancel

2-24 WebLogic Portal Development Guide

Step 3: Add a Portlet

3. Name the new portlet, as shown in Figure 2-31. Examples in this procedure use
the name BasicPortlet. Click Next.

Figure 2-31 Name the Portlet

i Portlet Wizard [UnnamedPortlet] : x|

e R R S IR

. Portlet Name

. Portal Pages

. FPortlet Components

. Content Types

. Resource Files Location
. Summary

. Mext Steps

Portlet Name

Enter a unigue name far the portlet, and select a portal to which the
portlet should be associated. The portlet name will be used to name
the directary that contains wizard-generated portlet files.

Portlet Mame:
|pasicPartiet

Fortlet Categary:

|p0rt|ets E”‘l

Portal:
[ThishewPartal =l

Fortlet Description {optional):

Development Guide

2-25

2 Creating a New Portal in a New Domain

4. Associate the portlet with a portal page, as shown in Figure 2-32. In this example,
select the only page displayed, the home portal page.

Figure 2-32 Associate the Portlet with a Portal Page

sl Portlet Wizard [Simple1] x|
1. Portlet Mame

2. Portal Pages Portal Pages

3. Portlet Components

4. Content Types The portal ThishewPaortal has the portal pages listed below. Please

5 Resource Files Location indicate which portal pages (if any) you would like this portlet to appear
. Summary on.

7. Next Steps Fortlet Pages:

=Back || Mext= il Cancel

2-26 WebLogic Portal Development Guide

Step 3: Add a Portlet

5. The Portlet Components page in Figure 2-33 shows components that can be
added to the portlet, such as headers, banners, help and footers. For this example,
do not select any additional components, and click Next.

Figure 2-33 Select Portlet Components

fui Portlet Wizard [BasicPortiet]

E‘J. Fortlet Mame

|2 Portal Pages Portlet Components

3. Portlet Components
4 Indicate which componants to include in the portlet

(Titlehar and Content are required components.)

< Portlet Titlehar ter) B
i Portlet Banner [7 Banner
Portlet Header [~ Header

Portlet Content Portlet Content
Portlet Content Portlet Content
Portlet Content Portlet Content

Portlet Footer ["| Footer

<gack! ext = | Cancel

Development Guide — 2-27

2 Creating a New Portal in a New Domain

6. Select a portlet content type, as shown in Figure 2-34. For this example, select
Basic (no Webflow) and click Next.

Figure 2-34 Select a Content Type

ﬁh"l Portlet Wizard [Simple1] ﬂ
1. Portlet Mame
2. Portal Pages Content Types
3. Portlet Components
4. Content Types Choose a content type for the portlet.
A. Resaource Files Location =
o ¥
B. Summary i 3
7. Mext Steps " Two Pages fwith Webflow)

" \ieh senice(s)

Mote: In arder to create a Web services partlet you must have
filesystermn access toWeblogic Server 7.0,

Cancel |

7. A default location for portlet resources appears; verify that it is correct. It should
be something like:

<BEA HOME>\user projects\<domainname>\beaApps\
portalApp\<portalwebappnames>\portlets

For this example, the location shown in Figure 2-35 should be correct:

C:\bea\user projects\myNewdomain\beaApps\
portalApp\NewPortalWebApp\portlets

Click Next.

2-28 WebLogic Portal Development Guide

Step 3: Add a Portlet

Figure 2-35 Select Resource Files Location

iui Portlet Wizard [Simple1] x|

1. Portlet Mame . 0
2 Fortal Pages Resource Files Location

3. Portlet Components
4. Cantent Types

5. Resource Files Location Adirectory named [Simple1] will be created in the location yvou specify.

&, Summary This directory will contain the portlet resource files (J5Ps, GIFs, efc).

7. Mext Steps The location is typically the "portlets” directory of the associated Yieh
application.

Fortlet Resource Files Location:

bmainlbeaAppstonalAp pMewPortalebAp p‘tportlets| Browse
(e.g., Clbeaweblogicy 00portalmdyebAppiporietst

Cancel

Development Guide 2-29

2 Creating a New Portal in a New Domain

8. The Summary page in Figure 2-36 shows the files created by the Portlet Wizard.
Click Create.

Figure 2-36 View Summary

iui Portlet Wizard [BasicPortlet] | x|

1. Portlet Mame
2. Portal Pages Summary
3. Portlet Components

4. Cantent Types

5. Resource Files Location

The following files will be created/moadified.

6. Summary

7. Mext Steps File List:

application-synchiportletsibasicportlet.portlet
application-synchwebappsinewpwapp’ thisnewportal.portal
‘portletsibasicportlet)content. jsp
‘portletsibasicportletiheader.jsp
“portleta‘\basicportlet)images\pt_image.gif

K1]

Copyto Cliphoard |
= Back | Create | Cancel |
AN

9. When the Next Steps page appears as shown in Figure 2-37, uncheck both boxes
and click Close.

Figure 2-37 Unmark Options and Close the Next Steps Window

il Portlet Wizard [BasicPortlet] [%]

1. Fortlet Mame

2. Portal Pages NeXt Staps
3. Portlet Components

4. Content Types
. Resource Files Location The portletfiles were successiully created.

B Summary
7. Next Steps Wyhat would you like to do next?
[~ Editthe associated portal definition)

[¥ Edit this portlet definition
Taview the portlet:

1. Synchronize the project to place the portlet and portal definitions
on the server.

2. Setthe portlet's Visible and Available attributes via the portal
administration pages.

Eead ahout related tasks

2-30 WebLogic Portal Development Guide

Step 4: Make New Portlet Visible

Step 4.

10. Sync the portal project: Click the Synchronize button on the E-Business Control
Center toolbar, shown in Figure 2-38.

Figure 2-38 The Syncronize Button in the E-Business Control Center

File Tools Window Help

Bo R O

BEA E-Business Cor] Synshroniza [~

Note: For this example, the Default connection settings, localhost: 7501, should
work.

11. The E-Business Control Center synchronizes the data you created in the Portlet
Wizard, then displays the message in Figure 2-39. Click Close.

Figure 2-39 Synchronization Is Complete

ﬁh"l Synchronizing Application portalipp. ..
Synchranization Finished.

100%
Document : iwebappsiMewP atalWebAppiwebflow-extensions wix

12. If a window appears prompting you to reset compaign states, click Cancel.

To see this portlet from the browser, it must be designated as visible and available, as
shown in Step 4: Make New Portlet Visible.

Make New Portlet Visible

The new portlet is now on the server, but must be made available using the WebLogic
Portal Administration Tools.

1. Inyour Web browser, navigate to the following URL:
http://<hostname>:<port>/portalAppTools. For this example, use the URL
http://localhost:7501/portalAppTools.

Development Guide — 2-31

2 Creating a New Portal in a New Domain

2. Login as administrator/password as shown in Figure 2-40.

Figure 2-40 Logging Into the Administration Tools

Username and Password Required E

Enter username for weblogic at localhost: 7501

User Name: Iadministrator

Password: I""""""""

()8 I Cancel |

3. When the Administration Tools main page apears, click Portal Management, as
shown in Figure 2-41.

Figure 2-41 Go to Portal Management

P

o
.
4 | []

BEA WebLogic Portal

Click the icons (@) to launch the administration tools. To get
mare help as you work with the tools, click ? to view online help,
or the book icon to view the developer's guide.

[

User Management

Adrminister users and groups and their Create and administer catalog content
associated properties tmore and structure more explanation.

explanation.
Payment Management

View and adrminister order payments
more explanation.

Order Management

View and manage product orders
more explanation.

Portal Management

Create and administer portals and
portiets more explanation.

4. From the Portal Management Home page, click the Default Portal, as shown in
Figure 2-42.

Figure 2-42 Select Default Group Portal

Portal Management Home

To edit an existing group portal, click its name in the list bel
To create a new group portal, click the "Create group portal”
To delete a group paortal, click the trash can icon (§f) next tc

Portal Management

|"NewPortaIWebApp B4 Edit portal administratars

Default group portal:
default (evgryone

2-32 WebLogic Portal Development Guide

Step 4: Make New Portlet Visible

5. From the Group Portal Management Home page, click Manage Pages and
Portlets as shown in Figure 2-43.

Figure 2-43 Manage Pages and Portlets

Group Portal Management Home
Clicklinks here to edit the following aspects of this group portal.

|" Appearance and Content |

B Manage Pages and Partlets

Select pages for the group portal,
chooze 3 home page, select layouts
and portlets for each page, amange
portlets for default layout, and set
attributes and entitlements for both
pages and portlets.

6. Next, in the Pages and Portlets page, click Edit Portlets, as shown in
Figure 2-44.

Figure 2-44 Click Edit Portlets

|"Available Pages |

*harme (Layouts) (Attributes) (Entitlemnents) (Edit Portlert|s) (Paosition Portlets)

7. In the Edit Portlet Entitlements and Attributes page, select the portlet
(BasicPortlet in this example), then click the Set Attributes button as shown in
Figure 2-45.

Figure 2-45 Choose to Set Attributes

(Portlets

Portlet] =

Selected Portlet:

Set Entitlements

Development Guide — 2-33

2 Creating a New Portal in a New Domain

8. Set the Portlet attributes to Visible and Available, as shown in Figure 2-46.

Figure 2-46 Set Portlet Attributes

Set home Portlet Attributes: BasicPortlet

To set attributes for the selected portlet(s), edit values below. To apply the char

Available v

Visible

9. Click Save. The attributes of the portlet, in this example BasicPortlet, are now set
such that it can be seen.

10. View the results by navigating to
http://<hostnames:<port>/<webappname>/index.jsp; for this example,
goto http://localhost:7501/NewPortalWebApp/index. jsp. The result
should resemble that shown in Figure 2-47.

Figure 2-47 Viewing the New Portlet

7 default - Netscape
File Edt View Go Communicator Help

& 2 A N 2 @ S & @ @

!EIBI

Boof Fowed Reload Home Seach Metscape Print Secwip Shop Sip
" Bookmaks A Location:] 2.5 | EJ7 what's Related
Instant Message 5] wiebMail Radio Quote.comLiveC B Yellow Pages People (&) ‘Yahoo! Finance Download Ca

« BasicPortlet (—]

These are the portlet contents

-
-y
Built On (4

== |Dacument: Done

2-34 WebLogic Portal Development Guide

CHAPTER

3 Adding Portal to an
Existing Domain

This section explains how to add portal functionality to an existing domain. These
procedures and tasks are highly technical and require a good deal of familiarity with
WebLogic Server and J2EE architecture.

About Your Domain

The overall procedure outlined in this section is based on the following assumptions
about your existing domain:

The existing domain has been backed up.
The existing domain is installed in <BEA HOME>\user projects\ directory.

The existing domain contains a J2EE application and at least one Web
application, but does not include Portal functionality.

The existing domain, referred to in this section as yourDomain, must be
preserved. That is, it is not being replaced with portalDomain.

Those responsible for performing these tasks are familiar with the WebLogic
Server platform, and with J2EE architecture in general.

WebLogic Portal Development Guide 31

3 Adding Portal to an Existing Domain

Before You Begin

Arrive at the following decisions before moving on:
m Preserve or Replace the Existing Domain

m Use or Replace Existing Database

m Locate or Install Enterprise Application

After these decisions are made, select which procedures to perform and get started.

Preserve or Replace the Existing Domain

3-2

The first decision to be made is illustrated in Figure 3-1, and concerns the domain
containing your existing Web application.

m [fthe existing domain can be replaced with a new portal domain, follow
“Procedure A” on page 3-3 to move your Web application components into a
new portal domain.

m [fthe existing domain must be preserved, follow “Procedure B” on page 3-3 to
install portal functionality within your existing domain.

Figure 3-1 Decision 1

GOAL: Portal Functionality in same
domain as existing Web Application

DECISION 1: Keeping
existing Domain?

NO—s Procedure A

YES
v

Procedure B

WebLogic Portal Development Guide

Before You Begin

Procedure A

1. Use the Domain Configuration Wizard to create a new portalDomain, as described
in “Step 1: Create the New Domain” on page 2-1.

2. Import the objects that constitute the existing Web application into the new portal
domain.

3. Use the Portal Wizard to create a new portal and portal Web application, as
described in “Step 2: Create the New Portal” on page 2-11.

Once these steps have been completed, you will have a single domain containing your
existing portal Web application and a complete portal Web application.

Procedure B

1. Use the Domain Configuration Wizard to create a new WLP domain named
partsDomain, as described in “Step 1: Create the New Domain” on page 2-1.

Note: This partsDomain will be used as a template, but will never be started.
Therefore, do not add a link to it on the Start menu.

2. Continue with the remainder of the steps in this section, using the partsDomain to
copy resources into the existing domain, as directed within the procedure.

Use or Replace Existing Database

Another decision, illustrated in Figure 3-2, concerns what database to use.

m [fyou don’t need to keep the existing database, follow “Procedure C” on page
3-4 to move your Web application components into a new portal domain.

m If the existing domain must be preserved, follow “Procedure D on page 3-4 to
install portal functionality within your existing domain.

WebLogic Portal Development Guide 3-3

3 Adding Portal to an Existing Domain

Procedure C

Procedure D

JDBC Entries

Figure 3-2 Decision 2

GOAL: Determine datasource
configuration

DECISION 2: Keeping
existing database?

NO—» Procedure C

YES
4

Procedure D

If the existing Web application can be supported by a new database, load the database
objects that support the existing Web application inside the database inside the new
domain.

To retain the database associated with the existing Web application, the following
entries must be put in place:

The following JDBC entries must be added to the config.xml file from the existing
domain:

m CommercePool: A portal web application requires two connection pools and two
data sources for each pool, as shown in Listing 3-1.

Listing 3-1 Commerce Pool Datasource entry

<JDBCDataSource
JNDIName="weblogic.jdbc.pool.commercePool"

Name="commercePool"

34 WebLogic Portal Development Guide

Before You Begin

PoolName="commercePool"
Targets="portalServer"

/>

m CommercePool Datasource: Commerce functionality requires CommercePool
datasource entries like those shown in Listing 3-2.

Listing 3-2 CommercePool DataSource entries

<JDBCTxDataSource
EnableTwoPhaseCommit="false"
JNDIName="weblogic.jdbc.jts.commercePool"
Name="commercePool"
PoolName="commercePool"
Targets="portalServer"

/>

<JDBCDataSource
JNDIName="weblogic.jdbc.pool.commercePool"
Name="commercePool"
PoolName="commercePool"
Targets="portalServer"

/>

m DataSync Pool: add a DataSync Pool entry, such as the one shown in
Listing 3-3.

WebLogic Portal Development Guide 3-5

3 Adding Portal to an Existing Domain

Listing 3-3 DataSync Pool entry

<JDBCTxDataSource
EnableTwoPhaseCommit="false"
JNDIName="weblogic.jdbc.jts.dataSyncPool™
Name="dataSyncPool"
PoolName="dataSyncPool"

Targets="portalServer"

/>

m DataSync Data: add a DataSync Data entry, such as the one shown in
Listing 3-4.

Listing 3-4 DataSync DataSource entry

<JDBCTxDataSource
EnableTwoPhaseCommit="false"
JNDIName="weblogic.jdbc.jts.dataSyncPool™"
Name="dataSyncPool"
PoolName="dataSyncPool"
Targets="portalServer"

/>

<WebAppComponent
Name="datasync"
ServletReloadCheckSecs="300"
Targets="portalServer"
URI="datasync"

/>

3-6 WebLogic Portal Development Guide

Before You Begin

Select a Realm (Optional)

m To use the existing database realm, no special configuration is required.

m To use a new RDBMS realm, one must be configured, and then referenced in
config.xml.

Key Bootstrap (if using commerce):

P13N Console

Using commerce credit card functionality with the portal application requires a
reference to the KeyBootstrap class, as shown in (shown in Listing 3-5):

Listing 3-5 Reference to the KeyBootstrap class

<StartupClass
ClassName="com.beasys.commerce.ebusiness.security.KeyBootstrap"
FailureIsFatal="false"
Name="KeyBootstrap"
Targets="portalServer"

/>

3. Deploy the Personalization Console by adding an entry to the Config.xml file, as
shown in Listing 3-6:

Listing 3-6 Personalization Console Deployment Entry

<Application
Deployed="true"

TwoPhase="true"

WebLogic Portal Development Guide 3-7

3 Adding Portal to an Existing Domain

StagedTargets="portalServer"
Name="pl3nConsoleApp"
Path="<BEA HOME>/weblogic700/portal/lib"
>
<WebAppComponent
Name="pl3nConsole"
ServletReloadCheckSecs="300"
Targets="portalServer"
URI="pl3nConsole.war"
/>

</Application>

WLPDocs Services

m WLPSDocs services are required to link WebLogic Portal Administration Tools
to the online help.

Listing 3-7 WLPSDocs Services entries

<Application
TwoPhase="true"
StagedTargets="portalServer"
Deployed="true"
Name="wlpDocsApp"
Notes=""

Path="<BEA HOME>/weblogic700/portal/lib"

<WebAppComponent

IndexDirectoryEnabled="false"

3-8 WebLogic Portal Development Guide

Before You Begin

Name="wlpDocs"

Targets="portalServer"

URI="wlpDocs.war"

ServletReloadCheckSecs="300"
/>

</Applications>

Tax and Payment Services (optional)

To add sample payment and tax services to the existing domain requires the entries
shown in Listing 3-8. For information on adding these services to your portal
application, consult “Setting Up Commerce Services” in the Administration Guide at
http://edocs.bea.com/wlp/docs70/admin/commerce.htm.

Listing 3-8 Tax and Payment Services entry

<Application
Deployed="true"
TwoPhase="true"
StagedTargets="portalServer"
Name="paymentWSApp"

Path="<BEA HOME>/user_ projects
/myPARTSdomain/bealApps/paymentWSApp"

>
<EJBComponent
Name="payment"
URI="payment.jar"
Targets="portalServer"
/>

<WebAppComponent

WebLogic Portal Development Guide 39

3 Adding Portal to an Existing Domain

Name="payment -webservice"
URI="pay-ws"
Targets="portalServer"

/>

</Application>

<Application
TwoPhase="true"
StagedTargets="portalServer"
Deployed="true"
Name="taxWSApp"

Path="<BEA HOME>/user projects/myPARTSdomain/bealApps/taxWSApp"

<EJBComponent
Name="tax"
URI="tax.jar"
Targets="portalServer"

/>

<WebAppComponent
Name="tax-webservice"
URI="tax-ws"
Targets="portalServer"

/>

</Application>

Verify Server References

Examine the config.xml file after these edits. Search and replace any reference to
portalServer with the name of the server targeted by the existing domain.

3-10 WebLogic Portal Development Guide

Before You Begin

The config.xml file in your existing domain now has the entries required so that the
WebLogic Portal server can connect to all the components that make up your J2EE
enterprise Portal application. The next step is to identify the enterprise application in
which these components can run on the server.

Locate or Install Enterprise Application

Procedure E

Within a BEA WebLogic Platform 7.0 domain, portal requires a complete J2EE
application. At Decision 3, illustrated in Figure 3-3, an enterprise application is
designated: Either it is added to the existing domain by following “Procedure E” on
page 3-11, or portal functionality is merged with an enterprise application already
present in the existing domain, “Procedure F” on page 3-12.

Figure 3-3 Decision 3

GOAL.: Portal Functionality
requires Enterprise Application

DECISION 3: Does your domain
include a J2EE application?

NO— Procedure E

YES
'

Procedure F

1. Copy the entire contents of the
<BEA HOME>\user_projects\portalDomain\beaApps\portal App directory into
the existing domain.

2. Move in the objects that make up the existing Web application into this enterprise
application.

WebLogic Portal Development Guide 3-11

3 Adding Portal to an Existing Domain

Procedure F

1. Begin with the complete enterprise application from the existing domain.

2. Copy the following directories, including all contents and subfolders, into this
application directory structure:
tools/
DataSync/
toolSupport/

3. Copy the portalApp-project.eaprj file from within the following directory:
bea\user projects\portalDomain\beaApps\portalApp-project

4. Using the BEA XML Editor, merge the
META-INF/weblogic-application.xml files from the existing domain and the
partsDomain. Merge these files by copying the entries in Listing 3-9 with the
following changes: replace the <portal App> string with the name of the J2EE
application in the existing domain. For example, if your existing enterprise
application were named existingApp, the entries would read existingAppTools,
existingAppDataSync and existingAppTool.

Listing 3-9 Listings for weblogic-application.xml

<module>
<web>
<web-uristools</web-uris>
<context-root>portalAppTools</context-roots>
</web>
</module>
<module>
<web>
<web-uris>datasync</web-uris>
<context-root>portalAppDataSync</context-roots>
</web>

</module>

3-12 WebLogic Portal Development Guide

Before You Begin

<module>
<web>
<web-uri>toolSupport</web-uris>
<context-root>portalAppTool</context-roots>
</web>

</module>

5. Copy application-config.xml into the existing enterprise application.

6. Insert references to the portal enterprise application into config.xml, or deploy
these modules using the WebLogic Server console.

7. Use the Portal Wizard to create a new portal and portal Web application, as
described in “Step 2: Create the New Portal” on page 2-11.

After following these procedures, you should have a single domain capable of
running both your existing Web application and a complete instance of
WebLogic Portal.

WebLogic Portal Development Guide — 3-13

3 Adding Portal to an Existing Domain

3-14 WebLogic Portal Development Guide

CHAPTER

4 Deploying Portals

This section outlines the steps required to deploy portal applications in the
development environment.

This chapter includes information on the following topics:
m Hot Deploying With the Portal Wizard

m Deploying Without the Portal Wizard

m Deploying a Portal without Hot Deploy

m Best Practice Guidelines for Deploying Your Portal

For more information, see the deployment guides at
http://e-docs.bea.com//wls/docs70/deployment.html. For instructions on deploying to
production environments, including clusters and managed servers, consult Using the
Domain Configuration Wizard.at
http://edocs.bea.com/platform/docs70/confgwiz/index.html.

Hot Deploying With the Portal Wizard

When you use the Portal Wizard to create a portal, you have an opportunity at the end
of the wizard to hot deploy the portal Web application immediately. This is the
simplest way to deploy.

Once you have deployed the portal, you can create additional portlets for it without
deploying again. You only need to synchronize the E-Business Control Center to add
the new portlets to the deployed portal.

WebLogic Portal Development Guide 4-1

4 Deploying Portals

Figure 4-1 Hot Deploy Option in the Next Steps Window of the Portal Wizard

ﬁh"l Portal Wizard[ThisNewPortal] B3 I
1. Portal Mame

2. Portal Templates

3. Resource Files Location
4. SBummary

5. Next Steps Next Steps

Hot Deploy this portal weh application now?
(ol

Mo, manual deploy.

Fead about manual portal deployment. .

Additional infarmation provided by this termplate:
After your new portal is deployed, follow these instructions. ..

[Open the portal definition after pressing "Finish®

= Back | Deplay

Deploying Without the Portal Wizard

4-2

Deploying without the Portal Wizard requires some manual steps.

Note: It can be very helpful to create a dummy portal and hot deploy it, as a model
of what you need to do when you deploy manually. To create and deploy a
dummy domain, portal, portal Web application, and associated J2EE
resources, see Chapter 2, “Creating a New Portal in a New Domain.”

To deploy manually, use the WebLogic Server deployment guides at
http://e-docs.bea.com/wls/docs70/deployment.html, in particular “WebLogic Server
Deployment” at http://e-docs.bea.com/wls/docs70/programming/deploying.html.

As you follow those deployment instructions and use the dummy portal as a reference,
ensure that you accomplish the following:

m Place the J2EE resources for the portal on the server

WebLogic Portal Development Guide

Deploying a Portal without Hot Deploy

m Use the E-Business Control Center to edit metadata (so the server knows where
to look for your J2EE resources)

m Add the portal Web application to the WebLogic server using the console
m Start the WebLogic Portal server from your user domain

m Use the E-Business Control Center to synchronize the metadata to the WebLogic
Server

Deploying a Portal without Hot Deploy

If you create a new portal and a new portal Web application using the E-Business
Control Center, but for some reason choose not to hot deploy it to the server, the J2EE
resources for that application will not be automatically deployed. This presents two
scenarios for deploying the new portal Web application:

m [fthe E-Business Control Center project file is on a machine separate from the
target server, the J2EE resources will have to be moved to the server before they
can be deployed using the WebLogic console. If this is the case, perform steps 1
- 3 in this section.

m If you are running the E-Business Control Center on the target server, the J2EE
files will already be in place, so the only thing you need to do is deploy the
application components in the WebLogic console. If this is the case, skip the first
step in this section.

Manually Deploying a Portal Web Application

Deploying a portal that was not deployed using the hot sync function of the Portal
Wizard requires the following steps:

WebLogic Portal Development Guide 4-3

4 Deploying Portals

Step 1: Move J2EE Resources

If the E-Business Control Center is running on a server remote from the target server,
J2EE resources need to be moved. A remote server must have a complete enterprise
portal application, as shown in Figure 4-2.

Figure 4-2 An Enterprise Portal domain without a Portal

|J Address I[:I Ziispl_beaiuser_projectsimyNewDomainibeasppsiportalapp j @Go |
Mame # | Size | Tvpe | Modified -
File Folder 8/29(2002 9:42 AM
CIMETA-INF File Folder /29/2002 10:43 &Y
[File Folder 8/29/2002 9:42 AM
[toolSupport File Folder 8/29/2002 9:42 AM
campaign. jar 164 KB Executabl... 8/29/2002 9:41 AM
catalogws. jar 21 KB Executabl... 8/29/2002 9:41 AWM
. | i
|25 abject(s) 3.64 mE (2 Local intranet V.

To move J2EE resource from the local server to the remote server, take the following
steps:

1. Copy the NewPWApp directory from the local server, shown in Figure 4-3, into the
Portal Enterprise application directory shown in Figure 4-2.

Figure 4-3 Copying the Portal Web Application

& C:\spl_bea‘user_projects’myNewDomain'bea i | m] | ﬂ

J File Edit View Favorites Tools Help

J =Back - = - | Qhsearch [Folders £#History ||:|3 0z x @| "
JAddress I[:I Ciispl_bealuser_projectsimyMewDomainibeadppsiportaldpp j @Go

Mame # | Size | Type | Modified =
[} datasync File Folder 8/29/2002 9:08 AM
CIMETA-INF File Falder 8/29/2002 2:23 AW

File Folder /292002 2:44 AM
ZJtaols File Folder 8/29/2002 9:08 AM
[toolSupport File Folder 8/29/2002 9:09 AM
campaign. jar 164 KB Executabl... 8/29/2002 9:08 AM

[E{ IPTS PP T e | Sdanianng fLne A
ki | i

|1 ohject(s) selected | |@. My Computer 4

2. Copy the NewPWapp directory from the application-sync directory on the
local server, shown in Figure 4-4, into the application-sync\webapps
directory on the remote server, shown in Figure 4-5.

4-4 WebLogic Portal Development Guide

Deploying a Portal without Hot Deploy

Figure 4-4 Local Metadata directory

& C:\spl_bea‘user_projects\myNewDomain'beaApps',portalApp-project’ applical i | [m] | ﬂ

J File Edit View Favorites Tools Help ﬁ

J mBack v = - | @Search [Folders @History ||:|3 e x @& | E-
I

Address I[:I Ciispl_bealuser_projectsimyMewDomainbeadppsiportaldpp-projectiapplication-synciwebapps j @GD
Mame # | Size | Tvpe | Modified | Attributes |
File Folder /292002 2:44 AM
ZJtaols File Folder 8/29/2002 9:08 AM
|1 ohject(s) selected |@‘ My Computer 4

Figure 4-5 Remote Metadata destination

& 2:\spl1_bea‘user_projects\myNewDomain',beaApps' portalApp-projec E | [m] | ﬂ

J File Edit View Favorites Tools Help |
J =Back - = - | Qhsearch [Folders £#History ||¥ 0 x @ | E-

Address I[:I Ziispl_beaiuser_projectsimyNewDomainibeasppsiportalapp-projectiapplication-synciwebapps j @GD

| size | Tvpe | Madified | attributes |
File Folder §(29/2002 9:41 &M

|1 ohject{s) |D bytes (5E Local intranet 4

3. Proceed with the rest of the steps in this procedure.

Note: Inorder for a Portal Web application to include all the services available to the
WebLogic platform, the following elements must be in place:

e The taglib JARs, shown in Listing 4-1 and Listing 4-2, must appear in the
following directory:
beaApps\portalApp\<yourPortalWebApp>\WEB-INF\1lib

e The enterprise application JARs, shown in Listing 4-3, must appear in the
following directory:

beaApps\portalApp\<yourPortalWebApp>\

WebLogic Portal Development Guide 4-5

4 Deploying Portals

Listing 4-1 Taglib JARs Required to Support baseportal instance

weblogic700\common\templates\webapps\portal\baseportal\j2ee\WEB-INF\1lib:
util taglib.jar
webflow servlet.jar
ent taglib.jar
il8n taglib.jar
webflow taglib.jar
um_taglib.jar
lic_taglib.jar
es _taglib.jar
ren taglib.jar
portlet taglib.jar
res_ taglib.jar
pl3n_servlet.jar
weblogic-tags.jar
portal taglib.jar
portal servlet.jar
visitor taglib.jar
pz_taglib.jar
ph taglib.jar
ps_taglib.jar

cm_taglib.jar

Listing 4-2 Taglib JARs Required to Support All Portal Services

/weblogic700/portal/lib/commerce/web/cat_taglib.jar

/weblogic700/portal/lib/commerce/web/eb taglib.jar

4-6 WebLogic Portal Development Guide

Deploying a Portal without Hot Deploy

/weblogic700/portal/lib/commerce/web/productTracking taglib.jar
/weblogic700/portal/lib/pl3n/web/ad taglib.jar
/weblogic700/portal/lib/pl3n/web/cm taglib.jar
/weblogic700/portal/lib/pl3n/web/ph taglib.jar
/weblogic700/portal/lib/pl3n/web/ps_taglib.jar
/weblogic700/portal/lib/pl3n/web/pz_taglib.jar

/weblogic700/portal/lib/pl3n/web/tracking taglib.jar

Listing 4-3 Enterprise JARs Required by Portal

campaign.jar
catalogws.jar
commerce campaign bridge util.jar
commerce_util.jar
customer.jar
document.jar
ebusiness.jar
ejbadvisor.jar
events.jar
ldapprofile.jar
mail.jar
pl3n_util.jar
payment.jar
pipeline.jar
placeholder.jar
portal.jar

portal util.jar

WebLogic Portal Development Guide 4-7

4 Deploying Portals

property.jar
rules.jar
tax.jar

usermgmt.jar

Step 2: Synchronize Metadata

Open the project for your application in the E-Business Control Center and perform
the synchronization step. For detailed instructions on this step, consult the chapter
called “Synchronizing the New Portal Data to your Application.

Note: If you are deploying the new portal Web application to a remove server,
remember to set up a new session in the E-Business Control Center, and
designate the application name as portalApp, the enterprise application,
instead of NewPWapp, the Web application name.

Step 3: Deploy in the WebLogic Server Console

The process of deploying a new Portal Web application consist of three steps:
m Create a new Web Module
m Configure the Web New Application

m Verify Deployment

Create a new Web Module

1. Navigate to the WebLogic Server Console:

http://<yourservers:<port>/console/

2. In the left pane, click on myNewDomain > Deployments > Applications >
portalApp

3. Inthe right pane, click on Edit Application Descriptor, as shown in Figure 4-6

4-8 WebLogic Portal Development Guide

Deploying a Portal without Hot Deploy

Figure 4-6 Edit Application Descriptor

@ console
= myMewDomain
& seners
Clusters
ﬁjr\dachines
Elnetwork Channels Edit Application Descriptar,.
=] r—r‘Deponments W
= QApplications
BB paymentSADp
B partalapp
BB campaign Deployment Status by Target:

myNewDomain> Applications> p:

Configuration | BECTBE MNotes

4. When the new browser window appears, right-click on Web Modules in the left
pane, as shown in Figure 4-7.

Figure 4-7 Right-click on Web Modules

B @ BEA Portal Application
DWEL" Moadilan
Elgjg Spen
Clagy: Openin Mew Window
g Can Configure a new WebModule. ..

r—r‘Secu...y. T |

5. When the Create a New Web Module screen appears, enter the URI (the native
file system path is relative to the Enterprise directory, such as
beaApps\portalApp), and the Context Root (the URL for the new portal Web
application).

6. Click Create, then Apply, at the right corner of this screen, as shown in
Figure 4-8.

WebLogic Portal Development Guide 4-9

4 Deploying Portals

Figure 4-8 Enter Module URI and Context Root

BEA Portal Appli...> Web Modules:> Create a new

Diomain

Configuration

&7 Module URL [NewPwapp

&7 ContextRoot [MewPwapp

A7 ARDDURL |

7. At the top of the left pane, click on BEA Portal Application, as shown in
Figure 4-9.

Figure 4-9 Select the BEA Portal Application

E @ pEA Fortal Applicatiorg-y
2 Elyyeh Modules
@ datazync
@ ewPwapp
@ tools
@ toolSupport

8. Click Persist in the right pane of the same window, as shown in Figure 4-10.

Figure 4-10 Click Persist

Persist changes made -
to the Descriptor(s) Persist |
Validate changes

made to the Descriptor ~ Validate |

{s)

9. The message “Persistence was successful!” should appear in the right pane. Close
the browser window.

4-10 WebLogic Portal Development Guide

Deploying a Portal without Hot Deploy

Configure the Web New Application

1. Refresh the main console window, then navigate to yourdomain > Deployments
> Web Applications and click on Configure a new Web Application in the
right panel.

2. When the first Locate Application or Component to configure page appears,
click on SELECT to the left of the beaApps application.

3. When the Configure Application or Component page appears, select the server
from the list on the right, as shown in Figure 4-11.

Note: Even if you are configuring an application on a remote server, Step 3 in
Figure 4-11 will list the server using a drive letter local to the server itself, and
not to the machine your web browser is running on. If this example showed a
browser connected to a remote host, the fully resolved URL of that host,
(instead of localhost:7501,) as shown in Figure 4-11, would appear in the
black border next to the words “Connected to”.

Figure 4-11 Select Server

Configure Application or Component

Step 3.¥ou have chosen to configure
C:=pl_bea*user projects ayNewDomain“beaipps
Select the Servers andfor Clusters on which you would like to

deploy this application initially. {You can reconfigure deployment
targets later if you wish).

Available Servers Target Servers

Jals) 1 |'_E

4. Move your server to the list of Target Servers on the right by clicking the top
arrow between the lists, as shown in Step 3 of Figure 4-12.

WebLogic Portal Development Guide — 4-11

4 Deploying Portals

Figure 4-12 Moving Server to Target Servers List

Available Servers Target Servers

ki

4

Step 4. Enter a name for this application.

|beaApps
5. Confirm or edit the application name, shown in Step 4 of Figure 4-12.
6. Click on Configure and Deploy, as shown in Step 5 of Figure 4-13.

Figure 4-13 Configure and Deploy Application

|beaApps

Step 5. Press 'Configure and Deploy' to configure and deploy
the application, or 'Cancel' to leave the Domain unchanged.

| Configure and Deploy \\I Cancel |

7. When the myNewDomain> Applications> portalApp page appears.

8. After the deployment process runs, a status message appears at the bottom of the
window, indicating the deployment was successful, as shown in Figure 4-14.

Figure 4-14 Successful Deployment Message

Deployment Activity:

Description Status BeginTime End Time
Activate application portalApp Completed Wed Sep 11 13:05:31 | Wed Sep 11 13:07:.07
on portalServer P WMDT 2002 WMDT 2002

9. When the Deployment Status by Target page appears, verify that the status of
True appears in the Deployed column for the new application. If it is False, click
on Deploy and wait for the process to complete successfully.

4-12 WebLogic Portal Development Guide

Best Practice Guidelines for Deploying Your Portal

Verify Deployment

Finally, verify the portal has been successfully deployed by navigating to
http:\\<hostname>: <port>\NewPWApp, as shown in Figure 4-15.

Note: Inthis example, no portlets have been made visible using the WebLogic Portal
Administration Tools, therefore the portal displays none in Figure 4-15.

Figure 4-15 Viewing the Deployed Portal Web Application

|J Address I@ http:fflocalhast: 7501 fNewPWappfindesx. jsp j G |

- .
.)
Built On

Best Practice Guidelines for Deploying Your
Portal

We recommend that you use a multiple environment model for developing, testing,
and publishing your portal application. BEA Weblogic Platform provides a number of
tools and scripts for simple deployment. These tools and best practices are discussed
in detail in “WebLogic Server Deployment” at
http://edocs.bea.com/wls/docs70/programming/deploying.html.

We recommend deploying your portal in the following three-stage model:

WebLogic Portal Development Guide — 4-13

4 Deploying Portals

Stage 1: Deploy to a Server on Your Own Machine

Use this deployment stage for development and unit testing. We strongly
recommended that you keep all development limited to this stage and only deploy to
the next stage when you are finished unit testing.

Note: If you do decide to do development and unit testing in a shared environment,
each developer should work within their domain to avoid overwriting database
information for other developers.

Stage 2: Deploy From a Local Computer to a Staging Server

Once development and unit testing is completed, deploy to a staging server for
exception testing. Any faulty code found should be resolved on a local machine and
then redeployed back to a staging server.

Cluster testing, if applicable, should be performed on a staging server.

Stage 3: Deploy From the Testing Environment to a Live Production Server

4-14

Once all development and exception testing is completed, you may deploy the
application to a live production server. You may also want to retest your cluster
deployment at this point.

Any additional development for the application should be developed and unit tested as
described in Stage 1, tested as described in Stage 2, then redeployed to the production
server.

WebLogic Portal Development Guide

Part Il Extending
Portals

Once you have a functioning portal, you can increase its value by adding features
and functionality. The information in this section shows you how to extend portals,
turning them into interactive, content-rich, personalizable single points of access to
enterprise data and applications.

This section includes information on the following subjects:
m Building Custom Templates

m Implementing User Profiles

m Adding Security to a Portal

m Portal Content Management

m Setting Up Portal Navigation

m Creating a Look-and-Feel

m Extending Portlets

m Setting Up Personalization and Interaction Management
m Setting Up Campaign Services

m Setting Up Commerce Services

m Event and Behavior Tracking

m Using the Expression Package

m Event Descriptions

CHAPTER

S Building Custom
Templates

WebLogic Portal includes a number of wizards and templates to assist in creating
domains, applications, portals and portlets quickly and efficiently. This section
outlines instructions for creating your own custom templates. Domain and portal
templates are consumed by the domain wizard or the portal wizard, and group portal
templates are invoked using the WebLogic Portal Administration Tools.

This section includes information on the following subjects:
m Introducing Templates
m Creating a Domain Template

m Creating a Portal Template

Introducing Templates

Three templates are built into the BEA WebLogic Platform: Domain templates, portal
templates and group portal templates. Domain and portal templates are built as wizard
components, whereas group portals are used by the WebLogic Portal Administration
Tools.

WebLogic Portal Development Guide 5-1

S Building Custom Templates

Three Types of Templates

Before learning how to develop templates for WebLogic Platform, consider the role
each template type plays in creating a portal:

The Domain Wizard Template

Out-of-the-box domain templates are stored in the form of JAR files in following
directory:

<BEA HOME>weblogic700\common\templates\domains

The Domain Configuration Wizard is launched from the Start -> Programs ->
WebLogic700 menu, and does not require a server to be running. Gathering user input
from a series of screens, the Wizard performs some directory and file copying, and
then some string substitutions within the configuration files and startup scripts within
the domain being created. Thus the user’s choices are applied to the template and
instantiated in the new domain directory.

Figure 5-1 shows the Domain Configuration Wizard explosing several domain
templates.

5-2 WebLogic Portal Development Guide

Introducing Templates

Figure 5-1 Selecting a Custom Domain

®ABEA Configuration Wizard - WebLogic Platform 7.0.1.0

Choose Domain Type and Name

Select 2 domain bype from the available ternplates
and enter the domain name.

Select a ternplate: i Drescription:

‘I Pre-loaded damain with a few custom portals

@ @

WLF Diomain ~ Platfoma
Diomain

Author:
= ’7 BEA Systemns, Inc.

[Mame:

l:vortaIDomain

Exit | Ereyious | Mext I

The Domain Configuration Wizard recognizes templates based on the contents of the
template.xml file. Information on editing that file appears later in this procedure.

Figure 5-2 shows some of the contents of the stock WebLogic Portal domain JAR
exploded to show the files within.

WebLogic Portal Development Guide 5-3

S Building Custom Templates

Figure 5-2 WebLogic Portal Domain Template Files

| Type || Path B =
¥MLDoc... meta-infy
IMF File meta-infy,
DEM File domainipointbase),
wiportal$l wal Wal File domainipointbase),
pointbase.ini Configur,.. domainipointbase),
placeholder, bxt Text Do... domainidmsBaseldoc-schemas),
placeholder, bxt Text Do... domainidmsBase)ads)
.placeholder txt Text Do... domainidmsBase),
weblogic-application, xml ¥MLDoc... domaintbeasppsiportalApp\META-INFY
application-config.xml ¥MLDoc... domaintbeasppsiportalApp\META-INFY b
E application. xml ¥MLDoc... domaintbeasppsiportalApp\META-INFY
stopPortal.sh SH File: domain’,
EstopPortal.bat M5-DOS ... domaint,
startPortal.sh SH File daormaint,
EstartPortal.bat M5-DOS ... domaint,
startManagedPortal sh SH File: domain’,
EstartManagedPortal.bat M5-DOS ... domaint,
README. bxt Readme ... domain _|LI
. | »

The Domain Configuration Wizard uses the template.xml, config.xml and
application.xml files to copy resources, perform string substitutions for
configuration files and scripts within the new domain.

The Portal Wizard Template

5-4

One out-of-the-box portal template is included with the installation of WebLogic
Portal: Figure 5-3 shows the contents of a custom Portal Template, which would be
stored in the following directory:

<BEA_HOME>\weblogic700\common\templates\webapps\portal

WebLogic Portal Development Guide

Introducing Templates

Figure 5-3 Avitek Portal Template file structure

[N C:' Documents and Settings'matthe i |EI|1|

J File Edit View Favorites Tools Help |ﬁ

J e Back v = - | i search |%FOIders £ History | 2
JAddress I[:I Ci\Documents and Settings'l,matthew.ECA-BCj @Go

Mame
Cdebee

[jZee
template. xml

E’template-icon.gif

Folders

B Framework
{:I portlets
2 il

-] WEE-INF |l |

|4 ohject(s) (Disk free spac |?. 16 KB |@‘ My Computer

sl

Like the Domain Configuration Wizard, the Portal Wizard consumes a file called
template.xml, as well as a template-icon.gif. The template.xml file includes
directives and variables for applying user input from the Portal Wizard to the J2EE and

metadata resources contained in this folder.

Through the lens of the Portal Wizard, portal templates appear by name and icon, as
shown in Figure 5-4.

WebLogic Portal Development Guide 5-5

Building Custom Templates

Figure 5-4 Selecting Portal Templates

ﬁh"l Portal Wizard[NewPortal] . ll

Portal Templates

Steps :

1. Portal Mame
2. Portal Templates
3. Resource Files Location
4. Burnmary Choose a template to base your portal on.
A, Mext Steps
_PortaITempIates:

=]
hasepartal newpartal

Template Description:
Description: Avitek Partal Template

= Back | Mext = I Cancel |

After the Portal Template is used to instantiate a portal, the WebLogic Portal
Administration Tools are used to set attributes on pages, portlets, and other aspects of
the portal.

The Group Portal Template

5-6

Unlike the Domain and Portal templates, the Group Portal template does not exist as a
packaged entity. Rather, the WebLogic Portal Administration Tools provide a
mechanism whereby every group portal is created using a template. Out-of-the-box,
the only choice is the default group portal, to which no customization has been applied.
Figure 5-5 shows the Create Group Portal link from the Portal Management Home

page.

Note: Because Group Portal Templates are essentially reused Group Portals, this
document does not address their creation. For detailed instructions on creating
Group Portals, consult the tutorial called Creating a Group Portal.

WebLogic Portal Development Guide

Introducing Templates

Figure 5-5 Create Group Portal

Portal Management Home

To edit an existing group portal, click its name in the list below.
To create a new group portal, click the "Create group portal” link for a portal application.
To delete a group portal, click the trash can icon (@) next to its name.

|"NewPWApp B4 Edlit portal adrministrators i Create group QOQ@I\'

Default group portal:
default (everyone)

After the new group portal has been named and associated with a user group, a group
portal template must be selected, as shown in Figure 5-6.

Figure 5-6 Select Group Portal Template

Browse Templates
The selected group portal will be used as a template for the new group paortal
associated with NewPWapp.

|" Default Group Portal For NewPWApp

default

|" Other Group Portals For NewPWAppP

—

Displaying: 1 of 1 Group portals displayed per page: |1D 'l
Group 1 (MyGroup 1

This way, any group portal can serve as a template for new group portals. Importantly,
entitlements and delegated administration can be copied from the group portal
template, as shown in Figure 5-7.

Figure 5-7 Copying Entitlements and Delegated Administration from Group
Portal Template

¥ Copy Entitlements from EDITEDGroup1

¥ Copy Group Administrators from EDITEDGroup1

WebLogic Portal Development Guide 5-7

S Building Custom Templates

Using Templates

Roughly three varieties of customization can be introduced into the Portal life cycle:
look and feel customization can be imposed by creating stock layouts and skins,
functionality can be customized by adding application elements, and subsets of these
custom objects can be preserved and propagated using the group portal template.

Each type of template confers a specific advantage:

m Create a custom domain template to provide a common starting point for all the
developers in an organization: this can include enterprise components such as
EJBs, corporate identity components such as skins and logos, or even corporate
portlets to be used across an enterprise.

m Create a custom portal template when you need to clone an existing set of portal
pages, group portals, entitlements, portlets, skins and layouts.

m Create a group portal template to preserve administrative associations between
user groups and portal resources such as pages, portlets, entitlements, and
layouts.

Creating a Domain Template

5-8

The best way to create a custom portal domain template is to begin with a WebLogic
Portal domain created using the template. Perform whatever customization is needed,
everything from adding application functionality to setting entitlements on a portlet,
and use the domain template as a mechanism for transmitting customization down the
line to subsequent developers in your organization.

This section covers the basic steps in creating a template for the Domain Configuration
Wizard:

m Step 1: Instantiate a Portal Domain
m Step 2: Customize the Portal Domain
m Step 3: Apply General Configuration

m Step 4: Package the New Domain as a Template

WebLogic Portal Development Guide

Creating a Domain Template

Step 1: Instantiate a Portal Domain

Begin by using the Domain Configuration Wizard to instantiate a WebLogic Portal
domain. For detailed instructions on this step, consult the tutorial “Creating a New
Portal in a New Domain.

Step 2: Customize the Portal Domain

Customize the domain using the Portal Wizard, Portlet Wizard, and by adding
application functionality, look and feel components, EJBs, or other J2EE components.
This section provides some detailed instructions on adding functionality to a
WebLogic Portal domain. This section contains the following instruction sets, each of
which can be applied separately:

m Supporting Two-Phase Deployment

m Adding All Portal Services to Your Domain

m Adding an EJB to your WebLogic Portal Domain
m Adding a Custom Layout to a Domain Template

m Adding a Custom Skin to a Domain Template

Supporting Two-Phase Deployment

If you choose to create your own portal Web application without using the template,
make sure the weblogic-application.xml file shown in Listing 5-1 is saved in the
following directory:

domain\bealApps\portalApp\META-INF\

This file is required in order for two-phase application deployment to function
properly. It is included automatically when you create an application using the
WebLogic Portal template. If you are creating an application without using the wizard,
then you must manually create this file and add this entry.

WebLogic Portal Development Guide 5-9

S Building Custom Templates

Listing 5-1 weblogic-application.xml

<!DOCTYPE weblogic-application PUBLIC "-//BEA Systems, Inc.//DTD WebLogic
Application 7.0.0//EN"
"http://www.bea.com/servers/wls700/dtd/weblogic-application 1 _0.dtd">

<weblogic-applications
<application-params>
<description>Required for deployment of portal
applications</descriptions>
<param-name>weblogic.internal.listeners</param-name>

<param-value>com.bea.pl3n.management.internal.lifecycle.J2EELifecyclelListener</
param-value>

</application-param>

</weblogic-applications

Adding All Portal Services to Your Domain

The template that ships with WebLogic Portal includes a subset of all the application
functionality available to the portal framework, excluding content management,
personalization, placeholder and ad services.

To add all this functionality to your domain, take the following steps:

1. Use the Portal Wizard to create a new portal and portal Web application in your
new domain.

2. Copy the files in Listing 5-2 to the <webapp>\WEB-INF\lib directory of your
new domain.

3. Insert the entry in Listing 5-3 to the web.xm1 file at <webapp>/WEB- INF.
4. Add the entry in Listing 5-4 to the <webapp>/WEB-INF/weblogic.xml file.

The portal Web application in this domain will now support all services included in the
WebLogic Platform. To use this domain as a template for the Domain Configuration
Wizard, follow the remaining steps in this procedure, starting with Step 3: Apply
General Configuration.

5-10 WebLogic Portal Development Guide

Creating a Domain Template

Listing 5-2 JARs to add all Portal Services

BEA HOME/weblogic700/portal/lib/commerce/web/cat taglib.jar

BEA HOME/weblogic700/portal/lib/commerce/web/eb taglib.jar

BEA HOME/weblogic700/portal/lib/commerce/web/productTracking taglib.jar
BEA HOME/weblogic700/portal/lib/pl3n/web/ad_taglib.jar

BEA HOME/weblogic700/portal/lib/pl3n/web/cm_taglib.jar

BEA HOME/weblogic700/portal/lib/pl3n/web/ph taglib.jar

BEA HOME/weblogic700/portal/lib/pl3n/web/ps_taglib.jar

BEA HOME/weblogic700/portal/lib/pl3n/web/pz_taglib.jar

BEA HOME/weblogic700/portal/lib/pl3n/web/tracking taglib.jar

Listing 5-3 Entries to web.xml to add all Portal Services

<!-- Add this just before the </web-app> entry at the tail end of the file. -->
<!-- Filter to fire click through events -->
<filters>

<filter-name>ClickThroughEventFilter</filter-name>

<filter-class>com.bea.pl3n.tracking.clickthrough.ClickThroughEventFilter</filte
r-class>

</filters>

<filter-mapping>
<filter-name>ClickThroughEventFilter</filter-name>
<url-patterns>/application/*</url-patterns>

</filter-mapping>

<!-- The ShowDoc Servlet -->

<servlets>

WebLogic Portal Development Guide 5-11

S Building Custom Templates

<servlet-name>ShowDocServlet</servlet-names>
<servlet-class>com.bea.pl3n.content.servlets.ShowDocServlet</servlet-class>
<!-- Make showdoc always use the local ejb-ref DocumentManager -->
<init-param>
<param-name>contentHome</param-name>
<param-value>java:comp/env/ejb/DocumentManager</param-values>
</init-param>
</servlets>
<!-- The AdClickThru Servlet -->
<servlet>
<servlet-name>adClickThru</servlet-names>
<servlet-class>com.bea.pl3n.ad.servlets.AdClickThruServlet</servlet-class>
</servlets>
<!-- The ClickThrough Servlet -->
<servlet>

<servlet-name>clickThroughServlet</servlet-names>

<servlet-class>com.bea.pl3n.tracking.clickthrough.ClickThroughServlet</servlet-
class>

</servlet>

<servlet-mappings>
<servlet-name>ShowDocServlet</servlet-names>
<url-patterns>/ShowDoc/*</url-patterns

</servlet-mapping>

<servlet-mappings>
<servlet-name>adClickThru</servlet-name>
<url-pattern>/adClickThru/*</url-patterns>

</servlet-mapping>

5-12 WebLogic Portal Development Guide

Creating a Domain Template

<servlet-mapping>
<servlet-name>adClickThru</servlet-name>
<url-pattern>/AdClickThru/*</url-pattern>
</servlet-mapping>
<servlet-mappings>
<servlet-names>clickThroughServlet</servlet-name>
<url-patterns>/clickThroughServlet/*</url-patterns>
</servlet-mapping>
<taglib>
<taglib-uriscat.tld</taglib-uris>
<taglib-locations>/WEB-INF/lib/cat_taglib.jar</taglib-locationx>
</taglib>
<taglib>
<taglib-uriseb.tld</taglib-uri>
<taglib-locations>/WEB-INF/lib/eb taglib.jar</taglib-location>
</taglib>
<taglib>

<taglib-urisproductTracking.tld</taglib-uri>

<taglib-locations>/WEB-INF/lib/productTracking taglib.jar</taglib-location>

</taglib>
<taglib>
<taglib-urisad.tld</taglib-uri>
<taglib-locations>/WEB-INF/lib/ad taglib.jar</taglib-location>
</taglib>
<taglib>
<taglib-uriscm.tld</taglib-uri>

<taglib-locations>/WEB-INF/lib/cm taglib.jar</taglib-location>

WebLogic Portal Development Guide

5-13

S Building Custom Templates

</taglib>
<taglib>
<taglib-urisph.tld</taglib-uris>
<taglib-location>/WEB-INF/lib/ph taglib.jar</taglib-location>
</taglib>
<taglib>
<taglib-urisps.tld</taglib-uris>
<taglib-location>/WEB-INF/lib/ps_taglib.jar</taglib-location>
</taglib>
<taglib>
<taglib-urispz.tld</taglib-uris
<taglib-location>/WEB-INF/lib/pz taglib.jar</taglib-location>
</taglib>
<taglib>
<taglib-uristracking.tld</taglib-uris>
<taglib-location>/WEB-INF/lib/tracking taglib.jar</taglib-location>
</taglib>
<!-- This is used by the various <cm:> tags -->
<ejb-ref>
<descriptions>
The ContentManager EJB for this webapp
</descriptions>
<ejb-ref-name>ejb/ContentManager</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.bea.pl3n.content.document .DocumentManagerHome</home>
<remote>com.bea.pl3n.content .document .DocumentManager</remote>

</ejb-ref>

5-14 WebLogic Portal Development Guide

Creating a Domain Template

<!-- This is used by the ShowDocServlet -->

<ejb-ref>
<descriptions>

The DocumentManager for this webapp
</description>
<ejb-ref-names>ejb/DocumentManager</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.bea.pl3n.content.document . DocumentManagerHome</home>
<remote>com.bea.pl3n.content.document .DocumentManager</remote>

</ejb-ref>

<!-- This is used by the Placeholder tag -->

<ejb-ref>
<descriptions>

The PlaceholderService Session EJB for the placeholder tag.
</description>
<ejb-ref-names>ejb/PlaceholderService</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.bea.pl3n.placeholder.PlaceholderServiceHome</home>
<remote>com.bea.pl3n.placeholder.PlaceholderService</remote>

</ejb-ref>

<!-- This is used by the AdClickThruServlet and the adTarget tag-->

<ejb-ref>
<descriptions>

The AdService for this webapp
</description>
<ejb-ref-names>ejb/AdService</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

WebLogic Portal Development Guide ~ 5-15

S Building Custom Templates

<home>com.bea.pl3n.ad.AdServiceHome</home>
<remote>com.bea.pl3n.ad.AdService</remote>
</ejb-ref>
<!-- This is used by the AdClickThruServlet -->
<ejb-ref>
<descriptions>
The AdBucketService for this webapp
</descriptions
<ejb-ref-name>ejb/AdBucketService</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.bea.pl3n.ad.AdBucketServiceHome</home>
<remote>com.bea.pl3n.ad.AdBucketService</remotes>
</ejb-ref>
<!-- This is used by the various <pz:> tags -->
<ejb-ref>
<descriptions>
The EjbAdvisor for this webapp
</descriptions>
<ejb-ref-name>ejb/EjbAdvisor</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.bea.pl3n.advisor.EjbAdvisorHome</home>
<remote>com.bea.pl3n.advisor.EjbAdvisor</remotes>

</ejb-ref>

Listing 5-4 Entries to weblogic.xml to add all Portal Services

<-- Add this after the <reference-descriptor> entry near the top of the file. -->

5-16 WebLogic Portal Development Guide

Creating a Domain Template

<ejb-reference-descriptions>
<ejb-ref-name>ejb/ContentManager</ejb-ref-name>
<jndi-name>${APPNAME} .BEA personalization.DocumentManager</jndi-names>
</ejb-reference-descriptions>
<ejb-reference-description>
<ejb-ref-names>ejb/DocumentManager</ejb-ref-name>
<jndi-name>${APPNAME} .BEA personalization.DocumentManager</jndi-names>
</ejb-reference-descriptions>
<ejb-reference-description>
<ejb-ref-names>ejb/PlaceholderService</ejb-ref-name>
<jndi-name>${APPNAME} .BEA personalization.PlaceholderService</jndi-names>
</ejb-reference-descriptions>
<ejb-reference-descriptions>
<ejb-ref-names>ejb/AdService</ejb-ref-name>
<jndi-name>${APPNAME} .BEA personalization.AdService</jndi-names>
</ejb-reference-descriptions>
<ejb-reference-descriptions>
<ejb-ref-names>ejb/AdBucketService</ejb-ref-name>
<jndi-name>${APPNAME} .BEA personalization.AdBucketService</jndi-names>
</ejb-reference-descriptions>
<ejb-reference-descriptions>
<ejb-ref-names>ejb/EjbAdvisor</ejb-ref-name>
<jndi-name>${APPNAME}.BEA personalization.EjbAdvisor</jndi-names>

</ejb-reference-descriptions>

Adding an EJB to your WebLogic Portal Domain

For instance, to add an Enterprise Java Bean to your domain, take the following steps:

WebLogic Portal Development Guide ~ 5-17

S Building Custom Templates

1. Create an EJB. For instructions on creating EJBs for the WebLogic Platform,
consult Programming WebLogic Enterprise JavaBeans.

2. Place the jar file in the application directory:
<BEA_HOME>/yourdomain/BEAapps/portalApp/META-INF

3. Insert the following reference to this jar in the META-INF/application.xml
file:

<module>
<ejb>myEJB.jar</ejb>
</module>

where myEJB is the name of your new EJB.

4. In the application node of the domain/config.xml, add an entry such as this:
<EJBComponent
Name="myEJB"
Targets="@TARGETS"
URI="myEJB.jar"
/>

Your EJB will be deployed with all the other application functionality at startup.

Step 3: Apply General Configuration

5-18

Aside from adding application functionality at the enterprise or Web application level,
you may want to propagate more general customization by inserting portals, pages,
portlets, and even skins and layouts into your customized WebLogic Portal domain
template.

For detailed instructions on creating portals and portlets, consult the WebLogic
Development Guide. For detailed instructions on creating group portals, consult the
section of the WebLogic Portal Administration Guide called Creating a Portal and
Group Portal.

WebLogic Portal Development Guide

Creating a Domain Template

For detailed instructions on creating custom layouts and skins, consult the section of
the WebLogic Portal Development Guide called Creating a Look and Feel. This
section explains how to add look and feel components to a domain such that it can be
packaged within a custom WebLogic Portal domain.

Adding a Custom Layout to a Domain Template

This example shows a custom layout called “stack”, a one-column vertical scheme.
This layout consists of a JSP file, shown in Listing 5-5, and a thumbnail image, shown
in Figure 5-8.

Figure 5-8 thumbnail.gif for stack layout

Listing 5-5 text of stack layout

<%@ taglib uri='ren.tld' prefix='layout' %>

<layout:placePortletsinPlaceholder
placeholders="top,middle,bottom" />

<center>
<table BORDER COLS="1" WIDTH="250" >
<tr>
<td>
<layout:render section='top'/>
</td>

</tr>

<tr>
<td>

<layout:render section='middle'/>

WebLogic Portal Development Guide ~ 5-19

S Building Custom Templates

</td>

</tr>

<tr>
<td>
<layout:render section='bottom'/>
</td>
</tr>
</table>

</center>

Having created a custom layout, make it available to the new domain template using
the following steps:

1. To insert this layout into the domain template, save the JSP as template.jsp and
the image file as <yourlayoutName>.gif in the following directory:

<BEA_HOME>\weblogic700\common\templates\domains\shared\bea)\
portal\projects\portalApp-project\library\portal\layouts\<y
ourlayoutNames\

2. To enable this custom layout to be visible to the E-Business Control Center, save
the JSP as template.jsp and the image file as thumbnail.gif in the following
directory:

<BEA HOME>\weblogic700\common\templates\webapps\portal\newp
ortal\j2ee\framework\layouts\<yourlayoutName>\

Warning: Filenames for layout thumbnails are not uniform. If they are not correct,
the preview image may be missing in the E-Business Control Center or in
the WebLogic Portal Administration Tools.

Adding a Custom Skin to a Domain Template

5-20

Having created a custom skin, use the following steps to make the custom skin
available to the new domain template, take the following steps:

WebLogic Portal Development Guide

Creating a Domain Template

1. Take a screenshot of the skin on your portal, reduce it to a 1 inch width, and save
it as <yourlayoutName>.gif.

2. Place this thumbnail in the following directory:

<BEA_HOME>\weblogic700\common\templates\domains\shared\bea)\
portal\projects\portalApp-project\library\portal\skins\<you
rskinNames>\

3. Place the J2EE resources for the skin in the following directory:

<BEA HOME>\weblogic700\common\templates\webapps\portal\newp
ortal\j2ee\framework\skins\<yourskinNames\

After these elements are added to the domain, what remains is to package the new
domain in such a way that the Domain Configuration Wizard can use it to instantiate
your custom domain.

Step 4: Package the New Domain as a Template

After confirming that all the customization in your domain has been added
successfully, you can replicate this new functionality in the form of a domain template.
This template can be used to give corporate developers a good baseline to work from,
reducing unnecessary duplication of efforts at several points in the development,
deployment and maintenance processes.

Entries have been made in several configuration files to support these additions.
Assuming the J2EE resources are in place and archived correctly in the template JAR
file, it is crucial that the metadata about these resources be entered correctly so the
wizard can include them in the resulting domain. For this reason, pay special attention
to the points at which the template.xml file makes reference to the other
configuration files and J2EE resources.

Note: Any new domain template you create should include support for all portal
services. For this reason, it is strongly recommended that you follow the steps
outline in Step 2: Customize the Portal Domain before making your domain
into a template.

To create a template from your customized domain, take the following steps:
m Open the template.xml File

m Edit the config.xml file

WebLogic Portal Development Guide — 5-21

S Building Custom Templates

m Edit the Application.xml file
m Check Shell Scripts for String Substitution

m Create the Archive

Open the template.xml File

Obtain a copy of the template.xml file by making a copy of the following JAR file:
<BEA HOME>\weblogic700\common\templates\domains\portal.jar

Unzip this archive and open the template.xml file in a text browser. Use this file as
a reference when editing the config.xml file. After making any necessary edits,
archive this file (in JAR form) so that it extracts to the \META- INF directory.

Edit the config.xml file

Open the config.xml file from your customized domain, and perform the
substitutions shown in Listing 5-6. Replacing the populated attributes with the
variables used by the template.xml allows the Domain Configuration Wizard to
automatically populate user input into the fields of your config.xml file.

Listing 5-6 Domain node substitutions for config.xml file

<Server
Name="portalServer" replace with "@SERVER NAME"
ListenPort="7501" replace with "@BEA WEBLOGIC_ SERVER PORT@"

NativeIOEnabled="true"
JavaCompiler="@JAVA HOME/bin/javac"
ServerVersion="7.0.1.0"
StagingMode="nostage"
TransactionLogFilePrefix="1logs/"

>

<Log FileName="logs/weblogic.log"

5-22 WebLogic Portal Development Guide

Creating a Domain Template

Name="portalServer"/ replace with "@SERVER NAME"

>

<SSL Enabled="true"
ListenPort="7502" replace with "@BEA WEBLOGIC SERVER SSLPORT@"

Name="portalServer" replace with "@SERVER NAME"

ServerCertificateChainFileName="ca.pem"

ServerCertificateFileName="democert.pem"

ServerKeyFileName="demokey.pem"/

>

<ServerStart Name="portalServer"/> replace with "@SERVER NAME"

<WebServer
DefaultWebApp="DefaultWebApp"
LogFileName="access.log"
LoggingEnabled="true"

Name="portalServer"

/>

replace with "@SERVER NAME"

Note: Inthe template.xml, the @ TARGETS value is used to allow the same

domain to be deployed in a cluster, an admin server or a stand-alone server
without modification to the config.xm1 file.

<change-pair name="TARGETS">
<before string="@TARGETS" />
<after string="$TARGET NAMESS$" />

</change-pairs>

The Domain Wizard runs against your template, replacing variable entries as
shown in Listing 5-7:

WebLogic Portal Development Guide ~— 5-23

S Building Custom Templates

Listing 5-7 Variable replacements in the config.xml file

Original node in portal Template config.xml
<EJBComponent
Name="campaign"
Targets="@TARGETS"
URI="campaign.jar"
/>
Variables populated in new config.xml file
<EJBComponent
Name="campaign"
Targets="portalServer"
URI="campaign.jar"

/>

Edit the Application.xml file

As with the template.xml and config.xml files, extracting an example file from an
existing template is a good way to start. Compare the archive file against your
customized application.xml file. For each new Web application you want to
automatically deploy at server start, an entry will need to be added in the Application
node of application.xml. Listing 5-8 shows a Web module called NewPWapp
inserted into the Application node.

Listing 5-8 Adding a module listing to application.xml

<applications
<module>
<web>

<web-uri>NewPWApp</web-uri>

5-24 WebLogic Portal Development Guide

Creating a Domain Template

<context-root>NewPWApp</context-roots>
</web>

</module>

</applications>

Check Shell Scripts for String Substitution

If your application requires special startup classes or environment settings, make sure
these are added to the shell scripts within your template. Listing 5-9 shows the contents
of startPortal.bat included with the out-of-the-box portal domain template.

If your domain requires any customized startup commands, make sure any added
literal references will not make your scripts difficult to maintain.

Listing 5-9 startPortal.bat from portal.jar

@ECHO OFF

SETLOCAL

REM ############HHHHHEHEHHREREET T R R R R
REM (c) 2002 BEA SYSTEMS INC. All rights reserved

REM

REM BEA WebLogic Portal Server startup script.

REM This script can also install/uninstall a Portal Window Service. Use the

REM -installService or -uninstallService command-line arguments.

REM ############HHHHHEHBHHEHEHEEEEE R R
REM ############HHHHHEHBHHEHEHEEEEE R
REM The WLP installation directory

REM ############HHHHHEHBHHEHEHEEEEE I EHEEEEEEEEEE
SET WLP_HOME=@BEA PORTAL HOME BACK SLASHe

REM ############HHHHHEHBHHEHEHEEEEE R

WebLogic Portal Development Guide 5-25

S Building Custom Templates

REM Set the WebLogic server name

REM #########HHHEHEHEHEREEE T R R R
SET SERVER NAME=@MANAGED_SERVER REGISTERED_ NAME IN ADMIN

IF "%SERVER NAME%"=="" SET SERVER NAME=@SERVER NAME

REM #########HHHEHEHEHEREEE T R R
REM Set the WebLogic Admin Server URL, if this is a managed node.

REM Otherwise, leave this blank

REM #########HHHEHEHEHEREEE T R R R R
set ADMIN URL=@ADMIN SERVER URL

REM #########HHHEHEHEHEREEE T R R R R
REM Set the database type

REM Valid values are: POINTBASE, ORACLE THIN, MSSQL, SYBASE JCONNECT, DB2 TYPE2
REM Set set-environment.bat for more details

REM #########HHHAEHEHEHEREEET T R R R R
SET DATABASE=@DATABASE®@

REM Try to get it from the db_settings.properties file

IF not exist .\db_settings.properties goto _setenv

SET DB_SETTINGS=.\db settings.properties

FOR /F "eol=# tokens=1,2 delims==" %$%i in (%DB_SETTINGS%) do (
if %$%1 == database SET DATABASE=%%]j

)

:_setenv

REM ########HHHAEHEHEHEREEE T R R
REM Set the environment

REM See set-environment.bat for more details on the available parameters

REM #########HHHAEHEHEHEEEEE T R R

CALL "S$WLP_HOME%\bin\win32\set-environment.bat"

5-26 WebLogic Portal Development Guide

Creating a Domain Template

REM ######H#H#HHHHHHHHHFHH R R R R T
REM Set any additional CLASSPATH information
REM #########HHHHHHHHHFHH R R R R

SET
CLASSPATH=%CLASSPATH%; $P13N_DIR%\lib\commerce system.Jjar;%P13N _DIR%\lib\campaig
n_system.jar

REM ############HHHHHEHBHHEHEHEEEE R
REM Start WebLogic with the above parameters.

REM See startWebLogic.cmd for more details on the available parameters.

REM ############HHHHHEHAHHEHEHEEEEE R
set MEM_ARGS=-Xms128m -Xmx128m -XX:MaxPermSize=128m

set JAVA OPTIONS=-Dcommerce.properties="$WLP HOME%\weblogiccommerce.properties"

if "%1" == "-installService" goto _installService
if "%1" == "-uninstallService" goto _uninstallService
:_startWebLogic

call "$P13N_DIR%\bin\win32\startWebLogic.cmd"

goto _the_end

:_installService

call "$P13N DIR%\bin\win32\installWebLogicService.cmd"
goto _the_end

:_uninstallService

call "$P13N DIR%\bin\win32\uninstallWebLogicService.cmd"
goto _the_end

:_the_end

ENDLOCAL

WebLogic Portal Development Guide ~— 5-27

S Building Custom Templates

Create the Archive

At this stage, all look and feel customization and functionality has been added to the
portal domain, and the directory structure looks like that in Figure 5-9.

Figure 5-9 Expanded View of Custom Portal Domain

Folders ® || Mame 4
=00 myportal_jr | |l manrEsT.MF
- B0 domain [template cml

: -] beadpps

] pointbase =
I
| L3 I K i

Take the following steps to create the archive:

1. Make sure the config.xml file and the shell scripts are in the domain directory,
and that the application.xml, application-config.xml and the
weblogic-application.xml files are inside the META-INF directories inside

their respective enterprise applications.

2. Make sure that no files are at the top level of the archive folder, as shown in
Figure 5-10.

Figure 5-10 Domain Template Before Being Archived

3. Enter the following command from a command line at the archive folder:

jar -cfM ..\myportal.jar domain META-INF

4. To make this domain template available to the Domain Configuration Wizard,
place the JAR file in the following directory:

<BEA_HOME>/weblogic700/common/templates/domains/

5-28 WebLogic Portal Development Guide

Creating a Portal Template

Creating a Portal Template

Like the process of creating a domain template, creating a portal template is largely a
matter of creating and customizing a new instance of a portal, and then packaging it
such that the Portal Wizard recognizes where to put the assets.

Instantiate a New Portal

For detailed instructions on creating a new portal using the Portal Wizard, consult the
section Create the New Portal.

Customize the New Portal

A large body of information is available for those customizing the behavior and
appearance of a portal. For an overview and links to specific instructions, consult the
WebLogic Portal Development Guide.

Apply Basic Configuration

You can now apply configuration to the new portal, including adding group portals,
pages, portlets, entitlements and delegated administration settings. For detailed
instructions on configuring a portal, consult the Portal Administration Guide.

Package the New Portal as a Template

Unlike a template for the Domain Configuration Wizard, a portal template does not
need to be delivered in the form of a compressed archive file. However, packaging the
new portal is largely a matter of editing the template.xml file, one of which is shown
in Listing 5-12. Take the following steps to package your customized portal as a
template for the Portal Wizard:

WebLogic Portal Development Guide ~ 5-29

S Building Custom Templates

Step 1: Make Staging Directory

Create a directory called /myportal to serve as the staging folder for the new portal
template. Create two directories inside: /j2ee and /ebcc.

Step 2: Locate Source Directories

Locate the two directories associated with the source portal: the J2EE resources, as
shown in Figure 5-11, and the metadata directories, as shown in Figure 5-12.

m Inside the domain, find the Web application directory named after your portal
Web application. In this example, the Web application is called NewPWApp.

m The corresponding metadata directory is called portal App-project (named after
the Enterprise application.)

Figure 5-11 J2EE Resource Directories in NewPWApp

[portlets
[wEB-INF

index. jsp

1

Figure 5-12 Metadata directories for NewPWApp

Step 3: Move Portal Resources

K

Folders ® || Mame 4

{:I portalapp ;I (21 application-sync
Ea portaldpp-project Y (2 deFault
application-sync [library

2 default
2 library

{:I tax\WSApp

il

portaldpp-project. eaprj
sync.cmd

sync.sh
4

Move the resources into the template staging directory:

m Copy the contents of the NewPWApp directory into the myportal/j2ee directory.

m Copy the contents of the application-sync directory into the myportal/ebcc

directory.

5-30

WebLogic Portal Development Guide

Creating a Portal Template

Note: Only copy metadata for resources you have added to the portal during
customization. Do not copy the stock resource metadata files from the
stockportal template.

Step 4: Edit template.xml

Edit the template.xml file according to the following rules:
e Listing 5-10 shows properties passed in by the Portal Wizard.
e Listing 5-11 shows properties you must set according to your portal.

e Make any other changes to the template.xml file required by your
customized Portal Web application. It is an ANT build script. Listing 5-12
shows the full text of a template.xml for the Portal Wizard.

Listing 5-10 Properties provided by the Portal Wizard

<property name="template.common.lib.root.dir" value="Path to
directory containing required jar files" />

<property name="template.ebcc.root.dir" value="Path to directory
containing application data directory" />

<property name="template.j2ee.webapp.root.dir" value="Path to web
application root directory" />

<property name="template.webapp.name" value="Name of the web
application"/>

<property name="template.portal.name" value="Portal web
application name"/>

<property name="template.portal.description" value="Description of
the portal application"s

Listing 5-11 Properties unique to your portal template

<property name="template.name" value="baseportal" />

<property name="template.description" value="Description: Base
Portal Template" />

WebLogic Portal Development Guide ~— 5-31

S Building Custom Templates

<property name="template.hyperlink.text" value="After your new
portal is deployed, follow these instructions..." />

<property name="template.hyperlink.url"
value="http://edocs.bea.com/wlp/docs70/dev/newdom.htm#1003370" />

Step 5: Create a Thumbnail

Create an icon to signify the look of your portal template in the Portal Wizard. Name
this file template-icon.gif. (Without this optional file, the Portal Wizard will
display a stock icon.)

Step 6: Create Archive File

(Optional) Compress the contents of the portal template: From the myportal
directory, execute the following command:

jar -cfM ../myportal.jar *.*

Step 7: Make the Archive Available

Place the resulting archive file in the following directory:

<BEA_HOME>\weblogic700\common\templates\webapps\portal

Listing 5-12 Portal template.xml

<?xml version="1.0"?>
<project name="Base Portal Template" default="main" basedir=".">
<l--
The jar or directory must contain this template.xml file AND can
contain a template-icon.gif. If a template-icon.gif is not
present, a default will be provided.

-->

5-32 WebLogic Portal Development Guide

Creating a Portal Template

<!-- The caller should pass the following properties.

<property name="template.common.lib.root.dir" value="Path to directory
containing required jar files" />

<property name="template.ebcc.root.dir" value="Path to directory containing
application data directory" />

<property name="template.j2ee.webapp.root.dir" value="Path to web application
root directory" />

<property name="template.webapp.name" value="Name of the web application"/>
<property name="template.portal.name" value="Portal web application name"/>

<property name="template.portal.description" value="Description of the portal
application">

<property name="template.hotdeploy.path" value="Path to directory containing
the portal for hot deploy"/>

<property name="template.hotdeploy.user" value="User name for logging into
the server for hot deploy"/>

<property name="template.hotdeploy.password" value="Password name for logging
into the server for hot deploy"/>

<property name="template.hotdeploy.adminurl" value="Server location for hot
deploy"/>

-->

<!-- Template Properties -->

<property name="template.name" value="baseportal" />
<property name="template.version" value="1.0" />
<property name="template.type" value="portal-webapp" />

<property name="template.description" value="Description: Base Portal
Template" />

<property name="template.hyperlink.text" value="After your new portal is
deployed, follow these instructions..." />

<property name="template.hyperlink.url"
value="http://edocs.bea.com/wlp/docs70/dev/newdom.htm#1003370" />

WebLogic Portal Development Guide ~ 5-33

S Building Custom Templates

<!-- This can either be a .war or a directory for hot deployment -->

<property name="template.hotdeploy.path"
value="${template.j2ee.webapp.root.dir}/${template.webapp.name}/"/>

<target name="main" >

<echo message="template.common.lib.root.dir (
${template.common.lib.root.dir})"/>

<echo message="template.ebcc.root.dir (${template.ebcc.root.dir})"/>

<echo message="template.j2ee.eapp.root.dir (${template.j2ee.eapp.root.dir}

)n/>

<echo message="template.j2ee.webapp.root.dir (
${template.j2ee.webapp.root.dir})"/>

<echo message="template.appsync.dir (${template.appsync.dir})"/>
<echo message="template.webapp.name (${template.webapp.name})"/>
<echo message="template.portal.name (${template.portal.name})"/>

<echo message="template.hotdeploy.path (${template.hotdeploy.path})"/>

<!-- everything but baseportal and tools webapps -->

<copy todir="${template.ebcc.root.dir}/"
overwrite="no"
preservelastmodified="vyes"
includeEmptyDirs="yes"

filtering="no" >
<fileset dir="ebcc/" >
<include name="**" />

<exclude name="application-sync/webapps/baseportal/" />

5-34 WebLogic Portal Development Guide

Creating a Portal Template

<exclude name="application-sync/webapps/tools/" />

</fileset>
</copy>
<!-- now copy baseportal webapp (exception baseportal.portal) and rename

the directory to whatever webapp the user chooses -->
<copy
todir="${template.ebcc.root.dir}/application-sync/webapps/${template.webapp.nam
e}/u
overwrite="no"
preservelastmodified="yes"

includeEmptyDirs="yes"

filtering="no" >

<fileset dir="ebcc/application-sync/webapps/baseportal/" >
<include name="**" />
<exclude name="baseportal.portal" />

</fileset>

</copy>

<filter token="template.portal.description"
value="${template.portal.description}" />

<!-- now copy the baseportal.portal file and rename it to whatever portal
name the user chooses -->
<copy

tofile="${template.ebcc.root.dir}/application-sync/webapps/${template.webapp.na
me}/${template.portal .name}.portal"

file="ebcc/application-sync/webapps/baseportal/baseportal.portal”

overwrite="no"

WebLogic Portal Development Guide ~ 5-35

S Building Custom Templates

preservelastmodified="vyes"
includeEmptyDirs="yes"
filtering="no" >

</copy>

<!-- copy all J2EE resources -->

<copy todir="${template.j2ee.webapp.root.dir}/s${template.webapp.name}/"
overwrite="no"
preservelastmodified="vyes"
includeEmptyDirs="yes"

filtering="no" >

<fileset dir="j2ee/" >
<include name="**" />
<exclude name="WEB-INF/weblogic.xml.stock"/>
<exclude name="WEB-INF/web.xml.stock"/>
</fileset>
</copy>
<filter token="template.portal.name" value="${template.portal.name}" />

<filter token="template.webapp.name" value="${template.webapp.name}" />

<copy
tofile="${template.j2ee.webapp.root.dir}/${template.webapp.name}/WEB-INF/weblog
ic.xml"

overwrite="yes"

preservelastmodified="vyes"

includeEmptyDirs="yes"

filtering="no"

5-36 WebLogic Portal Development Guide

Creating a Portal Template

file="j2ee/WEB-INF/weblogic.xml.stock">

</copy>

tofile:fg?zemplate.j2ee.webapp.root.dir}/${template.webapp.name}/WEB—INF/web.xm

1n
overwrite="yes"
preservelastmodified="yes"
includeEmptyDirs="yes"
filtering="no"
file="j2ee/WEB-INF/web.xml.stock">

</copy>
</target>

</project>

WebLogic Portal Development Guide ~ 5-37

S Building Custom Templates

5-38 WebLogic Portal Development Guide

CHAPTER

6 Implementing User
Profiles

In WebLogic Portal, users are represented by user profiles. User profiles provide
flexibility in representing, storing, and accessing user attributes. In addition to
supporting basic user profiles, WebLogic Portal provides a Unified User Profile
(UUP) that can be used to create a virtual enterprise profile.

This section includes information on the following subjects:
m Creating a Unified User Profile
m Creating a Property Set Definition

m Enabling Visitor Self-Registration

Creating a Unified User Profile

A Unified User Profile provides the capability to leverage user data from external
sources such as LDAP servers, legacy systems and databases. This allows for the use
of a single profile to access user data from many different sources.

To create a UUP to retrieve user data from external sources, complete the following
tasks:

1. Create an EntityPropertyManager EJB to Represent External Data

2. Deploy a ProfileManager That Can Use the New EntityPropertyManager

WebLogic Portal Development Guide 6-1

6

Implementing User Profiles

Create an EntityPropertyManager EJB to Represent
External Data

To incorporate data from an external source, you must first create a stateless session
bean that implements the methods of the com.bea.pl3n.property.
EntityPropertyManager remote interface. EntityPropertyManager is the remote
interface for a session bean that handles the persistence of property data and the
creation and deletion of profile records.

In addition, the stateless session bean should include a home interface and an
implementation class. For example:

MyEntityPropertyManager
extends com.bea.pl3n.property.EntityPropertyManager

MyEntityPropertyManagerHome
extends javax.ejb.EJBHome

Your implementation class can extend the EntityPropertyManagerImpl class.
However the only requirement is that your implementation class is a valid
implementation of the MyEnt ityPropertyManager remote interface. For example:

MyEntityPropertyManagerImpl extends
com.bea.pl3n.property.internal.EntityPropertyManagerImpl

or

MyEntityPropertyManagerImpl extends
javax.ejb.SessionBean

Recommended EJB Guidelines

6-2

We recommend the following guidelines for your new EJB:

® Your custom EntityPropertyManager is not a default
EntityPropertyManager. A default EntityPropertyManager is used to
get/set/remove properties in the Portal schema. Your custom
EntityPropertyManager does not have to support the following methods. It
can throw java.lang.UsupportedOperationException instead

getDynamicProperties

WebLogic Portal Development Guide

Creating a Unified User Profile

getEntityNames
getHomeName
getPropertyLocator

getUniqueId

If you want to be able to use the Portal framework and tools to create and
remove users in your external data store then you must support the
createUniqueId() and removeEntity () methods. However, your custom
EntityPropertyManager is not the default EntityPropertyManager so your
createUniqueId () method does not have to return a unique number. It must
create the user entity in your external data store and then it can return any
number, such as -1.

The following recommendations apply to the EntityPropertyManager ()
methods that you must support:

e getProperty () — Use caching. You should support the getProperties
method to retrieve all properties for a user at once, caching them at the same
time. Your get Property method should use getProperties.

e setProperty () — Use caching.

® removeProperties (), removeProperty () — After these methods are
called, a call to getProperty should return null for the property. Remove
properties from the cache too.

Your implementations of the getProperty (), setProperty (),
removeProperty (), and removeProperties () methods must include any
logic necessary to connect to the external system.

If you want to cache property data, the methods must be able to cache profile
data appropriately for that system. (See the com.bea.p13n.cache package at
../javadoc/index.html.)

If the external system contains read-only data, any methods that modify profile
data must throw a java.lang.UnsupportedOperationException.
Additionally, if the external data source contains users that are created and
deleted by something other than your WebLogic Portal createUniqueId and
removeEnt ity methods can simply throw an
UnsupportedOperationException.

To avoid class loader dependency issues, make sure that your EJB resides in its
own package.

WebLogic Portal Development Guide 6-3

Implementing User Profiles

m For ease of maintenance, place the compiled classes of your custom
EntityPropertyManager bean in your own JAR file (instead of modifying an
existing WebLogic Portal JAR file).

Before you deploy your JAR file, follow the steps in the next section.

Deploy a ProfileManager That Can Use the New
EntityPropertyManager

6-4

A “user type” is a mapping of a ProfileType name to a particular ProfileManager.
This mapping is done in the UserManager EJB deployment descriptor.

To access the data in your new EntityPropertyManager EJB, you must do one of
the following:

m [n most cases you will be able to use the default deployment of
ProfileManager, the UserProfileManager. You will modify the
UserProfileManager’s deployment descriptor to map a property set and/or
properties to your custom EntityPropertyManager. If you support the
createUniquelId () and removeEntity () methods in your custom
EntityPropertyManager, you can use WebLogic Portal Administration Tools
to create a user of type “User” with a profile that can get/set properties using
your custom EntityPropertyManager. For more information, refer to
“Modifying the Existing ProfileManager Deployment Configuration” on page
6-5.

m In some cases you may want to deploy a newly configured ProfileManager
that will be used instead of the UserProfileManager. This new
ProfileManager is mapped to a ProfileType in the deployment descriptor for
the UserManager. If you support the createUniqueId() and removeEntity ()
methods in your custom EntityPropertyManager, you can use the WebLogic
Portal Administration Tools (or API) to create a user of type “MyUser” (or
anything else you name it) that can get/set properties using the customized
deployment of the ProfileManager that is, in turn, configured to use your
custom EntityPropertyManager. For more information, refer to “Configuring
and Deploying a New ProfileManager” on page 6-10.

WebLogic Portal Development Guide

Creating a Unified User Profile

ProfileManager is a stateless session bean that manages access to the profile values
that the EntityPropertyManager EJB retrieves. It relies on a set of mapping
statements in its deployment descriptor to find data. For example, the
ProfileManager receives a request for the value of the DateOfBirth property,
which is located in the PersonalData property set. ProfileManager uses the
mapping statements in its deployment descriptor to determine which
EntityPropertyManager EJB contains the data.

Modifying the Existing ProfileManager Deployment Configuration

If you use the existing UserProfileManager deployment to manage your user
profiles, perform the following steps to modify the deployment configuration.

Under most circumstances, this is the method you should use to deploy your UUP. An
example of this method is the deployment of the custom EntityPropertyManager
for LDAP property retrieval, the LdapPropertyManager. The classes for the
LdapPropertyManager are packaged in 1dapprofile.jar. The deployment
descriptor for the UserProfileManager EJB is configured to map the “ldap” property
set to the LdapPropertyManager. The UserProfileManager is deployed in
usermgmt.jar.

1. Back up the usermgmt . jar file in your enterprise application root directory.
2. From usermgmt .jar, extract META-INF/ejb-jar.xml and open it for editing.

3. Inejb-jar.xml, find the <env-entry> element, as shown in Listing 6-1:

Listing 6-1 <env-entry> Element

<!-- map all properties in property set ldap to ldap server -->

<env-entrys>
<env-entry-name>PropertyMapping/ldap</env-entry-name>
<env-entry-type>java.lang.String</env-entry-types>
<env-entry-values>LdapPropertyManager</env-entry-values>
</env-entrys

and add an <env-entry> element after this to map a property set to your custom
EntityPropertyManager, a shown in Listing 6-2:

WebLogic Portal Development Guide 6-5

6 Implementing User Profiles

Listing 6-2 Adding Another <env-entry> Element to Map a Property

<!-- map all properties in UUPExample property set to
MyEntityPropertyManager -->

<env-entrys>
<env-entry-name>PropertyMapping/UUPExample</env-entry-name>
<env-entry-typesjava.lang.String</env-entry-type>
<env-entry-value>MyEntityPropertyManager</env-entry-values>
</env-entry>

4. Inejb-jar.xml, find the <ejb-ref> element shown in Listing 6-3

Listing 6-3 <ejb-ref> Element

<!-- an ldap property manager -->

<ejb-ref>
<ejb-ref-name>ejb/LdapPropertyManager</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.bea.pl3n.property.EntityPropertyManagerHome</home>
<remote>com.bea.pl3n.property.EntityPropertyManager</remotes>

</ejb-ref>

and add a <ejb-ref> element after this to map a reference to an EJB that
matches the name from the previous step with ejb/ prepended as shown in
Listing 6-4:

Listing 6-4 <ejb-ref> Element Mapping a Reference to an EJB

<!-- an example property manager -->

<ejb-ref>
<ejb-ref-name>ejb/MyEntityPropertyManager</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<homes>examples.usermgmt . MyEntityPropertyManagerHome</home>
<remote>examples.usermgmt .MyEntityPropertyManager</remote>

</ejb-ref>

6-6 WebLogic Portal Development Guide

Creating a Unified User Profile

The home and remote class names match the classes from your EJB JAR file for
your custom EntityPropertyManager.

5. If your EntityPropertyManager implementation handles creating and
removing profile records, you must also add Creator and Remover entries. For
example:

Listing 6-5 <env-entry> Element that Adds Creator and Remover Entries

<env-entry>
<env-entry-name>Creator/Creatorl</env-entry-name>
<env-entry-type>java.lang.String</env-entry-types>
<env-entry-value>MyEntityPropertyManager</env-entry-values
</env-entrys>

<env-entry>
<env-entry-name>Remover/Removerl</env-entry-names>
<env-entry-typesjava.lang.String</env-entry-type>
<env-entry-value>MyEntityPropertyManager</env-entry-values
</env-entrys>

This instructs the UserProfileManager to call your custom
EntityPropertyManager when creating or deleting user profile records. The
names “Creator1” and “Removerl” are arbitrary. All Creators and Removers will
be iterated through when the UserProfileManager creates or removes a user
profile. The value for the Creator and Remover matches the ejb-ref -name for
your custom EntityPropertyManager without the ejb/ prefix.

6. From usermgmt .jar, extract META-INF/weblogic-ejb-jar.xml and open it
for editing.

7. Inweblogic-ejb-jar.xml, find the elements described in Listing 6-6:

Listing 6-6 weblogic-ejb-jar.xml Elements

<weblogic-enterprise-beans>
<ejb-name>UserProfileManager</ejb-name>
<reference-descriptors
<ejb-reference-descriptions
<ejb-ref-name>ejb/EntityPropertyManager</ejb-ref-name>
<jndi-name>${APPNAME } .BEA personalization.

WebLogic Portal Development Guide 6-7

6 Implementing User Profiles

EntityPropertyManager</jndi-name>
</ejb-reference-description>

and add an ejb-reference-description to map the ejb-ref for your
custom EntityPropertyManager to the JNDI name. This JNDI name must
match the name you assigned in weblogic-ejb-jar.xml in the JAR file for
your customer EntityPropertyManager. It should look like the example in
Listing 6-7:

Listing 6-7 Showing the JNDI Name

<weblogic-enterprise-bean>
<ejb-name>UserProfileManager</ejb-namex>
<reference-descriptors
<ejb-reference-descriptions>
<ejb-ref-name>ejb/EntityPropertyManager</ejb-ref-name>
<jndi-name>${APPNAME}.BEA personalization.
EntityPropertyManager</jndi-name>
</ejb-reference-descriptions>
<ejb-reference-descriptions>
<ejb-ref-name>ejb/MyEntityPropertyManager
</ejb-ref-name>
<jndi-name>${APPNAME}.BEA personalization.
MyEntityPropertyManager</jndi-name>
</ejb-reference-descriptions>

Note the $ {APPNAME} string substitution variable. The WebLogic EJB container
automatically substitutes the enterprise application name to scope the JNDI
name to the application.

8. Update usermgmt . jar for your new deployment descriptors. You can use the
jar uf command to update the modified META- INF/ deployment descriptors.

9. Edit META-INF/application.xml for your enterprise application to add an
entry for your custom EntityPropertyManager EJB module as shown in
Listing 6-8:

6-8 WebLogic Portal Development Guide

Creating a Unified User Profile

Listing 6-8 Adding an Entry for a Custom EntityPropertyManager EJB Module

<module>
<ejb>UUPExample.jar</ejb>
</module>

10. If you are using an application-wide cache, you can manage it from the

Administration Console if you add a <Cache> tag for your cache to the
META-INF/application-config.xml deployment descriptor for your
enterprise application like this:

Listing 6-9 Adding a <Cache> Tag to META-INF/application-config.xml

<Cache
Name="UUPExampleCache"
TimeToLive="60000"

/>

11.

12.

13.

Verify the modified usermgmt . jar and your custom EntityPropertyManager
EJB JAR archive are in the root directory of your enterprise application and start
WebLogic Server.

Use the WebLogic Server Administration Console to verify your EJB module is
deployed to the enterprise application and then use the console to add your server
as a target for the EJB module. You need to select a target to have your domain's
config.xml file updated to deploy your EJB module to the server.

Use the E-Business Control Center to create a User Profile (property set) that
matches the name of the property set that you mapped to your custom
EntityPropertyManager in ejb-jar.xml for the UserProfileManager (in
usermgmt . jar). You could also map specific property names in a property set to
your custom EntityPropertyManager.

Note: Be sure to synchronize the new data to your server after the property set is
created.

WebLogic Portal Development Guide 6-9

6

Implementing User Profiles

Your new Unified User Profile type is ready to use. You can use the WebLogic Portal
Administration Tools to create a user of type “User,” and it will use your UUP
implementation when the “UUPExample” property set is being modified. When you
call createUser ("bob", "password") Or createUser ("bob", "password",
null) on the UserManager, several things will happen:

m A user named “bob” is created in the security realm.

m A WebLogic Portal Server profile record is created for “bob” in the WebLogic
Portal RDBMS repository.

m [fyou set up the Creator mapping, the UserManager will call the default
ProfileManager deployment (UserProfileManager) which will call your
custom EntityPropertyManager to create a record for Bob in your data
source.

m Retrieving Bob's profile will use the default ProfileManager deployment
(UserProfileManager), and when you request a property belonging to the
“UUPExample” property set, the request will be routed to your custom
EntityPropertyManager implementation.

Configuring and Deploying a New ProfileManager

6-10

If you are going to deploy a newly configured ProfileManager instead of using the
default ProfileManager (UserProfileManager) to manage your user profiles,
perform the following steps to modify the deployment configuration. In most cases,
you will not have to use this method of deployment. Use this method only if you need
to support multiple types of users that require different ProfileManager
deployments—deployments that allow a property set to be mapped to different custom
EntityPropertyManagers based on ProfileType.

An example of this method is the deployment of the custom
CustomerProfileManager in customer.jar. The CustomerProfileManager is
configured to use the custom EntityPropertyManager
(CustomerPropertyManager) for properties in the “CustomerProperties” property
set. The UserManager EJB in usermgmt . jar is configured to map the
“WLCS_Customer” ProfileType to the custom deployment of the ProfileManager,
CustomerProfileManager.

To configure and deploy a new ProfileManager, use this procedure.

1. Back up the usermgmt . jar file in your enterprise application root directory.

WebLogic Portal Development Guide

Creating a Unified User Profile

2. From usermgmt .jar, extract META-INF/ejb-jar.xml, and open it for editing.

3. Inejb-jar.xml, copy the entire <sessions tag for the UserProfileManager,
and configure it to use your custom implementation class for your new
deployment of ProfileManager.

In addition, you could extend the UserProfileManager home and remote
interfaces with your own interfaces if you want to repackage them to correspond
to your packaging (for example.,

examples.usermgmt .MyProfileManagerHome,
examples.usermgmt.MyProfileManager)

However, it is sufficient to replace the bean implementation class:

You must create an <env-entrys> element to map a property set to your custom
EntityPropertyManager. You must also create a <ejb-ref> element to map a
reference to an EJB that matches the name from the PropertyMapping with
ejb/ prepended. The home and remote class names for your custom
EntityPropertyManager match the classes from your EJB JAR file for your
custom EntityPropertyManager.

Also, if your EntityPropertyManager implementation handles creating and
removing profile records, you must also add Creator and Remover entries. This
instructs your new ProfileManager to call your custom
EntityPropertyManager when creating or deleting user profile records.

Note: The name suffixes for the Creator and Remover, “Creator1” and
“Removerl”, are arbitrary. All Creators and Removers will be iterated
through when your ProfileManager creates or removes a user profile.
The value for the Creator and Remover matches the <ejb-ref -name> for
your custom EntityPropertyManager without the ejb/ prefix.

4. Inejb-jar.xml, you must add an <ejb-ref> to the UserManager EJB section
to map your ProfileType to your new deployment of the ProfileManager, as
shown in Listing 6-10:

Listing 6-10 Adding an <ejb-ref> to the UserManager EJB Section

<ejb-ref>
<ejb-ref-name>ejb/ProfileType/UUPExampleUser</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.bea.pl3n.usermgmt.profile.ProfileManagerHome</home>
<remotes>com.bea.pl3n.usermgmt.profile.ProfileManager</remotes>
</ejb-ref>

WebLogic Portal Development Guide 6-11

6

Implementing User Profiles

6-12

The <ejb-ref-name> must start with ejb/ProfileType/ and must end with
the name that you want to use as the profile type as an argument in the
createUser () method of UserManager

From usermgmt . jar, extract META-INF/weblogic-ejb-jar.xml and open it
for editing.

In weblogic-ejb-jar.xml, copy the weblogic-enterprise-bean tag, shown
in Listing 6-11, for the UserProfileManager and configure it for your new
ProfileManager deployment:

Listing 6-11 <weblogic-enterprise-bean> Tag for the UserProfileManager

<weblogic-enterprise-bean>
<ejb-name>MyProfileManager</ejb-name>
<reference-descriptors
<ejb-reference-descriptions>
<ejb-ref-name>ejb/EntityPropertyManager</ejb-ref-name>
<jndi-name>S${APPNAME} .BEA personalization.
EntityPropertyManager</jndi-name>
</ejb-reference-descriptions>
<ejb-reference-descriptions>
<ejb-ref-name>ejb/PropertySetManager</ejb-ref-name>
<jndi-name>${APPNAME}.BEA personalization.
PropertySetManager</jndi-name>
</ejb-reference-description>
<ejb-reference-descriptions
<ejb-ref-name>ejb/MyEntityPropertyManager
</ejb-ref-name>
<jndi-name>${APPNAME} .BEA personalization.
MyEnitityPropertyManager</jndi-name>
</ejb-reference-description>
</reference-descriptor>
<jndi-name>${APPNAME} .BEA personalization.
MyProfileManager</jndi-name>
</weblogic-enterprise-bean>

You must create an <ejb-reference-descriptions to map the <ejb-ref>
for your custom EntityPropertyManager to the JNDI name. This JNDI name

WebLogic Portal Development Guide

Creating a Unified User Profile

must match the name you assigned in weblogic-ejb-jar.xml in the JAR file
for your custom EntityPropertyManager.

Note the ${APPNAME} string substitution variable. The WebLogic Server EJB
container automatically substitutes the enterprise application name to scope the
JNDI name to the application.

7. Inweblogic-ejb-jar.xml, copy the <transaction-isolations tag for the
UserProfileManager, shown in Listing 6-12, and configure it for your new
ProfileManager deployment:

Listing 6-12 <transaction-isolation> Tag for the UserProfileManager

<transaction-isolation>
<isolation-level >TRANSACTION READ COMMITTED
</isolation-levels>
<method>
<ejb-name>MyProfileManager</ejb-name>
<method-name>*</method-name>
</method>
</transaction-isolation>

8. Create a temporary usermgmt . jar for your new deployment descriptors and
your new ProfileManager bean implementation class. This temporary EJB JAR
archive should not have any container classes in it. Run ejbc to generate new
container classes.

9. Edit META-INF/application.xml for your enterprise application to add an
entry for your custom EntityPropertyManager EJB module, as shown in
Listing 6-13:

Listing 6-13 Adding an Entry to a Custom EntityPropertyManager EJB Module

<module>
<ejb>UUPExample.jar</ejb>
</module>

WebLogic Portal Development Guide ~ 6-13

6

Implementing User Profiles

6-14

10. If you are using an application-wide cache, you can manage it from the

WebLogic Server Administration Console if you add a <Cache> tag for your
cache to the META-INF/application-config.xml deployment descriptor for
your enterprise application as shown in Listing 6-14:

Listing 6-14 Adding a <Cache> Tag to a META-INF/application-config.xml

<Cache
Name="UUPExampleCache" TimeToLive="60000"
/>

I1.

12.

13.

14.

Verify the modified usermgmt . jar and your custom EntityPropertyManager
EJB JAR archive are in the root directory of your enterprise application and start
your server.

Use the WebLogic Server Administration Console to verify your EJB module is
deployed to the enterprise application, then use the WebLogic Server
Administration Console to add your server as a target for the EJB module. You
must select a target to have your domain's config.xml file updated to deploy
your EJB module to the server.

Use the E-Business Control Center to create a User Profile (property set) that
matches the name of the property set that you mapped to your custom
EntityPropertyManager in ejb-jar.xml for the UserProfileManager (in
usermgmt . jar). You could also map specific property names in a property set to
your custom EntityPropertyManager.

Note: Be sure to synchronize the new data to your server after the property set is
created.

Your new Unified User Profile type is ready to use. You can use the WebLogic
Portal Administration Tools to create a user of type “UUPExampleUser,” and it
will use your UUP implementation when the “UUPExample” property set is
being modified. That is because you mapped the ProfileType using an
<ejb-ref> in your UserManager deployment descriptor,
ejb/ProfileType/UUPExampleUser

Note: Tell your administrators that when they create a user in the WebLogic
Portal Administration Tools, they must select the new user type.

WebLogic Portal Development Guide

Creating a Unified User Profile

Now, when you call createUser ("bob", "password",
"UUPExampleUser") on the UserManager, several things will happen:

e A user named “bob” is created in the security realm.

e A WebLogic Portal Server profile record is created for “bob” in the
WebLogic Portal RDBMS repository.

e Ifyou set up the Creator mapping, the UserManager will call your new
ProfileManager deployment, which will call your custom
EntityPropertyManager to create a record for Bob in your data source.

e Retrieving Bob's profile will use your new profileManager deployment,
and when you request a property belonging to the “UUPExample” property
set, the request will be routed to your custom EntityPropertyManager
implementation.

Retrieving User Profile Data from LDAP

The LdapRealm security realm and the LdapPropertyManager unified user profile
(UUP) for retrieving user properties from LDAP are independent of each other. They
do not share configuration information and there is no requirement to use either one in
conjunction with the other. A security realm has nothing to do with a user profile. A
security realm provides user/password data, user/group associations, and group/group
associations. A user profile provides user and group properties. A password is not a

property.

In order to successfully retrieve the user profile from the LDAP server, ensure that
you've done the following:

1. If you have already deployed the application on a WebLogic Portal instance, stop
the server.

2. Deploy the 1dapprofile.jar component within your application.

The LdapPropertyManager EJB in 1dapprofile.jar has been enhanced as of
7.0 SP2 to allow for the inspection of the LDAP schema to determine
multi-valued versus single-value LDAP attributes, to allow for multiple
userDN/groupDN, and to allow for SUBTREE SCOPE searches for users and
groups in the LDAP server. Following are more detailed explanations:

Before this enhancement, an attribute that is defined as multi-valued in the
LDAP server's schema, but had only one value, was stored in memory as a

WebLogic Portal Development Guide ~ 6-15

6

Implementing User Profiles

6-16

single value property by the LdapPropertyManager. This could cause problems
in the rules engine when this situation was encountered:

o A multi-valued LDAP property had a single value.

e A rule was created in Portal that used the property as a multi-valued
property.

e The rules engine expects the property to be a java.util.Collection
because it is multi-valued, but it was not, because the LdapPropertyManager
saw it as single valued and stored it that way.

This change allows a developer to configure the ejb-jar.xml deployment
descriptor for the LdapPropertyManager EJB to specify that the LDAP schema
be used to determine if a property is single value or multi-value.

This is done by editing ejb-jar.xml to setting the following env-entries:

<!-- Flag to specify if LDAP attributes will be determined to be
single value or multi-value via the schema obtained from the
attribute. If false, then the attribute is stored as
multi-valued (a Collection) only if it has more than one value.
Leave false unless you intend to use multi-valued LDAP attributes
that may have only one value. Using true adds overhead to check
the LDAP schema. Also, if you use true beware that most LDAP
attributes are multi-value. For example, iPlanet Directory
Server 5.x uses multi-value for givenName, which you may not
expect unless you are familiar with LDAP schemas. -->

<env-entry>
<env-entry-names>config/detectSinglevValueFromSchema
</env-entry-name>
<env-entry-typesjava.lang.Boolean</env-entry-type>
<env-entry-valuestrue</env-entry-value>
</env-entrys>

<!-- Value of the name of the attribute in the LDAP schema that
is used to determine single value or multi-value (RFC2252 uses
SINGLE-VALUE) This attribute in the schema should be true for
single value and false or absent from the schema otherwise. The
value only matters if config/detectSingleValueFromSchema is
true. -->

<env-entry>
<env-entry-names>config/singlevValueSchemaAttribute
</env-entry-name>
<env-entry-types>java.lang.String</env-entry-types>
<env-entry-value>SINGLE-VALUE</env-entry-value>
</env-entrys>

WebLogic Portal Development Guide

Creating a Unified User Profile

It is not recommended that true be used for
config/detectSinglevValueFromSchema unless you are going to write rules
that use multi-valued LDAP attributes that have a single value. Using
config/detectSingleValueFromSchema = true adds the overhead of
checking the LDAP schema for each attribute instead of the default behavior
(config/detectSinglevValueFromSchema = false), which only stores an
attribute as multi-valued (in a Collection) if it has more than one value.

This patch also implements changes that allow you to use SUBTREE_SCOPE
searches for users and groups. It also allows multiple base userdN and groupDN
to be specified. The multiple base DN can be used with SUBTREE_SCOPE
searches enabled or disabled.

A SUBTREE SCOPE search begins at a base userDN (or groupDN) and works
down the branches of that base DN until the first user (or group) is found that
matches the username (or group name).

To enable SUBTREE SCOPE searches you must set the Boolean
config/objectPropertySubtreeScope env-entry in the ejb-jar.xml for
ldapprofile.jar to true and then you must set the config/userDN and
config/groupDN env-entry values to be equal to the base DNs from which you
want your SUBTREE SCOPE searches to begin.

For example, if you have users in

ou=PeopleA, ou=People, dc=mycompany,dc=com and in

ou=PeopleB, ou=People, dc=mycompant , dc=com then you could set
config/userDN to ou=People, dc=mycompant , dc=com and properties for
these users would be retrieved from your LDAP server because the user search
would start at the “People” ou and work its way down the branches
(ou:"PeopleA" and ou="PeopleB").

You should not create duplicate users in branches below your base userDN (or
duplicate groups below your base groupDN) in your LDAP server. For example,
your LDAP server will allow you to create a user with the uid="useraA" under
both your Peoplea and your PeopleB branches. The LdapPropertyManager in
ldapprofile.jar will return property values for the first usera that it finds.

It is recommended that you do not enable this change (by setting
config/objectPropertySubtreeScope to true) unless you need the
flexibility offered by SUBTREE SCOPE searches.

An alternative to SUBTREE SCOPE searches (with or without multiple base DNs)
would be to configure multiple base DNs and leave
config/objectPropertySubtreeScope setto false. Each base DN would

WebLogic Portal Development Guide ~ 6-17

6 Implementing User Profiles

have to be the DN that contains the users (or groups) because searches would
not go any lower than the base DN branches. The search would cycle from one
base DN to the next until the first matching user (or group) is found.

The new ejb-jar.xml deployment descriptor is fully commented to explain
how to set multiple DNs, multiple usernameaAttributes (or
groupnameAttributes), and how to set the objectPropertySubtreeScope flag.

3. Start the server and deploy the application.

4. Start the WebLogic Server Administration Console for the active domain.

Creating a Property Set Definition

Property sets are the schemas for personalization attributes. They are a convenient way
to give a name to a group of properties for a specific purpose. For example, in the
sampleportal-project, the User Profile “Avitek™ has a property set that defines
properties for an e-commerce customer, such as First Name, Last Name, Home Phone,
E-mail, and Customer Type. Use the E-Business Control Center to create property sets
and define the properties that make up these property sets.

This section describes how to register a customer user profile:

Registering Custom User Profiles

The property set editor works the same way for all property sets. In this exercise, the
E-Business Control Center will be used to create and modify User Profile properties.
These examples can be used to register a custom user profile. You can follow the same
procedures to create and modify property sets for Events, HTTP Requests, HTTP
Sessions, and the Catalog Structure.

You can set a default profile type for each web application by setting a context
parameter in web.xml for DEFAULT USER PROFILE TYPE. For example:

<context-param>

<param-name>DEFAULT USER PROFILE TYPE</param-name>
<param-value>WLCS_ Customer</param-values>
</context-param>

6-18 WebLogic Portal Development Guide

Creating a Property Set Definition

To register a custom user profile, complete the following steps:

1. Start the E-Business Control Center and ensure that it is connected to a server. For

information on starting the E-Business Control Center and connecting it to a server,
refer to “System Administration” in the Administration Guide at
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm.

The Explorer window opens as shown in Figure 6-1.

Figure 6-1 E-Business Control Center Window

FHI «plneer [Sie kfrastruchure]

hex |

Ha-e Filler iparizli-ames al owez}

| o

1=gr Crnfiles

oy Sluclow

=
T
w=hts

Vil st Fip=lic we

Dw=c: plun

I |E] S0 InTastuzt_ra I:E A sitess ngi | = 'es=nr=ﬂinn|

2. Open the appropriate project file. For the example in this procedure, you would
open samples —portal —samplePortalDomain —beaApps —sampleportal-project.

3. Open the Event Editor as follows:

WebLogic Portal Development Guide ~ 6-19

6 Implementing User Profiles

a. In the Explorer window, select the User Profiles icon. A list of User Profiles
appears in the User Profiles field, as shown in Figure 6-2

Figure 6-2 E-Business Control Center Explorer with User Profiles Icon Selected

Explorer [Site Infrastructure] x|
D- @ XK
Mame Filter (partial names allowed)
| @
User Profiles
i Avitek
@ Investar

b. Click the New icon to open the New menu and then select User Profile, as
shown in Listing 6-3.

Figure 6-3 New Menu (Opened by Clicking New Icon)

iB Explorer [Site Infrastructure] X

New Icon4|:';jv B X ‘

I allowed)

[" RequestSet @
Session Set User Profiles
Catalog Structure [avitek
Event @ Investar

‘Webflow/Pipeline

The User Profile Editor window appears, as shown in Figure 6-4.

6-20 WebLogic Portal Development Guide

Creating a Property Set Definition

Figure 6-4 User profile Editor Window

£ Edtar [User Prafile: UneamesiUs erProfile]

Cegeripton

Laat Profl pinp = i (0 e = rol e head gt s the e ties et lhcal e st d ap e - beld
T T e T T) | T
B
n=[Be
4. Click New.

The Edit Property window appears (Figure 6-5).

Figure 6-5 Event Property Window

i<l Edit Property x|
Mame

Description {optionaly

Data type Values
[Tesxt =l
Selection mode

ISingIe 'l

Walue range

IRestricted 'l

Add Values... | Remave All
Ok I Cancel |

5. In the Edit Property window, complete these steps:

a. In the Name field, enter a unique name for the property no longer than 100
characters (required).

Warning: Do not enter LDAP in the Name field.

WebLogic Portal Development Guide 6-21

6

Implementing User Profiles

b. Inthe Description field, enter a description of the property no longer than 254
characters (optional).

c. Inthe Data type list, select the data type. If you select Boolean as the data type,
for example, the Selection mode and Value range are no longer available. The
default for Boolean is Single, Restricted.

d. In the Selection mode list, select either Single or Multiple. The value you
select here determines the number of property values you can set: one (Single)
or multiple (Multiple).

e. In the Value range list, select whether the value is Restricted or Unrestricted.

f. Click Add Values.

One of two types of Enter Property Values windows appears. The type of
Enter Property Values window that appears depends on the values selected.
This is because, depending on the data type, different steps are required for
entering values and setting default values. The following property categories
are available:

e Properties with Boolean or a Single Value and Single Default.
e Properties with Multiple Values and Single, Multiple, or All Defaults

e Properties with Date and Time Values

Properties with Boolean or a Single Value and Single Default

6-22

To enter the default value for Boolean property or a property with a single value and a
single default (unrestricted), complete the following steps:

1. Inthe applicable Enter Property Value window (Figure 6-6 or Figure 6-7), perform
one of the following:

e For a Boolean property, select either True or False.

e For a Single Value, Single Default property, enter a value and click Add.

WebLogic Portal Development Guide

Creating a Property Set Definition

Figure 6-6 Enter Property Values Window—Boolean Values Required

x|
Setthe default Value:
g
 False

Ok | Cancel |

Figure 6-7 Enter Property Values Window—Single Value, Single Default
Required

i<l Enter Property Value x|

Add values to the list, then select the value(s)
you want to set as defaultis).

}ualue1

Walues:

 waluel RErmmye

eselect Al |

Ok | Cancel |

2. Click OK.

The Edit Property Value window closes, revealing the Edit Property window
with the selected value(s) appearing in the Value list; for example as shown in
Listing 6-8.

WebLogic Portal Development Guide ~ 6-23

6

Implementing User Profiles

6-24

Figure 6-8 Edit Property Window with Text Value

ﬁl-"l Edit Property
MName
lJoesProper‘ry
Description {optionaly
Froperty of Joe
Data type Values
|Text LI valuel

Selection mode
ISingIe 'l

Walue range

IRestricted 'l

| Editvalues..

Remave All

Ok

Cancel

3. Click OK.

WebLogic Portal Development Guide

Creating a Property Set Definition

Properties with Multiple Values and Single, Multiple, or All Defaults

To enter multiple property values and set one or more defaults (unrestricted), complete
the following steps:

1. Inthe applicable Enter Property Values window, enter a value, and then click Add.

The new values will appear in the Values list box, as shown in Figure 6-9,
Figure 6-10, and Figure 6-11.
Figure 6-9 Enter Property Values—Multiple Values, Single Default

i<l Enter Property Value x|

Add values to the list, then select the value(s)
you want to set as defaultis).

eselect Al

Jralues Add
Walues:

 waluel RErmmye |
i valuez

™ valued |

Ok Cancel

Figure 6-10 Enter Property Values—Maultiple Values, Multiple Restricted
Defaults

iui Enter Property Value x|
Add values to the list, then select the value(s)

you want to set as defaultis).
Jvalue 5 Add
Walues:

[value 1 REermye |
[value 2

[value 3
[value 4

Ok | Cancel |

WebLogic Portal Development Guide ~ 6-25

6

Implementing User Profiles

6-26

Figure 6-11 Enter Property Values—Maultiple Values, Multiple Unrestricted
Defaults

isi Enter Property Value x|

Add default valueds) ta the list.
Mote: All values are default far this property.

Multiple Unrestricted Add

Default Values:

Walue 1

Walue 2
Walue 3

Ok | Cancel |

. Repeat step 1. until you have entered all necessary values.

. To select one or more default values, complete one of the following:

e If you do not want to select a default, go to step 5.

o For multiple values with a single default, select the value (radio button) that
you want to set as the default, and then click OK.

Note: To remove the default value for a property with multiple values and a
single default, click Deselect All.

e For multiple values with multiple restricted defaults, select the value (check
boxes) that you want to set as defaults, and then click OK.

Note: For multiple values without restrictions (that is, the Value range is
Unrestricted), you do not need to select any defaults.

. In the Edit Property window, click OK.

WebLogic Portal Development Guide

Creating a Property Set Definition

Properties with Date and Time Values

Properties with date and time values can use all Selection mode and Value range

settings.

To enter date and time values and set one or more defaults, complete the following

steps:

1. In the Edit Properties window, select Date/Time from the Data type drop-down
list (shown in Figure 6-12) and select Add Values.

Figure 6-12 Date type Menu with Date/Time Selected

Data type
Text =

MNumetric
Float
Boaolean

The Enter Property Value window for date and time values appears

(Figure 6-13).

Figure 6-13 Date/Time Enter Property Value Window

i<l Enter Property Value x|

Add values to the list, then select the value(s)
you want to set as defaultis).

j Add

1:10:21 PM

Walues:

Bermoye

i

eselect Al

Ok | Cancel |

2. Click the drop-down arrow in the Date list.

A calendar appears, as shown in Figure 6-14.

WebLogic Portal Development Guide

6-27

6 Implementing User Profiles

Figure 6-14 Enter Property Value Window with Calendar Displayed

i Enter Prop x|
Add values to the list, then select the value(s)
you want to set as defaultis).

Joun-14-2002] =
i x]
A June | A 2002 |J Jum 14, 2002

o

Sur Mo Tue Wed Th

Fid Sat Bermoye |
26 (27 |28 |29 |30 |31

1

2 3 4 f B 7 g eselect Al |
g 10 |11 12 |13 15

16 |17 |18 (18 |20 (21 22

23 |24 |25 (26 |27 |28 |29

a0 |1 2 3 4 & [

Add

Ok | Cancel |

3. Select a date from the calendar; for example June 14.

The calendar disappears and the selected date appears in the date edit box, as
shown in Figure 6-15

Figure 6-15 Selected Date Appears in Date Edit Box

i<l Enter Property Value x|

Add values to the list, then select the value(s)
you want to set as defaultis).

[iun-14-2003] =
[1:10:21 PM
Yalues:

‘ Remove |

4. Inthe Time field, enter a time.
5. Click Add.

The new time and date appear in the Values list, as shown in Figure 6-16.

6-28 WebLogic Portal Development Guide

Creating a Property Set Definition

Figure 6-16 Date and Time Appear in Values List

x
Add values to the list, then select the value(s)
you want to set as defaultis).
[Jun-14-2002 =
[2:3045 PM
Walues:
" Jun 14, 2002 2:30:45 PM

Ok | Cancel |

6. To add more dates and times, repeat step 1. through step 5. until you have entered
all the necessary values.

7. To select one or more default values, complete one of the following:

e [fthe event has a single date and time with a single default (restricted), click
OK.

e If the event has multiple dates and times with a single default (restricted),
select the value (radio button) that you want to set as the default, and then
click OK.

e [fthe event has multiple dates and times with multiple defaults (unrestricted),
select the values (check boxes) that you want to set as the default, and then
click OK.

8. In the Edit Event Property window, click OK.

Updating a Registered Custom Event

Whenever you make changes to a custom event’s code, you should update that event’s
registration. Updating the registration lets the E-Business Control Center know about
the changes in the custom event and aids campaign developers using the E-Business
Control Center to modify any scenario actions that refer to the event.

WebLogic Portal Development Guide ~ 6-29

6 Implementing User Profiles

To update a custom event, complete the following steps.

1. Start the E-Business Control Center and ensure that it is connected to WebLogic
Server.

The Explorer window opens.
2. Ensure that the correct project file is open and select the Site Infrastructure tab.

3. In the Explorer window, select the Events icon. A list of Events appears in the
Events field as shown in Figure 6-17.

Note: You cannot edit standard Events.

Figure 6-17 Explorer Window

N w K

Mame Filter (partial names allowed)

| @ =
Events

AddToCartEvent

ClickCampaignEvent

ClickContentEvent

ClickProductEvent

CustomerProfileChangeEve

DisplayCampaignEvent

FurchaseCanEvent

RemoveFromCartEvent

SessionLoginEvent

UserRegistrationEvent

b e T]

4. Double-click the custom event that you want to edit. The Event Editor window
opens as shown in Figure 6-18. The Event properties field displays a list of
existing properties.

6-30 WebLogic Portal Development Guide

Creating a Property Set Definition

Figure 6-18 Event Editor Window

B4 Edkitor [Everrt: R ToC artEverstiRead Oniyi]

Jzocipdon

vntprcpecled ik on @ 30 urrn ~cading 1o Zorth2nIon=Hi>s, L efaull » upacie 2ealavzd n oid)
e |Cals b | Suluvtion e uda Ve luareimaveluzy (e
untlstpie oo Glalz Unreaticted
iy Tal Sigls U sicbe 4 e
asni ToA fi-gla Untesrirtesd -
50356 TN =l)

Fu Situla [DETETT

liatin +nz T=d Ri-gl= Unres-icte-|
121 Lol Unreaicted

5. In the Event properties field, double-clcik the property that you want to edit.
The Edit Property window opens as shown in Figure 6-19.

Figure 6-19 Edit Property Window

iwi Edit Property X|
MName
|Eve ntForloe

Description {optionaly

Data type Yalues
ITE"t | |valuet
Selection mode | ¥aluel
ISingIe vl value3

valued
Walue range

IRestricted 'l values

Edit Values... | Remave All |

Ok I Cancel |

6. To change the Data type, Selection mode, or Value range, select a setting from
the appropriate list box.

Note: If you change the property setting Data type, Selection mode, or Value
range, the associated values will be erased.

7. To add or change values, click Edit Values. The Enter Property Value window
opens as shown in Figure 6-20.

WebLogic Portal Development Guide ~ 6-31

6 Implementing User Profiles

Figure 6-20 Enter Property Value Window

i<l Enter Property Value x|

Add values to the list, then select the value(s)
you want to set as defaultis).

Add

Walues:
" valuet
" value2
" value3
" valued
" values

i

Ok | Cancel |

a. To remove a value, select the value, and then click Remove.

b. To add a value, enter the value, and then click Add.

c. To change a value, select the value, remove it, and then add the new value.
d. Ifrequired, select the default value or values.

e. To remove the default value for a property with multiple values and a single
default, click Deselect All.

f. Click OK. The Enter Property Value window closes.

8. After you have finished updating the properties or values for the event, click OK
in the Edit Event Property window.

Enabling Visitor Self-Registration

Visitors to Websites often need to register before they can proceed with using the site’s
features; for example, an online bookstore might require a visitor to register with them
before they can actually buy books or other merchandise. Registration is valuable
because it makes using a Website more convenient for the visitor because it stores
pertinent information about them—called a customer profile—that is ncessary for each

6-32 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

transaction, relieving the visitor of the need to re-enter this information whenever a
transaction is made. It is convenient for your enterprise because it stores visitor data,
which allows you to maintain information about people likely to use your service.

WebLogic Portal provides a set of JSP Webflow templates that create a customer
profile as the visitor self-registers. You can use these components as is or tailor them
for your specific needs. This section describes those JSPs and Webflow components
and dicusses how they are used.

Implementing Customer Profile JSPs

login.jsp

Description

WebLogic Portal provides a Login and Registration service comprised of five JSP
templates you can use to enable visitor self-registration. You can use these templates
as they are or you can modify them to meet your specific needs. This section describes
those templates and shows you how to implement them.

This section discusses the following templates:
m login.jsp

m badlogin.jsp

B newuser.jsp

m newuserforward.jsp

m usercreationforward.jsp

The login.jsp template provides customers who have not yet registered with your site
an entry point into a page that allows them to register (create their initial customer
profile) for subsequent use on the site. Since this page is the entry point to the checkout
process, it also establishes mechanisms (such as sessions) that will allow customers to
continue their shopping experience.

Figure 6-21 shows an example of a Web page formatted with the 1ogin. jsp template.

WebLogic Portal Development Guide ~ 6-33

6

Implementing User Profiles

Figure 6-21 login.jsp Formatted Web Page

The Commerce.
Templates header

(admin. inc) contains
useful information for
the benefil of you and

your development
leam

The page header is
crealed by importing
the header . inc
template

The left column is
created by importing

login.jsp

Commerce Templates

. Store your stuff in our
= Storage Boxes !/

Home

Log In

Registered User
If you are a registered user, enter your usemame and password
When finished, click Log In.

the 1=ftzide. in This region provides two
template Username [democustomer form fields for customers
Criaiog who already have a
uruwded counesf of Password [username and password
ter, ‘where combination,
supm m:els
dem Login
This region prﬂwdes alink
New Customer lothe rewebes fap
Click Create to bagin a new | tempiate that allows new
e user profilg, Lcmaste cuslomers lo register vilh
YOUF 8-COMMErce site.
- Copyright © 1999-2001,
<bea
A ms Inc.
The footer is created by importing the £ooter. inc template.

6-34

If an unregistered customer clicks Create in the portlet, the next page loaded allows
the customer to create a profile and a username/password combination
(newuser.jsp). After the customer has registered, the customer is automatically
logged in and forwarded to the newusercreation.jsp template, which allows
customers to continue shopping, view their shopping carts, or check out. If the
auto-login is unsuccessful, the 1ogin. j sp template is loaded for the customer to enter
their username and password. If the customer’s login attempt is unsuccessful, the
badlogin.jsp is loaded.

Notes: The option to proceed to checkout is only provided on the
newusercreation.jsp template if there are items in the customer’s
shopping cart.

WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Events

badlogin.jsp

The 1login.jsp template presents a customer with two buttons, only one of which is
considered an event. The event triggers a particular response in the default Webflow
that allows customers to continue. The other button is a standard HTML Submit button
that posts the page back to the WebLogic Server for authentication. Table 6-1 provides
information about the event and the business logic it invokes.

Table 6-1 login.jsp Events

Event Webflow Response(s)

button.createUser No business logic required. Loads newuser.jsp.

The Login button is not an event that would trigger a Webflow response. Rather, when
a customer clicks the button, control is turned over to the WebLogic Server
(specifically, the RDBMS realm of the WebLogic Portal). The WebLogic Server
remembers the HTTP request, determines whether the customer’s username and
password combination is correct, and then reinvokes the Webflow using the request.

The badlogin.jsp template (shown in Figure 6-22) informs a customer that they have
entered an invalid username/password combination, and allows the customer to try
logging into a site again by providing a valid username/password combination. Except
for the error message, it behaves exactly as the 1ogin. jsp template previously
described.

WebLogic Portal Development Guide ~ 6-35

6 Implementing User Profiles

Figure 6-22 badlogin.jsp Formatted Web Page

The Commerce.
Templates header
(admin. inc) contains
useful information for
the benefil of you and
your development

team

Don't forget to buy and wear 5
The page header is i L X
crealed by importing our Safety Equipment! >

the header.inc

template. e
1 This region displays
= | the login error
® check| LOg In messags, and prompts
Out Our|| o9 failed. Please try again or create a new account the customer to login
Low Prices || again or create a new
| o —_ account.
The left column is W onorills)|| Registered User
crealed by importing | If you are a registarad user, anter your usemame and passward.
the 1eftside.inc When finished, click Log In This region provides two
template. | form fields for customers
Catalog data | Usemame |democustomer [who already have a
provided courtesy of | username and password
L2 Roaiftzciimhores| Password [combination
demand.’
| Login
This region provides a link
tothe newuser.ap
New Customer templale that allows new
Click Creats to begin 3 new "oz customers to register with
usar profila, LEes your e-commerce site.

m Copyright © 1993-2001,

BEA Systems Inc,

The footer is created by importing the £ootex. inc lemplale.

newuser.jsp
The newuser. jsp template allows a new customer to register with your e-commerce

site by creating their customer profile, which includes personal information, shipping
address information, payment information (optional), and account information.

Description

xxx through xxx show an example of how a Web page formatted with newuser.jsp
might appear in a browser.

6-36 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Figure 6-23 Web Page Formatted with newuser.jsp — Personal Information

The Commerce.
Templates header
(admin . inc) contains
useful information for
the benefit of you and
your development
am. | premgpmemeested e e e

This reghstration form populates the Unified Customer Profile (UCP). 1
Through the Campaign Manager you can use this infarmation to create rules that |

Commerce Templates

zg&ﬂg’f"ﬁ:gﬁmig target content based upan specfic user profies. Regster now to see for yoursell
the header.inc
template.

Home

i Create a New Account
If you already have an account, use your browser's Back button ta retum to the Login page and lag in from there

The left column is First name N
created by importin i
fredieg oy metne Middle initial
template. This region provides
Catalog data Last name N form fields for
provided courtesy of | customers {o enter
IPH Register, ‘'where their personal
supply ms: { - customer profile
] § Addross information, including
{ 1 their name, address,
| Address 2 phone number(s), and
L ey - email address
State / Province SELECT 3 (Required for U.S. and Canadian address)
Zip/Postal Code »
Country SEimen =,
| Home phone
| Business phane
| Email address [
B Yes, 1 want to be offered specials and natified of discounts. Please send me
promotional e A

The page prior to newuser . jsp is the customer login page (login. jsp). If no errors
are found after a customer enters their initial profile information, customers are
auto-logged in and forwarded to a welcome page where they can select from the
various links to continue shopping or check out (newusercreation.jsp). If errors
are found, the newuser.jsp is reloaded with an appropriate message next to the
invalid form fields.

This template is part of the sampleapp user namespace in the Webflow.

JSP Templates Included by newuser.jsp

newuser . jsp includes three additional JSP templates when it is implemented. These
JSPs provides a standardized format for both the form presentation and error handling
in all JSP templates that prompt customers for shipping address, credit card
information, and demographic information. These templates are described in the
following paragraphs.

WebLogic Portal Development Guide ~ 6-37

6

Implementing User Profiles

newaddresstemplate.inc This template provides a standardized format for both
the form field presentation and error handling included in all JSP templates that prompt
customers for a shipping address, except addaddress . jsp. The form fields are
organized in a table, and upon form submission, the input processors associated with
the newaddresstemplate.inc template will validate the form to ensure that all
required fields contain values. If errors are detected, the newaddresstemplate. inc
template will be redisplayed, with an error message at the top and the invalid field
labels shown in a red (as opposed to the original black) font. Previously entered correct
information will still be displayed in the form.

The behavior described above is invoked on the newaddresstemplate. inc template
by using the getvalidatedvalue JSP tag, as shown in Listing 6-15.

Listing 6-15 Use of the getvalidatedvalue JSP Tag on newaddresstemplate.inc

<!-- begin table with customer's shipping address information -->

<table width="90%" border="0">
<tr>

<td width="26%"><webflow:getValidatedvValue
fieldName="<%=HttpRequestConstants.CUSTOMER SHIPPING ADDRESS1%>"
fieldValue="customerShippingAddressl" fieldStatus="status"
validColor="black" invalidColor="red" unspecifiedColor="black"
fieldColor="fontColor" />
<div class="tabletext"s><font color=<%= fontColor %>>Address

</divs>

</td>

<td width="74%"> <input type="text"
name="<%=HttpRequestConstants.CUSTOMER_ SHIPPING ADDRESS1%>"
value="<%=customerShippingAddressl%>" size="30" maxlength="30">*

</td>

</tr>
</table>
newcctemplate.inc This template provides a standardized format for both the form
presentation and error handling in all JSP templates that prompt customers for credit
card/payment information. The form fields are organized in a table, and upon form
submission, the input processors associated with the newcctemplate.inc template
6-38 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

<table>

will validate the form to ensure that all required fields contain values. If errors are
detected, the newcctemplate. inc template will be redisplayed, with an error
message at the top and the invalid field labels shown in a red (as opposed to the original
black) font. Previously entered correct information will still be displayed in the form.

The behavior described above is invoked on the newcctemplate. inc template by
using the getvalidatedvalue JSP tag, as shown in Listing 6-16.

Listing 6-16 Use of the getvalidatedvalue JSP Tag on newcctemplate.inc

<td width="27%"><webflow:getValidatedvalue
fieldName="<%=HttpRequestConstants.CUSTOMER CREDITCARD HOLDER%>"
fieldvValue="customerCreditCardHolder" fieldStatus="status"
validColor="black" invalidColor="red"
unspecifiedColor="black"
fieldColor="fontColor" />
<div class="tabletext">

<font color=<%= fontColor %>>Name on card

</divs>

</td>

<td width="73%"> <input type="text"
name="<%=HttpRequestConstants.CUSTOMER_CREDITCARD HOLDER%>"
value="<%=customerCreditCardHolder%>" size="30" maxlength="50">*

</td>

</table>

newdemographictemplate.inc This template provides a standardized format for
both the form presentation and error handling in all JSP templates that prompt
customers for demographic information. The radio buttons are organized in a table,
and upon form submission, the input processors associated with the
newdemographictemplate.inc template will validate the form to ensure that all
required fields contain values. If errors are detected, the
newdemographictemplate.inc template will be redisplayed, with an error message

WebLogic Portal Development Guide ~ 6-39

6 Implementing User Profiles

at the top of the including page and the invalid field labels shown in a red (as opposed
to the original black) font. Previously entered correct information will still be
displayed in the form.

The behavior described above is invoked on the newdemographictemplate.inc
template by using the getvalidatedvalue JSP tag, as shown in Listing 6-17.

Listing 6-17 Use of the getvValidatedvalue JSP Tag on
newdemographictemplate.inc

<webflow:getValidatedValue fieldName="<%=HttpRequestConstants.CUSTOMER GENDER%>"
fieldDefaultValue="<%=(String) currentPropertyValue%>"
fieldvalue="genderValue" fieldStatus="status" validColor="black"
invalidColor="red" unspecifiedColor="black" fieldColor="fontColor" />

<td width="26%"><div class="tabletext"><font color=<%= fontColor %$>>
Gender*</div>

</td>

<td width="74%">

<%// get the property values for Gender
propertyBean.setPropertyName (GENDER) ;

property = propertyBean.getPropertyObject () ;

if (property == null || property.getRestrictedValues() == null)
arr = new Object[0];

else arr = property.getRestrictedValues() .toArray() ;%>

<ps:getRestrictedPropertyValues propertySetName="Demographics"

propertySetType="USER" propertyName="<%= GENDER %>" id="arr"
result="foobar" />

<table width="100%" border="0" cellpadding="0"
cellspacing="0"><es:forEachInArray id="valueObject" array="<%= arr %>"
type="String">
<tr>
<td width="4%"><input type="radio" name="
<%= HttpRequestConstants.CUSTOMER GENDER %>" value="<%= valueObject %>"

<% if (valueObject.eqguals(genderValue)) { %>CHECKED<% } %>></td>
<td><%= valueObject %></td>
</tr>
</es:forEachInArray>
</table>

6-40 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Events

The newuser . jsp template presents a customer with two buttons, each of which is
considered an event. These events trigger a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or pipeline component is invoked first.

Table 6-2 describes the business logic these events invoke.

Table 6-2 newuser.jsp Events

Event Webflow Response(s)

button.cancel GetCategoryIP
GetTopCategories Pipeline

button.save CustomerProfileIP
CustomerProfile Pipeline

Table 6-3 briefly describes each of the Pipeline components described Table 6-2.

Table 6-3 newuser.jsp Associated Pipelines

Pipeline Description

CustomerProfile Contains EncryptedCreditCardPC and RegisterUserPC,
and is transactional.

newuser.jsp Form Fields

The primary purpose of the newuser. jsp template is to allow customers to enter their
profile information using various HTML form fields. It is also used to pass needed
information to the Webflow.

The form fields used in the newuser.jsp template, most of which are imported from
other templates, and a description for each of these form fields are listed in Table 6-4.

Note: Ifa form field is imported from another template, it is indicated in the

description. Form fields without import information are in the newuser. jsp
template.

WebLogic Portal Development Guide 6-41

6 Implementing User Profiles

Table 6-4 newuser.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been triggered. It is
used by the Webflow to determine what
happens next.

“origin” Hidden The name of the current page (newuser. jsp),
used by the Webflow.
“namespace” Hidden The namespace for the JSP;

sampleapp user in this JSP.

HttpRequestConstants. Textbox The customer’s first name.
CUSTOMER_FIRST_ NAME

HttpRequestConstants. Textbox The customer’s middle initial.
CUSTOMER_MIDDLE_NAME

HttpRequestConstants. Textbox The customer’s last name.
CUSTOMER LAST NAME

HttpRequestConstants. Textbox The first line in the customer’s street address.
CUSTOMER_ADDRESS1

HttpRequestConstants. Textbox The second line in the customer’s street address.
CUSTOMER_ADDRESS2

HttpRequestConstants. Textbox The city in the customer’s address.
CUSTOMER_CITY

HttpRequestConstants. Listbox The state in the customer’s address. Imported
CUSTOMER_STATE from states. inc.
HttpRequestConstants. Textbox The zip code in the customer’s address.

CUSTOMER_ZIPCODE

HttpRequestConstants. Listbox The country in the customer’s address.
CUSTOMER_COUNTRY Imported from countries. inc.
HttpRequestConstants. Textbox The customer’s home phone number.

CUSTOMER HOME_PHONE

HttpRequestConstants. Textbox The customer’s business phone number.
CUSTOMER_BUSINESS PHONE

6-42 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Table 6-4 newuser.jsp Form Fields (Continued)

Parameter Name Type Description
HttpRequestConstants. Textbox The customer’s e-mail address.
CUSTOMER_EMAIL
HttpReqguestConstants. Checkbox Indicates that the customer wants to receive
CUSTOMER EMAIIL, OPT IN promotional items via e-mail.
HttpReqguestConstants. Checkbox Indicates that the customer’s shipping address is
SAME_AS_ABOVE the same as the contact address. Imported from
newaddresstemplate.inc.
HttpRequestConstants. Textbox The first line in the customer’s shipping
CUSTOMER _SHIPPING ADDRESS1 address. Imported from
newaddresstemplate.inc.
HttpRequestConstants. Textbox The second line in the customer’s shipping
CUSTOMER SHIPPING ADDRESS2 address. Imported from
newaddresstemplate.inc.
HttpRequestConstants. Textbox The city in the customer’s shipping address.
CUSTOMER SHIPPING CITY Imported from newaddresstemplate. inc.
HttpReqguestConstants. Listbox The state in the customer’s shipping address.
CUSTOMER_SHIPPING_STATE Imported from newaddresstemplate. inc.
HttpRequestConstants. Textbox The zip/postal code in the customer’s shipping
CUSTOMER SHIPPING ZIPCODE address. Imported from
newaddresstemplate.inc.
HttpRequestConstants. Listbox The country in the customer’s shipping address.
CUSTOMER_SHIPPING COUNTRY Imported from newaddresstemplate. inc.
HttpRequestConstants. Radio Identifies the customer as male or female.
CUSTOMER_GENDER buttons Imported from
newdemographictemplate.inc.
HttpRequestConstants. Textboxes The customer’s date of birth. Imported from
CUSTOMER_DATE_OF_ BIRTH newdemographictemplate. inc.
HttpReqguestConstants. Radio The customer’s job description. Imported from
CUSTOMER_OCCUPATION buttons newdemographictemplate.inc.

WebLogic Portal Development Guide ~ 6-43

6 Implementing User Profiles

Table 6-4 newuser.jsp Form Fields (Continued)

Parameter Name Type Description
HttpRequestConstants. Radio Identifies if the customer has a job at the time of
CUSTOMER EMPLOYMENT STATUS buttons registration. Imported from
newdemographictemplate. inc.
HttpRequestConstants. Radio Identifies the customer’s marital status.
CUSTOMER MARITAI,_ STATUS buttons Imported from
newdemographictemplate. inc.
HttpRequestConstants. Radio Identifies how much formal education the
CUSTOMER EDUCATION LEVEL buttons customer has completed. Imported from
newdemographictemplate.inc.
HttpRequestConstants. Radio Identifies the customer’s yearly income.
CUSTOMER INCOME_RANGE buttons Imported from
newdemographictemplate.inc.
HttpRequestConstants. Radio Ranks customer from beginner to expert in
CUSTOMER QUALITY buttons using your product. Imported from
newdemographictemplate.inc.
HttpRequestConstants. Listbox The type of the customer’s credit card. Imported
CUSTOMER_CREDITCARD TYPE from newcctemplate. inc.
HttpRequestConstants. Textbox The name on the credit card. Imported from
CUSTOMER_CREDITCARD HOLDER newcctemplate. inc.
HttpRequestConstants. Textbox The number of the customer’s credit card.
CUSTOMER_CREDITCARD NUMBER Imported from newcctemplate. inc.
HttpRequestConstants. Listbox The month of the customer’s credit card
CUSTOMER_CREDITCARD MONTH expiration date. Imported from
newcctemplate.inc.
HttpRequestConstants. Listbox The year of the customer’s credit card
CUSTOMER CREDITCARD YEAR expiration date. Imported from
newcctemplate.inc.
HttpRequestConstants. Textbox The first line in the customer’s billing address.
CUSTOMER_CREDITCARD ADDRESS1 Imported from newcctemplate. inc.
HttpRequestConstants. Textbox The second line in the customer’s billing

CUSTOMER_CREDITCARD
ADDRESS2

6-44 WebLogic Portal Development Guide

address. Imported from
newcctemplate. inc.

Enabling Visitor Self-Registration

Table 6-4 newuser.jsp Form Fields (Continued)

Parameter Name Type Description

HttpRequestConstants. Textbox The city in the customer’s billing address.
CUSTOMER_CREDITCARD_CITY Imported from newcctemplate. inc.
HttpRequestConstants. Listbox The state in the customer’s billing address.
CUSTOMER CREDITCARD STATE Imported from newcctemplate.inc.
HttpRequestConstants. Textbox The zip/postal code in the customer’s billing
CUSTOMER _CREDITCARD ZIPCODE address. Imported from

newcctemplate.inc.

HttpReqguestConstants. Listbox The country in the customer’s billing address.
CUSTOMER_CREDITCARD_COUNTRY Imported from newcctemplate. inc.
HttpRequestConstants.USER_NAME Textbox An identity chosen by the customer for login.
HttpRequestConstants.PASSWORD Password A password chosen by the customer for login.
HttpRequestConstants. Password Confirmation of the password chosen by the
CONFIRM PASSWORD customer for login.

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.USER NAME %>) for use in the JSP.

newusercreation.jsp

The newusercreation.jsp template informs a customer who has just created a new
user profile that they have been logged in and that registration was successful. It also
provides the customer with the opportunity to return to their shopping experience
through several navigation options.

Description

Figure 6-24 shows an example of a Web page formatted with
newusercreation. jsp.

WebLogic Portal Development Guide 6-45

6 Implementing User Profiles

Figure 6-24 Web Page Formatted with newusercreation.jsp

The Commerce.
Templates header
(admin. inc) contains
useful information for
the benefil of you and
your development
leam

The page header is
crealed by importing
the header . inc
template

Commerce Templates

i gender to target a specific message to you (notice the ad below). Store data indicates
 that women buy 75% of all Saws and Men buy 63% of all Drills. Click the ad below.

Home
cn Congratulations
Welcome Demo220, you have successfully registered and logged in.
Ry : * The main body of the
Pleass select f the follow ions: ge indicates 1o the
e et colamn e Logout lease select one of the following actions, page Incicates fo the on
Crente by immaring Viaw shopping cart Check out Continue shopping Shd auto-login vas
Ihe leftzida.inc | View History successful. It also
template, B Qrders provides the customer
Paymants with links to tneir
Mow that the user has a profile shopping cart
andis logged in, the (shoppingcart. jzp),
Tefteide. incshows to continue shopping, to
links lo the cusiomer’s order the checkor
history
{erderhistory.jsp),
payment history nk in
{paymenthistory.jap), to header.inc
their profile
(viewprafile.jap), orto
Catalog dats logout
provided courtesy of
Req: L ‘where
Supply meets
demand.
m Copyright © 1999-2001,
BEA Systems Inc.

The footer is created by importing the £ootex. inc lemplale.

The option to proceed to checkout is only provided on the newusercreation.jsp
template if there are items in the customer’s shopping cart. Otherwise, the
newusercreation.jsp template will leave out this option as shown in Figure 6-25.

6-46 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Figure 6-25 Web Page Formatted with newusercreation.jsp When Shopping
Cart is Empty

{ ilea 1 Commerce Templates

i You are now in a campaign that uses both your classification as a new user and your :

i gender to target a specific message to you (n w). Store data indicates |
tm wormen buy 75% of all Saws and Men buy 63% of all Drlls. Click the ad & i

Home

Welcome H
Dama Customer . CONGratulations
view Profils Welcome Demo451, you have successfully registered and logged in
L gout
. Please select one of the following actions
view Histary View shopping cart tontinue shopping ———— [iote that the chack out
ro

Dare"

- Buy a:
Drill Today
& Redeem :
" Your $101 |

Catalog data
Drowded courtesy of

Copyright @ 1999-2001,

= s Ir

How newusercreation.jsp Works

Customers arrive at the newusercreation. jsp template when they have successfully
created a new user profile and the auto-login—using Java Authentication and
Authorization Service (JAAS)—has completed. If the customer creates a new profile,
but the auto-login does not complete successfully, the customer is routed back to the
login.jsp template and will not see the newusercreation.jsp template. After
manual login, the customer is routed to the main. jsp template.

Note: If a customer had created a profile on a previous visit and logged in using the
login.jsp template, the customer would simply be taken to the protected
page the customer was trying to access.

From the newusercreation.jsp template, the customer can return to their shopping
cart (shoppingcart . jsp), continue shopping, continue to the checkout process
(shipping.jsp), view their order history (orderhistory.jsp), view their profile
(viewprofile.jsp), view their payment history (paymenthistory.jsp), logout, or
return to the main catalog page (main.jsp).

WebLogic Portal Development Guide 6-47

6 Implementing User Profiles

Events

Note: The option to proceed to checkout is only provided on the
newusercreation.jsp template if there are items in the customer’s
shopping cart.

This template is part of the sampleapp user namespace in the Webflow.

Every time a customer clicks a button to view more detail about an order, it is
considered an event. Each event triggers a particular response in the default Webflow
that allows them to continue. While this response can be to load another JSP, it is
usually the case that an input processor and/or Pipeline is invoked first. Table 6-5
provides information about these events and the business logic they invoke.

Table 6-5 newusercreation.jsp Events

Event Webflow Response(s)

link.shoppingcart InitShoppingCartIP

button.checkout InitShippingMethodListIP

link.home GetTopCategoriesIP
GetTopCategories Pipeline

newuserforward.jsp

Description

The newuserforward.jsp template directs unregistered users to the newuser.jsp
when that user clicks an ad placeholder that contains a static URI. This is necessary
because dynamic URISs are not supported in placeholders. The newuserforward.jsp
template then forwards the user to newuser . jsp. Additionally, the
newuserforward. jsp bridges the transition from a non-secure to a secure connection
(.httpto .https).

This template does not render a Web page or any other visible output. Its code is shown
in Listing 6-18.

6-48 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Listing 6-18 newuserforward.jsp Code

<% String s = com.bea.pl3n.appflow.webflow.WebflowJSPHelper.
createWebflowURL (pageContext, "sampleapp main", "login.jsp",
"button.createUser", true); %>

<% response.sendRedirect(s) ; %>

Table 6-6 shows the key template components.

Table 6-6 Template Components

Type of Component Components
Included templates None
Tag libraries None

Imported Java packages None

How newuserforward.jsp Works

Events

The page prior to newuserforward. jsp can be any page that an anonymous user can
access. However, this template is only needed if an unregistered user clicks the ad
placeholder that prompts them to register. The static URI in the placeholder accesses
the newuserforward.jsp which then forwards the user to the newuser.jsp
template.

This template is part of the sampleapp main namespace in the Webflow.

The newuserforward. jsp template has one event, which triggers a particular
response in the default Webflow that allows customers to continue. While this
response can be to load another JSP, it is usually the case that an input processor or
Pipeline is invoked first. Table 6-7 provides information about this event and the
business logic it invokes.

WebLogic Portal Development Guide ~ 6-49

6 Implementing User Profiles

Table 6-7 newuserforward.jsp Events

Event Webflow Response(s)

button.createUser newuser.jsp

usercreationforward.jsp

Description

The usercreationforward.jsp template forwards new users to the
newusercreation.jsp template after the registration and auto-login process using
JAAS is completed by the Webflow. Once the user is created, the request must be
flushed; the usercreationforward.jsp template allows that to happen.

This template does not render a Web page or any other visible output. Its code is shown
in Listing 6-19.

Listing 6-19 usercreationforward.jsp Code

<% String s = WebflowJSPHelper.createWebflowURL (pageContext,
"sampleapp user", "usercreationforward.jsp",
"forward.usercreation", true); %>

A
o°

response.sendRedirect (s) ; %>

The usercreationforward.jsp template uses Java classes in the
com.bea.pl3n.appflow.webflow.WebflowISPHelper package and must include
this import statement:

<%@ page import="com.bea.pl3n.appflow.webflow.
WebflowJSPHelper*" %>

6-50 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

How usercreationforward.jsp Works

The page prior to usercreationforward. jsp is the newuser. jsp template. When
new users save their profiles, they are auto-logged in using JAAS and if the login is
successful, because the old request must be flushed, the usercreationforward. jsp
is needed to redirect the user to the newusercreation.jsp template.

This template is part of the sampleapp user namespace in the Webflow.

Events

The usercreationforward. jsp template has one event. This event triggers a
particular response in the default Webflow that allows customers to continue. While
this response can be to load another JSP, it is usually the case that an input processor
or Pipeline is invoked first. Table 6-8 provides information about this event and the
business logic it invokes.

Table 6-8 usercreationforward.jsp Events

Event Webflow Response(s)

forward.usercreation newusercreation.jsp

Webflow Components Used in Visitor Self-Registration

The templates described in “Implementing Customer Profile JSPs” on page 6-33 use
Webflow components called input processors and pipelines to execute much of the
necessary business logic to enable visitor self-registration. This section describes the
key Webflow components implemented.

This section includes information on the following subjects:
® Input Processors

m Pipeline Components
Note: See “Setting Up Portal Navigation” on page 9-1 for information about using,

creating, or modifying a Webflow and using input processors and pipeline
components.

WebLogic Portal Development Guide ~ 6-51

6

Implementing User Profiles

Input Processors

The following input processors represent Java classes invoked to carry out more complex
visitor regiatration tasks when invoked by the Webflow mechanism. These processors are:

m CustomerProfileIP

m LoginCustomerIP

For more information on input processors, see “Types of Nodes” on page 9-3.

CustomerProfilelP

CustomerProfileIP (all input processor names end in the letters “IP”) processes the
input of newuser . jsp and allows the customer to store their profile. It also creates and places
a CustomerValue object into the Pipeline Processor session.

Class Invoked examples.wlcs.sampleapp.customer.webflow.
CustomerProfileIP

Required HttpRequestConstants.CUSTOMER FIRST NAME

HTTPServletRequest HttpRequestConstants.CUSTOMER MIDDLE NAME

Parameters

(Personal Information)

HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants

.CUSTOMER LAST NAME
.CUSTOMER_ADDRESS1
.CUSTOMER ADDRESS2
.CUSTOMER _CITY
.CUSTOMER _STATE
.CUSTOMER_ZIPCODE
.CUSTOMER COUNTRY
.CUSTOMER HOME_PHONE
.CUSTOMER BUSINESS_ PHONE
.CUSTOMER EMAIL
.CUSTOMER EMAIIL, OPT IN

(code location: newuser. jsp template.)

6-52

WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Required
HTTPServletRequest
Parameters

(Demographic Information)

HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants

.CUSTOMER INCOME RANGE
.CUSTOMER EDUCATION LEVEL
.CUSTOMER DATE_OF_ BIRTH
.CUSTOMER GENDER

.CUSTOMER OCCUPATION
.CUSTOMER MARITAL STATUS
.CUSTOMER EMPLOYMENT STATUS
.CUSTOMER QUALITY

(code location: newdemographictemplate. inc template.)

Required
HTTPServletRequest
Parameters

(Shipping Information)

HttpRequestConstants.

SAME_AS_ ABOVE

(code location: newuser . jsp template.)

HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants

.CUSTOMER_SHIPPING_ ADDRESS1
.CUSTOMER_SHIPPING_ ADDRESS2
.CUSTOMER_SHIPPING CITY
.CUSTOMER_SHIPPING STATE
.CUSTOMER_SHIPPING ZIPCODE
.CUSTOMER_SHIPPING COUNTRY
.DEFAULT SHIPPING_ADDRESS

(code location: newaddresstemplate.inc template.)

HTTPServletRequest
Parameters
(Payment Information)

HttpRequestConstants.
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants
HttpRequestConstants.

CUSTOMER_CREDITCARD TYPE

.CUSTOMER_CREDITCARD HOLDER
.CUSTOMER_CREDITCARD NUMBER
.CUSTOMER_CREDITCARD MONTH
.CUSTOMER_CREDITCARD_ YEAR
.CUSTOMER_CREDITCARD ADDRESS1
.CUSTOMER_CREDITCARD ADDRESS2
.CUSTOMER_CREDITCARD_CITY
.CUSTOMER_CREDITCARD_STATE
.CUSTOMER_CREDITCARD_ ZIPCODE

CUSTOMER_CREDITCARD COUNTRY

(code location: newcctemplate. inc template.)

WebLogic Portal Development Guide ~ 6-53

6 Implementing User Profiles

Required
HTTPServletRequest
Parameters

(Account Information)

HttpRequestConstants.USER_NAME
HttpRequestConstants.PASSWORD
HttpRequestConstants.CONFIRM_ PASSWORD

(code location: newuser . jsp template.)

Required Pipeline Session
properties

None

Updated Pipeline Session
properties

PipelineSessionConstants . CUSTOMER
PipelineSessionConstants . PASSWORD

PipelineSessionConstants.CREDITCARD KEY (only if
customer provides a credit card update).

Removed Pipeline Session
properties

None

Validation Checks that the required fields contain values and checks that the credit
card number is not less than 16 digits (15 digits for AMEX type). Also
checks that the password and confirm password fields contain matching
values.

Exceptions InvalidInputException, thrown when required fields are empty or
credit card number is less than 16 digits (15 digits for AMEX type).

LoginCustomerIP
LoginCustomerIP processes the input of login. jsp and allows the customer to access the
secure pages of the site. It also creates and places a CustomerValue object into the Pipeline
Processor session.
Class Invoked examples.wlcs.sampleapp.customer.webflow.
LoginCustomerIP

Required None

HTTPServletRequest

Parameters

6-54 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Required Pipeline Session PipelineSessionConstants . CUSTOMER

properties

PipelineSessionConstants . PASSWORD

PipelineSessionConstants.CREDITCARD KEY (only if the
customer provides a credit card update).

Updated Pipeline Session None

properties

Removed Pipeline Session PipelineSessionConstant s . PASSWORD
properties

Validation Verifies that the username and password are correct.

Exceptions

InvalidInputException, thrown if either the username or
password is invalid.

ProcessingException, thrown if the username is invalid or cannot
get authentication.

Pipeline Components

RegisterUserPC

This section provides a brief description of each pipeline component associated with
the Customer Login and Registration Services JSP template(s). These Pipelines are
processor nodes a Webflow invokes to initiate the execution of specific tasks related to visitor
registration.

Note: Some pipeline components extend other, base pipeline components. For more
information on the base classes, see the Javadoc.

For more information on pipeline components, see “Types of Nodes” on page 9-3.
This section contains information on these pipeline components:
m RegisterUserPC

m EncryptCreditCardPC

RegisterUserPC (all pipeline component names end in the letters “PC”) retrieves the
CustomerValue object and password from the Pipeline Processor session and creates
a CUSTOMER attribute.

WebLogic Portal Development Guide ~ 6-55

6 Implementing User Profiles

Class Name

examples.wlcs.sampleapp.customer. pipeline.
RegisterUserPC

Contained in

CustomerProfile Pipeline

Required Pipeline
Session Properties

PipelineSessionConstants . CUSTOMER
PipelineSessionConstants . PASSWORD

Updated Pipeline
Session Properties

None

Removed Pipeline
Session Properties

PipelineSessionConstants . PASSWORD

Type Java class
JNDI Name None
Exceptions PipelineException, thrown when the pipeline component cannot
create the user.
EncryptCreditCardPC
EncryptCreditCardPC uses the CREDITCARD KEY object to retrieve a customer credit
card, encrypts the credit card number, and then adds the modified credit card back to the
PipelineSession CustomerValue attribute.
Class Name examples.wlcs.sampleapp.customer.pipeline.
EncryptCreditCardPC
Description

Contained in

CustomerProfile Pipeline

Required Pipeline
Session Properties

PipelineSessionConstants.CREDITCARD KEY

Updated Pipeline
Session Properties

PipelineSessionConstants . CUSTOMER

6-56 WebLogic Portal Development Guide

Enabling Visitor Self-Registration

Removed Pipeline
Session Properties

PipelineSessionConstants.CREDITCARD KEY

Type Java class
JNDI Name None
Exceptions PipelineException, thrown when the pipeline component cannot

find the user in the Pipeline Processor session or the creditcard key
is invalid or the encryption did not complete successfully.

WebLogic Portal Development Guide ~ 6-57

6 Implementing User Profiles

6-58 WebLogic Portal Development Guide

CHAPTER

7

Adding Security to a
Portal

A Web server authenticates users and determines which resources within the server

users can create, access, or modify. To do this, the Web server uses a security realm.
When a user attempts to access a particular resource, the server tries to authenticate and
authorize that user by checking the access control list (ACL) and permissions that are
assigned to the user within the realm. You can set up multiple security realms, but each
instance of a Web server can use only one realm. The server uses the same security

realm for your Web site developers and for your visitors.

This section contains information on the following subjects:

Implementing Portal Security

Integrating with an LDAP Security Realm

Switching to a WebLogic 7.0 Security Framework Security Realm
Multiple Authentication Providers Support in WebLogic Portal 7.0 SP4
Other Supported Security Realms

Enabling Secure Sockets Layer Security

Enabling Single Sign-On

WebLogic Portal Development Guide

7-1

7 Adding Security to a Portal

Implementing Portal Security

If you choose to use the basic implementation of the RDBMS security realm supplied
by BEA, it will be available when you install WebLogic Portal. No further
configuration is necessary.

Note: The WebLogic Portal RDBMS Realm is a different implementation than the
WebLogic Server RDBMS Realm. The WebLogic Server RDBMS Realm is
for testing and is not suitable for use in a production environment. WebLogic
Portal’s RDBMS realm is shipped in the
BEA HOME/weblogic700/portal/lib/pl3n_ system.jar file and the
implementing class is in com.bea.pl3n.security.realm.RDBMSRealmas
configured with the config.xml file entry:
RealmClassName="com.bea.pl3n.security.realm.RDBMSRealm.

Integrating with an LDAP Security Realm

If you don’t want to use the basic RDBMS security realm, one popular alternative is to
use a lightweight directory access protocol (LDAP) server as your security realm. This
section describes how to integrate an LDAP server with WebLogic Portal. This section
includes the following topics:

m Supported LDAP Servers

m Integrating an LDAP Security Realm

Supported LDAP Servers

WebLogic Portal supports these LDAP servers:
m Netscape Directory Server

m Microsoft Site Server

7-2 WebLogic Portal Development Guide

Integrating with an LDAP Security Realm

m Novell Directory Services
m Open LDAP Directory Services

You can find templates for each of these services in “Supported Server Templates™ on
page 7-7.

Integrating an LDAP Security Realm

This section shows how WebLogic Portal integrates with a third-party LDAP security
realm; security realms are the method used by WebLogic Portal to authenticate users.
While WebLogic Portal provides a default user store based on a RDBMS, this can be
replaced with an LDAP realm, which uses an LDAP server for security information.

Configuring the LDAP Server for Integration

Configuring the LDAP security realm involves defining attributes that enable the
LDAP Security realm in WebLogic Server to communicate with the LDAP server and
the attributes that describe how users and groups are stored in the LDAP directory. The
LDAP tree and schema is different for every LDAP server.

In “Supported Server Templates” on page 7-7, you can find templates for the supported
LDAP servers. These templates specify default configuration information used to
represent users and groups in each of the supported LDAP servers. You choose the
template that corresponds to the LDAP server you want to use and then fill in the
attributes described in Table 7-1.

Note: InLDAP V1, you can configure these attributes from the LDAP Realm Create
screen, on the tab specified in Table 7-1.

Table 7-1 LDAP Realm Configurable Attributes

Attribute Description

User DN A list of attributes and their values that, when combined with the attributes
in the User Name Attribute attribute, uniquely identifies an LDAP User.

Configure this attribute on the Users tab in the LDAP Realm Create screen.

WebLogic Portal Development Guide 7-3

7 Adding Security to a Portal

7-4

Table 7-1 LDAP Realm Configurable Attributes

Attribute Description

Group DN List of attributes and values that, combined with the Group Name Attribute
attribute, uniquely identifies a Group in the LDAP directory.

Configure this attribute on the Groups tab in the LDAP Realm Create
screen.

Principal DN of the LDAP User that WebLogic Server uses to connect to the LDAP
server. This user must be able to list LDAP Users and Groups.

Configure this attribute on LDAP Realm tab in the LDAP Realm Create
screen.

Credential Password that authenticates the LDAP User defined in the Principal
attribute.

Configure this attribute on LDAP Realm tab in the LDAP Realm Create
screen.

For instructions for configuring the LDAP security realm, please refer to “Configuring
the LDAP Security Realm” in the WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#1052314.

In addition to defining attributes that enable communication with the LDAP server,
you will have to define certain groups in your LDAP server to correspond to the
security role mappings that have been set for portal delegated administration. To set
these groups up you should:

1. Read “Administering Users and Groups” at
http://e-docs.bea.com/wlp/docs70/admin/usrgrp.htm, especially the section
“Creating Administrative Users.”

2. To set up WebLogic Server System Administrators it is recommended that you
use the provided fileRealm.properties file and use the WebLogic
administration console to administer the weblogic and system users. They are
members of the Administrators group, which is a subgroup of the special
WebLogic Server groups Operators, Deployers, and Monitors.

3. Set up one or more WebLogic Portal System Administrators.
a. Create the group SystemAdministrator in your LDAP server.

b. Add the desired users to this group in your LDAP server.

WebLogic Portal Development Guide

Integrating with an LDAP Security Realm

4. Set up the groups required for delegated administration of portals. All users that

will be designated at Portal Administrators or Group Portal Administrators must
be added to the proper groups before using the WebLogic Portal Administration
Tools to specify them as Portal Administrators or Group Portal Administrators.

a. Create the groups AdminEligible and DelegatedAdministrator in your
LDAP server.

b. Add the desired users to both of these groups.

c. These users are now candidates for designation as Portal Administrators or
Group Portal Administrators. You would have to use the WebLogic Portal
Administration Tools to persist the data required to enable them as
administrators.

d. When removing all delegated administration capabilities for a user it is
recommended that they first be removed from the AdminEligible and
DelegatedAdministrator group in your LDAP server. However, you may
remove them from the groups after revoking their privileges in the WebLogic
Portal Administration Tools if you prefer.

Create groups in your LDAP server that will be associated with your group
portals.

It is not necessary to add your Portal Administrators and Group Portal
Administrators to these groups, but it would be recommended to do this so that
your administrators may log into the group portals to verify their work.

Configuring LDAP-based Security Realms for WebLogic Server and Portal 7.0

Perform the following steps for configuring LDAP-based security realms for
WebLogic Server 7.0 and WebLogic Portal 7.0.

WebLogic Server Setup

1.

Define the LDAP security realm — See the “Compatibility Security” section of the
online help for the WebLogic Server Administration Console.

Configure the caching realm — See the “Compatibility Security” section of the
online help for the WebLogic Server Administration Console.

Configure the default caching realm.

WebLogic Portal Development Guide 7-5

7 Adding Security to a Portal

a. Open the WebLogic Server Administration Console.

b. Click the Compatibility Security node in the left pane.

c. Click the FileRealm tab.

d. Select the Caching Realm you just created and click Apply.

4. Define a system user (or another user as the WebLogic administrator), and
define guest/guest realm in your LDAP directory. See the “Compatibility
Security” section of the online help for the WebLogic Server Administration
Console for more information.

5. Define an Administrators group and add your system user to it (or another
user as the WebLogic administrator) for your realm in your LDAP directory. See
the “Compatibility Security” section of the online help for the WebLogic Server
Administration Console for more information.

6. Test WebLogic Server.
a. Shut down the server.
b. Re-start the server.
c. Logintothe WebLogic Administration Console as the WebLogic administrator

you created.

WebLogic Portal Setup

1. Define the following groups and users for your realm in your LDAP directory:

Group User
Administrators system
SystemAdministrator administrator
AdminEligible

Delegated Administrator

2. Add a new Group Portal.

a. Create the group in LDAP.

7-6 WebLogic Portal Development Guide

Integrating with an LDAP Security Realm

b. Create a new user to administer the Portal.

c. Add the user to the AdminEligible group, DelegatedAdministrator
group, and the new group you just created for the Portal.

d. Use the following URL to log in to WebLogic Portal Administration Tools as a
Portal System Administrator:
http://localhost:7501/portalAppTools/index.jsp.

e. Create a new Group Portal. Specify the new group and new administrator.
3. Add a new Delegated Administrator.
a. Create a new user to administer the Portal.

b. Add the user to the AdminEligible group, DelegatedAdministrator
group, and the group for the Portal.

c. Use the following URL to log in to WebLogic Portal Administration Tools as
the Group Portal Administrator:
http://localhost:7501/portalAppTools/index.jsp.

d. Create a new Group Portal Administrator. Specify the new group and new
administrator.

Supported Server Templates

Listing 7-1 through Listing 7-4 are the templates you can use to configure supported
LDAP servers. You can copy these templates from here directly into the config.xml
file for your application.

Warning: Each line in the following code examples must appear on a single line.
The examples shown below have been formatted to fit the margins of this
document and some lines have been broken to facilitate that formatting. If
you paste this text into the config.xml file, be sure to concatenate the
lines that are broken so that they appear on a single line in your code.

Listing 7-1 Default Netscape Customer Security Realm Template

<CustomRealm
Name="defaultLDAPRealmForNetscapeDirectoryServer"
RealmClassName="weblogic.security.ldaprealmv2.LDAPRealm"

WebLogic Portal Development Guide 7-7

7

Adding Security to a Portal

/>

Password="*secret*"

ConfigurationData="server.host=1dapserver.example.com; server.principal=uid=
admin,

ou=Administrators, ou=TopologyManagement, o=NetscapeRoot;user.dn=ou=people,

o=beasys.com;user.filter=(& (uid=%u) (objectclass=person)) ;group.dn=
ou=groups,

o=beasys.com;group.filter=(& (cn=%g) (objectclass=groupofuniquenames)) ;
membership.filter=(& (uniquemember=%M) (objectclass=
groupofuniquenames)) ;"

Notes="This is provided as an example. Before enabling this Realm, you must

edit the configuration parameters as appropriate for your environment."

Listing 7-2 Default Microsoft Customer Security Realm Template

<CustomRealm

/>

Name="defaul tLDAPRealmForMicrosoftSiteServer"
RealmClassName="weblogic.security.ldaprealmv2.LDAPRealm"
Password="*secret*"
ConfigurationData="server.host=1dapserver.example.com; server.principal=cn=
Administrator,
ou=Members, o=ExampleMembershipDir;user.dn=ou=Members,
o=ExampleMembershipDir;user.filter=(& (cn=%u) (objectclass=member)) ;
group .dn=ou=Groups,
o=ExampleMembershipDir;group.filter=(& (cn=%g) (objectclass=mgroup)) ;
membership.scope.depth=1;microsoft.membership.scope=sub;membership.
filter:(|(&(memberobject:%M)(objectclass:memberof))
(& (groupobject=%M) (objectclass=groupmemberof))) ;"
Notes="This is provided as an example. Before enabling this Realm,
you must edit the configuration parameters as appropriate for your
environment."

Listing 7-3 Default Novell Customer Security Realm Template

<CustomRealm

7-8

Name="defaultLDAPRealmForNovellDirectoryServices"

RealmClassName="weblogic.security.ldaprealmv2.LDAPRealm"

Password="*secret*"

ConfigurationData="server.host=1dapserver.example.com;server.principal=cn=
admin,

o=example.com;user.dn=ou=people,

WebLogic Portal Development Guide

Integrating with an LDAP Security Realm

/>

o=example.com;user.filter=(& (cn=%u) (objectclass=person)) ;group.dn=ou=
groups,

o=example.com;group.filter=(& (cn=%g) (objectclass=groupofuniquenames)) ;
membership.filter=(& (member=%M) (objectclass=groupofuniquenames)) ;"

Notes="This is provided as an example. Before enabling this Realm, you must
edit the configuration parameters as appropriate for your environment."

Listing 7-4 Default OpenLDAP Security Realm Template

<CustomRealm

/>

Name="defaultLDAPRealmForOpenlLDAPDirectoryServices"
RealmClassName="weblogic.security.ldaprealmv2.LDAPRealm"
Password="*secret*"
ConfigurationData="server.host=1dapserver.example.com;server.principal=cn=
Manager,
dc=example, dc=com;user.dn=ou=people, dc=example,
dc=com;user.filter=(& (uid=%u) (objectclass=person)) ;group.dn=ou=groups,
dc=example,
c=com;group.filter=(& (cn=%g) (objectclass=groupofuniquenames)) ;membership.
filter=(& (uniquemember=%M) (objectclass=groupofuniquenames)) ;"
Notes="This is provided as an example. Before enabling this Realm, you must
edit the configuration parameters as appropriate for your environment."

Using Wildcards for User Lookup in an LDAP Realm

This change has been implemented to allow true wildcard searches of the LDAP server
when using the weblogic.security.ldaprealmv2.LDAPRealm.

The original implementation used a getUsers () method that did a search for uid=+*
and returned all users. The enumeration of all users was iterated through to find
matches to the search string input in the WebLogic Portal Administration Tools.

The new implementation does a true wildcard search by using a new

getUsers (String searchString, int maxResults) method thatis implemented
by extending the original LDAPRealm with a new
com.bea.pl3n.security.realm.PortalLDAPRealm.

WebLogic Portal Development Guide 7-9

7 Adding Security to a Portal

7-10

The original WebLogic Portal Administration Tools used the
CachingRealm.getUsers () method to conduct a search that returned all users in the
LDAPRealm. They used a search filter that looked like this:

(& (uid=*) (objectclass=person))

This search result (all users in the realm) was iterated through and users with names
that matched a wildcard search expression in the request were put into a list and were
displayed as links on the page.

The new PortallLDAPRealm.getUsers (String searchString, int
maxResults) method allows a true wildcard search of the LDAP server, using a
search filter that looks like this:

(& (uid=a*) (objectclass=person))

Your search String is used in the (uid=. ..) expression in the filter. To use this patch,
the <CustomRealm> is configured to use a RealmClassName of
com.bea.pl3n.security.realm.PortalLDAPRealm instead of
weblogic.security.ldaprealmv2.LDAPRealm.

Warning: A wildcard LDAP search can be a slow operation for a large LDAP
server. This is not a characteristic of WLS or Portal. This is a
characteristic of LDAP and the libraries used to search it. LDAP servers
populated with millions of users can be very slow for wildcard searches.
To verify expected response times for wildcard searches with your system
you could use an ldapsearch utility to measure a typical wildcard search,
like "a*". For example, for the iPlanet Directory Server you could type
something like this on one line:

ldapsearch -b "ou=People, dc=beasys, dc=com"

-D "uid=admin, ou=Administrators, ou=TopologyManagement,
o=NetscapeRoot"

-h myserver.mydomain.com -p 389 -s sub -w password -z100
" (& (uid=a*) (objectclass=person))"

A fast alternative is to use a specific user id as the search string. With a
user population of millions of users, an LDAP search for uid=a* will
typically be timed out by your LDAP server while a search for the specific
uid=administrator will be very fast. The new PortalLDAPRealm, with
its getUsers (String searchString, int maxResults) method
allows you to either search with a wildcard (slow) or with an exact
username (fast).

WebLogic Portal Development Guide

Integrating with an LDAP Security Realm

Recommendations for Using this Patch with a Large LDAP Server

® You may need to set GroupMembershipCacheTTL=0 to disable the group
membership cache. This will speed up calls to Group . isMember () because this
causes an LDAP search to determine group membership for the specific user
without populating the group membership cache for all the other members of the
group.

Use the WLS console: CompatibilitySecurity > CachingRealm >
yourCachingRealm > Configuration > Groups >
GroupMembershipCacheTTL (set it to 0).

The disabling of this cache is allowed by this patch because the changes to the
weblogic.security.ldaprealmvw.LDAPRealm include the changes made in
in CR090409 to allow disabling of the GroupMembershipCache.

m Configure your LDAP server and your user.dn/group.dn so that your
user.dn and group.dn contain only groups and users that are required by your
Portal application. This will greatly speed up LDAP operations if you have a
large number of users/groups that are used by your company that are never
needed in your Portal application. Remember that the LDAPRealm defaults to
subtree scope searches (this can be changed in config.xml).

m Wildcard searches are permitted now that this patch has been made but they
should not be used if your LDAP server is too big to handle them. Test your
system by using the ldapsearch command line utility or the LDAPSearch utility
for the Netscape SDK 4.1 (WebLogic Server 7.0 ships with the Netscape SDK
4.1 and it is what is used by the LDAPRealm). You can prevent your
administrators from using wildcard searches by modifying the WebLogic Portal
Administration Tools JSP by deleting the wildcard buttons and checking for "
in the search string that is input by the administrator.

m Do not use the WebLogic Portal Administration Tools to browse groups with
very large LDAP repositories. The Group tools search for all members of all
groups and display a tree of the group hierarchy. For a large LDAP server this is
a slow operation. If you must set properties for a group and your LDAP server is
too big for the Group tools to work, then it is recommended that you
programatically set the property for the group using the JSP tags or API.

WebLogic Portal Development Guide 7-11

7 Adding Security to a Portal

Adding User Profile Information to LDAP Users

The LdapRealm security realm and the LdapPropertyManager unified user profile
(UUP) for retrieving user properties from LDAP are independent of each other. They
do not share configuration information and there is no requirement to use either one in
conjunction with the other. A security realm has nothing to do with a user profile. A
security realm provides user/password data, user/group associations, and group/group
associations. A user profile provides user and group properties. A password is not a
property.

For information on setting up UUP and retrieving user profile properties for LDAP
users, see Chapter 6, “Implementing User Profiles.”

Switching to a WebLogic 7.0 Security
Framework Security Realm

7-12

WebLogic Portal 7.0 Service Pack 4 adds support for the WebLogic Security
Framework introduced in WebLogic Server 7.0. This enables the replacement of
WebLogic Server 6.x security realms with WebLogic Server 7.0 realms. Prior to 7.0
SP4 WebLogic Portal 7.0 users were restricted to using the Compatibility Realm.

Even ifyou are using a new WebLogic Server 7.0 realm, it is possible to continue using
users and groups from a Compatibility RDBMS Realm by using the
RDBMSAuthenticator. Alternatively, you can use the LDAP data store embedded with
WebLogic Server, or a commercial LDAP provider such as Iplanet, or a custom
authentication provider that you have developed.

Setup depends on which authentication provider you use:

m Upgrading a Portal from Compatibility Security to WebLogic Server 7.0
Security With RDBMS — This is the recommended option if you already have
users and groups in an existing RDBMS security realm, such as the one that
shipped with WebLogic 7.0 SP2 and earlier.

m Upgrading a Portal from Compatibility Security to WebLogic Server 7.0
Security with Embedded LDAP — This is the recommended option if you have
other applications that use the embedded WebLogic Server LDAP data store and

WebLogic Portal Development Guide

Switching to a WebLogic 7.0 Security Framework Security Realm

you would like to share user and group information with a WebLogic Portal
application.

m Upgrading a Portal from Compatibility Security to WebLogic Server 7.0
Security with a Commercial LDAP Provider — This is the recommended option
if you would like to capitalize on a third-party LDAP provider that you already
use.

As of WebLogic Portal 7.0 Service Pack 4, you can also use multiple authentication
providers. However, there are some limitations. See “Multiple Authentication
Providers Support in WebLogic Portal 7.0 SP4” on page 7-22.

In WebLogic 7.0 the security Mbeans are in binary form in the
<domain>/userConfig directory. During these exercises you can check your security
Mbeans by using the WebLogicMBeanDumper:

java weblogic.management.commo.WebLogicMBeanDumper -
includeDefaults -name Security:* mbean security.out

Upgrading a Portal from Compatibility Security to
WebLogic Server 7.0 Security With RDBMS

This is the recommended option if you already have users and groups in an existing
RDBMS security realm, such as the one that shipped with WebLogic 7.0 SP2 and
earlier. By retaining user and group information in your RDBMS data store, you can
avoid migrating it to an LDAP data store. The RDBMS security realm provides a
high-performance, robust solution.

These instructions explain how to use a WebLogic Server 7.0 realm with users and
groups from a WebLogic Server 6.x RDBMS Compatibility realm. Users and groups
will be stored in a previously used Compatibility Realm.

1. Copy rdbmsAtnProvider.jar fromthe weblogic700/portal/1lib directory to
the weblogic700/server/lib/mbeantypes directory. You must use a version of
this JAR that was built for the version of WebLogic Server that you are using. For
example, you cannot use a 7.0 SP2 version of this JAR with 7.0 SP4. If you use an
incompatible rdbmsAtnProvider.jar then you may see a ClassCastException in
the WebLogic Server administration console when you try to create the
authentication provider.

WebLogic Portal Development Guide ~ 7-13

7 Adding Security to a Portal

7-14

2. Inthe WebLogic Server administration console, navigate to the Authentication
Providers page under <your domain> > Security > Realms > myrealm >
Providers > Authentication Providers.

3. Click Configure a new RDBMSAuthenticator.

4. Name the authentication provider and click Create.

5. Make sure the “Control Flag” is set to REQUIRED, and click Apply.

6. Click Details, make appropriate changes for your database, and click Apply.

7. Navigate to <your domain> > Security > Realms > myrealm > Users and
make sure existing users are listed for the RDBMS Authenticator.

8. Navigate to <your domain> > Security > Realms > myrealm > Groups and
make sure existing groups are listed for the RDBMSAuthenticator.

9. Before you switch from the Compatibility realm to the RDBMSAuthenticator
you should set up users and groups for WebLogic Server administration in your
RDBMS schema. Use the WebLogic Server Administration Console to do this,
not the WebLogic Portal Administration Tools. These users and groups are
defined in your domain’s fileRealm.properties file, but that file will not be
used by the RDBMSAuthenticator when you switch to the new security

framework.

Add the following users and groups, making the users members of the
appropriate group. Create users and groups for the RDBMS Authenticator, not

the Default Authenticator.

Group User

Administrators <your WebLogic system user, e.g.,
system>

Monitors

Operators

Deployers

10. Verify that your WebLogic Server system user is a member of the

Administrators group.

WebLogic Portal Development Guide

Switching to a WebLogic 7.0 Security Framework Security Realm

11. Navigate back to the Authentication Providers page under <your domain> >
Security > Realms > myrealm > Providers > Authentication Providers and
delete the DefaultAuthenticator.

12. In the WebLogic Server administration console, select your domain. Then, on the
Security > General tab, change the Default Realm from CompatibilityRealm
to myrealm. Apply the change.

13. Double-check for the existence of the proper groups and users for the
RDBMSAuthenticator in <your domain> > Security > Realms > myrealm.

14. Restart the server.

Notice the server will start with myrealm from now on. If the server fails to start
due to an authenticator misconfiguration, you can switch back to the
Compatibility Realm by removing the userConfig subdirectory under your
domain directory, then restarting the server. You must then restart the
configuration procedure.

Core Groups required for WebLogic Portal

When using the RDBMS Authenticator, there are no additional steps required in order
to use WebLogic Portal applications. The core groups required for the proper operation
of WebLogic Portal are pre-populated in the PointBase database that ships with
WebLogic Portal, or are created during the steps for Switching to Other Databases in
the Administration Guide.

Running the WLP Samples

When using the RDBMS Authenticator, there are no additional steps required in order
to use the WebLogic Portal sample applications. The users and groups required for the
sample applications are pre-populated in the PointBase database that ships with
WebLogic Portal, or are created during the steps for Switching to Other Databases in
the Administration Guide.

WebLogic Portal Development Guide ~ 7-15

7 Adding Security to a Portal

Upgrading a Portal from Compatibility Security to
WebLogic Server 7.0 Security with Embedded LDAP

This is the recommended option if you have other applications that use the embedded
WebLogic Server LDAP data store and you would like to share user and group
information with a WebLogic Portal application.

These instructions explain how to upgrade from the WebLogic Server 7.0 default
Compatibility RDBMS Realm to the Default Authenticator. Users and groups will be
stored in the LDAP data store that is embedded in WebLogic Server.

It is essential to create the proper users and groups. If this is not done, the server will
fail to start and a java.lang.SecurityException: Authentication denied
message will appear in the console. If you do encounter this error, remove the entire
userConfig directory, which is located under your domain directory, then restart the
configuration procedure. Users and groups created in the embedded LDAP server will
not be lost if you do not delete the staging directory. The staging directory is the
directory that is named after your server and is used for 2-phase deployment in the
internal LDAP server.

1. Create the core users and groups in your LDAP server.

There are certain users and groups that are required for the proper operation of
WebLogic Portal and WebLogic Server. These need to be set up in the embedded
LDAP data store. To do this, go to the WebLogic Server administration console
and expand the <domain> > Security > Realms > myrealm section. To create
users, click the Users item and select Configure a new User. Likewise for
groups, click the Groups item and select Configure a new Group.

a. For WebLogic Portal, add the following users and groups, making the users
members of the appropriate group:

Group User
SystemAdministrator administrator
AdminEligible

Delegated Administrator

7-16 WebLogic Portal Development Guide

Switching to a WebLogic 7.0 Security Framework Security Realm

b. Place users you would like to be able to manage portals in the AdminEligible
and DelegatedAdministrator groups. The administrator user will be
able to administer portals as a member of the SystemAdministrator group.

members of the appropriate group:

For WebLogic Server, add the following users and groups, making the users

Group User

Administrators <your WebLogic system user, e.g.,
system>

Monitors

Operators

Deployers

Note that Monitors, Operators, and Deployers are not required to contain
the Administrators group like in fileRealm.properties. Thatis
because the role mappings in the new security framework automatically
make an Admin user able to monitor, operate, and deploy.

2. Ifyou would like to use the WebLogic Portal sample applications, create the

sample users and groups.

a. For the wlcs sample, add the following users and group, making the users

members of the appropriate group:

Group

Users

wlcs_customer

bobsmith, suecarpenter, dangreen,
democustomer

b. For sampleportal, add a top-level group called “Avitek”, and add sub-groups as

follows:

Group

Sub-Groups

Avitek

CustomerService, Financial Advisor,
Investor, Approver

WebLogic Portal Development Guide

7-17

7 Adding Security to a Portal

7-18

c. In addition, add the following users and groups, making the users members of
the appropriate groups. Note that some groups were created in the previous
step. Notice also that some users belong to multiple groups.

Group Users

<no group assigned> acme, demo

Groupl visitor1,visitor2,visitor3,visitor4,visitor5

Group2 visitor6,visitor7,visitor8,visitor9,visitor10

Approver visitorl

CustomerService visitor5

Financial Advisor visitor2, visitor3

Investor visitor4, visitor6, visitor7

SystemAdministrator demosal, demosa2, demosa3

AdminEligible adminl, admin2, admin3, admin4, demopal,
demopa2, demogal, demoga2, demoga3

Delegated Administrator demopal, demopa2, demogal, demoga2,
demoga3

3. Inthe WebLogic Server administration console, click your domain. Then, on the
Security -> General tab, change the Default Realm from CompatibilityRealm
to myrealm. Apply the change.

4. Restart the server.

Notice the server will start with myrealm from now on. See the <Notice> in
weblogic.log for <Security initializing using realm myrealm>. If the server fails to
start due to an authenticator misconfiguration, you can switch back to the
Compatibility Realm by removing the userConfig subdirectory under your domain
directory, then restarting the server. You must then restart the configuration procedure.

WebLogic Portal Development Guide

Switching to a WebLogic 7.0 Security Framework Security Realm

Users and groups created in the embedded LDAP server will not be lost if you do not
delete the staging directory. The staging directory is the directory that is named after
your server and is used for 2-phase deployment and the internal LDAP server.

Upgrading a Portal from Compatibility Security to
WebLogic Server 7.0 Security with a Commercial LDAP

Provider

This is the recommended option if you would like to capitalize on a third-party LDAP
provider that you already use.

These instructions explain how to upgrade from the 7.0 default Compatibility RDBMS
Realm to an Authenticator backed by a commercial LDAP server, such as the IPlanet
Authenticator. Users and groups will be stored in a commercial LDAP server.

It is essential to create the proper users and groups. If this is not done, the server will
fail to start and a java.lang.SecurityException: Authentication denied
message will appear in the WebLogic Server administration console. If you do
encounter this error, remove the entire userConfig directory, which is located under
your domain directory, then restart the configuration procedure.

1.

In the WebLogic Server administration console, navigate to the Authentication
Providers page under <your domain> > Security > Realms > myrealm >
Providers > Authentication Providers.

Click the link to configure a new authenticator for your particular LDAP server.
For example, click Configure a new IPlanet Authenticator.

Make sure the “Control Flag” is set to REQUIRED, and click Create.

Configure your Authenticator according to the instructions for Configuring an
LDAP Authentication Provider in the WebLogic Server Managing WebLogic
Security guide.

Create the core users and groups in your LDAP server.

There are certain users and groups that are required for the proper operation of
WebLogic Portal and WebLogic Server. These need to be set up in your LDAP
data store.

WebLogic Portal Development Guide ~ 7-19

7 Adding Security to a Portal

a. For WebLogic Portal, add the following users and groups, making the users
members of the appropriate group:

Group User
SystemAdministrator administrator
AdminEligible

Delegated Administrator

b. Place users you would like to be able to manage portals in the AdminEligible
and DelegatedAdministrator groups. The administrator user will be
able to administer portals as a member of the SystemAdministrator group.

c. For WebLogic Server, add the following users and groups, making the users
members of the appropriate group:

Group User

Administrators <your WebLogic system user, e.g.,
system>

Monitors

Operators

Deployers

6. If you would like to use the WebLogic Portal sample applications, create the
sample users and groups.

a. For the wlcs sample, add the following users and group, making the users
members of the appropriate group:

Group Users
wlcs_customer bobsmith, suecarpenter, dangreen,
democustomer

7-20 WebLogic Portal Development Guide

Switching to a WebLogic 7.0 Security Framework Security Realm

b. For sampleportal, add a top-level group called “Avitek”, and add sub-groups as

follows:

Group

Sub-Groups

Avitek

CustomerService, Financial Advisor,
Investor, Approver

In addition, add the following users and groups, making the users members
of the appropriate groups. Note that some groups were created in the
previous step. Notice also that some users belong to multiple groups.

Group

Users

<no group assigned>

acme, demo

Groupl visitor1,visitor2,visitor3,visitor4,visitor5
Group2 visitor6,visitor7,visitor8,visitor9,visitor10
Approver visitorl

CustomerService visitor5

Financial Advisor visitor2, visitor3

Investor visitor4, visitor6, visitor7
SystemAdministrator demosal, demosa2, demosa3

AdminEligible adminl, admin2, admin3, admin4, demopal,

demopa2, demogal, demoga2, demoga3

Delegated Administrator

demopal, demopa2, demogal, demoga2,
demoga3

7. Navigate to the Authentication Providers page under <your domain> > Security
> Realms > myrealm > Providers > Authentication Providers and delete the

DefaultAuthenticator.

WebLogic Portal Development Guide

7-21

7 Adding Security to a Portal

8. In the WebLogic Server administration console, click on your domain. Then, on
the Security > General tab, change the Default Realm from
CompatibilityRealm to myrealm. Apply the change.

9. Restart the server.

Notice the server will start with myrealm from now on. See the <Notice> in
weblogic.log for <Security initializing using realm myrealm>. If the server fails to
start due to an authenticator misconfiguration, you can switch back to the
Compatibility Realm by removing the userConfig subdirectory under your domain
directory, then restarting the server. You must then restart the configuration procedure.

Multiple Authentication Providers Support
in WebLogic Portal 7.0 SP4

The WebLogic Portal user and group management framework communicates with
only one authentication provider for basic user and group operations. Therefore, it is
required that a system property be set to specify which authentication provider to use
when the WebLogic Server is configured with multiple Authentication Providers.

How WebLogic Portal 7.0 uses the WebLogic Server
Security Framework

7-22

WebLogic Portal 7.0 relies completely on WebLogic Server for login authentication.
For authorization, WebLogic Portal has its own user and group management
framework for some user/group management operations. WebLogic Portal’s
Delegated Administration framework uses the user and group management framework
and entitlements framework for authorization. The Delegated Administration
framework is not based on JAAS authorization so it does not use an authorization
provider.

WebLogic Portal Development Guide

Multiple Authentication Providers Support in WebLogic Portal 7.0 SP4

Limited Support of Multiple Authentication Providers in
WebLogic Portal 7.0 SP4

The WebLogic Portal Administration Tools can use only one authentication provider.
By default, if you have configured multiple providers, the WebLogic Portal
Administration Tools use the authentication provider that is "most capable" in terms of
offered functionality. However, you can force the WebLogic Portal Administration
Tools to use a specific authentication provider by specifying the following system

property:

com.bea.pl3n.usermgmt.AuthenticationProviderName=<provider displa
y_name>

The system property is specified as a java -D switch on the command line for starting
the server.

Users from non-specified providers can log in to the portal and personalize their portal
just like a user from an external custom security realm could do with the old WebLogic
Server 6.x style of security.

Resetting of user passwords using the WebLogic Portal UserManager EJB (which is
used by the um [user management] JSP tag library) only works for users who are
available from the specified provider, because the Portal UserManager is only aware
of a single authentication provider.

Group membership used by a portal should be consistent across providers. For
example, if user1 is in Group1, and Group1 is associated with the Group1 group
portal, then user1 should belong to Group1 in all providers, otherwise the user may
not be able to access the proper group portal if he is authenticated with a provider that
does not have this group membership set up.

What Is Not Supported for Multiple Authentication
Providers in WebLogic Portal 7.0 SP4

The use of multiple authentication providers with WebLogic Portal 7.0 SP4 has a
larger impact on the WebLogic Portal Administration Tools than on the portal
application itself. The following limitations exist:

WebLogic Portal Development Guide ~ 7-23

7 Adding Security to a Portal

The WebLogic Portal Administration Tools can see only users/groups from the
specified provider.

Portal users belonging to the SystemAdministrator group (known as SAs)
lose their super power for overall portal management because they cannot
manage users/groups for the non-specified providers.

Use of the realm configuration cleanup tool in the WebLogic Portal
Administration Tools (to clean up unused user/group profiles) will delete the
profiles of users/groups from the non-specified providers (though not the
users/groups themselves). The “profile” consists of user properties that have
been persisted for a user/group in the portal schema. A “profile” is not the
existence of the user in the security realm (username/password and group
membership).

Setting a user password will fail if the user is from a non-specified provider.

Other Supported Security Realms

7-24

In addition to LDAP, WebLogic Server supports these security realms:

m Windows NT Security Realm

This security realm uses Windows NT account information to authenticate users.
Users and groups defined through Windows NT can be used by your Web
application. You can use the WebLogic Server Administration Console to view
this realm, but you must use the facilities provided by Windows NT to define
users and groups.

UNIX Security Realm

A UNIX security realm executes a native program, wlauth, to authenticate users
and groups using UNIX login IDs and passwords. On some UNIX platforms,
wlauth uses a Pluggable Authentication Module (PAM) that allows you to
configure authentication services in a UNIX platform without altering
applications that use those services. On UNIX platforms for which PAM is not
available, wlauth uses the standard login mechanism, including shadow
passwords when they are supported. You can use the Administration Console to
view this realm, but you must use the facilities provided by the UNIX platform
to define users and groups.

WebLogic Portal Development Guide

Enabling Secure Sockets Layer Security

m File Realm

When you start the server, the File realm creates user, group, and ACL objects
from properties defined through the WebLogic Server Administration Console
and stores them in the fileRealm.properties file.

Note: The File realm is designed for use with 10,000 or fewer users. If you have
more than 10,000 users, use an alternate security realm.

Enabling Secure Sockets Layer Security

The Webflow and Pipeline mechanisms that direct the presentation and business logic
associated with WebLogic Portal’s Commerce JSP templates make use of the Secure
Sockets Layer (SSL) and declarative transport mechanisms. Links that invoke
protected JSP files, as well as certain Input Processors and Pipelines, need to be
accessed via the HTTPS protocol. There are a number of these links already defined in
the Commerce (wlcs) Web application’s web . xm1 deployment descriptor. Secured
JSP templates that rely on SSL also require a setting in the web . xm1 file that indicates
the transport guarantee. This guarantee can be CONFIDENTIAL Or INTEGRAL.

m A CONFIDENTIAL setting prevents other entities from observing the contents of
the transmission.

® An INTEGRAL setting prevents the data from being changed while transmitting
between the client and server.

See “Setting Up Portal Navigation” on page 9-1 for information on Webflows and
Pipelines.

Note: For SSL connections to work, you must have a valid SSL certificate from a
certificate authority set up on your server.

config.xml Requirements for SSL

To enable SSL for your Web application, you need to ensure that the domain’s
config.xml file has SSL enabled, as shown in Listing 7-5.

WebLogic Portal Development Guide ~ 7-25

Adding Security to a Portal

Listing 7-5 Enabling SSL in the config.xml File

<server>

<SSL Enabled="true" ListenPort="7502" Name="portalServer"
ServerCertificateChainFileName="ca.pem"
ServerCertificateFileName="democert.pem"

ServerKeyFileName="demokey.pem"/>

</server>

The SSL attribute should also identify the necessary certificate filenames, the server
key filename, and the server name.

config.xml is stored in <BEA HOME>/user projects/<YOUR DOMAINS.

where <YOUR_DOMAIN> is the domain folder created when you ran the Configuration
Wizard.

web.xml Requirements for SSL

7-26

You must also ensure that the secure listening ports in the Web application’s
deployment descriptor (web .xm1) match that set in config.xml, as shown in
Listing 7-6.

Listing 7-6 Identifying Listen Ports

<context-params>
<param-name>HTTPS PORT</param-name>
<param-value>7502</param-values>
</context-param>

WebLogic Portal Development Guide

Enabling Secure Sockets Layer Security

Enabling HTTPS_URL_PATTERNS

Enabled HTTPS URL PATTERNS for portal pages (the CreatePageChangeURLTag
tag) as decribed above. The entries have the form

/groupPortalDisplayName/pageName. If the user is not authenticated, the group portal
name will be "DEFAULT GROUP_PORTAL" so if you wish to specify that the page
change URL for a page called "home" uses HTTPS when no one is logged in specify
/DEFAULT GROUP_PORTAL/home in the HTTPS URL PATTERNS section of

web.xml
Example:
<context-params>
<param-name>HTTPS_URL PATTERNS</param-name>
<param-value>
/framework/security/login.jsp,
/framework/security/new_user.jsp,
/security/NewUser . inputprocessor,
/security/LoginIP.inputprocessor,
/groupPortall/pagel,
/groupPortal2/pagel
</param-value>
</context-param>

Also added a FORCE_HTTPS FOR AUTH_USERS option to web.xml. This will
cause all CreateWebflowURLTag derived tags to generate https URLSs if the user has
been authenticated and the tag is not specifically coded to use http. The web.xml entry
should be as follows, with value true to enable the feature and false to turn it off.

<context-param>
<param-name>FORCE_HTTPS FOR AUTH USERS</param-name>
<param-values>true</param-value>

</context-param>

WebLogic Portal Development Guide — 7-27

7 Adding Security to a Portal

Ifthe FORCE _HTTPS FOR AUTH_USERS is enabled but the user is not logged in
the HTTPS URL PATTERNS will be checked. If

FORCE _HTTPS FOR_AUTH USERS is enabled and the user is logged in
HTTPS_URL PATTERNS are ignored and all URLs will be https unless the tag has
been specifically coded for http.

See “Enabling HTTPS URL PATTERNS” on page 7-27 for more information.

Enabling Single Sign-On

With single sign-on enabled, a visitor needs only to sign-on once to access multiple
web applications, provided those applications are running on the same server or
cluster. Enabling single sign-on requires these steps:

1. Ensure that the user has the same cookies for each Web application.

2. Ensure that the same user properties are used for each Web application.

Setting the Cookie Name

7-28

Set the cookie name for each application to which the visitor will have single sign-on
access. To do this, edit the weblogic.xml file located in <BEA HOME>weblogic700\
samples\portal<PORTAL DOMAIN>\beaApps\<PORTAL APP>\<PORTAL>\WEB-I

NF\ for each application to which the visitor will have single sign-on access.

1. Open the specific weblogic.xml file and locate the <session-param> element
that identifies the CookieName parameter, as shown in Listing 7-7.

Listing 7-7

<session-param>
<param-name>CookieName</param-name>
<param-value>JSESSIONID SAMPLEPORTAL</param-values>

</session-param>

WebLogic Portal Development Guide

Enabling Single Sign-On

2. Change the <param-values value to the appropriate cookie name.

3. Repeat steps 1 and 2 for each Web application.

Setting the User Properties

Each Web application to which a visitor has single sign-on access must use the same
user property sets for the specific visitor. You will need to ensure this by editing these
property sets and making them match. For details on editing user property sets, see
“Creating a Property Set Definition” on page 6-18.

WebLogic Portal Development Guide ~ 7-29

7 Adding Security to a Portal

7-30 WebLogic Portal Development Guide

CHAPTER

8 Portal Content
Management

A key component of any portal is its content. WebLogic Portal provides content by
using a Content Manager. A Content Manager provides content and document
management capabilities for use in personalization services to target users with
dynamic web content. It works with files or with content managed by third-party
vendor tools. While developing portal resources, you will have to configure the
Content Manager and use various content-related tags so that the user has access to the
most relevant content available.

This section includes information on the following subjects:
m Adding Content by Using the Bulk Loader

m Using Content-Selector Tags and Associated JSP Tags
m Integrating External Content Management Systems

m Constructing Content Queries

Adding Content by Using the Bulk Loader

The easiest way to add content to a portal is to use the bulk loader scripts provided by
BEA. To implement this strategy, use this procedure:

1. Publish files to a directory on the file system at a specified interval. Ideally, you
should publish content to subdirectories under \dmsBase directory in the
appropriate domain folder. For example, place ads in:

WebLogic Portal Development Guide 8-1

8 Portal Content Management

<BEA HOME>\weblogic700\samples\portal\<DOMAIN NAME>\dmsBase\ads

2. When you are done publishing the content to the file on your directory system,
run the BulkLoader by running one of the following scripts:

e Ifyou are loading text or image files, run 1oaddocs .bat (Loaddocs. sh for
UNIX users).

e If you are loading ads for placeholders or campaigns, run loadads.bat
(loadads. sh for UNIX users).

The load scripts can be found at this location:
<BEA_HOME>\weblogic700\samples\portal\<DOMAIN NAME>\

You can run these scripts either by typing them at the command line (or Start |
Run in Windows NT or 2000) or by going to the Windows Explorer, locating
the script you want to run, and double-clicking it in the file list. If you run the
BulkLoader from a command line, you can also use any of the switches listed in
Table 8-1.

Table 8-1 Bulk Loader Switch Settings

Switch Setting Description

-verbose Emits verbose messages.

+verbose Runs quietly [default].

-recurse Recurses into directories [default].

+recurse Does not recurse into directories.

-delete Removes document from database.

+delete Inserts documents into database [default].

-metaparse Parses HTML files for <meta> tags [default].

+metaparse Does not parse HTML files for <meta> tags.

-cleanup If specified, this only performs a table cleanup using the -d
argument as the document base. (All files will need to be
under that directory.)

+cleanup Turns off table cleanup (do a document load) [default].

-hidden Specifies to ignore hidden files and directories [default].

8-2 WebLogic Portal Development Guide

Adding Content by Using the Bulk Loader

Table 8-1 Bulk Loader Switch Settings

Switch Setting

Description

+hidden Specifies to include hidden files and directories.

-inheritProps Specifies to have metadata properties be inherited when
recursing [default].

+inheritProps Specifies to have metadata properties not be inherited when
recursing.

-truncate Attempts to truncate data values if they are too large for the
database (controlled via loader.properties).

+truncate Does not attempt to truncate data values [default].

-ignoreErrors Ignores any errors while loading a document (errors will
still be reported).

+ignoreErrors Stops processing on any error [default].

-htmlPat <patterns

Specifies a pattern for determining which files are HTML
files when determining whether to do the <meta > tag parse.
This can be specified multiple times. If none are specified,
* htmand *.html are used.

-properties <name>

Specifies the location of the loaddocs . properties file
that should contain the connect ionPool definition. This
file may contain

jdbc.column. <columnName>=<propname> entries
similar to the -columnMap argument.

-conPool <name>

Specifies the connectionPool name from the properties
file from which the BulkLoader should get the connection
information.

-schema <name>

Specifies the path to the schema file the BulkLoader will
generate
(defaults to document - schema . xml).

+schema

If specified, then no schema file will be created.

-schemaName <name>

Specifies the name of the schema generated by the
BulkLoader. Defaults to “LoadedData”.

WebLogic Portal Development Guide 83

8 Portal Content Management

8-4

Table 8-1 Bulk Loader Switch Settings

Switch Setting

Description

-encoding <name>

Specifies the file encoding to use. Defaults to your system’s
default encoding. (See your JDK documentation for the
valid encoding names.)

-commitAfter <nums>

Commits the JDBC transaction after this many documents
are loaded. Defaults to: only at the end of the full load.

-match <patterns>

Specifies a file pattern the BulkLoader should include. This
can be specified multiple times. If none are specified, all
files and directories are included.

-ignore <patterns

Specifies a file pattern the BulkLoader should not include.
This can be specified multiple times.

-d <dir>

Specifies the docBase that non-absolute paths will be
relative to. If not specified, "." (current directory) is used.

-mdext <ext>

Specifies the filename extension for metadata property files.
The value should starts with a "." (defaults to
.md.properties).

-filter <filter

Specifies the class name of a LoaderFilter to run files

class> through. This can be specified multiple times to add to the
list of Loader Filters.

+filters Clears the current list of Loader Filters. (This will clear the
default filters as well.)

-- Everything after this is considered a file or directory.

-columnMap Specifies a properties file containing the

<file.propertiess>

jdbc.column. <columnName>=<propname, . . .>
list of additional columns to the DOCUMENT table (see
-column). This cannot be used to override behavior for
standard columns.

-column
<columnName>=<propNa
me,...>

Specifies an additional column to the DOCUMENT table
and the property names that map onto the column. This
cannot be used to override behavior for standard columns.

+columns

Clears any configured additional columns.

WebLogic Portal Development Guide

Adding Content by Using the Bulk Loader

3. Make the sure that the DocumentConnectionPool in the application's
META-INF/application-config.xml or through the WebLogic Server console
is configured to point to the correct directory.

4. In order for the docPool to reload the XML schema files, it must be restarted.

For this strategy to succeed, the CMS must be able to publish document metadata in
one of the three ways the BulkLoader supports:

m In a corresponding md. properties file; this file should be a standard Java-style
properties file containing the user-defined metadata for the document. For
example, for image . gif the file would be image.gif.md.properties.

m In the document file; for HTML files, the metadata can be placed in standard
<META name=“..” content=".."> tags in the document file itself.

m In some other form for which a LoaderFilter can be written to gather the
metadata.

BulkLoader Performance Tips

The following suggestions will improve BulkLoader performance.

(lean Up the Cache

If you’ve made a lot of small updates to a page, before running the BulkLoader, you
should clean up the cache. On the Cache Manager Administration tab on the
Administration Console, select Flush Entire Cache and click Flush, as shown in
Figure 8-1.

Figure 8-1 Flushing the Cache

Caonfiguration || Administration

? Flush the Entire Cache?

? Invalidate a Specific Key: |

Flush

Flushing is particularly helpful for these caches:

WebLogic Portal Development Guide 8-5

8 Portal Content Management

B DocumentMetaDataCache

B AdBucketServicesCache

B DocumentContentCache

B AdServicesCache

Restarting the ConnectionPool

If you used the E-Business Control Center to add new metadata properties, you need

to restart the connectionPool. To do so:

1. From left pane of the Administration Console, open the following node:

<yourDomain> —>Deployments —Applications — <yourPortal> —

Service Configurations —Documents —>DocumentConnectionPool

Services —Default

The Document Connection Pool Services Default tab appears in the right pane of

the Console, as shown in Figure 8-2.

Figure 8-2 Restarting the ConnectionPool

2

m) e) m) e w) m)

& Driver Name: [cam.bea.p3n. coment. docurnent.jdbe. Driver
Initial Capacity of Pool: o
Capacity Increment: b
Maximum Capacity of Pool: IZD—
Is Shrinking Enabled? r
Login Timeout (seconds): b
JDBC URL: [idbe:beasys: docrgrmt: com. bea. p13n. coment. docurnent. ref. RefDacument Provider
JDBC Properties: =\dmsB: -sch =
Enter properties one per fine in the format of |docBase=.\dmsBase
name=value idbe jdbe_poal
L of!

Apply |

Apply and Restart

[Note: The Document Connection Ponl must be restarted befors changes will take affect.]

2. Click Apply and Restart.

8-6 WebLogic Portal Development Guide

Configuring the Content Manager

Configuring the Content Manager

If you are using a third-party Content Management System to populate a portal, you
will need to configure it to work with WebLogic Portal. This section explains the
configuration procedures you will need to perform.

The Content Manager is a run-time subsystem that provides access to content through
tags and EJBs. When developing JSPs, the Content Management tags allow you to
receive an enumeration of content objects by querying the content database directly by
using a search expression syntax. The Content Manager component works alongside
the other components to deliver personalized content, but does not have a GUI-based
tool for edit-time customization.

The following section describes the tasks required to configure a Content Manager. It
includes information on the following subjects:

m Configuring the DocumentManager EJB Deployment Descriptor

m Configuring the PropertySetManager EJB Deployment Descriptor for Content
Management

m Configuring DocumentManager MBeans
m Setting Up Document Connection Pools
m Editing a DocumentConnectionPool MBean in the WebLogic Console

m Configuring the Web Application

Configuring the DocumentManager EJB Deployment
Descriptor

The DocumentManager EJB deployment descriptor handles the EJB portion of the
Content Management component configuration and must be configured to recognize
the correct environmental settings. To configure the DocumentManager EJB, ensure
that the following environment settings are in its deployment descriptor:

WebLogic Portal Development Guide 8-7

8 Portal Content Management

B DocumentManagerMBeanName—specifies the name of the DocumentManager
MBean to use to configure this DocumentManager.

e In the enterprise application’s application-config.xml file, a
<DocumentManager> entry must exist with a Name attribute equal to the
value specified in the deployment descriptor. If this is not specified in the
deployment descriptor, it defaults to “default”.

B DocumentConnectionPoolName—specifies the name of the
DocumentConnectionPool MBean that this DocumentManager should use.

e In the application’s application-config.xml file, a
<DocumentConnectionPool> entry must exist with a Name attribute equal
to the value specified in the deployment descriptor.

e Ifthe DocumentManager’s DocumentConnectionPoolName attribute is
configured to use MBeans, then the value in the deployment descriptor is
ignored.

B jdbc/docPool—specifies the J2EE resource reference to the
javax.sql.DataSource that this DocumentManager should use to access a
document connection pool.

If §dbc/docPool is specified in the deployment descriptor, then:
® DocumentConnectionPoolName is ignored, and

e Any DocumentConnectionPool MBeans in the application’s
application-config.xml file are also ignored.

L} PropertyCase—Specifles how the DocumentManager modifies the incoming
property name.

e Ifthe PropertyCase attribute of the DocumentManager MBean being used
is set, the value in the deployment descriptor is ignored.

e If this is lower, all property names are converted to lowercase.
e I[fthis is upper, all property names are converted to uppercase.
e If this is anything else or not specified, property names are not modified.

Note: Use lower or upper depending upon the document connection pool
implementation being used. For the document reference implementation,
do not specify the PropertycCase.

8-8 WebLogic Portal Development Guide

Configuring the Content Manager

Configuring the PropertySetManager EJB Deployment
Descriptor for Content Management

The DocumentManager needs to be integrated into the PropertySetManager EJB
deployment descriptor so that content property sets are exposed to the system. To
configure the PropertySetManager EJB Deployment Descriptor for content
management, add the following environment settings:

B repository/CONTENT—specifies the fully qualified class name of
com.bea.pl3n.property.PropertySetRepository implementation. Use
com.bea.pl3n.content.PropertySetRepositoryImpl to integrate with the
Content Management component.

B ejb/ContentManagers/ [type] — the
com.bea.pl3n.content.PropertySetRepositoryImpl looks for all
environment entries starting with ejb/ContentManagers. It expects these to be
J2EE EJB references to ContentManagers (or subclasses).

To integrate a ContentManager Or DocumentManager with the
PropertySetManager, add an EJB reference here. For example,
ejb/ContentManagers/Document is mapped to the standard
DocumentManager.

Alternately, you can set the JNDIName attribute of the DocumentManager MBean to
the JNDI Home name of the DocumentManager. The ${APPNAME} construct can be
used in the value; it will be replaced by the current J2EE application name. The
com.bea.pl3n.content.PropertySetRepositoryImpl will automatically pick
up those DocumentManagers and the J2EE EJB reference is not required.

Configuring DocumentManager MBeans

The DocumentManager implementation uses DocumentManager MBeans to maintain
its configuration. A deployed DocumentManager finds which DocumentManager
MBean to use from the DocumentManagerMBeanName EJB deployment descriptor
setting. You will need to configure the DocumentManager MBeans in the application
so that their values correspond to the Name attributes in the
DocumentManagerMBeanName EJB deployment descriptor.

WebLogic Portal Development Guide 8-9

8 Portal Content Management

To configure a DocumentManager MBean, you can modify the application’s
META-INF/application-config.xml file to add or change the following XML, as
shown in Listing 8-1.

Listing 8-1 Modifying the <DocumentManager> Element in an Application’s
META-INF/application-config.xml File

<DocumentManager
Name="default"
DocumentConnectionPoolName="default"
PropertyCase="none"
MetadataCaching="true"
MetadataCacheName="documentMetadataCache"
UserIdInCacheKey="false"
ContentCaching="true"
ContentCacheName="documentContentCache"
MaxCachedContentSize="32768"

>

</DocumentManager>

Do not try to change these attributes from within the application-config.xml file.
Instead, use the WebLogic Server Administration Console, as described in “Using the
WebLogic Server Administration Console to Modify DocumentManager MBeans” on
page 8-10.

Using the WebLogic Server Administration Console to Modify
DocumentManager MBeans

To modify DocumentManager MBeans by using the WebLogic Server Administration
Console, use this procedure.

1. Start WebLogic Server and open a Web browser.

2. Open the WebLogic Server Administration Console by typing the following URL
in the Address field:

http://<hostnames>:<port>/console

For example, if you are launching the console on the server itself, the default
URL is:

8-10 WebLogic Portal Development Guide

Configuring the Content Manager

http://localhost:7501/console

3. Press Enter.

The WebLogic Server sign-in screen appears.

4. Sign in by entering your username and password and clicking Sign in. The

default username/password pair is system/weblogic.

5. The WebLogic Server Administration Console appears, as show in Figure 8-3.

Figure 8-3 WebLogic Server Administration Console

T

) o PP,

T @ pararmgie
- @

S e
[T
By garies
Btats sy
Hpeurme
zbisliess
iz iz
s
e
Begeritatuaran
Dl irs
algeet aider
ol
Bty
]
Bl
Faalgug st
A e magrl
=]

i

I @ are barage

I @ Cocamartior

= @ Cocurartkan
@ et

Information and Resources
Helphul Tosls
2tz 06 £ e ol

oz pphicar e

Cramain Canfigurations
Netysark Conhguration
=

gtk UhErrals

Servlces Configurations
JuEC

cter Pouls

s Lsstnzaang

General Intermatien

Wour Beploped Resaurses
Lplizatons

Mo -

T - sl o =

Connactivity
NEses e avi L

Pour Appeabian's Se curiby Settings
Cealms

Crhrer Grrvices
*AL Pegiziss
L] ||
Wi |l
mande Lo 3o 0o

il
ing Brldga

3

e g [26l el ons

Dt] 3 od e Dol mll o s

Cungl L s B Sy erns, I AL ghs e

6. In the left pane, drill down to the DocumentManager MBean for your applicaion.
Select these nodes:

MyDomain —Deployments —Applications —MyApplication —Service

Configuration —Document Manager —MyMBean

Where:

e MyDomain is the domain inwhich the application resides.

e MyApplication is the Web application that uses the MBean.

WebLogic Portal Development Guide 8-11

8 Portal Content Management

e MyMBean is the actual MBean you want to configure.

Figure 8-4 shows an example of the nodes you would select to drill down to the
Default MBean for the DocumentManager for an application called portal App.

Figure 8-4 Drilling Down to an MBean

@ Console
Elservers

Hlciusters

Elmachines

Elnetwork Channels

@ pavmentySapn

BB carmpaign
B catalogws
®Ecustomer
B gatasync
®Edocument
@ ehusiness
BB gjhadvisor
Eeyents
Email
BE ewPartalWebspn
EEpipeline
EEplaceholder
EEporal
EEproperty
EEryles
SEaols

SBEiolSupport
&)sermgmt
| B Hlgenice Configuration
@ 2d Senice
L] Behavior Tracking Service
@ Cache Manager
@ Document Connection Poal Service

El @ Document Manager
@ default

@ Event Senvice

When you select the MBean node, the DocumentManager Services screen for
that MBean appears in the right pane, as shown in Figure 8-5. Note the MBean
name on the tab.

8-12 WebLogic Portal Development Guide

Configuring the Content Manager

Figure 8-5 DocumentManager Service Screen

e
portalApp = Document Manager Service ,"he'a-

1

dernain iy MZHTDomsin

7 Document Connection Pool Name: [4=rout

2 Property Case: lm

? Metadata Caching Enabled? w

? Metadata Cache Name: |1'|"|Jm='nMptﬁdﬁH Athe
‘? IsUserID In the Cache Key? rn

? Content Caching Enabled? W

? Content cache Name: |:1:|:um;w,nn-smr:.achg
? Maximum Size of Cached Content: [F27e0 |

7. Change the attributes as necessary and click Apply. These attributes are listed in
Table 8-2.

Table 8-2 DocumentManager MBean Attributes

Description

Attribute Screen Label/Control Type
DocumentConnection Document Connection Pool
PoolName Name

Text Box

Specifies the name of the
DocumentConnectionPool MBean the
DocumentManager should use.

WebLogic Portal Development Guide 8-13

8 Portal Content Management

Table 8-2 DocumentManager MBean Attributes

Attribute

Screen Label/Control Type

Description

PropertyCase

Property Case
Drop-down List

Specifies how the DocumentManager
modifies the incoming property name.

m Ifthis is lower, all property names are
converted to lowercase.

m Ifthis is upper, all property names are
converted to uppercase.

m If this is anything else or not specified,
property names are not modified.

Use lower or upper depending upon the
document connection pool implementation
being used. For the document reference
implementation, do not specify the
PropertyCase.

MetadataCaching

Metadata Caching Enabled?
Checkbox

Specifies whether the DocumentManager
should cache Document metadata from
searches. Use true to have the
DocumentManager cache search results in the
com.bea.pl3n.cache.Cache specified by
MetadataCacheName; otherwise, use
false. This defaults to true.

MetadataCacheName

MetaData Cache Name
Text Box

Specifies the name of the
com.bea.pl3n.cache.Cache to use if
MetadataCaching is set to true. This
defaults to documentMetadataCache.

UserIdInCacheKey

Is Userid in the Cache Key?
Checkbox

Specifies whether the user’s identifier should be
used as part of the key when caching document
metadata or content. This defaults to true. If
using WebLogic Portal reference
implementation document management system,
set this to false.

ContentCaching

Content Caching Enabled?
Checkbox

8-14 WebLogic Portal Development Guide

Specifies whether the DocumentManager
should cache document content (that is, the
bytes of the document). Use true to have the
DocumentManager cache document content
bytes; otherwise use f£alse. This value defaults
to true.

Configuring the Content Manager

Table 8-2 DocumentManager MBean Attributes

Attribute Screen Label/Control Type Description
ContentCacheName Content Cache Name Specifies the name of the
Text Box com.bea.pl3n.cache.Cache touseif
ContentCaching is set to true. This
defaults to documentContentCache.
MaxCachedContent Maximum Size of Cached Specifies the maximum size of a document’s
Size Content content bytes that the DocumentManager will
Text Box cache, if ContentCaching is t rue. This defaults
to 32768 (32K) bytes.
JNDIName n/a Specifies the JINDI home name of the

DocumentManager EJB that is connected to
this MBean. The $ {APPNAME } construct can
be used in the value; it will be replaced by the
current J2EE application name. This is used by
the
com.bea.pl3n.content.PropertySet
RepositoryImpl to tie document property
set information into the
PropertySetManager.

Disabling an MBean

You can enable or disable an MBean from the WebLogic Server Administration
Console. To do so, use this procedure.

Note:

This procedure assumes that you are connected to WebLogic Server and have
the Administartion console open, as you did in “Using the WebLogic Server
Administration Console to Modify DocumentManager MBeans.”

1. In the left pane, drill down to the Add or remove service configurations node,
which is under the Service Configurations node, as shown in Figure 8-6.

WebLogic Portal Development Guide ~ 8-15

8 Portal Content Management

Figure 8-6 Selecting the Add or remove service configurations Node

|EI Elzenice Configuration
@ nd Service
@ Behavior Tracking Service
@ Cache Manager
@ Docurnent Connection Pool Service
B @ Docurnent Manager
@ default
@ Event Service
@ Wiail Service
@ Fayment Semice Client
@ Campaign Service
@ Scenario Service
@ Tax Service Client
|mAdd of rernove service configurations

The Service Configuration screen appears in the right pane, as shown in
Figure 8-7.

8-16 WebLogic Portal Development Guide

Configuring the Content Manager

Figure 8-7 Service Configuration Screen

Service Configuration JREEER]

‘AdContentProvider : applicationix-shockwave-flash

‘AdContentProvider :image

‘AdContentProvider s text

‘Ad Service

‘Behavior Tracking Service

‘Cache : CategoryCache

‘Cache : ProductitemCache

‘Cache : adBucketServiceCache

‘Cache : adServiceCache

‘Cache : discountCache

‘Cache : documentContentCache

‘Cache : documentldCache

‘Cache : documentMetadataCache

‘Cache : entityldCache

‘Cache : entityPropertyCache

‘Cache : globalDiscountCache

‘Cache : jndiNameCache

‘Cache : IdapGroupCache

‘Cache : IdapUserCache

‘Cache : propertyKeyldCache

a =] =] @) (=] =] (=]])]))])])) O])]

[ache - unifisdProfilaTuneCtache

2. Locate the MBean you want to remove from the list and click the associated
checkbox to deselect it, as shown in Figure 8-8.

WebLogic Portal Development Guide ~ 8-17

8 Portal Content Management

Figure 8-8 Service Configuration Screen with MBean Deselected

activedoma n myN=XTDomain

Service Configuration JREREE

|Ad ContentProvider : application/x-shockwaveflash

|Ad ContentProvidar | image

[adContentProvider : text

|ad Service

[Behavior Tracking Service

|Cache : CategoryCache

|Cache : ProductitemCache

|Cache : adBucketServiceCache

|Cache : ad3erviceCache

|Ca|::he : discountCache

|Cache : documentContentCache

1 5]®] = [=][E) [= @ @ = =)=

[Cache : dacumentidCache

3. Deselect each MBean you want to disable. When you are done, click Submit.

You receive the message “You must redeploy your application [APP_NAME] for
these changes to take place.”

4. Redeploy the application or restart the server.

Restoring a Disabled MBean

To restore the MBean disabled in the preceding procedure, click its acssociated
checkbox to select it. Again, once you’ve restored all necessary MBeans, click
Submit.

Setting Up Document Connection Pools

The DocumentManager implementation uses connection pools to a specialized JDBC
driver to handle searches on content. A deployed DocumentManager finds the
document connection pool to use via either the DocumentConnectionPoolName

8-18 WebLogic Portal Development Guide

Configuring the Content Manager

attribute of its DocumentManager MBean or the DocumentConnectionPoolName
EJB deployment descriptor setting. That value must correspond to a
DocumentConnectionPool MBean.

To configure a DocumentConnectionPool MBean, modify the application’s
META-INF/application-config.xml file by adding or changing the XML shown in
Listing 8-2:

Listing 8-2 Modifying an Application’s META-INF/application-config.xml
File to Configure a DocumentConnectionPool MBean

<DocumentConnectionPool

Name="default"DriverName="com.bea.pl3n.content .document.

jdbc.Driver"URL="jdbc:beasys:docmgmt : com.bea.pl3n.content
document .ref .RefDocumentProvider"

Properties="jdbc.dataSource=weblogic.jdbc.pool.commercePool;
schemaXML=D: /bea/user projects/myNEWdomain/dmsBase/
doc-schemas;docBase=D: /bea/user projects/myNEWdomain/dmsBase"

InitialCapacity="20"

MaxCapacity="20"

CapacityIncrement="0"

/>

Editing a DocumentConnectionPool MBean in the
WebLogic Console

As with the DocumentManager MBeans, you must modify the
DocumentConnectionPool MBean by using the WebLogic Server Administration
Console. See the procedure in “Using the WebLogic Server Administration Console to
Modify DocumentManager MBeans™ on page 8-10 for instructions. Note that, for the
DocumentConnectionPool MBeans, you need to select the Document Connection Pool
Service node and make the changes on the Document Connection Pool Service screen,
shown in Figure 8-9.

WebLogic Portal Development Guide ~ 8-19

8 Portal Content Management

Figure 8-9 Document Connection Service Pool Screen

portalApp > Document Connection Pool Service

New DocumentConnectionPool

Document Connection Poal Name: IM\.‘CLrlrlt-.‘_llur PuLlMaune

¢ Drlver Name: |r:1'n hrA plir cartent dnmamen: job= | ime

7 Initial Capacity of Pocl:]

? Capacity Increment: o

2 Maximum Capaclty of Pool: e

? 13 Shrinking Enahled? r

? Login Timeout {seconds): f

T JDBCURL: Iidbc:bec\sys ccomgnt

2 JDBC Properties: =]

Enbe properties e oo bre & lie oo ol
=YL

1

wl

Apply I Apphy and Restard

[Mute. The Juzumznl Curneclion Poaul rwsl by reslarled befure clar ges will ke sleel]

The attributes of the Document ConnectionPool MBean that you can change are
listed in Table 8-3.

Table 8-3 DocumentConnectionPool MBean Attributes

Attribute Screen Label/ Description
Control Type

DriverName Driver Name Specifies the JDBC driver class name to
Text Box use. This should be set to

com.bea.pl3n.content.docume
nt.jdbc.Driver

8-20 WebLogic Portal Development Guide

Configuring the Content Manager

Table 8-3 DocumentConnectionPool MBean Attributes

Attribute Screen Label/
Control Type

Description

URL JDBC URL
Text Box

Specifies the JDBC URL to use.

m For WebLogic Portal’s reference
implementation document
management system, this should be
set to:

jdbc:beasys:docmgmt : com. b
ea.pl3n.content.document.
ref .RefDocumentProvider.

m For a different Document Provider,
use:
jdbc:beasys:docmgmt : <clas
sname>

where <classname> is the fully
qualified class name of the
implementation of
com.bea.pl3n.content.
document . spi.DocumentProv
ider.

Properties JDBC Properties
Text Box

The semi-colon separated list of
name=value pairs which will be
passed to the DocumentProvider
specified in the URL. Table 8-4 lists the
properties that the reference
implementation understands.

InitialCapacity Initial Capacity of
Pool
Text Box

Specifies the initial number of
connections to create when the
document connection pool is started.

MaxCapcity Maximum Capacity
of Pool

Text Box

Specifies the maximum number of
connections this pool will ever create
and maintain.

CapacityIncrement Capacity Increment
Text Box

Specifies the number of connections the
pool will create whenever it needs to
create an available connection.

WebLogic Portal Development Guide — 8-21

8 Portal Content Management

Table 8-3 DocumentConnectionPool MBean Attributes

Attribute Screen Label/ Description
Control Type
LoginTimeout n/a Specifies the amount of time to wait for

a connection: after this time expires, an
exception is thrown. Use 0 or less to
have the pool not timeout, which is the
default.

ClassPath n/a

Specifies the semicolon -separated list
of additional directories and JARs the
connection pool should use when
attempting to load the Driver and the
DocumentProvider classes. All
paths are assumed to be relative to the
application directory.

Table 8-4 Describes the valid reference implementation properties you can set for the
DocumentConnectionPool MBean.

Table 8-4 Reference Implementation Properties

Property

Description

jdbc.dataSourceSp

Specifies the INDI name of the javax.sql.DataSource to
use to get database connections. This datasource should
be connected to the database that contains the

DOCUMENT and DOCUMENT METADATA tables.

jdbc.url

Specifies the JDBC URL to connect to. If
jdbc.dataSource is specified, this is ignored.

jdbc.driver

Specifies the JDBC driver class to load. If
jdbe.dataSource is specified, this is ignored.

jdbc.isPooled

8-22 WebLogic Portal Development Guide

If true, or if jdbc.url starts with
jdbc:weblogic:pool or jdbc:weblogic:jts,
orif jdbc .dataSource is specified, then assumes the
connection is pooled and won't cache it. If anything else,
assumes the connection is not pooled and will maintain
one connection.

Configuring the Content Manager

Table 8-4 Reference Implementation Properties

Property

Description

jdbc.supportsLikeEscape
Clause

Specifies whether the underlying database supports the
SQL LIKE ESCAPE clause. If this is not specified, the
connection will be queried.

jdbc.docBase

Specifies under which base directory the documents are
stored. Assumes all paths coming from the database are
relative to this directory.

jdbc.schemaXML

Specifies the path to the directory containing XML files
following the doc-schemas DTD which contain the
property set information. The system will recurse
through the directory, loading all files ending in .xml.

jdbc.isolationLevel

Configures the transaction isolation level to set on the
database connections. This can be one of the following:

READ _COMMITTED

READ UNCOMMITTED

SERIALIZABLE

REPEATABLE READ

NONE

If not specified, it defaults to SERIALIZABLE.

For further details, see the Javadoc API documentation
for java.sgl.Connection.

jdbc.column.<colName>

Specifies an additional column to the DOCUMENT
table. The value is the comma-separated list of property
names that map onto that column. This can be specified
multiple times. This should be used in conjunction with
the - columnMap and/or - column arguments to the
BulkLoader. If the same property is mapped to more
than one column, the result is indeterminate.

You can edit a DocumentConnectionPool MBean to change attribute and property
values as needed by using the WebLogic Server Administration Console, as shown in

Figure 8-9.

WebLogic Portal Development Guide ~ 8-23

8 Portal Content Management

Configuring the Web Application

8-24

You need to configure the Web application to have access to the J2EE resources (such
as EJBs, servlets, and JSP tag libraries) required to access the content management
services. This means you will need to configure EJB references to
ejb/ContentManager and ejb/DocumentManager. Additionally, you need to have
the com.bea.pl3n.content.servlets.ShowDocServlet mapped into your Web
Application. BEA suggests that you to map it to the /ShowDoc/* URL in your Web
Application, as shown in Listing 8-3.

Listing 8-3 Mapping the ShowDocServlet

<servlets>
<servlet-name>ShowDocServlet</servlet-names>
<servlet-class> com.bea.pl3n.content.servlets.ShowDocServlet
</servlet-class>

<!-- Make showdoc always use the local ejb-ref DocumentManager -->

<init-param>
<param-names>contentHome</param-name>
<param-value>java:comp/env/ejb/DocumentManager</param-value>
</init-param>

</servlets>

<servlet-mappings>
<servlet-name>ShowDocServlet</servlet-names>
<url-patterns>/ShowDoc/*</url-patterns
</servlet-mapping>

This will allow the showDoc/ URI under your Web Application’s context root (for
example, /wlcs/ShowDoc) to be sent to the ShowDocServlet. The contentHome
<init-param> will cause that ShowDocServlet to always use the
ejb/DocumentManager EJB reference; you can take this out to allow
ShowDocServlet to obey any contentHome request parameters.

To access the Content Management tag libraries, you will need to:

WebLogic Portal Development Guide

Using Content-Selector Tags and Associated JSP Tags

m Copy the cm_taglib.jar file in the Web Application’s WEB-INF/11ib directory.
(It can be copied from WL_PORTAL HOME/1lib/pl3n/web.)

m Make sure that cm.t1d is mapped to /WEB-INF/lib/cm taglib.jarina
<taglib> entry in your Web Application’s WEB-INF/web.xml file.

Using Content-Selector Tags and Associated
JSP Tags

A content selector is one of several mechanisms that WebLogic Portal provides for
retrieving documents from a content management system. You can use content
selector JSP tags and a set of other JSP tags to retrieve and display the content targeted
by the content selector.

This section describes how to use content-selector tags and their associated JSP tags to
manage content. It includes information on the following topics:

m Using the <pz:contentSelector> Tag
m Associated Tags That Support Content Selectors
m Using Content Selector Tags and Associated Tags

For information on how WebLogic Portal’s content-related JSP tags map to WebLogic
Portal’s content management service provider interface (SPI), see the “Personalization
JSP Tags” section of the JavaServer Page Guide at
http://edocs.bea.com/wlp/docs70/jsp/p13njsp.htm.

Using the <pz:contentSelector> Tag

The <pz:contentSelectors selector tag allows you to do the following:
m [dentify the Content Selector Definition
m [dentify the INDI Home for the Content Management System

m Define the Array That Contains Query Results

WebLogic Portal Development Guide ~ 8-25

8 Portal Content Management

m Create and Configure the Cache to Improve Performance

Identify the Content Selector Definition

8-26

The content selector definition created in the E-Business Control Center determines
the conditions that activate a content selector and the query that the active content
selector runs.

To refer to this definition, use the rule attribute:
<pz:contentSelector rule= { definition-name | scriptlet } >

You can use a scriptlet to determine the value of the rule attribute based on additional
criteria. For example, you use a content selector in a heading JSP (heading. inc),
which is included in other JSPs. You can create different content selectors for each
page that includes heading. inc.

A scriptlet is used in heading. inc to provide a value based on the page that currently
displays the included JSP file. Listing 8-4 shows an example.

Listing 8-4 Using a Scriptlet in heading. inc

String banner = (String)pageContext.getAttribute ("bannerPh") ;
banner = (banner == null) ? "cs_ top generic" : banner;

<table width="100%" border="0" cellspacing="0" cellpadding="0"
height="108">

<tr><td rowspan="2" width="147" height="108">
<pz:contentSelector rule="<%= banner %>" ... />

</td>

WebLogic Portal Development Guide

Using Content-Selector Tags and Associated JSP Tags

Identify the JNDI Home for the Content Management System

The content selector tag must use the contentHome attribute to specify the INDI home
of the content management system. If you use the reference content management
system or a third-party integration, you can use a scriptlet to refer to the default content
home. Because the scriptlet uses the ContentHelper class, you must first use the
following tag to import the class into the JSP:

<%@ page import="com.bea.pl3n.content.ContentHelper"$>

Then, when you use the content selector tag, specify the contentHome as described in
Listing 8-5.

Listing 8-5 Specifying contentHome in a Content-Selector Tag

<pz:contentSelector
contentHome="<%=ContentHelper.DEF_DOCUMENT MANAGER HOME %>"

. />

If you create your own content management system, you must specify the JNDI home
for your system instead of using the ContentHelper scriptlet. In addition, if your
content management system provides a JNDI home, you can specify that one instead
of using the ContentHelper scriptlet.

Define the Array That Contains Query Results

You can use the attributes described in Table 8-5 to configure the array that contains
the results of the content-selector query.

Table 8-5 Attributes that Define the Array that Contains Query Results

Attribute Description
id Specifies a name for the array. This attribute is required.
For example, <pz:contentSelector id="docs" .../>

places documents in an array named docs.

WebLogic Portal Development Guide ~ 8-27

8 Portal Content Management

Table 8-5 Attributes that Define the Array that Contains Query Results

Attribute Description

max Limits the number of documents the content selector places in its
array.
For example, <pz:contentSelector max="10" .../>

causes the content selector to stop retrieving documents when the
array contains 10 documents.

This attribute is optional and defaults to - 1, which means no
maximum.

SortBy Uses one or more document attributes to sort the documents in the
array. The syntax for sortBy follows the SQL order by clause
syntax.

This attribute is optional. If you do not specify this attribute, the
content selector returns the query results in the order that the content
management system returns them.

For example, <pz: contentSelector
sortBy="creationDate" .../> places the documents that
were created first at the beginning of the array.

The tag <pz:contentSelector sortBy="creationDate
ASC, title DESC" .../>places older documents at the
beginning of the array. If any documents were created on the same
day, it sorts those documents counter-alphabetically by title.

Create and Configure the Cache to Improve Performance

8-28

To extend accessibility of retrieved content and to improve performance, you can
optionally use content selector attributes to create and configure a cache that contains
the array contents. Without the cache, you can access the content selector array only
from the current JSP page, and only for the customer request that created it. In addition,
each time a customer requests a JSP that contains the content selector tag, the content
selector must run the query, potentially slowing the overall performance of WebLogic
Portal.

To cache the contents of the array, use the attributes listed in Table 8-6.

WebLogic Portal Development Guide

Using Content-Selector Tags and Associated JSP Tags

Table 8-6 Attributes that Cache the Contents of an Array

Attribute

Description

useCache

Determines whether the content selector places the array in a
cache. To activate the cache, set this attribute to t rue. For
example, <pz:contentSelector cache="true" ...>.

To deactivate the cache, set the attribute to false or do not
include it. For example, the following statements are equivalent:
<pz:contentSelector cache="false" .../>
<pz:contentSelector ...>

cacheId

Assigns a name to the cache. If you do not specify this attribute,
the cache uses the name of the array (which you must specify
with the 14 attribute). If you want to access the cache from a JSP
or user session other than the one that created the array, you must
specify a cacheId.

cacheTimeout

Specifies the number of milliseconds that WebLogic Portal
maintains the cache. The content selector does not re-run the
query until the number of seconds expires.

For example, you create the following tag:

<pz:contentSelector cache="true"
cacheTimeout="300000" .../>

A customer requests the page that contains this content selector
tag. The user leaves the page but, 2 minutes (120000
milliseconds) later, requests it again. The content selector
evaluates its conditions, but because only 120000 milliseconds
have expired since the content selector created the cache, it does
not re-run the query. Instead, it displays the documents in the
cache.

WebLogic Portal Development Guide ~ 8-29

8 Portal Content Management

Table 8-6 Attributes that Cache the Contents of an Array

Attribute Description

cacheScope Determines from where the cache can be accessed. You can
provide the following values for this attribute:

m application. Any JSP page in the Web application that
any customer requests can access the cache.

m session (the default). Any JSP in the Web application that
the current customer requests can access the cache.

m page. Only the current JSP that any customer requests can
access the cache.

m request. Only the current user request can access the
cache. If a customer re-requests the page, the content selector
re-runs the query and recreates the cache.

Associated Tags That Support Content Selectors

The JSP tags listed in Table 8-7 support content selector functions.

8-30 WebLogic Portal Development Guide

Using Content-Selector Tags and Associated JSP Tags

Table 8-7 JSP Tags that Support Content-Selector Functions

Tag Description

<um:getProfiles> Retrieves the profile of the customer who is currently
viewing the page. A content selector uses the customer
profile to evaluate any conditions that involve
customer properties.

For example, if you create a content selector that runs
a query for all customers in the Gold Customer
customer segment, the content selector must access the
customer profile to determine if it matches the
customer segment.

Even if a content selector does not currently use the
customer profile for its conditions, we recommend that
you include the <um:getProfile> tag; its affect on
performance is minimal and with the tag,
customer-profile conditions can be added to the
content selector without requiring a developer to
modify JSPs.

The tag must be located closer to the beginning of the
JSP than the content selector tag.

WebLogic Portal Development Guide ~ 8-31

8 Portal Content Management

Table 8-7 JSP Tags that Support Content-Selector Functions

Tag

Description

<es:forEachInArray>

Iterates through the array that contains the results of a
content selector query. With this tag, you can use the
following to work with the documents in the array:

The System.out.println method to print
each item in the array.

The <cm:getProperty> tag to retrieve one or
more attributes of the documents in the array. You
can use the attributes to construct the HTML that
a browser requires to display the documents. For
example, you use the <cm:getProperty> tag
to determine the value of a MIME - type attribute.
If the MIME-type of a document in the array is an
image, you print the HTML tag with the
appropriate attributes.

You can also use attributes of the
<pz:contentSelectors tag, such as
sortBy, to work with the attributes of documents
in the array.

The <cm:printPropertys to print one or
more attributes of the documents in the array. For
example, you can use this tag to print a list of
document titles that the content selector retrieves.

Using Content Selector Tags and Associated Tags

8-32

The combination of content selector definitions, tag attributes, and associated JSP tags

creates a powerful set of tools for matching documents to customers in specific
contexts. The following tasks are the most common uses of content selectors and

associated tags:

m Retrieving and Displaying Text-Type Documents

m Retrieving and Displaying Image-Type Documents

m Retrieving and Displaying a List of Documents

m Accessing a Content Selector Cache on a Different JSP

WebLogic Portal Development Guide

Using Content-Selector Tags and Associated JSP Tags

For information on how WebLogic Portal’s content-related JSP tags map to WebLogic
Portal’s content management service provider interface (SPI), see the “Personalization
JSP Tags” section of the JavaServer Page Guide at
http://edocs.bea.com/wlp/docs70/jsp/p13njsp.htm.

Retrieving and Displaying Text-Type Documents

To retrieve and display text-type documents, use this procedure:

Note: This procedure assumes that the content selector query created in the
E-Business Control Center includes a filter to retrieve only text documents.

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the lines shown in Listing 8-6 to import
classes and tag libraries if they are not already in the JSP:

Listing 8-6 Code to Import Classes and Tag Libraries

<%@ page import="com.bea.pl3n.content.ContentHelper"%>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="pz.tld" prefix="pz" %>
<%@ taglib uri="um.tld" prefix="um" %>

3. Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um:getProfiles>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz:contentSelectors tag, which you use in the next step.

4. Add the tags shown in Listing 8-7, where SpringSailing is the name of the
content selector that was created in the E-Business Control Center:

WebLogic Portal Development Guide ~ 8-33

8 Portal Content Management

Listing 8-7 Content Selector Tag Example 1

<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT MANAGER HOME %>"
id="textDocs"/>

<es:forEachInArray array="<%=textDocs%>" id="aTextDoc"
type="com.bea.pl3n.content.Content">

<p><cm:printDoc id="aTextDoc"/></p>

</es:forEachInArrays>

Note: To verify the content type before you display it, you can surround the <%
"<P>" + aTextDoc + "</P>" %> scriptlet with another scriptlet.
Listing 8-8 shows an example:

Listing 8-8 Verifying the Content Type

<% if (aTextDoc.getMimeType () .contains ("text") != -1)

{

oe

>
<p><cm:printDoc id="aTextDoc"/></p>

o°

o0 ——~ A

\

5. Save the JSP. If you deploy the Web application as a waAR file, re-jar the Web
application and deploy it.

WebLogic Portal deploys the modifications. If you specified a page-check rate
for your Web application, WebLogic Portal waits for the page-check interval to
expire before deploying any changes.

Retrieving and Displaying Image-Type Documents
To retrieve and display image-type documents, use this procedure:

1. Open a JSP in a text editor.

8-34 WebLogic Portal Development Guide

Using Content-Selector Tags and Associated JSP Tags

2. Near the beginning of the JSP, add the lines shown in Listing 8-9 to import
classes and tag libraries if they are not already in the JSP:

Listing 8-9 Code to Import Classes and Tag Libraries if They are not Already in
the JSP

<%@ page import="com.bea.pl3n.content.ContentHelper"$>
<%@ taglib uri="pz.tld" prefix="pz" %>
<%@ taglib uri="um.tld" prefix="um" %>
<%@ taglib uri="cm.tld" prefix="cm" %>

3. Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um:getProfiles>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz: contentSelectors tag, which you create in the next step.

4. Add the tags shown in Listing 8-10, where SpringSailing is the name of the
content selector that was created in the E-Business Control Center:

Listing 8-10 Content Selector Tag Example 2

<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT_ MANAGER HOME %>"
id="ImageDocs"/>

<es:forEachInArray array="<%=ImageDocs%>" id="anImageDoc"
type="com.bea.pl3n.content.Content">

<img src="ShowDoc/<cm:printProperty
id="anImageDoc" name="identifier" encode="url"/>"

</es:forEachInArray>

Note: The above tags assume that the content selector query that was created in
E-Business Control Center includes a filter to retrieve only image

WebLogic Portal Development Guide ~ 8-35

8 Portal Content Management

documents. To verify the content type before you display it, you can
surround the tag with a scriptlet. Listing 8-11 shows an example:

Listing 8-11 Surrounding an Tag with a Scriptlet

<% if (anImageDoc .getMimeType () .contains("image"))
%>
<img src="ShowDoc/<cm:printProperty
id="anImageDoc" name="identifier" encode="url"/>">

o0 —~—

5. Save the JSP. If you deploy the Web application as a .war file, re-jar the Web
application and deploy it.

WebLogic Portal deploys the modifications. If you specified a page-check rate
for your Web application, WebLogic Portal waits for the page-check interval to
expire before deploying any changes..

Retrieving and Displaying a List of Documents
To retrieve and display a list of documents, use this procedure:

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the lines shown in Listing 8-12 to import
classes and tag libraries if they are not already in the JSP:

Listing 8-12 Code to Import Classes and Tag Libraries if They are not Already
in the JSP

<%@ page import="com.bea.pl3n.content.ContentHelper"$> <%@
taglib uri="es.tld" prefix="es" %>

<%@ taglib uri="pz.tld" prefix="pz" %>

<%@ taglib uri="um.tld" prefix="um" %>

8-36 WebLogic Portal Development Guide

Using Content-Selector Tags and Associated JSP Tags

3. Add the following tag to get the customer profile, if the tag is not already in the

JSP:

<um:getProfile>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz: contentSelectors tag, which you create in the next step.

Add the tags shown inListing 8-13 , where SpringSailing is the name of the
content selector that was created in the E-Business Control Center:

Listing 8-13 Content Selector Tags Example 3

<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT MANAGER HOME %>"
id="docs"/>

<es:forEachInArray array="<%=docs%>" id="aDoc"
type="com.bea.pl3n.content.Content">

The document title is: <cm:printProperty id="aDoc"
name="Title" encode="html" />
</es:forEachInArray>

</uls>

Save the JSP. If you deploy the Web application as a .war file, re-jar the Web
application and deploy it.

WebLogic Portal deploys the modifications. If you specified a page-check rate
for your Web application, WebLogic Portal waits for the page-check interval to
expire before deploying any changes.

Accessing a Content Selector Cache on a Different JSP

To access a content selector cache on a Different JSP, use this procedure:

1.

In a text editor, open the JSP page that contains the content selector tag. For
example, you want to cache the results of the following tag:
<pz:contentSelector rule="SpringSailing" id="docs".../>

Add attributes to the content selector tag as shown in Listing 8-14:

WebLogic Portal Development Guide ~ 8-37

8 Portal Content Management

Listing 8-14 Content Selector Tag Attributes

<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER HOME %>"
id="docs"

useCache="true" cacheId="SpringSailingDocs"
cacheTimeout="120000"

cacheScope="application" />

These attributes create a cache that WebLogic Portal maintains for 2 minutes
(120000 milliseconds) and that can be accessed using the name
SpringSailingDocs by any user from any page in the Web application. For
more information about possible values for cacheScope, see “Create and
Configure the Cache to Improve Performance” on page 8-28.

3. Save and deploy the JSP.
4. In a text editor, open the JSP from which you want to access the cache.

5. Use a content-selector tag that is identical to the tag you created in step 2. For
example, on the current JSP, add the tag shown in Listing 8-15:

Listing 8-15 Adding an Identical Tag

<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT MANAGER HOME %>"
id="docs"

useCache="true" cacheId="SpringSailingDocs" cacheTimeout="120000"
cacheScope="application" />

6. Save and deploy the JSP.

8-38 WebLogic Portal Development Guide

Integrating External Content Management Systems

Integrating External Content Management
Systems

For customers who have larger amounts of content and want more control over the
publishing and tagging of content, BEA partners with third-party vendors to add
flexibility to WebLogic Portal. Third-party content management systems provide
robust, content-creation management solutions while the Content Manager
personalizes and serves the content to the end user.

Integration Strategies

BEA recommends three strategies for integrating a third-party content management
system with the WebLogic Portal:

m Have the CMS publish the documents onto the file system and use the reference
implementation’s BulkLoader to load them into the database. This is the same
process described in “Adding Content by Using the Bulk Loader” on page 8-1,
except that you must ensure that the third-party CMS loads data into the
appropriate location at a regularly scheduled interval. See “Adding Content by
Using the Bulk Loader” on page 8-1 for complete information.

m Write an implementation of the Document Provider interface. See “Adding
Content by Implementing a DocumentProvider Interface” on page 8-40.

m Have the CMS publish into the reference implementation document repository.
See “Publishing to Reference Implementation” on page 8-48.

WebLogic Portal Development Guide ~ 8-39

8 Portal Content Management

Adding Content by Implementing a DocumentProvider

Interface

The DocumentProvider object is the entry point into an SPI implementation. It consists
of methods that access the underlying content management system. When developing
a DocumentProvider, you do not need to be concerned about transactional state or
thread safety. Since a DocumentProvider does not need to perform write actions, a
transaction is not required to access a DocumentProvider.

Implementing a DocumentProvider interface involves writing implementations of Java
interfaces contained in the com.beasys.pl3n.content .document . spi package.
These interfaces are:

B DocumentProvider
B DocumentIterator
B DocumentMetadataDef
B DocumentDef

B DocumentSchemaDef

The following sections describe how these interfaces are implemented to integrate a
CMS with WebLogic Portal.

For more information on these interfaces, see the Javadoc for
com.beasys.pl3n.content.document.spi.

The following steps present a high-level description of how to implement a
DocumentProvider interface.

Step 1. Ensure that the CMS Meets the Minimum Use Requirements

8-40

To successfully integrate a Content Management System into WebLogic Portal, the
CMS must support the capabilities listed in Table 8-8.

WebLogic Portal Development Guide

Integrating External Content Management Systems

Table 8-8 CMS Minimum Use Requirements

Requirement

Description

Unique document Ids

There must be a single key that identifies a document as unique from
all the other documents in the system, and it must be possible to
represent the key as a String. For example, some content
management systems assign a document an object id, while others
(including the reference implementation) use the relative path.

Document Metadata

There must be a way to retrieve all the metadata about a document.
The metadata must be comprised of the standard WebLogic Portal
types (Boolean, Integer, Float, DateTime, String, Multi-valued), or
be able to be converted to those types. This metadata must include,
at a minimum, the size of the document in bytes and the MIME 1.0
mime type of the document.

Document content
retrieval

There must be some way to retrieve the raw bytes of the document.

Searching The CMS must allow some mechanism to search for documents
based upon a query against the document metadata. (Full-text
searches are not required in WebLogic Portal.)

Schemas The CMS must provide a mechanism to expose the document

metadata schemas. Schemas describe which of the metadata
attributes and their types will be associated with which types of
documents. The rules editor then uses this schema information to let
you create the content selector rules that make personalization
possible. (Regular document searching methods do not use the
schema information, so non-personalized document retrieval is
possible without schemas.)

Java access

The CMS must support some mechanism by which Java code can
access the documents. These may include, but are not limited to,
Java class libraries, a native shared library which JNI can access,
socket based access (such as HTTP, DCOM, client-server), DBMS
level access, file based access, or eLink capable access. (Java access
is optional when publishing into the reference implementation
supplied by WebLogic Portal.)

WebLogic Portal Development Guide — 8-41

8 Portal Content Management

If all of these requirements cannot be met in some fashion, it will not be possible to
fully integrate the CMS with WebLogic Portal. Additionally, since WebLogic Portal
does not provide document creation and editing functionality, the CMS must have
some way for users to create and edit documents.

Step 2. Write the SPI Implementation

Next, you need to code the SPI by implementing the interfaces described in Table 8-9
and the additional default and helper classes listed in
“DefaultDocumentProvider” on page 8-43. These interfaces provide two-way
communication between your Web application and the CMS by taking BEA objects
and converting them to objects recognizable by the CMS.

Table 8-9 DocumentProvider Interfaces

Interface Description

DocumentIterator The Documentlterator interface extends the java.util.Iterator
interface by adding a close () method. The close ()
method is invoked when the Documentlterator is no longer
used. It clears any resources tied to the Documentlterator.
The methods invoked by this interface should not return null.
If an exception is necessary, the methods should throw a
DocumentException. If the results set is empty, than an
empty Documentlterator should be returned.

DocumentMetadataDef The DocumentMetadataDef interface represents the
metadata attributes of a document. This interface contains
methods for retrieving both explicit and implicit (CMS
defined) metadata. The getProperty (String name)
method for retrieving implicit metadata should not respond
to the explicit attributes names: identifier, size, version,
author, creationDate, lockedBy, modifiedDate, modifiedBy,
description, comments, and mimeType. To retrieve the
explicit properties, the infrastructure calls the corresponding
individual methods.

8-42 WebLogic Portal Development Guide

Integrating External Content Management Systems

Table 8-9 DocumentProvider Interfaces

Interface

Description

DocumentDef

The DocumentDef interface represents the raw bytes of a
document’s content. Although this interface is required to
implement two methods, primarily the openStream ()
method will be invoked. It is highly recommended that the
InputStream returned from openStream () supports the
skip () and available () methods in an efficient
manner. The skip () method will be used when returning
chunks of the content bytes to WebLogic Portal. The
available () method will be used to determine how many
more bytes are available from the stream.

DocumentSchemaDef

The DocumentSchemaDef represents a single available
schema from the underlying CMS. It contains methods to
query the attribute names, types, possible values, and
descriptions.

For information on how WebLogic Portal’s content-related JSP tags map to the
WebLogic Portal SPI, see the “Personalization JSP Tags” section of the JavaServer
Page Guide at http://edocs.bea.com/wlp/docs70/jsp/p13njsp.htm.

Additional DocumentProvider Classes to Implement

In addition to the interfaces listed in Table 3-1, you can use some of the abstract classes
in the com.bea.pl3n.content.document . ref package as base classes to
implement some SPI functionality. These classes include:

B DefaultDocumentProvider

B DefaultDocumentIterator

DefaultDocumentMetadata

DefaultDocumentSchema

DefaultDocument
FileDocument

URLDocument

Other classes that can help in developing a DocumentProvider implementation
include:

WebLogic Portal Development Guide ~ 8-43

8 Portal Content Management

B com.bea.pl3n.content.document.ref.DocumentComparator
B com.bea.pl3n.content.expression.SortCriteria

B com.bea.pl3n.content.expression.ExpressionHelper

B com.bea.pl3n.content.expression.ExpressionAdapter

B com.bea.pl3n.content.MimeTypeHelper

B com.bea.pl3n.util.DefaultEntityResolver

B com.bea.pl3n.util.jdbc.JdbcHelper

B com.bea.pl3n.util.WildCard

Note: Consult the WebLogic Portal Javadoc for further details about each class.

Implementing Search and Schema Methods

In general, integating a third-party CMS requires that you implement both search
methods and schema methods.

Search methods return metadata about a document; that is, the data that determines the
appearance of the data returned. You will need to determine how the search criteria
passed into the search object corresponds to the search methods allowed by the CMS
and then define this mapping in order for the search to work.

Schema methods return the “bytes”; that is, something that represents the data to be
consumed by the Web application. Assuming that the necessary data exists in the
polled CMS, these methods will return:

m The specified schema object
m A list of all schema names

® A map of schema names

Step 3. Place Code Into the Application

8-44

Once the SPI implementation is written, WebLogic Portal needs to be configured to
use it. To do this, you can either:

m Modify the Existing DocumentConnectionPool

OR

WebLogic Portal Development Guide

Integrating External Content Management Systems

m Configure a New DocumentConnectionPool and DocumentManager

Modify the Existing DocumentConnectionPool

The first method is to simply modify an existing DocumentConnectionPool in the
application’s META-INF/application-config.xml. The DocumentManager
implementation uses connection pools to a specialized JDBC driver to handle searches.
A deployed DocumentManager finds the document connection pool to use via either
the DocumentConnectionPoolName attribute of its DocumentManager MBean or the
DocumentConnectionPoolName EJB deployment descriptor setting.

Configure a New DocumentConnectionPool and DocumentManager

The second way to configure WebLogic Portal is to set up a new
DocumentConnectionPool in the application’s
META-INF/application-config.xml file and to deploy a new DocumentManager
EJB in the application.

First, create a new connection pool by following the procedure outlined in the “Using
the WebLogic Server Administration Console to Modify DocumentManager MBeans”
on page 8-10 Be sure to give the DocumentConnectionPool a unique name in the
application (for example, “myConnectionPool”).

Next, put together the new EJB by using the following procedure:

1. Unjar the <application-directorys>/document.jar file to a temporary
directory.

2. Add your implementation code to the directory appropriately.

3. In META-INF/ejb-jar.xml, create a new <sessions> entry based upon the
DocumentManager entry. Be sure to change the <ejb-name> entry to a unique
name; for example, in Listing 8-16, that is NewsletterDocumentManager:

Listing 8-16 Creating a New <session>

<!-- The Newsletter DocumentManager -->

<session>

<ejb-name>NewsletterDocumentManager</ejb-name>
<home>com.bea.pl3n.content.document .DocumentManagerHome</home>
<remotes>com.bea.pl3n.content.document .DocumentManager</remote>
<ejb-class>com.bea.pl3n.content.document.internal.

WebLogic Portal Development Guide ~ 8-45

8 Portal Content Management

8-46

SPIFastDocumentManagerImpl</ejb-class>
<session-type>Stateless</session-types>

<transaction-type>Container</transaction-type>

<!--

This controls which DocumentManager MBean this instance
will look for in the application-config.xml.

-=>

<env-entry>
<env-entry-name>DocumentManagerMBeanName</env-entry-name>
<env-entry-types>java.lang.String</env-entry-type>
<env-entry-valuesnewsletter</env-entry-value>
</env-entry>

</session>

In the new <session> entry in META-INF/ejb-jar.xml, change the
<env-entry-values in the <env-entry> for DocumentManagerMBeanName
to a unique name (“NewsletterDocumentManager” in this example). This value
will be used later in the application-config.xml file.

In META-INF/ejb-jar.xml, add <assembly-descriptors and
<container-transactions entries for your new <session> entry. You can
copy the existing ones, being sure to change <ejb-name> to the value used above
(“NewsletterDocumentManager” in this example). Listing 8-17 shows an
example:

Listing 8-17 Adding <assembly-descriptor>and <container-transaction>
Entries

<assembly-descriptors>

<container-transactions>
<method>
<ejb-names>NewsletterDocumentManager</ejb-name>
<method-names>*</method-names>
</method>
<trans-attributes>Required</trans-attributes>
</container-transactions>

</assembly-descriptors>

WebLogic Portal Development Guide

Integrating External Content Management Systems

6. Edit META-INF/weblogic-ejb-jar.xml to create a new
<weblogic-enterprise-beans entry based upon the DocumentManager entry.
Be sure to change the <ejb-name> entry to the name used above
(“NewsletterDocumentManager” in this example). Listing 8-18 shows an
example.

Listing 8-18 Creating a New <weblogic-enterprise-bean> Entry

<weblogic-ejb-jar>
<weblogic-enterprise-beans>
<ejb-name>NewsletterDocumentManager</ejb-name>
<entity-descriptors>
<persistence>
<persistence-type>
<type-identifier>WebLogic CMP RDBMS
</type-identifiers
<type-version>7.0</type-versions>
<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml
</type-storage>
</persistence-type>
<persistence-use>
<type-identifier>WebLogic_ CMP_ RDBMS
</type-identifiers
<type-version>6.0</type-versions>
</persistence-use>
</persistences>
</entity-descriptors>

<jndi-name>${APPNAME} .BEA portal examples.
NewsletterDocumentManage</jndi-name>

</weblogic-enterprise-beans>

7. In META-INF/weblogic-ejb-jar.xml, in the new
<weblogic-enterprise-beans entry, change the <jndi-name> to a desired
value. This value will be the INDI name used in EJB references to your new
DocumentManager. For example:

<jndi-name>${APPNAME} .BEA portal examples.
NewsletterDocumentManager</jndi-names>

WebLogic Portal Development Guide 8-47

8 Portal Content Management

8. Jar up the temporary directory back into document . jar.

Step 4. Make the .jar Accessible to the Application

Next, you need to make the . jar file you created accessible to the application
accessing the CMS. You can do this by using one of these methods:

m Place the .jar into a . jar file already deployed in the application.

m Place the .jar into a . jar file referenced in the META- INF/Manifest . mf file’s
Class-Path entry in the .jar file that initializes the DocumentConnectionPool (for
example, document . jar).

m Put the .jar name in a classpath attribute on the DocumentConnectionPool
MBean in the application’s META-INF/application-config.xml file

Step 5. Restart the Server

Because, by this point, you have made a number of configuration changes and changes
to classpaths, we recommend that you restart the server.

Step 6. Apply the Portal

Finally, to complete the integration, you need to create the portal into which the CMS
data will appear. For instructions on creating a portal or portlet, please refer to “Step
3: Add a Portlet” on page 2-23.

Publishing to Reference Implementation

This strategy involves directly publishing to the WebLogic Portal reference
implementation database tables and XML schema files.

To implement this strategy:
1. Put the document entries and document metadata into the database tables.
2. Put the document metadata schema into WebLogic Portal XML schema files.

3. Put the document files on the file system.

8-48 WebLogic Portal Development Guide

Constructing Content Queries

Constructing Content Queries

This section, which provides guidelines for constructing queries to a content
management system, includes information on the following topics.

m Structuring Queries
m Using Comparison Operators to Construct Queries
m Constructing Queries Using Java

m Using the Document Servlet

Structuring Queries

WebLogic Portal queries are similar in syntax to the SQL string syntax that supports
basic Boolean-type comparison expressions, including nested parenthetical queries. In
general, the query includes a metadata property name, a comparison operator, and a
literal value. For example:

attribute name comparison operator literal value

Note: For more information about the query syntax, see the Javadoc API
documentation for
com.bea.pl3n.content.expression.ExpressionHelper

The following constraints apply to queries constructed using this syntax:

m String literals must be enclosed in single quotes.
® ‘'‘WebLogic Server’

e ‘football’

m Date literals can be created using a simple tobDate method that takes one or two
String arguments enclosed in single quotes. The first argument, if two are
supplied, is the SimpleDateFormat format string; the second argument is the
date string. If only one argument is supplied, it should include the date string in
‘MM/dd/yyyy HH:mm:ss z’ format.

WebLogic Portal Development Guide ~ 8-49

8 Portal Content Management

8-50

® toDate(‘EE dd MMM yyyy HH:mm:ss z’, ‘Thr 08 Nov 2001
16:56:00 MDT')

® toDate('02/23/2005 13:57:43 MST')
Use the toProperty method to compare properties whose names include spaces
or other special characters. In general, use toProperty when the property name

does not comply with the Java variable-naming convention that uses
alphanumeric characters.

® toProperty (‘'My Property’) = ‘Content’

To include a scope into the property name, use either scope . propertyName or
the toProperty method with two arguments.

® toProperty (‘myScope’, ‘myProperty’)

Note: The reference implementation document management system ignores
property scopes.
Use \ along with the appropriate character(s) to create an escape sequence that

includes special characters in string literals.

® toProperty (‘My Property\’s Contents’) = ‘Content’

Additionally, use Java-style Unicode escape sequences to embed non-ASCII
characters in string literals.

e Description like **\u65e5\u672c\ugage*’
Notes: The query syntax can contain only ASCII and extended ASCII characters
(0-255).

Use ExpressionHelper.toStringLiteral to convert an arbitrary
string to a fully quoted and escaped string literal which can be put in a

query.
The now keyword, only used on the literal value side of the expression, refers to
the current date and time.

Boolean literals are either true or false.

Numeric literals consist of the numbers themselves without any text decoration
(like quotation marks). The system supports scientific notation in the forms; for
example, 1.24e4 and 1.24E-4.

An exclamation mark (!) can be placed at an opening parenthesis to negate an
expression.

WebLogic Portal Development Guide

Constructing Content Queries

e | (keywords contains ‘football’) || (size »= 256)

m The Boolean and operator is represented by the literal «s.

® author == ‘james’ && age < 55

m The Boolean or operator is represented by the literal | |.

® creationDate > now || expireDate < now
The following examples illustrate full expressions:
Example 1:

((color=‘red’ && size <=1024) || (keywords contains ‘red’ &&
creationDate < now))

Example 2:

creationDate > toDate (‘MM/dd/yyyy HH:mm:ss’, '2/22/2000 14:51:00')
&& expireDate <= now && mimetype like ‘text/*’

Using Comparison Operators to Construct Queries

To support advanced searching, the system allows construction of nested Boolean
queries incorporating comparison operators. Table 8-10 summarizes the comparison
operators available for each metadata type.

Table 8-10 Comparison Operators Available for Each Metadata Type

Operator Type Characteristics

Boolean (==, |=) Boolean attributes support an equality check against Boolean. TRUE or
Boolean.FALSE.

Numeric (==, |=, >, <, >=, <= Numeric attributes support the standard equality, greater than, and less than
pp q Y, &
checks against a java.lang.Number.

WebLogic Portal Development Guide ~ 8-51

8 Portal Content Management

Table 8-10 Comparison Operators Available for Each Metadata Type (Continued)

Operator Type

Characteristics

Text (==, I=,>, <, >=, <=, like)

Text strings support standard equality checking (case sensitive), plus
lexicographical comparison (less than or greater than). In addition, strings
can be compared using wildcard pattern matching (that is, the 1ike
operator), similar to the SQL LIKE operator or DOS prompt file matching. In
this situation, the wildcards will be * (asterisk) to match any string of
characters and ? (question mark) to match any single character. Interval
matching (for example, using []) is not supported. To match * or ? exactly,
the quote character is \ (backslash).

Datetime (==, =, >, <, >=, <=)

Date/time attributes support standard equality, greater than, and less than
checks against a java.sqgl.Timestamp.

Multi-valued Comparison
Operators (contains, containsall)

Multi-valued attributes support a contains operator that takes an object of
the attribute's subtype and checks that the attribute's value contains it.
Additionally, multi-valued attributes support a containsall operator,
which takes another collection of objects of the attribute's subtype and checks
that the attribute's value contains all of them.

Single-valued operators applied to a multi-valued attribute should cause the
operator to be applied over the attribute's collection of values. Any value that
matches the operator and operand should return true. For example, if the

multi-valued text attribute keywords has the values BEA, Computer, and

WebLogic, and the operand is BEA, then the < operator returns true (BEA is
less than Computer), the > operator returns false (BEA is not greater than
any of the values), and the == operator returns true (BEA is equal to BEA).

User Defined Comparison
Operators

Currently, no operators can be applied to a user-defined attribute.

Notes: The search parameters and expression objects support negation of expressions
using a bit flag (!).

The reference implementation content management system has only
single-value Text and Number properties. All implicit properties are
single-value Text.

8-52 WebLogic Portal Development Guide

Constructing Content Queries

Constructing Queries Using Java

To construct queries using Java syntax instead of using the query language supplied
with the Content Management component, see the Javadoc API documentation for
com.bea.pl3n.content.expression.ExpressionHelper

The ContentManager session bean is the primary interface to the functionality of the
Content Management component. Using a ContentManager instance, content is
returned based on a com.bea.pl3n.content .expression.Search object with an
embedded com.bea.pl3n.expression.Expression, which represents the
expression tree.

In the expression tree, the following caveats apply for it to be valid for the
ContentManager:

m Each branch node can only be of the following types. Any other branch node
type is invalid.

com.bea.pl3n.expression.operator.logical.LogicalAnd,
com.bea.pl3n.expression.operator.logical.LogicalOr,
com.bea.pl3n.expression.operator.logical.LogicalMulitAnd, or
com.bea.pl3n.expression.operator.logical.LogicalMultiOr.

m Each leaf node can only be of the following types. Any other branch node type
is invalid.

com.bea.pl3n.expression.operator.comparative.Equals,
com.bea.pl3n.expression.operator.comparative.GreaterOrEquals,
com.bea.pl3n.expression.operator.comparative.GreaterThan,
com.bea.pl3n.expression.operator.comparative.LessOrEquals,
com.bea.pl3n.expression.operator.comparative.LessThan,
com.bea.pl3n.expression.operator.comparative.NotEquals,
com.bea.pl3n.expression.operator.string.StringLike,
com.bea.pl3n.expression.operator.collection.CollectionContains, or
com.bea.pl3n.expression.operator.collection.CollectionsContainsAll

m Any valid branch or leaf node may be contained in a
com.bea.pl3n.expression.operator.logical.LogicalNot node.

m In ecach leaf node, the left side will always be a
com.bea.pl3n.content.expression.PropertyRefnode,“dﬁchlnuﬂ
contain Strings for getPropertySet () and getPropertyName ().

WebLogic Portal Development Guide ~ 8-53

8 Portal Content Management

m The right side of these leaf nodes can be a java.util.Collection, Long,
Double, String, Or java.sql.Timestamp:
com.bea.pl3n.expression.operator.comparative.Equals,
com.bea.pl3n.expression.operator.comparative.NotEquals,
com.bea.pl3n.expression.operator.comparative.GreaterOrEquals,
com.bea.pl3n.expression.operator.comparative.GreaterThan,
com.bea.pl3n.expression.operator.comparative.LessOrEquals,
com.bea.pl3n.expression.operator.comparative.LessThan, or
com.bea.pl3n.expression.operator.collection.CollectionContains

m The right side of
com.bea.pl3n.expression.operator.string.StringLike leaf nodes can
be a String. Anything else is invalid.

m The right side of
com.bea.pl3n.expression.operator.collection.CollectionsContains
A1l leaf nodes can be a java.util.Collection. Anything else is invalid.

Using the Document Serviet

The Content Management component includes a servlet capable of outputting the
contents of a Document object. This servlet is useful when streaming the contents of
an image that resides in a content management system or to stream a document’s
contents that are stored in a content management system when an HTML link is
selected. Table 8-11 shows the Request/URL parameters that the servlet supports.

Table 8-11 Request Parameters Supported by the Document Servlet

Request Parameter Required Description

contentHome Maybe If the contentHome initialization
parameter is not specified, then this is
required and will be used as the INDI name
of the DocumentHome. If the
contentHome initialization parameter is
specified, this is ignored.

contentId No The string identifier of the Document to
retrieve. If not specified, the servlet looks in
the PATH_INFO.

8-54 WebLogic Portal Development Guide

Constructing Content Queries

Table 8-11 Request Parameters Supported by the Document Servlet (Continued)

Request Parameter Required Description

blockSize No The size of the data blocks to read. The
default is 8K. Use 0 or less to read the entire
block of bytes in one operation.

The servlet supports only Document s, not other subclasses of Content. It sets the
Content -Type to the Document ' s mimeType and, the Content-Length to the
Document 's size, and correctly sets the Content -Disposition, which should
present the correct filename when the file is saved from a browser.

Example 1: Usage in a JSP

This example searches for news items that are to be shown in the evening, and displays
them in a bulleted list.

<cm:select sortBy='"creationDate ASC, title ASC"

query="type = ‘News’ && timeOfDay = ‘Evening’ && mimeType like
‘text/*’ "id="newsList"/>

<uls>

<es:forEachInArray array="<%=newsList$%>" id="newsItem"
type="com.bea.pl3n.content.Content">

<a href="ShowDoc/<cm:printProperty id="newsItem"
name="identifier" encode="url"/>"><cm:printProperty
id="newsItem" name="title" encode="html"/>

</es:forEachInArray>

</uls>

Example 2: Usage in a JSP

This example searches for image files that match keywords that contain bird and
displays the image in a bulleted list.

<cm:select max="5" sortBy="name" id="1list"

1 "

query=" KeyWords like ‘*birds*’ && mimeType like ‘image/*’

WebLogic Portal Development Guide ~ 8-55

8 Portal Content Management

contentHome="java:comp/env/ejb/MyDocumentManager"/>

<es:forEachInArray array="<%=1ist%>" id="img"
type="com.bea.pl3n.content.Content” >

<img src="/ShowDoc/<cm:printProperty id="img"
name="identifier"
encode="url"/>?contentHome=<es:convertSpecialChars
string="java:comp/env/ejb/MyDocumentManager"/>">

<es:forEachInArray>

</uls>

8-56 WebLogic Portal Development Guide

CHAPTER

9

Setting Up Portal
Navigation

Portal navigation is achieved through the use of Webflow, a mechanism designed to
help you build Web applications and maintain a separation between presentation logic
and underlying business processes. When the visitor causes an event, such as clicking
Next on a page, Webflow determines what the visitor will see next. At appropriate
times during a visitor’s interaction, the Webflow may also invoke Pipelines,
predefined, specialized components used to validate data or to execute back-end
business processes.

Because the Webflow’s centralized XML configuration files specify the order in
which pages are displayed to your Web site’s visitors, use of the Webflow mechanism
may reduce the amount of work necessary to create and modify the flow of your Web
site.

This section contains information on the following subjects:
m Building a Webflow

m Creating a Pipeline and Adding it to a Webflow

m Synchronizing the Webflow to the Application

m Creating a New Input Processor

m Extending Webflow by Creating Extension Presentation and Processor Nodes

WebLogic Portal Development Guide 9-1

9 Setting Up Portal Navigation

Building a Webflow

This section shows you how to build a basic Webflow by adding the necessary nodes
to the Webflow and connecting those nodes to each other with transitions.

To build a Webflow, you need to complete the following steps:
m Step 1. Create the Webflow

m Step 2. Add Nodes to the Webflow Canvas

m Step 3. Identify the Begin Node

m Step 4. Create Transitions Between Nodes

Completing these steps will provide you with a rudimentary Webflow. Subsequent
information in this section will complete the Webflow-building process by showing
you how to:

m Create and add a Pipeline to the Webflow (see “Creating a Pipeline and Adding
it to a Webflow” on page 9-22)

m Synchronize the Webflow to the application (see “Synchronizing the Webflow to
the Application” on page 9-36)

Note: While the procedures outlined here and in subsequent parts of this section
imply a specific sequence for creating Webflows and Pipelines, this is done
only to facilitate the document and is not required. You can follow whatever
sequence is most accommodating to your development needs. For example,
you might want to create Pipelines for a Webflow before actually creating the
Webflow. Do note that you cannot synchronize a Webflow to an application
until the Webflow exists.

Understanding Webflow Components

Before attempting to build and implement a Webflow, you should understand some of
the Webflow components you will be using in the ensuing procedures.

9-2 WebLogic Portal Development Guide

Building a Webflow

Nodes and Transitions

Nodes are the graphical representation of the functionality of a state in the Webflow.
Depending on the node type, there are a number of predefined events that may occur
(such as a visitor clicking a link on a Web page). When a particular event happens, the
Webflow decides which subsequent node to invoke to continue the flow. This process
is referred to as a transition, and is illustrated in Figure 9-1.

Figure 9-1 Generic Webflow Transition

Origin Destination

Note that, as shown in Figure 9-1, nodes can be referred to as origin or destination
nodes, depending on their location in a transition.

Types of Nodes

There are two main types of nodes: presentation nodes and processor nodes. Each of
the presentation and processor nodes can be used as origin or destination nodes within
the Webflow.

Presentation Nodes

Presentation nodes represent states in which the Webflow presents or displays
something to a person interacting with the Web application. The form of the
presentation can be:

m HTML
m JavaServer Page (JSP)
m Java servlets

You can also create extension (custom) presentation nodes for use in the Webflow. For
more information about extension presentation nodes, see “How to Create an
Extension Presentation Node” on page 9-40.

WebLogic Portal Development Guide 9-3

9 Setting Up Portal Navigation

Processor Nodes

Processor nodes represent states in which the Webflow invokes more specialized
components to handle such activities as form validation or the back-end business logic
that drives the site’s presentation. The processor nodes available for use are described
in Table 9-1.

Table 9-1 Webflow Processor Node Types

Processor Node Description
Type
Input Processors Input Processors are predefined, specialized Java classes that carry

out more complex tasks when invoked by the Webflow mechanism.
Input Processors are typically used to validate HTML form data, or
to provide conditional branching within a Web page. For example,
an Input Processor may contain code that verifies whether a date
has been entered in the correct format, as opposed to embedding
that code within the same JSP that displays the form fields. Input
Processors contain logic that is specific to the Web application, and
are therefore loaded by the Web application’s container.

Pipelines A Pipeline is also a type of processor node that may be invoked by
the Webflow. Pipelines initiate the execution of specific tasks
related to your business process, and can be transactional or
nontransactional. For example, if a visitor attempts to move to
another page on your Web site but you want to persist the visitor’s
information to a database first, you could use a Pipeline. Pipelines
contain business logic that may apply to multiple Web applications
within a larger enterprise application, and are therefore loaded by
the Enterprise Java Bean (EJB) container.

All Pipelines are collections of individual Pipeline Components,
which can be implemented as Java objects or stateless session
Enterprise JavaBeans (EJBs). Pipeline Components are the parts of
a Pipeline that actually perform the tasks associated with the
underlying business logic. When these tasks are complex, Pipeline
Components may also make calls to external services (other
business objects).

Extension Processor ~ Extension (custom) processor nodes for use in the Webflow. For

Nodes more information about extension processor nodes, see “Extending
Webflow by Creating Extension Presentation and Processor
Nodes.”

9-4 WebLogic Portal Development Guide

Building a Webflow

Wildcard Nodes

If the Webflow cannot locate a specific presentation or processor node to complete a
transition, the Webflow will search for a wildcard presentation or processor node to
use as the origin node. Therefore, wildcard presentation nodes and wildcard processor
nodes implement default behavior for your Web application. Put another way,
wildcard nodes allow you to abstract common functionality and to locate that
functionality in a single place in your Webflow. Use Wildcard nodes only when you
haven’t explicitly defined destination nodes in the Webflow. You may have one
wildcard presentation node and one wildcard processor node per namespace.

An example of a Wildcard node might be when you want a link called Help (which is
present on every page) to always point to a JSP containing help information. To do so,
you could use a wildcard presentation origin. Further, you might always want
exceptions returned from processor nodes to transition to JSP containing detailed
information about the error. You could handle both of these situation with a wildcard
processor node.

Note: A slight impact on performance might occur if the Webflow must search for a
wildcard node, as more processing is involved.

Types of Transitions

There are two types of transitions: event and exception.

®m An event transition represents the processing logic between two nodes when an
event occurs on one of them and that event is successful.

®m An exception transition represents the processing logic that occurs when activity
on a processor node fails and an some sort of exception must be thrown. These
transitions usually direct the transaction.

For more information on the events that cause transitions, see “Types of Events” on
page 9-5.

Types of Events

Each node in a Webflow responds to events, which cause transitions (that is,
movement from an origin node to a destination node). However, the types of events a
node responds to depends on whether the node is a presentation node or a processor
node.

WebLogic Portal Development Guide 9-5

9 Setting Up Portal Navigation

Presentation nodes respond to the following events:
m Links
m Buttons

In other words, when a visitor to the Web site clicks a link or a button, the Webflow
responds to that event. A response might be to transition to another presentation node
(such as a JSP) or to a processor node (such as an Input Processor to validate
visitor-provided form data).

Processor nodes respond to the following events:
m Exceptions
m Return objects

Exceptions occur when an Input Processor or Pipeline does not execute properly, and
indicates an error state. Otherwise, these processor nodes return an object that the
Webflow can use to continue processing.

Note: Webflow used in portal applications may respond to more events than those
described above.

Encoding Webflow URLs

9-6

New context parameters ENCODE _URLS, ESCAPE URLS,
ENCODE_STATIC URLS, and ESCAPE STATIC URLS have been added for
70sp5 that control the default setting for URL escaping and encoding in webflow
URLs. See WebflowJSPHelper Javadoc for more information regarding escaping and
encoding of URLs.

ENCODE_ URLS is the default setting indicating whether webflow URLSs should be
encoded. Allowable param-values are true and false. If not set the default, default is
true to ensure backward compatibility.

<context-param>
<param-name>ENCODE URLS</param-name>
<param-value>false</param-value>

</context-param>

WebLogic Portal Development Guide

Building a Webflow

ESCAPE_URLS is the default setting indicating whether webflow URLs should be
escaped. Allowable param-values are NO_URL ESCAPE, ESCAPE URL,
CALCULATE_ESCAPE. If not set the default, default is URL _ESCAPE to ensure
backward compatibility.

<context-param>
<param-name>ESCAPE URLS</param-name>
<param-value>CALCULATE ESCAPE</param-value>
</context-param>

The above 2 defaults are for the following tags and also for the WebflowJSPHelper
createWebflowURL methods that do not have escape or encode as a parameter:

<wf :createWebflowURL/ >

<wf:form/>

<wf:validatedForm/>
<portal:createWebflowURL/ >
<portal:form/>
<portal:validatedForm/>
<portal:createPortalPageChangeURL/>
<portlet:createWebflowURL/ >
<portlet:form/>
<portlet:validatedForm/>
<portlet:createPortletEditURL/ >
<portlet:createPortletUneditURL/ >
<portlet:createPortletMinimizeURL/>
<portlet:createPortletUnminimizeURL/>
<portlet:createPortletMaximizeURL/>
<portlet:createPortletUnmaximizeURL/>

<portlet:createPortletFloatURL/>

WebLogic Portal Development Guide 9-7

9 Setting Up Portal Navigation

9-8

ENCODE_STATIC URLS it the default setting indicating whether static URLs
should be encoded. Allowable param-values are true and false. If not set the default,
default is true to ensure backward compatibility.

<context-param>
<param-name>ENCODE_STATIC URLS</param-name>
<param-values>false</param-value>
</context-param>

ESCAPE STATIC URLS is the default setting indicating whether static URLs should
be escaped. Allowable param-values are NO_URL ESCAPE, ESCAPE URL,
CALCULATE ESCAPE. Ifnot set the default, default is URL _ESCAPE to ensure
backward compatibility.

<context-param>
<param-name>ESCAPE_STATIC URLS</param-name>
<param-value>CALCULATE ESCAPE</param-values
</context-param>

The above 2 defaults are for the <wf:createResourceURL/> tag and the
WeblfowJSPHelper createStaticResource methods that do not have escape or encode
as a parameter.

URLSs need to be encoded if you wish to maintain session state and the browser does
not accept cookies. URLs will only need to be encoded if the browser does not accept
cookies.

URLSs must be escaped if they will contain any characters (with some exceptions - see
below) that would be encoded using java.net. URLEncoder.encode(). Note however
that even when escaping is on the entire URL is not encoded rather the URL will be
tokenized using the characters ':', '/','?", '=', and '&' then the substrings between the
tokens are encoded using java.net. URLEncoder.encode(). The tokenizing is necessary
so that the URL will still be recognized by the Webflow engine.

Note that escaping is relatively costly and should be avoided if possible but is required
if the URL might have any characters other then those ignored by

java.net. URLEncoder.encode(), that is any characters other than 'a' through 'Z', 'A’
through 'Z, '0' through '9",'-"," """, or "*' with the exception of the tokenizing characters
mentioned above. If the content of the URL will not be determined until runtime and
might contain "illegal" characters you should either have escaping on or use the

WebLogic Portal Development Guide

Building a Webflow

calculate feature. Calculate should be used with care. For sites that have a small
number of URLs that will need escaping using calculate rather then always escaping
will result in a performance improvement. But, since calculate first checks the URL
then encodes if needed, sites where most URLs need escaping will have poorer
performance using calculate rather then escaping all URLs.

Webflow Tools and Buttons

You create Webflows by using the Webflow Editor, as depicted in Figure 9-4. Most
activity in which you engage will require selecting either a tool button or a command
button. Table 9-2 describes the tool buttons available and Table 9-3 describes the
command buttons.

Table 9-2 Webflow Editor Tools

Tool Function Description
Selection Tool Allows you to select and move nodes, event transitions,
and exception transitions. Also allows you to add
elbows to transitions. This is the default tool for the
Webflow Editor.

Note: This tool will stay selected until you select
another one.

Event Tool Allows you to add an event transition between two
nodes, or a self-referring event transition.

Note: This tool will stay selected until you select
another one.

Exception Tool Allows you to add an exception transition between two
nodes, or a self-referring exception transition.

Note: This tool will stay selected until you select
another one.

Presentation Node Allows you to add a new Presentation Node to the
Editor canvas.

WebLogic Portal Development Guide 9-9

9 Setting Up Portal Navigation

Table 9-2 Webflow Editor Tools (Continued)

Tool Function

Description

Wildcard Presentation
Node

Ei

Allows you to add a new Wildcard Presentation Node
to the Editor canvas.

Input Processor Node

R

Allows you to add a new Input Processor Node to the
Editor canvas.

Pipeline Node

Edl

Allows you to add a new Pipeline Node to the Editor
canvas.

Wildcard Processor
= Node

&

Allows you to add a new Wildcard Processor Node to
the Editor canvas.

Extension (Custom)

Allows you to add a new Extension (Custom) Processor

‘E Processor Node Node to the Editor canvas.
Note: The Extension (Custom) Processor Node tool
is disabled until the Webflow Editor detects a
new node in the
webflow-extensions.wfx file.
Proxy Node Allows you to add a Proxy Node to the Editor canvas.

You should create a Proxy Node any time you want to
refer to a node that is defined in another namespace.

Table 9-3 Webflow Command Buttons

Tool Function Description Keyboard
Shortcut
Print button Allows you to print the entire Webflow Ctrl+P
= namespace or Pipeline to a printer.
Delete button Deletes the selected Webflow Delete
X component. The Delete button is

9-10 WebLogic Portal Development Guide

disabled until a Webflow component is
selected.

Building a Webflow

Table 9-3 Webflow Command Buttons (Continued)

Tool Function Description Keyboard
Shortcut
Zoomed Overview Allows you to view the entire Webflow Ctrl+Z
Q button namespace or Pipeline at a glance.
Validate the Selected Allows you to run the Webflow Ctrl+V
=] Node button validation feature on the selected node.
The Validate the Selected Node button
is disabled until a Webflow component
is selected.
Validate All button Allows you to run the Webflow Editor’s Alt+V
=] validation feature on the entire Webflow
namespace, or the Pipeline Editor’s
validation feature on the entire Pipeline.
Set Up Configuration Allows you to specify the name and path ~ --

(Y Error Page Name button

to the configuration error page.

Note: Only available in the Webflow
Editor.

Pipeline Component
sl Editor button

Opens the Pipeline Component Editor,
which allows you to manage Pipeline
Components.

Note: Only available in the Pipeline
Editor.

Step 1. Create the Webflow

To create a Webflow, use this procedure.

Note: This procedure assumes the following:

= You have either opened an existing project or have created a new one.

m The E-Business Control Center is running.

m The Site Infrastructure tab is selected.

WebLogic Portal Development Guide — 9-11

9 Setting Up Portal Navigation

1. Click the New icon to open the drop-down menu and select Webflow/Pipeline, as
shown in Figure 9-2.

Figure 9-2 E-Business Control Center with New Drop-Down Menu Open

New lcon

Explorer [site Infrastructure]
b= x

Mi LlserProfile allowwed)
[Requestset G - |
Session Set

Webhflows /Pipelines

Catalog Structure E-ml Webapps

Event - B E NewPyWiapp

= tools

se@m— admin_catalog
teEo admin_content

The New Webflow/Pipeline dialog box appears.

Webflow/Pipeline

Figure 9-3 New Webflow/Pipeline Dialog Box

il New Webflow/Pipeline x|
(ol WWehapp: Mamespace:
INEWF‘WApp LI I
" New Pipeline: hatmespace: Fipeline armes
[MewPLaN v = |
0] | Cancel |

2. Ensure that New Webflow is selected, then open the Webapp: drop-down menu
and select the Web application for which you are creating the webflow (this value
might already be selected). Selecting a Web application is important because
Webflows are scoped to a Web application.

9-12 WebLogic Portal Development Guide

Building a Webflow

3. Type in a Namespace name in the Namespace edit box. A namespace is used to
scope a Webflow so that multiple Webflows can be used in a single Web
application without conflicting. Note that each Web application can have multiple
namespaces.

4. Click OK.

The Webflow Editor appears in the right-hand pane of the E-Business Control
Center. Figure 9-4 shows an example.

Figure 9-4 Webflow Editor

Webflow Toohars Webflow Editor Webfow Editor Canvas

<l HEA B Busincaa Lonlrel Lenler po:takipp profoct

B Exlitor [We

B - Mim ~s & B G

LY
CED dzeshamzue |||)]
POLER hewWF
PobED PoRppNER
i EC pora]
POLED sewunty 3
PR bals 4‘?
H I naA_3etnomb
- tocis =]
~EZ admi-_catalog =
2 admm_rontert 3,5
EZ oamic rran &
~En i _wide
T admuc_portsl v
EZ aamic ugser
~En i _w| =
Tl Deins Namaspates

-l NWPLARew

PP FireR
SEnon
4 . ;
IO F-_putli=s | 8 A o=

De=epror

| zroperty [eal_e

[40 intasinit e | s weboy o [P-sveitsli-n

WebLogic Portal Development Guide — 9-13

9 Setting Up Portal Navigation

Step 2. Add Nodes to the Webflow Canvas

A Webflow is composed of two types of nodes: presentation nodes and processor
nodes. Each of the presentation and processor nodes can be used as origin or
destination nodes within the Webflow. For more information on Webflow nodes, see
“Understanding Webflow Components” on page 9-2.

Add the first node to the Webflow Editor canvas by doing the following:

1. Select the appropriate tool and click the pointer (cross-hairs) anywhere on the
canvas. Table 9-2 describes each of the tools in the Webflow Editor palette.

The node appears on the canvas where you click; for example, if you want the
first node to be a Presentation node (that is, a JSP, HTML file, or other
presentation file), you would select the Presentation Node tool and then click
over the canvas to place the node there.

Figure 9-5 Placement of a Presentation Node

js) A E Busincsa Lonlrol Lenler portalépp prooct =lolx|
He Toos Andow Help
BEe R# O
i
B Exlitor [Weflovr: FipphiS2 7]
W = WEEIz ek & M [
143716 Fllte” ipanic] rames al dwes: [
% B
Wk &
FloLet
el | 15 (B voesennon |
COUES pae_acw m
e 8
FEn admic_tatslog it
SE anmi_rowert || %
ES aomis rral i
ol rn
£]
: o]
A=
Bl NowPLdk oot
S FilPo
B = L]
e B EEP-puiis | § aems|
Lesc ptor
zrapeite value inzseags
TE |noame* Iirzencat nn
¥ |ome: sp
T |narcrelotive-nath
| T o i SN, e i o Pl e
[ttt vzt

9-14 WebLogic Portal Development Guide

Building a Webflow

Note: The Presentation Tool stays selected. This enables you to add as many
Presentation nodes as necessary without reselecting the tool for each node.
Also, you needn’t worry about where on the canvas you place node. You
can move it wherever you want by selecting the node and dragging it to the
preferred location.

When you place a node on the canvas, the node’s property editor, shown in

Figure 9-6, opens in a pane below the canvas. You can also open the property
editor for a node by clicking the node itself.

Figure 9-6 Presentation Node Property Editor

E Fropu-.iu=] g A|=m]

[y

walue

message

[0 G

“eps=nt=ti-n

e

1Zp

a8 reaike path
i TERTEIT

55 0 | <M

T e el e SR e T SR s I P R 1 e

2. In the property editor, type the following information, as necessary:

Table 9-4 Property Editors

Property Description

name The name of the node. This value will appear in the node on the
canvas. This value will auto-fill when you fill out the page-name
field described below.

type The type of file the node references. For a presentation node, valid

types are:

portal
isp
html/htm

servlet

page-relative-path

The relative path to the file the node references.

WebLogic Portal Development Guide

9-15

Setting Up Portal Navigation

Table 9-4 Property Editors

Property Description

page-name The filename that the node references. The value entered here will
be used to fill in the name property, although without the file
extension (which is populated automatically, based upon what was
selected for type); for example, if you enter pres01 here and select
jsp as the type, when you tab out of this field, . jsp will be
appended to the page-name and the name value will change to
pres01.

When completed, the Property Editor might look like the sample shown in
Figure 9-7

Figure 9-7 Sample Completed Property Editor for a Presentation Node

HE Prope-ie:] T al=s|

[AEL value Tazgage
8 TImmy a paigr | =
T |type izp j
8 [rage-relative-path ‘po-lessizanpsig s
f PWIR-nATe ~a~paigr1 MndlE jap j
] 3

3. Continue adding nodes to the canvas until you’ve added all the nodes necessary
for the webflow.

Step 3. Identify the Begin Node

9-16

The begin node is used as the starting point for the visitor’s interaction with the
application. It is designated as the initial entry point or state of the Webflow, which
automatically transitions to a presentation or processor node. The begin node is
generally a presentation node in the form of a JSP.

If a URL does not specify an origin, namespace, or event, the Webflow mechanism
looks for a begin node in the default namespace. Although the begin node is optional,
BEA recommends that you have at least one defined in your default namespace.

To identify a node as the begin node, use this procedure:

1. Right-click the node you want to assign as the Begin Node.

WebLogic Portal Development Guide

Building a Webflow

The node’s Context menu appears, as shown in Figure 9-8.

Figure 9-8 Presentation Node Context Menu

| Setthe begin node.
X Delate (Del)

o4 validate (Ctrl-y)
InputProcessor

B e] =

2. Select Set the begin node.

The node is marked by a green stripe to the right of the node name, as shown in
Figure 9-9.

Figure 9-9 Appearance of the Begin Node

= TR | Green Stripe Appears

Note: A webflow can have only one begin node.

Step 4. Create Transitions Between Nodes

With all the nodes placed on the canvas, connect them by creating transitions between

them. Create these transitions by using the Event Tool and the Exception Tool, as

shown in Table 9-2. The Exception Tool is red and the Event Tool is black.
Adding an Event Transition

To add an Event transition, do the following:
1. Click the Event Tool to activate it.

2. Place the pointer on the edge of the node from which transition will begin.

WebLogic Portal Development Guide ~ 9-17

9 Setting Up Portal Navigation

If the connection is permissible, a small orange square will appear on the edge of
the node.

3. Drag the pointer to the node that marks the end of the transition.

A grey connection port will appear on the node at the transition origin site and,
If the connection is permissible, an arrowhead will appear where the transition
ends, as shown in Figure 9-10.

Figure 9-10 Node-to-Node Event Transition

_‘Presm H Arrowhead
™ =

If the connection is not allowed (for example if you are trying create an
exception link on a presentation node), a red square filled with a red X will
appear on the node’s edge, as shown in Figure 9-11.

Event Transition

Figure 9-11 Invalid Connection Indicator

+

i
ERTT—

L Invalid Connection

4. Continue adding Event transitions as necessary to connect all nodes designed to
respond to events.

Adding an Exception Transition

Use the Exception Tool to connect any nodes that might require exception handling to
the node that will do that handling. For example, an input processor might accept data
that needs to be validated before it can be passed. If that data contains an error, it might
need to throw an exception. The Exception Tool lets you process the exception and
display any results or other information. Note that the transition link between the node
appears in red.

To add an Event transition, do the following:

1. Click the Event Tool to activate it.

9-18 WebLogic Portal Development Guide

Building a Webflow

2. Place the pointer on the edge of the node from which transition will begin.

If the connection is permissible, a small orange square will appear on the edge of
the node.

3. Drag the pointer to the node that marks the end of the transition.

A grey connection port will appear on the node at the transition origin site and,
If the connection is permissible, an arrowhead will appear where the transition
ends.

If the connection is not allowed (for example if you are trying create an
exception link on a presentation node), a red square filled with a red X will
appear on the node’s edge, as shown in Figure 9-11.

4. Continue adding Exception transitions as necessary to connect all nodes designed
to respond to exceptions.

With all nodes in place and connected by the proper transitions, the webflow might
appear as the one shown in Figure 9-12.

WebLogic Portal Development Guide ~ 9-19

9 Setting Up Portal Navigation

Figure 9-12 Sample Webflow Layout

5" Ediln [u¥ubTuny: NusviF °]

O X O ARt o & @ G

(= T .

BE[o (ol

(7] accommar B e

(R

“ | |

Using the Transition Tools

In addition to adding a transition (as described in “Adding an Event Transition” on
page 9-17 and “Adding an Exception Transition” on page 9-18), you can also move an
existing transition’s connection port, add elbows to transitions, and delete a transition.

Moving a Connection Port Connection ports accepting transitions are called input
connection ports; connection ports where transitions originate are called output
connection ports. In some cases, it may be helpful to move the node’s connection port.
To reposition the connection port on a node, follow these steps:

1. Select the Transition tool or the Selection tool.

2. Click and hold the mouse button on the connection port, then drag the connection
port to the desired location on the node.

9-20 WebLogic Portal Development Guide

Building a Webflow

3. Release the mouse button to place the connection port in the new location.

The connection port associated with a self-referring transition can only be moved
along the same node edge.

Moving a Transition to Another Node You can move the end point of a transition
(indicated by an arrowhead) from one node to another (assuming that the connection
is allowable). Do the following:

1. Select the Transition tool or the Selection tool.
2. Select the end point (arrowhead) you want to move.

3. Holding down the left mouse button, drag the arrowhead to the node to which
you want to connect it.

4. Release the mouse button.

Creating, Moving, and Deleting Elbows in Transition Lines You can also
reposition transition lines on an Editor’s canvas by moving, creating or deleting
elbows. Elbows allow you to bend portions of the transition line, as shown in
Figure 9-13, to enhance the appearance of the flow.

Figure 9-13 Elbows in Transitions

B L roomoier |
'y T

!

R;. IF p. o e520r

B[oo] EE_rrrmnes]
- "_ ~
ElTTE [eo e
Webflow without elbows; note With elbows, you can bend and reposition
transition that goes behind node. lines; note that transition now goes around node.

To create a new elbow, follow these steps:

1. Single-click a transition to view the existing elbows, which appear as black
squares.

WebLogic Portal Development Guide — 9-21

9 Setting Up Portal Navigation

2. Click and hold the mouse button anywhere on the transition line (except on an
existing elbow) and drag the mouse to add the new elbow. The selected elbow
appears as an orange square.

3. Release the mouse button to create the elbow in that location.
To move an elbow in an existing transition, follow these steps:

1. Single-click a transition to view any existing elbows, which appear as black
squares.

2. Click and hold the mouse button on the elbow as you drag it to the desired
position. The selected elbow appears as an orange square.

3. Release the mouse button to place the elbow in the new location.
To delete an existing elbow, follow these steps:

1. Single-click a transition to view the existing elbows, which appear as black
squares.

2. Click the elbow you want to delete to select it. The selected elbow appears as an
orange square.

3. Click the Delete button on the Editor’s toolbar, or press the Delete key.

Creating a Pipeline and Adding it to a
Webflow

Figure 9-14 is a detailed look at a Webflow. In this example, you will see that two
nodes are labeled PLO1 and PL02. These nodes are called Pipelines.

9-22 WebLogic Portal Development Guide

Creating a Pipeline and Adding it to a Webflow

Figure 9-14 Webflow Example: Detail Showing Pipeline Nodes

Pres01 u

| presDz2

A Pipeline is a type of processor node that is typically used in a Webflow to execute
back-end business logic. Each Pipeline is comprised of a number of Pipeline
Components that perform specific tasks. BEA provides a number of Pipeline
Components that are packaged with the WebLogic Portal product suite that you may
want to reuse in your own Pipelines. However, you may also want to create your own
Pipeline Components to execute your organization’s specific business processes.

This section will show you how to create a pipeline by following these steps:
m Step 1: Create a New Pipeline Component

m Step 2: Add the New Pipeline Component to the Webflow

Understanding the Pipeline Editor

As with Webflows, you create a Pipeline and add functionality to it by using the
Pipeline Editor in the E-Business Control Center, as shown in Figure 9-15 (see also
Figure 9-18).

WebLogic Portal Development Guide ~ 9-23

9 Setting Up Portal Navigation

Figure 9-15 E-Business Control Center with Pipeline Editor Displayed

‘Opanid BuokmarkCreataPinelins,

|8 L spiorer 151te MrTastructure]

-3 X

ateRipslin *]

ha =& “iler inaia names sllwed

Dezc ptan

A0S HER &S
Iml wWebshg =
g

wrLup s
mn s s
mzdo
ot

EZ wondncws
s
P pe inz Maes
5l bozkar:
S

S Wozkamkizel ne
Ayl EUSICME S e

gy emzil
B Lmzi peire
gy mo_ptadc
i rynewsleters
THEN L raCrRAEL i alng
EB b oRotDe SloFIZ0l e
FAFL Hems ebeilda

BT
_ Hu

Ll ENEMES

EE

Ev Al Excuptiui

B Procerie: | § aera)

[p-=pery 12 e

essaze

iB0ZEaF < EINi

FIpZIi~C k00 anarkiica’ek pe In= 1T nam=space ‘oo ar an

E= Wiehf o eampsigad= | =1 Cipeliee Tmsilpains | ES Miciw cpwOnz * b = 300 30 ke~ P line

| [te s ot [Dumnes= o] [0 1 rese- o]

=0 P
T1_Fipsine: Bozkwrbel deFipeline__] TPt aw sEarelsrT

Fip=li 2 BosirarFize e

The Pipeline Editor has a set of display and behavior buttons and a set of command
buttons along its top border and a set of tool buttons along its left border. Table 9-5
describes the tool buttons, Table 9-6 describes the display, and behavior buttons and
Figure 9-7 describes the command buttons.

Table 9-5 Pipeline Editor Tools

Tool

Function

Description

Selection Tool

Allows you to select and move Pipeline Components, event
transitions and exception transitions. This is the default tool
for the Pipeline Editor.

Note: This tool will stay selected until you select another

one.

9-24

Event Tool

WebLogic Portal Development Guide

Allows you to add an event transition between two nodes.

Note: This tool will stay selected until you select another

one.

Creating a Pipeline and Adding it to a Webflow

Table 9-5 Pipeline Editor Tools

Tool

Function

Description

Exception Tool

Allows you to add an exception transition between two
nodes, or a self-referring exception transition.

Note: This tool will stay selected until you select another

one.
Begin Node Allows you to designate one of the Pipeline Components
| already on the Editor canvas as the Begin Node for the
current Pipeline.
Pipeline Allows you to add new Pipeline Components to the Editor
@ Component canvas.

Table 9-6 Pipeline Display and Behavior Buttons

Tool Function Description
Show/Hide Grid button Allows you to show or hide a grid background
] in the Editor canvas.
Snap to Grid button Allows you to control whether or not Webflow
i components are automatically placed to the
nearest grid point on the Editor canvas when
you release the mouse button.
Link Optimization button Allows you to control whether or not the
Eg connectors on each node will be automatically
moved around the perimeter of the node as the
node is moved on the Editor canvas.
Show/Hide Exceptions button Allows you to show or hide exception
5] transitions in the Editor canvas.
Make This Pipeline Allows you to specify whether the Pipeline
=

Transactional button

should be transactional.

Note: Only available in the Pipeline Editor.

WebLogic Portal Development Guide ~ 9-25

Setting Up Portal Navigation

Table 9-6 Pipeline Display and Behavior Buttons (Continued)

Tool Function Description
Include Pipeline Session in Allows you to specify whether the Pipeline
w Transaction button Session should be included in the transaction.
Enabled only if the Pipeline Transaction button
is on.

Note: Only available in the Pipeline Editor.

The Pipeline Editor uses the same command buttons the Webflow Editor use (see
Table 9-3), with the addition of the the button described in Table 9-7.

Table 9-7 Pipeline Command Buttons

Tool Function Description
Pipeline Component Opens the Pipeline Component Editor, which allows
4] Editor button you to manage Pipeline Components.

Note: Only available in the Pipeline Editor.

Understanding what these buttons do and how to use them will make creating Pipelines
a quick and easy process.

Step 1: Create a New Pipeline Component

9-26

This section contains the steps needed to create the Pipeline Component used by the
Webflow.

Note: This procedure assumes the following:

m You have either opened an existing project or have created a new one.
m The E-Business Control Center is running.

m The Site Infrastructure tab is selected.

1. In the left pane of the Explorer, click Webflow/Pipelines. A list of Webflows and
Pipelines appears in the Explorer’s right pane.

WebLogic Portal Development Guide

Creating a Pipeline and Adding it to a Webflow

2. In the Webflows/Pipelines list, expand the Pipeline Namespaces folder.

3. Open the namespace that will host the Pipeline. With pipelines, a namespace is
used to scope a pipeline so that multiple pipelines can be used in a single
enterprise application without conflicting.

4. Click the New icon above the Project name to open the New menu, as shown in
Figure 9-16.

Figure 9-16 New Menu for Selected Pipeline Namespace

Explorer [Site Infrastructure] E
pr® X
M: UserProfile allowed)
[" Requestset @
Session Set y Dinali
Catalog Structure Bzl Webapps
Event =@ MNewPywiapp
~-E— Flowlett
~-BZ JoesMameSpac
BT MewWwF
~E= PWAppMS2
~-E_ portal
~-EZ security
~-EZ tools
~-B_ user_account
=-E tools

S-ggl Pipeline Namespaces
B [

5. Select Webflow/Pipeline.

The New Webflow/Pipeline window opens, as shown in Figure 9-17.

Figure 9-17 New Webflow/Pipeline Window

il New Webflow/Pipeline
= Mew Webflow Yiehapp: MNarmespace:
[MewPyiapp =~ |
" Mew Pipeline: [Narmespace: Pipelite arme:
[rewPLanewF = |
]2 | Cancel |

WebLogic Portal Development Guide ~— 9-27

9 Setting Up Portal Navigation

6. Create the new Pipeline by doing the following:
a. Select the New Pipeline radio button.

b. Inthe Namespace list box, select the namespace that will host the Pipeline; for
example, bookmark.

c. Inthe Pipeline Name field, enter the name you want to call the Pipeline; for
example validate Bookmark.

d. Click OK button.

The Pipeline Editor appears, as shown in Figure 9-18.

Figure 9-18 Pipeline Editor [Pipeline: validateData]

5 EdiLun [Pipiin: valkbsulota 1

0O ox L AT %o &4 om o e

Pipeline Command Buttons

] nvertExcapon

=
=
=

Pipeline Tool Buttons

B on=riias | 4w

e fras [nsezan> |
Note that when the Pipeline Editor opens, the Abort Exception node is
automatically placed on the canvas. This node is used for exception handling and
causes the Webflow to abort when an exception can’t be resolved by normal
processing.

7. Create the first Pipeline component by doing the following:

a. Click and hold the Abort Exception Node and drag it down near the bottom of
the canvas.

9-28 WebLogic Portal Development Guide

Creating a Pipeline and Adding it to a Webflow

b. Select the Pipeline Component Node tool (see Table 9-7).

c. Place the crosshairs on the Pipeline Editor canvas somewhere above the Abort
Exception Node, where you want to place the new Pipeline Component. Click
to place the new Pipeline Component node on the Editor canvas.

d. Click the Pipeline Component Editor button (see Table 9-7). The Pipeline
Component Editor window opens, as shown in Figure 9-19.

Figure 9-19 Pipeline Component Editor

Pipeline Component Editor x|

Fipeline components:

|I™® BookmarkPC

2 BookmarkCreateFC
IE= BookmarkDeletePC

ey | Delete |

Details far [BookmarkPS] Pipeline Campanent

Type: CLASS Edit... |

Class name: examples.samplepartal bookmark pipeline. Bookmar...

Cloge

e. Inthe Pipeline Component Editor window, click New. The Pipeline Component
Creator window opens, as shown in Figure 9-20.

WebLogic Portal Development Guide ~ 9-29

9 Setting Up Portal Navigation

Figure 9-20 Pipeline Component Creator

Pipeline Component Creator ﬂ

MName:

MNew Component]

Type:
 JMDI
& Class

Class name:

Cancel |

f. InName, enter the name you want to call the Pipeline component; for example,
validateBookmark.

g. Select Class as the Type.

The Type value is important because Pipeline components can be either a
regular Java class or a session EJB. Selecting Class implements a regular
Java class while selecting JNDI implements a session EJB

h. In Class name, enter the full package name of the class that the Pipeline
component will reference; for example:

examples.wlcs.sampleapp.order.pipeline.ValidateBookmarkClass

The completed dialog box might look like the example in Figure 9-21.

9-30 WebLogic Portal Development Guide

Creating a Pipeline and Adding it to a Webflow

Figure 9-21 Completed Pipeline Component Creator Dialog Box

Pipeline Component Creator ﬂ

MHarme:

halidateannkmark

Type:
MDD
* Class

Class name:

sampleapp.order pipeline validateBookmarkClass

(0] 4 Cancel

i. Click OK to close the Pipeline Component Creator window.

j- Inthe Pipeline Component Editor window, click Close.

The new Pipeline component appears in the Pipeline components list on the
Pipeline Component Editor.

k. Select the new Pipeline node.

1. Inthe Properties Editor, located below the canvas, select the Pipeline name you
entered in step f from the component®/Value pop-up list, as shown in
Figure 9-22.

Figure 9-22 Properties Editor—Component Selection

propery value

-

=ii=|event* I BookmarkPo
= BookmarkCreate

IE= BookmarkDeleted

I validateBookmarl
AW 1 Drafiln: | a1 TN R

The new component name appear in the component*/value cell.

WebLogic Portal Development Guide ~ 9-31

9 Setting Up Portal Navigation

8. In this example, we want any exception to cause you to exit the Pipeline.
Therefore, the node must be connected to the Abort Exception node. Connect
the new Pipeline component to the Abort Exception node, as follows:

a. Click the Exception tool.

b. Position the transition by moving the mouse to bottom edge of the
validateBookmark node. A solid orange square indicates an acceptable
connection location, and the cursor changes to indicate a transition addition.

c. Hold and drag the mouse to the Abort Exception node. Release the mouse to
connect the transition to the Abort Exception node (Figure 9-23).

Figure 9-23 validateBookmark — Abort Exception Connection

M validateBookmark

!E] Abort Exception

d. Select the Exception event. The event line turns orange.

e. In the Properties Editor, select the second column (Figure 9-24), and enter the
package name to the exception class, as follows:

com.bea.pl3n.appflow.exception.PipelineException

9-32 WebLogic Portal Development Guide

Creating a Pipeline and Adding it to a Webflow

Figure 9-24 Properties Editor—Exception Value

Propetties Aletts |
:dD:‘name’

Fom.bea.m 3n appﬂow.exceptiun.P\pe\ineExcept\on‘

9. Make the validateBookmark node a Begin Node, as follows:

a. Click the Begin Node Tool (see “Begin Node” on page 9-25).

A message appears explaining that you are about to create a Begin node, as
shown in Figure 9-25.

Figure 9-25 Begin Node Message Box

ful Set the begin node. x|

Setting the hegin node lets you designate which
node will be seen firstwhen a customer enters

the weh application.

validateBookmark

cuen

b. Select OK in the message window.

validateBookmark become the Begin node, as indicated by the green bar on its
right edge, as shown in Figure 9-26.

C.

Figure 9-26 validateBookmark as Begin Node

[
t validateBookmark ﬂ
3

10. Save the new Pipeline by selecting File = Save from the E-Business Control
Center Main toolbar.

WebLogic Portal Development Guide ~ 9-33

9 Setting Up Portal Navigation

Step 2: Add the New Pipeline Component to the Webflow

Now, you need to add the new pipeline component to a Webflow. To do so, use the
following procedure.

1. In the right pane of the Explorer, open the Web application to which you want to
add the Pipeline. In that Web application, double-click the Webflow to which you
want to add the Pipeline.

The Webflow editor opens, as shown in Figure 9-27.

Figure 9-27 Webflow Editor showing completed Webflow

B’ Editun [WWablvy: huukmenk *|
Uil AfrTs o &4 m

Elhwa.nmzl.namawum.m‘

(B ——

[5] bookmannerman- H

ﬁ huukimia KEGIlIR

[0 [T Jem [[TS

nokmarkHannaiPl

& BookmarkEIL
A

!

2. Select the event between the bea.portal . framework. . . and bookmarkEditIP
nodes and press Delete.

£l |

3. Add the validateBookmark Pipeline to the Webflow, as follows:

a. Click the Pipeline Node tool (see Table 9-5) and place the pointer between
bea.portal.framework. .. and bookmarkEditIP nodes. Click once to add
the new Pipeline Node onto the Editor canvas in that location.

b. In the Properties Editor, below the canvas, select the second column of the
pipeline-name* row, and then select validateBookmark from the drop-down
list, as shown in Figure 9-28.

9-34 WebLogic Portal Development Guide

Creating a Pipeline and Adding it to a Webflow

Figure 9-28 Properties Editor—Component Selection

property value

name* Fipeline

pipeline-name* =1 BookmarkPi.. ™

pipeline-namespace |[I=0 BookmarkPipelin
event® =0 BookmarkCreatef

=l BookmarkDeleteR
fm User Profile: UnnamedL|8

=)
= oo

=i validateBookmark

4. Connect the validateBookmark Pipeline node to the other Pipeline nodes, as
follows:

a.

With the Event tool (see Table 9-5) connect the validateBookmark node to
the bea.portal.framework. . . node, click the Event you just created, and
then in the Properties Editor —Properties tab, change the name of the event to
“success” and then press Enter.

[T

Note: The word “success” is case sensitive. Be sure to use a lowercase “s”.

With the Event tool, connect the validateBookmark node to the
bookmarkEditIP node.

Click the Event you just created, then in the Properties Editor’s Properties tab,
change the name of the event to “success” (if necessary), and press Enter.

Figure 9-29 shows the Webflow Editor canvas after this process is completed.
(The nodes have been moved to make the drawing easier to see.)

WebLogic Portal Development Guide ~ 9-35

9 Setting Up Portal Navigation

Figure 9-29 Event Transitions

5’ Editor [Webflow: bookmark *]

Sx HF A <6 8 m G

[=
E beaporaLramework.n...
3 0

E lhea portal.framework.in.,

[Eir| vardateBonkrmark

New Pipeline Added =

E bookmarkHormalll ﬂ

[5] vockmerkecian

% hnkmarkNnrmalk|

% huukmeal REGLPL
[

|
— | EA

5. To save the changes, select File > Save from the E-Business Control Center
Main toolbar.

Synchronizing the Webflow to the
Application

The Webflow that you just created must be synchronized to the Web application in
order for it to work. Data synchronization loads the Webflow’s and Pipeline’s XML

definition into the database and the master data repository, which is an in-memory data
store.

9-36 WebLogic Portal Development Guide

Creating a New Input Processor

Warning: All application data is synchronized at once. If you and other developers
concurrently synchronize data to a single enterprise application, it is
possible to overwrite each others’ work or create sets of changes that are
incompatible and difficult to debug. To prevent this possibility,
synchronize to separate instances of your application.

To synchronize the new pipeline component and the modified Webflow, use the
following procedure:

1. Start WebLogic Server and open the E-Business Control Center.
2. Go to Tools > Synchronize.

After a few seconds, the Synchronize progress meter appears (Figure 9-30).

Figure 9-30 Synchronize Progress Meter

ﬁh"l Synchronizing Application sampleportal... ﬂ

Synchronizing Data to hitpflocalhost 7401

0%

This meter will indicate to you that synchronization is in progress. When the
process is complete, the progress meter will so indicate and Stop changes to
Close.

3. Click Close.

The Webflow is synchronized to the application.

Creating a New Input Processor

As discussed earlier in this section, Input Processors are predefined, specialized Java
classes that carry out more complex tasks when invoked by the Webflow mechanism.
They are typically used to validate HTML form data or to provide conditional

branching within a Web page. BEA has developed a number of Input Processors that

WebLogic Portal Development Guide ~ 9-37

9 Setting Up Portal Navigation

are packaged with the WebLogic Portal. While you may want to reuse these processors
in your own applications, you might also want to create your own for use in your
applications’ Webflows.

Creating an Input Processor with the InputProcessor
Interface

To create a new Input Processor, you must implement the
com.bea.pl3n.appflow.webflow. InputProcessor interface by providing the
details of the process () method, as shown in Listing 9-1.

Listing 9-1 Implementing Process () for the InputProcessor Interface

public java.lang.Object process(javax.servlet.http.HttpServletRequest req,
java.lang.Object requestContext)
throws ProcessingException

This interface processes the Ht tpServletRequest or the PipelineSession present
in the Ht tpSession. The return object can be anything, but it must have a meaningful
implementation of toString(). The webflow executor will call toString () on the
returned object to generate the event for the processor.

Parameters req - the HttpServletRequest object
requestContext - the Object that uniquely identifies the request

Returns An Object, which has implemented a meaningful form of
toString ().
Throws ProcessingException or one of its sub-classes

9-38 WebLogic Portal Development Guide

Creating a New Input Processor

Naming an Input Processor

The name of an Input Processor should end with the suffix 1p. For example, an Input
Processor that is responsible for deleting a shipping address might be called
DeleteShippingAddressIP. This naming convention should help you keep track of
Input Processors more easily.

Executing Business Logic with Input Processors

Execution of business (application) logic should typically not be done within Input
Processors. Specifically, Input Processors should not call Enterprise JavaBeans (EJBs)
or attempt to access a database. All such logic should be implemented in Pipeline
Components. Although it is possible to execute this logic within an Input Processor,
such logic could not be transactional, and would defeat a primary purpose of the
Webflow architecture. By separating business logic from the presentation logic, your
Web site is inherently flexible in nature. Modifying or adding functionality can be as
simple as creating and plugging in new Pipelines and/or Input Processors.

Extending the InputProcessorSupport Class

Alternately, your new Input Processor can extend the com.bea.pl3n.appflow.
webflow.InputProcessorSupport class, as shown in Listing 9-2. As its name
implies, this abstract class allows you to use static helper methods that provide
additional support for an Input Processor. If your new Input Processor class must
extend some other class, however, you will not be able to take advantage of the
InputProcessorSupport class.

Listing 9-2 Extending the InputProcessorSupport class

public abstract class InputProcessorSupport
extends java.lang.Object
implements InputProcessor, ValidatedFormConstants

Note: For more information about implementing the InputProcessorSupport
class, refer to the Javadoc for com.bea.p13n.appflow.webflow.

WebLogic Portal Development Guide ~ 9-39

9 Setting Up Portal Navigation

When you are using the Webflow Editor to specify the properties for an Input
Processor node you placed on the canvas, simply include the class name of your newly
created Input Processor in the appropriate field. There are no additional activities you
need to perform to make your Input Processor work with the existing Webflow
mechanism.

Extending Webflow by Creating Extension
Presentation and Processor Nodes

If creating new input processors and pipeline components to add to those BEA
provides does not meet your needs, you may also choose to extend the Webflow
mechanism by creating classes that can be used as Extension (Custom) Presentation or
Processor Nodes. Once you create the classes associated with these nodes, you will
need to register the new nodes in the webflow-extensions.wEx file. This section
shows you how to perform these tasks.

How to Create an Extension Presentation Node

To create an Extension (Custom) Presentation Node, use this procedure:

1. Create a class that implements the com.bea.pl3n.appflow.webflow.
PresentationNodeHandler interface. Be sure your class returns a URL to which
the webflowServlet servlet can forward.

2. Register your extension node in the webflow-extensions.wEx file so it can be
used in the Webflow and Pipeline Editors. See “Making Your Extension
Presentation and Processor Nodes Available in the Webflow and Pipeline
Editors” on page 9-42.

WebLogic Portal uses an Extension (Custom) Presentation Node named portal,
which you can view as an example. Portal uses this extension node to indicate to the
portal Webflow that the contents of the portlet are to remain unchanged (that is, it
indicates that the last URL should be displayed). The portal node’s implementation
class is LastContentUrlNodeHandler . java.

9-40 WebLogic Portal Development Guide

Extending Webflow by Creating Extension Presentation and Processor Nodes

How to Create an Extension Processor Node

Extension (Custom) Processors are processors that your organization (as opposed to
BEA) develops for use in your applications’ Webflows. Imagine you want to create an
Extension (Custom) Processor that functions at the same level as an Input Processor
processor or Pipeline Processor. Extension Processors may be used to perform
activities not currently supported by the Webflow. However, the flow in and out of an
Extension Processor is still governed by the Webflow mechanism. Extension
Processors are represented as nodes in the Webflow Editor, much like the Input
Processor and Pipeline Nodes are, but with a slightly different representation for easy
identification.

For example, you may want to create an Extension (Custom) Processor that works with
the BEA Rules Engine to support different Webflows based on some condition, such
as membership in a customer segment. Another, more simple example might be a

layout manager processor that automatically includes a header and footer in your JSP
when given the page’s body content. In fact, we have already created such a processor.

To create an Extension (Custom) Processor Node, use this procedure:

1. Create a class that implements the com.bea.p13n.appflow.webflow.
Processor interface to define the Extension Processor. Listing 9-3 shows a typical
implementation of the Processor interface.

Listing 9-3 Implementing the Processor Interface

public java.lang.Object process(java.lang.String webapp,
java.lang.String namespace,
javax.servlet.http.HttpServletRequest request,
java.lang.Object requestContext)
throws java.lang.Exception

This interface executes the processor indicated by the request. The return object
can be anything, but it must have a meaningful implementation of toString ().

WebLogic Portal Development Guide — 9-41

Setting Up Portal Navigation

The webflow executor will call toString () on the returned object to generate
the event for the processor.

Parameters webapp - a String containing the webapp name
namespace - a String containing the namespace name

name - a String containing the processor name
(foo. inputprocessor, bar.pipeline)

request - the HttpServletRequest

requestContext - the Object object that uniquely identifes
the associated request

Returns the results, as an Object. Can be anything, but must implement
toString().
Throws java.lang.Exception, if an error occurs

2. Register your processor in the webflow-extensions.wfx file so it can be used
in the Webflow and Pipeline Editors.

Note: For instructions on how to register your extension node in the
webflow-extensions.wfx file, see “Making Your Extension Presentation
and Processor Nodes Available in the Webflow and Pipeline Editors” on page
9-42.

Making Your Extension Presentation and Processor
Nodes Available in the Webflow and Pipeline Editors

9-42

After you have created an Extension (Custom) Presentation or Processor Node, you
must make that node available to other developers on your team by registering the node
in the webflow-extensions.wfx file.

Notes: The webflow-extensions.wfx file resides within the
<BEA HOME>/user projects/myNEWDomain/beaApps/
portalApp-project/default/webflow/ folder (where <BEA HOME> is
where you installed WebLogic Portal; for example:

bea/user projects/myNEWDomain/beaApps/portalApp-project/
default/webflow/

WebLogic Portal Development Guide

Extending Webflow by Creating Extension Presentation and Processor Nodes

Registering an Extension (Custom) Processor Node will cause its
corresponding tool on the Webflow Editor palette to become enabled once you
restart the E-Business Control Center.

Registering an Extension Presentation Node

To register an Extension Presentation Node in the webflow-extensions.wfx file,
follow these steps:

1.

Open the webflow-extensions.xml file, which resides in the

<BEA HOME>/user-projects/myNEWDomain/beaApps/portalApp-
project/application-synch/webapps/<APPLICATION> folder (where
<BEA_HOME> is youre BEA parent directory and <APPLICATION> is the specific
Web application.

Add an <end-node> element to the <end-node-registrations list.

Assign your presentation node a name with the Name attribute, and specify the
class of the underlying node implementation with the Node-handler attribute.

Define the input parameters that the class expects upon invocation, using
<node-processor-input> elements. Give each parameter a Name, and if the
parameter is optional, assign the Required attribute a value of false.

Note: This information will be used in the Webflow and Pipeline Editors’
Property Editors.

Save the webflow-extensions.wfx file, and restart the E-Business Control
Center.

“Registering an Extension Presentation Node” provides an example of registering an
Extension Presentation Node in the webflow-extensions.wfx file.

Registering an Extension Processor Node

To register an Extension Processor Node in the webflow-extensions .wfx file,
follow these steps:

1.

Open the webflow-extensions.xml file, which resides in the
<BEA_HOME>/user-projects/myNEWDomain/beaApps/portalApp-
project/application-synch/webapps/<APPLICATION> folder (where
<APPLICATIONS> is the specific Web application.

WebLogic Portal Development Guide ~ 9-43

9 Setting Up Portal Navigation

2. Add a <process> element to the <process-registrations list.

3. Assign your processor a name with the Name attribute, and specify the class of the
underlying processor implementation with the Executor attribute.

4. Define the input parameters that the class expects upon invocation, using
<node-processor-input> elements. Give each parameter a name, and if the
parameter is optional, assign the Required attribute a value of false.

Note: This information will be used in the Webflow and Pipeline Editors’
Property Editors.

5. Save the webflow-extensions.wfx file, and restart the E-Business Control
Center.

9-44 WebLogic Portal Development Guide

CHAPTER

10 Creating a
Look-and-Feel

WebLogic Portal provides two powerful mechanisms for managing the look and feel
of your portals: skins and layouts. Skins are graphics and HTML style settings that
define the visual style of a portal; for example color, fonts, and icons. Layouts are
HTML-based matrixes into which portlets can be placed. The WebLogic Portal
platform provides a ready-made structure for these components can be created,
managed, and provided to users across applications.

This section shows you how to create skins and layouts for a portal. Some prerequisite
knowledge about creating cascading style sheets (CSS), creating graphics, and
defining HTML tables is required.

This section includes information on the following subjects:
m Portal Look-and-Feel Structure
m Using Skins

m Using Layouts

Portal Look-and-Feel Structure

When you see a portal in a Web browser, you see a single, unified Web page. That
portal is made up of many JSPs. For example, in addition to the page content, a portal
may use separate JSPs for the header, footer, and vertical and horizontal navigation
bars.

WebLogic Portal Development Guide ~ 10-1

10 creating a Look-and-Feel

Each JSP used in a portal’s structure contains the coding necessary to implement part
of the portal’s overall look and feel. For example, each JSP can contain references to
the CSS and to graphics for determining a portal’s skin; and the portal’s main content
page contains the logic necessary to implement which layout is chosen for the portal.

When you create a portal in the E-Business Control Center with the Portal Wizard, the
portal template BEA provides is called baseportal. One of the functions of this
template is to use a predefined set of JSPs that define the look-and-feel structure to
create the new portal. In this section, the procedures for creating skins and layouts are
presented in the context of the baseportal structure, which is also used for the Avitek
Financial Portal Example provided with WebLogic Portal.

Using Skins

A skin is a collection of files that includes a cascading style sheet (. css file) and a
directory of images that define the look and feel of a portal. Every button, banner,
portlet header, background color, and font characteristic is determined by the CSS and
the graphics. Skins also include a thumbnail graphic of the skin for preview purposes.

This section includes information on the following subjects:
m Creating Skins
m Storing Skins

m Making Skins Available

Creating Skins

To enable seamless switching between skins in a portal, the CSS and graphics for one
skin must be named identically to the CSS and graphics in the other skins, as shown in
Figure 10-1.

10-2 WebLogic Portal Development Guide

Using Skins

Figure 10-1 Different Skins Applied to a Portal Created with the baseportal
Template

Aiteh

Financial Services

baseportal template

: sking
| blusinfinity

LES

maln.css

imagss
portal_header.gif
w loagin.gif

|. web.gil

[/]

College
Savings

Account wday.

Vi s ek conl pused
edlings et

1 coologic
' L33

=| main.css

_ Imagas
s ™) portal_header.gif

|® Iogin.gif

4 T ri wizh. git

Any content graphics that appear on the page, such as ads and graphics in

portlets, are stored either in a content management system or in images
subdirectories beneath portlet directories. However, portlet title bar graphics
and background colors are controlled by the skin, as shown in Figure 10-1.

Creating skins is simply a matter of creating or modifying CSS and graphics files, with
the same names as those used in other skins, but under a different directory. Creating
skins also involves creating a thumbnail graphic for preview purposes. Use your
favorite graphics tool to create and modify skin and thumbnail graphics.

WebLogic Portal Development Guide

10-3

10 creating a Look-and-Feel

When creating graphics for a skin, be aware that larger graphics slow down page
loading in a browser.

Skins Provided by BEA

WebLogic Portal includes a set of predefined skins that are used when you create a
portal with the Portal Wizard. These skins are located in:
<BEA_HOME>\weblogic700\common\templates\webapps\portal\baseportal
\

j2ee\framework\skins

These can be used as templates to create entirely new skins.

Storing Skins

The next section describes the directory structure in which you must store new skins.
To make skins available to a portal, store the CSS and graphics in the directory
structure that is referenced by the metadata in a portal. Table 10-1 shows where to store
the necessary pieces that make up a skin.

The skin thumbnail graphic is the only part of the skin not stored on the server. The
thumbnail is for previewing a selected skin in the E-Business Control Center.

Table 10-1 Where to Store Skins Resources

Resource

Location

Skin thumbnail graphic <BEA HOME>\user projects\your domain\bealpps\

portalApp-project\library\portal\skins\skin folder

CSS file <BEA HOME>\user projects\your domain\beaApps\portalApp\
your portal\framework\skins\skin folder\css
Skin graphics <BEA_HOME>\user projects\your domain\beaApps\portalApp\

your portal\framework\skins\skin folder\images

10-4 WebLogic Portal Development Guide

Using Layouts

Making Skins Available

Making skins available in your portal involves using the E-Business Control Center to
add the skins to a portal definition, synchronizing the updated portal definition to the
server, and applying the skins to the portal with the WebLogic Portal Administration
Tools.

Procedures for making skins available for administration are found in the WebLogic
Portal Administration Guide. See “Administering Portal and Portlet Attributes” at
http://edocs.bea.com/wlp/docs70/admin/frmwork.htm.

Using Layouts

A layout is a JSP. It combines simple HTML formatting with simple JSP tags that
define sections of a page where portlets are placed. A layout also includes a thumbnail
graphic representation of itself for preview purposes. Figure 10-2 shows thumbnail
representations of layouts that are provided with WebLogic Portal.

Figure 10-2 Thumbnails of Default Layouts Provided with WebLogic Portal

This section includes information on the following subjects:
m Creating Layouts
m Storing Layouts

m Making Layouts Available

WebLogic Portal Development Guide ~ 10-5

10 creating a Look-and-Feel

Creating Layouts

This procedure shows you how to create a new layout for an existing portal.

To view an existing layout, open the following file in a text editor:

your_ portal\framework\layouts\threecolumn\template.jsp, as shown in
Figure 10-3.

Figure 10-3 Source view of the “threecolumn” layout

k@ taglib uri='ren.tld' prefizx='layout' X
{layout :placePortlet=zinFlaceholder
placeholder=="1eft, center,right"

I»|

<table width="100%" border="0" cell=spacing="0"
cellpadding="0"*
<TR>»
<TD WIDTH="33%" VALIGH="TOP":
¢ layout :render =section='left'~s:
</TD3»
¢TD WIDTH="233%" VALIGH="TOP":
¢layout i render =section='center's:
< TD>
<TD WIDTH="33%" VALIGH="TOP":
¢layout :render =section='right'~:
< TD>
< TR»
<~TABLE »

To create a new layout:

1. Create a text file called template.jsp and store it in an appropriate layout folder.
See “Storing Layouts” on page 10-8.

Note: The layout name is determined by the name of the folder in which
template.jsp is stored.

2. On the first line, enter:
<%@ taglib uri='ren.tld’ prefix='layout’ %>

3. On the second line, insert the following tag and enter the names of the sections
(placeholders) in which portlets will be placed in the layout. Put the placeholder
names in a list of comma-separated values in the placeholders attribute, as
shown in the following:

10-6 WebLogic Portal Development Guide

Using Layouts

<layout:placePortletsinPlaceholder
placeholders='<namel>, <name2>, <name3>, <name4>’' />

where <name*> is a unique section name, as shown in Figure 10-4.

Figure 10-4 Adding new layout placeholder names

lkx@ taglib uri='ren.tld' prefix='layout' ¥

{layvout :placePortlet=inFlaceholder =
placeholder=s="1leftl, centerl, rightl,
left?, . center? . right?2, leftd centerd.right3"

|

4. Inthe HTML body of the layout, insert the following tag for each placeholder
you defined in the previous step. These tags determine where portlets will be
placed in the layout.

<layout:render section=’<names’/>

where <name> is one of your placeholder names. You can insert these tags in any
valid HTML (though frames are not supported); you are not restricted to putting
them in tables. Figure 10-5 shows the tags placed in table cells.

Figure 10-5 Inserting placeholders into the HTML fragment

str: j
¢tdrrowl coll <layout:render section='leftl' ><-td>» =
¢tdrrowl col?2 <lavout:render section='centerl'- < td:
¢tdrrowl colld <layout:render section='rightl's><- td>»

L

L s o

¢tdrrow? coll <layout render section='leftZ's><std:
¢tdrrow? col? <layout:render section='center?'><- td:
¢tdrrow? colld <lavout : render section='right?'<:><- td>»
L e]

<t

¢tdrrowd coll <layvout:render section='left3'~ ><-td>
¢tdrrowd col2 <layout: render section='center3'»<- td:
¢tdrrovd colld <lavout:render section='right3'<:><- td:»

CotT hd!
Note: The<layout:placePortletsinPlaceholdersand<layout:renders
tags perform all the logic of retrieving and placing portlets in your layout
and remembering which portlets are put in which placeholders.

5. Save the file.

WebLogic Portal Development Guide ~ 10-7

10 creating a Look-and-Feel

6. Create a thumbnail graphic representation of your layout. This thumbnail
provides the layout preview in the E-Business Control Center and in the
WebLogic Portal Administration Tools when you select the layout name in the
interface. Using a graphics editor, copy and modify an existing thumbnail
graphic, as shown in Figure 10-6. Save the graphic as two separate files: one
called thumbnail.gif and the other layout name.gif, where layout nameis
the name of the layout folder.

A set of predefined layouts and thumbnail graphics are located in subdirectories
under the following directory:

<BEA_ HOME>\weblogic700\common\templates\webapps\portal\
baseportal\j2ee\framework\layouts

Figure 10-6 Creating a layout thumbnail

B
T
i

Styles

ST RE 07|

i

)

¥

The next section describes the directory structure in which you must store new layouts.

Storing Layouts

To make a layout available in a portal, store the new layout and the thumbnail graphic
in a specific directory structure in two different locations. Also, use two different
names for the thumbnail graphic, as described in the previous section. Table 10-2
shows the names and locations of the files.

Table 10-2 Where to Store Layout Resources

Resource Location

Layout thumbnail graphic: <BEA HOME>\user projects\your domain\beaApps\
layout name.gif portalApp-project\library\portal\layouts\layout folder

The layout_name must be the same as the Iayout folder.

10-8 WebLogic Portal Development Guide

Using Layouts

Table 10-2 Where to Store Layout Resources

Resource Location

Layout thumbnail graphic: <BEA_HOME>\user projects\your domain\beaApps\portalApp\
thumbnail.gif your portal\framework\layouts\layout folder

template.jsp <BEA HOME>\user projects\your domain\beaApps\
portalApp-project\library\portal\layouts\layout folder

and

<BEA HOME>\user projects\your domain\beaApps\portalApp\
your portal\framework\layouts\layout folder

The name of the Iayout folder is used as the name of the layout.

Making Layouts Available

Making layouts available in your portal involves using the E-Business Control Center
to add the layout to a portal definition, synchronizing the updated portal definition to
the server, and applying the layout to the portal with the WebLogic Portal
Administration Tools.

Procedures for making layouts available are found in the WebLogic Portal
Administration Guide. See “Administering Portal and Portlet Attributes” at
http://edocs.bea.com/wlp/docs70/admin/frmwork.htm.

WebLogic Portal Development Guide ~ 10-9

10 Creating a Look-and-Feel

10-10 WebLogic Portal Development Guide

CHAPTER

11 Extending Portlets

To invoke advanced features in portlets, and make these portlets available to
administrators, developers use several tools and many procedures. This section
includes information on the following subjects:

m Basic Portlet Customization
e Moving a Portlet Between Portal Web Applications
e Moving a Portlet Between Domains
e Creating Categories for Portlets
m Portlets and the Framework
e Simple JSP Portlets
e WebFlow Portlets
e Web Service Portlets
m Portalizing an Existing Web Application

m Performance Tuning

Basic Portlet Customization

One of the most basic customizations is moving a portlet from one portal into another.
Understanding this procedure will help you understand many of the other tasks in this
section, since many procedures and tools are introduced here. This section covers the
following basic portlet customizations:

m Moving a Portlet Between Portal Web Applications

WebLogic Portal Development Guide 11-1

11 Extending Portlets

m Moving a Portlet Between Domains

m Creating Categories for Portlets

Moving a Portlet Between Portal Web Applications

This section explains the process of moving a portlet from one portal Web application
to another, and is based on the assumption that both portals have been deployed
correctly. Figure 11-2 shows the two portals with their associated Web applications.

Figure 11-1 Portals and associated Web applications

Explorer [Presentation] B
- X

Mame Filter (partial names allowed)
| % =W

Portals

L)
o

Entitlernent Segments

This example illustrates moving a portlet called f1owlet1, shown in Figure 11-2,
from one portal Web application (NewPW App) to another (NextPWApp).

Figure 11-2 flowLetl portlet in the NewWPApp

l Q | % hittp:fflocalhost: 7501 (NewPWAppapplication?origin=

h {a Shop | EIBockmarks @ MetzPhone

Pagel |PageZ |Pagel

Page 1

Take the following steps to add the flowLetl portlet to NextPWApp portal:

m Step 1: Copy J2EE Resources into New Web Application

11-2 WebLogic Portal Development Guide

Basic Portlet Customization

m Step 3: Synchronize the Project

m Step 2: Edit the Target Web Application Metadata

m Step 4: Make the New Portlet Visible and Available

Step 1: Copy J2EE Resources into New Web Application

Figure 11-3 Copying the navigation Webflow

If you open the flowLet] portlet inside the E-Business Control Center, you can see it
is visible among the available portlets.

Because the original portlet uses a custom Webflow, this file must be moved before
the target portal Web application can use this portlet. Figure 11-3 shows the flowLet!
Webflow file in the \webapps directory for NewPW App being copied into the
\webapps directory for NextPWApp.

Folders ®
E|{:| portaldpp-project ;I
=] application-sync
campaigns
events _I
portlets

request
userprofiles
=] webapps

a MewPWapp

- NextPV\i'App _ILI
»

Mame 4

[ElonLet wf
partal wk
security wf
ThisMewPortal, portal
tools, wf
user_account.wk
webflow-extensions, wkx

A |

2

[Type: WF File Size: 5.04 [5.04 KB

|@‘ My Computer

4

WebLogic Portal Development Guide

Figure 11-4 shows the portlet folder flowLet! being copied from the NewPWApp
application folder into the NextPWApp Web application folder. The JSPs and images
that make up your portlet are stored inside this directory.

11-3

11 Extending Portlets

Figure 11-4 Copying J2EE resources

X | | Mame 4
;I Dimages
Pagel.jsp
PageZ.jsp

_I Page3.jsp

« [»

|4 ohject(s) (Disk free spz |1 29KB |@‘ My Computer 4

Now that the J2EE resources have been copied into the new Web application, the
metadata can be edited to point to these resources.

Step 2: Edit the Target Web Application Metadata

Use the E-Business Control Center to add the flowLet1 portlet to the ThatNewPortal
portal:

1. From the Presentation Tab in the E-Business Control Center, click on portal and
select the portal called That New Portal.

2. When the portal editor opens, click on the General tab to the top right.

3. Click on the portlets tab halfway down the General page, select the flowLet!
portlet from the list of available portlets, and click Add, as shown in Figure 11-5.

Figure 11-5 Adding flowLetl to ThatNewPortal

Skins' Layouts Portlets | UserProﬂIes|

Available portlets:

5] Portlets

...... flowletl -

4. Close the General tab, click on the Pages tab, select the Home portal page and
click Edit.

5. Select the flowLet1 portlet from the list of available portlets to the lower left of
the definition screen for the Home portal page, and click Add. Click OK to close
this window.

114 WebLogic Portal Development Guide

Basic Portlet Customization

6. Save this project.

Step 3: Synchronize the Project
Use the E-Business Control Center to sync the project.

Note: For more details on the E-Business Control Center, consult “Setting up the
E-Business Control Center” in the Administration Guide at
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm.

1. From the E-Business Control Center toolbar, click the Synchronize button, as
shown in Figure 11-6.

Figure 11-6 Click Synchronization button

ﬁh"l BEA E-Business Control Center - portalApp-project

File Tools Window Help
‘mw K gﬂtg

Opened QuickLinkgSynchranize...|

2. When the Synchronizing Application window shows that synchronization is
complete, click Close.

Step 4: Make the New Portlet Visible and Available

The new portlet called flowLetl is now deployed, but must be made available using
the WebLogic Portal Administration Tools.

1. Inyour Web browser, navigate to the following URL:
http://<hostname>:<port>/portal AppTools. Login as administrator/password, and
click Portal Management, as shown in Figure 11-7.

Figure 11-7 Go to Portal Management

Portal Managemen

2. From the Portal Management Home page, click the Default Portal under the
NextPWApp, as shown in Figure 11-8.

WebLogic Portal Development Guide 11-5

11 Extending Portlets

Figure 11-8 Select Default Group Portal

|"NextPWApp B4 Edit portal administrators ifif Create group portal\]
Default group portal:

default (everyone)

3. From the Group Portal Management Home page, click Manage Pages and
Portlets as shown in Figure 11-9.

Figure 11-9 Manage Pages and Portlets

Group Portal Management Home
Clicklinks here to edit the following aspects of this group portal.

|"Appearance and Content |
B Manage Pages and Partlets

Select pages for the group portal,
chooze 3 home page, select layouts
and portlets for each page, amange
portlets for default layout, and set
attributes and entitlements for both
pages and portlets.

4. Next to the portal page, click Edit Portlets, as shown in Figure 11-10.

Figure 11-10 Click Edit Portlets

|"Available Pages |

*harme (Layouts) (Attributes) (Entitlemnents) (Edit Portlert|s) (Paosition Portlets)
]

5. Select the flowLetl portlet from the list and click Set Attributes, as shown in
Figure 11-11.

11-6 WebLogic Portal Development Guide

Basic Portlet Customization

Figure 11-11 Select Set Attributes for flowLet1 portlet

|" Portlets "|

| Fortlet]

Selected Portlet:

6. Set the Portlet’s attributes to Visible and Available and click Save, as shown in
Figure 11-12.

Figure 11-12 Set Portlet Attributes

Set home Portlet Attributes: flowLet1

To setattributes for the selected portlet(s), edit
values below. To apply the changes, click "Save".

Available 2
Yisible W~
Minimizable r
Maximizable r
Default Minimized

Mandatory r

Display Mame |f|owLet1

(¢- Backj (Saveia

WebLogic Portal Development Guide 11-7

11 Extending Portlets

7. Verify the results by navigating to
http://<hostnames:<ports>/Next PWApp/index.jsp. The result should
resemble that shown in Figure 11-13.

Figure 11-13 Viewing flowLetl in NextPWApp

JAgdress I@ http: fflocalhost: 7501 [MewPWappfindex. jsp j @Go
J Links & Customize Links &] Windows

«oe 2

~ flowLetl

- 3
. o
Built On

Moving a Portlet Between Domains

Assuming both domains are correctly installed and deployed instances of the latest
release of WebLogic Portal, the procedure for moving a portlet from one domain to the
other is almost identical to that used for Moving a Portlet Between Portal Web
Applications.

1. When copying the J2EE files, also copy the .portlet file to the
portalApp-project\portlets directory on the target server. Figure 11-14
shows where the .portlet file resides in the portalApp-project\portlets
directory on the origin domain.

2. Complete the remainder of the steps listed in the section Moving a Portlet
Between Portal Web Applications.

11-8 WebLogic Portal Development Guide

Basic Portlet Customization

Figure 11-14 The .portlet file

Folders X | | Mame 4 I Tvpe
=11 mvMNewDamnain ;I .FlowLetl.portIet PORTLET File
-] applications [#] Partiet1 . portiet PORTLET File

E|{:| beadpps J
{:I paymentWaspp

- @] portalapp

E|{:| portaldpp-project
LR (] application-sync

{:I campaigns

{:I events
PRy | ! 2

Finding Missing Resources Through Error Messages

If you are missing necessary portlet resources in a domain, you will receive error
messages either at server startup or when you try to access portal pages that use those
resources. (Missing portlet resources do not prevent the server from starting.)

For example, you may receive HTTP session errors in your browser such as 404, or
render-time errors that say, for example, “Functionality temporarily unavailable.”
Missing metadata can also cause errors.

Look for error messages in your server’s command window to determine which
resources are missing. For example, Listing 11-1 shows that a portlet called
WebFlowPortlet is missing a file called header . jsp. This message was generated in
the command window when the portal page containing this portlet was accessed.

Listing 11-1 Error caused by missing portlet resources

<Jun 12, 2002 10:38:59 AM MDT> <Error> <HTTP> <101214> <Included
resource or file "/NewWebApp/portlets/WebflowPortlet/header.jsp"
not found from requested resource

" /NewWebApp/framework/portal.jsp".>

The E-Business Control Center also catches some errors when you are editing portlets.
For example, a warning dialog box alerts you if the portlet you are editing is missing
an associated Webflow file.

WebLogic Portal Development Guide 11-9

11 Extending Portlets

Creating Categories for Portlets

The E-Business Control Center lets you group portlets into categories for easier
management. This section illustrates how to create categories and manage portlets
within them.

Preparing to Work With Categories

The steps in this section require that the following preparations be in place:
m Working instance of WebLogic Portal 7.0
m Fully deployed portal

m WebLogic Portal Server must be running.

Warning: Trying to create a new category before a portal has been defined in the
E-Business Control Center will generate an error.

Creating Portlets and Categories

1. From the Presentation Tab in the E-Business Control Center, use the Portlet Wizard
to create some generic portlets, as shown in Chapter 2, “Creating a New Portal in
a New Domain.” To follow along with this example, name the new portlets as
follows:

m WallStreet

m MainStreet

m MidWest

m SouthEast

m LatinAmerica

2. From the Presentation Tab in the E-Business Control Center, click the Portlets
icon and click the new folder icon, as shown in Figure 11-15.

11-10 WebLogic Portal Development Guide

Basic Portlet Customization

Figure 11-15 Creating a new category

Explorer [Presentation]

- X e %

Mame Filter {partial nd create Category

Portlets

2 ©

3. The New Category screen appears. Type “Business” in the name field and click
OK. Repeat this step to create the following new categories:

m Education
m Regional
m International

The resulting category list should resemble that shown in Figure 11-16.

Figure 11-16 New categories

Explorer [Presentation] B
P X & 8 %

Mame Filter (partial names allowed)

| C
Portlets

&l Porlets

~] Business

1 Education

=1 International

“] Regional

Note: Selecting one of the portlets makes the three icons to the right available, as
shown in Figure 11-17.

WebLogic Portal Development Guide — 11-11

11 Extending Portlets

Figure 11-17 Category icons in toolbar

Explorer [Presentation] B
Prw X |k o
Mame Filter (partial nar}\es allowed)

I |Cat,eg'ory icons |% b& t[ﬂ

Portlets

&l Porlets
By Latinametica
TE MainStreet
~Ry wallStreet
] ENETEEn

Moving Portlets and Categories

This section explains how to move portlets and categories using the E-Business
Control Center.

1. Select the International and Regional categories, then click the Move icon on the
far right of the toolbar, as shown in Figure 11-18.

Figure 11-18 Click Move category

Explorer [Presentation] B
P-@ X of g #R

Mame Filter (partial names alloq@_
| % =W

Portlets

il Porlets
LatinAmerica
MainStreet
Midiest
Fortlet
SouthEast
WallStreet
Business
International

Schools

2. The Moving Category International screen appears. Select Education and click
Move. When the Moving Category Regional window appears, do the same. The
results should look similar to those in Figure 11-19.

11-12 WebLogic Portal Development Guide

Basic Portlet Customization

Figure 11-19 Categories and portlets

Explorer [Presentation] B
P X & 8 %

Mame Filter (partial names allowed)

| % =W

Portlets

&l Portlets

LatinAmerica

MainStreet

By Midwest
By southEast
By wallStreet

—

Business
_| Education
=1 International
#-_1 Regional

3. Select the Education category, then click the Rename icon second from the right
in the toolbar, as shown in Figure 11-20.

Figure 11-20 Select a category and click rename

Explorer [Presentation] B
D@ X ef v
Mame Filter (partial names Renarme Category

Portlets

[zl Portlets
LatinAmerica
MainStreet
Midiest
SouthEast
WallStreet
Business

(I

_I International
E-_1 Regional

4. The Rename category screen appears. Type in “Schools” and click Rename, as
shown in Figure 11-21.

WebLogic Portal Development Guide 11-13

11 Extending Portlets

Figure 11-21 Renaming a category

i Rename Category 3 4 x|

MName:

|Sch00|s|
Categories must start with a letter or underscare and contain
only letters, underscares, digits, hyphens and periods and he

between 1 and 64 characters in length.

Rename | Cancel |

5. Move the MidWest and SouthEast portlets into the Schools category by selecting
them, clicking the Move icon, shown in Figure 11-22, and selecting a destination
as shown in Figure 11-23.

Figure 11-22 Moving portlets into a Category

Explorer [Presentation] B
D@ X s oa PR
Mame Filter {partial names allower:l_
= Move
z =W

Portlets

&l Porlets
: Latinamerica
MainStreet

WallStreet
Business

11-14 WebLogic Portal Development Guide

Basic Portlet Customization

Figure 11-23 Selecting destination folder

i Moving Portlet MidWest ll
Dirivas: IC:I LI
B4 portlets

#-_] Business

Chbeawszer_projectsiporttalDomaintheasppsipotalApp-pra...

hove | Cancel |

6. Using the category icons, move the MainStreet and WallStreet portlets into the
Business category, the LatinAmerica portlet into the International category, and
the MidWest and SouthEast portlets into the Regional categories. The results
should look like those in Figure 11-24.

Figure 11-24 Portlets and categories arranged

Explorer [Presentation] B
P X & 8 %

Mame Filter (partial names allowed)

| % =W

Portlets

&l Porlets

- Business

TE MainStreet

By wallstrest

1 Schoals

-1 _International
LatinAmerica

L1 _Regional

Ry Midwest

By gouthEast

WebLogic Portal Development Guide 11-15

11 Extending Portlets

Adding Portlets to Existing Categories

11-16

This section explains how to place new portlets into existing categories. In this
example, the following portlets are created:

®m BondStreet

m UK

m Asia

To add portlets to existing categories, take the following steps:

1. From the Presentation Tab in the E-Business Control Center, use the Portlet Wizard
to create the new portlets.

Note: When naming the portlets, click Select a Category, as shown in Figure 11-25.

Figure 11-25 Select a category for the portlet

jl i Portlet Wizard [UnnamedPortlet] x|
‘| 1. Portlet Name
2. Portal Pages Portlet Name
1| 3. Portlet Compaonents
4. Content Types Enter a unigue name for the portlet, and select a portal to which the
| 5 Resource Files Location portlet should be associated. The paortlet name will be used to name
| 6. summary the directory that contains wizard-generated portlet files.
7. Mext Steps Fortlet Name:
|Elond8treet
Fortlet Categary:

|p0rt|ets ‘@J

IPEGEL ISeIecta category for the portlet
|MytiewPortalt

Fortlet Description {optional):

2. The Select a portlet category screen appears, as shown in Figure 11-26. Select
Business and click OK.

WebLogic Portal Development Guide

Basic Portlet Customization

jiui Select A Portlet Category

Figure 11-26 Placing a new portlet inside an existing category

Categories allow you to arganize your portlets

Select a categary in which to place this portlet.

Fortlet Categaries:
B4 portlets

1 Schoals
) BT

Ok I Cancel |

BondStreet, UK, and Asia portlets.

3. Proceed with the rest of the steps in the Portlet Wizard, and repeat for the

4. The resulting portlets should resemble those shown in Figure 11-27.

Figure 11-27 Portlets in their categories

Explorer [Presentation] B
P X & 8 %

Mame Filter (partial names allowed)

®

Portlets

il

WebLogic Portal Development Guide

&l Porlets
=1 Business

B Schoals

TE BondStreet
TE MainStreet
. WallStreet

International
Asia

TE LatinAmerica
Uk

Regional

Ry Midwest

By southEast

11-17

11 Extending Portlets

Portlets and the Framework

The BEA WebLogic platform provides extensive support for customizing portlets,
including JSP tag libraries designed to expose robust functionality while requiring
minimal Java scripting within the actual JSPs that constitute a portlet. Use the
information in this section to create the following portlet types:

m Simple JSP Portlets: These portlets can contain scriptlets and can invoke
personalization features, but do not use individual WebFlows.

m WebFlow Portlets: The portal wizard can be used to create three different
Webflow portlets. Navigation and inter-portlet scenarios can also be realized by
customizing a WebFlow file and associating it with an individual portlet.

m Web Services Portlets: Code can be added to a portlet that invokes various
interactions with other programs, either locally or across the Internet.

The remainder of this section explains each portlet type, providing several examples
of each and explaining some techniques for creating portlets that best make use of the
BEA WebLogic platform.

Simple JSP Portlets

To illustrate some of the power, flexibility, and ease-of-use inherent in the WebLogic
Portal platform, this subsection includes the following examples:

e The scriptDemo Portlet

e Calling ActiveX Components from a Portlet

The scriptDemo Portlet

The scriptDemo portlet, shown in Figure 11-30, appears to the left on the Home page
of an example portal created using the Portal Wizard.

Preparing

Make the following preparations to work through this example:

11-18 WebLogic Portal Development Guide

Portlets and the Framework

1. Create a new portal called “MyNewPortal1”, and a new portal Web application
“OldPortal WebApp”, as explained in Step 2: Create the New Portal, in Chapter 2,
“Creating a New Portal in a New Domain.”

2. Create a new portlet, called “scriptDemo” as explained in Step 3: Add a Portlet,
in Chapter 2, “Creating a New Portal in a New Domain.”

3. Make the “scriptDemo” portlet visible, as explained in Step 4: Make New Portlet
Visible, in Chapter 2, “Creating a New Portal in a New Domain.”

Before Continuing

Ensure your portal looks similar to that shown in Figure 11-28 before a user is logged
in, or that shown in Figure 11-29 with a user logged in.

Figure 11-28 Starting point with anonymous user

e

] scriptbemo &

These are the
portlet contents

- .
. A
Built On [T

Figure 11-29 Starting Point with user logged on

customize my portal Jll change password m =

d] soriptbemo &

These are the portlet
contents

- .
. A
Built On [T

WebLogic Portal Development Guide — 11-19

11 Extending Portlets

Installing the scriptDemo portlet

11-20

With the raw materials are in place, you can now transform the portlet by replacing the
content . jsp to change its behavior. Listing 11-2 shows a very simple scriptlet that
illustrates how to use generic Java scriptlets to interact with the Portal framework in a
portlet.

Listing 11-2 scriptDemo portlet version 1

<center> Test Portlet </centers

<hr>

o
<%

A Simple Java Scriptlet

/*
Create a new String variable and set the value to an empty string.
*/
String userName = "";

/*

To get the actual user name, first get the java.security.Principal object from the
Javax.servlet.http.HttpServletRequest object using the
getUserPrincipal () method. The request object is available to the JSP directly. For
the Principal object, use the full package name.

*/

java.security.Principal principal = request.getUserPrincipal () ;

/*

If the principal object is null then the user has not logged in. For this example, ignore
the not-logged in case by using an if statement to only process the value if it is not null.

*/
if (principal != null)
{
/*
*/
userName = principal.getName () ;
}

Display the value of the userName variable using a scriptlet. Note that the scriptlet is
embedded in the HTML and is denoted by the <%= %> block.

WebLogic Portal Development Guide

Portlets and the Framework

Steps

--%>
The user name is : <%= userName %>

Take the following steps to place this new code inside the scriptDemo portlet:

1.

In a text editor, save the code from Listing 11-2 as content . jsp in the following
directory:

<BEA_HOME>\portalDomain\beaApps\portalApp\
<PortalWebApp>\portlets\scriptDemo\

Refresh the browser, and verify that the results resemble Figure 11-30. Notice
that because the portlet content was altered, the user has been logged out.
Because the portlet now appears with an anonymous user, you can see that no
user name appears in the portlet.

Figure 11-30 scriptDemo portlet with anonymous user

e -

4] scriptDemo

This is scriptDemo
Partlet

A Sirmple Java Scriptlet
The user name is :

-
AT
Built On [T

Click Login in the top right corner of the portal.

When the Portal Login page appears, click Sign up now under the New Users
column to the right.

When the New User Registration page appears, create a new user called
“bobjones”, and enter “password” in the password fields, and click Submit.

Figure 11-31 shows what the code in the scriptDemo portlet displays when a user is
logged on. Notice that the user name is filled in.

WebLogic Portal Development Guide — 11-21

11 Extending Portlets

Figure 11-31 scriptDemo portlet with a user logged on

customize my portal il change password m 1

A scriptDemo
This is scriptDerno Portlet

A Sirmple Java Scriptlet
The user name is : bobjones

- .
vy
Built On

Note: For more information on using JSP tags in your custom portlets, consult the
following resources:

e JavaServer Page Reference Guide

e WebLogic Portal Javadoc API documentation.

Calling ActiveX Components from a Portlet

11-22

To call an ActiveX component from within your portlet, use the HTML <OBJECT>
tag, as shown in Listing 11-3 and Listing 11-4.

These examples include a CODEBASE parameter so that if the local machine doesn't
have the component installed in their registry, the component can be downloaded from
Microsoft.

Note: In these examples, the portal is only communicating with the ActiveX
components through HTML, which comes back from the portal to the browser,
and tells the browser to load and run the ActiveX component.

Listing 11-3 Calling Outlook Using Active X - Calendar Example

<OBJECT CLASSID="clsid:0006F063-0000-0000-C000-000000000046"

CODEBASE="http://activex.microsoft.com/activex/controls/office/
outlctlx.CAB#ver=9,0,0,3203"

id=0vVCtll width=100% height=200>

WebLogic Portal Development Guide

Portlets and the Framework

<param name="Folder" value="Calendar">
<param name="Namespace" value="MAPI">
<param name="Restriction" value="">
<param name="DeferUpdate" value="0">

</OBJECT>

Listing 11-4 Calling Outlook Using Active X - Inbox Example

<OBJECT CLASSID="clsid:0006F063-0000-0000-C000-000000000046"

CODEBASE="http://activex.microsoft.com/activex/controls/office/ou
tlctlx.CAB#

ver=9,0,0,3203"
1d=0vVCtll width=100% height=200>
<param name="Folder" value="Inbox">
<param name="Namespace" value="MAPI">
<param name="Restriction" value="">
<param name="DeferUpdate" value="0">

</OBJECT>

Note: ActiveX components only work inside Microsoft Internet Explorer with
appropriate security settings which allow them to run.

WebFlow Portlets

This section begins by showing the types of webflow portlets that can be created by
the portlet wizard. Next, some fundamental aspects of WebFlow are illustrated using
simple scripting examples. The following topics are handled in the section:

e Three Webflow Portlets

WebLogic Portal Development Guide — 11-23

11 Extending Portlets

e How a Portlet Handles a Refresh Event
e Making a Portlet Respond to a Custom Event

e Sharing State from One Portlet to Another

Three Webflow Portlets

The Portlet Wizard in the E-Business Control Center can now produce three different
types of Webflow portlets:

m Navigation Bar, in which each page in the set has a navigation bar with links to
every other page in the set.

m Sequential, in which pages are traversed in sequence via the Next and Previous
buttons.

m Hierarchical, in which a parent page features links to each child page. Child
pages link back to the parent, but not to one another.

Preparing

This section illustrates adding new Webflow portlets to the application NewPWApp, as
shown throughout this chapter. To work through these examples, make sure the portal
server is running, and that portal-project is open in the E-Business Control Center.

Creating a Navigation Bar Webflow Portlet

This procedure shows how to use the portlet wizard to create a Navigation Bar
Webflow portlet.

1. From the Presentation Tab in the E-Business Control Center, select New Portlet, as
shown in Figure 11-32.

11-24 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-32 Starting the Portlet Wizard

|-|i| Explorer [Presentation] B

D@ X o«

M: Entittement Segment jwed)
I_ Content Selector @ 2l
Flacehaolder ltiats
Fortal Portlets
Polat By Porlett
» =1 Business
- -] Schools
o L0 T

Caontent Selectars

2. Elect to use the portlet wizard, as shown in Figure 11-33, and click OK.

Figure 11-33 Elect to use the Portlet Wizard

i New Portlet ~ x|

- Use the Portlet Wizard to create a new partlet
from scratch.

Lse the Portlet Editor to create a new partlet
with existing resources (e.g. JSP's, Gif's).

Ok I Cancel |

3. Name the portlet Navigation, as shown in Figure 11-34, then click Next.

WebLogic Portal Development Guide — 11-25

11 Extending Portlets

Figure 11-34 Naming the Navigation Portlet

ﬁl-"l Portlet Wizard [UnnamedPortlet] : ll

Steps: Portlet Name

1. Portlet Name

2 Portal Pages

3. Portlet Components
4. Cantent Types
5
[
7

Enter a unigue name far the portlet, and select a portal to which the
portlet should be associated. The portlet name will be used to name
the directary that contains wizard-generated portlet files.

. Resource Files Location Fortlet Marme:
Surrmary Navigation1
. Mext Steps
Fortlet Categary:
|p0rt|ets E”'l
Fortal:
[ThishewPortal =

Fortlet Description {optional):

4. Associate the new portlet with the Home page, as shown in Figure 11-35, and
click Next.

11-26 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-35 Associate the portlet with the Home page

ﬁl-"l Portlet Wizard [Navigation] : ll

Steps :

Portal Pages

1. Portlet Mame

2. Portal Pages Thg portal ThisNewPonaI hag the portal pages. Iisteq helow. Please

3. Portlet Companents indicate which portal pages {f any) you would like this portlet to appear
4. Cantent Types an.

A. Resaource Files Location Fortlet Pages:

7. Mext Steps

= Back | Mext = I Cancel

5. Select portlet components, as shown in Figure 11-36, and click Next.

Figure 11-36 Select components

ﬁl-"l Portlet Wizard [Navigation]

Steps :

Portlet Components
1. Portlet Mame

2 Portal Pages InFIicate which companents to.include in the portlet.

3. Portlet Components (Titlebar and Caontent are required components.)

4. Content Types -« Portlet Titlebar

5. Resource Files Location

&, Surnmary Portlet Banner [Banner
7. Next Steps Portlet Header [Header

Partlet Content Portlet Content
Partlet Content Portlet Content
Partlet Content Portlet Content

Portlet Footer [Footer

= Back | Mext = I Cancel |

WebLogic Portal Development Guide — 11-27

11 Extending Portlets

11-28

6. Select webflow content type, as shown in Figure 11-37, and click Next.

Figure 11-37 Select Webflow content type

ﬁh"l Portlet Wizard [Navigation]

Steps :

1. Portlet Mame

2. Portal Pages

3. Portlet Components

4. Content Types

5. Resource Files Location
B. Summary

7. Mext Steps

Content Types

Choose a content type for the portlet.

" Basic (na Yebflow)

& Multiple Pages (with YWebflow)

" \ieh senice(s)

Mote: In arder to create a Web services partlet you must have
filesystermn access toWeblogic Server 7.0,

= Back | Mext = I Cancel |

7. Select Navigation Bar model, as shown in Figure 11-38, and click Next.

WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-38 Select Navigation Bar Model

ﬁh"l Portlet Wizard [Navigation] ; ll

Steps: Navigation Model
1. Portlet Mame
2. Portal Pages Choose a model for navigating among the pages.
3. Portlet Components
4. Cantent Types Mavigation Maodel:
5. Navigation Model nBar B
B. Mumber of Pages
7. Resource Files Location Description:
4. Summary Each page in the set has a navigation bar with links to every ather
9. Mext Steps page in the set.

/\
—)—
N

= Back | Mext = I Cancel

8. Select number of pages, as shown in Figure 11-39, and click Next.

Figure 11-39 Select number of pages

ﬁh"l Portlet Wizard [Navigation] = ll

Steps :

Number of Pages

Fortlet Mame

Fortal Fages
Fortlet Components
Content Types
Mavigation Madel
Mumber of Pages Mumber of portlet pages
Resource Files Location
Summary

Mext Steps

Indicate how many pages do you want to be generated for the webflow:
based portlet.

wm ;e

ha —

= Back | Mext = I Cancel |

WebLogic Portal Development Guide 11-29

11 Extending Portlets

9. Confirm resource files location, as shown in Figure 11-40, and click Next.

Figure 11-40 Confirm Resource Files Location

iui Portlet Wizard [Mavigation] x|
Steps : . .
Resource Files Location

1. Portlet Mame

2. Portal Pages

5 PonletCogm anents Adirectory named [Mavigation] will be created in the location yau

4'0 tent T R specify. This directory will contain the portlet resource files (JSPs,

: on.en. ypes GlFs, ete). The location is typically the "portlets" directary of the

5. Navigation Model associated YWeh application.

B. Mumber of Pages

7. Resource Files Location

8. Summary Fortlet Resource Files Location:

9. Mext Steps fnewDomaimbeasppsiportalAppiNewPWApRiportiets | Browse |

(e.g., Clbeaweblogicy 00portalmdyebAppiporietst

= Back | Mext = I Cancel |

10. Confirm summary of files to be created, as shown in Figure 11-41, and click
Create.

11-30 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-41 Confirm Summary

ﬁh"l Portlet Wizard [Navigation]

Steps :

I I o

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types
Mavigation Madel
Murmhber of Pages
Resource Files Location
Summary

Mext Steps

Summary
The following files will be created/moadified.

File List:

4 899%beatuser_projecta’ lunynewvdonain\beaappsiportalapp
4 899%beatuser_projecta’ lunynewvdonain\beaappsiportalapp
4 899%beatuser_projecta’ lunynewvdonain\beaappsiportalapp
4 899%beatuser_projecta’ lunynewvdonain\beaappsiportalapp
4 899%beatuser_projecta’ lunynewvdonain\beaappsiportalapp
4 899%beatuser_projecta’ lunynewvdonain\beaappsiportalapp
4 899%beatuser_projecta’ lunynewvdonain\beaappsiportalapp

GGG RG]

4 | »

Copyto Cliphoard |

= Back | Create I Cancel

11. Confirm next steps, as shown in Figure 11-42, and click Close.

Figure 11-42 Confirm Next Steps

ﬁh"l Portlet Wizard [Navigation]

Steps :

B oo ; s

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types
Mavigation Maodel
Murmhber of Pages
Resource Files Location
Summary

Mext Steps

Next Steps

The portlet files were successfully created.

What waould you like to do next?
[Editthe assaociated portal definition.

| Editthis partlet definition

To view the partlet:

1. Synchraonize the project to place the portlet and portal definitions
on the server.

2. Setthe portlet's Visible and Available attributes via the portal
administration pages.

Fead about related tasks,

Close

WebLogic Portal Development Guide

11-31

11 Extending Portlets

12. Synchronize the project, as shown in Figure 11-43.

Figure 11-43 Synchronize project

il BEA E-Business Control Center - portalApp-project

File Tools Window Help

Creating new portl Synchronize. ..
Explorer [Presentation]

@ X & e

Mame Filter (partial names allowed)
| % =W
Portlets
&l Porlets
: QE Mavigation
Fortlet
Business
Schools
WehFlows3

13. Use the WebLogic Portal Administration Tools to make the portlet visible and
available, as shown in the section called “Step 4: Make the New Portlet Visible

and Available” on page 5.
14. View the portlet, as shown in Figure 11-44.

Figure 11-44 Viewing the Navigation Bar Portlet

' MNavigation

- i
Built On [T

11-32 WebLogic Portal Development Guide

Portlets and the Framework

Creating a Sequential Webflow Portlet

This procedure shows how to use the portlet wizard to create a Sequential Webflow

portlet.
1. From the Presentation Tab in the E-Business Control Center, select New Portlet, as
shown in Figure 11-45.

Figure 11-45 Starting the Portlet Wizard

|-|i| Explorer [Presentation] B

D@ X o«

M: Entittement Segment jwed)
I_ Content Selector @ 2l
Flacehaolder ltiats

Portlets
Portlet e Portlets

L

na

Content

2. Elect to use the portlet wizard, as shown in Figure 11-46, and click OK.

Figure 11-46 Elect to use the Portlet Wizard

i New Portlet x|

& Use the Portlet Wizard to create a new partlet
from scratch.

Lse the Portlet Editor to create a new partlet
with existing resources (e.g. JSP's, Gif's).

Ok I Cancel |

3. Name the portlet Sequential, as shown in Figure 11-47, then click Next.

WebLogic Portal Development Guide 11-33

11 Extending Portlets

Figure 11-47 Naming the Sequential Webflow Portlet

iui Portlet Wizard [jugfd] x|
Steps :
Portlet Name
1. Portlet Name
2. Portal Pages Enter a unigue name forthe portlet, and select a ponal to which the
2. Portlet Campanents Fhm.lft srloul?hbte asst.o.mateq. Tr;e portlettn:mer;ulwltlrt:e used to name
4. Content Types e directory that contains wizard-generated paortlet files.
4. Mavigation Model Fortlet Marme:
6. Murnber of Pages |Sequentia|
7. Resource Files Location
3. Summary Portlet Category:
9. Next Steps fportiets =
Fortal:
[ThishewPartal =]

Fortlet Description {optional):

4. Associate the portlet with the Home page, as shown in Figure 11-48, and click
Next.

11-34 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-48 Associate the portlet with the Home page

ﬁl-"l Portlet Wizard [Sequential]

Steps :

I e ol o

Fortlet Mame

Portal Pages

Fortlet Components
Content Types
Mavigation Maodel
Murmhber of Pages
Resource Files Location
Summary

Mext Steps

Portal Pages

The portal ThisNewPartal has the portal pages listed helow. Please
indicate which portal pages {f any) you would like this portlet to appear
on.

Fortlet Pages:

= Back | Mext = I Cancel

5. Select portlet components, as shown in Figure 11-49, and click Next.

Figure 11-49 Select Portlet Components

ﬁl-"l Portlet Wizard [Sequential]

Steps :

e I o o

Fortlet Mame

Fortal Fages

Portlet Components
Content Types
Mavigation Maodel
Murmhber of Pages
Resource Files Location
Summary

Mext Steps

Portlet Components

Indicate which components ta include in the portlet.
(Titlebar and Caontent are required components.)

-« Portlet Titlebar

Portlet Banner [Banner
Portlet Header [Header

Partlet Content Portlet Content
Partlet Content Portlet Content
Partlet Content Portlet Content

Portlet Footer [Footer

= Back | Mext = I Cancel |

WebLogic Portal Development Guide 11-35

11 Extending Portlets

6. Select webflow content type, as shown in Figure 11-50, and click Next.

Figure 11-50 Select Webflow content type

ﬁh"l Portlet Wizard [Sequential] ; ﬂ
Steps :
Content Types

1. Portlet Mame

2 Portal Pages Choose a content type for the portlet.

3. Portlet Components Basic (no Webflow)

4. Content Types : .

5 Mavigation Model & Multiple Pages (with YWebflow)

6. Mumhber of Pages ek servicels)

7. Resource Files Location)

8. Summary Mote: In arder to create a Web services partlet you must have

g. Nexd Steps filesystermn access toWeblogic Server 7.0,

= Back | Mext = I Cancel |

7. Select Sequential Navigation model, as shown in Figure 11-51, and click Next.

11-36 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-51 Select Sequential model

iui Portlet Wizard [Sequential] |
Steps : . o
Navigation Model
1. Portlet Mame
2 Portal Pages Choose a model for navigating among the pages.
3. Portlet Components
4. Cantent Types Mavigation Maodel:
5. Navigation Model al
B. Mumber of Pages
7. Resource Files Location Description:
2. Summary Pages are traversed in sequence via the Next and Previous huttons.
9. Mext Steps
[3-[3=[2=1]
= Back | Mext = I Cancel
8. Select number of pages, as shown in Figure 11-52, and click Next.
Figure 11-52 Select number of pages
iui Portlet Wizard [Sequential] |

Steps :

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types
Mavigation Madel
Mumber of Pages
Resource Files Location
Summary

Mext Steps

wm ;e

Number of Pages

Indicate how many pages do you want to be generated for the webflow:
based portlet.

Mumber of portlet pages

= Back | Mext = I Cancel |

WebLogic Portal Development Guide

11-37

11 Extending Portlets

9. Confirm resource files Location, as shown in Figure 11-53, and click Next.

Figure 11-53 Confirm Resource Files Location

iui Portlet Wizard [Sequential] 1 |
Steps : . .
Resource Files Location

1. Portlet Mame

2. Portal Pages

5 PonletCogm anents A directory named [Sequential] will be created in the location you

4'0 tent T R specify. This directory will contain the portlet resource files (JSPs,

: on.en. ypes GlFs, ete). The location is typically the "portlets" directary of the

5. Navigation Model associated YWeh application.

B. Mumber of Pages

7. Resource Files Location

8. Summary Fortlet Resource Files Location:

9. Mext Steps fnewDomaimbeasppsiportalAppiNewPWApRiportiets | Browse |

(e.g., Clbeaweblogicy 00portalmdyebAppiporietst

= Back | Mext = I Cancel |

10. Confirm summary of files to be created, as shown in Figure 11-54, and click
Create.

11-38 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-54 Confirm Summary

ﬁh"l Portlet Wizard [Sequential] ﬂ
Steps :
Summary
1. Portlet Name
2. Portal Pages)) ;
The following files will he createdimaodified.
3. Portlet Components B
4. Cantent Types
5. Mavigation Model File List:
. Murnber of Pages application-synciportletssequential.portlet
7. Resource Files Location application-syncwebapps\nevpwapph sequential.wf
8. Summary application-synchwebappsinewpwapp’ thisnewportal .portal
9. Mext Steps sportletshsequentialyimages\pt image. gif

‘portletshsequentialipagel.jsp
‘portlets\sequentialipage.jsp
‘portlets\sequentialtpaged.jsp
‘portlets\sequentialipaged. jsp

K1 |»

Copyto Cliphoard |

= Back | Create I Cancel

11. Confirm next steps, as shown in Figure 11-55, and click Close.

Figure 11-55 Confirm Next Steps

iui Portlet Wizard [Sequential] =

Steps :
Next Steps
1. Portlet Mame
2. Portal Pages
2 Portist Cogmponents The portlet files were successfully created.
4. Cantent Types
5. Mavigation Model Wihat would you like to do next?
B. Number of Fages [Editthe assaciated portal definition.
7. Resaource Files Location
8. Surnmary | Edit this portlet definition
0, Next Steps

To view the partlet:

1. Synchraonize the project to place the portlet and portal definitions
on the server.

2. Setthe portlet's Visible and Available attributes via the portal
administration pages.

Fead about related tasks,

Close

WebLogic Portal Development Guide 11-39

11 Extending Portlets

12. Synchronize the project, as shown in Figure 11-56.

Figure 11-56 Synchronize project

fiui BEA E-Business Control Center - portalApp-project

File Tools Window Help
(e R O

Synchranize...
Explorer [Presentation] B

@ X & aw

Mame Filter (partial names allowed)

| @ B

Portlets

rlets
Mavigation
Fortlet
Sequential
Business
Schools
WehFlows3

13. Use the WebLogic Portal Administration Tools to make the portlet visible and
available, as shown in the section called “Step 4: Make the New Portlet Visible
and Available” on page 11-5.

14. View the portlet, as shown in Figure 11-57.

11-40 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-57 Viewing the Sequential Webflow Portlet

J default - Microsoft Internet Explorer g‘ 10l =l
J File Edit Miew Favorites Tools Help |
J R = | at | Qhsearch (G Favorites £ #History | 22

JAgdress I@ geid=home&portletid=Sequentialfawfevent=switch1 j @Go |JLinks

-

Built On

« Sequential

Page 1

Partlet content with

4
|@ Done

’_’_ (5 Local intranet

Creating a Hierarchical Webflow Portlet

This procedure shows how to use the portlet wizard to create a Hierarchical Webflow

portlet.

1. From the Presentation Tab in the E-Business Control Center, select New Portlet, as
shown in Figure 11-58.

Figure 11-58 Starting

the Portlet Wizard

Explorer [Presentation] B

Prw X koW
M: Entittement Segment jwed)
[" content Selector @
Flacehaolder ltiets
Portal Portlets
0 Fortiet By Porlett
o #=__| Business
L] E-1 Schools
S = o F s 3
Caontent Selectars

WebLogic Portal Development Guide

11-41

11 Extending Portlets

2. Elect to use the portlet wizard, as shown in Figure 11-59, and click OK.

Figure 11-59 Elect to use the Portlet Wizard

i New Portlet

Use the Portlet Wizard to create a new partlet
from scratch.

Lse the Portlet Editor to create a new partlet
with existing resources (e.g. JSP's, Gif's).

Ok I Cancel |

3. Name the portlet Hierarchical, as shown in Figure 11-60, then click Next.

Figure 11-60 Naming the Hierarchical Portlet

ﬁh"l Portlet Wizard [UnnamedPortlet] ll

Steps: Portlet Name

1. Portlet Name

2 Portal Pages

3. Portlet Components
4. Cantent Types
5
[
7

Enter a unigue name far the portlet, and select a portal to which the
portlet should be associated. The portlet name will be used to name
the directary that contains wizard-generated portlet files.

. Resource Files Location Fortlet Marme:
_Burnmary Hierarchical
. Mext Steps
Fortlet Categary:
|p0rt|ets E”'l
Fortal:
[ThishewPortal =

Fortlet Description {optional):

Mext = Cancel |

4. Associate the new portlet with the Home page, as shown in Figure 11-61, and
click Next.

11-42 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-61 Associate the portlet with the Home page

ﬁl-"l Portlet Wizard [Hierarchical] ll

Steps :

Portal Pages

1. Portlet Mame

2. Portal Pages Thg portal ThisNewPonaI hag the portal pages. Iisteq helow. Please

3. Portlet Companents indicate which portal pages {f any) you would like this portlet to appear
4. Cantent Types an.

A. Resaource Files Location Fortlet Pages:

7. Mext Steps

= Back | Mext = I Cancel

5. Select portlet components, as shown in Figure 11-62, and click Next.

Figure 11-62 Select components

i< Portlet Wizard [Hierarchical] i x|

Steps :

Portlet Components
1. Portlet Mame

2 Portal Pages InFIicate which companents to.include in the portlet.

3. Portlet Components (Titlebar and Caontent are required components.)

4. Content Types -« Portlet Titlebar

5. Resource Files Location

&, Surnmary Portlet Banner [Banner
7. Next Steps Portlet Header [Header

Partlet Content Portlet Content
Partlet Content Portlet Content
Partlet Content Portlet Content

Portlet Footer [Footer

= Back | Mext = I Cancel |

WebLogic Portal Development Guide 11-43

11 Extending Portlets

11-44

6. Select webflow content type, as shown in Figure 11-63, and click Next.

Figure 11-63 Select Webflow content type

ﬁh"l Portlet Wizard [Hierarchical] ; ll

Steps :

Content Types

1. Portlet Mame
2 Portal Pages Choose a content type for the portlet.
3. Portlet Components

" Basic (na Yebflow)
4. Content Types

5. Resource Files Location & Hultiple Pages (with Webflow)
. Surnmary 7 Weh sericels)
7. Mext Steps

Mote: In arder to create a Web services partlet you must have
filesystermn access toWeblogic Server 7.0,

= Back | Mext = I Cancel |

7. Select Hierarchical model, as shown in Figure 11-64, and click Next.

WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-64 Select Hierarchical Model

ﬁh"l Portlet Wizard [Hierarchical] ll
Steps : . o
Navigation Model
1. Portlet Mame
2 Portal Pages Choose a model for navigating among the pages.
3. Portlet Components
4. Cantent Types Mavigation Maodel:
5. Navigation Model
B. Mumber of Pages
7. Resource Files Location Description:
2. Summary Creates a parent page with links to each child page. Child pages
9. Mext Steps have back link to the parent.
= Back | Mext = I Cancel
8. Select number of pages, as shown in Figure 11-65, and click Next.
Figure 11-65 Select number of pages
ﬁh"l Portlet Wizard [Hierarchical] ll

Steps :

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types
Mavigation Madel
Mumber of Pages
Resource Files Location
Summary

Mext Steps

wm ;e

Number of Pages

Indicate how many pages do you want to be generated for the webflow:
based portlet.

Mumber of portlet pages

= Back | Mext = I Cancel |

WebLogic Portal Development Guide

11-45

11 Extending Portlets

9. Confirm resource files location, as shown in Figure 11-66, and click Next.

Figure 11-66 Confirm Resource Files Location

ﬁh"l Portlet Wizard [Hierarchical] . ll
Steps : . o
Resource Files Location

1. Portlet Mame

2. Portal Pages

5 PonletCogm anents A directory named [Hierarchical] will be created in the location you

4'0 tent T P specify. This directory will contain the portlet resource files (15Ps,

: on.en. ypes GlFs, ete). The location is typically the "portlets" directary of the

5. Navigation Model associated YWeh application.

B. Mumber of Pages

7. Resource Files Location

8. Summary Fortlet Resource Files Location:

9. Mext Steps fnewDomaimbeasppsiportalAppiNewPWApRiportiets | Browse |

(e.g., Clbeaweblogicy 00portalmdyebAppiporietst

= Back | Mext = I Cancel |

10. Confirm summary of files to be created, as shown in Figure 11-67, and click
Create.

11-46 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-67 Confirm Summary

i< Portlet Wizard [Hierarchical] x|
Steps :
Summary
1. Portlet Name
2. Portal Pages)) ;
The following files will he createdimaodified.
3. Portlet Components B
4. Cantent Types
5. Mavigation Model File List:
6. Mumber of Pages application-synciportletsihierarchical.portlet
7. Resource Files Location application-synchwebappa'\newpwappthierarchical.wf
8. Summary application-synchwebappsinewpwapp’ thisnewportal .portal
9. Mext Steps swportletsyhierarchicaldimages\pt_image.gif

‘portlets\hierarchical‘\pagel.jsp
‘portlets\hierarchical‘\pageZ.jsp
‘portlets\hierarchical‘\page3.jsp
‘portlets\hierarchical‘\paged.jsp

K1 |»

Copyto Cliphoard |

= Back | Create I Cancel

11. Confirm next steps, as shown in Figure 11-68, and click Close.

Figure 11-68 Confirm Next Steps

ﬁh"l Portlet Wizard [Hierarchical] ll

Steps :
Next Steps
1. Portlet Mame
2. Portal Pages
2 Portist Cogmponents The portlet files were successfully created.
4. Cantent Types
5. Mavigation Model Wihat would you like to do next?
B. Number of Fages [Editthe assaciated portal definition.
7. Resaource Files Location
8. Surnmary | Edit this portlet definition
0, Next Steps

To view the partlet:

1. Synchraonize the project to place the portlet and portal definitions
on the server.

2. Setthe portlet's Visible and Available attributes via the portal
administration pages.

Fead about related tasks,

Close

WebLogic Portal Development Guide 11-47

11 Extending Portlets

12. Synchronize the project, as shown in Figure 11-69.

Figure 11-69 Synchronize project

fiui BEA E-Business Control Center - portalApp-project

File Tools Window Help

Finished filtering list.
Explorer [Presentation] B
P @ X 8§ %

Mame Filter (partial names allowed)
| % =W
Portlets
ml Portlets
Entitlernent Seamen o Hierarchical
TE Mavigation
1| ~Ry Porlett
— ~Ry Sequential

13. Use the WebLogic Portal Administration Tools to make the portlet visible and
available, as shown in the section called “Step 4: Make the New Portlet Visible

and Available” on page 11-5.
14. View the portlet, as shown in Figure 11-70.

11-48 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-70 Viewing the Hierarchical Portlet

7§ default - Microsoft Internet Explorer

J File Edit Miew Favorites Tools Help |

J GBack + = -) at | Qhsearch (3 Favorites e
JAgdress I@ http:,l’,l’localhost:?SDI,I’NewPWApp,I’a;j @Go |JLinks

|@ Done ’_’_ (28 Local intranet

How a Portlet Handles a Refresh Event

To illustrate how portlets can use Webflow, observe how portlets handle the refresh
event, as demonstrated in the bold code in Listing 11-5.

Listing 11-5 Adding refresh notification to a portlet

<%@ taglib uri="portlet.tld" prefix="portlet" %>

<%

System.out.println("Calling refresh on flowLetl portlet.");
%>

<centers

Portlet 1l

<p>

Portlet content with Webflow

<p>

<a href="<portlet:createWebflowURL event="switchl"/>">Next
Page

<p>

</centers>

WebLogic Portal Development Guide 11-49

11 Extending Portlets

Continuing from the previous example, edit the text in the scriptDemo portlet as shown
in the following steps:

1. Open the console by selecting it from the taskbar, as shown in Figure 11-71.

Figure 11-71 Open console window

=TSN

The console should resemble figure Figure 11-72.

Figure 11-72 Console window

W Start Portal Server ser_projects'portalDom

<Jun 12, 28082 11:18:34 AM MDT> <{Motice> <{Management> <{148885> <{Loading configurall
tion C:xbea“user_projectssportalDomain.“config.xml>

<Jun 12, 2882 11:18:52 AM MDT > <{MNotice> <{Security> {B?88923> {No configuration da
ta was found on server portalServer for realm CompatibilityRealm.>

<Jun 12, 2882 11:18:52 AM MDT> {Motice> <{Security> <{BA?@BB2> <{Security initiali=i
ng using realm CompatibilityRealm.>

<Jun 12, 2882 11:18:53 AM MDT> <{MNotice> <{WebLogicServer> {BAB327> {Starting Webhl
ogic Admin Server “portalServer" for domain “portalDomain'>

<Jun 12, 2882 11:12:11 AM MDT> <{Motice> <{Management> <{141853> <{Application Polle
r not started for production server.>

== == Initializing Logger = ==

<Jun 12, 2882 11:12:14 AM MDT > <{MNotice> <{Security> <{B?8892> {S58L will load trust
ed CAs from the JDK cacerts KeyStore: C:vbeasjdki31i_83\jreslibssecurityscacerts
for realm CompatibilityRealm on server portalServer.>

<Jun 12, 2882 11:12:15 AM MDT> <{Notice> <{UebLogicServer> <{BBA354> <{Thread "SSLLi
stenThread.Default"” listening on port 75823

<Jun 12, 2882 11:12:15 AM MDT > <{Motice> <{WebLogicServer> {BBB329> <{Started WebLo
ﬁiﬁ gdmin Server "portalServer'" for domain “portalDomain' running in Production
ode

<Jun 12, 2882 11:12:15 AM MDT> <{Motice> {WebLogicServer> {BBBA354> <{Thread "Liste
nThread.Default" listening on port 75813

<Jun 12, 2882 11:12:15 AM MDT> <Motice> <{WebLogicServer> {BBBA365> <Server state
changed to RUNNING>

<Jun 12, 28082 11:12:16 AM MDT> <{Motice> <{WebLogicServer> {BBBA36B> <{Server starte
d in RUNNING mode >

2. Ina text editor, save the code from Listing 11-2 as content . jsp in the following
directory:

<BEA_HOME>\portalDomain\beaApps\portalApp\<PortalWebApp>\
portlets\scriptDemo\

3. Refresh the browser, and verify that the portlets have not changed. Click the
Webflows within each of the portlets, navigating back and forth a few times.

4. Return to the console and notice the output from flowLetl1, as shown in
Figure 11-73.

11-50 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-73 Refresh messages in Console

W Start Portal Serve
stenThread.Defaul

ea'\user_projecks’,
listening on port 75823

<Jun 12, 2882 11:12:15 AM MDT > <{Motice> <{WebLogicServer> {BBB329> <{Started WebLo
gic Admin Server "portalServer' for domain “portalDomain' running in Production

Mode >

<Jun 12, 2882 11:12:15 AM MDT> <{Motice> {WebLogicServer> {BBBA354> <{Thread "Liste
>

nThread.Default" listening on port 7581

<Jun 12, 2882 11:12:15 AM MDT> <Motice> <{WebLogicServer> {BBBA365> <Server state

changed to RUNNING>

<Jun 12, 28082 11:12:16 AM MDT> <{Motice> <{WebLogicServer> {BBBA36B> <{Server starte

d in RUNNING mode’>

Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.
Calling refresh on flowLetl portlet.

Understanding Webflow Refresh Events in a Portlet

In Webflow, the Refresh event amounts to calling an entity called lastContentUrl,
which merely allows you to trigger a portlet to refresh itself without specifying its
name. By navigating through the various buttons and controls in the portal in this
example while observing the console window for refresh messages, you can see when
refresh events are caused by certain actions. To look more closely at the Webflow

associated with flowLetl, take the following steps:

1. Looking at a Webflow: From the Site Infrastructure tab of the E-Business Control

Center, select WebFlows/Pipelines.

2. Open NewPWApp1 by double-clicking it, as shown in Figure 11-74.

WebLogic Portal Development Guide — 11-51

11 Extending Portlets

Figure 11-74 Opening Webflows within Portal Web Application

Explorer [Site Infrastructure] B
-z X

Mame Filter (partial names allowed)

| @ Bl

E-@l Webapps
L EE MewPwipp

E= flowlet2

E= portal

E= security

E= tools

E= user_account
tools

Description

|We bflow "lowlet!” in webapp "NewPWaApp1" iflowlet] wi) |

3. Open the Webflow named flowLet1 by double-clicking it, and examine the
image that appears in the editor window. To the right side of the navigation
mapping, notice that the minimize, maximize, unMinimize and unMaximize
nodes are linked to portal lastContentUrl, as shown in Figure 11-75.

11-52 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-75 Nodes linked to portal_lastContentUrl

B Editor [Webflow: flowLet1 *]
EX HE @B = & m G

[7]

g,_? |E |hea.portal.framework.in...||

JE |hea.portal.framework.in...||

E hea.portz

__bl portal_lastContentUrl

[« |z

Cﬂﬁ |hea.portal.framework.in...||

1

By default, refresh is always invoked on an entire portal, and can be called on every
portlet. Any portlet with its own Webflow can be made to respond to all refresh events.
To make this default behavior for a portlet, use the Webflow editor to open the portlet’s

Webflow and set *.refresh proxynode to lastContentUrl.

For an in-depth look at using Webflow, consult Chapter 9, “Setting Up Portal

Navigation.”

Making a Portlet Respond to a Custom Event

To explain custom events, consider the navigation mapping in the Webflow for

flowLet1 portlet, shown in Figure 11-76.

WebLogic Portal Development Guide 11-53

11 Extending Portlets

Figure 11-76 Navigation nodes in flowLetl Webflow

content1 u

N

switchl

switch2

\
| content2 |

The navigation between contentl.jsp and content2.jsp is accomplished using
pre-defined events called switchl and switch2.

By selecting one of the content nodes, you can examine the properties of the Webflow
that links contentl.jsp with content2.jsp in the flowLet1 portlet. The properties of the
content2 presentation node are shown in detail in Figure 11-77.

11-54 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-77 Mappings for content2

&

[

i |% |« @ | |®|® "

4]

BH Propetties | b1 AIerts'

propery value
5 name* content2
& [one’ sp
5 page-relative-path Iparletsfowl et
5 page-name* cantent2 jsp
=il=|event* switch
=il=|event* switch2

Defining a Custom Event

Figure 11-78 shows how a custom event is assigned to a new presentation node. This
event is named myCustomEvent, and the Event connector tool is used to link
presentation node content2 with presentation node content3.

WebLogic Portal Development Guide 11-55

11 Extending Portlets

Figure 11-78 Defining myCustomEvent

content2

content3

BH Propetties | b3 AIerts'

property

il
=(name

Invoking the Custom Event

To call the custom event in the portlet, include the following code in your JSP:

<a href="<portlet:createWebflowURL event="myCustomEvent"/>">Next
Page

Figure 11-79 shows the third screen of flowLet] after a new presentation node, called
content3.jsp, has been added.

Figure 11-79 The third page of flowLetl portlet

w flowlLetl @ - flowlet2 @ - scriptDemo (]
These are the portlet
Portlet 3 | Portlet 2

contents
Partlet with Webflow

Partlet with Webflow
Brevious Page Brevious Page

First Page

-,

Built On

11-56 WebLogic Portal Development Guide

Portlets and the Framework

Sharing State from One Portlet to Another

Share state from one portlet to another by placing the arguments into the HttpSession
object using an Input Processor. For instance, if portleta uses a form named "foo",
use the IP to extract the “foo” form data, and port1letB can get the form data from the
Pipeline Session.

Note: For more information on Input Processors, consult Chapter 9, “Setting Up
Portal Navigation.”

Web Service Portlets

Web Services are reusable software components that enable applications to interact
efficiently and in a loosely-coupled manner; they are used internally for fast and
low-cost application integration, or made available to customers, suppliers or partners
over the Internet. Enabling portlets to consume Web Services, either internally or over
the Internet, introduces a range of new benefits - and introduces some new developer
issues as well.

Note: For the sake of simplicity, the examples shown in this section show portlets
connecting to Web Services that are locally hosted.

This section contains information on the following topics:

m Using the Portlet Wizard to Create Web Services Portlets
m Creating a Simple Form-Driven Web Service Portlet

m Creating a Call-Generation Web Service Portlet

m Creating a Web Services Interface Portlet

m Deploying the Web Services Portlets

m Error Handling within Web Services Portlets

m Calling Web Services Asynchronously

WebLogic Portal Development Guide — 11-57

11 Extending Portlets

Using the Portlet Wizard to Create Web Services Portlets

Preparation

The Portlet Wizard can create portlets that consume Web Services in three different
ways:

Simple Web Service Form: This is the simplest mode of interacting with a
Web Service, whereby a simple parameter is sent to the Web Service class using
the httpSession, and a primitive value is printed into the resulting HTML.

Call Generation: Slightly more complex is the Call Generation type portlet, in
which classes hosted by the Web Service are listed in an object called the WSDL
(Web Services Definition Language). The portlet makes remote calls to these
classes and consumes the returned objects. In the Portlet Wizard, the Call
Generation option creates a stubbed out portlet that calls into the designated Web
service. You are required to set the REPLACE ME variables with output
from sources such as the user profile, the request, and the session.

Web Service(s) Interface: This option allows you to select multiple Web
services and extract interface documentation into the portlet itself. Use this
option when parameters or return values require complex data types.

This option can be used to create a portlet that calls a Web Service
asynchronously through client polling. The section “Calling Web Services
Asynchronously” includes instructions on creating this type of portlet.

This section shows how to use the Portlet Wizard to create a portlet of each type.

Start the WebLogic Workshop Examples Server by navigating to Programs —BEA
WebLogic Platform 7.0 - WebLogic Workshop Example — Start Examples Server.
Begin with the sample portal described in the section The scriptDemo Portlet.

Note: This example shows the scriptDemo, flowLet] and flowLet2 portlets

removed, but you complete these Web Service portlet examples without
removing the old portlets from the portal.

11-58 WebLogic Portal Development Guide

Portlets and the Framework

Avoiding Namespace Collisions

Both the previous Call Generation and the Interface examples create instances
of identical classes which run within the same portal namespace. To prevent
namespace collision, the local instances of each class must be given unique
names. In the second and third portlets, the implementation classes are
re-named, as shown before the code samples.

Creating a Simple Form-Driven Web Service Portlet

The first portlet sends simple form input to the AccountEJBClient Web Service,
creating a simple bank account object hosted at the WebLogic Workshop examples
server.

Create the Portlet Called formLet Using the Portlet Wizard

1. Follow the steps outlined in Figure 11-32 through Figure 11-36.

2. When the Content Types screen appears, select Web Service and click Next, as
shown in Figure 11-80.

Figure 11-80 Select Generated Code type

sl Portlet Wizard [formLet1] x|

Content Types

Steps :

1. Portlet Mame
2. Portal Pages
3. Portlet Components

4. Content Types -
5. Resource Files Location " Multiple Pages (with Wehflow)

Choose a content type for the portlet.

. Surnmary & Weh sericels)
7. Mext Steps

Mote: In arder to create a Web services partlet you must have
filesystermn access toWeblogic Server 7.0,

= Back | Mext = I Cancel

WebLogic Portal Development Guide — 11-59

11 Extending Portlets

3. When the Server Location screen appears, navigate to an instance of WebLogic
Server, as shown in Figure 11-81, and click Next.

Figure 11-81 Select Server Location

iui Portlet Wizard [formLet1] | x|
1. Portlet Mame .

2. Portal Pages Server Location

3. Portlet Components

4. Content Types To proceed with creating YWeb serice(s) content you must provide the
/. Server Location following filesystem paths for a running WehLogic Server

b Generateq Code Types Server Location: (filesystem path)

T.Weh Service(s) -

2. Code Preview cibeswehlogic700server Browse |

“

Resource Files Location
10, Summary
11. Mext Steps

= Back | Mext = I Cancel |

4. When the Generated Code Types screen appears, select Form, as shown in
Figure 11-82, and click Next.

11-60 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-82 Select Generated Code Types

i Portlet Wizard [formLet1] |
1. Portlet Mame
2. Portal Pages Generated Code Types
3. Portlet Components
4. Content Types Select the output option that best matches how you would like to
5 Server Location invake the YWeh serice(s).
6. Generateq Code Types Output Options:
T.Weh Service(s) Farm LI
8. Code Preview
9. Resource Files Location Description:
10, Summary This option will create a fully functional portlet that takes parameter
11. Mext Steps input from users through an HTML form and calls the designated Web
service.
Example:
<5@ include file="HelloWorld include.inc™ %= ﬂ

<%[@ taglib uri="portlet.tld” prefix="portlet” %>
<%[@ taglib uri="ilfn.tld” prefix="ilan" %>

<%0 page

import="com.bea.portal.appflow. PortalippflowConstant
a5k

<%0 include file="/framework/resourceURL.inc"”%> ;I

= Back | Mext = I Cancel |

5. When the Select a Web Service screen appears, click Add Web Services, as
shown in Figure 11-83.

WebLogic Portal Development Guide 11-61

11 Extending Portlets

Figure 11-83 Click Add Web Services

sl Portlet Wizard [formLet1] B . |
1. Portlet Mame .

2. Portal Pages Web Seerce(S)

3. Portlet Components

4. Content Types Choose aWeb service and an operation to include in the portiet.

5. Server Location

6. Generated Code Types
7. Web Service(s)

8. Code Preview

9. Resource Files Location
10, Summary

11. Mext Steps

Web Service{s): Operations:

Add Web Servces... | Details...

= Back | Mext = I Cancel |

6. Type in the URL of the WSDL, as shown in Figure 11-84, then click ADD URL.

Figure 11-84 Enter the URL of the WSDL

i Web service(s) List . ﬂ

Add Web services to the list by entering the WSDL URL and clicking an the Add button.
Usethe Open File button to specify local WEDL files.

WSDL URL:
http:IIIocthost:?DmIsamplesiejbControIIAccountEJElCIient.jws'?WSDL] Add URL |

Wb service(s):

Add Fileis)...

[elete

L

Update

Close |

7. When the AccountEJBClient Web Service appears in the list, click Close.

11-62 WebLogic Portal Development Guide

Portlets and the Framework

8. When the Web Services screen re-appears, click the newly added Web Service. A
small window entitled “Retrieving Operations” appears in front of the Web
Services screen, as shown in Figure 11-85.

Figure 11-85 Retrieving Operations

i Portlet Wizard [formLet] 3 |
1. Portlet Mame .
3. Portal Pages Web Service(s)
3. Portlet Components
4. Content Types Choose a'Wehb service and an operation to include in the portlet.
5. Server Location : ;
6. Generated Code Types Ve Service(s): Operations:
7. Web Service(s) AccountEJBClient
8. Code Preview
9. Resource Files Location x|
10, Summary
11. Mext Steps | - |
Details...
Retrieving operations.....
= Back | Mext = Cancel |

9. When the Retrieving Operations screen disappears, a list of operations should be
available in the listbox to the right. Select the CreateNewAccount operation
from this list, as shown in Figure 11-86 and click Next.

WebLogic Portal Development Guide 11-63

11 Extending Portlets

Figure 11-86 Select the createNewAccount operation

iui Portlet Wizard [formLet] x|
1. Portlet Name .

2. Portal Pages Web Seerce(S)

3. Portlet Components

4. Content Types Choose a'eh service and an operation to include in the portlet.

5. Server Location

6. Generated Code Types WWeb Service(s): Operations:

7. Web Service(s) AccountEJBClient
8. Code Preview
9. Resource Files Location
10, Bummary deposit
11. Mext Steps
Edit List... Details...
Operations retrieved. Parameters:

17 key

2y openingBalance

3 type

= Back | Mext = Cancel |

10. When the Code Preview screen appears, scroll down in the generated code to
begin to familiarize yourself with taglib includes and portal refresh events. You
can also click Copy to Clipboard and paste the code into an editor for viewing.

11. Click Next, as shown in Figure 11-87.

11-64 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-87 Code Preview

ﬁh"l Portlet Wizard [formLet] ll
1. Portlet Mame .

2. Portal Pages Code Preview

3. Portlet Components

4. Content Types This is the code that will be written to the contentjsp file. Mo further

A Server Location changes are necessary in order to test the portlet.

6. Generated Code Types _

7.\Web Senice(s) Output Code:

2. Code Preview <%@3 include file="formlet include.inc™ %= ﬂ
9. Resource Files Location <%3 taglib uri="portlet.tld” prefix="portlet” %

10. Summary <%3 taglib uri="ilSn.tld” prefix="il&n" %>

11. Mext Steps %@ page import="com.bea.portal.appflow.Portalippflo

<%@ include file="/framework/resourcelRL.inc™%>

2dl_AccountEJEClient.AccountEJEClient_Impl p_sdl
2dl_AccountEJEClient. AccountEJEClientSoap p_sci_l_vl
] 3

JE1

Copyto Cliphoard

= Back | Mext = Cancel |

12. When the Resource Files location screen appears, as shown in Figure 11-88,
confirm the portlet JSPs will be placed in the correct directory, then click Next.

Note: The directory specified in this screen will act as the parent directory for the
newly created portlet files. This directory should exist under the WLP web
application directory. A sub-directory with the same name as the new portlet
will be created where users can find the files generated by this wizard.

In addition, a WEB-INF/lib directory will be created in this location. This
directory will contain a .jar file that the portlet references at runtime.

If the directory specified in this screen was not under a WLP web application,
users will need to copy the created portlets sub-directory containing the
generated files and the .jar file to the portlets directory and the WEB-INF/lib
directory, respectively, of the intended Portal Web application.

WebLogic Portal Development Guide 11-65

11 Extending Portlets

Figure 11-88 Select/Confirm Resource Files location

ﬁh"l Portlet Wizard [formLet1] B ll

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types

Server Location
Generated Code Types
Wieh Servicels)

Code Preview

. Resource Files Location
10, Summary

11. Mext Steps

Resource Files Location

A directary named [formbLet1] will he created in the location you specify.
This directory will contain the portlet resource files (JSPs, GIFs, etc).
The location is typically the "portlets" directary of the associated Web
application.

e el B

=

Fortlet Resource Files Location:

lrtaIDomainlbeaAppstonalApp‘tNewPWApm1p0r1|ets| Browse |
(e.g., Clbeaweblogicy 00portalmdyebAppiporietst

= Back | Mext = I Cancel |

13. When the Summary page appears, as shown in Figure 11-89, verify the files to be
created and click Create.

11-66 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-89 Confirm Summary of Files

sl Portlet Wizard [formLet] x|

Fortlet Mame
Fortal Fages Summary
Fortlet Components
Content Types

Server Location
Generated Code Types
Wieh Servicels)

Code Preview
Resource Files Location
10. Summary

11. Mext Steps

The following files will be created/moadified.

File List:

application-synchportletsh formlet.portlet
application-synchwebappsinewpwapplimnynewportall.portal
1vportlets) formlet)content. jsp
Iyportletshformlethcontent.properties
Lyportletsifornlet) formlet include.inc
Iyportletshformlethinagesipt image.gif
1hweb-infylibYsdl_accountejbclient.jar

e

K1 |»

Copyto Cliphoard |

= Back | Create I Cancel |

14. When the Next Steps screen appears, as shown in Figure 11-90, click Close.

Figure 11-90 Choose Next Steps

sl Portlet Wizard [formLet1] x|

Fortlet Mame
Fortal Pages NeXt StepS
Fortlet Components
Cantent Types
Server Location

The portlet files were successfully created.

Generated Code Types

hieh Sewlge(s) What waould you like to do next?
Code Preview

Resource Files Location [Editthe assaociated portal definition.

10. Surmmary [Editthis partiet definition
11. Hext Steps

e

To view the partlet:

1. Synchraonize the project to place the portlet and portal definitions
on the server.

2

. SBetthe porlet's Visible and Availahle attributes via the paortal
administration pages.

Fead about related tasks,

Close

WebLogic Portal Development Guide 11-67

11 Extending Portlets

Note:

For this example, we’ll create all three portlets first, then deploy them at once

at the end.

Creating a Call-Generation Web Service Portlet

The Call Generation portlet enables the user to list big accounts by remotely invoking
classes hosted within the Web Service hosted on the WebLogic Workshop examples
server.

Create the Portlet Called callgenLet Using the Portlet Wizard

1.

Figure 11-91 Select Generated Code type

3. When the Web Service(s) List appears, click Edit List, as shown in Figure 11-92.

ﬁh"l Portlet Wizard [callgenLet]

1. Portlet Mame

2. Portal Pages Generated Code Types

3. Portlet Components

4. Content Types Selectthe output option that best matches how you would like to
5 Server Location invoke the Web sence(s).

6. Generated Code Types Output Options:

7. Web Servica(s) Call Generation n

8. Code Preview

9. Resource Files Location Description:

10, Summary This option will create a stubbed out portlet that calls into the
11. Mext Steps designated YWeb service. You will be required to setthe

_ REPLACE_ME__ variables with output from sources such as the
user profile, the request, the session, and =0 on.

Example:

<5@ include file="HelloWorld include.inc™ %=
<%[@ taglib uri="portlet.tld” prefix="portlet” %>
<%[@ taglib uri="ilfn.tld” prefix="ilan" %>

<%0 page

import="com.bea.portal.appflow. PortalippflowConstant

35

Follow the steps outlined in Creating a Simple Form-Driven Web Service Portlet
up to Step 4.

When the Generated Code Types screen appears, select Call Generation, as
shown in Figure 11-91, and click Next.

-

-

= Back | Mext = I Cancel |

11-68 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-92 Web Service(s) screen

ﬁh"l Portlet Wizard [callGenLet] : : ll

1. Portlet Name .
3. Portal Pages Web Service(s)
3. Portlet Components
4. Content Types Choose a'Weh service and an operation to include in the portlet.
4. Server Location X . . X
6. Generated Code Types WWeb Senvice(s) Operations:

7. Web Service(s) . ntEJ
8. Code Preview
9. Resource Files Location halance]
10, Summary
11. Mext Steps

accountType

|»

Edit List... | Details...

Operations retrieved.

= Back | Mext = I Cancel |

4. When the Web Service(s) List appears, as shown in Figure 11-93, enter the
following WSDL and click Add URL:

http://localhost:7001/samples/ejbControl/
AccountEJBClient.jws?WSDL

Figure 11-93 Adding another Web Service WSDL

i web service(s) List |

Add Web services to the list by entering the WSDL URL and clicking an the Add button.

Usethe Open File button to specify local WEDL files.

WSDL URL:

http:IIIocthost:?DmIsamplesiejbControIIAccountEJElCIient.jws'?WSDL] Add URL |

Wb service(s):

iorld thitpeflocalhost7001/samplesiHellotorld.|

Add Filegs)...
Delete

Update

L

Close |

WebLogic Portal Development Guide 11-69

11 Extending Portlets

5. When the URL you entered has been added to the Web Services list, click Close.
The Web Service(s) screen reappears, with the newly-added Web Service listed to
the left, and Operation listed to the right.

6. Click the AccountEJBClient Web Service and wait for its operations to be
retrieved and listed to the right.

7. In the list of operations for AccountEJBClient, click listBigAccounts, as
shown in Figure 11-94, and click Next.

Note: Notice the parameter list below the operation.

Figure 11-94 Selecting the listBigA ccounts operation

iui Portlet Wizard [callgenLet] x|
1. Partlet Mame u

3. Portal Pages Web Service(s)

3. Portlet Components

4. Content Types Choose a'Weh service and an operation to include in the portlet.

5. Server Location))

6. Generated Code Types WWeb Service(s): Operations:

7. Web Service(s) AccountEJBClignt ;|

N listAccounts
8. Code Preview

9. Resource Files Location

listBigAccounts

10. Summary
11. Mext Steps
withdraw =
Edit List... | Details...
Operations retrieved. Parameters:

1y threshold

= Back | Mext = I Cancel |

8. When the Code Preview page appears, as shown in Figure 11-95, notice the string
_REPLACE ME _ occurring in place of the threshold parameter, visible in
Listing 11-6. After replacing these parameter values with those in bold in
Listing 11-6, click Next.

11-70 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-95 Code Preview

iui Portlet Wizard [callgenLet] x|
1. Portlet Mame .
2 Portal Pages Code Preview
3. Portlet Components
4. Content Types This is the code that will be written to the content.jsp file. You mustfill
A Server Location in the values required far the YWeb service call prior to testing the
6. Generated Code Types portlet
T.WWeh Service(s)
8. Code Preview Output Code:

R R T D & & S R R S D & & P _oai
9. Resource Files Location [;I
10. Summary
11. Mext Steps <

double threshold = 1000;
k>
<t=cnwrtSC (String. valueOf(p_sdl_AccountEJEClient Acc

-

4 | 2
Copyto Cliphoard

= Back | Mext = Cancel |

Note: Within Listing 11-6, the following entries, in boldface within the code, have
been shortened:

callImpl was originally p_sdl AccountEJBClient AccountEJBClient Impl

callSoap was originally p_sdl AccountEJBClient AccountEJBClientSoap

Listing 11-6 Call Generation Portlet code

<%@ include file="callgenletl include.inc" %>

<%@ taglib uri="portlet.tld" prefix="portlet" %>

<%@ taglib uri="il8n.tld" prefix="il8n" %>

<%@ page import="com.bea.portal.appflow.PortalAppflowConstants"%>

<%@ include file="/framework/resourceURL.inc"%>

sdl_AccountEJBClient.AccountEJBClient Impl callImpl = new
sdl AccountEJBClient.AccountEJBClient Impl () ;

WebLogic Portal Development Guide — 11-71

11 Extending Portlets

sdl AccountEJBClient.AccountEJBClientSoap callSoap =
callImpl.getAccountEJBClientSoap () ;

o\°

>

A
o°

double threshold = 1000;

o\°

>

<%=cnvrtSC(String.valueOf (callSoap.listBigAccounts (threshold))) %>

9. When the Resource Files Location screen appears, as shown in Figure 11-96,
ensure the files are going to be installed in the correct directory and click Next.

Figure 11-96 Select/Confirm Resource Files location

iui Portlet Wizard [callGenLet] x|
1. Portlet Mame . .

2. Portal Pages Resource Files Location

3. Portlet Components

4. Content Types _ _ :)

5. Sarver Location A directory named [callGenled] will be created in the location you

6. Generated Code Types specify. This directory will contain the portlet resource files (15Ps,

7 \Weh Service(s) GlFs, ete). The location is typically the "portlets" directary of the

8. Code Preview associated Web application.

=

. Resource Files Location
10, Summary
11. Mext Steps

Fortlet Resource Files Location:

lrtaIDomainIbeaAppstonalAppINewPWApmIponlets Browse |
(e.g., Clbeaweblogicy 00portalmdyebAppiporietst

= Back | Mext = I Cancel |

10. When the Summary files screen appears, as shown in Figure 11-97, verify the
correct files are to be created and click Create.

11-72 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-97 Confirm Summary of Files

ﬁh"l Portlet Wizard [callGenLet]

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types

Server Location
Generated Code Types
Wieh Servicels)

Code Preview
Resource Files Location
10. Summary

11. Mext Steps

e

Summary
The following files will be created/moadified.

File List:

shbea‘user_projectshportaldomainibeaapps\portalapp-pr
shbea‘user_projectshportaldomainibeaapps\portalapp-pr
shbea‘user_projectshportaldomainibeaapps\portalapp'ne
shbea‘user_projectshportaldomainibeaapps\portalapp'ne
shbea‘user_projectshportaldomainibeaapps\portalapp'ne
shbea‘user_projectshportaldomainibeaapps\portalapp'ne

GGG GG

4 | »

Copyto Cliphoard |

= Back | Create I Cancel |

11. When the Next Steps screen appears, as shown in Figure 11-98, click Close.

Figure 11-98 Choose Next Steps

ﬁh"l Portlet Wizard [callGenLet]

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types

Server Location
Generated Code Types
Wieh Servicels)

Code Preview
Resource Files Location
10, Summary

11. Hext Steps

e

Next Steps

The portlet files were successfully created.

What waould you like to do next?
[Editthe assaociated portal definition.

| Editthis partlet definition

To view the partlet:

1. Synchraonize the project to place the portlet and portal definitions
on the server.

2

. SBetthe porlet's Visible and Availahle attributes via the paortal
administration pages.

Fead about related tasks,

Close

WebLogic Portal Development Guide

11-73

11 Extending Portlets

Creating a Web Services Interface Portlet

This portlet searches for accounts with a balance over a threshold set within the portlet,
and lists them in the portlet. What is significant is the way in which this portlet
communicates with the Web Service: the portlet uses classes implemented according
to the self-describing WSDL called 1istBigAccounts.

Create the Portlet Called interFaceLet Using the Portlet Wizard

11-74

1. Follow the steps outlined in Creating a Simple Form-Driven Web Service Portlet
up to Step 4.

2. When the Generated Code Types screen appears, select Web service(s)
Interface, as shown in Figure 11-99, and click Next.

Figure 11-99 Select Generated Code Type

ﬁh"l Portlet Wizard [interFacelLet]] ll
1. Portlet Mame

2. Portal Pages Generated Code Types

3. Portlet Components

4. Content Types Select the output option that best matches how you would like to

A Server Location invoke the Weh service(s).

6. Generated Code Types
T.Weh Service(s)
8. Code Preview

Qutput Options:

9. Resource Files Location Description:
10, Summary This option allows you to select multiple Web service{s) and have the
11. Mext Steps interfaces documented for use within a portlet. This option is an
alternative choice when parameters or return values invalve complex
data types.
Example:
<5@ include file="HelloWorld include.inc™ %= ﬂ
<%[@ taglib uri="portlet.tld” prefix="portlet” %>

<%[@ taglib uri="ilfn.tld” prefix="ilan" %>

<%0 page

import="com.bea.portal.appflow. PortalippflowConstant
i ~

= Back | Mext = I Cancel |

Note: Inthe Web Service(s) screen for Interface Generation portlets, notice that no
operations are available. This is because you are being provided the interface
description and must implement the required methods yourself.

3. Edit the portlet code within the Code Preview screen, as shown in Figure 11-100,
and click Next.

WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-100 Code Preview screen for interFaceLet

ﬁh"l Portlet Wizard [interFacelet] ll
1. Portlet Mame .

2. Portal Pages Code Preview

3. Portlet Components

4. Content Types This is the code that will be written to the contentjsp file. You must

A Server Location adapt the code to your specific use priar to testing the portlet.

6. Generated Code Types _

7.\Web Senice(s) Output Code:

2. Code Preview <%@ include file="interFacelet include.inc™ %= =
9. Resource Files Location <%3 taglib uri="portlet.tld” prefix="portlet” %

10. Summary <%3 taglib uri="ilSn.tld” prefix="il&n" %>

11. Mext Steps <%@ page import="com.bea.portal.appflow.Portaldppflo |

<%@ include file="/framework/resourcelRL.inc™%>

2dl_AccountEJEClient.AccountEJEClient_Impl p_sdl
2dl_AccountEJEClient. AccountEJEClientSoap p_sci_l_vl
3

4 |

Copyto Cliphoard

= Back | Mext = Cancel |

4. Implement interfaces required for listing big Accounts. Use the generated code as
your starting point, shown in Listing 11-7.

Note: Within Listing 11-7, the following entries, in boldface within the code,
have been shortened:

intImpl was originally
p_sdl_AccountEJBClient_ AccountEJBClient_Impl

intSoap was originally
sdl_AccountEJBClient.AccountEJBClientSoap

Listing 11-7 Code for interFaceLet

<%@ include file="interFaceLet_ include.inc" %>

<%@ taglib uri="portlet.tld" prefix="portlet" %>

<%@ taglib uri="il8n.tld" prefix="il8n" %>

<%@ page import="com.bea.portal.appflow.PortalAppflowConstants"%>
<%@ include file="/framework/resourceURL.inc"%>

sdl_AccountEJBClient.AccountEJBClient_ Impl intImpl = new
sdl_AccountEJBClient.AccountEJBClient Impl () ;

WebLogic Portal Development Guide 11-75

11 Extending Portlets

11-76

sdl AccountEJBClient.AccountEJBClientSoap intSoap =
intImpl.getAccountEJBClientSoap () ;

5. When the Resource Files Location screen appears, as shown in Figure 11-101,
ensure the files are going to be installed in the correct directory and click Next.

Figure 11-101 Select/Confirm Resource Files location

ﬁh"l Portlet Wizard [interFacelLet] ll
1. Portlet Mame . .

2. Portal Pages Resource Files Location

3. Portlet Components

4. Content Types _)) :)

5. Sarver Location A directory named [interFacelef] will he created in the location you

6. Generated Code Types specify. This directory will contain the portlet resource files (15Ps,

7 \Weh Service(s) GlFs, ete). The location is typically the "portlets" directary of the

8. Code Preview associated YWeh application.

=

. Resource Files Location
10, Summary
11. Mext Steps

Fortlet Resource Files Location:

lrtaIDomainlbeaAppstonalApp‘tNewPWAppIponlets Browse |
(e.g., Clbeaweblogicy 00portalmdyebAppiporietst

= Back | Mext = I Cancel |

6. When the Summary files screen appears, as shown in Figure 11-102, verify the
correct files are to be created and click Create.

WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-102 Confirm Summary of Files

ﬁh"l Portlet Wizard [interFacelet]

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types

Server Location
Generated Code Types
Wieh Servicels)

Code Preview
Resource Files Location
10. Summary

11. Mext Steps

e

Summary
The following files will be created/moadified.

File List:

shbea‘user_projectshportaldomainibeaapps\portalapp-pr
shbea‘user_projectshportaldomainibeaapps\portalapp-pr
shbea‘user_projectshportaldomainibeaapps\portalapp'ne
shbea‘user_projectshportaldomainibeaapps\portalapp'ne
shbea‘user_projectshportaldomainibeaapps\portalapp'ne
shbea‘user_projectshportaldomainibeaapps\portalapp'ne

GGG GG

4 | »

Copyto Cliphoard |

= Back | Create I Cancel |

7. When the Next Steps screen appears, as shown in Figure 11-103, click Close.

Figure 11-103 Choose Next Steps

ﬁh"l Portlet Wizard [interFacelLet]

Fortlet Mame

Fortal Fages

Fortlet Components
Content Types

Server Location
Generated Code Types
Wieh Servicels)

Code Preview
Resource Files Location
10, Summary

11. Hext Steps

e

Next Steps

The portlet files were successfully created.

What waould you like to do next?
[Editthe assaociated portal definition.

| Editthis partlet definition

To view the partlet:

1. Synchraonize the project to place the portlet and portal definitions
on the server.

2

. SBetthe porlet's Visible and Availahle attributes via the paortal
administration pages.

Fead about related tasks,

Close

WebLogic Portal Development Guide

11-77

11 Extending Portlets

8. From the E-Business Control Center toolbar, click the Synchronize button.

9. When the Synchronizing Application window shows that synchronization is
complete, click Close, as shown in Figure 11-104.

Figure 11-104 Synchronization Complete

ﬁh"l Synchronizing Application portalApp...

Synchranization Finished.

100%
Document : iwebappsitoolstwebflow-extensions wix

Deploying the Web Services Portlets

Now that they are all created and installed, what remains is to make them available to
the WebLogic Server instance. This is done by simply re-deploying the Portal Web
Application in which these portlets are to run, according to the following procedures:

1. Inyour Web browser, navigate to the WebLogic Server console at the following
URL:

http://<host>:<port>/console

2. Login as weblogic/weblogic.

3. Select Deployments — Applications —NewPWApp, and click the Deploy tab in
the right pane, as shown in Figure 11-105.

11-78 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-105 Left tab of console: Deployments — Applications — NewPWApp

myNEWDomain> Web Applications> NewPWApp

main: my

Edit Web Application Deployment Descriptors. .

Configuration | Targets | WsLIEA| Monitoring | MNotes |

Deployment Status by Target:

Target Target Type | Deployed

portalServer | Server true Undeploy Fedeploy

Undeploy Al | Undeploy this component from all targets
Deploy Al | Deploy or redeploy this component to all targsts

4. UnDeploy the NewPWApp by clicking the Undeploy button to the right of
portalServer target. When the UnDeployment Activity status turns to Complete,
click Deploy.

5. When the status on the Deployment Activity screen turns to Complete, the new
portlets have been re-deployed.

6. Make the new portlets visible and available using the WebLogic Portal
Administration Tools: In your Web browser, navigate to the following URL:
http://<hostname>:<port>/portal AppTools.

7. Login as administrator/password, and click Portal Management, as shown in
Figure 11-106.

Figure 11-106 Go to Portal Management

Portal Managemen

8. From the Portal Management Home page, Click the Default Portal, as shown in
Figure 11-107.

WebLogic Portal Development Guide 11-79

11 Extending Portlets

11-80

Figure 11-107 Select Default Group Portal

Partal h nent Tools

BEA WebLogic Portal

Portal Management Home
Portal Management Toedit an existing group partal, click its name in
To create a new group partal, click the "Create g
application.

To delete a group portal, click the trash can icon_|

|" NewPWApp B4 Edit portal administrators
Default group portal:

default (everyone)

| il

9. From the Group Portal Management Home page, click Manage Pages and
Portlets as shown in Figure 11-108.

Figure 11-108 Manage Pages and Portlets

Group Portal Management Home
Clicklinks here to edit the following aspects of this group portal.

|"Appearance and Content |
B Manage Pages and Partlets

Select pages for the group portal,
chooze 3 home page, select layouts
and portlets for each page, amange
portlets for default layout, and set
attributes and entitlements for both
pages and portlets.

10. Next to the portal page, click Edit Portlets, as shown in Figure 11-109.

Figure 11-109 Click Edit Portlets

|"Available Pages |

*harme (Layouts) (Attributesj (Entitlements) (Edit PortIeEsJ (Pasition Portlets)
]

11. Set all three portlets attributes to Visible and Available, and click Save.

12. Click Save: The attributes of formLet, callGenLet and interFaceLet portlets are
now correctly set.

WebLogic Portal Development Guide

Portlets and the Framework

Viewing the Web Services Portlets

Now that they are all deployed and placed within the same portal page, observe the
functionality they provide by taking the following steps:

1. Verify the portlets can be accessed by navigating to the following URL:

http://<host>:<port>/NewPWApp/
The result should resemble that shown in Figure 11-110.

2. Logon as a valid user and two new accounts; one with a balance of 1001
threshold, one 751. Notice what appears in the List big accounts portlet.

3. Change threshold in the content.jsp of the callGenlet portlet to 750.

4. Create a new account with a balance of 749. List big accounts.

Figure 11-110 Web Services portlets before accounts have been entered

A} default - Microzoft Internat Explorer

| Fle Edt View Favaites Tods Help 7 |
| #Back - & - @ [A o | Dseech GaFavoies (Frivoy | By S5 om H
| Advess [@] rop 2127 D01TE01 MNewPuitppindsn jsn = @i [[Liks ¥

|

< Interfaceletl & < callgenietl « formletl =

<p=A wih sandce that
demoritrates use of an EJ8 control
Service AccolntERContral.clrl, which
Description reprasants the AccountE™® Entity
Bzan and exposes its busingss
interface to wab services. </p=

Dperation
* AccountEXECkent creatahlawdccount

<peInvakes the target EIB's
<b=crestecfb> method and retums
the result.</p> <uU>
<l =bzkey< /b k& the account
Opcration identifier (st ba urigue for each
Description account). <= i
 <bzopeningBalance< o> & the
starting balance of the acoount. <=
<l zb>type is the accourt
type, e.0, thedking” or
“eanings". < fli= <ful>

key
’—

openingBalance

e
type

’—
Submit 1 | |

[T T iniema 7

WebLogic Portal Development Guide 11-81

11 Extending Portlets

Figure 11-111 Web services portlets with some account activity

Internet Explorer
| Ele Edi View Favoiles Toos Help

| Eback - > - @ [F] (3 | QSeach [Favates FHinoy | 5 & W[

| Advess [@] rop 2127 D01TE01 MNewPuitppindsn jsn = @oo [[Liks ¥
=l
« interfaceletl & < callgenietl &~ formletl e
1234 checking S000.0 1234 checking S000.0 <pA i sarvice that

demonstrates uss of an EJ8 contral
Service AccountEBContral ctrl, which
Description reprasants tha AccountEXR Entity
Bean and exposes it busness
interface to wab services. < /p=

<p>Invakes the target EIB'S

the resuit. </p>
<= =h=key=/b> is the account
Dm"mnn gmmriﬁfﬁff be urigue for each
ESCAPTON 4 chis comringBalance <> & the
starting balance of the account. <=
<> <b=type< b i the account
type, e.0. “thecking” or
savings”. <ful>
key

[

openingBalance

type |

Operation
o AEECLAIEIBClENE createhiawAccaunt

<hzscrestes/b> method and returrs

]

[[iniema

i

Note: For more information on Web Services, consult “Building Web Services on

WebLogic Platform” at

http://edocs.bea.com/platform/docs70/interm/webserv.html and “Introduction

to WebLogic Workshop” at

http://edocs.bea.com/workshop/docs70/index.html.

Calling Web Services Asynchronously

BEA WebLogic Portal 7.0 enables portlets to participate in asynchronous

communication with Web Services such as conversations. This example shows how to
create a simple conversation portlet that interacts with a Web Service hosted on the

local server.

11-82 WebLogic Portal Development Guide

Portlets and the Framework

Figure 11-112 Conversation Web Services Portlet

a default - Microsoft Internet Explorer Aglll

J File Edit Miew Favorites Tools Help

J GBack + = -) at | Qhsearch (G Favorites £ #History ||%v =0 | o]

JAgdress I@ http:fflocalhast: 7501 fNewPWappfindesx. jsp j 6o |JLinks 2

' Conversation -

EE

Continue |
Finish |

- .
Hl_liltﬂn

4
|@ Done ’_’_ (2 Local intranet 4

About the Conversation Portlet

The portlet created in this example contains three button-activated actions:

m The Start button sends a session id to the Web Service, which holds this as a
token for the conversation.

m The Continue button requests status on the token.

The Finish button ends the conversation, causing the Web Service to relinquish
the token and stop waiting for more messages.

WebLogic Portal Development Guide 11-83

11 Extending Portlets

Preparation

m Start the WebLogic Workshop Examples Server by navigating to Programs —

BEA WebLogic Platform 7.0 - WebLogic Workshop Example — Start
Examples Server. Begin with the sample portal described in the section The

scriptDemo Portlet.

m Start the portal server for your domain. In this example, this is done by
navigating to Programs —BEA WebLogic Platform 7.0 — User Projects —
MyNewDomain — Start Portal Server.

Creating the Conversation Portlet

To create and deploy a sample Conversation portlet, follow these steps.

1. Use the Portlet Wizard to create a Web Services Interface portlet, as shown in the

Creating a Web Services Interface Portlet section. Name this portlet
“conversation”, as shown in Figure 11-113, and click Next.

Figure 11-113 Creating the conversation portlet

ﬁh"l Portlet Wizard [UnnamedPortlet] ll

1. Portlet Name

2 Portal Pages

3. Portlet Components

4. Cantent Types

5. Resource Files Location
B. Summary

7. Mext Steps

Portlet Name

Enter a unigue name far the portlet, and select a portal to which the
portlet should be associated. The portlet name will be used to name
the directary that contains wizard-generated portlet files.

Fortlet Marme:
|conversati0n

Fortlet Categary:

|p0rt|ets E”‘l
Portal:
[ThishewPartal =l

Fortlet Description {optional):

2. Associate the new portlet with the portal page called “home” and click Next.

11-84 WebLogic Portal Development Guide

Portlets and the Framework

3. When the Select Portlet Components page appears, click Next without
designating any extra components.

4. When the Content Types screen appears, select Web Service and click Next.

5. When the Server Location screen appears, navigate to an instance of WebLogic
Server and click Next.

6. When the Generated Code Types screen appears, select Web Service(s)
Interfaces, and click Next.

7. When the Select a Web Service screen appears, click Add Web Services, type in
the following URL:
http://localhost:7001/samples/async/Conversation.jws?WSDL. Click
Add URL.

8. After the Conversation Web Service appears in the list, click Close.
9. Select the Conversation Web Service from the list on the left, and click Next.

10. When the Code Preview screen appears, click Next. This code will be replaced
later in this procedure.

11. When the Resource Files location screen appears, confirm the portlet JSPs will be
placed in the correct directory, then click Next.

12. When the Summary page appears, verify the files to be created and click Create.

13. When the Next Steps screen appears, make sure all the checkboxes are
unselected, then click Close.

14. In a text editor, enter the code in Listing 11-8 and save it as content . jsp in the

following directory:
myNewDomain\beaApps\portalApp\NewPWApp\portlets\conversation\.

Listing 11-8 content.jsp for Conversation Web Services Portlet

include file="Conversation include.inc" %>
taglib uri="portlet.tld" prefix="portlet" %>
taglib uri="il18n.tld" prefix="il8n" %>

page
page
page
page
page

import="org.openuri.www.StartRequest"%>
import="org.openuri.www.GetRequestStatusResponse"%>
import="org.openuri.www.x2002.x04.so0ap.conversation.StartHeader"%>
import="org.openuri.www.x2002.x04.soap.conversation.ContinueHeader"%>
import="weblogic.xml.schema.binding.internal.builtin.VoidType"%>

WebLogic Portal Development Guide 11-85

11 Extending Portlets

<%@ page import="com.bea.portal.appflow.PortalAppflowConstants"$>
<%@ page import="com.bea.portal.appflow.PortalAppflowConstants"%>
<%@ include file="/framework/resourceURL.inc"%>

A
o°

DL _wsdl_ Conversation.Conversation Impl conversationImpl = new
DL_wsdl_Conversation.Conversation Impl () ;

DL _wsdl Conversation.ConversationSoap soap =
conversationImpl.getConversationSoap () ;

)
>

A
o°

String target = request.getParameter ("target") ;
String conversationID = session.getId() ;
if (conversationID == null)
conversationID = "";

o\°
\%

<portlet:form event="<%= PortalAppflowConstants.PORTLET REFRESH %>">
<table border="0" align="center"s
<tr>
<td width="100%" align="center">
<table border="0" align="left">

<tr>
<%
if (target != null
&& target.equals ("start")
&& true)
{
try

{

StartHeader startHeader = new StartHeader (conversationID,
"http://localhost:7001/samples/async/Conversation.jws") ;
p P Yy J
VoidType startResponse = new VoidType() ;
StartRequest begin = new StartRequest (false);

startResponse = soap.startRequest (begin, startHeader) ;

o°
\%

<td><%=cnvrtSC ("Conversation started with ID: " +
String.valueOf (conversationID)) $></td>
<%
1

catch (java.rmi.RemoteException e)

{

<td><%=cnvrtSC("Duplicate conversation id for start: " +
String.valueOf (conversationID)) $></td>

o
<%

o°
\%

11-86 WebLogic Portal Development Guide

Portlets and the Framework

e.printStackTrace() ;
1
!

</tr>
</table>
</td>
</tr>
<tr>

o°
\%

<td width="100%" align="center"><input type="submit" name="start"

value="Start"></td>
</tr>
</table>

<input type="hidden" name="target" wvalue="start">
</portlet:form>

<portlet:form event="<%= PortalAppflowConstants.PORTLET REFRESH %>">
<table border="0" align="center"s
<tr>
<td width="100%" align="center">
<table border="0" align="left">
<tr>

A
o\°

if (target != null
&& target.equals ("continue")
&& true)

try
{
ContinueHeader continueHeader = new
ContinueHeader (conversationID) ;
GetRequestStatusResponse status = soap.getRequestStatus (null,
continueHeader) ;
String result = status.getGetRequestStatusResult () ;

o°
\

<td><%=cnvrtSC("Response: " + String.valueOf (result))%></td>

}

catch (Exception e)

{

A
o°

e.printStackTrace () ;

}

</tr>

</table>

</td>
</tr>

o°
\

WebLogic Portal Development Guide

11-87

11 Extending Portlets

<tr>
<td width="100%" align="center"><input type="submit" name="continue"
value="Continue"></td>
</tr>
</table>

<input type="hidden" name="target" value="continue'">
</portlet:form>

<portlet:form event="<%= PortalAppflowConstants.PORTLET REFRESH %>">
<table border="0" align="center"s
<tr>
<td width="100%" align="center">
<table border="0" align="left">

<tr>
<%
if (target != null
&& target.equals ("finish")
&& true)
{
try

{

VoidType terminateResponse = new VoidType() ;
ContinueHeader finishHeader = new
ContinueHeader (conversationID) ;
terminateResponse = soap.terminateRequest (null, finishHeader) ;

o\°
\%

<td><%=cnvrtSC("Conversation terminated.")%></td>

}

catch (java.rmi.RemoteException e)

{

<td><%=cnvrtSC("Conversation already terminated.")$%></td>

A
o°

o°
\

A
o°

e.printStackTrace() ;

}

</tr>
</table>
</td>
</tr>
<tr>
<td width="100%" align="center"><input type="submit" name="finish"
value="Finish"></td>
</tr>
</table>

o\°
\%

11-88 WebLogic Portal Development Guide

Portlets and the Framework

<input type="hidden" name="target" value="finish"s>
</portlet:form>

15. Deploy the conversation portlet according to the instructions in the section
Deploying the Web Services Portlets.

16. Test the new portlet by clicking on each of the buttons and verifying the results,
as shown in Figure 11-114.

Figure 11-114 Starting the conversation

 default - Microsoft Internet Explorer

_ =loix|
J File Edit Miew Favorites Tools Help

J R = | at | Qhsearch (G Favorites £ 4History ||%v =0 | o

JAgdress I@ portIetid=c0nversation&wfevent=bea.portaI.Framework.internal.refreshj @G0 |JLinks 2

«~ Conversation

Duplicate conversation id for start:

O Adfiini ity FUYLOfUNKZ2 7y AMHz Y UyeAlcRoURWZp7 Y CaRl1-
127953994111026228331103

=
Continue |

’_’_ (2E Local intranet

WebLogic Portal Development Guide 11-89

11 Extending Portlets

Error Handling within Web Services Portlets

In a production scenario, the Web Services to which your portlets connect are typically
hosted elsewhere, and are out of your control. The portal framework enables portlets
to generate two errors specifically designed to handle Web Services problems:

JAXRPCEXxception: If a Web service is unavailable at run-time, the portlet will
cause the throw a javax.xml.rpc.JAXRPCException. Add error handling to your
JSP by catching the exception in a generated portlet.

Note: The JAXRPCException applies to cases where the connection is refused, not
when there is a delay in service.

SOAPFaultException: When a Web service cannot handle the SOAP request
generated from the Web Service Portlet Wizard, a
javax.xml.rpc.soap.SOAPFaultException is thrown. You should catch this
exception within your .JSP to protect from compile failures.

Portalizing an Existing Web Application

To move an existing non-portal Web application into the portal framework, certain
modifications are necessary. This section outlines the process using an example
provided with the WebLogic Platform installation.

Getting Started

11-90

One strategy for adding functionality to a portlet is to graft JSP code from an existing
(non-portal) Web application into the JSPs that constitute a portlet. This tutorial uses
refactored sample code from the Internationalization portlet included with the product
such that the functionality is replicated within a portlet. Figure 11-115 and

Figure 11-116 show the Internationalization sample application displaying
language-specific content based on user input.

Note: For detailed instructions on launching and exploring this application, consult
the Personalization Examples section of the WebLogic Platform
documentation.

WebLogic Portal Development Guide

Portalizing an Existing Web Application

Figure 11-115 Internationalization Input

BEA WebLogic™ Personalization Examples

View Source

Examples Index

Content 4

Expressions 4

Internationalization »

Rules 4
»
»
»

b,
4 o
7 hea
Internationalization of Dynamic Content

Data Synchronization

T Localization of Flickerstick Band Information

Webflow and Pipeline
Admin Tools

Languages:

Mot lngged in

| |

Figure 11-116 Internationalization Results

A,
4 o
%hea
Internationalization of Dynamic Content

Nom de Piste

Je Plane (Awvec L'amour, Nous Survivrons)

Animateur (de Television)

Chloroforme Celui que tu Aimes

Coke

Beau

Desale, Mauvaise Trajectaire

Tu es si Hollywood

J'ai un Sentiment

Requirements

WebLogic Portal 7.0 with Service Pack 1 must be successfully installed.

WebLogic Portal Development Guide

11-91

11 Extending Portlets

Process Overview

This process includes the following steps:
Step 1: Create a Portal Web Application
Step 2: Build a 2-page WebFlow Portlet
Step 3: Edit Portlet Code

Step 4: Load Content Resources

Step 5: Test the application

Step 1: Create a Portal Web Application

For instructions on creating a new portal Web application to use as the basic structure
for this new application, consult the tutorial called Creating the New Portal in the
WebLogic Portal 7.0 Development Guide.

For this example, the portal Web application will be called NewPWApPp.

Note: If your application makes use of portal services such as Personalization,
Internationalization, etc., you must add support for this functionality to the
portal created using the portal Wizard. For detailed instructions on adding
these features to your portal, consult the section called Adding All Portal
Services to Your Domain in the Building Custom Templates chapter of the
WebLogic Portal 7.0 Development Guide.

Step 2: Build a 2-page WebFlow Portlet

11-92

While the portal server created in the new domain is running, use the E-Business
Control Center to launch the Portlet Wizard. Create a 2-page Webflow portlet, naming
it i18n. For detailed instructions on creating Webflow portlets this way, consult the
section Creating a Sequential Webflow Portlet.

Note: Don’t forget to make the portlet visible and available using the WebLogic
Portal Administration Tools.

WebLogic Portal Development Guide

Portalizing an Existing Web Application

Step 3: Edit Portlet Code

In this step, JSPs and properties files are edited to use the portlet Webflow and to
invoke personalization.

Replace Portlet JSPs

First, the JSPs generated by the Portlet Wizard need are replaced with JSPs that make
calls to Personalization services and act upon content. Save the contents of
Listing 11-9 and Listing 11-10 in the following directory:

<BEA HOME>beaApps\portalApp\NewPWApp\portlets\il8n

Listing 11-9 Pagel.jsp

O mmm Tt e

Copyright (c) 2000-2002 BEA Systems, Inc. All rights reserved.

—— 5>
¥ mmm T T e e e
File: Pagel.jsp

Purpose: Gathers form input for I18N language of choice.
—— 5>

<%@ taglib uri="webflow.tld" prefix="webflow"%>

<%@ taglib uri="portlet.tld" prefix="portlet"%>

B
Declare html font styles for valid and invalid form entries, to be
used with webflow validated form.

——— %>

WebLogic Portal Development Guide 11-93

11 Extending Portlets

<% String validStyle "background: white; color: black;

font-family: Arial"; %>

<% String invalidStyle = "background: white; color: red;
font-style: italic"; %>

<center>

<portlet:validatedForm event="switch2" applyStyle="message"
messageAlign="right" validStyle="<%= validStyle %>"

invalidStyle="<%= invalidStyle %>" unspecifiedStyle="<%=
validStyle %>">

<table border="0" cellspacing="0" cellpadding="0" width="100%">
<tr>
<td>

<table border="0" cellpadding="6" cellspacing="1"
width="100%">

<tr class="header">
<td colspan="2">
Localization of Flickerstick Band Information
</td>
</tr>
<tr class="tablerowl"s>
<td align="right" valign="top" width="1%">Languages:</td>

<td>

11-94 WebLogic Portal Development Guide

Portalizing an Existing Web Application

Using <webflow:select> and <webflow:option> in place of standard
html select and option to enable form validation.

<webflow:select name="language" size="5">
<webflow:option value="en"/>English
<webflow:option value="fr"/>French
<webflow:option value="es"/>Spanish
</webflow:selects>
</td>
</tr>
<tr class="tablerowl">
<td align="right" valign="top" width="1%"> </td>
<td>
<input type="submit" name="Submit" value="Show Me!">
</td>
</tr>
<tr class="tablerow2">
<td class="label" colspan="2">

Select the language in which you would like to view
Flickerstick information.

</td>
</tr>

</table>

<input type="hidden" name="resultFile" value="Page2.jsp">

<input type="hidden" name="sample" value="<%=
request.getParameter ("sample") %>">

</td>

</tr>

WebLogic Portal Development Guide 11-95

11 Extending Portlets

</table>
</portlet:validatedForm>

</centers>

Listing 11-10 Page2.jsp

Copyright (c) 2000-2002 BEA Systems, Inc. All rights reserved.

—— %>
G mmmm T e e — o —— -
File: Page2.jsp

Purpose: Gathers form input for I18N language of choice.
-- %>

<%@ page import="com.bea.pl3n.content.ContentHelper"%>
<%@ page import="com.bea.pl3n.content.Content" %>

<%@ taglib uri="cm.tld" prefix="cm" %>

<%@ taglib uri="es.tld" prefix="es" %>

<%@ taglib uri="il8n.tld" prefix="il8n" %>

<%@ taglib uri="portlet.tld" prefix="portlet" %>

Contruct the query string.

Example: isTrackIdentifier='true' && bandName='Flickerstick' &&
language='en'

StringBuffer queryStr = null;

String language = request.getParameter ("language") ;

11-96 WebLogic Portal Development Guide

Portalizing an Existing Web Application

if (language != null)

{
// Build the query string
queryStr = new StringBuffer();

queryStr.append ("isTrackIdentifier = 'true' && bandName =
'Flickerstick' && language = '");

queryStr.append (language) ;

queryStr.append("'") ;

//queryStr = new StringBuffer () ;

//queryStr.append ("bandName = 'Flickerstick'");
if (queryStr != null)
{

o°

>

<% System.out.println("\n\nqueryStr=" + queryStr +
e e T \n\n"); %>

Language is: <%= language %>

Query String is: <%= queryStr %$>

ContentHelper.DEF_CONTENT MANAGER_HOME is : <%=
ContentHelper.DEF CONTENT MANAGER_ HOME %>

Localize the page with the selected language. Future invocations of

i18n tags in this request will default to this language.

<il8n:localize language="<%= language %>"/>

WebLogic Portal Development Guide 11-97

11 Extending Portlets

Using the constructed query string retrieve the track names for

Flickerstick.

<cm:select contentHome="<%=
ContentHelper.DEF_CONTENT MANAGER_HOME %>"

sortBy="trackNum" query="<%= queryStr.toString() %>"
id="contentArray" failOnError="true"/>

<table border="0" cellspacing="0" cellpadding="0" width="100%">
<tr>
<td>

<table border="0" cellspacing="1" cellpadding="6"
width="100%">

<tr class="tableheader">

<td><il8n:getMessage messageName="trackName"
bundleName="Page2"/></td>

<td><il8n:getMessage messageName="trackNum"
bundleName="Page2"/></td>

</tr>

>

o°

<% int row = 0;

contentArray length is : <%= contentArray.length %$>

<es:forEachInArray id="nextDoc" array="<%$= contentArray %>"
type="Content">

<tr class="<% ? "tablerowl" : "tablerow2" %$>">

Il
™
o]
g
o\
N

Il

Il
o

WebLogic Portal Development Guide

Portalizing an Existing Web Application

Get the bandName property using the cm:getProperty tag and use it to

construct the parameters to pass to the Webflow.

<td>
<cm:printProperty id="nextDoc" name="trackName" encode="html"/>
</td>
<td>
<cm:printProperty id="nextDoc" name="trackNum" encode="html"/>
</td>
</tr>
<% Yow++; %>
</es:forEachInArray>
</table>
</td>
</tr>

</table>

N
o°

else

o°
\%

Please specify one language in your request!

N
o°

o°

>
<center>

<a href="<portlet:createWebflowURL event="switchl"/>">Previous
Page

WebLogic Portal Development Guide 11-99

11 Extending Portlets

</centers>

Save Properties Fies for Internationalization

Save the contents of the following listings in this directory:

<BEA HOME>beaApps\portalApp\NewPWApp\portlets\ilsn

For example, Listing 11-11 would be saved as Page2_en.properties.

Listing 11-11 Page2_en.properties

trackName=Track Name

trackNum=Track Number

Listing 11-12 Page2_fr.properties

trackName=Nom de Piste

trackNum=Numero do Piste

Listing 11-13 Page2_sp.properties

trackName=Nombre de la cancidn

trackNum=Nimero de la cancidn

Step 4: Load Content Resources

In this step, content resources are imported from the Personalization domain.

11-100 WebLogic Portal Development Guide

Portalizing an Existing Web Application

1. Replace the dmsBase folder in your portal domain by copying the entire dmsBase
folder (including its contents) from

<BEA HOME>weblogic700\samples\portal\pl3nDomain into the following
directory:

<BEA HOME>\user projects\myNewDomain

2. To make this content available to the Portal framework, the metadata must be
loaded into the server. While the server is running, execute the 1oaddata script
in the following directory:

<BEA HOME>\user projects\myNewDomain

Step 5: Test the application

Now that the JSPs are edited, observe the functionality of the new portlet by taking the
following steps:

1. Verify the portlet can be accessed by navigating to the following URL:
http://<host>:<port>/NewPWApp/

The result should resemble that shown in Figure 11-117.

WebLogic Portal Development Guide 11-101

11 Extending Portlets

Figure 11-117 Verifying the i18n Portlet

oy O & Ihttp:,l’,l’localhost:?SDIINEWPWAppIindex.jsp j

. 118n

Localization of Flickerstick Band
Information

Languages:

Select the language in which
you would like to view
Flickerstick information.

-

Built On

2. Select language and click show Me. The results should resemble those shown in
Figure 11-117.

Figure 11-118 Results page of i18n Portlet

i O&8 Ihttp:,l’,l’localhost:?501,I’NewPWApp,l’application?pageid= vI (4

Language is: es

Query String is: isTrackIdentifier = ‘trug’ 88
bandrame = Flickerstick' &2 language = 'es’

ContentHelper DEF_COMTENT _MANAGER_HOME
is : java:compfeny/ejbfContentiManager

contentArray lengthis @ 11

Track Mame

Levanta (Con Amor
Sobrevivirernos)

Presentador

11-102 WebLogic Portal Development Guide

Performance Tuning

Performance Tuning

This section covers performance issues related specifically to WebLogic Portal,
including JDBC and Thread settings and several cache settings. Many factors
effecting the performance of your portal application are specific to WebLogic Server.
For information on making those adjustments, consult the WebLogic Server
Performance and Tuning guide at
http://edocs.bea.com/wls/docs70/perform/index.htmll.

Using Caches to Tune Performance

To adjust caching for production Web site, examine the following factors:
m Adjust Caching for Content Management

m Property Caching in a Clustered Environment

m Adjust Caching for the Discount Service

m Adjusting the discountCache

m Adjusting the globalDiscountCache

m Discount-Service Caches in Clustered and Non-Clustered Environments
m Adjust Group Membership TTL in the Caching Realm

m Tuning Thread / Connection Parameters in JDBC

Adjust Caching for Content Management

To optimize content-management performance for your production Web site, the
Content Manager uses the caching framework to configure and manage the following
caches:

documentContentCache
documentMetadataCache

documentIdCache

WebLogic Portal Development Guide 11-103

11 Extending Portlets

The content management JSP tags provide an additional set of caches, which you can
access by doing the following:

For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, use the useCache attribute whenever possible.
Doing so avoids a call to DocumentManager and, in the case of
pz:ContentSelector, to the Rules Manager.

To clear cached content when user and/or document attributes change, use the remove
method of com.bea.p13n.content.ContentCache. For more information, see the
WebLogic Portal Javadoc. for com.bea.p13n.content.ContentCache.

For the cm:select, cm:selectByld, pz:contentQuery, and pz:contentSelector JSP tags,
set the cacheScope attribute to application whenever possible. This application scope
applies to the Web application, not to the enterprise application, as shown in

Listing 11-14.

Listing 11-14 Setting cacheScope to application

<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"

max="10" cacheTimeout="300000" />

The application cache type is global instead of per-user and should speed up queries
by avoiding a call to the DocumentManager EJB.

For pz:contentSelector, set the cacheScope attribute to application only when
you want to select shared content. For example, you create an application that uses an
application-scoped cache to select content for non-authenticated users. Because it uses
the application scope, all non-authenticated users see the same content. For
authenticated users, your application provides personalized content by switching to a
session scoped cache.

Whenever you can predict the next document that users will view based on the
document that they are currently viewing, load the next document into the cache before
users request it. This “forward caching” will greatly improve the speed at which

11-104 WebLogic Portal Development Guide

Performance Tuning

WebLogic Portal responds to user requests (assuming that your prediction is correct;
forward caching a document that no one requests will only degrade performance and
scalability).

Listing 11-15 contains a snippet of a JSP with an example of forward caching a
document:

Listing 11-15 Forward caching a document

<%-- Get the first set of content --%>

<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"

cacheScope="application"

max="10" cacheTimeout="300000" />

<%-- Generate a query from each content's relatedDocId --%>
<% String query = null; %>

<es:forEachInArray array="<%$=myDocs%>" id="myDoc"
type="com.bea.pl3n.content.Content">

<% String relld = (String)myDoc.getProperty ("relatedDocId", null) ;

o
5>

<es:notNull item="<%=relId%>">

oe

<
if (query != null)

query += " [| ";

else

query = "";

query += "identifier = '" +

ExpressionHelper.toStringLiteral (relId) + "'";

o°

>
</es:notNulls>

</es:forEachInArrays>

WebLogic Portal Development Guide 11-105

11 Extending Portlets

<%-- Load the related content into the cache via cm:select --%>
<es:notNull item="<%=query%>">

<cm:select query="<%=query%$>" id="foo" useCache="true"
cacheId="relatedDocs"

cacheScope="session" max="10" cacheTimeout="300000" />

</es:notNulls>

For more information on content management JSP tags, see “Personalization JSP
Tags” in the JavaServer Page Guide at
http://edocs.bea.com/wlp/docs70/jsp/p13njsp.htm.

Property Caching in a Clustered Environment

To decrease the amount of time needed to access user, group, and other properties data,
the WebLogic Server Configurable Entity and Entity Property Manager use the cache
framework to configure and manage the following caches:

ldapGroupCache
ldapUserCache
entityPropertyCache
entityIdCache
unifiedProfiletypeCache

propertyKeyIdCache
Note: By default, these property caches are enabled.

With property caching enabled in a clustered environment, each server in a cluster
maintains its own cache; the cache is not replicated on other servers. In this
environment, when properties that are stored in the caches change on one server, they
may not change on another server in a timely fashion. In most cases, immediate or
quick access to properties on another server is not necessary: user sessions are pinned
to a single server, and even with caching enabled, users immediately see changes they
make to their own settings on the server.

11-106 WebLogic Portal Development Guide

Performance Tuning

If a user and an administrator are pinned to different servers in the cluster and the
administrator changes a user's properties, the user may not see the changes during the
current session. You can mitigate this situation by specifying a small Time-To-Live
(TTL) setting.

If you require multiple servers in a cluster to have immediate access to modified
properties, disable property caching.

Adjust Caching for the Discount Service

To reduce the amount of time the Order and Shopping Cart services need to calculate
order and price information that include discounts, the Discount Service uses the
caching framework to create and manage the following caches:

m discountCache, which contains data for campaign discounts. Campaign discounts
are targeted to specific customers or customer segments, and are available only
in the context of a campaign.

m globalDiscountCache, which contains data for global discounts. Global discounts
apply to all customers, regardless of customer properties or customer segments.

When a customer adds an item to the shopping cart, removes an item from the
shopping cart, checks out, or confirms an order, the Pricing Service is responsible for
determining the price of the items in the cart. To calculate the effect of discounts on
the shopping cart, the Pricing Service requests the Discount Service to retrieve
information about all global discounts and about any campaign discounts that apply to
the current customer.

The first request for information about discounts requires a separate call to the database
for each discount that applies. For example, if you have defined one global discount
and if a customer is eligible for two campaign-related discounts, the Discount Service
makes three calls to the database. To decrease the response time for any subsequent
requests, the Discount Service uses the caches.

Adjusting the discountCache

The discountCache contains data for campaign discounts. For maximum performance,
set the capacity to the number of campaign discounts that are currently deployed. A
larger capacity will potentially use more memory than a smaller capacity.

WebLogic Portal Development Guide 11-107

11 Extending Portlets

The Time-To-Live (TTL) property determines the number of milliseconds that the
Discount Service keeps the information in the cache. After the cache value times out,
the next request for the value requires the Discount Service to call the database to
retrieve the information and then cache the value. A longer TTL decreases the number
of database calls made over time when requesting cached objects. In a clustered
environment, the TTL is the maximum time required to guarantee that any changes to
global discounts are available on all servers.

Adjusting the globalDiscountCache

The Maximum Number of Entries property for global caches does not need to be
modified.

The time-to-live property determines the number of milliseconds that the Discount
Service keeps information in the global-discount cache. After the Time-To-Live (TTL)
expires, the next request for global discount information requires the Discount Service
to call the database to retrieve the information and then cache the value. A longer TTL
decreases the number of database calls made over time when requesting cached
objects. In a clustered environment, the TTL is the maximum time required to
guarantee that any changes to campaign discounts are available on all servers.

Discount-Service Caches in Clustered and Non-Clustered Environments

In either environment (clustered or non-clustered), when you change a discount
priority, end date, or its active/inactive state, WebLogic Portal flushes the discount
from the appropriate cache. Changes to a campaign discount flush only the specific
discount from the campaign-discount cache. Changes to a global discount flush all
discounts from the global-discount cache.

For example, you log in to a WebLogic Portal host named bread and deactivate a
campaign discount named CampaignDiscountl. WebLogic Portal flushes the
CampaignDiscountl from the campaign-discount cache on bread.

In a clustered environment, other machines in the cluster continue to use their cached
copy of the discount until the TTL for that discount expires.

Adjust Group Membership TTL in the Caching Realm

The WebLogic Server Caching realm stores the results of both successful and
unsuccessful realm lookups. It does not use the WebLogic Portal caching framework.

11-108 WebLogic Portal Development Guide

Performance Tuning

The Caching realm manages separate caches for Users, Groups, permissions, ACLs,
and authentication requests. It improves the performance of WebLogic Server by
caching lookups, thereby reducing the number of calls into other security realms.

WebLogic Portal enables the Caching realm by default. While all of the caches in the
Caching realm can improve performance, the Time-To-Live (TTL) value for the
Group Membership Cache in particular can affect the performance of WebLogic
Portal.

In addition, note that if you delete a user from the system without first removing the
user from a group, then the system continues to recognize the user until the TTL for
the Group Membership Cache expires.

For information on adjusting the Group Membership TTL, refer to the WebLogic
Server Administration Guide at
http://edocs.bea.com/wls/docs70/adminguide/index.html.

Tuning Thread / Connection Parameters in JDBC

Certain performance problems encountered in the portal may be corrected by changing
config.xml entries to reduce to thread count for the default execute queue in WLS
lower than the connection pool maximum capacity specified for the commercePool.
The basic formula should make the number of connections in the connection pool
equal to the number of threads + 1.

For information on adjusting threads and connection pools, consult “Tuning JDBC
Connection Pool Maximum Capacity” at
http://edocs.bea.com/wls/docs70/perform/WLSTuning.html#1117878.

WebLogic Portal Development Guide 11-109

11 Extending Portlets

11-110 WebLogic Portal Development Guide

CHAPTER

12 Setting Up

Personalization and
Interaction
Management

WebLogic Portal comes with robust authentication and personalization features that
allow administrators to determine what content a visitor can interact with and how that
information will appear to the specific visitor. Visitors themselves can leverage
WebLogic Portals personalization features to select their own content and create their
own look and feel. A major component of the portal development process is to create
the resources by using such tools as the Advisor, the Rules Framework, and content
selectors to make such authorization and personalization possible.

This section includes information on the following subjects:
m Using the Advisor to Personalize a Portal Application

m Working with the Rules Framework

m Personalization with Content Selectors

m Using an Edit .jsp to Personalize a Portlet

m Personalizing a Portal or Portlet by Using Placeholders

WebLogic Portal Development Guide 12-1

12 Setting Up Personalization and Interaction Management

Using the Advisor to Personalize a Portal
Application

12-2

The WebLogic Portal Advisor is an easy-to-use and flexible access point for
personalization services-including personalized content, user segmentation, and the
underlying rules engine. The Advisor delivers content to a personalized application
based on a set of rules and user profile information. It can retrieve any type of content
from a Document Management system and display it in a JSP.

The Advisor ties together all the services and components in the system to deliver
personalized content. The Advisor component includes a JSP tag library and an
Advisor EJB (stateless session bean) that access the WebLogic Portal's core
personalization services including:

m User Profile Management
m Rules Manager

m Content Management

m Personalization Platform

The tag library and session bean contain personalization logic to access these services,
sequence personalization actions, and return personalized content to the application. It
is also possible to write your own Advisor plug-ins and access them with JSP tags you
create.

This architecture allows the JSP developer to take advantage of the personalization
services using the Advisor JSP tags. In addition, a Java developer can access the
underlying WebLogic Portal personalization features via the public Advisor bean
interface. For more information, see the WebLogic Portal Javadoc API documentation.

You can use the Advisor in one of two ways:

m Using the JSP tags. Developers will probably find it easiest to use the JSP tags
when building typical pages. The tags provide ways to switch content on and off
based on user classification, return content based on a static query, and match
content to users based on rules that execute a content query. The JSP tags that
perform these tasks are: <pz:divs>, <pz:contentSelectors>, and
<pz:contentQuerys.

WebLogic Portal Development Guide

Using the Advisor to Personalize a Portal Application

m Using the Advisor session bean. The page or application developer may use the
Advisor session bean directly in place of the tags, if desired. The Advisor
session beans provide ways to switch content on and off based on user
classification, return content based on a static query, and match content to users
based on rules that execute a content query.

Creating a Personalized Portal Application with Advisor

JSP Tags

Table 12-1 describes the three JSP tags the Advisor provides to help developers create
personalized applications. These tags provide a JSP view to the Advisor session bean
and allow developers to write pages that retrieve personalized data without writing
Java source code.

Table 12-1 Advisor JSP Tags

Tag Description

<pz:div> Turns user-provided content on or off based on the results
of a classifier rule being executed. If the result of the
classifier rule is t rue, it turns the content on; if false, it
turns the content off.**The system turns on the content by
inserting the content residing between the start and end
<pz:div> tags in the JSP code. This content can include
any valid JSP content, including HTML tags, other JSP
tags, and scriptlets. If the classifier rule returns false, the
system skips the content between the start and end
<pz:divs> tags.

<pz:contentQuery> provides content attribute searching for content in a content
management system. It returns an array of Content
objects that a developer can handle in numerous ways.

<pz:contentSelector> recommends content if a user matches the classification
part of a content selector rule. When a user matches, the
personalization engine executes a content query defined in
the rule and returns the content back to the JSP page.

WebLogic Portal Development Guide ~— 12-3

12 Setting Up Personalization and Interaction Management

In addition to using JSP tags to create personalized applications, you can work directly
with the Advisor bean. For more information about using the bean, see “Creating
Personalized Applications with the Advisor Session Bean” on page 12-6.

Classifying Users with the JSP <pz:div> Tag

The <pz:divs> tag to turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is true, it turns the
content on; if false, it turns the content off.

Note: Rules are created in the E-Business Control Center. The E-Business Control
Center letsusers develop their own classifier rules. Because users are not
exposed to the concept of rules, you will see classifier rules referred to as
“customer segments.”

Listing 12-1 shows how to use the <pz:div> tag to execute the PremierCustomer
classifier rule and displays an alert to premier customers in the HTML page’s output.

Listing 12-1 Using <pz:dev> to Execute a Classifier Rule

<%@ taglib URI="pz.tld" prefix="pz" %>

<pz:div
rule="PremierCustomer" >

<p>Please check out our new Premier Customer bonus program..</p>
</pz:div>

Selecting Content with the <pz:contentQuery> JSP Tag

12-4

Use the <pz: contentQuery> tag to provide content attribute searching of content in
a content management system. It returns an array of Content objects that you can
handle in numerous ways.

Listing 12-2 shows an example of how to execute a query against the content
management system to find all content where the author attribute is Hemingway and
then display the Document titles found:

WebLogic Portal Development Guide

Using the Advisor to Personalize a Portal Application

Listing 12-2 Executing a Query Against a CMS to Find Specified Content

<%@ page import="com.bea.pl3n.content.ContentHelper"$>
<%@ taglib URI="pz.tld" prefix="pz" %>

<pz:contentQuery id="docs"
contentHome="<%=ContentHelper.DEF_DOCUMENT_ MANAGER HOME %>"
query="author = 'Hemingway'" />

<es:forEachInArray array="<%=docs%>" id="aDoc"
type="com.bea.pl3n.content.Content">
The document title is: <cm:printProperty id="aDoc"
name="Title" encode="html" />
</es:forEachInArray>

Matching Content to Users with the <pz:contentSelector> JSP Tag

The <pz: contentSelector>recommends content if a user matches the classification
part of a content selector rule. When a user matches based on a rule, the Advisor
executes the query defined in the rule to retrieve content.

The example in Listing 12-3 asks the Advisor to return content specific to premier
customers and then display the Document titles as the results.

Listing 12-3 Asking the Adyvisor to Display Specific Customers

<%@ page import="com.bea.pl3n.content.ContentHelper" %>
<%@ taglib URI="cm.tld" prefix="cm" %
<%@ taglib URI="pz.tld" prefix="pz"
<%@ taglib URI="es.tld" prefix="es"

o\

o°

>
>
>

o\°

<pz:contentSelector id="docs"
rule="PremierCustomerSpotlight"
contentHome="<%=ContentHelper .DEF_DOCUMENT MANAGER HOME %>" />

<es:forEachInArray array="<%$=docs%>" id="aDoc"

WebLogic Portal Development Guide ~ 12-5

12 Setting Up Personalization and Interaction Management

type="com.bea.pl3n.content.Content">
The document title is: <cm:printProperty id="aDoc"
name="Title" encode="html" />

</es:forEachInArrays>

</uls>

Creating Personalized Applications with the Advisor
Session Bean

12-6

Java developers can work directly against the Advisor bean through a set of APIs to
create personalized applications. This process provides an alternative to using the JSP
tags to call into the bean.

Note: See the WebLogic Portal Javadoc for more information about using the

session bean to create personalized applications.

The following steps provide a general overview of the process involved for an
application to get content recommendations from the Advisor.

1.
2.

Look up an instance of the Advisor session bean.

Use the AdvisorFactory’s static createAdviceRequest method to create an
AdviceRequest object.

Note: You must provide this method with the URI representing the request. The
Advisor uses the URI prefix to determine which Advislet to invoke.

. Set the required and optional attributes for the AdviceRequest object.

Call the Advisor’s getAdvice method.

The Advisor calls the best Advislet to make the recommendation. The Advislet
determines the recommendations and the Advisor then passes the resultant
Advice object back to the application.

The Advisor uses the Advislet Registry to choose the Advislet to invoke.

The personalized application extracts the recommendation from the Advice
object and uses it in the application.

WebLogic Portal Development Guide

Using the Advisor to Personalize a Portal Application

When a personalized application requests advice from the Advisor, the Advisor bean
delegates the request to a registered Advislet that can handle the request. The Advisor
uses the URI prefix to determine which registered Advislet will receive the advice
request. The Advislet then makes the recommendations and returns the Advice object
back to the Advisor. This design encapsulates all of the advice logic into the Advislet
and allows developers to create custom Advislets for more specialized purposes.

Attribute objects act as parameters for the request. Attribute objects can be set on the
AdviceRequest object and are associated with a St ring object representing the name
of the attribute.

Three Advislets are supplied with the system: Classifier Advislet, ContentQuery
Advislet and ContentSelector Advislet. Names for the attributes that need to be set on
the supplied Advislets are defined as static Strings in the AdviceRequestConstants
interface.

Table 12-2 shows the logic the Advisor uses to determine how to map a
recommendation request to an Advislet.

Table 12-2 Mapping recommendation requests to an Advislet

Uri Prefix Inferred Advislet

classifier Uses a rules-based inference engine to classify a user
based on rules written using the Customer Segment tool
in the E-Business Control Center.

contentselector m Uses a rules-based inference engine to classify a
user.

m Determines if the user matches the classification.

m Uses a rules-based inference engine to obtain a
content query for the classification.

m Selects content based on the content query obtained.

contentquery Performs a content attribute search on a specified
content management system.

The following sections demonstrate how to directly access the Advisor to provide the
same functionality as that provided by the JSP tags.

WebLogic Portal Development Guide — 12-7

12 Setting Up Personalization and Interaction Management

Classifying Users with the Advisor Session Bean

12-8

For classification requirements beyond what the JSP tags provide, or to use
classification in a servlet, use the Advisor EJB directly.

To ask the Advisor for a classification, use this procedure. (See the Javadoc API
documentation for API details.)

Note: Unless otherwise indicated, all classes used here reside in the
com.bea.pl3n.advisor package.

1. Look up and create an instance of the Advisor session bean. The EJB_REF NAME
constant found in the EJB Advisor Home interface may be used as the INDI name
of the Advisor EJB Home.

2. Use the AdvisorFactory’s static createAdviceRequest method to create an
AdviceRequest object. In this case, the URI argument should be
“classifier://”.

3. Set the required attributes on the AdviceRegquest object (see
AdviceRequestConstants). These include:

e HTTP REQUEST — the request object (retrieved from
com.bea.pl3n.httpRequest.createP13NRequest (HttpServlet
Request)).

e HTTP SESSION — the session object (retrieved from
com.bea.pl3n.httpSession.createP13NSession (HttpServletReques

£)).

e USER — the user object (retrieved from
com.bea.pl3n.usermgmt.SessionHelper.getProfile (HttpServletRe
quest)).

e TIME INSTANT —a java.sql.Timestamp object representing now.

e RULES RULENAME TO_FIRE — (optional) the name of the segmentation rule
to fire.

4. Call the getadvice method on the Advisor, supplying the newly created
AdviceRequest

WebLogic Portal Development Guide

Using the Advisor to Personalize a Portal Application

5. The Advisor returns an instance of Advice. The getResult method is called to
obtain the classification object. If a classification object is returned, then the
classification is considered to be true. If the return value is null, the
classification is considered to be false.

Note: Ifthe optional AdviceRequest parameter RULES RULENAME TO FIRE is not
supplied, there may be multiple classifications returned for the user.

Querying a Content Management System with the Advisor Session Bean

For content selection requirements beyond what the JSP tags provide, or to use content
selection in a servlet, developers can use the Advisor EJB directly.

To ask the Advisor for a content, use this procedure. (See the Javadoc API
documentation for API details.)

Note: Unless otherwise indicated, all classes used here reside in the
com.bea.pl3n.advisor package.

1. Look up and create an instance of the Advisor session bean. The EJB_REF NAME
constant found in the EJB Advisor Home interface may be used as the JNDI name
of the Advisor EJB Home.

2. Use the AdvisorFactory’s static createAdviceRequest method to create an
AdviceRequest object. In this case, the URI argument should be
“contentquery://”

3. Set the required attributes on the AdviceRequest object (see
AdviceRequestConstants). These include:

e CONTENT MANAGER HOME (required) — the JNDI name to find a content
manager home interface.

e CONTENT MANAGER (optional) - the instance of a ContentManager remote
interface that should be used. If this is set, then CONTENT MANAGER HOME
does not need to be set.

® CONTENT QUERY STRING (required)— the query to run against the system.

e CONTENT QUERY SORT BY (optional)— the order in which to sort the
returned results.

e CONTENT QUERY MAX ITEMS (optional)— the maximum instances to return.

WebLogic Portal Development Guide ~— 12-9

12 Setting Up Personalization and Interaction Management

® CONTENT CONTEXT PARAMS (optional) - a map of name/value pairs to pass in
the generated Search object to the ContentManager.

Call the getAdvise method on the Advisor, supplying the newly created
AdviceRequest

The Advisor returns an instance of Advice. The getResult method is called to
obtain the array of Content objects representing the results of the content query.

Matching Content to Users with the Advisor Session Bean

For content selection requirements beyond what the JSP tags provide, or to use content
selection in a servlet, developers can use the Advisor EJB directly.

To ask the Advisor for a content, use this procedure. (See the Javadoc API
documentation for API details.)

Note: Unless otherwise indicated, all classes used here reside in the

1.

com.bea.pl3n.advisor package.

Look up and create an instance of the Advisor session bean. The EJB_REF_NAME
constant found in the EJB Advisor Home interface may be used as the JNDI name
of the Advisor EJB Home.

Use the AdvisorFactory’s static createAdviceRequest method to create an
AdviceRequest object. In this case the URI argument should be
“contentselector://”

Set the required attributes on the AdviceRequest object (see
AdviceRequestConstants). These include:

e HTTP REQUEST — the request object (retrieved from
com.bea.pl3n.httpRequest.createP13NRequest (HttpServletReques

t)).

e HTTP SESSION — the session object (retrieved from
com.bea.pl3n.httpSession.createP13NSession (HttpServletReques
t)).

e USER — the user object (retrieved from
com.bea.pl3n.usermgmt.SessionHelper.getProfile (HttpServletRe
quest))

e TIME INSTANT —a java.sql.Timestamp object representing the time now.

12-10 WebLogic Portal Development Guide

Using the Advisor to Personalize a Portal Application

e RULES RULENAME TO FIRE — (optional) the name of the content selector
rule to fire.

e CONTENT MANAGER HOME (required) — the JNDI name to find a content
manager home interface.

e CONTENT MANAGER (optional) - the instance of a ContentManager remote
interface that should be used. If this is set, then CONTENT MANAGER HOME
does not need to be set.

e CONTENT QUERY STRING (required)—the query to run against the system.

e CONTENT QUERY SORT BY (optional)— the order in which to sort the
returned results.

e CONTENT QUERY MAX ITEMS (optional)— the maximum instances to return.

e CONTENT APPEND QUERY STRING (optional) - the query to append to the
query from the rules engine. If this query starts with “||”” (2 vertical bars), it
will be OR'ed to the rules query; otherwise it will be AND'ed.

e CONTENT CONTEXT PARAMS (optional) - a map of name/value pairs to pass in
the generated Search object to the ContentManager.

4. Call the getadvise method on the Advisor, which supplies the newly created
AdviceRequest.

5. The Advisor returns an instance of Advice. The getResult method is called to
obtain the array of Content objects representing the recommendation.

Personalizing Applications with HTTP Request and
Session Properties

Attributes in the HTTP Request and Session can be used to personalize content. Use
the E-Business Control Center to create Customer Segments, Content Selectors, or
Campaigns that use HTTP Request and Session property sets. Once you have
synchronized your Request or Session property sets to the WebLogic Portal server, you
can personalize content with them.

m For more information on customer segments, see “Creating Customer Segments”
at http://edocs.bea.com/wlp/docs70/admin/usrgrp.htm#1184110.

WebLogic Portal Development Guide — 12-11

12 Setting Up Personalization and Interaction Management

m For more information on content selectors, see “Personalization with Content
Selectors” on page 12-19.

m For more information on Campaigns, see “Creating Campaigns” at
http://edocs.bea.com/wlp/docs70/admin/campaign.htm.

HTTP Request-Based Personalization

12-12

This section shows a Customer Segment definition created in the E-Business Control
Center. The Customer Segment, called RequestPropertyDemo, automatically makes
auser a member of the Customer Segment when an HTTP request has a specific value.
The HTTP request value being looked for is defined in an HTTP Request property
called RequestPropertyone, which is also defined in an HTTP Request property set
in the E-Business Control Center. If the value of RequestPropertyOne is success, the
user is a member of the RequestPropertyDemo Customer Segment and can be
targeted with personalized content.

When all of these conditions apply:
an HTTP request has the following properties:
RequestPropertyOne is equal to ‘success’

Consider the visitor a member of the RequestPropertyDemo segment.

The Customer Segment definition and HTTP Request property definition must be
saved and synchronized to the WebLogic Portal server.

The following JSP code does the following:

1. The request.setAttribute () method sets an HTTP request property, called
RequestPropertyOne to a value of success. Because of the Customer Segment
definition, this HTTP request value makes the user a member of the
RequestPropertyDemo Customer Segment.

2. The <pz:div> JSP tag has a rule attribute whose value is
RequestPropertyDemo, the name of the Customer Segment defined in the
E-Business Control Center.

3. The <pz:divs> tag contains the content that is displayed only to members of the
RequestPropertyDemo Customer Segment.

<%@ taglib uri="pz.tld" prefix="pz" %>

o°

<

WebLogic Portal Development Guide

Using the Advisor to Personalize a Portal Application

request.setAttribute ("RequestPropertyOne", "success");

o°

>
<pz:div rule="RequestPropertyDemo">

<p>-- the "RequestPropertyDemo" rule evaluated to "true"</p>
</pz:div>

While this example shows personalization based on a user’s Customer Segment
membership, you can trigger HTTP Request-based personalization directly in Content
Selectors and Campaigns. When you define Content Selectors and Campaigns in the
E-Business Control Center, you can trigger them with HTTP Request property values
without using Customer Segments.

HTTP Session-Based Personalization

Personalization using HTTP Session-based Customer Segments is performed similarly
to HTTP Request-based Customer Segments. The following JSP code assumes the
E-Business Control Center has been used to create and synchronize a Customer
Segment named SessionPropertyDemo and an HTTP Session property called
SessionPropertyOne.

The text within the <pz:div> tags will be displayed only to members of the
SessionPropertyDemo Customer Segment when the JSP is rendered.

<%@ taglib uri="pz.tld" prefix="pz" %>

o°

<

session.setAttribute ("SessionPropertyOne", "sessionValue") ;

o°

>
<pz:div rule="SessionPropertyDemo">

<p>-- the "SessionPropertyDemo" rule evaluated to "true"</p>
</pz:div>

While this example shows personalization based on a user’s Customer Segment
membership, you can trigger HTTP Session-based personalization directly in Content
Selectors and Campaigns. When you define Content Selectors and Campaigns in the
E-Business Control Center, you can trigger them with HTTP Session property values
without using Customer Segments.

WebLogic Portal Development Guide 12-13

12 Setting Up Personalization and Interaction Management

Special Considerations

Request and Session attributes are not scoped to specific property sets. For example,

you can create a SessionPropertyOne in two different Session property sets, then set
an attribute of that name in the HTTP Session, and all rules based on that property will
be evaluated without reference to the property set in which it is found.

To extend the previous Session-based example, create a second Session property set,
also with a property called SessionPropertyOne, but make it a numeric property.
Then create a second Customer Segment called SessionPropertyDemoTwo as
follows:

When all of these conditions apply:
the HTTP session has the following properties:
SessionPropertyOne is equal to 3

Consider the visitor a member of the SessionPropertyDemoTwo segment.

The following JSP code contains two <pz:div> tags. One contains content that will be
displayed to members of the SessionPropertyDemo Customer Segment, and the
other contains content that will be displayed only to members of the
SessionPropertyDemoTwo Customer Segment.

<%@ taglib uri="pz.tld" prefix="pz" %>

o°

<

session.setAttribute ("SessionPropertyOne", new Long(3)) ;

oe

>
<pz:div rule="SessionPropertyDemo">

<p>-- the "SessionPropertyDemo" rule evaluated to "true"</p>
</pz:div>
<pz:div rule="SessionPropertyDemoTwo" >

<p>-- the "SessionPropertyDemoTwo" rule evaluated to "true"</p>
</pz:div>

Because of the SessionPropertyOne value in the session.setAttribute ()
method, whose value defines the SessionPropertybemoTwo Customer Segment, the
rule=SessionPropertyDemoTwo Will evaluate to “true,” and the
rule=SessionPropertyDemo Will evaluate to “false”, even though the property was

12-14 WebLogic Portal Development Guide

Using the Advisor to Personalize a Portal Application

defined in two different property sets. Normally this should not be a problem, as
duplicate properties are not usually defined in different property sets. However, the
E-Business Control Center does not alert you if you do this.

Triggering Campaign Actions with Session, Request, and Event Properties

Campaign scenario rules are evaluated only when a single event occurs for which the
campaign listener is configured. When the event is triggered, the event takes a snapshot
of the current session properties, the single request property (contained in the session),
and the event properties (contained in the request). The snapshot taken by the event is
in the form of a Request object, which the event passes to the Campaign service for
evaluation. If the values in that snapshot evaluate to true against any Campaign action
rules, those Campaign actions are triggered.

When campaign actions are not triggered as expected using session, request, and event
properties, one or more of the following is usually to blame:

m No event was fired that the Campaign service was listening for.

m The session, request, or event properties contained in the Campaign rule were
not part of the Request object snapshot taken when the event was fired.

m In Campaign rules that are defined so that all conditions must apply for the
campaign action to be triggered, one or more of the conditions evaluated to
false.

Consider the following Campaign action rules as created in the E-Business Control
Center:

When all of these conditions apply:

an HTTP request has the following properties:
RequestPropertyOne is equal to ‘success’
any of the following events has occurred:
SessionLoginEvent

Do the following... [Ad action, e-mail action, or discount action].

The rule will be evaluated only if an event for which the Campaign service is listening
occurs. (This event need not be used directly in the Campaign rule.) For example, if
the Campaign service is configured to listen for the BEA-provided

WebLogic Portal Development Guide — 12-15

12 Setting Up Personalization and Interaction Management

UserRegistrationEvent (Which it is by default), then when a
UserRegistrationEvent occurs the event takes a snapshot of the Request object
and the Campaign rules are evaluated.

Here is how the previous Campaign action rules would be evaluated:

m [s there a request property called RequestPropertyOne with a value of
success?

m AmlaSessionLoginEvent?
m Are all of these conditions true?

Because a UserRegistrationEvent woke up the campaign service and took a snapshot
of the request object, the campaign action will not be triggered, because the rule
requires that all of its conditions evaluate to true. The SessionLoginEvent rule is false
(because it was the UserRegistrationEvent that woke up the campaign service).

If the rule was defined so that any of the conditions evaluating to true would trigger the
action (rather than a// conditions), the campaign action would have fired if the request
property evaluated to true.

To use session or request properties to trigger campaign actions, make sure you do the
following:

m In the JSP containing the event to be fired, get the request attribute through a
variable or set it directly in the JSP.

m In the JSP containing the event to be fired, get/set any event properties you want
to use.

m [f you want to use session properties to trigger campaign actions, make sure the
firing event is in the same session containing the session properties you want to
use.

For more information on events and using them in Campaigns, see Chapter 15, “Event
and Behavior Tracking,” in particular “Writing the Custom Event Class,” which
contains information on getting the Request object with your event.

12-16 WebLogic Portal Development Guide

Working with the Rules Framework

Working with the Rules Framework

Rules Management forms a key part of the personalization process by prescribing a
flexible and powerful mechanism for expressing business rules. The business logic
encompassed by these rules allows robust delivery of personalized content marketed
specifically to each end user type.

The various components of the Rules Framework are configured with an external
configuration file called rules.properties. This file resides inthe p13n_util.jar
file (within the com/bea/p13n/rules directory) that can be found in the root
directory of any WebLogic Portal application. This section explains each of the
configuration properties that can be set in this file.

Changes to the rules.properties file are only seen by the application in which the
file resides. That is, this configuration file is scoped to the application. This makes it
possible to configure the Rules Framework differently for different applications.

Validating Rules Expressions

If you want the Rules engine to validate all Rules expressions (both conditions and
actions) exactly one time, set rules.engine.expression.validation to true. You
can set this property to true during development and testing for additional expression
validation, as shown in Listing 12-4.

Listing 12-4 Setting the rules.engine.expression.validation Property

##

Rules engine expression validation:

#

If this property is set to true, the rules engine
will validate expressions the first time they are
executed.

##

rules.engine.expression.validation=true

WebLogic Portal Development Guide 12-17

12 Setting Up Personalization and Interaction Management

Rules Engine Error Handling and Reporting

The rules.engine.throw.expression.exceptions and
rules.engine.ignorable.exceptions properties determine the type of
exceptions that will be propagated to the user during Rules engine execution.

m To prevent exceptions from being propagated and any condition expression that
generates an exception to evaluate to false, set the
rules.engine.throw.expression.exceptions parameter to false.

m To propagate all exceptions to the user—except those listed with the
rules.engine.ignorable.exceptions parameter—set the
rules.engine.throw.expression.exceptions parameter to true

Listing 12-5 shows an example of how these parameters are set.

Listing 12-5 Rules Engine Pattern Expression Execution Error Handling

++

Rules engine pattern expression execution error handling:
rules.engine.throw.expression.exceptions

If this property is set to true, pattern expression

execution exceptions will be thrown. Otherwise, a pattern
expression exception will cause the pattern condition to
evaluate to false.

Defaults to true.

rules.engine.throwable.exceptions (list of class names)

If the previous property is set to true, expression exceptions
with embedded exceptions of a type other than the listed classes
will be thrown. If no class types are specified, all expression

exceptions will be thrown.

Defaults to all exception class types.

HHEHFEHEHHAFHAFHFEHFEHFEHFHHHFHFHFHFHF

+

rules.engine.throw.expression.exceptions=true
rules.engine.ignorable.exceptions=java.lang.NullPointerException

12-18 WebLogic Portal Development Guide

Personalization with Content Selectors

Personalization with Content Selectors

A content selector is one of several mechanisms that WebLogic Portal provides for
retrieving documents from a content management system. By using content selectors,
you can personalize a portal or portlet by specifying conditions under which WebLogic
Portal retrieves one or more documents. For example, you can personalize a portlet that
displays data from a content management system by specifying such information as a
date range, the status of the user, and the user’s e-mail address. The content selector
would only retrieve documents that fit the selection criteria.

Note: Before you can work with content selectors, customer segments must be
created. Creating segments is an administrative task and is discussed in the
Administration Guide. For more information, see “Creating Customer
Segments” at http://edocs.bea.com/wlp/docs70/admin/usrgrp.htm#1184110.

Use the E-Business Control Center to define the conditions that activate a content
selector and to define the query the content selector uses to find and retrieve
documents. Then, use the content selector JSP tags and a set of other JSP tags to
retrieve and display the content targeted by the content selector.

To use the E-Business Control Center to define the conditions that activate a content
selector and the query criteria, use this procedure:

1. Open the E-Business Control Center and display the Presentation tab.
2. Click the Content Selector icon in the left pane of the Explorer.
Any existing content selectors will appear in the right pane of the Explorer.

3. Select New to display the New menu and select Content Selector.

Figure 12-1 E-Business Control Center New Menu with Content Selector
Selected

|-|i| Explorer [Presentation]

INEAN A 4
M: Entitlement Segment we
|— Content Selectar

Flacehaolder
Fortal b
Fortlet

WebLogic Portal Development Guide 12-19

12 Setting Up Personalization and Interaction Management

The Content Selector Editor appears.

Figure 12-2 Content Selector Editor

Ei’ Editin [Cuntund Suluctun : UrrsarmsuContanl Selac 3]

Ceeipliur . €l ualy

Szlect on i

‘Mhen all othzse condmans asply Sdit

Wi sseded |

Sher [0 105 JILS 0T 1115 [EMBLY CONTCHT SCareh)].

TX - nk=nt Br i~ Unsared v antens elanors] I ntznt Se eclas Un-ared S IniantSelzees

4. Double-click anywhere on the Selection rule pane to open the Selection Rules
editor:

12-20 WebLogic Portal Development Guide

Personalization with Content Selectors

Figure 12-3 Selection Rules Editor
X

Selectthe canditions that will activate this action.
Conditions

I The visitar is & member of 2 predefined customer segment
I The visitar has specific charactetistics

" The HTTP session has specific properies

I~ An HTTP request has specific properiies

[The date is

I Itis after a given date

I Itis after a given date and time

I Itis hetween two times

I Itis hetween teo dates

[Itis between tao dateftimes

Action: (click the underlined tex ta edit the values):

When all ofthese conditions apply:

[Wo conditions selectad.]

Showe the results of this [empty content search

oK Cancel

5. Click the checkbox next to each condition you want to activate the content
selector. For each condition selected, a related action is added to the action pane.

WebLogic Portal Development Guide 12-21

12 Setting Up Personalization and Interaction Management

Figure 12-4 Selection Rules Editor with Conditions Selected

isi Selection Rule

Select the conditions that will activate this action.
Conditions:

¥ The visitor is 2 member of a predefined custormer segment
[¥ The visitor has specific characteristics

[~ The HTTP session has specific properies

[~ An HTTP request has specific properties

[~ The date is

¥ Itis after a given date

[tis after a given date and time

[tis between two times

[tis between two dates

[tis between two dateftimes

Action: {click the underlined text to edit the values):

‘When all of these conditions apply:

* the visitor is in custormer seament [custorner seqrment]

* the vizitor has these [characteristics]
* itis after Jdate

Show the results of this [empty content search].

QK Cancel |

6. Inthe Action pane, do the following:

For each concition
=elected, an action
iz created

a. Determine how the conditions will apply. The default value is all, which means
that all conditions must be true before the content selector is activated. Click
the word all to toggle the value to any, which means that at least one of the

conditions must be true to activate the content selector.

b. Next, set the values for each condition by clicking the underlined text in the
condition list; for example, if you selected the condition The visitor is a
member of a predefined customer segment, the condition The visitor is in
customer segment [customer segment] appears in the Action pane. Click
[customer segment] to display the Select Customer Segments dialog box.

12-22 WebLogic Portal Development Guide

Personalization with Content Selectors

Figure 12-5 Select Customer Segments Dialog Box

iul Select Customer Segments x|

Available segments: Selected segments:
HipHopCouchFPotato
MobileRocker

e FEmove

Al == |
| iremose |

Ok | Cancel |

c. Select the customer segments of which the visitor must be a member and click
Add to move them to the Selected segments list. When you’ve added all of the
segments necessary, click OK.

d. Repeat step b for each condition selected.

e. When the values for all selected conditions have been set, click OK.
The Selection Rules dialog box closes.
7. In the E-Business Control Center, open the File menu and select Save as.

The Save as dialog box appears.

Figure 12-6 Save As Dialog Box

Filenames must start with a letter or underscore and contain
only letters, underscares, digits, hyphens and periods and he
between 1 and 64 characters in length.

Save | Cancel |

8. Type the name you want to call the content selector in Name and click Save.

The new content selector will appear in the content selector list in the Explorer.

9. Open the Tools menu and select Synchronize.

WebLogic Portal Development Guide — 12-23

12 Setting Up Personalization and Interaction Management

The new content selector is ready to use.

To use the content selector features on a given JSP, you must add calls to the content
selector JSP tag and a set of associated tags. For more information, please refer to
“Using Content-Selector Tags and Associated JSP Tags” on page 8-25.

Using an Edit .jsp to Personalize a Portlet

Visitors can personalize portlets by providing the necessary personalization attributes
or preferences to an Edit JSP. An Edit JSP is a JSP that collects personalization data
and uses it to render a personalized view of requested date.

Enabling a visitor to personalize a portlet by using an Edit JSP is a two-step process:
m Step 1. Create the Edit JSP

m Step 2. Enable Portlet Editing

Step 1. Create the Edit JSP

Create the Edit JSP (or JSPs, if a Webflow is required) as you would any other JSP.
You can name it anything you want and give it any appropriate look and feel. The
important features of the JSP are those that allow the visitor to enter and retrieve
personalized content.

For example:

m The Edit JSP for a stock quote portlet might have a text box or boxes into which
the visitor can enter stock symbols and an OK or Set button that launches an
event that retrieves a quote for the respective symbols.

m The Edit JSP for an email portlet might include edit boxes into which the visitor
sets a user name and password for retrieving email from a server, which is also
specified on the Edit JSP.

m The Edit JSP for a portlet that displays columnar data might have checkboxes
that let the visitor turn columns on or off and specify sorting preference.

12-24 WebLogic Portal Development Guide

Using an Edit .jsp to Personalize a Portlet

As you can see, there are few restrictions as to what you need to include in an Edit JSP,
so long as it meets visitor personalization requirements.

Step 2. Enable Portlet Editing

Next, you need to enable visitors to edit a portlet to add personalization information.
To do this, use this procedure:

1. Start the E-Business Control Center. For instructions on starting the E-Business
Control Center see “Starting the E-Business Control Center” in the Administration
Guide at http://edocs.bea.com/wlp/docs70/admin/admintro.htm#1185814.

2. In the Explorer window, click the Presentation tab at the bottom of the Explorer
window, then click the Portlets icon.

3. From the list of portlets in the Explorer, double-click the portlet you for which
you want to enable editing.

The Portlet Editor appears.

4. Select Enable Editing, as shown in Figure 12-7.

Figure 12-7 Portlet Editor with Enable Editing Checkbox Selected

F4' Editor [Portlet: neweportiet *] =l

3 All URLs must be relative to a single portal Web Description: {optional)
Application As an sxample, e file
MyAppiMyWebappioorietsimyportieticontent jsp
twhich resides in the portal Web application
"MyWebapp") is specified as
Jportietsimyportieticontent jsp

¥ {Enable Edffing (arovide the edit URL below)

Content URL.

VpnnlersmewpnnleummgmJsp 3 | _]
Header URL: (optional) ¥ Enable Help (provide the help URL below)

[portietsinewnoietheader jsp o fportietsinewnartisthelp. jsp .

5. Note that by selecting this checkbox, you also enable the edit box below it. In this
box, specify the relative URL of the Edit JSP you created.

For more information on using the Portlet Editor, see “Modifying Portlet
Characteristics” in the Administration Guide at
http://edocs.bea.com/wlp/docs70/admin/frmwork.htm#1199768.

WebLogic Portal Development Guide — 12-25

12 Setting Up Personalization and Interaction Management

Personalizing a Portal or Portlet by Using
Placeholders

Placeholders are devices that represent an area in a portal or portlet to which content
is provided when certain criteria are met that define what content can appear. A
placeholder is a named entity that contains one or more queries. When a visitor
requests a JSP that contains a placeholder tag, the placeholder selects a single query to
run—usually based upon established rules or customer properties—and generates the
HTML that the browser requires to display the results of the query.

This section includes information on the following subjects:
m How Placeholders are Used

m Placeholder JSP Tag: <ph:placeholder>

m Implementing the Placeholder

m Creating Placeholder Files

How Placeholders are Used

12-26

Placeholders are used primarily in campaigns to direct a visitor’s attention to
programs, merchandise, or other information in which the visitor’s behavior has
indicated an interest. For example, an online sporting goods store notices that a visitor
has purchased a number of fishing lures from a specific manufacturer. A rule exists that
tells the portal to display information about discounts available when the visitor has
spent more than a certain amount of money on products by that particular
manufacturer. The visitor will see that information in the area specified as the
placeholder for that content. Another visitor has shown interest in camping equipment
(measured by the number of times that visitor has accessed the “Camping” pages for
the sporting goods store’s catalog). Instead of fishing lure discounts, the camper will
see information about camping gear in the area specified as the placeholder.

The above example demonstrates how ad placeholders are used to personalize
information for a specific visitor. In the same manner, non-ad placeholders can offer
the same level of personalization. For example, a doctor researching drugs at a

WebLogic Portal Development Guide

Personalizing a Portal or Portlet by Using Placeholders

pharmaceutical company Website shows a tendency for studying a certain family of
drugs. The company’s portal can track his behavior and display, in a placeholder,
information about, or links to, related drugs that he hasn’t yet researched.

Placeholders are created by using a JSP tag and defining the placeholder queries in the
E-Business Control Center. This section describes how to use those features to set up
placeholders to personalize portal and portlet content.

Placeholder JSP Tag: <ph:placeholder>

The placeholder tag <ph:placeholders is a named location on a JSP. The tag
identifies the placeholder to the JSP and describes the behavior established for it in the
E-Business Control Center. See “Creating Placeholder Files” on page 12-29 for
instructions on using the E-Business Control Center to set up the placeholder behavior.

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

The <ph:placeholders tag (Table 12-3) implements a placeholder, which describes
the behavior for a location on a JSP page.

Multiple placeholder tags can refer to the same placeholder. Each instance of a
placeholder tag invokes its placeholder definition separately. If the placeholder
definition specifies multiple queries, each placeholder tag instance can display
different ads, even though each instance shares the same definition.

When WebLogic Portal receives a request for a JSP that contains an ad placeholder,
the placeholder tag contacts the Ad Service, a session EJB that invokes business logic
to determine which ad to display.

Table 12-3 <ph:placeholder>

Tag Attribute Req’d Type Description R/C
name Yes String A string that refers to a placeholder R
definition.

WebLogic Portal Development Guide — 12-27

12 Setting Up Personalization and Interaction Management

Table 12-3 <ph:placeholder> (Continued)

Tag Attribute Req’d Type Description R/C

height No int Specifies the height (in pixels) that the R
placeholder uses when generating the
HTML that the browser requires to display
a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specity this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

width No int Specifies the width (in pixels) that the R
placeholder uses when generating the
HTML that the browser requires to display
a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

Example

This example displays the ad specified in the MainPageBanner placeholder.
<%@ taglib uri="ph.tld" prefix="ph" %>

<ph:placeholder name="/placeholders/MainPageBanner.pla"/>

12-28 WebLogic Portal Development Guide

Personalizing a Portal or Portlet by Using Placeholders

Implementing the Placeholder

To implement a placeholder, use this procedure:

1. Open the JSP template file that will contain the placeholder. JSPs reside in an
applicaton folder under the portlets folder for an individual application; for
example:

<BEA_HOME>\weblogic700\samples\portal\<PORTAL DOMAIN>\beaApps\
<PORTAL APP>\<PORTAL APP>\portlets\campaigns

2. Import the tag library by including the following code in the JSP
<%@ taglib uri="ph.tld" prefix="ph" %>

3. Add <ph:placeholders> within the JSP element where you want the placeholder
to appear. Be sure to specify the placeholder name within the placeholder tag, as
shown in Listing 12-6.

Listing 12-6 <ph:placeholder> Tag

<table class="homebackground" width="100%" height="100%"
border="0" cellspacing="0" cellpadding="0">

<tr>
<td align="center">
<ph:placeholder name="PrimaryCampaign"/>
</td>
</tr>

</table>

Creating Placeholder Files

Use the E-Business Control Center to define placeholder files that match the
placeholders in your site’s JSPs. The following procedure shows you how to create a
placeholder file in the E-Business Control Center and how to set up default—not
campaign—queries in that placeholder.

WebLogic Portal Development Guide — 12-29

12 Setting Up Personalization and Interaction Management

Note: Before beginning this procedure, you must define attributes for the documents
in your content management system

To create a placeholder file:
1. Start WebLogic Server and open the the E-Business Control Center.
2. Open the application with which you want to work.

3. Choose File =New —Presentation —Placeholder. A new placeholder file opens
in the Editor window, as shown in Figure 12-8.

Figure 12-8 Placeholder Editor

I/ Editor [Placeholder: UnnamedPlaceholder] _|&]
Description:
Default Ads
Ad Search Dizplay Priority ‘ New.

¢ Do not display default ads if ads placed by a campaign apply

& Keep default ads in rotation along with ads placed by a campaign

4. Enter a description for the placeholder in the Description area.

12-30 WebLogic Portal Development Guide

Personalizing a Portal or Portlet by Using Placeholders

5. Click New to begin defining a default query. A placeholder file is considered
incomplete if it does not have at least one default query (though you can still save
the placeholder file).

Note: Since the content you are trying to access is stored on the server, the
Connection Setup window appears. Select an existing connection in the
Display Name field, and enter your username and password. You only
need to log in once per session when working with placeholders.

You can create multiple default queries by repeating this step.

If you do not create ad queries for default ads, the placeholder will display only
ads that are generated by campaign queries. If there are no active campaigns, or
if an active campaign contains no ad actions within scenarios to trigger an ad for
a specific customer, then the placeholder remains empty to customers.

6. To change the priority of a default query, click the Display Priority column for
the query and select a priority, as shown in Figure 12-8.

The Display Priority determines the likelihood that the query runs relative to the
priority of any other queries that are in the placeholder.

7. To prevent an ad placeholder from using default aqueries if it also contains
campaign ad queries, select the option, Do not display default ads if ads placed
by a campaign apply.

If you want the placeholder to choose among default and campaign ad queries,
select the option, Keep default ads in rotation with ads placed by a
campaign. This selection potentially reduces the chance that the placeholder
displays a given ad that is part of a campaign.

8. Save and name the placeholder. Be sure to use the name of a placeholder that
already exists or will exist on a JSP.

The new file is displayed in the list of placeholders.

WebLogic Portal Development Guide 12-31

12 Ssetting Up Personalization and Interaction Management

12-32 WebLogic Portal Development Guide

CHAPTER

13 Setting Up Campaign

Services

A campaign coordinates several WebLogic Portal services to create and track

marketing goals on an e-commerce Web site. For example, your marketing
organization can use campaigns to sell 100 ACME saws during the month of June. To

reach this goal, Marketing can target advertising, e-mail, and discounted product
pricing to customers who match a set of criteria, such as customers who have

previously purchased ACME hardware from your site.

Your responsibility in setting up a campaign service is to develop the infrastructure to
support the campaigns and modify that infrastructure as individual campaigns require.
This activity can include building placeholders for campaigns, specifying display and

clickthrough behavior, loading ads into a content management system, creating

personalized e-mails for campaigns, and sending bulk mail to prospective and existing
customers.

This section contains information on the following subjects:

What are Campaign Services?

Building Placeholders for Campaigns

Using Attributes to Specify Display and Clickthrough Behavior
Loading Ads Into Your Content Management System

Creating Personalized E-mails for Campaigns

Sending Bulk Mail

Note: Campaigns cannot be used with anonymous users.

WebLogic Portal Development Guide

13-1

13 Setting Up Campaign Services

What are Campaign Services?

13-2

Campaigns coordinate the following services:

Events and Behavior Tracking services identify how a customer interacts with
your site. By default WebLogic Portal tracks only a specific set of customer
interactions (events), but you can add to this set by customizing the Event
Service. For more information on event and behavior tracking, see Chapter 15,
“Event and Behavior Tracking.”

Customer Segments categorize customers based on information in a customer’s
profile and other dynamic data. Each customer must create a profile to log in to
your site. The profile includes information that the customer provides, such as
shipping addresses, and information that WebLogic Portal provides, such as
number of visits and total value of products the customer has purchased on the
site. You can create customer segments in the E-Business Control Center.

Scenarios which trigger actions if a specific event occurs or if a specific
customer matches a customer segment. You can create scenarios in the
E-Business Control Center.

Scenarios can engage any of the following services:

Ad Placeholders, which query the content management system for an ad and
display the query results on the Web site. For example, if a customer logs in and
the customer’s profile matches the SailingEnthusiast customer segment, then a
scenario causes an ad for sailboats to appear in the Web site’s top banner.

E-mail Service, which uses a JSP to generate e-mail and provides a utility for
sending the e-mail in batches. Because the Mail Service uses a JSP to generate
e-mail, you can use JSP tags to personalize the e-mail.

Discounts These offer reduced prices for specific products or product categories.
You can creates discount in the E-Business Control Center.

WebLogic Portal Development Guide

Building Placeholders for Campaigns

Building Placeholders for Campaigns

The ad placeholder is a container that generates the HTML that the browser requires
to display the ad content and places it in the JSP at the location of the placeholder tag.
An ad is a document in your content management system that an ad placeholder
displays. Ads can be an integral part to a campaign. For example, campaigns can
specify as a goal to record a specific number of ad clickthroughs.

Using Attributes to Specify Display and
Clickthrough Behavior

You need to define the document attributes in your content management system that ad
placeholders use to support the following features:

m Choosing a single document if a query returns multiple documents
m Making an image ad clickable
m Supplying movie preferences for a Shockwave file

For information about associating attributes with documents, refer to the
documentation for your content management system. If you use the reference content
management system supplied by BEA, refer to “Loading Ads into the Reference
Content Management System” on page 13-4. Valid attributes are listed in Table 13-1,
Table 13-2, and Table 13-3.

WebLogic Portal Development Guide ~ 13-3

13 Setting Up Campaign Services

Loading Ads Into Your Content Management

System

The queries you can define for ad placeholders search through the attributes that you
attach to the documents in your content management system. WebLogic Portal places
no restrictions on the set of attributes that you use to describe your ads. For example,
you can create attributes that describe the name of the product that the document
advertises, the name of the ad sponsor, and a product category that matches the
categories in your e-commerce product catalog.

The method of loading ads into a content management system is dictated by the CMS.

m If you use the reference content management system supplied by BEA, use the
procedures in this section.

m If you are using a third-party CMS, follow the load instructions provided by the
vendor.

Loading Ads into the Reference Content Management

System

WebLogic Portal provides a content management system for sites with limited
content-management needs. If you use the reference content management system, you
must load ads and ad attributes at the same time. You cannot add attributes to
documents that have already been loaded.

When you install WebLogic Portal, the reference content management system (which
uses the sample PointBase database) already contains a set of sample ads.

To load ads and ad attributes into the reference content management system, you must
do the following:

m Step 1. Set Up Attributes in HTML Documents
m Step 2. Set Up Attribute Files for Image and Shockwave Documents

m Step 3. Move Files Into the dmsBase/Ads Directory Tree

13-4 WebLogic Portal Development Guide

Loading Ads Into Your Content Management System

m Step 4. Run the loadads Script

Step 1. Set Up Attributes in HTML Documents

For ads that contain only HTML, you must place document attributes in <META> tags
within a document’s <HEAD> element. Use the following syntax in the <META> tag:

<META name="attribute-name" content="attribute-value">
Use a separate <META> tag for each document attribute. For example:

<META name="attributel-name" content="attributel-value">
<META name="attribute2-name" content="attribute2-value">
<META name="attribute3-name" content="attribute3-value">

Listing 13-1 shows an HTML file that contains a simple ad with several attributes.

Listing 13-1 Attributes for an HTML Ad

<HTML>
<HEAD>

<META name="adWeight" content="3">

<META name="productCategory" content="hardware">

<META name="productSubCategory" content="electic drill"s
<META name="productName" content="Super Drill"s

<META name="Manufacturer" content="ACME">

</HEAD>
<BODY>
<P>Buy our Super Drill. It’ll get the job done!</P>
</BODY>

</HTML>

Table 13-1 describes the adweight attribute, which you can associate with XHTML,
image, and Shockwave documents.

WebLogic Portal Development Guide ~ 13-5

13 Setting Up Campaign Services

Table 13-1 Attributes for All Document Types

Attribute Name Value Type Description and Recommendations

adWeight Integer Provides an integer that is used to select a document if a query
returns multiple documents. Assign a high number to ads that you
want to have a greater chance of being selected. The default value
for this attribute is 1.

Note: In the E-Business Control Center, you can assign a priority
to a query for a scenario action. The priority, which bears
no relation to the adWeight attribute, gives a greater or
lesser chance that a placeholder runs a query. The
adWeight attribute is used to choose an ad after a query
has run.

Step 2. Set Up Attribute Files for Image and Shockwave Documents

For ads that are images or Shockwave movies, you must place attributes in a separate
file. Each image or Shockwave file must be accompanied by a separate file that is
named with the following convention:

filename.extension.md.properties
Both files must be located in the same directory.

For example, for an image file named superDrill.jpg, you must place attributes in
a file named superDrill.jpg.md.properties.

Within the filename.extensionmd.properties file, use the following syntax to
express attributes and values:

attribute-name=attribute-value

Listing 13-2 shows an example file that contains attributes for an image ad.

Listing 13-2 Syntax for the Attributes File

adWeight=5
adTargetUrl=AcmeAds/saws.jpg
adAltText=Buy ACME and save!

13-6 WebLogic Portal Development Guide

Loading Ads Into Your Content Management System

productCategory=hardware
productSubCategory=electic drill
productName=Super Drill
Manufacturer=ACME

Other Image File Attributes

Table 13-2 describes other attributes, in addition to adweight, that you can associate
with image files.

Table 13-2 Attributes for Image Files

Attribute Name Value Type Description and Recommendations

adTargetUrl

String Makes an image clickable and provides a target for the clickthrough,
expressed as a URL. The Event Service records the clickthrough.

Use either adTargetUrl, adTargetContent, or adMapName,
depending on how you want to identify the destination of the ad
clickthrough.

adTargetContent String Makes an image clickable and provides a target for the clickthrough,

expressed as the content management system’s content ID. The
Event Service records the clickthrough.

Use either adTargetUrl, adTargetContent, or adMapName,
depending on how you want to identify the destination of the ad
clickthrough.

adMapName

String Makes an image clickable, using an image map to specify one or
more targets.

The value for this attribute is used in two locations:

m In the anchor tag that makes the image clickable,

m In the map definition, <map name=value>

Use either adTargetUrl, adTargetContent, or adMapName,
depending on how you want to identify the destination of the ad
clickthrough.

If you specify a value for adMapName, you must also specify a
value for adMap.

WebLogic Portal Development Guide ~ 13-7

13 Setting Up Campaign Services

Table 13-2 Attributes for Image Files (Continued)

Attribute Name

Value Type

Description and Recommendations

adMap

String

Supplies the XHTML definition of an image map.

If you specify a value for adMap, you must also specify a value for
adMapName.

adWinTarget

String

Displays the target in a new pop-up window, using JavaScript to
define the pop-up.

The only value supported for this attribute is newwindow.

adWinClose

String

Specifies the name of a link that closes a pop-up window. The link
appears at the end of the window content.

For example, if you provide “Close this window” as the value for
this attribute, then “Close this window” appears as a hyperlink in the
last line of the pop-up window. If a customer clicks the link, the
window closes.

adAltText

String

Specifies a text string for the alt attribute of the tag. If you
do not include this attribute, the tag does not specify an alt
attribute.

adBorder

Integer

Specifies the value for the border attribute of the tag. If
you do not include this attribute, the border attribute is given a
value of "0".

Other Shockwave Attributes

Table 13-3 describes other attributes, in addition to adweight, that you can associate
with Shockwave files. Ad placeholders and the <ad:adTarget> tag format these
values as attributes of the <OBJECT> tag, which Internet Explorer on Windows uses to
display the file, and the <EMBED> tag, which browsers that support the
Netscape-compatible plug-in use to display the file.

For more information about these attributes, refer to your Shockwave developer
documentation.

13-8 WebLogic Portal Development Guide

Loading Ads Into Your Content Management System

Table 13-3 Attributes for Shockwave Files

Attribute Name Value Type Description and Recommendations

swiLoop String Specifies whether the movie repeats indefinitely (t rue) or stops
when it reaches the last frame (false).
Valid values are true or false. If you do not define this attribute,
the default value is true.

swfQuality String Determines the quality of visual image. Lower qualities can result in
faster playback times, depending on the client’s Internet
connection.
Valid values are 1ow, high, autolow, autohigh, best.

swfPlay String Specifies whether the movie begins playing immediately on loading
in the browser.
Valid values are true or f£alse. If you do not define this attribute,
the default value is true.

swfBGColor String Specifies the background color of the movie. This attribute does not
affect the background color of the HTML page.
Valid value syntax is #RRGGBB.

swfScale String Determines the dimensions of the movie in relation to the area that
the HTML page defines for the movie.
Valid values are showall, noborder, exact fit.

swfAlign String Determines whether the movie aligns with the center, left, top, right,
or bottom of the browser window.
If you do not specify a value, the movie is aligned in the center of
the browser.
Valid values are 1, t, r, b.

swifSAlign String Determines the movie’s alignment in relation to the browser
window.
Valid valuesare 1, t, r, b, t1, tr, bl, br.

swfBase String Specifies the directory or URL used to resolve relative pathnames in

the movie.

Valid values are . (period), directory-name, URL.

WebLogic Portal Development Guide ~ 13-9

13 Setting Up Campaign Services

Table 13-3 Attributes for Shockwave Files (Continued)

Attribute Name Value Type Description and Recommendations

swfMenu String Determines whether the movie player displays the full menu.

Valid values are true or false.

Step 3. Move Files Into the dmsBase/Ads Directory Tree

To make the ads available to the campaign, place all HTML, image, and Shockwave
files, and all attributes files into the Ads directory, which is located at the following
path:

<BEA_HOME>/user projects/<YOUR-APPLICATIONDOMAIN>/dmsBase/Ads

(where <BEA HOME> is the directory in which you installed BEA WebLogic Platform
and where <YOUR-APPLICATIONDOMAIN > is the directory of the particular domain).

You can place documents in subdirectories of the Ads directory, although the reference
content management system does not use the subdirectories to organize documents.

If you use subdirectories to manage your source files, you must place the attributes
files in the same directory as the files that they describe. For example,
superDrill.jpg and superDrill.jpg.md.properties must be in the same
directory.

Step 4. Run the loadads Script

The 1oadads script (Loadad . bat for Windows user; 1oadad . sh for Unix users) runs
the BulkLoader to load documents from the dmsBase/Ads directory to the content
management system. It also attaches attributes to the documents.

To run loadads, do one of the following:

m Type loadads at the command line (or Start = Run in Windows NT or 2000).
Be sure you are in the <BEA HOME>/user projects/
<YOUR-APPLICATIONDOMAIN>/dmsBase directory.

OR

m Open Windows Explorer, locate 1oadads in the
<BEA HOME>/user_ projects/<YOUR-APPLICATIONDOMAIN>/dmsBase
directory, and double-click it in the file list.

13-10 WebLogic Portal Development Guide

Creating Personalized E-mails for Campaigns

For more information on running the BulkLoader, please see “Adding Content by
Using the Bulk Loader” on page 8-1.

Creating Personalized E-mails for
Campaigns

The E-mail service uses a JSP to generate e-mail and provides a utility for sending the
e-mail in batches. Because the Mail service uses a JSP to generate e-mail, you can use
JSP tags to personalize the e-mail. This section shows you how to create personalized
e-mails for campaigns by following these steps:

m Step 1. Configure the E-mail Properties
m Step 2. Find Names of User Properties

m Step 3. Create E-mail JSPs

Step 1. Configure the E-mail Properties

Before a campaign can send e-mail, you must configure properties that the Campaign
Service uses to send and receive mail. In a clustered environment, WebLogic Server
propagates these properties to each node in the cluster.

To configure mail-related properties, do the following:
1. From the E-Business Control Center, open your application.

2. Inthe E-Business Control Center Explorer window, click the Site Infrastructure
tab.

3. Click User Profiles and find the following:

e The name of the property set and the property that defines customer e-mail
addresses.

e The name of the property set and the property that records a customer’s
preference for receiving campaign-related e-mail. The reference applications

WebLogic Portal Development Guide 13-11

13 Setting Up Campaign Services

store this preference in the Demographics property set in the Email Opt In

property.

Step 2. Find Names of User Properties

13-12

1. Start your server and access the WebLogic Server Administration Console for the

domain.

2. Inthe left pane of the WebLogic Server Administration Console, click
Deployments—> Applications > myApplication > Service Configuration >

Campaign Service.

3. On the Campaign Service Page, click the Mail Action tab.

4. On the Mail Action tab, enter the following values.

Table 13-4 Mail Action Tab Values

In this box...

Enter this value...

Default From Email

The default address that receives any replies from e-mail that

Address the campaign sends. In a standard mail header, this is the
From address.
Each campaign scenario can specify its own From address
that overrides this default property.

Email Address Property The name of the property that contains customer e-mail

Name addresses.

Property Set Name The name of the property set that contains customer e-mail

Containing Email Address properties.

Property

Email Opt In Property The name of the property that specifies whether customers

Name want to receive campaign-related email. The reference
applications store this preference in the Demographics
property set in the Email Opt_In property.

Property Set Name The name of the property set that contains the customer’s

Containing Opt In Property

opt-in property.

5. Click Apply.

WebLogic Portal Development Guide

Creating Personalized E-mails for Campaigns

All e-mail that the Campaign Service generates will now use these settings.

6. Configure the default SMTP host name for the Mail Service by clicking Mail
Service in the left pane.

Note: Any changes that you make on the Mail Service page affects all e-mails
that you send using WebLogic Portal (whether or not they are generated by
the Campaign Service).

Step 3. Create E-mail JSPs

The Mail Service requires that you place the content and formatting of your e-mails in
a JSP file. In this JSP, you can use any of the JSP tags and APIs that are available to
other JSPs in WebLogic Portal.

This step describes the following:
m E-mail Parameters
m Disabling Session Generation
m Sample E-mail JSP

m Saving E-Mail JSPs

E-mail Parameters

When a scenario action requests an e-mail JSP, it passes a userid parameter, which
specifies the login name of the customer who triggered the scenario action. By using
the request . getParameter () method, you can retrieve the user ID and pass it to JSP
tags in the e-mail JSP.

In addition, the scenario passes the following parameters (you can also pass these
parameters to JSP tags in the e-mail JSP):

B scenarioId, which specifies the ID of the scenario that triggered the e-mail.

B scenarioName, which specifies the name of the scenario that triggered the
e-mail.

B containerId, which specifies the ID of the campaign to which the scenario
belongs.

WebLogic Portal Development Guide 13-13

13 Setting Up Campaign Services

®m containerName, which specifies the name of the campaign to which the
scenario belongs.

Disabling Session Generation

The Java class that the Campaign Service uses to generate email from a JSP,
InternalRequestDispatcher, also generates an HTTPSession object. Usually,
generating this HTTPSession from an email JSP is extraneous because your
application already generates an HTTPSession object when a customer accesses your
site.

To disable the generation of an extraneous HTTPSession, add the following directive
to the beginning of the JSPs that you use to generate email for campaigns:

<%@ page session="false" %>

Adding this directive is necessary only if your application generates HTTPSession
objects when customers access your site (or log in) and only for email that is generated
via the InternalRequestDispatcher.

Sample E-mail JSP

Listing 13-3 shows the e-mail JSP that is part of the sample Web application. The file
islounedat<BEA_HOME>/weblogic700/samples/portal/
wlcsDomain/beaApps/wlcsApp/wlcs/campaigns/emails/

Listing 13-3 Sample E-mail JSP

Samplel.jsp
<%@ page session="false" %>
<%@ page contentType="text/plain" %>

(This sample e-mail was automatically sent out as part of a sample
campaign that you triggered while registering as a new user on the
BEA Commerce Templates.)

Hello <%= request.getParameter ("userId") %>,

Thank you for taking the time to become a registered member of our
site. We hope you took advantage of your $10 discount on a purchase
of $50 or more after you registered!

13-14 WebLogic Portal Development Guide

Creating Personalized E-mails for Campaigns

In addition, your registration entitles you to premium services
including:

**Special "Members Only" discounts
**Advance notice of new product releases

**A personalized customer experience customized to
your specific interests

Thanks again for becoming a registered member.

Best Regards

Saving E-Mail JSPs

You must save e-mail JSPs in a specific directory within a Web application so that
E-Business Control Center user can browse and select the e-mail for a campaign.

By default, the directory is myApp/myWebApp/campaigns/emails.
(Where myWebApp is the name of a Web application containing the campaign)

For example, the Web application wlcs provides a sample e-mail in the following
directory:

<BEA HOME>/weblogic700/samples/portal/wlcsDomain/beaApps/wlcsApp/
wlcs/campaigns/emails/Samplel.jsp

To choose this e-mail as part of a scenario action, do the following:
1. Open the wicsApp application in the E-Business Control Center.

2. While creating an E-mail action, to browse through all e-mail JSPs that have been
Savedin<BEA_HOME>/weblogic700/samples/portal/wlcsDomain/
beaApps/wlcshApp/wlcs/campaigns/emails and select Samplel.jsp for the
scenario.

To change the default location in which you save e-mail JSPs, do the following:

1. From the WebLogic Server Administration Console, in the left pane, click
Deployments > Applications = myApplication > Service Configuration >
Campaign Service.

2. On the Campaign Service page, click the Configuration tab.

WebLogic Portal Development Guide 13-15

13 Setting Up Campaign Services

3. In the Base Directory for Email Browsing box, enter a pathname that is relative
to the root directory of a Web application.

Sending Bulk Mail

You must periodically use a command to send the batched e-mail that the JSPs store
in the WebLogic Portal data repository. You can also use cron or any other scheduler
that your operating system supports to issue the send-mail command.

This section includes information on the following subsections:
m Sending Mail from a Remote Host or in a Clustered Environment
m Sending Bulk E-mail

m Scheduling Bulk E-mail Delivery

Sending Mail from a Remote Host or in a Clustered
Environment

The send-mail wrapper script specifies the name and listen port of the WebLogic Portal
host that processes the send-mail request. By default, the wrapper script specifies
localhost: 7501 for the hostname and listen port. However, localhost: 7501 is
valid only when you run the script while logged in to a WebLogic Portal host in a
single-node environment (and only if you did not modify the default listen port).

Before you use the send-mail script from any other configuration, you must modify the
script by doing one of the following tasks:

m Modify the Send-Mail Script to Work from a Remote Host

m Modify the Send-Mail Script to Work in a Clustered Environment

13-16 WebLogic Portal Development Guide

Sending Bulk Mail

Modify the Send-Mail Script to Work from a Remote Host

If you want to run the send-mail script from a remote host (that is, a computer that is
not a WebLogic Portal host), do the following:

1.

Open the following file in a text editor:

<BEA HOME>\weblogic700\portal\bin\win32\mailmanager.bat
(Windows)

<BEA_HOME>\weblogic700\portal\bin\win32\mailmanager.sh (Unix)

In the mailmanager script, in the SET HOST= line, replace localhost with the
name of a WebLogic Portal host.

If the host uses a listen port other than 7501, in the SET PORT= line, replace 7501
with the correct listen port.

4. Save the mailmanager script.

Modify the Send-Mail Script to Work in a Clustered Environment

If you work in a clustered environment, you must modify the send-mail wrapper script
to specify the name of a host in the cluster. The default localhost value is not valid for
the Mail Service in a clustered environment.

To use the send-mail script in a clustered environment, do the following on each host
from which you want to run the script:

1.

Open the following file in a text editor:

<BEA_HOME>\weblogic700\portal\bin\win32\mailmanager.bat
(Windows)

<BEA_HOME>\weblogic700\portal\bin\win32\mailmanager.sh (Unix)

In the mailmanager script, in the SET HOST= line, replace localhost with the
name of a WebLogic Portal host. Because each host in a cluster can access the
data repository that stores the e-mail messages, you can specify the name of any
host in the cluster.

If the host uses a listen port other than 7501, in the SET PORT= line, replace 7501
with the correct listen port.

4. Save the mailmanager script.

WebLogic Portal Development Guide 13-17

13 Setting Up Campaign Services

Sending Bulk E-mail

To send bulk e-mail, do the following from a shell that is logged in to a WebLogic
Portal host:

1.

To determine the names and contents of the e-mail batches in the data repository,
enter the following command:

mailmanager.bat appName list (Windows)
mailmanager.sh appName list (Unix)

where appName is the name of the enterprise application that generated the
e-mail batch. The command prints to standard out. You can use shell commands
to direct the output to files.

To send a batch and remove it from the data repository, enter the following
command:

mailmanager.bat appName send-delete batch-name (Windows)

mailmanager.sh appName send-delete batch-name (Unix)

Scheduling Bulk E-mail Delivery

You can use a scheduling utility to send the e-mail batches in the data repository.
Because you must specify the name of a batch when you use the mailmanager
command to send mail, you must schedule sending mail for each campaign scenario
separately. The name of a batch corresponds to the scenario’s container ID. For
information about the container ID, refer to “E-mail Parameters” on page 13-13.

For information in using a scheduling utility, refer to the documentation for your
operating system.

Deleting E-mail Batches

You can delete e-mail batches as you send them (as described in Sending Bulk E-mail).
You can also do the following to delete e-mail batches:

13-18 WebLogic Portal Development Guide

Sending Bulk Mail

Determine the names and contents of the e-mail batches in the data repository by
entering the following command:

mailmanager.bat appName list (Windows)
mailmanager.sh appName list (Unix)

where appName is the name of the enterprise application that generated the
e-mail batch. The command prints to standard out. You can use shell commands
to direct the output to files.

Delete a batch by entering the following command:
mailmanager.bat appName delete batch-name (Windows)

mailmanager.bat appName delete batch-name (UniX)

WebLogic Portal Development Guide 13-19

13 setting Up Campaign Services

13-20 WebLogic Portal Development Guide

Integrating a Portal with Business Transaction Services

14 Setting Up Commerce
Services

Among the important commerce services available with WebLogic Portal are those
that pertain to such business transaction services as taxation and payment and the
product catalog service. Development tasks associated with these services include
integrating both local and third-party taxation services and integrating local and
third-party payment services. For the product catalog service, development tasks
include loading data into the catalog database and creating and enhancing a custom
catalog service.

This section includes information on the following subjects:
m Integrating a Portal with Business Transaction Services

m Supporting a Product Catalog

Integrating a Portal with Business
Transaction Services

WebLogic Portal can be integrated with such business transaction services as taxation
and payment services. Adding these services to a portal extends the functionality of the
portal by allowing it to leverage external services for use locally. Integrating these
services is a development function, requiring you to update specific EJBs in the
enterprise application and URLSs specific configuration files. Those modifications are
described in this document.

WebLogic Portal Development Guide 14-1

14 Setting Up Commerce Services

This section includes information on the following subjects:
m Integrating with a Taxation Service

e If the Third-Party Vendor Hosts the Web Service

e If Your Organization Hosts the Web Service
m Integrating with a Payment Service

e If the Third-Party Vendor Hosts the Web Service

o If Your Organization Hosts the Web Service

e Guidelines for Modifying the Credit Card Web Service EJB

Integrating with a Taxation Service

The Tax Web service installed with WebLogic Portal provides a default framework for
handling tax calculations on transactions received from the default TaxCalculator
EJB. The business methods implement a standard workflow that is associated with the
completion of order taxation. (The Tax Web service is itself a stateless session EJB
wrapped in code that makes it a Web service.)

Integrating your enterprise applications with the Tax Web service involves modifying
either the TaxCalculator EJB or the Tax Web service, depending on who will host
the Web service: your organization or the third-party tax calculation vendor.

Important Notice The default Tax Web service that ships with WebLogic Portal
automatically applies a 5% tax to an order. This default application of taxes is not
designed for production use. You must integrate with your third-party vendor’s tax
service to calculate taxes properly.

If the Third-Party Vendor Hosts the Web Service

14-2

If the third-party vendor hosts the Tax Web service, the vendor will integrate the Web
service with their program’s API, and modify the TaxWebService EJB inside the Web
service to translate the SOAP calls—the SOAP calls your enterprise application’s
TaxCalculator EJB sends it to the Web service—into messages their API can
understand, and to create proper return SOAP calls to your TaxCalculator EJB.

To connect to the vendor-hosted Web service, use this procedure:

WebLogic Portal Development Guide

Integrating a Portal with Business Transaction Services

1. If the vendor has modified any of AvsS*.class or Tax*.class files in the Web
service’s tax.jar file, duplicate those modifications in your enterprise
application. You can find the source code for these classes in:

<BEA HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
wlcsApp\src\examples\wlcs\sampleapp\tax\

2. Compile the source files either by running javac from a command line or as
directed by your Java editor.

3. Make any vendor-required modifications to the TaxCalculator EJB in your
enterprise application so that it makes appropriate SOAP calls to the vendor’s
TaxWebService EJB. You can find the source code for the TaxCalculator EJB in:

<BEA HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
wlcsApp\src\examples\wlcs\sampleapp\tax\

4. Compile the source file either by running javac from a command line or as
directed by your Java editor.

5. After you compile your source code, add the class files to the wlcsSamples.jar
in your enterprise application folder. When you add them to the . jar, maintain
their relative directory structure.

6. Run the EJB compiler (ejbc) on the wlcsSample.jar file.

7. Inthe application-config.xml file in the Meta-inf subdirectory of your
application, locate the <TaxServiceClient> element, and modify the URL in
the TaxCalculatorWsDL attribute to connect to the TaxWebService WSDL file
on the vendor’s server.

At startup, WebLogic Server reads the application-config.xml file, so it knows
where to find the Web service.

If Your Organization Hosts the Web Service

If your organization hosts the Tax Web service, deploy the Web service on a separate
Java Virtual Machine (JVM) than what your enterprise applications are running on.
This way, if the Web service goes down and freezes the JVM it is running on, your
enterprise application’s JVM will continue to run.

To connect to a Tax Web service hosted by your organization, use this procedure:

1. Obtain your third-party vendor’s tax calculation product API.

WebLogic Portal Development Guide ~ 14-3

14 Setting Up Commerce Services

14-4

10.

Modify the TaxWebService EJB (the Web service’s EJB) so that it translates
SOAP calls into the language of the third-party product’s API. You can find the
source code for the TaxWebService EJB in the following directory:

<BEA HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
wlcsApp\src\examples\wlcs\sampleapp\tax\

Compile the source file either by running javac from a command line or as
directed by your Java editor.

After you have compiled the source code, add the class file to tax.jar in the
taxwWsApp directory. When you add the file to the . jar, maintain its relative
directory structure.

Use the Web service generator (servicegen) on the tax.jar file to build a file
Called tax-webservice.war.

For information on using wsgen, see ‘“Programming WebLogic Server Web
Services” at http://edocs.bea.com/wls/docs70/webserv/index.html.

Make any necessary modifications to the TaxCalculator EJB in your enterprise
application so that it makes appropriate SOAP calls to the TaxWebService EJB.
You can find the source code for the TaxCalculator EJB in:

<BEA_HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
wlcsApp\src\examples\wlcs\sampleapp\tax\

Compile the source file either by running javac from a command line or as
directed by your Java editor.

After you compile your source code, add the class file to wlcsSamples.jar in your
enterprise application’s root folder. When you add the file to the . jar, maintain
its relative directory structure.

Run the EJB compiler (ejbc) on the wlcsSample. jar file.

In the application-config.xml file in the META-INF subdirectory of your
application, locate the <TaxServiceClients> element, and modify the URL in
the TaxCalculatorWSDL attribute to connect to the TaxWebService WSDL file
on your Web service’s server.

At startup, WebLogic Server reads the application-config.xml file, so it knows
where to find the Web service.

WebLogic Portal Development Guide

Integrating a Portal with Business Transaction Services

Integrating with a Payment Service

The Credit Card Web service that is installed with WebLogic Portal provides a default
framework for handling authorization, capture, and settlement of credit card
transactions received from the default CreditCardService EJB. The business methods
implement a standard workflow that is associated with the completion of credit card
transactions. The current state of the transaction is maintained and each action is
logged. (The Credit Card Web service is itself a stateless session EJB wrapped in code
that makes it a Web service.)

Integrating your enterprise applications with the Payment Web service involves
modifying either the CreditCardService EJB or the Credit Card Web service,
depending on who will host the Web service: your organization or the third-party
payment vendor.

Important Notice The default Payment Web service that ships with WebLogic
Portal always sends payment information through without any errors, as if it were
connected to and approved by a third-party payment service. This default processing
of payment is not designed for production use. You must integrate with your
third-party vendor’s payment service to process payment correctly.

If the Third-Party Vendor Hosts the Web Service

If the third-party vendor hosts the Credit Card Web service, the vendor will integrate
the Web service with their program’s API, and modify the CreditCardwebService
EJB inside the Web service to translate the SOAP calls—the SOAP calls your
enterprise application’s CreditCardService EJB sends to the Web service—into
messages their API can understand, and to create proper return SOAP calls to your
CreditCardService EJB.

To connect to the vendor-hosted Credit Card Web service, use this procedure:

1. If the vendor has modified any of ps*.class files in the Web service’s
payment .jar file, duplicate those modifications in your enterprise application.
You can find the source code for these classes in:

<BEA HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
wlcsApp\src\examples\wlcs\sampleapp\payment

2. Compile the source files either by running javac from a command line or as
directed by your Java editor.

WebLogic Portal Development Guide ~ 14-5

14 Setting Up Commerce Services

3. Make any vendor-required modifications to the CreditCardservice EJB in
your enterprise application so that it makes appropriate SOAP calls to the
vendor’s CreditCardWebService EJB. You can find the source code for the
CreditCardService EJB in:

<BEA HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
wlcsApp\src\examples\wlcs\sampleapp\payment

4. Compile the source file either by running javac from a command line or as
directed by your Java editor.

5. After you compile your source code, add the class files to the wlcsSamples.jar
in your enterprise application folder. When you add them to the . jar, maintain
their relative directory structure.

6. Run the EJB compiler (ejbc) on the wlcsSample. jar file.

7. Inthe application-config.xml file in the Meta-inf subdirectory of your
application, locate the <PaymentServiceClient> element, and modify the URL
in the PaymentWebServiceWSDL attribute to connect to the
CreditCardWebService WSDL file on the vendor’s server.

At startup, WebLogic Server reads the application-config.xml file, so it knows
where to find the Web service.

Important Security Information

Since a Web services is SOAP (that is, XML over HTTP), you are passing credit card
information over the Web in plain text. Hackers listening in can track this information
for nefarious purposes. BEA strongly recommends that you set up a dedicated line to
the credit card processing provider and add a Secure Socket Layer (SSL) to the HTTP
communication taking place. You should also choose a credit card provider that
encrypts all communications.

If Your Organization Hosts the Web Service

14-6

If your organization hosts the Credit Card Web service, we strongly recommend that
you deploy the Web service on a separate Java Virtual Machine (JVM) than what your
enterprise applications are running on. This way, if the Web service goes down and
freezes the JVM it is running on, your enterprise application’s JVM will continue to
run.

WebLogic Portal Development Guide

Integrating a Portal with Business Transaction Services

To connect to a Credit Card Web service hosted by your organization, use this
procedure:

1.
2.

Obtain your third-party vendor’s payment product API.

Modify the creditCardwWebService EJB (the Web service EJB) so that it
translates SOAP calls into the language of the third-party product’s API. You can
find the source code for the CreditCardwebService EJB in the following
directory:

<BEA_HOME>\Weblogic700\samples\samples\wlcsDomain\beaApps\
wlcsApp\src\examples\wlcs\sampleapp\payment

Compile the source file either by running javac from a command line or as
directed by your Java editor.

After you have compiled the source code, add the class file to payment . jar in
the paymentwsapp folder. When you add the file to the .jar, maintain its relative
directory structure.

Use the Web service generator (servicegen) on the payment . jar file to build a
file called payment -webservice.war.

For information on using servicegen, see “Programming WebLogic Server
Web Services” at http://edocs.bea.com/wls/docs70/webserv/index.html.

Make any necessary modifications to the CreditCardService EJB in your
enterprise application so that it makes appropriate SOAP calls to the
CreditCardWebsService EJB. You can find the source code for the
CreditCardService EJB in:

<BEA_HOME>\Weblogic700\samples\samples\wlcsDomain\beaApps\
wlcsApp\src\examples\wlcs\sampleapp\payment

Compile the source file either by running javac from a command line or as
directed by your Java editor.

After you compile your source code, add the class file to wicsSamples.jar in
your enterprise application’s root directory. When you add the file to the JAR,
maintain its relative directory structure.

Run the EJB compiler (ejbc) on the wlcsSample. jar file.

WebLogic Portal Development Guide — 14-7

14 Setting Up Commerce Services

10. In the application-config.xml file in the META - INF subdirectory of your
application, locate the <PaymentServiceClients> element, and modify the
URL in the PaymentWebServiceWSDL attribute to connect to the
CreditCardWebService wsDL file on the your Web service’s server.

At startup, WebLogic Server reads the application-config.xml file, so it knows where
to find the Web service.

Guidelines for Modifying the Credit Card Web Service EJB

14-8

The Payment service EJB is a stateless session bean that provides services related to
the authorization, capture, and settlement of credit card transactions. The Credit Card
Web service EJB serves as an interface behind which integrations with various
payment solutions can be implemented. The current state of each transaction is
maintained and each action is journaled. General characteristics of transactions are
described in the following list:

m Each transaction is initiated with a request to authorize. This authorization
generally results in the creation of a persistent PaymentTransaction. The state of
the payment and the key for that PaymentTransaction is returned in a
TransactionResponse as well as service specific information. A handle for that
PaymentTransaction can be obtained from the TransactionResponse.

m In the event that the initial authorization fails due to a failure to connect to the
payment authorization service, it is possible to retry the authorization using the
reauthorize method.

®m An authorized transaction can be captured or settled depending on how the
service is configured.

By law you can only capture a transaction if the goods have been shipped. For
example, if you buy a book online from a vendor and that book will take two
days to ship, the vendor can only authorize the transaction but not capture it.
Two days later, when the product ships, the vendor can capture the transaction.
However, if you are buying software online and downloading it immediately, the
vendor can authorize and capture the transaction then and there, since the order
and the actual shipment download seconds apart.

® An entire transaction can be completed in a single AuthorizeAndCapture.

m Sites that experience a high volume of traffic should run the authorize or capture
process offline. This process usually takes 3-8 seconds, and if you have
thousands of users, this could slow down your site. If a site does run the

WebLogic Portal Development Guide

Supporting a Product Catalog

authorize or capture process offline, it should use separate machines for this
process to ensure processing integrity.

Supporting a Product Catalog

This section describes the development tasks associated with supporting a product
catalog. Some of the tasks discussed below will apply to product catalogs built with
resources supplied by BEA (see “Creating and Administering a Catalog” in the
Administration Guide at
http://edocs.bea.com/wlp/docs70/../admin/commerce.htm#1167188). Others apply to
a custom catalog service that you can build by implementing the appropriate Stateless
Session EJB service API. In addition, you will see how to display your catalog by using
JSPs, and integrate a catalog service with a catalog cache.

This section includes information on the following subjects:

m Loading Your Product Data Into the Product Catalog Database Schema
m Showing a Catalog in a JSP

m Hooking Up a Catalog to a Shopping Cart

m Integrating Services With the Catalog Cache

Loading Your Product Data Into the Product Catalog
Database Schema

The most important development tasks is to get information about your products into
a form that WebLogic can understand. Use the DBLoader program to do this. The
DBLoader lets you load, all at once, any data into any table in a database.

Creating your product catalog by using the DBLoader requires these steps:
m Step 1: Prepare to Use DBLoader

m Step 2: Edit the databaseload.properties File

WebLogic Portal Development Guide ~— 14-9

14 Setting Up Commerce Services

m Step 3: Load Data by Running the DBLoader Program

m Step 4: Troubleshoot Using the DBLoader Log Files

Step 1: Prepare to Use DBLoader

Before you can add your product information to the database, consider the following
database issues, and prepare your input files.

m Review Important Database Considerations

m Prepare Product Information Input Files to Load Into the Product Catalog
Schema

Review Important Database Considerations

Some important database considerations that you should keep in mind while using the
DBLoader program are:

Consider Referential Integrity and Constraints The schema for the Product
Catalog enforces data and referential integrity between tables with the use of
constraints. For example, the primary key constraint on WLCS PRODUCT and
WLCS_CATEGORY, or the foreign key constraint on WLCS PRODUCT CATEGORY.

Primary keys and unique indexes prevent the possibility of placing duplicate entries in
the table. Foreign key constraints ensure referential integrity by making certain that the
parent key already exists before allowing the child record to be written to the database.

Note: For every WLCS_PRODUCT and WLCS_CATEGORY table entry, a corresponding
entry in the CATALOG ENTITY table must also be made.

Consider Strings in Java All Strings in Java are represented as a series of Unicode
2.0 characters. Unicode 2.0 is a 16-bit character encoding that supports the world’s
major languages. Therefore, when reading text into and writing text out of the JVM,
an encoding scheme must be used to convert the “native” encoding used by the
operating system to or from Unicode 2.0. Data in text files is automatically converted
to Unicode 2.0 when its encoding matches the default file encoding of the Java Virtual
Machine (and that of the operating system).

14-10 WebLogic Portal Development Guide

Supporting a Product Catalog

Prepare Product Information Input Files to Load Into the Product Catalog Schema

Follow the rules in this section to create input files (text files) containing your product
information that you want to use in your Web site. Create a separate file for every
database table.

Verify Input File’s File Structure The input data file is, by default, a
pipe-separated value text file. The input file has the following structure:

First row: header containing the table name

Second row: column names for that table

Third row: data types for the columns listed on the second row

Fourth through Ntk row: input data

Table 14-1 shows the input file structure.

Table 14-1 Input File Structure

Row

Content

First Row

The header of the file must identify:

m The number of records to be loaded. DBLoader will use this
number as a reference point only. It will process all the records
in the file regardless of this indicator.

m The name of the table to be loaded with data in the database.

Second Row

The second row identifies the table column names into which you
are loading data. You must include the primary key column or
columns in the input file. Preface each primary key column name
with an asterisk (*). Apart from primary keys in tables, all other
columns are defaulted as NULL. Thus, you may omit column names
where NULL is an acceptable value, and specify only those with
non-NULL values.

Third Row

The third row specifies the data type of each column being loaded.

Fourth Through N
Rows

All subsequent lines in the input data file contain the data values.

Listing 14-1 shows an example of a simple input file.

WebLogic Portal Development Guide — 14-11

14 Setting Up Commerce Services

Listing 14-1 Simple Input File

3 |WLCS_PRODUCT

*SKU|NAME | IN_STOCK|EST_SHIP TIME|SPECIAL NOTES|CREATION DATE
VARCHAR | VARCHAR | VARCHAR | VARCHAR | VARCHAR | DATE

P123|CoolKid|N|Out of stock until further notice|Special order
only|02-0ct-2000

P124 |FastKid|Y|One week|No special order|02-Oct-2000

P125|RadSneakers|Y| |regular stock|02-0Oct-2000

Note: You can also view a sample input file at the following location:
<PORTAL_ HOME>\db\data\sample\wlcs\hardware\PRODUCT.dat

Empty input strings Empty input strings from the data file are inserted into
database as empty strings. You must account for each unspecified column in the input
record by including the delimiter character (by default, a comma) in the correct
position (matching the position of the columns you listed in line 2, the column names).
For example:

P125|RadSneakers|Y| |regular stock|02-0ct-2000

Unspecified values for non-primary-key fields In the previous example a
value for the fourth identified column (EST SHIP TIME) was not specified. This

condition is acceptable because this column is not a primary key for the database

record. The column’s value is stored as an empty string.

Note: If you intend to store a null value in the database for a non-primary-key
column, you should enter NULL in the correct position for the column in that
record. Do not enclose NULL in quotes as that will cause the column to be
stored as a string.

Step 2: Edit the databaseload.properties File

14-12

The DBLoader uses the information in the databaseload.properties file to
determine information about the data and loading process, including what driver,
database, or login to use. Open the databaseload.properties file in the
<PORTAL_HOME>\db directory. Uncomment the lines for the database you want to use,
and enter the correct settings. Be sure to comment out the Pointbase lines if you are
using another database.

WebLogic Portal Development Guide

Supporting a Product Catalog

Any comment lines in the databaseload.properties file are prefixed with the #
character. Both comment lines and blank lines are allowed.

Table 14-2 databaseload.properties File Settings and Possible Values

Property Name

Default Value

Description

jdbcdriver

See databaseload.properties.

Specify which JDBC driver to use to connect to
your database. The default driver is the
Pointbase JDBC driver that ships with
WebLogic.

connection

See databaseload.properties.

Database connection string required for the
driver to connect to your database.

dblogin

See databaseload.properties.

The database username. The login name must
have read/write privileges on the affected
tables.

dbpassword

See databaseload.properties.

The database user password.

delimiter

You can change the recognized delimiter
character that is used to separate values in the
input data file. Choose another character, such
as the circumflex (*) as a delimiter.

dateformat

dateformat=mm-YY-dd

Identifies the format that will be used for date
columns in the input data. Date format is locale
specific. Other formats are commented out in
the databaseload.properties file.

timestamptable

WLCS_CATEGORY,
WLCS_PRODUCT

Identifies the database tables to which
DBLoader will track updates (for these two
tables). The column name is fixed in the schema
provided by the commerce services. However,
if you are using DBLoader for other tables (not
WLCS tables), you can specify other column
names of your own.

WebLogic Portal Development Guide 14-13

14 Setting Up Commerce Services

Property Name Default Value

Description

timestampfield MODIFIED DATE

Specifies the column in the WLCS_CATEGORY
and WLCS_ PRODUCT tables that identifies the
last time this record in the table was modified.
The value of the column specified is used by
DBLoader to learn when the most recent update
was made in each record in the tables identified
in the timestamptable property. The
column name is fixed in the schema provided by
the Commerce services. However, if you are
using DBLoader for other tables (not WLCS
tables), you can specify other column names of
your own.

commitTxn 50

Sets how many records are loaded before
committing the updates in the database. If the
value is less than or equal to one, DBLoader
will commit after loading each record.

encoding Not specified in the
databaseload.properties file;
therefore, the default is the Java 2
SDK’s platform default.

Sets the multibyte character encoding type. The
property value supplied can be UCS2 or UTF8.

When writing data into and reading data out of
the database, Java will transparently convert
from the native character encoding used by your
systems and Unicode 2.0. There is nothing
special that you must do.

However, if you need to write/read data to/from
the database that is encoded differently than
your system’s native encoding, you will have to
explicitly perform the translation.

Step 3: Load Data by Running the DBLoader Program

Now that you have created the input files and set up the databaseload.properties
file correctly, run the databaseload script to start the DBLoader program.

m Review databaseload Basics

® Non-Windows Environment — Prepare to Run the Script

m Run the databaseload Script

14-14 WebLogic Portal Development Guide

Supporting a Product Catalog

Review databaseload Basics
The script is located at:
M <PORTAL_HOME>\db (Windows)

M <PORTAL HOME>/db (UNIX)
Note: PORTAL HOME is the directory where you installed WebLogic Portal.

The databaseload script performs the tasks:
m Configures your environment for the duration of execution of this program
m Specifies where to find the data input file

m Launches the DBLoader program

Non-Windows Environment — Prepare to Run the Script

In a non-Windows environment, before you can run the databaseload script, make
sure that the set -environment script specifies the same database as the
databaseload.properties file. The set-environment script resides in the same
directory as the databaseload script. For example, if the
databaseload.properties file uses
‘jdbc:pointbase:server://localhost:9092/wlportal’ connections, then
set-environment script should have SET DATABASE=POINTBASE.

As mentioned earlier, DBLoader runs independently of the WebLogic Portal server.
Therefore you do not need to stop the server if you are planning to run the loader.

If you are running the WebLogic Portal server with Oracle, then the drawback might
be a slower performance for the time the data is being loaded into the database.

Note: You might want to back up the particular tables that you are about to update
before running DBLoader. The DBLoader program does not keep history
records in the database.

Run the databaseload Script

The command to run the script has the following format:

>> databaseload { -insert | -update | -delete } input-file.dat

WebLogic Portal Development Guide — 14-15

14 Setting Up Commerce Services

For example:
>> databaseload -update product_ categories.dat

In the previous example, the DBLoader program will update rows in the product
catalog database that match the primary keys specified in the category.dat input file.

Selecting the type of operation You must select one of the three possible
operations: -insert, -update, or -delete.

UNIX and privileges On UNIX systems, the databaseload. sh file needs to have
its default protections set to include execute privilege. A typical way to do this is with
the command:

$ chmod +x databaseload.sh

Loading data into several tables To insert, update, or delete data in several
tables, run the databaseload script separately for each table, providing the
corresponding input filename as a parameter. The order of tables being updated should
use the same data integrity rules as all other SQL statements. For example, insert rows
into the parent table with the primary key constraint before inserting rows into the child
table with the foreign key constraint.

Step 4: Troubleshoot Using the DBLoader Log Files

You can determine errors and other issues that occurred during any particular
DBLoader operation by using the two audit trail log files:

B dbloader.log

B dbloader.err

This section contains the following information:
m Determine When to Review the Files

m Review the dbloader.log File

m Review the dbloader.err File

Determine When to Review the Files

You must check the files immediately after each operation; the files are overwritten by
each DBLoader operation. Both files are created in the same directory where you run
the databaseload script.

14-16 WebLogic Portal Development Guide

Supporting a Product Catalog

Review the dbloader.log File
The dbloader . log file contains the following information:
m The input filename, and the action taken: insert, update, or delete.
m The number of records processed during the load operation.

m The start and end time of the database load processing.

Review the dbloader.err File

If any errors occurred during the attempted database load operation, the
dbloader.err file captures the following information:

m The input filename, and the action taken: insert, update, or delete.

m The timestamp when the failure or exception occurred on the record.

m The index of the failed data record in the input file.

m The reason for the failure or exception and actual the input record’s values.

The DBLoader program checks the number of columns affected by the load (as
specified in the second line of the input data file) against the number of input columns
in each record. Because the column delimiter is a comma (by default), this character is
not allowed in a string input column. If extra commas are supplied inadvertently, such
as punctuation in a LONG_DESC (Long Description) column, an error will result and is
noted in the dbloader.err file. To avoid this type of error, carefully check the
number of commas you are using to separate the input data column values. Or select a
different delimiter character and specify it in the databaseload.properties file.
For more information, see “Step 2: Edit the databaseload.properties File.”

All errors and exceptions are displayed in the console where the DBLoader program is
running. Records with errors in them will be skipped, and the processing continues
until the end of the file. (The program does not roll back a transaction if an error has
occurred.)

WebLogic Portal Development Guide 14-17

14 Setting Up Commerce Services

Showing a Catalog in a JSP

The JavaServer Page (JSP) templates and JSP tags included in the Commerce services
allow you to easily create the presentation part of the Product Catalog. The templates
provide the mechanism for your visitors to view a catalog’s categories and product
items; the JSP tags in the templates implement that functionality.

JSP tag libraries allow you to easily retrieve the attributes of items and categories in
the Product Catalog. You can then format these attributes using HTML tags. Any
HTML editor can be used to create custom layouts. You can also include custom Java
code within the JSPs to display categories and items.

To use the Catalog JSP tags, you need to import the cat . t1d tag library into your JSP
file by including the following code in the JSP:

<%@ taglib uri="cat.tld” prefix="catalog” %>

Three basic tags are used in the JSP templates that compose the default product catalog
supplied by BEA. These tags are:

B <catalog:getPropertys>

Retrieves a property for display from a specified Productltem or Category. Either
explicit or implicit properties may be retrieved.

B <catalog:iterateViewIterators>

Iterates a specified Viewlterator. The Viewlterator may be iterated either by
View (one View per iteration) or by contained Catalog item (one Productltem or
Category per iteration).

B <catalog:iterateThroughViews

Iterates a specified Viewlterator through the Productltems or Categories
contained within a specified View.

You can add additional tags as necessary to meet your business needs.

Using the <catalog:getProperty> Tag

Use the <catalog:getPropertys> tag (Table 14-3) to retrieve a property for display
from either a ProductItem or Category. The property can either be an explicit
property (a property that can be retrieved using a get method on the Catalog item) or
an implicit property (a property available through the ConfigurableEntity

14-18 WebLogic Portal Development Guide

Supporting a Product Catalog

getProperty methods on the Catalog item). The tag first checks to see if the specified
property can be retrieved as an explicit property. If it cannot, the specified property is

retrieved as an implicit property.

Table 14-3 <catalog:getProperty> Tag Attributes

Tag Attribute Required

Type

Description

R/C

getterArgument No

String

Denotes a reference to an object supplied as
an argument to an explicit property getter
method.

May also be used to obtain implicit or
custom properties that are defined using the
property set framework, in which case the
getterArgument would be the scope
name for the property set (see second
example below).

The object must be presented in the form
<%= getterArgumentReference %>
and must be a run-time expression.

id No

String

id="newInstance”

If the id attribute is supplied, the value of
the retrieved property will be available in the
variable name to which id is assigned.
Otherwise, the value of the property is
inlined.

object Yes

Catalog item

Denotes a reference to a ProductItem or
Category object that must be presented in
the form <%= objectReference %>.

propertyName Yes

String

propertyName="propertyName”
Name of the property to retrieve. If the
property is explicit, it may be one of the
values shown in Table 14-4.

returnType No

String

returnType="returnType”

If the 14 attribute is supplied, declares the
type of the variable specified by the id
attribute.

WebLogic Portal Development Guide

14-19

14 Setting Up Commerce Services

14-20

Table 14-4 propertyName Values

Property Name Catalog Item Type
“contributor | coverage | creationDate | Catalog Item
creator | description | image | key | (common properties)
language | modifiedDate | name |

publisher | relation | rights | source”

“jsp” Category
“availability | currentPrice | format | Productltem

jsp | msrp | shippingCode | taxCode |
type | visible”

Example 1: Retrieving the Detail JSP Information From an Item
Listing 14-2 retrieves the detail JSP information from an existing ProductItem:

Listing 14-2 Retrieving the Detail JSP Information From an Item

<%@ taglib uri="cat.tld” prefix="catalog” %>

<catalog:getProperty
object="<%= item %>"
propertyName="Jsp"
getterArgument=
"<%= new Integer (ProductItem.DETAILED DISPLAY JSP_INDEX) %>"
id="detailJdspInfo"
returnType="com.beasys.commerce.ebusiness.catalog.JspInfo"

/>

Example 2: Using the getterArgument Attribute Listing 14-3 shows how to
use the getterArgument attribute to obtain an implicit or custom property for a
property set/schema with the following characteristics:

m Name: MyCatalog

m PropertyName: color

WebLogic Portal Development Guide

Supporting a Product Catalog

Note: Because the getterArgument must be a run-time expression, we assign
MyCatalog to a String variable and use the variable as the value to the
getterArgument.

Listing 14-3 Using the getterArgument Attribute

<%@ taglib uri="cat.tld” prefix="catalog” %>

<%
String myPropertySetName = "MyCatalog";
ProductItem myProductItem = ; // reference to a ProductItem
%>
<catalog:getProperty
object="<%=myProductItem%>
propertyName="color"
getterArgument="<%=myPropertySetName%>"
/>

Using the <catalog:iterateViewlterator> Tag

Use the <catalog:iterateViewIterators tag (Table 14-5) to iterate through a
ViewIterator. A ViewIterator is an iterator over a potentially large collection of
remote data that is broken up into a series of fixed sized Views. View Iterators are
returned from all Catalog service API methods that may potentially return a large set
of ProductItems or Categories. This tag allows you to iterate the ViewIterator
one item (ProductItem Or Category) at a time (the default behavior) or by an entire
view (fixed size set of ProductItems or Categories) ata time. It is important to note
that this tag does not reset the state of the viewIterator upon completion.

Table 14-5 <catalog:iterateViewIterator> Tag Attributes

Tag Attribute Required Type Description R/C
id Yes String id="newInstance” C
The value of the current iterated object will
be available in the variable name to which
the id is assigned.
iterator Yes Viewlterator Denotes a reference to a ViewIterator R

object. Must be presented in the form
<%= iteratorReference %>.

WebLogic Portal Development Guide 14-21

14 Setting Up Commerce Services

Table 14-5 <catalog:iterateViewIterator> Tag Attributes (Continued)

Tag Attribute Required Type Description R/C

iterateByView No String iterateByView=" {true|false}” C

Specifies whether to iterate the
ViewIterator by View or by Catalog
item. If not specified, the ViewIterator
will be iterated by Catalog item.

returnType No String returnType="returnType” C

Declares the type of the variable specified by
the id attribute. Defaults to
java.lang.Object.

If iterateByView is true, the type is
assumed to be
com.beasys.commerce.ebusiness.
catalog.View.

Example 1: Displaying Keys of Categories in a Viewlterator Listing 14-4
displays the keys of all categories in a ViewIterator:

Listing 14-4 Displaying Keys of Categories in a ViewIterator

<%@ taglib uri="cat.tld” prefix="catalog” %>

<catalog:iterateViewIterator
iterator="<%= myIterator %>"
id="category"
returnType="com.beasys.commerce.ebusiness.catalog.Category">
<%= category.getKey () .toString() %>
</catalog:iterateViewIterators>

Example 2: Displaying all Views in a Viewlterator Listing 14-5 displays all the
Views contained within a viewIterator:

Listing 14-5 Displaying all Views in a ViewlIterator

<%@ taglib uri="cat.tld” prefix="catalog” %>

14-22 WebLogic Portal Development Guide

Supporting a Product Catalog

<catalog:iterateViewIterator
iterator="<%= myIterator %>"

id="view"

returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator"

iterateByView="true” >
<%= view.toString() %>

</catalog:iterateViewIterators>

Using the <catalog:iterateThroughView> Tag

The <catalog:iterateThroughviews tag (Table 14-6) iterates through a view of a
specified viewIterator. The tag will iterate the view one Catalog item at a time until
the end of the view is reached. If you do not specify a specific view (by index) through
which to iterate, the current View of the ViewIterator is used. It is important to note
that this tag does not reset the state of the viewIterator upon completion.

Table 14-6 <catalog:iterateThroughViews> Tag Attributes

Tag Attribute

Required Type

Description R/C

id

Yes String

id="newInstance” C
The value of the current iterated object will

be available in the variable name to which

the id is assigned.

iterator

Yes Viewlterator

Denotes a reference to a ViewIterator R
object that must be presented in the form
<%= iteratorReference %>

returnType

No String

returnType="returnType” C

Declares the type of the variable specified by
the 14 attribute. Defaults to
java.lang.Object.

viewIndex

No Integer

Specifies the index of the View (relativeto R
the start of the ViewIterator) through

which to iterate. The referenced object must

be presented in the form <%=
viewIndexIntegerReference %>.

WebLogic Portal Development Guide — 14-23

14 Setting Up Commerce Services

Example 1: Displaying Keys of All Productlitems in Current View of
Viewlterator Listing 14-6 displays the keys of all the ProductItems contained in
the current view of a specified viewIterator:

Listing 14-6 Displaying Keys of All ProductItems in Current View of
Viewlterator

<%@ taglib uri="cat.tld” prefix="catalog” %>

<catalog:iterateThroughView
iterator="<%= mylterator %>"
id="item"
returnType="com.beasys.commerce.ebusiness.catalog.ProductItem">
<%= item.getKey () .toString() %>
</catalog:iterateThroughViews>

Example 2: Displaying Keys of All Productitems in First View of
Viewlterator Listing 14-7 displays the keys of all the Product Items contained in
the first view of a specified ViewIterator:

Listing 14-7 Displaying Keys of All ProductItems in First View of ViewIterator

<%@ taglib uri="cat.tld” prefix="catalog” %>

<catalog:iterateThroughView
iterator="<%= myIterator %>"
id="item"
returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
viewIndex="new Integer (0)”>
<%= item.getKey() .toString() %>

</catalog:iterateThroughViews>

Hooking Up a Catalog to a Shopping Cart

14-24

To hook up a catalog to a shopping cart, you need to implement the

shoppingcart . jsp template in the catalog. This template contains code that manages
a shopping cart service, including implementations of the necessary input processors
and pipeline components used to manage much of the business logic and back-end

WebLogic Portal Development Guide

Supporting a Product Catalog

tasks required to successfully execute the shopping cart service. You can either
implement this template as BEA provides it or you can tailor it to meet your specific
needs.

Implementing shoppingcart.jsp

To implement shopppingcart . jsp, first, ensure that this JSP is stored in the
appropraite portlets folder for the application. Then, do one of the following:

m Directly link shoppingcart. jsp to another JSP by providing a URL from the
referencing page. Depending upon the functionality of the referencing page, you
might need to add a View Cart button or icon to launch the forwarding event.

OR

m Include in the referencing page code a Webflow that calls shoppingcart.jsp.
Depending upon the functionality of the referencing page, you might need to add
a View Cart button or icon to launch the Webflow.

How shoppingcart.jsp Works

Customers can arrive at shoppingcart . jsp template from any product catalog page
by clicking View Cart (or its equivalent) on that page. The shoppingcart.jsp
template displays the items currently in a customer’s shopping cart. For each item the
customer added to their cart (that is still actively part of the current purchase), the
shoppingcart . jsp template displays the quantity, the item name, the list price, the
actual price, a savings amount, and a subtotal. Following this information, a total price
for the order is displayed.

The item quantity is shown in an editable field, allowing customers to change the
quantity of the item simply by typing a new quantity and clicking Update. For your
customers’ convenience, the item name is hyperlinked back to its description in the
product catalog. For each item in the shopping cart, there is also a Delete button and a
Buy Later button. Clicking Delete removes the item from the shopping cart, while
clicking Buy Later causes the item to be moved from the Shopping Cart to the Saved
Items list. For each item shown in the Saved Items list, the hyperlinked item name and
a brief description are displayed. Additionally, Delete and Add to Cart in this section
allows your customers to remove the item altogether or to move it back to their active
Shopping Cart.

WebLogic Portal Development Guide 14-25

14 Setting Up Commerce Services

Description

If customers click a link to an individual product item to review detailed information
about that product item, the next page is the appropriate product catalog page. If they
click on Update, Empty Cart, Delete, or Save for Later, they are returned to the
shopping cart page (shoppingcart . jsp) after the appropriate input processor or
pipeline has been executed to record the modification.

If the customer is satisfied with the contents of their shopping cart as shown on this
page, the customer can initiate the checkout process by clicking Check Out. If this is
the case, the next page is the shipping information page (shipping.jsp).

Notes: If the customer has not yet logged into the site and clicks Check Out, the
customer will be prompted to log in at the 1ogin. jsp template (prior to
loading the shipping.jsp template).

To be able to use the features of the Saved Items list, a customer must have
first logged in.

If there are no items in a customer’s shopping cart, the Empty Cart, Update,
and Check Out buttons will not be available.

If the customer is satisfied with the contents of their shopping cart, the customer can
click the Check Out button to begin the checkout process.

Note: Ifthe customer is not logged into your e-commerce site, they will be prompted
to do so before continuing to the next part of the checkout process.

If your customer wants to start over, the customer can click the Empty Cart button to
empty the entire contents of the shopping cart (both active and saved). If your customer
wants to continue shopping, the customer can click the Continue Shopping button to

return to the product catalog.

Figure 14-1 and Figure 14-2 show annotated versions of the shoppingcart.jsp
template. Figure 14-1 shows the page for a customer who has not logged in:

14-26 WebLogic Portal Development Guide

Supporting a Product Catalog

Figure 14-1 shoppingcart.jsp-Formatted Web Page for a Visitor Who Has Not

Logged In

Quick Look-up:
Enter keywiords

—

@ Don't

- Forget
Extension
Cords!

click hera

Catalag data provided
courtesy of TEN
Reaister, "where

supply mests

demand.'

shoppingcart.jsp

Commerce Templates

Template Index

Click here to see our
‘ @ full line of powerful Routers .,

Home Search Yiew Cart Login

Shopping Cart

Please review the items in your cart before clicking Check Out. Click Delete to remove an item from
the cart altogether. Change an amount in the Quantity column to order two or more of an item,
then click Update Totals before clicking Check out

Empty cart check out >

Shopping Cart

List Our You
Quantity Item Price Price Sawe Subtotal

|4— drill-9-10144 $7995 $62.95 $68.00 $251.80 Remove

Total $ 251.80
(bsfore shipping and taxes)

You may qualify for addifienal discouns! Flease log in.

Bress fhis butian to | Update | if you changed any quantifies

Continue shopping check out >

Main Content
Area

Copyright @ 1999-2001,

BEA Systems Inc

Figure 14-2 shows the page for a customer who has logged in:

WebLogic Portal Development Guide — 14-27

14 Setting Up Commerce Services

Figure 14-2 shoppingcart.jsp-Formatted Web Page for a Visitor Who Has

Logged In

Click here to see our
‘ % full line of powerful Routers .'

Home Search Yiew Cart Logout
1

Welcome

Shopping Cart

Demao Customer X
Pleagze review the items in your cart before clicking Check Out. Click Delete to remove an item fram
Wiew Profile
R the cart altogether, Change an amount in the Quantity column to order two or more of an item,
Logout then click Update Tatals before clicking Check out

Yiew History
Orders
Payments

Empty cart Check out >

Shopping Cart

Quick Look-up:

i d List Our You
Enter keywords Quantity Item Price Price Sawe Subtotal
,—1 drill-2-10505 $119.95 $101.95 $168.00 § 10195 Remowe Buylater

Total $101.95
(before shipping and taxes)

See Qur
Large
Selection

o

Fress this ution do | Update | if you dvinged any quaniities.

Catalog data provided
caurtesy of TRN
Beqister, 'where
supply meets

Continue shopping Check out >

demand.’

e Copyright @ 1999-2001,
bea
BEA Systems Inc.

The main content area of the template contains both dynamically generated data and
static content. The dynamic content on shoppingcart . jsp is generated using
WebLogic Server and pipeline JSP tags, which obtain and display the contents for both
the active shopping cart and Saved Item list. For the shoppingcart . jsp template, the
form posts include Empty Cart, Check Out, Remove, Update, and Continue.

The following changes occur after the user has logged in:
1. The Login link changes to Logout.

2. A welcome section appears that shows the customer’s name, a link to view that
customer’s profile, and a link to logout.

14-28 WebLogic Portal Development Guide

Supporting a Product Catalog

3. A view history section appears that shows the customer’s order and payment

history.

Key components of the template are shown in Table 14-7.

Table 14-7 Template Components

Type of Component Components

Included templates

admin.inc

header.inc

[
m stylesheet.inc
[
]

leftside.inc

m footer.inc

Tag libraries <%@ taglib uri="weblogic.tld" prefix="wl" %>
<%@ taglib uri="webflow.tld" prefix="webflow" %>
<%@ taglib uri="il8n.tld" prefix="il8n" %>

Imported Java packages java.util.*

java.text.*

com.

com.

com
on

com.

com.

com.

com

com

beasys.commerce.axiom.units.*

beasys.commerce.ebusiness.shoppingcart. *

.bea.commerce.ebusiness.price.service.DiscountPresentati

bea.commerce.ebusiness.price.quote.OrderAdjustment
bea.commerce.ebusiness.price.quote.AdjustmentDetail
beasys.commerce.webflow.HttpRequestConstants

.beasys.commerce.webflow.PipelineSessionConstants

.bea.pl3n.appflow.webflow.WebflowJSPHelper

Location in Default Webflow

Customers can arrive at shoppingcart . jsp template from any product catalog page
by clicking the View Cart button. If the customer is satisfied with the contents of their
shopping cart as shown on this page, the customer can initiate the checkout process by
clicking the Check Out button. If this is the case, the next page is the shipping
information page (shipping.jsp).

WebLogic Portal Development Guide 14-29

14 Setting Up Commerce Services

Note: If the customer has not yet logged into the site and clicks Check Out, the
customer will be prompted to log in at the 1ogin.jsp template (prior to
loading the shipping.jsp template).

If customers click a link to an individual product item to review detailed information
about that product item, the next page is the appropriate product catalog page. If they
click on the Update, Empty Cart, Delete, or Save for Later buttons, they are returned
to the shopping cart page (shoppingcart . jsp) after the appropriate input processor
or pipeline has been executed to record the modification.

This JSP is in the sampleapp order namespace.

Events

Every time a customer clicks a button to manage the contents of their shopping cart, it
is considered an event. Each event triggers a particular response in the default
Webflow that allows the customer to continue. While this response can be to load
another JSP, it is usually the case that an input processor and/or pipeline is invoked
first. Table 14-8 provides information about these events and the business logic they
invoke.

Table 14-8 shoppingcart.jsp Events

Event Webflow Response(s)

-- InitShoppingCartIP

-- RefreshSavedList

button.checkout InitShippingMethodListIP
button.deleteItemFromShoppingCart DeleteProductItemFromShoppingCartIP
button.deleteltemFromSavedList UpdateSkulIP

DeleteProductItemFromSavedList

button.emptyShoppingCart EmptyShoppingCartIP

button.moveIltemToSavedList UpdateSkuIP

MoveProductItemToSavedList

button.moveIltemToShoppingCart UpdateSkuIP
MoveProductItemToShoppingCart

14-30 WebLogic Portal Development Guide

Supporting a Product Catalog

Table 14-8 shoppingcart.jsp Events

Event Webflow Response(s)

button.updateShoppingCartQuantities UpdateShoppingCartQuantitiesIP

Table 14-9 briefly describes each of the pipelines from Table 14-8.

Table 14-9 Shopping Cart Pipelines

Pipeline Description
RefreshSavedList Contains RefreshSavedListPC and is not transactional.
DeleteProductItemFromSavedList Contains DeleteProductItemFromSavedListPC and

PriceShoppingCartPC, and is transactional.

MoveProductItemToSavedList Contains MoveProductItemToSavedListPC and
PriceShoppingCartPC, and is transactional.

MoveProductItemToShoppingCart Contains MoveProductItemToShoppingCartPC and
PriceShoppingCartPC, and is transactional.

Notes: Although the InitShoppingCartIP and RefreshSavedList pipeline are
associated with the shoppingcart . jsp template, they are not triggered by
events on the page. Rather, both are executed before the shoppingcart.jsp
is viewed. The InitShoppingCartIP input processor creates an empty
shopping cart in preparation for the customer’s shopping experience, while the
RefreshSavedList pipeline retrieves a customer’s list of previously saved
shopping cart items..

How shoppingcart.jsp Displays Data

One purpose of the shoppingcart . jsp template is to display the data specific to a
customer’s shopping experience for their review. This is accomplished on
shoppingcart . jsp using a combination of WebLogic Server and pipeline JSP tags
and accessor method and /attributes.

First, the get Property JSP tag retrieves the SHOPPING CART and
SAVED SHOPPING CART attributes from the pipeline session. Table 14-10 provides
more detailed information on these attributes.

WebLogic Portal Development Guide 14-31

14 Setting Up Commerce Services

Table 14-10 shoppingcart.jsp Pipeline Session Attributes

Attribute

Type Description

PipelineSessionConstants com.beasys.commerce.ebusiness The saved shopping cart
.SAVED_ SHOPPING CART .shoppingcart.ShoppingCart (source of the saved items).

PipelineSessionConstants com.beasys.commerce.ebusiness The currently active
.SHOPPING CART .shoppingcart.ShoppingCart shopping cart.

Listing 14-8 illustrates how these attributes are retrieved from the pipeline session
using the getProperty JSP tag.

Listing 14-8 Retrieving Shopping Cart Attributes

<webflow:getProperty id="shoppingCart"
property="<%=PipelineSessionConstants.SHOPPING CART%>"

type="com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart"
scope="session" namespace="sampleapp main" />

<webflow:getProperty id="savedShoppingCart"
property="<%=PipelineSessionConstants.SAVED SHOPPING CART%>"
type="com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart"
scope="session" namespace="sampleapp main" />

The data stored within the pipeline session attributes is accessed by using accessor
methods/attributes within Java scriptlets. Table 14-11 provides more detailed
information about these methods for ShoppingCart (also savedShoppingCart),
while Table 14-12 provides this information for ShoppingCartLine.

Table 14-11 ShoppingCart Accessor Methods/Attributes

Method/Attribute Description
getShoppingCartLineCollection() A collection of the individual lines in the shopping cart (that is,
ShoppingCartLine).

14-32 WebLogic Portal Development Guide

Supporting a Product Catalog

Table 14-11 ShoppingCart Accessor Methods/Attributes (Continued)

Method/Attribute Description

getTotal In this instance, the total tax specified by the
OrderConstants.LINE TAX parameter.

Note: The getTotal () method also allows you to
combine different total types. For more
information, see the Javadoc.

Because the get ShoppingCartLineCollection () method allows you to retrieve a
collection of the individual lines within a shopping cart, there are also accessor method
and attributes you can use to break apart the information contained within each line.
Table 14-12 provides information about these methods and attributes.

Table 14-12 ShoppingCartLine Accessor Methods/Attributes

Method/Attribute Description

getQuantity () The quantity of the item.

getProductItem() The product item in the shopping cart line.
getUnitPrice () The current price for the item at the time it was added to

the shopping cart. May be different from MSRP.

getBaseTotal (int The total before discounts.
totalType)

Listing 14-9 provides an example of how these accessor methods/attributes are used
within Java scriptlets.

Listing 14-9 Using Accessor Methods Within shoppingcart.jsp Java Scriptlets

<<td align="right" valign="top" bgcolor="#CCCCFF"><div class="tabletext" nowrap>
<%-- The i18n tag allows the "currency.properties" file to substitute a display
--%>

<%-- currency value (e.g "$") for the returned 3 letter IS04217 code (e.g. "USD").

°
--%>

<il8n:getMessage bundleName="/commerce/currency" messageName="<%=

WebLogic Portal Development Guide 14-33

14 Setting Up Commerce Services

shoppingCartLine.getProductItem() .getMsrp () .getCurrency () %>"/>
<%= WebflowJSPHelper.priceFormat (shoppingCartLine.getProductItem() .
getMsrp () .getValue()) %></divs>

</td>
<td align="right" valign="top"><div class="tabletext" nowrap>

<118n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getUnitPrice () .getCurrency () %>"/>

<%= WebflowJSPHelper.priceFormat (shoppingCartLine.getUnitPrice() .
getValue()) %></divs>

</td>

<td align="right" valign="top" bgcolor="#CCCCFF"><div class="tabletext"
nowrap>

<il8n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getBaseSavings () .getCurrency () %>"/>

<%= WebflowJSPHelper.priceFormat (shoppingCartLine.getBaseSavings() .
getValue()) %></divs>

</td>
<td align="right" valign="top"><div class="tabletext" nowrap>

<il8n:getMessage bundleName="/commerce/currency" messageName="<%=
shoppingCartLine.getBaseTotal () .getCurrency () %>"/>

<%= WebflowJSPHelper.priceFormat (shoppingCartLine.getBaseTotal () .
getValue ()) %>

</divs>
</td>

shoppingcart.jsp Form Fields

Another purpose of the shoppingcart.jsp template is to allow customers to make
changes to their shopping cart using various HTML form fields. These form fields are
also used to pass needed information to the Webflow.

The form fields used in the shoppingcart.jsp template, and a description for each
of them, are listed in Table 14-13.

14-34 WebLogic Portal Development Guide

Supporting a Product Catalog

Table 14-13 shoppingcart.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(shoppingcart . jsp), used by
the Webflow.

HttpReqguestConstants. Hidden SKU of the item that the event is to

CATALOG_ITEM SKU operate on.

NewQuantity <SKU> Textbox The new quantity for the item in

Where <SKU> is replaced with the the shopping cart. It is the only

SKU of the item on the shopping cart form field on this page that requires

line. input from the customer.

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.CATALOG ITEM SKU %) for use in the JSP.

shoppingcart.jsp Input Processorss

shoppingcart . jsp uses Webflow components called input processors and pipelines
to execute much of its necessary business logic. This section describes the key input
processors you can use. These input processors represent Java classes invoked to carry
out more complex shopping cart service tasks when invoked by the Webflow
mechanism. [what .wf file(s) are we referring to here with these
components?]

This section includes information on these input processors:
m DeleteProductltemFromShoppingCartIP

m EmptyShoppingCartIP

m InitShoppingCartIP

WebLogic Portal Development Guide 14-35

14 Setting Up Commerce Services

m UpdateShoppingCartQuantitiesIP
m UpdateSkulP

Note: See “Setting Up Portal Navigation” for information about using, creating, or
modifying a Webflow and using input processors.

DeleteProductitemFromShoppingCartIP

This input processor (all input processor names end in the letters “IP”’)removes an item
from the shopping cart.

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.
DeleteProductItemFromShoppingCartIP

Required HttpRequestConstants.CATALOG_ITEM_SKU
HTTPServletRequest

Parameters

Required Pipeline PipelineSessionConstants.SHOPPING_CART
Session Attributes PipelineSessionConstants.CATALOG ITEM
Updated Pipeline PipelineSessionConstants.SHOPPING CART

Session Attributes

Removed Pipeline None
Session Attributes

Validation None

Exceptions ProcessingException, thrown if the required request parameters or required
Pipeline session attributes are not available.

EmptyShoppingCartIP

This input processor creates a new shopping cart and stores it in the pipeline session
and discards the old shopping cart.

14-36 WebLogic Portal Development Guide

Supporting a Product Catalog

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.
EmptyShoppingCartIP

Required None

HTTPServletRequest

Parameters

Required Pipeline None

Session Attributes

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING CART
PipelineSessionConstants.UPDATED QUANTITY DELTAS
PipelineSessionConstants.UPDATED PRODUCT_ITEMS

Removed Pipeline None

Session Attributes

Validation None

Exceptions None

InitShoppingCartIP

This input processor Initializes the active shopping cart prior to loading the
shoppingcart.jsp template. If the shopping cart already exists, this input processor does
nothing.

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.

InitShoppingCartIP

Required None

HTTPServletRequest

Parameters

Required Pipeline None

Session Attributes

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING CART
PipelineSessionConstants.UPDATED QUANTITY_ DELTAS

WebLogic Portal Development Guide — 14-37

14 Setting Up Commerce Services

Removed Pipeline None
Session Attributes

Validation None

Exceptions None

UpdateShoppingCartQuantitiesIP

This input processor validates the quantity fields for each line and sets those quantities
in the shopping cart. If the quantity is zero, it will delete the item from the shopping

cart.
Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.
UpdateShoppingCartQuantitiesIP
Required NewQuantity <SKU>

HTTPServletRequest Where <SKU> is replaced with the SKU of the item on the shopping cart line.
Parameters

Required Pipeline PipelineSessionConstants.SHOPPING CART
Session Attributes

Updated Pipeline PipelineSessionConstants.SHOPPING_CART
Session Attributes PipelineSessionConstants.UPDATED QUANTITY DELTAS
PipelineSessionConstants.UPDATED PRODUCT_ITEMS

Removed Pipeline None
Session Attributes

Validation Verifies that the quantity fields only contain positive integers.

Exceptions ProcessingException, thrown if the required request parameters or required
Pipeline session attributes are not available.

UpdateSkulP

This input processor reads the SKU from the HTTP request and places it into the
Pipeline session.

14-38 WebLogic Portal Development Guide

Supporting a Product Catalog

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.
UpdateSkuIP

Required HttpRequestConstants.CATALOG_ITEM SKU

HTTPServletRequest

Parameters

Required Pipeline None

Session Attributes

Updated Pipeline PipelineSessionConstants.CATALOG_ITEM SKU

Session Attributes

Removed Pipeline None

Session Attributes

Validation None

Exceptions ProcessingException, thrown if the required request parameters are not

available.

shoppingcart.jsp Pipeline Components

This section provides a brief description of each pipeline component associated with
the shoppingcart.jsp template. These Pipelines are processor nodes a Webflow
invokes to initiate the execution of specific tasks related to the Shopping Cart service.

Note:

Some pipeline components extend other, base pipeline components. For more
information on the base classes, see the Javadoc.

For more information on pipeline components, see “Types of Nodes” on page 9-3.

This section contains information on these pipeline components:

m DeleteProductltemFromSavedListPC

m MoveProductltemToSavedListPC

m MoveProductltemToShoppingCartPC

m RefreshSavedListPC

WebLogic Portal Development Guide 14-39

14 Setting Up Commerce Services

m PriceShoppingCartPC

m AddToCartTrackerPC

m RemoveFromCartTrackerPC

Note:

See “Setting Up Portal Navigation” for information about using, creating, or
modifying a Webflow and using pipeline components.

DeleteProductitemFromSavedListPC

This pipeline component (all pipeline component names end in the letters “PC”)
removes the item from the saved list and updates the WLCS_SAVED ITEM LIST table

in the database.

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
DeleteProductItemFromSavedListPC
Required Pipeline PipelineSessionConstants.CATALOG_ITEM_SKU

Session Attributes

PipelineSessionConstants.SAVED SHOPPING CART
PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED SHOPPING CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.Delete
ProductItemFromSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes

are not available.

MoveProductltemToSavedListPC

This pipeline component moves an item from the shopping cart, adds it to the saved
list. It then updates the WLCS SAVED ITEM LIST table in the database.

14-40 WebLogic Portal Development Guide

Supporting a Product Catalog

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
MoveProductItemToSavedListPC

Required Pipeline PipelineSessionConstants.CATALOG_ITEM_SKU

Session Attributes PipelineSessionConstants.SAVED SHOPPING CART
PipelineSessionConstants.SHOPPING CART
PipelineSessionConstants.USER NAME

Updated Pipeline PipelineSessionConstants.SAVED_SHOPPING_CART

Session Attributes PipelineSessionConstants.SHOPPING CART
PipelineSessionConstants.CATALOG_ITEM
PipelineSessionConstants.QUANTITY

Removed Pipeline None
Session Attributes

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.
MoveProductItemToSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not
available.

MoveProductitemToShoppingCartPC

This pipeline component removes the item from the saved list, adds it to the shopping
cart with a quantity of one. It then updates the WLCS_SAVED ITEM LIST table in the

database.
Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
MoveProductItemToShoppingCartPC
Required Pipeline PipelineSessionConstants.CATALOG_ITEM_SKU
Session Attributes PipelineSessionConstants.SAVED SHOPPING CART

PipelineSessionConstants.SHOPPING CART
PipelineSessionConstants.USER_NAME

WebLogic Portal Development Guide 14-41

14 Setting Up Commerce Services

Updated Pipeline PipelineSessionConstants.SAVED SHOPPING_CART

Session Attributes PipelineSessionConstants.SHOPPING CART
PipelineSessionConstants.CATALOG ITEM

Removed Pipeline None
Session Attributes

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.
pipeline.MoveProductItemToShoppingCartPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not
available.

RefreshSavedListPC

This pipeline component queries the WLCS_SAVED ITEM LIST table and refreshes the
saved shopping cart in the pipeline session. The saved list is only refreshed if the saved
shopping cart does not exist in the pipeline session.

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
RefreshSavedListPC
Required Pipeline PipelineSessionConstants.USER_NAME

Session Attributes

Updated Pipeline PipelineSessionConstants.SAVED_SHOPPING_ CART
Session Attributes

Removed Pipeline None
Session Attributes

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.
RefreshSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not
available.

14-42 WebLogic Portal Development Guide

Supporting a Product Catalog

PriceShoppingCartPC

This pipeline component invokes the Pricing Service to compute the line totals,

discounts, shopping cart total and shopping cart discounts

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
PriceShoppingCartPC
Required Pipeline PipelineSessionConstants.SHOPPING CART

Session Attributes

PipelineSessionConstants.

USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.

SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineException, thrown if the Pricing Service fails in any way

AddToCartTrackerPC

This pipeline component fires an AddToCartEvent describing which item was just
added to the cart. For more information about this event, see “Event and Behavior
Tracking”.

Class Invoked examples.wlcs.sampleapp.tracking.pipeline.AddToCartTracke

rpPC
Description
Required Pipeline PipelineSessionConstants.CATALOG_ITEM

Session Attributes

PipelineSessionConstants

PipelineSessionConstants

PipelineSessionConstants.
.CUSTOM_REQUEST

PipelineSessionConstants

.HTTP_SESSION_ID
.USER_NAME

STOREFRONT

WebLogic Portal Development Guide

14-43

14 Setting Up Commerce Services

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object
JNDI Name None
Exceptions None

RemoveFromCartTrackerPC

This pipeline component fires a RemoveFromCartEvent describing which item was
just added to the cart. For more information about this event, see “Event and Behavior

Tracking”.
Class Invoked examples.wlcs.sampleapp.tracking.pipeline.RemoveFromCartT
rackerPC
Required Pipeline PipelineSessionConstants.CATALOG ITEM

Session Attributes

PipelineSessionConstants
PipelineSessionConstants
PipelineSessionConstants

PipelineSessionConstants

.HTTP_SESSION ID
.USER_NAME

. STOREFRONT
.CUSTOM_REQUEST

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object
JNDI Name None
Exceptions None

14-44 WebLogic Portal Development Guide

Supporting a Product Catalog

UpdateShoppingCartQuantitiesTrackerPC

For each shopping cart line, this pipeline component does one of the following:

m Ifmore items in the line were selected, it fires an AddToCartEvent.

m If fewer items in that line were selected, it fires a RemoveFromCartEvent .

m If the number of items in that line is the same as before, does not fire an event.

Class Invoked examples.wlcs.sampleapp.tracking.pipeline.
UpdateShoppingCartQuantitiesTrackerPC
Required Pipeline PipelineSessionConstants.UPDATED_PRODUCT ITEMS

Session Attributes

PipelineSessionConstants
PipelineSessionConstants

PipelineSessionConstants

PipelineSessionConstants.

.CUSTOM_REQUEST

PipelineSessionConstants

.UPDATED QUANTITY DELTAS
.HTTP_SESSION_ID
.USER_NAME

STOREFRONT

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object
JNDI Name None
Exceptions None

Integrating Services With the Catalog Cache

The catalog architecture includes a powerful caching mechanism for items and
categories within the Product Catalog. You can choose between integrating services in
front of the cache or behind the cache. Currently the ProductltemManager and
CategoryManager benefit from the caching architecture

WebLogic Portal Development Guide 14-45

14 Setting Up Commerce Services

Replacing the JNDI name of a bean in the CatalogManager’s deployment descriptor
will replace a service in front of the cache. The service will have to implement its own
caching mechanism or forgo the benefits of caching.

The services defined by BEA—specified in the deployment descriptor for the
CatalogManager—implement the caching for access to items and categories. The
following beans query the cache and returned cached data if available; otherwise they
delegate to the beans specified in their deployment descriptors:

B com.beasys.commerce.ebusiness.catalog.service.item.
ProductItemManager

B com.beasys.commerce.ebusiness.catalog.service.category.
CategoryManager

You can extend the functionality of the Product Catalog behind the cache by editing
the deployment descriptors for the ProductltemManager and CategoryManager beans.
This enables you to concentrate on the persistence model for the catalog without
worrying about the caching architecture. As Listing 14-10 shows, you need to replace
the current delegate service provider class (JdbcCategoryManager) in the
ejb-jar.xml deployment descriptor with the name of a new session bean that
implements the CategoryManager interface. You would also need to make the same
change to the weblogic-ejb-jar.xml file.

Listing 14-10 CategoryManager Deployment Descriptor (ejb-jar.xml)

<session>
<ejb-name>
com.beasys.commerce.ebusiness.catalog.service.
category.CategoryManager
</ejb-name>
<home>
com.beasys.commerce.ebusiness.catalog.service.
category.CategoryManagerHome
</home>
<remote>
com.beasys.commerce.ebusiness.catalog.service.
category.CategoryManager
</remote>
<ejb-class>
com.beasys.commerce.ebusiness.catalog.service.
category.CategoryManagerImpl
</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

14-46 WebLogic Portal Development Guide

Supporting a Product Catalog

<!-- one specifies the delegateName to tell the Bridge component
(the one used by the catalog manager which ejb to delegate to.
That way, one can change delegates by changing the env-entry...
-->

<env-entrys>
<env-entry-name>delegateName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>ejb/JdbcCategoryManager</env-entry-value>
</env-entry>

<ejb-refs>
<ejb-ref-name>ejb/JdbcCategoryManager</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>
com.beasys.commerce.ebusiness.catalog.service.category.
JdbcCategoryManagerHome
</home>
<remote>
com.beasys.commerce.ebusiness.catalog.service.
category.JdbcCategoryManager
</remote>
</ejb-ref>

</session>

ejb-jar.xml and weblogic-ejb-jar.xml file are packaged in the ebusiness.jar
ﬁh,w&ﬁchisinthe<BEA_HOME>\weblogic700\common\templates\domains\
shared\bea\portal\apps\jars directory (where <BEA HOME> is the directory
in which you installed your BEA applications).

WebLogic Portal Development Guide 14-47

14 Setting Up Commerce Services

14-48 WebLogic Portal Development Guide

CHAPTER

15

Event and Behavior
Tracking

The Event system provides you with the ability to identify the interactions that visitors
have with your portal or Web site.

Customer interactions One of the primary uses of events is in customer
interactions such as promotions or campaigns. A simple example of using events in a
campaign is triggering the display of an ad for a related product when a customer
places an item in a shopping cart.

Behavior Tracking Another primary use of events is to track visitor behavior by
recording events. Recording events is more than just navigation logging, which tells
you only what pages were visited. Behavior Tracking allows you to know what the
visitor saw and responded to, or equally important, ignored on a page. Recording
events in a database allows leading e-analytics and e-marketing systems to use event
data for data mining. Analyzing event information helps you create or enhance the
rules that customize the content of your site to each visitor and evaluate the
effectiveness of your promotional campaigns

Custom events The Event system allows you to create your own events. For
example, you could create an event that records who visits each portlet and how often
each portlet is accessed. When you create a custom event, the event can either be
recorded to a database using the WebLogic Portal persistence mechanism or not be
recorded using this mechanism. Events that are persisted are called Behavior Tracking
events. If your custom event will be not persisted, follow the instructions in “Writing
the Custom Event Class” on page 15-13. If you are creating a custom Behavior
Tracking event, follow the instructions in “Writing a Behavior Tracking Event Class”
on page 15-20.

The subject matter in this section is primarily intended for J2EE experts. It includes
information about the following subjects:

WebLogic Portal Development Guide 15-1

15 Event and Behavior Tracking

How Events Work in Campaigns—Contains a brief introduction about the
relationship between events and campaigns.

How the Event Service Works—Provides insight into the Event service so you
can take full advantage of the Event and Behavior Tracking capabilities.

How to Use Standard Events—Tells you what events are shipped with WebLogic
Portal and how to generate them.

Creating Custom Events—Guides you through the process of creating Event and
Behavior Tracking classes and listeners.

How to Enable Behavior Tracking—Tells you how to enable Behavior Tracking
as a service.

Debugging the Event Service—How to activate debugging for events.

Registering Custom Events—How to register a custom event so it can be used
by a campaign.

Activating Behavior Tracking—How to turn on Behavior Tracking.

How Events Work in Campaigns

15-2

An event is generated by a visitor action, such as viewing a product. The Event service
notifies all event listeners that it has detected the event. The event listener for the

Campaign service activates a campaign scenario. Using a set of rules that match users
with content, the campaign initiates an action. The available actions are listed below:

m Displaying specific content on a Web page, such as an ad.
m Sending a promotional email to a customer.

m Offering the customer a discount.

Note: For more information about campaigns, see the E-Business Control Center

online help.

WebLogic Portal Development Guide

How the Event Service Works

How the Event Service Works

Understanding how the Event service works helps you use events and provides
information you need to generate events and design a custom event.

About the Event service The Event service is an extensible, general purpose,
event construction and propagation system. As shown in Figure 15-1, an event is
generated by a trigger, such as a JSP tag, which creates the event object, locates the
Event service bean, and passes the event object to the Event service. The Event service
works with plug-in listeners that disseminate events to listeners interested in receiving
the events. At creation time, each event listener returns the list of event types that it
wants to receive. When the Event service receives an event, it checks the type of the
event and sends the event to all listeners that are subscribed to receive that event’s type.

Listener types The Event service has two sets of listeners: those that respond to
events synchronously and those that respond to events asynchronously. The
synchronous listeners use the thread of execution that created and transmitted the event
to perform actions in response to that event. Behavior Tracking listeners use only the
synchronous listeners. The asynchronous listeners receive the event from the thread
where it was created and some time later, handles the event in a different thread of
execution. The asynchronous service exists so that long-running event handlers can
execute without delaying the application from a Web site visitor’s perspective.

Whether a particular plug-in listener is installed on the synchronous or the
asynchronous side of the Event service is based on the requirements of the application.
Configuration of the Event service is done using the WebLogic Server Administration
Console.

WebLogic Portal Development Guide ~ 15-3

15 Event and Behavior Tracking

Figure 15-1 Event Mechanism

Event Service Bean Events

— Behavior Tracking Listener

| Pluggable
Asynchronous Synchronous Listeners
Listener Cache

Database

Management
System

Pluggable Asynchronous Listeners

Event listeners implement the com.bea.pl3n.events.EventListener interface.
The interface defines signatures for two public methods:

B public String[] getTypes/()

B public void handleEvent (Event theEvent)

15-4 WebLogic Portal Development Guide

How the Event Service Works

The first method returns a list of event types that the listener is interested in receiving
from the Event service. For example, if a listener is designed to receive events of type
Foo, the listener returns Foo as an item in the array returned from invoking

getTypes () on the listener. The second method is invoked when an event is passed to
the listener. A listener has no knowledge of whether it is synchronous or asynchronous.

If you wish to create a listener interested in only campaign events, you would add the
listener’s fully-qualified classname in the WebLogic Server Administration Console.
The listener would implement the EventListener interface and return the following
event types:

{“ClickCampaignEvent”, “DisplayCampaignEvent”, “CampaignUserActiv
ityEvent” }

when its getTypes () method is invoked.

After the listener is installed, events of one of these three types arrive through the
listener’s handleEvent (Event theEvent) interface.

The Asynchronous Delivery graphic in Figure 15-1 indicates that the asynchronous
event handler receives events transmitted asynchronously from the synchronous side
of the Event service. It then dispatches events to the pluggable asynchronous listeners
based on the event types each listener is subscribed to receive.

How Event Sequences Work

Figure 15-2 and Figure 15-3 provide a sample of the generation of events. These
figures are intended to give you a sense of the order in which events fire, not a
comprehensive examination of event sequencing. The intent is to show you how events
provide insight into the visitor life cycle and how and when you can use events in your
application.

WebLogic Portal Development Guide ~ 15-5

15 Event and Behavior Tracking

15-6

Figure 15-2 Event Sequence Sample—Part 1

Visitor Enters Web Site

Event

SessionBegin

¥

Event

SessionLogin

DisplayCampaign
Event

Visitor Is Exposed
to Campaign

User Exposed

L

UserRegistration
Event

DisplayCampaign
Event

F

DisplayProduct
Event

l

ClickProduct
Event

¥

¥

ClickCampaign
Event

¥

DisplayProduct
Event

to Another
Campaign

WebLogic Portal Development Guide

AddToCart
Event

Buy
Event

¥

SessionEnd
Event

Visitor Is Not Exposed

to Campaign

How the Event Service Works

Figure 15-3 Event Sequence Sample—Part 2

DisplayContent _| ClickContent
Event o Event

b

CampaignUserActivity
Event

X

DisplayProduct
Event

l

Rule ClickProduct
Event Event

Rule Events can be used
throughout the sequence

AddToCart
Event

b

RemoveFromCart
Event

X

SessionEnd
Event

WebLogic Portal Development Guide ~— 15-7

15 Event and Behavior Tracking

How to Use Standard Events

15-8

This section provides general information about how to use the standard events
provided with WebLogic Portal. For specific information about each event, see
Appendix A, “Event Descriptions.” Appendix A contains a description of each kind of
event, what generates the event, the class where event generation occurs, an example
of usage, and the type of data within each event object.

All WebLogic Portal standard events contain the following basic information:

Application from which the event was generated.
Time of event.

Type of event.

Session ID.

User ID (Null, if visitor not logged on.).

Event specific information.

WebLogic Portal events are organized into categories. The following list presents each
type of event category along with a brief description of what actions generates the
event:

Session Events: The start time, end time, and login time of a visitor’s session.
e SessionBeginEvent

o SessionEndEvent

e SessionLoginEvent

User Registration Event: The visitor registers on the Web site.

e UserRegistrationEvent

Product Events: The visitor is presented with a product or clicks (selects) the
presented product.

e ClickProductEvent

e DisplayProductEvent

WebLogic Portal Development Guide

How to Use Standard Events

m Content Events: The visitor is presented some content, such as an ad, or clicks
(selects) the presented content.

e ClickContentEvent

e DisplayContentEvent

m Cart Events: An item is added, removed, or updated to the visitor’s shopping
cart. These events are also generated when an entire order is purchased.

e AddToCartEvent
e RemoveFromCartEvent

e PurchaseCartEvent
m Buy Event: The visitor completes the purchase of one or more items.
e BuyEvent
m Rules Event: The rules that are fired as a visitor navigates a Web site.
e RuleEvent
m Campaign Events: The events generated within the context of a campaign.
e CampaignUserActivityEvent
e DisplayCampaignEvent
e ClickCampaignEvent

Servlet Lifecycle Events and Servlet Filter Events

These events are defined as part of the Servlet 2.3 API lifecycle events:
m SessionBeginEvent
m SessionEndEvent

They are listeners on the session Created () and session Destroyed () events, which
are generated by the servlets defined in the web . xm1 file. One web . xm1 file exists for
each application. For example, in wlcsApp E-Commerce Application, this file is
located at:

<BEA HOME>\weblogic700\portall\applications\wlcsApp\wlcs\WEB-INF

WebLogic Portal Development Guide ~ 15-9

15 Event and Behavior Tracking

The following events are generated by JSP tags and filtered by the Servlet 2.3
<filters> element:

m ClickContentEvent
m ClickProductEvent
m ClickCampaignEvent

For each Web page displayed, the Web Application servlet checks for the presence of
a click event in the Ht tpServletRequest. Each page click is then filtered by a Web
Application servlet as defined by the Servlet 2.3 <filter> element. The click events
are generated automatically when the <filter> element is called on each invocation
of the servlet. The C1ickThroughFilter determines which type of event is generated
by checking the event type in the Ht tpServletRequest. The valid types are defined
at the following locations:

B <BEA HOME>\weblogic700\portal\classes\campaign\campaign-app*.pr
operties

B <BEA HOME>\weblogic700\portal\classes\commerce\commerce-app*.pr
operties

B <BEA HOME>\weblogic700\portal\classes\pl3n\pl3n-app*.properties

Generating Login and Creation Events

This section describes different methods you can use to generate login and user
registration events.

SessionLoginEvent You can generate the SessionLoginEvent in either of the
following ways:

m [fyou are manually using the <um: logins tag or
weblogic.servlet.security.ServletAuthentication to handle login, use
the
com.bea.pl3n.tracking.TrackingEventHelper.dispatchSessionLoginE
vent () method.

m Ifyou are directly using j_security check FORM-based login, register the
com.bea.pl3n.servlets.P13NAuthFilter asthe <auth-filters in your
Web Application’s WEB- INF\weblogic.xml file. You do not need to code a JSP
or Webflow Processor.

15-10 WebLogic Portal Development Guide

How to Use Standard Events

UserRegistrationEvent Use the
com.bea.pl3n.tracking.TrackingEventHelper.dispatchUserRegistratio
nEvent () method to generate the UserRegistrationEvent. You should generate this
event after the SessionLoginEvent (which should occur during user creation). You can
use either an Input Processor or in a JSP.

Webflow If you are using the Portal Webflow framework, the SessionLoginEvent
and the UserRegistrationEvent are generated automatically from the
com.bea.portal.appflow.processor.security.PostLoginProcessor in the
security Webflow as needed.

Adding or Customizing Event Generators

Standard events are generated at important points in an e-commerce site. The
components that enable events include Java APIs, JSP tags, JSP scriptlets, Webflow
input processors, Pipeline components, content selectors, and classification advislets.
You can add or customize generators for each of the following events:

B DisplayContentEvent
B DisplayProductEvent
B ClickContentEvent
B ClickProductEvent

Each event is generated by JSP tags. You can use the JSP tags that initiate these events
to specify which products and what content generate these events. For example, in the
wlcsApp E-Commerce Application, the JSP tag for the DisplayProductEvent is
located in the details.jsp.

The tag shown in Listing 15-1 generates an event for any product displayed on a
catalog detail page. If you want to generate an event for one particular product, you can
write a scriptlet that keys off the SKU for that product.

Listing 15-1 JSP Tag

<%-- once the product is displayed, fire off a displayProductEvent --%>
<productTracking:displayProductEvent documentId="<%= item.getName () %>"

documentType="<%= DisplayProductEvent.ITEM BROWSE %>"

WebLogic Portal Development Guide — 15-11

15

Event and Behavior Tracking

sku="<%= item.getKey() .getIdentifier() %>" />

When you add a JSP tag for an event, you should include a reference to the tag library
descriptor, as shown below:

<%@ taglib uri="productTracking.tld" prefix="productTracking" %>
The details.jsp is located in the following directory:

<BEA_HOME>\weblogic700\portall\applications\wlcsApp\wlcs\commerc
e\catalog

Creating Custom Events

15-12

This section provides the information necessary to write a custom event. You can
create a custom event for anything you wish to track. If you want your event to be
recorded using the WebLogic Portal persistence mechanism, create a Behavior
Tracking event, as described in “Writing a Behavior Tracking Event Class” on page
15-20.

Idea for a custom event You could create an event that would tell you which
pages are displayed for each visitor. You could then use the information to determine
how many pages are viewed on average per session and which pages are the most
popular. Additionally, marketing professionals could use this event when developing
promotional campaigns that are based on the display of particular pages.

To demonstrate how to write a custom event, a simple example is provided. Each
section references and expands the example.

The creation of a custom event is a multiple-step process. The following list provides
an overview of the process and references the information not covered in this topic:

1. Write the code that defines the event.
2. Write the code that defines the event listener.

3. Install the listener class in the Event Service.

WebLogic Portal Development Guide

Creating Custom Events

Write the code to generate the event with a JSP tag or an API call.
Register the event, if it is to be used in a campaign.

To record the event data to the EVENT table, create an entry for the event in the
EVENT TYPE table. For more information, see ‘“Persisting Behavioral Tracking
Data” in the Administration Guide at
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm#1194894.

Writing the Custom Event Class

To create a custom event, take the following steps:

1.

Write the event class This class encapsulates all the necessary information for
correctly interpreting and handling the event when it arrives at a listener.

All custom events must subclass the com.bea.p13n.events.Event class. This
base class handles setting and retrieving an event’s timestamp and type and
provided access to the custom event’s attributes. Two Event class methods set
and retrieve attributes:

setAttribute(String theKey, Serializable theValue)
getAttribute(String theKey)

These methods can be called from the custom event’s constructor to set
attributes specific to the new event. Keep in mind that all objects set as values in
the Event object must be Java serializable.

The getTimeStamp () method returns the date of the event’s creation in
milliseconds. The type of an event is accessed using the Event class’s

getType () method. The timestamp and type of an Event object instance can be
set only at creation time in the Event constructor. If not specified, the event is
timestamped automatically when it is created. The application attribute is set
automatically, either from the application in which the event was created or from
the Event service EJB (Enterprise JavaBean) application.

Example To illustrate the process of creating a custom event, a simple example
is presented here, called TestEvent. The example is a basic demonstration of
how to create an event subclass. An actual custom event would probably be
more elaborate.

WebLogic Portal Development Guide 15-13

15 Event and Behavior Tracking

2. Create the type A custom event must first have a type. This type should be
passed to the superclass constructor (for example, in the Event class). This type
is returned at getType () invocations on custom-event object instances. For
example:

/** Event Type */
public static final String TYPE = "TestEvent";

To properly initialize the Event base class of the custom event object, the value
TYPE is passed to the event constructor. The type of all events must be a simple
Java string object.

3. Define the keys After defining the type, you must define the keys that access
the attributes stored in the custom event. These attributes can be given values in
the constructor. For example, the TestEvent class has two properties,
description and zip Code; the type of the value associated with
descriptionisaStringand Zip Code is an Integer. The keys are defined as
follows:

/**

* Event attribute key name for the first user defined property
* Attribute value is a String

*/
public static final String DESCRIPTION = "description";

/**
* Recall that all attribute values must be serializable
* Event attribute key name for the second user defined

* property
* Attribute value is an Integer
*/
public static final String ZIP CODE = "Zip Code";

Finally, a constructor brings the event type and the process of setting attributes
together to create an event object. The constructor looks like:

/**
* Create a new TestEvent
*

*
* @param desc The description of this event
* @param zip The Zip Code
*/
public TestEvent(String desc, Integer zip)
{
/* calls the Event class constructor with this event's
type */
super (TYPE) ;

15-14 WebLogic Portal Development Guide

Creating Custom Events

if(desc != null)
setAttribute (DESCRIPTION, desc);

if(zip != null)
setAttribute(ZIP_CODE, zip);

}

All the parts put together The entire custom event class is shown in Listing 15-2.

Listing 15-2 TestEvent Class

/* Start TestEvent class */

public class TestEvent

{

extends com.bea.pl3n.events.Event

/** Event Type */
public static final String TYPE = "TestEvent";

/**

* Event attribute key name for the first user defined property
* Attribute value is a String

*/

public static final String DESCRIPTION = "description";

/**
* Event attribute key name for the second user defined property
* Attribute value is an Integer

*/

public static final String ZIP_CODE = "Zip Code”;
/**

* Crate a new TestEvent

*

*

* @param desc The description of this event

* @param zip The Zip Code

*

/
public TestEvent (String desc, Integer zip)

{

/* calls the Event class constructor with this event's type */
super (TYPE) ;

if (descriptionValue != null)
setAttribute (DESCRIPTION, desc);

WebLogic Portal Development Guide

15-15

15 Event and Behavior Tracking

if (ZipCodevValue != null)
setAttribute(ZIP_CODE, zip);
}
1

/* End TestEvent class */

About the example The example in Listing 15-2 shows you how to use the
fundamental aspects of the Event base class and the Event service. An actual custom
event constructor would probably be more complex. For example, it might check for
default values or disallow null attributes. Additionally, the custom-event object might
have more methods or member data.

Note: In order for a custom event to be used by a campaign, it must contain the
following objects as attributes:

m Request (key = “request”) — Request of type
com.bea.pl3n.http.Request. It should be created with a constructor
that takes the Ht tpServletRequest as a parameter.

m Session (key = “session”) — Session of type
com.bea.pl3n.http.Session. Created with a constructor that takes
the HttpServletRequest as its parameter.

m UserId (key = “userId”) — A string that contains the username.

Saving the file You can save the file anywhere you like as long as it is in the
enterprise application classpath used by WebLogic Server.

Writing the Custom Event Listener

In order to listen for an event, you must define an event listener. All event listeners
must implement the com.bea.pl3n.events.EventListener interface and have a
no arguments (default) constructor. This interface specifies two methods that are
fundamental to transmitting events of a given type to interested listeners:

public String[] getTypes/()

public void handleEvent (Event ev)

15-16 WebLogic Portal Development Guide

Creating Custom Events

The first method returns the types, in a string array, that the listener is interested in
receiving. The Event service dispatches events of a given type to listeners that return
the event’s type in the types array. When the Event service has determined that a given
listener has registered to receive the type of the current event, an event of that type is
dispatched to the listener using the handleEvent (Event ev) call.

Implement both event listener methods When writing a custom event listener,
both methods must be implemented from the EventListener interface. Continuing
with the TestEvent example, the TestEventListener listens for instances of

TestEvent that are sent through the Event service. This can be specified as follows:

/** The types this listener is interested in */
private String[] eventTypes = {"TestEvent"};

/**

The method invoked by the event service to determine the
types to propagate to this listener.
*/

public String[] getTypes ()

{
}

To handle the event, the handleEvent (Event evt) method is implemented as
follows:

/**

* Handle events that are sent from the event service
*/
public void handleEvent (Event ev)

{

return eventTypes;

System.out.println("TestListener: :handleEvent " +
" -> received an event" +
" of type: " + ev.getType());

/* Do the work here */

}

Putting all of these pieces together with a constructor, Listing 15-3 shows a simple
event listener that registers to receive TestEvent objects.

Listing 15-3 Event Listener

import com.bea.pl3n.events.EventListener;
import com.bea.pl3n.events.Event;

WebLogic Portal Development Guide — 15-17

15 Event and Behavior Tracking

*

TestListener to demonstrate the ease with which listeners can be plugged
into the behavior tracking system.

This class should be added to the property eventService.listeners

in order to receive events. The fully qualified classname must be added
to this property; don't forget to add the ",\" at the end of the previous
line or the properties parser will not find the new classname.

The types of events that are heard are listed in the eventTypes
String array. Add and remove strings of that type as necessary.

* ok ok o ok ok ok ok kX X *

*

@author Copyright (c) 2001 by BEA Systems, Inc. All Rights Reserved.
*/
public class TestListener
implements EventListener
{

private String[] eventTypes = {"TestEvent"};

public TestListener ()

{
}

public String[] getTypes/()

{
}

public void handleEvent (Event ev)

{

return eventTypes;

System.out.println("TestListener: :handleEvent -> received an event" +
" of type: " + ev.getType());

return;

Event listeners should be generic As with writing a simple event, writing a
simple EventListener is also straightforward. Any event listener’s internals should
be generic; the same TestEventListener instance may not handle all TestEvent
objects. Therefore TestEventListener should be entirely stateless and should
operate on data that is contained in the event object or stored externally in a database.

15-18 WebLogic Portal Development Guide

Creating Custom Events

Note:

Installing the

Notes:

Add a
steps:

Note:

Multiple instances of any listener may execute concurrently.

Listener Class in the Event Service

This section provides information on how to add a listener class in the Sample
Portal. For your application, you would use similar steps.

If the Event service does not exist as a service for your application, use
WebLogic Server Administration Console to add it.

To enable Behavior Tracking, you must add Behavior Tracking as a
synchronous listener to the Event service.

listener To add a synchronous or asynchronous listener, take the following

Behavior Tracking listeners can only be implemented as synchronous
listeners.

1. Inthe WebLogic Server Administration Console, navigate to Synchronous or
Asynchronous Listeners tab in the node tree for sampleportalDomain as follows:

http://<hostname>:<port>/console —sampleportalDomain —Deployments —
sampleportal —Service Configurations —Event Service —Configuration Tab —
Synchronous Listeners or Asynchronous Listeners

2. Add the synchronous or asynchronous listener to the corresponding fields, as
shown in Figure 15-5.

Figure 15-4 WebLogic Server Administration Console—Event Service

Configuration

Synchronous Listeners || Asynchronous Listeners

2

L]

Active Listeners: |[com bea.campaigh.interal CampaignEventListener
;ij:lem" Class to |c0m bea.pl3ntracking listeners BehaviorTrackir Add

The sener will foak far the new listener immediatels upan saving. Please be sure the ¢iass exists and s entered carrectly.

WebLogic Portal Development Guide 15-19

15 Event and Behavior Tracking

Writing a Behavior Tracking Event Class

15-20

A Behavior Tracking event is a special type of event that tracks a visitor’s interactions
with a Web site. E-analysis systems use the data gathered from Behavior Tracking
events to evaluate visitor behavior. The evaluation is primarily used for campaign
development and optimizing visitor experience on a Web site.

Example A Behavior Tracking event and its listeners are created in much the same
way as the TestEvent class and TestEventListener examples. A simple example
is also presented here. The example tracking event is called Test TrackingEvent. All
Behavior Tracking events persisted (recorded) to a database for use with BEA
Behavior Tracking are handled by the
com.bea.pl3n.tracking.listeners.BehaviorTrackingListener. The
BehaviorTrackingListener extends the
com.bea.pl3n.events.EventListener class.

Redeploy After the BehaviorTrackingListener is defined as a listener on the
Event service, you need to redeploy the application before it can receive and persist
Behavior Tracking events.

About the buffer This listener receives events from the Event service and adds
them to a buffer that is intermittently persisted to the Event tables in the database. The
frequency of sweeping of events from the buffer is controlled by the following
properties on the Behavior Tracking service.

B MaxBufferSize — Sets the maximum size of the event buffer. Setting this to 0
means all events are persisted as they are received.

B SweeplInterval — Sets the interval, in seconds, at which to check the buffers to
see whether events in the buffer must be persisted. Events are persisted when
either the maximum buffer size (MaxBuf ferSize) is reached or the maximum
time to wait in the buffer (SweepMaxTime) has been exceeded.

B SweepMaxTime — Set the time, in seconds, to wait before forcing a flush to the
database. This is the longest amount of time that an event can exist in any cache.

Optimizing Tune these properties to optimize performance. A buffer sweep should
be performed often enough that writing to the database is not too time consuming but
not so frequent that the operation is wasteful.

WebLogic Portal Development Guide

Creating Custom Events

Configuring Events Buffer Sweeping

Notes: This section provides information on configuring buffer sweeping in the
Sample Portal. For your application, you would use similar steps.

If the Event service does not exist as a service for your application, use
WebLogic Server Administration Console to add it.

To configure the sweeping of the events buffer, take the following steps:

1. Inthe WebLogic Server Administration Console, navigate to Behavior Tracking in
the node tree for sampleportalDomain as follows:

http://<hostname>:<port>/console —sampleportalDomain —Deployments —
sampleportal —Service Configurations —Behavior Tracking Service

2. Enter the new buffer values in the appropriate fields, as shown in Figure 15-5.

Figure 15-5 WebLogic Server Administration Console—Behavior Tracking

Configuration

? Data Source JNDI Hame: |weblogic.jdbc.jts.commercepaol
? Maximum Buffer Size: |1DD

2 Buffer Sweep Interval I—
(seconds): 10

2 Buffer Sweep Maximum l_
Time (seconds): 120

? Persisted Event Types: LddToCartEvent i’
Enter one event type per EuyEvent
line. CampaignUseriotivityEvent
ClickContentEvent LI

Apply |

Facilitating OffLine Processing

Behavior Tracking events are designed to be persisted to a table in the database, called
the EVENT table. Part of the process of recording data from Behavior Tracking events
is creating an XML representation of the data, which is stored in the xm1 definition
column of the EVENT table. If you are planning to use the BEA Behavior Tracking

WebLogic Portal Development Guide 15-21

15 Event and Behavior Tracking

/**

event persistence mechanism, you must persist events in this location. Therefore, to
persist events in the provided EVENT table, your custom event must conform to the

descriptions in this section so that it is created and persisted properly.

XML-XSD schema To formally specify the data contained in a Behavior Tracking
event, you need to develop an XML-XSD schema for the new event. While XSDs are
not used internally to verify the creation of XML, the XML that is created represents
the event’s data in the database. If the event class is properly developed and used, it
will conform to the XML-XSD schema. With an XSD document, development of the
constructor and attribute keys for a Behavior Tracking event follows easily. The
specific data elements for each standard event are shown in the XML, DEFINITION Data

Elements table in the Administration Guide at
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm#1195110.

Association between files To correctly turn a Behavior Tracking event into an

XML representation, the Behavior Tracking event must have several pieces of member
data that fully describe an XML instance document for the schema associated with the
event type. This data describes the namespace and XSD file associated with the event.

For example, Listing 15-4 and Listing 15-5 show the association between the
following files:

com.bea.campaign.tracking.events.ClickCampaignEvent and

/lib/schema/tracking—click—campaign—l_o_l.xsdin

<BEA_HOME>\weblogic700\portal\\lib\campaign\ejb\campaign.jar.

For more examples, look at the existing XSD files.

Listing 15-4 ClickCampaignEvent.java

Event for tracking click of campaign

public class ClickCampaignEvent

{

extends ClickEvent

/** The event type */

public static final String TYPE = "ClickCampaignEvent";
/**

The XML namespace for this event
*/

private static final String XML NAMESPACE =

"http://www.bea.com/servers/commerce/xsd/tracking/click-campaign/1.01";

15-22 WebLogic Portal Development Guide

Creating Custom Events

/**
The XSD file containing the schema for this event
*/
private static final String XSD_FILE = "tracking-click-campaign-1_0_ 1.xsd";
/**

* Event attribute key name for the campaign id
* Attribute value is a String
*/
public static final String CAMPAIGN ID = "campaign-id";

/**
* Event attribute key name for the scenario id
* Attribute value is a String
*/
public static final String SCENARIO ID = "scenario-id";

/**
* Event attribute key name for storefront (aka application-name)
* Attribute value is a String
*/

public static final String APPLICATION NAME = "application-name";

/**

* Event attribute key name for item category id

* Attribute value is a String

*/

public static final String PLACEHOLDER_ID = "placeholder-id";

/**
Suggestions for entry into the documentType data passed to the constructor
Attribute value is a String

*/

public static final String BANNER AD PROMOTION = "bannerAdPromotion";

/**
These are the keys and their order for elements that
will be present in the XML representing this object
*/
private static final String localSchemaKeys|[] =
APPLICATION, SESSION_ID, USER_ID, DOCUMENT_TYPE, DOCUMENT_ ID,
CAMPAIGN_ID, SCENARIO_ID, APPLICATION NAME, PLACEHOLDER ID

Vi
/**

* Create a new ClickCampaignEvent.
*

WebLogic Portal Development Guide — 15-23

15 Event and Behavior Tracking

equivalent (null if unknown)
@param theRequest the http servlet
@param aDocumentType Document Type
null)

@param aDocumentId
@param aCampaignId
clicked

@param aScenarioId
for which the item

Document ID for
campaign id for

scenario id for
was clicked

L R A T . B N

null)

*

*/

@param aApplicationName application name (aka storefront)

@param theSessionId from HttpSession.getId()
@param theUserId from HttpServletRequest.getRemoteUser() or

request object

for the clicked content (optionally
the
the

clicked content (optionally null)
campaign from which the item was

the scenario (within the campaign)

(optionally

@param aPlaceholderId a placeholder id

public ClickCampaignEvent (String theSessionId,
String theUserId,
HttpServletRequest theRequest,

String aDocumentType,
String aDocumentId,
String aCampaignId,
String aScenariold,
String aApplicationName,
String aPlaceholderId)
{
super (TYPE,
theSessionId,
theUserId,
XML_NAMESPACE,
XSD_FILE,
localSchemaKeys,
theRequest,
aDocumentType,
aDocumentId) ;
if (aCampaignId != null) setAttribute(CAMPAIGN ID, aCampaignId) ;
if (aScenarioId != null) setAttribute(SCENARIO ID, aScenarioId);
if (aApplicationName != null) setAttribute(APPLICATION_ NAME,
aApplicationName) ;
if (aPlaceholderId != null) setAttribute(PLACEHOLDER ID,
aPlaceholderId) ;

Event and XSD cross-referenced Notice the cross-reference between
ClickCampaignEvent and the XSD schema. This association allows the Behavior
Tracking data to be properly recorded in the database.

15-24 WebLogic Portal Development Guide

Creating Custom Events

Listing 15-5 Corresponding XSD Schema

<xsd:schema

targetNamespace="http://www.bea.com/servers/commerce/xsd/tracking
/click-campaign/1.0.1"

xmlns="http://www.bea.com/servers/commerce/xsd/tracking/click-cam
paign/1.0.1"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.w3.0rg/2001/XMLSchema
http://www.w3.0rg/2001/XMLSchema .xsd"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="ClickCampaignEvent"s>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="application"/>
<xsd:element ref="event-date"/>
<xsd:element ref="event-type"/>
<xsd:element ref="session-id"/>
<xsd:element ref="user-id" minOccurs="0"/>
<xsd:element ref="document-type" minOccurs="0"/>
<xsd:element ref="document-id" minOccurs="0"/>
<xsd:element ref="campaign-id"/>
<xsd:element ref="scenario-id"/>
<xsd:element ref="application-name" minOccurs="0"/>
<xsd:element ref="placeholder-id" minOccurs="0"/>
</xsd:sequence>
<!-- types = banner-ad-promotion -->
</xsd:complexType>
</xsd:element>
<xsd:element name="application" type="xsd:string"/>
<xsd:element name="event-date" type="xsd:string"/>
<xsd:element name="event-type" type="xsd:string"/>
<xsd:element name="session-id" type="xsd:string"/>
<xsd:element name="user-id" type="xsd:string"/>
<xsd:element name="document-type" type="xsd:string"/>
<!-- types = banner-ad-promotion -->
<xsd:element name="document-id" type="xsd:string"/>
<xsd:element name="campaign-id" type="xsd:string"/>
<xsd:element name="scenario-id" type="xsd:string"/>
<xsd:element name="application-name" type="xsd:string"/>
<xsd:element name="placeholder-id" type="xsd:string"/>
</xsd:schema>

WebLogic Portal Development Guide 15-25

15 Event and Behavior Tracking

15-26

List the keys The source code for your Behavior Tracking event should also list the
keys and their order for creating an XML instance document from an event object. For
an example, see Listing 15-4. The structure of an XSD document and details on XML
namespaces can be found at http://www.w3.org/XML/Schema. Several XSD schemas
for BEA Behavior Tracking events can be found in /1ib/schema at the following
location:

<BEA HOME>\weblogic700\portal\lib\pl3n\ejb\events.jar

Specify namespace and schema The namespace and schema are specified as:

/**
The XML namespace for this event
*/
private static final String XML_NAMESPACE=
"http://<your URI>/testtracking";

/**
The XSD file containing the schema for this event
*/
private static final String XSD_FILE="TestTrackingEvent.xsd";

Note: These values are used when creating an instance document to populate the
fields.

The schemaKeys are a list of strings which are keys to the event class’s
getAttribute and setAttribute methods. These keys are used to extract the data
that populate elements in the XML instance document which represent the Behavior
Tracking event. The keys should be listed in an array that consists of string-typed
objects. Their order specifies the order in which they appear in the XML instance
document. In the XSD files that the Behavior Tracking system generates, the order of
the elements is important; an XML file will not validate with an XSD file if elements
are out of order. Elements can be omitted by using the XML numOccurs keyword and
setting the value to zero. For examples of how this is done, see the XSD schemas for
BEA Behavior Tracking events in /1ib/schema, at the following location:

<BEA_HOME>\weblogic700\portal\\lib\pl3n\ejb\events.jar

Structuring the array An example array for the Behavior Tracking version of the
TestEvent described above might appear as:

/**
These are the keys and their order for elements that
will be present in the XML representing this object.
*/

private static final String localSchemaKeys|[] =

WebLogic Portal Development Guide

Creating Custom Events

SESSION ID, USER _ID, USER_PROPERTY ONE_KEY,
USER_PROPERTY TWO_KEY

Vi

Data elements The SESSION ID and the USER ID are data elements in the
localSchemaKeys array that are useful in implementing a tracking event. The
SESSION 1D is the WebLogic Server session ID that is created for every session
object. (For more information, see the WebLogic Server documentation at
http://edocs.bea.com/wls/docs70/index.html.) The UsEr 1D field (which may be null)
is the username of the Web site visitor associated with the session from which the event
was generated. For some events, a user may not be associated with an event; as
previously mentioned, the numOccurs for the USER 1D field in an XSD file should be
zero. To persist events in the EVENT table, the SESSTION 1D must be non-null.

Other attributes All Behavior Tracking events must extend the
com.bea.pl3n.tracking.events.TrackingEvent class. This class defines three
keys that are useful for setting attributes for all tracking events, as follows:

B TrackingEvent.SESSION ID
B TrackingEvent.USER_ID
B TrackingEvent.REQUEST

These keys are used in setAttribute calls made in the TrackingEvent constructor
when setting the SESSION ID, USER ID, and REQUEST (an HttPServletRequest
object), respectively. They should also be used to retrieve values associated with each
key when invoking Event .getAttribute (String Key) on event objects that extend
TrackingEvent.

Writing a TrackingEvent Base Class Constructor

The TrackingEvent base class has a constructor that is more complicated than the
Event class’s constructor. The Event constructor is invoked by the super (String
eventType)call in the TrackingEvent constructor. The TrackingEvent
constructors are shown in Listing 15-6 and Listing 15-7.

Listing 15-6 Tracking Event Constructor—Example 1

/**

* Create a new TrackingEvent.

WebLogic Portal Development Guide — 15-27

15 Event and Behavior Tracking

@param theEventType the event's type
@param theSessionId from HttpSession.getId()
@param theUserId from HttpServletRequest.getRemoteUser() or equivalent
(null if unknown)
@param theXMLNamespace the namespace for an XML representation of this event
type
@param theXSDFile the file that contains the schema which specifies and
enforces typing on the data in the XML file
@param theSchemaKeys the list of keys (in their order in the XSD schema)
representing the data to be persisted in this event's XML
*
/
public TrackingEvent (String theEventType,
String theSessionId,
String theUserId,
String theXMLNamespace,
String theXSDFile,
String[] theSchemaKeys)

* % ok k oF ok ok X X X X

The TrackingEvent constructor shown in Listing 15-7 takes an
HttpServletRequest object.

Listing 15-7 Tracking Event Constructor—Example 2

/**
* Create a new TrackingEvent.
*
* @param theEventType the event's type
* @param theSessionId from HttpSession.getId()
* @param theUserId from HttpServletRequest.getRemoteUser () or equivalent
* (null if unknown)
* @param theXMLNamespace the namespace for an XML representation of this event
* type
* @param theXSDFile the file that contains the schema which specifies and
* enforces typing on the data in the XML file
* @param theSchemaKeys the list of keys (in their order in the XSD schema)
* representing the data to be persisted in this event's XML
* @param theRequest the http servlet request object
*
/

public TrackingEvent (String theEventType,
String theSessionId,
String theUserId,
String theXMLNamespace,

15-28 WebLogic Portal Development Guide

Creating Custom Events

*

E I T I T

*

*/

String theXSDFile,
String[] theSchemaKeys,
HttpServletRequest theRequest)

About the constructors In the first constructor, shown in Listing 15-6, the only
data that can be null is theUer1d; all other data is required so that the tracking event

is correctly persisted to the EVENT table. In the second constructor, shown in

Listing 15-7, the HttpServletRequest object can be passed in from generating
locations where the Ht tpServletRequest object is available. This object provides

the data needed to fire rules against event instances.

Note: In order to fire rules on a custom Behavior Tracking event, the

HttpServletRequest and the USER_ID must be non-null. Generally, a
non-null USER_ID means that a visitor is logged into a Web site. Rules cannot

be fired on an event with a null user.

The TestTrackingEvent constructor is shown in Listing 15-8.

Listing 15-8 TestTrackingEvent Constructor

Create a new TestTrackingEvent

@param theSessionId from HttpSession.getId()

@param theUserId from HttpServletRequest.getRemoteUser () or equivalent
(null if unknown)

@param userPropertyOne some user defined property typed as a String
@param userPropertyTwo another user defined property typed as a Double

public TestTrackingEvent (String theSessionId,

String theUserId,
String userPropertyOneValue,
Double userPropertyTwoValue)

super (TYPE, theSessionId, theUserId, XML NAMESPACE, XSD FILE,
localSchemaKeys) ;

if (userPropertyOneValue != null)
setAttribute (USER_PROPERTY_ ONE_KEY, userPropertyOneValue);

if (userPropertyTwoValue != null)

WebLogic Portal Development Guide

15-29

15 Event and Behavior Tracking

setAttribute (USER_PROPERTY TWO KEY, userPropertyTwoValue) ;

This constructor calls the TrackingEvent constructor to populate the required values,
then sets the attributes necessary for this particular Behavior Tracking event type.

The entire TestTrackingEvent is shown in Listing 15-9.

Listing 15-9 TestTracking Event

import com.bea.pl3n.tracking.events.TrackingEvent;

/**
* Test, user-defined behavior tracking event.
*

* This event can be persisted to the database.
*

*/

public class TestTrackingEvent
extends TrackingEvent

{

/** Event type */

public static final String TYPE = "TestTrackingEvent";
/**
The XML namespace for this event
*/
private static final String XML NAMESPACE="http://<your URI>/testtracking";
/**
The XSD file containing the schema for this event
*/

private static final String XSD FILE="TestTrackingEvent.xsd";

/**
* Event attribute key name for the first user defined property
* Attribute value is a String
*/
public static final String USER_PROPERTY ONE KEY = "userPropertyOne";

/**

* Event attribute key name for the second user defined property

15-30 WebLogic Portal Development Guide

Creating Custom Events

* Attribute value is a Double
*/
public static final String USER_PROPERTY TWO_KEY = "userPropertyTwo";

/**
These are the keys and their order for elements that
will be present in the XML representing ths object.
*/

private static final String localSchemaKeys[] =

{
Vi
/**

* Create a new TestTrackingEvent
*

SESSION ID, USER ID, USER_PROPERTY ONE KEY, USER PROPERTY TWO KEY

@param theSessionId from HttpSession.getId()

@param theUserId from HttpServletRequest.getRemoteUser () or equivalent
(null if unknown)

@param userPropertyOne some user defined property typed as a String
@param userPropertyTwo another user defined property typed as a Double
/
public TestTrackingEvent (String theSessionId,
String theUserId,
String userPropertyOneValue,
Double userPropertyTwoValue)

*
*
*
*
*
*

super (TYPE, theSessionId, theUserId, XML NAMESPACE, XSD FILE,
localSchemaKeys) ;

if (userPropertyOneValue != null)
setAttribute (USER_PROPERTY ONE_KEY, userPropertyOneValue) ;

if (userPropertyTwoValue != null)
setAttribute(USER_PROPERTY TWO_KEY, userPropertyTwoValue) ;

The TestTrackingEvent, shown in Listing 15-9, correctly sets its own attributes and
sets the attributes in its instantiation of TrackingEvent. This enables correct
population of the XML instance document at the time of its creation. Recall that the
XML instance document represents the Test TrackingEvent in the database’s EVENT
table.

WebLogic Portal Development Guide 15-31

15 Event and Behavior Tracking

Persisting to database If you want the custom Behavior Tracking event type to
be persisted in the database, the event must be added to the
behaviorTracking.persistToDatabase property in the

application-config.xml file. If you are not persisting the event, you do not need
to add the event type to this property.

How to Enable Behavior Tracking

Note: If the Event service does not exist as a service for your application, use
WebLogic Server Administration Console to add it.

The following steps describe how to enable Behavior Tracking as a service for the
Sample Portal. For your application, you would use similar steps:

1. Inthe WebLogic Server Administration Console, navigate to Behavior Tracking in
the node tree for sampleportalDomain as follows:

http://<hostname>:<port>/console —sampleportalDomain —Deployments —
sampleportal —Service Configurations —Behavior Tracking

2. Enter the name of the event in the Persisted Event Types field, as shown in
Figure 15-6.

Figure 15-6 WebLogic Server Administration Console—Behavior Tracking

Configuration

& Data Source JNDI Name: Iweblnglcjdbc]ts commerceFool

& Maximum Buffer Size: I'I oo

2 Buffer Sweep Interval l—
(seconds): 1o

2 Buffer Sweep Maximum l—
Time (seconds): 120

2 Persisted Event Types: AddToCar LEvent il
Enter one event type per BuyEvent

line. CampaignlUserictivityEvent
ClickContentEvent LI

Apply

15-32 WebLogic Portal Development Guide

How to Enable Behavior Tracking

Converting Behavior Tracking Events to XML

When persisting Behavior Tracking events to the EVENT table, the bulk of the data must
be converted to XML. The XML document should conform to an XML XSD schema
that you create which specifies the order of the XML elements in the XML instance
document. Additionally, the schema must include the types of elements and their
cardinalities. The process of creating XML from an event object is handled by a helper
class that utilizes variables and constants in a Behavior Tracking event’s class file. All
schema documents use the namespace: http://www.w3.0org/2000/10/XMLSchema
and all instances of Behavior Tracking schemas use the namespace:
http://www.w3.0rg/2000/10/XMLSchema-instance. The XML created in
Listing 15-10 will conform to the XSD schema.

Listing 15-10 XSD Document Example

<xsd:schema
targetNamespace="http://www.bea.com/servers/commerce/xsd/tracking/buy/1.0.1"
xmlns="http://www.bea.com/servers/commerce/xsd/tracking/buy/1.0.1"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.w3.0rg/2001/XMLSchema
http://www.w3.0rg/2001/XMLSchema .xsd"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xsd:element name="BuyEvent'"s>
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="application"/>
<xsd:element ref="event-date"/>
<xsd:element ref="event-type"/>
<xsd:element ref="session-id"/>
<xsd:element ref="user-id" minOccurs="0"/>
<xsd:element ref="sku"/>
<xsd:element ref="quantity"/>
<xsd:element ref="unit-price"/>
<xsd:element ref="currency" minOccurs="0"/>
<xsd:element ref="application-name" minOccurs="0"/>
<xsd:element ref="order-line-id"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="application" type="xsd:string"/>
<xsd:element name="event-date" type="xsd:string"/>

WebLogic Portal Development Guide 15-33

15 Event and Behavior Tracking

<xsd:element name="event-type" type="xsd:string"/>

<xsd
<xsd

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

:element name="session-id" type="xsd:string"/>
:element name="user-id" type="xsd:string"/>

element name="sku" type="xsd:string"/>

element name="quantity" type="xsd:double"/>

element name="unit-price" type="xsd:double"/>
element name="currency" type="xsd:string"/>

element name="application-name" type="xsd:string"/>
element name="order-line-id" type="xsd:long"/>

</xsd:schema>

15-34

Constructing the XML Creation of an event’s representation in XML takes place
generically relative to the event’s type. Consequently, to create an accurate XML
instance document, each event must specify the namespace, event type, elements, and
order of its elements. Using the TestTrackingEvent example, you would construct
the XML representing an instance of the TestTrackingEvent as follows:

Note: Assume that testTrackingEvent is a well-formed instance of a
TestTrackingEvent.

1. Get the event’s type with the testTrackingEvent .getType () call.

2. Get the event’s namespace with the
((TrackingEvent) testTrackingEvent) .getXMLNamespace () call.

3. Get the event’s XSD filename with the
((TrackingEvent)testTrackingEvent).getXSDFile()Caﬂ.

Using the schema keys from the TestTrackingEvent class, values are inserted into
the XML document. Schema key/attribute value pairs correspond to XML elements in
this way:

<schema Key>value</schema Key>

The helper class that creates XML for Behavior Tracking assumes that the elements
inserted into an XML instance document are not deeply nested. Additionally, the
toString () method is used to create a representation of the value object that is
retrieved through the Event classes’s getAttribute (String Key) call. The
contents of the string returned by invoking toString () on the value object must
match the type specified in the event’s schema document. The TestTrackingEvent
retrieves values using the following keys in the order specified in the schemakeys
array:

WebLogic Portal Development Guide

How to Enable Behavior Tracking

B SESSION ID
B USER ID

B USER PROPERTY ONE KEY
B USER PROPERTY TWO KEY

The values for these keys are retrieved using the
testTrackingEvent.getAttribute(<schema Keys) call. The order in which
the XML formatted key/value pairs are inserted into the instance document is specified
by the constant schemaKeys array, which is defined and populated in the
TestTrackingEvent class.

The steps assembled to create an XML instance document for the
TestTrackingEvent are presented in Listing 15-11.

Listing 15-11 XML Instance Document Example

<TestTrackingEvent
xmlns="http://<your URI>/testtracking"
xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-instance"
xsi:schemalocation="http://<your URI>/testtracking
TestTrackingEvent .xsd"
>
<event date>XML time instant formatted event date</event dates>
<event types>TestTrackingEvent</event types>
<application>wlcsApp</applications>
<session id>theSessionIdValue</session id>
<user_id>theUserIdvalue</user_id>
<userPropertyOne>userPropertyOneValue</userPropertyOne>
<userPropertyTwo>userPropertyTwoValue</userPropertyTwo>
</TestTrackingEvent>

The XML creation is performed automatically when events arrive at the
com.bea.pl3n.tracking.listeners.BehaviorTrackingListener, which
enables Behavior Tracking in WebLogic Portal. The Behavior Tracking listener is
installed by adding it to the <EventService Listeners="..."> property in the
application-config.xml file. For information on how to install a Behavior
Tracking listener, see“How to Enable Behavior Tracking” on page 15-32.

WebLogic Portal Development Guide 15-35

15 Event and Behavior Tracking

Caution: You must be careful when defining the namespaces, XSD documents, and
schema keys variables in custom Behavior Tracking event classes,
especially if they will be persisted to the EVENT table. The method for
creating and storing XML presented in this discussion exactly follows the
variables and constants specified in the event class. You are free to develop
other ways of creating and storing XML; this section is directed only at the
process of persisting XML Behavior Tracking representations in the BEA
EVENT table.

Note: The Event's date is retrieved using the Event class's getTimeStamp () call,
which returns a Java primitive 1ong typed value. That 1ong must be converted
into the type specified for the event date element in the XSD schema
document. The type in this case is time instant. Event date and event type the
first two elements in all XML instance documents created through the
BehaviorTrackingListener.

Creating Custom Behavior Tracking Event Listeners

To create a custom Behavior Tracking listener, in addition to or instead of the default
BehaviorTrackingListener, follow the example presented in “Writing the Custom
Event Listener” on page 15-16. Add the new event types to the custom listener’s
eventTypes array (for example, TestTrackingEvent). A given listener can listen
for any number of event types that may or may not be Behavior Tracking events. The
custom Behavior Tracking listener can be installed on either the synchronous or
asynchronous side of the Event service, whichever is appropriate.

Writing Custom Event Generators

Once events are created, you must set up a mechanism for generating events in the
application. Events may be generated from Pipeline components, input processors, JSP
scriptlets, or JSP tags. Some Behavior Tracking events are generated from within
WebLogic Portal software.

15-36 WebLogic Portal Development Guide

How to Enable Behavior Tracking

After determining the mechanism for generating events, Behavior Tracking events can
be sent to the event system using the
com.bea.pl3n.tracking.TrackingEventHelper class. This class defines helper
methods that pass events to the Event service. Listing 15-12 shows an example of
passing the TestTrackingEvent.

Listing 15-12 Dispatching an Event

/*
* Create the event
*/
Event theEvent = new TestTrackingEvent ("<some session id>",
"<some user ids> ",
new String("userPropertyOneValue"),
new Double(3.14));

/*

* Dispatch the event

*/
EventService eventService = TrackingEventHelper.getEventService() ;
TrackingEventHelper.dispatchEvent (eventService, theEvent);

Dispatching events Because the Event service is an EJB, before dispatching
events, the Event service must be running in a WebLogic Server instance.

If dispatching multiple events, it is best to get an instance of the Event service and save
it as an attribute in your class for reuse, as shown in the following code:

/**
* Access and start Event service
*/
private EventService eventService =
com.bea.pl3n.tracking.TrackingEventHelper.getEventService ();

Note: There are three APIs for this. To decide which one to use, see the Javadoc at
http://edocs.bea.com/wlp/docs70/javadoc/index.html.

Now use that instance of the Event service to dispatch events, as follows:
/ * %

* Dispatch the event
*/

WebLogic Portal Development Guide 15-37

15 Event and Behavior Tracking

EventService

TrackingEventHelper.dispatchEvent (eventService, theEvent

eventService = TrackingEventHelper.getEventService() ;

Debugging the Event Service

)

To debug the Event service, create a debug. properties file in the following

directory:

<BEA HOME>\weblogic700\portal\config\<YourDomain>\debug.propertie

S

The contents of this file are shown in Listing 15-13.

Listing 15-13 Debugging the Event Service

usePackageNames: on

Turns on debug for all classes under events

com.bea.pl3n.

events: on

com.bea.pl3n.events.internal.EventServiceBean: on

Turns on debug for all classes under tracking

com.bea.pl3n.

Or you can
com.bea.pl3n.
com.bea.pl3n.
com.bea.pl3n.
com.bea.pl3n.

tracking: on

selectively turn on classes
tracking.internal persistence: on
mbeans.BehaviorTrackinglListener: on

tracking.listeners.BehaviorTrackinglListener:

tracking.SessionEventListener: on

on

15-38 WebLogic Portal Development Guide

Registering Custom Events

Registering Custom Events

This section contains basic information about registering custom events including
background information about custom events, how to register events using the Events
Editor in the BEA E-Business Control Center, and what you need to do when you make
changes to custom events.

Note: You cannot change any of the standard events supplied with WebLogic Portal.

The creation of a custom event is a multiple-step process. The following list provides
an overview of the process:

Note: You should have already completed steps 1 and 2.

1. Create the code that defines the event and event listener.
2. Create the code to trigger the event with a JSP tag or an API call.
3. Register the event using the instructions in this topic.

4. To record the event data for Behavior Tracking analysis, add the event to the
Event service with the WebLogic Server Administration Console and create an
entry for the event in the EVENT TYPE table.

When to Register an Event

When you create a custom event to use in a campaign, you must register the event. If
your event is not used in a campaign, you do not need to register it. Registering a
custom event lets the E-Business Control Center know that the custom event exists.
Registering permits campaign developers using the E-Business Control Center to
create scenario actions that refer to the event. Registering also identifies the event’s
properties.

Caution: Whenever you change the event code, you must update the event
registration. Conversely, whenever you change the event registration, you
must also update the event code. A possible ramification of event
modification is that the scenario actions that refer to the event’s properties
may need to be modified.

WebLogic Portal Development Guide — 15-39

15 Event and Behavior Tracking

Event Properties

The Event editor in the E-Business Control Center allows you to easily register a
custom event. For the purpose of registering an event, you can consider an event
property as a name-value pair. During the registration of a custom event, you specify
the event’s name, description, and one or more properties. Each property has a range,
type of permissible value, and default value. The information you need to register for
an event should be available from your Commerce Business Engineer (CBE) or Java
developer.

The properties for a custom event includes the following information:

Data type: Specifies the data type for your property. The possible values are
Text, Numeric, Floating Point Number, Boolean, and Date/Time.

Selection mode: Specifies whether a property has a single default value or a
collection of default values.

Value range: Specifies whether the defaults are restricted to one specific value,
one or more specific values, or any value.

Note: When you set property values, you are not guaranteed that the property will

adhere to these restrictions at run time. Events are not checked by the
SchemaManager for adherence to a property schema. Therefore, you need to
keep the event type definition and the event registration synchronized.

As the previous list suggests, a combination of property values are possible. The
possible combinations of properties are listed here:

Boolean: The values for this type of property are either True or False. You can
choose the default. The default value is displayed only in the Enter Property
Values Window, not in the Edit Event Property window. When this data type is
selected, the Selection mode and Value range are unavailable.

Single, Unrestricted: This type of property has only one value, which is also the
default value.

Single, Restricted: This type of property has multiple values and a single
default value. You can select which value is the default.

Multiple, Restricted: This type of property has multiple values. You can select
one or more values as defaults values.

15-40 WebLogic Portal Development Guide

Registering Custom Events

m Multiple, Unrestricted: This type of property has multiple values. You cannot
select any defaults; all values are defaults.

Instructions for Registering a Custom Event

To register a custom event, complete the following steps:

1. Start the E-Business Control Center. The Explorer window opens as shown in
Figure 15-7.

WebLogic Portal Development Guide 15-41

15 Event and Behavior Tracking

Figure 15-7 E-Business Control Center Window
File Tools Window Help
E@ Ko

Retrieved list of Events.
Explorer [Site Infrastructure]

0@ XK

Mame Filter (partial names allowed)
| ¢ =W

Events

AddToCarEvent
ClickCampaignEvent
ClickContentEvent
ClickProductEvent
CustormerProfileChangeEve!
DisplayCampaignEvent
PurchaseCartEvent
RemaoveFromGartEvent
SessionLoginEvent
UsetRegistrationEvent

e T R

4| »

Description

I Site Infrastructure Business Lugwcl Presematiunl

2. Open your project. For more information see the E-Business Control Center
online help.

3. In the Explorer window, select the Site Infrastructure tab, and then click the
Event icon. A list of events appears in the Events field.

4. Click the New icon, and then select Event. The Event Editor window appears as
shown in Figure 15-8.

15-42 WebLogic Portal Development Guide

Registering Custom Events

Figure 15-8 Event Editor Window

i
B Editor [Event: UnnamedEvent] HEE

Desciption:

Event propetias (Click on & column heading to sortthe properties. Defaultvalues are displayed in bold)

Mame ||Data type ”Selection m. .||Va|ue 1a... HVa\ues | e, |
Edit.. |
Delete |

5. In the Event Editor window, click the New button. The Edit Property window
opens, as shown in Figure 15-9.

Figure 15-9 Edit Property Window

i Edit Property e |

Mame

Description {optional)

Data type Values
[Text =

Selection mode

Single hd
Wallg range

Restricted =

Add Values... | Remaove All |
K I Cancel |

6. In the Edit Property window, complete these steps:

a. In the Name field, enter a unique name for the event no longer than 100
characters (required).

b. In the Description field, enter a description for the event no longer than 254
characters (optional).

c. Select the Data Type, Selection mode, and Value range for the property value
from the drop lists.

WebLogic Portal Development Guide — 15-43

15 Event and Behavior Tracking

d. Click the Add Values button. The dialog box that appears depends on the
properties.

e. Enter the appropriate values and select the defaults (if needed).

f. After you have completed entering the property values for the event, click the
OK button.

7. Save the event (E-Business Control Center menu —¥File —Save).

Updating a Registered Custom Event

Whenever you make changes to a custom event’s code, you should update that event’s
registration. Updating the registration lets the E-Business Control Center know about
the changes in the custom event and aids campaign developers using the E-Business
Control Center to modify any scenario actions (in campaigns) that refer to the event.

To update a custom event, complete the following steps.
1. Start the E-Business Control Center. The Explorer window opens.

2. Open your project. For more information, see the E-Business Control Center
online help.

3. In the Explorer window, select the Site Infrastructure tab, and then click the
Event icon. A list of events appears in the Events field as shown in Figure 15-10.

Note: You cannot edit standard events.

15-44 WebLogic Portal Development Guide

Registering Custom Events

Figure 15-10 Explorer Window
Explorer [Site Infrastructure] B

D2 X
Mame Filter (partial names allowed)

| & B W

=
o

AddToCartEvent
ClickCampaignEvent
ClickContentEvent
ClickProduciBvent
CustomerProfileChangeEve
DisplayCampaignEvent
PurchaseCartEvent
RemaveFramCartEvent
SessionLoginEvent
UserRegistrationEvent
i vant

A49999099443

| | »

Description

Displays which pages are viewed

[Site Infrastructure Business Logicl Presentationl

4. Double-click the custom event that you wish to edit. The Event Editor window
opens as shown in Figure 15-11. The Event properties field displays a list of
existing properties.

WebLogic Portal Development Guide — 15-45

15 Event and Behavior Tracking

Figure 15-11 Event Editor Window

Ef Editor [Event: WiewPageEvent]

Desctiption
EDlspJ.ays which pages are viewed

Ewent properties (Click on a column heading to sort the properies. Default values are displayed in bald)

Data type |Selection m..|Value
IText [Single Lres

userid Text Single Unrestr... i
session-id Text Single Unrest... -
Delete |

5. Select the property you want to edit, and then click the Edit button. The Edit
Properties window opens, as shown in Figure 15-12.

Figure 15-12 Edit Property Window

il Edit Property x|

Marme

Desctiption (optionaly

Data type Values
Ea—
Selection mode |
Single | |

Value range

Restricted =

Add Yalues... | Remaove All |

QK I Cancel |
6. Make the appropriate changes, and then click the OK button.

7. Save the event (E-Business Control Center menu —File —Save).

15-46 WebLogic Portal Development Guide

Activating Behavior Tracking

Activating Behavior Tracking

To record how online visitors are interacting with your Web site, you can record event
information in a database. These kinds of events are called Behavior Tracking events.
E-analytics and e-marketing systems can then analyze these events offline to evaluate
visitor behavior and transactional data.

Note: For information about how to configure a database for recording event data,
see “Persisting Behavioral Tracking Data” in the Administration Guide at
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm#1194894.

This sections contains information on the following subjects:
m Procedure for Activating Behavior Tracking
m Configuring the Behavior Tracking Service in WebLogic Server

m Configuring a Data Source

Procedure for Activating Behavior Tracking

Before Behavior Tracking events can be recorded to a database, you must enable the
Behavior Tracking listener. This is accomplished by adding a listener class.

Note: If the Event service does not exist as a service for your application, use
WebLogic Server Administration Console to add it.

The following steps describe how to add a listener class in the Sample Portal. For your
application, you would use similar steps.

1. Inthe WebLogic Server Administration Console, navigate to the Synchronous or
Asynchronous Listeners tab in the node tree for sampleportalDomain as follows:

http://<hostname>:<port>/console —sampleportalDomain —Deployments —
Applications —sampleportal —Service Configurations —Event Service —
Configuration Tab —Synchronous Listeners

WebLogic Portal Development Guide — 15-47

15 Event and Behavior Tracking

2. Add the Behavior Tracking listener
(com.bea.pl3n.tracking.listeners.BehaviorTrackingListener) to the

Listen Class to Add field, and then click the Add button. See Figure 15-13.

Figure 15-13 WebLogic Server Administration Console—Event Service

Configuration

Synchronous Listeners [| Asynchronous Listeners

? Active Listeners: com bea.campaigninternal CampaignEwventListenar
2 Listener Class to [com bea.pi3ntracking listeners BehaviorTrackir Add

Add:

The sender will look for the new listener immediately Lpon saving. Please be sure the class exists and Is entered correctiy.

Note: You must configure your database before activating Behavior Tracking. For
information on how to do this, see “Persisting Behavior Tracking Data” in the
Administration Guide at
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm#1194894.

Configuring the Behavior Tracking Service in WebLogic
Server

Behavior Tracking events are placed in a buffer and then intermittently persisted to the
Event tables in the database where they can be analyzed offline. An asynchronous
service is used so that long-running event handlers can execute without delaying the
application from a Web site visitor’s perspective.

Note: Each Behavior Tracking event property must be configured in the WebLogic
Server Administration Console.

Connection pool The buffered Behavior Tracking events are swept into the
database using a pool of data connections. The default Data Source is
weblogic.jdbc.jts.commercePool. You can use a different Data Source. To do
this, create and configure the new Data Source (see “Configuring a Data Source” on
page 15-50) and substitute the name of the default Data Source with the name of the
new Data Source in the WebLogic Server Administration Console.

15-48 WebLogic Portal Development Guide

Activating Behavior Tracking

Properties The particular events that are persisted to the database are specified in
the PersistEventTypes property. You can view and alter the list of the persisted
events in the WebLogic Server Administration Console. The types in this list must
match the type specified in the event; for example, the SessionBeginEvent has as its
type the string “SessionBeginEvent”.

Optimize performance The frequency of the sweeping of events from the buffer is
controlled by the following properties the Behavior Tracking service:

B MaxBufferSize
B SweepInterval
B SweepMaxTime

You should tune these properties to optimize performance. A buffer sweep should be
performed often enough that writing to the database is not too time consuming but not
so frequent that the operation is wasteful.

Steps To configure the Behavior Tracking Service, take the following steps:

Notes: These steps provide information on how to optimize performance in the
Sample Portal. For your application, you would use similar steps.

If the Event service does not exist as a service for your application, use
WebLogic Server Administration Console to add it.

Note: If the Behavior Tracking and Event services do not exist for your application,
use the WebLogic Server Administration Console to add them.

1. In the WebLogic Server Administration Console, navigate to the Behavior
Tracking Service (shown in Figure 15-13) in the node tree for
sampleportalDomain, as follows:

http://<hostname>:<port>/console —sampleportalDomain —Deployments —
Applications —sampleportal —Service Configurations —Behavior Tracking
Service

WebLogic Portal Development Guide — 15-49

15 Event and Behavior Tracking

Figure 15-14 WebLogic Server Administration Console—Behavior Tracking
Service

Configuration

a Data Source JNDI Name: |WEbIugic.jdbc.jls.CDmmercePUUI

? Maximum Buffer Size: I]DD

2 Buffer Sweep Interval l_
(seconds): 10

%2 Buffer Sweep Maxgimum l_
Time (seconds): 120

? Persisted Event Types: LddTocartEvent ﬂ
Enter one event type per BuyEvent
line. CampaignUserictivityEvent
ClickContentEvent LI

Apply

2. To change the Data Source, enter the fully-qualified name of the Data Source in
the Data Source JNDI Name field.

3. To change the sweeping of events from the buffer, enter the new buffer values in
the appropriate fields.

4. To specify whether a particular event is persisted, add or remove the event from
the Persisted Event Types list box.

Configuring a Data Source

This section provides a brief description about configuring a new Data Source for a
connection pool used for persisting events in the Sample Portal. For your application,
you would use similar steps

To configure a new Data Source, take the following steps.

Note: For more information on using the WebLogic Server Administration Console,
see the WebLogic Server documentation at
http://edocs.bea.com/wls/docs70/index.html.

1. Inthe WebLogic Server Administration Console, navigate to the Behavior

Tracking Service (shown in Figure 15-13) in the node tree for
sampleportalDomain, as follows:

15-50 WebLogic Portal Development Guide

Activating Behavior Tracking

http://<hostname>:<port>/console —sampleportal —=Services -JDBC —Data
Sources —JDBCData Source Factories

Figure 15-15 WebLogic Server Administration Console—JDBC Data Sources

Configuration

&2 Name IMyJDBCData Source Factory

&2 user Name: |

&% uRL: [

&2 Driver Class Name: |

b Factory Name: |

PN Properties:

Create |

2. In the right pane, click Configure a new JDBC Data Source Factory.

3. Enter the appropriate values for the new Data Source in the appropriate tabs and
fields.

WebLogic Portal Development Guide 15-51

15 Event and Behavior Tracking

15-52 WebLogic Portal Development Guide

CHAPTER

16 Using the Expression
Package

This topic illustrates how to use the services of the Expression package. The
Expression package is part of the Personalization and Interaction Management features
in WebLogic Portal. The Expression package allows you to externalize calculations,
business policies, decision trees, and other operations from your Java code.

This section includes information on the following subjects:
m What Is the Expression Package?

m Assembling and Managing Expressions

m Working with Expressions

m Configuring the Expression Package

What Is the Expression Package?

As previously mentioned, the Expression package allows you to externalize business
logic or formulas from your Java code. Using the Expression package, any arithmetic,
boolean, relational or conditional statement can be represented. You can use the
Expression package to dynamically assemble and evaluate your own business logic.

An example of Expression package use is a rental car agency using it for calculating
rental costs, which may change frequently. Rather than expressing the calculation
using Java statements, the calculation can be externalized from the Java code into an
XML document and interpreted at run time.

WebLogic Portal Development Guide ~ 16-1

16 Using the Expression Package

WebLogic Portal provides an Expression example. To see this example, take the

following steps:

1. Start the Personalization server, as follows:

Start - BEA WebLogic Platform 7.0 —-WebLogic Portal 7.0 —Portal Examples
—Personalization Examples —Launch Personalization Server

2. After the Personalization server is running, start the Personalization Examples, as

follows:

Start -5 BEA WebLogic Platform 7.0 -WebLogic Portal 7.0 —Portal Examples
—Personalization Examples —Start Personalization Examples

A browser window opens showing the Personalization Examples index, as
shown in Figure 16-1.

Figure 16-1 Personalization Examples Index

Examples Index
Content

Expressions
Internationalization
Rules

Data Synchronization
User

Webflow and Pipeline
Admin Tools

Mot logged in

BEA WebLogic™ Personalization Examples How does it v

L)
'l" 7
zbea
Examples Index

Please visit the User Login example first!

Content

L3
»
L3
3
L4
L3
»

» Rule-based Docurment Manager Query

» Content Query

» Content Query Expression Test

» Blaceholder
Expressions

» Execule Expression
Internationalization

» Internationalization of Dynamic Content and Messages
Rules

» Classifier

» Content Selector

» Rules Manager

16-2 WebLogic Portal Development Guide

What Is the Expression Package?

3. Ifyou are not logged in or have not created a user, click Please visit the User
Login example first. A page opens where you can either log in or go to another
page to create a user.

4. After you have logged in or created a user, in the left column of the page, select
Expressions —Execute Expression. The Execute Expression Example page
opens, as shown in Figure 16-8.

Figure 16-2 Execute Expression Example

BEA WebLogic™ Personalization Examples

View Source

Examples Index
Content
Expressions

Internationalization Execute Expression Example
UICH

Data Synchronization)
Execute Sample Expression
User
Web_ﬂow anciipeline If the current user's gender Iis 'I IMa\e 'l
Admin Tools
Innd 'I the current user's favarite musical lﬁ lﬁ
is bt Rock =
Logged in as r genre
Then, set that user's listening location choice Iﬁ
Home *

to

Else, tell me that no action was taken

Preview Expression #ML Execute Expression |

You may change the operators and walues in the above expression to attempt 3
change in the current user's profile.

right & 2 BE c. All rights reserved. Best viewed with IES or later |

This window shows a simple application of the Expression package, where the
parameters are set using the drop-down lists.

5. Click View Source in the left column. A new page opens showing the JSP
source, as shown in Figure 16-3.

WebLogic Portal Development Guide 16-3

16 Using the Expression Package

16-4

Figure 16-3 JSP Source

BEA WebLogic™ Personalization Examples

, "
L/ hea

<
Copyright (c) Z000-2002 BEL Systems, Inc. All rights reserved.

3

<%@ taglib uri="es.tld" prefix="es" %>
<4l taglib uri="ps.tld" prefix="ps" 4>
<50 taglib uri="wm.tld" prefix="um™ %>
<%@ taglib uri="webflow.tld" prefix="wehflow" %>

<30 page import="com.bea.plin.usermemt.servlets. jap. taglib. UserManagement Taglonstants™ 4
<%0 page import="com.bes.plin.property.servlets.jsp.taglib.PropertySetTagConstants” &>
<%@ page import="java.security.Principal™ %>

<%
File: exec_expression.jsp

Purpose: Allows the demo user to create an arbitrary expression and
subsequently execute it using the expression engine.

>

Jjava.security.Principal pr = reguest.getUserPrincipall):

if [pr == null

{

<h>Zorry, but you must

<a href="<webflow:createllebflowlRL event="link.zample™ extraParams="sample=user_login"/>”>10g in</axr

for this example ta work.</h»

return;

This page shows the JSP source (exec expression.jsp) for the Expression
Example. After the expression is executed (and a parameter is changed), the
results are contained in the exec_expression results.jsp. Both JSP files

are located in the
<BEA_HOME>\weblogic700\samples\portal\pl3nDomain\beaApps\pl3nAp
p\p13n directory.

The next step provides information about how the expression works.

6. On the Execute Expression Example page, click the How does it work? link. A
a new browser window opens that describes the example, as shown in
Figure 16-4.

WebLogic Portal Development Guide

What Is the Expression Package?

Figure 16-4 How Does It Work? Execute Expression

BEA WebLogic™ Personalization Examples

oo,
-'- £
F v
L4 hea
Feature exampled: Execute Expression

Parameters: The parameters for this example are entered using the drop down list on the example 15P page. The
functionality for this example is in two 1SPs, exec_expression jsp and exec_oxpression_resuits jsp,

Applications: This erample shows a simplistic application of the Erpression package, The Expression package allows
you to describe business operations using XML docurments, or binary expression trees, supply variable values for
hinding into the expression tree and then execute the expressions. A rich set of operatars is supplied, allowing you to
call any method on any Java object,

The example presented builds a dynamic XML expression tree from HTML listbox selections, and then executes
the expression to modify the current user's profile attributes.

The expression package is extremely general purpose and can be used to externalize calculations, business
policy, decision tree etc, from youw Java code,

The most interesting code from the sample is excerpted below:

Expresszion expression = ExpressionFactory.cresteExpression(null, ®ml.to3tring()); Executor
executor = ExpressionFactory.createExecutor (null); UnificationList unificationList =
ExpreszionFactory.createlnificationlbist (null); Unifier unifier =
ExpreszionFactory.createlnifier (hull, unificationList); Evaluator evaluator =
ExpressionFactory.createEvaluator inull); unificationList.bind("userProfile™,
SezsionHelper.getProfile (session)) unificationlList.bind({"jspOut™, out); executor.execute
(expression, unifier, null, evaluator):

i - . - ;

This page describes how the Expression Example works. It also suggests an
exercise to further your understanding of expressions.

7. On the Execute Expression Example page, click the Preview Expression XML
button. A page showing the XML appears, as shown in Figure 16-5.

WebLogic Portal Development Guide ~ 16-5

16 Using the Expression Package

Figure 16-5 Preview Expression as XML

L)

I"'

Z.bea

Execute Expression Example

Preview Expression as XML

Execute Expression I

=!== begin branch expression --=

<if
xmlns="http: f/www. bea_ con/servers/plinsxsdfexpression/expressions 211"
xmlns: lit="http: /fvww_bea. com/servers,/plin/usdfexpression/literal /1. 01"
¥mlns:col="http: ffwmw_bea com/servers/plinsxsdfexpression/ecollection/l 0. 1"
xmlns:math="http: /fwnr_bea. con/servers/plin/xsd/expression/maths/1.0.1"
xmlns: string="http: f/wmr bea_ con/servers/plin/xsdsexpression/string/l. 01"
xmlns: xsi="http: /fwmr_ w3 org/Z001 XML Schena-instance”
x¥zi:schemalocation="http: /fwmr. bea. comfservers/plain/rxsd/expression/literal /1. 0.1
expression-literal-1l_0_l._x=d
http: /v bea. confservers,/plin/asd/expression/collections/l. 0.1
expression-collection-1_0_1._xsd
http: / /vy bea. com/servers/plan/axsd/expression/math/1. 0.1
expression-math-1_0_1.x=sd
http: //wiw. bea. con/servers/plin/xsd/expression/strings1. 0.1
expression-string-1 0 1. xsd">

#!-- begin branch conditional expression --*

<and=

This page shows the Expression Example XML before it is executed.

The next section discusses the differences between the Expressions package and the
Rules Framework.

Using Rules or Expressions

One of the applications of the Rules Manager is to use business rules to match users
and groups with appropriate content. The Rules Manager, like the Expressions
package, is part of WebLogic Portal Personalization and Interaction Management.

The most important difference between the Expression package and the Rules Engine
is that the Expression package uses named variables, while the Rules Engine does not.
Additionally, the Rules Manager uses rule sets, where one rule can trigger another, that
is, the rules can cascade.

16-6 WebLogic Portal Development Guide

What Is the Expression Package?

In general, you use expressions when you want to bind variables to values (usually
only one) and rules where you need pattern detection and want to evaluate all possible
bindings to variables.

The Rule Engine has extremely powerful pattern matching and inferencing
capabilities. However, these capabilities may come with a performance penalty. If you
find yourself repeatedly executing a named rule, consider converting the rule to an
expression. If you do not leverage the inferencing capabilities of the Rule Engine or
rarely have more than one potential variable-value binding, then use expressions.

You should carefully evaluate the performance differences between using expressions,
supplying an explicit binding between variables and values through a UnificationList
or custom Unifier, and using the Rule Engine to explore all potential bindings.

Table 16-1 shows some examples of when to use rules and expressions.

Table 16-1 Expressions vs. Rules

Feature Expressions Rules

Externalize business logic from Java code Yes Yes

Rapid deployment of business logic Yes Yes

independent of application code

Non programmers can assemble business Yes Yes

logic using JSP or Swing GUI

Inferencing capability No Yes
One rule firing can cause another rule to be
fired.

Explicit binding of value to variables Yes No

Values are bound to variables using class
type. All possible bindings are
automatically tested.

Long-lived persistence of business logic Yes Yes

Business logic is persisted as XML
documents. The XML Schema can provide
independence from the Java code.

WebLogic Portal Development Guide ~ 16-7

16 Using the Expression Package

Table 16-1 Expressions vs. Rules

Feature Expressions Rules

Business logic can be passed between Yes Yes

processes XML documents defining business logic
can be serialized or passed between Web
Services.

XML Parsing cache No Yes
RulesManager implements a TTL cache for
ruleset documents.

Expressions cache and optimization Yes Yes

The Rule Engine uses the Expression
package internally, and hence leverages
many of its underlying optimizations.

To see an example of rules, take the following steps:

1. Inthe Personalization Examples window, select Rule —Rules Manager. The Rules
Manager Example appears, as shown in Figure 16-6.

16-8 WebLogic Portal Development Guide

What Is the Expression Package?

Figure 16-6 Rules Manager Example

BEA Weblogic™ Personalization Examples How does it work? @
View Source
Examples Index
Content
Expressions

Internationalization Rules Manager Examp|e
Rules

BECRSTUMICIIEENEINY 1. Introspecting deployed RuleSets:

User

VL VELERSTEGINS Log in with system permissions to view the deployed rulesets.
Admin Tools

2. Building input object list:

Object 0: one

Object 1: fine

Object 2: day

Object 3: Http Request: /pl3n/sample.jsp

din

3. RulesMNanager.evaluateRuledSet ruleset=/customrules/MyCustomRules.rls:
Result O: Result [object=\Welcome Internet Explorer user!, type=1, rule name=User
Agent]

Result 1: day

Result 2: Http Request: /pl3n/sample. jsp

Result 3: one

Result 4: Result [object=4A 'Perfect Day' plus 'one'..., type=1, rule name=Perfect Day
plus one]

Result 5: Result [object=\what a Perfect Day!, type=1, rule name=Perfect Day]
Result 6: fine

4. RulesManager .evaluateRule ruleset=/customrules/MyCustomRules.rls,
rule=User Agent:

Result 0: day

Result 1: Http Request: /p13n/sample jsp

Result 2: one

Result 3: Result [object=\Welcome Internet Explorer user!, type=1, rule name=User
Agent]

Result 4: fine

o
M he‘

ewed with IES or later.

This page shows an example of rules. This example demonstrates that the action
of one rule will cause the condition of another rule to become satisfied. This
ability is not present in the Expression package.

2. For more explanation, click the How does it work? link. The explanation
appears, as shown in Figure 16-7.

WebLogic Portal Development Guide 16-9

16 Using the Expression Package

Figure 16-7 How Does It Work? Rules Manager

BEA Weblogic™ Personalization Examples

5’ 7
Z bea

A single 1SP, rufes_rmanager.jsp, is used in this example. You are encouraged to look at the associated ISP source

®%%,

Feature exampled: Rules Manager

Parameters: This example shows how the muleminager stateless session EIR can be invoked directly. & hand-authored
®ML ruleset is invoked against arbitrary Java mieces, illustrating the power of declarative and rules/finference based
programrming.

code!

Applications: Rule-based programming has many advantages:

e [t can allow business logic to be developed independent of source code

e Maintainahility can be improved for complex business scenarios

e Rulesets can be easily deployed into running systems - after suitable testing of course!

e Performance can be very good. The RulesManager uses a number of advanced algorithms to ensure that
patterns in input ohjects can be matched and condition evaluated with negligible performance overhead.

Expression Package Classes

The Expression package allows users to dynamically assemble and execute
XML-based expressions. The package defines a set of Java classes that represent
various types of expression operators, and contains services for evaluating expressions
consisting of instances of these operators.

The Expression package includes a base Expression class, a Variable class, and the
following operator classes for operating on Expressions and Variables:

Basic language operators (object creation, method call, and so on.)
Logical operators

Comparative operators

Collection operators

Mathematical operators

String operators

The Expression package also includes the following services for operating on
expressions:

16-10 WebLogic Portal Development Guide

What Is the Expression Package?

B Unifier—prepares an expression for evaluation.

®m Validator—validates that an expression is well-formed before evaluation.
B Optimizer—optimizes the structure of an expression before evaluation.

m Evaluator—evaluates an expression and returns the result of evaluation.

B Executor—an aggregate service that combines the unification, validation, and
evaluation processes.

Unlike an expression written directly in Java and executed from within a Java program,
the Expression package allows you to dynamically assemble and modify expressions
from within your Java programs. An expression may be modified any number of times
both before and after evaluation. When you assemble expressions using the Expression
package you can also take advantage the advanced features of the Expression package,
such as expression caching, validation, and optimization.

The Expression package serves as the foundation of the BEA Rules Engine. The Rules
Engine leverages the package in order to represent and evaluate rule condition and
action expressions. Likewise, you can use the Expression package to dynamically
assemble and evaluate your own business logic.

The Package Structure for the Expression Package

The Expression package interfaces and abstract classes can be found in the following
package: com.bea.pl3n.expression

The Expression package operators are organized in the following packages:
Basic language operators—com.bea.pl3n.expression.operators

Logical operators—com.bea.pl3n.expression.operators.logical

String operators—com.bea .pl3n.expression.operators.string
Mathematical operators—com.bea.pl3n.expression.operators.math
Comparative operators—com.bea.pl3n.expression.operators.comparative

Collection operators—com.bea.pl3n.expression.operators.collection

The Expression package related classes are packaged in the p13n_util.jar archive.

WebLogic Portal Development Guide 16-11

16 Using the Expression Package

Assembling and Managing Expressions

Before you can begin using expressions, you must first learn how to programmatically
assemble them using the various operator classes provided in the Expression package.

An expression is represented as a tree, where each node is another expression itself or
a plain Java object. Expression trees are assembled in a bottom-up manner; a child
expression or Java object is first created, and then added to a parent expression.

Figure 16-8 illustrates the steps required to build an expression tree.

m The first step in the expression assembly process is to create one or more child
operators or Java objects.

m Next, a parent operator is created by supplying the child operators or Java
objects to the parent operator’s constructor.

m This process of creating subexpressions continues until the entire expression is
assembled.

16-12 WebLogic Portal Development Guide

Assembling and Managing Expressions

Figure 16-8 Building an Expression Tree

Parent
Expression
* *
Child Child
Subexpression 1 * * * Subexpression M

Maintaining Parent-child Relationships

Each of the operator classes defined in the Expression package extends a common base
class that contains the necessary logic for maintaining parent-child relationships;
therefore, you do not have to worry about maintaining these relationships while
assembling expressions. However, it is possible to modify the structure of an
expression after it has been created.

Table 16-2 shows the operators provided in the Expression interface for adding,
modifying, or removing subexpressions in an expression.

Table 16-2 Methods for Building an Expression Tree

Java Method Description

addSubExpression Adds a child (can be a subexpression) to an expression

object.

WebLogic Portal Development Guide 16-13

16 Using the Expression Package

Table 16-2 Methods for Building an Expression Tree

Java Method Description

removeSubExpression Removes an object (can be a subexpression) of the
expression object.

setSubExpression Replaces existing object (of an expression) by the
given object (can be a subexpression).

getSubExpression Can be used to access the children of an expression

object.

getParent Can be used to access the parent expression of an

expression object.

For more information about the Expression interface, see the Javadoc.

Managing the Expression Cache

The expression interface also includes methods to manage the caching of results. The
result of evaluating an expression may be cached in each expression object. When the
cache is enabled for an expression, trying to evaluate the same expression a second
time will return the cached value.

Note: By default, caching is turned off. You may want to keep the cache turned off
for some operators, such as Methodcall.

Table 16-3 shows the methods provided in the Expression interface to manage the
caching of results.

Table 16-3 Methods to Manage Caching of Results

Java Method Description

setCacheEnabled Can be used to enable or disable the cache for an

expression.

isCacheEnabled Can be used to check if the cache is enabled for an

expression.

16-14 WebLogic Portal Development Guide

Working with Expressions

Table 16-3 Methods to Manage Caching of Results

Java Method Description

isCached Can be used to check if a result is currently cached for

an expression.

getCachedvalue Can be used to get the current cached result of

evaluating the expression.

For more information about the Expression interface, see the Javadoc.

Working with Expressions

After you have assembled an expression, you are ready to work with it using the
various Expression package services. These services allow you to prepare an
assembled expression for evaluation, validate that the expression is well-formed,
optimize its structure, and finally, evaluate the expression.

The following information is presented in this section:
m The Expression Factory

m Expression Package Services
e Unification Service
e Optimization Service
e Validation Service
e Evaluation Service

e Execution Service

The Expression Factory

The ExpressionFactory provides methods to create the various Expression package
services and data structures used by these services.

WebLogic Portal Development Guide 16-15

16 Using the Expression Package

For example, the following method will create an instance of the validator service:
ExpressionFactory.createValidator (null) ;

For more detail on how to construct the various Expression package services, see the
Javadoc.

Expression Package Services

The Expression package offers services which can be used on any expression that is
built using the operators in the Expression package.

Unification Service

The unifier is used to unify variables (assign values to variables) present in an
expression. The Unifier uses a data structure known as a UnificationList that
stores the variable name and the corresponding value of the variable. Like the
Unifier,the UnificationList instances are created viathe ExpressionFactory.
The unifier gets the value from the list for a particular variable using the variable
name as a key to search the UnificationList, and binds the retrieved value to the
variable.

For more information about the Unifier interface and the ExpressionFactory
class, see the Javadoc.

Optimization Service

The optimizer is used to optimize an expression. The default optimization algorithm
used by the Ooptimizer is shown below.

m Traverse an expression tree and add each unique subexpression to a list.

m [fa subexpression is equal to an expression present in the list, then replace it
with a proxy expression. The proxy expression delegates to the original
expression.

For more information about the Opt imizer interface and the ExpressionFactory
class, see the Javadoc.

16-16 WebLogic Portal Development Guide

Working with Expressions

Validation Service

The validator is used to validate an expression. The default validation algorithm
used by the validator is as follows:

For each operand of an operator:
m Get the required type of the operand.

m If the operand is an expression, evaluate the expression and compare the type of
the result with the required type; otherwise, assert that the operand is of the
required type.

m If the type does not match or an error occurs during the evaluation of an operand
expression, the Validator throws an InvalidExpressionException . An
UnboundVariableException is thrown if any variables in an expression are
not bound to a value.

The validator can be used in a stateless or stateful mode. In stateless mode, any
expression evaluations necessary to perform validation will be executed in stateless
mode.

For more information about stateless and stateful evaluation modes, see the
“Evaluation Service” section below.

For more information about the validator interface and the ExpressionFactory
class, see the Javadoc.

Evaluation Service

The Evaluator is used to evaluate an expression. An expression can be evaluated in
stateful or stateless mode:

Stateful mode

In this mode, the value of each variable that appears in the expression is
determined by retrieving the value set within the variable.

In other words, stateful mode relies upon the expression having been previously
unified by a Unifier.

When an expression is evaluated in stateful mode and results caching is turned
on, the results of evaluation will be cached within the expression.

Stateless mode

WebLogic Portal Development Guide 16-17

16 Using the Expression Package

In this mode, the value of each variable that appears in the expression is
determined by looking up a value that is bound to the name of the variable in an
external data structure.

In other words, the evaluation process does not rely upon state associated with
the expression, and as such, does not require the expression to be unified before
evaluation.

The data structure that contains the name-value mappings for variables is known
asaUnificationList and is associated with the Evaluator. Like the
Evaluator, the UnificationList instances can be created using the
ExpressionFactory.

A side effect of stateless mode is that expression evaluation cannot take
advantage of results caching.

You can use of stateful mode in a situation where an expression need only be evaluated
within a single thread of execution. In the case of multithreaded evaluation of a single
expression, you must use stateless mode.

Note: Ifan expression does not contain variables, then there is no difference between
the two evaluation modes.

For more information about the Evaluator interface and the ExpressionFactory
class, see the Javadoc.

Execution Service

Unification

The Executor aggregates the Unification Service, Validation Service and Evaluation
Service. The execute method on an Executor takes a Unifier, avalidator and an
Evaluator to execute a cycle of unification-validation-evaluation operations.

The algorithm used by the Executor is shown below:

m [fthe Unifier is not null, unify the expression.

m [fthe unifier is null, do not unify the expression.

Note: The Unifier should be null in the case where the expression passed to the
Executor is already unified, or the expression is to be evaluated in stateless
mode.

16-18 WebLogic Portal Development Guide

Working with Expressions

Validation

Evaluation

If the validator is not null, validate the given expression.

If the validator is null, ignore validation.

If the Evaluator is not null, evaluate the expression in stateful or stateless
mode. (depending on the type of evaluator passed.)

If the Evaluator is null, the Executor throws an
IllegalArgumentException.

Return the result.

Note: If the Evaluator passed is stateless, then the unifier should be null.

For more information about the Executor interface and the ExpressionFactory
class, see the Javadoc.

Code Examples

This section contains examples that illustrate how to construct expressions
programmatically and use the Expression package services.

This section contains the following four code examples:

Stateful Evaluation of a Simple Expression
Stateful Evaluation of an Expression Containing Variables
Stateless Validation and Evaluation of an Expression Containing Variables

Stateful Validation and Evaluation of an Expression Containing Variables

Stateful Evaluation of a Simple Expression

A logical expression is constructed and executed in stateful mode. The expression does
not contain any variables.

WebLogic Portal Development Guide 16-19

16 Using the Expression Package

Listing 16-1 Example

The source code for creating and executing the expression is shown below:

Expression expression = new LogicalAnd(Boolean.TRUE,
Boolean.FALSE) ;

// Prepare for creating an executor by creating a stateful

// evaluator. Since the expression does not contain variables,
// we are not using a validator or a unifier in this example,
// so we will not create them.

// null is passed for the environment Map.

Evaluator evaluator = ExpressionFactory.createEvaluator (null) ;
// null is passed for the environment Map.

Executor executor = ExpressionFactory.createExecutor (null) ;

// Execute the above expression by passing null for both the unifier
// and validator parameters.

Object result = executor.execute (expression, null, null,
evaluator) ;

// The result should be Boolean.FALSE.

Stateful Evaluation of an Expression Containing Variables

16-20

An expression containing variables is constructed and evaluated in stateful mode.

Listing 16-2 Example

The source code for creating and executing the expression in stateful mode is shown
below.

// Create a variable that can store an object of type Boolean
// and whose name is “?booleanVariable”.

Variable booleanVariable = new Variable (“?booleanVariable”,
Boolean.class) ;

// Now, we will use the variable that we created in the above step.

WebLogic Portal Development Guide

Working with Expressions

Expression expression = new LogicalAnd (Boolean.TRUE,
booleanvariable) ;

// Next, we’ll unify the expression by binding any variables

// present in the expression. In the above case, there is one

// variable in the expression so the variable needs to be assigned a
// value. This is shown below.

// Create a UnificationList to store the variable name and value as
// key-value pairs.

UnificationList unificationList =
ExpressionFactory.createUnificationList (null) ;

UnificationList.addObject (“*?booleanVariable”, Boolean.FALSE) ;
// Create a unifier.

Unifier unifier = ExpressionFactory.createUnifier (null,
unificationList) ;

// Prepare for creating an executor by creating a stateful
// evaluator. We are not using a validator in this example,
// so we will not create one.

// null is passed for the environment Map.

Evaluator evaluator = ExpressionFactory.createEvaluator (null) ;
// null is passed for environment Map.

Executor executor = ExpressionFactory.createExecutor (null) ;

// Execute the above expression by passing a unifier and a null
// validator.

Object result = executor.execute (expression, unifier, null,
evaluator) ;

// The result should be Boolean.FALSE.

Note: The expression can be unified before calling the execute method by calling
the unify method on the Unifier. Once the expression is unified there is no
need to pass a unifier to the execute method of the executor.

WebLogic Portal Development Guide 16-21

16 Using the Expression Package

Stateless Validation and Evaluation of an Expression
Containing Variables

16-22

An expression containing variables is constructed and evaluated in stateless mode. The
validator service is also used to validate the expression.

Listing 16-3 Example

The source code for creating and executing the expression in stateless mode is shown
below.

// Create a variable that can store an object of type Boolean
// and whose name is “?booleanVariable”.

Variable booleanVariable = new Variable (“?booleanVariable”,
Boolean.class) ;

// Now we will use the variable that we created in the above step.

Expression expression = new LogicalAnd(Boolean.TRUE,
booleanVariable) ;

// Next, we’ll unify the expression by binding any variables

// present in the expression. In the above case there is one

// variable in the expression, so the variable needs to be assigned
// a value. This is shown below.

// Create a UnificationList to store the variable name and value as
// key-value pairs.

UnificationList unificationList =
ExpressionFactory.createUnificationList (null) ;

UnificationList.addObject (“?booleanVariable”, Boolean.FALSE) ;

// Prepare for creating an executor by creating a stateless
// evaluator. We are not using a unifier in this example,
// so we will not create one.

// Creating a stateless evaluator by passing null for the
// environment Map and the UnificationList.

Evaluator evaluator = ExpressionFactory.createEvaluator (null,
unificationList) ;

// Creating a stateless validator.

WebLogic Portal Development Guide

Working with Expressions

Validator validator = ExpressionFactory.createValidator (null,
evaluator) ;

// Creating an executor.
Executor executor = ExpressionFactory.createExecutor (null) ;

// Execute the above expression by passing null for the unifier and
// a non-null validator.

Object result = executor.execute (expression, null, validator,
evaluator)

// The result should be Boolean.FALSE.

// After calling execute method, the given expression will not be
// modified by any services that were used above.

// The stateless execution mode is useful if an expression is shared
// between multiple threads.

Stateful Validation and Evaluation of an Expression
Containing Variables

An expression containing variables is constructed and evaluated in stateful mode. The
Validator service is also used to validate the expression.

Listing 16-4 Example

The source code for creating and executing the expression in a stateful mode is shown
below.

// Create a variable that can store an object of type Boolean
// and whose name is “?booleanVariable”.

Variable booleanVariable = new Variable (“?booleanVariable”,
Boolean.class) ;

// Now we will use the variable that we created in the above step.

Expression expression = new LogicalAnd (Boolean.TRUE,
booleanvariable) ;

// Next, we’ll unify the expression by binding any variables

// present in the expression. In the above case, there is one

// variable in the expression, so the variable needs to be assigned
// a value. This is shown below.

WebLogic Portal Development Guide 16-23

16 Using the Expression Package

16-24

// Create a UnificationlList to store the variable name and value
// as key-value pairs.

UnificationList unificationList =
ExpressionFactory.createUnificationList (null) ;

UnificationList.addObject (“?booleanVariable”, Boolean.FALSE) ;
// Create a unifier.

Unifier unifier = ExpressionFactory.createUnifier (null,
unificationList) ;

// Prepare for creating an executor by creating a stateful
// evaluator and validator.

// null is passed for the environment Map.

Evaluator evaluator = ExpressionFactory.createEvaluator (null) ;
// null is passed for the environment Map.

// Creating a validator.

Validator validator = ExpressionFactory.createValidator (null) ;
// Creating an executor.

Executor executor = ExpressionFactory.createExecutor (null) ;

// Execute the above expression by passing a unifier and a non-null
// validator.

Object result = executor.execute (expression, unifier, validator,
evaluator) ;

// The result should be Boolean.FALSE.

Note: The expression can be unified before calling the execute method by calling
the unify method on the Unifier. Once the expression is unified there is no
need to pass a unifier to the execute method of the Executor. The validation
service can be used directly by calling the validate method. The validate
method throws an InvalidExpressionException if the given expression is
invalid.

WebLogic Portal Development Guide

Configuring the Expression Package

Configuring the Expression Package

The expression.properties file contains configuration settings for the Expression
package and should be modified with care.

This file is archived in p13n_util.jar under the package
com.bea.pl3n.expression.

##

Expression Comparator null handling

#

If the following property is set to true the Expression
Comparator will return false as the result of comparing
any non-null value to a null, regardless of the

comparison being performed.

#

Defaults to true.

##

expression.comparator.nullcheck=true
##

Expression Comparator equality epsilon.
The following property determines the epsilon value for

#
#
#
numeric equality comparisons.
#
#
#

Defaults to 0.
#

expression.comparator.epsilon=0.00001

+H

Expression Introspector Method Array Caching
If the following property is set to true the Expression

Introspector will cache the array of Methods implemented by a
Java Class.

Defaults to true.

H*+ H H HHHHHHE

+H

expression.introspector.method.array.cache=true

WebLogic Portal Development Guide 16-25

16 Using the Expression Package

16-26

+

Expression Introspector Method Caching

If the following property is set to true the Expression
Introspector will cache Methods by signature.

Defaults to true.

H oH HHHHHHE

++

expression.introspector.method. cache=true

##
Expression Parser Node Support Classes

This property supports a comma-delimited list of classes
extending the base AST NodeSupport class. Such classes

provide node creation support for expression-schema namespaces
required for constructing the intermediate AST representing a
given Expression instance.

All NodeSupport subclasses must co-exist peacefully with the
required CoreNodeSupport instance.
#

HoH o HHHHH

parser.node.support.list=\

com.bea.pl3n.expression.internal.parser.expression.ExpressionNode
Support

##
Expression Parser Transform Visitor Class

This property specifies the ExpressionTranformVisitor or
subclass to be used for intermediate AST-to-Expression
transformations.

H H HHHHH

#
parser.transform=\

com.bea.pl3n.expression.internal.parser.expression.ExpressionTran
sformvisitor

WebLogic Portal Development Guide

Session Events

A Event Descriptions

This appendix provides information about the standard events provided with
WebLogic Portal. Specifically, it contains a description of each kind of event, what
generates the event, the class where event generation occurs, an example of usage, and
the type of data within each event object.

WebLogic Portal Events are organized in the following categories:
e Session Events
e User Registration Event
e Product Events
e Content Events
e Cart Events
e Buy Event
e Rules Event

e Campaign Events

Session Events

Session events fire at the start time, end time, and if executed, the login time of a
visitor’s session.

WebLogic Portal Development Guide A-1

A Event Descriptions

SessionBeginEvent

Description

Occurs when a visitor begins interacting with a Web or portal site.

Class

com.bea.pl3n.tracking.events.SessionBeginEvent

Generator

See “Servlet Lifecycle Events and Servlet Filter Events” on page 15-9.

Elements

application
event-date
event-type
session-id
user-id

SessionEndEvent

Description

Occurs when a visitor leaves a site, or when the visitor’s session has
timed out.

Class

com.bea.pl3n.tracking.events.SessionEndEvent

Generator

See “Servlet Lifecycle Events and Servlet Filter Events” on page 15-9.

Elements

application
event-date
event-type
session-id
user-id

SessionLoginEvent

Description

Occurs when a visitor logs on a Web or portal site.

A-2 WebLogic Portal Development Guide

User Registration Event

Class

com.bea.pl3n.tracking.events.SessionLoginEvent

Generator

TrackingEventHelper.dispatchSessionLoginEvent (),
P13NAuthFilter, and/or Input Processor.
See “Generating Login and Creation Events” on page 15-10.

Elements

application
event-date
event-type
session-id
user-id

User Registration Event

Only one registration event exists. It is described in the following table.

UserRegistrationEvent

Description Occurs when visitor registers on a Web or portal site.

Class com.bea.pl3n.tracking.events.UserRegistrationEve
nt

Generator TrackingEventHelper.dispatchUserRegistrationEven
t () and/or Input processor.

Exanqﬂe[kage examples.wlcs.sampleapp.customer.webflow.LoginCu

stomerIP located in
<BEA_HOME>\weblogic700\portal\samples\portal\wlc
sDomain\wlcsApp\wlcs\WEB-INF\src

WebLogic Portal Development Guide A-3

A Event Descriptions

Product Events

ClickProductEvent

A-4

Elements

application
event-date
event-type
session-id
user-1id

These events occur when visitor is presented with a product or clicks (selects) the

presented product.

Description Occurs when a visitor clicks a product link.

Class com.bea.commerce.ebusiness.tracking.events.Click
ProductEvent

Generator JSP Tag. Also see “Servlet Lifecycle Events and Servlet Filter Events”
on page 15-9.

Elements application

event-date

event-type

session-id

user-id

document-type

document-id

sku

category-id
application-name (name of storefront, not portal application)

WebLogic Portal Development Guide

Content Events

DisplayProductEvent

Description Occurs when a product is displayed to the visitor.

Class com.bea.commerce.ebusiness.tracking.events.Displ
ayProductEvent

Generator JSP Tag

Elements application

event-date

event-type

session-id

user-id

document -type

document-id

sku

category-id
application-name (name of storefront, not portal application)

Content Events

These events occur when the visitor is presented some content, such as an
advertisement, or clicks the presented content.

ClickContentEvent

Description Occurs when a visitor clicks some Web site content, such as a link or
banner.
Class com.bea.pl3n.tracking.events.ClickContentEvent

WebLogic Portal Development Guide A-5

A Event Descriptions

Generator JSP Tag. Also see “Servlet Lifecycle Events and Servlet Filter Events”
on page 15-9.
Elements application

event-date
event-type
session-id
user-id
document-type
document-id

DisplayContentEvent

Description Occurs when content is presented to a visitor, usually any content from
a content management system.

Class com.bea.pl3n.tracking.events
Generator JSP Tag
Elements application

event-date
event-type
session-id
user-id
document-type
document-id

Cart Events

These events indicate that one or more items are added or removed from a visitor’s
shopping cart.

A-6 WebLogic Portal Development Guide

Cart Events

AddToCartEvent

Description

Occurs when an item is added to a visitor’s shopping cart.

Class

com.bea.commerce.ebusiness.tracking.events.AddTo
CartEvent

Generator

Pipeline component. Located in
<BEA_HOME>\weblogic700\portall\applications\wlcsA
pp-project\application-sync\pipelines.

Example Usage

examples.wlcs.sampleapp.tracking.pipeline.AddToC
artTrackerPC located in

<BEA HOME>\weblogic700\portal\samples\portal\wlc
sDomain\beaApps\wlcsApp\src

Elements

application

event-date

event-type

session-id

user-id

sku

quantity

unit-list-price

currency
application-name (name of storefront, not portal application)

RemoveFromCartEvent

Description Occurs when an item is removed from a visitor’s shopping cart.

Class com.bea.commerce.ebusiness.tracking.events.Remov
eFromCartEvent

Generator Pipeline component. Located in

<BEA HOME>\weblogic700\portall\applications\wlcsA
pp-project\application-sync\pipelines

WebLogic Portal Development Guide A-7

A Event Descriptions

Example Usage examples.wlcs.sampleapp.tracking.pipeline.Remove
FromCartTrackerPC located in
<BEA_HOME>\weblogic700\portal\samples\portal\wlc
sDomain\beaApps\wlcsApp\src

Elements application

event-date

event-type

session-1id

user-id

sku

quantity

unit-price

currency
application-name (name of storefront, not portal application)

PurchaseCartEvent

A-8

Description

Occurs once for an entire order, unlike the BuyEvent, which occurs
for each line item. This event is useful for campaigns. You can use it
when writing scenario actions to know when your visitor makes a
purchase with specific characteristics, such as an order greater than
$100 or the purchase of a particular product.

Class

com.bea.commerce.ebusiness.tracking.events.Purch
aseCartEvent

Generator

Pipeline component. Located in
<BEA_HOME>\weblogic700\portall\applications\wlcsA
pp-project\application-sync\pipelines.

Example Usage

examples.wlcs.sampleapp.tracking.pipeline.Purcha
seTrackerPC located in

<BEA HOME>\weblogic700\portal\samples\portal\wlc
sDomain\beaApps\wlcsApp\src

WebLogic Portal Development Guide

Buy Event

Elements

application

session-id

user-id

event-date

event-type

total-price

order-id

currency

application-name (name of storefront, not portal application)

Buy Event

BuyEvent

Only one buy event exists. It is described in the following table.

Description

Occurs when a visitor completes the purchase. A BuyEvent occurs
for each line item. A purchase may consist of one or more line items.
A line item may consist of one or more items. For example, although a
particular line item may have quantity of four items, only one
BuyEvent occurs.

Class

com.bea.commerce.ebusiness.tracking.events.
BuyEvent

Generator

Pipeline component

Example Usage

examples.wlcs.sampleapp.tracking.pipeline.Purcha
seTrackerPC located in
<BEA_HOME>\weblogic700\portall\applications\wlcsA
pp\src

WebLogic Portal Development Guide A-9

A Event Descriptions

Elements

application
event-date
event-type
session-id
user-id

sku

quantity
unit-price
currency
application-name (name of storefront, not portal application)
order-line-id

Rules Event

Only one rule event exists. It is described in the following table.

RuleEvent

A-10

Description Indicates the rules that were fired as a visitor navigates a Web site.
Class com.bea.pl3n.tracking.events.RuleEvent
Generator Fired internally from advislets

Elements application

event-date
event-type
session-id
user-1id
ruleset-name
rule-name

WebLogic Portal Development Guide

Campaign Events

Campaign Events

These events occur when a visitor participates in a campaign.

CampaignUserActivityEvent

Description

Occurs when a visitor participates in a campaign. Specifically, this
event is fired whenever one or more scenario actions are true and the
campaign service is activated. You can limit this event to a single
occurrence for a particular scenario. This event is intended for use by
analytic software.

Class

com.bea.campaign.tracking.events.CampaignUserAct
ivityEvent

Generator

Fired internally from the campaign service.

Elements

application
event-date
event-type
session-id
user-1id
campaign-id
scenario-id

DisplayCampaignEvent

Description

Occurs when campaign content, such as an ad, is presented to the
visitor. Specifically, this event is fired whenever a campaign
placeholder displays an ad placed in the ad bucket by a campaign. You
can use this event to trigger another campaign. Analytic software uses
this event to determine if a visitor saw an ad as a result of a campaign.

WebLogic Portal Development Guide — A-11

A Event Descriptions

ClickCampaignEvent

A-12

Class com.bea.campaign.tracking.events.CampaignUserAct
ivityEvent

Generator Fired internally from the campaign service.

Elements application

event-date

event-type

session-id

user-id

document-type

document-id

campaign-id

scenario-id
application-name (name of storefront, not portal application)
placeholder-id

Description

Occurs when a campaign item, such as an ad, is clicked on by the
visitor. Specifically, this event is fired whenever a visitor clicks a
campaign ad that was placed in the ad bucket by a campaign. You can
use this event to trigger another campaign. Analytic software uses this
event to determine if a visitor clicked on an ad as a result of a
campaign.

Class

com.bea.campaign.tracking.events.ClickCampaignEv
ent

Generator

Fired internally from campaign service. Also see “Servlet Lifecycle
Events and Servlet Filter Events” on page 15-9.

WebLogic Portal Development Guide

Campaign Events

Elements application
event-date
event-type
session-id
user-1id
document -type
document-id
campaign-id
scenario-id
application-name (name of storefront, not portal application)
placeholder-id

WebLogic Portal Development Guide ~ A-13

A Event Descriptions

A-14 WebLogic Portal Development Guide

Index

A

access control lists

see also security, ACLs
accessor method(s)

attributes of 14-32

ShoppingCart 14-32

ShoppingCartLine 14-33
ACLs

see also security, access control lists
activating

behavior tracking 15-47
ad placeholders

and advertisements, definition 13-3

definition

loadAds script 13-10

query priorities 13-6

see also placeholders
adAltText attribute 13-8
adBorder attribute 13-8
AddtoCartEvent A-7
adMap attribute 13-8
adMapName attribute 13-7
administration tools

links to online help 3-8

logging in 2-21, 2-32

viewing new portal 2-22
administrators

name and password for creating domains

2-6
adTarget JSP tag 13-8
adTargetContent attribute 13-7

adTargetUrl attribute 13-7
advertisements
ad placeholders, HTML document
attributes 13-5
definition 13-3
describing with attributes 13-4
event for ad presented in campaign A-11
event for customer clicking on ad A-12
event sequence diagram 15-6
loadAds script 13-10
loading into content management 13-4
loading into content management system
13-4-13-10
making image ad clickable 13-3, 13-6
restrictions for ad attributes 13-4
restrictions for adding attributes 13-4
tracking when customers click, see
content, events
Advice object 12-9
AdviceRequest object 12-8, 12-9, 12-11
AdviceRequestConstants interface 12-7
Advislet
event fired from indicating rules A-10
mapping an Advise request 12-7
personalized applications 12-6
types of 12-7
Advisor
JSP tags
creating personalized applications
12-3
mapping an Advise request to an advislet

WebLogic Portal Development Guide I-1

12-7
see also EJBs, personalization
session bean 12-6
session bean, querying content
management 12-9
advisor
using to personalize applications 12-2
advisor package 12-8, 12-9
Advisor session bean
classifying users 12-8
selecting content 12-9
adWeight attribute 13-6
adWinClose attribute 13-8
adWinTarget attribute 13-8
Align attribute 13-9
alt tag for image files 13-8
AltText attribute 13-8
analyzing customer behavior, see behavior
tracking, events
anonymous users
campaigns 13-1
appearance
creating and modifying for WebLogic
Portal 10-1
see also skins, layouts
application
placing code in for external content
management system 8-44
application-config.xml 6-9, 8-8, 8-10, 8-19
configuring for content management
8-10
configuring for document connection
pools 8-19
configuring for integration with external
content management system
8-5
persistToDatabase property 15-32
applications
personalized, creating 12-6
see also Web applications, enterprise
applications, portal Web

applications

synchronizing webflow to 9-36
APPNAME 6-8, 6-13
arrays

behavior tracking, example 15-26

defining array that contains query results

for content management §-27
assembly-descriptor 8-46
asynchronous delivery, diagram of events
15-4

asynchronous listeners 15-3
attributes

accessor method 14-32

adWeight for documents 13-5

of portlets, editing
attributes file for documents, location 13-10
attributes for documents

HTML documents 13-5

image documents 13-7

Shockwave documents 13-6, 13-9
authentication

see also personalization

see also UUP
authentication providers, multiple 7-22
authorization

overview 1-2

see also personalization

see also UUP
Available

making layouts available 10-9

making skins available 10-5

portlets 2-34

B
backups
making before creating portal with
existing domain 3-1
banners

adding to portlets 2-27
tracking when customers click, see

WebLogic Portal Development Guide I-2

content, events
Base attribute 13-9
base class constructor 15-27
baseportal 10-2
batches
deleting email batches for campaigns
13-18
mailmanager file 13-19
begin node 9-16
BeginEvent session event A-2
behavior tracking 15-1
activating 15-47
configuring data source
data sources
configuring for behavior track-
ing 15-50
configuring service 15-48
converting behavior tracking events to
XML 15-33
definition 13-2, 15-1
enabling 15-32
events, attributes 15-27
example array 15-26
facilitating offline processing 15-21
persistToDatabase property 15-32
rules, enabling firing in custom behavior
tracking event 15-29
see also events
turning into XML 15-22
writing behavior tracking event class
15-20
XSD
schema 15-24
BehaviorTrackingListener 15-20
BGColor attribute 13-9
boolean
data types and property sets 6-22
properties with boolean value 6-22
Boolean for event property 15-40
Border attribute 13-8
border for image anchors 13-8

buffers
and events 15-20
configuring events buffer sweeping
15-21
MaxBufferSize 15-20
bulk mail
deleting email batches for campaigns
13-18
sending 13-18
bulk mail in campaigns 13-16
bulkloader
performance tips 8-5
switch settings for integrating with
external content management
system 8-2
business logic 14-30
newusercreation.jsp 6-48
see also rules
transactions and multithreading 1-3
business transaction services, see
transactions
button events 9-6
BuyEvent A-9
buying
events A-9
see also commerce
see also transactions

C

Cache tag 6-14
cache tag 6-9
cacheld 8-29
caches
accessing content selector cache on
different JSP 8-37
bulkloader performance tips 8-5
caching and methods for UUP and
EntityPropertyManager 6-3
caching data for UUPs via EJBs 6-3
configuring to improving performance

WebLogic Portal Development Guide I-3

for content management 8-28 setting up for WebLogic Portal 13-1

discount service caches in clustered, tracking customer behavior, see content,
nonclustered environments events
11-108 tracking effects with events 15-9
forward caching a document 11-105 using events in, example 15-1
group membership TTL in caching CampaignUserActivityEvent A-11
realm 11-108 CapacityIncrement attribute 8-21
integrating services with catalog cache carts
14-45 customers’ purchases’, tracking with
performance tuning 11-103 events 15-9
property caching in a clustered event sequence diagram 15-7
environment 11-106 events A-6
cacheTimeout 8-29 see also commerce
campaign event, requirements 15-16 case for document management 8-8
campaigns 15-1 catalogs

definition 13-2
deleting email batches for campaigns
13-18
email
bulk mail 13-16
event for ad presented A-11
event for customer clicking on ad A-12
event for one or more true scenario
actions A-11
event sequence diagram 15-6
events A-11
how events work in campaigns 15-2
HTML
document attributes for ad
placeholders 13-5
personalized emails
creating 13-11
email JSPs 13-13
setting up 13-11
user property names 13-12
pop-up windows 13-8
query priorities 13-6
restrictions for ad attributes 13-4
sending bulk mail 13-18
setting up display and clickthroughs
13-3

considerations before loading your
catalog data 14-10

displaying all views 14-22

displaying keys 14-22

displaying keys of all product items
14-24

getProperty 14-18

input file structure requirements 14-11

integrating services with catalog cache
14-45

item properties for display in JSPs 14-20

iterateThroughView 14-18, 14-23

iterateViewlterator 14-18, 14-21

iterateViewlterator tag 14-21

keys of categories in Viewlterator 14-22

loading your data into 14-9

log file and error file 14-16

running DBLoader to load data 14-14

showing in JSP 14-18

supporting product catalog in WebLogic
Portal 14-9

troubleshooting 14-16

UNIX and privileges 14-16

categories
keys and Viewlterator 14-22
keys in Viewlterator for catalogs 14-22

WebLogic Portal Development Guide 14

CategoryManager deployment descriptor
14-46
CategoryManager interface 14-46
checkout process 14-26
class
expression 16-10
operator 16-10
variable 16-10
class loader dependencies, avoiding 6-3
classes
InputProcessorSupportClass 9-39
Classified Advislet 12-7
classifier URI prefix for personalized
applications 12-7
classifying user
with Advisor session bean 12-8
ClassPath attribute 8-22
cleanup setting for bulkloader §-2
ClickCampaignEvent 15-10, A-12
ClickCampaignEvent.java 15-22
ClickContentEvent 15-10, A-5
ClickProductEvent 15-10, A-4
ClickThroughFilter 15-10
clickthroughs
making image ad clickable 13-3, 13-6
setting up display and clickthroughs
13-3
clusters
discount service caches in clustered,
nonclustered environments
11-108
modifying sendmail script 13-17
property caching in a clustered
environment 11-106
cm.tld 8-25
cm_taglib.jar 8-25
CMS, see content management
colName §8-23
colors
swfBGColor 13-9
column setting for bulkloader 8-4

WebLogic Portal Development Guide

columnMap setting for bulkloader 8-4
columns
creating column layouts
see also layouts
com.bea.p13n.content.ContentHelper 8-33,
8-35
commerce
customers’ purchases, tracking with
events 15-9
events, see also events, carts, buy
integrating payment service with 14-5
integrating services with catalog cache
14-45
integrating tax service with 14-2
setting up commerce services in your site
14-1
Commerce pool datasource entries 3-4
CommercePool 3-4
CommercePool Datasource 3-5
commitA fter setting for bulkloader 8-4
comparison operators in queries 8-51
components
adding to portlets 2-27
created by domain wizard 2-8
created by portal wizard 2-18
created by portlet wizard 2-30
CONFIDENTIAL 7-25
confidential transport guarantee 7-25
config.xml 11-109
personalization console entry 3-7
required JDBC entries for existing
domains 3-4
requirements for SSL 7-25
configuration
behavior tracking 15-48
webflow files 9-1
configuration wizard
overview 1-6
see also domain wizard
configuring
content management 8-7

I-5

DocumentSchema EJB 8-7
new ProfileManager 6-10
connection pools
bulkloader performance tips 8-6
configuring data source for behavior
tracking 15-50
document connection pools
JDBC Data Source Factory 15-51
JDBC DocumentConnectionPool
settings 8-22
see also document connection pools
tuning thread/connection parameters in
JDBC 11-109
ConnectionPoolName 8-8
connections
elbows in transition lines 9-21
moving connection port 9-20
moving transition to other node 9-21
conPool setting for bulkloader 8-3
console
editing document connection pool in
8-19
personalization 3-7
WebLogic Server Administration 6-9
constructing Java queries 8-53
constructors
example 15-27
TestTrackingEvent 15-29
writing TrackingEvent base class
constructor 15-27
containerld parameter 13-13
containerName parameter 13-14
container-transaction 8-46
content
customer reactions, tracking with events
15-9
event sequence diagram 15-7
events A-5
querying 8-49
selecting
with Advisor session bean 12-9

content management

ad placeholders getting content from
13-2

ad placeholders, HTML document
attributes 13-5

adding content using DocumentProvider
interface 8-40

additional classes for SPI
implementation 8-43

arrays, defining that contain query
results 8-27

caches and performance 8-28

classifying users in personalization 12-4

configuration 8-7

configuring 8-7

configuring application-config.xml 8-10

content events A-6

content selector tags, using 8-32

document attributes for display and
clickthrough 13-3

document connection pool, modifying
8-45

document connection pool, new 8-45

document connection pools 8-18

document manager, new 8-45

DocumentManager EJB deployment
descriptor 8-7

event sequence diagram 15-7

identifying JNDI Home for 8-27

integrating external systems 8-39

JAR files, make accessible for 8-48

JSP tags that support content selectors
8-30

loading ads 13-4-13-10

loading ads into 13-4

mapping recommendation requests 12-7

matching content to users in
personalization 12-5

matching content to users with Advisor
session bean 12-10

minimum use requirements for external

WebLogic Portal Development Guide I1-6

program 8-41
performance tuning 11-103
personalized applications 12-7
publishing to reference implementation
8-48
putting code into application 8-44
query priorities 13-6
querying for personalized applications
12-9
restrictions for ad attributes 13-4
rules-based inference engine 12-7
selecting content in personalization 12-4
SPI implementation, writing 8-42
turning content on or off in
personalization 12-4
content selectors
accessing content selector cache on
different JSP 8-37
examples 8-35
identifying definition 8-26
JSP tags that support 8-30
personalization 12-19
using content selector tags 8-32
content types
selecting for portlet 2-28
CONTENT MANAGER HOME attribute
12-9
CONTENT MANAGER HOME constant
12-11
CONTENT QUERY MAX ITEMS
attribute 12-9
CONTENT QUERY MAX ITEMS
constant 12-11
CONTENT QUERY_SORT BY attribute
12-9
CONTENT QUERY_SORT BY constant
12-11
CONTENT QUERY_ STRING attribute
12-9
CONTENT QUERY_ STRING constant
12-11

ContentCacheName 8-10, 8-15
ContentCaching 8-10, 8-14
ContentHelper JSP tag 8-33, 8-35
contentHome 8-24
contentHome request parameters 8-24
ContentQuery Advislet 12-7
contentquery prefix for personalized
applications 12-7
contentQuery tag 12-2, 12-3, 12-4
contentSelector 8-25, 8-34
ContentSelector Advislet 12-7
contentselector prefix for personalized
applications 12-7
contentSelector tag 12-2, 12-3, 12-5
content-selector tag 8-27
converting
RDBMS Realm to WebLogic Server 7.0
security 7-12
createAdviceRequest method 12-8, 12-9
createP13NRequest 12-8, 12-10
createP13NSession 12-10
createUniqueld 6-3
creating
see also wizards
creating a portal
getting started 1-8
steps 2-11
steps to complete 1-7
creating custom events 15-12
creation events 15-10
creator entries 6-7
Credential 7-4
credit cards
CreditCardService EJB 14-5
see also payments
CreditCardWebService file 14-6
custom behavior tracking listeners 15-36
custom events 15-12
attributes 15-14
constructor, example 15-27
example code 15-14

WebLogic Portal Development Guide I-7

installing listener class in event service
15-19
methods 15-13
persisting to database 15-32
registering 15-39, 15-41
registering, , when to 15-39
rules, enabling firing in custom behavior
tracking event 15-29
TestTrackingEvent constructor 15-29
TrackingEvent base class constructor
15-27
updating 15-44
updating registered custom event 6-29
writing 15-13
writing behavior tracking event class
15-20
writing event listener 15-16
custom tags
see JSP tags
custom user profiles
events 6-18
registering 6-18
customer behavior
tracking, see also events
customer segments
definition 13-2
where created 12-19
CustomerProperties 2-9
customers
anonymous users and campaigns 13-1
classifying users in personalization 12-4
event sequence diagram 15-6
matching content to users in
personalization 12-5
matching content to users with Advisor
session bean 12-10
selecting content for in personalization
12-4
tracking visits to Web or portal site A-2
turning content on or off in
personalization 12-4

customization
personalization overview 1-2
personalized emails for campaigns
creating 13-11
JSPs 13-13
setting up 13-11
user property names 13-12

D
d setting for bulkloader 8-4
data
external, accessing for UUP using
EntityPropertyManager 6-2
Portal schema, accessing through EJBs
6-2
data type
name-value pairs for events 15-40
of event properties 15-40
databases
buffer and behavior tracking event class
15-20

persisting custom event type to 15-32
requirements for TestEventListener
persistence 15-18
DataSync Data 3-6
DataSync Pool 3-5
date and time values for properties 6-27
DBLoader
dbloader.properties files 14-12
input file 14-10
loading product catalog data using 14-9
log files 14-16
running 14-14
dbloader.err 14-16
dbloader.properties file 14-14
debug.properties file 15-38
debugging
event services 15-38
debugging the event service 15-38
Default From Email Address field 13-12

WebLogic Portal Development Guide I-8

DefaultDocument class 8-43
DefaultDocumentlterator class 8-43
DefaultDocumentMetadata class 8-43
DefaultDocumentSchema class 8-43
DefaultEntityResolver class 8-44
delete setting for bulkloader 8-2
deployment
hot-deploying new portal 2-19
hot-deploying, username and password
for 2-19
new ProfileManager 6-10
ProfileManager, modifying deployment
configuration 6-4
verifying EJB module deployed to
enterprise application 6-9
deployment descriptors
CategoryManager 14-46
DocumentManager 8-7
PropertySetManager 8-9
destination nodes 9-3
DETAILED DISPLAY_JSP_INDEX 14-20
developing
see also wizards
developing portals
getting started 1-8
roadmap 1-6
development environment files and
directories 1-5
directories
Shockwave 13-9
structure and files for portals 1-5
directory tree, dmsBase/ Ads 13-10
discountCache 11-107
discounts
adjusting caching for discount service
11-107
and campaigns 13-2
service caches in clustered, nonclustered
environments 11-108
dispatching an event 15-37
dispatchSessionLoginEvent method 15-10

dispatchUserRegistrationEvent method
15-11
DisplayCampaignEvent A-11
DisplayContentEvent A-6
displaying image documents 8-34
displaying text documents 8-33
DisplayProductEvent A-5
div tag 12-3, 12-4
dmsBase/ Ads directory tree 13-10
docBase 8-23
docPool 8-8
document connection pool
modifying for external content
management system 8-45
new for external content management
system 8-45
document connection pools
attributes 8-20
content management, setting up 8-18
editing application-config.xml 8-19
editing in WebLogic Server console
8-19
reference implementation properties
8-22
Web applications, configuring 8-24
document management
bulkloader switch settings 8-2
document manager
new for external content management
system 8-45
document servlet 8-54
DocumentComparator class 8-44
DocumentConnectionPool 8-8
DocumentConnectionPool tag 8-19
DocumentConnectionPoolName 8-8, 8-10,
8-13, 8-19
DocumentDef interface for SPI
implementation 8-43
Documentlterator interface for SPI
implementation 8-42
DocumentManager 8-7, 8-8, 8-18

WebLogic Portal Development Guide 19

DocumentManager EJB deployment
descriptor 8-7
DocumentManager element 8-10
DocumentManagerMBeanName 8-8, 8-46
DocumentMetadataDef interface for SPI
implementation 8-42
DocumentProvider interface
adding content using 8-40
ensure CMS meets requirements 8-40
SPI implementation, writing 8-42
documents
publishing XML schema to reference
implementation 8-48
DocumentSchema EJB, configuring 8-7
DocumentSchemaDef interface for SPI
implementation 8-43
domain wizard
creating new domain
J2EE resources created 2-10
overview 1-6
starting 2-1
domains
creating new domain
creating new portal in existing domain
3-1
creating new portal in new domain 2-1
decisions before beginning portal
creation 3-2
definition 1-5
existing
creating portal for 3-1
selecting realm 3-7
keeping or replacing when creating new
portal 3-2
new
creating new portal and new domain
2-1
replacing existing with new portal
domain 3-2
required JDBC entries
JDBC entries required for existing

domains 3-4
starting server in new domain after
creating 2-11
driver 8-22
DriverName 8-20
DynamicProperties 6-2

E

EBCC
project file, opening 2-12
synchronizing 2-31
EBJs
EJB Advisor Home interface 12-8
E-Business Control Center, sese EBCC
editors
Event editor 6-19
pipeline editor 9-23
webflow editor 9-9
EJB Advisor Home interface 12-9
EJB deployment descriptor. 6-4
EJB REF NAME constant 12-8, 12-9
ejb-jar.xml 6-5, 8-45, 14-47
CategoryManager deployment
descriptor 14-46
ejb-ref 6-6, 6-11
ejb-reference-description 6-12
ejb-ref-name 6-8
EJBs
accessing data for UUP using 6-2
Advisor session bean for personalization
personalization
Advisor session bean 12-6
Advisor Session bean, querying content
management 12-9
classifying users for personalized
applications 12-8
creating UUP 6-3
CreditCardService EJB 14-6
EJB compiler 14-6
matching content to users in

WebLogic Portal Development Guide 1-10

personalized applications,
Advisor 12-10
verifying EJB module deployed to
enterprise application 6-9
elbows
in transition lines 9-21
email
bulk mail in campaigns 13-16
deleting email batches for campaigns
13-18
from remote host or clustered
environment 13-16
modifying sendmail script for clustered
environment 13-17
modifying sendmail script for remote
host 13-17
personalized for campaigns
creating 13-11
JSPs 13-13
setting up 13-11
user property names 13-12
sending bulk mail for campaigns 13-18
Email Address Property Name field 13-12
Email Opt In Property Name field 13-12
EMBED HTML element 13-8
encoding setting for bulkloader 8-4
EndEvent session event A-2
enterprise applications
definition 1-5
directory and files created by domain
wizard 2-11
see also domains, Web applications
verifying EJB module deployed to 6-9
Enterprise Java Beans
see also EJBs
Enterprise JavaBeans, see EJBs
EntityNames 6-3
EntityPropertyManager 6-4, 6-7, 6-9, 6-13,
6-14
guidelines 6-2
mapping specific names to custom

version 6-9
env-entry 6-5
errors
see also troubleshooting
es forEachInArray 8-32
event
coding listeners 15-17
defining listeners 15-16
Event Service
recording clickthroughs 13-7
event services
installing listener class in 15-19
event transitions 9-5, 9-17
event types
ClickProductEvent A-4
event(s)
shoppingcart.jsp 14-30
EventListener interface 15-4
Events
login.jsp 6-35
newusercreation.jsp 6-48
newuserforward.jsp 6-49
usercreationforward.jsp 6-51
events
AddtoCartEvent A-7
behavior tracking, activating 15-47
BuyEvent A-9
campaign events A-11
CampaignUserActivityEvent A-11
cart events A-6, A-9
ClickCampaignEvent A-12
ClickContentEvent 15-11, A-5
ClickProductEvent A-4
configuring events buffer sweeping
15-21
constructing XML to represent 15-34
constructor, example 15-27
content events A-5
converting behavior tracking events to
XML 15-33
creating custom 15-12

WebLogic Portal Development Guide I-11

creation events 15-10

custom events 15-12

custom, enabling rules firing in custom
behavior tracking event 15-29

custom, installing listener class in event
service 15-19

custom, writing 15-13

custom, writing behavior tracking event
class 15-20

custom, writing event listener 15-16

debugging event services 15-38

definition 13-2

descriptions and developing for A-1

diagram of functions 15-4

DisplayCampaignEvent A-11

DisplayContentEvent 15-11, A-6

DisplayProductEvent A-5

enabling behavior tracking 15-32

Event Editor, opening 6-19

event generators 15-11

event transitions 9-17

example of custom 15-12

facilitating offline processing 15-21

filter events 15-9

how event sequences work 15-5

how event service works 15-3

how events work in campaigns 15-2

interfaces for listeners 15-4

listeners, overview 15-3

login events 15-10

performance tuning 15-49

product events A-4

PurchaseCartEvent A-8

registering custom events 15-39, 15-41

registering custom events, when to 15-39

registering custom user profiles 6-18

registration, updating 6-29

RemoveFromCartEvent A-7

RuleEvent A-10

rules events A-10

servlet lifecycle and filter events 15-9

session events A-1
SessionBeginEvent A-2
SessionEndEvent A-2
SessionLoginEvent A-2
standard
using 15-8
TestTrackingEvent constructor 15-29
TrackingEvent base class constructor
15-27
updating custom events 15-44
user registration events A-3
UserRegistrationEvent A-3
using in campaigns, example 15-1
webflow
link and button events 9-6
events and behavior tracking 15-1
example
expression 16-3
rules manager 16-9
exception transitions 9-5, 9-18
exceptions
exception transitions 9-5, 9-18
rules engine error handling and reporting
see also troubleshooting
UnsupportedOperationException 6-2
Executor 16-18
Expression Cache 16-14
Expression class 16-10
expression example 16-3
Expression Package 16-1
Expression Package services 16-16
ExpressionAdapter class 8-44
ExpressionFactory 16-15
ExpressionHelper class §-44
expressions 16-12, 16-15
validating all rules expressions 12-17
expressions or rules, using 16-6
extension nodes
presentation nodes 9-40
presentation nodes, creating 9-40
presentation nodes, making available

WebLogic Portal Development Guide I-12

9-42
processor nodes 9-40
processor nodes, creating 9-41
processor nodes, making available 9-42
extension processor nodes 9-4
external content management system
additional classes for SPI
implementation 8-43
document connection pool, modifying
8-45
document connection pool, new 8-45
document manager, new 8-45
integrating 8-39
JAR files, make accessible for 8-48
minimum use requirements 8-41
publishing to reference implementation
8-48
putting code into application 8-44
SPI implementation, writing 8-42

F

facilitating offline processing 15-21
File Realm 7-25
FileDocument class §8-43
fileRealm.properties 7-25
files
configuration for webflow 9-1
created by domain wizard 2-10
for new portlet 2-29
portal files and directory structure 1-5
XML schema, publishing to reference
implementation 8-48
filter events
and servlet lifecycle 15-9
ClickThroughFilter 15-10
filter setting for bulkloader 8-4
filters setting for bulkloader 8-4
footers
adding to portlets 2-27
forEachInArray 8-32

G

generators
ClickContentEvent 15-11
disabling session generation 13-14
DisplayContentEvent 15-11
event generators 15-11
getAdvice method 12-6, 12-8
getAdvise method 12-11
getDynamicProperties 6-2
getEntityNames 6-3
getHomeName 6-3
getKey method for categories 14-22
getProfile 12-10
getProfile tag 8-31, 8-33, 8-35
getProperty 6-3, 14-18
getPropertyLocator 6-3
getResult method 12-9, 12-11
getterArgument attribute 14-19, 14-20, 14-21
getting started
roadmap for developing portals 1-6
steps 1-8
getTypes method 15-4
getUniqueld 6-3
globalDiscountCache 11-107, 11-108
graphics
making image ad clickable 13-3, 13-6
skins 10-4
thumbnails, creating for layouts 10-8
groupDN 7-4
guarantee, transport
confidential 7-25
integral 7-25

H

handleEvent method 15-4

headers
adding to portlets 2-27

help
links to administration tools 3-8
ShowDocServlet 8-24

WebLogic Portal Development Guide I-13

hidden setting for bulkloader §-2
HomeName 6-3
host

remote, modifying sendmail script 13-17

SET HOST 13-17
hostname 2-20
hot-deploying

new portal 2-19

password and username 2-19
HTML

adding placeholders to HTML fragment

10-7
and ShockWave 13-6
determining dimensions of Shockwave
in relation to HTML page 13-9

htmlPat setting for bulkloader 8-3
HTTP_REQUEST attribute 12-8
HTTP_REQUEST constant 12-10
HTTP_SESSION constant 12-10
HTTPS

links accessed via 7-25
HttpServletRequest 15-10
HTTPSession 13-14

id attribute 8-27, 14-21
idt attribute 14-19
ignore setting for bulkloader 8-4
ignoreErrors setting for bulkloader 8-3
image documents

displaying 8-34

retrieving 8-34

surrounding tag with scriptlet 8-36
image files

<alt> tag 13-8
image map 13-7
images, see also graphics
IMG HTML element 13-8
IMG tag, surrounding with scriptlet 8-36
inheritProps setting for bulkloader 8-3

InitialCapacity attribute 8-21
input processors
creating 9-37
creating using InputProcessorSupport
class 9-39
creating using interface 9-38
CustomerProfilelP 6-52
definition 9-4
DeleteProductltemFromShoppingCartIP
14-36
EmptyShoppingCartIP 14-37
InitShoppingCartIP 14-37
InputProcessor interface 9-38
LoginCustomerIP 6-54
UpdateShoppingCartQuantitiesIP 14-38
UpdateSkulP 14-38
INTEGRAL 7-25
integral transport guarantee 7-25
interaction management
setting up in WebLogic Portal 12-1
interfaces
CategoryManager 14-46
EJB Advisor Home interface 12-8
EventListener 15-4
for personalized applications 12-7
InputProcessor 9-38
processor 9-41
InternalRequestDispatcher 13-14
InternalRequestDispatcher JSP 13-14
Internationalization
non-ASCII characters in content queries
8-50
isolationLevel 8-23
isolation-level 6-13
isPooled 8-22
items
catalogs, displaying keys of all product
items 14-24
displaying in JSP 14-18
events, see product events
item properties for display in JSPs 14-20

WebLogic Portal Development Guide 1-14

see also catalogs
iterateByView attribute 14-22
iterateThroughView 14-18
iterateThroughView tag 14-23
iterateViewlterator 14-18
iterateViewlterator tag 14-21
iterator attribute 14-21
iterators
displaying all views in ViewIterator
14-22
displaying category keys in Viewlterator
14-22
displaying keys of all product items
14-24

J

J2EE resources
configuring Web applications for
document connection pools
8-24
created by domain wizard 2-10
for document connection pools
for new portlet 2-29
JAR files
in enterprise application directory
created by domain wizard 2-11
in root of enterprise application for UUP
6-14
make accessible for external content
management system 8-48
putting compiled custom EJB in your
own JAR file 6-4
Java scriptlets 14-32
JavaBeans, see EJBs
JavaServer Page (JSP)
Advisor tags 12-3
JavaServer Page (JSP) templates
shoppingcart.jsp 14-25
JavaServer Page templates
login.jsp 6-33

newcctemplate.inc 6-38
newdemographictemplate.inc 6-37, 6-39
newuser.jsp 6-36
newusercreation.jsp 6-45
newuserforward.jsp 6-48
usercreationforward.jsp 6-50
JavaServer Pages, see JSPs
javax.sql.DataSource 8-8
JDBC
colname 8-23
docbase 8-23
DocumentConnectionPool MBean
properties 8-22
isolationLevel 8-23
isPooled 8-22
schemaXML 8-23
tuning thread/connection parameters
11-109
jdbc.isolationLevel 8-23
jdbc/docPool 8-8
JdbcHelper class 8-44
JNDI
and personalized applications 12-9
JNDI home, identifying for content
management system 8-27
name for content management home
interface 12-9
showing name for UUP 6-8
jndi-name 6-8
JSP tags
content selector tags, using 8-32
content-selector tag 8-27
for personalized emails in campaigns
13-13
getPipelineProperty 14-31
overview of use in Portal 1-3
personalization 12-2
supporting content selectors 8-30
JSPs
accessing content selector cache on
different JSP 8-37

WebLogic Portal Development Guide I-15

displaying catalogs in 14-18

for personalized emails in campaigns

13-13, 13-14
overview of use in Portal 1-3
showing catalog in 14-18

tags for displaying catalogs in 14-18

K

KeyBootstrap class 3-7
keys
in Viewlterator for catalogs 14-22

listing in behavior tracking event 15-26

L

layouts
adding placeholder names 10-7
creating 10-6
making available 10-9
storing 10-8
thumbnails, creating 10-8
LDAP
configuration changes for UUP 6-5
configuring server 7-3
integrating security realm 7-3
security for portals 7-2
security, integrating with UUP 6-15
see also UUP
supported server templates 7-7
supported servers 7-2
wildcard searches 7-9
LdapPropertyManager 6-5
lifecycle
event sequences 15-5
servlet lifecycle 15-9
link events 9-6
links
accessed via HTTPS 7-25
target window for HTML 13-8
tracking when customers click, see

content, events
listen ports, identifying 7-26
listeners
asynchronous 15-3
diagram of event functions 15-4

installing listener class in event service

15-19
interface implemented 15-4
synchronous 15-3

writing custom event listener 15-16

loadads script 13-10
locations
for new portlet files 2-29
log file for catalog DBLoader 14-16
login
creating domains 2-6
customers and visitors, see also
registration 15-8

customers’, tracking with events 15-8

for administration tools 2-21
for hot-deploying 2-19
for WebLogic Portal Server 2-11
for WebLogic Server 2-12
login events 15-10
login.jsp
about 6-33
events 6-35
LoginEvent session event A-2
LoginTimeoutt attribute 8-22
look and feel, see skins, layouts
Loop attribute 13-9

M

mailmanager script 13-17
mailmanager.bat 13-18, 13-19
mailmanager.sh 13-18

Map attribute 13-8

map, image 13-7

MapName attribute 13-7
mapping properties for UUP 6-6

WebLogic Portal Development Guide

I-16

mapping recommendation requests for
personalized applications 12-7
match setting for bulkloader 8-4
max attribute 8-28
MaxBufferSize property 15-49
Sweeplnterval property
SweepMaxTime property 15-20
MaxCachedContentSize 8-10, 8-15
MBeanName 8-8
Mbeans security, switching to 7-12
mdext setting for bulkloader 8-4
Menu attribute 13-10
meta HTML element 13-5
metadata
created by portal wizard 2-18
metadata for documents. See attributes for
documents.
MetadataCacheName 8-10, 8-14
MetadataCaching 8-10, 8-14
metaparse setting for bulkloader §-2
methods
and exceptions for
EntityPropertyManager 6-2
creating UUP 6-3
EntityPropertyManager 6-2, 6-4
ProfileManager 6-4
Microsoft Customer Security Realm
Template 7-8
MimeTypeHelper class 8-44
module tag 6-13
multiple authentication providers 7-22
Multiple, Restricted event property 15-40
Multiple, Unrestricted event property 15-41

N

name parameter 9-42
name property 9-15
namespace 15-33
namespace parameter 9-42
namespaces

newuser.jsp 6-37

newuserforward.jsp 6-49

usercreationforward.jsp 6-51
navigation

portals 9-1

see also webflow

tracking customer navigation events, see

rules events
Netscape Customer Security Realm
Template 7-7

newaddresstemplate.inc

about 6-38

getValidatedValue JSP tag 6-38
newcctemplate.inc

getValidatedValid JSP tag 6-39
newdemographictemplate.inc

getValidatedValid JSP tag 6-40
NewPortalWebApp 2-15
newuser.jsp

about 6-36

default Webflow 6-37

events 6-41

form field specification 6-41

namespace 6-37

newaddresstemplate.inc 6-38

newcctemplate.inc 6-38

newdemographictemplate.inc 6-39

parameters 6-41
newusercreation.jsp

default Webflow 6-47

events 6-48
newuserforward.jsp

default Webflow 6-49

events 6-49

namespace 6-49
nodes

adding to webflow 9-14

begin node 9-16

destination 9-3

elbows in transition lines 9-21

extension processor 9-4

WebLogic Portal Development Guide

I-17

moving connection port 9-20
moving transition to other node 9-21
origin 9-3
pipelines, creating and adding to
webflow 9-22
presentation 9-3
presentation nodes, creating 9-40
presentation nodes, extension 9-40
presentation nodes, making available
9-42
processor 9-4
processor nodes, creating 9-41
processor nodes, extension 9-40
processor nodes, making available 9-42
transitions between 9-17
wildcard 9-5
Novell Customer Security Realm Template
7-8
NT Security Realm 7-24

0

object attribute 14-19
OBJECT HTML element 13-8
offline processing for custom events 15-21
online help
links to administration tools 3-8
ShowDocServlet §8-24
OpenLDAP Security Realm Template 7-9
operator class 16-10
operators, comparison in queries 8-51
Optimizer 16-16
orders
customers’, tracking with events 15-9
events
see also events, carts, buy
see also commerce
see also transactions
origin nodes 9-3
overview
of portals 1-2

of WebLogic Portal features 1-2

P

package, expression 16-1
page-name property 9-16
page-relative-path property 9-15
pages
appearance
see also skins, layouts
events, see content
overview 1-2
specifying for portlet 2-26
Parent-child Relationships 16-13
passwords
creating a domain 2-6
for administration tools 2-21
for hot-deploying 2-19
for WebLogic Portal Server 2-11
for WebLogic Server 2-12
payments
payment service, integrating with Portal
commerce services 14-5
payment services, adding to existing
domain 3-9
security and payment services 14-6
PaymentServiceClient element 14-6
PaymentWebServiceWSDL attribute 14-6
performance tuning
behavior tracking 15-49
bulkloader tips 8-5
caches and content management 8-28
caching 11-103
discount service 11-107
events and buffer 15-49
group membership TTL in caching
realm 11-108
persistToDatabase property 15-32
personalization
classifying users 12-4
content selectors 12-19

WebLogic Portal Development Guide 1-18

definition 1-6
EJB Advisor Home interface 12-8
emails, personalized for campaigns
creating 13-11
JSPs 13-13
setting up 13-11
user property names 13-12
examples 16-2
JSP tags used 12-2

mapping recommendation requests 12-7

matching content to users 12-5
matching content to users with Advisor
session bean 12-10
overview 1-2
personalized applications 12-6
personalizing using Advisor 12-2
rules, using rules framework 12-17
segments 12-23
segments and content selectors 12-23
selecting content 12-4
setting up in WebLogic Portal 12-1
turning content on or off 12-4
Personalization Console 3-7
Pipeline components
AddToCartTrackerPC 14-43
DeleteProductltemFromSavedListPC
14-40

MoveProductltemToSavedListPC 14-41

MoveProductltemToShippingCartPC
14-41
PriceShoppingCartPC 14-43
RefreshSavedListPC 14-42
RemoveFromCartTrackerPC 14-44
pipeline components 6-55
EncryptCreditCardPC 6-56
RegisterUserPC 6-55
pipelines
adding to webflow 9-34
creating 9-26
creating and adding to webflow 9-22
definition 9-4

overview of webflow 9-2
pipeline editor 9-23
synchronizing webflow to application
9-36
placeholders
ad placeholders, HTML document
attributes 13-5
adding placeholder names to layouts
10-7
event for ad presented A-11
getting content from content
management system 13-2
interaction with scenarios 13-2
loadAds script 13-10
loading ads into content management
13-4
pop-up windows 13-8
query priorities 13-6
restrictions for ad attributes 13-4
Play attribute 13-9
Pluggable Authentication Module 7-24
plug-ins 13-8
pools, see connection pools
pop-up windows in campaigns 13-8
port 2-20
Portal Administration Tools, see
administration tools
portal architecture
files and directories 1-5
Portal RDBMS repository 6-10, 6-15
Portal server
starting 2-11
portal Web applications
creating new 2-15
portal wizard
files created by 2-18
metadata and J2EE resources created by
2-18
overview 1-6
using 2-14, 3-3
portal App project 2-9

WebLogic Portal Development Guide I-19

portals 7-1

appearance
see also skins, layouts
content management, see also content
management
content management, setting up 8-1
creating
keeping or replacing existing
domain 3-2
requirements before creating for
existing domain 3-1
steps to complete 1-7
creating layouts 10-6
creating new 2-11
creating new portal in existing domain
3-1
creating new portal in new domain 2-1
creating skins 10-2
customer visits, tracking A-2
definition 1-6
file locations and structures 1-5
group portals overview 1-2
groups
see also group portals
hot-deploying new portal 2-19
included skins 10-4
integrating with business transaction
services 14-1
making layouts available 10-9
making skins available 10-5
navigation 9-1
new window for creating in EBCC 2-13
overview 1-2
security 7-1
security with LDAP 7-2
security with RDBMS 7-2
see also portlets, pages
selecting template 2-16
storing layouts 10-8
storing skins 10-4
viewing newly created in administration

WebLogic Portal Development Guide

tools 2-22
webflow 9-1
what you can accomplish 1-2
portlets
adding components 2-27
appearance
see also skins, layouts
components, definition 1-6
content type 2-28
creating 2-25
creating layouts 10-6
creating skins 10-2
definition 1-6
editing 2-33
included skins 10-4
location for new J2EE resources 2-29
making available for use 2-31
making layouts available 10-9
making skins available 10-5
making visible 2-31
Portlet wizard
specifying page for 2-26
storing layouts 10-8
storing skins 10-4
ports
listen ports, identifying 7-26
moving connection port 9-20
SET PORT 13-17
presentation nodes 9-3
button events 9-6
extension, creating 9-40
extension, making available 9-42
link events 9-6
presentation nodes, extension 9-40
principal LDAP realm attribute 7-4
priorities, query 13-6
privileges
UNIX and catalogs 14-16
procedures
creating new portal in existing domain
3-1

120

creating new portal in new domain 2-1
creating portals 1-6
for developing portals 1-6
see also wizards
steps for getting started 1-8
processing offline for custom events 15-21
Processor interface 9-41
processor nodes 9-4
extension, creating 9-41
extension, making available 9-42
processor nodes, extension 9-40
product catalog
see also catalogs
supporting in WebLogic Portal
products
catalogs, displaying keys of all product
items 14-24
customer interest, tracking with events
15-8
displaying in JSP 14-18
event sequence diagram 15-6
events A-4
properties for display in JSPs 14-20
see also items
ProfileManager 6-4
configuring and deploying new 6-10
deployment configuration, modifying
6-4
using new instead of
UserProfileManager 6-4
profiles
custom user profiles, registering 6-18
events 6-18
integrating LDAP security with UUP
6-15
users
Unified User Profile (UUP),
creating 6-1
ProfileType 6-4
project files
definition 1-6

opening 2-12
properties
caching data for UUPs via EJBs 6-3
data and time values 6-27
mapping for UUP 6-6
mapping specific names to custom
EntityPropertyManager 6-9
see also property sets
with multiple values 6-25
with single or boolean value and single
default 6-22
Properties attribute 8-21
properties for documents. See attributes for
documents.
properties setting for bulkloader 8-3
property caching in a clustered environment
11-106
Property reference implementation properties
8-22
Property Set Name field 13-12
property sets
creating definition 6-18
PropertyCase 8-8, 8-10, 8-14
PropertyLocator 6-3
propertyName attribute 14-19
PropertySetManager 8-9
PropertySetManager EJB deployment
descriptor 8-9
publishing to reference implementation 8-48
PurchaseCartEvent A-8
purchases
customers’, tracking with events 15-9
events
see also events, carts, buy
see also commerce
see also transactions
pz contentQuery tag 12-3, 12-4
pz contentSelector tag 8-25, 8-34, 8-35, 12-3,
12-5
pz div tag 12-3, 12-4

WebLogic Portal Development Guide 121

Q

Quality attribute 13-9
queries
comparison operators 8-51
constructing 8-49
constructing in Java 8-53
content management, attributes for
AdviceRequest object 12-9
defining array that contains query results
for content management 8-27
for content management with Advisor
session bean 12-9
query priorities 13-6
query priorities for ad placeholders 13-6
searching for documents 13-4
structuring 8-49

R

RDBMS
repository 6-10, 6-15
security for portals 7-2
realms
group membership TTL in caching
realm 11-108
LDAP security realm for portals 7-2
LDAP, integrating security realm 7-3
new or existing in existing domain 3-7
other supported security realms 7-24
RDBMS security realm for portals 7-2
see also UUP
recommendation requests, mapping for
personalized applications 12-7
recurse setting for bulkloader 8-2
reference implementation
properties for document connection
pools 8-22
publishing to 8-48
reference-descriptor 6-8, 6-12
registration
customers’, tracking with events 15-8

event sequence diagram 15-6
of custom events 15-39, 15-41
registering custom user profiles for
events 6-18
registering extension presentation node
9-43
registering extension processor node
9-43
updating for registered custom event
registered custom event, updating
6-29
user registration events A-3
when to register custom events 15-39
relative pathnames, resolving 13-9
remote host
email from remote host or clustered
environment 13-16
modifying sendmail script 13-17
removeEntity 6-3
RemoveFromCartEvent A-7
removeProperties 6-3
remover entries 6-7
repository (WebLogic Portal RDBMS
repository) 6-10
REQUEST behavior tracking attribute 15-27
request parameter 9-42
requestContext parameter 9-42
requirements for a campaign event 15-16
retrieving image documents 8-34
retrieving Pipeline session attributes
shopping cart 14-32
retrieving text documents 8-33
returnType attribute 14-19, 14-22
roadmap for developing portals 1-6
RuleEvent A-10
rules
enabling firing in custom behavior
tracking event 15-29
event sequence diagram 15-7
events A-10
fired by customer actions, tracking with

WebLogic Portal Development Guide 1-22

events 15-9
how events work in campaigns 15-2
rules engine error handling and reporting
12-18
using rules framework 12-17
validating all expressions 12-17
rules manager example 16-9
rules.engine.expression.validation property
12-17
rules.engine.ignorable.exceptions parameter
12-18
rules.engine.throw.expression.exceptions
parameter 12-18
rules.properties file 12-17
RULES RULENAME TO_ FIRE attribute
12-8, 12-9
RULES RULENAME TO_FIRE constant
12-11

S

SAlign attribute 13-9
samples
sample portal, enabling behavior
tracking in 15-32
sample portal, installing listener class in
event service 15-19
tax and payment services 3-9
Scale attribute 13-9
scenariold parameter 13-13
scenarioName parameter 13-13
scenarios
definition 13-2
effect on ad placeholders 13-2
event for one or more true scenario
actions A-11
how events work in campaigns 15-2
priority for ad queries 13-6
services scenarios can use 13-2
when to register events 15-39
schema

custom events and behavior tracking
15-26
loading your product catalog data into
14-9
properties in, accessing using EJBs 6-2
SchemaManager 15-40
XSD 15-24
SchemaManager 15-40
schemaName setting for bulkloader 8-3
schemas
methods
implementing for external content
management system 8-44
schema setting for bulkloader 8-3
XML files, publishing to reference
implementation 8-48
XML-XSD 15-22
XSD 15-26
schemaXML 8-23
scriptlet In heading.inc 8-26
scriptlets, Java 14-32
search methods
implementing for external content
management system 8-44
returning metadata about document 8-44
searching
using wildcards in LDAP searches 7-9
Secure Sockets Layer Security
see SSL
security 7-1
configuring servers for LDAP security
7-3
integrating LDAP with UUP 6-15
other supported realms 7-24
payment services 14-6
SSL, see SSL
supported LDAP server templates 7-7
supported LDAP servers 7-2
segments
classifier rules as 12-4
content selectors and personalization

WebLogic Portal Development Guide 1-23

12-23
see also customer segments
selecting content
with Advisor session bean 12-9
Selection mode for event property 15-40
selectors
content selectors and personalization
see also content selectors
sendmail script
modifying for clustered environment
13-17
modifying for remote host 13-17
sequences
event sequence diagram 15-6
how event sequences work
see also event sequences
servers
configuring for LDAP security 7-3
starting for newly created domain 2-11
supported for LDAP security 7-2
supported templates for LDAP security
7-7

WebLogic Portal Server, logging in 2-11

WebLogic Server, logging in 2-12
service, event, see event service
services
configuring behavior tracking service
15-48
event, debugging 15-38
installing listener class in event service
15-19
integrating services with catalog cache
14-45
payment, integrating with commerce
services 14-5
see also campaigns
see also taxes, payments, transactions
taxation, integrating with commerce
services 14-2
servlet, document 8-54
ServletAuthentication 15-10

servlets
lifecycle 15-9
session bean, Advisor
classifying user 12-8
selecting content 12-9
session beans
see also EJBs, Advisor
session entry in config.xml for
DocumentManager 8-45
session events
see also events
SESSION ID behavior tracking attribute
15-27
SESSION_ID key 15-35
SessionBeginEvent A-2
SessionEndEvent A-2
SessionLoginEvent A-2
sessions
event sequence diagram 15-6
session events A-1
session generating, disabling 13-14
SET DATABASE property 14-15
SET HOST variable 13-17
SET PORT variable 13-17
set-environment 14-15
setProperty 6-3
sets
see also property sets
Shockwave file 13-3
Shockwave files 13-6, 13-9
shopping carts
customers’ additions to, tracking with
events 15-9
see also carts
see also commerce
ShowDocServlet 8-24
Single, Restricted event property 15-40
Single, Unrestricted event property 15-40
skins
creating 10-2
included 10-4

WebLogic Portal Development Guide 1-24

making available 10-5
storing 10-4
thumbnail graphics 10-4
sortBy attribute 8-28
SortCriteria class 8-44
SPI implementation, additional classes 8-43
SPI implementation, writing 8-42
SSL
config.xml requirements for 7-25
web.xml requirements for 7-26
standard events
using 15-8
starting Portal server 2-11
steps
see also procedures
structuring queries 8-49
support, technical XVvii
supportsLikeEscape Clause 8-23
Sweeplnterval property 15-49
SweepMaxTime property 15-49
swfAlign attribute 13-9
sw{Base attribute 13-9
swfBGColor attribute 13-9
swfLoop attribute 13-9
swfMenu attribute 13-10
swfPlay attribute 13-9
swfQuality attribute 13-9
swfSAlign attribute 13-9
swfScale attribute 13-9
switching
to WebLogic Server 7.0 security 7-12
synchronizing
DataSync Pool entry 3-5
new portlet and Portal Web application
2-31
portlets 2-31
webflow to application 9-36

T
Target JSP tag 13-8

target window for HTML links 13-8
TargetContent attribute 13-7
TargetUrl attribute 13-7
taxes
tax services, adding to existing domain
39
taxation service, integrating with Portal
commerce services 14-2
templates
selecting for portal 2-16
server templates supported for LDAP
security 7-7
TestEvent class 15-15
TestTrackingEvent 15-34
TestTrackingEvent constructor 15-29
text documents
displaying 8-33
retrieving 8-33
threads, tuning thread/connection parameters
in JDBC 11-109
thumbnail.gif 10-9
thumbnails
creating for layouts 10-8
skin graphics 10-4
time and date values for properties 6-27
TIME INSTANT attribute 12-8
TIME INSTANT constant 12-10
Timestamp object 12-8, 12-10
TimeToLive 6-14
tools
logging in 2-21, 2-32
tracking event constructor 15-27
TrackingEvent constructor
attributes for tracking events 15-27
transaction-isolation 6-13
transactions
integrating with payment service 14-5
integrating with portal 14-1
integrating with taxation service 14-2
transitions
between nodes 9-17

WebLogic Portal Development Guide 1-25

elbows in transition lines 9-21
event transitions 9-5, 9-17
exception transitions 9-5, 9-18
moving connection port 9-20
moving transition to other node 9-21
transition tools 9-20
transport guarantee
confidential 7-25
integral 7-25
troubleshooting
anonymous users and campaigns 13-1
catalog log file and error file 14-16
catalogs and DBLoader 14-16
domain decision-making 3-2
moving Web application components to
new portal domain 3-3
rules engine error handling and reporting
12-18
synchronizing webflow to application
9-36
truncate setting for bulkloader 8-3
tuning performance, see performance tuning
type property 9-15

U

um getProfile tag 8-31, 8-33, 8-35
Unification Service 16-16
Unified User Profile, see UUP
Unifier 16-16
Uniqueld 6-3
UNIX

and privileges regarding catalogs 14-16
UNIX Security Realm 7-24
UnsupportedOperationException 6-2, 6-3
updating

custom events 15-44, 15-45
upgrading

to WebLogic Server 7.0 security 7-12
uppercase or lowercase document

management properties 8-8

url 8-22
URL attribute 8-21
URLDocument class 8-43
useCache 8-29
USER attribute 12-8
USER constant 12-10
user profiles
events 6-18
overview of use with UUP
registering custom 6-18
see also UUP
Unified User Profile (UUP), creating 6-1
USER _ID behavior tracking attribute 15-27
USER _ID key 15-35
USER PROPERTY ONE KEY key 15-35
USER PROPERTY TWO KEY key 15-35
usercreationforward.jsp
default Webflow 6-51
events 6-51
Java import statements 6-50
namespace 6-51
userDN 7-3
UserldInCacheKey 8-10, 8-14
UserManager EJB deployment descriptor 6-4
UserManager EJB Section 6-11
usermgmt.jar 6-5, 6-8, 6-9, 6-14
username
for administration tools 2-21
UserProfileManager 6-4, 6-7
using new ProfileManager instead 6-4
UserRegistrationEvent 15-11, A-3
users
accessing data for UUP using
EntityPropertyManager 6-2
anonymous users and campaigns 13-1
classifying
with Advisor session bean 12-8
classifying in personalization 12-4
matching content to users in
personalization 12-5
matching content to users with Advisor

WebLogic Portal Development Guide 1-26

session bean 12-10

searching for with wildcards in LDAP
7-9

selecting content for in personalization
12-4

turning content on or off in
personalization 12-4

Unified User Profile (UUP), creating 6-1

user activity event A-11

user registration

events A-3
using rules or expressions 16-6
UuUP

accessing data for using
EntityPropertyManager 6-2

deploying ProfileManager that can use
new EntityPropertyManager
6-4

EntityPropertyManager guidelines 6-2

finishing 6-10

integrating with LDAP security 6-15

JNDI name, showing 6-8

modifying ProfileManager deployment
configuration 6-4

overview 1-3

registering custom user profile 6-19

Unified User Profile (UUP), creating 6-1

verifying EJB module deployed to
enterprise application 6-9

v

validating all rules expressions 12-17
Validator 16-17
Value range for event property 15-40
Variable class 16-10
verbose setting for bulkloader 8-2
views
displaying all in ViewlIterator 14-22
displaying category keys in Viewlterator
14-22

displaying keys of all product items
14-24
Visible
making layouts visible 10-9
making portlets visible 2-31
making skins visible 10-5
portlets 2-34
visitors
matching content to users in
personalization 12-5
see also customers
visual attributes, see skins, layouts

w

Web applications
configuring for document connection
pools 8-24
definition 1-5
see also enterprise applications, portal

Web applications
web.xml
predefined links invoking JSPs, webflow
7-25

requirements for SSL 7-26
webapp parameter 9-42
webflow
adding nodes 9-14
adding pipeline to 9-34
begin node 9-16
configuration files 9-1
creating 9-11
creating pipeline 9-26
creating pipeline and adding to 9-22
destination nodes 9-3
elbows in transition lines 9-21
extending through presentation and
processor nodes 9-40
extension processor nodes 9-4
input processors
creating 9-37

WebLogic Portal Development Guide 1-27

creating using
InputProcessorSupport
class 9-39
creating using interface 9-38
moving connection port 9-20
moving transition to other node 9-21
origin nodes 9-3
overview of components 9-2
pipeline editor 9-23
presentation nodes 9-3, 9-4
setting up for WebLogic Portal 9-1
synchronizing to application 9-36
transition tools 9-20
transitions 9-5
transitions between nodes 9-17
wildcard nodes 9-5
webflow editor 9-9
webflow-extensions.wfx file 9-44
WebLogic Portal
navigation 9-1
webflow 9-1
WebLogic Portal RDBMS repository 6-10,
6-15
WebLogic Portal Server
logging in 2-11
WebLogic Server
configuring behavior tracking service in
15-48
logging in 2-12
WebLogic Server 7.0 security, switching to
7-12
weblogic-ejb-jar.xml 6-7, 6-12, 14-47
weblogic-enterprise-bean 6-8, 6-12, 8-47
WildCard class 8-44
wildcard nodes 9-5
wildcards in LDAP searches 7-9
WinClose attribute 13-8
Windows NT Security Realm 7-24
windows, pop-up 13-8
WinTarget attribute 13-8
wizards

domain wizard
starting 2-1
overview 1-6
portal wizard 2-14
Portlet Wizard 2-24
wlauth 7-24
wlcsSample.jar 14-6
WLPSDocs services 3-8
writing custom event triggers 15-36

X
XML
constructing for event representation
15-34
converting behavior tracking events to
15-33

creating document 15-35
creation of behavior tracking events
15-33
instance document 15-34
instance document for event type
schema 15-22
namespaces 15-26
schema files, publishing to reference
implementation 8-48
turning behavior tracking event into
15-22
webflow configuration files 9-1
XML-XSD schema 15-22
XML-XSD schema 15-22
XSD
behavior tracking requirements 15-27
schema and custom events 15-24
schema locations 15-26
XML-XSD schema 15-22

WebLogic Portal Development Guide 1-28

	Preface
	1 Introduction to WebLogic Portal Development
	A Developer’s Portal Primer
	Portal Features
	Personalization and Authorization
	Group Portals
	JSPs and JSP tags
	EJBs
	Unified User Profile
	Other Useful Features

	Portal Component File Locations
	Roadmap for Building a Portal
	How do I Build a Portal?
	How Can I Extend these Portals?

	How Do I Get Started?
	Part I Developing Portals – Tutorials

	2 Creating a New Portal in a New Domain
	Step 1: Create the New Domain
	Step 2: Create the New Portal
	Step 3: Add a Portlet
	Step 4: Make New Portlet Visible

	3 Adding Portal to an Existing Domain
	About Your Domain
	Before You Begin
	Preserve or Replace the Existing Domain
	Procedure A
	Procedure B

	Use or Replace Existing Database
	Procedure C
	Procedure D

	Locate or Install Enterprise Application
	Procedure E
	Procedure F

	4 Deploying Portals
	Hot Deploying With the Portal Wizard
	Deploying Without the Portal Wizard
	Deploying a Portal without Hot Deploy
	Manually Deploying a Portal Web Application
	Step 1: Move J2EE Resources
	Step 2: Synchronize Metadata
	Step 3: Deploy in the WebLogic Server Console

	Best Practice Guidelines for Deploying Your Portal
	Stage 1: Deploy to a Server on Your Own Machine
	Stage 2: Deploy From a Local Computer to a Staging Server
	Stage 3: Deploy From the Testing Environment to a Live Production Server

	Part II Extending Portals

	5 Building Custom Templates
	Introducing Templates
	Three Types of Templates
	The Domain Wizard Template
	The Portal Wizard Template
	The Group Portal Template

	Using Templates

	Creating a Domain Template
	Step 1: Instantiate a Portal Domain
	Step 2: Customize the Portal Domain
	Supporting Two-Phase Deployment
	Adding All Portal Services to Your Domain
	Adding an EJB to your WebLogic Portal Domain

	Step 3: Apply General Configuration
	Adding a Custom Layout to a Domain Template
	Adding a Custom Skin to a Domain Template

	Step 4: Package the New Domain as a Template
	Open the template.xml File
	Edit the config.xml file
	Edit the Application.xml file
	Check Shell Scripts for String Substitution
	Create the Archive

	Creating a Portal Template
	Instantiate a New Portal
	Customize the New Portal
	Apply Basic Configuration
	Package the New Portal as a Template
	Step 1: Make Staging Directory
	Step 2: Locate Source Directories
	Step 3: Move Portal Resources
	Step 4: Edit template.xml
	Step 5: Create a Thumbnail
	Step 6: Create Archive File
	Step 7: Make the Archive Available

	6 Implementing User Profiles
	Creating a Unified User Profile
	Create an EntityPropertyManager EJB to Represent External Data
	Recommended EJB Guidelines
	Deploy a ProfileManager That Can Use the New EntityPropertyManager
	Modifying the Existing ProfileManager Deployment Configuration
	Configuring and Deploying a New ProfileManager
	Retrieving User Profile Data from LDAP

	Creating a Property Set Definition
	Registering Custom User Profiles
	Properties with Boolean or a Single Value and Single Default
	Properties with Multiple Values and Single, Multiple, or All Defaults
	Properties with Date and Time Values

	Updating a Registered Custom Event

	Enabling Visitor Self-Registration
	Implementing Customer Profile JSPs
	login.jsp
	badlogin.jsp
	newuser.jsp

	newusercreation.jsp
	newuserforward.jsp
	usercreationforward.jsp
	Events

	Webflow Components Used in Visitor Self-Registration
	Input Processors
	Pipeline Components

	7 Adding Security to a Portal
	Implementing Portal Security
	Integrating with an LDAP Security Realm
	Supported LDAP Servers
	Integrating an LDAP Security Realm
	Configuring the LDAP Server for Integration
	Configuring LDAP-based Security Realms for WebLogic Server and Portal 7.0
	Supported Server Templates
	Using Wildcards for User Lookup in an LDAP Realm
	Adding User Profile Information to LDAP Users

	Switching to a WebLogic 7.0 Security Framework Security Realm
	Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 Security With RDBMS
	Core Groups required for WebLogic Portal
	Running the WLP Samples

	Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 Security with Embedded LDAP
	Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 Security with a Commercial ...

	Multiple Authentication Providers Support in WebLogic Portal 7.0 SP4
	How WebLogic Portal 7.0 uses the WebLogic Server Security Framework
	Limited Support of Multiple Authentication Providers in WebLogic Portal 7.0 SP4
	What Is Not Supported for Multiple Authentication Providers in WebLogic Portal 7.0 SP4

	Other Supported Security Realms
	Enabling Secure Sockets Layer Security
	config.xml Requirements for SSL
	web.xml Requirements for SSL
	Enabling HTTPS_URL_PATTERNS

	Enabling Single Sign-On
	Setting the Cookie Name
	Setting the User Properties

	8 Portal Content Management
	Adding Content by Using the Bulk Loader
	BulkLoader Performance Tips

	Configuring the Content Manager
	Configuring the DocumentManager EJB Deployment Descriptor
	Configuring the PropertySetManager EJB Deployment Descriptor for Content Management
	Configuring DocumentManager MBeans
	Using the WebLogic Server Administration Console to Modify DocumentManager MBeans
	Disabling an MBean
	Restoring a Disabled MBean

	Setting Up Document Connection Pools
	Editing a DocumentConnectionPool MBean in the WebLogic Console
	Configuring the Web Application

	Using Content-Selector Tags and Associated JSP Tags
	Using the <pz:contentSelector> Tag
	Identify the Content Selector Definition
	Identify the JNDI Home for the Content Management System
	Define the Array That Contains Query Results
	Create and Configure the Cache to Improve Performance

	Associated Tags That Support Content Selectors
	Using Content Selector Tags and Associated Tags
	Retrieving and Displaying Text-Type Documents
	Retrieving and Displaying Image-Type Documents
	Retrieving and Displaying a List of Documents
	Accessing a Content Selector Cache on a Different JSP

	Integrating External Content Management Systems
	Integration Strategies
	Adding Content by Implementing a DocumentProvider Interface
	Step 1. Ensure that the CMS Meets the Minimum Use Requirements
	Step 2. Write the SPI Implementation
	Step 3. Place Code Into the Application
	Step 4. Make the .jar Accessible to the Application
	Step 5. Restart the Server
	Step 6. Apply the Portal

	Publishing to Reference Implementation

	Constructing Content Queries
	Structuring Queries
	Using Comparison Operators to Construct Queries
	Constructing Queries Using Java
	Using the Document Servlet
	Example 1: Usage in a JSP
	Example 2: Usage in a JSP

	9 Setting Up Portal Navigation
	Building a Webflow
	Understanding Webflow Components
	Nodes and Transitions
	Types of Nodes
	Types of Transitions
	Types of Events

	Encoding Webflow URLs
	Webflow Tools and Buttons
	Step 1. Create the Webflow
	Step 2. Add Nodes to the Webflow Canvas
	Step 3. Identify the Begin Node
	Step 4. Create Transitions Between Nodes
	Adding an Event Transition
	Adding an Exception Transition

	Creating a Pipeline and Adding it to a Webflow
	Understanding the Pipeline Editor
	Step 1: Create a New Pipeline Component
	Step 2: Add the New Pipeline Component to the Webflow

	Synchronizing the Webflow to the Application
	Creating a New Input Processor
	Creating an Input Processor with the InputProcessor Interface
	Naming an Input Processor
	Executing Business Logic with Input Processors

	Extending the InputProcessorSupport Class

	Extending Webflow by Creating Extension Presentation and Processor Nodes
	How to Create an Extension Presentation Node
	How to Create an Extension Processor Node
	Making Your Extension Presentation and Processor Nodes Available in the Webflow and Pipeline Editors
	Registering an Extension Presentation Node
	Registering an Extension Processor Node

	10 Creating a Look-and-Feel
	Portal Look-and-Feel Structure
	Using Skins
	Creating Skins
	Skins Provided by BEA
	Storing Skins
	Making Skins Available

	Using Layouts
	Creating Layouts
	Storing Layouts
	Making Layouts Available

	11 Extending Portlets
	Basic Portlet Customization
	Moving a Portlet Between Portal Web Applications
	Step 1: Copy J2EE Resources into New Web Application
	Step 2: Edit the Target Web Application Metadata
	Step 3: Synchronize the Project
	Step 4: Make the New Portlet Visible and Available

	Moving a Portlet Between Domains
	Creating Categories for Portlets
	Preparing to Work With Categories
	Creating Portlets and Categories
	Moving Portlets and Categories
	Adding Portlets to Existing Categories

	Portlets and the Framework
	Simple JSP Portlets
	The scriptDemo Portlet
	Calling ActiveX Components from a Portlet

	WebFlow Portlets
	Three Webflow Portlets
	How a Portlet Handles a Refresh Event
	Making a Portlet Respond to a Custom Event
	Sharing State from One Portlet to Another

	Web Service Portlets
	Using the Portlet Wizard to Create Web Services Portlets
	Creating a Simple Form-Driven Web Service Portlet
	Creating a Call-Generation Web Service Portlet
	Creating a Web Services Interface Portlet
	Deploying the Web Services Portlets
	Viewing the Web Services Portlets
	Calling Web Services Asynchronously
	Error Handling within Web Services Portlets

	Portalizing an Existing Web Application
	Getting Started
	Requirements
	Process Overview

	Step 1: Create a Portal Web Application
	Step 2: Build a 2-page WebFlow Portlet
	Step 3: Edit Portlet Code
	Replace Portlet JSPs
	Save Properties Fies for Internationalization

	Step 4: Load Content Resources
	Step 5: Test the application

	Performance Tuning
	Using Caches to Tune Performance
	Adjust Caching for Content Management
	Property Caching in a Clustered Environment
	Adjust Caching for the Discount Service
	Adjusting the discountCache
	Adjusting the globalDiscountCache
	Discount-Service Caches in Clustered and Non-Clustered Environments
	Adjust Group Membership TTL in the Caching Realm
	Tuning Thread / Connection Parameters in JDBC

	12 Setting Up Personalization and Interaction Management
	Using the Advisor to Personalize a Portal Application
	Creating a Personalized Portal Application with Advisor JSP Tags
	Classifying Users with the JSP <pz:div> Tag
	Selecting Content with the <pz:contentQuery> JSP Tag
	Matching Content to Users with the <pz:contentSelector> JSP Tag

	Creating Personalized Applications with the Advisor Session Bean
	Classifying Users with the Advisor Session Bean
	Querying a Content Management System with�the�Advisor Session Bean
	Matching Content to Users with the Advisor Session Bean

	Personalizing Applications with HTTP Request and Session Properties
	HTTP Request-Based Personalization
	HTTP Session-Based Personalization
	Special Considerations
	Triggering Campaign Actions with Session, Request, and Event Properties

	Working with the Rules Framework
	Validating Rules Expressions
	Rules Engine Error Handling and Reporting

	Personalization with Content Selectors
	Using an Edit .jsp to Personalize a Portlet
	Step 1. Create the Edit JSP
	Step 2. Enable Portlet Editing

	Personalizing a Portal or Portlet by Using Placeholders
	How Placeholders are Used
	Placeholder JSP Tag: <ph:placeholder>
	Example

	Implementing the Placeholder
	Creating Placeholder Files

	13 Setting Up Campaign Services
	What are Campaign Services?
	Building Placeholders for Campaigns
	Using Attributes to Specify Display and Clickthrough Behavior
	Loading Ads Into Your Content Management System
	Loading Ads into the Reference Content Management System
	Step 1. Set Up Attributes in HTML Documents
	Step 2. Set Up Attribute Files for Image and Shockwave Documents
	Step 3. Move Files Into the dmsBase/Ads Directory Tree
	Step 4. Run the loadads Script

	Creating Personalized E-mails for Campaigns
	Step 1. Configure the E-mail Properties
	Step 2. Find Names of User Properties
	Step 3. Create E-mail JSPs
	E-mail Parameters
	Disabling Session Generation
	Sample E-mail JSP
	Saving E-Mail JSPs

	Sending Bulk Mail
	Sending Mail from a Remote Host or in a Clustered Environment
	Modify the Send-Mail Script to Work from a Remote Host
	Modify the Send-Mail Script to Work in a Clustered Environment

	Sending Bulk E-mail
	Scheduling Bulk E-mail Delivery
	Deleting E-mail Batches

	14 Setting Up Commerce Services
	Integrating a Portal with Business Transaction Services
	Integrating with a Taxation Service
	If the Third-Party Vendor Hosts the Web Service
	If Your Organization Hosts the Web Service

	Integrating with a Payment Service
	If the Third-Party Vendor Hosts the Web Service
	Important Security Information
	If Your Organization Hosts the Web Service
	Guidelines for Modifying the Credit Card Web Service EJB

	Supporting a Product Catalog
	Loading Your Product Data Into the Product Catalog Database Schema
	Step 1: Prepare to Use DBLoader
	Step 2: Edit the databaseload.properties File
	Step 3: Load Data by Running the DBLoader Program
	Step 4: Troubleshoot Using the DBLoader Log Files

	Showing a Catalog in a JSP
	Using the <catalog:getProperty> Tag
	Using the <catalog:iterateViewIterator> Tag
	Using the <catalog:iterateThroughView> Tag

	Hooking Up a Catalog to a Shopping Cart
	Implementing shoppingcart.jsp
	How shoppingcart.jsp Works
	Description
	Location in Default Webflow
	Events
	How shoppingcart.jsp Displays Data
	shoppingcart.jsp Form Fields
	shoppingcart.jsp Input Processorss
	shoppingcart.jsp Pipeline Components
	UpdateShoppingCartQuantitiesTrackerPC

	Integrating Services With the Catalog Cache

	15 Event and Behavior Tracking
	How Events Work in Campaigns
	How the Event Service Works
	How Event Sequences Work

	How to Use Standard Events
	Servlet Lifecycle Events and Servlet Filter Events
	Generating Login and Creation Events
	Adding or Customizing Event Generators

	Creating Custom Events
	Writing the Custom Event Class
	Writing the Custom Event Listener
	Installing the Listener Class in the Event Service
	Writing a Behavior Tracking Event Class
	Configuring Events Buffer Sweeping
	Facilitating OffLine Processing
	Writing a TrackingEvent Base Class Constructor

	How to Enable Behavior Tracking
	Converting Behavior Tracking Events to XML
	Creating Custom Behavior Tracking Event Listeners
	Writing Custom Event Generators

	Debugging the Event Service
	Registering Custom Events
	When to Register an Event
	Event Properties
	Instructions for Registering a Custom Event
	Updating a Registered Custom Event

	Activating Behavior Tracking
	Procedure for Activating Behavior Tracking
	Configuring the Behavior Tracking Service in WebLogic Server
	Configuring a Data Source

	16 Using the Expression Package
	What Is the Expression Package?
	Using Rules or Expressions
	Expression Package Classes
	The Package Structure for the Expression Package

	Assembling and Managing Expressions
	Maintaining Parent-child Relationships
	Managing the Expression Cache

	Working with Expressions
	The Expression Factory
	Expression Package Services
	Unification Service
	Optimization Service
	Validation Service
	Evaluation Service
	Execution Service

	Code Examples
	Stateful Evaluation of a Simple Expression
	Stateful Evaluation of an Expression Containing Variables
	Stateless Validation and Evaluation of an Expression Containing Variables
	Stateful Validation and Evaluation of an Expression Containing Variables

	Configuring the Expression Package

	A Event Descriptions
	Session Events
	User Registration Event
	Product Events
	Content Events
	Cart Events
	Buy Event
	Rules Event
	Campaign Events
	Index

