
BEA WebLogic 
Portal

Development Guide

Release 7.0 Service Pack 4
Document Date: August 2003



Copyright

Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems 
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against 
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or 
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable 
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems 
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause 
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR 
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part 
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT 
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES 
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE 
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, 
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign 
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic 
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA 
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes 
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies. 

WebLogic Portal Development Guides

Part Number Date Software Version

N/A April 2004 7.0 Service Pack 5



WebLogic Portal Development Guide iii

Contents

1. Introduction to WebLogic Portal Development
A Developer�s Portal Primer ............................................................................. 1-2

Portal Features............................................................................................ 1-2
Personalization and Authorization ...................................................... 1-2
Group Portals ...................................................................................... 1-2
JSPs and JSP tags................................................................................ 1-3
EJBs .................................................................................................... 1-3
Unified User Profile ............................................................................ 1-3
Other Useful Features ......................................................................... 1-4

Portal Component File Locations...................................................................... 1-4
Roadmap for Building a Portal.......................................................................... 1-6

How do I Build a Portal?............................................................................ 1-6
How Can I Extend these Portals? ............................................................... 1-7

How Do I Get Started? ...................................................................................... 1-8

Part I. Developing Portals – Tutorials

2. Creating a New Portal in a New Domain
Step 1: Create the New Domain ........................................................................ 2-1
Step 2: Create the New Portal ......................................................................... 2-11
Step 3: Add a Portlet........................................................................................ 2-23
Step 4: Make New Portlet Visible ................................................................... 2-31

3. Adding Portal to an Existing Domain
About Your Domain .......................................................................................... 3-1
Before You Begin.............................................................................................. 3-2

Preserve or Replace the Existing Domain.................................................. 3-2



WebLogic Portal Development Guide iv

Procedure A......................................................................................... 3-3
Procedure B......................................................................................... 3-3

Use or Replace Existing Database ............................................................. 3-3
Procedure C......................................................................................... 3-4
Procedure D......................................................................................... 3-4

Locate or Install Enterprise Application .................................................. 3-11
Procedure E ....................................................................................... 3-11
Procedure F ....................................................................................... 3-12

4. Deploying Portals
Hot Deploying With the Portal Wizard ............................................................. 4-1
Deploying Without the Portal Wizard............................................................... 4-2
Deploying a Portal without Hot Deploy............................................................ 4-3

Manually Deploying a Portal Web Application......................................... 4-3
Step 1: Move J2EE Resources ............................................................ 4-4
Step 2: Synchronize Metadata............................................................. 4-8
Step 3: Deploy in the WebLogic Server Console ............................... 4-8

Best Practice Guidelines for Deploying Your Portal ...................................... 4-13
Stage 1: Deploy to a Server on Your Own Machine......................... 4-14
Stage 2: Deploy From a Local Computer to a Staging Server.......... 4-14
Stage 3: Deploy From the Testing Environment to a Live Production 

Server ......................................................................................... 4-14

Part II. Extending Portals

5. Building Custom Templates
Introducing Templates....................................................................................... 5-1

Three Types of Templates.......................................................................... 5-2
The Domain Wizard Template............................................................ 5-2
The Portal Wizard Template ............................................................... 5-4
The Group Portal Template................................................................. 5-6

Using Templates......................................................................................... 5-8
Creating a Domain Template............................................................................. 5-8

Step 1: Instantiate a Portal Domain............................................................ 5-9
Step 2: Customize the Portal Domain ........................................................ 5-9

Supporting Two-Phase Deployment ................................................... 5-9



WebLogic Portal Development Guide v

Adding All Portal Services to Your Domain .................................... 5-10
Adding an EJB to your WebLogic Portal Domain ........................... 5-17

Step 3: Apply General Configuration....................................................... 5-18
Adding a Custom Layout to a Domain Template ............................. 5-19
Adding a Custom Skin to a Domain Template ................................. 5-20

Step 4: Package the New Domain as a Template..................................... 5-21
Open the template.xml File ............................................................... 5-22
Edit the config.xml file ..................................................................... 5-22
Edit the Application.xml file............................................................. 5-24
Check Shell Scripts for String Substitution ...................................... 5-25
Create the Archive ............................................................................ 5-28

Creating a Portal Template.............................................................................. 5-29
Instantiate a New Portal ........................................................................... 5-29
Customize the New Portal........................................................................ 5-29
Apply Basic Configuration....................................................................... 5-29
Package the New Portal as a Template .................................................... 5-29

Step 1: Make Staging Directory........................................................ 5-30
Step 2: Locate Source Directories..................................................... 5-30
Step 3: Move Portal Resources ......................................................... 5-30
Step 4: Edit template.xml.................................................................. 5-31
Step 5: Create a Thumbnail............................................................... 5-32
Step 6: Create Archive File ............................................................... 5-32
Step 7: Make the Archive Available ................................................. 5-32

6. Implementing User Profiles
Creating a Unified User Profile ......................................................................... 6-1

Create an EntityPropertyManager EJB to Represent External Data .......... 6-2
Recommended EJB Guidelines .................................................................. 6-2
Deploy a ProfileManager That Can Use the New EntityPropertyManager6-4

Modifying the Existing ProfileManager Deployment Configuration . 6-5
Configuring and Deploying a New ProfileManager ......................... 6-10
Retrieving User Profile Data from LDAP......................................... 6-15

Creating a Property Set Definition .................................................................. 6-18
Registering Custom User Profiles ............................................................ 6-18

Properties with Boolean or a Single Value and Single Default ........ 6-22



vi WebLogic Portal Development Guide

Properties with Multiple Values and Single, Multiple, or All Defaults ...
6-25

Properties with Date and Time Values.............................................. 6-27
Updating a Registered Custom Event....................................................... 6-29

Enabling Visitor Self-Registration .................................................................. 6-32
Implementing Customer Profile JSPs....................................................... 6-33

login.jsp ............................................................................................. 6-33
badlogin.jsp ....................................................................................... 6-35
newuser.jsp........................................................................................ 6-36

newusercreation.jsp .................................................................................. 6-45
newuserforward.jsp ........................................................................... 6-48
usercreationforward.jsp ..................................................................... 6-50
Events ................................................................................................ 6-51

Webflow Components Used in Visitor Self-Registration ........................ 6-51
Input Processors ................................................................................ 6-52
Pipeline Components......................................................................... 6-55

7. Adding Security to a Portal
Implementing Portal Security ............................................................................ 7-2
Integrating with an LDAP Security Realm........................................................ 7-2

Supported LDAP Servers ........................................................................... 7-2
Integrating an LDAP Security Realm......................................................... 7-3

Configuring the LDAP Server for Integration .................................... 7-3
Configuring LDAP-based Security Realms for WebLogic Server and 

Portal 7.0 ...................................................................................... 7-5
Supported Server Templates ............................................................... 7-7
Using Wildcards for User Lookup in an LDAP Realm ...................... 7-9
Adding User Profile Information to LDAP Users............................. 7-12

Switching to a WebLogic 7.0 Security Framework Security Realm............... 7-12
Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 

Security With RDBMS...................................................................... 7-13
Core Groups required for WebLogic Portal ...................................... 7-15
Running the WLP Samples ............................................................... 7-15

Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 
Security with Embedded LDAP........................................................ 7-16

Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 



WebLogic Portal Development Guide vii

Security with a Commercial LDAP Provider ................................... 7-19
Multiple Authentication Providers Support in WebLogic Portal 7.0 SP4....... 7-22

How WebLogic Portal 7.0 uses the WebLogic Server Security Framework...
7-22

Limited Support of Multiple Authentication Providers in WebLogic Portal 
7.0 SP4 .............................................................................................. 7-23

What Is Not Supported for Multiple Authentication Providers in WebLogic 
Portal 7.0 SP4.................................................................................... 7-23

Other Supported Security Realms ................................................................... 7-24
Enabling Secure Sockets Layer Security......................................................... 7-25

config.xml Requirements for SSL............................................................ 7-25
web.xml Requirements for SSL ............................................................... 7-26
Enabling HTTPS_URL_PATTERNS...................................................... 7-27

Enabling Single Sign-On................................................................................. 7-28
Setting the Cookie Name.......................................................................... 7-28
Setting the User Properties....................................................................... 7-29

8. Portal Content Management
Adding Content by Using the Bulk Loader....................................................... 8-1

BulkLoader Performance Tips ............................................................ 8-5
Configuring the Content Manager .................................................................... 8-7

Configuring the DocumentManager EJB Deployment Descriptor ............ 8-7
Configuring the PropertySetManager EJB Deployment Descriptor for 

Content Management .......................................................................... 8-9
Configuring DocumentManager MBeans .................................................. 8-9

Using the WebLogic Server Administration Console to Modify 
DocumentManager MBeans ...................................................... 8-10

Disabling an MBean.......................................................................... 8-15
Restoring a Disabled MBean ............................................................ 8-18

Setting Up Document Connection Pools.................................................. 8-18
Editing a DocumentConnectionPool MBean in the WebLogic Console . 8-19
Configuring the Web Application ............................................................ 8-24

Using Content-Selector Tags and Associated JSP Tags.................................. 8-25
Using the <pz:contentSelector> Tag........................................................ 8-25

Identify the Content Selector Definition........................................... 8-26
Identify the JNDI Home for the Content Management System........ 8-27



viii WebLogic Portal Development Guide

Define the Array That Contains Query Results ................................ 8-27
Create and Configure the Cache to Improve Performance ............... 8-28

Associated Tags That Support Content Selectors .................................... 8-30
Using Content Selector Tags and Associated Tags.................................. 8-32

Retrieving and Displaying Text-Type Documents............................ 8-33
Retrieving and Displaying Image-Type Documents ........................ 8-34
Retrieving and Displaying a List of Documents ............................... 8-36
Accessing a Content Selector Cache on a Different JSP .................. 8-37

Integrating External Content Management Systems ....................................... 8-39
Integration Strategies................................................................................ 8-39
Adding Content by Implementing a DocumentProvider Interface........... 8-40

Step 1. Ensure that the CMS Meets the Minimum Use Requirements ....
8-40

Step 2. Write the SPI Implementation............................................... 8-42
Step 3. Place Code Into the Application ........................................... 8-44
Step 4. Make the .jar Accessible to the Application ......................... 8-48
Step 5. Restart the Server .................................................................. 8-48
Step 6. Apply the Portal .................................................................... 8-48

Publishing to Reference Implementation ................................................. 8-48
Constructing Content Queries ......................................................................... 8-49

Structuring Queries................................................................................... 8-49
Using Comparison Operators to Construct Queries ................................. 8-51
Constructing Queries Using Java ............................................................. 8-53
Using the Document Servlet..................................................................... 8-54

Example 1: Usage in a JSP................................................................ 8-55
Example 2: Usage in a JSP................................................................ 8-55

9. Setting Up Portal Navigation
Building a Webflow........................................................................................... 9-2

Understanding Webflow Components ....................................................... 9-2
Nodes and Transitions......................................................................... 9-3
Types of Nodes.................................................................................... 9-3
Types of Transitions............................................................................ 9-5
Types of Events................................................................................... 9-5

Encoding Webflow URLs .......................................................................... 9-6



WebLogic Portal Development Guide ix

Webflow Tools and Buttons....................................................................... 9-9
Step 1. Create the Webflow...................................................................... 9-11
Step 2. Add Nodes to the Webflow Canvas ............................................. 9-14
Step 3. Identify the Begin Node .............................................................. 9-16
Step 4. Create Transitions Between Nodes .............................................. 9-17

Adding an Event Transition .............................................................. 9-17
Adding an Exception Transition ....................................................... 9-18

Creating a Pipeline and Adding it to a Webflow............................................. 9-22
Understanding the Pipeline Editor ........................................................... 9-23
Step 1: Create a New Pipeline Component .............................................. 9-26
Step 2: Add the New Pipeline Component to the Webflow..................... 9-34

Synchronizing the Webflow to the Application .............................................. 9-36
Creating a New Input Processor ...................................................................... 9-37

Creating an Input Processor with the InputProcessor Interface ............... 9-38
Naming an Input Processor ............................................................... 9-39
Executing Business Logic with Input Processors ............................. 9-39

Extending the InputProcessorSupport Class ............................................ 9-39
Extending Webflow by Creating Extension Presentation and Processor Nodes.....

9-40
How to Create an Extension Presentation Node ...................................... 9-40
How to Create an Extension Processor Node........................................... 9-41
Making Your Extension Presentation and Processor Nodes Available in the 

Webflow and Pipeline Editors .......................................................... 9-42
Registering an Extension Presentation Node .................................... 9-43
Registering an Extension Processor Node ........................................ 9-43

10. Creating a Look-and-Feel
Portal Look-and-Feel Structure ....................................................................... 10-1
Using Skins...................................................................................................... 10-2

Creating Skins .......................................................................................... 10-2
Skins Provided by BEA............................................................................ 10-4
Storing Skins ............................................................................................ 10-4
Making Skins Available ........................................................................... 10-5

Using Layouts.................................................................................................. 10-5
Creating Layouts ...................................................................................... 10-6



x WebLogic Portal Development Guide

Storing Layouts ........................................................................................ 10-8
Making Layouts Available ....................................................................... 10-9

11. Extending Portlets
Basic Portlet Customization ............................................................................ 11-1

Moving a Portlet Between Portal Web Applications ............................... 11-2
Step 1: Copy J2EE Resources into New Web Application............... 11-3
Step 2: Edit the Target Web Application Metadata .......................... 11-4
Step 3: Synchronize the Project ........................................................ 11-5
Step 4: Make the New Portlet Visible and Available........................ 11-5

Moving a Portlet Between Domains......................................................... 11-8
Creating Categories for Portlets ............................................................. 11-10

Preparing to Work With Categories ................................................ 11-10
Creating Portlets and Categories ..................................................... 11-10
Moving Portlets and Categories ...................................................... 11-12
Adding Portlets to Existing Categories ........................................... 11-16

Portlets and the Framework ........................................................................... 11-18
Simple JSP Portlets ................................................................................ 11-18

The scriptDemo Portlet ................................................................... 11-18
Calling ActiveX Components from a Portlet .................................. 11-22

WebFlow Portlets ................................................................................... 11-23
Three Webflow Portlets .................................................................. 11-24
How a Portlet Handles a Refresh Event .......................................... 11-49
Making a Portlet Respond to a Custom Event ................................ 11-53
Sharing State from One Portlet to Another ..................................... 11-57

Web Service Portlets .............................................................................. 11-57
Using the Portlet Wizard to Create Web Services Portlets ............. 11-58
Creating a Simple Form-Driven Web Service Portlet..................... 11-59
Creating a Call-Generation Web Service Portlet ............................ 11-68
Creating a Web Services Interface Portlet ...................................... 11-74
Deploying the Web Services Portlets.............................................. 11-78
Viewing the Web Services Portlets ................................................. 11-81
Calling Web Services Asynchronously........................................... 11-82
Error Handling within Web Services Portlets ................................. 11-90

Portalizing an Existing Web Application ...................................................... 11-90



WebLogic Portal Development Guide xi

Getting Started........................................................................................ 11-90
Requirements .................................................................................. 11-91
Process Overview............................................................................ 11-92

Step 1: Create a Portal Web Application ............................................... 11-92
Step 2: Build a 2-page WebFlow Portlet................................................ 11-92
Step 3: Edit Portlet Code........................................................................ 11-93

Replace Portlet JSPs........................................................................ 11-93
Save Properties Fies for Internationalization ................................ 11-100

Step 4: Load Content Resources .......................................................... 11-100
Step 5: Test the application .................................................................. 11-101

Performance Tuning .................................................................................... 11-103
Using Caches to Tune Performance ..................................................... 11-103

Adjust Caching for Content Management .................................... 11-103
Property Caching in a Clustered Environment ............................. 11-106
Adjust Caching for the Discount Service...................................... 11-107
Adjusting the discountCache ........................................................ 11-107
Adjusting the globalDiscountCache.............................................. 11-108
Discount-Service Caches in Clustered and Non-Clustered Environments

11-108
Adjust Group Membership TTL in the Caching Realm ............... 11-108
Tuning Thread / Connection Parameters in JDBC........................ 11-109

12. Setting Up Personalization and Interaction Management
Using the Advisor to Personalize a Portal Application ................................... 12-2

Creating a Personalized Portal Application with Advisor JSP Tags........ 12-3
Classifying Users with the JSP <pz:div> Tag................................... 12-4
Selecting Content with the <pz:contentQuery> JSP Tag.................. 12-4
Matching Content to Users with the <pz:contentSelector> JSP Tag 12-5

Creating Personalized Applications with the Advisor Session Bean....... 12-6
Classifying Users with the Advisor Session Bean ............................ 12-8
Querying a Content Management System with the Advisor Session Bean

12-9
Matching Content to Users with the Advisor Session Bean ........... 12-10

Personalizing Applications with HTTP Request and Session Properties ........
12-11
HTTP Request-Based Personalization ............................................ 12-12



xii WebLogic Portal Development Guide

HTTP Session-Based Personalization............................................. 12-13
Special Considerations .................................................................... 12-14
Triggering Campaign Actions with Session, Request, and Event 

Properties ................................................................................. 12-15
Working with the Rules Framework ............................................................. 12-17

Validating Rules Expressions................................................................. 12-17
Rules Engine Error Handling and Reporting.......................................... 12-18

Personalization with Content Selectors ......................................................... 12-19
Using an Edit .jsp to Personalize a Portlet..................................................... 12-24

Step 1. Create the Edit JSP ..................................................................... 12-24
Step 2. Enable Portlet Editing ................................................................ 12-25

Personalizing a Portal or Portlet by Using Placeholders ............................... 12-26
How Placeholders are Used.................................................................... 12-26
Placeholder JSP Tag: <ph:placeholder>................................................. 12-27

Example........................................................................................... 12-28
Implementing the Placeholder................................................................ 12-29
Creating Placeholder Files...................................................................... 12-29

13. Setting Up Campaign Services
What are Campaign Services? ......................................................................... 13-2
Building Placeholders for Campaigns ............................................................. 13-3
Using Attributes to Specify Display and Clickthrough Behavior ................... 13-3
Loading Ads Into Your Content Management System ................................... 13-4

Loading Ads into the Reference Content Management System............... 13-4
Step 1. Set Up Attributes in HTML Documents ............................... 13-5
Step 2. Set Up Attribute Files for Image and Shockwave Documents ....

13-6
Step 3. Move Files Into the dmsBase/Ads Directory Tree.............. 13-10
Step 4. Run the loadads Script ........................................................ 13-10

Creating Personalized E-mails for Campaigns .............................................. 13-11
Step 1. Configure the E-mail Properties................................................. 13-11
Step 2. Find Names of User Properties .................................................. 13-12
Step 3. Create E-mail JSPs ..................................................................... 13-13

E-mail Parameters ........................................................................... 13-13
Disabling Session Generation ......................................................... 13-14



WebLogic Portal Development Guide xiii

Sample E-mail JSP.......................................................................... 13-14
Saving E-Mail JSPs......................................................................... 13-15

Sending Bulk Mail......................................................................................... 13-16
Sending Mail from a Remote Host or in a Clustered Environment ....... 13-16

Modify the Send-Mail Script to Work from a Remote Host........... 13-17
Modify the Send-Mail Script to Work in a Clustered Environment13-17

Sending Bulk E-mail .............................................................................. 13-18
Scheduling Bulk E-mail Delivery .......................................................... 13-18
Deleting E-mail Batches......................................................................... 13-18

14. Setting Up Commerce Services
Integrating a Portal with Business Transaction Services ................................ 14-1

Integrating with a Taxation Service ......................................................... 14-2
If the Third-Party Vendor Hosts the Web Service............................ 14-2
If Your Organization Hosts the Web Service ................................... 14-3

Integrating with a Payment Service ......................................................... 14-5
If the Third-Party Vendor Hosts the Web Service............................ 14-5
Important Security Information ........................................................ 14-6
If Your Organization Hosts the Web Service ................................... 14-6
Guidelines for Modifying the Credit Card Web Service EJB........... 14-8

Supporting a Product Catalog.......................................................................... 14-9
Loading Your Product Data Into the Product Catalog Database Schema 14-9

Step 1: Prepare to Use DBLoader ................................................... 14-10
Step 2: Edit the databaseload.properties File .................................. 14-12
Step 3: Load Data by Running the DBLoader Program ................. 14-14
Step 4: Troubleshoot Using the DBLoader Log Files..................... 14-16

Showing a Catalog in a JSP.................................................................... 14-18
Using the <catalog:getProperty> Tag ............................................. 14-18
Using the <catalog:iterateViewIterator> Tag ................................. 14-21
Using the <catalog:iterateThroughView> Tag ............................... 14-23

Hooking Up a Catalog to a Shopping Cart............................................. 14-24
Implementing shoppingcart.jsp ....................................................... 14-25
How shoppingcart.jsp Works .......................................................... 14-25
Description ...................................................................................... 14-26
Location in Default Webflow ......................................................... 14-29



xiv WebLogic Portal Development Guide

Events .............................................................................................. 14-30
How shoppingcart.jsp Displays Data .............................................. 14-31
shoppingcart.jsp Form Fields .......................................................... 14-34
shoppingcart.jsp Input Processorss ................................................. 14-35
shoppingcart.jsp Pipeline Components ........................................... 14-39
UpdateShoppingCartQuantitiesTrackerPC ..................................... 14-45

Integrating Services With the Catalog Cache......................................... 14-45

15. Event and Behavior Tracking
How Events Work in Campaigns .................................................................... 15-2
How the Event Service Works......................................................................... 15-3

How Event Sequences Work .................................................................... 15-5
How to Use Standard Events ........................................................................... 15-8

Servlet Lifecycle Events and Servlet Filter Events .................................. 15-9
Generating Login and Creation Events .................................................. 15-10
Adding or Customizing Event Generators ............................................. 15-11

Creating Custom Events ................................................................................ 15-12
Writing the Custom Event Class ............................................................ 15-13
Writing the Custom Event Listener........................................................ 15-16
Installing the Listener Class in the Event Service .................................. 15-19
Writing a Behavior Tracking Event Class.............................................. 15-20

Configuring Events Buffer Sweeping ............................................. 15-21
Facilitating OffLine Processing ...................................................... 15-21
Writing a TrackingEvent Base Class Constructor........................... 15-27

How to Enable Behavior Tracking ................................................................ 15-32
Converting Behavior Tracking Events to XML ..................................... 15-33
Creating Custom Behavior Tracking Event Listeners............................ 15-36
Writing Custom Event Generators ......................................................... 15-36

Debugging the Event Service ........................................................................ 15-38
Registering Custom Events ........................................................................... 15-39

When to Register an Event ..................................................................... 15-39
Event Properties...................................................................................... 15-40
Instructions for Registering a Custom Event.......................................... 15-41
Updating a Registered Custom Event..................................................... 15-44

Activating Behavior Tracking ....................................................................... 15-47



WebLogic Portal Development Guide xv

Procedure for Activating Behavior Tracking ......................................... 15-47
Configuring the Behavior Tracking Service in WebLogic Server ......... 15-48
Configuring a Data Source..................................................................... 15-50

16. Using the Expression Package
What Is the Expression Package?.................................................................... 16-1

Using Rules or Expressions...................................................................... 16-6
Expression Package Classes................................................................... 16-10
The Package Structure for the Expression Package ............................... 16-11

Assembling and Managing Expressions........................................................ 16-12
Maintaining Parent-child Relationships ................................................. 16-13
Managing the Expression Cache ............................................................ 16-14

Working with Expressions ............................................................................ 16-15
The Expression Factory.......................................................................... 16-15
Expression Package Services ................................................................. 16-16

Unification Service ......................................................................... 16-16
Optimization Service....................................................................... 16-16
Validation Service........................................................................... 16-17
Evaluation Service .......................................................................... 16-17
Execution Service ........................................................................... 16-18

Code Examples....................................................................................... 16-19
Stateful Evaluation of a Simple Expression.................................... 16-19
Stateful Evaluation of an Expression Containing Variables ........... 16-20
Stateless Validation and Evaluation of an Expression

 Containing Variables .............................................................. 16-22
Stateful Validation and Evaluation of an Expression

Containing Variables ............................................................... 16-23
Configuring the Expression Package............................................................. 16-25

A. Event Descriptions
Session Events .................................................................................................. A-1
User Registration Event.................................................................................... A-3
Product Events.................................................................................................. A-4
Content Events.................................................................................................. A-5
Cart Events ....................................................................................................... A-6
Buy Event ......................................................................................................... A-9



xvi WebLogic Portal Development Guide

Rules Event..................................................................................................... A-10
Campaign Events ............................................................................................ A-11

Index



WebLogic Portal Development Guide xvii

CHAPTER

Preface

Welcome to the BEA WebLogic Portal Development Guide. In addtion to this 
document, we encourage you to use the following resources, as well.

Finding documentation online BEA product documentation is available on the 
BEA corporate Web site. From the BEA Home page, click on Product Documentation 
or go directly to the �e-docs� Product Documentation page at http://e-docs.bea.com.

Providing documentation feedback Your feedback on the BEA WebLogic 
Portal documentation is important to us. Send us e-mail at docsupport@bea.com if 
you have questions or comments. Please indicate that you are using the documentation 
for the WebLogic Portal version Product Version: 

Contacting BEA WebSUPPORT  If you have any questions about this version of 
WebLogic Portal, or if you have problems installing and running WebLogic Portal, 
contact BEA Customer Support through BEA WebSUPPORT at http://www.bea.com 
or by using the contact information provided on the Customer Support Card in the 
product package.



xviii WebLogic Portal Development Guide



WebLogic Portal Development Guide 1-1

CHAPTER

1 Introduction to 
WebLogic Portal 
Development

Welcome to the WebLogic Portal Development Guide. This guide shows you how to 
develop and deploy portals and portlets and create the resources necessary to extend 
their capabilities. The portal development activities described in this guide comprise 
the initial phase of a portal�s lifecycle: creating a portal and the resources used to 
extend that portal. Once portal development is complete, portal administration 
becomes the primary concern. Administrative tasks are described in the WebLogic 
Portal Administration Guide.

This section includes information on the following subjects:

! A Developer�s Portal Primer

! Portal Component File Locations

! Roadmap for Building a Portal

! How Do I Get Started?



1 Introduction to WebLogic Portal Development

1-2 WebLogic Portal Development Guide

A Developer’s Portal Primer

A portal is a feature-rich Web site. It provides a single point of access to enterprise data 
and applications, presenting a unified and personalized view of that information to 
employees, customers, and business partners.

Portals allow you to have multiple Web applications within a single Web interface. In 
addition to regular Web content that appears in a portal, portals provide the ability to 
display portlets�self-contained applications or content�all in a single Web interface.

Portals support multiple pages with tab-based navigation, with each page containing 
its own content and portlets.

Portal Features

While a fully-functioning portal offers many features to the portal user that enhance 
their experience when using WebLogic Portal many development features likewise 
enhance your experience when developing portals and portal resources. This section 
describes some of these features.

Personalization and Authorization

Because WebLogic Portal comes with robust authentication and personalization 
features, administrators can determine what content a visitor can interact with and how 
that information will appear to the specific visitor. Visitors themselves can leverage 
WebLogic Portal�s personalization features to select their own content and create their 
own look and feel. A major component of the Portal development process is to create 
the resources that make such authorization and personalization possible.

Group Portals

Portals are designed either for single users or for groups. With group portals you can 
set up delegated administration for portals and restrict portal access to specific users. 
You can create multiple group portals within a portal Web Application. The group 
portals can share portal resources, such as layouts and portlets, but can be configured 



A Developer’s Portal Primer

 WebLogic Portal Development Guide 1-3

differently to satisfy the needs of each group separately. Because users are designated 
individually as members of a group, the group portal uses a static form of 
personalization. 

JSPs and JSP tags

As  a portal developer, you can use JavaServer Pages (JSPs) to rapidly develop and 
easily maintain dynamic web pages that leverage existing business systems. By using 
JSPs, you can quickly develop web-based applications that are platform independent. 
By separating the user interface from content generation, JSPs allow you to change the 
overall page layout without altering the underlying dynamic content.

Key components of a JSP are the JSP tags, simple code that allows you to easily 
develop JSPs without using any Java code. JSP tags are XML-like tags and scriptlets 
written in Java that encapsulate the logic that generates the content for the page. 
WebLogic Portal ships with a vast library of JSP tags for use in such tasks as creating 
webflows and pipelines, building a product catalog, developing campaigns, and 
integrating content management systems.

EJBs

Enterprise Java Beans (EJBs) allow you to write software components that execute 
business logic that runs on the server. With EJB transaction and state management, 
multithreading, and resource pooling are left to the server implementation. In 
WebLogic Portal, EJBs comprise the enterprise application layer shown in Figure 1-2 
and perform such functions are loading pipelines into Web applications.

Unified User Profile

In WebLogic Portal, users are represented by user profiles. A user profile employs a 
user�s ID to access such properties for that user as age or e-mail address. A Unified 
User Profile incorporates user data from external data sources in addition to or instead 
of LDAP servers, such as a legacy system or database, so that the user can access data 
from many different sources through a single profile. During portal development, you 
will create this profile so that your Portal application can retrieve data from multiple 
external sources.



1 Introduction to WebLogic Portal Development

1-4 WebLogic Portal Development Guide

Other Useful Features

WebLogic Portal also provides these other features that facilitate portal development:

! A layout paradigm for dynamic, interactive, personalized content 

! Content modules called portlets, laid out in rectangular grids 

! The ability to personalize portlets at many levels 

! The ability to save customized layout settings made by a visitor to your Web site 

! The ability to define multiple views for the same group portal 

! The ability to designate and customize color schemes called skins 

! Delegated administration, which enables complex, distributed security 
implementations 

Portal Component File Locations

When you install WebLogic Portal, you automatically create a file structure that 
represents your development environment. Figure 1-1 shows the relationship between 
generic portal architecture and where the files that compose the various levels reside 
in the file structure.



Portal Component File Locations

 WebLogic Portal Development Guide 1-5

Figure 1-1   Portal Component File Locations

! Everything is built upon a domain, which is composed of an application server 
(for example WebLogic Server) and clustered servers. All files and directories 
that make up the full portal architecture are contained in the domain folder 
(myNEWdomain).

! The enterprise application sits on top of the domain. A domain can have 
multiple enterprise applications, which are characterized by a set of EJBs you 
can implement to create functionality in your Web applications and portals. The 
files and directories that make up the enterprise application are contained in the 
portalApp folder.

! Each enterprise application can host multiple Web applications, the basis for 
your portals. The files that comprise a Web application include deployment 
descriptors, configuration files, and the Java Archive (.jar) files that contain 
the logic and formatting instructions for the web application and the portal it 
supports. Files and subdirectories that comprise a Web application are contained 
in the Web application folder (newPWApp).



1 Introduction to WebLogic Portal Development

1-6 WebLogic Portal Development Guide

! The Web application also contains the logic that administers and enforces the 
personalization rules that help to channel the desired content to a specific visitor. 
These rules determine what content a visitor can interact with and how that 
information will appear to the specific visitor. The files that define the 
personalization layer of the WebLogic Portal architecture are contained in 
subdirectories of the portalApp-project file. These files are used in the 
E-Business Control Center and include configuration files for Webflow and 
Pipeline, events, portals and portlets, properties, and skins layouts.

! A Web application can have only one portal. This layer is the user interface of 
WebLogic Portal: it contains the components the visitor actually sees and 
interacts with when using WebLogic Portal. The files that comprise the Portal 
application include deployment descriptors, configuration files, and the Java 
Archive (.jar) files that contain the logic and formatting instructions for the 
Portal application. Files and subdirectories that comprise a Portal application are 
contained in the same folder as the Web application (newPWApp).

! The top layer of the WebLogic Portal architecture are the portlets, subsets of 
portals. The files that make up portlets include .jsp files and image files, such 
as .gif files. These files are contained in the portlets folder. 

Roadmap for Building a Portal

This section describes the tasks required to create a portal and portal ressources and 
shows you how WebLogic Portal helps you complete those tasks. It answers these 
questions:

! How do I Build a Portal?

! How Can I Extend these Portals?

How do I Build a Portal?

WebLogic Portal makes developing portals and portal applications easy, whether you 
are building a portal for a new domain or for an existing domain. BEA provides 
�Wizards�� GUIs in to which you enter portal configuration and setup information�



Roadmap for Building a Portal

 WebLogic Portal Development Guide 1-7

that enable you to create and configure portals and portlets without having to know 
Java, XML, or HTML. You simply complete the data requested by these wizards and 
the portal, with its requisite domain, enterprise application, Web application, and 
portlet, are created. 

For example, if you are creating a portal for a new domain with the Domain 
Configuration wizard, you:

1. Create an enterprise application that will support your Web application.

2. Create a new domain for your portal application

Then, by using the Portal wizard, you:

3. Create the Web application to support your portal.

4. Create a new portal and add a portlet to that portal.

5. Deploy the portal and portlet. 

Additionally, by using the Portlet wizard, you can add more portlets to your portal.

By using these wizards, you can build a functional portal in less than an hour.

Part 1 of this guide, �Portal Development Tutorial� walks you through the steps 
outlined above to build a new portal with a new domain and then deploy that portal. In 
addition, it will show you how to enable an existing domain to host a new portal.

How Can I Extend these Portals?

Once you have a portal in place, you can extend it by adding features and functionality 
to increase its value to your enterprise. Among the ways you can extend a portal are:

! Adding more portlets

! Adding static or dynamic content

! Personalizing it for a specific user

! Creating a navigation scheme called a webflow and enhancing the functionality 
of the webflow by adding a pipeline to it

! Integrating it with third party systems and services, such as LDAP servers and 
search engines



1 Introduction to WebLogic Portal Development

1-8 WebLogic Portal Development Guide

! Integrating it with commerce services such as payment and taxation services

! Modifying its default look-and-feel by adding skins or changing the layout.

These and many other ways of extending a portal are described in Part II, �Extending 
Portals� on page -15 

How Do I Get Started?

With the basic background on portals and portlets presented in this section, you can 
now begin building portals. This guide is structured to allow you to both develop a 
portal and extend its functionality. 

While the procedures contained in this guide will show you what you need to know to 
develop portals and portlets, you should also do some advanced planning to enable 
your portal to fully support your enterprise. 

The following list suggests some activities you need to consider before building your 
portal. This list is not a comprehensive planning guide for a new portal, however it 
should provide sufficient guidance for getting you started.

Before actually developing a portal, you should:

! Determine the tools you will use to create, test, debug, and deploy your portals.

! Determine which business needs the portal will address and whether you need to 
build a new portal or modify an existing one.

! Identify the portal audience by defining users and groups.

! Identify the portal components; that is, what will be available in the portal.

! Identify portal management roles and responsibilities; that is, who are the 
administrators (SA, PA, GA) and what are they required to do?

! If you are developing a new portal, build the wireframes for the portal and its 
portlets.

! Create the HTML mock-ups of the portal and portlets to model the desired 
look-and-feel.



How Do I Get Started?

 WebLogic Portal Development Guide 1-9

! Collect or identify the specific content and determine what processes will be 
required to make it available in the portal and portlets.

You are now ready to begin building your portal.



1 Introduction to WebLogic Portal Development

1-10 WebLogic Portal Development Guide



Part I Developing 
Portals – 
Tutorials

Part I, �Developing Portals � Tutorials,� shows you how to build and deploy portals. 
You will learn how to create and deploy a portal both for a new domain and for an 
existing domain, alongside another Web application, for example. By the time you 
are finished using these tutorials, you will be able to quickly create and deploy a 
portal, with portlets, using BEA-supplied resources.

This section includes information on the following subjects:

! Creating a New Portal in a New Domain

! Adding Portal to an Existing Domain

! Deploying Portals

After you have created and deployed portals, you can extend and add functionality 
to those portals. For those procedures, see the Extending Portals section of this 
guide.





WebLogic Portal Development Guide 2-1

CHAPTER

2 Creating a New Portal 
in a New Domain

Step 1: Create the New Domain

This section shows how to run the Domain Configuration Wizard to create a new 
complete set of enterprise applications which include all the administration, 
commerce, personalization and portal functionality offered by the WebLogic Portal 
platform.

1. On the Windows platform, select Start →  Programs →  BEA WebLogic Platform 
7.0 →  Domain Configuration Wizard.

You can also launch the Domain Configuration Wizard by executing dmwiz.cmd 
(or dmwiz.sh on UNIX) from the following directory:

<BEA_HOME>\weblogic700\common\bin



2 Creating a New Portal in a New Domain

2-2 WebLogic Portal Development Guide

2. From the list of domain templates on the left, select WLP Domain as shown in 
Figure 2-1. Name the domain; examples in this procedure use the name 
myNewDomain. Click Next.

Figure 2-1   Select the WLP Domain



Step 1: Create the New Domain

Development Guide 2-3

3. In the Choose Server Type page, verify that Single Server (StandAlone Server) 
is selected, as shown in Figure 2-2, and click Next.

Figure 2-2   Choose Server Type



2 Creating a New Portal in a New Domain

2-4 WebLogic Portal Development Guide

4. Verify that the domain location is correct in the Choose Domain Location page. 
For this example, it should be <BEA_HOME>\user_projects, as shown in 
Figure 2-3. Click Next.

Figure 2-3   Choose Domain Location



Step 1: Create the New Domain

Development Guide 2-5

5. Check the displayed server information in the Configure 
Standalone/Administrative Server page. If you are running WebLogic Portal 
locally, the information should be as shown in Figure 2-4. Click Next.

Figure 2-4   Configure Server

Note: For more information on options in the Domain Configuration Wizard, consult 
�Using the Configuration Wizard� at 
http://edocs.bea.com/platform/docs70/confgwiz/index.html.



2 Creating a New Portal in a New Domain

2-6 WebLogic Portal Development Guide

6. Create the administrative user by entering an administrator user name and 
password. A typical choice is weblogic/weblogic, as shown in Figure 2-5. 
Click Next.

Figure 2-5   Create Administrative User



Step 1: Create the New Domain

Development Guide 2-7

7. Select Yes on the Create Start Menu Entry for Server page, as shown in 
Figure 2-6, then click Next.

Figure 2-6   Create Start Menu Entry



2 Creating a New Portal in a New Domain

2-8 WebLogic Portal Development Guide

8. Verify the settings in the Configuration Settings window, as shown in Figure 2-7, 
and click Create. The Wizard runs for a moment, processing and creating files.

Figure 2-7   Verify Configuration Summary
 



Step 1: Create the New Domain

Development Guide 2-9

9. The Configuration Wizard Complete page appears. Make sure End 
Configuration Wizard is selected and click Done, as shown in Figure 2-8.

Figure 2-8   End Configuration Wizard

You are now ready to create a new portal and an associated portal Web application.

Notes on the Resources You Just Created

Site Infrastructure Provided by the Configuration Wizard: As part of 
creating the new domain, the domain wizard also creates a complete enterprise 
application called portalApp. With the portalApp-project file open in the 
E-Business Control Center, click the Site Infrastructure tab and select User Profiles, 
as shown in Figure 2-9. Notice that a user property set called CustomerProperties 
is already in place.



2 Creating a New Portal in a New Domain

2-10 WebLogic Portal Development Guide

Figure 2-9   User Profiles

J2EE Resources Provided by the Configuration Wizard: The new enterprise 
application, as yet a blank template, includes built-in support for foundation services, 
personalization, interaction management, intelligent administration, and integration 
services. A look into the newly created directory shows the JARs used to implement 
these services, as shown in Figure 2-10.



Step 2: Create the New Portal

Development Guide 2-11

Figure 2-10   JARs in the New Enterprise Application Directory

Step 2: Create the New Portal

With the supporting enterprise application resources in place, take the following steps 
to create and deploy a new portal.

1. Start the server by selecting Start →  Programs →  BEA WebLogic Platform 7.0 →  
User Projects →  <new domain name> Start Portal Server. (If you followed the 
examples in this procedure, the new domain name is myNewDomain.) 



2 Creating a New Portal in a New Domain

2-12 WebLogic Portal Development Guide

2. When prompted for credentials, enter the username and password you created in 
Figure 2-5, such as weblogic/weblogic. The login is shown in Figure 2-11.

Figure 2-11   Entering the Username and Password You Created for the Domain

Note: For UNIX platform only: By default, none of the new domain scripts have 
executable privileges, so they must be granted these privileges by a system 
administrator. 

3. Launch the E-Business Control Center by selecting Start →  Programs →  BEA 
WebLogic Platform 7.0 →  WebLogic Portal 7.0 →  E-Business Control Center. 

4. When it has started, choose File →  Open and open the 
portalApp-project.eaprj project file inside the <BEA_HOME> 
user_projects\<new domain name>\beaApps\portalApp-project 
directory, as shown in Figure 2-12 and Figure 2-13.

Figure 2-12   A: Opening a Project File



Step 2: Create the New Portal

Development Guide 2-13

Figure 2-13   B: Opening a Project File

5. Click the Presentation tab of the E-Business Control Center.

6. Click the New icon in the Explorer toolbar and select Portal, as shown in 
Figure 2-14.

Figure 2-14   Opening the New Portal dialog



2 Creating a New Portal in a New Domain

2-14 WebLogic Portal Development Guide

7. Be sure the Use the Portal Wizard option is selected, as shown in Figure 2-15. 
Click OK.

Figure 2-15   Portal Wizard Screen

8. Name the new portal, as shown in Figure 2-16. Examples in this procedure use 
the portal name ThisNewPortal.

Figure 2-16   Naming the New Portal



Step 2: Create the New Portal

Development Guide 2-15

9. Click the New button shown in Figure 2-17 to create a new portal Web 
application. 

10. Enter the portal name; in this procedure, the example name NewPortalWebApp 
is used. Click OK.

Figure 2-17   Naming the New Portal Web Application



2 Creating a New Portal in a New Domain

2-16 WebLogic Portal Development Guide

11. Select a portal template, as shown in Figure 2-18. Click Next.

Figure 2-18   Select a Portal Template

12. In the Resource Files Location window (Figure 2-19), verify that the location for 
J2EE resources for the new Portal Web Application is correct. 

Note: If you are running the E-Business Control Center on the server machine, the 
default location should be correct.



Step 2: Create the New Portal

Development Guide 2-17

13. Click Create.

Figure 2-19   Select a Location for Resource Files



2 Creating a New Portal in a New Domain

2-18 WebLogic Portal Development Guide

14. The Portal Wizard creates files and lists them in the Summary page shown in 
Figure 2-20. Click Next.

Figure 2-20   Summary

Note: Listing 2-1 includes examples of two types of files are created 
automatically by the Portal Wizard; J2EE resources such as 
select_page_view.gif, and metadata used by the portal framework, 
such as security.wf. Notice the different directories used to store these 
files.

Listing 2-1   Different Types of Portal Resources

\portalApp\NewPortalWebApp\framework\skins\futurism\images\select_page_view.gif

\portalApp-project\application-sync\webapps\NewPortalWebApp\security.wf



Step 2: Create the New Portal

Development Guide 2-19

15. Deploy the new portal: Select the Yes, Hot Deploy Now radio button and click 
Deploy, as shown in Figure 2-21.

Figure 2-21   Hot Deploying the New Portal

16. When prompted, enter the administrator username and password you created in 
Figure 2-5, weblogic/weblogic.

Figure 2-22   Enter the Administrator Username and Password



2 Creating a New Portal in a New Domain

2-20 WebLogic Portal Development Guide

17. The deployment process runs for a moment, displaying the window in 
Figure 2-23. Click Details to view the deployment log.

Figure 2-23   Processing Message During Hot Deployment

18. When the new portal has been deployed successfully, click Close, as shown in 
Figure 2-24.

Figure 2-24   Hot Deploy Success Message

19. Confirm that the new portal is visible from within the WebLogic Portal 
Administration Tools, as shown in Figure 2-27, by navigating to the following 
URL:

http://<hostname>:<port>/portalAppTools/

If you are running the tools locally, the URL should be:

http://localhost:7501/portalAppTools/



Step 2: Create the New Portal

Development Guide 2-21

20. You will be prompted to log in, as shown in Figure 2-25. Log in as 
administrator/password. 

Note: Do not use weblogic/weblogic.

Figure 2-25   Logging Into the Administration Tools

21. The main Administration Tools window appears, as shown in Figure 2-26. Click 
the icon to the right of the Portal Management heading. 

Figure 2-26   Clicking the Portal Management Icon



2 Creating a New Portal in a New Domain

2-22 WebLogic Portal Development Guide

22. The Portal Management page appears, displaying the name of your portal Web 
application, as shown in Figure 2-27. 

Figure 2-27   Information About the Portal You Created in the Wizard, Viewed 
in the Administrator Tools

23. The new empty portal should be visible through your browser, though no content 
has been placed inside this portal.  View the portal by entering the following in 
your browser.

http://<hostname>:<port>/<newportalwebappname/index.jsp

If you are running the tools locally and used the sample names provided, the 
URL should be:

http://localhost:7501/NewPortalWebApp/index.jsp



Step 3: Add a Portlet

Development Guide 2-23

Figure 2-28   New Portal Viewed Through Your Browser

Step 3: Add a Portlet

Now that the portal is deployed and running, use the Portlet Wizard to add a new 
portlet to the portal.

1. From the Presentation Tab in the E-Business Control Center, click the New icon in 
the Explorer and select Portlet, as shown in Figure 2-29.



2 Creating a New Portal in a New Domain

2-24 WebLogic Portal Development Guide

Figure 2-29   Choosing to Create a new Portlet

2. Be sure Use the Portlet Wizard is selected, as shown in Figure 2-30, and click 
OK.

Figure 2-30   Portlet Wizard Screen



Step 3: Add a Portlet

Development Guide 2-25

3. Name the new portlet, as shown in Figure 2-31. Examples in this procedure use 
the name BasicPortlet. Click Next.

Figure 2-31   Name the Portlet



2 Creating a New Portal in a New Domain

2-26 WebLogic Portal Development Guide

4. Associate the portlet with a portal page, as shown in Figure 2-32. In this example, 
select the only page displayed, the home portal page.

Figure 2-32   Associate the Portlet with a Portal Page



Step 3: Add a Portlet

Development Guide 2-27

5. The Portlet Components page in Figure 2-33 shows components that can be 
added to the portlet, such as headers, banners, help and footers. For this example, 
do not select any additional components, and click Next. 

Figure 2-33   Select Portlet Components



2 Creating a New Portal in a New Domain

2-28 WebLogic Portal Development Guide

6. Select a portlet content type, as shown in Figure 2-34. For this example, select 
Basic (no Webflow) and click Next.

Figure 2-34   Select a Content Type

7. A default location for portlet resources appears; verify that it is correct. It should 
be something like:

<BEA_HOME>\user_projects\<domainname>\beaApps\
portalApp\<portalwebappname>\portlets

For this example, the location shown in Figure 2-35 should be correct:

C:\bea\user_projects\myNewdomain\beaApps\
portalApp\NewPortalWebApp\portlets

Click Next.



Step 3: Add a Portlet

Development Guide 2-29

Figure 2-35   Select Resource Files Location



2 Creating a New Portal in a New Domain

2-30 WebLogic Portal Development Guide

8. The Summary page in Figure 2-36 shows the files created by the Portlet Wizard. 
Click Create.

Figure 2-36   View Summary

9. When the Next Steps page appears as shown in Figure 2-37, uncheck both boxes 
and click Close.

Figure 2-37   Unmark Options and Close the Next Steps Window



Step 4: Make New Portlet Visible

Development Guide 2-31

10. Sync the portal project: Click the Synchronize button on the E-Business Control 
Center toolbar, shown in Figure 2-38.

Figure 2-38   The Syncronize Button in the E-Business Control Center

Note: For this example, the Default connection settings, localhost:7501, should 
work.

11. The E-Business Control Center synchronizes the data you created in the Portlet 
Wizard, then displays the message in Figure 2-39. Click Close.

Figure 2-39   Synchronization Is Complete

12. If a window appears prompting you to reset compaign states, click Cancel.

To see this portlet from the browser, it must be designated as visible and available, as 
shown in Step 4: Make New Portlet Visible.

Step 4: Make New Portlet Visible

The new portlet is now on the server, but must be made available using the WebLogic 
Portal Administration Tools.

1. In your Web browser, navigate to the following URL: 
http://<hostname>:<port>/portalAppTools. For this example, use the URL 
http://localhost:7501/portalAppTools.



2 Creating a New Portal in a New Domain

2-32 WebLogic Portal Development Guide

2. Log in as administrator/password as shown in Figure 2-40.

Figure 2-40   Logging Into the Administration Tools

3. When the Administration Tools main page apears, click Portal Management, as 
shown in Figure 2-41.

Figure 2-41   Go to Portal Management

4. From the Portal Management Home page, click the Default Portal, as shown in 
Figure 2-42.

Figure 2-42   Select Default Group Portal



Step 4: Make New Portlet Visible

Development Guide 2-33

5. From the Group Portal Management Home page, click Manage Pages and 
Portlets as shown in Figure 2-43.

Figure 2-43   Manage Pages and Portlets

6. Next, in the Pages and Portlets page, click Edit Portlets, as shown in 
Figure 2-44.

Figure 2-44   Click Edit Portlets

7. In the Edit Portlet Entitlements and Attributes page, select the portlet 
(BasicPortlet in this example), then click the Set Attributes button as shown in 
Figure 2-45.

Figure 2-45   Choose to Set Attributes



2 Creating a New Portal in a New Domain

2-34 WebLogic Portal Development Guide

8. Set the Portlet attributes to Visible and Available, as shown in Figure 2-46.

Figure 2-46   Set Portlet Attributes

9. Click Save. The attributes of the portlet, in this example BasicPortlet, are now set 
such that it can be seen.

10. View the results by navigating to 
http://<hostname>:<port>/<webappname>/index.jsp; for this example, 
go to http://localhost:7501/NewPortalWebApp/index.jsp. The result 
should resemble that shown in Figure 2-47.

Figure 2-47   Viewing the New Portlet



WebLogic Portal  Development Guide 3-1

CHAPTER

3 Adding Portal to an 
Existing Domain

This section explains how to add portal functionality to an existing domain. These 
procedures and tasks are highly technical and require a good deal of familiarity with 
WebLogic Server and J2EE architecture.

About Your Domain

The overall procedure outlined in this section is based on the following assumptions 
about your existing domain:

! The existing domain has been backed up.

! The existing domain is installed in <BEA_HOME>\user_projects\ directory.

! The existing domain contains a J2EE application and at least one Web 
application, but does not include Portal functionality.

! The existing domain, referred to in this section as yourDomain, must be 
preserved. That is, it is not being replaced with portalDomain.

! Those responsible for performing these tasks are familiar with the WebLogic 
Server platform, and with J2EE architecture in general.



3 Adding Portal to an Existing Domain

3-2 WebLogic Portal  Development Guide

Before You Begin

Arrive at the following decisions before moving on:

! Preserve or Replace the Existing Domain

! Use or Replace Existing Database

! Locate or Install Enterprise Application

After these decisions are made, select which procedures to perform and get started.

Preserve or Replace the Existing Domain

The first decision to be made is illustrated in Figure 3-1, and concerns the domain 
containing your existing Web application.

! If the existing domain can be replaced with a new portal domain, follow 
�Procedure A� on page 3-3 to move your Web application components into a 
new portal domain.

! If the existing domain must be preserved, follow �Procedure B� on page 3-3 to 
install portal functionality within your existing domain.

Figure 3-1   Decision 1



Before You Begin

WebLogic Portal  Development Guide 3-3

Procedure A

1. Use the Domain Configuration Wizard to create a new portalDomain, as described 
in �Step 1: Create the New Domain� on page 2-1.

2. Import the objects that constitute the existing Web application into the new portal 
domain.

3. Use the Portal Wizard to create a new portal and portal Web application, as 
described in �Step 2: Create the New Portal� on page 2-11.

Once these steps have been completed, you will have a single domain containing your 
existing portal Web application and a complete portal Web application.

Procedure B

1. Use the Domain Configuration Wizard to create a new WLP domain named 
partsDomain, as described in �Step 1: Create the New Domain� on page 2-1.

Note: This partsDomain will be used as a template, but will never be started. 
Therefore, do not add a link to it on the Start menu.

2. Continue with the remainder of the steps in this section, using the partsDomain to 
copy resources into the existing domain, as directed within the procedure.

Use or Replace Existing Database

Another decision, illustrated in Figure 3-2, concerns what database to use.

! If you don�t need to keep the existing database, follow �Procedure C� on page 
3-4 to move your Web application components into a new portal domain.

! If the existing domain must be preserved, follow �Procedure D� on page 3-4 to 
install portal functionality within your existing domain.



3 Adding Portal to an Existing Domain

3-4 WebLogic Portal  Development Guide

Figure 3-2   Decision 2

Procedure C

If the existing Web application can be supported by a new database, load the database 
objects that support the existing Web application inside the database inside the new 
domain.

Procedure D

To retain the database associated with the existing Web application, the following 
entries must be put in place:

JDBC Entries

The following JDBC entries must be added to the config.xml file from the existing 
domain:

! CommercePool: A portal web application requires two connection pools and two 
data sources for each pool, as shown in Listing 3-1.

Listing 3-1   Commerce Pool Datasource entry

<JDBCDataSource

  JNDIName="weblogic.jdbc.pool.commercePool"

  Name="commercePool"



Before You Begin

WebLogic Portal  Development Guide 3-5

  PoolName="commercePool"

  Targets="portalServer"

/>

! CommercePool Datasource: Commerce functionality requires CommercePool 
datasource entries like those shown in Listing 3-2.

Listing 3-2   CommercePool DataSource entries

<JDBCTxDataSource

  EnableTwoPhaseCommit="false"

  JNDIName="weblogic.jdbc.jts.commercePool"

  Name="commercePool"

  PoolName="commercePool"

  Targets="portalServer"

/>

<JDBCDataSource

  JNDIName="weblogic.jdbc.pool.commercePool"

  Name="commercePool"

  PoolName="commercePool"

  Targets="portalServer"

/>

! DataSync Pool: add a DataSync Pool entry, such as the one shown in 
Listing 3-3.



3 Adding Portal to an Existing Domain

3-6 WebLogic Portal  Development Guide

Listing 3-3   DataSync Pool entry

<JDBCTxDataSource

  EnableTwoPhaseCommit="false"

  JNDIName="weblogic.jdbc.jts.dataSyncPool" 

  Name="dataSyncPool"

  PoolName="dataSyncPool"

  Targets="portalServer"

/>

! DataSync Data: add a DataSync Data entry, such as the one shown in 
Listing 3-4.

Listing 3-4   DataSync DataSource entry

<JDBCTxDataSource

  EnableTwoPhaseCommit="false"

  JNDIName="weblogic.jdbc.jts.dataSyncPool"

  Name="dataSyncPool"

  PoolName="dataSyncPool" 

  Targets="portalServer"

/>

<WebAppComponent

  Name="datasync" 

  ServletReloadCheckSecs="300"

  Targets="portalServer"

  URI="datasync"

/>



Before You Begin

WebLogic Portal  Development Guide 3-7

Select a Realm (Optional)

! To use the existing database realm, no special configuration is required.

! To use a new RDBMS realm, one must be configured, and then referenced in 
config.xml.

Key Bootstrap (if using commerce):

Using commerce credit card functionality with the portal application requires a 
reference to the KeyBootstrap class, as shown in (shown in Listing 3-5):

Listing 3-5   Reference to the KeyBootstrap class

<StartupClass

  ClassName="com.beasys.commerce.ebusiness.security.KeyBootstrap"

  FailureIsFatal="false"

  Name="KeyBootstrap"

  Targets="portalServer"

/>

P13N Console

3. Deploy the Personalization Console by adding an entry to the Config.xml file, as 
shown in Listing 3-6:

Listing 3-6   Personalization Console Deployment Entry

<Application 

   Deployed="true"

   TwoPhase="true"



3 Adding Portal to an Existing Domain

3-8 WebLogic Portal  Development Guide

   StagedTargets="portalServer" 

   Name="p13nConsoleApp" 

   Path="<BEA_HOME>/weblogic700/portal/lib"

>

<WebAppComponent 

   Name="p13nConsole" 

   ServletReloadCheckSecs="300"

   Targets="portalServer" 

   URI="p13nConsole.war"

/>

</Application>

WLPDocs Services

! WLPSDocs services are required to link WebLogic Portal Administration Tools 
to the online help.

Listing 3-7   WLPSDocs Services entries

<Application

   TwoPhase="true"

   StagedTargets="portalServer"

   Deployed="true"

   Name="wlpDocsApp"

   Notes=""

   Path="<BEA_HOME>/weblogic700/portal/lib"

>

   <WebAppComponent 

     IndexDirectoryEnabled="false" 



Before You Begin

WebLogic Portal  Development Guide 3-9

     Name="wlpDocs"

     Targets="portalServer" 

     URI="wlpDocs.war"

     ServletReloadCheckSecs="300" 

   />

</Application>

Tax and Payment Services (optional)

To add sample payment and tax services to the existing domain requires the entries 
shown in Listing 3-8. For information on adding these services to your portal 
application, consult  �Setting Up Commerce Services� in the Administration Guide at 
http://edocs.bea.com/wlp/docs70/admin/commerce.htm.

Listing 3-8   Tax and Payment Services entry

<Application

  Deployed="true"

  TwoPhase="true"

  StagedTargets="portalServer"

  Name="paymentWSApp"

  Path="<BEA_HOME>/user_projects 
/myPARTSdomain/beaApps/paymentWSApp"

>

 <EJBComponent

  Name="payment"

  URI="payment.jar"

  Targets="portalServer"

 />

 <WebAppComponent



3 Adding Portal to an Existing Domain

3-10 WebLogic Portal  Development Guide

  Name="payment-webservice"

  URI="pay-ws"

  Targets="portalServer"

/>

</Application>

<Application

  TwoPhase="true"

  StagedTargets="portalServer"

  Deployed="true"

  Name="taxWSApp"

  Path="<BEA_HOME>/user_projects/myPARTSdomain/beaApps/taxWSApp"

>

  <EJBComponent

    Name="tax"

    URI="tax.jar"

    Targets="portalServer"

  />

  <WebAppComponent

    Name="tax-webservice"

    URI="tax-ws"

    Targets="portalServer"

  />

</Application>

Verify Server References

Examine the config.xml file after these edits. Search and replace any reference to 
portalServer with the name of the server targeted by the existing domain.



Before You Begin

WebLogic Portal  Development Guide 3-11

The config.xml file in your existing domain now has the entries required so that the 
WebLogic Portal server can connect to all the components that make up your J2EE 
enterprise Portal application. The next step is to identify the enterprise application in 
which these components can run on the server.

Locate or Install Enterprise Application

Within a BEA WebLogic Platform 7.0 domain, portal requires a complete J2EE 
application. At Decision 3, illustrated in Figure 3-3, an enterprise application is 
designated: Either it is added to the existing domain by following �Procedure E� on 
page 3-11, or portal functionality is merged with an enterprise application already 
present in the existing domain, �Procedure F� on page 3-12.

Figure 3-3   Decision 3

Procedure E

1. Copy the entire contents of the 
<BEA_HOME>\user_projects\portalDomain\beaApps\portalApp directory into 
the existing domain.

2. Move in the objects that make up the existing Web application into this enterprise 
application.



3 Adding Portal to an Existing Domain

3-12 WebLogic Portal  Development Guide

Procedure F

1. Begin with the complete enterprise application from the existing domain.

2. Copy the following directories, including all contents and subfolders, into this 
application directory structure:
tools/
DataSync/
toolSupport/

3. Copy the portalApp-project.eaprj file from within the following directory:

bea\user_projects\portalDomain\beaApps\portalApp-project

4. Using the BEA XML Editor, merge the 
META-INF/weblogic-application.xml files from the existing domain and the 
partsDomain. Merge these files by copying the entries in Listing 3-9 with the 
following changes: replace the <portalApp> string with the name of the J2EE 
application in the existing domain. For example, if your existing enterprise 
application were named existingApp, the entries would read existingAppTools, 
existingAppDataSync and existingAppTool.

Listing 3-9   Listings for weblogic-application.xml

<module>

  <web>

    <web-uri>tools</web-uri>

    <context-root>portalAppTools</context-root>

  </web>

</module>

<module>

  <web>

    <web-uri>datasync</web-uri>

    <context-root>portalAppDataSync</context-root>

  </web>

</module>



Before You Begin

WebLogic Portal  Development Guide 3-13

<module>

  <web>

    <web-uri>toolSupport</web-uri>

    <context-root>portalAppTool</context-root>

  </web>

</module>

5. Copy application-config.xml into the existing enterprise application.

6. Insert references to the portal enterprise application into config.xml, or deploy 
these modules using the WebLogic Server console.

7. Use the Portal Wizard to create a new portal and portal Web application, as 
described in �Step 2: Create the New Portal� on page 2-11. 

After following these procedures, you should have a single domain capable of 
running both your existing Web application and a complete instance of 
WebLogic Portal.



3 Adding Portal to an Existing Domain

3-14 WebLogic Portal  Development Guide



WebLogic Portal Development Guide 4-1

CHAPTER

4 Deploying Portals

This section outlines the steps required to deploy portal applications in the 
development environment.

This chapter includes information on the following topics:

! Hot Deploying With the Portal Wizard

! Deploying Without the Portal Wizard

! Deploying a Portal without Hot Deploy

! Best Practice Guidelines for Deploying Your Portal

For more information, see the deployment guides at 
http://e-docs.bea.com//wls/docs70/deployment.html. For instructions on deploying to 
production environments, including clusters and managed servers, consult Using the 
Domain Configuration Wizard.at 
http://edocs.bea.com/platform/docs70/confgwiz/index.html.

Hot Deploying With the Portal Wizard

When you use the Portal Wizard to create a portal, you have an opportunity at the end 
of the wizard to hot deploy the portal Web application immediately. This is the 
simplest way to deploy.

Once you have deployed the portal, you can create additional portlets for it without 
deploying again. You only need to synchronize the E-Business Control Center to add 
the new portlets to the deployed portal.



4 Deploying Portals

4-2 WebLogic Portal Development Guide

Figure 4-1   Hot Deploy Option in the Next Steps Window of the Portal Wizard

Deploying Without the Portal Wizard

Deploying without the Portal Wizard requires some manual steps.

Note: It can be very helpful to create a dummy portal and hot deploy it, as a model 
of what you need to do when you deploy manually. To create and deploy a 
dummy domain, portal, portal Web application, and associated J2EE 
resources, see Chapter 2, �Creating a New Portal in a New Domain.� 

To deploy manually, use the WebLogic Server deployment guides at 
http://e-docs.bea.com/wls/docs70/deployment.html, in particular �WebLogic Server 
Deployment� at http://e-docs.bea.com/wls/docs70/programming/deploying.html.

As you follow those deployment instructions and use the dummy portal as a reference, 
ensure that you accomplish the following:

! Place the J2EE resources for the portal on the server



Deploying a Portal without Hot Deploy

WebLogic Portal Development Guide 4-3

! Use the E-Business Control Center to edit metadata (so the server knows where 
to look for your J2EE resources)

! Add the portal Web application to the WebLogic server using the console

! Start the WebLogic Portal server from your user domain

! Use the E-Business Control Center to synchronize the metadata to the WebLogic 
Server

Deploying a Portal without Hot Deploy

If you create a new portal and a new portal Web application using the E-Business 
Control Center, but for some reason choose not to hot deploy it to the server, the J2EE 
resources for that application will not be automatically deployed. This presents two 
scenarios for deploying the new portal Web application:

! If the E-Business Control Center project file is on a machine separate from the 
target server, the J2EE resources will have to be moved to the server before they 
can be deployed using the WebLogic console. If this is the case, perform steps 1 
- 3 in this section.

! If you are running the E-Business Control Center on the target server, the J2EE 
files will already be in place, so the only thing you need to do is deploy the 
application components in the WebLogic console. If this is the case, skip the first 
step in this section.

Manually Deploying a Portal Web Application

Deploying a portal that was not deployed using the hot sync function of the Portal 
Wizard requires the following steps:



4 Deploying Portals

4-4 WebLogic Portal Development Guide

Step 1: Move J2EE Resources

If the E-Business Control Center is running on a server remote from the target server, 
J2EE resources need to be moved. A remote server must have a complete enterprise 
portal application, as shown in Figure 4-2.

Figure 4-2   An Enterprise Portal domain without a Portal

To move J2EE resource from the local server to the remote server, take the following 
steps:

1. Copy the NewPWApp directory from the local server, shown in Figure 4-3, into the 
Portal Enterprise application directory shown in Figure 4-2.

Figure 4-3   Copying the Portal Web Application

2. Copy the NewPWApp directory from the application-sync directory on the 
local server, shown in Figure 4-4, into the application-sync\webapps 
directory on the remote server, shown in Figure 4-5.



Deploying a Portal without Hot Deploy

WebLogic Portal Development Guide 4-5

Figure 4-4   Local Metadata directory

Figure 4-5   Remote Metadata destination

3. Proceed with the rest of the steps in this procedure.

Note: In order for a Portal Web application to include all the services available to the 
WebLogic platform, the following elements must be in place:

" The taglib JARs, shown in Listing 4-1 and Listing 4-2, must appear in the 
following directory:
beaApps\portalApp\<yourPortalWebApp>\WEB-INF\lib

" The enterprise application JARs, shown in Listing 4-3, must appear in the 
following directory:
beaApps\portalApp\<yourPortalWebApp>\



4 Deploying Portals

4-6 WebLogic Portal Development Guide

Listing 4-1   Taglib JARs Required to Support baseportal instance

weblogic700\common\templates\webapps\portal\baseportal\j2ee\WEB-INF\lib:

util_taglib.jar

webflow_servlet.jar

ent_taglib.jar

i18n_taglib.jar

webflow_taglib.jar

um_taglib.jar

lic_taglib.jar

es_taglib.jar

ren_taglib.jar

portlet_taglib.jar

res_taglib.jar

p13n_servlet.jar

weblogic-tags.jar

portal_taglib.jar

portal_servlet.jar

visitor_taglib.jar

pz_taglib.jar

ph_taglib.jar

ps_taglib.jar

cm_taglib.jar

Listing 4-2   Taglib JARs Required to Support All Portal Services

/weblogic700/portal/lib/commerce/web/cat_taglib.jar

/weblogic700/portal/lib/commerce/web/eb_taglib.jar



Deploying a Portal without Hot Deploy

WebLogic Portal Development Guide 4-7

/weblogic700/portal/lib/commerce/web/productTracking_taglib.jar

/weblogic700/portal/lib/p13n/web/ad_taglib.jar

/weblogic700/portal/lib/p13n/web/cm_taglib.jar

/weblogic700/portal/lib/p13n/web/ph_taglib.jar

/weblogic700/portal/lib/p13n/web/ps_taglib.jar

/weblogic700/portal/lib/p13n/web/pz_taglib.jar

/weblogic700/portal/lib/p13n/web/tracking_taglib.jar

Listing 4-3   Enterprise JARs Required by Portal

campaign.jar

catalogws.jar

commerce_campaign_bridge_util.jar

commerce_util.jar

customer.jar

document.jar

ebusiness.jar

ejbadvisor.jar

events.jar

ldapprofile.jar

mail.jar

p13n_util.jar

payment.jar

pipeline.jar

placeholder.jar

portal.jar

portal_util.jar



4 Deploying Portals

4-8 WebLogic Portal Development Guide

property.jar

rules.jar

tax.jar

usermgmt.jar

Step 2: Synchronize Metadata

Open the project for your application in the E-Business Control Center and perform 
the synchronization step. For detailed instructions on this step, consult the chapter 
called �Synchronizing the New Portal Data to your Application.

Note: If you are deploying the new portal Web application to a remove server, 
remember to set up a new session in the E-Business Control Center, and 
designate the application name as portalApp, the enterprise application, 
instead of NewPWApp, the Web application name.

Step 3: Deploy in the WebLogic Server Console

The process of deploying a new Portal Web application consist of three steps:

! Create a new Web Module

! Configure the Web New Application

! Verify Deployment

Create a new Web Module

1. Navigate to the WebLogic Server Console:
http://<yourserver>:<port>/console/

2. In the left pane, click on myNewDomain > Deployments > Applications > 
portalApp

3. In the right pane, click on Edit Application Descriptor, as shown in Figure 4-6



Deploying a Portal without Hot Deploy

WebLogic Portal Development Guide 4-9

Figure 4-6   Edit Application Descriptor

4. When the new browser window appears, right-click on Web Modules in the left 
pane, as shown in Figure 4-7.

Figure 4-7   Right-click on Web Modules

5. When the Create a New Web Module screen appears, enter the URI (the native 
file system path is relative to the Enterprise directory, such as 
beaApps\portalApp), and the Context Root (the URL for the new portal Web 
application).

6. Click Create, then Apply, at the right corner of this screen, as shown in 
Figure 4-8.



4 Deploying Portals

4-10 WebLogic Portal Development Guide

Figure 4-8   Enter Module URI and Context Root

7. At the top of the left pane, click on BEA Portal Application, as shown in 
Figure 4-9.

Figure 4-9   Select the BEA Portal Application

8. Click Persist in the right pane of the same window, as shown in Figure 4-10.

Figure 4-10   Click Persist

9. The message �Persistence was successful!� should appear in the right pane. Close 
the browser window.



Deploying a Portal without Hot Deploy

WebLogic Portal Development Guide 4-11

Configure the Web New Application

1. Refresh the main console window, then navigate to yourdomain > Deployments 
>  Web Applications and click on Configure a new Web Application in the 
right panel. 

2. When the first Locate Application or Component to configure page appears, 
click on SELECT to the left of the beaApps application.

3. When the Configure Application or Component page appears, select the server 
from the list on the right, as shown in Figure 4-11.

Note: Even if you are configuring an application on a remote server, Step 3 in 
Figure 4-11 will list the server using a drive letter local to the server itself, and 
not to the machine your web browser is running on. If this example showed a 
browser connected to a remote host, the fully resolved URL of that host, 
(instead of localhost:7501,) as shown in Figure 4-11, would appear in the 
black border next to the words �Connected to�.

Figure 4-11   Select Server

4. Move your server to the list of Target Servers on the right by clicking the top 
arrow between the lists, as shown in Step 3 of Figure 4-12.



4 Deploying Portals

4-12 WebLogic Portal Development Guide

Figure 4-12   Moving Server to Target Servers List

5. Confirm or edit the application name, shown in Step 4 of Figure 4-12.

6. Click on Configure and Deploy, as shown in Step 5 of Figure 4-13.

Figure 4-13   Configure and Deploy Application

7. When the myNewDomain> Applications> portalApp page appears.

8. After the deployment process runs, a status message appears at the bottom of the 
window, indicating the deployment was successful, as shown in Figure 4-14.

Figure 4-14   Successful Deployment Message

9. When the Deployment Status by Target page appears, verify that the status of 
True appears in the Deployed column for the new application. If it is False, click 
on Deploy and wait for the process to complete successfully.



Best Practice Guidelines for Deploying Your Portal

WebLogic Portal Development Guide 4-13

Verify Deployment

Finally, verify the portal has been successfully deployed by navigating to 
http:\\<hostname>:<port>\NewPWApp, as shown in Figure 4-15.

Note: In this example, no portlets have been made visible using the WebLogic Portal 
Administration Tools, therefore the portal displays none in Figure 4-15.

Figure 4-15   Viewing the Deployed Portal Web Application

Best Practice Guidelines for Deploying Your 
Portal

We recommend that you use a multiple environment model for developing, testing, 
and publishing your portal application. BEA Weblogic Platform provides a number of 
tools and scripts for simple deployment. These tools and best practices are discussed 
in detail in �WebLogic Server Deployment� at 
http://edocs.bea.com/wls/docs70/programming/deploying.html.

We recommend deploying your portal in the following three-stage model:



4 Deploying Portals

4-14 WebLogic Portal Development Guide

Stage 1: Deploy to a Server on Your Own Machine

Use this deployment stage for development and unit testing. We strongly 
recommended that you keep all development limited to this stage and only deploy to 
the next stage when you are finished unit testing.

Note: If you do decide to do development and unit testing in a shared environment, 
each developer should work within their domain to avoid overwriting database 
information for other developers.

Stage 2: Deploy From a Local Computer to a Staging Server

Once development and unit testing is completed, deploy to a staging server for 
exception testing. Any faulty code found should be resolved on a local machine and 
then redeployed back to a staging server.

Cluster testing, if applicable, should be performed on a staging server.

Stage 3: Deploy From the Testing Environment to a Live Production Server

Once all development and exception testing is completed, you may deploy the 
application to a live production server. You may also want to retest your cluster 
deployment at this point.

Any additional development for the application should be developed and unit tested as 
described in Stage 1, tested as described in Stage 2, then redeployed to the production 
server. 



Part II Extending 
Portals

Once you have a functioning portal, you can increase its value by adding features 
and functionality. The information in this section shows you how to extend portals, 
turning them into interactive, content-rich, personalizable single points of access to 
enterprise data and applications.

This section includes information on the following subjects:

! Building Custom Templates

! Implementing User Profiles

! Adding Security to a Portal

! Portal Content Management

! Setting Up Portal Navigation

! Creating a Look-and-Feel

! Extending Portlets

! Setting Up Personalization and Interaction Management

! Setting Up Campaign Services

! Setting Up Commerce Services

! Event and Behavior Tracking

! Using the Expression Package

! Event Descriptions





WebLogic Portal Development Guide 5-1

CHAPTER

5 Building Custom 
Templates

WebLogic Portal includes a number of wizards and templates to assist in creating 
domains, applications, portals and portlets quickly and efficiently. This section 
outlines instructions for creating your own custom templates. Domain and portal 
templates are consumed by the domain wizard or the portal wizard, and group portal 
templates are invoked using the WebLogic Portal Administration Tools.

This section includes information on the following subjects:

! Introducing Templates

! Creating a Domain Template

! Creating a Portal Template

Introducing Templates

Three templates are built into the BEA WebLogic Platform: Domain templates, portal 
templates and group portal templates.  Domain and portal templates are built as wizard 
components, whereas group portals are used by the WebLogic Portal Administration 
Tools.



5 Building Custom Templates

5-2 WebLogic Portal Development Guide

Three Types of Templates

Before learning how to develop templates for WebLogic Platform, consider the role 
each template type plays in creating a portal:

The Domain Wizard Template

Out-of-the-box domain templates are stored in the form of JAR files in following 
directory:

<BEA_HOME>weblogic700\common\templates\domains

The Domain Configuration Wizard is launched from the Start -> Programs -> 
WebLogic700 menu, and does not require a server to be running. Gathering user input 
from a series of screens, the Wizard performs some directory and file copying, and 
then some string substitutions within the configuration files and startup scripts within 
the domain being created. Thus the user�s choices are applied to the template and 
instantiated in the new domain directory.

Figure 5-1 shows the Domain Configuration Wizard explosing several domain 
templates.



Introducing Templates

WebLogic Portal Development Guide 5-3

Figure 5-1   Selecting a Custom Domain

The Domain Configuration Wizard recognizes templates based on the contents of the 
template.xml file. Information on editing that file appears later in this procedure.

Figure 5-2 shows some of the contents of the stock WebLogic Portal domain JAR 
exploded to show the files within.



5 Building Custom Templates

5-4 WebLogic Portal Development Guide

Figure 5-2   WebLogic Portal Domain Template Files

The Domain Configuration Wizard uses the template.xml, config.xml and 
application.xml files to copy resources,  perform string substitutions for 
configuration files and scripts within the new domain.

The Portal Wizard Template

One out-of-the-box portal template is included with the installation of WebLogic 
Portal: Figure 5-3 shows the contents of a custom Portal Template, which would be 
stored in the following directory:

<BEA_HOME>\weblogic700\common\templates\webapps\portal



Introducing Templates

WebLogic Portal Development Guide 5-5

Figure 5-3   Avitek Portal Template file structure

Like the Domain Configuration Wizard, the Portal Wizard consumes a file called 
template.xml, as well as a template-icon.gif. The template.xml file includes 
directives and variables for applying user input from the Portal Wizard to the J2EE and 
metadata resources contained in this folder.

Through the lens of the Portal Wizard, portal templates appear by name and icon, as 
shown in Figure 5-4.



5 Building Custom Templates

5-6 WebLogic Portal Development Guide

Figure 5-4   Selecting Portal Templates

After the Portal Template is used to instantiate a portal, the WebLogic Portal 
Administration Tools are used to set attributes on pages, portlets, and other aspects of 
the portal.

The Group Portal Template

Unlike the Domain and Portal templates, the Group Portal template does not exist as a 
packaged entity. Rather, the WebLogic Portal Administration Tools provide a 
mechanism whereby every group portal is created using a template. Out-of-the-box, 
the only choice is the default group portal, to which no customization has been applied. 
Figure 5-5 shows the Create Group Portal link from the Portal Management Home 
page.

Note: Because Group Portal Templates are essentially reused Group Portals, this 
document does not address their creation. For detailed instructions on creating 
Group Portals, consult the tutorial called Creating a Group Portal.



Introducing Templates

WebLogic Portal Development Guide 5-7

Figure 5-5   Create Group Portal

After the new group portal has been named and associated with a user group, a group 
portal template must be selected, as shown in Figure 5-6.

Figure 5-6   Select Group Portal Template

This way, any group portal can serve as a template for new group portals.  Importantly, 
entitlements and delegated administration can be copied from the group portal 
template, as shown in Figure 5-7.

Figure 5-7   Copying Entitlements and Delegated Administration from Group 
Portal Template



5 Building Custom Templates

5-8 WebLogic Portal Development Guide

Using Templates

Roughly three varieties of customization can be introduced into the Portal life cycle: 
look and feel customization can be imposed by creating stock layouts and skins, 
functionality can be customized by adding application elements, and subsets of these 
custom objects can be preserved and propagated using the group portal template.

Each type of template confers a specific advantage:

! Create a custom domain template to provide a common starting point for all the 
developers in an organization: this can include enterprise components such as 
EJBs, corporate identity components such as skins and logos, or even corporate 
portlets to be used across an enterprise. 

! Create a custom portal template when you need to clone an existing set of portal 
pages, group portals, entitlements, portlets, skins and layouts.

! Create a group portal template to preserve administrative associations between 
user groups and portal resources such as pages, portlets, entitlements, and 
layouts.

Creating a Domain Template

The best way to create a custom portal domain template is to begin with a WebLogic 
Portal domain created using the template. Perform whatever customization is needed, 
everything from adding application functionality to setting entitlements on a portlet, 
and use the domain template as a mechanism for transmitting customization down the 
line to subsequent developers in your organization.

This section covers the basic steps in creating a template for the Domain Configuration 
Wizard:

! Step 1: Instantiate a Portal Domain

! Step 2: Customize the Portal Domain

! Step 3: Apply General Configuration

! Step 4: Package the New Domain as a Template



Creating a Domain Template

WebLogic Portal Development Guide 5-9

Step 1: Instantiate a Portal Domain

Begin by using the Domain Configuration Wizard to instantiate a WebLogic Portal 
domain. For detailed instructions on this step, consult the tutorial �Creating a New 
Portal in a New Domain.

Step 2: Customize the Portal Domain

Customize the domain using the Portal Wizard, Portlet Wizard, and by adding 
application functionality, look and feel components, EJBs, or other J2EE components. 
This section provides some detailed instructions on adding functionality to a 
WebLogic Portal domain. This section contains the following instruction sets, each of 
which can be applied separately:

! Supporting Two-Phase Deployment

! Adding All Portal Services to Your Domain

! Adding an EJB to your WebLogic Portal Domain

! Adding a Custom Layout to a Domain Template

! Adding a Custom Skin to a Domain Template

Supporting Two-Phase Deployment

If you choose to create your own portal Web application without using the template, 
make sure the weblogic-application.xml file shown in Listing 5-1 is saved in the 
following directory:

domain\beaApps\portalApp\META-INF\

This file is required in order for two-phase application deployment to function 
properly. It is included automatically when you create an application using the 
WebLogic Portal template.  If you are creating an application without using the wizard, 
then you must manually create this file and add this entry.



5 Building Custom Templates

5-10 WebLogic Portal Development Guide

Listing 5-1   weblogic-application.xml

<!DOCTYPE weblogic-application PUBLIC "-//BEA Systems, Inc.//DTD WebLogic 
Application 7.0.0//EN" 
"http://www.bea.com/servers/wls700/dtd/weblogic-application_1_0.dtd">

<weblogic-application>

  <application-param>

   <description>Required for deployment of portal

   applications</description>

   <param-name>weblogic.internal.listeners</param-name>

<param-value>com.bea.p13n.management.internal.lifecycle.J2EELifecycleListener</
param-value>

  </application-param>

</weblogic-application>

Adding All Portal Services to Your Domain

The template that ships with WebLogic Portal includes a subset of all the application 
functionality available to the portal framework, excluding content management, 
personalization, placeholder and ad services.

To add all this functionality to your domain, take the following steps:

1. Use the Portal Wizard to create a new portal and portal Web application in your 
new domain.

2. Copy the files in Listing 5-2 to the <webapp>\WEB-INF\lib directory of your 
new domain.

3. Insert the entry in Listing 5-3 to the web.xml file at <webapp>/WEB-INF.

4. Add the entry in Listing 5-4 to the <webapp>/WEB-INF/weblogic.xml file.

The portal Web application in this domain will now support all services included in the 
WebLogic Platform. To use this domain as a template for the Domain Configuration 
Wizard, follow the remaining steps in this procedure, starting with Step 3: Apply 
General Configuration.



Creating a Domain Template

WebLogic Portal Development Guide 5-11

Listing 5-2   JARs to add all Portal Services

BEA_HOME/weblogic700/portal/lib/commerce/web/cat_taglib.jar

BEA_HOME/weblogic700/portal/lib/commerce/web/eb_taglib.jar

BEA_HOME/weblogic700/portal/lib/commerce/web/productTracking_taglib.jar

BEA_HOME/weblogic700/portal/lib/p13n/web/ad_taglib.jar

BEA_HOME/weblogic700/portal/lib/p13n/web/cm_taglib.jar

BEA_HOME/weblogic700/portal/lib/p13n/web/ph_taglib.jar

BEA_HOME/weblogic700/portal/lib/p13n/web/ps_taglib.jar

BEA_HOME/weblogic700/portal/lib/p13n/web/pz_taglib.jar

BEA_HOME/weblogic700/portal/lib/p13n/web/tracking_taglib.jar

Listing 5-3   Entries to web.xml to add all Portal Services

<!-- Add this just before the </web-app> entry at the tail end of the file. -->

<!-- Filter to fire click through events -->

<filter>

    <filter-name>ClickThroughEventFilter</filter-name>

   
<filter-class>com.bea.p13n.tracking.clickthrough.ClickThroughEventFilter</filte
r-class>

</filter>

<filter-mapping>

    <filter-name>ClickThroughEventFilter</filter-name>

    <url-pattern>/application/*</url-pattern>

</filter-mapping>

<!-- The ShowDoc Servlet -->

<servlet>



5 Building Custom Templates

5-12 WebLogic Portal Development Guide

    <servlet-name>ShowDocServlet</servlet-name>

    <servlet-class>com.bea.p13n.content.servlets.ShowDocServlet</servlet-class>

    <!-- Make showdoc always use the local ejb-ref DocumentManager -->

    <init-param>

        <param-name>contentHome</param-name>

        <param-value>java:comp/env/ejb/DocumentManager</param-value>

    </init-param>

</servlet>

<!-- The AdClickThru Servlet -->

<servlet>

    <servlet-name>adClickThru</servlet-name>

    <servlet-class>com.bea.p13n.ad.servlets.AdClickThruServlet</servlet-class>

</servlet>

<!-- The ClickThrough Servlet -->

<servlet>

    <servlet-name>clickThroughServlet</servlet-name>

    
<servlet-class>com.bea.p13n.tracking.clickthrough.ClickThroughServlet</servlet-
class>

</servlet>

<servlet-mapping>

    <servlet-name>ShowDocServlet</servlet-name>

    <url-pattern>/ShowDoc/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

    <servlet-name>adClickThru</servlet-name>

    <url-pattern>/adClickThru/*</url-pattern>

</servlet-mapping>



Creating a Domain Template

WebLogic Portal Development Guide 5-13

<servlet-mapping>

    <servlet-name>adClickThru</servlet-name>

    <url-pattern>/AdClickThru/*</url-pattern>

</servlet-mapping>

<servlet-mapping>

    <servlet-name>clickThroughServlet</servlet-name>

    <url-pattern>/clickThroughServlet/*</url-pattern>

</servlet-mapping>

<taglib>

    <taglib-uri>cat.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/cat_taglib.jar</taglib-location>

</taglib>

<taglib>

    <taglib-uri>eb.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/eb_taglib.jar</taglib-location>

</taglib>

<taglib>

    <taglib-uri>productTracking.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/productTracking_taglib.jar</taglib-location>

</taglib>

<taglib>

    <taglib-uri>ad.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/ad_taglib.jar</taglib-location>

</taglib>

<taglib>

    <taglib-uri>cm.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/cm_taglib.jar</taglib-location>



5 Building Custom Templates

5-14 WebLogic Portal Development Guide

</taglib>

<taglib>

    <taglib-uri>ph.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/ph_taglib.jar</taglib-location>

</taglib>

<taglib>

    <taglib-uri>ps.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/ps_taglib.jar</taglib-location>

</taglib>

<taglib>

    <taglib-uri>pz.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/pz_taglib.jar</taglib-location>

</taglib>

<taglib>

    <taglib-uri>tracking.tld</taglib-uri>

    <taglib-location>/WEB-INF/lib/tracking_taglib.jar</taglib-location>

</taglib>

<!-- This is used by the various <cm:> tags -->

<ejb-ref>

    <description>

The ContentManager EJB for this webapp

    </description>

    <ejb-ref-name>ejb/ContentManager</ejb-ref-name>

    <ejb-ref-type>Session</ejb-ref-type>

    <home>com.bea.p13n.content.document.DocumentManagerHome</home>

    <remote>com.bea.p13n.content.document.DocumentManager</remote>

</ejb-ref>



Creating a Domain Template

WebLogic Portal Development Guide 5-15

<!-- This is used by the ShowDocServlet -->

<ejb-ref>

    <description>

The DocumentManager for this webapp

    </description>

    <ejb-ref-name>ejb/DocumentManager</ejb-ref-name>

    <ejb-ref-type>Session</ejb-ref-type>

    <home>com.bea.p13n.content.document.DocumentManagerHome</home>

    <remote>com.bea.p13n.content.document.DocumentManager</remote>

</ejb-ref>

<!-- This is used by the Placeholder tag -->

<ejb-ref>

    <description>

The PlaceholderService Session EJB for the placeholder tag.

    </description>

    <ejb-ref-name>ejb/PlaceholderService</ejb-ref-name>

    <ejb-ref-type>Session</ejb-ref-type>

    <home>com.bea.p13n.placeholder.PlaceholderServiceHome</home>

    <remote>com.bea.p13n.placeholder.PlaceholderService</remote>

</ejb-ref>

<!-- This is used by the AdClickThruServlet and the adTarget tag-->

<ejb-ref>

    <description>

The AdService for this webapp

    </description>

    <ejb-ref-name>ejb/AdService</ejb-ref-name>

    <ejb-ref-type>Session</ejb-ref-type>



5 Building Custom Templates

5-16 WebLogic Portal Development Guide

    <home>com.bea.p13n.ad.AdServiceHome</home>

    <remote>com.bea.p13n.ad.AdService</remote>

</ejb-ref>

<!-- This is used by the AdClickThruServlet -->

<ejb-ref>

    <description>

The AdBucketService for this webapp

    </description>

    <ejb-ref-name>ejb/AdBucketService</ejb-ref-name>

    <ejb-ref-type>Session</ejb-ref-type>

    <home>com.bea.p13n.ad.AdBucketServiceHome</home>

    <remote>com.bea.p13n.ad.AdBucketService</remote>

</ejb-ref>

<!-- This is used by the various <pz:> tags -->

<ejb-ref>

    <description>

The EjbAdvisor for this webapp

    </description>

    <ejb-ref-name>ejb/EjbAdvisor</ejb-ref-name>

    <ejb-ref-type>Session</ejb-ref-type>

    <home>com.bea.p13n.advisor.EjbAdvisorHome</home>

    <remote>com.bea.p13n.advisor.EjbAdvisor</remote>

</ejb-ref>

Listing 5-4   Entries to weblogic.xml to add all Portal Services

<-- Add this after the <reference-descriptor> entry near the top of the file. -->



Creating a Domain Template

WebLogic Portal Development Guide 5-17

<ejb-reference-description>

    <ejb-ref-name>ejb/ContentManager</ejb-ref-name>

    <jndi-name>${APPNAME}.BEA_personalization.DocumentManager</jndi-name>

</ejb-reference-description>

<ejb-reference-description>

    <ejb-ref-name>ejb/DocumentManager</ejb-ref-name>

    <jndi-name>${APPNAME}.BEA_personalization.DocumentManager</jndi-name>

</ejb-reference-description>

<ejb-reference-description>

    <ejb-ref-name>ejb/PlaceholderService</ejb-ref-name>

    <jndi-name>${APPNAME}.BEA_personalization.PlaceholderService</jndi-name>

</ejb-reference-description>

<ejb-reference-description>

    <ejb-ref-name>ejb/AdService</ejb-ref-name>

    <jndi-name>${APPNAME}.BEA_personalization.AdService</jndi-name>

</ejb-reference-description>

<ejb-reference-description>

    <ejb-ref-name>ejb/AdBucketService</ejb-ref-name>

    <jndi-name>${APPNAME}.BEA_personalization.AdBucketService</jndi-name>

</ejb-reference-description>

<ejb-reference-description>

    <ejb-ref-name>ejb/EjbAdvisor</ejb-ref-name>

    <jndi-name>${APPNAME}.BEA_personalization.EjbAdvisor</jndi-name>

</ejb-reference-description>

Adding an EJB to your WebLogic Portal Domain

For instance, to add an Enterprise Java Bean to your domain, take the following steps:



5 Building Custom Templates

5-18 WebLogic Portal Development Guide

1. Create an EJB. For instructions on creating EJBs for the WebLogic Platform, 
consult Programming WebLogic Enterprise JavaBeans.

2. Place the jar file in the application directory:

<BEA_HOME>/yourdomain/BEAapps/portalApp/META-INF

3. Insert the following reference to this jar in the META-INF/application.xml 
file:

<module>

  <ejb>myEJB.jar</ejb>

</module>

where myEJB is the name of your new EJB.

4. In the application node of the domain/config.xml, add an entry such as this:

<EJBComponent

     Name="myEJB"

     Targets="@TARGETS"

     URI="myEJB.jar"

/>

Your EJB will be deployed with all the other application functionality at startup.

Step 3: Apply General Configuration

Aside from adding application functionality at the enterprise or Web application level, 
you may want to propagate more general customization by inserting portals, pages, 
portlets, and even skins and layouts into your customized WebLogic Portal domain 
template.

For detailed instructions on creating portals and portlets, consult the WebLogic 
Development Guide.  For detailed instructions on creating group portals, consult the 
section of the WebLogic Portal Administration Guide called Creating a Portal and 
Group Portal.



Creating a Domain Template

WebLogic Portal Development Guide 5-19

For detailed instructions on creating custom layouts and skins, consult the section of 
the WebLogic Portal Development Guide called Creating a Look and Feel. This 
section explains how to add look and feel components to a domain such that it can be 
packaged within a custom WebLogic Portal domain.

Adding a Custom Layout to a Domain Template

This example shows a custom layout called �stack�, a one-column vertical scheme. 
This layout consists of a JSP file, shown in Listing 5-5, and a thumbnail image, shown 
in Figure 5-8.

Figure 5-8   thumbnail.gif for stack layout

Listing 5-5   text of stack layout

<%@ taglib uri='ren.tld' prefix='layout' %>

<layout:placePortletsinPlaceholder 
placeholders="top,middle,bottom" />

<center>

    <table BORDER COLS="1" WIDTH="250" >

        <tr>

            <td>

                <layout:render section='top'/>

            </td>

        </tr>

        <tr>

            <td>

                <layout:render section='middle'/>



5 Building Custom Templates

5-20 WebLogic Portal Development Guide

            </td>

        </tr>

        <tr>

            <td>

                <layout:render section='bottom'/>

            </td>

        </tr>

    </table>

</center>

Having created a custom layout, make it available to the new domain template using 
the following steps:

1. To insert this layout into the domain template, save the JSP as template.jsp and 
the image file as <yourlayoutName>.gif in the following directory:

<BEA_HOME>\weblogic700\common\templates\domains\shared\bea\
portal\projects\portalApp-project\library\portal\layouts\<y
ourlayoutName>\

2. To enable this custom layout to be visible to the E-Business Control Center, save 
the JSP as template.jsp and the image file as thumbnail.gif in the following 
directory:

<BEA_HOME>\weblogic700\common\templates\webapps\portal\newp
ortal\j2ee\framework\layouts\<yourlayoutName>\

Warning: Filenames for layout thumbnails are not uniform. If they are not correct, 
the preview image may be missing in the E-Business Control Center or in 
the WebLogic Portal Administration Tools.

Adding a Custom Skin to a Domain Template

Having created a custom skin, use the following steps to make the custom skin 
available to the new domain template, take the following steps:



Creating a Domain Template

WebLogic Portal Development Guide 5-21

1. Take a screenshot of the skin on your portal, reduce it to a 1 inch width, and save 
it as <yourlayoutName>.gif.

2. Place this thumbnail in the following directory:

<BEA_HOME>\weblogic700\common\templates\domains\shared\bea\
portal\projects\portalApp-project\library\portal\skins\<you
rskinName>\

3. Place the J2EE resources for the skin in the following directory:

<BEA_HOME>\weblogic700\common\templates\webapps\portal\newp
ortal\j2ee\framework\skins\<yourskinName>\

After these elements are added to the domain, what remains is to package the new 
domain in such a way that the Domain Configuration Wizard can use it to instantiate 
your custom domain.

Step 4: Package the New Domain as a Template

After confirming that all the customization in your domain has been added 
successfully, you can replicate this new functionality in the form of a domain template. 
This template can be used to give corporate developers a good baseline to work from, 
reducing unnecessary duplication of efforts at several points in the development, 
deployment and maintenance processes.

Entries have been made in several configuration files to support these additions. 
Assuming the J2EE resources are in place and archived correctly in the template JAR 
file, it is crucial that the metadata about these resources be entered correctly so the 
wizard can include them in the resulting domain. For this reason, pay special attention 
to the points at which the template.xml file makes reference to the other 
configuration files and J2EE resources.

Note: Any new domain template you create should include support for all portal 
services. For this reason, it is strongly recommended that you follow the steps 
outline in Step 2: Customize the Portal Domain before making your domain 
into a template.

To create a template from your customized domain, take the following steps:

! Open the template.xml File

! Edit the config.xml file



5 Building Custom Templates

5-22 WebLogic Portal Development Guide

! Edit the Application.xml file

! Check Shell Scripts for String Substitution

! Create the Archive

Open the template.xml File

Obtain a copy of the template.xml file by making a copy of the following JAR file:

<BEA_HOME>\weblogic700\common\templates\domains\portal.jar

Unzip this archive and open the template.xml file in a text browser. Use this file as 
a reference when editing the config.xml file. After making any necessary edits, 
archive this file (in JAR form) so that it extracts to the \META-INF directory.

Edit the config.xml file

Open the config.xml file from your customized domain, and perform the 
substitutions shown in Listing 5-6. Replacing the populated attributes with the 
variables used by the template.xml allows the Domain Configuration Wizard to 
automatically populate user input into the fields of your config.xml file.

Listing 5-6   Domain node substitutions for config.xml file

<Server 

    Name="portalServer"    replace with "@SERVER_NAME"

    ListenPort="7501"      replace with "@BEA_WEBLOGIC_SERVER_PORT@"

    NativeIOEnabled="true"

    JavaCompiler="@JAVA_HOME/bin/javac"

    ServerVersion="7.0.1.0" 

    StagingMode="nostage" 

    TransactionLogFilePrefix="logs/"

>

<Log FileName="logs/weblogic.log" 



Creating a Domain Template

WebLogic Portal Development Guide 5-23

    Name="portalServer"/   replace with "@SERVER_NAME"

>

<SSL Enabled="true"          

   ListenPort="7502"   replace with "@BEA_WEBLOGIC_SERVER_SSLPORT@"

   Name="portalServer"        replace with "@SERVER_NAME"

   ServerCertificateChainFileName="ca.pem"

   ServerCertificateFileName="democert.pem" 

   ServerKeyFileName="demokey.pem"/

>

<ServerStart Name="portalServer"/>  replace with "@SERVER_NAME"

 <WebServer

  DefaultWebApp="DefaultWebApp"

  LogFileName="access.log"

  LoggingEnabled="true"

  Name="portalServer"               replace with "@SERVER_NAME"

/>

Note: In the template.xml, the @TARGETS value is used to allow the same 
domain to be deployed in a cluster, an admin server or a stand-alone server 
without modification to the config.xml file.

 <change-pair name="TARGETS">

         <before string="@TARGETS" />

         <after string="$TARGET_NAMES$" />

      </change-pair>

The Domain Wizard runs against your template, replacing variable entries as 
shown in Listing 5-7:



5 Building Custom Templates

5-24 WebLogic Portal Development Guide

Listing 5-7   Variable replacements in the config.xml file 

Original node in portal Template config.xml

<EJBComponent

    Name="campaign"

    Targets="@TARGETS"

    URI="campaign.jar"

/>

Variables populated in new config.xml file

<EJBComponent

    Name="campaign" 

    Targets="portalServer" 

    URI="campaign.jar"

/>

Edit the Application.xml file

As with the template.xml and config.xml files, extracting an example file from an 
existing template is a good way to start. Compare the archive file against your 
customized application.xml file. For each new Web application you want to 
automatically deploy at server start, an entry will need to be added in the Application 
node of application.xml. Listing 5-8 shows a Web module called NewPWApp 
inserted into the Application node.

Listing 5-8   Adding a module listing to application.xml

<application>

 <module>

   <web>

     <web-uri>NewPWApp</web-uri>



Creating a Domain Template

WebLogic Portal Development Guide 5-25

     <context-root>NewPWApp</context-root>

   </web>

 </module>  

...

</application>

Check Shell Scripts for String Substitution

If your application requires special startup classes or environment settings, make sure 
these are added to the shell scripts within your template. Listing 5-9 shows the contents 
of startPortal.bat included with the out-of-the-box portal domain template.

If your domain requires any customized startup commands, make sure any added 
literal references will not make your scripts difficult to maintain.

Listing 5-9   startPortal.bat from portal.jar

@ECHO OFF

SETLOCAL

REM ###########################################################################

REM (c) 2002 BEA SYSTEMS INC. All rights reserved

REM

REM BEA WebLogic Portal Server startup script.

REM This script can also install/uninstall a Portal Window Service. Use the

REM -installService or -uninstallService command-line arguments.

REM ###########################################################################

REM ###########################################################################

REM The WLP installation directory

REM ###########################################################################

SET WLP_HOME=@BEA_PORTAL_HOME_BACK_SLASH@

REM ###########################################################################



5 Building Custom Templates

5-26 WebLogic Portal Development Guide

REM Set the WebLogic server name

REM ###########################################################################

SET SERVER_NAME=@MANAGED_SERVER_REGISTERED_NAME_IN_ADMIN

IF "%SERVER_NAME%"=="" SET SERVER_NAME=@SERVER_NAME

REM ###########################################################################

REM Set the WebLogic Admin Server URL, if this is a managed node.

REM Otherwise, leave this blank

REM ###########################################################################

set ADMIN_URL=@ADMIN_SERVER_URL

REM ###########################################################################

REM Set the database type

REM Valid values are: POINTBASE, ORACLE_THIN, MSSQL, SYBASE_JCONNECT, DB2_TYPE2

REM Set set-environment.bat for more details

REM ###########################################################################

SET DATABASE=@DATABASE@

REM Try to get it from the db_settings.properties file

IF not exist .\db_settings.properties goto _setenv

SET DB_SETTINGS=.\db_settings.properties

FOR /F "eol=# tokens=1,2 delims==" %%i in (%DB_SETTINGS%) do  (

    if %%i == database SET DATABASE=%%j

)

:_setenv

REM ###########################################################################

REM Set the environment

REM See set-environment.bat for more details on the available parameters

REM ###########################################################################

CALL "%WLP_HOME%\bin\win32\set-environment.bat"



Creating a Domain Template

WebLogic Portal Development Guide 5-27

REM ###########################################################################

REM Set any additional CLASSPATH information

REM ###########################################################################

SET 
CLASSPATH=%CLASSPATH%;%P13N_DIR%\lib\commerce_system.jar;%P13N_DIR%\lib\campaig
n_system.jar

REM ###########################################################################

REM Start WebLogic with the above parameters.

REM See startWebLogic.cmd for more details on the available parameters.

REM ###########################################################################

set MEM_ARGS=-Xms128m -Xmx128m -XX:MaxPermSize=128m

set JAVA_OPTIONS=-Dcommerce.properties="%WLP_HOME%\weblogiccommerce.properties"

if "%1" == "-installService" goto _installService

if "%1" == "-uninstallService" goto _uninstallService

:_startWebLogic

call "%P13N_DIR%\bin\win32\startWebLogic.cmd"

goto _the_end

:_installService

call "%P13N_DIR%\bin\win32\installWebLogicService.cmd"

goto _the_end

:_uninstallService

call "%P13N_DIR%\bin\win32\uninstallWebLogicService.cmd"

goto _the_end

:_the_end

ENDLOCAL



5 Building Custom Templates

5-28 WebLogic Portal Development Guide

Create the Archive

At this stage, all look and feel customization and functionality has been added to the 
portal domain, and the directory structure looks like that in Figure 5-9.

Figure 5-9   Expanded View of Custom Portal Domain

Take the following steps to create the archive:

1. Make sure the config.xml file and the shell scripts are in the domain directory, 
and that the application.xml, application-config.xml and the 
weblogic-application.xml files are inside the META-INF directories inside 
their respective enterprise applications.

2. Make sure that no files are at the top level of the archive folder, as shown in 
Figure 5-10.

Figure 5-10   Domain Template Before Being Archived

3. Enter the following command from a command line at the archive folder:

jar -cfM ..\myportal.jar domain META-INF

4. To make this domain template available to the Domain Configuration Wizard, 
place the JAR file in the following directory:

<BEA_HOME>/weblogic700/common/templates/domains/



Creating a Portal Template

WebLogic Portal Development Guide 5-29

Creating a Portal Template

Like the process of creating a domain template, creating a portal template is largely a 
matter of creating and customizing a new instance of a portal, and then packaging it 
such that the Portal Wizard recognizes where to put the assets.

Instantiate a New Portal

For detailed instructions on creating a new portal using the Portal Wizard, consult the 
section Create the New Portal.

Customize the New Portal

A large body of information is available for those customizing the behavior and 
appearance of a portal. For an overview and links to specific instructions, consult the 
WebLogic Portal Development Guide.

Apply Basic Configuration

You can now apply configuration to the new portal, including adding group portals, 
pages, portlets, entitlements and delegated administration settings. For detailed 
instructions on configuring a portal, consult the Portal Administration Guide.

Package the New Portal as a Template

Unlike a template for the Domain Configuration Wizard, a portal template does not 
need to be delivered in the form of a compressed archive file. However, packaging the 
new portal is largely a matter of editing the template.xml file, one of which is shown 
in Listing 5-12. Take the following steps to package your customized portal as a 
template for the Portal Wizard:



5 Building Custom Templates

5-30 WebLogic Portal Development Guide

Step 1: Make Staging Directory

Create a directory called /myportal to serve as the staging folder for the new portal 
template. Create two directories inside: /j2ee and /ebcc.

Step 2: Locate Source Directories

Locate the two directories associated with the source portal: the J2EE resources, as 
shown in Figure 5-11, and the metadata directories, as shown in Figure 5-12.

! Inside the domain, find the Web application directory named after your portal 
Web application. In this example, the Web application is called NewPWApp.

! The corresponding metadata directory is called portalApp-project (named after 
the Enterprise application.)

Figure 5-11   J2EE Resource Directories in NewPWApp

Figure 5-12   Metadata directories for NewPWApp

Step 3: Move Portal Resources

Move the resources into the template staging directory:

! Copy the contents of the NewPWApp directory into the myportal/j2ee directory.

! Copy the contents of the application-sync directory into the myportal/ebcc 
directory. 



Creating a Portal Template

WebLogic Portal Development Guide 5-31

Note: Only copy metadata for resources you have added to the portal during 
customization. Do not copy the stock resource metadata files from the 
stockportal template.

Step 4: Edit template.xml

Edit the template.xml file according to the following rules:

" Listing 5-10 shows properties passed in by the Portal Wizard.

" Listing 5-11 shows properties you must set according to your portal.

" Make any other changes to the template.xml file required by your 
customized Portal Web application. It is an ANT build script.  Listing 5-12 
shows the full text of a template.xml for the Portal Wizard.

Listing 5-10   Properties provided by the Portal Wizard

<property name="template.common.lib.root.dir" value="Path to 
directory containing required jar files" />

<property name="template.ebcc.root.dir" value="Path to directory 
containing application data directory" />

<property name="template.j2ee.webapp.root.dir" value="Path to web 
application root directory" />

<property name="template.webapp.name" value="Name of the web 
application"/>

<property name="template.portal.name" value="Portal web 
application name"/>    

<property name="template.portal.description" value="Description of 
the portal application">

Listing 5-11   Properties unique to your portal template

<property name="template.name" value="baseportal" />

<property name="template.description" value="Description: Base 
Portal Template" />



5 Building Custom Templates

5-32 WebLogic Portal Development Guide

<property name="template.hyperlink.text" value="After your new 
portal is deployed, follow these instructions..." />

<property name="template.hyperlink.url" 
value="http://edocs.bea.com/wlp/docs70/dev/newdom.htm#1003370" />

Step 5: Create a Thumbnail

Create an icon to signify the look of your portal template in the Portal Wizard. Name 
this file template-icon.gif. (Without this optional file, the Portal Wizard will 
display a stock icon.)

Step 6: Create Archive File

(Optional) Compress the contents of the portal template: From the myportal 
directory, execute the following command:

jar -cfM ../myportal.jar *.*

Step 7: Make the Archive Available

Place the resulting archive file in the following directory:

<BEA_HOME>\weblogic700\common\templates\webapps\portal

Listing 5-12   Portal template.xml

<?xml version="1.0"?>

<project name="Base Portal Template" default="main" basedir="."> 

  <!--

    The jar or directory must contain this template.xml file AND can

    contain a template-icon.gif.  If a template-icon.gif is not

    present, a default will be provided.

  -->



Creating a Portal Template

WebLogic Portal Development Guide 5-33

  <!-- The caller should pass the following properties. 

     <property name="template.common.lib.root.dir" value="Path to directory 
containing required jar files" />

     <property name="template.ebcc.root.dir" value="Path to directory containing 
application data directory" />

     <property name="template.j2ee.webapp.root.dir" value="Path to web application 
root directory" />

     <property name="template.webapp.name" value="Name of the web application"/>

     <property name="template.portal.name" value="Portal web application name"/>    

     <property name="template.portal.description" value="Description of the portal 
application">

     <property name="template.hotdeploy.path" value="Path to directory containing 
the portal for hot deploy"/>    

     <property name="template.hotdeploy.user" value="User name for logging into 
the server for hot deploy"/>    

     <property name="template.hotdeploy.password" value="Password name for logging 
into the server for hot deploy"/>    

<property name="template.hotdeploy.adminurl" value="Server location for hot 
deploy"/>    

  -->   

   <!-- Template Properties -->

   <property name="template.name" value="baseportal" />

   <property name="template.version" value="1.0" />

   <property name="template.type" value="portal-webapp" />   

   <property name="template.description" value="Description: Base Portal 
Template" />

   <property name="template.hyperlink.text" value="After your new portal is 
deployed, follow these instructions..." />

   <property name="template.hyperlink.url" 
value="http://edocs.bea.com/wlp/docs70/dev/newdom.htm#1003370" />    



5 Building Custom Templates

5-34 WebLogic Portal Development Guide

<!-- This can either be a .war or a directory for hot deployment -->

   <property name="template.hotdeploy.path" 
value="${template.j2ee.webapp.root.dir}/${template.webapp.name}/"/>    

   <target name="main" >      

      <echo message="template.common.lib.root.dir ( 
${template.common.lib.root.dir} )"/>

      <echo message="template.ebcc.root.dir ( ${template.ebcc.root.dir} )"/>

      <echo message="template.j2ee.eapp.root.dir ( ${template.j2ee.eapp.root.dir} 
)"/>

      <echo message="template.j2ee.webapp.root.dir ( 
${template.j2ee.webapp.root.dir} )"/>

      <echo message="template.appsync.dir ( ${template.appsync.dir} )"/>      

      <echo message="template.webapp.name ( ${template.webapp.name} )"/>

      <echo message="template.portal.name ( ${template.portal.name} )"/>

      <echo message="template.hotdeploy.path ( ${template.hotdeploy.path} )"/>      

                   

      <!-- everything but baseportal and tools webapps -->

      <copy todir="${template.ebcc.root.dir}/"

            overwrite="no"

            preservelastmodified="yes" 

            includeEmptyDirs="yes"

            filtering="no" >

            

         <fileset dir="ebcc/" >

              <include name="**" />            

              <exclude name="application-sync/webapps/baseportal/" />



Creating a Portal Template

WebLogic Portal Development Guide 5-35

              <exclude name="application-sync/webapps/tools/" />              

         </fileset>                           

      </copy>            

      <!-- now copy baseportal webapp (exception baseportal.portal) and rename 
the directory to whatever webapp the user chooses -->      

      <copy 
todir="${template.ebcc.root.dir}/application-sync/webapps/${template.webapp.nam
e}/"

            overwrite="no"

            preservelastmodified="yes" 

            includeEmptyDirs="yes"

            filtering="no" >

            

         <fileset dir="ebcc/application-sync/webapps/baseportal/" >

              <include name="**" />            

              <exclude name="baseportal.portal" />

         </fileset>                           

      </copy>            

      <filter token="template.portal.description" 
value="${template.portal.description}" />

      <!-- now copy the baseportal.portal file and rename it to whatever portal 
name the user chooses -->

      <copy 
tofile="${template.ebcc.root.dir}/application-sync/webapps/${template.webapp.na
me}/${template.portal.name}.portal"

            file="ebcc/application-sync/webapps/baseportal/baseportal.portal"

            overwrite="no"



5 Building Custom Templates

5-36 WebLogic Portal Development Guide

            preservelastmodified="yes" 

            includeEmptyDirs="yes"

            filtering="no" >            

      </copy>            

      

      <!-- copy all J2EE resources -->

      <copy todir="${template.j2ee.webapp.root.dir}/${template.webapp.name}/"

            overwrite="no"

            preservelastmodified="yes" 

            includeEmptyDirs="yes"

            filtering="no" >        

       <fileset dir="j2ee/" >

              <include name="**" /> 

              <exclude name="WEB-INF/weblogic.xml.stock"/>          

              <exclude name="WEB-INF/web.xml.stock"/>          

         </fileset>                                    

      </copy>            

     <filter token="template.portal.name" value="${template.portal.name}" />

      <filter token="template.webapp.name" value="${template.webapp.name}" />

      <copy 
tofile="${template.j2ee.webapp.root.dir}/${template.webapp.name}/WEB-INF/weblog
ic.xml"

            overwrite="yes"

            preservelastmodified="yes" 

            includeEmptyDirs="yes"

            filtering="no" 



Creating a Portal Template

WebLogic Portal Development Guide 5-37

            file="j2ee/WEB-INF/weblogic.xml.stock">

      </copy>

      <copy 
tofile="${template.j2ee.webapp.root.dir}/${template.webapp.name}/WEB-INF/web.xm
l"

            overwrite="yes"

            preservelastmodified="yes" 

            includeEmptyDirs="yes"

            filtering="no" 

            file="j2ee/WEB-INF/web.xml.stock">

      </copy>                  

   </target>    

</project>



5 Building Custom Templates

5-38 WebLogic Portal Development Guide



WebLogic Portal Development Guide 6-1

CHAPTER

6 Implementing User 
Profiles

In WebLogic Portal, users are represented by user profiles. User profiles provide 
flexibility in representing, storing, and accessing user attributes. In addition to 
supporting basic user profiles, WebLogic Portal provides a Unified User Profile 
(UUP) that can be used to create a virtual enterprise profile.

This section includes information on the following subjects:

! Creating a Unified User Profile

! Creating a Property Set Definition

! Enabling Visitor Self-Registration

Creating a Unified User Profile

A Unified User Profile provides the capability to leverage user data from external 
sources such as LDAP servers, legacy systems and databases. This allows for the use 
of a single profile to access user data from many different sources.

To create a UUP to retrieve user data from external sources, complete the following 
tasks:

1. Create an EntityPropertyManager EJB to Represent External Data

2. Deploy a ProfileManager That Can Use the New EntityPropertyManager



6 Implementing User Profiles

6-2 WebLogic Portal Development Guide

Create an EntityPropertyManager EJB to Represent 
External Data

To incorporate data from an external source, you must first create a stateless session 
bean that implements the methods of the com.bea.p13n.property. 
EntityPropertyManager remote interface. EntityPropertyManager is the remote 
interface for a session bean that handles the persistence of property data and the 
creation and deletion of profile records.

In addition, the stateless session bean should include a home interface and an 
implementation class. For example:

MyEntityPropertyManager
    extends com.bea.p13n.property.EntityPropertyManager

MyEntityPropertyManagerHome 
    extends javax.ejb.EJBHome

Your implementation class can extend the EntityPropertyManagerImpl class. 
However the only requirement is that your implementation class is a valid 
implementation of the MyEntityPropertyManager remote interface. For example:

MyEntityPropertyManagerImpl extends
com.bea.p13n.property.internal.EntityPropertyManagerImpl

or

MyEntityPropertyManagerImpl extends
javax.ejb.SessionBean

Recommended EJB Guidelines

We recommend the following guidelines for your new EJB:

! Your custom EntityPropertyManager is not a default 
EntityPropertyManager. A default EntityPropertyManager is used to 
get/set/remove properties in the Portal schema. Your custom 
EntityPropertyManager does not have to support the following methods. It 
can throw java.lang.UsupportedOperationException instead:

getDynamicProperties



Creating a Unified User Profile

WebLogic Portal Development Guide 6-3

getEntityNames

getHomeName

getPropertyLocator

getUniqueId

! If you want to be able to use the Portal framework and tools to create and 
remove users in your external data store then you must support the 
createUniqueId() and removeEntity() methods. However, your custom 
EntityPropertyManager is not the default EntityPropertyManager so your 
createUniqueId() method does not have to return a unique number. It must 
create the user entity in your external data store and then it can return any 
number, such as -1.

! The following recommendations apply to the EntityPropertyManager() 
methods that you must support:

" getProperty() � Use caching. You should support the getProperties 
method to retrieve all properties for a user at once, caching them at the same 
time. Your getProperty method should use getProperties.

" setProperty() � Use caching.

" removeProperties(), removeProperty() � After these methods are 
called, a call to getProperty should return null for the property. Remove 
properties from the cache too.

! Your implementations of the getProperty(), setProperty(), 
removeProperty(), and removeProperties() methods must include any 
logic necessary to connect to the external system. 

! If you want to cache property data, the methods must be able to cache profile 
data appropriately for that system. (See the com.bea.p13n.cache package at 
../javadoc/index.html.)

! If the external system contains read-only data, any methods that modify profile 
data must throw a java.lang.UnsupportedOperationException. 
Additionally, if the external data source contains users that are created and 
deleted by something other than your WebLogic Portal createUniqueId and 
removeEntity methods can simply throw an 
UnsupportedOperationException.

! To avoid class loader dependency issues, make sure that your EJB resides in its 
own package.



6 Implementing User Profiles

6-4 WebLogic Portal Development Guide

! For ease of maintenance, place the compiled classes of your custom 
EntityPropertyManager bean in your own JAR file (instead of modifying an 
existing WebLogic Portal JAR file). 

Before you deploy your JAR file, follow the steps in the next section.

Deploy a ProfileManager That Can Use the New 
EntityPropertyManager

A �user type� is a mapping of a ProfileType name to a particular ProfileManager. 
This mapping is done in the UserManager EJB deployment descriptor.

To access the data in your new EntityPropertyManager EJB, you must do one of 
the following:

! In most cases you will be able to use the default deployment of 
ProfileManager, the UserProfileManager. You will modify the 
UserProfileManager�s deployment descriptor to map a property set and/or 
properties to your custom EntityPropertyManager. If you support the 
createUniqueId() and removeEntity() methods in your custom 
EntityPropertyManager, you can use WebLogic Portal Administration Tools 
to create a user of type �User� with a profile that can get/set properties using 
your custom EntityPropertyManager. For more information, refer to 
�Modifying the Existing ProfileManager Deployment Configuration� on page 
6-5.

! In some cases you may want to deploy a newly configured ProfileManager 
that will be used instead of the UserProfileManager. This new 
ProfileManager is mapped to a ProfileType in the deployment descriptor for 
the UserManager. If you support the createUniqueId() and removeEntity() 
methods in your custom EntityPropertyManager, you can use the WebLogic 
Portal Administration Tools (or API) to create a user of type �MyUser� (or 
anything else you name it) that can get/set properties using the customized 
deployment of the ProfileManager that is, in turn, configured to use your 
custom EntityPropertyManager. For more information, refer to �Configuring 
and Deploying a New ProfileManager� on page 6-10.



Creating a Unified User Profile

WebLogic Portal Development Guide 6-5

ProfileManager is a stateless session bean that manages access to the profile values 
that the EntityPropertyManager EJB retrieves. It relies on a set of mapping 
statements in its deployment descriptor to find data. For example, the 
ProfileManager receives a request for the value of the DateOfBirth property, 
which is located in the PersonalData property set. ProfileManager uses the 
mapping statements in its deployment descriptor to determine which 
EntityPropertyManager EJB contains the data.

Modifying the Existing ProfileManager Deployment Configuration

If you use the existing UserProfileManager deployment to manage your user 
profiles, perform the following steps to modify the deployment configuration.

Under most circumstances, this is the method you should use to deploy your UUP. An 
example of this method is the deployment of the custom EntityPropertyManager 
for LDAP property retrieval, the LdapPropertyManager. The classes for the 
LdapPropertyManager are packaged in ldapprofile.jar. The deployment 
descriptor for the UserProfileManager EJB is configured to map the �ldap� property 
set to the LdapPropertyManager. The UserProfileManager is deployed in 
usermgmt.jar.

1. Back up the usermgmt.jar file in your enterprise application root directory.

2. From usermgmt.jar, extract META-INF/ejb-jar.xml and open it for editing.

3. In ejb-jar.xml, find the <env-entry> element, as shown in Listing 6-1:

Listing 6-1   <env-entry> Element

<!-- map all properties in property set ldap to ldap server -->

<env-entry>
 <env-entry-name>PropertyMapping/ldap</env-entry-name>
  <env-entry-type>java.lang.String</env-entry-type>
  <env-entry-value>LdapPropertyManager</env-entry-value>
</env-entry>

and add an <env-entry> element after this to map a property set to your custom 
EntityPropertyManager, a shown in Listing 6-2:



6 Implementing User Profiles

6-6 WebLogic Portal Development Guide

Listing 6-2   Adding Another <env-entry> Element to Map a Property 

<!-- map all properties in UUPExample property set to 
MyEntityPropertyManager -->

<env-entry>
  <env-entry-name>PropertyMapping/UUPExample</env-entry-name>
  <env-entry-type>java.lang.String</env-entry-type>
  <env-entry-value>MyEntityPropertyManager</env-entry-value>
</env-entry>

4. In ejb-jar.xml, find the <ejb-ref> element shown in Listing 6-3

Listing 6-3   <ejb-ref> Element

<!-- an ldap property manager -->
<ejb-ref>
  <ejb-ref-name>ejb/LdapPropertyManager</ejb-ref-name>
  <ejb-ref-type>Session</ejb-ref-type>
  <home>com.bea.p13n.property.EntityPropertyManagerHome</home>
  <remote>com.bea.p13n.property.EntityPropertyManager</remote>
</ejb-ref>

and add a <ejb-ref> element after this to map a reference to an EJB that 
matches the name from the previous step with ejb/ prepended as shown in 
Listing 6-4:

Listing 6-4   <ejb-ref> Element Mapping a Reference to an EJB

<!-- an example property manager -->
<ejb-ref>
  <ejb-ref-name>ejb/MyEntityPropertyManager</ejb-ref-name>
  <ejb-ref-type>Session</ejb-ref-type>
  <home>examples.usermgmt.MyEntityPropertyManagerHome</home>
  <remote>examples.usermgmt.MyEntityPropertyManager</remote>
</ejb-ref>



Creating a Unified User Profile

WebLogic Portal Development Guide 6-7

The home and remote class names match the classes from your EJB JAR file for 
your custom EntityPropertyManager.

5. If your EntityPropertyManager implementation handles creating and 
removing profile records, you must also add Creator and Remover entries. For 
example:

Listing 6-5   <env-entry> Element that Adds Creator and Remover Entries

<env-entry>
  <env-entry-name>Creator/Creator1</env-entry-name>
  <env-entry-type>java.lang.String</env-entry-type>
  <env-entry-value>MyEntityPropertyManager</env-entry-value>
</env-entry>

<env-entry>
  <env-entry-name>Remover/Remover1</env-entry-name>
  <env-entry-type>java.lang.String</env-entry-type>
  <env-entry-value>MyEntityPropertyManager</env-entry-value>
</env-entry>

This instructs the UserProfileManager to call your custom 
EntityPropertyManager when creating or deleting user profile records. The 
names �Creator1� and �Remover1� are arbitrary. All Creators and Removers will 
be iterated through when the UserProfileManager creates or removes a user 
profile. The value for the Creator and Remover matches the ejb-ref-name for 
your custom EntityPropertyManager without the ejb/ prefix.

6. From usermgmt.jar, extract META-INF/weblogic-ejb-jar.xml and open it 
for editing.

7. In weblogic-ejb-jar.xml, find the elements described in Listing 6-6:

Listing 6-6   weblogic-ejb-jar.xml Elements

<weblogic-enterprise-bean>
  <ejb-name>UserProfileManager</ejb-name>
  <reference-descriptor>
    <ejb-reference-description>
      <ejb-ref-name>ejb/EntityPropertyManager</ejb-ref-name>
      <jndi-name>${APPNAME}.BEA_personalization.



6 Implementing User Profiles

6-8 WebLogic Portal Development Guide

      EntityPropertyManager</jndi-name>
    </ejb-reference-description>

and add an ejb-reference-description to map the ejb-ref for your 
custom EntityPropertyManager to the JNDI name. This JNDI name must 
match the name you assigned in weblogic-ejb-jar.xml in the JAR file for 
your customer EntityPropertyManager. It should look like the example in 
Listing 6-7:

Listing 6-7   Showing the JNDI Name

<weblogic-enterprise-bean>
  <ejb-name>UserProfileManager</ejb-name>
  <reference-descriptor>
    <ejb-reference-description>
      <ejb-ref-name>ejb/EntityPropertyManager</ejb-ref-name>
      <jndi-name>${APPNAME}.BEA_personalization.
      EntityPropertyManager</jndi-name>
    </ejb-reference-description>
    <ejb-reference-description>
      <ejb-ref-name>ejb/MyEntityPropertyManager
      </ejb-ref-name>
      <jndi-name>${APPNAME}.BEA_personalization.
      MyEntityPropertyManager</jndi-name>
    </ejb-reference-description>

Note the ${APPNAME} string substitution variable. The WebLogic EJB container 
automatically substitutes the enterprise application name to scope the JNDI 
name to the application.

8. Update usermgmt.jar for your new deployment descriptors. You can use the 
jar uf command to update the modified META-INF/ deployment descriptors.

9. Edit META-INF/application.xml for your enterprise application to add an 
entry for your custom EntityPropertyManager EJB module as shown in 
Listing 6-8:



Creating a Unified User Profile

WebLogic Portal Development Guide 6-9

Listing 6-8   Adding an Entry for a Custom EntityPropertyManager EJB Module

<module>
  <ejb>UUPExample.jar</ejb>
</module>

10. If you are using an application-wide cache, you can manage it from the 
Administration Console if you add a <Cache> tag for your cache to the 
META-INF/application-config.xml deployment descriptor for your 
enterprise application like this:

Listing 6-9   Adding a <Cache> Tag to META-INF/application-config.xml 

<Cache
  Name="UUPExampleCache"
  TimeToLive="60000"
/>

11. Verify the modified usermgmt.jar and your custom EntityPropertyManager 
EJB JAR archive are in the root directory of your enterprise application and start 
WebLogic Server.

12. Use the WebLogic Server Administration Console to verify your EJB module is 
deployed to the enterprise application and then use the console to add your server 
as a target for the EJB module. You need to select a target to have your domain's 
config.xml file updated to deploy your EJB module to the server.

13. Use the E-Business Control Center to create a User Profile (property set) that 
matches the name of the property set that you mapped to your custom 
EntityPropertyManager in ejb-jar.xml for the UserProfileManager (in 
usermgmt.jar). You could also map specific property names in a property set to 
your custom EntityPropertyManager.

Note: Be sure to synchronize the new data to your server after the property set is 
created.



6 Implementing User Profiles

6-10 WebLogic Portal Development Guide

Your new Unified User Profile type is ready to use. You can use the WebLogic Portal 
Administration Tools to create a user of type �User,� and it will use your UUP 
implementation when the �UUPExample� property set is being modified. When you 
call createUser("bob", "password") or createUser("bob", "password", 
null) on the UserManager, several things will happen:

! A user named �bob� is created in the security realm.

! A WebLogic Portal Server profile record is created for �bob� in the WebLogic 
Portal RDBMS repository.

! If you set up the Creator mapping, the UserManager will call the default 
ProfileManager deployment (UserProfileManager) which will call your 
custom EntityPropertyManager to create a record for Bob in your data 
source.

! Retrieving Bob's profile will use the default ProfileManager deployment 
(UserProfileManager), and when you request a property belonging to the 
�UUPExample� property set, the request will be routed to your custom 
EntityPropertyManager implementation.

Configuring and Deploying a New ProfileManager

If you are going to deploy a newly configured ProfileManager instead of using the 
default ProfileManager (UserProfileManager) to manage your user profiles, 
perform the following steps to modify the deployment configuration. In most cases, 
you will not have to use this method of deployment. Use this method only if you need 
to support multiple types of users that require different ProfileManager 
deployments�deployments that allow a property set to be mapped to different custom 
EntityPropertyManagers based on ProfileType.

An example of this method is the deployment of the custom 
CustomerProfileManager in customer.jar. The CustomerProfileManager is 
configured to use the custom EntityPropertyManager 
(CustomerPropertyManager) for properties in the �CustomerProperties� property 
set. The UserManager EJB in usermgmt.jar is configured to map the 
�WLCS_Customer� ProfileType to the custom deployment of the ProfileManager, 
CustomerProfileManager.

To configure and deploy a new ProfileManager, use this procedure.

1. Back up the usermgmt.jar file in your enterprise application root directory.



Creating a Unified User Profile

WebLogic Portal Development Guide 6-11

2. From usermgmt.jar, extract META-INF/ejb-jar.xml, and open it for editing.

3. In ejb-jar.xml, copy the entire <session> tag for the UserProfileManager, 
and configure it to use your custom implementation class for your new 
deployment of ProfileManager.

In addition, you could extend the UserProfileManager home and remote 
interfaces with your own interfaces if you want to repackage them to correspond 
to your packaging (for example., 
examples.usermgmt.MyProfileManagerHome, 
examples.usermgmt.MyProfileManager). 

However, it is sufficient to replace the bean implementation class:

You must create an <env-entry> element to map a property set to your custom 
EntityPropertyManager. You must also create a <ejb-ref> element to map a 
reference to an EJB that matches the name from the PropertyMapping with 
ejb/ prepended. The home and remote class names for your custom 
EntityPropertyManager match the classes from your EJB JAR file for your 
custom EntityPropertyManager.

Also, if your EntityPropertyManager implementation handles creating and 
removing profile records, you must also add Creator and Remover entries. This 
instructs your new ProfileManager to call your custom 
EntityPropertyManager when creating or deleting user profile records. 

Note: The name suffixes for the Creator and Remover, �Creator1� and 
�Remover1�, are arbitrary. All Creators and Removers will be iterated 
through when your ProfileManager creates or removes a user profile. 
The value for the Creator and Remover matches the <ejb-ref-name> for 
your custom EntityPropertyManager without the ejb/ prefix.

4. In ejb-jar.xml, you must add an <ejb-ref> to the UserManager EJB section 
to map your ProfileType to your new deployment of the ProfileManager, as 
shown in Listing 6-10:

Listing 6-10   Adding an <ejb-ref> to the UserManager EJB Section

<ejb-ref>
  <ejb-ref-name>ejb/ProfileType/UUPExampleUser</ejb-ref-name>
  <ejb-ref-type>Session</ejb-ref-type>
  <home>com.bea.p13n.usermgmt.profile.ProfileManagerHome</home>
  <remote>com.bea.p13n.usermgmt.profile.ProfileManager</remote>
</ejb-ref>



6 Implementing User Profiles

6-12 WebLogic Portal Development Guide

The <ejb-ref-name> must start with ejb/ProfileType/ and must end with 
the name that you want to use as the profile type as an argument in the 
createUser() method of UserManager.

5. From usermgmt.jar, extract META-INF/weblogic-ejb-jar.xml and open it 
for editing.

6. In weblogic-ejb-jar.xml, copy the weblogic-enterprise-bean tag, shown 
in Listing 6-11, for the UserProfileManager and configure it for your new 
ProfileManager deployment:

Listing 6-11   <weblogic-enterprise-bean> Tag for the UserProfileManager

<weblogic-enterprise-bean>
  <ejb-name>MyProfileManager</ejb-name>
  <reference-descriptor>
    <ejb-reference-description>
      <ejb-ref-name>ejb/EntityPropertyManager</ejb-ref-name>
        <jndi-name>${APPNAME}.BEA_personalization.
        EntityPropertyManager</jndi-name>
      </ejb-reference-description>
      <ejb-reference-description>
        <ejb-ref-name>ejb/PropertySetManager</ejb-ref-name>
        <jndi-name>${APPNAME}.BEA_personalization.
        PropertySetManager</jndi-name>
      </ejb-reference-description>
      <ejb-reference-description>
        <ejb-ref-name>ejb/MyEntityPropertyManager
        </ejb-ref-name>
        <jndi-name>${APPNAME}.BEA_personalization.
        MyEnitityPropertyManager</jndi-name>
      </ejb-reference-description>
  </reference-descriptor>
  <jndi-name>${APPNAME}.BEA_personalization.
  MyProfileManager</jndi-name>
</weblogic-enterprise-bean>

You must create an <ejb-reference-description> to map the <ejb-ref> 
for your custom EntityPropertyManager to the JNDI name. This JNDI name 



Creating a Unified User Profile

WebLogic Portal Development Guide 6-13

must match the name you assigned in weblogic-ejb-jar.xml in the JAR file 
for your custom EntityPropertyManager.

Note the ${APPNAME} string substitution variable. The WebLogic Server EJB 
container automatically substitutes the enterprise application name to scope the 
JNDI name to the application.

7. In weblogic-ejb-jar.xml, copy the <transaction-isolation> tag for the 
UserProfileManager, shown in Listing 6-12, and configure it for your new 
ProfileManager deployment:

Listing 6-12   <transaction-isolation> Tag for the UserProfileManager

<transaction-isolation>
  <isolation-level>TRANSACTION_READ_COMMITTED
  </isolation-level>
  <method>
    <ejb-name>MyProfileManager</ejb-name>
    <method-name>*</method-name>
  </method>
</transaction-isolation>

8. Create a temporary usermgmt.jar for your new deployment descriptors and 
your new ProfileManager bean implementation class. This temporary EJB JAR 
archive should not have any container classes in it. Run ejbc to generate new 
container classes.

9. Edit META-INF/application.xml for your enterprise application to add an 
entry for your custom EntityPropertyManager EJB module, as shown in 
Listing 6-13:

Listing 6-13   Adding an Entry to a Custom EntityPropertyManager EJB Module

<module>
  <ejb>UUPExample.jar</ejb>
</module>



6 Implementing User Profiles

6-14 WebLogic Portal Development Guide

10. If you are using an application-wide cache, you can manage it from the 
WebLogic Server Administration Console if you add a <Cache> tag for your 
cache to the META-INF/application-config.xml deployment descriptor for 
your enterprise application as shown in Listing 6-14:

Listing 6-14   Adding a <Cache> Tag to a META-INF/application-config.xml

<Cache
  Name="UUPExampleCache" TimeToLive="60000"
/>

11. Verify the modified usermgmt.jar and your custom EntityPropertyManager 
EJB JAR archive are in the root directory of your enterprise application and start 
your server.

12. Use the WebLogic Server Administration Console to verify your EJB module is 
deployed to the enterprise application, then use the WebLogic Server 
Administration Console to add your server as a target for the EJB module. You 
must select a target to have your domain's config.xml file updated to deploy 
your EJB module to the server.

13. Use the E-Business Control Center to create a User Profile (property set) that 
matches the name of the property set that you mapped to your custom 
EntityPropertyManager in ejb-jar.xml for the UserProfileManager (in 
usermgmt.jar). You could also map specific property names in a property set to 
your custom EntityPropertyManager.

Note: Be sure to synchronize the new data to your server after the property set is 
created.

14. Your new Unified User Profile type is ready to use. You can use the WebLogic 
Portal Administration Tools to create a user of type �UUPExampleUser,� and it 
will use your UUP implementation when the �UUPExample� property set is 
being modified. That is because you mapped the ProfileType using an 
<ejb-ref> in your UserManager deployment descriptor, 
ejb/ProfileType/UUPExampleUser. 

Note: Tell your administrators that when they create a user in the WebLogic 
Portal Administration Tools, they must select the new user type.



Creating a Unified User Profile

WebLogic Portal Development Guide 6-15

Now, when you call createUser("bob", "password", 
"UUPExampleUser") on the UserManager, several things will happen:

" A user named �bob� is created in the security realm.

" A WebLogic Portal Server profile record is created for �bob� in the 
WebLogic Portal RDBMS repository.

" If you set up the Creator mapping, the UserManager will call your new 
ProfileManager deployment, which will call your custom 
EntityPropertyManager to create a record for Bob in your data source.

" Retrieving Bob's profile will use your new ProfileManager deployment, 
and when you request a property belonging to the �UUPExample� property 
set, the request will be routed to your custom EntityPropertyManager 
implementation.

Retrieving User Profile Data from LDAP

The LdapRealm  security realm and the LdapPropertyManager unified user profile 
(UUP) for retrieving user properties from LDAP are independent of each other. They 
do not share configuration information and there is no requirement to use either one in 
conjunction with the other. A security realm has nothing to do with a user profile. A 
security realm provides user/password data, user/group associations, and group/group 
associations. A user profile provides user and group properties. A password is not a 
property.

In order to successfully retrieve the user profile from the LDAP server, ensure that 
you've done the following:

1. If you have already deployed the application on a WebLogic Portal instance, stop 
the server.

2. Deploy the ldapprofile.jar component within your application. 

The LdapPropertyManager EJB in ldapprofile.jar has been enhanced as of 
7.0 SP2 to allow for the inspection of the LDAP schema to determine 
multi-valued versus single-value LDAP attributes, to allow for multiple 
userDN/groupDN, and to allow for SUBTREE_SCOPE searches for users and 
groups in the LDAP server. Following are more detailed explanations:

Before this enhancement, an attribute that is defined as multi-valued in the 
LDAP server's schema, but had only one value, was stored in memory as a 



6 Implementing User Profiles

6-16 WebLogic Portal Development Guide

single value property by the LdapPropertyManager.  This could cause problems 
in the rules engine when this situation was encountered:

" A multi-valued LDAP property had a single value.

" A rule was created in Portal that used the property as a multi-valued 
property.

" The rules engine expects the property to be a java.util.Collection 
because it is multi-valued, but it was not, because the LdapPropertyManager 
saw it as single valued and stored it that way.

This change allows a developer to configure the ejb-jar.xml deployment 
descriptor for the LdapPropertyManager EJB to specify that the LDAP schema 
be used to determine if a property is single value or multi-value.

This is done by editing ejb-jar.xml to setting the following env-entries:

<!-- Flag to specify if LDAP attributes will be determined to be 
single value or multi-value via the schema obtained from the 
attribute.  If false, then the attribute is stored as 
multi-valued (a Collection) only if it has more than one value.  
Leave false unless you intend to use multi-valued LDAP attributes 
that may have only one value.  Using true adds overhead to check 
the LDAP schema.  Also, if you use true beware that most LDAP 
attributes are multi-value.  For example, iPlanet Directory 
Server 5.x uses multi-value for givenName, which you may not 
expect unless you are familiar with LDAP schemas.  -->

<env-entry>
    <env-entry-name>config/detectSingleValueFromSchema
    </env-entry-name>
    <env-entry-type>java.lang.Boolean</env-entry-type>
    <env-entry-value>true</env-entry-value>
</env-entry>

<!-- Value of the name of the attribute in the LDAP schema that 
is used to determine single value or multi-value (RFC2252 uses 
SINGLE-VALUE) This attribute in the schema should be true for 
single value and false or absent from the schema otherwise. The 
value only matters if config/detectSingleValueFromSchema is 
true. --> 

<env-entry>
    <env-entry-name>config/singleValueSchemaAttribute
    </env-entry-name>
    <env-entry-type>java.lang.String</env-entry-type>
    <env-entry-value>SINGLE-VALUE</env-entry-value>
</env-entry>



Creating a Unified User Profile

WebLogic Portal Development Guide 6-17

It is not recommended that true be used for 
config/detectSingleValueFromSchema unless you are going to write rules 
that use multi-valued LDAP attributes that have a single value. Using 
config/detectSingleValueFromSchema = true adds the overhead of 
checking the LDAP schema for each attribute instead of the default behavior 
(config/detectSingleValueFromSchema = false), which only stores an 
attribute as multi-valued (in a Collection) if it has more than one value.

This patch also implements changes that allow you to use SUBTREE_SCOPE 
searches for users and groups. It also allows multiple base userDN and groupDN 
to be specified.  The multiple base DN can be used with SUBTREE_SCOPE 
searches enabled or disabled.  

A SUBTREE_SCOPE search begins at a base userDN (or groupDN) and works 
down the branches of that base DN until the first user (or group) is found that 
matches the username (or group name).

To enable SUBTREE_SCOPE searches you must set the Boolean 
config/objectPropertySubtreeScope env-entry in the ejb-jar.xml for 
ldapprofile.jar to true and then you must set the config/userDN and 
config/groupDN env-entry values to be equal to the base DNs from which you 
want your SUBTREE_SCOPE searches to begin.

For example, if you have users in  
ou=PeopleA,ou=People,dc=mycompany,dc=com and in 
ou=PeopleB,ou=People,dc=mycompant,dc=com then you could set 
config/userDN to ou=People,dc=mycompant,dc=com and properties for 
these users would be retrieved from your LDAP server because the user search 
would start at the �People� ou and work its way down the branches 
(ou="PeopleA" and ou="PeopleB").

You should not create duplicate users in branches below your base userDN (or 
duplicate groups below your base groupDN) in your LDAP server. For example, 
your LDAP server will allow you to create a user with the uid="userA" under 
both your PeopleA and your PeopleB branches. The LdapPropertyManager in 
ldapprofile.jar will return property values for the first userA that it finds.

It is recommended that you do not enable this change (by setting 
config/objectPropertySubtreeScope to true) unless you need the 
flexibility offered by SUBTREE_SCOPE searches.

An alternative to SUBTREE_SCOPE searches (with or without multiple base DNs) 
would be to configure multiple base DNs and leave 
config/objectPropertySubtreeScope set to false.  Each base DN would 



6 Implementing User Profiles

6-18 WebLogic Portal Development Guide

have to be the DN that contains the users (or groups) because searches would 
not go any lower than the base DN branches. The search would cycle from one 
base DN to the next until the first matching user (or group) is found.

The new ejb-jar.xml deployment descriptor is fully commented to explain 
how to set multiple DNs, multiple usernameAttributes (or 
groupnameAttributes), and how to set the objectPropertySubtreeScope flag.

3. Start the server and deploy the application.

4. Start the WebLogic Server Administration Console for the active domain.

Creating a Property Set Definition

Property sets are the schemas for personalization attributes. They are a convenient way 
to give a name to a group of properties for a specific purpose. For example, in the 
sampleportal-project, the User Profile �Avitek� has a property set that defines 
properties for an e-commerce customer, such as First Name, Last Name, Home Phone, 
E-mail, and Customer Type. Use the E-Business Control Center to create property sets 
and define the properties that make up these property sets.

This section describes how to register a customer user profile:

Registering Custom User Profiles

The property set editor works the same way for all property sets. In this exercise, the 
E-Business Control Center will be used to create and modify User Profile properties. 
These examples can be used to register a custom user profile. You can follow the same 
procedures to create and modify property sets for Events, HTTP Requests, HTTP 
Sessions, and the Catalog Structure.

You can set a default profile type for each web application by setting a context 
parameter in web.xml for DEFAULT_USER_PROFILE_TYPE.  For example:

<context-param>
<param-name>DEFAULT_USER_PROFILE_TYPE</param-name>
<param-value>WLCS_Customer</param-value>
</context-param>



Creating a Property Set Definition

WebLogic Portal Development Guide 6-19

To register a custom user profile, complete the following steps:

1. Start the E-Business Control Center and ensure that it is connected to a server. For 
information on starting the E-Business Control Center and connecting it to a server, 
refer to �System Administration� in the Administration Guide at 
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm.

The Explorer window opens as shown in Figure 6-1.

Figure 6-1   E-Business Control Center Window

2. Open the appropriate project file. For the example in this procedure, you would 
open samples → portal → samplePortalDomain → beaApps → sampleportal-project.

3. Open the Event Editor as follows:



6 Implementing User Profiles

6-20 WebLogic Portal Development Guide

a. In the Explorer window, select the User Profiles icon. A list of User Profiles 
appears in the User Profiles field, as shown in Figure 6-2

Figure 6-2   E-Business Control Center Explorer with User Profiles Icon Selected

b. Click the New icon to open the New menu and then select User Profile, as 
shown in Listing 6-3. 

Figure 6-3   New Menu (Opened by Clicking New Icon)

The User Profile Editor window appears, as shown in Figure 6-4. 



Creating a Property Set Definition

WebLogic Portal Development Guide 6-21

Figure 6-4   User profile Editor Window

4. Click New.

The Edit Property window appears (Figure 6-5).

Figure 6-5   Event Property Window

5. In the Edit Property window, complete these steps:

a. In the Name field, enter a unique name for the property no longer than 100 
characters (required).

Warning: Do not enter LDAP in the Name field.



6 Implementing User Profiles

6-22 WebLogic Portal Development Guide

b. In the Description field, enter a description of the property no longer than 254 
characters (optional).

c. In the Data type list, select the data type. If you select Boolean as the data type, 
for example, the Selection mode and Value range are no longer available. The 
default for Boolean is Single, Restricted.

d. In the Selection mode list, select either Single or Multiple. The value you 
select here determines the number of property values you can set: one (Single) 
or multiple (Multiple).

e. In the Value range list, select whether the value is Restricted or Unrestricted.

f. Click Add Values.

One of two types of Enter Property Values windows appears. The type of 
Enter Property Values window that appears depends on the values selected. 
This is because, depending on the data type, different steps are required for 
entering values and setting default values. The following property categories 
are available:

" Properties with Boolean or a Single Value and Single Default.

" Properties with Multiple Values and Single, Multiple, or All Defaults

" Properties with Date and Time Values

Properties with Boolean or a Single Value and Single Default

To enter the default value for Boolean property or a property with a single value and a 
single default (unrestricted), complete the following steps:

1. In the applicable Enter Property Value window (Figure 6-6 or Figure 6-7), perform 
one of the following:

" For a Boolean property, select either True or False.

" For a Single Value, Single Default property, enter a value and click Add.



Creating a Property Set Definition

WebLogic Portal Development Guide 6-23

Figure 6-6   Enter Property Values Window�Boolean Values Required

Figure 6-7   Enter Property Values Window�Single Value, Single Default 
Required

2. Click OK.

The Edit Property Value window closes, revealing the Edit Property window 
with the selected value(s) appearing in the Value list; for example as shown in 
Listing 6-8.



6 Implementing User Profiles

6-24 WebLogic Portal Development Guide

Figure 6-8   Edit Property Window with Text Value 

3. Click OK.



Creating a Property Set Definition

WebLogic Portal Development Guide 6-25

Properties with Multiple Values and Single, Multiple, or All Defaults

To enter multiple property values and set one or more defaults (unrestricted), complete 
the following steps:

1. In the applicable Enter Property Values window, enter a value, and then click Add.

The new values will appear in the Values list box, as shown in Figure 6-9, 
Figure 6-10, and Figure 6-11.

Figure 6-9   Enter Property Values�Multiple Values, Single Default

Figure 6-10   Enter Property Values�Multiple Values, Multiple Restricted 
Defaults



6 Implementing User Profiles

6-26 WebLogic Portal Development Guide

Figure 6-11   Enter Property Values�Multiple Values, Multiple Unrestricted 
Defaults

2. Repeat step 1. until you have entered all necessary values.

3. To select one or more default values, complete one of the following:

" If you do not want to select a default, go to step 5.

" For multiple values with a single default, select the value (radio button) that 
you want to set as the default, and then click OK.

Note: To remove the default value for a property with multiple values and a 
single default, click Deselect All.

" For multiple values with multiple restricted defaults, select the value (check 
boxes) that you want to set as defaults, and then click OK.

Note: For multiple values without restrictions (that is, the Value range is 
Unrestricted), you do not need to select any defaults.

4. In the Edit Property window, click OK.



Creating a Property Set Definition

WebLogic Portal Development Guide 6-27

Properties with Date and Time Values

Properties with date and time values can use all Selection mode and Value range 
settings.

To enter date and time values and set one or more defaults, complete the following 
steps:

1. In the Edit Properties window, select Date/Time from the Data type drop-down 
list (shown in Figure 6-12) and select Add Values.

Figure 6-12   Date type Menu with Date/Time Selected

The Enter Property Value window for date and time values appears 
(Figure 6-13).

Figure 6-13   Date/Time Enter Property Value Window

2. Click the drop-down arrow in the Date list. 

A calendar appears, as shown in Figure 6-14.



6 Implementing User Profiles

6-28 WebLogic Portal Development Guide

Figure 6-14   Enter Property Value Window with Calendar Displayed

3. Select a date from the calendar; for example June 14.

The calendar disappears and the selected date appears in the date edit box, as 
shown in Figure 6-15

Figure 6-15   Selected Date Appears in Date Edit Box

4. In the Time field, enter a time.

5. Click Add.

The new time and date appear in the Values list, as shown in Figure 6-16.



Creating a Property Set Definition

WebLogic Portal Development Guide 6-29

Figure 6-16   Date and Time Appear in Values List

6. To add more dates and times, repeat step 1. through step 5. until you have entered 
all the necessary values.

7. To select one or more default values, complete one of the following:

" If the event has a single date and time with a single default (restricted), click 
OK.

" If the event has multiple dates and times with a single default (restricted), 
select the value (radio button) that you want to set as the default, and then 
click OK.

" If the event has multiple dates and times with multiple defaults (unrestricted), 
select the values (check boxes) that you want to set as the default, and then 
click OK.

8. In the Edit Event Property window, click OK.

Updating a Registered Custom Event

Whenever you make changes to a custom event�s code, you should update that event�s 
registration. Updating the registration lets the E-Business Control Center know about 
the changes in the custom event and aids campaign developers using the E-Business 
Control Center to modify any scenario actions that refer to the event.



6 Implementing User Profiles

6-30 WebLogic Portal Development Guide

To update a custom event, complete the following steps.

1. Start the E-Business Control Center and ensure that it is connected to WebLogic 
Server. 

The Explorer window opens.

2. Ensure that the correct project file is open and select the Site Infrastructure tab.

3. In the Explorer window, select the Events icon. A list of Events appears in the 
Events field as shown in Figure 6-17.

Note: You cannot edit standard Events.

Figure 6-17   Explorer Window

4. Double-click the custom event that you want to edit. The Event Editor window 
opens as shown in Figure 6-18. The Event properties field displays a list of 
existing properties.



Creating a Property Set Definition

WebLogic Portal Development Guide 6-31

Figure 6-18   Event Editor Window

5. In the Event properties field, double-clcik the property that you want to edit.

The Edit Property window opens as shown in Figure 6-19.

Figure 6-19   Edit Property Window

6. To change the Data type, Selection mode, or Value range, select a setting from 
the appropriate list box.

Note: If you change the property setting Data type, Selection mode, or Value 
range, the associated values will be erased.

7. To add or change values, click Edit Values. The Enter Property Value window 
opens as shown in Figure 6-20.



6 Implementing User Profiles

6-32 WebLogic Portal Development Guide

Figure 6-20   Enter Property Value Window

a. To remove a value, select the value, and then click Remove.

b. To add a value, enter the value, and then click Add.

c. To change a value, select the value, remove it, and then add the new value.

d. If required, select the default value or values.

e. To remove the default value for a property with multiple values and a single 
default, click Deselect All.

f. Click OK. The Enter Property Value window closes.

8. After you have finished updating the properties or values for the event, click OK 
in the Edit Event Property window.

Enabling Visitor Self-Registration

Visitors to Websites often need to register before they can proceed with using the site�s 
features; for example, an online bookstore might require a visitor to register with them 
before they can actually buy books or other merchandise. Registration is valuable 
because it makes using a Website more convenient for the visitor because it stores 
pertinent information about them�called a customer profile�that is ncessary for each 



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-33

transaction, relieving the visitor of the need to re-enter this information whenever a 
transaction is made. It is convenient for your enterprise because it stores visitor data, 
which allows you to maintain information about people likely to use your service. 

WebLogic Portal provides a set of JSP Webflow templates that create a customer 
profile as the visitor self-registers. You can use these components as is or tailor them 
for your specific needs. This section describes those JSPs and Webflow components 
and dicusses how they are used.

Implementing Customer Profile JSPs

WebLogic Portal provides a Login and Registration service comprised of five JSP 
templates you can use to enable visitor self-registration. You can use these templates 
as they are or you can modify them to meet your specific needs. This section describes 
those templates and shows you how to implement them.

This section discusses the following templates:

! login.jsp

! badlogin.jsp

! newuser.jsp

! newuserforward.jsp

! usercreationforward.jsp

login.jsp

The login.jsp template provides customers who have not yet registered with your site 
an entry point into a page that allows them to register (create their initial customer 
profile) for subsequent use on the site. Since this page is the entry point to the checkout 
process, it also establishes mechanisms (such as sessions) that will allow customers to 
continue their shopping experience.

Description

Figure 6-21 shows an example of a Web page formatted with the login.jsp template.



6 Implementing User Profiles

6-34 WebLogic Portal Development Guide

Figure 6-21   login.jsp Formatted Web Page

How login.jsp Works

If an unregistered customer clicks Create in the portlet, the next page loaded allows 
the customer to create a profile and a username/password combination 
(newuser.jsp). After the customer has registered, the customer is automatically 
logged in and forwarded to the newusercreation.jsp template, which allows 
customers to continue shopping, view their shopping carts, or check out. If the 
auto-login is unsuccessful, the login.jsp template is loaded for the customer to enter 
their username and password. If the customer�s login attempt is unsuccessful, the 
badlogin.jsp is loaded. 

Notes: The option to proceed to checkout is only provided on the 
newusercreation.jsp template if there are items in the customer�s 
shopping cart.



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-35

Events

The login.jsp template presents a customer with two buttons, only one of which is 
considered an event. The event triggers a particular response in the default Webflow 
that allows customers to continue. The other button is a standard HTML Submit button 
that posts the page back to the WebLogic Server for authentication. Table 6-1 provides 
information about the event and the business logic it invokes.

The Login button is not an event that would trigger a Webflow response. Rather, when 
a customer clicks the button, control is turned over to the WebLogic Server 
(specifically, the RDBMS realm of the WebLogic Portal). The WebLogic Server 
remembers the HTTP request, determines whether the customer�s username and 
password combination is correct, and then reinvokes the Webflow using the request.

badlogin.jsp

The badlogin.jsp template (shown in Figure 6-22) informs a customer that they have 
entered an invalid username/password combination, and allows the customer to try 
logging into a site again by providing a valid username/password combination. Except 
for the error message, it behaves exactly as the login.jsp template previously 
described.

Table 6-1  login.jsp Events

Event Webflow Response(s)

button.createUser No business logic required.  Loads newuser.jsp.



6 Implementing User Profiles

6-36 WebLogic Portal Development Guide

Figure 6-22   badlogin.jsp Formatted Web Page

newuser.jsp

The newuser.jsp template allows a new customer to register with your e-commerce 
site by creating their customer profile, which includes personal information, shipping 
address information, payment information (optional), and account information. 

Description

xxx through xxx show an example of how a Web page formatted with newuser.jsp 
might appear in a browser.



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-37

Figure 6-23   Web Page Formatted with newuser.jsp � Personal Information

How newuser.jsp Works

The page prior to newuser.jsp is the customer login page (login.jsp). If no errors 
are found after a customer enters their initial profile information, customers are 
auto-logged in and forwarded to a welcome page where they can select from the 
various links to continue shopping or check out (newusercreation.jsp). If errors 
are found, the newuser.jsp is reloaded with an appropriate message next to the 
invalid form fields.

This template is part of the sampleapp_user namespace in the Webflow.

JSP Templates Included by newuser.jsp

newuser.jsp includes three additional JSP templates when it is implemented. These 
JSPs provides a standardized format for both the form presentation and error handling 
in all JSP templates that prompt customers for shipping address, credit card 
information, and demographic information. These templates are described in the 
following paragraphs.



6 Implementing User Profiles

6-38 WebLogic Portal Development Guide

newaddresstemplate.inc  This template provides a standardized format for both 
the form field presentation and error handling included in all JSP templates that prompt 
customers for a shipping address, except addaddress.jsp. The form fields are 
organized in a table, and upon form submission, the input processors associated with 
the newaddresstemplate.inc template will validate the form to ensure that all 
required fields contain values. If errors are detected, the newaddresstemplate.inc 
template will be redisplayed, with an error message at the top and the invalid field 
labels shown in a red (as opposed to the original black) font. Previously entered correct 
information will still be displayed in the form.

The behavior described above is invoked on the newaddresstemplate.inc template 
by using the getValidatedValue JSP tag, as shown in Listing 6-15.

Listing 6-15   Use of the getValidatedValue JSP Tag on newaddresstemplate.inc

<!-- begin table with customer's shipping address information -->

<table width="90%" border="0">
   <tr>
      <td width="26%"><webflow:getValidatedValue
         fieldName="<%=HttpRequestConstants.CUSTOMER_SHIPPING_ADDRESS1%>"
         fieldValue="customerShippingAddress1" fieldStatus="status"
         validColor="black" invalidColor="red" unspecifiedColor="black"
         fieldColor="fontColor" />
         <div class="tabletext"><font color=<%= fontColor %>><b>Address </b>
            </font>
         </div>
      </td>
      <td width="74%"> <input type="text"
         name="<%=HttpRequestConstants.CUSTOMER_SHIPPING_ADDRESS1%>"
         value="<%=customerShippingAddress1%>" size="30" maxlength="30">*
      </td>
   </tr>
   .
   .
   .
</table>

newcctemplate.inc  This template provides a standardized format for both the form 
presentation and error handling in all JSP templates that prompt customers for credit 
card/payment information. The form fields are organized in a table, and upon form 
submission, the input processors associated with the newcctemplate.inc template 



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-39

will validate the form to ensure that all required fields contain values. If errors are 
detected, the newcctemplate.inc template will be redisplayed, with an error 
message at the top and the invalid field labels shown in a red (as opposed to the original 
black) font. Previously entered correct information will still be displayed in the form.

The behavior described above is invoked on the newcctemplate.inc template by 
using the getValidatedValue JSP tag, as shown in Listing 6-16.

Listing 6-16   Use of the getValidatedValue JSP Tag on newcctemplate.inc

<table>
.
.
.
   <td width="27%"><webflow:getValidatedValue
      fieldName="<%=HttpRequestConstants.CUSTOMER_CREDITCARD_HOLDER%>"
      fieldValue="customerCreditCardHolder" fieldStatus="status"
      validColor="black" invalidColor="red"
      unspecifiedColor="black"
      fieldColor="fontColor" />
      <div class="tabletext">
         <font color=<%= fontColor %>><b>Name on card</b>
         </font>
      </div>  
   </td>
   <td width="73%"> <input type="text"
      name="<%=HttpRequestConstants.CUSTOMER_CREDITCARD_HOLDER%>"
      value="<%=customerCreditCardHolder%>" size="30" maxlength="50">*
   </td>
.
.
.
</table>

newdemographictemplate.inc  This template provides a standardized format for 
both the form presentation and error handling in all JSP templates that prompt 
customers for demographic information. The radio buttons are organized in a table, 
and upon form submission, the input processors associated with the 
newdemographictemplate.inc template will validate the form to ensure that all 
required fields contain values. If errors are detected, the 
newdemographictemplate.inc template will be redisplayed, with an error message 



6 Implementing User Profiles

6-40 WebLogic Portal Development Guide

at the top of the including page and the invalid field labels shown in a red (as opposed 
to the original black) font. Previously entered correct information will still be 
displayed in the form.

The behavior described above is invoked on the newdemographictemplate.inc 
template by using the getValidatedValue JSP tag, as shown in Listing 6-17.

Listing 6-17   Use of the getValidatedValue JSP Tag on 
newdemographictemplate.inc

<webflow:getValidatedValue fieldName="<%=HttpRequestConstants.CUSTOMER_GENDER%>"
   fieldDefaultValue="<%=(String)currentPropertyValue%>"
   fieldValue="genderValue" fieldStatus="status" validColor="black"
   invalidColor="red" unspecifiedColor="black" fieldColor="fontColor" />

   <td width="26%"><div class="tabletext"><b><font color=<%= fontColor %>>
      Gender*</font></b></div>
   </td>
   <td width="74%">

   <%// get the property values for Gender
   propertyBean.setPropertyName(GENDER);
   property = propertyBean.getPropertyObject();
   if(property == null || property.getRestrictedValues() == null)
   arr = new Object[0];
   else arr = property.getRestrictedValues().toArray();%>

   <ps:getRestrictedPropertyValues propertySetName="Demographics"
      propertySetType="USER" propertyName="<%= GENDER %>" id="arr" 
      result="foobar" />

   <table width="100%" border="0" cellpadding="0"
      cellspacing="0"><es:forEachInArray id="valueObject" array="<%= arr %>"
         type="String">
      <tr>
         <td width="4%"><input type="radio" name="
         <%= HttpRequestConstants.CUSTOMER_GENDER %>" value="<%= valueObject %>"
         <% if ( valueObject.equals(genderValue) ) { %>CHECKED<% } %>></td>
         <td><%= valueObject %></td>
      </tr>
      </es:forEachInArray>
   </table>



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-41

Events

The newuser.jsp template presents a customer with two buttons, each of which is 
considered an event. These events trigger a particular response in the default Webflow 
that allows customers to continue. While this response can be to load another JSP, it is 
usually the case that an input processor or pipeline component is invoked first. 
Table 6-2 describes the business logic these events invoke.

Table 6-3 briefly describes each of the Pipeline components described Table 6-2.

newuser.jsp Form Fields

The primary purpose of the newuser.jsp template is to allow customers to enter their 
profile information using various HTML form fields. It is also used to pass needed 
information to the Webflow.

The form fields used in the newuser.jsp template, most of which are imported from 
other templates, and a description for each of these form fields are listed in Table 6-4.

Note: If a form field is imported from another template, it is indicated in the 
description. Form fields without import information are in the newuser.jsp 
template.

Table 6-2  newuser.jsp Events

Event Webflow Response(s)

button.cancel GetCategoryIP

GetTopCategories Pipeline

button.save CustomerProfileIP
CustomerProfile Pipeline

Table 6-3  newuser.jsp Associated Pipelines

Pipeline Description

CustomerProfile Contains EncryptedCreditCardPC and RegisterUserPC, 
and is transactional.



6 Implementing User Profiles

6-42 WebLogic Portal Development Guide

Table 6-4  newuser.jsp Form Fields 

Parameter Name Type Description

�event� Hidden Indicates which event has been triggered. It is 
used by the Webflow to determine what 
happens next.

�origin� Hidden The name of the current page (newuser.jsp), 
used by the Webflow.

�namespace� Hidden The namespace for the JSP; 
sampleapp_user in this JSP.

HttpRequestConstants.
CUSTOMER_FIRST_NAME

Textbox The customer�s first name.

HttpRequestConstants.
CUSTOMER_MIDDLE_NAME

Textbox The customer�s middle initial.

HttpRequestConstants.
CUSTOMER_LAST_NAME

Textbox The customer�s last name.

HttpRequestConstants.
CUSTOMER_ADDRESS1

Textbox The first line in the customer�s street address.

HttpRequestConstants.
CUSTOMER_ADDRESS2

Textbox The second line in the customer�s street address.

HttpRequestConstants.
CUSTOMER_CITY

Textbox The city in the customer�s address.

HttpRequestConstants.
CUSTOMER_STATE

Listbox The state in the customer�s address. Imported 
from states.inc.

HttpRequestConstants.
CUSTOMER_ZIPCODE

Textbox The zip code in the customer�s address.

HttpRequestConstants.
CUSTOMER_COUNTRY

Listbox The country in the customer�s address. 
Imported from countries.inc.

HttpRequestConstants.
CUSTOMER_HOME_PHONE

Textbox The customer�s home phone number.

HttpRequestConstants.
CUSTOMER_BUSINESS_PHONE

Textbox The customer�s business phone number.



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-43

HttpRequestConstants.
CUSTOMER_EMAIL

Textbox The customer�s e-mail address.

HttpRequestConstants.
CUSTOMER_EMAIL_OPT_IN

Checkbox Indicates that the customer wants to receive 
promotional items via e-mail.

HttpRequestConstants.
SAME_AS_ABOVE

Checkbox Indicates that the customer�s shipping address is 
the same as the contact address. Imported from 
newaddresstemplate.inc.

HttpRequestConstants.
CUSTOMER_SHIPPING_ADDRESS1

Textbox The first line in the customer�s shipping 
address. Imported from 
newaddresstemplate.inc.

HttpRequestConstants.
CUSTOMER_SHIPPING_ADDRESS2

Textbox The second line in the customer�s shipping 
address. Imported from 
newaddresstemplate.inc.

HttpRequestConstants.
CUSTOMER_SHIPPING_CITY

Textbox The city in the customer�s shipping address. 
Imported from newaddresstemplate.inc.

HttpRequestConstants.
CUSTOMER_SHIPPING_STATE

Listbox The state in the customer�s shipping address. 
Imported from newaddresstemplate.inc.

HttpRequestConstants.
CUSTOMER_SHIPPING_ZIPCODE

Textbox The zip/postal code in the customer�s shipping 
address. Imported from 
newaddresstemplate.inc.

HttpRequestConstants.
CUSTOMER_SHIPPING_COUNTRY

Listbox The country in the customer�s shipping address. 
Imported from newaddresstemplate.inc.

HttpRequestConstants.
CUSTOMER_GENDER

Radio 
buttons

Identifies the customer as male or female. 
Imported from 
newdemographictemplate.inc.

HttpRequestConstants.
CUSTOMER_DATE_OF_BIRTH

Textboxes The customer�s date of birth. Imported from 
newdemographictemplate.inc.

HttpRequestConstants.
CUSTOMER_OCCUPATION

Radio 
buttons

The customer�s job description. Imported from 
newdemographictemplate.inc.

Table 6-4  newuser.jsp Form Fields  (Continued)

Parameter Name Type Description



6 Implementing User Profiles

6-44 WebLogic Portal Development Guide

HttpRequestConstants.
CUSTOMER_EMPLOYMENT_STATUS

Radio 
buttons

Identifies if the customer has a job at the time of 
registration. Imported from 
newdemographictemplate.inc.

HttpRequestConstants.
CUSTOMER_MARITAL_STATUS

Radio 
buttons

Identifies the customer�s marital status. 
Imported from 
newdemographictemplate.inc.

HttpRequestConstants.
CUSTOMER_EDUCATION_LEVEL

Radio 
buttons

Identifies how much formal education the 
customer has completed. Imported from 
newdemographictemplate.inc.

HttpRequestConstants.
CUSTOMER_INCOME_RANGE

Radio 
buttons

Identifies the customer�s yearly income. 
Imported from 
newdemographictemplate.inc.

HttpRequestConstants.
CUSTOMER_QUALITY

Radio 
buttons

Ranks customer from beginner to expert in 
using your product. Imported from 
newdemographictemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_TYPE

Listbox The type of the customer�s credit card. Imported 
from newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_HOLDER

Textbox The name on the credit card. Imported from 
newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_NUMBER

Textbox The number of the customer�s credit card. 
Imported from newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_MONTH

Listbox The month of the customer�s credit card 
expiration date. Imported from 
newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_YEAR

Listbox The year of the customer�s credit card 
expiration date. Imported from 
newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS1

Textbox The first line in the customer�s billing address. 
Imported from newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_
ADDRESS2

Textbox The second line in the customer�s billing 
address. Imported from 
newcctemplate.inc.

Table 6-4  newuser.jsp Form Fields  (Continued)

Parameter Name Type Description



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-45

Note: Parameters that are literals in the JSP code are shown in quotes, while 
non-literals will require scriptlet syntax (such as 
<%= HttpRequestConstants.USER_NAME %>) for use in the JSP.

newusercreation.jsp

The newusercreation.jsp template informs a customer who has just created a new 
user profile that they have been logged in and that registration was successful. It also 
provides the customer with the opportunity to return to their shopping experience 
through several navigation options.

Description

Figure 6-24 shows an example of a Web page formatted with 
newusercreation.jsp.

HttpRequestConstants.
CUSTOMER_CREDITCARD_CITY

Textbox The city in the customer�s billing address. 
Imported from newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_STATE

Listbox The state in the customer�s billing address. 
Imported from newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ZIPCODE

Textbox The zip/postal code in the customer�s billing 
address. Imported from 
newcctemplate.inc.

HttpRequestConstants.
CUSTOMER_CREDITCARD_COUNTRY

Listbox The country in the customer�s billing address. 
Imported from newcctemplate.inc.

HttpRequestConstants.USER_NAME Textbox An identity chosen by the customer for login.

HttpRequestConstants.PASSWORD Password A password chosen by the customer for login.

HttpRequestConstants.
CONFIRM_PASSWORD

Password Confirmation of the password chosen by the 
customer for login.

Table 6-4  newuser.jsp Form Fields  (Continued)

Parameter Name Type Description



6 Implementing User Profiles

6-46 WebLogic Portal Development Guide

Figure 6-24   Web Page Formatted with newusercreation.jsp

The option to proceed to checkout is only provided on the newusercreation.jsp 
template if there are items in the customer�s shopping cart. Otherwise, the 
newusercreation.jsp template will leave out this option as shown in Figure 6-25.



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-47

Figure 6-25   Web Page Formatted with newusercreation.jsp When Shopping 
Cart is Empty

How newusercreation.jsp Works

Customers arrive at the newusercreation.jsp template when they have successfully 
created a new user profile and the auto-login�using Java Authentication and 
Authorization Service (JAAS)�has completed. If the customer creates a new profile, 
but the auto-login does not complete successfully, the customer is routed back to the 
login.jsp template and will not see the newusercreation.jsp template. After 
manual login, the customer is routed to the main.jsp template.

Note: If a customer had created a profile on a previous visit and logged in using the 
login.jsp template, the customer would simply be taken to the protected 
page the customer was trying to access.

From the newusercreation.jsp template, the customer can return to their shopping 
cart (shoppingcart.jsp), continue shopping, continue to the checkout process 
(shipping.jsp), view their order history (orderhistory.jsp), view their profile 
(viewprofile.jsp), view their payment history (paymenthistory.jsp), logout, or 
return to the main catalog page (main.jsp).



6 Implementing User Profiles

6-48 WebLogic Portal Development Guide

Note: The option to proceed to checkout is only provided on the 
newusercreation.jsp template if there are items in the customer�s 
shopping cart.

This template is part of the sampleapp_user namespace in the Webflow.

Events

Every time a customer clicks a button to view more detail about an order, it is 
considered an event. Each event triggers a particular response in the default Webflow 
that allows them to continue. While this response can be to load another JSP, it is 
usually the case that an input processor and/or Pipeline is invoked first. Table 6-5 
provides information about these events and the business logic they invoke.

newuserforward.jsp

The newuserforward.jsp template directs unregistered users to the newuser.jsp  
when that user clicks an ad placeholder that contains a static URI.  This is necessary 
because dynamic URIs are not supported in placeholders. The newuserforward.jsp 
template then forwards the user to newuser.jsp. Additionally, the 
newuserforward.jsp bridges the transition from a non-secure to a secure connection 
(.http to .https).

Description

This template does not render a Web page or any other visible output. Its code is shown 
in Listing 6-18.

Table 6-5  newusercreation.jsp Events

Event Webflow Response(s)

link.shoppingcart InitShoppingCartIP

button.checkout InitShippingMethodListIP

link.home GetTopCategoriesIP

GetTopCategories Pipeline



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-49

Listing 6-18   newuserforward.jsp Code

<% String s = com.bea.p13n.appflow.webflow.WebflowJSPHelper.
   createWebflowURL(pageContext, "sampleapp_main", "login.jsp",
   "button.createUser", true); %>

<% response.sendRedirect(s) ; %>

Table 6-6 shows the key template components.

How newuserforward.jsp Works

The page prior to newuserforward.jsp can be any page that an anonymous user can 
access. However, this template is only needed if an unregistered user clicks the ad 
placeholder that prompts them to register. The static URI in the placeholder accesses 
the newuserforward.jsp which then forwards the user to the newuser.jsp 
template.

This template is part of the sampleapp_main namespace in the Webflow.

Events

The newuserforward.jsp template has one event, which triggers a particular 
response in the default Webflow that allows customers to continue. While this 
response can be to load another JSP, it is usually the case that an input processor or 
Pipeline is invoked first. Table 6-7 provides information about this event and the 
business logic it invokes.

Table 6-6  Template Components

Type of Component Components

Included templates None

Tag libraries None

Imported Java packages None



6 Implementing User Profiles

6-50 WebLogic Portal Development Guide

usercreationforward.jsp

The usercreationforward.jsp template forwards new users to the 
newusercreation.jsp template after the registration and auto-login process using 
JAAS is completed by the Webflow. Once the user is created, the request must be 
flushed; the usercreationforward.jsp template allows that to happen. 

Description

This template does not render a Web page or any other visible output. Its code is shown 
in Listing 6-19.

Listing 6-19   usercreationforward.jsp Code

<% String s = WebflowJSPHelper.createWebflowURL(pageContext,
   "sampleapp_user", "usercreationforward.jsp",
   "forward.usercreation", true); %>

<% response.sendRedirect(s) ; %>

The usercreationforward.jsp template uses Java classes in the 
com.bea.p13n.appflow.webflow.WebflowJSPHelper package and must  include 
this import statement:

<%@ page import="com.bea.p13n.appflow.webflow.
   WebflowJSPHelper*" %>

Table 6-7  newuserforward.jsp Events

Event Webflow Response(s)

button.createUser newuser.jsp



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-51

How usercreationforward.jsp Works

The page prior to usercreationforward.jsp is the newuser.jsp template. When 
new users save their profiles, they are auto-logged in using JAAS and if the login is 
successful, because the old request must be flushed, the usercreationforward.jsp 
is needed to redirect the user to the newusercreation.jsp template.

This template is part of the sampleapp_user namespace in the Webflow.

Events

The usercreationforward.jsp template has one event. This event triggers a 
particular response in the default Webflow that allows customers to continue. While 
this response can be to load another JSP, it is usually the case that an input processor 
or Pipeline is invoked first. Table 6-8 provides information about this event and the 
business logic it invokes.

Webflow Components Used in Visitor Self-Registration 

The templates described in �Implementing Customer Profile JSPs� on page 6-33 use 
Webflow components called input processors and pipelines to execute much of the 
necessary business logic to enable visitor self-registration. This section describes the 
key Webflow components implemented. 

This section includes information on the following subjects:

! Input Processors

! Pipeline Components

Note: See �Setting Up Portal Navigation� on page 9-1 for information about using, 
creating, or modifying a Webflow and using input processors and pipeline 
components.

Table 6-8  usercreationforward.jsp Events

Event Webflow Response(s)

forward.usercreation newusercreation.jsp



6 Implementing User Profiles

6-52 WebLogic Portal Development Guide

Input Processors

The following input processors represent Java classes invoked to carry out more complex 
visitor regiatration tasks when invoked by the Webflow mechanism. These processors are:

! CustomerProfileIP

! LoginCustomerIP

For more information on input processors, see �Types of Nodes� on page 9-3.

CustomerProfileIP

CustomerProfileIP (all input processor names end in the letters �IP�) processes the 
input of newuser.jsp and allows the customer to store their profile. It also creates and places 
a CustomerValue object into the Pipeline Processor session.

Class Invoked examples.wlcs.sampleapp.customer.webflow.
   CustomerProfileIP

Required 
HTTPServletRequest 

Parameters 
(Personal Information)

HttpRequestConstants.CUSTOMER_FIRST_NAME

HttpRequestConstants.CUSTOMER_MIDDLE_NAME

HttpRequestConstants.CUSTOMER_LAST_NAME

HttpRequestConstants.CUSTOMER_ADDRESS1

HttpRequestConstants.CUSTOMER_ADDRESS2

HttpRequestConstants.CUSTOMER_CITY

HttpRequestConstants.CUSTOMER_STATE

HttpRequestConstants.CUSTOMER_ZIPCODE

HttpRequestConstants.CUSTOMER_COUNTRY

HttpRequestConstants.CUSTOMER_HOME_PHONE

HttpRequestConstants.CUSTOMER_BUSINESS_PHONE

HttpRequestConstants.CUSTOMER_EMAIL

HttpRequestConstants.CUSTOMER_EMAIL_OPT_IN

(code location: newuser.jsp template.)



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-53

Required 
HTTPServletRequest 

Parameters 
(Demographic Information)

HttpRequestConstants.CUSTOMER_INCOME_RANGE

HttpRequestConstants.CUSTOMER_EDUCATION_LEVEL

HttpRequestConstants.CUSTOMER_DATE_OF_BIRTH

HttpRequestConstants.CUSTOMER_GENDER

HttpRequestConstants.CUSTOMER_OCCUPATION

HttpRequestConstants.CUSTOMER_MARITAL_STATUS

HttpRequestConstants.CUSTOMER_EMPLOYMENT_STATUS

HttpRequestConstants.CUSTOMER_QUALITY

(code location: newdemographictemplate.inc template.)

Required 
HTTPServletRequest 

Parameters 
(Shipping Information)

HttpRequestConstants.SAME_AS_ABOVE

(code location: newuser.jsp template.)

HttpRequestConstants.CUSTOMER_SHIPPING_ADDRESS1 

HttpRequestConstants.CUSTOMER_SHIPPING_ADDRESS2

HttpRequestConstants.CUSTOMER_SHIPPING_CITY

HttpRequestConstants.CUSTOMER_SHIPPING_STATE

HttpRequestConstants.CUSTOMER_SHIPPING_ZIPCODE

HttpRequestConstants.CUSTOMER_SHIPPING_COUNTRY

HttpRequestConstants.DEFAULT_SHIPPING_ADDRESS

(code location: newaddresstemplate.inc template.)

HTTPServletRequest 

Parameters 
(Payment Information)

HttpRequestConstants.CUSTOMER_CREDITCARD_TYPE

HttpRequestConstants.CUSTOMER_CREDITCARD_HOLDER

HttpRequestConstants.CUSTOMER_CREDITCARD_NUMBER

HttpRequestConstants.CUSTOMER_CREDITCARD_MONTH

HttpRequestConstants.CUSTOMER_CREDITCARD_YEAR

HttpRequestConstants.CUSTOMER_CREDITCARD_ADDRESS1

HttpRequestConstants.CUSTOMER_CREDITCARD_ADDRESS2

HttpRequestConstants.CUSTOMER_CREDITCARD_CITY

HttpRequestConstants.CUSTOMER_CREDITCARD_STATE

HttpRequestConstants.CUSTOMER_CREDITCARD_ZIPCODE

HttpRequestConstants.CUSTOMER_CREDITCARD_COUNTRY

(code location: newcctemplate.inc template.)



6 Implementing User Profiles

6-54 WebLogic Portal Development Guide

LoginCustomerIP

LoginCustomerIP processes the input of login.jsp and allows the customer to access the 
secure pages of the site. It also creates and places a CustomerValue object into the Pipeline 
Processor session.

Required 
HTTPServletRequest 

Parameters 
(Account Information)

HttpRequestConstants.USER_NAME

HttpRequestConstants.PASSWORD

HttpRequestConstants.CONFIRM_PASSWORD

(code location: newuser.jsp template.)

Required Pipeline Session 
properties

None

Updated Pipeline Session 
properties

PipelineSessionConstants.CUSTOMER
PipelineSessionConstants.PASSWORD
PipelineSessionConstants.CREDITCARD_KEY (only if 
customer provides a credit card update).

Removed Pipeline Session 
properties

None

Validation Checks that the required fields contain values and checks that the credit 
card number is not less than 16 digits (15 digits for AMEX type). Also 
checks that the password and confirm password fields contain matching 
values.

Exceptions InvalidInputException, thrown when required fields are empty or 
credit card number is less than 16 digits (15 digits for AMEX type).

Class Invoked examples.wlcs.sampleapp.customer.webflow.
   LoginCustomerIP

Required 
HTTPServletRequest 

Parameters 

None



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-55

Pipeline Components

This section provides a brief description of each pipeline component associated with 
the Customer Login and Registration Services JSP template(s).  These Pipelines are 
processor nodes a Webflow invokes to initiate the execution of specific tasks related to visitor 
registration.

Note: Some pipeline components extend other, base pipeline components. For more 
information on the base classes, see the Javadoc.

For more information on pipeline components, see �Types of Nodes� on page 9-3.

This section contains information on these pipeline components:

! RegisterUserPC

! EncryptCreditCardPC

RegisterUserPC

RegisterUserPC (all pipeline component names end in the letters �PC�) retrieves the 
CustomerValue object and password from the Pipeline Processor session and creates 
a CUSTOMER attribute.

Required Pipeline Session 
properties

PipelineSessionConstants.CUSTOMER
PipelineSessionConstants.PASSWORD
PipelineSessionConstants.CREDITCARD_KEY (only if the 
customer provides a credit card update).

Updated Pipeline Session 
properties

None

Removed Pipeline Session 
properties

PipelineSessionConstants.PASSWORD

Validation Verifies that the username and password are correct.

Exceptions InvalidInputException, thrown if either the username or 
password is invalid.
ProcessingException, thrown if the username is invalid or cannot 
get authentication.



6 Implementing User Profiles

6-56 WebLogic Portal Development Guide

EncryptCreditCardPC

EncryptCreditCardPC uses the CREDITCARD_KEY object to retrieve a customer credit 
card, encrypts the credit card number, and then adds the modified credit card back to the 
PipelineSession CustomerValue attribute.

Class Name examples.wlcs.sampleapp.customer.pipeline.
RegisterUserPC

Contained in CustomerProfile Pipeline

Required Pipeline 
Session Properties

PipelineSessionConstants.CUSTOMER
PipelineSessionConstants.PASSWORD

Updated Pipeline 
Session Properties

None

Removed Pipeline 
Session Properties

PipelineSessionConstants.PASSWORD

Type Java class

JNDI Name None

Exceptions PipelineException, thrown when the pipeline component cannot 
create the user.

Class Name examples.wlcs.sampleapp.customer.pipeline.
EncryptCreditCardPC

Description  

Contained in CustomerProfile Pipeline

Required Pipeline 
Session Properties

PipelineSessionConstants.CREDITCARD_KEY

Updated Pipeline 
Session Properties

PipelineSessionConstants.CUSTOMER



Enabling Visitor Self-Registration

WebLogic Portal Development Guide 6-57

Removed Pipeline 
Session Properties

PipelineSessionConstants.CREDITCARD_KEY

Type Java class

JNDI Name None

Exceptions PipelineException, thrown when the pipeline component cannot 
find the user in the Pipeline Processor session or the creditcard_key 
is invalid or the encryption did not complete successfully.



6 Implementing User Profiles

6-58 WebLogic Portal Development Guide



CHAPTER
7 Adding Security to a 
Portal

A Web server authenticates users and determines which resources within the server 
users can create, access, or modify. To do this, the Web server uses a security realm. 
When a user attempts to access a particular resource, the server tries to authenticate and 
authorize that user by checking the access control list (ACL) and permissions that are 
assigned to the user within the realm. You can set up multiple security realms, but each 
instance of a Web server can use only one realm. The server uses the same security 
realm for your Web site developers and for your visitors. 

This section contains information on the following subjects:

! Implementing Portal Security

! Integrating with an LDAP Security Realm

! Switching to a WebLogic 7.0 Security Framework Security Realm

! Multiple Authentication Providers Support in WebLogic Portal 7.0 SP4

! Other Supported Security Realms

! Enabling Secure Sockets Layer Security

! Enabling Single Sign-On
WebLogic Portal Development Guide 7-1



7 Adding Security to a Portal
Implementing Portal Security

If you choose to use the basic implementation of the RDBMS security realm supplied 
by BEA, it will be available when you install WebLogic Portal. No further 
configuration is necessary.

Note: The WebLogic Portal RDBMS Realm is a different implementation than the 
WebLogic Server RDBMS Realm. The WebLogic Server RDBMS Realm is 
for testing and is not suitable for use in a production environment. WebLogic 
Portal�s RDBMS realm is shipped in the 
BEA_HOME/weblogic700/portal/lib/p13n_system.jar file and the 
implementing class is in com.bea.p13n.security.realm.RDBMSRealmas 
configured with the config.xml file entry: 
RealmClassName="com.bea.p13n.security.realm.RDBMSRealm.

Integrating with an LDAP Security Realm

If you don�t want to use the basic RDBMS security realm, one popular alternative is to 
use a lightweight directory access protocol (LDAP) server as your security realm. This 
section describes how to integrate an LDAP server with WebLogic Portal. This section 
includes the following topics:

! Supported LDAP Servers

! Integrating an LDAP Security Realm

Supported LDAP Servers

WebLogic Portal supports these LDAP servers:

! Netscape Directory Server

! Microsoft Site Server
7-2 WebLogic Portal Development Guide



Integrating with an LDAP Security Realm
! Novell Directory Services

! Open LDAP Directory Services

You can find templates for each of these services in �Supported Server Templates� on 
page 7-7.

Integrating an LDAP Security Realm

This section shows how WebLogic Portal integrates with a third-party LDAP security 
realm; security realms are the method used by WebLogic Portal to authenticate users. 
While WebLogic Portal provides a default user store based on a RDBMS, this can be 
replaced with an LDAP realm, which uses an LDAP server for security information.

Configuring the LDAP Server for Integration

Configuring the LDAP security realm involves defining attributes that enable the 
LDAP Security realm in WebLogic Server to communicate with the LDAP server and 
the attributes that describe how users and groups are stored in the LDAP directory. The 
LDAP tree and schema is different for every LDAP server. 

In �Supported Server Templates� on page 7-7, you can find templates for the supported 
LDAP servers. These templates specify default configuration information used to 
represent users and groups in each of the supported LDAP servers. You choose the 
template that corresponds to the LDAP server you want to use and then fill in the 
attributes described in Table 7-1.

Note: In LDAP V1, you can configure these attributes from the LDAP Realm Create 
screen, on the tab specified in Table 7-1.

Table 7-1  LDAP Realm Configurable Attributes

Attribute Description

User DN A list of attributes and their values that, when combined with the attributes 
in the User Name Attribute attribute, uniquely identifies an LDAP User.
Configure this attribute on the Users tab in the LDAP Realm Create screen.
WebLogic Portal Development Guide 7-3



7 Adding Security to a Portal
For instructions for configuring the LDAP security realm, please refer to �Configuring 
the LDAP Security Realm� in the WebLogic Server Administration Guide at 
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#1052314.

In addition to defining attributes that enable communication with the LDAP server, 
you will have to define certain groups in your LDAP server to correspond to the 
security role mappings that have been set for portal delegated administration. To set 
these groups up you should:

1. Read �Administering Users and Groups� at 
http://e-docs.bea.com/wlp/docs70/admin/usrgrp.htm, especially the section 
�Creating Administrative Users.�

2. To set up WebLogic Server System Administrators it is recommended that you 
use the provided fileRealm.properties file and use the WebLogic 
administration console to administer the weblogic and system users. They are 
members of the Administrators group, which is a subgroup of the special 
WebLogic Server groups Operators, Deployers, and Monitors.

3. Set up one or more WebLogic Portal System Administrators.

a. Create the group SystemAdministrator in your LDAP server.

b. Add the desired users to this group in your LDAP server.

Group DN List of attributes and values that, combined with the Group Name Attribute 
attribute, uniquely identifies a Group in the LDAP directory.
Configure this attribute on the Groups tab in the LDAP Realm Create 
screen.

Principal DN of the LDAP User that WebLogic Server uses to connect to the LDAP 
server. This user must be able to list LDAP Users and Groups.
Configure this attribute on LDAP Realm tab in the LDAP Realm Create 
screen.

Credential Password that authenticates the LDAP User defined in the Principal 
attribute.
Configure this attribute on LDAP Realm tab in the LDAP Realm Create 
screen.

Table 7-1  LDAP Realm Configurable Attributes

Attribute Description
7-4 WebLogic Portal Development Guide



Integrating with an LDAP Security Realm
4. Set up the groups required for delegated administration of portals. All users that 
will be designated at Portal Administrators or Group Portal Administrators must 
be added to the proper groups before using the WebLogic Portal Administration 
Tools to specify them as Portal Administrators or Group Portal Administrators.

a. Create the groups AdminEligible and DelegatedAdministrator in your 
LDAP server.

b. Add the desired users to both of these groups.

c. These users are now candidates for designation as Portal Administrators or 
Group Portal Administrators. You would have to use the WebLogic Portal 
Administration Tools to persist the data required to enable them as 
administrators.

d. When removing all delegated administration capabilities for a user it is 
recommended that they first be removed from the AdminEligible and 
DelegatedAdministrator group in your LDAP server. However, you may 
remove them from the groups after revoking their privileges in the WebLogic 
Portal Administration Tools if you prefer.

5. Create groups in your LDAP server that will be associated with your group 
portals.

It is not necessary to add your Portal Administrators and Group Portal 
Administrators to these groups, but it would be recommended to do this so that 
your administrators may log into the group portals to verify their work.

Configuring LDAP-based Security Realms for WebLogic Server and Portal 7.0

Perform the following steps for configuring LDAP-based security realms for 
WebLogic Server 7.0 and WebLogic Portal 7.0.

WebLogic Server Setup

1. Define the LDAP security realm � See the �Compatibility Security� section of the 
online help for the WebLogic Server Administration Console.

2. Configure the caching realm � See the �Compatibility Security� section of the 
online help for the WebLogic Server Administration Console.

3. Configure the default caching realm.
WebLogic Portal Development Guide 7-5



7 Adding Security to a Portal
a. Open the WebLogic Server Administration Console.

b. Click the Compatibility Security node in the left pane.

c. Click the FileRealm tab.

d. Select the Caching Realm you just created and click Apply.

4. Define a system user (or another user as the WebLogic administrator), and 
define guest/guest realm in your LDAP directory. See the �Compatibility 
Security� section of the online help for the WebLogic Server Administration 
Console for more information.

5. Define an Administrators group and add your system user to it (or another 
user as the WebLogic administrator) for your realm in your LDAP directory. See 
the �Compatibility Security� section of the online help for the WebLogic Server 
Administration Console for more information.

6. Test WebLogic Server.

a. Shut down the server.

b. Re-start the server.

c. Log in to the WebLogic Administration Console as the WebLogic administrator 
you created.

WebLogic Portal Setup

1. Define the following groups and users for your realm in your LDAP directory:

2. Add a new Group Portal.

a. Create the group in LDAP.

Group User

Administrators system

SystemAdministrator administrator

AdminEligible

DelegatedAdministrator
7-6 WebLogic Portal Development Guide



Integrating with an LDAP Security Realm
b. Create a new user to administer the Portal.

c. Add the user to the AdminEligible group, DelegatedAdministrator 
group, and the new group you just created for the Portal.

d. Use the following URL to log in to WebLogic Portal Administration Tools as a 
Portal System Administrator: 
http://localhost:7501/portalAppTools/index.jsp.

e. Create a new Group Portal. Specify the new group and new administrator.

3. Add a new Delegated Administrator.

a. Create a new user to administer the Portal.

b. Add the user to the AdminEligible group, DelegatedAdministrator 
group, and the group for the Portal.

c. Use the following URL to log in to WebLogic Portal Administration Tools as 
the Group Portal Administrator: 
http://localhost:7501/portalAppTools/index.jsp.

d. Create a new Group Portal Administrator. Specify the new group and new 
administrator.

Supported Server Templates

Listing 7-1 through Listing 7-4 are the templates you can use to configure supported 
LDAP servers. You can copy these templates from here directly into the config.xml 
file for your application. 

Warning: Each line in the following code examples must appear on a single line. 
The examples shown below have been formatted to fit the margins of this 
document and some lines have been broken to facilitate that formatting. If 
you paste this text into the config.xml file, be sure to concatenate the 
lines that are broken so that they appear on a single line in your code.

Listing 7-1   Default Netscape Customer Security Realm Template

<CustomRealm
   Name="defaultLDAPRealmForNetscapeDirectoryServer"
   RealmClassName="weblogic.security.ldaprealmv2.LDAPRealm"
WebLogic Portal Development Guide 7-7



7 Adding Security to a Portal
   Password="*secret*"
   ConfigurationData="server.host=ldapserver.example.com;server.principal=uid=
      admin,
   ou=Administrators, ou=TopologyManagement, o=NetscapeRoot;user.dn=ou=people,
   o=beasys.com;user.filter=(&amp;(uid=%u)(objectclass=person));group.dn=
      ou=groups,
   o=beasys.com;group.filter=(&amp;(cn=%g)(objectclass=groupofuniquenames));
      membership.filter=(&amp;(uniquemember=%M)(objectclass=
      groupofuniquenames));"
   Notes="This is provided as an example. Before enabling this Realm, you must
   edit the configuration parameters as appropriate for your environment."
/>

Listing 7-2   Default Microsoft Customer Security Realm Template

<CustomRealm
   Name="defaultLDAPRealmForMicrosoftSiteServer"
   RealmClassName="weblogic.security.ldaprealmv2.LDAPRealm"
   Password="*secret*"
   ConfigurationData="server.host=ldapserver.example.com;server.principal=cn=
      Administrator,
   ou=Members, o=ExampleMembershipDir;user.dn=ou=Members,
   o=ExampleMembershipDir;user.filter=(&amp;(cn=%u)(objectclass=member));
      group.dn=ou=Groups,
   o=ExampleMembershipDir;group.filter=(&amp;(cn=%g)(objectclass=mgroup));
      membership.scope.depth=1;microsoft.membership.scope=sub;membership.
      filter=(|(&amp;(memberobject=%M)(objectclass=memberof))
      (&amp;(groupobject=%M)(objectclass=groupmemberof)));"
   Notes="This is provided as an example. Before enabling this Realm, 
      you must edit the configuration parameters as appropriate for your 
      environment."
/>

Listing 7-3   Default Novell Customer Security Realm Template

<CustomRealm
   Name="defaultLDAPRealmForNovellDirectoryServices"
   RealmClassName="weblogic.security.ldaprealmv2.LDAPRealm"
   Password="*secret*"
   ConfigurationData="server.host=ldapserver.example.com;server.principal=cn=
      admin,
   o=example.com;user.dn=ou=people,
7-8 WebLogic Portal Development Guide



Integrating with an LDAP Security Realm
   o=example.com;user.filter=(&amp;(cn=%u)(objectclass=person));group.dn=ou=
      groups,
   o=example.com;group.filter=(&amp;(cn=%g)(objectclass=groupofuniquenames));
      membership.filter=(&amp;(member=%M)(objectclass=groupofuniquenames));"
   Notes="This is provided as an example. Before enabling this Realm, you must
      edit the configuration parameters as appropriate for your environment."
/>

Listing 7-4   Default OpenLDAP Security Realm Template

<CustomRealm
   Name="defaultLDAPRealmForOpenLDAPDirectoryServices"
   RealmClassName="weblogic.security.ldaprealmv2.LDAPRealm"
   Password="*secret*"
   ConfigurationData="server.host=ldapserver.example.com;server.principal=cn=
      Manager,
   dc=example, dc=com;user.dn=ou=people, dc=example,
   dc=com;user.filter=(&amp;(uid=%u)(objectclass=person));group.dn=ou=groups,
   dc=example,
   c=com;group.filter=(&amp;(cn=%g)(objectclass=groupofuniquenames));membership.
      filter=(&amp;(uniquemember=%M)(objectclass=groupofuniquenames));"
   Notes="This is provided as an example. Before enabling this Realm, you must
      edit the configuration parameters as appropriate for your environment."
/>

Using Wildcards for User Lookup in an LDAP Realm

This change has been implemented to allow true wildcard searches of the LDAP server 
when using the weblogic.security.ldaprealmv2.LDAPRealm.

The original implementation used a getUsers() method that did a search for uid=* 
and returned all users. The enumeration of all users was iterated through to find 
matches to the search string input in the WebLogic Portal Administration Tools.

The new implementation does a true wildcard search by using a new 
getUsers(String searchString, int maxResults) method that is implemented 
by extending the original LDAPRealm with a new 
com.bea.p13n.security.realm.PortalLDAPRealm.
WebLogic Portal Development Guide 7-9



7 Adding Security to a Portal
The original WebLogic Portal Administration Tools used the 
CachingRealm.getUsers() method to conduct a search that returned all users in the 
LDAPRealm. They used a search filter that looked like this:

(&(uid=*)(objectclass=person))

This search result (all users in the realm) was iterated through and users with names 
that matched a wildcard search expression in the request were put into a list and were 
displayed as links on the page.

The new PortalLDAPRealm.getUsers(String searchString, int 
maxResults) method allows a true wildcard search of the LDAP server, using a 
search filter that looks like this: 

(&(uid=a*)(objectclass=person))

Your search String is used in the (uid=...) expression in the filter. To use this patch, 
the <CustomRealm> is configured to use a RealmClassName of 
com.bea.p13n.security.realm.PortalLDAPRealm instead of 
weblogic.security.ldaprealmv2.LDAPRealm.

Warning: A wildcard LDAP search can be a slow operation for a large LDAP 
server. This is not a characteristic of WLS or Portal. This is a 
characteristic of LDAP and the libraries used to search it. LDAP servers 
populated with millions of users can be very slow for wildcard searches.  
To verify expected response times for wildcard searches with your system 
you could use an ldapsearch utility to measure a typical wildcard search, 
like "a*".  For example, for the iPlanet Directory Server you could type 
something like this on one line: 

ldapsearch -b "ou=People, dc=beasys, dc=com"
-D "uid=admin, ou=Administrators, ou=TopologyManagement,
o=NetscapeRoot"
-h myserver.mydomain.com -p 389 -s sub -w password -z100
"(&(uid=a*)(objectclass=person))"

A fast alternative is to use a specific user id as the search string. With a 
user population of millions of users, an LDAP search for uid=a* will 
typically be timed out by your LDAP server while a search for the specific 
uid=administrator will be very fast. The new PortalLDAPRealm, with 
its getUsers(String searchString, int maxResults) method 
allows you to either search with a wildcard (slow) or with an exact 
username (fast).
7-10 WebLogic Portal Development Guide



Integrating with an LDAP Security Realm
Recommendations for Using this Patch with a Large LDAP Server

! You may need to set GroupMembershipCacheTTL=0 to disable the group 
membership cache. This will speed up calls to Group.isMember() because this 
causes an LDAP search to determine group membership for the specific user 
without populating the group membership cache for all the other members of the 
group.

Use the WLS console:  CompatibilitySecurity > CachingRealm > 
yourCachingRealm > Configuration > Groups > 
GroupMembershipCacheTTL (set it to 0).

The disabling of this cache is allowed by this patch because the changes to the 
weblogic.security.ldaprealmvw.LDAPRealm include the changes made in  
in CR090409 to allow disabling of the GroupMembershipCache.

! Configure your LDAP server and your user.dn/group.dn so that your 
user.dn and group.dn contain only groups and users that are required by your 
Portal application. This will greatly speed up LDAP operations if you have a 
large number of users/groups that are used by your company that are never 
needed in your Portal application. Remember that the LDAPRealm defaults to 
subtree scope searches (this can be changed in config.xml).

! Wildcard searches are permitted now that this patch has been made but they 
should not be used if your LDAP server is too big to handle them. Test your 
system by using the ldapsearch command line utility or the LDAPSearch utility 
for the Netscape SDK 4.1 (WebLogic Server 7.0 ships with the Netscape SDK 
4.1 and it is what is used by the LDAPRealm). You can prevent your 
administrators from using wildcard searches by modifying the WebLogic Portal 
Administration Tools JSP by deleting the wildcard buttons and checking for "*" 
in the search string that is input by the administrator.

! Do not use the WebLogic Portal Administration Tools to browse groups with 
very large LDAP repositories. The Group tools search for all members of all 
groups and display a tree of the group hierarchy. For a large LDAP server this is 
a slow operation. If you must set properties for a group and your LDAP server is 
too big for the Group tools to work, then it is recommended that you 
programatically set the property for the group using the JSP tags or API.
WebLogic Portal Development Guide 7-11



7 Adding Security to a Portal
Adding User Profile Information to LDAP Users

The LdapRealm  security realm and the LdapPropertyManager unified user profile 
(UUP) for retrieving user properties from LDAP are independent of each other. They 
do not share configuration information and there is no requirement to use either one in 
conjunction with the other. A security realm has nothing to do with a user profile. A 
security realm provides user/password data, user/group associations, and group/group 
associations. A user profile provides user and group properties. A password is not a 
property.

For information on setting up UUP and retrieving user profile properties for LDAP 
users, see Chapter 6, �Implementing User Profiles.�

Switching to a WebLogic 7.0 Security 
Framework Security Realm

WebLogic Portal 7.0 Service Pack 4 adds support for the WebLogic Security 
Framework introduced in WebLogic Server 7.0. This enables the replacement of 
WebLogic Server 6.x security realms with WebLogic Server 7.0 realms. Prior to 7.0 
SP4 WebLogic Portal 7.0 users were restricted to using the Compatibility Realm.

Even if you are using a new WebLogic Server 7.0 realm, it is possible to continue using 
users and groups from a Compatibility RDBMS Realm by using the 
RDBMSAuthenticator. Alternatively, you can use the LDAP data store embedded with 
WebLogic Server, or a commercial LDAP provider such as Iplanet, or a custom 
authentication provider that you have developed.

Setup depends on which authentication provider you use:

! Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 
Security With RDBMS � This is the recommended option if you already have 
users and groups in an existing RDBMS security realm, such as the one that 
shipped with WebLogic 7.0 SP2 and earlier.

! Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 
Security with Embedded LDAP � This is the recommended option if you have 
other applications that use the embedded WebLogic Server LDAP data store and 
7-12 WebLogic Portal Development Guide



Switching to a WebLogic 7.0 Security Framework Security Realm
you would like to share user and group information with a WebLogic Portal 
application.

! Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 
Security with a Commercial LDAP Provider � This is the recommended option 
if you would like to capitalize on a third-party LDAP provider that you already 
use.

As of WebLogic Portal 7.0 Service Pack 4, you can also use multiple authentication 
providers. However, there are some limitations. See �Multiple Authentication 
Providers Support in WebLogic Portal 7.0 SP4� on page 7-22.

In WebLogic 7.0 the security Mbeans are in binary form in the 
<domain>/userConfig directory. During these exercises you can check your security 
Mbeans by using the WebLogicMBeanDumper:

java weblogic.management.commo.WebLogicMBeanDumper –
includeDefaults –name Security:* mbean_security.out

Upgrading a Portal from Compatibility Security to 
WebLogic Server 7.0 Security With RDBMS

This is the recommended option if you already have users and groups in an existing 
RDBMS security realm, such as the one that shipped with WebLogic 7.0 SP2 and 
earlier. By retaining user and group information in your RDBMS data store, you can 
avoid migrating it to an LDAP data store. The RDBMS security realm provides a 
high-performance, robust solution.

These instructions explain how to use a WebLogic Server 7.0 realm with users and 
groups from a WebLogic Server 6.x RDBMS Compatibility realm. Users and groups 
will be stored in a previously used Compatibility Realm.

1. Copy rdbmsAtnProvider.jar from the weblogic700/portal/lib directory to 
the weblogic700/server/lib/mbeantypes directory. You must use a version of 
this JAR that was built for the version of WebLogic Server that you are using. For 
example, you cannot use a 7.0 SP2 version of this JAR with 7.0 SP4. If you use an 
incompatible rdbmsAtnProvider.jar then you may see a ClassCastException in 
the WebLogic Server administration console when you try to create the 
authentication provider.
WebLogic Portal Development Guide 7-13



7 Adding Security to a Portal
2. In the WebLogic Server administration console, navigate to the Authentication 
Providers page under <your domain> > Security > Realms > myrealm > 
Providers > Authentication Providers.

3. Click Configure a new RDBMSAuthenticator.

4. Name the authentication provider and click Create.

5. Make sure the �Control Flag� is set to REQUIRED, and click Apply.

6. Click Details, make appropriate changes for your database, and click Apply.

7. Navigate to <your domain> > Security > Realms > myrealm > Users and 
make sure existing users are listed for the RDBMSAuthenticator.

8. Navigate to <your domain> > Security > Realms > myrealm > Groups and 
make sure existing groups are listed for the RDBMSAuthenticator.

9. Before you switch from the Compatibility realm to the RDBMSAuthenticator 
you should set up users and groups for WebLogic Server administration in your 
RDBMS schema. Use the WebLogic Server Administration Console to do this, 
not the WebLogic Portal Administration Tools. These users and groups are 
defined in your domain�s fileRealm.properties file, but that file will not be 
used by the RDBMSAuthenticator when you switch to the new security 
framework.

Add the following users and groups, making the users members of the 
appropriate group. Create users and groups for the RDBMSAuthenticator, not 
the Default Authenticator.

10. Verify that your WebLogic Server system user is a member of the 
Administrators group.

Group User

Administrators <your WebLogic system user, e.g., 
system>

Monitors

Operators

Deployers
7-14 WebLogic Portal Development Guide



Switching to a WebLogic 7.0 Security Framework Security Realm
11. Navigate back to the Authentication Providers page under <your domain> > 
Security > Realms > myrealm > Providers > Authentication Providers and 
delete the DefaultAuthenticator.

12. In the WebLogic Server administration console, select your domain. Then, on the 
Security > General tab, change the Default Realm from CompatibilityRealm 
to myrealm. Apply the change.

13. Double-check for the existence of the proper groups and users for the 
RDBMSAuthenticator in <your domain> > Security > Realms > myrealm.

14. Restart the server.

Notice the server will start with myrealm from now on. If the server fails to start 
due to an authenticator misconfiguration, you can switch back to the 
Compatibility Realm by removing the userConfig subdirectory under your 
domain directory, then restarting the server. You must then restart the 
configuration procedure.

Core Groups required for WebLogic Portal

When using the RDBMS Authenticator, there are no additional steps required in order 
to use WebLogic Portal applications. The core groups required for the proper operation 
of WebLogic Portal are pre-populated in the PointBase database that ships with 
WebLogic Portal, or are created during the steps for Switching to Other Databases in 
the Administration Guide.

Running the WLP Samples

When using the RDBMS Authenticator, there are no additional steps required in order 
to use the WebLogic Portal sample applications. The users and groups required for the 
sample applications are pre-populated in the PointBase database that ships with 
WebLogic Portal, or are created during the steps for Switching to Other Databases in 
the Administration Guide.
WebLogic Portal Development Guide 7-15



7 Adding Security to a Portal
Upgrading a Portal from Compatibility Security to 
WebLogic Server 7.0 Security with Embedded LDAP

This is the recommended option if you have other applications that use the embedded 
WebLogic Server LDAP data store and you would like to share user and group 
information with a WebLogic Portal application.

These instructions explain how to upgrade from the WebLogic Server 7.0 default 
Compatibility RDBMS Realm to the Default Authenticator. Users and groups will be 
stored in the LDAP data store that is embedded in WebLogic Server.

It is essential to create the proper users and groups. If this is not done, the server will 
fail to start and a java.lang.SecurityException: Authentication denied 
message will appear in the console. If you do encounter this error, remove the entire 
userConfig directory, which is located under your domain directory, then restart the 
configuration procedure. Users and groups created in the embedded LDAP server will 
not be lost if you do not delete the staging directory. The staging directory is the 
directory that is named after your server and is used for 2-phase deployment in the 
internal LDAP server.

1. Create the core users and groups in your LDAP server.

There are certain users and groups that are required for the proper operation of 
WebLogic Portal and WebLogic Server. These need to be set up in the embedded 
LDAP data store. To do this, go to the WebLogic Server administration console 
and expand the <domain> > Security > Realms > myrealm section. To create 
users, click the Users item and select Configure a new User. Likewise for 
groups, click the Groups item and select Configure a new Group.

a. For WebLogic Portal, add the following users and groups, making the users 
members of the appropriate group:

Group User

SystemAdministrator administrator

AdminEligible

DelegatedAdministrator
7-16 WebLogic Portal Development Guide



Switching to a WebLogic 7.0 Security Framework Security Realm
b. Place users you would like to be able to manage portals in the AdminEligible 
and DelegatedAdministrator groups. The administrator user will be 
able to administer portals as a member of the SystemAdministrator group.

c. For WebLogic Server, add the following users and groups, making the users 
members of the appropriate group:

Note that Monitors, Operators, and Deployers are not required to contain 
the Administrators group like in fileRealm.properties. That is 
because the role mappings in the new security framework automatically 
make an Admin user able to monitor, operate, and deploy.

2. If you would like to use the WebLogic Portal sample applications, create the 
sample users and groups.

a. For the wlcs sample, add the following users and group, making the users 
members of the appropriate group:

b. For sampleportal, add a top-level group called �Avitek�, and add sub-groups as 
follows:

Group User

Administrators <your WebLogic system user, e.g., 
system>

Monitors

Operators

Deployers

Group Users

wlcs_customer bobsmith, suecarpenter, dangreen, 
democustomer

Group Sub-Groups

Avitek CustomerService, FinancialAdvisor, 
Investor, Approver
WebLogic Portal Development Guide 7-17



7 Adding Security to a Portal
c. In addition, add the following users and groups, making the users members of 
the appropriate groups. Note that some groups were created in the previous 
step. Notice also that some users belong to multiple groups.

3. In the WebLogic Server administration console, click your domain. Then, on the 
Security -> General tab, change the Default Realm from CompatibilityRealm 
to myrealm. Apply the change.

4. Restart the server.

Notice the server will start with myrealm from now on. See the <Notice> in 
weblogic.log for <Security initializing using realm myrealm>. If the server fails to 
start due to an authenticator misconfiguration, you can switch back to the 
Compatibility Realm by removing the userConfig subdirectory under your domain 
directory, then restarting the server. You must then restart the configuration procedure. 

Group Users

<no group assigned> acme, demo

Group1 visitor1,visitor2,visitor3,visitor4,visitor5

Group2 visitor6,visitor7,visitor8,visitor9,visitor10

Approver visitor1

CustomerService visitor5

FinancialAdvisor visitor2, visitor3

Investor visitor4, visitor6, visitor7

SystemAdministrator demosa1, demosa2, demosa3

AdminEligible admin1, admin2, admin3, admin4, demopa1, 
demopa2, demoga1, demoga2, demoga3

DelegatedAdministrator demopa1, demopa2, demoga1, demoga2, 
demoga3
7-18 WebLogic Portal Development Guide



Switching to a WebLogic 7.0 Security Framework Security Realm
Users and groups created in the embedded LDAP server will not be lost if you do not 
delete the staging directory. The staging directory is the directory that is named after 
your server and is used for 2-phase deployment and the internal LDAP server.

Upgrading a Portal from Compatibility Security to 
WebLogic Server 7.0 Security with a Commercial LDAP 
Provider

This is the recommended option if you would like to capitalize on a third-party LDAP 
provider that you already use.

These instructions explain how to upgrade from the 7.0 default Compatibility RDBMS 
Realm to an Authenticator backed by a commercial LDAP server, such as the IPlanet 
Authenticator. Users and groups will be stored in a commercial LDAP server.

It is essential to create the proper users and groups. If this is not done, the server will 
fail to start and a java.lang.SecurityException: Authentication denied 
message will appear in the WebLogic Server administration console. If you do 
encounter this error, remove the entire userConfig directory, which is located under 
your domain directory, then restart the configuration procedure.

1. In the WebLogic Server administration console, navigate to the Authentication 
Providers page under <your domain> > Security > Realms > myrealm > 
Providers > Authentication Providers.

2. Click the link to configure a new authenticator for your particular LDAP server. 
For example, click Configure a new IPlanet Authenticator.

3. Make sure the �Control Flag� is set to REQUIRED, and click Create.

4. Configure your Authenticator according to the instructions for Configuring an 
LDAP Authentication Provider in the WebLogic Server Managing WebLogic 
Security guide.

5. Create the core users and groups in your LDAP server.

There are certain users and groups that are required for the proper operation of 
WebLogic Portal and WebLogic Server. These need to be set up in your LDAP 
data store.
WebLogic Portal Development Guide 7-19



7 Adding Security to a Portal
a. For WebLogic Portal, add the following users and groups, making the users 
members of the appropriate group:

b. Place users you would like to be able to manage portals in the AdminEligible 
and DelegatedAdministrator groups. The administrator user will be 
able to administer portals as a member of the SystemAdministrator group.

c. For WebLogic Server, add the following users and groups, making the users 
members of the appropriate group:

6. If you would like to use the WebLogic Portal sample applications, create the 
sample users and groups.

a. For the wlcs sample, add the following users and group, making the users 
members of the appropriate group:

Group User

SystemAdministrator administrator

AdminEligible

DelegatedAdministrator

Group User

Administrators <your WebLogic system user, e.g., 
system>

Monitors

Operators

Deployers

Group Users

wlcs_customer bobsmith, suecarpenter, dangreen, 
democustomer
7-20 WebLogic Portal Development Guide



Switching to a WebLogic 7.0 Security Framework Security Realm
b. For sampleportal, add a top-level group called �Avitek�, and add sub-groups as 
follows:

In addition, add the following users and groups, making the users members 
of the appropriate groups. Note that some groups were created in the 
previous step. Notice also that some users belong to multiple groups.

7. Navigate to the Authentication Providers page under <your domain> > Security 
> Realms > myrealm > Providers > Authentication Providers and delete the 
DefaultAuthenticator.

Group Sub-Groups

Avitek CustomerService, FinancialAdvisor, 
Investor, Approver

Group Users

<no group assigned> acme, demo

Group1 visitor1,visitor2,visitor3,visitor4,visitor5

Group2 visitor6,visitor7,visitor8,visitor9,visitor10

Approver visitor1

CustomerService visitor5

FinancialAdvisor visitor2, visitor3

Investor visitor4, visitor6, visitor7

SystemAdministrator demosa1, demosa2, demosa3

AdminEligible admin1, admin2, admin3, admin4, demopa1, 
demopa2, demoga1, demoga2, demoga3

DelegatedAdministrator demopa1, demopa2, demoga1, demoga2, 
demoga3
WebLogic Portal Development Guide 7-21



7 Adding Security to a Portal
8. In the WebLogic Server administration console, click on your domain. Then, on 
the Security > General tab, change the Default Realm from 
CompatibilityRealm to myrealm. Apply the change.

9. Restart the server.

Notice the server will start with myrealm from now on. See the <Notice> in 
weblogic.log for <Security initializing using realm myrealm>. If the server fails to 
start due to an authenticator misconfiguration, you can switch back to the 
Compatibility Realm by removing the userConfig subdirectory under your domain 
directory, then restarting the server. You must then restart the configuration procedure.

Multiple Authentication Providers Support 
in WebLogic Portal 7.0 SP4

The WebLogic Portal user and group management framework communicates with 
only one authentication provider for basic user and group operations. Therefore, it is 
required that a system property be set to specify which authentication provider to use 
when the WebLogic Server is configured with multiple Authentication Providers.

How WebLogic Portal 7.0 uses the WebLogic Server 
Security Framework

WebLogic Portal 7.0 relies completely on WebLogic Server for login authentication. 
For authorization, WebLogic Portal has its own user and group management 
framework for some user/group management operations. WebLogic Portal�s 
Delegated Administration framework uses the user and group management framework 
and entitlements framework for authorization. The Delegated Administration 
framework is not based on JAAS authorization so it does not use an authorization 
provider.
7-22 WebLogic Portal Development Guide



Multiple Authentication Providers Support in WebLogic Portal 7.0 SP4
Limited Support of Multiple Authentication Providers in 
WebLogic Portal 7.0 SP4

The WebLogic Portal Administration Tools can use only one authentication provider. 
By default, if you have configured multiple providers, the WebLogic Portal 
Administration Tools use the authentication provider that is "most capable" in terms of 
offered functionality. However, you can force the WebLogic Portal Administration 
Tools to use a specific authentication provider by specifying the following system 
property:

com.bea.p13n.usermgmt.AuthenticationProviderName=<provider_displa
y_name>

The system property is specified as a java -D switch on the command line for starting 
the server.

Users from non-specified providers can log in to the portal and personalize their portal 
just like a user from an external custom security realm could do with the old WebLogic 
Server 6.x style of security.

Resetting of user passwords using the WebLogic Portal UserManager EJB (which is 
used by the um [user management] JSP tag library) only works for users who are 
available from the specified provider, because the Portal UserManager is only aware 
of a single authentication provider.

Group membership used by a portal should be consistent across providers. For 
example, if user1 is in Group1, and Group1 is associated with the Group1 group 
portal, then user1 should belong to Group1 in all providers, otherwise the user may 
not be able to access the proper group portal if he is authenticated with a provider that 
does not have this group membership set up.

What Is Not Supported for Multiple Authentication 
Providers in WebLogic Portal 7.0 SP4

The use of multiple authentication providers with WebLogic Portal 7.0 SP4 has a 
larger impact on the WebLogic Portal Administration Tools than on the portal 
application itself. The following limitations exist:
WebLogic Portal Development Guide 7-23



7 Adding Security to a Portal
! The WebLogic Portal Administration Tools can see only users/groups from the 
specified provider.

! Portal users belonging to the SystemAdministrator group (known as SAs) 
lose their super power for overall portal management because they cannot 
manage users/groups for the non-specified providers.

! Use of the realm configuration cleanup tool in the WebLogic Portal 
Administration Tools (to clean up unused user/group profiles) will delete the 
profiles of users/groups from the non-specified providers (though not the 
users/groups themselves). The �profile� consists of user properties that have 
been persisted for a user/group in the portal schema. A �profile� is not the 
existence of the user in the security realm (username/password and group 
membership).

! Setting a user password will fail if the user is from a non-specified provider.

Other Supported Security Realms

In addition to LDAP, WebLogic Server supports these security realms:

! Windows NT Security Realm 

This security realm uses Windows NT account information to authenticate users. 
Users and groups defined through Windows NT can be used by your Web 
application. You can use the WebLogic Server Administration Console to view 
this realm, but you must use the facilities provided by Windows NT to define 
users and groups.

! UNIX Security Realm

A UNIX security realm executes a native program, wlauth, to authenticate users 
and groups using UNIX login IDs and passwords. On some UNIX platforms, 
wlauth uses a Pluggable Authentication Module (PAM) that allows you to 
configure authentication services in a UNIX platform without altering 
applications that use those services. On UNIX platforms for which PAM is not 
available, wlauth uses the standard login mechanism, including shadow 
passwords when they are supported. You can use the Administration Console to 
view this realm, but you must use the facilities provided by the UNIX platform 
to define users and groups.
7-24 WebLogic Portal Development Guide



Enabling Secure Sockets Layer Security
! File Realm 

When you start the server, the File realm creates user, group, and ACL objects 
from properties defined through the WebLogic Server Administration Console 
and stores them in the fileRealm.properties file.

Note: The File realm is designed for use with 10,000 or fewer users. If you have 
more than 10,000 users, use an alternate security realm.

Enabling Secure Sockets Layer Security

The Webflow and Pipeline mechanisms that direct the presentation and business logic 
associated with WebLogic Portal�s Commerce JSP templates make use of the Secure 
Sockets Layer (SSL) and declarative transport mechanisms. Links that invoke 
protected JSP files, as well as certain Input Processors and Pipelines, need to be 
accessed via the HTTPS protocol. There are a number of these links already defined in 
the Commerce (wlcs) Web application�s web.xml deployment descriptor. Secured 
JSP templates that rely on SSL also require a setting in the web.xml file that indicates 
the transport guarantee. This guarantee can be CONFIDENTIAL or INTEGRAL. 

! A CONFIDENTIAL setting prevents other entities from observing the contents of 
the transmission.

! An INTEGRAL setting prevents the data from being changed while transmitting 
between the client and server. 

See �Setting Up Portal Navigation� on page 9-1 for information on Webflows and 
Pipelines.

Note: For SSL connections to work, you must have a valid SSL certificate from a 
certificate authority set up on your server.

config.xml Requirements for SSL

To enable SSL for your Web application, you need to ensure that the domain�s 
config.xml file has SSL enabled, as shown in Listing 7-5.
WebLogic Portal Development Guide 7-25



7 Adding Security to a Portal
Listing 7-5   Enabling SSL in the config.xml File

<server>
.
.
.
   <SSL Enabled="true" ListenPort="7502" Name="portalServer"
      ServerCertificateChainFileName="ca.pem"
      ServerCertificateFileName="democert.pem"
   ServerKeyFileName="demokey.pem"/>

</server>

The SSL attribute should also identify the necessary certificate filenames, the server 
key filename, and the server name.

config.xml is stored in <BEA_HOME>/user_projects/<YOUR_DOMAIN>.

where <YOUR_DOMAIN> is the domain folder created when you ran the Configuration 
Wizard.

web.xml Requirements for SSL

You must also ensure that the secure listening ports in the Web application�s 
deployment descriptor (web.xml) match that set in config.xml, as shown in 
Listing 7-6.

Listing 7-6   Identifying Listen Ports

<context-param> 
  <param-name>HTTPS_PORT</param-name> 
  <param-value>7502</param-value> 
</context-param>
7-26 WebLogic Portal Development Guide



Enabling Secure Sockets Layer Security
Enabling HTTPS_URL_PATTERNS

Enabled HTTPS_URL_PATTERNS for portal pages (the CreatePageChangeURLTag 
tag) as decribed above.  The entries have the form 
/groupPortalDisplayName/pageName.  If the user is not authenticated, the group portal 
name will be "DEFAULT_GROUP_PORTAL" so if you wish to specify that the page 
change URL for a page called "home" uses HTTPS when no one is logged in specify 
/DEFAULT_GROUP_PORTAL/home in the HTTPS_URL_PATTERNS section of 
web.xml

Example:

   <context-param>

      <param-name>HTTPS_URL_PATTERNS</param-name>

      <param-value>

         /framework/security/login.jsp,

         /framework/security/new_user.jsp,

         /security/NewUser.inputprocessor,

         /security/LoginIP.inputprocessor,

         /groupPortal1/page1,

         /groupPortal2/page1

      </param-value>

   </context-param>

Also added a FORCE_HTTPS_FOR_AUTH_USERS option to web.xml.  This will 
cause all CreateWebflowURLTag derived tags to generate https URLs if the user has 
been authenticated and the tag is not specifically coded to use http.  The web.xml entry 
should be as follows, with value true to enable the feature and false to turn it off.

   <context-param>

      <param-name>FORCE_HTTPS_FOR_AUTH_USERS</param-name>

      <param-value>true</param-value>

   </context-param>
WebLogic Portal Development Guide 7-27



7 Adding Security to a Portal
If the FORCE_HTTPS_FOR_AUTH_USERS is enabled but the user is not logged in 
the HTTPS_URL_PATTERNS will be checked.  If 
FORCE_HTTPS_FOR_AUTH_USERS is enabled and the user is logged in 
HTTPS_URL_PATTERNS are ignored and all URLs will be https unless the tag has 
been specifically coded for http.

See �Enabling HTTPS_URL_PATTERNS� on page 7-27 for more information.

Enabling Single Sign-On

With single sign-on enabled, a visitor needs only to sign-on once to access multiple 
web applications, provided those applications are running on the same server or 
cluster. Enabling single sign-on requires these steps:

1. Ensure that the user has the same cookies for each Web application.

2. Ensure that the same user properties are used for each Web application.

Setting the Cookie Name

Set the cookie name for each application to which the visitor will have single sign-on 
access. To do this, edit the weblogic.xml file located in <BEA_HOME>weblogic700\ 
samples\portal<PORTAL_DOMAIN>\beaApps\<PORTAL_APP>\<PORTAL>\WEB-I

NF\ for each application to which the visitor will have single sign-on access.

1. Open the specific weblogic.xml file and locate the <session-param> element 
that identifies the CookieName parameter, as shown in Listing 7-7.

Listing 7-7   

<session-param>
   <param-name>CookieName</param-name>
   <param-value>JSESSIONID_SAMPLEPORTAL</param-value>
</session-param>
7-28 WebLogic Portal Development Guide



Enabling Single Sign-On
2. Change the <param-value> value to the appropriate cookie name.

3. Repeat steps 1 and 2 for each Web application.

Setting the User Properties

Each Web application to which a visitor has single sign-on access must use the same 
user property sets for the specific visitor. You will need to ensure this by editing these 
property sets and making them match. For details on editing user property sets, see 
�Creating a Property Set Definition� on page 6-18.
WebLogic Portal Development Guide 7-29



7 Adding Security to a Portal
7-30 WebLogic Portal Development Guide



WebLogic Portal Development Guide 8-1

CHAPTER

8 Portal Content 
Management

A key component of any portal is its content. WebLogic Portal provides content by 
using a Content Manager. A Content Manager provides content and document 
management capabilities for use in personalization services to target users with 
dynamic web content. It works with files or with content managed by third-party 
vendor tools. While developing portal resources, you will have to configure the 
Content Manager and use various content-related tags so that the user has access to the 
most relevant content available.

This section includes information on the following subjects:

! Adding Content by Using the Bulk Loader

! Using Content-Selector Tags and Associated JSP Tags

! Integrating External Content Management Systems

! Constructing Content Queries

Adding Content by Using the Bulk Loader

The easiest way to add content to a portal is to use the bulk loader scripts provided by 
BEA. To implement this strategy, use this procedure:

1. Publish files to a directory on the file system at a specified interval. Ideally, you 
should publish content to subdirectories under \dmsBase directory in the 
appropriate domain folder. For example, place ads in:



8 Portal Content Management

8-2 WebLogic Portal Development Guide

<BEA_HOME>\weblogic700\samples\portal\<DOMAIN_NAME>\dmsBase\ads

2. When you are done publishing the content to the file on your directory system, 
run the BulkLoader by running one of the following scripts:

" If you are loading text or image files, run loaddocs.bat (loaddocs.sh for 
UNIX users).

" If you are loading ads for placeholders or campaigns, run loadads.bat 
(loadads.sh for UNIX users).

The load scripts can be found at this location:
<BEA_HOME>\weblogic700\samples\portal\<DOMAIN_NAME>\

You can run these scripts either by typing them at the command line (or Start | 
Run in Windows NT or 2000) or by going to the Windows Explorer, locating 
the script you want to run, and double-clicking it in the file list. If you run the 
BulkLoader from a command line, you can also use any of the switches listed in 
Table 8-1.

Table 8-1  Bulk Loader Switch Settings

Switch Setting Description

-verbose Emits verbose messages.

+verbose Runs quietly [default].

-recurse Recurses into directories [default].

+recurse Does not recurse into directories.

-delete Removes document from database.

+delete Inserts documents into database [default].

-metaparse Parses HTML files for <meta> tags [default].

+metaparse Does not parse HTML files for <meta> tags.

-cleanup If specified, this only performs a table cleanup using the -d 
argument as the document base. (All files will need to be 
under that directory.)

+cleanup Turns off table cleanup (do a document load) [default].

-hidden Specifies to ignore hidden files and directories [default].



Adding Content by Using the Bulk Loader

WebLogic Portal Development Guide 8-3

+hidden Specifies to include hidden files and directories.

-inheritProps Specifies to have metadata properties be inherited when 
recursing [default].

+inheritProps Specifies to have metadata properties not be inherited when 
recursing.

-truncate Attempts to truncate data values if they are too large for the 
database (controlled via loader.properties).

+truncate Does not attempt to truncate data values [default]. 

-ignoreErrors Ignores any errors while loading a document (errors will 
still be reported).

+ignoreErrors Stops processing on any error [default].

-htmlPat <pattern> Specifies a pattern for determining which files are HTML 
files when determining whether to do the <meta> tag parse. 
This can be specified multiple times. If none are specified, 
*.htm and *.html are used.

-properties <name> Specifies the location of the loaddocs.properties file 
that should contain the connectionPool definition. This 
file may contain      
jdbc.column.<columnName>=<propname> entries 
similar to the -columnMap argument.

-conPool <name> Specifies the connectionPool name from the properties 
file from which the BulkLoader should get the connection 
information.

-schema <name> Specifies the path to the schema file the BulkLoader will 
generate 
(defaults to document-schema.xml).

+schema If specified, then no schema file will be created.

-schemaName <name> Specifies the name of the schema generated by the 
BulkLoader. Defaults to �LoadedData�.

Table 8-1  Bulk Loader Switch Settings

Switch Setting Description



8 Portal Content Management

8-4 WebLogic Portal Development Guide

-encoding <name> Specifies the file encoding to use. Defaults to your system�s 
default encoding. (See your JDK documentation for the 
valid encoding names.)

-commitAfter <num> Commits the JDBC transaction after this many documents 
are loaded. Defaults to: only at the end of the full load.

-match <pattern> Specifies a file pattern the BulkLoader should include. This 
can be specified multiple times. If none are specified, all 
files and directories are included.

-ignore <pattern> Specifies a file pattern the BulkLoader should not include. 
This can be specified multiple times.

-d <dir> Specifies the docBase that non-absolute paths will be 
relative to. If not specified, "." (current directory) is used.

-mdext <ext> Specifies the filename extension for metadata property files. 
The value should starts with a "." (defaults to 
.md.properties).

-filter <filter 
class>

Specifies the class name of a LoaderFilter to run files 
through. This can be specified multiple times to add to the 
list of Loader Filters.

+filters Clears the current list of Loader Filters. (This will clear the 
default filters as well.)

-- Everything after this is considered a file or directory.

-columnMap 
<file.properties>

Specifies a properties file containing the      
jdbc.column.<columnName>=<propname,...> 
list of additional columns to the DOCUMENT table (see 
-column). This cannot be used to override behavior for 
standard columns. 

-column 
<columnName>=<propNa
me,...>

Specifies an additional column to the DOCUMENT table 
and the property names that map onto the column. This 
cannot be used to override behavior for standard columns. 

+columns Clears any configured additional columns.

Table 8-1  Bulk Loader Switch Settings

Switch Setting Description



Adding Content by Using the Bulk Loader

WebLogic Portal Development Guide 8-5

3. Make the sure that the DocumentConnectionPool in the application's 
META-INF/application-config.xml or through the WebLogic Server console 
is configured to point to the correct directory.

4. In order for the docPool to reload the XML schema files, it must be restarted.

For this strategy to succeed, the CMS must be able to publish document metadata in 
one of the three ways the BulkLoader supports:

! In a corresponding md.properties file; this file should be a standard Java-style 
properties file containing the user-defined metadata for the document. For 
example, for image.gif the file would be image.gif.md.properties.

! In the document file; for HTML files, the metadata can be placed in standard 
<META name=“…” content=“…”> tags in the document file itself.

! In some other form for which a LoaderFilter can be written to gather the 
metadata.

BulkLoader Performance Tips

The following suggestions will improve BulkLoader performance.

Clean Up the Cache

If you�ve made a lot of small updates to a page, before running the BulkLoader, you 
should clean up the cache. On the Cache Manager Administration tab on the 
Administration Console, select Flush Entire Cache and click Flush, as shown in 
Figure 8-1.

Figure 8-1   Flushing the Cache

 Flushing is particularly helpful for these caches:



8 Portal Content Management

8-6 WebLogic Portal Development Guide

! DocumentMetaDataCache

! AdBucketServicesCache

! DocumentContentCache

! AdServicesCache

Restarting the ConnectionPool

If you used the E-Business Control Center to add new metadata properties, you need 
to restart the connectionPool. To do so:

1. From left pane of the Administration Console, open the following node:

<yourDomain> → Deployments → Applications → <yourPortal> → 
Service Configurations → Documents → DocumentConnectionPool 
Services → Default

The Document Connection Pool Services Default tab appears in the right pane of 
the Console, as shown in Figure 8-2.

Figure 8-2   Restarting the ConnectionPool

2. Click Apply and Restart.



Configuring the Content Manager

WebLogic Portal Development Guide 8-7

Configuring the Content Manager 

If you are using a third-party Content Management System to populate a portal, you 
will need to configure it to work with WebLogic Portal. This section explains the 
configuration procedures you will need to perform.

The Content Manager is a run-time subsystem that provides access to content through 
tags and EJBs. When developing JSPs, the Content Management tags allow you to 
receive an enumeration of content objects by querying the content database directly by 
using a search expression syntax. The Content Manager component works alongside 
the other components to deliver personalized content, but does not have a GUI-based 
tool for edit-time customization.

The following section describes the tasks required to configure a Content Manager. It 
includes information on the following subjects:

! Configuring the DocumentManager EJB Deployment Descriptor

! Configuring the PropertySetManager EJB Deployment Descriptor for Content 
Management

! Configuring DocumentManager MBeans

! Setting Up Document Connection Pools

! Editing a DocumentConnectionPool MBean in the WebLogic Console

! Configuring the Web Application

Configuring the DocumentManager EJB Deployment 
Descriptor

The DocumentManager EJB deployment descriptor handles the EJB portion of the 
Content Management component configuration and must be configured to recognize 
the correct environmental settings. To configure the DocumentManager EJB, ensure 
that the following environment settings are in its deployment descriptor:



8 Portal Content Management

8-8 WebLogic Portal Development Guide

! DocumentManagerMBeanName�specifies the name of the DocumentManager 
MBean to use to configure this DocumentManager.

"  In the enterprise application�s application-config.xml file, a 
<DocumentManager> entry must exist with a Name attribute equal to the 
value specified in the deployment descriptor. If this is not specified in the 
deployment descriptor, it defaults to �default�.

! DocumentConnectionPoolName�specifies the name of the 
DocumentConnectionPool MBean that this DocumentManager should use. 

" In the application�s application-config.xml file, a 
<DocumentConnectionPool> entry must exist with a Name attribute equal 
to the value specified in the deployment descriptor. 

" If the DocumentManager’s DocumentConnectionPoolName attribute is  
configured to use MBeans, then the value in the deployment descriptor is 
ignored.

! jdbc/docPool�specifies the J2EE resource reference to the 
javax.sql.DataSource that this DocumentManager should use to access a 
document connection pool. 

If jdbc/docPool is specified in the deployment descriptor, then:

"  DocumentConnectionPoolName is ignored, and

" Any DocumentConnectionPool MBeans in the application�s 
application-config.xml file are also ignored.

! PropertyCase�specifies how the DocumentManager modifies the incoming 
property name. 

" If the PropertyCase attribute of the DocumentManager MBean being used 
is set, the value in the deployment descriptor is ignored. 

" If this is lower, all property names are converted to lowercase.

"  If this is upper, all property names are converted to uppercase.

" If this is anything else or not specified, property names are not modified. 

Note: Use lower or upper depending upon the document connection pool 
implementation being used. For the document reference implementation, 
do not specify the PropertyCase.



Configuring the Content Manager

WebLogic Portal Development Guide 8-9

Configuring the PropertySetManager EJB Deployment 
Descriptor for Content Management

The DocumentManager needs to be integrated into the PropertySetManager EJB 
deployment descriptor so that content property sets are exposed to the system. To 
configure the PropertySetManager EJB Deployment Descriptor for content 
management, add the following environment settings:

! repository/CONTENT�specifies the fully qualified class name of 
com.bea.p13n.property.PropertySetRepository implementation. Use 
com.bea.p13n.content.PropertySetRepositoryImpl to integrate with the 
Content Management component.

! ejb/ContentManagers/[type]� the 
com.bea.p13n.content.PropertySetRepositoryImpl looks for all 
environment entries starting with ejb/ContentManagers. It expects these to be 
J2EE EJB references to ContentManagers (or subclasses). 

To integrate a ContentManager or DocumentManager with the 
PropertySetManager, add an EJB reference here. For example, 
ejb/ContentManagers/Document is mapped to the standard 
DocumentManager.

Alternately, you can set the JNDIName attribute of the DocumentManager MBean to 
the JNDI Home name of the DocumentManager. The ${APPNAME} construct can be 
used in the value; it will be replaced by the current J2EE application name. The 
com.bea.p13n.content.PropertySetRepositoryImpl will automatically pick 
up those DocumentManagers and the J2EE EJB reference is not required.

Configuring DocumentManager MBeans

The DocumentManager implementation uses DocumentManager MBeans to maintain 
its configuration. A deployed DocumentManager finds which DocumentManager 
MBean to use from the DocumentManagerMBeanName EJB deployment descriptor 
setting. You will need to configure the DocumentManager MBeans in the application 
so that their values correspond to the Name attributes in the 
DocumentManagerMBeanName EJB deployment descriptor.



8 Portal Content Management

8-10 WebLogic Portal Development Guide

To configure a DocumentManager MBean, you can modify the application�s 
META-INF/application-config.xml file to add or change the following XML, as 
shown in Listing 8-1.

Listing 8-1   Modifying the <DocumentManager> Element in an Application�s 
META-INF/application-config.xml File

<DocumentManager
  Name="default"
  DocumentConnectionPoolName="default"
  PropertyCase="none"
  MetadataCaching="true"
  MetadataCacheName="documentMetadataCache"
  UserIdInCacheKey="false"
  ContentCaching="true"
  ContentCacheName="documentContentCache"
  MaxCachedContentSize="32768"
>
</DocumentManager>

Do not try to change these attributes from within the application-config.xml file. 
Instead, use the WebLogic Server Administration Console, as described in �Using the 
WebLogic Server Administration Console to Modify DocumentManager MBeans� on 
page 8-10.

Using the WebLogic Server Administration Console to Modify 
DocumentManager MBeans

To modify DocumentManager MBeans by using the WebLogic Server Administration 
Console, use this procedure.

1. Start WebLogic Server and open a Web browser.

2. Open the WebLogic Server Administration Console by typing the following URL 
in the Address field:

http://<hostname>:<port>/console

For example, if you are launching the console on the server itself, the default 
URL is:



Configuring the Content Manager

WebLogic Portal Development Guide 8-11

http://localhost:7501/console

3. Press Enter.

The WebLogic Server sign-in screen appears. 

4. Sign in by entering your username and password and clicking Sign in. The 
default username/password pair is system/weblogic.

5. The WebLogic Server Administration Console appears, as show in Figure 8-3.

Figure 8-3   WebLogic Server Administration Console

6. In the left pane, drill down to the DocumentManager MBean for your applicaion. 
Select these nodes:

MyDomain → Deployments → Applications → MyApplication → Service 
Configuration → Document Manager → MyMBean

Where:

" MyDomain is the domain inwhich the application resides.

" MyApplication is the Web application that uses the MBean.



8 Portal Content Management

8-12 WebLogic Portal Development Guide

" MyMBean is the actual MBean you want to configure.

Figure 8-4 shows an example of the nodes you would select to drill down to the 
Default MBean for the DocumentManager for an application called portalApp.

Figure 8-4   Drilling Down to an MBean
 

When you select the MBean node, the DocumentManager Services screen for 
that MBean appears in the right pane, as shown in Figure 8-5. Note the MBean 
name on the tab.



Configuring the Content Manager

WebLogic Portal Development Guide 8-13

Figure 8-5   DocumentManager Service Screen

7. Change the attributes as necessary and click Apply. These attributes are listed in 
Table 8-2.

Table 8-2  DocumentManager MBean Attributes

Attribute Screen Label/Control Type Description

DocumentConnection
PoolName

Document Connection Pool 
Name
Text Box

Specifies the name of the 
DocumentConnectionPool MBean the 
DocumentManager should use.



8 Portal Content Management

8-14 WebLogic Portal Development Guide

PropertyCase Property Case
Drop-down List

Specifies how the DocumentManager 
modifies the incoming property name. 
! If this is lower, all property names are 

converted to lowercase.
! If this is upper, all property names are 

converted to uppercase.
! If this is anything else or not specified, 

property names are not modified. 
Use lower or upper depending upon the 
document connection pool implementation 
being used. For the document reference 
implementation, do not specify the 
PropertyCase.

MetadataCaching Metadata Caching Enabled?
Checkbox

Specifies whether the DocumentManager 
should cache Document metadata from 
searches. Use true to have the 
DocumentManager cache search results in the 
com.bea.p13n.cache.Cache specified by 
MetadataCacheName; otherwise, use 
false. This defaults to true.

MetadataCacheName MetaData Cache Name
Text Box

Specifies the name of the 
com.bea.p13n.cache.Cache to use if 
MetadataCaching is set to true. This 
defaults to documentMetadataCache.

UserIdInCacheKey Is Userid in the Cache Key?
Checkbox

Specifies whether the user�s identifier should be 
used as part of the key when caching document 
metadata or content. This defaults to true. If 
using WebLogic Portal reference 
implementation document management system, 
set this to false.

ContentCaching Content Caching Enabled?
Checkbox

Specifies whether the DocumentManager 
should cache document content (that is, the 
bytes of the document). Use true to have the 
DocumentManager cache document content 
bytes; otherwise use false. This value defaults 
to true.

Table 8-2  DocumentManager MBean Attributes

Attribute Screen Label/Control Type Description



Configuring the Content Manager

WebLogic Portal Development Guide 8-15

Disabling an MBean

You can enable or disable an MBean from the WebLogic Server Administration 
Console. To do so, use this procedure.

Note: This procedure assumes that you are connected to WebLogic Server and have 
the Administartion console open, as you did in �Using the WebLogic Server 
Administration Console to Modify DocumentManager MBeans.�

1. In the left pane, drill down to the Add or remove service configurations node, 
which is under the Service Configurations node, as shown in Figure 8-6.

ContentCacheName Content Cache Name
Text Box

Specifies the name of the 
com.bea.p13n.cache.Cache to use if 
ContentCaching is set to true. This 
defaults to documentContentCache.

MaxCachedContent
 Size

Maximum Size of Cached 
Content
Text Box

Specifies the maximum size of a document�s 
content bytes that the DocumentManager will 
cache, if ContentCaching is true. This defaults 
to 32768 (32K) bytes.

JNDIName n/a Specifies the JNDI home name of the 
DocumentManager EJB that is connected to 
this MBean. The ${APPNAME} construct can 
be used in the value; it will be replaced by the 
current J2EE application name. This is used by 
the 
com.bea.p13n.content.PropertySet 
RepositoryImpl to tie document property 
set information into the 
PropertySetManager.

Table 8-2  DocumentManager MBean Attributes

Attribute Screen Label/Control Type Description



8 Portal Content Management

8-16 WebLogic Portal Development Guide

Figure 8-6   Selecting the Add or remove service configurations Node

The Service Configuration screen appears in the right pane, as shown in 
Figure 8-7.



Configuring the Content Manager

WebLogic Portal Development Guide 8-17

Figure 8-7   Service Configuration Screen

2. Locate the MBean you want to remove from the list and click the associated 
checkbox to deselect it, as shown in Figure 8-8.



8 Portal Content Management

8-18 WebLogic Portal Development Guide

Figure 8-8   Service Configuration Screen with MBean Deselected

3. Deselect each MBean you want to disable. When you are done, click Submit.

You receive the message �You must redeploy your application [APP_NAME] for 
these changes to take place.�

4. Redeploy the application or restart the server.

Restoring a Disabled MBean

To restore the MBean disabled in the preceding procedure, click its acssociated 
checkbox to select it. Again, once you�ve restored all necessary MBeans, click 
Submit. 

Setting Up Document Connection Pools

The DocumentManager implementation uses connection pools to a specialized JDBC 
driver to handle searches on content. A deployed DocumentManager finds the 
document connection pool to use via either the DocumentConnectionPoolName 



Configuring the Content Manager

WebLogic Portal Development Guide 8-19

attribute of its DocumentManager MBean or the DocumentConnectionPoolName 
EJB deployment descriptor setting. That value must correspond to a 
DocumentConnectionPool MBean.

To configure a DocumentConnectionPool MBean, modify the application�s 
META-INF/application-config.xml file by adding or changing the XML shown in 
Listing 8-2:

Listing 8-2   Modifying an Application�s META-INF/application-config.xml 
File to Configure a DocumentConnectionPool MBean

<DocumentConnectionPool

Name="default"DriverName="com.bea.p13n.content.document.   
jdbc.Driver"URL="jdbc:beasys:docmgmt:com.bea.p13n.content
   document.ref.RefDocumentProvider"
Properties="jdbc.dataSource=weblogic.jdbc.pool.commercePool;
   schemaXML=D:/bea/user_projects/myNEWdomain/dmsBase/
   doc-schemas;docBase=D:/bea/user_projects/myNEWdomain/dmsBase"
InitialCapacity="20"
MaxCapacity="20"
CapacityIncrement="0"

/>

Editing a DocumentConnectionPool MBean in the 
WebLogic Console

As with the DocumentManager MBeans, you must modify the 
DocumentConnectionPool MBean by using the WebLogic Server Administration 
Console. See the procedure in �Using the WebLogic Server Administration Console to 
Modify DocumentManager MBeans� on page 8-10 for instructions. Note that, for the 
DocumentConnectionPool MBeans, you need to select the Document Connection Pool 
Service node and make the changes on the Document Connection Pool Service screen, 
shown in Figure 8-9.



8 Portal Content Management

8-20 WebLogic Portal Development Guide

Figure 8-9   Document Connection Service Pool Screen

The attributes of the DocumentConnectionPool MBean that you can change are 
listed in Table 8-3.

Table 8-3  DocumentConnectionPool MBean Attributes

Attribute Screen Label/
Control Type

Description

DriverName Driver Name
Text Box

Specifies the JDBC driver class name to 
use. This should be set to 
com.bea.p13n.content.docume
nt.jdbc.Driver



Configuring the Content Manager

WebLogic Portal Development Guide 8-21

URL JDBC URL
Text Box

Specifies the JDBC URL to use.
! For WebLogic Portal�s reference 

implementation document 
management system, this should be 
set to:
jdbc:beasys:docmgmt:com.b
ea.p13n.content.document.
ref.RefDocumentProvider.

! For a different Document Provider, 
use:
jdbc:beasys:docmgmt:<clas
sname>

where <classname> is the fully 
qualified class name of the 
implementation of 
com.bea.p13n.content.
document.spi.DocumentProv
ider.

Properties JDBC Properties
Text Box

The semi-colon separated list of 
name=value pairs which will be 
passed to the DocumentProvider 
specified in the URL. Table 8-4 lists the 
properties that the reference 
implementation understands.

InitialCapacity Initial Capacity of 
Pool
Text Box

Specifies the initial number of 
connections to create when the 
document connection pool is started.

MaxCapcity Maximum Capacity 
of Pool
Text Box

Specifies the maximum number of 
connections this pool will ever create 
and maintain.

CapacityIncrement Capacity Increment
Text Box

Specifies the number of connections the 
pool will create whenever it needs to 
create an available connection.

Table 8-3  DocumentConnectionPool MBean Attributes

Attribute Screen Label/
Control Type

Description



8 Portal Content Management

8-22 WebLogic Portal Development Guide

Table 8-4 Describes the valid reference implementation properties you can set for the 
DocumentConnectionPool MBean.

LoginTimeout n/a Specifies the amount of time to wait for 
a connection: after this time expires, an 
exception is thrown. Use 0 or less to 
have the pool not timeout, which is the 
default.

ClassPath n/a Specifies the semicolon -separated list 
of additional directories and JARs the 
connection pool should use when 
attempting to load the Driver and the 
DocumentProvider classes. All 
paths are assumed to be relative to the 
application directory.

Table 8-4  Reference Implementation Properties
Property Description

jdbc.dataSourceSp Specifies the JNDI name of the javax.sql.DataSource to 
use to get database connections. This datasource should 
be connected to the database that contains the 
DOCUMENT and DOCUMENT_METADATA tables.

jdbc.url Specifies the JDBC URL to connect to. If 
jdbc.dataSource is specified, this is ignored.

jdbc.driver Specifies the JDBC driver class to load. If 
jdbc.dataSource is specified, this is ignored.

jdbc.isPooled If true, or if jdbc.url starts with 
jdbc:weblogic:pool or jdbc:weblogic:jts, 
or if jdbc.dataSource is specified, then assumes the 
connection is pooled and won't cache it. If anything else, 
assumes the connection is not pooled and will maintain 
one connection.

Table 8-3  DocumentConnectionPool MBean Attributes

Attribute Screen Label/
Control Type

Description



Configuring the Content Manager

WebLogic Portal Development Guide 8-23

You can edit a DocumentConnectionPool MBean to change attribute and property 
values as needed by using the WebLogic Server Administration Console, as shown in 
Figure 8-9.

jdbc.supportsLikeEscape   
Clause

Specifies whether the underlying database supports the 
SQL LIKE ESCAPE clause. If this is not specified, the 
connection will be queried.

jdbc.docBase Specifies under which base directory the documents are 
stored. Assumes all paths coming from the database are 
relative to this directory.

jdbc.schemaXML Specifies the path to the directory containing XML files 
following the doc-schemas DTD which contain the 
property set information. The system will recurse 
through the directory, loading all files ending in .xml.

jdbc.isolationLevel Configures the transaction isolation level to set on the 
database connections. This can be one of the following:
READ_COMMITTED
READ_UNCOMMITTED
SERIALIZABLE
REPEATABLE_READ
NONE
If not specified, it defaults to SERIALIZABLE.
For further details, see the Javadoc API documentation 
for java.sql.Connection.

jdbc.column.<colName> Specifies an additional column to the DOCUMENT 
table. The value is the comma-separated list of property 
names that map onto that column. This can be specified 
multiple times. This should be used in conjunction with 
the -columnMap and/or -column arguments to the 
BulkLoader. If the same property is mapped to more 
than one column, the result is indeterminate.

Table 8-4  Reference Implementation Properties
Property Description



8 Portal Content Management

8-24 WebLogic Portal Development Guide

Configuring the Web Application

You need to configure the Web application to have access to the J2EE resources (such 
as EJBs, servlets, and JSP tag libraries) required to access the content management 
services. This means you will need to configure EJB references to 
ejb/ContentManager and ejb/DocumentManager. Additionally, you need to have 
the com.bea.p13n.content.servlets.ShowDocServlet mapped into your Web 
Application. BEA suggests that you to map it to the /ShowDoc/* URL in your Web 
Application, as shown in Listing 8-3. 

Listing 8-3   Mapping the ShowDocServlet

<servlet>
  <servlet-name>ShowDocServlet</servlet-name>
  <servlet-class> com.bea.p13n.content.servlets.ShowDocServlet
  </servlet-class>

  <!-- Make showdoc always use the local ejb-ref DocumentManager -->

  <init-param>
    <param-name>contentHome</param-name>
    <param-value>java:comp/env/ejb/DocumentManager</param-value>
  </init-param>

</servlet>

...

<servlet-mapping>
  <servlet-name>ShowDocServlet</servlet-name>
  <url-pattern>/ShowDoc/*</url-pattern>
</servlet-mapping>

This will allow the ShowDoc/ URI under your Web Application�s context root (for 
example, /wlcs/ShowDoc) to be sent to the ShowDocServlet. The contentHome 
<init-param> will cause that ShowDocServlet to always use the 
ejb/DocumentManager EJB reference; you can take this out to allow 
ShowDocServlet to obey any contentHome request parameters.

To access the Content Management tag libraries, you will need to:



Using Content-Selector Tags and Associated JSP Tags

WebLogic Portal Development Guide 8-25

! Copy the cm_taglib.jar file in the Web Application�s WEB-INF/lib directory. 
(It can be copied from WL_PORTAL_HOME/lib/p13n/web.)

! Make sure that cm.tld is mapped to /WEB-INF/lib/cm_taglib.jar in a 
<taglib> entry in your Web Application�s WEB-INF/web.xml file.

Using Content-Selector Tags and Associated 
JSP Tags

A content selector is one of several mechanisms that WebLogic Portal provides for 
retrieving documents from a content management system. You can use content 
selector JSP tags and a set of other JSP tags to retrieve and display the content targeted 
by the content selector.

This section describes how to use content-selector tags and their associated JSP tags to 
manage content. It includes information on the following topics:

! Using the <pz:contentSelector> Tag

! Associated Tags That Support Content Selectors

! Using Content Selector Tags and Associated Tags

For information on how WebLogic Portal�s content-related JSP tags map to WebLogic 
Portal�s content management service provider interface (SPI), see the �Personalization 
JSP Tags� section of the JavaServer Page Guide at 
http://edocs.bea.com/wlp/docs70/jsp/p13njsp.htm.

Using the <pz:contentSelector> Tag

The <pz:contentSelector> selector tag allows you to do the following:

! Identify the Content Selector Definition

! Identify the JNDI Home for the Content Management System

! Define the Array That Contains Query Results



8 Portal Content Management

8-26 WebLogic Portal Development Guide

! Create and Configure the Cache to Improve Performance

Identify the Content Selector Definition

The content selector definition created in the E-Business Control Center determines 
the conditions that activate a content selector and the query that the active content 
selector runs.

To refer to this definition, use the rule attribute:

<pz:contentSelector rule= { definition-name | scriptlet } > 

You can use a scriptlet to determine the value of the rule attribute based on additional 
criteria. For example, you use a content selector in a heading JSP (heading.inc), 
which is included in other JSPs. You can create different content selectors for each 
page that includes heading.inc.

A scriptlet is used in heading.inc to provide a value based on the page that currently 
displays the included JSP file. Listing 8-4 shows an example.

Listing 8-4    Using a Scriptlet in heading.inc 

 String banner = (String)pageContext.getAttribute("bannerPh");
   banner = (banner == null) ? "cs_top_generic" : banner;

%>

<!-- ------------------------------------------------------------- 
-->

<table width="100%" border="0" cellspacing="0" cellpadding="0"
   height="108">

  <tr><td rowspan="2" width="147" height="108">
  <pz:contentSelector rule="<%= banner %>" ... />

</td>



Using Content-Selector Tags and Associated JSP Tags

WebLogic Portal Development Guide 8-27

Identify the JNDI Home for the Content Management System

The content selector tag must use the contentHome attribute to specify the JNDI home 
of the content management system. If you use the reference content management 
system or a third-party integration, you can use a scriptlet to refer to the default content 
home. Because the scriptlet uses the ContentHelper class, you must first use the 
following tag to import the class into the JSP:

<%@ page import="com.bea.p13n.content.ContentHelper"%> 

Then, when you use the content selector tag, specify the contentHome as described in 
Listing 8-5.

Listing 8-5   Specifying contentHome in a Content-Selector Tag

<pz:contentSelector 
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"

... /> 

If you create your own content management system, you must specify the JNDI home 
for your system instead of using the ContentHelper scriptlet. In addition, if your 
content management system provides a JNDI home, you can specify that one instead 
of using the ContentHelper scriptlet.

Define the Array That Contains Query Results

You can use the attributes described in Table 8-5 to configure the array that contains 
the results of the content-selector query.

Table 8-5  Attributes that Define the Array that Contains Query Results

Attribute Description

id Specifies a name for the array. This attribute is required.
For example, <pz:contentSelector id="docs" .../> 
places documents in an array named docs.



8 Portal Content Management

8-28 WebLogic Portal Development Guide

Create and Configure the Cache to Improve Performance

To extend accessibility of retrieved content and to improve performance, you can 
optionally use content selector attributes to create and configure a cache that contains 
the array contents. Without the cache, you can access the content selector array only 
from the current JSP page, and only for the customer request that created it. In addition, 
each time a customer requests a JSP that contains the content selector tag, the content 
selector must run the query, potentially slowing the overall performance of WebLogic 
Portal. 

To cache the contents of the array, use the attributes listed in Table 8-6.

max Limits the number of documents the content selector places in its 
array. 
For example, <pz:contentSelector max="10" .../> 
causes the content selector to stop retrieving documents when the 
array contains 10 documents.
This attribute is optional and defaults to -1, which means no 
maximum.

sortBy Uses one or more document attributes to sort the documents in the 
array. The syntax for sortBy follows the SQL order by clause 
syntax.
This attribute is optional. If you do not specify this attribute, the 
content selector returns the query results in the order that the content 
management system returns them.
For example, <pz:contentSelector 
sortBy="creationDate" .../> places the documents that 
were created first at the beginning of the array.
The tag <pz:contentSelector sortBy="creationDate 
ASC, title DESC" .../> places older documents at the 
beginning of the array. If any documents were created on the same 
day, it sorts those documents counter-alphabetically by title.

Table 8-5  Attributes that Define the Array that Contains Query Results

Attribute Description



Using Content-Selector Tags and Associated JSP Tags

WebLogic Portal Development Guide 8-29

Table 8-6  Attributes that Cache the Contents of an Array

Attribute Description

useCache Determines whether the content selector places the array in a 
cache. To activate the cache, set this attribute to true. For 
example, <pz:contentSelector cache="true" ...>.
To deactivate the cache, set the attribute to false or do not 
include it. For example, the following statements are equivalent:
<pz:contentSelector cache="false" .../>

<pz:contentSelector ...>

cacheId Assigns a name to the cache. If you do not specify this attribute, 
the cache uses the name of the array (which you must specify 
with the id attribute). If you want to access the cache from a JSP 
or user session other than the one that created the array, you must 
specify a cacheId. 

cacheTimeout Specifies the number of milliseconds that WebLogic Portal 
maintains the cache. The content selector does not re-run the 
query until the number of seconds expires.
For example, you create the following tag:
<pz:contentSelector cache="true" 
cacheTimeout=”300000” .../>

A customer requests the page that contains this content selector 
tag. The user leaves the page but, 2 minutes (120000 
milliseconds) later, requests it again. The content selector 
evaluates its conditions, but because only 120000 milliseconds 
have expired since the content selector created the cache, it does 
not re-run the query. Instead, it displays the documents in the 
cache.



8 Portal Content Management

8-30 WebLogic Portal Development Guide

Associated Tags That Support Content Selectors

The JSP tags listed in Table 8-7 support content selector functions.

cacheScope Determines from where the cache can be accessed. You can 
provide the following values for this attribute:
! application. Any JSP page in the Web application that 

any customer requests can access the cache.
! session (the default). Any JSP in the Web application that 

the current customer requests can access the cache.
! page. Only the current JSP that any customer requests can 

access the cache.
! request. Only the current user request can access the 

cache. If a customer re-requests the page, the content selector 
re-runs the query and recreates the cache.

Table 8-6  Attributes that Cache the Contents of an Array

Attribute Description



Using Content-Selector Tags and Associated JSP Tags

WebLogic Portal Development Guide 8-31

Table 8-7   JSP Tags that Support Content-Selector Functions

Tag Description

<um:getProfile> Retrieves the profile of the customer who is currently 
viewing the page. A content selector uses the customer 
profile to evaluate any conditions that involve 
customer properties.
For example, if you create a content selector that runs 
a query for all customers in the Gold Customer 
customer segment, the content selector must access the 
customer profile to determine if it matches the 
customer segment.
Even if a content selector does not currently use the 
customer profile for its conditions, we recommend that 
you include the <um:getProfile> tag; its affect on 
performance is minimal and with the tag, 
customer-profile conditions can be added to the 
content selector without requiring a developer to 
modify JSPs.
The tag must be located closer to the beginning of the 
JSP than the content selector tag.



8 Portal Content Management

8-32 WebLogic Portal Development Guide

Using Content Selector Tags and Associated Tags

The combination of content selector definitions, tag attributes, and associated JSP tags 
creates a powerful set of tools for matching documents to customers in specific 
contexts. The following tasks are the most common uses of content selectors and 
associated tags:

! Retrieving and Displaying Text-Type Documents

! Retrieving and Displaying Image-Type Documents

! Retrieving and Displaying a List of Documents

! Accessing a Content Selector Cache on a Different JSP

<es:forEachInArray> Iterates through the array that contains the results of a 
content selector query. With this tag, you can use the 
following to work with the documents in the array:
! The System.out.println method to print 

each item in the array.
! The <cm:getProperty> tag to retrieve one or 

more attributes of the documents in the array. You 
can use the attributes to construct the HTML that 
a browser requires to display the documents. For 
example, you use the <cm:getProperty> tag 
to determine the value of a MIME-type attribute. 
If the MIME-type of a document in the array is an 
image, you print the HTML <img> tag with the 
appropriate attributes.

! You can also use attributes of the 
<pz:contentSelector> tag, such as 
sortBy, to work with the attributes of documents 
in the array.

! The <cm:printProperty> to print one or 
more attributes of the documents in the array. For 
example, you can use this tag to print a list of 
document titles that the content selector retrieves.

Table 8-7   JSP Tags that Support Content-Selector Functions

Tag Description



Using Content-Selector Tags and Associated JSP Tags

WebLogic Portal Development Guide 8-33

For information on how WebLogic Portal�s content-related JSP tags map to WebLogic 
Portal�s content management service provider interface (SPI), see the �Personalization 
JSP Tags� section of the JavaServer Page Guide at 
http://edocs.bea.com/wlp/docs70/jsp/p13njsp.htm.

Retrieving and Displaying Text-Type Documents

To retrieve and display text-type documents, use this procedure:

Note: This procedure assumes that the content selector query created in the 
E-Business Control Center includes a filter to retrieve only text documents.

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the lines shown in Listing 8-6 to import 
classes and tag libraries if they are not already in the JSP:

Listing 8-6   Code to Import Classes and Tag Libraries

<%@ page import="com.bea.p13n.content.ContentHelper"%>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="pz.tld" prefix="pz" %>

<%@ taglib uri="um.tld" prefix="um" %> 

3. Add the following tag to get the customer profile, if the tag is not already in the 
JSP:

<um:getProfile> 

If the JSP already uses this tag for some other purpose, it probably includes 
other attributes. Make sure that the tag is closer to the beginning of the JSP than 
the <pz:contentSelector> tag, which you use in the next step.

4. Add the tags shown in Listing 8-7, where SpringSailing is the name of the 
content selector that was created in the E-Business Control Center:



8 Portal Content Management

8-34 WebLogic Portal Development Guide

Listing 8-7   Content Selector Tag Example 1

<pz:contentSelector rule="SpringSailing" 
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
id="textDocs"/>
<es:forEachInArray array="<%=textDocs%>" id="aTextDoc" 
type="com.bea.p13n.content.Content">
<p><cm:printDoc id="aTextDoc"/></p>

</es:forEachInArray>

Note:  To verify the content type before you display it, you can surround the <% 
"<P>" + aTextDoc + "</P>" %> scriptlet with another scriptlet. 
Listing 8-8 shows an example:

Listing 8-8   Verifying the Content Type

<% if (aTextDoc.getMimeType().contains("text") != -1)
{
  %>
    <p><cm:printDoc id="aTextDoc"/></p>
<%
} 
%>

5. Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web 
application and deploy it. 

WebLogic Portal deploys the modifications. If you specified a page-check rate 
for your Web application, WebLogic Portal waits for the page-check interval to 
expire before deploying any changes.

Retrieving and Displaying Image-Type Documents 

To retrieve and display image-type documents, use this procedure: 

1. Open a JSP in a text editor.



Using Content-Selector Tags and Associated JSP Tags

WebLogic Portal Development Guide 8-35

2. Near the beginning of the JSP, add the lines shown in Listing 8-9 to import 
classes and tag libraries if they are not already in the JSP:

Listing 8-9   Code to Import Classes and Tag Libraries if They are not Already in 
the JSP

<%@ page import="com.bea.p13n.content.ContentHelper"%> 
<%@ taglib uri="pz.tld" prefix="pz" %>
<%@ taglib uri="um.tld" prefix="um" %>

<%@ taglib uri="cm.tld" prefix="cm" %> 

3. Add the following tag to get the customer profile, if the tag is not already in the 
JSP:

<um:getProfile> 

If the JSP already uses this tag for some other purpose, it probably includes 
other attributes. Make sure that the tag is closer to the beginning of the JSP than 
the <pz:contentSelector> tag, which you create in the next step.

4. Add the tags shown in Listing 8-10, where SpringSailing is the name of the 
content selector that was created in the E-Business Control Center:

Listing 8-10   Content Selector Tag Example 2

<pz:contentSelector rule="SpringSailing" 
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
id="ImageDocs"/>

<es:forEachInArray array="<%=ImageDocs%>" id="anImageDoc" 
type="com.bea.p13n.content.Content">

  <img src="ShowDoc/<cm:printProperty 

  id="anImageDoc" name="identifier" encode="url"/>"

</es:forEachInArray>

Note: The above tags assume that the content selector query that was created in 
E-Business Control Center includes a filter to retrieve only image 



8 Portal Content Management

8-36 WebLogic Portal Development Guide

documents. To verify the content type before you display it, you can 
surround the <img> tag with a scriptlet. Listing 8-11 shows an example:

Listing 8-11   Surrounding an <img> Tag with a Scriptlet

<% if (anImageDoc .getMimeType().contains("image"))
{
%>
  <img src="ShowDoc/<cm:printProperty
  id="anImageDoc" name="identifier" encode="url"/>">
} 
%>

5. Save the JSP. If you deploy the Web application as a .war file, re-jar the Web 
application and deploy it. 

WebLogic Portal deploys the modifications. If you specified a page-check rate 
for your Web application, WebLogic Portal waits for the page-check interval to 
expire before deploying any changes..

Retrieving and Displaying a List of Documents

To retrieve and display a list of documents, use this procedure:

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the lines shown in Listing 8-12 to import 
classes and tag libraries if they are not already in the JSP:

Listing 8-12   Code to Import Classes and Tag Libraries if They are not Already 
in the JSP 

<%@ page import="com.bea.p13n.content.ContentHelper"%> <%@ 
taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="pz.tld" prefix="pz" %>

<%@ taglib uri="um.tld" prefix="um" %> 



Using Content-Selector Tags and Associated JSP Tags

WebLogic Portal Development Guide 8-37

3. Add the following tag to get the customer profile, if the tag is not already in the 
JSP:

<um:getProfile> 

If the JSP already uses this tag for some other purpose, it probably includes 
other attributes. Make sure that the tag is closer to the beginning of the JSP than 
the <pz:contentSelector> tag, which you create in the next step.

4. Add the tags shown inListing 8-13 , where SpringSailing is the name of the 
content selector that was created in the E-Business Control Center:

Listing 8-13   Content Selector Tags Example 3

<pz:contentSelector rule="SpringSailing" 
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
id="docs"/>
<ul>
   <es:forEachInArray array="<%=docs%>" id="aDoc"
   type="com.bea.p13n.content.Content">

   <li>The document title is: <cm:printProperty id="aDoc"
   name="Title" encode="html" />
   </es:forEachInArray>
</ul>

5. Save the JSP. If you deploy the Web application as a .war file, re-jar the Web 
application and deploy it. 

WebLogic Portal deploys the modifications. If you specified a page-check rate 
for your Web application, WebLogic Portal waits for the page-check interval to 
expire before deploying any changes.

Accessing a Content Selector Cache on a Different JSP

To access a content selector cache on a Different JSP, use this procedure:

1. In a text editor, open the JSP page that contains the content selector tag. For 
example, you want to cache the results of the following tag:
<pz:contentSelector rule="SpringSailing" id="docs".../>

2. Add attributes to the content selector tag as shown in Listing 8-14:



8 Portal Content Management

8-38 WebLogic Portal Development Guide

Listing 8-14   Content Selector Tag Attributes

<pz:contentSelector rule="SpringSailing" 
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"

id="docs" 
useCache="true" cacheId="SpringSailingDocs" 
cacheTimeout="120000"

cacheScope="application" /> 

These attributes create a cache that WebLogic Portal maintains for 2 minutes 
(120000 milliseconds) and that can be accessed using the name 
SpringSailingDocs by any user from any page in the Web application. For 
more information about possible values for cacheScope, see �Create and 
Configure the Cache to Improve Performance� on page 8-28.

3. Save and deploy the JSP.

4. In a text editor, open the JSP from which you want to access the cache.

5. Use a content-selector tag that is identical to the tag you created in step 2. For 
example, on the current JSP, add the tag shown in Listing 8-15:

Listing 8-15   Adding an Identical Tag

<pz:contentSelector rule="SpringSailing" 
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
id="docs" 
useCache="true" cacheId="SpringSailingDocs" cacheTimeout="120000"
cacheScope="application" /> 

6. Save and deploy the JSP.



Integrating External Content Management Systems

WebLogic Portal Development Guide 8-39

Integrating External Content Management 
Systems

For customers who have larger amounts of content and want more control over the 
publishing and tagging of content, BEA partners with third-party vendors to add 
flexibility to WebLogic Portal. Third-party content management systems provide 
robust, content-creation management solutions while the Content Manager 
personalizes and serves the content to the end user.

Integration Strategies

BEA recommends three strategies for integrating a third-party content management 
system with the WebLogic Portal: 

! Have the CMS publish the documents onto the file system and use the reference 
implementation�s BulkLoader to load them into the database. This is the same 
process described in �Adding Content by Using the Bulk Loader� on page 8-1, 
except that you must ensure that the third-party CMS loads data into the 
appropriate location at a regularly scheduled interval. See �Adding Content by 
Using the Bulk Loader� on page 8-1 for complete information.

! Write an implementation of the DocumentProvider interface. See �Adding 
Content by Implementing a DocumentProvider Interface� on page 8-40.

! Have the CMS publish into the reference implementation document repository. 
See �Publishing to Reference Implementation� on page 8-48.



8 Portal Content Management

8-40 WebLogic Portal Development Guide

Adding Content by Implementing a DocumentProvider 
Interface

The DocumentProvider object is the entry point into an SPI implementation. It consists 
of methods that access the underlying content management system. When developing 
a DocumentProvider, you do not need to be concerned about transactional state or 
thread safety. Since a DocumentProvider does not need to perform write actions, a 
transaction is not required to access a DocumentProvider.

Implementing a DocumentProvider interface involves writing implementations of Java 
interfaces contained in the com.beasys.p13n.content.document.spi package. 
These interfaces are:

! DocumentProvider

! DocumentIterator

! DocumentMetadataDef

! DocumentDef

! DocumentSchemaDef

The following sections describe how these interfaces are implemented to integrate a 
CMS with WebLogic Portal. 

For more information on these interfaces, see the Javadoc for 
com.beasys.p13n.content.document.spi.

The following steps present a high-level description of how to implement a 
DocumentProvider interface.

Step 1. Ensure that the CMS Meets the Minimum Use Requirements

To successfully integrate a Content Management System into WebLogic Portal, the 
CMS must support the capabilities listed in Table 8-8.



Integrating External Content Management Systems

WebLogic Portal Development Guide 8-41

Table 8-8  CMS Minimum Use Requirements

Requirement Description

Unique document Ids There must be a single key that identifies a document as unique from 
all the other documents in the system, and it must be possible to 
represent the key as a String. For example, some content 
management systems assign a document an object id, while others 
(including the reference implementation) use the relative path. 

Document Metadata There must be a way to retrieve all the metadata about a document. 
The metadata must be comprised of the standard WebLogic Portal 
types (Boolean, Integer, Float, DateTime, String, Multi-valued), or 
be able to be converted to those types. This metadata must include, 
at a minimum, the size of the document in bytes and the MIME 1.0 
mime type of the document.

Document content 
retrieval

There must be some way to retrieve the raw bytes of the document. 

Searching The CMS must allow some mechanism to search for documents 
based upon a query against the document metadata. (Full-text 
searches are not required in WebLogic Portal.)

Schemas The CMS must provide a mechanism to expose the document 
metadata schemas. Schemas describe which of the metadata 
attributes and their types will be associated with which types of 
documents. The rules editor then uses this schema information to let 
you create the content selector rules that make personalization 
possible. (Regular document searching methods do not use the 
schema information, so non-personalized document retrieval is 
possible without schemas.)

Java access The CMS must support some mechanism by which Java code can 
access the documents. These may include, but are not limited to, 
Java class libraries, a native shared library which JNI can access, 
socket based access (such as HTTP, DCOM, client-server), DBMS 
level access, file based access, or eLink capable access. (Java access 
is optional when publishing into the reference implementation 
supplied by WebLogic Portal.)



8 Portal Content Management

8-42 WebLogic Portal Development Guide

If all of these requirements cannot be met in some fashion, it will not be possible to 
fully integrate the CMS with WebLogic Portal. Additionally, since WebLogic Portal 
does not provide document creation and editing functionality, the CMS must have 
some way for users to create and edit documents.

Step 2. Write the SPI Implementation

Next, you need to code the SPI by implementing the interfaces described in Table 8-9 
and the additional default and helper classes listed in 
�DefaultDocumentProvider� on page 8-43. These interfaces provide two-way 
communication between your Web application and the CMS by taking BEA objects 
and converting them to objects recognizable by the CMS.

Table 8-9  DocumentProvider Interfaces

Interface Description

DocumentIterator The DocumentIterator interface extends the java.util.Iterator 
interface by adding a close() method. The close() 
method is invoked when the DocumentIterator is no longer 
used. It clears any resources tied to the DocumentIterator. 
The methods invoked by this interface should not return null. 
If an exception is necessary, the methods should throw a 
DocumentException. If the results set is empty, than an 
empty DocumentIterator should be returned.

DocumentMetadataDef The DocumentMetadataDef interface represents the 
metadata attributes of a document. This interface contains 
methods for retrieving both explicit and implicit (CMS 
defined) metadata. The getProperty(String name) 
method for retrieving implicit metadata should not respond 
to the explicit attributes names: identifier, size, version, 
author, creationDate, lockedBy, modifiedDate, modifiedBy, 
description, comments, and mimeType. To retrieve the 
explicit properties, the infrastructure calls the corresponding 
individual methods.



Integrating External Content Management Systems

WebLogic Portal Development Guide 8-43

For information on how WebLogic Portal�s content-related JSP tags map to the 
WebLogic Portal SPI, see the �Personalization JSP Tags� section of the JavaServer 
Page Guide at http://edocs.bea.com/wlp/docs70/jsp/p13njsp.htm.

Additional DocumentProvider Classes to Implement

In addition to the interfaces listed in Table 3-1, you can use some of the abstract classes 
in the com.bea.p13n.content.document.ref package as base classes to 
implement some SPI functionality. These classes include: 

! DefaultDocumentProvider

! DefaultDocumentIterator

! DefaultDocumentMetadata

! DefaultDocumentSchema

! DefaultDocument

! FileDocument

! URLDocument

Other classes that can help in developing a DocumentProvider implementation 
include:

DocumentDef The DocumentDef interface represents the raw bytes of a 
document�s content. Although this interface is required to 
implement two methods, primarily the openStream() 
method will be invoked. It is highly recommended that the 
InputStream returned from openStream() supports the 
skip() and available() methods in an efficient 
manner. The skip() method will be used when returning 
chunks of the content bytes to WebLogic Portal. The 
available() method will be used to determine how many 
more bytes are available from the stream.

DocumentSchemaDef The DocumentSchemaDef represents a single available 
schema from the underlying CMS. It contains methods to 
query the attribute names, types, possible values, and 
descriptions.

Table 8-9  DocumentProvider Interfaces

Interface Description



8 Portal Content Management

8-44 WebLogic Portal Development Guide

! com.bea.p13n.content.document.ref.DocumentComparator 

! com.bea.p13n.content.expression.SortCriteria 

! com.bea.p13n.content.expression.ExpressionHelper 

! com.bea.p13n.content.expression.ExpressionAdapter 

! com.bea.p13n.content.MimeTypeHelper 

! com.bea.p13n.util.DefaultEntityResolver 

! com.bea.p13n.util.jdbc.JdbcHelper 

! com.bea.p13n.util.WildCard

Note: Consult the WebLogic Portal Javadoc for further details about each class.

Implementing Search and Schema Methods

In general, integating a third-party CMS requires that you implement both search 
methods and schema methods.

Search methods return metadata about a document; that is, the data that determines the 
appearance of the data returned. You will need to determine how the search criteria 
passed into the search object corresponds to the search methods allowed by the CMS 
and then define this mapping in order for the search to work.

Schema methods return the �bytes�; that is, something that represents the data to be 
consumed by the Web application. Assuming that the necessary data exists in the 
polled CMS, these methods will return: 

! The specified schema object

! A list of all schema names

! A map of schema names

Step 3. Place Code Into the Application

Once the SPI implementation is written, WebLogic Portal needs to be configured to 
use it. To do this, you can either:

! Modify the Existing DocumentConnectionPool

OR



Integrating External Content Management Systems

WebLogic Portal Development Guide 8-45

! Configure a New DocumentConnectionPool and DocumentManager

Modify the Existing DocumentConnectionPool

The first method is to simply modify an existing DocumentConnectionPool in the 
application�s META-INF/application-config.xml. The DocumentManager 
implementation uses connection pools to a specialized JDBC driver to handle searches. 
A deployed DocumentManager finds the document connection pool to use via either 
the DocumentConnectionPoolName attribute of its DocumentManager MBean or the 
DocumentConnectionPoolName EJB deployment descriptor setting. 

Configure a New DocumentConnectionPool and DocumentManager

The second way to configure WebLogic Portal is to set up a new 
DocumentConnectionPool in the application�s 
META-INF/application-config.xml file and to deploy a new DocumentManager 
EJB in the application.

First, create a new connection pool by following the procedure outlined in the �Using 
the WebLogic Server Administration Console to Modify DocumentManager MBeans� 
on page 8-10 Be sure to give the DocumentConnectionPool a unique name in the 
application (for example, �myConnectionPool�).

Next, put together the new EJB by using the following procedure:

1. Unjar the <application-directory>/document.jar file to a temporary 
directory.

2. Add your implementation code to the directory appropriately.

3. In META-INF/ejb-jar.xml, create a new <session> entry based upon the 
DocumentManager entry. Be sure to change the <ejb-name> entry to a unique 
name; for example, in Listing 8-16, that is NewsletterDocumentManager:

Listing 8-16   Creating a New <session>

<!--  The Newsletter DocumentManager  --> 
<session>
<ejb-name>NewsletterDocumentManager</ejb-name>
   <home>com.bea.p13n.content.document.DocumentManagerHome</home>
   <remote>com.bea.p13n.content.document.DocumentManager</remote>
   <ejb-class>com.bea.p13n.content.document.internal.



8 Portal Content Management

8-46 WebLogic Portal Development Guide

      SPIFastDocumentManagerImpl</ejb-class>
   <session-type>Stateless</session-type>

   <transaction-type>Container</transaction-type> 

   <!--
    This controls which DocumentManager MBean this instance
    will look for in the application-config.xml.
   --> 

   <env-entry>
      <env-entry-name>DocumentManagerMBeanName</env-entry-name>
      <env-entry-type>java.lang.String</env-entry-type>
      <env-entry-value>newsletter</env-entry-value>
   </env-entry>
</session>

4. In the new <session> entry in META-INF/ejb-jar.xml, change the 
<env-entry-value> in the <env-entry> for DocumentManagerMBeanName 
to a unique name (�NewsletterDocumentManager� in this example). This value 
will be used later in the application-config.xml file.

5. In META-INF/ejb-jar.xml, add <assembly-descriptor> and 
<container-transaction> entries for your new <session> entry. You can 
copy the existing ones, being sure to change <ejb-name> to the value used above 
(�NewsletterDocumentManager� in this example). Listing 8-17 shows an 
example:

Listing 8-17   Adding <assembly-descriptor> and <container-transaction> 
Entries

<assembly-descriptor>
   <container-transaction>
      <method>
         <ejb-name>NewsletterDocumentManager</ejb-name>
         <method-name>*</method-name>
      </method>
      <trans-attribute>Required</trans-attribute>
   </container-transaction>
   .
   .
   .
</assembly-descriptor>



Integrating External Content Management Systems

WebLogic Portal Development Guide 8-47

 

6. Edit META-INF/weblogic-ejb-jar.xml to create a new 
<weblogic-enterprise-bean> entry based upon the DocumentManager entry. 
Be sure to change the <ejb-name> entry to the name used above 
(�NewsletterDocumentManager� in this example). Listing 8-18 shows an 
example.

Listing 8-18   Creating a New <weblogic-enterprise-bean> Entry

<weblogic-ejb-jar>
   <weblogic-enterprise-bean>
      <ejb-name>NewsletterDocumentManager</ejb-name>
      <entity-descriptor>
         <persistence>
            <persistence-type>
               <type-identifier>WebLogic_CMP_RDBMS
               </type-identifier>
               <type-version>7.0</type-version>
               <type-storage>META-INF/weblogic-cmp-rdbms-jar.xml
               </type-storage>
            </persistence-type>
            <persistence-use>
               <type-identifier>WebLogic_CMP_RDBMS
               </type-identifier>
               <type-version>6.0</type-version>
            </persistence-use>
         </persistence>
      </entity-descriptor>

   <jndi-name>${APPNAME}.BEA_portal_examples.
      NewsletterDocumentManage</jndi-name>

</weblogic-enterprise-bean>

7. In META-INF/weblogic-ejb-jar.xml, in the new 
<weblogic-enterprise-bean> entry, change the <jndi-name> to a desired 
value. This value will be the JNDI name used in EJB references to your new 
DocumentManager. For example:

<jndi-name>${APPNAME}.BEA_portal_examples.
   NewsletterDocumentManager</jndi-name>



8 Portal Content Management

8-48 WebLogic Portal Development Guide

8. Jar up the temporary directory back into document.jar.

Step 4. Make the .jar Accessible to the Application

Next, you need to make the .jar file you created accessible to the application 
accessing the CMS. You can do this by using one of these methods:

! Place the .jar into a .jar file already deployed in the application.

! Place the .jar into a .jar file referenced in the META-INF/Manifest.mf file�s 
Class-Path entry in the .jar file that initializes the DocumentConnectionPool (for 
example, document.jar).

! Put the .jar name in a classpath attribute on the DocumentConnectionPool 
MBean in the application�s META-INF/application-config.xml file

Step 5. Restart the Server

Because, by this point, you have made a number of configuration changes and changes 
to classpaths, we recommend that you restart the server.

Step 6. Apply the Portal

Finally, to complete the integration, you need to create the portal into which the CMS 
data will appear. For instructions on creating a portal or portlet, please refer to �Step 
3: Add a Portlet� on page 2-23.

Publishing to Reference Implementation

This strategy involves directly publishing to the WebLogic Portal reference 
implementation database tables and XML schema files.

To implement this strategy:

1. Put the document entries and document metadata into the database tables.

2. Put the document metadata schema into WebLogic Portal XML schema files.

3. Put the document files on the file system.



Constructing Content Queries

WebLogic Portal Development Guide 8-49

Constructing Content Queries

This section, which provides guidelines for constructing queries to a content 
management system, includes information on the following topics.

! Structuring Queries

! Using Comparison Operators to Construct Queries

! Constructing Queries Using Java

! Using the Document Servlet

Structuring Queries

WebLogic Portal queries are similar in syntax to the SQL string syntax that supports 
basic Boolean-type comparison expressions, including nested parenthetical queries. In 
general, the query includes a metadata property name, a comparison operator, and a 
literal value. For example:

attribute_name comparison_operator literal_value

Note: For more information about the query syntax, see the Javadoc API 
documentation for 
com.bea.p13n.content.expression.ExpressionHelper.

The following constraints apply to queries constructed using this syntax:

! String literals must be enclosed in single quotes.
" ‘WebLogic Server’

" ‘football’

! Date literals can be created using a simple toDate method that takes one or two 
String arguments enclosed in single quotes. The first argument, if two are 
supplied, is the SimpleDateFormat format string; the second argument is the 
date string. If only one argument is supplied, it should include the date string in 
�MM/dd/yyyy HH:mm:ss z� format.



8 Portal Content Management

8-50 WebLogic Portal Development Guide

" toDate(‘EE dd MMM yyyy HH:mm:ss z’, ‘Thr 08 Nov 2001 
16:56:00 MDT’)

" toDate(‘02/23/2005 13:57:43 MST’)

! Use the toProperty method to compare properties whose names include spaces 
or other special characters. In general, use toProperty when the property name 
does not comply with the Java variable-naming convention that uses 
alphanumeric characters.
" toProperty (‘My Property’) = ‘Content’

! To include a scope into the property name, use either scope.propertyName or 
the toProperty method with two arguments.

" toProperty (‘myScope’, ‘myProperty’)

Note: The reference implementation document management system ignores 
property scopes.

! Use \ along with the appropriate character(s) to create an escape sequence that 
includes special characters in string literals.
" toProperty (‘My Property\’s Contents’) = ‘Content’

! Additionally, use Java-style Unicode escape sequences to embed non-ASCII 
characters in string literals.

" Description like ‘*\u65e5\u672c\u8a9e*’

Notes: The query syntax can contain only ASCII and extended ASCII characters 
(0-255).

Use ExpressionHelper.toStringLiteral to convert an arbitrary 
string to a fully quoted and escaped string literal which can be put in a 
query.

! The now keyword, only used on the literal value side of the expression, refers to 
the current date and time.

! Boolean literals are either true or false.

! Numeric literals consist of the numbers themselves without any text decoration 
(like quotation marks). The system supports scientific notation in the forms; for 
example, 1.24e4 and 1.24E-4.

! An exclamation mark (!) can be placed at an opening parenthesis to negate an 
expression.



Constructing Content Queries

WebLogic Portal Development Guide 8-51

" !(keywords contains ‘football’) || (size >= 256)

! The Boolean and operator is represented by the literal &&.
" author == ‘james’ && age < 55

! The Boolean or operator is represented by the literal ||.
" creationDate > now || expireDate < now

The following examples illustrate full expressions:

Example 1:

((color=‘red’ && size <=1024) || (keywords contains ‘red’ && 
creationDate < now))

Example 2:

creationDate > toDate (‘MM/dd/yyyy HH:mm:ss’, ‘2/22/2000 14:51:00’) 
&& expireDate <= now && mimetype like ‘text/*’

Using Comparison Operators to Construct Queries

To support advanced searching, the system allows construction of nested Boolean 
queries incorporating comparison operators. Table 8-10 summarizes the comparison 
operators available for each metadata type.

Table 8-10  Comparison Operators Available for Each Metadata Type

Operator Type Characteristics

Boolean (==, !=) Boolean attributes support an equality check against Boolean.TRUE or 
Boolean.FALSE. 

Numeric (==, !=, >, <, >=, <=) Numeric attributes support the standard equality, greater than, and less than 
checks against a java.lang.Number.



8 Portal Content Management

8-52 WebLogic Portal Development Guide

Notes: The search parameters and expression objects support negation of expressions 
using a bit flag (!).

The reference implementation content management system has only 
single-value Text and Number properties. All implicit properties are 
single-value Text.

Text (==, !=, >, <, >=, <=, like) Text strings support standard equality checking (case sensitive), plus 
lexicographical comparison (less than or greater than). In addition, strings 
can be compared using wildcard pattern matching (that is, the like 
operator), similar to the SQL LIKE operator or DOS prompt file matching. In 
this situation, the wildcards will be * (asterisk) to match any string of 
characters and ? (question mark) to match any single character. Interval 
matching (for example, using [ ]) is not supported. To match * or ? exactly, 
the quote character is \ (backslash).

Datetime (==, !=, >, <, >=, <=) Date/time attributes support standard equality, greater than, and less than 
checks against a java.sql.Timestamp. 

Multi-valued Comparison 
Operators (contains, containsall)

Multi-valued attributes support a contains operator that takes an object of 
the attribute's subtype and checks that the attribute's value contains it. 
Additionally, multi-valued attributes support a containsall operator, 
which takes another collection of objects of the attribute's subtype and checks 
that the attribute's value contains all of them.
Single-valued operators applied to a multi-valued attribute should cause the 
operator to be applied over the attribute's collection of values. Any value that 
matches the operator and operand should return true. For example, if the 
multi-valued text attribute keywords has the values BEA, Computer, and 
WebLogic, and the operand is BEA, then the < operator returns true (BEA is 
less than Computer), the > operator returns false (BEA is not greater than 
any of the values), and the == operator returns true (BEA is equal to BEA).

User Defined Comparison 
Operators

Currently, no operators can be applied to a user-defined attribute.

Table 8-10  Comparison Operators Available for Each Metadata Type (Continued)

Operator Type Characteristics



Constructing Content Queries

WebLogic Portal Development Guide 8-53

Constructing Queries Using Java

To construct queries using Java syntax instead of using the query language supplied 
with the Content Management component, see the Javadoc API documentation for 
com.bea.p13n.content.expression.ExpressionHelper.

The ContentManager session bean is the primary interface to the functionality of the 
Content Management component. Using a ContentManager instance, content is 
returned based on a com.bea.p13n.content.expression.Search object with an 
embedded com.bea.p13n.expression.Expression, which represents the 
expression tree.

In the expression tree, the following caveats apply for it to be valid for the 
ContentManager: 

! Each branch node can only be of the following types. Any other branch node 
type is invalid.

com.bea.p13n.expression.operator.logical.LogicalAnd, 
com.bea.p13n.expression.operator.logical.LogicalOr, 
com.bea.p13n.expression.operator.logical.LogicalMulitAnd, or 
com.bea.p13n.expression.operator.logical.LogicalMultiOr.

! Each leaf node can only be of the following types. Any other branch node type 
is invalid.

com.bea.p13n.expression.operator.comparative.Equals, 
com.bea.p13n.expression.operator.comparative.GreaterOrEquals, 
com.bea.p13n.expression.operator.comparative.GreaterThan, 
com.bea.p13n.expression.operator.comparative.LessOrEquals, 
com.bea.p13n.expression.operator.comparative.LessThan, 
com.bea.p13n.expression.operator.comparative.NotEquals, 
com.bea.p13n.expression.operator.string.StringLike, 

com.bea.p13n.expression.operator.collection.CollectionContains, or 
com.bea.p13n.expression.operator.collection.CollectionsContainsAll 

! Any valid branch or leaf node may be contained in a 
com.bea.p13n.expression.operator.logical.LogicalNot node. 

! In each leaf node, the left side will always be a 
com.bea.p13n.content.expression.PropertyRef node, which must 
contain Strings for getPropertySet() and getPropertyName(). 



8 Portal Content Management

8-54 WebLogic Portal Development Guide

! The right side of these leaf nodes can be a java.util.Collection, Long, 
Double, String, or java.sql.Timestamp: 
com.bea.p13n.expression.operator.comparative.Equals, 
com.bea.p13n.expression.operator.comparative.NotEquals, 
com.bea.p13n.expression.operator.comparative.GreaterOrEquals, 
com.bea.p13n.expression.operator.comparative.GreaterThan, 
com.bea.p13n.expression.operator.comparative.LessOrEquals, 
com.bea.p13n.expression.operator.comparative.LessThan, or 

com.bea.p13n.expression.operator.collection.CollectionContains 

! The right side of 
com.bea.p13n.expression.operator.string.StringLike leaf nodes can 
be a String. Anything else is invalid. 

! The right side of 
com.bea.p13n.expression.operator.collection.CollectionsContains

All leaf nodes can be a java.util.Collection. Anything else is invalid.

Using the Document Servlet

The Content Management component includes a servlet capable of outputting the 
contents of a Document object. This servlet is useful when streaming the contents of 
an image that resides in a content management system or to stream a document�s 
contents that are stored in a content management system when an HTML link is 
selected. Table 8-11 shows the Request/URL parameters that the servlet supports.

 

Table 8-11  Request Parameters Supported by the Document Servlet

Request Parameter Required Description

contentHome Maybe If the contentHome initialization 
parameter is not specified, then this is 
required and will be used as the JNDI name 
of the DocumentHome. If the 
contentHome initialization parameter is 
specified, this is ignored.

contentId No The string identifier of the Document to 
retrieve. If not specified, the servlet looks in 
the PATH_INFO.



Constructing Content Queries

WebLogic Portal Development Guide 8-55

The servlet supports only Documents, not other subclasses of Content. It sets the 
Content-Type to the Document's mimeType and, the Content-Length to the 
Document's size, and correctly sets the Content-Disposition, which should 
present the correct filename when the file is saved from a browser.

Example 1: Usage in a JSP

This example searches for news items that are to be shown in the evening, and displays 
them in a bulleted list.

<cm:select sortBy="creationDate ASC, title ASC"

query=" type = ‘News’ && timeOfDay = ‘Evening’ && mimeType like 
‘text/*’ "id="newsList"/>

<ul>

<es:forEachInArray array="<%=newsList%>" id="newsItem" 
type="com.bea.p13n.content.Content">

     <li><a href="ShowDoc/<cm:printProperty id="newsItem"
     name="identifier" encode="url"/>"><cm:printProperty
     id="newsItem" name="title" encode="html"/></a>

  </es:forEachInArray>

</ul>

Example 2: Usage in a JSP

This example searches for image files that match keywords that contain bird and 
displays the image in a bulleted list.

<cm:select max="5" sortBy="name" id="list"

query=" KeyWords like ‘*birds*’ && mimeType like ‘image/*’ "

blockSize No The size of the data blocks to read. The 
default is 8K. Use 0 or less to read the entire 
block of bytes in one operation.

Table 8-11  Request Parameters Supported by the Document Servlet (Continued)

Request Parameter Required Description



8 Portal Content Management

8-56 WebLogic Portal Development Guide

contentHome="java:comp/env/ejb/MyDocumentManager"/>

<ul>

<es:forEachInArray array="<%=list%>" id="img" 
type=”com.bea.p13n.content.Content”>

   <li><img src="/ShowDoc/<cm:printProperty id="img"
   name="identifier"
   encode="url"/>?contentHome=<es:convertSpecialChars
   string="java:comp/env/ejb/MyDocumentManager"/>">

<es:forEachInArray>

</ul>



WebLogic Portal Development Guide 9-1

CHAPTER

9 Setting Up Portal 
Navigation

Portal navigation is achieved through the use of Webflow, a mechanism designed to 
help you build Web applications and maintain a separation between presentation logic 
and underlying business processes. When the visitor causes an event, such as clicking 
Next on a page, Webflow determines what the visitor will see next. At appropriate 
times during a visitor�s interaction, the Webflow may also invoke Pipelines, 
predefined, specialized components used to validate data or to execute back-end 
business processes.

Because the Webflow�s centralized XML configuration files specify the order in 
which pages are displayed to your Web site�s visitors, use of the Webflow mechanism 
may reduce the amount of work necessary to create and modify the flow of your Web 
site.  

This section contains information on the following subjects:

! Building a Webflow

! Creating a Pipeline and Adding it to a Webflow

! Synchronizing the Webflow to the Application

! Creating a New Input Processor

! Extending Webflow by Creating Extension Presentation and Processor Nodes



9 Setting Up Portal Navigation

9-2 WebLogic Portal Development Guide

Building a Webflow

This section shows you how to build a basic Webflow by adding the necessary nodes 
to the Webflow and connecting those nodes to each other with transitions. 

To build a Webflow, you need to complete the following steps:

! Step 1. Create the Webflow

! Step 2. Add Nodes to the Webflow Canvas

! Step 3. Identify the Begin Node

! Step 4. Create Transitions Between Nodes

Completing these steps will provide you with a rudimentary Webflow. Subsequent 
information in this section will complete the Webflow-building process by showing 
you how to:

! Create and add a Pipeline to the Webflow (see �Creating a Pipeline and Adding 
it to a Webflow� on page 9-22)

! Synchronize the Webflow to the application (see �Synchronizing the Webflow to 
the Application� on page 9-36)

Note: While the procedures outlined here and in subsequent parts of this section 
imply a specific sequence for creating Webflows and Pipelines, this is done 
only to facilitate the document and is not required. You can follow whatever 
sequence is most accommodating to your development needs. For example, 
you might want to create Pipelines for a Webflow before actually creating the 
Webflow. Do note that you cannot synchronize a Webflow to an application 
until the Webflow exists.

Understanding Webflow Components

Before attempting to build and implement a Webflow, you should understand some of 
the Webflow components you will be using in the ensuing procedures.



Building a Webflow

 WebLogic Portal Development Guide 9-3

Nodes and Transitions

Nodes are the graphical representation of the functionality of a state in the Webflow. 
Depending on the node type, there are a number of predefined events that may occur 
(such as a visitor clicking a link on a Web page). When a particular event happens, the 
Webflow decides which subsequent node to invoke to continue the flow. This process 
is referred to as a transition, and is illustrated in Figure 9-1.

Figure 9-1   Generic Webflow Transition

Note that, as shown in Figure 9-1, nodes can be referred to as origin or destination 
nodes, depending on their location in a transition.

Types of Nodes

There are two main types of nodes: presentation nodes and processor nodes. Each of 
the presentation and processor nodes can be used as origin or destination nodes within 
the Webflow. 

Presentation Nodes

Presentation nodes represent states in which the Webflow presents or displays 
something to a person interacting with the Web application. The form of the 
presentation can be:

! HTML

! JavaServer Page (JSP)

! Java servlets

You can also create extension (custom) presentation nodes for use in the Webflow. For 
more information about extension presentation nodes, see �How to Create an 
Extension Presentation Node� on page 9-40.



9 Setting Up Portal Navigation

9-4 WebLogic Portal Development Guide

Processor Nodes

Processor nodes represent states in which the Webflow invokes more specialized 
components to handle such activities as form validation or the back-end business logic 
that drives the site�s presentation. The processor nodes available for use are described 
in Table 9-1.

Table 9-1  Webflow Processor Node Types

Processor Node 
Type

Description

Input Processors Input Processors are predefined, specialized Java classes that carry 
out more complex tasks when invoked by the Webflow mechanism. 
Input Processors are typically used to validate HTML form data, or 
to provide conditional branching within a Web page. For example, 
an Input Processor may contain code that verifies whether a date 
has been entered in the correct format, as opposed to embedding 
that code within the same JSP that displays the form fields. Input 
Processors contain logic that is specific to the Web application, and 
are therefore loaded by the Web application�s container.

Pipelines A Pipeline is also a type of processor node that may be invoked by 
the Webflow. Pipelines initiate the execution of specific tasks 
related to your business process, and can be transactional or 
nontransactional. For example, if a visitor attempts to move to 
another page on your Web site but you want to persist the visitor�s 
information to a database first, you could use a Pipeline. Pipelines 
contain business logic that may apply to multiple Web applications 
within a larger enterprise application, and are therefore loaded by 
the Enterprise Java Bean (EJB) container. 
All Pipelines are collections of individual Pipeline Components, 
which can be implemented as Java objects or stateless session 
Enterprise JavaBeans (EJBs). Pipeline Components are the parts of 
a Pipeline that actually perform the tasks associated with the 
underlying business logic. When these tasks are complex, Pipeline 
Components may also make calls to external services (other 
business objects). 

Extension Processor 
Nodes

Extension (custom) processor nodes for use in the Webflow. For 
more information about extension processor nodes, see �Extending 
Webflow by Creating Extension Presentation and Processor 
Nodes.�



Building a Webflow

 WebLogic Portal Development Guide 9-5

Wildcard Nodes

If the Webflow cannot locate a specific presentation or processor node to complete a 
transition, the Webflow will search for a wildcard presentation or processor node to 
use as the origin node. Therefore, wildcard presentation nodes and wildcard processor 
nodes implement default behavior for your Web application. Put another way, 
wildcard nodes allow you to abstract common functionality and to locate that 
functionality in a single place in your Webflow. Use Wildcard nodes only when you 
haven�t explicitly defined destination nodes in the Webflow. You may have one 
wildcard presentation node and one wildcard processor node per namespace.

An example of a Wildcard node might be when you want a link called Help (which is 
present on every page) to always point to a JSP containing help information. To do so, 
you could use a wildcard presentation origin. Further, you might always want 
exceptions returned from processor nodes to transition to JSP containing detailed 
information about the error. You could handle both of these situation with a wildcard 
processor node.

Note: A slight impact on performance might occur if the Webflow must search for a 
wildcard node, as more processing is involved.

Types of Transitions

There are two types of transitions: event and exception. 

! An event transition represents the processing logic between two nodes when an 
event occurs on one of them and that event is successful. 

! An exception transition represents the processing logic that occurs when activity 
on a processor node fails and an some sort of exception must be thrown. These 
transitions usually direct the transaction.

For more information on the events that cause transitions, see �Types of Events� on 
page 9-5.

Types of Events

Each node in a Webflow responds to events, which cause transitions (that is, 
movement from an origin node to a destination node). However, the types of events a 
node responds to depends on whether the node is a presentation node or a processor 
node.



9 Setting Up Portal Navigation

9-6 WebLogic Portal Development Guide

Presentation nodes respond to the following events:

! Links

! Buttons

In other words, when a visitor to the Web site clicks a link or a button, the Webflow 
responds to that event. A response might be to transition to another presentation node 
(such as a JSP) or to a processor node (such as an Input Processor to validate 
visitor-provided form data).

Processor nodes respond to the following events:

! Exceptions

! Return objects

Exceptions occur when an Input Processor or Pipeline does not execute properly, and 
indicates an error state. Otherwise, these processor nodes return an object that the 
Webflow can use to continue processing. 

Note: Webflow used in portal applications may respond to more events than those 
described above.

Encoding Webflow URLs

New context parameters ENCODE_URLS, ESCAPE_URLS, 
ENCODE_STATIC_URLS, and  ESCAPE_STATIC_URLS have been added for 
70sp5 that control the default setting for URL escaping and encoding in webflow 
URLs.  See WebflowJSPHelper Javadoc for more information regarding escaping and 
encoding of URLs.  

ENCODE_URLS is the default setting indicating whether webflow URLs should be 
encoded.  Allowable param-values are true and false.   If not set the default, default is 
true to ensure backward compatibility.

    <context-param>

       <param-name>ENCODE_URLS</param-name>

       <param-value>false</param-value>

    </context-param>



Building a Webflow

 WebLogic Portal Development Guide 9-7

ESCAPE_URLS is the default setting indicating whether webflow URLs should be 
escaped.  Allowable param-values are NO_URL_ESCAPE, ESCAPE_URL, 
CALCULATE_ESCAPE.  If not set the default, default is URL_ESCAPE to ensure 
backward compatibility.

    <context-param>

       <param-name>ESCAPE_URLS</param-name>

       <param-value>CALCULATE_ESCAPE</param-value>

    </context-param>

The above 2 defaults are for the following tags and also for the WebflowJSPHelper 
createWebflowURL methods that do not have escape or encode as a parameter:

<wf:createWebflowURL/>

<wf:form/>

<wf:validatedForm/>

<portal:createWebflowURL/>

<portal:form/>

<portal:validatedForm/>

<portal:createPortalPageChangeURL/>

<portlet:createWebflowURL/>

<portlet:form/>

<portlet:validatedForm/>

<portlet:createPortletEditURL/>

<portlet:createPortletUneditURL/>

<portlet:createPortletMinimizeURL/>

<portlet:createPortletUnminimizeURL/>

<portlet:createPortletMaximizeURL/>

<portlet:createPortletUnmaximizeURL/>

<portlet:createPortletFloatURL/> 



9 Setting Up Portal Navigation

9-8 WebLogic Portal Development Guide

ENCODE_STATIC_URLS it the default setting indicating whether static URLs 
should be encoded. Allowable param-values are true and false.   If not set the default, 
default is true to ensure backward compatibility.

    <context-param>

       <param-name>ENCODE_STATIC_URLS</param-name>

       <param-value>false</param-value>

    </context-param>

ESCAPE_STATIC_URLS is the default setting indicating whether static URLs should 
be escaped.  Allowable param-values are NO_URL_ESCAPE, ESCAPE_URL, 
CALCULATE_ESCAPE.  If not set the default, default is URL_ESCAPE to ensure 
backward compatibility.

    <context-param>

       <param-name>ESCAPE_STATIC_URLS</param-name>

       <param-value>CALCULATE_ESCAPE</param-value>

    </context-param>

The above 2 defaults are for the <wf:createResourceURL/> tag and the 
WeblfowJSPHelper createStaticResource methods that do not have escape or encode 
as a parameter.

URLs need to be encoded if you wish to maintain session state and the browser does 
not accept cookies.  URLs will only need to be encoded if the browser does not accept 
cookies.

URLs must be escaped if they will contain any characters (with some exceptions - see 
below) that would be encoded using java.net.URLEncoder.encode().  Note however 
that even when escaping is on the entire URL is not encoded rather the URL will be 
tokenized using the characters ':', '/', '?', '=', and '&' then the substrings between the 
tokens are encoded using java.net.URLEncoder.encode().  The tokenizing is necessary 
so that the URL will still be recognized by the Webflow engine.  

Note that escaping is relatively costly and should be avoided if possible but is required 
if the URL might have any characters other then those ignored by 
java.net.URLEncoder.encode(), that is any characters other than 'a' through 'z', 'A' 
through 'Z, '0' through '9', '-', '_', '.', or '*' with the exception of the tokenizing characters 
mentioned above.  If the content of the URL will not be determined until runtime and 
might contain "illegal" characters you should either have escaping on or use the 



Building a Webflow

 WebLogic Portal Development Guide 9-9

calculate feature.  Calculate should be used with care.  For sites that have a small 
number of URLs that will need escaping using calculate rather then always escaping 
will result in a performance improvement.  But, since calculate first checks the URL 
then encodes if needed, sites where most URLs need escaping will have poorer 
performance using calculate rather then escaping all URLs.

Webflow Tools and Buttons

You create Webflows by using the Webflow Editor, as depicted in Figure 9-4. Most 
activity in which you engage will require selecting either a tool button or a command 
button. Table 9-2 describes the tool buttons available and Table 9-3 describes the 
command buttons.

Table 9-2  Webflow Editor Tools

Tool Function Description

Selection Tool Allows you to select and move nodes, event transitions, 
and exception transitions. Also allows you to add 
elbows to transitions. This is the default tool for the 
Webflow Editor.

Note: This tool will stay selected until you select 
another one.

Event Tool Allows you to add an event transition between two 
nodes, or a self-referring event transition. 

Note: This tool will stay selected until you select 
another one.

Exception Tool Allows you to add an exception transition between two 
nodes, or a self-referring exception transition. 

Note: This tool will stay selected until you select 
another one.

Presentation Node Allows you to add a new Presentation Node to the 
Editor canvas. 



9 Setting Up Portal Navigation

9-10 WebLogic Portal Development Guide

Wildcard Presentation 
Node

Allows you to add a new Wildcard Presentation Node 
to the Editor canvas.

Input Processor Node Allows you to add a new Input Processor Node to the 
Editor canvas.

Pipeline Node Allows you to add a new Pipeline Node to the Editor 
canvas. 

Wildcard Processor 
Node

Allows you to add a new Wildcard Processor Node to 
the Editor canvas. 

Extension (Custom) 
Processor Node

Allows you to add a new Extension (Custom) Processor 
Node to the Editor canvas.  

Note: The Extension (Custom) Processor Node tool 
is disabled until the Webflow Editor detects a 
new node in the 
webflow-extensions.wfx file.

Proxy Node Allows you to add a Proxy Node to the Editor canvas.  
You should create a Proxy Node any time you want to 
refer to a node that is defined in another namespace.

Table 9-3  Webflow Command Buttons

Tool Function Description Keyboard 
Shortcut

Print button Allows you to print the entire Webflow 
namespace or Pipeline to a printer.

Ctrl+P

Delete button Deletes the selected Webflow 
component.  The Delete button is 
disabled until a Webflow component is 
selected.  

Delete

Table 9-2  Webflow Editor Tools (Continued)

Tool Function Description



Building a Webflow

 WebLogic Portal Development Guide 9-11

Step 1. Create the Webflow

To create a Webflow, use this procedure. 

Note: This procedure assumes the following:

! You have either opened an existing project or have created a new one.

! The E-Business Control Center is running.

! The Site Infrastructure tab is selected.

Zoomed Overview 
button

Allows you to view the entire Webflow 
namespace or Pipeline at a glance.

Ctrl+Z

Validate the Selected 
Node button

Allows you to run the Webflow 
validation feature on the selected node.  
The Validate the Selected Node button 
is disabled until a Webflow component 
is selected.

Ctrl + V

Validate All button Allows you to run the Webflow Editor�s 
validation feature on the entire Webflow 
namespace, or the Pipeline Editor�s 
validation feature on the entire Pipeline.

Alt + V

Set Up Configuration 
Error Page Name button

Allows you to specify the name and path 
to the configuration error page.

Note: Only available in the Webflow 
Editor.

--

Pipeline Component 
Editor button

Opens the Pipeline Component Editor, 
which allows you to manage Pipeline 
Components.

Note: Only available in the Pipeline 
Editor.

--

Table 9-3  Webflow Command Buttons (Continued)

Tool Function Description Keyboard 
Shortcut



9 Setting Up Portal Navigation

9-12 WebLogic Portal Development Guide

1. Click the New icon to open the drop-down menu and select Webflow/Pipeline, as 
shown in Figure 9-2.

Figure 9-2   E-Business Control Center with New Drop-Down Menu Open

The New Webflow/Pipeline dialog box appears.

Figure 9-3   New Webflow/Pipeline Dialog Box

2. Ensure that New Webflow is selected, then open the Webapp: drop-down menu 
and select the Web application for which you are creating the webflow (this value 
might already be selected). Selecting a Web application is important because 
Webflows are scoped to a Web application.



Building a Webflow

 WebLogic Portal Development Guide 9-13

3. Type in a Namespace name in the Namespace edit box. A namespace is used to 
scope a Webflow so that multiple Webflows can be used in a single Web 
application without conflicting. Note that each Web application can have multiple 
namespaces.

4. Click OK.

The Webflow Editor appears in the right-hand pane of the E-Business Control 
Center. Figure 9-4 shows an example.

Figure 9-4   Webflow Editor



9 Setting Up Portal Navigation

9-14 WebLogic Portal Development Guide

Step 2. Add Nodes to the Webflow Canvas

A Webflow is composed of two types of nodes: presentation nodes and processor 
nodes. Each of the presentation and processor nodes can be used as origin or 
destination nodes within the Webflow. For more information on Webflow nodes, see 
�Understanding Webflow Components� on page 9-2.

Add the first node to the Webflow Editor canvas by doing the following:

1. Select the appropriate tool and click the pointer (cross-hairs) anywhere on the 
canvas. Table 9-2 describes each of the tools in the Webflow Editor palette.

The node appears on the canvas where you click; for example, if you want the 
first node to be a Presentation node (that is, a JSP, HTML file, or other 
presentation file), you would select the Presentation Node tool and then click 
over the canvas to place the node there. 

Figure 9-5   Placement of a Presentation Node



Building a Webflow

 WebLogic Portal Development Guide 9-15

Note: The Presentation Tool stays selected. This enables you to add as many 
Presentation nodes as necessary without reselecting the tool for each node. 
Also, you needn�t worry about where on the canvas you place node. You 
can move it wherever you want by selecting the node and dragging it to the 
preferred location.

When you place a node on the canvas, the node�s property editor, shown in 
Figure 9-6, opens in a pane below the canvas. You can also open the property 
editor for a node by clicking the node itself.

Figure 9-6   Presentation Node Property Editor

2. In the property editor, type the following information, as necessary:

Table 9-4  Property Editors

Property Description

name The name of the node. This value will appear in the node on the 
canvas. This value will auto-fill when you fill out the page-name 
field described below.

type The type of file the node references. For a presentation node, valid 
types are:
! portal
! jsp
! html/htm
! servlet

page-relative-path The relative path to the file the node references.



9 Setting Up Portal Navigation

9-16 WebLogic Portal Development Guide

When completed, the Property Editor might look like the sample shown in 
Figure 9-7

Figure 9-7   Sample Completed Property Editor for a Presentation Node

3. Continue adding nodes to the canvas until you�ve added all the nodes necessary 
for the webflow.

Step 3. Identify the Begin Node 

The begin node is used as the starting point for the visitor�s interaction with the 
application. It is designated as the initial entry point or state of the Webflow, which 
automatically transitions to a presentation or processor node. The begin node is 
generally a presentation node in the form of a JSP.

If a URL does not specify an origin, namespace, or event, the Webflow mechanism 
looks for a begin node in the default namespace. Although the begin node is optional, 
BEA recommends that you have at least one defined in your default namespace. 

To identify a node as the begin node, use this procedure:

1. Right-click the node you want to assign as the Begin Node.

page-name The filename that the node references. The value entered here will 
be used to fill in the name property, although without the file 
extension (which is populated automatically, based upon what was 
selected for type); for example, if you enter pres01 here and select 
jsp as the type, when you tab out of this field, .jsp will be 
appended to the page-name and the name value will change to 
pres01.

Table 9-4  Property Editors

Property Description



Building a Webflow

 WebLogic Portal Development Guide 9-17

The node�s Context menu appears, as shown in Figure 9-8.

Figure 9-8   Presentation Node Context Menu

2. Select Set the begin node.

The node is marked by a green stripe to the right of the node name, as shown in 
Figure 9-9.

Figure 9-9   Appearance of the Begin Node

Note: A webflow can have only one begin node.

Step 4. Create Transitions Between Nodes

With all the nodes placed on the canvas, connect them by creating transitions between 
them. Create these transitions by using the Event Tool and the Exception Tool, as 
shown in Table 9-2. The Exception Tool is red and the Event Tool is black. 

Adding an Event Transition

To add an Event transition, do the following:

1. Click the Event Tool to activate it.

2. Place the pointer on the edge of the node from which transition will begin.



9 Setting Up Portal Navigation

9-18 WebLogic Portal Development Guide

If the connection is permissible, a small orange square will appear on the edge of 
the node.

3. Drag the pointer to the node that marks the end of the transition.

A grey connection port will appear on the node at the transition origin site and, 
If the connection is permissible, an arrowhead will appear where the transition 
ends, as shown in Figure 9-10. 

Figure 9-10   Node-to-Node Event Transition

If the connection is not allowed (for example if you are trying create an 
exception link on a presentation node), a red square filled with a red X will 
appear on the node�s edge, as shown in Figure 9-11.

Figure 9-11   Invalid Connection Indicator

4. Continue adding Event transitions as necessary to connect all nodes designed to 
respond to events.

Adding an Exception Transition

Use the Exception Tool to connect any nodes that might require exception handling to 
the node that will do that handling. For example, an input processor might accept data 
that needs to be validated before it can be passed. If that data contains an error, it might 
need to throw an exception. The Exception Tool lets you process the exception and 
display any results or other information. Note that the transition link between the node 
appears in red.

To add an Event transition, do the following:

1. Click the Event Tool to activate it.



Building a Webflow

 WebLogic Portal Development Guide 9-19

2. Place the pointer on the edge of the node from which transition will begin.

If the connection is permissible, a small orange square will appear on the edge of 
the node.

3. Drag the pointer to the node that marks the end of the transition.

A grey connection port will appear on the node at the transition origin site and, 
If the connection is permissible, an arrowhead will appear where the transition 
ends.

If the connection is not allowed (for example if you are trying create an 
exception link on a presentation node), a red square filled with a red X will 
appear on the node�s edge, as shown in Figure 9-11.

4. Continue adding Exception transitions as necessary to connect all nodes designed 
to respond to exceptions.

With all nodes in place and connected by the proper transitions, the webflow might 
appear as the one shown in Figure 9-12.



9 Setting Up Portal Navigation

9-20 WebLogic Portal Development Guide

Figure 9-12   Sample Webflow Layout

Using the Transition Tools

In addition to adding a transition (as described in �Adding an Event Transition� on 
page 9-17 and �Adding an Exception Transition� on page 9-18), you can also move an 
existing transition�s connection port, add elbows to transitions, and delete a transition.

Moving a Connection Port Connection ports accepting transitions are called input 
connection ports; connection ports where transitions originate are called output 
connection ports. In some cases, it may be helpful to move the node�s connection port. 
To reposition the connection port on a node, follow these steps:

1. Select the Transition tool or the Selection tool.

2. Click and hold the mouse button on the connection port, then drag the connection 
port to the desired location on the node.



Building a Webflow

 WebLogic Portal Development Guide 9-21

3. Release the mouse button to place the connection port in the new location.

The connection port associated with a self-referring transition can only be moved 
along the same node edge. 

Moving a Transition to Another Node You can move the end point of a transition 
(indicated by an arrowhead) from one node to another (assuming that the connection 
is allowable). Do the following:

1. Select the Transition tool or the Selection tool.

2. Select the end point (arrowhead) you want to move.

3. Holding down the left mouse button, drag the arrowhead to the node to which 
you want to connect it.

4. Release the mouse button.

Creating, Moving, and Deleting Elbows in Transition Lines You can also 
reposition transition lines on an Editor�s canvas by moving, creating or deleting 
elbows. Elbows allow you to bend portions of the transition line, as shown in 
Figure 9-13, to enhance the appearance of the flow.

Figure 9-13   Elbows in Transitions

To create a new elbow, follow these steps:

1. Single-click a transition to view the existing elbows, which appear as black 
squares.



9 Setting Up Portal Navigation

9-22 WebLogic Portal Development Guide

2. Click and hold the mouse button anywhere on the transition line (except on an 
existing elbow) and drag the mouse to add the new elbow. The selected elbow 
appears as an orange square.

3. Release the mouse button to create the elbow in that location.

To move an elbow in an existing transition, follow these steps:

1. Single-click a transition to view any existing elbows, which appear as black 
squares.

2. Click and hold the mouse button on the elbow as you drag it to the desired 
position. The selected elbow appears as an orange square.

3. Release the mouse button to place the elbow in the new location.

To delete an existing elbow, follow these steps:

1. Single-click a transition to view the existing elbows, which appear as black 
squares.

2. Click the elbow you want to delete to select it. The selected elbow appears as an 
orange square.

3. Click the Delete button on the Editor�s toolbar, or press the Delete key.

Creating a Pipeline and Adding it to a 
Webflow

Figure 9-14 is a detailed look at a Webflow. In this example, you will see that two 
nodes are labeled PL01 and PL02. These nodes are called Pipelines.



Creating a Pipeline and Adding it to a Webflow

 WebLogic Portal Development Guide 9-23

Figure 9-14   Webflow Example: Detail Showing Pipeline Nodes

A Pipeline is a type of processor node that is typically used in a Webflow to execute 
back-end business logic. Each Pipeline is comprised of a number of Pipeline 
Components that perform specific tasks. BEA provides a number of Pipeline 
Components that are packaged with the WebLogic Portal product suite that you may 
want to reuse in your own Pipelines. However, you may also want to create your own 
Pipeline Components to execute your organization�s specific business processes.

This section will show you how to create a pipeline by following these steps:

! Step 1: Create a New Pipeline Component

! Step 2: Add the New Pipeline Component to the Webflow

Understanding the Pipeline Editor

As with Webflows, you create a Pipeline and add functionality to it by using the 
Pipeline Editor in the E-Business Control Center, as shown in Figure 9-15 (see also 
Figure 9-18).



9 Setting Up Portal Navigation

9-24 WebLogic Portal Development Guide

Figure 9-15   E-Business Control Center with Pipeline Editor Displayed

The Pipeline Editor has a set of display and behavior buttons and a set of command 
buttons along its top border and a set of tool buttons along its left border. Table 9-5 
describes the tool buttons, Table 9-6 describes the display, and behavior buttons and 
Figure 9-7 describes the command buttons.

Table 9-5  Pipeline Editor Tools

Tool Function Description

Selection Tool Allows you to select and move Pipeline Components, event 
transitions and exception transitions. This is the default tool 
for the Pipeline Editor.

Note: This tool will stay selected until you select another 
one.

Event Tool Allows you to add an event transition between two nodes. 

Note: This tool will stay selected until you select another 
one.



Creating a Pipeline and Adding it to a Webflow

 WebLogic Portal Development Guide 9-25

Exception Tool Allows you to add an exception transition between two 
nodes, or a self-referring exception transition. 

Note: This tool will stay selected until you select another 
one.

Begin Node Allows you to designate one of the Pipeline Components 
already on the Editor canvas as the Begin Node for the 
current Pipeline.

Pipeline 
Component

Allows you to add new Pipeline Components to the Editor 
canvas. 

Table 9-6  Pipeline Display and Behavior Buttons

Tool Function Description

Show/Hide Grid button Allows you to show or hide a grid background 
in the Editor canvas.

Snap to Grid button Allows you to control whether or not Webflow 
components are automatically placed to the 
nearest grid point on the Editor canvas when 
you release the mouse button.

Link Optimization button Allows you to control whether or not the 
connectors on each node will be automatically 
moved around the perimeter of the node as the 
node is moved on the Editor canvas.

Show/Hide Exceptions button Allows you to show or hide exception 
transitions in the Editor canvas.

Make This Pipeline 
Transactional button

Allows you to specify whether the Pipeline 
should be transactional.

Note: Only available in the Pipeline Editor.

Table 9-5  Pipeline Editor Tools

Tool Function Description



9 Setting Up Portal Navigation

9-26 WebLogic Portal Development Guide

The Pipeline Editor uses the same command buttons the Webflow Editor use (see 
Table 9-3), with the addition of the the button described in Table 9-7.

Understanding what these buttons do and how to use them will make creating Pipelines 
a quick and easy process.

Step 1: Create a New Pipeline Component

This section contains the steps needed to create the Pipeline Component used by the 
Webflow.

Note: This procedure assumes the following:

! You have either opened an existing project or have created a new one.

! The E-Business Control Center is running.

! The Site Infrastructure tab is selected.

1. In the left pane of the Explorer, click Webflow/Pipelines. A list of Webflows and 
Pipelines appears in the Explorer�s right pane.

Include Pipeline Session in 
Transaction button

Allows you to specify whether the Pipeline 
Session should be included in the transaction. 
Enabled only if the Pipeline Transaction button 
is on.

Note: Only available in the Pipeline Editor.

Table 9-7  Pipeline Command Buttons

Tool Function Description

Pipeline Component 
Editor button

Opens the Pipeline Component Editor, which allows 
you to manage Pipeline Components.

Note: Only available in the Pipeline Editor.

Table 9-6  Pipeline Display and Behavior Buttons (Continued)

Tool Function Description



Creating a Pipeline and Adding it to a Webflow

 WebLogic Portal Development Guide 9-27

2. In the Webflows/Pipelines list, expand the Pipeline Namespaces folder.

3. Open the namespace that will host the Pipeline. With pipelines, a namespace is 
used to scope a pipeline so that multiple pipelines can be used in a single 
enterprise application without conflicting. 

4. Click the New icon above the Project name to open the New menu, as shown in 
Figure 9-16.

Figure 9-16   New Menu for Selected Pipeline Namespace

5. Select Webflow/Pipeline. 

The New Webflow/Pipeline window opens, as shown in Figure 9-17.

Figure 9-17   New Webflow/Pipeline Window



9 Setting Up Portal Navigation

9-28 WebLogic Portal Development Guide

6. Create the new Pipeline by doing the following:

a. Select the New Pipeline radio button.

b. In the Namespace list box, select the namespace that will host the Pipeline; for 
example, bookmark.

c.  In the Pipeline Name field, enter the name you want to call the Pipeline; for 
example validate Bookmark.

d. Click OK button. 

The Pipeline Editor appears, as shown in Figure 9-18.

Figure 9-18   Pipeline Editor [Pipeline: validateData]

Note that when the Pipeline Editor opens, the Abort Exception node is 
automatically placed on the canvas. This node is used for exception handling and 
causes the Webflow to abort when an exception can�t be resolved by normal 
processing.

7. Create the first Pipeline component by doing the following:

a. Click and hold the Abort Exception Node and drag it down near the bottom of 
the canvas. 



Creating a Pipeline and Adding it to a Webflow

 WebLogic Portal Development Guide 9-29

b. Select the Pipeline Component Node tool (see Table 9-7). 

c. Place the crosshairs on the Pipeline Editor canvas somewhere above the Abort 
Exception Node, where you want to place the new Pipeline Component. Click 
to place the new Pipeline Component node on the Editor canvas.

d. Click the Pipeline Component Editor button (see Table 9-7). The Pipeline 
Component Editor window opens, as shown in Figure 9-19.

Figure 9-19   Pipeline Component Editor

e. In the Pipeline Component Editor window, click New. The Pipeline Component 
Creator window opens, as shown in Figure 9-20.



9 Setting Up Portal Navigation

9-30 WebLogic Portal Development Guide

Figure 9-20   Pipeline Component Creator

f. In Name, enter the name you want to call the Pipeline component; for example, 
validateBookmark.

g. Select Class as the Type.

The Type value is important because Pipeline components can be either a 
regular Java class or a session EJB. Selecting Class implements a regular 
Java class while selecting JNDI implements a session EJB

h. In Class name, enter the full package name of the class that the Pipeline 
component will reference; for example:
examples.wlcs.sampleapp.order.pipeline.ValidateBookmarkClass

The completed dialog box might look like the example in Figure 9-21.



Creating a Pipeline and Adding it to a Webflow

 WebLogic Portal Development Guide 9-31

Figure 9-21   Completed Pipeline Component Creator Dialog Box

i. Click OK to close the Pipeline Component Creator window.

j. In the Pipeline Component Editor window, click Close.

The new Pipeline component appears in the Pipeline components list on the 
Pipeline Component Editor.

k. Select the new Pipeline node.

l. In the Properties Editor, located below the canvas, select the Pipeline name you 
entered in step f from the component*/Value pop-up list, as shown in 
Figure 9-22. 

Figure 9-22   Properties Editor�Component Selection

The new component name appear in the component*/value cell.



9 Setting Up Portal Navigation

9-32 WebLogic Portal Development Guide

8. In this example, we want any exception to cause you to exit the Pipeline. 
Therefore, the node must be connected to the Abort Exception node. Connect 
the new Pipeline component to the Abort Exception node, as follows:

a. Click the Exception tool.

b. Position the transition by moving the mouse to bottom edge of the 
validateBookmark node. A solid orange square indicates an acceptable 
connection location, and the cursor changes to indicate a transition addition.

c. Hold and drag the mouse to the Abort Exception node. Release the mouse to 
connect the transition to the Abort Exception node (Figure 9-23).

Figure 9-23   validateBookmark � Abort Exception Connection

d. Select the Exception event. The event line turns orange.

e. In the Properties Editor, select the second column (Figure 9-24), and enter the 
package name to the exception class, as follows:
com.bea.p13n.appflow.exception.PipelineException



Creating a Pipeline and Adding it to a Webflow

 WebLogic Portal Development Guide 9-33

Figure 9-24   Properties Editor�Exception Value

9. Make the validateBookmark node a Begin Node, as follows:

a. Click the Begin Node Tool (see �Begin Node� on page 9-25).

A message appears explaining that you are about to create a Begin node, as 
shown in Figure 9-25.

Figure 9-25   Begin Node Message Box

b. Select OK in the message window.

c. validateBookmark become the Begin node, as indicated by the green bar on its 
right edge, as shown in Figure 9-26.

Figure 9-26   validateBookmark as Begin Node

10. Save the new Pipeline by selecting File −> Save from the E-Business Control 
Center Main toolbar.



9 Setting Up Portal Navigation

9-34 WebLogic Portal Development Guide

Step 2: Add the New Pipeline Component to the Webflow

Now, you need to add the new pipeline component to a Webflow. To do so, use the 
following procedure.

1. In the right pane of the Explorer, open the Web application to which you want to 
add the Pipeline. In that Web application, double-click the Webflow to which you 
want to add the Pipeline.

The Webflow editor opens, as shown in Figure 9-27.

Figure 9-27   Webflow Editor showing completed Webflow

2. Select the event between the bea.portal.framework... and bookmarkEditIP 
nodes and press Delete.

3. Add the validateBookmark Pipeline to the Webflow, as follows:

a. Click the Pipeline Node tool (see Table 9-5) and place the pointer between 
bea.portal.framework... and bookmarkEditIP nodes. Click once to add 
the new Pipeline Node onto the Editor canvas in that location.

b. In the Properties Editor, below the canvas, select the second column of the 
pipeline-name* row, and then select validateBookmark from the drop-down 
list, as shown in Figure 9-28.



Creating a Pipeline and Adding it to a Webflow

 WebLogic Portal Development Guide 9-35

Figure 9-28   Properties Editor�Component Selection

4. Connect the validateBookmark Pipeline node to the other Pipeline nodes, as 
follows:

a. With the Event tool (see Table 9-5) connect the validateBookmark node to 
the bea.portal.framework... node, click the Event you just created, and 
then in the Properties Editor → Properties tab, change the name of the event to 
�success� and then press Enter.

Note: The word �success� is case sensitive. Be sure to use a lowercase �s�.

b. With the Event tool, connect the validateBookmark node to the 
bookmarkEditIP node.

c. Click the Event you just created, then in the Properties Editor�s Properties tab, 
change the name of the event to �success� (if necessary), and press Enter.

Figure 9-29 shows the Webflow Editor canvas after this process is completed. 
(The nodes have been moved to make the drawing easier to see.)



9 Setting Up Portal Navigation

9-36 WebLogic Portal Development Guide

Figure 9-29   Event Transitions

5. To save the changes, select File −> Save from the E-Business Control Center 
Main toolbar.

Synchronizing the Webflow to the 
Application

The Webflow that you just created must be synchronized to the Web application in 
order for it to work. Data synchronization loads the Webflow�s and Pipeline�s XML 
definition into the database and the master data repository, which is an in-memory data 
store.



Creating a New Input Processor

 WebLogic Portal Development Guide 9-37

Warning: All application data is synchronized at once. If you and other developers 
concurrently synchronize data to a single enterprise application, it is 
possible to overwrite each others� work or create sets of changes that are 
incompatible and difficult to debug. To prevent this possibility, 
synchronize to separate instances of your application. 

To synchronize the new pipeline component and the modified Webflow, use the 
following procedure:

1. Start WebLogic Server and open the E-Business Control Center.

2. Go to Tools −> Synchronize. 

After a few seconds, the Synchronize progress meter appears (Figure 9-30).

Figure 9-30   Synchronize Progress Meter

This meter will indicate to you that synchronization is in progress. When the 
process is complete, the progress meter will so indicate and Stop changes to 
Close. 

3. Click Close.

The Webflow is synchronized to the application.

Creating a New Input Processor

As discussed earlier in this section, Input Processors are predefined, specialized Java 
classes that carry out more complex tasks when invoked by the Webflow mechanism.  
They are typically used to validate HTML form data or to provide conditional 
branching within a Web page. BEA has developed a number of Input Processors that 



9 Setting Up Portal Navigation

9-38 WebLogic Portal Development Guide

are packaged with the WebLogic Portal. While you may want to reuse these processors 
in your own applications, you might also want to create your own for use in your 
applications� Webflows.

Creating an Input Processor with the InputProcessor 
Interface

To create a new Input Processor, you must implement the 
com.bea.p13n.appflow.webflow.InputProcessor interface by providing the 
details of the process() method, as shown in Listing 9-1.

Listing 9-1   Implementing Process() for the InputProcessor Interface

public java.lang.Object process(javax.servlet.http.HttpServletRequest req,
                                java.lang.Object requestContext)
                          throws ProcessingException

This interface processes the HttpServletRequest or the PipelineSession present 
in the HttpSession. The return object can be anything, but it must have a meaningful 
implementation of toString(). The webflow executor will call toString() on the 
returned object to generate the event for the processor.

Parameters req - the HttpServletRequest object
requestContext - the Object that uniquely identifies the request

Returns An Object, which has implemented a meaningful form of 
toString().

Throws ProcessingException or one of its sub-classes



Creating a New Input Processor

 WebLogic Portal Development Guide 9-39

Naming an Input Processor

The name of an Input Processor should end with the suffix IP. For example, an Input 
Processor that is responsible for deleting a shipping address might be called 
DeleteShippingAddressIP. This naming convention should help you keep track of 
Input Processors more easily.

Executing Business Logic with Input Processors

Execution of business (application) logic should typically not be done within Input 
Processors. Specifically, Input Processors should not call Enterprise JavaBeans (EJBs) 
or attempt to access a database. All such logic should be implemented in Pipeline 
Components. Although it is possible to execute this logic within an Input Processor, 
such logic could not be transactional, and would defeat a primary purpose of the 
Webflow architecture. By separating business logic from the presentation logic, your 
Web site is inherently flexible in nature. Modifying or adding functionality can be as 
simple as creating and plugging in new Pipelines and/or Input Processors.

Extending the InputProcessorSupport Class

Alternately, your new Input Processor can extend the com.bea.p13n.appflow. 
webflow.InputProcessorSupport class, as shown in Listing 9-2. As its name 
implies, this abstract class allows you to use static helper methods that provide 
additional support for an Input Processor. If your new Input Processor class must 
extend some other class, however, you will not be able to take advantage of the 
InputProcessorSupport class.

Listing 9-2   Extending the InputProcessorSupport class

public abstract class InputProcessorSupport
                         extends java.lang.Object
                implements InputProcessor, ValidatedFormConstants

Note: For more information about implementing the InputProcessorSupport 
class, refer to the Javadoc for com.bea.p13n.appflow.webflow.



9 Setting Up Portal Navigation

9-40 WebLogic Portal Development Guide

When you are using the Webflow Editor to specify the properties for an Input 
Processor node you placed on the canvas, simply include the class name of your newly 
created Input Processor in the appropriate field. There are no additional activities you 
need to perform to make your Input Processor work with the existing Webflow 
mechanism.

Extending Webflow by Creating Extension 
Presentation and Processor Nodes

If creating new input processors and pipeline components to add to those BEA 
provides does not meet your needs, you may also choose to extend the Webflow 
mechanism by creating classes that can be used as Extension (Custom) Presentation or 
Processor Nodes. Once you create the classes associated with these nodes, you will 
need to register the new nodes in the webflow-extensions.wfx file. This section 
shows you how to perform these tasks.

How to Create an Extension Presentation Node

To create an Extension (Custom) Presentation Node, use this procedure:

1. Create a class that implements the com.bea.p13n.appflow.webflow. 
PresentationNodeHandler interface. Be sure your class returns a URL to which 
the WebflowServlet servlet can forward.

2. Register your extension node in the webflow-extensions.wfx file so it can be 
used in the Webflow and Pipeline Editors. See �Making Your Extension 
Presentation and Processor Nodes Available in the Webflow and Pipeline 
Editors� on page 9-42.

WebLogic Portal uses an Extension (Custom) Presentation Node named portal, 
which you can view as an example. Portal uses this extension node to indicate to the 
portal Webflow that the contents of the portlet are to remain unchanged (that is, it 
indicates that the last URL should be displayed). The portal node�s implementation 
class is LastContentUrlNodeHandler.java. 



Extending Webflow by Creating Extension Presentation and Processor Nodes

 WebLogic Portal Development Guide 9-41

How to Create an Extension Processor Node

Extension (Custom) Processors are processors that your organization (as opposed to 
BEA) develops for use in your applications� Webflows. Imagine you want to create an 
Extension (Custom) Processor that functions at the same level as an Input Processor 
processor or Pipeline Processor. Extension Processors may be used to perform 
activities not currently supported by the Webflow. However, the flow in and out of an 
Extension Processor is still governed by the Webflow mechanism. Extension 
Processors are represented as nodes in the Webflow Editor, much like the Input 
Processor and Pipeline Nodes are, but with a slightly different representation for easy 
identification.

For example, you may want to create an Extension (Custom) Processor that works with 
the BEA Rules Engine to support different Webflows based on some condition, such 
as membership in a customer segment. Another, more simple example might be a 
layout manager processor that automatically includes a header and footer in your JSP 
when given the page�s body content. In fact, we have already created such a processor. 

To create an Extension (Custom) Processor Node, use this procedure:

1. Create a class that implements the com.bea.p13n.appflow.webflow. 
Processor interface to define the Extension Processor. Listing 9-3 shows a typical 
implementation of the Processor interface.

Listing 9-3   Implementing the Processor Interface

public java.lang.Object process(java.lang.String webapp,
                                java.lang.String namespace,
                                javax.servlet.http.HttpServletRequest request,
                                java.lang.Object requestContext)
                        throws java.lang.Exception

This interface executes the processor indicated by the request. The return object 
can be anything, but it must have a meaningful implementation of toString(). 



9 Setting Up Portal Navigation

9-42 WebLogic Portal Development Guide

The webflow executor will call toString() on the returned object to generate 
the event for the processor.

2. Register your processor in the webflow-extensions.wfx file so it can be used 
in the Webflow and Pipeline Editors. 

Note: For instructions on how to register your extension node in the 
webflow-extensions.wfx file, see �Making Your Extension Presentation 
and Processor Nodes Available in the Webflow and Pipeline Editors� on page 
9-42.

Making Your Extension Presentation and Processor 
Nodes Available in the Webflow and Pipeline Editors

After you have created an Extension (Custom) Presentation or Processor Node, you 
must make that node available to other developers on your team by registering the node 
in the webflow-extensions.wfx file. 

Notes: The webflow-extensions.wfx file resides within the 
<BEA_HOME>/user_projects/myNEWDomain/beaApps/ 

portalApp-project/default/webflow/ folder (where <BEA_HOME> is 
where you installed WebLogic Portal; for example:

bea/user_projects/myNEWDomain/beaApps/portalApp-project/
   default/webflow/

Parameters webapp - a String containing the webapp name
namespace - a String containing the namespace name
name - a String containing the processor name 
(foo.inputprocessor, bar.pipeline)
request - the HttpServletRequest
requestContext - the Object object that uniquely identifes 
the associated request

Returns the results, as an Object. Can be anything, but must implement 
toString().

Throws java.lang.Exception, if an error occurs



Extending Webflow by Creating Extension Presentation and Processor Nodes

 WebLogic Portal Development Guide 9-43

Registering an Extension (Custom) Processor Node will cause its 
corresponding tool on the Webflow Editor palette to become enabled once you 
restart the E-Business Control Center.

Registering an Extension Presentation Node

To register an Extension Presentation Node in the webflow-extensions.wfx file, 
follow these steps:

1. Open the webflow-extensions.xml file, which resides in the 
<BEA_HOME>/user-projects/myNEWDomain/beaApps/portalApp-

project/application-synch/webapps/<APPLICATION>  folder (where 
<BEA_HOME> is youre BEA parent directory and <APPLICATION> is the specific 
Web application.

2. Add an <end-node> element to the <end-node-registration> list.

3. Assign your presentation node a name with the Name attribute, and specify the 
class of the underlying node implementation with the Node-handler attribute.

4. Define the input parameters that the class expects upon invocation, using 
<node-processor-input> elements. Give each parameter a Name, and if the 
parameter is optional, assign the Required attribute a value of false.

Note: This information will be used in the Webflow and Pipeline Editors� 
Property Editors.

5. Save the webflow-extensions.wfx file, and restart the E-Business Control 
Center.

�Registering an Extension Presentation Node� provides an example of registering an 
Extension Presentation Node in the webflow-extensions.wfx file. 

Registering an Extension Processor Node

To register an Extension Processor Node in the webflow-extensions.wfx file, 
follow these steps:

1. Open the webflow-extensions.xml file, which resides in the 
<BEA_HOME>/user-projects/myNEWDomain/beaApps/portalApp-

project/application-synch/webapps/<APPLICATION> folder (where  
<APPLICATION> is the specific Web application.



9 Setting Up Portal Navigation

9-44 WebLogic Portal Development Guide

2. Add a <process> element to the <process-registration> list.

3. Assign your processor a name with the Name attribute, and specify the class of the 
underlying processor implementation with the Executor attribute.

4. Define the input parameters that the class expects upon invocation, using 
<node-processor-input> elements. Give each parameter a name, and if the 
parameter is optional, assign the Required attribute a value of false.

Note: This information will be used in the Webflow and Pipeline Editors� 
Property Editors.

5. Save the webflow-extensions.wfx file, and restart the E-Business Control 
Center.



WebLogic Portal Development Guide 10-1

CHAPTER

10 Creating a 
Look-and-Feel

WebLogic Portal provides two powerful mechanisms for managing the look and feel 
of your portals: skins and layouts. Skins are graphics and HTML style settings that 
define the visual style of a portal; for example color, fonts, and icons. Layouts are 
HTML-based matrixes into which portlets can be placed. The WebLogic Portal 
platform provides a ready-made structure for these components can be created, 
managed, and provided to users across applications.

This section shows you how to create skins and layouts for a portal. Some prerequisite 
knowledge about creating cascading style sheets (CSS), creating graphics, and 
defining HTML tables is required.

This section includes information on the following subjects:

! Portal Look-and-Feel Structure

! Using Skins

! Using Layouts

Portal Look-and-Feel Structure

When you see a portal in a Web browser, you see a single, unified Web page. That 
portal is made up of many JSPs. For example, in addition to the page content, a portal 
may use separate JSPs for the header, footer, and vertical and horizontal navigation 
bars.



10 Creating a Look-and-Feel

10-2 WebLogic Portal Development Guide

Each JSP used in a portal�s structure contains the coding necessary to implement part 
of the portal�s overall look and feel. For example, each JSP can contain references to 
the CSS and to graphics for determining a portal�s skin; and the portal�s main content 
page contains the logic necessary to implement which layout is chosen for the portal.

When you create a portal in the E-Business Control Center with the Portal Wizard, the 
portal template BEA provides is called baseportal. One of the functions of this 
template is to use a predefined set of JSPs that define the look-and-feel structure to 
create the new portal. In this section, the procedures for creating skins and layouts are 
presented in the context of the baseportal structure, which is also used for the Avitek 
Financial Portal Example provided with WebLogic Portal.

Using Skins

A skin is a collection of files that includes a cascading style sheet (.css file) and a 
directory of images that define the look and feel of a portal. Every button, banner, 
portlet header, background color, and font characteristic is determined by the CSS and 
the graphics. Skins also include a thumbnail graphic of the skin for preview purposes.

This section includes information on the following subjects:

! Creating Skins

! Storing Skins

! Making Skins Available

Creating Skins

To enable seamless switching between skins in a portal, the CSS and graphics for one 
skin must be named identically to the CSS and graphics in the other skins, as shown in 
Figure 10-1.



Using Skins

WebLogic Portal Development Guide 10-3

Figure 10-1   Different Skins Applied to a Portal Created with the baseportal 
Template

Note: Any content graphics that appear on the page, such as ads and graphics in 
portlets, are stored either in a content management system or in images 
subdirectories beneath portlet directories. However, portlet title bar graphics 
and background colors are controlled by the skin, as shown in Figure 10-1.

Creating skins is simply a matter of creating or modifying CSS and graphics files, with 
the same names as those used in other skins, but under a different directory. Creating 
skins also involves creating a thumbnail graphic for preview purposes. Use your 
favorite graphics tool to create and modify skin and thumbnail graphics.



10 Creating a Look-and-Feel

10-4 WebLogic Portal Development Guide

When creating graphics for a skin, be aware that larger graphics slow down page 
loading in a browser.

Skins Provided by BEA

WebLogic Portal includes a set of predefined skins that are used when you create a 
portal with the Portal Wizard. These skins are located in:

<BEA_HOME>\weblogic700\common\templates\webapps\portal\baseportal
\
j2ee\framework\skins

These can be used as templates to create entirely new skins.

Storing Skins

The next section describes the directory structure in which you must store new skins. 
To make skins available to a portal, store the CSS and graphics in the directory 
structure that is referenced by the metadata in a portal. Table 10-1 shows where to store 
the necessary pieces that make up a skin.

The skin thumbnail graphic is the only part of the skin not stored on the server. The 
thumbnail is for previewing a selected skin in the E-Business Control Center.

Table 10-1  Where to Store Skins Resources

Resource Location

Skin thumbnail graphic <BEA_HOME>\user_projects\your_domain\beaApps\
portalApp-project\library\portal\skins\skin_folder

CSS file <BEA_HOME>\user_projects\your_domain\beaApps\portalApp\
your_portal\framework\skins\skin_folder\css

Skin graphics <BEA_HOME>\user_projects\your_domain\beaApps\portalApp\
your_portal\framework\skins\skin_folder\images



Using Layouts

WebLogic Portal Development Guide 10-5

Making Skins Available

Making skins available in your portal involves using the E-Business Control Center to 
add the skins to a portal definition, synchronizing the updated portal definition to the 
server, and applying the skins to the portal with the WebLogic Portal Administration 
Tools.

Procedures for making skins available for administration are found in the WebLogic 
Portal Administration Guide. See �Administering Portal and Portlet Attributes� at 
http://edocs.bea.com/wlp/docs70/admin/frmwork.htm.

Using Layouts

A layout is a JSP. It combines simple HTML formatting with simple JSP tags that 
define sections of a page where portlets are placed. A layout also includes a thumbnail 
graphic representation of itself for preview purposes. Figure 10-2 shows thumbnail 
representations of layouts that are provided with WebLogic Portal.

Figure 10-2   Thumbnails of Default Layouts Provided with WebLogic Portal

This section includes information on the following subjects:

! Creating Layouts

! Storing Layouts

! Making Layouts Available



10 Creating a Look-and-Feel

10-6 WebLogic Portal Development Guide

Creating Layouts

This procedure shows you how to create a new layout for an existing portal.

To view an existing layout, open the following file in a text editor: 
your_portal\framework\layouts\threecolumn\template.jsp, as shown in 
Figure 10-3.

Figure 10-3   Source view of the �threecolumn� layout

To create a new layout:

1. Create a text file called template.jsp and store it in an appropriate layout folder. 
See �Storing Layouts� on page 10-8.

Note: The layout name is determined by the name of the folder in which 
template.jsp is stored.

2. On the first line, enter:

<%@ taglib uri=’ren.tld’ prefix=’layout’ %>

3. On the second line, insert the following tag and enter the names of the sections 
(placeholders) in which portlets will be placed in the layout. Put the placeholder 
names in a list of comma-separated values in the placeholders attribute, as 
shown in the following:



Using Layouts

WebLogic Portal Development Guide 10-7

<layout:placePortletsinPlaceholder 
placeholders=’<name1>,<name2>,<name3>,<name4>’ />

where <name*> is a unique section name, as shown in Figure 10-4.

Figure 10-4   Adding new layout placeholder names

4. In the HTML body of the layout, insert the following tag for each placeholder 
you defined in the previous step. These tags determine where portlets will be 
placed in the layout.

<layout:render section=’<name>’/>

where <name> is one of your placeholder names. You can insert these tags in any 
valid HTML (though frames are not supported); you are not restricted to putting 
them in tables. Figure 10-5 shows the tags placed in table cells.

Figure 10-5   Inserting placeholders into the HTML fragment

Note: The <layout:placePortletsinPlaceholder> and <layout:render> 
tags perform all the logic of retrieving and placing portlets in your layout 
and remembering which portlets are put in which placeholders.

5. Save the file.



10 Creating a Look-and-Feel

10-8 WebLogic Portal Development Guide

6. Create a thumbnail graphic representation of your layout. This thumbnail 
provides the layout preview in the E-Business Control Center and in the 
WebLogic Portal Administration Tools when you select the layout name in the 
interface. Using a graphics editor, copy and modify an existing thumbnail 
graphic, as shown in Figure 10-6. Save the graphic as two separate files: one 
called thumbnail.gif and the other layout_name.gif, where layout_name is 
the name of the layout folder.

A set of predefined layouts and thumbnail graphics are located in subdirectories 
under the following directory:

<BEA_HOME>\weblogic700\common\templates\webapps\portal\
baseportal\j2ee\framework\layouts

Figure 10-6   Creating a layout thumbnail

The next section describes the directory structure in which you must store new layouts.

Storing Layouts

To make a layout available in a portal, store the new layout and the thumbnail graphic 
in a specific directory structure in two different locations. Also, use two different 
names for the thumbnail graphic, as described in the previous section. Table 10-2 
shows the names and locations of the files.

Table 10-2  Where to Store Layout Resources

Resource Location

Layout thumbnail graphic: 
layout_name.gif

<BEA_HOME>\user_projects\your_domain\beaApps\
portalApp-project\library\portal\layouts\layout_folder

The layout_name must be the same as the layout_folder.



Using Layouts

WebLogic Portal Development Guide 10-9

Making Layouts Available

Making layouts available in your portal involves using the E-Business Control Center 
to add the layout to a portal definition, synchronizing the updated portal definition to 
the server, and applying the layout to the portal with the WebLogic Portal 
Administration Tools.

Procedures for making layouts available are found in the WebLogic Portal 
Administration Guide. See �Administering Portal and Portlet Attributes� at 
http://edocs.bea.com/wlp/docs70/admin/frmwork.htm.

Layout thumbnail graphic: 
thumbnail.gif

<BEA_HOME>\user_projects\your_domain\beaApps\portalApp\
your_portal\framework\layouts\layout_folder

template.jsp <BEA_HOME>\user_projects\your_domain\beaApps\
portalApp-project\library\portal\layouts\layout_folder

and
<BEA_HOME>\user_projects\your_domain\beaApps\portalApp\
your_portal\framework\layouts\layout_folder

The name of the layout_folder is used as the name of the layout.

Table 10-2  Where to Store Layout Resources

Resource Location



10 Creating a Look-and-Feel

10-10 WebLogic Portal Development Guide



WebLogic Portal Development Guide 11-1

CHAPTER

11 Extending Portlets

To invoke advanced features in portlets, and make these portlets available to 
administrators, developers use several tools and many procedures. This section 
includes information on the following subjects:

! Basic Portlet Customization

" Moving a Portlet Between Portal Web Applications

" Moving a Portlet Between Domains

" Creating Categories for Portlets

! Portlets and the Framework

" Simple JSP Portlets

" WebFlow Portlets

" Web Service Portlets

! Portalizing an Existing Web Application

! Performance Tuning

Basic Portlet Customization

One of the most basic customizations is moving a portlet from one portal into another. 
Understanding this procedure will help you understand many of the other tasks in this 
section, since many procedures and tools are introduced here. This section covers the 
following basic portlet customizations:

! Moving a Portlet Between Portal Web Applications



11 Extending Portlets

11-2 WebLogic Portal Development Guide

! Moving a Portlet Between Domains

! Creating Categories for Portlets

Moving a Portlet Between Portal Web Applications

This section explains the process of moving a portlet from one portal Web application 
to another, and is based on the assumption that both portals have been deployed 
correctly. Figure 11-2 shows the two portals with their associated Web applications.

Figure 11-1   Portals and associated Web applications

This example illustrates moving a portlet called flowlet1, shown in Figure 11-2, 
from one portal Web application (NewPWApp) to another (NextPWApp).

Figure 11-2   flowLet1 portlet in the NewWPApp

Take the following steps to add the flowLet1 portlet to NextPWApp portal:

! Step 1: Copy J2EE Resources into New Web Application



Basic Portlet Customization

WebLogic Portal Development Guide 11-3

! Step 2: Edit the Target Web Application Metadata

! Step 3: Synchronize the Project

! Step 4: Make the New Portlet Visible and Available

Step 1: Copy J2EE Resources into New Web Application

If you open the flowLet1 portlet inside the E-Business Control Center, you can see it 
is visible among the available portlets.

Because the original portlet uses a custom Webflow, this file must be moved before 
the target portal Web application can use this portlet. Figure 11-3 shows the flowLet1 
Webflow file in the \webapps directory for NewPWApp being copied into the 
\webapps directory for NextPWApp.

Figure 11-3   Copying the navigation Webflow

Figure 11-4 shows the portlet folder flowLet1 being copied from the NewPWApp 
application folder into the NextPWApp Web application folder. The JSPs and images 
that make up your portlet are stored inside this directory.



11 Extending Portlets

11-4 WebLogic Portal Development Guide

Figure 11-4   Copying J2EE resources

Now that the J2EE resources have been copied into the new Web application, the 
metadata can be edited to point to these resources.

Step 2: Edit the Target Web Application Metadata

Use the E-Business Control Center to add the flowLet1 portlet to the ThatNewPortal 
portal:

1. From the Presentation Tab in the E-Business Control Center, click on portal and 
select the portal called That New Portal.

2. When the portal editor opens, click on the General tab to the top right.

3. Click on the portlets tab halfway down the General page, select the flowLet1 
portlet from the list of available portlets, and click Add, as shown in Figure 11-5.

Figure 11-5   Adding flowLet1 to ThatNewPortal

4. Close the General tab, click on the Pages tab, select the Home portal page and 
click Edit.

5. Select the flowLet1 portlet from the list of available portlets to the lower left of 
the definition screen for the Home portal page, and click Add. Click OK to close 
this window.



Basic Portlet Customization

WebLogic Portal Development Guide 11-5

6. Save this project.

Step 3: Synchronize the Project

Use the E-Business Control Center to sync the project.

Note: For more details on the E-Business Control Center, consult �Setting up the 
E-Business Control Center� in the Administration Guide at 
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm.

1. From the E-Business Control Center toolbar, click the Synchronize button, as 
shown in Figure 11-6.

Figure 11-6   Click Synchronization button

2. When the Synchronizing Application window shows that synchronization is 
complete, click Close.

Step 4: Make the New Portlet Visible and Available

The new portlet called flowLet1 is now deployed, but must be made available using 
the WebLogic Portal Administration Tools.

1. In your Web browser, navigate to the following URL: 
http://<hostname>:<port>/portalAppTools. Login as administrator/password, and 
click Portal Management, as shown in Figure 11-7.

Figure 11-7   Go to Portal Management

2. From the Portal Management Home page, click the Default Portal under the 
NextPWApp, as shown in Figure 11-8.



11 Extending Portlets

11-6 WebLogic Portal Development Guide

Figure 11-8   Select Default Group Portal

3. From the Group Portal Management Home page, click Manage Pages and 
Portlets as shown in Figure 11-9.

Figure 11-9   Manage Pages and Portlets

4. Next to the portal page, click Edit Portlets, as shown in Figure 11-10.

Figure 11-10   Click Edit Portlets

5. Select the flowLet1 portlet from the list and click Set Attributes, as shown in 
Figure 11-11.



Basic Portlet Customization

WebLogic Portal Development Guide 11-7

Figure 11-11   Select Set Attributes for flowLet1 portlet

6. Set the Portlet�s attributes to Visible and Available and click Save, as shown in 
Figure 11-12.

Figure 11-12   Set Portlet Attributes



11 Extending Portlets

11-8 WebLogic Portal Development Guide

7. Verify the results by navigating to 
http://<hostname>:<port>/NextPWApp/index.jsp. The result should 
resemble that shown in Figure 11-13.

Figure 11-13   Viewing flowLet1 in NextPWApp

Moving a Portlet Between Domains

Assuming both domains are correctly installed and deployed instances of the latest 
release of WebLogic Portal, the procedure for moving a portlet from one domain to the 
other is almost identical to that used for Moving a Portlet Between Portal Web 
Applications.

1. When copying the J2EE files, also copy the .portlet file to the 
portalApp-project\portlets directory on the target server. Figure 11-14 
shows where the .portlet file resides in the portalApp-project\portlets 
directory on the origin domain.

2. Complete the remainder of the steps listed in the section Moving a Portlet 
Between Portal Web Applications.



Basic Portlet Customization

WebLogic Portal Development Guide 11-9

Figure 11-14   The .portlet file

Finding Missing Resources Through Error Messages

If you are missing necessary portlet resources in a domain, you will receive error 
messages either at server startup or when you try to access portal pages that use those 
resources. (Missing portlet resources do not prevent the server from starting.)

For example, you may receive HTTP session errors in your browser such as 404, or 
render-time errors that say, for example, �Functionality temporarily unavailable.� 
Missing metadata can also cause errors.

Look for error messages in your server�s command window to determine which 
resources are missing. For example, Listing 11-1 shows that a portlet called 
WebFlowPortlet is missing a file called header.jsp. This message was generated in 
the command window when the portal page containing this portlet was accessed.

Listing 11-1   Error caused by missing portlet resources

<Jun 12, 2002 10:38:59 AM MDT> <Error> <HTTP> <101214> <Included 
resource or file "/NewWebApp/portlets/WebflowPortlet/header.jsp" 
not found from requested resource 
"/NewWebApp/framework/portal.jsp".>

The E-Business Control Center also catches some errors when you are editing portlets. 
For example, a warning dialog box alerts you if the portlet you are editing is missing 
an associated Webflow file.



11 Extending Portlets

11-10 WebLogic Portal Development Guide

Creating Categories for Portlets

The E-Business Control Center lets you group portlets into categories for easier 
management. This section illustrates how to create categories and manage portlets 
within them.

Preparing to Work With Categories

The steps in this section require that the following preparations be in place:

! Working instance of WebLogic Portal 7.0

! Fully deployed portal

! WebLogic Portal Server must be running.

Warning: Trying to create a new category before a portal has been defined in the 
E-Business Control Center will generate an error.

Creating Portlets and Categories

1. From the Presentation Tab in the E-Business Control Center, use the Portlet Wizard 
to create some generic portlets, as shown in Chapter 2, �Creating a New Portal in 
a New Domain.� To follow along with this example, name the new portlets as 
follows:

! WallStreet

! MainStreet

! MidWest

! SouthEast

! LatinAmerica

2. From the Presentation Tab in the E-Business Control Center, click the Portlets 
icon and click the new folder icon, as shown in Figure 11-15.



Basic Portlet Customization

WebLogic Portal Development Guide 11-11

Figure 11-15   Creating a new category

3. The New Category screen appears. Type �Business� in the name field and click 
OK.  Repeat this step to create the following new categories:

! Education

! Regional

! International

The resulting category list should resemble that shown in Figure 11-16.

Figure 11-16   New categories

Note: Selecting one of the portlets makes the three icons to the right available, as 
shown in Figure 11-17.



11 Extending Portlets

11-12 WebLogic Portal Development Guide

Figure 11-17   Category icons in toolbar

Moving Portlets and Categories

This section explains how to move portlets and categories using the E-Business 
Control Center.

1. Select the International and Regional categories, then click the Move icon on the 
far right of the toolbar, as shown in Figure 11-18.

Figure 11-18   Click Move category

2. The Moving Category International screen appears. Select Education and click 
Move. When the Moving Category Regional window appears, do the same. The 
results should look similar to those in Figure 11-19.



Basic Portlet Customization

WebLogic Portal Development Guide 11-13

Figure 11-19   Categories and portlets

3. Select the Education category, then click the Rename icon second from the right 
in the toolbar, as shown in Figure 11-20.

Figure 11-20   Select a category and click rename

4. The Rename category screen appears. Type in �Schools� and click Rename, as 
shown in Figure 11-21.



11 Extending Portlets

11-14 WebLogic Portal Development Guide

Figure 11-21   Renaming a category

5. Move the MidWest and SouthEast portlets into the Schools category by selecting 
them, clicking the Move icon, shown in Figure 11-22, and selecting a destination 
as shown in Figure 11-23.

Figure 11-22   Moving portlets into a Category



Basic Portlet Customization

WebLogic Portal Development Guide 11-15

Figure 11-23   Selecting destination folder

6. Using the category icons, move the MainStreet and WallStreet portlets into the 
Business category, the LatinAmerica portlet into the International category, and 
the MidWest and SouthEast portlets into the Regional categories. The results 
should look like those in Figure 11-24.

Figure 11-24   Portlets and categories arranged



11 Extending Portlets

11-16 WebLogic Portal Development Guide

Adding Portlets to Existing Categories

This section explains how to place new portlets into existing categories. In this 
example, the following portlets are created:

! BondStreet

! UK

! Asia

To add portlets to existing categories, take the following steps:

1. From the Presentation Tab in the E-Business Control Center, use the Portlet Wizard 
to create the new portlets.

Note: When naming the portlets, click Select a Category, as shown in Figure 11-25.

Figure 11-25   Select a category for the portlet

2. The Select a portlet category screen appears, as shown in Figure 11-26. Select 
Business and click OK.



Basic Portlet Customization

WebLogic Portal Development Guide 11-17

Figure 11-26   Placing a new portlet inside an existing category

3. Proceed with the rest of the steps in the Portlet Wizard, and repeat for the 
BondStreet, UK, and Asia portlets.

4. The resulting portlets should resemble those shown in Figure 11-27.

Figure 11-27   Portlets in their categories



11 Extending Portlets

11-18 WebLogic Portal Development Guide

Portlets and the Framework

The BEA WebLogic platform provides extensive support for customizing portlets, 
including JSP tag libraries designed to expose robust functionality while requiring 
minimal Java scripting within the actual JSPs that constitute a portlet. Use the 
information in this section to create the following portlet types:

! Simple JSP Portlets: These portlets can contain scriptlets and can invoke 
personalization features, but do not use individual WebFlows.

! WebFlow Portlets: The portal wizard can be used to create three different 
Webflow portlets. Navigation and inter-portlet scenarios can also be realized by 
customizing a WebFlow file and associating it with an individual portlet.

! Web Services Portlets: Code can be added to a portlet that invokes various 
interactions with other programs, either locally or across the Internet.

The remainder of this section explains each portlet type, providing several examples 
of each and explaining some techniques for creating portlets that best make use of the 
BEA WebLogic platform.

Simple JSP Portlets

To illustrate some of the power, flexibility, and ease-of-use inherent in the WebLogic 
Portal platform, this subsection includes the following examples:

" The scriptDemo Portlet

" Calling ActiveX Components from a Portlet

The scriptDemo Portlet

The scriptDemo portlet, shown in Figure 11-30, appears to the left on the Home page 
of an example portal created using the Portal Wizard.

Preparing

Make the following preparations to work through this example:



Portlets and the Framework

WebLogic Portal Development Guide 11-19

1. Create a new portal called �MyNewPortal1�, and a new portal Web application 
�OldPortalWebApp�, as explained in Step 2: Create the New Portal, in Chapter 2, 
�Creating a New Portal in a New Domain.�

2. Create a new portlet, called �scriptDemo� as explained in Step 3: Add a Portlet, 
in Chapter 2, �Creating a New Portal in a New Domain.�

3. Make the �scriptDemo� portlet visible, as explained in Step 4: Make New Portlet 
Visible, in Chapter 2, �Creating a New Portal in a New Domain.�

Before Continuing

Ensure your portal looks similar to that shown in Figure 11-28 before a user is logged 
in, or that shown in Figure 11-29 with a user logged in.

Figure 11-28   Starting point with anonymous user

Figure 11-29   Starting Point with user logged on



11 Extending Portlets

11-20 WebLogic Portal Development Guide

Installing the scriptDemo portlet

With the raw materials are in place, you can now transform the portlet by replacing the 
content.jsp to change its behavior. Listing 11-2 shows a very simple scriptlet that 
illustrates how to use generic Java scriptlets to interact with the Portal framework in a 
portlet.

Listing 11-2   scriptDemo portlet version 1

<center> Test Portlet </center>
<br><hr>
<%

A Simple Java Scriptlet
<br>
/*
Create a new String variable and set the value to an empty string.
*/
  String userName = "";
/*

To get the actual user name, first get the java.security.Principal object from the 
Javax.servlet.http.HttpServletRequest object using the 
getUserPrincipal() method.  The request object is available to the JSP directly. For 
the Principal object, use the full package name.

*/

  java.security.Principal principal = request.getUserPrincipal();
/*

If the principal object is null then the user has not logged in. For this example, ignore 
the not-logged in case by using an if statement to only process the value if it is not null.

*/
  if (principal != null)
  {
/*
*/
    userName = principal.getName();
  }
%>
<%-- 

Display the value of the userName variable using a scriptlet. Note that the scriptlet is 
embedded in the HTML and is denoted by the <%= %> block.



Portlets and the Framework

WebLogic Portal Development Guide 11-21

--%>
The user name is : <%= userName %>
<br>

Steps

Take the following steps to place this new code inside the scriptDemo portlet:

1. In a text editor, save the code from Listing 11-2 as content.jsp in the following 
directory:

<BEA_HOME>\portalDomain\beaApps\portalApp\
<PortalWebApp>\portlets\scriptDemo\

2. Refresh the browser, and verify that the results resemble Figure 11-30. Notice 
that because the portlet content was altered, the user has been logged out. 
Because the portlet now appears with an anonymous user, you can see that no 
user name appears in the portlet.

Figure 11-30   scriptDemo portlet with anonymous user

3. Click Login in the top right corner of the portal.

4. When the Portal Login page appears, click Sign up now under the New Users 
column to the right.

5. When the New User Registration page appears, create a new user called 
�bobjones�, and enter �password� in the password fields, and click Submit.

Figure 11-31 shows what the code in the scriptDemo portlet displays when a user is 
logged on. Notice that the user name is filled in.



11 Extending Portlets

11-22 WebLogic Portal Development Guide

Figure 11-31   scriptDemo portlet with a user logged on

Note: For more information on using JSP tags in your custom portlets, consult the 
following resources:

" JavaServer Page Reference Guide

" WebLogic Portal Javadoc API documentation.

Calling ActiveX Components from a Portlet

To call an ActiveX component from within your portlet, use the HTML <OBJECT> 
tag, as shown in Listing 11-3 and Listing 11-4.

These examples include a CODEBASE parameter so that if the local machine doesn't 
have the component installed in their registry, the component can be downloaded from 
Microsoft.

Note: In these examples, the portal is only communicating with the ActiveX 
components through HTML, which comes back from the portal to the browser, 
and tells the browser to load and run the ActiveX component.

Listing 11-3    Calling Outlook Using Active X - Calendar Example

<OBJECT CLASSID="clsid:0006F063-0000-0000-C000-000000000046"

CODEBASE="http://activex.microsoft.com/activex/controls/office/
outlctlx.CAB#ver=9,0,0,3203"

    id=OVCtl1 width=100% height=200>



Portlets and the Framework

WebLogic Portal Development Guide 11-23

  <param name="Folder" value="Calendar">

  <param name="Namespace" value="MAPI">

  <param name="Restriction" value="">

  <param name="DeferUpdate" value="0">

</OBJECT>

Listing 11-4   Calling Outlook Using Active X - Inbox Example

<OBJECT CLASSID="clsid:0006F063-0000-0000-C000-000000000046"

CODEBASE="http://activex.microsoft.com/activex/controls/office/ou
tlctlx.CAB#

ver=9,0,0,3203"

        id=OVCtl1 width=100% height=200>

  <param name="Folder" value="Inbox">

  <param name="Namespace" value="MAPI">

  <param name="Restriction" value="">

  <param name="DeferUpdate" value="0">

</OBJECT>

Note: ActiveX components only work inside Microsoft Internet Explorer with 
appropriate security settings which allow them to run.

WebFlow Portlets

This section begins by showing the types of webflow portlets that can be created by 
the portlet wizard. Next, some fundamental aspects of WebFlow are illustrated using 
simple scripting examples. The following topics are handled in the section:

" Three Webflow Portlets



11 Extending Portlets

11-24 WebLogic Portal Development Guide

" How a Portlet Handles a Refresh Event

" Making a Portlet Respond to a Custom Event

" Sharing State from One Portlet to Another

Three Webflow Portlets

The Portlet Wizard in the E-Business Control Center can now produce three different 
types of Webflow portlets:

! Navigation Bar, in which each page in the set has a navigation bar with links to 
every other page in the set.

! Sequential, in which pages are traversed in sequence via the Next and Previous 
buttons.

! Hierarchical, in which a parent page features links to each child page. Child 
pages link back to the parent, but not to one another.

Preparing

This section illustrates adding new Webflow portlets to the application NewPWApp, as 
shown throughout this chapter. To work through these examples, make sure the portal 
server is running, and that portal-project is open in the E-Business Control Center.

Creating a Navigation Bar Webflow Portlet

This procedure shows how to use the portlet wizard to create a Navigation Bar 
Webflow portlet.

1. From the Presentation Tab in the E-Business Control Center, select New Portlet, as 
shown in Figure 11-32.



Portlets and the Framework

WebLogic Portal Development Guide 11-25

Figure 11-32   Starting the Portlet Wizard

2. Elect to use the portlet wizard, as shown in Figure 11-33, and click OK.

Figure 11-33   Elect to use the Portlet Wizard

3. Name the portlet Navigation, as shown in Figure 11-34, then click Next.



11 Extending Portlets

11-26 WebLogic Portal Development Guide

Figure 11-34   Naming the Navigation Portlet

4. Associate the new portlet with the Home page, as shown in Figure 11-35, and 
click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-27

Figure 11-35   Associate the portlet with the Home page

5. Select portlet components, as shown in Figure 11-36, and click Next.

Figure 11-36   Select components



11 Extending Portlets

11-28 WebLogic Portal Development Guide

6. Select webflow content type, as shown in Figure 11-37, and click Next.

Figure 11-37   Select Webflow content type

7. Select Navigation Bar model, as shown in Figure 11-38, and click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-29

Figure 11-38   Select Navigation Bar Model

8. Select number of pages, as shown in Figure 11-39, and click Next.

Figure 11-39   Select number of pages



11 Extending Portlets

11-30 WebLogic Portal Development Guide

9. Confirm resource files location, as shown in Figure 11-40, and click Next.

Figure 11-40   Confirm Resource Files Location

10. Confirm summary of files to be created, as shown in Figure 11-41, and click 
Create.



Portlets and the Framework

WebLogic Portal Development Guide 11-31

Figure 11-41   Confirm Summary

11. Confirm next steps, as shown in Figure 11-42, and click Close.

Figure 11-42   Confirm Next Steps



11 Extending Portlets

11-32 WebLogic Portal Development Guide

12. Synchronize the project, as shown in Figure 11-43.

Figure 11-43   Synchronize project

13. Use the WebLogic Portal Administration Tools to make the portlet visible and 
available, as shown in the section called �Step 4: Make the New Portlet Visible 
and Available� on page 5.

14. View the portlet, as shown in Figure 11-44.

Figure 11-44   Viewing the Navigation Bar Portlet



Portlets and the Framework

WebLogic Portal Development Guide 11-33

Creating a Sequential Webflow Portlet

This procedure shows how to use the portlet wizard to create a Sequential Webflow 
portlet.

1. From the Presentation Tab in the E-Business Control Center, select New Portlet, as 
shown in Figure 11-45.

Figure 11-45   Starting the Portlet Wizard

2. Elect to use the portlet wizard, as shown in Figure 11-46, and click OK.

Figure 11-46   Elect to use the Portlet Wizard

3. Name the portlet Sequential, as shown in Figure 11-47, then click Next.



11 Extending Portlets

11-34 WebLogic Portal Development Guide

Figure 11-47   Naming the Sequential Webflow Portlet

4. Associate the portlet with the Home page, as shown in Figure 11-48, and click 
Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-35

Figure 11-48   Associate the portlet with the Home page

5. Select portlet components, as shown in Figure 11-49, and click Next.

Figure 11-49   Select Portlet Components



11 Extending Portlets

11-36 WebLogic Portal Development Guide

6. Select webflow content type, as shown in Figure 11-50, and click Next.

Figure 11-50   Select Webflow content type

7. Select Sequential Navigation model, as shown in Figure 11-51, and click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-37

Figure 11-51   Select Sequential model

8. Select number of pages, as shown in Figure 11-52, and click Next.

Figure 11-52   Select number of pages



11 Extending Portlets

11-38 WebLogic Portal Development Guide

9. Confirm resource files Location, as shown in Figure 11-53, and click Next.

Figure 11-53   Confirm Resource Files Location

10. Confirm summary of files to be created, as shown in Figure 11-54, and click 
Create.



Portlets and the Framework

WebLogic Portal Development Guide 11-39

Figure 11-54   Confirm Summary

11. Confirm next steps, as shown in Figure 11-55, and click Close.

Figure 11-55   Confirm Next Steps



11 Extending Portlets

11-40 WebLogic Portal Development Guide

12. Synchronize the project, as shown in Figure 11-56.

Figure 11-56   Synchronize project

13. Use the WebLogic Portal Administration Tools to make the portlet visible and 
available, as shown in the section called �Step 4: Make the New Portlet Visible 
and Available� on page 11-5.

14. View the portlet, as shown in Figure 11-57.



Portlets and the Framework

WebLogic Portal Development Guide 11-41

Figure 11-57   Viewing the Sequential Webflow Portlet

Creating a Hierarchical Webflow Portlet

This procedure shows how to use the portlet wizard to create a Hierarchical Webflow 
portlet.

1. From the Presentation Tab in the E-Business Control Center, select New Portlet, as 
shown in Figure 11-58.

Figure 11-58   Starting the Portlet Wizard



11 Extending Portlets

11-42 WebLogic Portal Development Guide

2. Elect to use the portlet wizard, as shown in Figure 11-59, and click OK.

Figure 11-59   Elect to use the Portlet Wizard

3. Name the portlet Hierarchical, as shown in Figure 11-60, then click Next.

Figure 11-60   Naming the Hierarchical Portlet

4. Associate the new portlet with the Home page, as shown in Figure 11-61, and 
click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-43

Figure 11-61   Associate the portlet with the Home page

5. Select portlet components, as shown in Figure 11-62, and click Next.

Figure 11-62   Select components



11 Extending Portlets

11-44 WebLogic Portal Development Guide

6. Select webflow content type, as shown in Figure 11-63, and click Next.

Figure 11-63   Select Webflow content type

7. Select Hierarchical model, as shown in Figure 11-64, and click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-45

Figure 11-64   Select Hierarchical Model

8. Select number of pages, as shown in Figure 11-65, and click Next.

Figure 11-65   Select number of pages



11 Extending Portlets

11-46 WebLogic Portal Development Guide

9. Confirm resource files location, as shown in Figure 11-66, and click Next.

Figure 11-66   Confirm Resource Files Location

10. Confirm summary of files to be created, as shown in Figure 11-67, and click 
Create.



Portlets and the Framework

WebLogic Portal Development Guide 11-47

Figure 11-67   Confirm Summary

11. Confirm next steps, as shown in Figure 11-68, and click Close.

Figure 11-68   Confirm Next Steps



11 Extending Portlets

11-48 WebLogic Portal Development Guide

12. Synchronize the project, as shown in Figure 11-69.

Figure 11-69   Synchronize project

13. Use the WebLogic Portal Administration Tools to make the portlet visible and 
available, as shown in the section called �Step 4: Make the New Portlet Visible 
and Available� on page 11-5.

14. View the portlet, as shown in Figure 11-70.



Portlets and the Framework

WebLogic Portal Development Guide 11-49

Figure 11-70   Viewing the Hierarchical Portlet

How a Portlet Handles a Refresh Event

To illustrate how portlets can use Webflow, observe how portlets handle the refresh 
event, as demonstrated in the bold code in Listing 11-5.

Listing 11-5   Adding refresh notification to a portlet

<%@ taglib uri="portlet.tld" prefix="portlet" %>
<%
System.out.println("Calling refresh on flowLet1 portlet.");
%>
<center>
<font size="6" color="green">Portlet 1</font><BR>
<p>
Portlet content with Webflow
<p>
<a href="<portlet:createWebflowURL event="switch1"/>">Next 
Page</a>
<p>
</center>



11 Extending Portlets

11-50 WebLogic Portal Development Guide

Continuing from the previous example, edit the text in the scriptDemo portlet as shown 
in the following steps:

1. Open the console by selecting it from the taskbar, as shown in Figure 11-71.

Figure 11-71   Open console window

The console should resemble figure Figure 11-72.

Figure 11-72   Console window

2. In a text editor, save the code from Listing 11-2 as content.jsp in the following 
directory:

<BEA_HOME>\portalDomain\beaApps\portalApp\<PortalWebApp>\
portlets\scriptDemo\

3. Refresh the browser, and verify that the portlets have not changed. Click the 
Webflows within each of the portlets, navigating back and forth a few times.

4. Return to the console and notice the output from flowLet1, as shown in 
Figure 11-73.



Portlets and the Framework

WebLogic Portal Development Guide 11-51

Figure 11-73   Refresh messages in Console

Understanding Webflow Refresh Events in a Portlet

In Webflow, the Refresh event amounts to calling an entity called lastContentUrl, 
which merely allows you to trigger a portlet to refresh itself without specifying its 
name. By navigating through the various buttons and controls in the portal in this 
example while observing the console window for refresh messages, you can see when 
refresh events are caused by certain actions. To look more closely at the Webflow 
associated with flowLet1, take the following steps:

1. Looking at a Webflow: From the Site Infrastructure tab of the E-Business Control 
Center, select WebFlows/Pipelines.

2. Open NewPWApp1 by double-clicking it, as shown in Figure 11-74.



11 Extending Portlets

11-52 WebLogic Portal Development Guide

Figure 11-74   Opening Webflows within Portal Web Application

3. Open the Webflow named flowLet1 by double-clicking it, and examine the 
image that appears in the editor window. To the right side of the navigation 
mapping, notice that the minimize, maximize, unMinimize and unMaximize 
nodes are linked to portal_lastContentUrl, as shown in Figure 11-75.



Portlets and the Framework

WebLogic Portal Development Guide 11-53

Figure 11-75   Nodes linked to portal_lastContentUrl

By default, refresh is always invoked on an entire portal, and can be called on every 
portlet. Any portlet with its own Webflow can be made to respond to all refresh events. 
To make this default behavior for a portlet, use the Webflow editor to open the portlet�s 
Webflow and set *.refresh proxynode to lastContentUrl.

For an in-depth look at using Webflow, consult Chapter 9, �Setting Up Portal 
Navigation.�

Making a Portlet Respond to a Custom Event

To explain custom events, consider the navigation mapping in the Webflow for 
flowLet1 portlet, shown in Figure 11-76.



11 Extending Portlets

11-54 WebLogic Portal Development Guide

Figure 11-76   Navigation nodes in flowLet1 Webflow

The navigation between content1.jsp and content2.jsp is accomplished using 
pre-defined events called switch1 and switch2.

By selecting one of the content nodes, you can examine the properties of the Webflow 
that links content1.jsp with content2.jsp in the flowLet1 portlet. The properties of the 
content2 presentation node are shown in detail in Figure 11-77.



Portlets and the Framework

WebLogic Portal Development Guide 11-55

Figure 11-77   Mappings for content2

Defining a Custom Event

Figure 11-78 shows how a custom event is assigned to a new presentation node. This 
event is named myCustomEvent, and the Event connector tool is used to link 
presentation node content2 with presentation node content3.



11 Extending Portlets

11-56 WebLogic Portal Development Guide

Figure 11-78   Defining myCustomEvent

Invoking the Custom Event

To call the custom event in the portlet, include the following code in your JSP:

<a href="<portlet:createWebflowURL event="myCustomEvent"/>">Next 
Page</a>

Figure 11-79 shows the third screen of flowLet1 after a new presentation node, called 
content3.jsp, has been added.

Figure 11-79   The third page of flowLet1 portlet



Portlets and the Framework

WebLogic Portal Development Guide 11-57

Sharing State from One Portlet to Another

Share state from one portlet to another by placing the arguments into the HttpSession 
object using an Input Processor. For instance, if portletA uses a form named "foo", 
use the IP to extract the �foo� form data, and portletB can get the form data from the 
Pipeline Session.

Note: For more information on Input Processors, consult Chapter 9, �Setting Up 
Portal Navigation.�

Web Service Portlets

Web Services are reusable software components that enable applications to interact 
efficiently and in a loosely-coupled manner; they are used internally for fast and 
low-cost application integration, or made available to customers, suppliers or partners 
over the Internet. Enabling portlets to consume Web Services, either internally or over 
the Internet, introduces a range of new benefits - and introduces some new developer 
issues as well.

Note: For the sake of simplicity, the examples shown in this section show portlets 
connecting to Web Services that are locally hosted.

This section contains information on the following topics:

! Using the Portlet Wizard to Create Web Services Portlets

! Creating a Simple Form-Driven Web Service Portlet

! Creating a Call-Generation Web Service Portlet

! Creating a Web Services Interface Portlet

! Deploying the Web Services Portlets

! Error Handling within Web Services Portlets

! Calling Web Services Asynchronously



11 Extending Portlets

11-58 WebLogic Portal Development Guide

Using the Portlet Wizard to Create Web Services Portlets

The Portlet Wizard can create portlets that consume Web Services in three different 
ways:

! Simple Web Service Form: This is the simplest mode of interacting with a 
Web Service, whereby a simple parameter is sent to the Web Service class using 
the httpSession, and a primitive value is printed into the resulting HTML.

! Call Generation: Slightly more complex is the Call Generation type portlet, in 
which classes hosted by the Web Service are listed in an object called the WSDL 
(Web Services Definition Language). The portlet makes remote calls to these 
classes and consumes the returned objects. In the Portlet Wizard, the Call 
Generation option creates a stubbed out portlet that calls into the designated Web 
service. You are required to set the __REPLACE_ME__ variables with output 
from sources such as the user profile, the request, and the session.

! Web Service(s) Interface: This option allows you to select multiple Web 
services and extract interface documentation into the portlet itself. Use this 
option when parameters or return values require complex data types.

This option can be used to create a portlet that calls a Web Service 
asynchronously through client polling. The section �Calling Web Services 
Asynchronously� includes instructions on creating this type of portlet.

This section shows how to use the Portlet Wizard to create a portlet of each type.

Preparation

Start the WebLogic Workshop Examples Server by navigating to Programs →  BEA 
WebLogic Platform 7.0 →  WebLogic Workshop Example →  Start Examples Server. 
Begin with the sample portal described in the section The scriptDemo Portlet.

Note: This example shows the scriptDemo, flowLet1 and flowLet2 portlets 
removed, but you complete these Web Service portlet examples without 
removing the old portlets from the portal.



Portlets and the Framework

WebLogic Portal Development Guide 11-59

Avoiding Namespace Collisions

Both the previous Call Generation and the Interface examples create instances 
of identical classes which run within the same portal namespace. To prevent 
namespace collision, the local instances of each class must be given unique 
names. In the second and third portlets, the implementation classes are 
re-named, as shown before the code samples.

Creating a Simple Form-Driven Web Service Portlet

The first portlet sends simple form input to the AccountEJBClient Web Service, 
creating a simple bank account object hosted at the WebLogic Workshop examples 
server.

Create the Portlet Called formLet Using the Portlet Wizard

1. Follow the steps outlined in Figure 11-32 through Figure 11-36.

2. When the Content Types screen appears, select Web Service and click Next, as 
shown in Figure 11-80.

Figure 11-80   Select Generated Code type



11 Extending Portlets

11-60 WebLogic Portal Development Guide

3. When the Server Location screen appears, navigate to an instance of WebLogic 
Server, as shown in Figure 11-81, and click Next.

Figure 11-81   Select Server Location

4. When the Generated Code Types screen appears, select Form, as shown in 
Figure 11-82, and click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-61

Figure 11-82   Select Generated Code Types

5. When the Select a Web Service screen appears, click Add Web Services, as 
shown in Figure 11-83.



11 Extending Portlets

11-62 WebLogic Portal Development Guide

Figure 11-83   Click Add Web Services

6. Type in the URL of the WSDL, as shown in Figure 11-84, then click ADD URL.

Figure 11-84   Enter the URL of the WSDL

7. When the AccountEJBClient Web Service appears in the list, click Close.



Portlets and the Framework

WebLogic Portal Development Guide 11-63

8. When the Web Services screen re-appears, click the newly added Web Service. A 
small window entitled �Retrieving Operations� appears in front of the Web 
Services screen, as shown in Figure 11-85.

Figure 11-85   Retrieving Operations

9. When the Retrieving Operations screen disappears, a list of operations should be 
available in the listbox to the right. Select the CreateNewAccount operation 
from this list, as shown in Figure 11-86 and click Next.



11 Extending Portlets

11-64 WebLogic Portal Development Guide

Figure 11-86   Select the createNewAccount operation

10. When the Code Preview screen appears, scroll down in the generated code to 
begin to familiarize yourself with taglib includes and portal refresh events. You 
can also click Copy to Clipboard and paste the code into an editor for viewing.

11. Click Next, as shown in Figure 11-87.



Portlets and the Framework

WebLogic Portal Development Guide 11-65

Figure 11-87   Code Preview

12. When the Resource Files location screen appears, as shown in Figure 11-88, 
confirm the portlet JSPs will be placed in the correct directory, then click Next.

Note: The directory specified in this screen will act as the parent directory for the 
newly created portlet files. This directory should exist under the WLP web 
application directory. A sub-directory with the same name as the new portlet 
will be created where users can find the files generated by this wizard.

 In addition, a WEB-INF/lib directory will be created in this location. This 
directory will contain a .jar file that the portlet references at runtime.

If the directory specified in this screen was not under a WLP web application, 
users will need to copy the created portlets sub-directory containing the 
generated files and the .jar file to the portlets directory and the WEB-INF/lib 
directory, respectively, of the intended Portal Web application.



11 Extending Portlets

11-66 WebLogic Portal Development Guide

Figure 11-88   Select/Confirm Resource Files location

13. When the Summary page appears, as shown in Figure 11-89, verify the files to be 
created and click Create.



Portlets and the Framework

WebLogic Portal Development Guide 11-67

Figure 11-89   Confirm Summary of Files

14. When the Next Steps screen appears, as shown in Figure 11-90, click Close.

Figure 11-90   Choose Next Steps



11 Extending Portlets

11-68 WebLogic Portal Development Guide

Note: For this example, we�ll create all three portlets first, then deploy them at once 
at the end.

Creating a Call-Generation Web Service Portlet

The Call Generation portlet enables the user to list big accounts by remotely invoking 
classes hosted within the Web Service hosted on the WebLogic Workshop examples 
server.

Create the Portlet Called callgenLet Using the Portlet Wizard

1. Follow the steps outlined in Creating a Simple Form-Driven Web Service Portlet 
up to Step 4.

2. When the Generated Code Types screen appears, select Call Generation, as 
shown in Figure 11-91, and click Next.

Figure 11-91   Select Generated Code type

3. When the Web Service(s) List appears, click Edit List, as shown in Figure 11-92.



Portlets and the Framework

WebLogic Portal Development Guide 11-69

Figure 11-92   Web Service(s) screen

4. When the Web Service(s) List appears, as shown in Figure 11-93, enter the 
following WSDL and click Add URL:

http://localhost:7001/samples/ejbControl/
AccountEJBClient.jws?WSDL

Figure 11-93   Adding another Web Service WSDL



11 Extending Portlets

11-70 WebLogic Portal Development Guide

5. When the URL you entered has been added to the Web Services list, click Close. 
The Web Service(s) screen reappears, with the newly-added Web Service listed to 
the left, and Operation listed to the right.

6. Click the AccountEJBClient Web Service and wait for its operations to be 
retrieved and listed to the right.

7. In the list of operations for AccountEJBClient, click listBigAccounts, as 
shown in Figure 11-94, and click Next.

Note: Notice the parameter list below the operation.

Figure 11-94   Selecting the listBigAccounts operation

8. When the Code Preview page appears, as shown in Figure 11-95, notice the string 
_REPLACE ME_ occurring in place of the threshold parameter, visible in 
Listing 11-6. After replacing these parameter values with those in bold in 
Listing 11-6, click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-71

Figure 11-95   Code Preview

Note: Within Listing 11-6, the following entries, in boldface within the code, have 
been shortened:

callImpl was originally p_sdl_AccountEJBClient_AccountEJBClient_Impl

callSoap was originally p_sdl_AccountEJBClient_AccountEJBClientSoap

Listing 11-6   Call Generation Portlet code

<%@ include file="callgenlet1_include.inc" %>

<%@ taglib uri="portlet.tld" prefix="portlet" %>

<%@ taglib uri="i18n.tld" prefix="i18n" %>

<%@ page import="com.bea.portal.appflow.PortalAppflowConstants"%>

<%@ include file="/framework/resourceURL.inc"%>

<%

 sdl_AccountEJBClient.AccountEJBClient_Impl callImpl = new 
sdl_AccountEJBClient.AccountEJBClient_Impl();



11 Extending Portlets

11-72 WebLogic Portal Development Guide

 sdl_AccountEJBClient.AccountEJBClientSoap callSoap = 
callImpl.getAccountEJBClientSoap();

%>

<%

    double threshold = 1000;

%>

<%=cnvrtSC(String.valueOf(callSoap.listBigAccounts(threshold)))%>

9. When the Resource Files Location screen appears, as shown in Figure 11-96, 
ensure the files are going to be installed in the correct directory and click Next.

Figure 11-96   Select/Confirm Resource Files location

10. When the Summary files screen appears, as shown in Figure 11-97, verify the 
correct files are to be created and click Create.



Portlets and the Framework

WebLogic Portal Development Guide 11-73

Figure 11-97   Confirm Summary of Files

11. When the Next Steps screen appears, as shown in Figure 11-98, click Close.

Figure 11-98   Choose Next Steps



11 Extending Portlets

11-74 WebLogic Portal Development Guide

Creating a Web Services Interface Portlet

This portlet searches for accounts with a balance over a threshold set within the portlet, 
and lists them in the portlet. What is significant is the way in which this portlet 
communicates with the Web Service: the portlet uses classes implemented according 
to the self-describing WSDL called listBigAccounts.

Create the Portlet Called interFaceLet Using the Portlet Wizard

1. Follow the steps outlined in Creating a Simple Form-Driven Web Service Portlet 
up to Step 4.

2. When the Generated Code Types screen appears, select Web service(s) 
Interface, as shown in Figure 11-99, and click Next.

Figure 11-99   Select Generated Code Type

Note: In the Web Service(s) screen for Interface Generation portlets, notice that no 
operations are available. This is because you are being provided the interface 
description and must implement the required methods yourself.

3. Edit the portlet code within the Code Preview screen, as shown in Figure 11-100, 
and click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-75

Figure 11-100   Code Preview screen for interFaceLet

4. Implement interfaces required for listing big Accounts. Use the generated code as 
your starting point, shown in Listing 11-7.

Note: Within Listing 11-7, the following entries, in boldface within the code, 
have been shortened:

intImpl was originally 
p_sdl_AccountEJBClient_AccountEJBClient_Impl

intSoap was originally 
sdl_AccountEJBClient.AccountEJBClientSoap

Listing 11-7   Code for interFaceLet

<%@ include file="interFaceLet_include.inc" %>
<%@ taglib uri="portlet.tld" prefix="portlet" %>
<%@ taglib uri="i18n.tld" prefix="i18n" %>
<%@ page import="com.bea.portal.appflow.PortalAppflowConstants"%>
<%@ include file="/framework/resourceURL.inc"%>
<%

sdl_AccountEJBClient.AccountEJBClient_Impl intImpl = new
    sdl_AccountEJBClient.AccountEJBClient_Impl();



11 Extending Portlets

11-76 WebLogic Portal Development Guide

sdl_AccountEJBClient.AccountEJBClientSoap intSoap =
    intImpl.getAccountEJBClientSoap();

...

*/%>

5. When the Resource Files Location screen appears, as shown in Figure 11-101, 
ensure the files are going to be installed in the correct directory and click Next.

Figure 11-101   Select/Confirm Resource Files location

6. When the Summary files screen appears, as shown in Figure 11-102, verify the 
correct files are to be created and click Create.



Portlets and the Framework

WebLogic Portal Development Guide 11-77

Figure 11-102   Confirm Summary of Files

7. When the Next Steps screen appears, as shown in Figure 11-103, click Close.

Figure 11-103   Choose Next Steps



11 Extending Portlets

11-78 WebLogic Portal Development Guide

8. From the E-Business Control Center toolbar, click the Synchronize button.

9. When the Synchronizing Application window shows that synchronization is 
complete, click Close, as shown in Figure 11-104.

Figure 11-104   Synchronization Complete

Deploying the Web Services Portlets

Now that they are all created and installed, what remains is to make them available to 
the WebLogic Server instance. This is done by simply re-deploying the Portal Web 
Application in which these portlets are to run, according to the following procedures:

1. In your Web browser, navigate to the WebLogic Server console at the following 
URL:

http://<host>:<port>/console

2. Login as weblogic/weblogic.

3. Select Deployments →  Applications →  NewPWApp, and click the Deploy tab in 
the right pane, as shown in Figure 11-105.



Portlets and the Framework

WebLogic Portal Development Guide 11-79

Figure 11-105   Left tab of console: Deployments →  Applications →  NewPWApp

4. UnDeploy the NewPWApp by clicking the Undeploy button to the right of 
portalServer target. When the UnDeployment Activity status turns to Complete, 
click Deploy.

5. When the status on the Deployment Activity screen turns to Complete, the new 
portlets have been re-deployed.

6. Make the new portlets visible and available using the WebLogic Portal 
Administration Tools: In your Web browser, navigate to the following URL: 
http://<hostname>:<port>/portalAppTools. 

7. Login as administrator/password, and click Portal Management, as shown in 
Figure 11-106.

Figure 11-106   Go to Portal Management

8. From the Portal Management Home page, Click the Default Portal, as shown in 
Figure 11-107.



11 Extending Portlets

11-80 WebLogic Portal Development Guide

Figure 11-107   Select Default Group Portal

9. From the Group Portal Management Home page, click Manage Pages and 
Portlets as shown in Figure 11-108.

Figure 11-108   Manage Pages and Portlets

10. Next to the portal page, click Edit Portlets, as shown in Figure 11-109.

Figure 11-109   Click Edit Portlets

11. Set all three portlets attributes to Visible and Available, and click Save.

12. Click Save: The attributes of formLet, callGenLet and interFaceLet portlets are 
now correctly set.



Portlets and the Framework

WebLogic Portal Development Guide 11-81

Viewing the Web Services Portlets

Now that they are all deployed and placed within the same portal page, observe the 
functionality they provide by taking the following steps:

1. Verify the portlets can be accessed by navigating to the following URL:

http://<host>:<port>/NewPWApp/

The result should resemble that shown in Figure 11-110.

2. Logon as a valid user and two new accounts; one with a balance of 1001 
threshold, one 751. Notice what appears in the List big accounts portlet.

3. Change threshold in the content.jsp of the callGenlet portlet to 750.

4. Create a new account with a balance of 749. List big accounts.

Figure 11-110   Web Services portlets before accounts have been entered



11 Extending Portlets

11-82 WebLogic Portal Development Guide

Figure 11-111   Web services portlets with some account activity

Note: For more information on Web Services, consult �Building Web Services on 
WebLogic Platform� at 
http://edocs.bea.com/platform/docs70/interm/webserv.html and �Introduction 
to WebLogic Workshop� at 
http://edocs.bea.com/workshop/docs70/index.html.

Calling Web Services Asynchronously

BEA WebLogic Portal 7.0 enables portlets to participate in asynchronous 
communication with Web Services such as conversations. This example shows how to 
create a simple conversation portlet that interacts with a Web Service hosted on the 
local server.



Portlets and the Framework

WebLogic Portal Development Guide 11-83

Figure 11-112   Conversation Web Services Portlet

About the Conversation Portlet

The portlet created in this example contains three button-activated actions:

! The Start button sends a session id to the Web Service, which holds this as a 
token for the conversation.

! The Continue button requests status on the token.

! The Finish button ends the conversation, causing the Web Service to relinquish 
the token and stop waiting for more messages.



11 Extending Portlets

11-84 WebLogic Portal Development Guide

Preparation

! Start the WebLogic Workshop Examples Server by navigating to Programs →  
BEA WebLogic Platform 7.0 →  WebLogic Workshop Example →  Start 
Examples Server. Begin with the sample portal described in the section The 
scriptDemo Portlet.

! Start the portal server for your domain. In this example, this is done by 
navigating to Programs →  BEA WebLogic Platform 7.0 →  User Projects → 
MyNewDomain →  Start Portal Server.

Creating the Conversation Portlet

To create and deploy a sample Conversation portlet, follow these steps.

1. Use the Portlet Wizard to create a Web Services Interface portlet, as shown in the 
Creating a Web Services Interface Portlet section. Name this portlet 
�conversation�, as shown in Figure 11-113, and click Next.

Figure 11-113   Creating the conversation portlet

2. Associate the new portlet with the portal page called �home� and click Next.



Portlets and the Framework

WebLogic Portal Development Guide 11-85

3. When the Select Portlet Components page appears, click Next without 
designating any extra components.

4. When the Content Types screen appears, select Web Service and click Next.

5. When the Server Location screen appears, navigate to an instance of WebLogic 
Server and click Next.

6. When the Generated Code Types screen appears, select Web Service(s) 
Interfaces, and click Next.

7. When the Select a Web Service screen appears, click Add Web Services, type in 
the following URL: 
http://localhost:7001/samples/async/Conversation.jws?WSDL. Click 
Add URL.

8. After the Conversation Web Service appears in the list, click Close.

9. Select the Conversation Web Service from the list on the left, and click Next.

10. When the Code Preview screen appears, click Next. This code will be replaced 
later in this procedure.

11. When the Resource Files location screen appears, confirm the portlet JSPs will be 
placed in the correct directory, then click Next.

12. When the Summary page appears, verify the files to be created and click Create.

13. When the Next Steps screen appears, make sure all the checkboxes are 
unselected, then click Close.

14. In a text editor, enter the code in Listing 11-8 and save it as content.jsp in the 
following directory: 
myNewDomain\beaApps\portalApp\NewPWApp\portlets\conversation\.

Listing 11-8   content.jsp for Conversation Web Services Portlet

<%@ include file="Conversation_include.inc" %>
<%@ taglib uri="portlet.tld" prefix="portlet" %>
<%@ taglib uri="i18n.tld" prefix="i18n" %>
<%@ page import="org.openuri.www.StartRequest"%>
<%@ page import="org.openuri.www.GetRequestStatusResponse"%>
<%@ page import="org.openuri.www.x2002.x04.soap.conversation.StartHeader"%>
<%@ page import="org.openuri.www.x2002.x04.soap.conversation.ContinueHeader"%>
<%@ page import="weblogic.xml.schema.binding.internal.builtin.VoidType"%>



11 Extending Portlets

11-86 WebLogic Portal Development Guide

<%@ page import="com.bea.portal.appflow.PortalAppflowConstants"%>
<%@ page import="com.bea.portal.appflow.PortalAppflowConstants"%>
<%@ include file="/framework/resourceURL.inc"%>

<%
    DL_wsdl_Conversation.Conversation_Impl conversationImpl = new
DL_wsdl_Conversation.Conversation_Impl();
    DL_wsdl_Conversation.ConversationSoap soap =
conversationImpl.getConversationSoap();
%>

<%
    String target = request.getParameter("target");
    String conversationID = session.getId();
        if ( conversationID == null )
            conversationID = "";
%>

<portlet:form event="<%= PortalAppflowConstants.PORTLET_REFRESH %>">
    <table border="0" align="center">
        <tr>
            <td width="100%" align="center">
            <table border="0" align="left">
            <tr>
<%
                if ( target != null
                     && target.equals("start")
                     &&  true  )
                {
                    try
                    {
                     StartHeader startHeader = new StartHeader(conversationID,
"http://localhost:7001/samples/async/Conversation.jws");
            VoidType startResponse = new VoidType();

            StartRequest begin = new StartRequest(false);

            startResponse = soap.startRequest(begin, startHeader);
%>
            <td><%=cnvrtSC("Conversation started with ID: " +
String.valueOf(conversationID))%></td>
<%
              }
               catch (java.rmi.RemoteException e)
              {
%>
            <td><%=cnvrtSC("Duplicate conversation id for start: " +
String.valueOf(conversationID))%></td>
<%



Portlets and the Framework

WebLogic Portal Development Guide 11-87

            e.printStackTrace();
             }
                }
%>
            </tr>
            </table>
            </td>
        </tr>
        <tr>
            <td width="100%" align="center"><input type="submit" name="start"
value="Start"></td>
        </tr>
    </table>
    <br><br>
    <input type="hidden" name="target" value="start">
</portlet:form>

<portlet:form event="<%= PortalAppflowConstants.PORTLET_REFRESH %>">
    <table border="0" align="center">
        <tr>
            <td width="100%" align="center">
            <table border="0" align="left">
            <tr>
<%
                if ( target != null
                     && target.equals("continue")
                     &&  true  )
                {
                    try
                    {
            ContinueHeader continueHeader = new
ContinueHeader(conversationID);
            GetRequestStatusResponse status = soap.getRequestStatus(null,
continueHeader);
            String result = status.getGetRequestStatusResult();
%>
            <td><%=cnvrtSC("Response: " + String.valueOf(result))%></td>
<%
                }
                catch ( Exception e )
                {
                    e.printStackTrace();
                 }
             }
%>
            </tr>
            </table>
            </td>
        </tr>



11 Extending Portlets

11-88 WebLogic Portal Development Guide

        <tr>
            <td width="100%" align="center"><input type="submit" name="continue"
value="Continue"></td>
        </tr>
    </table>
    <br><br>
    <input type="hidden" name="target" value="continue">
</portlet:form>

<portlet:form event="<%= PortalAppflowConstants.PORTLET_REFRESH %>">
    <table border="0" align="center">
        <tr>
            <td width="100%" align="center">
            <table border="0" align="left">
            <tr>
<%
                if ( target != null
                     && target.equals("finish")
                     &&  true  )
                {
                    try
                    {
                     VoidType terminateResponse = new VoidType();
                     ContinueHeader finishHeader = new
ContinueHeader(conversationID);
                     terminateResponse = soap.terminateRequest(null, finishHeader);
%>
                <td><%=cnvrtSC("Conversation terminated.")%></td>
<%
                    }
                    catch ( java.rmi.RemoteException e )
                    {
%>
                <td><%=cnvrtSC("Conversation already terminated.")%></td>
<%
                        e.printStackTrace();
                    }
                }
%>
            </tr>
            </table>
            </td>
        </tr>
        <tr>
            <td width="100%" align="center"><input type="submit" name="finish"
value="Finish"></td>
        </tr>
    </table>
    <br><br>



Portlets and the Framework

WebLogic Portal Development Guide 11-89

    <input type="hidden" name="target" value="finish">
</portlet:form>

15. Deploy the conversation portlet according to the instructions in the section 
Deploying the Web Services Portlets.

16. Test the new portlet by clicking on each of the buttons and verifying the results, 
as shown in Figure 11-114.

Figure 11-114   Starting the conversation



11 Extending Portlets

11-90 WebLogic Portal Development Guide

Error Handling within Web Services Portlets

In a production scenario, the Web Services to which your portlets connect are typically 
hosted elsewhere, and are out of your control. The portal framework enables portlets 
to generate two errors specifically designed to handle Web Services problems:

JAXRPCException: If a Web service is unavailable at run-time, the portlet will 
cause the throw a javax.xml.rpc.JAXRPCException. Add error handling to your 
.JSP by catching the exception in a generated portlet. 

Note: The JAXRPCException applies to cases where the connection is refused, not 
when there is a delay in service.

SOAPFaultException: When a Web service cannot handle the SOAP request 
generated from the Web Service Portlet Wizard, a 
javax.xml.rpc.soap.SOAPFaultException is thrown. You should catch this 
exception within your .JSP to protect from compile failures.

Portalizing an Existing Web Application

To move an existing non-portal Web application into the portal framework, certain 
modifications are necessary. This section outlines the process using an example 
provided with the WebLogic Platform installation.

Getting Started

One strategy for adding functionality to a portlet is to graft JSP code from an existing 
(non-portal) Web application into the JSPs that constitute a portlet. This tutorial uses 
refactored sample code from the Internationalization portlet included with the product 
such that the functionality is replicated within a portlet. Figure 11-115 and 
Figure 11-116 show the Internationalization sample application displaying 
language-specific content based on user input.

Note: For detailed instructions on launching and exploring this application, consult 
the Personalization Examples section of the WebLogic Platform 
documentation.



Portalizing an Existing Web Application

WebLogic Portal Development Guide 11-91

Figure 11-115   Internationalization Input

Figure 11-116   Internationalization Results

Requirements

WebLogic Portal 7.0 with Service Pack 1 must be successfully installed.



11 Extending Portlets

11-92 WebLogic Portal Development Guide

Process Overview

This process includes the following steps:

Step 1: Create a Portal Web Application

Step 2: Build a 2-page WebFlow Portlet

Step 3: Edit Portlet Code

Step 4: Load Content Resources

Step 5: Test the application

Step 1: Create a Portal Web Application

For instructions on creating a new portal Web application to use as the basic structure 
for this new application, consult the tutorial called Creating the New Portal in the 
WebLogic Portal 7.0 Development Guide.

For this example, the portal Web application will be called NewPWApp.

Note: If your application makes use of portal services such as Personalization, 
Internationalization, etc., you must add support for this functionality to the 
portal created using the portal Wizard. For detailed instructions on adding 
these features to your portal, consult the section called Adding All Portal 
Services to Your Domain in the Building Custom Templates chapter of the 
WebLogic Portal 7.0 Development Guide.

Step 2: Build a 2-page WebFlow Portlet

While the portal server created in the new domain is running, use the E-Business 
Control Center to launch the Portlet Wizard. Create a 2-page Webflow portlet, naming 
it i18n. For detailed instructions on creating Webflow portlets this way, consult the 
section Creating a Sequential Webflow Portlet.

Note: Don�t forget to make the portlet visible and available using the WebLogic 
Portal Administration Tools.



Portalizing an Existing Web Application

WebLogic Portal Development Guide 11-93

Step 3: Edit Portlet Code

In this step, JSPs and properties files are edited to use the portlet Webflow and to 
invoke personalization.

Replace Portlet JSPs

First, the JSPs generated by the Portlet Wizard need are replaced with JSPs that make 
calls to Personalization services and act upon content. Save the contents of 
Listing 11-9 and Listing 11-10 in the following directory:

<BEA_HOME>beaApps\portalApp\NewPWApp\portlets\i18n

Listing 11-9   Page1.jsp

<%---------------------------------------------------------

Copyright (c) 2000-2002  BEA Systems, Inc.  All rights reserved.

--------------------------------------------------------%>

<%--------------------------------------------------------

File: Page1.jsp

Purpose: Gathers form input for I18N language of choice.

----------------------------------------------------------%>

<%@ taglib uri="webflow.tld" prefix="webflow"%>

<%@ taglib uri="portlet.tld" prefix="portlet"%>

<%----------------------------------------------------------

Declare html font styles for valid and invalid form entries, to be

used with webflow validated form.

---------------------------------------------------------%>



11 Extending Portlets

11-94 WebLogic Portal Development Guide

<% String validStyle = "background: white; color: black; 
font-family: Arial"; %>

<% String invalidStyle = "background: white; color: red; 
font-style: italic"; %>

<center>

<%-------------------------------------------------------

Using portlet validated form.

---------------------------------------------------------%>

<portlet:validatedForm event="switch2" applyStyle="message"

     messageAlign="right" validStyle="<%= validStyle %>"

     invalidStyle="<%= invalidStyle %>" unspecifiedStyle="<%= 
validStyle %>">

<table border="0" cellspacing="0" cellpadding="0" width="100%">

  <tr>

    <td>

      <table border="0" cellpadding="6" cellspacing="1" 
width="100%">

        <tr class="header">

          <td colspan="2">

            Localization of Flickerstick Band Information

          </td>

        </tr>

        <tr class="tablerow1">

          <td align="right" valign="top" width="1%">Languages:</td>

          <td>

<%----------------------------------------------------------



Portalizing an Existing Web Application

WebLogic Portal Development Guide 11-95

Using <webflow:select> and <webflow:option> in place of standard 
html select and option to enable form validation.

----------------------------------------------------------%>

            <webflow:select name="language" size="5">

              <webflow:option value="en"/>English

              <webflow:option value="fr"/>French

              <webflow:option value="es"/>Spanish

            </webflow:select>

          </td>

        </tr>

        <tr class="tablerow1">

          <td align="right" valign="top" width="1%">&nbsp;</td>

          <td>

            <input type="submit" name="Submit" value="Show Me!">

          </td>

        </tr>

        <tr class="tablerow2">

          <td class="label" colspan="2">

            Select the language in which you would like to view 
Flickerstick information.

          </td>

        </tr>

      </table>

      <input type="hidden" name="resultFile" value="Page2.jsp">

      <input type="hidden" name="sample" value="<%= 
request.getParameter("sample") %>">

    </td>

  </tr>



11 Extending Portlets

11-96 WebLogic Portal Development Guide

</table>

</portlet:validatedForm>

</center>

Listing 11-10   Page2.jsp

<%-----------------------------------------------------------

Copyright (c) 2000-2002  BEA Systems, Inc.  All rights reserved.

------------------------------------------------------------%>

<%-----------------------------------------------------------

File: Page2.jsp

Purpose: Gathers form input for I18N language of choice.

----------------------------------------------------------%>

<%@ page import="com.bea.p13n.content.ContentHelper"%>

<%@ page import="com.bea.p13n.content.Content" %>

<%@ taglib uri="cm.tld" prefix="cm" %>

<%@ taglib uri="es.tld" prefix="es" %>

<%@ taglib uri="i18n.tld" prefix="i18n" %>

<%@ taglib uri="portlet.tld" prefix="portlet" %>

<%---------------------------------------------------------

Contruct the query string.

Example: isTrackIdentifier='true' && bandName='Flickerstick' && 
language='en'

----------------------------------------------------------%>

<%

    StringBuffer queryStr = null;

    String language = request.getParameter("language");



Portalizing an Existing Web Application

WebLogic Portal Development Guide 11-97

    if (language != null)

    {

       // Build the query string

       queryStr = new StringBuffer();

       queryStr.append("isTrackIdentifier = 'true' && bandName = 
'Flickerstick' && language = '");

       queryStr.append(language);

       queryStr.append("'");

    }

    //queryStr = new StringBuffer();

    //queryStr.append("bandName = 'Flickerstick'");

    

    if (queryStr != null)

    {

%>

<% System.out.println("\n\nqueryStr=" + queryStr + 
"-------------------------------------------\n\n"); %>

<br>Language is: <%= language %><br>

<br>Query String is: <%= queryStr %><br>

<br>ContentHelper.DEF_CONTENT_MANAGER_HOME is : <%= 
ContentHelper.DEF_CONTENT_MANAGER_HOME %><br>

<%----------------------------------------------------------

Localize the page with the selected language. Future invocations of

i18n tags in this request will default to this language.

-----------------------------------------------------------%>

   <i18n:localize language="<%= language %>"/>



11 Extending Portlets

11-98 WebLogic Portal Development Guide

<%-----------------------------------------------------------

Using the constructed query string retrieve the track names for

Flickerstick.

-------------------------------------------------------------%>

   <cm:select contentHome="<%= 
ContentHelper.DEF_CONTENT_MANAGER_HOME %>"

      sortBy="trackNum" query="<%= queryStr.toString() %>" 
id="contentArray" failOnError="true"/>

    <table border="0" cellspacing="0" cellpadding="0" width="100%">

      <tr>

        <td>

          <table border="0" cellspacing="1" cellpadding="6" 
width="100%">

            <tr class="tableheader">

<%---------------------------------------------------------

Retrieved localized messages for track name and track number.

----------------------------------------------------------%>

     <td><i18n:getMessage messageName="trackName" 
bundleName="Page2"/></td>

     <td><i18n:getMessage messageName="trackNum" 
bundleName="Page2"/></td>

            </tr>

            <% int row = 0; %>

         <br>contentArray length is : <%= contentArray.length %><br>

      <es:forEachInArray id="nextDoc" array="<%= contentArray %>" 
type="Content">

    <tr class="<%= (row % 2 == 0) ? "tablerow1" : "tablerow2" %>">

<%-------------------------------------------------------------



Portalizing an Existing Web Application

WebLogic Portal Development Guide 11-99

Get the bandName property using the cm:getProperty tag and use it to

construct the parameters to pass to the Webflow.

----------------------------------------------------------%>

          <td>

   <cm:printProperty id="nextDoc" name="trackName" encode="html"/>

         </td>

         <td>

   <cm:printProperty id="nextDoc" name="trackNum" encode="html"/>

          </td>

         </tr>

         <% row++; %>

            </es:forEachInArray>

          </table>

        </td>

      </tr>

    </table>

<%

    }

    else

    {

%>

        <b>Please specify one language in your request!</b>

<%

    }

%>

<center>

<a href="<portlet:createWebflowURL event="switch1"/>">Previous 
Page</a>



11 Extending Portlets

11-100 WebLogic Portal Development Guide

</center>

Save Properties Fies for Internationalization

Save the contents of the following listings in this directory:

<BEA_HOME>beaApps\portalApp\NewPWApp\portlets\i18n

For example, Listing 11-11 would be saved as Page2_en.properties.

Listing 11-11   Page2_en.properties

trackName=Track Name

trackNum=Track Number

Listing 11-12   Page2_fr.properties

trackName=Nom de Piste

trackNum=Numero do Piste

Listing 11-13   Page2_sp.properties

trackName=Nombre de la canción

trackNum=Número de la canción

Step 4: Load Content Resources

In this step, content resources are imported from the Personalization domain.



Portalizing an Existing Web Application

WebLogic Portal Development Guide 11-101

1. Replace the dmsBase folder in your portal domain by copying the entire dmsBase 
folder (including its contents) from 
<BEA_HOME>weblogic700\samples\portal\p13nDomain into the following 
directory:

<BEA_HOME>\user_projects\myNewDomain

2. To make this content available to the Portal framework, the metadata must be 
loaded into the server. While the server is running, execute the loaddata script 
in the following directory:

<BEA_HOME>\user_projects\myNewDomain

Step 5: Test the application

Now that the JSPs are edited, observe the functionality of the new portlet by taking the 
following steps:

1. Verify the portlet can be accessed by navigating to the following URL:

http://<host>:<port>/NewPWApp/

The result should resemble that shown in Figure 11-117.



11 Extending Portlets

11-102 WebLogic Portal Development Guide

Figure 11-117   Verifying the i18n Portlet

2. Select language and click Show Me. The results should resemble those shown in 
Figure 11-117.

Figure 11-118   Results page of i18n Portlet



Performance Tuning

WebLogic Portal Development Guide 11-103

Performance Tuning

This section covers performance issues related specifically to WebLogic Portal, 
including JDBC and Thread settings and several cache settings.  Many factors 
effecting the performance of your portal application are specific to WebLogic Server. 
For information on making those adjustments, consult the WebLogic Server 
Performance and Tuning guide at 
http://edocs.bea.com/wls/docs70/perform/index.htmll.

Using Caches to Tune Performance

To adjust caching for production Web site, examine the following factors:

! Adjust Caching for Content Management

! Property Caching in a Clustered Environment

! Adjust Caching for the Discount Service

! Adjusting the discountCache

! Adjusting the globalDiscountCache

! Discount-Service Caches in Clustered and Non-Clustered Environments

! Adjust Group Membership TTL in the Caching Realm

! Tuning Thread / Connection Parameters in JDBC

Adjust Caching for Content Management

To optimize content-management performance for your production Web site, the 
Content Manager uses the caching framework to configure and manage the following 
caches:

documentContentCache 

documentMetadataCache 

documentIdCache 



11 Extending Portlets

11-104 WebLogic Portal Development Guide

The content management JSP tags provide an additional set of caches, which you can 
access by doing the following:

For the cm:select, cm:selectById, pz:contentQuery, and 
pz:contentSelector JSP tags, use the useCache attribute whenever possible. 
Doing so avoids a call to DocumentManager and, in the case of 
pz:ContentSelector, to the Rules Manager.

To clear cached content when user and/or document attributes change, use the remove 
method of com.bea.p13n.content.ContentCache. For more information, see the 
WebLogic Portal Javadoc. for com.bea.p13n.content.ContentCache.

For the cm:select, cm:selectById, pz:contentQuery, and pz:contentSelector JSP tags, 
set the cacheScope attribute to application whenever possible. This application scope 
applies to the Web application, not to the enterprise application, as shown in 
Listing 11-14.

Listing 11-14   Setting cacheScope to application

<cm:select id="myDocs" query="riskFactor = 'Low'" 

useCache="true" cacheId="myDocs" 

cacheScope="application" 

max="10" cacheTimeout="300000" />

The application cache type is global instead of per-user and should speed up queries 
by avoiding a call to the DocumentManager EJB. 

For pz:contentSelector, set the cacheScope attribute to application only when 
you want to select shared content. For example, you create an application that uses an 
application-scoped cache to select content for non-authenticated users. Because it uses 
the application scope, all non-authenticated users see the same content. For 
authenticated users, your application provides personalized content by switching to a 
session scoped cache.

Whenever you can predict the next document that users will view based on the 
document that they are currently viewing, load the next document into the cache before 
users request it. This �forward caching� will greatly improve the speed at which 



Performance Tuning

WebLogic Portal Development Guide 11-105

WebLogic Portal responds to user requests (assuming that your prediction is correct; 
forward caching a document that no one requests will only degrade performance and 
scalability). 

Listing 11-15 contains a snippet of a JSP with an example of forward caching a 
document:

Listing 11-15   Forward caching a document

<%-- Get the first set of content --%>

<cm:select id="myDocs" query="riskFactor = 'Low'" 

useCache="true" cacheId="myDocs" 

cacheScope="application" 

max="10" cacheTimeout="300000" />

<%-- Generate a query from each content's relatedDocId --%> 

<% String query = null; %> 

<es:forEachInArray array="<%=myDocs%>" id="myDoc" 
type="com.bea.p13n.content.Content"> 

<% String relId = (String)myDoc.getProperty("relatedDocId", null); 
%> 

<es:notNull item="<%=relId%>"> 

<% 

if (query != null) 

query += " || "; 

else 

query = ""; 

query += "identifier = '" +

ExpressionHelper.toStringLiteral(relId) + "'"; 

%>

</es:notNull> 

</es:forEachInArray> 



11 Extending Portlets

11-106 WebLogic Portal Development Guide

<%-- Load the related content into the cache via cm:select --%> 

<es:notNull item="<%=query%>"> 

<cm:select query="<%=query%>" id="foo" useCache="true" 
cacheId="relatedDocs" 

cacheScope="session" max="10" cacheTimeout="300000" /> 

</es:notNull> 

For more information on content management JSP tags, see �Personalization JSP 
Tags� in the JavaServer Page Guide at 
http://edocs.bea.com/wlp/docs70/jsp/p13njsp.htm.

Property Caching in a Clustered Environment

To decrease the amount of time needed to access user, group, and other properties data, 
the WebLogic Server Configurable Entity and Entity Property Manager use the cache 
framework to configure and manage the following caches:

ldapGroupCache 

ldapUserCache 

entityPropertyCache 

entityIdCache 

unifiedProfiletypeCache 

propertyKeyIdCache 

Note: By default, these property caches are enabled.

With property caching enabled in a clustered environment, each server in a cluster 
maintains its own cache; the cache is not replicated on other servers. In this 
environment, when properties that are stored in the caches change on one server, they 
may not change on another server in a timely fashion. In most cases, immediate or 
quick access to properties on another server is not necessary: user sessions are pinned 
to a single server, and even with caching enabled, users immediately see changes they 
make to their own settings on the server.



Performance Tuning

WebLogic Portal Development Guide 11-107

If a user and an administrator are pinned to different servers in the cluster and the 
administrator changes a user's properties, the user may not see the changes during the 
current session. You can mitigate this situation by specifying a small Time-To-Live 
(TTL) setting.

If you require multiple servers in a cluster to have immediate access to modified 
properties, disable property caching.

Adjust Caching for the Discount Service

To reduce the amount of time the Order and Shopping Cart services need to calculate 
order and price information that include discounts, the Discount Service uses the 
caching framework to create and manage the following caches:

! discountCache, which contains data for campaign discounts. Campaign discounts 
are targeted to specific customers or customer segments, and are available only 
in the context of a campaign.

! globalDiscountCache, which contains data for global discounts. Global discounts 
apply to all customers, regardless of customer properties or customer segments.

When a customer adds an item to the shopping cart, removes an item from the 
shopping cart, checks out, or confirms an order, the Pricing Service is responsible for 
determining the price of the items in the cart. To calculate the effect of discounts on 
the shopping cart, the Pricing Service requests the Discount Service to retrieve 
information about all global discounts and about any campaign discounts that apply to 
the current customer. 

The first request for information about discounts requires a separate call to the database 
for each discount that applies. For example, if you have defined one global discount 
and if a customer is eligible for two campaign-related discounts, the Discount Service 
makes three calls to the database. To decrease the response time for any subsequent 
requests, the Discount Service uses the caches.

Adjusting the discountCache

The discountCache contains data for campaign discounts. For maximum performance, 
set the capacity to the number of campaign discounts that are currently deployed. A 
larger capacity will potentially use more memory than a smaller capacity.



11 Extending Portlets

11-108 WebLogic Portal Development Guide

The Time-To-Live (TTL) property determines the number of milliseconds that the 
Discount Service keeps the information in the cache. After the cache value times out, 
the next request for the value requires the Discount Service to call the database to 
retrieve the information and then cache the value. A longer TTL decreases the number 
of database calls made over time when requesting cached objects. In a clustered 
environment, the TTL is the maximum time required to guarantee that any changes to 
global discounts are available on all servers.

Adjusting the globalDiscountCache

The Maximum Number of Entries property for global caches does not need to be 
modified.

The time-to-live property determines the number of milliseconds that the Discount 
Service keeps information in the global-discount cache. After the Time-To-Live (TTL) 
expires, the next request for global discount information requires the Discount Service 
to call the database to retrieve the information and then cache the value. A longer TTL 
decreases the number of database calls made over time when requesting cached 
objects. In a clustered environment, the TTL is the maximum time required to 
guarantee that any changes to campaign discounts are available on all servers.

Discount-Service Caches in Clustered and Non-Clustered Environments

In either environment (clustered or non-clustered), when you change a discount 
priority, end date, or its active/inactive state, WebLogic Portal flushes the discount 
from the appropriate cache. Changes to a campaign discount flush only the specific 
discount from the campaign-discount cache. Changes to a global discount flush all 
discounts from the global-discount cache.

For example, you log in to a WebLogic Portal host named bread and deactivate a 
campaign discount named CampaignDiscount1. WebLogic Portal flushes the 
CampaignDiscount1 from the campaign-discount cache on bread.

In a clustered environment, other machines in the cluster continue to use their cached 
copy of the discount until the TTL for that discount expires.

Adjust Group Membership TTL in the Caching Realm

The WebLogic Server Caching realm stores the results of both successful and 
unsuccessful realm lookups. It does not use the WebLogic Portal caching framework.



Performance Tuning

WebLogic Portal Development Guide 11-109

The Caching realm manages separate caches for Users, Groups, permissions, ACLs, 
and authentication requests. It improves the performance of WebLogic Server by 
caching lookups, thereby reducing the number of calls into other security realms.

WebLogic Portal enables the Caching realm by default. While all of the caches in the 
Caching realm can improve performance, the Time-To-Live (TTL) value for the 
Group Membership Cache in particular can affect the performance of WebLogic 
Portal.

In addition, note that if you delete a user from the system without first removing the 
user from a group, then the system continues to recognize the user until the TTL for 
the Group Membership Cache expires.

For information on adjusting the Group Membership TTL, refer to the WebLogic 
Server Administration Guide at 
http://edocs.bea.com/wls/docs70/adminguide/index.html.

Tuning Thread / Connection Parameters in JDBC

Certain performance problems encountered in the portal may be corrected by changing 
config.xml entries to reduce to thread count for the default execute queue in WLS 
lower than the connection pool maximum capacity specified for the commercePool. 
The basic formula should make the number of connections in the connection pool 
equal to the number of threads + 1.

For information on adjusting threads and connection pools, consult �Tuning JDBC 
Connection Pool Maximum Capacity� at 
http://edocs.bea.com/wls/docs70/perform/WLSTuning.html#1117878.



11 Extending Portlets

11-110 WebLogic Portal Development Guide



WebLogic Portal Development Guide 12-1

CHAPTER

12 Setting Up 
Personalization and 
Interaction 
Management

WebLogic Portal comes with robust authentication and personalization features that 
allow administrators to determine what content a visitor can interact with and how that 
information will appear to the specific visitor. Visitors themselves can leverage 
WebLogic Portals personalization features to select their own content and create their 
own look and feel. A major component of the portal development process is to create 
the resources by using such tools as the Advisor, the Rules Framework, and content 
selectors to make such authorization and personalization possible.

This section includes information on the following subjects:

! Using the Advisor to Personalize a Portal Application

! Working with the Rules Framework

! Personalization with Content Selectors

! Using an Edit .jsp to Personalize a Portlet

! Personalizing a Portal or Portlet by Using Placeholders



12 Setting Up Personalization and Interaction Management

12-2 WebLogic Portal Development Guide

Using the Advisor to Personalize a Portal 
Application

The WebLogic Portal Advisor is an easy-to-use and flexible access point for 
personalization services-including personalized content, user segmentation, and the 
underlying rules engine. The Advisor delivers content to a personalized application 
based on a set of rules and user profile information. It can retrieve any type of content 
from a Document Management system and display it in a JSP. 

The Advisor ties together all the services and components in the system to deliver 
personalized content. The Advisor component includes a JSP tag library and an 
Advisor EJB (stateless session bean) that access the WebLogic Portal's core 
personalization services including: 

! User Profile Management 

! Rules Manager 

! Content Management 

! Personalization Platform 

The tag library and session bean contain personalization logic to access these services, 
sequence personalization actions, and return personalized content to the application. It 
is also possible to write your own Advisor plug-ins and access them with JSP tags you 
create.

This architecture allows the JSP developer to take advantage of the personalization 
services using the Advisor JSP tags. In addition, a Java developer can access the 
underlying WebLogic Portal personalization features via the public Advisor bean 
interface. For more information, see the WebLogic Portal Javadoc API documentation. 

You can use the Advisor in one of two ways:

! Using the JSP tags. Developers will probably find it easiest to use the JSP tags 
when building typical pages. The tags provide ways to switch content on and off 
based on user classification, return content based on a static query, and match 
content to users based on rules that execute a content query. The JSP tags that 
perform these tasks are: <pz:div>, <pz:contentSelector>, and 
<pz:contentQuery>. 



Using the Advisor to Personalize a Portal Application

WebLogic Portal Development Guide 12-3

! Using the Advisor session bean. The page or application developer may use the 
Advisor session bean directly in place of the tags, if desired. The Advisor 
session beans provide ways to switch content on and off based on user 
classification, return content based on a static query, and match content to users 
based on rules that execute a content query. 

Creating a Personalized Portal Application with Advisor 
JSP Tags

Table 12-1 describes the three JSP tags the Advisor provides to help developers create 
personalized applications. These tags provide a JSP view to the Advisor session bean 
and allow developers to write pages that retrieve personalized data without writing 
Java source code.

Table 12-1  Advisor JSP Tags

Tag Description

 <pz:div> Turns user-provided content on or off based on the results 
of a classifier rule being executed. If the result of the 
classifier rule is true, it turns the content on; if false, it 
turns the content off.**The system turns on the content by 
inserting the content residing between the start and end 
<pz:div> tags in the JSP code. This content can include 
any valid JSP content, including HTML tags, other JSP 
tags, and scriptlets. If the classifier rule returns false, the 
system skips the content between the start and end 
<pz:div> tags.

<pz:contentQuery> provides content attribute searching for content in a content 
management system. It returns an array of Content 
objects that a developer can handle in numerous ways.

<pz:contentSelector> recommends content if a user matches the classification 
part of a content selector rule. When a user matches, the 
personalization engine executes a content query defined in 
the rule and returns the content back to the JSP page.



12 Setting Up Personalization and Interaction Management

12-4 WebLogic Portal Development Guide

In addition to using JSP tags to create personalized applications, you can work directly 
with the Advisor bean. For more information about using the bean, see �Creating 
Personalized Applications with the Advisor Session Bean� on page 12-6.

Classifying Users with the JSP <pz:div> Tag

The <pz:div> tag to turns user-provided content on or off based on the results of a 
classifier rule being executed. If the result of the classifier rule is true, it turns the 
content on; if false, it turns the content off.

Note: Rules are created in the E-Business Control Center. The E-Business Control 
Center letsusers develop their own classifier rules. Because users are not 
exposed to the concept of rules, you will see classifier rules referred to as 
�customer segments.�

Listing 12-1 shows how to use the <pz:div> tag to execute the PremierCustomer 
classifier rule and displays an alert to premier customers in the HTML page�s output.

Listing 12-1   Using <pz:dev> to Execute a Classifier Rule

<%@ taglib URI="pz.tld" prefix="pz" %>
.
.
.
<pz:div 
rule="PremierCustomer">
    <p>Please check out our new Premier Customer bonus program…</p>
</pz:div>

Selecting Content with the <pz:contentQuery> JSP Tag

Use the <pz:contentQuery> tag to provide content attribute searching of content in 
a content management system. It returns an array of Content objects that you can 
handle in numerous ways.

Listing 12-2 shows an example of how to execute a query against the content 
management system to find all content where the author attribute is Hemingway and 
then display the Document titles found:



Using the Advisor to Personalize a Portal Application

WebLogic Portal Development Guide 12-5

Listing 12-2   Executing a Query Against a CMS to Find Specified Content

<%@ page import="com.bea.p13n.content.ContentHelper"%> 
<%@ taglib URI="pz.tld" prefix="pz" %>
.
.
.
<pz:contentQuery id="docs" 
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>" 
query="author = 'Hemingway'" />

<ul>
   <es:forEachInArray array="<%=docs%>" id="aDoc"
   type="com.bea.p13n.content.Content">
      <li>The document title is: <cm:printProperty id="aDoc"
      name="Title" encode="html" />
   </es:forEachInArray>
</ul>

Matching Content to Users with the <pz:contentSelector> JSP Tag

The <pz:contentSelector> recommends content if a user matches the classification 
part of a content selector rule. When a user matches based on a rule, the Advisor 
executes the query defined in the rule to retrieve content.

The example in Listing 12-3 asks the Advisor to return content specific to premier 
customers and then display the Document titles as the results.

Listing 12-3   Asking the Advisor to Display Specific Customers

<%@ page import="com.bea.p13n.content.ContentHelper" %>
<%@ taglib URI="cm.tld" prefix="cm" %>
<%@ taglib URI="pz.tld" prefix="pz" %>
<%@ taglib URI="es.tld" prefix="es" %>
.
.
.
<pz:contentSelector id="docs" 
    rule="PremierCustomerSpotlight"
    contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>" />
<ul>
   <es:forEachInArray array="<%=docs%>" id="aDoc"



12 Setting Up Personalization and Interaction Management

12-6 WebLogic Portal Development Guide

   type="com.bea.p13n.content.Content">
      <li>The document title is: <cm:printProperty id="aDoc"
      name="Title" encode="html" />
   </es:forEachInArray>
</ul>

Creating Personalized Applications with the Advisor 
Session Bean

Java developers can work directly against the Advisor bean through a set of APIs to 
create personalized applications. This process provides an alternative to using the JSP 
tags to call into the bean. 

Note: See the WebLogic Portal Javadoc for more information about using the 
session bean to create personalized applications.

The following steps provide a general overview of the process involved for an 
application to get content recommendations from the Advisor.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory�s static createAdviceRequest method to create an 
AdviceRequest object.

Note: You must provide this method with the URI representing the request. The 
Advisor uses the URI prefix to determine which Advislet to invoke. 

3. Set the required and optional attributes for the AdviceRequest object.

4. Call the Advisor�s getAdvice method.

The Advisor calls the best Advislet to make the recommendation. The Advislet 
determines the recommendations and the Advisor then passes the resultant 
Advice object back to the application.

The Advisor uses the Advislet Registry to choose the Advislet to invoke.

5. The personalized application extracts the recommendation from the Advice 
object and uses it in the application.



Using the Advisor to Personalize a Portal Application

WebLogic Portal Development Guide 12-7

When a personalized application requests advice from the Advisor, the Advisor bean 
delegates the request to a registered Advislet that can handle the request. The Advisor 
uses the URI prefix to determine which registered Advislet will receive the advice 
request. The Advislet then makes the recommendations and returns the Advice object 
back to the Advisor. This design encapsulates all of the advice logic into the Advislet 
and allows developers to create custom Advislets for more specialized purposes.

Attribute objects act as parameters for the request. Attribute objects can be set on the 
AdviceRequest object and are associated with a String object representing the name 
of the attribute. 

Three Advislets are supplied with the system: Classifier Advislet, ContentQuery 
Advislet and ContentSelector Advislet. Names for the attributes that need to be set on 
the supplied Advislets are defined as static Strings in the AdviceRequestConstants 
interface.

Table 12-2 shows the logic the Advisor uses to determine how to map a 
recommendation request to an Advislet.

The following sections demonstrate how to directly access the Advisor to provide the 
same functionality as that provided by the JSP tags.

Table 12-2  Mapping recommendation requests to an Advislet

Uri Prefix Inferred Advislet

classifier Uses a rules-based inference engine to classify a user 
based on rules written using the Customer Segment tool 
in the E-Business Control Center. 

contentselector ! Uses a rules-based inference engine to classify a 
user.

! Determines if the user matches the classification.
! Uses a rules-based inference engine to obtain a 

content query for the classification.
! Selects content based on the content query obtained.

contentquery Performs a content attribute search on a specified 
content management system.



12 Setting Up Personalization and Interaction Management

12-8 WebLogic Portal Development Guide

Classifying Users with the Advisor Session Bean

For classification requirements beyond what the JSP tags provide, or to use 
classification in a servlet, use the Advisor EJB directly. 

To ask the Advisor for a classification, use this procedure. (See the Javadoc API 
documentation for API details.)

Note: Unless otherwise indicated, all classes used here reside in the 
com.bea.p13n.advisor package.

1. Look up and create an instance of the Advisor session bean. The EJB_REF_NAME 
constant found in the EJB Advisor Home interface may be used as the JNDI name 
of the Advisor EJB Home.

2. Use the AdvisorFactory�s static createAdviceRequest method to create an 
AdviceRequest object. In this case, the URI argument should be 
�classifier://�.

3. Set the required attributes on the AdviceRequest object (see 
AdviceRequestConstants). These include:

" HTTP_REQUEST � the request object (retrieved from 
com.bea.p13n.httpRequest.createP13NRequest(HttpServlet 

Request)).

" HTTP_SESSION � the session object (retrieved from 
com.bea.p13n.httpSession.createP13NSession(HttpServletReques

t)).

" USER � the user object (retrieved from 
com.bea.p13n.usermgmt.SessionHelper.getProfile(HttpServletRe

quest)).

" TIME_INSTANT � a java.sql.Timestamp object representing now.

" RULES_RULENAME_TO_FIRE � (optional) the name of the segmentation rule 
to fire.

4. Call the getAdvice method on the Advisor, supplying the newly created 
AdviceRequest.



Using the Advisor to Personalize a Portal Application

WebLogic Portal Development Guide 12-9

5. The Advisor returns an instance of Advice. The getResult method is called to 
obtain the classification object. If a classification object is returned, then the 
classification is considered to be true. If the return value is null, the 
classification is considered to be false.

Note: If the optional AdviceRequest parameter RULES_RULENAME_TO_FIRE is not 
supplied, there may be multiple classifications returned for the user.

Querying a Content Management System with the Advisor Session Bean

For content selection requirements beyond what the JSP tags provide, or to use content 
selection in a servlet, developers can use the Advisor EJB directly. 

To ask the Advisor for a content, use this procedure. (See the Javadoc API 
documentation for API details.)

Note: Unless otherwise indicated, all classes used here reside in the 
com.bea.p13n.advisor package.

1. Look up and create an instance of the Advisor session bean. The EJB_REF_NAME 
constant found in the EJB Advisor Home interface may be used as the JNDI name 
of the Advisor EJB Home.

2. Use the AdvisorFactory�s static createAdviceRequest method to create an 
AdviceRequest object. In this case, the URI argument should be 
�contentquery://�

3. Set the required attributes on the AdviceRequest object (see 
AdviceRequestConstants). These include: 

" CONTENT_MANAGER_HOME (required) � the JNDI name to find a content 
manager home interface.

" CONTENT_MANAGER (optional) - the instance of a ContentManager remote 
interface that should be used. If this is set, then CONTENT_MANAGER_HOME 
does not need to be set. 

" CONTENT_QUERY_STRING (required) � the query to run against the system.

" CONTENT_QUERY_SORT_BY (optional) � the order in which to sort the 
returned results.

" CONTENT_QUERY_MAX_ITEMS (optional) � the maximum instances to return.



12 Setting Up Personalization and Interaction Management

12-10 WebLogic Portal Development Guide

" CONTENT_CONTEXT_PARAMS (optional) - a map of name/value pairs to pass in 
the generated Search object to the ContentManager. 

4. Call the getAdvise method on the Advisor, supplying the newly created 
AdviceRequest.

5. The Advisor returns an instance of Advice. The getResult method is called to 
obtain the array of Content objects representing the results of the content query.

Matching Content to Users with the Advisor Session Bean

For content selection requirements beyond what the JSP tags provide, or to use content 
selection in a servlet, developers can use the Advisor EJB directly. 

To ask the Advisor for a content, use this procedure. (See the Javadoc API 
documentation for API details.)

Note: Unless otherwise indicated, all classes used here reside in the 
com.bea.p13n.advisor package.

1. Look up and create an instance of the Advisor session bean. The EJB_REF_NAME 
constant found in the EJB Advisor Home interface may be used as the JNDI name 
of the Advisor EJB Home.

2. Use the AdvisorFactory�s static createAdviceRequest method to create an 
AdviceRequest object. In this case the URI argument should be 
�contentselector://�

3. Set the required attributes on the AdviceRequest object (see 
AdviceRequestConstants). These include:

" HTTP_REQUEST � the request object (retrieved from 
com.bea.p13n.httpRequest.createP13NRequest(HttpServletReques

t)).

" HTTP_SESSION � the session object (retrieved from 
com.bea.p13n.httpSession.createP13NSession(HttpServletReques

t)).

" USER � the user object (retrieved from 
com.bea.p13n.usermgmt.SessionHelper.getProfile(HttpServletRe

quest)).

" TIME_INSTANT � a java.sql.Timestamp object representing the time now.



Using the Advisor to Personalize a Portal Application

WebLogic Portal Development Guide 12-11

" RULES_RULENAME_TO_FIRE � (optional) the name of the content selector 
rule to fire.

" CONTENT_MANAGER_HOME (required) � the JNDI name to find a content 
manager home interface.

" CONTENT_MANAGER (optional) - the instance of a ContentManager remote 
interface that should be used. If this is set, then CONTENT_MANAGER_HOME 
does not need to be set. 

" CONTENT_QUERY_STRING (required) � the query to run against the system.

" CONTENT_QUERY_SORT_BY (optional) � the order in which to sort the 
returned results.

" CONTENT_QUERY_MAX_ITEMS (optional) � the maximum instances to return.

" CONTENT_APPEND_QUERY_STRING (optional) - the query to append to the 
query from the rules engine. If this query starts with �||� (2 vertical bars), it 
will be OR'ed to the rules query; otherwise it will be AND'ed. 

" CONTENT_CONTEXT_PARAMS (optional) - a map of name/value pairs to pass in 
the generated Search object to the ContentManager. 

4. Call the getAdvise method on the Advisor, which supplies the newly created 
AdviceRequest.

5. The Advisor returns an instance of Advice. The getResult method is called to 
obtain the array of Content objects representing the recommendation.

Personalizing Applications with HTTP Request and 
Session Properties

Attributes in the HTTP Request and Session can be used to personalize content. Use 
the E-Business Control Center to create Customer Segments, Content Selectors, or 
Campaigns that use HTTP Request and Session property sets. Once you have 
synchronized your Request or Session property sets to the WebLogic Portal server, you 
can personalize content with them.

! For more information on customer segments, see �Creating Customer Segments� 
at http://edocs.bea.com/wlp/docs70/admin/usrgrp.htm#1184110.



12 Setting Up Personalization and Interaction Management

12-12 WebLogic Portal Development Guide

! For more information on content selectors, see �Personalization with Content 
Selectors� on page 12-19.

! For more information on Campaigns, see �Creating Campaigns� at 
http://edocs.bea.com/wlp/docs70/admin/campaign.htm.

HTTP Request-Based Personalization

This section shows a Customer Segment definition created in the E-Business Control 
Center. The Customer Segment, called RequestPropertyDemo, automatically makes 
a user a member of the Customer Segment when an HTTP request has a specific value. 
The HTTP request value being looked for is defined in an HTTP Request property 
called RequestPropertyOne, which is also defined in an HTTP Request property set 
in the E-Business Control Center. If the value of RequestPropertyOne is success, the 
user is a member of the RequestPropertyDemo Customer Segment and can be 
targeted with personalized content.

When all of these conditions apply:

an HTTP request has the following properties:

RequestPropertyOne is equal to �success�

Consider the visitor a member of the RequestPropertyDemo segment.

The Customer Segment definition and HTTP Request property definition must be 
saved and synchronized to the WebLogic Portal server.

The following JSP code does the following:

1. The request.setAttribute() method sets an HTTP request property, called 
RequestPropertyOne to a value of success. Because of the Customer Segment 
definition, this HTTP request value makes the user a member of the 
RequestPropertyDemo Customer Segment.

2. The <pz:div> JSP tag has a rule attribute whose value is 
RequestPropertyDemo, the name of the Customer Segment defined in the 
E-Business Control Center.

3. The <pz:div> tag contains the content that is displayed only to members of the 
RequestPropertyDemo Customer Segment.

<%@ taglib uri="pz.tld" prefix="pz" %>

<%



Using the Advisor to Personalize a Portal Application

WebLogic Portal Development Guide 12-13

    request.setAttribute("RequestPropertyOne", "success");

%>

<pz:div rule="RequestPropertyDemo">

    <p>--  the "RequestPropertyDemo" rule evaluated to "true"</p>

</pz:div>

While this example shows personalization based on a user�s Customer Segment 
membership, you can trigger HTTP Request-based personalization directly in Content 
Selectors and Campaigns. When you define Content Selectors and Campaigns in the 
E-Business Control Center, you can trigger them with HTTP Request property values 
without using Customer Segments.

HTTP Session-Based Personalization

Personalization using HTTP Session-based Customer Segments is performed similarly 
to HTTP Request-based Customer Segments. The following JSP code assumes the 
E-Business Control Center has been used to create and synchronize a Customer 
Segment named SessionPropertyDemo and an HTTP Session property called 
SessionPropertyOne.

The text within the <pz:div> tags will be displayed only to members of the 
SessionPropertyDemo Customer Segment when the JSP is rendered.

<%@ taglib uri="pz.tld" prefix="pz" %>

<%

    session.setAttribute("SessionPropertyOne", "sessionValue");

%>

<pz:div rule="SessionPropertyDemo">

    <p>--  the "SessionPropertyDemo" rule evaluated to "true"</p>

</pz:div>

While this example shows personalization based on a user�s Customer Segment 
membership, you can trigger HTTP Session-based personalization directly in Content 
Selectors and Campaigns. When you define Content Selectors and Campaigns in the 
E-Business Control Center, you can trigger them with HTTP Session property values 
without using Customer Segments.



12 Setting Up Personalization and Interaction Management

12-14 WebLogic Portal Development Guide

Special Considerations

Request and Session attributes are not scoped to specific property sets. For example, 
you can create a SessionPropertyOne in two different Session property sets, then set 
an attribute of that name in the HTTP Session, and all rules based on that property will 
be evaluated without reference to the property set in which it is found.

To extend the previous Session-based example, create a second Session property set, 
also with a property called SessionPropertyOne, but make it a numeric property. 
Then create a second Customer Segment called SessionPropertyDemoTwo as 
follows:

When all of these conditions apply:

the HTTP session has the following properties:

SessionPropertyOne is equal to 3

Consider the visitor a member of the SessionPropertyDemoTwo segment.

The following JSP code contains two <pz:div> tags. One contains content that will be 
displayed to members of the SessionPropertyDemo Customer Segment, and the 
other contains content that will be displayed only to members of the 
SessionPropertyDemoTwo Customer Segment.

<%@ taglib uri="pz.tld" prefix="pz" %>

<%

    session.setAttribute("SessionPropertyOne", new Long(3));

%>

<pz:div rule="SessionPropertyDemo">

    <p>--  the "SessionPropertyDemo" rule evaluated to "true"</p>

</pz:div>

<pz:div rule="SessionPropertyDemoTwo">

    <p>--  the "SessionPropertyDemoTwo" rule evaluated to "true"</p>

</pz:div>

Because of the SessionPropertyOne value in the session.setAttribute() 
method, whose value defines the SessionPropertyDemoTwo Customer Segment, the 
rule=SessionPropertyDemoTwo will evaluate to �true,� and the 
rule=SessionPropertyDemo will evaluate to �false�, even though the property was 



Using the Advisor to Personalize a Portal Application

WebLogic Portal Development Guide 12-15

defined in two different property sets. Normally this should not be a problem, as 
duplicate properties are not usually defined in different property sets. However, the 
E-Business Control Center does not alert you if you do this.

Triggering Campaign Actions with Session, Request, and Event Properties

Campaign scenario rules are evaluated only when a single event occurs for which the 
campaign listener is configured. When the event is triggered, the event takes a snapshot 
of the current session properties, the single request property (contained in the session), 
and the event properties (contained in the request). The snapshot taken by the event is 
in the form of a Request object, which the event passes to the Campaign service for 
evaluation. If the values in that snapshot evaluate to true against any Campaign action 
rules, those Campaign actions are triggered.

When campaign actions are not triggered as expected using session, request, and event 
properties, one or more of the following is usually to blame:

! No event was fired that the Campaign service was listening for.

! The session, request, or event properties contained in the Campaign rule were 
not part of the Request object snapshot taken when the event was fired.

! In Campaign rules that are defined so that all conditions must apply for the 
campaign action to be triggered, one or more of the conditions evaluated to 
false.

Consider the following Campaign action rules as created in the E-Business Control 
Center:

When all of these conditions apply:

an HTTP request has the following properties:

RequestPropertyOne is equal to �success�

any of the following events has occurred:

SessionLoginEvent

Do the following� [Ad action, e-mail action, or discount action].

The rule will be evaluated only if an event for which the Campaign service is listening 
occurs. (This event need not be used directly in the Campaign rule.) For example, if 
the Campaign service is configured to listen for the BEA-provided 



12 Setting Up Personalization and Interaction Management

12-16 WebLogic Portal Development Guide

UserRegistrationEvent (which it is by default), then when a 
UserRegistrationEvent occurs the event takes a snapshot of the Request object 
and the Campaign rules are evaluated. 

Here is how the previous Campaign action rules would be evaluated:

! Is there a request property called RequestPropertyOne with a value of 
success?

! Am I a SessionLoginEvent?

! Are all of these conditions true?

Because a UserRegistrationEvent woke up the campaign service and took a snapshot 
of the request object, the campaign action will not be triggered, because the rule 
requires that all of its conditions evaluate to true. The SessionLoginEvent rule is false 
(because it was the UserRegistrationEvent that woke up the campaign service).

If the rule was defined so that any of the conditions evaluating to true would trigger the 
action (rather than all conditions), the campaign action would have fired if the request 
property evaluated to true.

To use session or request properties to trigger campaign actions, make sure you do the 
following:

! In the JSP containing the event to be fired, get the request attribute through a 
variable or set it directly in the JSP.

! In the JSP containing the event to be fired, get/set any event properties you want 
to use.

! If you want to use session properties to trigger campaign actions, make sure the 
firing event is in the same session containing the session properties you want to 
use.

For more information on events and using them in Campaigns, see Chapter 15, �Event 
and Behavior Tracking,� in particular �Writing the Custom Event Class,� which 
contains information on getting the Request object with your event.



Working with the Rules Framework

WebLogic Portal Development Guide 12-17

Working with the Rules Framework

Rules Management forms a key part of the personalization process by prescribing a 
flexible and powerful mechanism for expressing business rules. The business logic 
encompassed by these rules allows robust delivery of personalized content marketed 
specifically to each end user type.

The various components of the Rules Framework are configured with an external 
configuration file called rules.properties. This file resides in the p13n_util.jar 
file (within the com/bea/p13n/rules directory) that can be found in the root 
directory of any WebLogic Portal application. This section explains each of the 
configuration properties that can be set in this file.

Changes to the rules.properties file are only seen by the application in which the 
file resides. That is, this configuration file is scoped to the application. This makes it 
possible to configure the Rules Framework differently for different applications.

Validating Rules Expressions

If you want the Rules engine to validate all Rules expressions (both conditions and 
actions) exactly one time, set rules.engine.expression.validation to true. You 
can set this property to true during development and testing for additional expression 
validation, as shown in Listing 12-4.

Listing 12-4   Setting the rules.engine.expression.validation Property

##
# Rules engine expression validation:
#
# If this property is set to true, the rules engine
# will validate expressions the first time they are
# executed.
##
rules.engine.expression.validation=true



12 Setting Up Personalization and Interaction Management

12-18 WebLogic Portal Development Guide

Rules Engine Error Handling and Reporting

The rules.engine.throw.expression.exceptions and 
rules.engine.ignorable.exceptions properties determine the type of 
exceptions that will be propagated to the user during Rules engine execution. 

! To prevent exceptions from being propagated and any condition expression that 
generates an exception to evaluate to false, set the 
rules.engine.throw.expression.exceptions parameter to false.  

! To propagate all exceptions to the user�except those listed with the 
rules.engine.ignorable.exceptions parameter�set the 
rules.engine.throw.expression.exceptions parameter to true.

Listing 12-5 shows an example of how these parameters are set.

Listing 12-5   Rules Engine Pattern Expression Execution Error Handling

##
# Rules engine pattern expression execution error handling:
#
# rules.engine.throw.expression.exceptions
#
# If this property is set to true, pattern expression
# execution exceptions will be thrown. Otherwise, a pattern
# expression exception will cause the pattern condition to
# evaluate to false.
#
# Defaults to true.
#
# rules.engine.throwable.exceptions (list of class names)
#
# If the previous property is set to true, expression exceptions
# with embedded exceptions of a type other than the listed classes
# will be thrown. If no class types are specified, all expression
# exceptions will be thrown.
#
# Defaults to all exception class types.
##
rules.engine.throw.expression.exceptions=true
rules.engine.ignorable.exceptions=java.lang.NullPointerException



Personalization with Content Selectors

WebLogic Portal Development Guide 12-19

Personalization with Content Selectors

A content selector is one of several mechanisms that WebLogic Portal provides for 
retrieving documents from a content management system. By using content selectors, 
you can personalize a portal or portlet by specifying conditions under which WebLogic 
Portal retrieves one or more documents. For example, you can personalize a portlet that 
displays data from a content management system by specifying such information as a 
date range, the status of the user, and the user�s e-mail address. The content selector 
would only retrieve documents that fit the selection criteria.

Note: Before you can work with content selectors, customer segments must be 
created. Creating segments is an administrative task and is discussed in the 
Administration Guide. For more information, see �Creating Customer 
Segments� at http://edocs.bea.com/wlp/docs70/admin/usrgrp.htm#1184110.

Use the E-Business Control Center to define the conditions that activate a content 
selector and to define the query the content selector uses to find and retrieve 
documents. Then, use the content selector JSP tags and a set of other JSP tags to 
retrieve and display the content targeted by the content selector.

To use the E-Business Control Center to define the conditions that activate a content 
selector and the query criteria, use this procedure:

1. Open the E-Business Control Center and display the Presentation tab.

2. Click the Content Selector icon in the left pane of the Explorer.

Any existing content selectors will appear in the right pane of the Explorer.

3. Select New to display the New menu and select Content Selector.

Figure 12-1   E-Business Control Center New Menu with Content Selector 
Selected



12 Setting Up Personalization and Interaction Management

12-20 WebLogic Portal Development Guide

The Content Selector Editor appears.

Figure 12-2   Content Selector Editor

4. Double-click anywhere on the Selection rule pane to open the Selection Rules 
editor:



Personalization with Content Selectors

WebLogic Portal Development Guide 12-21

Figure 12-3   Selection Rules Editor

5. Click the checkbox next to each condition you want to activate the content 
selector. For each condition selected, a related action is added to the action pane.



12 Setting Up Personalization and Interaction Management

12-22 WebLogic Portal Development Guide

Figure 12-4   Selection Rules Editor with Conditions Selected

6. In the Action pane, do the following:

a. Determine how the conditions will apply. The default value is all, which means 
that all conditions must be true before the content selector is activated. Click 
the word all to toggle the value to any, which means that at least one of the 
conditions must be true to activate the content selector.

b. Next, set the values for each condition by clicking the underlined text in the 
condition list; for example, if you selected the condition The visitor is a 
member of a predefined customer segment, the condition The visitor is in 
customer segment [customer segment] appears in the Action pane. Click 
[customer segment] to display the Select Customer Segments dialog box.



Personalization with Content Selectors

WebLogic Portal Development Guide 12-23

Figure 12-5   Select Customer Segments Dialog Box

c. Select the customer segments of which the visitor must be a member and click 
Add to move them to the Selected segments list. When you�ve added all of the 
segments necessary, click OK.

d. Repeat step b for each condition selected.

e. When the values for all selected conditions have been set, click OK.

The Selection Rules dialog box closes.

7. In the E-Business Control Center, open the File menu and select Save as.

The Save as dialog box appears.

Figure 12-6   Save As Dialog Box

8. Type the name you want to call the content selector in Name and click Save.

The new content selector will appear in the content selector list in the Explorer.

9. Open the Tools menu and select Synchronize.



12 Setting Up Personalization and Interaction Management

12-24 WebLogic Portal Development Guide

The new content selector is ready to use.

To use the content selector features on a given JSP, you must add calls to the content 
selector JSP tag and a set of associated tags. For more information, please refer to 
�Using Content-Selector Tags and Associated JSP Tags� on page 8-25.

Using an Edit .jsp to Personalize a Portlet

Visitors can personalize portlets by providing the necessary personalization attributes 
or preferences to an Edit JSP. An Edit JSP is a JSP that collects personalization data 
and uses it to render a personalized view of requested date. 

Enabling a visitor to personalize a portlet by using an Edit JSP is a two-step process:

! Step 1. Create the Edit JSP

! Step 2. Enable Portlet Editing

Step 1. Create the Edit JSP

Create the Edit JSP (or JSPs, if a Webflow is required) as you would any other JSP. 
You can name it anything you want and give it any appropriate look and feel. The 
important features of the JSP are those that allow the visitor to enter and retrieve 
personalized content.

For example:

! The Edit JSP for a stock quote portlet might have a text box or boxes into which 
the visitor can enter stock symbols and an OK or Set button that launches an 
event that retrieves a quote for the respective symbols.

! The Edit JSP for an email portlet might include edit boxes into which the visitor 
sets a user name and password for retrieving email from a server, which is also 
specified on the Edit JSP.

! The Edit JSP for a portlet that displays columnar data might have checkboxes 
that let the visitor turn columns on or off and specify sorting preference.



Using an Edit .jsp to Personalize a Portlet

WebLogic Portal Development Guide 12-25

As you can see, there are few restrictions as to what you need to include in an Edit JSP, 
so long as it meets visitor personalization requirements.

Step 2. Enable Portlet Editing

Next, you need to enable visitors to edit a portlet to add personalization information. 
To do this, use this procedure:

1. Start the E-Business Control Center. For instructions on starting the E-Business 
Control Center see �Starting the E-Business Control Center� in the Administration 
Guide at http://edocs.bea.com/wlp/docs70/admin/admintro.htm#1185814. 

2. In the Explorer window, click the Presentation tab at the bottom of the Explorer 
window, then click the Portlets icon.

3. From the list of portlets in the Explorer, double-click the portlet you for which 
you want to enable editing.

The Portlet Editor appears.

4. Select Enable Editing, as shown in Figure 12-7.

Figure 12-7   Portlet Editor with Enable Editing Checkbox Selected

5. Note that by selecting this checkbox, you also enable the edit box below it. In this 
box, specify the relative URL of the Edit JSP you created.

For more information on using the Portlet Editor, see �Modifying Portlet 
Characteristics� in the Administration Guide at 
http://edocs.bea.com/wlp/docs70/admin/frmwork.htm#1199768.



12 Setting Up Personalization and Interaction Management

12-26 WebLogic Portal Development Guide

Personalizing a Portal or Portlet by Using 
Placeholders

Placeholders are devices that represent an area in a portal or portlet to which content 
is provided when certain criteria are met that define what content can appear. A 
placeholder is a named entity that contains one or more queries. When a visitor 
requests a JSP that contains a placeholder tag, the placeholder selects a single query to 
run�usually based upon established rules or customer properties�and generates the 
HTML that the browser requires to display the results of the query.

This section includes information on the following subjects:

! How Placeholders are Used

! Placeholder JSP Tag: <ph:placeholder>

! Implementing the Placeholder

! Creating Placeholder Files

How Placeholders are Used

Placeholders are used primarily in campaigns to direct a visitor�s attention to 
programs, merchandise, or other information in which the visitor�s behavior has 
indicated an interest.  For example, an online sporting goods store notices that a visitor 
has purchased a number of fishing lures from a specific manufacturer. A rule exists that 
tells the portal to display information about discounts available when the visitor has 
spent more than a certain amount of money on products by that particular 
manufacturer. The visitor will see that information in the area specified as the 
placeholder for that content. Another visitor has shown interest in camping equipment 
(measured by the number of times that visitor has accessed the �Camping� pages for 
the sporting goods store�s catalog). Instead of fishing lure discounts, the camper will 
see information about camping gear in the area specified as the placeholder.

The above example demonstrates how ad placeholders are used to personalize 
information for a specific visitor. In the same manner, non-ad placeholders can offer 
the same level of personalization. For example, a doctor researching drugs at a 



Personalizing a Portal or Portlet by Using Placeholders

WebLogic Portal Development Guide 12-27

pharmaceutical company Website shows a tendency for studying a certain family of 
drugs. The company�s portal can track his behavior and display, in a placeholder, 
information about, or links to, related drugs that he hasn�t yet researched. 

Placeholders are created by using a JSP tag and defining the placeholder queries in the 
E-Business Control Center. This section describes how to use those features to set up 
placeholders to personalize portal and portlet content.

Placeholder JSP Tag: <ph:placeholder>

The placeholder tag <ph:placeholder> is a named location on a JSP.  The tag 
identifies the placeholder to the JSP and describes the behavior established for it in the 
E-Business Control Center. See �Creating Placeholder Files� on page 12-29 for 
instructions on using the E-Business Control Center to set up the placeholder behavior.

Note: In the following tables, the Required column specifies if the attribute is 
required (yes) or optional (no). In the R/C column, C means that the attribute 
is a Compile time expression, and R means that the attribute can be either a 
Request time expression or a Compile time expression.

The <ph:placeholder> tag (Table 12-3) implements a placeholder, which describes 
the behavior for a location on a JSP page. 

Multiple placeholder tags can refer to the same placeholder. Each instance of a 
placeholder tag invokes its placeholder definition separately. If the placeholder 
definition specifies multiple queries, each placeholder tag instance can display 
different ads, even though each instance shares the same definition.

When WebLogic Portal receives a request for a JSP that contains an ad placeholder, 
the placeholder tag contacts the Ad Service, a session EJB that invokes business logic 
to determine which ad to display.

Table 12-3  <ph:placeholder>

Tag Attribute Req�d Type Description R/C

name Yes String A string that refers to a placeholder 
definition. 

R



12 Setting Up Personalization and Interaction Management

12-28 WebLogic Portal Development Guide

Example

This example displays the ad specified in the MainPageBanner placeholder.

<%@ taglib uri="ph.tld" prefix="ph" %>
. . .
<ph:placeholder name="/placeholders/MainPageBanner.pla"/>

height No int Specifies the height (in pixels) that the 
placeholder uses when generating the 
HTML that the browser requires to display 
a document. 
The placeholder uses this value only for 
content types to which display dimensions 
apply and only if other attributes have not 
already defined dimensions for a given 
document. 
If you do not specify this value and other 
attributes have not already been defined, 
the browser behavior determines the 
height of the document.

R

width No int Specifies the width (in pixels) that the 
placeholder uses when generating the 
HTML that the browser requires to display 
a document. 
The placeholder uses this value only for 
content types to which display dimensions 
apply and only if other attributes have not 
already defined dimensions for a given 
document. 
If you do not specify this value and other 
attributes have not already been defined, 
the browser behavior determines the 
height of the document.

R

Table 12-3  <ph:placeholder> (Continued)

Tag Attribute Req�d Type Description R/C



Personalizing a Portal or Portlet by Using Placeholders

WebLogic Portal Development Guide 12-29

Implementing the Placeholder

To implement a placeholder, use this procedure:

1. Open the JSP template file that will contain the placeholder. JSPs reside in an 
applicaton folder under the portlets folder for an individual application; for 
example:

<BEA_HOME>\weblogic700\samples\portal\<PORTAL_DOMAIN>\beaApps\
   <PORTAL_APP>\<PORTAL_APP>\portlets\campaigns

2. Import the tag library by including the following code in the JSP

<%@ taglib uri="ph.tld" prefix="ph" %>

3. Add <ph:placeholder> within the JSP element where you want the placeholder 
to appear. Be sure to specify the placeholder name within the placeholder tag, as 
shown in Listing 12-6.

Listing 12-6   <ph:placeholder> Tag

<table class="homebackground" width="100%" height="100%"
   border="0" cellspacing="0" cellpadding="0">

   <tr>
      <td align="center">
         <ph:placeholder name="PrimaryCampaign"/>
      </td>
   </tr>

</table>

Creating Placeholder Files

Use the E-Business Control Center to define placeholder files that match the 
placeholders in your site�s JSPs. The following procedure shows you how to create a 
placeholder file in the E-Business Control Center and how to set up default�not 
campaign�queries in that placeholder.



12 Setting Up Personalization and Interaction Management

12-30 WebLogic Portal Development Guide

Note: Before beginning this procedure, you must define attributes for the documents 
in your content management system

To create a placeholder file:

1. Start WebLogic Server and open the the E-Business Control Center.

2. Open the application with which you want to work.

3. Choose File → New → Presentation → Placeholder. A new placeholder file opens 
in the Editor window, as shown in Figure 12-8.

Figure 12-8   Placeholder Editor

4. Enter a description for the placeholder in the Description area.



Personalizing a Portal or Portlet by Using Placeholders

WebLogic Portal Development Guide 12-31

5. Click New to begin defining a default query. A placeholder file is considered 
incomplete if it does not have at least one default query (though you can still save 
the placeholder file).

Note: Since the content you are trying to access is stored on the server, the 
Connection Setup window appears. Select an existing connection in the 
Display Name field, and enter your username and password. You only 
need to log in once per session when working with placeholders.

You can create multiple default queries by repeating this step.

If you do not create ad queries for default ads, the placeholder will display only 
ads that are generated by campaign queries. If there are no active campaigns, or 
if an active campaign contains no ad actions within scenarios to trigger an ad for 
a specific customer, then the placeholder remains empty to customers.

6. To change the priority of a default query, click the Display Priority column for 
the query and select a priority, as shown in Figure 12-8.

The Display Priority determines the likelihood that the query runs relative to the 
priority of any other queries that are in the placeholder.

7. To prevent an ad placeholder from using default aqueries if it also contains 
campaign ad queries, select the option, Do not display default ads if ads placed 
by a campaign apply.

If you want the placeholder to choose among default and campaign ad queries, 
select the option, Keep default ads in rotation with ads placed by a 
campaign. This selection potentially reduces the chance that the placeholder 
displays a given ad that is part of a campaign.

8. Save and name the placeholder. Be sure to use the name of a placeholder that 
already exists or will exist on a JSP.

The new file is displayed in the list of placeholders.



12 Setting Up Personalization and Interaction Management

12-32 WebLogic Portal Development Guide



WebLogic Portal Development Guide 13-1

CHAPTER

13 Setting Up Campaign 
Services

A campaign coordinates several WebLogic Portal services to create and track 
marketing goals on an e-commerce Web site. For example, your marketing 
organization can use campaigns to sell 100 ACME saws during the month of June. To 
reach this goal, Marketing can target advertising, e-mail, and discounted product 
pricing to customers who match a set of criteria, such as customers who have 
previously purchased ACME hardware from your site.

Your responsibility in setting up a campaign service is to develop the infrastructure to 
support the campaigns and modify that infrastructure as individual campaigns require. 
This activity can include building placeholders for campaigns, specifying display and 
clickthrough behavior, loading ads into a content management system, creating 
personalized e-mails for campaigns, and sending bulk mail to prospective and existing 
customers.

This section contains information on the following subjects:

! What are Campaign Services?

! Building Placeholders for Campaigns

! Using Attributes to Specify Display and Clickthrough Behavior

! Loading Ads Into Your Content Management System

! Creating Personalized E-mails for Campaigns

! Sending Bulk Mail

Note: Campaigns cannot be used with anonymous users. 



13 Setting Up Campaign Services

13-2 WebLogic Portal Development Guide

What are Campaign Services?

Campaigns coordinate the following services:

! Events and Behavior Tracking services identify how a customer interacts with 
your site. By default WebLogic Portal tracks only a specific set of customer 
interactions (events), but you can add to this set by customizing the Event 
Service. For more information on event and behavior tracking, see Chapter 15, 
�Event and Behavior Tracking.�

! Customer Segments categorize customers based on information in a customer�s 
profile and other dynamic data. Each customer must create a profile to log in to 
your site. The profile includes information that the customer provides, such as 
shipping addresses, and information that WebLogic Portal provides, such as 
number of visits and total value of products the customer has purchased on the 
site. You can create customer segments in the E-Business Control Center.

! Scenarios which trigger actions if a specific event occurs or if a specific 
customer matches a customer segment. You can create scenarios in the 
E-Business Control Center.

Scenarios can engage any of the following services:

! Ad Placeholders, which query the content management system for an ad and 
display the query results on the Web site. For example, if a customer logs in and 
the customer�s profile matches the SailingEnthusiast customer segment, then a 
scenario causes an ad for sailboats to appear in the Web site�s top banner.

! E-mail Service, which uses a JSP to generate e-mail and provides a utility for 
sending the e-mail in batches. Because the Mail Service uses a JSP to generate 
e-mail, you can use JSP tags to personalize the e-mail.

Discounts These offer reduced prices for specific products or product categories. 
You can creates discount in the E-Business Control Center. 



Building Placeholders for Campaigns

WebLogic Portal Development Guide 13-3

Building Placeholders for Campaigns

The ad placeholder is a container that generates the HTML that the browser requires 
to display the ad content and places it in the JSP at the location of the placeholder tag. 
An ad is a document in your content management system that an ad placeholder 
displays. Ads can be an integral part to a campaign. For example, campaigns can 
specify as a goal to record a specific number of ad clickthroughs. 

Using Attributes to Specify Display and 
Clickthrough Behavior

You need to define the document attributes in your content management system that ad 
placeholders use to support the following features:

! Choosing a single document if a query returns multiple documents

! Making an image ad clickable

! Supplying movie preferences for a Shockwave file

For information about associating attributes with documents, refer to the 
documentation for your content management system. If you use the reference content 
management system supplied by BEA, refer to �Loading Ads into the Reference 
Content Management System� on page 13-4. Valid attributes are listed in Table 13-1, 
Table 13-2, and Table 13-3.



13 Setting Up Campaign Services

13-4 WebLogic Portal Development Guide

Loading Ads Into Your Content Management 
System

The queries you can define for ad placeholders search through the attributes that you 
attach to the documents in your content management system. WebLogic Portal places 
no restrictions on the set of attributes that you use to describe your ads. For example, 
you can create attributes that describe the name of the product that the document 
advertises, the name of the ad sponsor, and a product category that matches the 
categories in your e-commerce product catalog.

The method of loading ads into a content management system is dictated by the CMS.

! If you use the reference content management system supplied by BEA, use the 
procedures in this section.

! If you are using a third-party CMS, follow the load instructions provided by the 
vendor.

Loading Ads into the Reference Content Management 
System

WebLogic Portal provides a content management system for sites with limited 
content-management needs. If you use the reference content management system, you 
must load ads and ad attributes at the same time. You cannot add attributes to 
documents that have already been loaded.

When you install WebLogic Portal, the reference content management system (which 
uses the sample PointBase database) already contains a set of sample ads.

To load ads and ad attributes into the reference content management system, you must 
do the following:

! Step 1. Set Up Attributes in HTML Documents

! Step 2. Set Up Attribute Files for Image and Shockwave Documents

! Step 3. Move Files Into the dmsBase/Ads Directory Tree



Loading Ads Into Your Content Management System

WebLogic Portal Development Guide 13-5

! Step 4. Run the loadads Script

Step 1. Set Up Attributes in HTML Documents

For ads that contain only HTML, you must place document attributes in <META> tags 
within a document�s <HEAD> element. Use the following syntax in the <META> tag:

<META name="attribute-name" content="attribute-value"> 

Use a separate <META> tag for each document attribute. For example:

<META name="attribute1-name" content="attribute1-value">
<META name="attribute2-name" content="attribute2-value">

<META name="attribute3-name" content="attribute3-value"> 

Listing 13-1 shows an HTML file that contains a simple ad with several attributes.

Listing 13-1   Attributes for an HTML Ad

<HTML>
<HEAD>

<META name="adWeight" content="3"> 
<META name="productCategory" content="hardware"> 
<META name="productSubCategory" content="electic drill"> 
<META name="productName" content="Super Drill"> 
<META name="Manufacturer" content="ACME"> 

</HEAD>

<BODY>

<P>Buy our Super Drill. It’ll get the job done!</P>

</BODY>

</HTML>

Table 13-1 describes the adWeight attribute, which you can associate with XHTML, 
image, and Shockwave documents.



13 Setting Up Campaign Services

13-6 WebLogic Portal Development Guide

Step 2. Set Up Attribute Files for Image and Shockwave Documents

For ads that are images or Shockwave movies, you must place attributes in a separate 
file. Each image or Shockwave file must be accompanied by a separate file that is 
named with the following convention:

filename.extension.md.properties 

Both files must be located in the same directory.

For example, for an image file named superDrill.jpg, you must place attributes in 
a file named superDrill.jpg.md.properties. 

Within the filename.extension.md.properties file, use the following syntax to 
express attributes and values:

attribute-name=attribute-value

Listing 13-2 shows an example file that contains attributes for an image ad.

Listing 13-2   Syntax for the Attributes File

adWeight=5 
adTargetUrl=AcmeAds/saws.jpg 
adAltText=Buy ACME and save!

Table 13-1  Attributes for All Document Types

Attribute Name Value Type Description and Recommendations

adWeight Integer Provides an integer that is used to select a document if a query 
returns multiple documents. Assign a high number to ads that you 
want to have a greater chance of being selected. The default value 
for this attribute is 1.

Note: In the E-Business Control Center, you can assign a priority 
to a query for a scenario action. The priority, which bears 
no relation to the adWeight attribute, gives a greater or 
lesser chance that a placeholder runs a query. The 
adWeight attribute is used to choose an ad after a query 
has run. 



Loading Ads Into Your Content Management System

WebLogic Portal Development Guide 13-7

productCategory=hardware
productSubCategory=electic drill
productName=Super Drill
Manufacturer=ACME

Other Image File Attributes

Table 13-2 describes other attributes, in addition to adWeight, that you can associate 
with image files.

Table 13-2  Attributes for Image Files

Attribute Name Value Type Description and Recommendations

adTargetUrl String Makes an image clickable and provides a target for the clickthrough, 
expressed as a URL.  The Event Service records the clickthrough.
Use either adTargetUrl, adTargetContent, or adMapName, 
depending on how you want to identify the destination of the ad 
clickthrough.

adTargetContent String Makes an image clickable and provides a target for the clickthrough, 
expressed as the content management system�s content ID. The 
Event Service records the clickthrough.
Use either adTargetUrl, adTargetContent, or adMapName, 
depending on how you want to identify the destination of the ad 
clickthrough.

adMapName String Makes an image clickable, using an image map to specify one or 
more targets.  
The value for this attribute is used in two locations:
! In the anchor tag that makes the image clickable, 

<a href=value> <img> </a> 
! In the map definition, <map name=value> 
Use either adTargetUrl, adTargetContent, or adMapName, 
depending on how you want to identify the destination of the ad 
clickthrough.
If you specify a value for adMapName, you must also specify a 
value for adMap.



13 Setting Up Campaign Services

13-8 WebLogic Portal Development Guide

Other Shockwave Attributes

Table 13-3 describes other attributes, in addition to adWeight, that you can associate 
with Shockwave files. Ad placeholders and the <ad:adTarget> tag format these 
values as attributes of the <OBJECT> tag, which Internet Explorer on Windows uses to 
display the file, and the <EMBED> tag, which browsers that support the 
Netscape-compatible plug-in use to display the file.

For more information about these attributes, refer to your Shockwave developer 
documentation.

adMap String Supplies the XHTML definition of an image map.  
If you specify a value for adMap, you must also specify a value for 
adMapName.

adWinTarget String Displays the target in a new pop-up window, using JavaScript to 
define the pop-up. 
The only value supported for this attribute is newwindow.

adWinClose String Specifies the name of a link that closes a pop-up window. The link 
appears at the end of the window content.
For example, if you provide �Close this window� as the value for 
this attribute, then �Close this window� appears as a hyperlink in the 
last line of the pop-up window. If a customer clicks the link, the 
window closes.

adAltText String Specifies a text string for the alt attribute of the <img> tag. If you 
do not include this attribute, the <img> tag does not specify an alt 
attribute.

adBorder Integer Specifies the value for the border attribute of the <img> tag.  If 
you do not include this attribute, the border attribute is given a 
value of "0".

Table 13-2  Attributes for Image Files (Continued)

Attribute Name Value Type Description and Recommendations



Loading Ads Into Your Content Management System

WebLogic Portal Development Guide 13-9

Table 13-3  Attributes for Shockwave Files

Attribute Name Value Type Description and Recommendations

swfLoop String Specifies whether the movie repeats indefinitely (true) or stops 
when it reaches the last frame (false). 
Valid values are true or false. If you do not define this attribute, 
the default value is true.

swfQuality String Determines the quality of visual image. Lower qualities can result in 
faster playback times, depending on the client�s  Internet 
connection.
Valid values are low, high, autolow, autohigh, best.

swfPlay String Specifies whether the movie begins playing immediately on loading 
in the browser. 
Valid values are true or false. If you do not define this attribute, 
the default value is true.

swfBGColor String Specifies the background color of the movie. This attribute does not 
affect the background color of the HTML page.
Valid value syntax is #RRGGBB.

swfScale String Determines the dimensions of the movie in relation to the area that 
the HTML page defines for the movie. 
Valid values are showall, noborder, exact fit. 

swfAlign String Determines whether the movie aligns with the center, left, top, right, 
or bottom of the browser window.
If you do not specify a value, the movie is aligned in the center of 
the browser. 
Valid values are l, t, r, b.

swfSAlign String Determines the movie�s alignment in relation to the browser 
window.
Valid values are l, t, r, b, tl, tr, bl, br.

swfBase String Specifies the directory or URL used to resolve relative pathnames in 
the movie.
Valid values are .(period), directory-name, URL.



13 Setting Up Campaign Services

13-10 WebLogic Portal Development Guide

Step 3. Move Files Into the dmsBase/Ads Directory Tree

To make the ads available to the campaign, place all HTML, image, and Shockwave 
files, and all attributes files into the Ads directory, which is located at the following 
path:

<BEA_HOME>/user_projects/<YOUR-APPLICATIONDOMAIN>/dmsBase/Ads 

(where <BEA_HOME> is the directory in which you installed BEA WebLogic Platform 
and where <YOUR-APPLICATIONDOMAIN> is the directory of the particular domain).

You can place documents in subdirectories of the Ads directory, although the reference 
content management system does not use the subdirectories to organize documents.

If you use subdirectories to manage your source files, you must place the attributes 
files in the same directory as the files that they describe. For example, 
superDrill.jpg and superDrill.jpg.md.properties must be in the same 
directory.

Step 4. Run the loadads Script

The loadads script (loadad.bat for Windows user; loadad.sh for Unix users) runs 
the BulkLoader to load documents from the dmsBase/Ads directory to the content 
management system. It also attaches attributes to the documents.

To run loadads, do one of the following:

! Type loadads at the command line (or Start −> Run in Windows NT or 2000). 
Be sure you are in the <BEA_HOME>/user_projects/ 
<YOUR-APPLICATIONDOMAIN>/dmsBase directory.

OR

! Open Windows Explorer, locate loadads in the 
<BEA_HOME>/user_projects/<YOUR-APPLICATIONDOMAIN>/dmsBase 
directory, and double-click it in the file list. 

swfMenu String Determines whether the movie player displays the full menu.
Valid values are true or false.

Table 13-3  Attributes for Shockwave Files (Continued)

Attribute Name Value Type Description and Recommendations



Creating Personalized E-mails for Campaigns

WebLogic Portal Development Guide 13-11

For more information on running the BulkLoader, please see �Adding Content by 
Using the Bulk Loader� on page 8-1.

Creating Personalized E-mails for 
Campaigns

The E-mail service uses a JSP to generate e-mail and provides a utility for sending the 
e-mail in batches. Because the Mail service uses a JSP to generate e-mail, you can use 
JSP tags to personalize the e-mail. This section shows you how to create personalized 
e-mails for campaigns by following these steps:

! Step 1. Configure the E-mail Properties

! Step 2. Find Names of User Properties

! Step 3. Create E-mail JSPs

Step 1. Configure the E-mail Properties

Before a campaign can send e-mail, you must configure properties that the Campaign 
Service uses to send and receive mail. In a clustered environment, WebLogic Server 
propagates these properties to each node in the cluster. 

To configure mail-related properties, do the following:

1. From the E-Business Control Center, open your application.

2. In the E-Business Control Center Explorer window, click the Site Infrastructure 
tab.

3. Click User Profiles and find the following:

" The name of the property set and the property that defines customer e-mail 
addresses. 

" The name of the property set and the property that records a customer�s 
preference for receiving campaign-related e-mail. The reference applications 



13 Setting Up Campaign Services

13-12 WebLogic Portal Development Guide

store this preference in the Demographics property set in the Email_Opt_In 
property.

Step 2. Find Names of User Properties

1. Start your server and access the WebLogic Server Administration Console for the 
domain.

2. In the left pane of the WebLogic Server Administration Console, click 
Deployments−> Applications −> myApplication −> Service Configuration −> 
Campaign Service.

3. On the Campaign Service Page, click the Mail Action tab. 

4. On the Mail Action tab, enter the following values.

5. Click Apply. 

Table 13-4  Mail Action Tab Values

In this box... Enter this value...

Default From Email 
Address

The default address that receives any replies from e-mail that 
the campaign sends. In a standard mail header, this is the 
From address.
Each campaign scenario can specify its own From address 
that overrides this default property.

Email Address Property 
Name

The name of the property that contains customer e-mail 
addresses.

Property Set Name 
Containing Email Address 
Property

The name of the property set that contains customer e-mail 
properties.

Email Opt In Property 
Name

The name of the property that specifies whether customers 
want to receive campaign-related email. The reference 
applications store this preference in the Demographics 
property set in the Email_Opt_In property.

Property Set Name 
Containing Opt In Property

The name of the property set that contains the customer�s 
opt-in property.



Creating Personalized E-mails for Campaigns

WebLogic Portal Development Guide 13-13

All e-mail that the Campaign Service generates will now use these settings.

6. Configure the default SMTP host name for the Mail Service by clicking Mail 
Service in the left pane. 

Note: Any changes that you make on the Mail Service page affects all e-mails 
that you send using WebLogic Portal (whether or not they are generated by 
the Campaign Service).

Step 3. Create E-mail JSPs

The Mail Service requires that you place the content and formatting of your e-mails in 
a JSP file. In this JSP, you can use any of the JSP tags and APIs that are available to 
other JSPs in WebLogic Portal. 

This step describes the following:

! E-mail Parameters

! Disabling Session Generation

! Sample E-mail JSP

! Saving E-Mail JSPs

E-mail Parameters

When a scenario action requests an e-mail JSP, it passes a userid parameter, which 
specifies the login name of the customer who triggered the scenario action. By using 
the request.getParameter() method, you can retrieve the user ID and pass it to JSP 
tags in the e-mail JSP.

In addition, the scenario passes the following parameters (you can also pass these 
parameters to JSP tags in the e-mail JSP):

! scenarioId, which specifies the ID of the scenario that triggered the e-mail.

! scenarioName, which specifies the name of the scenario that triggered the 
e-mail.

! containerId, which specifies the ID of the campaign to which the scenario 
belongs.



13 Setting Up Campaign Services

13-14 WebLogic Portal Development Guide

! containerName, which specifies the name of the campaign to which the 
scenario belongs.

Disabling Session Generation

The Java class that the Campaign Service uses to generate email from a JSP, 
InternalRequestDispatcher, also generates an HTTPSession object. Usually, 
generating this HTTPSession from an email JSP is extraneous because your 
application already generates an HTTPSession object when a customer accesses your 
site.

To disable the generation of an extraneous HTTPSession, add the following directive 
to the beginning of the JSPs that you use to generate email for campaigns:

<%@ page session="false" %>  

Adding this directive is necessary only if your application generates HTTPSession 
objects when customers access your site (or log in) and only for email that is generated 
via the InternalRequestDispatcher.

Sample E-mail JSP

Listing 13-3 shows the e-mail JSP that is part of the sample Web application. The file 
is located at <BEA_HOME>/weblogic700/samples/portal/ 
wlcsDomain/beaApps/wlcsApp/wlcs/campaigns/emails/

Listing 13-3    Sample E-mail JSP

Sample1.jsp
<%@ page session="false" %>
<%@ page contentType="text/plain" %>

(This sample e-mail was automatically sent out as part of a sample 
campaign that you triggered while registering as a new user on the 
BEA Commerce Templates.)

-------------------------------

Hello <%= request.getParameter("userId") %>,

Thank you for taking the time to become a registered member of our 
site. We hope you took advantage of your $10 discount on a purchase 
of $50 or more after you registered!



Creating Personalized E-mails for Campaigns

WebLogic Portal Development Guide 13-15

In addition, your registration entitles you to premium services 
including:

   **Special "Members Only" discounts

   **Advance notice of new product releases

   **A personalized customer experience customized to 
     your specific interests

Thanks again for becoming a registered member.

Best Regards

Saving E-Mail JSPs

You must save e-mail JSPs in a specific directory within a Web application so that 
E-Business Control Center user can browse and select the e-mail for a campaign. 

By default, the directory is myApp/myWebApp/campaigns/emails. 

(Where myWebApp is the name of a Web application containing the campaign)

For example, the Web application wlcs provides a sample e-mail in the following 
directory:

<BEA_HOME>/weblogic700/samples/portal/wlcsDomain/beaApps/wlcsApp/
   wlcs/campaigns/emails/Sample1.jsp

To choose this e-mail as part of a scenario action, do the following:

1. Open the wlcsApp application in the E-Business Control Center. 

2. While creating an E-mail action, to browse through all e-mail JSPs that have been 
saved in <BEA_HOME>/weblogic700/samples/portal/wlcsDomain/ 
beaApps/wlcsApp/wlcs/campaigns/emails and select Sample1.jsp for the 
scenario.

To change the default location in which you save e-mail JSPs, do the following:

1. From the WebLogic Server Administration Console, in the left pane, click 
Deployments −> Applications −> myApplication −> Service Configuration −> 
Campaign Service.

2. On the Campaign Service page, click the Configuration tab.



13 Setting Up Campaign Services

13-16 WebLogic Portal Development Guide

3. In the Base Directory for Email Browsing box, enter a pathname that is relative 
to the root directory of a Web application.

Sending Bulk Mail

You must periodically use a command to send the batched e-mail that the JSPs store 
in the WebLogic Portal data repository. You can also use cron or any other scheduler 
that your operating system supports to issue the send-mail command. 

This section includes information on the following subsections:

! Sending Mail from a Remote Host or in a Clustered Environment

! Sending Bulk E-mail

! Scheduling Bulk E-mail Delivery

Sending Mail from a Remote Host or in a Clustered 
Environment

The send-mail wrapper script specifies the name and listen port of the WebLogic Portal 
host that processes the send-mail request. By default, the wrapper script specifies 
localhost:7501 for the hostname and listen port. However, localhost:7501 is 
valid only when you run the script while logged in to a WebLogic Portal host in a 
single-node environment (and only if you did not modify the default listen port).

Before you use the send-mail script from any other configuration, you must modify the 
script by doing one of the following tasks:

! Modify the Send-Mail Script to Work from a Remote Host

! Modify the Send-Mail Script to Work in a Clustered Environment



Sending Bulk Mail

WebLogic Portal Development Guide 13-17

Modify the Send-Mail Script to Work from a Remote Host

If you want to run the send-mail script from a remote host (that is, a computer that is 
not a WebLogic Portal host), do the following:

1. Open the following file in a text editor:

<BEA_HOME>\weblogic700\portal\bin\win32\mailmanager.bat 
(Windows)

<BEA_HOME>\weblogic700\portal\bin\win32\mailmanager.sh (Unix)

2. In the mailmanager script, in the SET HOST= line, replace localhost with the 
name of a WebLogic Portal host.

3. If the host uses a listen port other than 7501, in the SET PORT= line, replace 7501 
with the correct listen port.

4. Save the mailmanager script.

Modify the Send-Mail Script to Work in a Clustered Environment

If you work in a clustered environment, you must modify the send-mail wrapper script 
to specify the name of a host in the cluster. The default localhost value is not valid for 
the Mail Service in a clustered environment.

To use the send-mail script in a clustered environment, do the following on each host 
from which you want to run the script:

1. Open the following file in a text editor:

<BEA_HOME>\weblogic700\portal\bin\win32\mailmanager.bat 
(Windows)

<BEA_HOME>\weblogic700\portal\bin\win32\mailmanager.sh (Unix)

2. In the mailmanager script, in the SET HOST= line, replace localhost with the 
name of a WebLogic Portal host. Because each host in a cluster can access the 
data repository that stores the e-mail messages, you can specify the name of any 
host in the cluster.

3. If the host uses a listen port other than 7501, in the SET PORT= line, replace 7501 
with the correct listen port.

4. Save the mailmanager script.



13 Setting Up Campaign Services

13-18 WebLogic Portal Development Guide

Sending Bulk E-mail

To send bulk e-mail, do the following from a shell that is logged in to a WebLogic 
Portal host:

1. To determine the names and contents of the e-mail batches in the data repository, 
enter the following command:

mailmanager.bat appName list (Windows)

mailmanager.sh appName list (Unix)

where appName is the name of the enterprise application that generated the 
e-mail batch. The command prints to standard out. You can use shell commands 
to direct the output to files.

2. To send a batch and remove it from the data repository, enter the following 
command:

mailmanager.bat appName send-delete batch-name (Windows)

mailmanager.sh appName send-delete batch-name (Unix)

Scheduling Bulk E-mail Delivery

You can use a scheduling utility to send the e-mail batches in the data repository. 
Because you must specify the name of a batch when you use the mailmanager 
command to send mail, you must schedule sending mail for each campaign scenario 
separately. The name of a batch corresponds to the scenario�s container ID. For 
information about the container ID, refer to �E-mail Parameters� on page 13-13.

For information in using a scheduling utility, refer to the documentation for your 
operating system.

Deleting E-mail Batches

You can delete e-mail batches as you send them (as described in Sending Bulk E-mail). 
You can also do the following to delete e-mail batches:



Sending Bulk Mail

WebLogic Portal Development Guide 13-19

1. Determine the names and contents of the e-mail batches in the data repository by 
entering the following command:

mailmanager.bat appName list (Windows)

mailmanager.sh appName list (Unix)

where appName is the name of the enterprise application that generated the 
e-mail batch. The command prints to standard out. You can use shell commands 
to direct the output to files.

2. Delete a batch by entering the following command:

mailmanager.bat appName delete batch-name (Windows)

mailmanager.bat appName delete batch-name (Unix)



13 Setting Up Campaign Services

13-20 WebLogic Portal Development Guide



Integrating a Portal with Business Transaction Services

WebLogic Portal Development Guide 14-1

14 Setting Up Commerce 
Services

Among the important commerce services available with WebLogic Portal are those 
that pertain to such business transaction services as taxation and payment and the 
product catalog service. Development tasks associated with these services include 
integrating both local and third-party taxation services and integrating local and 
third-party payment services. For the product catalog service, development tasks 
include loading data into the catalog database and creating and enhancing a custom 
catalog service.

This section includes information on the following subjects:

! Integrating a Portal with Business Transaction Services

! Supporting a Product Catalog

Integrating a Portal with Business 
Transaction Services

WebLogic Portal can be integrated with such business transaction services as taxation 
and payment services. Adding these services to a portal extends the functionality of the 
portal by allowing it to leverage external services for use locally. Integrating these 
services is a development function, requiring you to update specific EJBs in the 
enterprise application and URLs specific configuration files. Those modifications are 
described in this document.



14 Setting Up Commerce Services

14-2 WebLogic Portal Development Guide

This section includes information on the following subjects:

! Integrating with a Taxation Service

" If the Third-Party Vendor Hosts the Web Service

" If Your Organization Hosts the Web Service

! Integrating with a Payment Service

" If the Third-Party Vendor Hosts the Web Service

" If Your Organization Hosts the Web Service

" Guidelines for Modifying the Credit Card Web Service EJB

Integrating with a Taxation Service

The Tax Web service installed with WebLogic Portal provides a default framework for 
handling tax calculations on transactions received from the default TaxCalculator 
EJB. The business methods implement a standard workflow that is associated with the 
completion of order taxation. (The Tax Web service is itself a stateless session EJB 
wrapped in code that makes it a Web service.)

Integrating your enterprise applications with the Tax Web service involves modifying 
either the TaxCalculator EJB or the Tax Web service, depending on who will host 
the Web service: your organization or the third-party tax calculation vendor.

Important Notice The default Tax Web service that ships with WebLogic Portal 
automatically applies a 5% tax to an order. This default application of taxes is not 
designed for production use. You must integrate with your third-party vendor�s tax 
service to calculate taxes properly. 

If the Third-Party Vendor Hosts the Web Service

If the third-party vendor hosts the Tax Web service, the vendor will integrate the Web 
service with their program�s API, and modify the TaxWebService EJB inside the Web 
service to translate the SOAP calls�the SOAP calls your enterprise application�s 
TaxCalculator EJB sends it to the Web service�into messages their API can 
understand, and to create proper return SOAP calls to your TaxCalculator EJB.

To connect to the vendor-hosted Web service, use this procedure:



Integrating a Portal with Business Transaction Services

WebLogic Portal Development Guide 14-3

1. If the vendor has modified any of AVS*.class or Tax*.class files in the Web 
service�s tax.jar file, duplicate those modifications in your enterprise 
application. You can find the source code for these classes in:

<BEA_HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
   wlcsApp\src\examples\wlcs\sampleapp\tax\

2. Compile the source files either by running javac from a command line or as 
directed by your Java editor.

3. Make any vendor-required modifications to the TaxCalculator EJB in your 
enterprise application so that it makes appropriate SOAP calls to the vendor�s 
TaxWebService EJB. You can find the source code for the TaxCalculator EJB in:

<BEA_HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
   wlcsApp\src\examples\wlcs\sampleapp\tax\

4. Compile the source file either by running javac from a command line or as 
directed by your Java editor.

5. After you compile your source code, add the class files to the wlcsSamples.jar 
in your enterprise application folder. When you add them to the .jar, maintain 
their relative directory structure.

6. Run the EJB compiler (ejbc) on the wlcsSample.jar file.

7. In the application-config.xml file in the Meta-inf subdirectory of your 
application, locate the <TaxServiceClient> element, and modify the URL in 
the TaxCalculatorWSDL attribute to connect to the TaxWebService WSDL file 
on the vendor�s server.

At startup, WebLogic Server reads the application-config.xml file, so it knows 
where to find the Web service.

If Your Organization Hosts the Web Service

If your organization hosts the Tax Web service, deploy the Web service on a separate 
Java Virtual Machine (JVM) than what your enterprise applications are running on. 
This way, if the Web service goes down and freezes the JVM it is running on, your 
enterprise application�s JVM will continue to run.

To connect to a Tax Web service hosted by your organization, use this procedure:

1. Obtain your third-party vendor�s tax calculation product API.



14 Setting Up Commerce Services

14-4 WebLogic Portal Development Guide

2. Modify the TaxWebService EJB (the Web service�s EJB) so that it translates 
SOAP calls into the language of the third-party product�s API. You can find the 
source code for the TaxWebService EJB in the following directory:

<BEA_HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
   wlcsApp\src\examples\wlcs\sampleapp\tax\

3. Compile the source file either by running javac from a command line or as 
directed by your Java editor.

4. After you have compiled the source code, add the class file to tax.jar in the 
taxWSApp directory. When you add the file to the .jar, maintain its relative 
directory structure.

5. Use the Web service generator (servicegen) on the tax.jar file to build a file 
called tax-webservice.war.

For information on using wsgen, see �Programming WebLogic Server Web 
Services� at http://edocs.bea.com/wls/docs70/webserv/index.html.

6. Make any necessary modifications to the TaxCalculator EJB in your enterprise 
application so that it makes appropriate SOAP calls to the TaxWebService EJB. 
You can find the source code for the TaxCalculator EJB in:

<BEA_HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
   wlcsApp\src\examples\wlcs\sampleapp\tax\

7. Compile the source file either by running javac from a command line or as 
directed by your Java editor.

8. After you compile your source code, add the class file to wlcsSamples.jar in your 
enterprise application�s root folder. When you add the file to the .jar, maintain 
its relative directory structure.

9. Run the EJB compiler (ejbc) on the wlcsSample.jar file.

10. In the application-config.xml file in the META-INF subdirectory of your 
application, locate the <TaxServiceClient> element, and modify the URL in 
the TaxCalculatorWSDL attribute to connect to the TaxWebService WSDL file 
on your Web service�s server.

At startup, WebLogic Server reads the application-config.xml file, so it knows 
where to find the Web service.



Integrating a Portal with Business Transaction Services

WebLogic Portal Development Guide 14-5

Integrating with a Payment Service

The Credit Card Web service that is installed with WebLogic Portal provides a default 
framework for handling authorization, capture, and settlement of credit card 
transactions received from the default CreditCardService EJB. The business methods 
implement a standard workflow that is associated with the completion of credit card 
transactions. The current state of the transaction is maintained and each action is 
logged. (The Credit Card Web service is itself a stateless session EJB wrapped in code 
that makes it a Web service.)

Integrating your enterprise applications with the Payment Web service involves 
modifying either the CreditCardService EJB or the Credit Card Web service, 
depending on who will host the Web service: your organization or the third-party 
payment vendor.

Important Notice The default Payment Web service that ships with WebLogic 
Portal always sends payment information through without any errors, as if it were 
connected to and approved by a third-party payment service. This default processing 
of payment is not designed for production use. You must integrate with your 
third-party vendor�s payment service to process payment correctly. 

If the Third-Party Vendor Hosts the Web Service

If the third-party vendor hosts the Credit Card Web service, the vendor will integrate 
the Web service with their program�s API, and modify the CreditCardWebService 
EJB inside the Web service to translate the SOAP calls�the SOAP calls your 
enterprise application�s CreditCardService EJB sends to the Web service�into 
messages their API can understand, and to create proper return SOAP calls to your 
CreditCardService EJB.

To connect to the vendor-hosted Credit Card Web service, use this procedure:

1. If the vendor has modified any of PS*.class files in the Web service�s 
payment.jar file, duplicate those modifications in your enterprise application. 
You can find the source code for these classes in:

<BEA_HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
   wlcsApp\src\examples\wlcs\sampleapp\payment

2. Compile the source files either by running javac from a command line or as 
directed by your Java editor.



14 Setting Up Commerce Services

14-6 WebLogic Portal Development Guide

3. Make any vendor-required modifications to the CreditCardService EJB in 
your enterprise application so that it makes appropriate SOAP calls to the 
vendor�s CreditCardWebService EJB. You can find the source code for the 
CreditCardService EJB in:

<BEA_HOME>\Weblogic700\samples\portal\wlcsDomain\beaApps\
   wlcsApp\src\examples\wlcs\sampleapp\payment

4. Compile the source file either by running javac from a command line or as 
directed by your Java editor.

5. After you compile your source code, add the class files to the wlcsSamples.jar 
in your enterprise application folder. When you add them to the .jar, maintain 
their relative directory structure.

6. Run the EJB compiler (ejbc) on the wlcsSample.jar file.

7. In the application-config.xml file in the Meta-inf subdirectory of your 
application, locate the <PaymentServiceClient> element, and modify the URL 
in the PaymentWebServiceWSDL attribute to connect to the 
CreditCardWebService WSDL file on the vendor�s server.

At startup, WebLogic Server reads the application-config.xml file, so it knows 
where to find the Web service.

Important Security Information

Since a Web services is SOAP (that is, XML over HTTP), you are passing credit card 
information over the Web in plain text. Hackers listening in can track this information 
for nefarious purposes. BEA strongly recommends that you set up a dedicated line to 
the credit card processing provider and add a Secure Socket Layer (SSL) to the HTTP 
communication taking place. You should also choose a credit card provider that 
encrypts all communications. 

If Your Organization Hosts the Web Service

If your organization hosts the Credit Card Web service, we strongly recommend that 
you deploy the Web service on a separate Java Virtual Machine (JVM) than what your 
enterprise applications are running on. This way, if the Web service goes down and 
freezes the JVM it is running on, your enterprise application�s JVM will continue to 
run.



Integrating a Portal with Business Transaction Services

WebLogic Portal Development Guide 14-7

To connect to a Credit Card Web service hosted by your organization, use this 
procedure:

1. Obtain your third-party vendor�s payment product API.

2. Modify the CreditCardWebService EJB (the Web service EJB) so that it 
translates SOAP calls into the language of the third-party product�s API. You can 
find the source code for the CreditCardWebService EJB in the following 
directory:

<BEA_HOME>\Weblogic700\samples\samples\wlcsDomain\beaApps\
   wlcsApp\src\examples\wlcs\sampleapp\payment

3. Compile the source file either by running javac from a command line or as 
directed by your Java editor.

4. After you have compiled the source code, add the class file to payment.jar in 
the paymentWSApp folder. When you add the file to the .jar, maintain its relative 
directory structure.

5. Use the Web service generator (servicegen) on the payment .jar file to build a 
file called payment-webservice.war.

For information on using servicegen, see �Programming WebLogic Server 
Web Services� at http://edocs.bea.com/wls/docs70/webserv/index.html.

6. Make any necessary modifications to the CreditCardService EJB in your 
enterprise application so that it makes appropriate SOAP calls to the 
CreditCardWebService EJB. You can find the source code for the 
CreditCardService EJB in:

<BEA_HOME>\Weblogic700\samples\samples\wlcsDomain\beaApps\
   wlcsApp\src\examples\wlcs\sampleapp\payment

7. Compile the source file either by running javac from a command line or as 
directed by your Java editor.

8. After you compile your source code, add the class file to wlcsSamples.jar in 
your enterprise application�s root directory. When you add the file to the JAR, 
maintain its relative directory structure.

9. Run the EJB compiler (ejbc) on the wlcsSample.jar file.



14 Setting Up Commerce Services

14-8 WebLogic Portal Development Guide

10. In the application-config.xml file in the META-INF subdirectory of your 
application, locate the <PaymentServiceClient> element, and modify the 
URL in the PaymentWebServiceWSDL attribute to connect to the 
CreditCardWebService WSDL file on the your Web service�s server.

At startup, WebLogic Server reads the application-config.xml file, so it knows where 
to find the Web service.

Guidelines for Modifying the Credit Card Web Service EJB

The Payment service EJB is a stateless session bean that provides services related to 
the authorization, capture, and settlement of credit card transactions. The Credit Card 
Web service EJB serves as an interface behind which integrations with various 
payment solutions can be implemented. The current state of each transaction is 
maintained and each action is journaled. General characteristics of transactions are 
described in the following list:

! Each transaction is initiated with a request to authorize. This authorization 
generally results in the creation of a persistent PaymentTransaction. The state of 
the payment and the key for that PaymentTransaction is returned in a 
TransactionResponse as well as service specific information. A handle for that 
PaymentTransaction can be obtained from the TransactionResponse. 

! In the event that the initial authorization fails due to a failure to connect to the 
payment authorization service, it is possible to retry the authorization using the 
reauthorize method. 

! An authorized transaction can be captured or settled depending on how the 
service is configured. 

By law you can only capture a transaction if the goods have been shipped. For 
example, if you buy a book online from a vendor and that book will take two 
days to ship, the vendor can only authorize the transaction but not capture it. 
Two days later, when the product ships, the vendor can capture the transaction. 
However, if you are buying software online and downloading it immediately, the 
vendor can authorize and capture the transaction then and there, since the order 
and the actual shipment download seconds apart.

! An entire transaction can be completed in a single AuthorizeAndCapture. 

! Sites that experience a high volume of traffic should run the authorize or capture 
process offline. This process usually takes 3-8 seconds, and if you have 
thousands of users, this could slow down your site. If a site does run the 



Supporting a Product Catalog

WebLogic Portal Development Guide 14-9

authorize or capture process offline, it should use separate machines for this 
process to ensure processing integrity.

Supporting a Product Catalog

This section describes the development tasks associated with supporting a product 
catalog. Some of the tasks discussed below will apply to product catalogs built with 
resources supplied by BEA (see �Creating and Administering a Catalog� in the 
Administration Guide at 
http://edocs.bea.com/wlp/docs70/../admin/commerce.htm#1167188). Others apply to 
a custom catalog service that you can build by implementing the appropriate Stateless 
Session EJB service API. In addition, you will see how to display your catalog by using 
JSPs, and integrate a catalog service with a catalog cache. 

This section includes information on the following subjects:

! Loading Your Product Data Into the Product Catalog Database Schema

! Showing a Catalog in a JSP

! Hooking Up a Catalog to a Shopping Cart

! Integrating Services With the Catalog Cache

Loading Your Product Data Into the Product Catalog 
Database Schema

The most important development tasks is to get information about your products into 
a form that WebLogic can understand. Use the DBLoader program to do this. The 
DBLoader lets you load, all at once, any data into any table in a database.

Creating your product catalog by using the DBLoader requires these steps:

! Step 1: Prepare to Use DBLoader

! Step 2: Edit the databaseload.properties File



14 Setting Up Commerce Services

14-10 WebLogic Portal Development Guide

! Step 3: Load Data by Running the DBLoader Program

! Step 4: Troubleshoot Using the DBLoader Log Files

Step 1: Prepare to Use DBLoader

Before you can add your product information to the database, consider the following 
database issues, and prepare your input files.

! Review Important Database Considerations

! Prepare Product Information Input Files to Load Into the Product Catalog 
Schema

Review Important Database Considerations

Some important database considerations that you should keep in mind while using the 
DBLoader program are:

Consider Referential Integrity and Constraints The schema for the Product 
Catalog enforces data and referential integrity between tables with the use of 
constraints. For example, the primary key constraint on WLCS_PRODUCT and 
WLCS_CATEGORY, or the foreign key constraint on WLCS_PRODUCT_CATEGORY. 

Primary keys and unique indexes prevent the possibility of placing duplicate entries in 
the table. Foreign key constraints ensure referential integrity by making certain that the 
parent key already exists before allowing the child record to be written to the database. 

Note: For every WLCS_PRODUCT and WLCS_CATEGORY table entry, a corresponding 
entry in the CATALOG_ENTITY table must also be made. 

Consider Strings in Java All Strings in Java are represented as a series of Unicode 
2.0 characters. Unicode 2.0 is a 16-bit character encoding that supports the world�s 
major languages. Therefore, when reading text into and writing text out of the JVM, 
an encoding scheme must be used to convert the �native� encoding used by the 
operating system to or from Unicode 2.0. Data in text files is automatically converted 
to Unicode 2.0 when its encoding matches the default file encoding of the Java Virtual 
Machine (and that of the operating system). 



Supporting a Product Catalog

WebLogic Portal Development Guide 14-11

Prepare Product Information Input Files to Load Into the Product Catalog Schema

Follow the rules in this section to create input files (text files) containing your product 
information that you want to use in your Web site. Create a separate file for every 
database table.

Verify Input File�s File Structure The input data file is, by default, a 
pipe-separated value text file. The input file has the following structure:

! First row: header containing the table name

! Second row: column names for that table

! Third row: data types for the columns listed on the second row

! Fourth through Nth row: input data

Table 14-1 shows the input file structure.

Listing 14-1 shows an example of a simple input file.

Table 14-1  Input File Structure

Row Content

First Row The header of the file must identify:
! The number of records to be loaded. DBLoader will use this 

number as a reference point only. It will process all the records 
in the file regardless of this indicator.

! The name of the table to be loaded with data in the database.

Second Row The second row identifies the table column names into which you 
are loading data. You must include the primary key column or 
columns in the input file. Preface each primary key column name 
with an asterisk (*). Apart from primary keys in tables, all other 
columns are defaulted as NULL. Thus, you may omit column names 
where NULL is an acceptable value, and specify only those with 
non-NULL values.

Third Row The third row specifies the data type of each column being loaded. 

Fourth Through N 
Rows 

All subsequent lines in the input data file contain the data values. 



14 Setting Up Commerce Services

14-12 WebLogic Portal Development Guide

Listing 14-1   Simple Input File

3|WLCS_PRODUCT
*SKU|NAME|IN_STOCK|EST_SHIP_TIME|SPECIAL_NOTES|CREATION_DATE
   VARCHAR|VARCHAR|VARCHAR|VARCHAR|VARCHAR|DATE
P123|CoolKid|N|Out of stock until further notice|Special order
   only|02-Oct-2000
P124|FastKid|Y|One week|No special order|02-Oct-2000
P125|RadSneakers|Y||regular stock|02-Oct-2000

Note: You can also view a sample input file at the following location: 
<PORTAL_HOME>\db\data\sample\wlcs\hardware\PRODUCT.dat

Empty input strings Empty input strings from the data file are inserted into 
database as empty strings. You must account for each unspecified column in the input 
record by including the delimiter character (by default, a comma) in the correct 
position (matching the position of the columns you listed in line 2, the column names). 
For example:

P125|RadSneakers|Y||regular stock|02-Oct-2000

Unspecified values for non-primary-key fields  In the previous example a 
value for the fourth identified column (EST_SHIP_TIME) was not specified.  This 
condition is acceptable because this column is not a primary key for the database 
record. The column�s value is stored as an empty string.

Note: If you intend to store a null value in the database for a non-primary-key 
column, you should enter NULL in the correct position for the column in that 
record.  Do not enclose NULL in quotes as that will cause the column to be 
stored as a string.

Step 2: Edit the databaseload.properties File

The DBLoader uses the information in the databaseload.properties file to 
determine information about the data and loading process, including what driver, 
database, or login to use. Open the databaseload.properties file in the 
<PORTAL_HOME>\db directory. Uncomment the lines for the database you want to use, 
and enter the correct settings. Be sure to comment out the Pointbase lines if you are 
using another database.



Supporting a Product Catalog

WebLogic Portal Development Guide 14-13

Any comment lines in the databaseload.properties file are prefixed with the # 
character. Both comment lines and blank lines are allowed.

Table 14-2  databaseload.properties File Settings and Possible Values

Property Name Default Value Description

jdbcdriver See databaseload.properties. Specify which JDBC driver to use to connect to 
your database.  The default driver is the 
Pointbase JDBC driver that ships with 
WebLogic. 

connection See databaseload.properties. Database connection string required for the 
driver to connect to your database.

dblogin See databaseload.properties. The database username. The login name must 
have read/write privileges on the affected 
tables.

dbpassword See databaseload.properties. The database user password. 

delimiter | You can change the recognized delimiter 
character that is used to separate values in the 
input data file. Choose another character, such 
as the circumflex (^) as a delimiter.

dateformat dateformat=mm-YY-dd Identifies the format that will be used for date 
columns in the input data. Date format is locale 
specific. Other formats are commented out in 
the databaseload.properties file.

timestamptable WLCS_CATEGORY,
WLCS_PRODUCT

Identifies the database tables to which 
DBLoader will track updates (for these two 
tables). The column name is fixed in the schema 
provided by the commerce services. However, 
if you are using DBLoader for other tables (not 
WLCS tables), you can specify other column 
names of your own.



14 Setting Up Commerce Services

14-14 WebLogic Portal Development Guide

Step 3: Load Data by Running the DBLoader Program

Now that you have created the input files and set up the databaseload.properties 
file correctly, run the databaseload script to start the DBLoader program. 

! Review databaseload Basics

! Non-Windows Environment � Prepare to Run the Script

! Run the databaseload Script

timestampfield MODIFIED_DATE Specifies the column in the WLCS_CATEGORY 
and WLCS_PRODUCT tables that identifies the 
last time this record in the table was modified. 
The value of the column specified is used by 
DBLoader to learn when the most recent update 
was made in each record in the tables identified 
in the timestamptable property. The 
column name is fixed in the schema provided by 
the Commerce services. However, if you are 
using DBLoader for other tables (not WLCS 
tables), you can specify other column names of 
your own.

commitTxn 50 Sets how many records are loaded before 
committing the updates in the database. If the 
value is less than or equal to one, DBLoader 
will commit after loading each record.

encoding Not specified in the 
databaseload.properties file; 
therefore, the default is the Java 2 
SDK�s platform default.

Sets the multibyte character encoding type. The 
property value supplied can be UCS2 or UTF8. 
When writing data into and reading data out of 
the database, Java will transparently convert 
from the native character encoding used by your 
systems and Unicode 2.0.  There is nothing 
special that you must do.
However, if you need to write/read data to/from 
the database that is encoded differently than 
your system�s native encoding, you will have to 
explicitly perform the translation.  

Property Name Default Value Description



Supporting a Product Catalog

WebLogic Portal Development Guide 14-15

Review databaseload Basics

The script is located at:

! <PORTAL_HOME>\db (Windows)

! <PORTAL_HOME>/db (UNIX)

Note: PORTAL_HOME is the directory where you installed WebLogic Portal.

The databaseload script performs the tasks:

! Configures your environment for the duration of execution of this program

! Specifies where to find the data input file

! Launches the DBLoader program

Non-Windows Environment – Prepare to Run the Script

In a non-Windows environment, before you can run the databaseload script, make 
sure that the set-environment script specifies the same database as the 
databaseload.properties file. The set-environment script resides in the same 
directory as the databaseload script. For example, if the 
databaseload.properties file uses 
‘jdbc:pointbase:server://localhost:9092/wlportal’ connections, then 
set-environment script should have SET DATABASE=POINTBASE.

As mentioned earlier, DBLoader runs independently of the WebLogic Portal server. 
Therefore you do not need to stop the server if you are planning to run the loader. 

If you are running the WebLogic Portal server with Oracle, then the drawback might 
be a slower performance for the time the data is being loaded into the database. 

Note: You might want to back up the particular tables that you are about to update 
before running DBLoader. The DBLoader program does not keep history 
records in the database.

Run the databaseload Script

The command to run the script has the following format:

>> databaseload { -insert | -update | -delete } input-file.dat



14 Setting Up Commerce Services

14-16 WebLogic Portal Development Guide

For example:

>> databaseload -update product_categories.dat

In the previous example, the DBLoader program will update rows in the product 
catalog database that match the primary keys specified in the category.dat input file.

Selecting the type of operation You must select one of the three possible 
operations: -insert, -update, or -delete. 

UNIX and privileges On UNIX systems, the databaseload.sh file needs to have 
its default protections set to include execute privilege. A typical way to do this is with 
the command:

$ chmod +x databaseload.sh

Loading data into several tables To insert, update, or delete data in several 
tables, run the databaseload script separately for each table, providing the 
corresponding input filename as a parameter. The order of tables being updated should 
use the same data integrity rules as all other SQL statements. For example, insert rows 
into the parent table with the primary key constraint before inserting rows into the child 
table with the foreign key constraint.

Step 4: Troubleshoot Using the DBLoader Log Files

You can determine errors and other issues that occurred during any particular 
DBLoader operation by using the two audit trail log files:

! dbloader.log 

! dbloader.err

This section contains the following information:

! Determine When to Review the Files

! Review the dbloader.log File

! Review the dbloader.err File

Determine When to Review the Files

You must check the files immediately after each operation; the files are overwritten by 
each DBLoader operation. Both files are created in the same directory where you run 
the databaseload script.



Supporting a Product Catalog

WebLogic Portal Development Guide 14-17

Review the dbloader.log File

The dbloader.log file contains the following information:

! The input filename, and the action taken: insert, update, or delete.

! The number of records processed during the load operation.

! The start and end time of the database load processing.

Review the dbloader.err File

If any errors occurred during the attempted database load operation, the 
dbloader.err file captures the following information:

! The input filename, and the action taken: insert, update, or delete.

! The timestamp when the failure or exception occurred on the record.

! The index of the failed data record in the input file.

! The reason for the failure or exception and actual the input record�s values.

The DBLoader program checks the number of columns affected by the load (as 
specified in the second line of the input data file) against the number of input columns 
in each record. Because the column delimiter is a comma (by default), this character is 
not allowed in a string input column. If extra commas are supplied inadvertently, such 
as punctuation in a LONG_DESC (Long Description) column, an error will result and is 
noted in the dbloader.err file. To avoid this type of error, carefully check the 
number of commas you are using to separate the input data column values. Or select a 
different delimiter character and specify it in the databaseload.properties file. 
For more information, see �Step 2: Edit the databaseload.properties File.�

All errors and exceptions are displayed in the console where the DBLoader program is 
running. Records with errors in them will be skipped, and the processing continues 
until the end of the file. (The program does not roll back a transaction if an error has 
occurred.)



14 Setting Up Commerce Services

14-18 WebLogic Portal Development Guide

Showing a Catalog in a JSP

The JavaServer Page (JSP) templates and JSP tags included in the Commerce services 
allow you to easily create the presentation part of the Product Catalog. The templates 
provide the mechanism for your visitors to view a catalog�s categories and product 
items; the JSP tags in the templates implement that functionality. 

JSP tag libraries allow you to easily retrieve the attributes of items and categories in 
the Product Catalog. You can then format these attributes using HTML tags. Any 
HTML editor can be used to create custom layouts. You can also include custom Java 
code within the JSPs to display categories and items.

To use the Catalog JSP tags, you need to import the cat.tld tag library into your JSP 
file by including the following code in the JSP:

<%@ taglib uri=”cat.tld” prefix=”catalog” %>

Three basic tags are used in the JSP templates that compose the default product catalog 
supplied by BEA. These tags are:

! <catalog:getProperty>

Retrieves a property for display from a specified ProductItem or Category. Either 
explicit or implicit properties may be retrieved.

! <catalog:iterateViewIterator>

Iterates a specified ViewIterator. The ViewIterator may be iterated either by 
View (one View per iteration) or by contained Catalog item (one ProductItem or 
Category per iteration).

! <catalog:iterateThroughView>

Iterates a specified ViewIterator through the ProductItems or Categories 
contained within a specified View.

You can add additional tags as necessary to meet your business needs.

Using the <catalog:getProperty> Tag

Use the <catalog:getProperty> tag (Table 14-3) to retrieve a property for display 
from either a ProductItem or Category. The property can either be an explicit 
property (a property that can be retrieved using a get method on the Catalog item) or 
an implicit property (a property available through the ConfigurableEntity 



Supporting a Product Catalog

WebLogic Portal Development Guide 14-19

getProperty methods on the Catalog item). The tag first checks to see if the specified 
property can be retrieved as an explicit property. If it cannot, the specified property is 
retrieved as an implicit property.

Table 14-3  <catalog:getProperty> Tag Attributes

Tag Attribute Required Type Description R/C

getterArgument No String Denotes a reference to an object supplied as 
an argument to an explicit property getter 
method. 
May also be used to obtain implicit or 
custom properties that are defined using the 
property set framework, in which case the 
getterArgument would be the scope 
name for the property set (see second 
example below).  
The object must be presented in the form 
<%= getterArgumentReference %> 
and must be a run-time expression.

R

id No String id=”newInstance”

If the id attribute is supplied, the value of 
the retrieved property will be available in the 
variable name to which id is assigned.  
Otherwise, the value of the property is 
inlined.

C

object Yes Catalog item Denotes a reference to a ProductItem or 
Category object that must be presented in 
the form <%= objectReference %>.

R

propertyName Yes String propertyName=”propertyName”

Name of the property to retrieve. If the 
property is explicit, it may be one of the 
values shown in Table 14-4.

C

returnType No String returnType=”returnType”

If the id attribute is supplied, declares the 
type of the variable specified by the id 
attribute.

C



14 Setting Up Commerce Services

14-20 WebLogic Portal Development Guide

Example 1: Retrieving the Detail JSP Information From an Item 
Listing 14-2 retrieves the detail JSP information from an existing ProductItem:

Listing 14-2   Retrieving the Detail JSP Information From an Item

<%@ taglib uri=”cat.tld” prefix=”catalog” %>

<catalog:getProperty
object="<%= item %>"
   propertyName="Jsp"
   getterArgument=
   "<%= new Integer(ProductItem.DETAILED_DISPLAY_JSP_INDEX) %>"
   id="detailJspInfo"
returnType="com.beasys.commerce.ebusiness.catalog.JspInfo"
/>

Example 2: Using the getterArgument Attribute Listing 14-3 shows how to 
use the getterArgument attribute to obtain an implicit or custom property for a 
property set/schema with the following characteristics: 

! Name: MyCatalog

! PropertyName: color 

Table 14-4  propertyName Values 

Property Name Catalog Item Type

“contributor | coverage | creationDate | 
creator | description | image | key | 
language | modifiedDate | name | 
publisher | relation | rights | source”

Catalog Item 
(common properties)

“jsp” Category

“availability | currentPrice | format | 
jsp | msrp | shippingCode | taxCode | 
type | visible”

ProductItem



Supporting a Product Catalog

WebLogic Portal Development Guide 14-21

Note: Because the getterArgument must be a run-time expression, we assign 
MyCatalog to a String variable and use the variable as the value to the 
getterArgument.

Listing 14-3   Using the getterArgument Attribute

<%@ taglib uri=”cat.tld” prefix=”catalog” %>

<% 
String myPropertySetName = "MyCatalog"; 
ProductItem myProductItem = .....; // reference to a ProductItem
%>
<catalog:getProperty
   object="<%=myProductItem%>
   propertyName="color"
   getterArgument="<%=myPropertySetName%>"
/>

Using the <catalog:iterateViewIterator> Tag

Use the <catalog:iterateViewIterator> tag (Table 14-5) to iterate through a 
ViewIterator. A ViewIterator is an iterator over a potentially large collection of 
remote data that is broken up into a series of fixed sized Views. View Iterators are 
returned from all Catalog service API methods that may potentially return a large set 
of ProductItems or Categories. This tag allows you to iterate the ViewIterator 
one item (ProductItem or Category) at a time (the default behavior) or by an entire 
View (fixed size set of ProductItems or Categories) at a time. It is important to note 
that this tag does not reset the state of the ViewIterator upon completion.

Table 14-5  <catalog:iterateViewIterator> Tag Attributes

Tag Attribute Required Type Description R/C

id Yes String id=”newInstance”

The value of the current iterated object will 
be available in the variable name to which 
the id is assigned.

C

iterator Yes ViewIterator Denotes a reference to a ViewIterator 
object. Must be presented in the form 
<%= iteratorReference %>.

R



14 Setting Up Commerce Services

14-22 WebLogic Portal Development Guide

Example 1: Displaying Keys of Categories in a ViewIterator Listing 14-4 
displays the keys of all categories in a ViewIterator:

Listing 14-4   Displaying Keys of Categories in a ViewIterator

<%@ taglib uri=”cat.tld” prefix=”catalog” %>

<catalog:iterateViewIterator
   iterator="<%= myIterator %>"
   id="category"
   returnType="com.beasys.commerce.ebusiness.catalog.Category">
   <%= category.getKey().toString() %>
</catalog:iterateViewIterator>

Example 2: Displaying all Views in a ViewIterator Listing 14-5 displays all the 
Views contained within a ViewIterator:

Listing 14-5   Displaying all Views in a ViewIterator

<%@ taglib uri=”cat.tld” prefix=”catalog” %>

iterateByView No String iterateByView=”{true|false}”

Specifies whether to iterate the 
ViewIterator by View or by Catalog 
item.  If not specified, the ViewIterator 
will be iterated by Catalog item. 

C

returnType No String returnType=”returnType”

Declares the type of the variable specified by 
the id attribute. Defaults to 
java.lang.Object. 
If iterateByView is true, the type is 
assumed to be 
com.beasys.commerce.ebusiness.

catalog.View.

C

Table 14-5  <catalog:iterateViewIterator> Tag Attributes (Continued)

Tag Attribute Required Type Description R/C



Supporting a Product Catalog

WebLogic Portal Development Guide 14-23

<catalog:iterateViewIterator 
   iterator="<%= myIterator %>" 
   id="view"
   returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator"
   iterateByView=”true”>
   <%= view.toString() %>
</catalog:iterateViewIterator>

Using the <catalog:iterateThroughView> Tag

The <catalog:iterateThroughView> tag (Table 14-6) iterates through a View of a 
specified ViewIterator. The tag will iterate the View one Catalog item at a time until 
the end of the view is reached. If you do not specify a specific view (by index) through 
which to iterate, the current View of the ViewIterator is used. It is important to note 
that this tag does not reset the state of the ViewIterator upon completion.

Table 14-6  <catalog:iterateThroughView> Tag Attributes

Tag Attribute Required Type Description R/C

id Yes String id=”newInstance”

The value of the current iterated object will 
be available in the variable name to which 
the id is assigned.

C

iterator Yes ViewIterator Denotes a reference to a ViewIterator 
object that must be presented in the form
<%= iteratorReference %>

R

 returnType No String returnType=”returnType”

Declares the type of the variable specified by 
the id attribute.  Defaults to 
java.lang.Object.

C

viewIndex No Integer Specifies the index of the View (relative to 
the start of the ViewIterator) through 
which to iterate.  The referenced object must 
be presented in the form <%= 
viewIndexIntegerReference %>.

R



14 Setting Up Commerce Services

14-24 WebLogic Portal Development Guide

Example 1: Displaying Keys of All ProductItems in Current View of 
ViewIterator Listing 14-6 displays the keys of all the ProductItems contained in 
the current View of a specified ViewIterator:

Listing 14-6   Displaying Keys of All ProductItems in Current View of 
ViewIterator

<%@ taglib uri=”cat.tld” prefix=”catalog” %>

<catalog:iterateThroughView
   iterator="<%= myIterator %>"
   id="item"
   returnType="com.beasys.commerce.ebusiness.catalog.ProductItem">
<%= item.getKey().toString() %>
</catalog:iterateThroughView>

Example 2: Displaying Keys of All ProductItems in First View of 
ViewIterator Listing 14-7 displays the keys of all the ProductItems contained in 
the first View of a specified ViewIterator:

Listing 14-7   Displaying Keys of All ProductItems in First View of ViewIterator

<%@ taglib uri=”cat.tld” prefix=”catalog” %>

<catalog:iterateThroughView
   iterator="<%= myIterator %>"
   id="item"
   returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
   viewIndex=”new Integer(0)”>
   <%= item.getKey().toString() %>
</catalog:iterateThroughView>

Hooking Up a Catalog to a Shopping Cart

To hook up a catalog to a shopping cart, you need to implement the 
shoppingcart.jsp template in the catalog. This template contains code that manages 
a shopping cart service, including implementations of the necessary input processors 
and pipeline components used to manage much of the business logic and back-end 



Supporting a Product Catalog

WebLogic Portal Development Guide 14-25

tasks required to successfully execute the shopping cart service. You can either 
implement this template as BEA provides it or you can tailor it to meet your specific 
needs.

Implementing shoppingcart.jsp

To implement shopppingcart.jsp, first, ensure that this JSP is stored in the 
appropraite portlets folder for the application. Then, do one of the following:

! Directly link shoppingcart.jsp to another JSP by providing a URL from the 
referencing page. Depending upon the functionality of the referencing page, you 
might need to add a View Cart button or icon to launch the forwarding event.

OR

! Include in the referencing page code a Webflow that calls shoppingcart.jsp. 
Depending upon the functionality of the referencing page, you might need to add 
a View Cart button or icon to launch the Webflow.

How shoppingcart.jsp Works

Customers can arrive at shoppingcart.jsp template from any product catalog page 
by clicking View Cart (or its equivalent) on that page. The shoppingcart.jsp 
template displays the items currently in a customer�s shopping cart. For each item the 
customer added to their cart (that is still actively part of the current purchase), the 
shoppingcart.jsp template displays the quantity, the item name, the list price, the 
actual price, a savings amount, and a subtotal. Following this information, a total price 
for the order is displayed.

The item quantity is shown in an editable field, allowing customers to change the 
quantity of the item simply by typing a new quantity and clicking Update. For your 
customers� convenience, the item name is hyperlinked back to its description in the 
product catalog. For each item in the shopping cart, there is also a Delete button and a 
Buy Later button. Clicking Delete removes the item from the shopping cart, while 
clicking Buy Later causes the item to be moved from the Shopping Cart to the Saved 
Items list. For each item shown in the Saved Items list, the hyperlinked item name and 
a brief description are displayed. Additionally, Delete and Add to Cart in this section 
allows your customers to remove the item altogether or to move it back to their active 
Shopping Cart.



14 Setting Up Commerce Services

14-26 WebLogic Portal Development Guide

If customers click a link to an individual product item to review detailed information 
about that product item, the next page is the appropriate product catalog page. If they 
click on Update, Empty Cart, Delete, or Save for Later, they are returned to the 
shopping cart page (shoppingcart.jsp) after the appropriate input processor or 
pipeline has been executed to record the modification.

If the customer is satisfied with the contents of their shopping cart as shown on this 
page, the customer can initiate the checkout process by clicking Check Out. If this is 
the case, the next page is the shipping information page (shipping.jsp). 

Notes: If the customer has not yet logged into the site and clicks Check Out, the 
customer will be prompted to log in at the login.jsp template (prior to 
loading the shipping.jsp template). 

To be able to use the features of the Saved Items list, a customer must have 
first logged in. 

If there are no items in a customer�s shopping cart, the Empty Cart, Update, 
and Check Out buttons will not be available.

If the customer is satisfied with the contents of their shopping cart, the customer can 
click the Check Out button to begin the checkout process. 

Note: If the customer is not logged into your e-commerce site, they will be prompted 
to do so before continuing to the next part of the checkout process.

If your customer wants to start over, the customer can click the Empty Cart button to 
empty the entire contents of the shopping cart (both active and saved). If your customer 
wants to continue shopping, the customer can click the Continue Shopping button to 
return to the product catalog.

Description

Figure 14-1 and Figure 14-2 show annotated versions of the shoppingcart.jsp 
template.  Figure 14-1 shows the page for a customer who has not logged in:



Supporting a Product Catalog

WebLogic Portal Development Guide 14-27

Figure 14-1   shoppingcart.jsp-Formatted Web Page for a Visitor Who Has Not 
Logged In

Figure 14-2 shows the page for a customer who has logged in: 



14 Setting Up Commerce Services

14-28 WebLogic Portal Development Guide

Figure 14-2   shoppingcart.jsp-Formatted Web Page for a Visitor Who Has 
Logged In

The main content area of the template contains both dynamically generated data and 
static content. The dynamic content on shoppingcart.jsp is generated using 
WebLogic Server and pipeline JSP tags, which obtain and display the contents for both 
the active shopping cart and Saved Item list. For the shoppingcart.jsp template, the 
form posts include Empty Cart, Check Out, Remove, Update, and Continue.

The following changes occur after the user has logged in:

1. The Login link changes to Logout.

2. A welcome section appears that shows the customer�s name, a link to view that 
customer�s profile, and a link to logout.



Supporting a Product Catalog

WebLogic Portal Development Guide 14-29

3. A view history section appears that shows the customer�s order and payment 
history.

Key components of the template are shown in Table 14-7.

Location in Default Webflow

Customers can arrive at shoppingcart.jsp template from any product catalog page 
by clicking the View Cart button. If the customer is satisfied with the contents of their 
shopping cart as shown on this page, the customer can initiate the checkout process by 
clicking the Check Out button. If this is the case, the next page is the shipping 
information page (shipping.jsp). 

Table 14-7  Template Components

Type of Component Components

Included templates ! admin.inc

! stylesheet.inc

! header.inc

! leftside.inc

! footer.inc

Tag libraries <%@ taglib uri="weblogic.tld" prefix="wl" %>
<%@ taglib uri="webflow.tld" prefix="webflow" %>
<%@ taglib uri="i18n.tld" prefix="i18n" %> 

Imported Java packages java.util.*

java.text.*

com.beasys.commerce.axiom.units.*

com.beasys.commerce.ebusiness.shoppingcart.*

com.bea.commerce.ebusiness.price.service.DiscountPresentati
on

com.bea.commerce.ebusiness.price.quote.OrderAdjustment

com.bea.commerce.ebusiness.price.quote.AdjustmentDetail

com.beasys.commerce.webflow.HttpRequestConstants

com.beasys.commerce.webflow.PipelineSessionConstants

com.bea.p13n.appflow.webflow.WebflowJSPHelper



14 Setting Up Commerce Services

14-30 WebLogic Portal Development Guide

Note: If the customer has not yet logged into the site and clicks Check Out, the 
customer will be prompted to log in at the login.jsp template (prior to 
loading the shipping.jsp template). 

If customers click a link to an individual product item to review detailed information 
about that product item, the next page is the appropriate product catalog page. If they 
click on the Update, Empty Cart, Delete, or Save for Later buttons, they are returned 
to the shopping cart page (shoppingcart.jsp) after the appropriate input processor 
or pipeline has been executed to record the modification.

This JSP is in the sampleapp_order namespace.

Events

Every time a customer clicks a button to manage the contents of their shopping cart, it 
is considered an event. Each event triggers a particular response in the default 
Webflow that allows the customer to continue. While this response can be to load 
another JSP, it is usually the case that an input processor and/or pipeline is invoked 
first. Table 14-8 provides information about these events and the business logic they 
invoke.

Table 14-8  shoppingcart.jsp Events

Event Webflow Response(s)

-- InitShoppingCartIP

-- RefreshSavedList

button.checkout InitShippingMethodListIP

button.deleteItemFromShoppingCart DeleteProductItemFromShoppingCartIP

button.deleteItemFromSavedList UpdateSkuIP 
DeleteProductItemFromSavedList

button.emptyShoppingCart EmptyShoppingCartIP

button.moveItemToSavedList UpdateSkuIP 

MoveProductItemToSavedList

button.moveItemToShoppingCart UpdateSkuIP 
MoveProductItemToShoppingCart



Supporting a Product Catalog

WebLogic Portal Development Guide 14-31

Table 14-9 briefly describes each of the pipelines from Table 14-8.

Notes: Although the InitShoppingCartIP and RefreshSavedList pipeline are 
associated with the shoppingcart.jsp template, they are not triggered by 
events on the page. Rather, both are executed before the shoppingcart.jsp 
is viewed. The InitShoppingCartIP input processor creates an empty 
shopping cart in preparation for the customer�s shopping experience, while the 
RefreshSavedList pipeline retrieves a customer�s list of previously saved 
shopping cart items..

How shoppingcart.jsp Displays Data

One purpose of the shoppingcart.jsp template is to display the data specific to a 
customer�s shopping experience for their review. This is accomplished on 
shoppingcart.jsp using a combination of WebLogic Server and pipeline JSP tags 
and accessor method and /attributes. 

First, the getProperty JSP tag retrieves the SHOPPING_CART and 
SAVED_SHOPPING_CART attributes from the pipeline session. Table 14-10 provides 
more detailed information on these attributes. 

button.updateShoppingCartQuantities UpdateShoppingCartQuantitiesIP

Table 14-8  shoppingcart.jsp Events

Event Webflow Response(s)

Table 14-9  Shopping Cart Pipelines

Pipeline Description

RefreshSavedList Contains RefreshSavedListPC and is not transactional.

DeleteProductItemFromSavedList Contains DeleteProductItemFromSavedListPC and 
PriceShoppingCartPC, and is transactional.

MoveProductItemToSavedList Contains MoveProductItemToSavedListPC and 
PriceShoppingCartPC, and is transactional.

MoveProductItemToShoppingCart Contains MoveProductItemToShoppingCartPC and 
PriceShoppingCartPC, and is transactional.



14 Setting Up Commerce Services

14-32 WebLogic Portal Development Guide

Listing 14-8 illustrates how these attributes are retrieved from the pipeline session 
using the getProperty JSP tag.

Listing 14-8   Retrieving Shopping Cart Attributes

<webflow:getProperty id="shoppingCart"
   property="<%=PipelineSessionConstants.SHOPPING_CART%>"
      
type="com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart"
   scope="session" namespace="sampleapp_main" />

<webflow:getProperty id="savedShoppingCart"
   property="<%=PipelineSessionConstants.SAVED_SHOPPING_CART%>"
   type="com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart"
   scope="session" namespace="sampleapp_main" />

The data stored within the pipeline session attributes is accessed by using accessor 
methods/attributes within Java scriptlets. Table 14-11 provides more detailed 
information about these methods for ShoppingCart (also savedShoppingCart), 
while Table 14-12 provides this information for ShoppingCartLine. 

Table 14-10  shoppingcart.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants
.SAVED_SHOPPING_CART

com.beasys.commerce.ebusiness
.shoppingcart.ShoppingCart

The saved shopping cart 
(source of the saved items).

PipelineSessionConstants
.SHOPPING_CART

com.beasys.commerce.ebusiness
.shoppingcart.ShoppingCart

The currently active 
shopping cart.

Table 14-11  ShoppingCart Accessor Methods/Attributes

Method/Attribute Description

getShoppingCartLineCollection() A collection of the individual lines in the shopping cart (that is, 
ShoppingCartLine).



Supporting a Product Catalog

WebLogic Portal Development Guide 14-33

Because the getShoppingCartLineCollection() method allows you to retrieve a 
collection of the individual lines within a shopping cart, there are also accessor method 
and attributes you can use to break apart the information contained within each line. 
Table 14-12 provides information about these methods and attributes. 

Listing 14-9 provides an example of how these accessor methods/attributes are used 
within Java scriptlets.

Listing 14-9   Using Accessor Methods Within shoppingcart.jsp Java Scriptlets 

<<td align="right" valign="top" bgcolor="#CCCCFF"><div class="tabletext" nowrap>
<%-- The i18n tag allows the "currency.properties" file to substitute a display    
--%>
<%-- currency value (e.g "$") for the returned 3 letter ISO4217 code (e.g. "USD"). 
--%>

         <i18n:getMessage bundleName="/commerce/currency" messageName="<%=

getTotal In this instance, the total tax specified by the 
OrderConstants.LINE_TAX parameter.

Note: The getTotal() method also allows you to 
combine different total types. For more 
information, see the Javadoc.

Table 14-11  ShoppingCart Accessor Methods/Attributes (Continued)

Method/Attribute Description

Table 14-12  ShoppingCartLine Accessor Methods/Attributes

Method/Attribute Description

getQuantity() The quantity of the item.

getProductItem() The product item in the shopping cart line.

getUnitPrice() The current price for the item at the time it was added to 
the shopping cart. May be different from MSRP.

getBaseTotal(int 
totalType)

The total before discounts.



14 Setting Up Commerce Services

14-34 WebLogic Portal Development Guide

            shoppingCartLine.getProductItem().getMsrp().getCurrency() %>"/>
         <%= WebflowJSPHelper.priceFormat(shoppingCartLine.getProductItem().
            getMsrp().getValue() ) %></div>

      </td>

      <td align="right" valign="top"><div class="tabletext" nowrap>

          <i18n:getMessage bundleName="/commerce/currency" messageName="<%=
            shoppingCartLine.getUnitPrice().getCurrency() %>"/>

         <%= WebflowJSPHelper.priceFormat( shoppingCartLine.getUnitPrice().
            getValue() ) %></div>

      </td>
      <td align="right" valign="top" bgcolor="#CCCCFF"><div class="tabletext"
         nowrap>

         <i18n:getMessage bundleName="/commerce/currency" messageName="<%=
            shoppingCartLine.getBaseSavings().getCurrency() %>"/>

         <%= WebflowJSPHelper.priceFormat( shoppingCartLine.getBaseSavings().
            getValue() ) %></div>

      </td>

      <td align="right" valign="top"><div class="tabletext" nowrap>
         
         <i18n:getMessage bundleName="/commerce/currency" messageName="<%=
            shoppingCartLine.getBaseTotal().getCurrency() %>"/>

         <%= WebflowJSPHelper.priceFormat( shoppingCartLine.getBaseTotal().
            getValue() ) %>
      
         </div>
      </td>

shoppingcart.jsp Form Fields

Another purpose of the shoppingcart.jsp template is to allow customers to make 
changes to their shopping cart using various HTML form fields. These form fields are 
also used to pass needed information to the Webflow.

The form fields used in the shoppingcart.jsp template, and a description for each 
of them, are listed in Table 14-13.



Supporting a Product Catalog

WebLogic Portal Development Guide 14-35

Note: Parameters that are literals in the JSP code are shown in quotes, while 
non-literals will require scriptlet syntax (such as 
<%= HttpRequestConstants.CATALOG_ITEM_SKU %>) for use in the JSP.

shoppingcart.jsp Input Processorss

shoppingcart.jsp uses Webflow components called input processors and pipelines 
to execute much of its necessary business logic. This section describes the key input 
processors you can use. These input processors represent Java classes invoked to carry 
out more complex shopping cart service tasks when invoked by the Webflow 
mechanism. [what .wf file(s) are we referring to here with these 
components?]

This section includes information on these input processors:

! DeleteProductItemFromShoppingCartIP

! EmptyShoppingCartIP

! InitShoppingCartIP

Table 14-13  shoppingcart.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been 
triggered. It is used by the 
Webflow to determine what 
happens next.

“origin” Hidden The name of the current page 
(shoppingcart.jsp), used by 
the Webflow.

HttpRequestConstants.
CATALOG_ITEM_SKU

Hidden SKU of the item that the event is to 
operate on.

NewQuantity_<SKU>

Where <SKU> is replaced with the 
SKU of the item on the shopping cart 
line.

Textbox The new quantity for the item in 
the shopping cart. It is the only 
form field on this page that requires 
input from the customer. 



14 Setting Up Commerce Services

14-36 WebLogic Portal Development Guide

! UpdateShoppingCartQuantitiesIP

! UpdateSkuIP

Note: See �Setting Up Portal Navigation� for information about using, creating, or 
modifying a Webflow and using input processors.

DeleteProductItemFromShoppingCartIP  

This input processor (all input processor names end in the letters �IP�)removes an item 
from the shopping cart.

EmptyShoppingCartIP

This input processor creates a new shopping cart and stores it in the pipeline session 
and discards the old shopping cart.

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.

   DeleteProductItemFromShoppingCartIP

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_ITEM_SKU

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.CATALOG_ITEM

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Validation None

Exceptions ProcessingException, thrown if the required request parameters or required 
Pipeline session attributes are not available.



Supporting a Product Catalog

WebLogic Portal Development Guide 14-37

InitShoppingCartIP

This input processor Initializes the active shopping cart prior to loading the 
shoppingcart.jsp template. If the shopping cart already exists, this input processor does 
nothing.

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.

   EmptyShoppingCartIP

Required
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.UPDATED_QUANTITY_DELTAS
PipelineSessionConstants.UPDATED_PRODUCT_ITEMS

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.

   InitShoppingCartIP

Required
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.UPDATED_QUANTITY_DELTAS



14 Setting Up Commerce Services

14-38 WebLogic Portal Development Guide

UpdateShoppingCartQuantitiesIP

This input processor validates the quantity fields for each line and sets those quantities 
in the shopping cart. If the quantity is zero, it will delete the item from the shopping 
cart.

UpdateSkuIP

This input processor reads the SKU from the HTTP request and places it into the 
Pipeline session.

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.

   UpdateShoppingCartQuantitiesIP

Required 
HTTPServletRequest

Parameters

NewQuantity_<SKU>

Where <SKU> is replaced with the SKU of the item on the shopping cart line.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.UPDATED_QUANTITY_DELTAS
PipelineSessionConstants.UPDATED_PRODUCT_ITEMS

Removed Pipeline
Session Attributes

None

Validation Verifies that the quantity fields only contain positive integers.

Exceptions ProcessingException, thrown if the required request parameters or required 
Pipeline session attributes are not available.



Supporting a Product Catalog

WebLogic Portal Development Guide 14-39

shoppingcart.jsp Pipeline Components

This section provides a brief description of each pipeline component associated with 
the shoppingcart.jsp template.  These Pipelines are processor nodes a Webflow 
invokes to initiate the execution of specific tasks related to the Shopping Cart service.

Note: Some pipeline components extend other, base pipeline components. For more 
information on the base classes, see the Javadoc.

For more information on pipeline components, see �Types of Nodes� on page 9-3.

This section contains information on these pipeline components:

! .DeleteProductItemFromSavedListPC

! MoveProductItemToSavedListPC

! MoveProductItemToShoppingCartPC

! RefreshSavedListPC

Class Invoked examples.wlcs.sampleapp.shoppingcart.webflow.

   UpdateSkuIP

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_ITEM_SKU

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

Removed Pipeline
Session Attributes

None

Validation None

Exceptions ProcessingException, thrown if the required request parameters are not 
available.



14 Setting Up Commerce Services

14-40 WebLogic Portal Development Guide

! PriceShoppingCartPC

! AddToCartTrackerPC

! RemoveFromCartTrackerPC

Note: See �Setting Up Portal Navigation� for information about using, creating, or 
modifying a Webflow and using pipeline components.

DeleteProductItemFromSavedListPC  

This pipeline component (all pipeline component names end in the letters �PC�) 
removes the item from the saved list and updates the WLCS_SAVED_ITEM_LIST table 
in the database.

MoveProductItemToSavedListPC  

This pipeline component moves an item from the shopping cart, adds it to the saved 
list. It then updates the WLCS_SAVED_ITEM_LIST table in the database.

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
   DeleteProductItemFromSavedListPC

Required Pipeline 
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline 
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.Delete
ProductItemFromSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes 
are not available.



Supporting a Product Catalog

WebLogic Portal Development Guide 14-41

MoveProductItemToShoppingCartPC

This pipeline component removes the item from the saved list, adds it to the shopping 
cart with a quantity of one. It then updates the WLCS_SAVED_ITEM_LIST table in the 
database.

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
   MoveProductItemToSavedListPC

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.CATALOG_ITEM
PipelineSessionConstants.QUANTITY

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.
MoveProductItemToSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not 
available.

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
   MoveProductItemToShoppingCartPC

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.USER_NAME



14 Setting Up Commerce Services

14-42 WebLogic Portal Development Guide

RefreshSavedListPC

This pipeline component queries the WLCS_SAVED_ITEM_LIST table and refreshes the 
saved shopping cart in the pipeline session. The saved list is only refreshed if the saved 
shopping cart does not exist in the pipeline session.

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART
PipelineSessionConstants.CATALOG_ITEM

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.

pipeline.MoveProductItemToShoppingCartPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not 
available.

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
   RefreshSavedListPC

Required Pipeline
Session Attributes

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name examples.wlcs.sampleapp.shoppingcart.pipeline.
RefreshSavedListPC

Exceptions PipelineException, thrown if the required Pipeline session attributes are not 
available.



Supporting a Product Catalog

WebLogic Portal Development Guide 14-43

PriceShoppingCartPC

This pipeline component invokes the Pricing Service to compute the line totals, 
discounts, shopping cart total and shopping cart discounts

AddToCartTrackerPC

This pipeline component fires an AddToCartEvent describing which item was just 
added to the cart. For more information about this event, see �Event and Behavior 
Tracking�.

Class Invoked examples.wlcs.sampleapp.shoppingcart.pipeline.
   PriceShoppingCartPC

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineException, thrown if the Pricing Service fails in any way

Class Invoked examples.wlcs.sampleapp.tracking.pipeline.AddToCartTracke
rPC

Description

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM

PipelineSessionConstants.HTTP_SESSION_ID

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.STOREFRONT

PipelineSessionConstants.CUSTOM_REQUEST



14 Setting Up Commerce Services

14-44 WebLogic Portal Development Guide

RemoveFromCartTrackerPC

This pipeline component fires a RemoveFromCartEvent describing which item was 
just added to the cart. For more information about this event, see �Event and Behavior 
Tracking�.

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions None

Class Invoked examples.wlcs.sampleapp.tracking.pipeline.RemoveFromCartT
rackerPC

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM

PipelineSessionConstants.HTTP_SESSION_ID

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.STOREFRONT

PipelineSessionConstants.CUSTOM_REQUEST

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions None



Supporting a Product Catalog

WebLogic Portal Development Guide 14-45

UpdateShoppingCartQuantitiesTrackerPC

For each shopping cart line, this pipeline component does one of the following:

! If more items in the line were selected, it fires an AddToCartEvent.

! If fewer items in that line were selected, it fires a RemoveFromCartEvent.

! If the number of items in that line is the same as before, does not fire an event.

Integrating Services With the Catalog Cache

The catalog architecture includes a powerful caching mechanism for items and 
categories within the Product Catalog. You can choose between integrating services in 
front of the cache or behind the cache. Currently the ProductItemManager and 
CategoryManager benefit from the caching architecture

Class Invoked examples.wlcs.sampleapp.tracking.pipeline.
   UpdateShoppingCartQuantitiesTrackerPC

Required Pipeline
Session Attributes

PipelineSessionConstants.UPDATED_PRODUCT_ITEMS

PipelineSessionConstants.UPDATED_QUANTITY_DELTAS

PipelineSessionConstants.HTTP_SESSION_ID

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.STOREFRONT

PipelineSessionConstants.CUSTOM_REQUEST

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions None



14 Setting Up Commerce Services

14-46 WebLogic Portal Development Guide

Replacing the JNDI name of a bean in the CatalogManager�s deployment descriptor 
will replace a service in front of the cache. The service will have to implement its own 
caching mechanism or forgo the benefits of caching.

The services defined by BEA�specified in the deployment descriptor for the 
CatalogManager�implement the caching for access to items and categories. The 
following beans query the cache and returned cached data if available; otherwise they 
delegate to the beans specified in their deployment descriptors:

! com.beasys.commerce.ebusiness.catalog.service.item.
   ProductItemManager 

! com.beasys.commerce.ebusiness.catalog.service.category.
   CategoryManager

You can extend the functionality of the Product Catalog behind the cache by editing 
the deployment descriptors for the ProductItemManager and CategoryManager beans. 
This enables you to concentrate on the persistence model for the catalog without 
worrying about the caching architecture. As Listing 14-10 shows, you need to replace 
the current delegate service provider class (JdbcCategoryManager) in the 
ejb-jar.xml deployment descriptor with the name of a new session bean that 
implements the CategoryManager interface. You would also need to make the same 
change to the weblogic-ejb-jar.xml file. 

Listing 14-10    CategoryManager Deployment Descriptor (ejb-jar.xml)

<session>
   <ejb-name>
      com.beasys.commerce.ebusiness.catalog.service.
         category.CategoryManager
   </ejb-name>
   <home>
      com.beasys.commerce.ebusiness.catalog.service.
         category.CategoryManagerHome
   </home>
   <remote>
      com.beasys.commerce.ebusiness.catalog.service.
         category.CategoryManager
   </remote>
   <ejb-class>
      com.beasys.commerce.ebusiness.catalog.service.
         category.CategoryManagerImpl
   </ejb-class>
   <session-type>Stateless</session-type>
   <transaction-type>Container</transaction-type>



Supporting a Product Catalog

WebLogic Portal Development Guide 14-47

    <!--  one specifies the delegateName to tell the Bridge component
   (the one used by the catalog manager which ejb to delegate to.
   That way, one can change delegates by changing the env-entry...
   -->

  <env-entry>
      <env-entry-name>delegateName</env-entry-name>
      <env-entry-type>java.lang.String</env-entry-type>
      <env-entry-value>ejb/JdbcCategoryManager</env-entry-value>
   </env-entry>

   <ejb-ref>
      <ejb-ref-name>ejb/JdbcCategoryManager</ejb-ref-name>
      <ejb-ref-type>Session</ejb-ref-type>
      <home>
         com.beasys.commerce.ebusiness.catalog.service.category.
         JdbcCategoryManagerHome
      </home>
      <remote>
         com.beasys.commerce.ebusiness.catalog.service.
            category.JdbcCategoryManager
      </remote>
   </ejb-ref>

   .
   .
   .
</session>

ejb-jar.xml and weblogic-ejb-jar.xml file are packaged in the ebusiness.jar 
file, which is in the <BEA_HOME>\weblogic700\common\templates\domains\ 
shared\bea\portal\apps\jars directory (where <BEA_HOME> is the directory 
in which you installed your BEA applications).  



14 Setting Up Commerce Services

14-48 WebLogic Portal Development Guide



 WebLogic Portal Development Guide 15-1

CHAPTER

15 Event and Behavior 
Tracking

The Event system provides you with the ability to identify the interactions that visitors 
have with your portal or Web site.

Customer interactions One of the primary uses of events is in customer 
interactions such as promotions or campaigns. A simple example of using events in a 
campaign is triggering the display of an ad for a related product when a customer 
places an item in a shopping cart. 

Behavior Tracking Another primary use of events is to track visitor behavior by 
recording events. Recording events is more than just navigation logging, which tells 
you only what pages were visited. Behavior Tracking allows you to know what the 
visitor saw and responded to, or equally important, ignored on a page. Recording 
events in a database allows leading e-analytics and e-marketing systems to use event 
data for data mining. Analyzing event information helps you create or enhance the 
rules that customize the content of your site to each visitor and evaluate the 
effectiveness of your promotional campaigns 

Custom events The Event system allows you to create your own events. For 
example, you could create an event that records who visits each portlet and how often 
each portlet is accessed. When you create a custom event, the event can either be 
recorded to a database using the WebLogic Portal persistence mechanism or not be 
recorded using this mechanism. Events that are persisted are called Behavior Tracking 
events. If your custom event will be not persisted, follow the instructions in �Writing 
the Custom Event Class� on page 15-13. If you are creating a custom Behavior 
Tracking event, follow the instructions in �Writing a Behavior Tracking Event Class� 
on page 15-20.

The subject matter in this section is primarily intended for J2EE experts. It includes 
information about the following subjects:



15 Event and Behavior Tracking

15-2 WebLogic Portal Development Guide

! How Events Work in Campaigns�Contains a brief introduction about the 
relationship between events and campaigns.

! How the Event Service Works�Provides insight into the Event service so you 
can take full advantage of the Event and Behavior Tracking capabilities.

! How to Use Standard Events�Tells you what events are shipped with WebLogic 
Portal and how to generate them.

! Creating Custom Events�Guides you through the process of creating Event and 
Behavior Tracking classes and listeners.

! How to Enable Behavior Tracking�Tells you how to enable Behavior Tracking 
as a service.

! Debugging the Event Service�How to activate debugging for events.

! Registering Custom Events�How to register a custom event so it can be used 
by a campaign.

! Activating Behavior Tracking�How to turn on Behavior Tracking.

How Events Work in Campaigns

An event is generated by a visitor action, such as viewing a product. The Event service 
notifies all event listeners that it has detected the event. The event listener for the 
Campaign service activates a campaign scenario. Using a set of rules that match users 
with content, the campaign initiates an action. The available actions are listed below:

! Displaying specific content on a Web page, such as an ad.

! Sending a promotional email to a customer.

! Offering the customer a discount.

Note: For more information about campaigns, see the E-Business Control Center 
online help.



How the Event Service Works

WebLogic Portal Development Guide 15-3

How the Event Service Works

Understanding how the Event service works helps you use events and provides 
information you need to generate events and design a custom event.

About the Event service The Event service is an extensible, general purpose, 
event construction and propagation system. As shown in Figure 15-1, an event is 
generated by a trigger, such as a JSP tag, which creates the event object, locates the 
Event service bean, and passes the event object to the Event service. The Event service 
works with plug-in listeners that disseminate events to listeners interested in receiving 
the events. At creation time, each event listener returns the list of event types that it 
wants to receive. When the Event service receives an event, it checks the type of the 
event and sends the event to all listeners that are subscribed to receive that event�s type. 

Listener types The Event service has two sets of listeners: those that respond to 
events synchronously and those that respond to events asynchronously. The 
synchronous listeners use the thread of execution that created and transmitted the event 
to perform actions in response to that event. Behavior Tracking listeners use only the 
synchronous listeners. The asynchronous listeners receive the event from the thread 
where it was created and some time later, handles the event in a different thread of 
execution. The asynchronous service exists so that long-running event handlers can 
execute without delaying the application from a Web site visitor�s perspective. 

Whether a particular plug-in listener is installed on the synchronous or the 
asynchronous side of the Event service is based on the requirements of the application. 
Configuration of the Event service is done using the WebLogic Server Administration 
Console. 



15 Event and Behavior Tracking

15-4 WebLogic Portal Development Guide

Figure 15-1   Event Mechanism

Event listeners implement the com.bea.p13n.events.EventListener interface. 
The interface defines signatures for two public methods:

! public String[] getTypes() 

! public void handleEvent( Event theEvent )



How the Event Service Works

WebLogic Portal Development Guide 15-5

The first method returns a list of event types that the listener is interested in receiving 
from the Event service. For example, if a listener is designed to receive events of type 
Foo, the listener returns Foo as an item in the array returned from invoking 
getTypes() on the listener. The second method is invoked when an event is passed to 
the listener. A listener has no knowledge of whether it is synchronous or asynchronous.

If you wish to create a listener interested in only campaign events, you would add the 
listener�s fully-qualified classname in the WebLogic Server Administration Console. 
The listener would implement the EventListener interface and return the following 
event types:

{“ClickCampaignEvent”,“DisplayCampaignEvent”,“CampaignUserActiv
ityEvent” }

when its getTypes() method is invoked.

After the listener is installed, events of one of these three types arrive through the 
listener�s handleEvent( Event theEvent ) interface.

The Asynchronous Delivery graphic in Figure 15-1 indicates that the asynchronous 
event handler receives events transmitted asynchronously from the synchronous side 
of the Event service. It then dispatches events to the pluggable asynchronous listeners 
based on the event types each listener is subscribed to receive.

How Event Sequences Work

Figure 15-2 and Figure 15-3 provide a sample of the generation of events. These 
figures are intended to give you a sense of the order in which events fire, not a 
comprehensive examination of event sequencing. The intent is to show you how events 
provide insight into the visitor life cycle and how and when you can use events in your 
application.



15 Event and Behavior Tracking

15-6 WebLogic Portal Development Guide

Figure 15-2   Event Sequence Sample�Part 1



How the Event Service Works

WebLogic Portal Development Guide 15-7

Figure 15-3   Event Sequence Sample�Part 2



15 Event and Behavior Tracking

15-8 WebLogic Portal Development Guide

How to Use Standard Events

This section provides general information about how to use the standard events 
provided with WebLogic Portal. For specific information about each event, see 
Appendix A, �Event Descriptions.� Appendix A contains a description of each kind of 
event, what generates the event, the class where event generation occurs, an example 
of usage, and the type of data within each event object.

All WebLogic Portal standard events contain the following basic information:

! Application from which the event was generated.

! Time of event.

! Type of event.

! Session ID.

! User ID (Null, if visitor not logged on.).

! Event specific information.

WebLogic Portal events are organized into categories. The following list presents each 
type of event category along with a brief description of what actions generates the 
event:

! Session Events: The start time, end time, and login time of a visitor�s session.

" SessionBeginEvent

" SessionEndEvent

" SessionLoginEvent

! User Registration Event: The visitor registers on the Web site.

" UserRegistrationEvent

! Product Events: The visitor is presented with a product or clicks (selects) the 
presented product.

" ClickProductEvent

" DisplayProductEvent



How to Use Standard Events

WebLogic Portal Development Guide 15-9

! Content Events: The visitor is presented some content, such as an ad, or clicks 
(selects) the presented content.

" ClickContentEvent

" DisplayContentEvent

! Cart Events: An item is added, removed, or updated to the visitor�s shopping 
cart. These events are also generated when an entire order is purchased.

" AddToCartEvent

" RemoveFromCartEvent

" PurchaseCartEvent

! Buy Event: The visitor completes the purchase of one or more items.

" BuyEvent

! Rules Event: The rules that are fired as a visitor navigates a Web site.

" RuleEvent

! Campaign Events: The events generated within the context of a campaign.

" CampaignUserActivityEvent

" DisplayCampaignEvent

" ClickCampaignEvent

Servlet Lifecycle Events and Servlet Filter Events

These events are defined as part of the Servlet 2.3 API lifecycle events:

! SessionBeginEvent

! SessionEndEvent

They are listeners on the session Created() and session Destroyed() events, which 
are generated by the servlets defined in the web.xml file. One web.xml file exists for 
each application. For example, in wlcsApp E-Commerce Application, this file is 
located at:

<BEA_HOME>\weblogic700\portal\applications\wlcsApp\wlcs\WEB-INF



15 Event and Behavior Tracking

15-10 WebLogic Portal Development Guide

The following events are generated by JSP tags and filtered by the Servlet 2.3 
<filter> element:

! ClickContentEvent 

! ClickProductEvent 

! ClickCampaignEvent

For each Web page displayed, the Web Application servlet checks for the presence of 
a click event in the HttpServletRequest. Each page click is then filtered by a Web 
Application servlet as defined by the Servlet 2.3 <filter> element. The click events 
are generated automatically when the <filter> element is called on each invocation 
of the servlet. The ClickThroughFilter determines which type of event is generated 
by checking the event type in the HttpServletRequest. The valid types are defined 
at the following locations:

! <BEA_HOME>\weblogic700\portal\classes\campaign\campaign-app\*.pr
operties

! <BEA_HOME>\weblogic700\portal\classes\commerce\commerce-app\*.pr
operties

! <BEA_HOME>\weblogic700\portal\classes\p13n\p13n-app\*.properties

Generating Login and Creation Events

This section describes different methods you can use to generate login and user 
registration events.

SessionLoginEvent You can generate the SessionLoginEvent in either of the 
following ways: 

! If you are manually using the <um:login> tag or 
weblogic.servlet.security.ServletAuthentication to handle login, use 
the 
com.bea.p13n.tracking.TrackingEventHelper.dispatchSessionLoginE

vent() method. 

! If you are directly using j_security_check FORM-based login, register the 
com.bea.p13n.servlets.P13NAuthFilter as the <auth-filter> in your 
Web Application�s WEB-INF\weblogic.xml file. You do not need to code a JSP 
or Webflow Processor.



How to Use Standard Events

WebLogic Portal Development Guide 15-11

UserRegistrationEvent Use the 
com.bea.p13n.tracking.TrackingEventHelper.dispatchUserRegistratio

nEvent() method to generate the UserRegistrationEvent. You should generate this 
event after the SessionLoginEvent (which should occur during user creation). You can 
use either an Input Processor or in a JSP.

Webflow If you are using the Portal Webflow framework, the SessionLoginEvent 
and the UserRegistrationEvent are generated automatically from the 
com.bea.portal.appflow.processor.security.PostLoginProcessor in the 
security Webflow as needed. 

Adding or Customizing Event Generators

Standard events are generated at important points in an e-commerce site. The 
components that enable events include Java APIs, JSP tags, JSP scriptlets, Webflow 
input processors, Pipeline components, content selectors, and classification advislets. 
You can add or customize generators for each of the following events: 

! DisplayContentEvent 

! DisplayProductEvent 

! ClickContentEvent 

! ClickProductEvent 

Each event is generated by JSP tags. You can use the JSP tags that initiate these events 
to specify which products and what content generate these events. For example, in the 
wlcsApp E-Commerce Application, the JSP tag for the DisplayProductEvent is 
located in the details.jsp.

The tag shown in Listing 15-1 generates an event for any product displayed on a 
catalog detail page. If you want to generate an event for one particular product, you can 
write a scriptlet that keys off the SKU for that product.

Listing 15-1   JSP Tag

<%-- once the product is displayed, fire off a displayProductEvent --%>
<productTracking:displayProductEvent documentId="<%= item.getName() %>"
        documentType="<%= DisplayProductEvent.ITEM_BROWSE %>"



15 Event and Behavior Tracking

15-12 WebLogic Portal Development Guide

                          sku="<%= item.getKey().getIdentifier() %>" />

When you add a JSP tag for an event, you should include a reference to the tag library 
descriptor, as shown below:

<%@ taglib uri="productTracking.tld" prefix="productTracking" %>

 The details.jsp is located in the following directory:

<BEA_HOME>\weblogic700\portal\applications\wlcsApp\wlcs\commerc

e\catalog 

Creating Custom Events

This section provides the information necessary to write a custom event. You can 
create a custom event for anything you wish to track. If you want your event to be 
recorded using the WebLogic Portal persistence mechanism, create a Behavior 
Tracking event, as described in �Writing a Behavior Tracking Event Class� on page 
15-20. 

Idea for a custom event You could create an event that would tell you which 
pages are displayed for each visitor. You could then use the information to determine 
how many pages are viewed on average per session and which pages are the most 
popular. Additionally, marketing professionals could use this event when developing 
promotional campaigns that are based on the display of particular pages. 

To demonstrate how to write a custom event, a simple example is provided. Each 
section references and expands the example.

The creation of a custom event is a multiple-step process. The following list provides 
an overview of the process and references the information not covered in this topic:

1. Write the code that defines the event.

2. Write the code that defines the event listener.

3. Install the listener class in the Event Service.



Creating Custom Events

WebLogic Portal Development Guide 15-13

4. Write the code to generate the event with a JSP tag or an API call.

5. Register the event, if it is to be used in a campaign.

6. To record the event data to the EVENT table, create an entry for the event in the 
EVENT_TYPE table. For more information, see �Persisting Behavioral Tracking 
Data� in the Administration Guide at 
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm#1194894.

Writing the Custom Event Class

To create a custom event, take the following steps:

1. Write the event class This class encapsulates all the necessary information for 
correctly interpreting and handling the event when it arrives at a listener. 

All custom events must subclass the com.bea.p13n.events.Event class. This 
base class handles setting and retrieving an event�s timestamp and type and 
provided access to the custom event�s attributes. Two Event class methods set 
and retrieve attributes:

setAttribute( String theKey, Serializable theValue )
getAttribute( String theKey )

These methods can be called from the custom event�s constructor to set 
attributes specific to the new event. Keep in mind that all objects set as values in 
the Event object must be Java serializable. 

The getTimeStamp() method returns the date of the event�s creation in 
milliseconds. The type of an event is accessed using the Event class�s 
getType() method. The timestamp and type of an Event object instance can be 
set only at creation time in the Event constructor. If not specified, the event is 
timestamped automatically when it is created. The application attribute is set 
automatically, either from the application in which the event was created or from 
the Event service EJB (Enterprise JavaBean) application.

Example To illustrate the process of creating a custom event, a simple example 
is presented here, called TestEvent. The example is a basic demonstration of 
how to create an event subclass. An actual custom event would probably be 
more elaborate.



15 Event and Behavior Tracking

15-14 WebLogic Portal Development Guide

2. Create the type A custom event must first have a type. This type should be 
passed to the superclass constructor (for example, in the Event class). This type 
is returned at getType() invocations on custom-event object instances. For 
example:

/** Event Type */
public static final String TYPE = "TestEvent";

To properly initialize the Event base class of the custom event object, the value 
TYPE is passed to the event constructor. The type of all events must be a simple 
Java string object.

3. Define the keys After defining the type, you must define the keys that access 
the attributes stored in the custom event. These attributes can be given values in 
the constructor. For example, the TestEvent class has two properties, 
description and Zip Code; the type of the value associated with 
description is a String and Zip Code is an Integer. The keys are defined as 
follows:

/**
 * Event attribute key name for the first user defined property
 * Attribute value is a String
 */
public static final String DESCRIPTION = "description";

/**
 * Recall that all attribute values must be serializable
 * Event attribute key name for the second user defined
 * property
 * Attribute value is an Integer
 */
public static final String ZIP_CODE = "Zip Code";

Finally, a constructor brings the event type and the process of setting attributes 
together to create an event object. The constructor looks like:

/**
 * Create a new TestEvent
 * 
 * 
 * @param desc The description of this event 
 * @param zip The Zip Code 
 */
 public TestEvent( String desc, Integer zip )
 {
   /* calls the Event class constructor with this event's 
      type */
   super( TYPE );



Creating Custom Events

WebLogic Portal Development Guide 15-15

   if( desc != null ) 
       setAttribute( DESCRIPTION, desc );

   if( zip != null ) 
       setAttribute( ZIP_CODE, zip ); 
 }  

All the parts put together The entire custom event class is shown in Listing 15-2.

Listing 15-2   TestEvent Class

/* Start TestEvent class */

public class TestEvent 
  extends com.bea.p13n.events.Event
{
  /** Event Type */
  public static final String TYPE = "TestEvent";

  /**
   * Event attribute key name for the first user defined property
   * Attribute value is a String
   */
   public static final String DESCRIPTION = "description";

  /**
   * Event attribute key name for the second user defined property
   * Attribute value is an Integer
   */
   public static final String ZIP_CODE = "Zip Code”;

  /**
   * Crate a new TestEvent
   * 
   *
   * @param desc The description of this event 
   * @param zip The Zip Code 
   */
   public TestEvent( String desc, Integer zip )
   {
     /* calls the Event class constructor with this event's type */
     super( TYPE );

     if( descriptionValue != null ) 
         setAttribute( DESCRIPTION, desc );



15 Event and Behavior Tracking

15-16 WebLogic Portal Development Guide

     if( ZipCodeValue != null ) 
         setAttribute( ZIP_CODE, zip );     
   }  
}
/* End TestEvent class */

About the example The example in Listing 15-2 shows you how to use the 
fundamental aspects of the Event base class and the Event service. An actual custom 
event constructor would probably be more complex. For example, it might check for 
default values or disallow null attributes. Additionally, the custom-event object might 
have more methods or member data. 

Note: In order for a custom event to be used by a campaign, it must contain the 
following objects as attributes:

! Request (key = �request�) � Request of type 
com.bea.p13n.http.Request. It should be created with a constructor 
that takes the HttpServletRequest as a parameter.

! Session (key = �session�) � Session of type 
com.bea.p13n.http.Session. Created with a constructor that takes 
the HttpServletRequest as its parameter.

! UserId (key = �userId�) � A string that contains the username.

Saving the file You can save the file anywhere you like as long as it is in the 
enterprise application classpath used by WebLogic Server.

Writing the Custom Event Listener

In order to listen for an event, you must define an event listener. All event listeners 
must implement the com.bea.p13n.events.EventListener interface and have a 
no arguments (default) constructor. This interface specifies two methods that are 
fundamental to transmitting events of a given type to interested listeners:

public String[] getTypes()

public void handleEvent( Event ev ) 



Creating Custom Events

WebLogic Portal Development Guide 15-17

The first method returns the types, in a string array, that the listener is interested in 
receiving. The Event service dispatches events of a given type to listeners that return 
the event�s type in the types array. When the Event service has determined that a given 
listener has registered to receive the type of the current event, an event of that type is 
dispatched to the listener using the handleEvent( Event ev ) call. 

Implement both event listener methods When writing a custom event listener, 
both methods must be implemented from the EventListener interface. Continuing 
with the TestEvent example, the TestEventListener listens for instances of 
TestEvent that are sent through the Event service. This can be specified as follows:

/** The types this listener is interested in */
private String[] eventTypes = {"TestEvent"};

/** 
  The method invoked by the event service to determine the 
  types to propagate to this listener.
 */ 
public String[] getTypes() 
{ 
  return eventTypes;
}

To handle the event, the handleEvent( Event evt ) method is implemented as 
follows:

/**
 * Handle events that are sent from the event service
 */
public void handleEvent( Event ev ) 
{
  System.out.println("TestListener::handleEvent " + 
                     " -> received an event" + 
                     " of type: " + ev.getType() );

  /* Do the work here */

}

Putting all of these pieces together with a constructor, Listing 15-3 shows a simple 
event listener that registers to receive TestEvent objects.

Listing 15-3   Event Listener

    import com.bea.p13n.events.EventListener;
    import com.bea.p13n.events.Event;



15 Event and Behavior Tracking

15-18 WebLogic Portal Development Guide

    /**
     * TestListener to demonstrate the ease with which listeners can be plugged
     * into the behavior tracking system. 
     *
     * This class should be added to the property eventService.listeners 
     * in order to receive events.  The fully qualified classname must be added
     * to this property; don't forget to add the ",\" at the end of the previous
     * line or the properties parser will not find the new classname.
     *
     * The types of events that are heard are listed in the eventTypes
     * String array.  Add and remove strings of that type as necessary.
     *
     * @author Copyright (c) 2001 by BEA Systems, Inc. All Rights Reserved.
     */
    public class TestListener
        implements EventListener
    {

    private String[] eventTypes = {"TestEvent"};

    public TestListener()
    {
    }

    public String[] getTypes()
    {
        return eventTypes;
    }

    public void handleEvent( Event ev ) 
    {
         System.out.println("TestListener::handleEvent -> received an event" + 
                            " of type: " + ev.getType() );

         return;
    }
}

Event listeners should be generic As with writing a simple event, writing a 
simple EventListener is also straightforward. Any event listener�s internals should 
be generic; the same TestEventListener instance may not handle all TestEvent 
objects. Therefore TestEventListener should be entirely stateless and should 
operate on data that is contained in the event object or stored externally in a database.



Creating Custom Events

WebLogic Portal Development Guide 15-19

Note: Multiple instances of any listener may execute concurrently.

Installing the Listener Class in the Event Service

Notes: This section provides information on how to add a listener class in the Sample 
Portal. For your application, you would use similar steps.

If the Event service does not exist as a service for your application, use 
WebLogic Server Administration Console to add it.

To enable Behavior Tracking, you must add Behavior Tracking as a 
synchronous listener to the Event service.

Add a listener To add a synchronous or asynchronous listener, take the following 
steps:

Note: Behavior Tracking listeners can only be implemented as synchronous 
listeners.

1. In the WebLogic Server Administration Console, navigate to Synchronous or 
Asynchronous Listeners tab in the node tree for sampleportalDomain as follows:

http://<hostname>:<port>/console → sampleportalDomain → Deployments → 
sampleportal → Service Configurations → Event Service → Configuration Tab → 
Synchronous Listeners or Asynchronous Listeners

2. Add the synchronous or asynchronous listener to the corresponding fields, as 
shown in Figure 15-5.

Figure 15-4   WebLogic Server Administration Console�Event Service



15 Event and Behavior Tracking

15-20 WebLogic Portal Development Guide

Writing a Behavior Tracking Event Class

A Behavior Tracking event is a special type of event that tracks a visitor�s interactions 
with a Web site. E-analysis systems use the data gathered from Behavior Tracking 
events to evaluate visitor behavior. The evaluation is primarily used for campaign 
development and optimizing visitor experience on a Web site. 

Example A Behavior Tracking event and its listeners are created in much the same 
way as the TestEvent class and TestEventListener examples. A simple example 
is also presented here. The example tracking event is called TestTrackingEvent. All 
Behavior Tracking events persisted (recorded) to a database for use with BEA 
Behavior Tracking are handled by the 
com.bea.p13n.tracking.listeners.BehaviorTrackingListener. The 
BehaviorTrackingListener extends the 
com.bea.p13n.events.EventListener class.

Redeploy After the BehaviorTrackingListener is defined as a listener on the 
Event service, you need to redeploy the application before it can receive and persist 
Behavior Tracking events. 

About the buffer This listener receives events from the Event service and adds 
them to a buffer that is intermittently persisted to the Event tables in the database. The 
frequency of sweeping of events from the buffer is controlled by the following 
properties on the Behavior Tracking service.

! MaxBufferSize � Sets the maximum size of the event buffer. Setting this to 0 
means all events are persisted as they are received.

! SweepInterval � Sets the interval, in seconds, at which to check the buffers to 
see whether events in the buffer must be persisted. Events are persisted when 
either the maximum buffer size (MaxBufferSize) is reached or the maximum 
time to wait in the buffer (SweepMaxTime) has been exceeded. 

! SweepMaxTime � Set the time, in seconds, to wait before forcing a flush to the 
database. This is the longest amount of time that an event can exist in any cache.

Optimizing Tune these properties to optimize performance. A buffer sweep should 
be performed often enough that writing to the database is not too time consuming but 
not so frequent that the operation is wasteful.



Creating Custom Events

WebLogic Portal Development Guide 15-21

Configuring Events Buffer Sweeping

Notes: This section provides information on configuring buffer sweeping in the 
Sample Portal. For your application, you would use similar steps.

If the Event service does not exist as a service for your application, use 
WebLogic Server Administration Console to add it.

To configure the sweeping of the events buffer, take the following steps:

1. In the WebLogic Server Administration Console, navigate to Behavior Tracking in 
the node tree for sampleportalDomain as follows:

http://<hostname>:<port>/console → sampleportalDomain → Deployments → 
sampleportal → Service Configurations → Behavior Tracking Service

2. Enter the new buffer values in the appropriate fields, as shown in Figure 15-5.

Figure 15-5   WebLogic Server Administration Console�Behavior Tracking

Facilitating OffLine Processing

Behavior Tracking events are designed to be persisted to a table in the database, called 
the EVENT table. Part of the process of recording data from Behavior Tracking events 
is creating an XML representation of the data, which is stored in the xml_definition 
column of the EVENT table. If you are planning to use the BEA Behavior Tracking 



15 Event and Behavior Tracking

15-22 WebLogic Portal Development Guide

event persistence mechanism, you must persist events in this location. Therefore, to 
persist events in the provided EVENT table, your custom event must conform to the 
descriptions in this section so that it is created and persisted properly.

XML-XSD schema To formally specify the data contained in a Behavior Tracking 
event, you need to develop an XML-XSD schema for the new event. While XSDs are 
not used internally to verify the creation of XML, the XML that is created represents 
the event�s data in the database. If the event class is properly developed and used, it 
will conform to the XML-XSD schema. With an XSD document, development of the 
constructor and attribute keys for a Behavior Tracking event follows easily. The 
specific data elements for each standard event are shown in the XML_DEFINITION Data 
Elements table in the Administration Guide at 
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm#1195110.

Association between files To correctly turn a Behavior Tracking event into an 
XML representation, the Behavior Tracking event must have several pieces of member 
data that fully describe an XML instance document for the schema associated with the 
event type. This data describes the namespace and XSD file associated with the event. 
For example, Listing 15-4 and Listing 15-5 show the association between the 
following files:

com.bea.campaign.tracking.events.ClickCampaignEvent and 

/lib/schema/tracking-click-campaign-1_0_1.xsd in 
<BEA_HOME>\weblogic700\portal\\lib\campaign\ejb\campaign.jar. 

For more examples, look at the existing XSD files. 

Listing 15-4   ClickCampaignEvent.java

/**
   Event for tracking click of campaign
 */
public class ClickCampaignEvent
    extends ClickEvent
{
    /** The event type */
    public static final String TYPE = "ClickCampaignEvent";

    /**
       The XML namespace for this event
    */
    private static final String XML_NAMESPACE =
       "http://www.bea.com/servers/commerce/xsd/tracking/click-campaign/1.01";



Creating Custom Events

WebLogic Portal Development Guide 15-23

   
    /**
       The XSD file containing the schema for this event
    */    
    private static final String XSD_FILE = "tracking-click-campaign-1_0_1.xsd";

    /** 
     * Event attribute key name for the campaign id
     * Attribute value is a String
     */
    public static final String CAMPAIGN_ID = "campaign-id";
    
    /** 
     * Event attribute key name for the scenario id
     * Attribute value is a String
     */
    public static final String SCENARIO_ID = "scenario-id";
    
    /** 
     * Event attribute key name for storefront (aka application-name)
     * Attribute value is a String
     */
    public static final String APPLICATION_NAME = "application-name";

    /** 
     * Event attribute key name for item category id
     * Attribute value is a String
     */
     public static final String PLACEHOLDER_ID = "placeholder-id";

    /**
       Suggestions for entry into the documentType data passed to the constructor
       Attribute value is a String
    */
    public static final String BANNER_AD_PROMOTION = "bannerAdPromotion";

    /**
       These are the keys and their order for elements that 
       will be present in the XML representing this object
    */
    private static final String localSchemaKeys[] = 
    { 
        APPLICATION, SESSION_ID, USER_ID, DOCUMENT_TYPE, DOCUMENT_ID,
        CAMPAIGN_ID, SCENARIO_ID, APPLICATION_NAME, PLACEHOLDER_ID
    };
    
    /**
     * Create a new ClickCampaignEvent.
     * 



15 Event and Behavior Tracking

15-24 WebLogic Portal Development Guide

     * @param theSessionId from HttpSession.getId()
     * @param theUserId from HttpServletRequest.getRemoteUser() or 
     * equivalent (null if unknown)
     * @param theRequest the http servlet request object
     * @param aDocumentType Document Type for the clicked content (optionally
     * null)
     * @param aDocumentId Document ID for the clicked content (optionally null)
     * @param aCampaignId campaign id for the campaign from which the item was
     * clicked
     * @param aScenarioId scenario id for the scenario (within the campaign)
     * for which the item was clicked
     * @param aApplicationName application name (aka storefront) (optionally
     * null)
     * @param aPlaceholderId a placeholder id
     */
    public ClickCampaignEvent( String theSessionId,
                               String theUserId,
                               HttpServletRequest theRequest, 
                               String aDocumentType,
                               String aDocumentId,
                               String aCampaignId,
                               String aScenarioId,
                               String aApplicationName,
                               String aPlaceholderId )
    {
        super( TYPE, 
               theSessionId, 
               theUserId,
               XML_NAMESPACE, 
               XSD_FILE,
               localSchemaKeys,
               theRequest,
               aDocumentType,
               aDocumentId);
        
        if( aCampaignId != null ) setAttribute( CAMPAIGN_ID, aCampaignId );
        if( aScenarioId != null ) setAttribute( SCENARIO_ID, aScenarioId );
        if( aApplicationName != null ) setAttribute( APPLICATION_NAME,
            aApplicationName );
        if( aPlaceholderId != null ) setAttribute( PLACEHOLDER_ID, 
            aPlaceholderId );
    }
}

Event and XSD cross-referenced Notice the cross-reference between 
ClickCampaignEvent and the XSD schema. This association allows the Behavior 
Tracking data to be properly recorded in the database.



Creating Custom Events

WebLogic Portal Development Guide 15-25

Listing 15-5   Corresponding XSD Schema

<xsd:schema
        
targetNamespace="http://www.bea.com/servers/commerce/xsd/tracking
/click-campaign/1.0.1" 
        
xmlns="http://www.bea.com/servers/commerce/xsd/tracking/click-cam
paign/1.0.1" 
    xmlns:xsd="http://www.w3.org/2001/XMLSchema"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.w3.org/2001/XMLSchema
                        http://www.w3.org/2001/XMLSchema.xsd"
    elementFormDefault="qualified"
    attributeFormDefault="unqualified">
    <xsd:element name="ClickCampaignEvent">
        <xsd:complexType>
            <xsd:sequence>
               <xsd:element ref="application"/>
               <xsd:element ref="event-date"/>
               <xsd:element ref="event-type"/>
               <xsd:element ref="session-id"/>
               <xsd:element ref="user-id" minOccurs="0"/>
               <xsd:element ref="document-type" minOccurs="0"/>
               <xsd:element ref="document-id" minOccurs="0"/>
               <xsd:element ref="campaign-id"/>
               <xsd:element ref="scenario-id"/>
                <xsd:element ref="application-name" minOccurs="0"/>
               <xsd:element ref="placeholder-id" minOccurs="0"/>
            </xsd:sequence>
            <!-- types = banner-ad-promotion -->
        </xsd:complexType>
    </xsd:element>
    <xsd:element name="application" type="xsd:string"/>
    <xsd:element name="event-date" type="xsd:string"/>
    <xsd:element name="event-type" type="xsd:string"/>
    <xsd:element name="session-id" type="xsd:string"/>
    <xsd:element name="user-id" type="xsd:string"/>
    <xsd:element name="document-type" type="xsd:string"/>
    <!-- types = banner-ad-promotion -->
    <xsd:element name="document-id" type="xsd:string"/>
    <xsd:element name="campaign-id" type="xsd:string"/>
    <xsd:element name="scenario-id" type="xsd:string"/>
    <xsd:element name="application-name" type="xsd:string"/>
    <xsd:element name="placeholder-id" type="xsd:string"/>
</xsd:schema>



15 Event and Behavior Tracking

15-26 WebLogic Portal Development Guide

List the keys The source code for your Behavior Tracking event should also list the 
keys and their order for creating an XML instance document from an event object. For 
an example, see Listing 15-4. The structure of an XSD document and details on XML 
namespaces can be found at http://www.w3.org/XML/Schema. Several XSD schemas 
for BEA Behavior Tracking events can be found in /lib/schema at the following 
location:

<BEA_HOME>\weblogic700\portal\lib\p13n\ejb\events.jar 

Specify namespace and schema The namespace and schema are specified as: 

/** 
 The XML namespace for this event
 */
private static final String XML_NAMESPACE=
    "http://<your URI>/testtracking";

/**
  The XSD file containing the schema for this event
 */
private static final String XSD_FILE="TestTrackingEvent.xsd";

Note: These values are used when creating an instance document to populate the 
fields. 

The schemaKeys are a list of strings which are keys to the event class�s 
getAttribute and setAttribute methods. These keys are used to extract the data 
that populate elements in the XML instance document which represent the Behavior 
Tracking event. The keys should be listed in an array that consists of string-typed 
objects. Their order specifies the order in which they appear in the XML instance 
document. In the XSD files that the Behavior Tracking system generates, the order of 
the elements is important; an XML file will not validate with an XSD file if elements 
are out of order. Elements can be omitted by using the XML numOccurs keyword and 
setting the value to zero. For examples of how this is done, see the XSD schemas for 
BEA Behavior Tracking events in /lib/schema, at the following location:

<BEA_HOME>\weblogic700\portal\\lib\p13n\ejb\events.jar

Structuring the array An example array for the Behavior Tracking version of the 
TestEvent described above might appear as: 

/**
 These are the keys and their order for elements that
 will be present in the XML representing this object.
 */
private static final String localSchemaKeys[] = 



Creating Custom Events

WebLogic Portal Development Guide 15-27

{
    SESSION_ID, USER_ID, USER_PROPERTY_ONE_KEY,
        USER_PROPERTY_TWO_KEY
};

Data elements The SESSION_ID and the USER_ID are data elements in the 
localSchemaKeys array that are useful in implementing a tracking event. The 
SESSION_ID is the WebLogic Server session ID that is created for every session 
object. (For more information, see the WebLogic Server documentation at 
http://edocs.bea.com/wls/docs70/index.html.) The USER_ID field (which may be null) 
is the username of the Web site visitor associated with the session from which the event 
was generated. For some events, a user may not be associated with an event; as 
previously mentioned, the numOccurs for the USER_ID field in an XSD file should be 
zero. To persist events in the EVENT table, the SESSION_ID must be non-null.

Other attributes All Behavior Tracking events must extend the 
com.bea.p13n.tracking.events.TrackingEvent class. This class defines three 
keys that are useful for setting attributes for all tracking events, as follows:

! TrackingEvent.SESSION_ID

! TrackingEvent.USER_ID

! TrackingEvent.REQUEST

These keys are used in setAttribute calls made in the TrackingEvent constructor 
when setting the SESSION_ID, USER_ID, and REQUEST (an HttPServletRequest 
object), respectively. They should also be used to retrieve values associated with each 
key when invoking Event.getAttribute (String Key) on event objects that extend 
TrackingEvent.

Writing a TrackingEvent Base Class Constructor

The TrackingEvent base class has a constructor that is more complicated than the 
Event class�s constructor. The Event constructor is invoked by the super( String 
eventType )call in the TrackingEvent constructor. The TrackingEvent 
constructors are shown in Listing 15-6 and Listing 15-7.

Listing 15-6   Tracking Event Constructor�Example 1

/**
 * Create a new TrackingEvent.



15 Event and Behavior Tracking

15-28 WebLogic Portal Development Guide

 * 
 * @param theEventType the event's type
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent 
 * (null if unknown)
 * @param theXMLNamespace the namespace for an XML representation of this event
 * type
 * @param theXSDFile the file that contains the schema which specifies and 
 * enforces typing on the data in the XML file
 * @param theSchemaKeys the list of keys (in their order in the XSD schema)
 * representing the data to be persisted in this event's XML 
      */
public TrackingEvent( String theEventType,
                      String theSessionId,
                      String theUserId,
                      String theXMLNamespace,
                      String theXSDFile,
                      String[] theSchemaKeys ) 

The TrackingEvent constructor shown in Listing 15-7 takes an 
HttpServletRequest object.

Listing 15-7   Tracking Event Constructor�Example 2

/**
 * Create a new TrackingEvent.
 * 
 * @param theEventType the event's type
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent 
 * (null if unknown)
 * @param theXMLNamespace the namespace for an XML representation of this event
 * type
 * @param theXSDFile the file that contains the schema which specifies and 
 * enforces typing on the data in the XML file
 * @param theSchemaKeys the list of keys (in their order in the XSD schema)
 * representing the data to be persisted in this event's XML 
 * @param theRequest the http servlet request object
 */
public TrackingEvent( String theEventType,
                      String theSessionId,
                      String theUserId,
                      String theXMLNamespace,



Creating Custom Events

WebLogic Portal Development Guide 15-29

                      String theXSDFile,
                      String[] theSchemaKeys,
                      HttpServletRequest theRequest )

About the constructors In the first constructor, shown in Listing 15-6, the only 
data that can be null is theUerId; all other data is required so that the tracking event 
is correctly persisted to the EVENT table. In the second constructor, shown in 
Listing 15-7, the HttpServletRequest object can be passed in from generating 
locations where the HttpServletRequest object is available. This object provides 
the data needed to fire rules against event instances.

Note: In order to fire rules on a custom Behavior Tracking event, the 
HttpServletRequest and the USER_ID must be non-null. Generally, a 
non-null USER_ID means that a visitor is logged into a Web site. Rules cannot 
be fired on an event with a null user.

The TestTrackingEvent constructor is shown in Listing 15-8.

Listing 15-8   TestTrackingEvent Constructor

/**
 * Create a new TestTrackingEvent
 * 
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent 
 * (null if unknown)
 * @param userPropertyOne some user defined property typed as a String
 * @param userPropertyTwo another user defined property typed as a Double
 */
public TestTrackingEvent( String theSessionId,
                          String theUserId,
                          String userPropertyOneValue,
                          Double userPropertyTwoValue )
{
    super( TYPE, theSessionId, theUserId, XML_NAMESPACE, XSD_FILE, 
           localSchemaKeys );

    if( userPropertyOneValue != null ) 
        setAttribute( USER_PROPERTY_ONE_KEY, userPropertyOneValue );

    if( userPropertyTwoValue != null ) 



15 Event and Behavior Tracking

15-30 WebLogic Portal Development Guide

        setAttribute( USER_PROPERTY_TWO_KEY, userPropertyTwoValue );     

}

This constructor calls the TrackingEvent constructor to populate the required values, 
then sets the attributes necessary for this particular Behavior Tracking event type. 

The entire TestTrackingEvent is shown in Listing 15-9.

Listing 15-9   TestTracking Event

import com.bea.p13n.tracking.events.TrackingEvent;

/**
 * Test, user-defined behavior tracking event.
 *
 * This event can be persisted to the database.
 *
*/  
public class TestTrackingEvent
    extends TrackingEvent
{

    /** Event type */
    public static final String TYPE = "TestTrackingEvent";

    /**
      The XML namespace for this event
     */
    private static final String XML_NAMESPACE="http://<your URI>/testtracking";

    /**
      The XSD file containing the schema for this event
     */
    private static final String XSD_FILE="TestTrackingEvent.xsd";

    /**
     * Event attribute key name for the first user defined property
     * Attribute value is a String
     */
    public static final String USER_PROPERTY_ONE_KEY = "userPropertyOne";

    /**
     * Event attribute key name for the second user defined property



Creating Custom Events

WebLogic Portal Development Guide 15-31

     * Attribute value is a Double
     */
    public static final String USER_PROPERTY_TWO_KEY = "userPropertyTwo";

    /**
      These are the keys and their order for elements that
      will be present in the XML representing ths object.
     */
    private static final String localSchemaKeys[] = 
    {
        SESSION_ID, USER_ID, USER_PROPERTY_ONE_KEY, USER_PROPERTY_TWO_KEY
    };

    /**
     * Create a new TestTrackingEvent
     * 
     * @param theSessionId from HttpSession.getId()
     * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
     * (null if unknown)
     * @param userPropertyOne some user defined property typed as a String
     * @param userPropertyTwo another user defined property typed as a Double
     */
    public TestTrackingEvent( String theSessionId,
                              String theUserId,
                              String userPropertyOneValue,
                              Double userPropertyTwoValue )
    {
        super( TYPE, theSessionId, theUserId, XML_NAMESPACE, XSD_FILE,
               localSchemaKeys );
  
        if( userPropertyOneValue != null ) 
            setAttribute( USER_PROPERTY_ONE_KEY, userPropertyOneValue );

       if( userPropertyTwoValue != null ) 
           setAttribute( USER_PROPERTY_TWO_KEY, userPropertyTwoValue );     
    }
}

The TestTrackingEvent, shown in Listing 15-9, correctly sets its own attributes and 
sets the attributes in its instantiation of TrackingEvent. This enables correct 
population of the XML instance document at the time of its creation. Recall that the 
XML instance document represents the TestTrackingEvent in the database�s EVENT 
table.



15 Event and Behavior Tracking

15-32 WebLogic Portal Development Guide

Persisting to database If you want the custom Behavior Tracking event type to 
be persisted in the database, the event must be added to the 
behaviorTracking.persistToDatabase property in the 
application-config.xml file. If you are not persisting the event, you do not need 
to add the event type to this property.

How to Enable Behavior Tracking

Note: If the Event service does not exist as a service for your application, use 
WebLogic Server Administration Console to add it. 

The following steps describe how to enable Behavior Tracking as a service for the 
Sample Portal. For your application, you would use similar steps:

1. In the WebLogic Server Administration Console, navigate to Behavior Tracking in 
the node tree for sampleportalDomain as follows:

http://<hostname>:<port>/console → sampleportalDomain → Deployments → 
sampleportal → Service Configurations → Behavior Tracking

2. Enter the name of the event in the Persisted Event Types field, as shown in 
Figure 15-6.

Figure 15-6   WebLogic Server Administration Console�Behavior Tracking



How to Enable Behavior Tracking

WebLogic Portal Development Guide 15-33

Converting Behavior Tracking Events to XML

When persisting Behavior Tracking events to the EVENT table, the bulk of the data must 
be converted to XML. The XML document should conform to an XML XSD schema 
that you create which specifies the order of the XML elements in the XML instance 
document. Additionally, the schema must include the types of elements and their 
cardinalities. The process of creating XML from an event object is handled by a helper 
class that utilizes variables and constants in a Behavior Tracking event�s class file. All 
schema documents use the namespace: http://www.w3.org/2000/10/XMLSchema 
and all instances of Behavior Tracking schemas use the namespace: 
http://www.w3.org/2000/10/XMLSchema-instance. The XML created in 
Listing 15-10 will conform to the XSD schema.

Listing 15-10   XSD Document Example

<xsd:schema 
    targetNamespace="http://www.bea.com/servers/commerce/xsd/tracking/buy/1.0.1"
        xmlns="http://www.bea.com/servers/commerce/xsd/tracking/buy/1.0.1"
        xmlns:xsd="http://www.w3.org/2001/XMLSchema"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://www.w3.org/2001/XMLSchema
                            http://www.w3.org/2001/XMLSchema.xsd"
        elementFormDefault="qualified"
        attributeFormDefault="unqualified">
        <xsd:element name="BuyEvent">
            <xsd:complexType>
                <xsd:sequence>
                    <xsd:element ref="application"/>
                    <xsd:element ref="event-date"/>
                    <xsd:element ref="event-type"/>
                    <xsd:element ref="session-id"/>
                    <xsd:element ref="user-id" minOccurs="0"/>
                    <xsd:element ref="sku"/>
                    <xsd:element ref="quantity"/>
                    <xsd:element ref="unit-price"/>
                    <xsd:element ref="currency" minOccurs="0"/>
                    <xsd:element ref="application-name" minOccurs="0"/>
                    <xsd:element ref="order-line-id"/>
                </xsd:sequence>
            </xsd:complexType>
        </xsd:element>
        <xsd:element name="application" type="xsd:string"/>
        <xsd:element name="event-date" type="xsd:string"/>



15 Event and Behavior Tracking

15-34 WebLogic Portal Development Guide

        <xsd:element name="event-type" type="xsd:string"/>
       <xsd:element name="session-id" type="xsd:string"/>
       <xsd:element name="user-id" type="xsd:string"/>
       <xsd:element name="sku" type="xsd:string"/>
       <xsd:element name="quantity" type="xsd:double"/>
       <xsd:element name="unit-price" type="xsd:double"/>
       <xsd:element name="currency" type="xsd:string"/>
       <xsd:element name="application-name" type="xsd:string"/>
       <xsd:element name="order-line-id" type="xsd:long"/>
 </xsd:schema>

Constructing the XML Creation of an event�s representation in XML takes place 
generically relative to the event�s type. Consequently, to create an accurate XML 
instance document, each event must specify the namespace, event type, elements, and 
order of its elements. Using the TestTrackingEvent example, you would construct 
the XML representing an instance of the TestTrackingEvent as follows:

Note: Assume that testTrackingEvent is a well-formed instance of a 
TestTrackingEvent.

1. Get the event�s type with the testTrackingEvent.getType() call.

2. Get the event�s namespace with the 
((TrackingEvent)testTrackingEvent).getXMLNamespace()call.

3. Get the event�s XSD filename with the 
((TrackingEvent)testTrackingEvent).getXSDFile() call.

Using the schema keys from the TestTrackingEvent class, values are inserted into 
the XML document. Schema key/attribute value pairs correspond to XML elements in 
this way:

<schema Key>value</schema Key>

The helper class that creates XML for Behavior Tracking assumes that the elements 
inserted into an XML instance document are not deeply nested. Additionally, the 
toString() method is used to create a representation of the value object that is 
retrieved through the Event classes�s getAttribute( String Key ) call. The 
contents of the string returned by invoking toString() on the value object must 
match the type specified in the event�s schema document. The TestTrackingEvent 
retrieves values using the following keys in the order specified in the schemaKeys 
array:



How to Enable Behavior Tracking

WebLogic Portal Development Guide 15-35

! SESSION_ID

! USER_ID

! USER_PROPERTY_ONE_KEY

! USER_PROPERTY_TWO_KEY

The values for these keys are retrieved using the 
testTrackingEvent.getAttribute( <schema Key> ) call. The order in which 
the XML formatted key/value pairs are inserted into the instance document is specified 
by the constant schemaKeys array, which is defined and populated in the 
TestTrackingEvent class.

The steps assembled to create an XML instance document for the 
TestTrackingEvent are presented in Listing 15-11.

Listing 15-11   XML Instance Document Example

<TestTrackingEvent
    xmlns="http://<your URI>/testtracking"
    xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
    xsi:schemaLocation="http://<your URI>/testtracking 
TestTrackingEvent.xsd"
    >
<event_date>XML time instant formatted event date</event_date> 
<event_type>TestTrackingEvent</event_type>
     <application>wlcsApp</application>
     <session_id>theSessionIdValue</session_id>
     <user_id>theUserIdValue</user_id>
     <userPropertyOne>userPropertyOneValue</userPropertyOne>
     <userPropertyTwo>userPropertyTwoValue</userPropertyTwo>
</TestTrackingEvent>

The XML creation is performed automatically when events arrive at the 
com.bea.p13n.tracking.listeners.BehaviorTrackingListener, which 
enables Behavior Tracking in WebLogic Portal. The Behavior Tracking listener is 
installed by adding it to the <EventService Listeners="..."> property in the 
application-config.xml file. For information on how to install a Behavior 
Tracking listener, see�How to Enable Behavior Tracking� on page 15-32.



15 Event and Behavior Tracking

15-36 WebLogic Portal Development Guide

Caution: You must be careful when defining the namespaces, XSD documents, and 
schema keys variables in custom Behavior Tracking event classes, 
especially if they will be persisted to the EVENT table. The method for 
creating and storing XML presented in this discussion exactly follows the 
variables and constants specified in the event class. You are free to develop 
other ways of creating and storing XML; this section is directed only at the 
process of persisting XML Behavior Tracking representations in the BEA 
EVENT table. 

Note: The Event's date is retrieved using the Event class's getTimeStamp() call, 
which returns a Java primitive long typed value. That long must be converted 
into the type specified for the event_date element in the XSD schema 
document. The type in this case is time instant. Event date and event type the 
first two elements in all XML instance documents created through the 
BehaviorTrackingListener.

Creating Custom Behavior Tracking Event Listeners

To create a custom Behavior Tracking listener, in addition to or instead of the default 
BehaviorTrackingListener, follow the example presented in �Writing the Custom 
Event Listener� on page 15-16. Add the new event types to the custom listener�s 
eventTypes array (for example, TestTrackingEvent). A given listener can listen 
for any number of event types that may or may not be Behavior Tracking events. The 
custom Behavior Tracking listener can be installed on either the synchronous or 
asynchronous side of the Event service, whichever is appropriate. 

Writing Custom Event Generators

Once events are created, you must set up a mechanism for generating events in the 
application. Events may be generated from Pipeline components, input processors, JSP 
scriptlets, or JSP tags. Some Behavior Tracking events are generated from within 
WebLogic Portal software. 



How to Enable Behavior Tracking

WebLogic Portal Development Guide 15-37

After determining the mechanism for generating events, Behavior Tracking events can 
be sent to the event system using the 
com.bea.p13n.tracking.TrackingEventHelper class. This class defines helper 
methods that pass events to the Event service. Listing 15-12 shows an example of 
passing the TestTrackingEvent.

Listing 15-12   Dispatching an Event

/*
 * Create the event
 */
Event theEvent = new TestTrackingEvent( "<some session id>",
                                        "<some user id> ",
                                        new String("userPropertyOneValue"),
                                        new Double( 3.14 ) );

/* 
 * Dispatch the event 
 */ 
EventService eventService = TrackingEventHelper.getEventService();
TrackingEventHelper.dispatchEvent( eventService, theEvent );

Dispatching events Because the Event service is an EJB, before dispatching 
events, the Event service must be running in a WebLogic Server instance. 

If dispatching multiple events, it is best to get an instance of the Event service and save 
it as an attribute in your class for reuse, as shown in the following code:

/**
    * Access and start Event service
*/
private EventService eventService = 
com.bea.p13n.tracking.TrackingEventHelper.getEventService ( );

Note: There are three APIs for this. To decide which one to use, see the Javadoc at 
http://edocs.bea.com/wlp/docs70/javadoc/index.html.

Now use that instance of the Event service to dispatch events, as follows:

/**
    * Dispatch the event
*/



15 Event and Behavior Tracking

15-38 WebLogic Portal Development Guide

EventService eventService = TrackingEventHelper.getEventService();
TrackingEventHelper.dispatchEvent ( eventService, theEvent )

Debugging the Event Service

To debug the Event service, create a debug.properties file in the following 
directory:

<BEA_HOME>\weblogic700\portal\config\<YourDomain>\debug.propertie
s

The contents of this file are shown in Listing 15-13.

Listing 15-13   Debugging the Event Service

usePackageNames: on

# Turns on debug for all classes under events
com.bea.p13n.events: on
# com.bea.p13n.events.internal.EventServiceBean: on

# Turns on debug for all classes under tracking
com.bea.p13n.tracking: on

# Or you can selectively turn on classes
com.bea.p13n.tracking.internal persistence: on
com.bea.p13n.mbeans.BehaviorTrackingListener: on
com.bea.p13n.tracking.listeners.BehaviorTrackingListener: on
com.bea.p13n.tracking.SessionEventListener: on



Registering Custom Events

WebLogic Portal Development Guide 15-39

Registering Custom Events

This section contains basic information about registering custom events including 
background information about custom events, how to register events using the Events 
Editor in the BEA E-Business Control Center, and what you need to do when you make 
changes to custom events.

Note: You cannot change any of the standard events supplied with WebLogic Portal.

The creation of a custom event is a multiple-step process. The following list provides 
an overview of the process:

Note: You should have already completed steps 1 and 2.

1. Create the code that defines the event and event listener.

2. Create the code to trigger the event with a JSP tag or an API call.

3. Register the event using the instructions in this topic.

4. To record the event data for Behavior Tracking analysis, add the event to the 
Event service with the WebLogic Server Administration Console and create an 
entry for the event in the EVENT_TYPE table.

When to Register an Event

When you create a custom event to use in a campaign, you must register the event. If 
your event is not used in a campaign, you do not need to register it. Registering a 
custom event lets the E-Business Control Center know that the custom event exists. 
Registering permits campaign developers using the E-Business Control Center to 
create scenario actions that refer to the event. Registering also identifies the event�s 
properties.

Caution: Whenever you change the event code, you must update the event 
registration. Conversely, whenever you change the event registration, you 
must also update the event code. A possible ramification of event 
modification is that the scenario actions that refer to the event�s properties 
may need to be modified.



15 Event and Behavior Tracking

15-40 WebLogic Portal Development Guide

Event Properties

The Event editor in the E-Business Control Center allows you to easily register a 
custom event. For the purpose of registering an event, you can consider an event 
property as a name-value pair. During the registration of a custom event, you specify 
the event�s name, description, and one or more properties. Each property has a range, 
type of permissible value, and default value. The information you need to register for 
an event should be available from your Commerce Business Engineer (CBE) or Java 
developer.

The properties for a custom event includes the following information:

! Data type: Specifies the data type for your property. The possible values are 
Text, Numeric, Floating Point Number, Boolean, and Date/Time.

! Selection mode: Specifies whether a property has a single default value or a 
collection of default values.

! Value range: Specifies whether the defaults are restricted to one specific value, 
one or more specific values, or any value.

Note: When you set property values, you are not guaranteed that the property will 
adhere to these restrictions at run time. Events are not checked by the 
SchemaManager for adherence to a property schema. Therefore, you need to 
keep the event type definition and the event registration synchronized.

As the previous list suggests, a combination of property values are possible. The 
possible combinations of properties are listed here:

! Boolean: The values for this type of property are either True or False. You can 
choose the default. The default value is displayed only in the Enter Property 
Values Window, not in the Edit Event Property window. When this data type is 
selected, the Selection mode and Value range are unavailable.

! Single, Unrestricted: This type of property has only one value, which is also the 
default value.

! Single, Restricted: This type of property has multiple values and a single 
default value. You can select which value is the default.

! Multiple, Restricted: This type of property has multiple values. You can select 
one or more values as defaults values. 



Registering Custom Events

WebLogic Portal Development Guide 15-41

! Multiple, Unrestricted: This type of property has multiple values. You cannot 
select any defaults; all values are defaults.

Instructions for Registering a Custom Event

To register a custom event, complete the following steps: 

1. Start the E-Business Control Center. The Explorer window opens as shown in 
Figure 15-7.



15 Event and Behavior Tracking

15-42 WebLogic Portal Development Guide

Figure 15-7   E-Business Control Center Window

2. Open your project. For more information see the E-Business Control Center 
online help.

3. In the Explorer window, select the Site Infrastructure tab, and then click the 
Event icon. A list of events appears in the Events field.

4. Click the New icon, and then select Event. The Event Editor window appears as 
shown in Figure 15-8.



Registering Custom Events

WebLogic Portal Development Guide 15-43

Figure 15-8   Event Editor Window

5. In the Event Editor window, click the New button. The Edit Property window 
opens, as shown in Figure 15-9.

Figure 15-9   Edit Property Window

6. In the Edit Property window, complete these steps:

a. In the Name field, enter a unique name for the event no longer than 100 
characters (required).

b. In the Description field, enter a description for the event no longer than 254 
characters (optional).

c. Select the Data Type, Selection mode, and Value range for the property value 
from the drop lists.



15 Event and Behavior Tracking

15-44 WebLogic Portal Development Guide

d. Click the Add Values button. The dialog box that appears depends on the 
properties.

e. Enter the appropriate values and select the defaults (if needed). 

f. After you have completed entering the property values for the event, click the 
OK button.

7. Save the event (E-Business Control Center menu → File → Save).

Updating a Registered Custom Event

Whenever you make changes to a custom event�s code, you should update that event�s 
registration. Updating the registration lets the E-Business Control Center know about 
the changes in the custom event and aids campaign developers using the E-Business 
Control Center to modify any scenario actions (in campaigns) that refer to the event.

To update a custom event, complete the following steps.

1. Start the E-Business Control Center. The Explorer window opens.

2. Open your project. For more information, see the E-Business Control Center 
online help.

3. In the Explorer window, select the Site Infrastructure tab, and then click the 
Event icon. A list of events appears in the Events field as shown in Figure 15-10.

Note: You cannot edit standard events.



Registering Custom Events

WebLogic Portal Development Guide 15-45

Figure 15-10   Explorer Window

4. Double-click the custom event that you wish to edit. The Event Editor window 
opens as shown in Figure 15-11. The Event properties field displays a list of 
existing properties.



15 Event and Behavior Tracking

15-46 WebLogic Portal Development Guide

Figure 15-11   Event Editor Window

5. Select the property you want to edit, and then click the Edit button. The Edit 
Properties window opens, as shown in Figure 15-12.

Figure 15-12   Edit Property Window

6. Make the appropriate changes, and then click the OK button.

7. Save the event (E-Business Control Center menu → File → Save).



Activating Behavior Tracking

WebLogic Portal Development Guide 15-47

Activating Behavior Tracking

To record how online visitors are interacting with your Web site, you can record event 
information in a database. These kinds of events are called Behavior Tracking events. 
E-analytics and e-marketing systems can then analyze these events offline to evaluate 
visitor behavior and transactional data.

Note: For information about how to configure a database for recording event data, 
see �Persisting Behavioral Tracking Data� in the Administration Guide at 
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm#1194894.

This sections contains information on the following subjects:

! Procedure for Activating Behavior Tracking

! Configuring the Behavior Tracking Service in WebLogic Server

! Configuring a Data Source

Procedure for Activating Behavior Tracking

Before Behavior Tracking events can be recorded to a database, you must enable the 
Behavior Tracking listener. This is accomplished by adding a listener class. 

Note: If the Event service does not exist as a service for your application, use 
WebLogic Server Administration Console to add it.

The following steps describe how to add a listener class in the Sample Portal. For your 
application, you would use similar steps.

1. In the WebLogic Server Administration Console, navigate to the Synchronous or 
Asynchronous Listeners tab in the node tree for sampleportalDomain as follows:

http://<hostname>:<port>/console → sampleportalDomain → Deployments → 
Applications → sampleportal → Service Configurations → Event Service → 
Configuration Tab → Synchronous Listeners



15 Event and Behavior Tracking

15-48 WebLogic Portal Development Guide

2. Add the Behavior Tracking listener 
(com.bea.p13n.tracking.listeners.BehaviorTrackingListener) to the 
Listen Class to Add field, and then click the Add button. See Figure 15-13.

Figure 15-13   WebLogic Server Administration Console�Event Service

Note: You must configure your database before activating Behavior Tracking. For 
information on how to do this, see �Persisting Behavior Tracking Data� in the 
Administration Guide at 
http://edocs.bea.com/wlp/docs70/admin/sysadmin.htm#1194894.

Configuring the Behavior Tracking Service in WebLogic 
Server

Behavior Tracking events are placed in a buffer and then intermittently persisted to the 
Event tables in the database where they can be analyzed offline. An asynchronous 
service is used so that long-running event handlers can execute without delaying the 
application from a Web site visitor�s perspective. 

Note: Each Behavior Tracking event property must be configured in the WebLogic 
Server Administration Console. 

Connection pool The buffered Behavior Tracking events are swept into the 
database using a pool of data connections. The default Data Source is 
weblogic.jdbc.jts.commercePool. You can use a different Data Source. To do 
this, create and configure the new Data Source (see �Configuring a Data Source� on 
page 15-50) and substitute the name of the default Data Source with the name of the 
new Data Source in the WebLogic Server Administration Console. 



Activating Behavior Tracking

WebLogic Portal Development Guide 15-49

Properties The particular events that are persisted to the database are specified in 
the PersistEventTypes property. You can view and alter the list of the persisted 
events in the WebLogic Server Administration Console. The types in this list must 
match the type specified in the event; for example, the SessionBeginEvent has as its 
type the string �SessionBeginEvent�.

Optimize performance The frequency of the sweeping of events from the buffer is 
controlled by the following properties the Behavior Tracking service:

! MaxBufferSize

! SweepInterval

! SweepMaxTime

You should tune these properties to optimize performance. A buffer sweep should be 
performed often enough that writing to the database is not too time consuming but not 
so frequent that the operation is wasteful.

Steps To configure the Behavior Tracking Service, take the following steps:

Notes: These steps provide information on how to optimize performance in the 
Sample Portal. For your application, you would use similar steps.

If the Event service does not exist as a service for your application, use 
WebLogic Server Administration Console to add it.

Note: If the Behavior Tracking and Event services do not exist for your application, 
use the WebLogic Server Administration Console to add them.

1. In the WebLogic Server Administration Console, navigate to the Behavior 
Tracking Service (shown in Figure 15-13) in the node tree for 
sampleportalDomain, as follows:

http://<hostname>:<port>/console → sampleportalDomain → Deployments → 
Applications → sampleportal → Service Configurations → Behavior Tracking 
Service



15 Event and Behavior Tracking

15-50 WebLogic Portal Development Guide

Figure 15-14   WebLogic Server Administration Console�Behavior Tracking 
Service

2. To change the Data Source, enter the fully-qualified name of the Data Source in 
the Data Source JNDI Name field.

3. To change the sweeping of events from the buffer, enter the new buffer values in 
the appropriate fields.

4. To specify whether a particular event is persisted, add or remove the event from 
the Persisted Event Types list box.

Configuring a Data Source

This section provides a brief description about configuring a new Data Source for a 
connection pool used for persisting events in the Sample Portal. For your application, 
you would use similar steps

To configure a new Data Source, take the following steps.

Note: For more information on using the WebLogic Server Administration Console, 
see the WebLogic Server documentation at 
http://edocs.bea.com/wls/docs70/index.html.

1. In the WebLogic Server Administration Console, navigate to the Behavior 
Tracking Service (shown in Figure 15-13) in the node tree for 
sampleportalDomain, as follows:



Activating Behavior Tracking

WebLogic Portal Development Guide 15-51

http://<hostname>:<port>/console → sampleportal → Services → JDBC → Data 
Sources → JDBCData Source Factories

Figure 15-15   WebLogic Server Administration Console�JDBC Data Sources

2. In the right pane, click Configure a new JDBC Data Source Factory.

3. Enter the appropriate values for the new Data Source in the appropriate tabs and 
fields.



15 Event and Behavior Tracking

15-52 WebLogic Portal Development Guide



 WebLogic Portal Development Guide 16-1

CHAPTER

16 Using the Expression 
Package

This topic illustrates how to use the services of the Expression package. The 
Expression package is part of the Personalization and Interaction Management features 
in WebLogic Portal. The Expression package allows you to externalize calculations, 
business policies, decision trees, and other operations from your Java code.

This section includes information on the following subjects:

! What Is the Expression Package?

! Assembling and Managing Expressions

! Working with Expressions

! Configuring the Expression Package

What Is the Expression Package?

As previously mentioned, the Expression package allows you to externalize business 
logic or formulas from your Java code. Using the Expression package, any arithmetic, 
boolean, relational or conditional statement can be represented. You can use the 
Expression package to dynamically assemble and evaluate your own business logic. 

An example of Expression package use is a rental car agency using it for calculating 
rental costs, which may change frequently. Rather than expressing the calculation 
using Java statements, the calculation can be externalized from the Java code into an 
XML document and interpreted at run time. 



16 Using the Expression Package

16-2 WebLogic Portal Development Guide

WebLogic Portal provides an Expression example. To see this example, take the 
following steps: 

1. Start the Personalization server, as follows:

Start → BEA WebLogic Platform 7.0 → WebLogic Portal 7.0 → Portal Examples 
→ Personalization Examples → Launch Personalization Server

2. After the Personalization server is running, start the Personalization Examples, as 
follows:

Start → BEA WebLogic Platform 7.0 → WebLogic Portal 7.0 → Portal Examples 
→ Personalization Examples → Start Personalization Examples

A browser window opens showing the Personalization Examples index, as 
shown in Figure 16-1.

Figure 16-1   Personalization Examples Index



What Is the Expression Package?

WebLogic Portal Development Guide 16-3

3. If you are not logged in or have not created a user, click Please visit the User 
Login example first. A page opens where you can either log in or go to another 
page to create a user.

4. After you have logged in or created a user, in the left column of the page, select 
Expressions → Execute Expression. The Execute Expression Example page 
opens, as shown in Figure 16-8.

Figure 16-2   Execute Expression Example

This window shows a simple application of the Expression package, where the 
parameters are set using the drop-down lists. 

5. Click View Source in the left column. A new page opens showing the JSP 
source, as shown in Figure 16-3.



16 Using the Expression Package

16-4 WebLogic Portal Development Guide

Figure 16-3   JSP Source

This page shows the JSP source (exec_expression.jsp) for the Expression 
Example. After the expression is executed (and a parameter is changed), the 
results are contained in the exec_expression_results.jsp. Both JSP files 
are located in the 
<BEA_HOME>\weblogic700\samples\portal\p13nDomain\beaApps\p13nAp

p\p13n directory.

The next step provides information about how the expression works.

6. On the Execute Expression Example page, click the How does it work? link. A 
a new browser window opens that describes the example, as shown in 
Figure 16-4. 



What Is the Expression Package?

WebLogic Portal Development Guide 16-5

Figure 16-4   How Does It Work? Execute Expression

This page describes how the Expression Example works. It also suggests an 
exercise to further your understanding of expressions.

7. On the Execute Expression Example page, click the Preview Expression XML 
button. A page showing the XML appears, as shown in Figure 16-5.



16 Using the Expression Package

16-6 WebLogic Portal Development Guide

Figure 16-5   Preview Expression as XML

This page shows the Expression Example XML before it is executed. 

The next section discusses the differences between the Expressions package and the 
Rules Framework.

Using Rules or Expressions

One of the applications of the Rules Manager is to use business rules to match users 
and groups with appropriate content. The Rules Manager, like the Expressions 
package, is part of WebLogic Portal Personalization and Interaction Management. 

The most important difference between the Expression package and the Rules Engine 
is that the Expression package uses named variables, while the Rules Engine does not. 
Additionally, the Rules Manager uses rule sets, where one rule can trigger another, that 
is, the rules can cascade. 



What Is the Expression Package?

WebLogic Portal Development Guide 16-7

In general, you use expressions when you want to bind variables to values (usually 
only one) and rules where you need pattern detection and want to evaluate all possible 
bindings to variables.

The Rule Engine has extremely powerful pattern matching and inferencing 
capabilities. However, these capabilities may come with a performance penalty. If you 
find yourself repeatedly executing a named rule, consider converting the rule to an 
expression. If you do not leverage the inferencing capabilities of the Rule Engine or 
rarely have more than one potential variable-value binding, then use expressions.

You should carefully evaluate the performance differences between using expressions, 
supplying an explicit binding between variables and values through a UnificationList 
or custom Unifier, and using the Rule Engine to explore all potential bindings.

Table 16-1 shows some examples of when to use rules and expressions.

Table 16-1  Expressions vs. Rules

Feature Expressions Rules

Externalize business logic from Java code Yes Yes

Rapid deployment of business logic 
independent of application code 

Yes Yes

Non programmers can assemble business 
logic using JSP or Swing GUI

Yes Yes

Inferencing capability No Yes 
One rule firing can cause another rule to be 
fired.

Explicit binding of value to variables Yes No
Values are bound to variables using class 
type. All possible bindings are 
automatically tested.

Long-lived persistence of business logic Yes Yes 
Business logic is persisted as XML 
documents. The XML Schema can provide 
independence from the Java code.



16 Using the Expression Package

16-8 WebLogic Portal Development Guide

To see an example of rules, take the following steps:

1. In the Personalization Examples window, select Rule → Rules Manager. The Rules 
Manager Example appears, as shown in Figure 16-6.

Business logic can be passed between 
processes

Yes Yes 
XML documents defining business logic 
can be serialized or passed between Web 
Services.

XML Parsing cache No Yes 
RulesManager implements a TTL cache for 
ruleset documents.

Expressions cache and optimization Yes Yes 
The Rule Engine uses the Expression 
package internally, and   hence leverages 
many of its underlying optimizations.

Table 16-1  Expressions vs. Rules

Feature Expressions Rules



What Is the Expression Package?

WebLogic Portal Development Guide 16-9

Figure 16-6   Rules Manager Example

This page shows an example of rules. This example demonstrates that the action 
of one rule will cause the condition of another rule to become satisfied. This 
ability is not present in the Expression package.

2. For more explanation, click the How does it work? link. The explanation 
appears, as shown in Figure 16-7.



16 Using the Expression Package

16-10 WebLogic Portal Development Guide

Figure 16-7   How Does It Work? Rules Manager

Expression Package Classes

The Expression package allows users to dynamically assemble and execute 
XML-based expressions. The package defines a set of Java classes that represent 
various types of expression operators, and contains services for evaluating expressions 
consisting of instances of these operators. 

The Expression package includes a base Expression class, a Variable class, and the 
following operator classes for operating on Expressions and Variables:

! Basic language operators (object creation, method call, and so on.)

! Logical operators

! Comparative operators

! Collection operators

! Mathematical operators

! String operators

The Expression package also includes the following services for operating on 
expressions:



What Is the Expression Package?

WebLogic Portal Development Guide 16-11

! Unifier�prepares an expression for evaluation.

! Validator�validates that an expression is well-formed before evaluation.

! Optimizer�optimizes the structure of an expression before evaluation.

! Evaluator�evaluates an expression and returns the result of evaluation.

! Executor�an aggregate service that combines the unification, validation, and 
evaluation processes.

Unlike an expression written directly in Java and executed from within a Java program, 
the Expression package allows you to dynamically assemble and modify expressions 
from within your Java programs. An expression may be modified any number of times 
both before and after evaluation. When you assemble expressions using the Expression 
package you can also take advantage the advanced features of the Expression package, 
such as expression caching, validation, and optimization.

The Expression package serves as the foundation of the BEA Rules Engine. The Rules 
Engine leverages the package in order to represent and evaluate rule condition and 
action expressions. Likewise, you can use the Expression package to dynamically 
assemble and evaluate your own business logic.

The Package Structure for the Expression Package

The Expression package interfaces and abstract classes can be found in the following 
package: com.bea.p13n.expression

The Expression package operators are organized in the following packages:
Basic language operators�com.bea.p13n.expression.operators

Logical operators�com.bea.p13n.expression.operators.logical

String operators�com.bea.p13n.expression.operators.string

Mathematical operators�com.bea.p13n.expression.operators.math

Comparative operators�com.bea.p13n.expression.operators.comparative

Collection operators�com.bea.p13n.expression.operators.collection

The Expression package related classes are packaged in the p13n_util.jar archive.



16 Using the Expression Package

16-12 WebLogic Portal Development Guide

Assembling and Managing Expressions

Before you can begin using expressions, you must first learn how to programmatically 
assemble them using the various operator classes provided in the Expression package. 

An expression is represented as a tree, where each node is another expression itself or 
a plain Java object. Expression trees are assembled in a bottom-up manner; a child 
expression or Java object is first created, and then added to a parent expression.

Figure 16-8 illustrates the steps required to build an expression tree.

! The first step in the expression assembly process is to create one or more child 
operators or Java objects. 

! Next, a parent operator is created by supplying the child operators or Java 
objects to the parent operator�s constructor. 

! This process of creating subexpressions continues until the entire expression is 
assembled.



Assembling and Managing Expressions

WebLogic Portal Development Guide 16-13

Figure 16-8   Building an Expression Tree

Maintaining Parent-child Relationships

Each of the operator classes defined in the Expression package extends a common base 
class that contains the necessary logic for maintaining parent-child relationships; 
therefore, you do not have to worry about maintaining these relationships while 
assembling expressions. However, it is possible to modify the structure of an 
expression after it has been created.

Table 16-2 shows the operators provided in the Expression interface for adding, 
modifying, or removing subexpressions in an expression.

Table 16-2  Methods for Building an Expression Tree

Java Method Description

addSubExpression Adds a child (can be a subexpression) to an expression 
object.



16 Using the Expression Package

16-14 WebLogic Portal Development Guide

For more information about the Expression interface, see the Javadoc.

Managing the Expression Cache

The expression interface also includes methods to manage the caching of results. The 
result of evaluating an expression may be cached in each expression object. When the 
cache is enabled for an expression, trying to evaluate the same expression a second 
time will return the cached value.

Note: By default, caching is turned off. You may want to keep the cache turned off 
for some operators, such as MethodCall.

Table 16-3 shows the methods provided in the Expression interface to manage the 
caching of results.

removeSubExpression Removes an object (can be a subexpression) of the 
expression object.

setSubExpression Replaces existing object (of an expression) by the 
given object (can be a subexpression).

getSubExpression Can be used to access the children of an expression 
object.

getParent Can be used to access the parent expression of an 
expression object.

Table 16-2  Methods for Building an Expression Tree

Java Method Description

Table 16-3  Methods to Manage Caching of Results

Java Method Description

setCacheEnabled Can be used to enable or disable the cache for an 
expression.

isCacheEnabled Can be used to check if the cache is enabled for an 
expression.



Working with Expressions

WebLogic Portal Development Guide 16-15

For more information about the Expression interface, see the Javadoc.

Working with Expressions

After you have assembled an expression, you are ready to work with it using the 
various Expression package services. These services allow you to prepare an 
assembled expression for evaluation, validate that the expression is well-formed, 
optimize its structure, and finally, evaluate the expression.

The following information is presented in this section:

! The Expression Factory

! Expression Package Services

" Unification Service

" Optimization Service

" Validation Service

" Evaluation Service

" Execution Service

The Expression Factory

The ExpressionFactory provides methods to create the various Expression package 
services and data structures used by these services.

isCached Can be used to check if a result is currently cached for 
an expression.

getCachedValue Can be used to get the current cached result of 
evaluating the expression.

Table 16-3  Methods to Manage Caching of Results

Java Method Description



16 Using the Expression Package

16-16 WebLogic Portal Development Guide

For example, the following method will create an instance of the Validator service:

ExpressionFactory.createValidator(null);

For more detail on how to construct the various Expression package services, see the 
Javadoc.

Expression Package Services

The Expression package offers services which can be used on any expression that is 
built using the operators in the Expression package.

Unification Service

The Unifier is used to unify variables (assign values to variables) present in an 
expression. The Unifier uses a data structure known as a UnificationList that 
stores the variable name and the corresponding value of the variable. Like the 
Unifier, the UnificationList instances are created via the ExpressionFactory. 
The Unifier gets the value from the list for a particular variable using the variable 
name as a key to search the UnificationList, and binds the retrieved value to the 
variable.

For more information about the Unifier interface and the ExpressionFactory 
class, see the Javadoc.

Optimization Service

The Optimizer is used to optimize an expression. The default optimization algorithm 
used by the Optimizer is shown below.

! Traverse an expression tree and add each unique subexpression to a list.

! If a subexpression is equal to an expression present in the list, then replace it 
with a proxy expression. The proxy expression delegates to the original 
expression.

For more information about the Optimizer interface and the ExpressionFactory 
class, see the Javadoc.



Working with Expressions

WebLogic Portal Development Guide 16-17

Validation Service

The Validator is used to validate an expression. The default validation algorithm 
used by the Validator is as follows:

For each operand of an operator:

! Get the required type of the operand.

! If the operand is an expression, evaluate the expression and compare the type of 
the result with the required type; otherwise, assert that the operand is of the 
required type.

! If the type does not match or an error occurs during the evaluation of an operand 
expression, the Validator throws an InvalidExpressionException . An 
UnboundVariableException is thrown if any variables in an expression are 
not bound to a value.

The Validator can be used in a stateless or stateful mode. In stateless mode, any 
expression evaluations necessary to perform validation will be executed in stateless 
mode.

For more information about stateless and stateful evaluation modes, see the 
�Evaluation Service� section below.

For more information about the Validator interface and the ExpressionFactory 
class, see the Javadoc.

Evaluation Service

The Evaluator is used to evaluate an expression. An expression can be evaluated in 
stateful or stateless mode:

Stateful mode

 In this mode, the value of each variable that appears in the expression is 
determined by retrieving the value set within the variable.

 In other words, stateful mode relies upon the expression having been previously 
unified by a Unifier. 

When an expression is evaluated in stateful mode and results caching is turned 
on, the results of evaluation will be cached within the expression.

Stateless mode



16 Using the Expression Package

16-18 WebLogic Portal Development Guide

In this mode, the value of each variable that appears in the expression is 
determined by looking up a value that is bound to the name of the variable in an 
external data structure.

In other words, the evaluation process does not rely upon state associated with 
the expression, and as such, does not require the expression to be unified before 
evaluation. 

The data structure that contains the name-value mappings for variables is known 
as a UnificationList and is associated with the Evaluator. Like the 
Evaluator, the UnificationList instances can be created using the 
ExpressionFactory. 

A side effect of stateless mode is that expression evaluation cannot take 
advantage of results caching.

You can use of stateful mode in a situation where an expression need only be evaluated 
within a single thread of execution. In the case of multithreaded evaluation of a single 
expression, you must use stateless mode.

Note: If an expression does not contain variables, then there is no difference between 
the two evaluation modes.

For more information about the Evaluator interface and the ExpressionFactory 
class, see the Javadoc.

Execution Service

The Executor aggregates the Unification Service, Validation Service and Evaluation 
Service. The execute method on an Executor takes a Unifier, a Validator and an 
Evaluator to execute a cycle of unification-validation-evaluation operations. 

The algorithm used by the Executor is shown below:

Unification

!  If the Unifier is not null, unify the expression.

!  If the Unifier is null, do not unify the expression.

Note: The Unifier should be null in the case where the expression passed to the 
Executor is already unified, or the expression is to be evaluated in stateless 
mode.



Working with Expressions

WebLogic Portal Development Guide 16-19

Validation

! If the Validator is not null, validate the given expression.

! If the Validator is null, ignore validation.

Evaluation

! If the Evaluator is not null, evaluate the expression in stateful or stateless 
mode. (depending on the type of evaluator passed.)

! If the Evaluator is null, the Executor throws an 
IllegalArgumentException.

! Return the result.

Note: If the Evaluator passed is stateless, then the Unifier should be null.

For more information about the Executor interface and the ExpressionFactory 
class, see the Javadoc.

Code Examples

This section contains examples that illustrate how to construct expressions 
programmatically and use the Expression package services.

This section contains the following four code examples:

! Stateful Evaluation of a Simple Expression

! Stateful Evaluation of an Expression Containing Variables

! Stateless Validation and Evaluation of an Expression Containing Variables

! Stateful Validation and Evaluation of an Expression Containing Variables

Stateful Evaluation of a Simple Expression

A logical expression is constructed and executed in stateful mode. The expression does 
not contain any variables. 



16 Using the Expression Package

16-20 WebLogic Portal Development Guide

Listing 16-1   Example

The source code for creating and executing the expression is shown below:

Expression expression = new LogicalAnd(Boolean.TRUE, 
Boolean.FALSE); 

// Prepare for creating an executor by creating a stateful
// evaluator. Since the expression does not contain variables,
// we are not using a validator or a unifier in this example, 
// so we will not create them.

// null is passed for the environment Map.

Evaluator evaluator = ExpressionFactory.createEvaluator(null); 

// null is passed for the environment Map.

Executor executor = ExpressionFactory.createExecutor(null);

// Execute the above expression by passing null for both the unifier
// and validator parameters.

Object result = executor.execute(expression, null, null, 
evaluator);

// The result should be Boolean.FALSE.

Stateful Evaluation of an Expression Containing Variables

An expression containing variables is constructed and evaluated in stateful mode.

Listing 16-2   Example

The source code for creating and executing the expression in stateful mode is shown 
below.

// Create a variable that can store an object of type Boolean
// and whose name is “?booleanVariable”. 

Variable booleanVariable = new Variable(“?booleanVariable”, 
Boolean.class);

// Now, we will use the variable that we created in the above step.



Working with Expressions

WebLogic Portal Development Guide 16-21

Expression expression = new LogicalAnd(Boolean.TRUE, 
booleanVariable); 

// Next, we’ll unify the expression by binding any variables
// present in the expression. In the above case, there is one
// variable in the expression so the variable needs to be assigned a
// value. This is shown below.

// Create a UnificationList to store the variable name and value as
// key-value pairs.

UnificationList unificationList = 
ExpressionFactory.createUnificationList(null);

UnificationList.addObject(“?booleanVariable”, Boolean.FALSE);

// Create a unifier.

Unifier unifier = ExpressionFactory.createUnifier(null, 
unificationList);

// Prepare for creating an executor by creating a stateful
// evaluator. We are not using a validator in this example, 
// so we will not create one.

// null is passed for the environment Map.

Evaluator evaluator = ExpressionFactory.createEvaluator(null); 

// null is passed for environment Map.

Executor executor = ExpressionFactory.createExecutor(null);

// Execute the above expression by passing a unifier and a null
// validator.

Object result = executor.execute(expression, unifier, null, 
evaluator);

// The result should be Boolean.FALSE.

Note:  The expression can be unified before calling the execute method by calling 
the unify method on the Unifier. Once the expression is unified there is no 
need to pass a unifier to the execute method of the executor.



16 Using the Expression Package

16-22 WebLogic Portal Development Guide

Stateless Validation and Evaluation of an Expression
 Containing Variables

An expression containing variables is constructed and evaluated in stateless mode. The 
Validator service is also used to validate the expression.

Listing 16-3   Example

The source code for creating and executing the expression in stateless mode is shown 
below.

// Create a variable that can store an object of type Boolean
// and whose name is “?booleanVariable”. 

Variable booleanVariable = new Variable(“?booleanVariable”, 
Boolean.class);

// Now we will use the variable that we created in the above step.

Expression expression = new LogicalAnd(Boolean.TRUE, 
booleanVariable); 

// Next, we’ll unify the expression by binding any variables
// present in the expression. In the above case there is one 
// variable in the expression, so the variable needs to be assigned 
// a value. This is shown below.

// Create a UnificationList to store the variable name and value as
// key-value pairs.

UnificationList unificationList = 
ExpressionFactory.createUnificationList(null);

UnificationList.addObject(“?booleanVariable”, Boolean.FALSE); 

// Prepare for creating an executor by creating a stateless
// evaluator. We are not using a unifier in this example, 
// so we will not create one.

// Creating a stateless evaluator by passing null for the
// environment Map and the UnificationList.

Evaluator evaluator = ExpressionFactory.createEvaluator(null, 
unificationList); 

// Creating a stateless validator.



Working with Expressions

WebLogic Portal Development Guide 16-23

Validator validator = ExpressionFactory.createValidator(null, 
evaluator);

// Creating an executor.

Executor executor = ExpressionFactory.createExecutor(null);

// Execute the above expression by passing null for the unifier and
// a non-null validator.

Object result = executor.execute(expression, null, validator, 
evaluator)

// The result should be Boolean.FALSE.

// After calling execute method, the given expression will not be
// modified by any services that were used above. 

// The stateless execution mode is useful if an expression is shared
// between multiple threads. 

Stateful Validation and Evaluation of an Expression
Containing Variables

An expression containing variables is constructed and evaluated in stateful mode. The 
Validator service is also used to validate the expression.

Listing 16-4   Example

The source code for creating and executing the expression in a stateful mode is shown 
below.

// Create a variable that can store an object of type Boolean
// and whose name is “?booleanVariable”. 

Variable booleanVariable = new Variable(“?booleanVariable”, 
Boolean.class);

// Now we will use the variable that we created in the above step.

Expression expression = new LogicalAnd(Boolean.TRUE, 
booleanVariable); 

// Next, we’ll unify the expression by binding any variables
// present in the expression. In the above case, there is one 
// variable in the expression, so the variable needs to be assigned 
// a value. This is shown below.



16 Using the Expression Package

16-24 WebLogic Portal Development Guide

// Create a UnificationList to store the variable name and value
// as key-value pairs.

UnificationList unificationList = 
ExpressionFactory.createUnificationList(null);

UnificationList.addObject(“?booleanVariable”, Boolean.FALSE);

// Create a unifier.

Unifier unifier = ExpressionFactory.createUnifier(null, 
unificationList);

// Prepare for creating an executor by creating a stateful
// evaluator and validator.

// null is passed for the environment Map.

Evaluator evaluator = ExpressionFactory.createEvaluator(null); 

// null is passed for the environment Map.

// Creating a validator.

Validator validator = ExpressionFactory.createValidator(null);

// Creating an executor.

Executor executor = ExpressionFactory.createExecutor(null);

// Execute the above expression by passing a unifier and a non-null
// validator.

Object result = executor.execute(expression, unifier, validator, 
evaluator);

// The result should be Boolean.FALSE.

Note: The expression can be unified before calling the execute method by calling 
the unify method on the Unifier. Once the expression is unified there is no 
need to pass a unifier to the execute method of the Executor. The validation 
service can be used directly by calling the validate method. The validate 
method throws an InvalidExpressionException if the given expression is 
invalid.



Configuring the Expression Package

WebLogic Portal Development Guide 16-25

Configuring the Expression Package

The expression.properties file contains configuration settings for the Expression 
package and should be modified with care. 

This file is archived in p13n_util.jar under the package 
com.bea.p13n.expression.

##
# Expression Comparator null handling
# 
# If the following property is set to true the Expression
# Comparator will return false as the result of comparing 
# any non-null value to a null, regardless of the 
# comparison being performed.
# 
# Defaults to true.
## 

expression.comparator.nullcheck=true

##

# Expression Comparator equality epsilon.
# 
# The following property determines the epsilon value for
# numeric equality comparisons.
# 

# Defaults to 0.
## 

expression.comparator.epsilon=0.00001

##
# Expression Introspector Method Array Caching
#
# If the following property is set to true the Expression
# Introspector will cache the array of Methods implemented by a 
# Java Class.
# 

# Defaults to true. 
## 

expression.introspector.method.array.cache=true



16 Using the Expression Package

16-26 WebLogic Portal Development Guide

##
# Expression Introspector Method Caching
#
# If the following property is set to true the Expression
# Introspector will cache Methods by signature.
# 
# Defaults to true.
## 

expression.introspector.method.cache=true

##
# Expression Parser Node Support Classes
# 
# This property supports a comma-delimited list of classes
# extending the base AST NodeSupport class. Such classes
# provide node creation support for expression-schema namespaces
# required for constructing the intermediate AST representing a 
# given Expression instance.
#
# All NodeSupport subclasses must co-exist peacefully with the
# required CoreNodeSupport instance.
##

parser.node.support.list=\ 

com.bea.p13n.expression.internal.parser.expression.ExpressionNode
Support

##
# Expression Parser Transform Visitor Class
#
# This property specifies the ExpressionTranformVisitor or 
# subclass to be used for intermediate AST-to-Expression
# transformations.
#
## 

parser.transform=\

com.bea.p13n.expression.internal.parser.expression.ExpressionTran
sformVisitor



Session Events

WebLogic Portal Development Guide A-1

A Event Descriptions

This appendix provides information about the standard events provided with 
WebLogic Portal. Specifically, it contains a description of each kind of event, what 
generates the event, the class where event generation occurs, an example of usage, and 
the type of data within each event object.

WebLogic Portal Events are organized in the following categories:

" Session Events

" User Registration Event

" Product Events

" Content Events

" Cart Events

" Buy Event

" Rules Event

" Campaign Events

Session Events

Session events fire at the start time, end time, and if executed, the login time of a 
visitor�s session.



A Event Descriptions

A-2 WebLogic Portal Development Guide

SessionBeginEvent

SessionEndEvent

SessionLoginEvent

Description Occurs when a visitor begins interacting with a Web or portal site.

Class com.bea.p13n.tracking.events.SessionBeginEvent

Generator See �Servlet Lifecycle Events and Servlet Filter Events� on page 15-9.

Elements application
event-date
event-type
session-id
user-id

Description Occurs when a visitor leaves a site, or when the visitor�s session has 
timed out.

Class com.bea.p13n.tracking.events.SessionEndEvent

Generator See �Servlet Lifecycle Events and Servlet Filter Events� on page 15-9.

Elements application
event-date
event-type
session-id
user-id

Description Occurs when a visitor logs on a Web or portal site.



User Registration Event

WebLogic Portal Development Guide A-3

User Registration Event

Only one registration event exists. It is described in the following table.

UserRegistrationEvent

Class com.bea.p13n.tracking.events.SessionLoginEvent

Generator TrackingEventHelper.dispatchSessionLoginEvent(), 
P13NAuthFilter, and/or Input Processor. 
See �Generating Login and Creation Events� on page 15-10.

Elements application
event-date
event-type
session-id
user-id

Description Occurs when visitor registers on a Web or portal site.

Class com.bea.p13n.tracking.events.UserRegistrationEve
nt

Generator TrackingEventHelper.dispatchUserRegistrationEven
t() and/or Input processor.

Example Usage examples.wlcs.sampleapp.customer.webflow.LoginCu
stomerIP located in 
<BEA_HOME>\weblogic700\portal\samples\portal\wlc
sDomain\wlcsApp\wlcs\WEB-INF\src



A Event Descriptions

A-4 WebLogic Portal Development Guide

Product Events

These events occur when visitor is presented with a product or clicks (selects) the 
presented product.

ClickProductEvent

Elements application
event-date
event-type
session-id
user-id

Description Occurs when a visitor clicks a product link.

Class com.bea.commerce.ebusiness.tracking.events.Click
ProductEvent

Generator JSP Tag. Also see �Servlet Lifecycle Events and Servlet Filter Events� 
on page 15-9.

Elements application
event-date
event-type
session-id
user-id
document-type
document-id
sku
category-id
application-name (name of storefront, not portal application)



Content Events

WebLogic Portal Development Guide A-5

DisplayProductEvent

Content Events

These events occur when the visitor is presented some content, such as an 
advertisement, or clicks the presented content.

ClickContentEvent

Description Occurs when a product is displayed to the visitor.

Class com.bea.commerce.ebusiness.tracking.events.Displ
ayProductEvent

Generator JSP Tag

Elements application
event-date
event-type
session-id
user-id
document-type
document-id
sku
category-id
application-name (name of storefront, not portal application)

Description Occurs when a visitor clicks some Web site content, such as a link or 
banner.

Class com.bea.p13n.tracking.events.ClickContentEvent



A Event Descriptions

A-6 WebLogic Portal Development Guide

DisplayContentEvent

Cart Events

These events indicate that one or more items are added or removed from a visitor�s 
shopping cart.

Generator JSP Tag. Also see �Servlet Lifecycle Events and Servlet Filter Events� 
on page 15-9.

Elements application
event-date
event-type
session-id
user-id
document-type
document-id

Description Occurs when content is presented to a visitor, usually any content from 
a content management system.

Class com.bea.p13n.tracking.events

Generator JSP Tag

Elements application
event-date
event-type
session-id
user-id
document-type
document-id



Cart Events

WebLogic Portal Development Guide A-7

AddToCartEvent

RemoveFromCartEvent

Description Occurs when an item is added to a visitor�s shopping cart.

Class com.bea.commerce.ebusiness.tracking.events.AddTo
CartEvent

Generator Pipeline component. Located in 
<BEA_HOME>\weblogic700\portal\applications\wlcsA
pp-project\application-sync\pipelines.

Example Usage examples.wlcs.sampleapp.tracking.pipeline.AddToC
artTrackerPC located in 
<BEA_HOME>\weblogic700\portal\samples\portal\wlc
sDomain\beaApps\wlcsApp\src

Elements application
event-date
event-type
session-id
user-id
sku
quantity
unit-list-price
currency
application-name (name of storefront, not portal application)

Description Occurs when an item is removed from a visitor�s shopping cart.

Class com.bea.commerce.ebusiness.tracking.events.Remov
eFromCartEvent

Generator Pipeline component. Located in 
<BEA_HOME>\weblogic700\portal\applications\wlcsA
pp-project\application-sync\pipelines



A Event Descriptions

A-8 WebLogic Portal Development Guide

PurchaseCartEvent

Example Usage examples.wlcs.sampleapp.tracking.pipeline.Remove
FromCartTrackerPC located in 
<BEA_HOME>\weblogic700\portal\samples\portal\wlc
sDomain\beaApps\wlcsApp\src

Elements application
event-date
event-type
session-id
user-id
sku
quantity
unit-price
currency
application-name (name of storefront, not portal application)

Description Occurs once for an entire order, unlike the BuyEvent, which occurs 
for each line item. This event is useful for campaigns. You can use it 
when writing scenario actions to know when your visitor makes a 
purchase with specific characteristics, such as an order greater than 
$100 or the purchase of a particular product.

Class com.bea.commerce.ebusiness.tracking.events.Purch
aseCartEvent

Generator Pipeline component. Located in 
<BEA_HOME>\weblogic700\portal\applications\wlcsA
pp-project\application-sync\pipelines.

Example Usage examples.wlcs.sampleapp.tracking.pipeline.Purcha
seTrackerPC located in 
<BEA_HOME>\weblogic700\portal\samples\portal\wlc
sDomain\beaApps\wlcsApp\src



Buy Event

WebLogic Portal Development Guide A-9

Buy Event

Only one buy event exists. It is described in the following table.

BuyEvent

Elements application
session-id
user-id
event-date
event-type
total-price
order-id
currency
application-name (name of storefront, not portal application)

Description Occurs when a visitor completes the purchase. A BuyEvent occurs 
for each line item. A purchase may consist of one or more line items. 
A line item may consist of one or more items. For example, although a 
particular line item may have quantity of four items, only one 
BuyEvent occurs. 

Class com.bea.commerce.ebusiness.tracking.events.
BuyEvent

Generator Pipeline component

Example Usage examples.wlcs.sampleapp.tracking.pipeline.Purcha
seTrackerPC located in 
<BEA_HOME>\weblogic700\portal\applications\wlcsA
pp\src



A Event Descriptions

A-10 WebLogic Portal Development Guide

Rules Event

Only one rule event exists. It is described in the following table.

RuleEvent

Elements application
event-date
event-type
session-id
user-id
sku
quantity
unit-price
currency
application-name (name of storefront, not portal application)
order-line-id

Description Indicates the rules that were fired as a visitor navigates a Web site.

Class com.bea.p13n.tracking.events.RuleEvent

Generator Fired internally from advislets

Elements application
event-date
event-type
session-id
user-id
ruleset-name
rule-name



Campaign Events

WebLogic Portal Development Guide A-11

Campaign Events

These events occur when a visitor participates in a campaign.

CampaignUserActivityEvent

DisplayCampaignEvent

Description Occurs when a visitor participates in a campaign. Specifically, this 
event is fired whenever one or more scenario actions are true and the 
campaign service is activated. You can limit this event to a single 
occurrence for a particular scenario. This event is intended for use by 
analytic software.

Class com.bea.campaign.tracking.events.CampaignUserAct
ivityEvent

Generator Fired internally from the campaign service.

Elements application
event-date
event-type
session-id
user-id
campaign-id
scenario-id

Description Occurs when campaign content, such as an ad, is presented to the 
visitor. Specifically, this event is fired whenever a campaign 
placeholder displays an ad placed in the ad bucket by a campaign. You 
can use this event to trigger another campaign. Analytic software uses 
this event to determine if a visitor saw an ad as a result of a campaign.



A Event Descriptions

A-12 WebLogic Portal Development Guide

ClickCampaignEvent

Class com.bea.campaign.tracking.events.CampaignUserAct
ivityEvent

Generator Fired internally from the campaign service.

Elements application
event-date
event-type
session-id
user-id
document-type
document-id
campaign-id
scenario-id
application-name (name of storefront, not portal application)
placeholder-id

Description Occurs when a campaign item, such as an ad, is clicked on by the 
visitor. Specifically, this event is fired whenever a visitor clicks a 
campaign ad that was placed in the ad bucket by a campaign. You can 
use this event to trigger another campaign. Analytic software uses this 
event to determine if a visitor clicked on an ad as a result of a 
campaign.

Class com.bea.campaign.tracking.events.ClickCampaignEv
ent

Generator Fired internally from campaign service. Also see �Servlet Lifecycle 
Events and Servlet Filter Events� on page 15-9.



Campaign Events

WebLogic Portal Development Guide A-13

Elements application
event-date
event-type
session-id
user-id
document-type
document-id
campaign-id
scenario-id
application-name (name of storefront, not portal application)
placeholder-id



A Event Descriptions

A-14 WebLogic Portal Development Guide



WebLogic Portal Development Guide I-1

Index

A
access control lists

see also security, ACLs
accessor method(s)

attributes of 14-32
ShoppingCart 14-32
ShoppingCartLine 14-33

ACLs
see also security, access control lists

activating
behavior tracking 15-47

ad placeholders
and advertisements, definition 13-3
definition
loadAds script 13-10
query priorities 13-6
see also placeholders

adAltText attribute 13-8
adBorder attribute 13-8
AddtoCartEvent A-7
adMap attribute 13-8
adMapName attribute 13-7
administration tools

links to online help 3-8
logging in 2-21, 2-32
viewing new portal 2-22

administrators
name and password for creating domains 

2-6
adTarget JSP tag 13-8
adTargetContent attribute 13-7

adTargetUrl attribute 13-7
advertisements

ad placeholders, HTML document 
attributes 13-5

definition 13-3
describing with attributes 13-4
event for ad presented in campaign A-11
event for customer clicking on ad A-12
event sequence diagram 15-6
loadAds script 13-10
loading into content management 13-4
loading into content management system 

13-4�13-10
making image ad clickable 13-3, 13-6
restrictions for ad attributes 13-4
restrictions for adding attributes 13-4
tracking when customers click, see 

content, events
Advice object 12-9
AdviceRequest object 12-8, 12-9, 12-11
AdviceRequestConstants interface 12-7
Advislet

event fired from indicating rules A-10
mapping an Advise request 12-7
personalized applications 12-6
types of 12-7

Advisor
JSP tags

creating personalized applications 
12-3

mapping an Advise request to an advislet 



WebLogic Portal Development Guide I-2

12-7
see also EJBs, personalization
session bean 12-6
session bean, querying content 

management 12-9
advisor

using to personalize applications 12-2
advisor package 12-8, 12-9
Advisor session bean

classifying users 12-8
selecting content 12-9

adWeight attribute 13-6
adWinClose attribute 13-8
adWinTarget attribute 13-8
Align attribute 13-9
alt tag for image files 13-8
AltText attribute 13-8
analyzing customer behavior, see behavior 

tracking, events
anonymous users

campaigns 13-1
appearance

creating and modifying for WebLogic 
Portal 10-1

see also skins, layouts
application

placing code in for external content 
management system 8-44

application-config.xml 6-9, 8-8, 8-10, 8-19
configuring for content management 

8-10
configuring for document connection 

pools 8-19
configuring for integration with external 

content management system 
8-5

persistToDatabase property 15-32
applications

personalized, creating 12-6
see also Web applications, enterprise 

applications, portal Web 

applications
synchronizing webflow to 9-36

APPNAME 6-8, 6-13
arrays

behavior tracking, example 15-26
defining array that contains query results 

for content management 8-27
assembly-descriptor 8-46
asynchronous delivery, diagram of events 

15-4
asynchronous listeners 15-3
attributes

accessor method 14-32
adWeight for documents 13-5
of portlets, editing

attributes file for documents, location 13-10
attributes for documents

HTML documents 13-5
image documents 13-7
Shockwave documents 13-6, 13-9

authentication
see also personalization
see also UUP

authentication providers, multiple 7-22
authorization

overview 1-2
see also personalization
see also UUP

Available
making layouts available 10-9
making skins available 10-5
portlets 2-34

B
backups

making before creating portal with 
existing domain 3-1

banners
adding to portlets 2-27
tracking when customers click, see 



WebLogic Portal Development Guide I-3

content, events
Base attribute 13-9
base class constructor 15-27
baseportal 10-2
batches

deleting email batches for campaigns 
13-18

mailmanager file 13-19
begin node 9-16
BeginEvent session event A-2
behavior tracking 15-1

activating 15-47
configuring data source

data sources
configuring for behavior track-

ing 15-50
configuring service 15-48
converting behavior tracking events to 

XML 15-33
definition 13-2, 15-1
enabling 15-32
events, attributes 15-27
example array 15-26
facilitating offline processing 15-21
persistToDatabase property 15-32
rules, enabling firing in custom behavior 

tracking event 15-29
see also events
turning into XML 15-22
writing behavior tracking event class 

15-20
XSD

schema 15-24
BehaviorTrackingListener 15-20
BGColor attribute 13-9
boolean

data types and property sets 6-22
properties with boolean value 6-22

Boolean for event property 15-40
Border attribute 13-8
border for image anchors 13-8

buffers
and events 15-20
configuring events buffer sweeping 

15-21
MaxBufferSize 15-20

bulk mail
deleting email batches for campaigns 

13-18
sending 13-18

bulk mail in campaigns 13-16
bulkloader

performance tips 8-5
switch settings for integrating with 

external content management 
system 8-2

business logic 14-30
newusercreation.jsp 6-48
see also rules
transactions and multithreading 1-3

business transaction services, see 
transactions

button events 9-6
BuyEvent A-9
buying

events A-9
see also commerce
see also transactions

C
Cache tag 6-14
cache tag 6-9
cacheId 8-29
caches

accessing content selector cache on 
different JSP 8-37

bulkloader performance tips 8-5
caching and methods for UUP and 

EntityPropertyManager 6-3
caching data for UUPs via EJBs 6-3
configuring to improving performance 



WebLogic Portal Development Guide I-4

for content management 8-28
discount service caches in clustered, 

nonclustered environments 
11-108

forward caching a document 11-105
group membership TTL in caching 

realm 11-108
integrating services with catalog cache 

14-45
performance tuning 11-103
property caching in a clustered 

environment 11-106
cacheTimeout 8-29
campaign event, requirements 15-16
campaigns 15-1

definition 13-2
deleting email batches for campaigns 

13-18
email

bulk mail 13-16
event for ad presented A-11
event for customer clicking on ad A-12
event for one or more true scenario 

actions A-11
event sequence diagram 15-6
events A-11
how events work in campaigns 15-2
HTML

document attributes for ad 
placeholders 13-5

personalized emails
creating 13-11
email JSPs 13-13
setting up 13-11
user property names 13-12

pop-up windows 13-8
query priorities 13-6
restrictions for ad attributes 13-4
sending bulk mail 13-18
setting up display and clickthroughs 

13-3

setting up for WebLogic Portal 13-1
tracking customer behavior, see content, 

events
tracking effects with events 15-9
using events in, example 15-1

CampaignUserActivityEvent A-11
CapacityIncrement attribute 8-21
carts

customers� purchases�, tracking with 
events 15-9

event sequence diagram 15-7
events A-6
see also commerce

case for document management 8-8
catalogs

considerations before loading your 
catalog data 14-10

displaying all views 14-22
displaying keys 14-22
displaying keys of all product items 

14-24
getProperty 14-18
input file structure requirements 14-11
integrating services with catalog cache 

14-45
item properties for display in JSPs 14-20
iterateThroughView 14-18, 14-23
iterateViewIterator 14-18, 14-21
iterateViewIterator tag 14-21
keys of categories in ViewIterator 14-22
loading your data into 14-9
log file and error file 14-16
running DBLoader to load data 14-14
showing in JSP 14-18
supporting product catalog in WebLogic 

Portal 14-9
troubleshooting 14-16
UNIX and privileges 14-16

categories
keys and ViewIterator 14-22
keys in ViewIterator for catalogs 14-22



WebLogic Portal Development Guide I-5

CategoryManager deployment descriptor 
14-46

CategoryManager interface 14-46
checkout process 14-26
class

expression 16-10
operator 16-10
variable 16-10

class loader dependencies, avoiding 6-3
classes

InputProcessorSupportClass 9-39
Classified Advislet 12-7
classifier URI prefix for personalized 

applications 12-7
classifying user

with Advisor session bean 12-8
ClassPath attribute 8-22
cleanup setting for bulkloader 8-2
ClickCampaignEvent 15-10, A-12
ClickCampaignEvent.java 15-22
ClickContentEvent 15-10, A-5
ClickProductEvent 15-10, A-4
ClickThroughFilter 15-10
clickthroughs

making image ad clickable 13-3, 13-6
setting up display and clickthroughs 

13-3
clusters

discount service caches in clustered, 
nonclustered environments 
11-108

modifying sendmail script 13-17
property caching in a clustered 

environment 11-106
cm.tld 8-25
cm_taglib.jar 8-25
CMS, see content management
colName 8-23
colors

swfBGColor 13-9
column setting for bulkloader 8-4

columnMap setting for bulkloader 8-4
columns

creating column layouts
see also layouts

com.bea.p13n.content.ContentHelper 8-33, 
8-35

commerce
customers� purchases, tracking with 

events 15-9
events, see also events, carts, buy
integrating payment service with 14-5
integrating services with catalog cache 

14-45
integrating tax service with 14-2
setting up commerce services in your site 

14-1
Commerce pool datasource entries 3-4
CommercePool 3-4
CommercePool Datasource 3-5
commitAfter setting for bulkloader 8-4
comparison operators in queries 8-51
components

adding to portlets 2-27
created by domain wizard 2-8
created by portal wizard 2-18
created by portlet wizard 2-30

CONFIDENTIAL 7-25
confidential transport guarantee 7-25
config.xml 11-109

personalization console entry 3-7
required JDBC entries for existing 

domains 3-4
requirements for SSL 7-25

configuration
behavior tracking 15-48
webflow files 9-1

configuration wizard
overview 1-6
see also domain wizard

configuring
content management 8-7



WebLogic Portal Development Guide I-6

DocumentSchema EJB 8-7
new ProfileManager 6-10

connection pools
bulkloader performance tips 8-6
configuring data source for behavior 

tracking 15-50
document connection pools
JDBC Data Source Factory 15-51
JDBC DocumentConnectionPool 

settings 8-22
see also document connection pools
tuning thread/connection parameters in 

JDBC 11-109
ConnectionPoolName 8-8
connections

elbows in transition lines 9-21
moving connection port 9-20
moving transition to other node 9-21

conPool setting for bulkloader 8-3
console

editing document connection pool in 
8-19

personalization 3-7
WebLogic Server Administration 6-9

constructing Java queries 8-53
constructors

example 15-27
TestTrackingEvent 15-29
writing TrackingEvent base class 

constructor 15-27
containerId parameter 13-13
containerName parameter 13-14
container-transaction 8-46
content

customer reactions, tracking with events 
15-9

event sequence diagram 15-7
events A-5
querying 8-49
selecting

with Advisor session bean 12-9

content management
ad placeholders getting content from 

13-2
ad placeholders, HTML document 

attributes 13-5
adding content using DocumentProvider 

interface 8-40
additional classes for SPI 

implementation 8-43
arrays, defining that contain query 

results 8-27
caches and performance 8-28
classifying users in personalization 12-4
configuration 8-7
configuring 8-7
configuring application-config.xml 8-10
content events A-6
content selector tags, using 8-32
document attributes for display and 

clickthrough 13-3
document connection pool, modifying 

8-45
document connection pool, new 8-45
document connection pools 8-18
document manager, new 8-45
DocumentManager EJB deployment 

descriptor 8-7
event sequence diagram 15-7
identifying JNDI Home for 8-27
integrating external systems 8-39
JAR files, make accessible for 8-48
JSP tags that support content selectors 

8-30
loading ads 13-4�13-10
loading ads into 13-4
mapping recommendation requests 12-7
matching content to users in 

personalization 12-5
matching content to users with Advisor 

session bean 12-10
minimum use requirements for external 



WebLogic Portal Development Guide I-7

program 8-41
performance tuning 11-103
personalized applications 12-7
publishing to reference implementation 

8-48
putting code into application 8-44
query priorities 13-6
querying for personalized applications 

12-9
restrictions for ad attributes 13-4
rules-based inference engine 12-7
selecting content in personalization 12-4
SPI implementation, writing 8-42
turning content on or off in 

personalization 12-4
content selectors

accessing content selector cache on 
different JSP 8-37

examples 8-35
identifying definition 8-26
JSP tags that support 8-30
personalization 12-19
using content selector tags 8-32

content types
selecting for portlet 2-28

CONTENT_MANAGER_HOME attribute 
12-9

CONTENT_MANAGER_HOME constant 
12-11

CONTENT_QUERY_MAX_ITEMS 
attribute 12-9

CONTENT_QUERY_MAX_ITEMS 
constant 12-11

CONTENT_QUERY_SORT_BY attribute 
12-9

CONTENT_QUERY_SORT_BY constant 
12-11

CONTENT_QUERY_STRING attribute 
12-9

CONTENT_QUERY_STRING constant 
12-11

ContentCacheName 8-10, 8-15
ContentCaching 8-10, 8-14
ContentHelper JSP tag 8-33, 8-35
contentHome 8-24
contentHome request parameters 8-24
ContentQuery Advislet 12-7
contentquery prefix for personalized 

applications 12-7
contentQuery tag 12-2, 12-3, 12-4
contentSelector 8-25, 8-34
ContentSelector Advislet 12-7
contentselector prefix for personalized 

applications 12-7
contentSelector tag 12-2, 12-3, 12-5
content-selector tag 8-27
converting

RDBMS Realm to WebLogic Server 7.0 
security 7-12

createAdviceRequest method 12-8, 12-9
createP13NRequest 12-8, 12-10
createP13NSession 12-10
createUniqueId 6-3
creating

see also wizards
creating a portal

getting started 1-8
steps 2-11
steps to complete 1-7

creating custom events 15-12
creation events 15-10
creator entries 6-7
Credential 7-4
credit cards

CreditCardService EJB 14-5
see also payments

CreditCardWebService file 14-6
custom behavior tracking listeners 15-36
custom events 15-12

attributes 15-14
constructor, example 15-27
example code 15-14



WebLogic Portal Development Guide I-8

installing listener class in event service 
15-19

methods 15-13
persisting to database 15-32
registering 15-39, 15-41
registering, , when to 15-39
rules, enabling firing in custom behavior 

tracking event 15-29
TestTrackingEvent constructor 15-29
TrackingEvent base class constructor 

15-27
updating 15-44
updating registered custom event 6-29
writing 15-13
writing behavior tracking event class 

15-20
writing event listener 15-16

custom tags
see JSP tags

custom user profiles
events 6-18
registering 6-18

customer behavior
tracking, see also events

customer segments
definition 13-2
where created 12-19

CustomerProperties 2-9
customers

anonymous users and campaigns 13-1
classifying users in personalization 12-4
event sequence diagram 15-6
matching content to users in 

personalization 12-5
matching content to users with Advisor 

session bean 12-10
selecting content for in personalization 

12-4
tracking visits to Web or portal site A-2
turning content on or off in 

personalization 12-4

customization
personalization overview 1-2
personalized emails for campaigns

creating 13-11
JSPs 13-13
setting up 13-11
user property names 13-12

D
d setting for bulkloader 8-4
data

external, accessing for UUP using 
EntityPropertyManager 6-2

Portal schema, accessing through EJBs 
6-2

data type
name-value pairs for events 15-40
of event properties 15-40

databases
buffer and behavior tracking event class 

15-20
persisting custom event type to 15-32
requirements for TestEventListener 

persistence 15-18
DataSync Data 3-6
DataSync Pool 3-5
date and time values for properties 6-27
DBLoader

dbloader.properties files 14-12
input file 14-10
loading product catalog data using 14-9
log files 14-16
running 14-14

dbloader.err 14-16
dbloader.properties file 14-14
debug.properties file 15-38
debugging

event services 15-38
debugging the event service 15-38
Default From Email Address field 13-12



WebLogic Portal Development Guide I-9

DefaultDocument class 8-43
DefaultDocumentIterator class 8-43
DefaultDocumentMetadata class 8-43
DefaultDocumentSchema class 8-43
DefaultEntityResolver class 8-44
delete setting for bulkloader 8-2
deployment

hot-deploying new portal 2-19
hot-deploying, username and password 

for 2-19
new ProfileManager 6-10
ProfileManager, modifying deployment 

configuration 6-4
verifying EJB module deployed to 

enterprise application 6-9
deployment descriptors

CategoryManager 14-46
DocumentManager 8-7
PropertySetManager 8-9

destination nodes 9-3
DETAILED_DISPLAY_JSP_INDEX 14-20
developing

see also wizards
developing portals

getting started 1-8
roadmap 1-6

development environment files and 
directories 1-5

directories
Shockwave 13-9
structure and files for portals 1-5

directory tree, dmsBase⁄ Ads 13-10
discountCache 11-107
discounts

adjusting caching for discount service 
11-107

and campaigns 13-2
service caches in clustered, nonclustered 

environments 11-108
dispatching an event 15-37
dispatchSessionLoginEvent method 15-10

dispatchUserRegistrationEvent method 
15-11

DisplayCampaignEvent A-11
DisplayContentEvent A-6
displaying image documents 8-34
displaying text documents 8-33
DisplayProductEvent A-5
div tag 12-3, 12-4
dmsBase⁄ Ads directory tree 13-10
docBase 8-23
docPool 8-8
document connection pool

modifying for external content 
management system 8-45

new for external content management 
system 8-45

document connection pools
attributes 8-20
content management, setting up 8-18
editing application-config.xml 8-19
editing in WebLogic Server console 

8-19
reference implementation properties 

8-22
Web applications, configuring 8-24

document management
bulkloader switch settings 8-2

document manager
new for external content management 

system 8-45
document servlet 8-54
DocumentComparator class 8-44
DocumentConnectionPool 8-8
DocumentConnectionPool tag 8-19
DocumentConnectionPoolName 8-8, 8-10, 

8-13, 8-19
DocumentDef interface for SPI 

implementation 8-43
DocumentIterator interface for SPI 

implementation 8-42
DocumentManager 8-7, 8-8, 8-18



WebLogic Portal Development Guide I-10

DocumentManager EJB deployment 
descriptor 8-7

DocumentManager element 8-10
DocumentManagerMBeanName 8-8, 8-46
DocumentMetadataDef interface for SPI 

implementation 8-42
DocumentProvider interface

adding content using 8-40
ensure CMS meets requirements 8-40
SPI implementation, writing 8-42

documents
publishing XML schema to reference 

implementation 8-48
DocumentSchema EJB, configuring 8-7
DocumentSchemaDef interface for SPI 

implementation 8-43
domain wizard

creating new domain
J2EE resources created 2-10
overview 1-6
starting 2-1

domains
creating new domain
creating new portal in existing domain 

3-1
creating new portal in new domain 2-1
decisions before beginning portal 

creation 3-2
definition 1-5
existing

creating portal for 3-1
selecting realm 3-7

keeping or replacing when creating new 
portal 3-2

new
creating new portal and new domain 

2-1
replacing existing with new portal 

domain 3-2
required JDBC entries

JDBC entries required for existing 

domains 3-4
starting server in new domain after 

creating 2-11
driver 8-22
DriverName 8-20
DynamicProperties 6-2

E
EBCC

project file, opening 2-12
synchronizing 2-31

EBJs
EJB Advisor Home interface 12-8

E-Business Control Center, see EBCC
editors

Event editor 6-19
pipeline editor 9-23
webflow editor 9-9

EJB Advisor Home interface 12-9
EJB deployment descriptor. 6-4
EJB_REF_NAME constant 12-8, 12-9
ejb-jar.xml 6-5, 8-45, 14-47

CategoryManager deployment 
descriptor 14-46

ejb-ref 6-6, 6-11
ejb-reference-description 6-12
ejb-ref-name 6-8
EJBs

accessing data for UUP using 6-2
Advisor session bean for personalization

personalization
Advisor session bean 12-6

Advisor Session bean, querying content 
management 12-9

classifying users for personalized 
applications 12-8

creating UUP 6-3
CreditCardService EJB 14-6
EJB compiler 14-6
matching content to users in 



WebLogic Portal Development Guide I-11

personalized applications, 
Advisor 12-10

verifying EJB module deployed to 
enterprise application 6-9

elbows
in transition lines 9-21

email
bulk mail in campaigns 13-16
deleting email batches for campaigns 

13-18
from remote host or clustered 

environment 13-16
modifying sendmail script for clustered 

environment 13-17
modifying sendmail script for remote 

host 13-17
personalized for campaigns

creating 13-11
JSPs 13-13
setting up 13-11
user property names 13-12

sending bulk mail for campaigns 13-18
Email Address Property Name field 13-12
Email Opt In Property Name field 13-12
EMBED HTML element 13-8
encoding setting for bulkloader 8-4
EndEvent session event A-2
enterprise applications

definition 1-5
directory and files created by domain 

wizard 2-11
see also domains, Web applications
verifying EJB module deployed to 6-9

Enterprise Java Beans
see also EJBs

Enterprise JavaBeans, see EJBs
EntityNames 6-3
EntityPropertyManager 6-4, 6-7, 6-9, 6-13, 

6-14
guidelines 6-2
mapping specific names to custom 

version 6-9
env-entry 6-5
errors

see also troubleshooting
es forEachInArray 8-32
event

coding listeners 15-17
defining listeners 15-16

Event Service
recording clickthroughs 13-7

event services
installing listener class in 15-19

event transitions 9-5, 9-17
event types

ClickProductEvent A-4
event(s)

shoppingcart.jsp 14-30
EventListener interface 15-4
Events

login.jsp 6-35
newusercreation.jsp 6-48
newuserforward.jsp 6-49
usercreationforward.jsp 6-51

events
AddtoCartEvent A-7
behavior tracking, activating 15-47
BuyEvent A-9
campaign events A-11
CampaignUserActivityEvent A-11
cart events A-6, A-9
ClickCampaignEvent A-12
ClickContentEvent 15-11, A-5
ClickProductEvent A-4
configuring events buffer sweeping 

15-21
constructing XML to represent 15-34
constructor, example 15-27
content events A-5
converting behavior tracking events to 

XML 15-33
creating custom 15-12



WebLogic Portal Development Guide I-12

creation events 15-10
custom events 15-12
custom, enabling rules firing in custom 

behavior tracking event 15-29
custom, installing listener class in event 

service 15-19
custom, writing 15-13
custom, writing behavior tracking event 

class 15-20
custom, writing event listener 15-16
debugging event services 15-38
definition 13-2
descriptions and developing for A-1
diagram of functions 15-4
DisplayCampaignEvent A-11
DisplayContentEvent 15-11, A-6
DisplayProductEvent A-5
enabling behavior tracking 15-32
Event Editor, opening 6-19
event generators 15-11
event transitions 9-17
example of custom 15-12
facilitating offline processing 15-21
filter events 15-9
how event sequences work 15-5
how event service works 15-3
how events work in campaigns 15-2
interfaces for listeners 15-4
listeners, overview 15-3
login events 15-10
performance tuning 15-49
product events A-4
PurchaseCartEvent A-8
registering custom events 15-39, 15-41
registering custom events, when to 15-39
registering custom user profiles 6-18
registration, updating 6-29
RemoveFromCartEvent A-7
RuleEvent A-10
rules events A-10
servlet lifecycle and filter events 15-9

session events A-1
SessionBeginEvent A-2
SessionEndEvent A-2
SessionLoginEvent A-2
standard

using 15-8
TestTrackingEvent constructor 15-29
TrackingEvent base class constructor 

15-27
updating custom events 15-44
user registration events A-3
UserRegistrationEvent A-3
using in campaigns, example 15-1
webflow

link and button events 9-6
events and behavior tracking 15-1
example

expression 16-3
rules manager 16-9

exception transitions 9-5, 9-18
exceptions

exception transitions 9-5, 9-18
rules engine error handling and reporting
see also troubleshooting
UnsupportedOperationException 6-2

Executor 16-18
Expression Cache 16-14
Expression class 16-10
expression example 16-3
Expression Package 16-1
Expression Package services 16-16
ExpressionAdapter class 8-44
ExpressionFactory 16-15
ExpressionHelper class 8-44
expressions 16-12, 16-15

validating all rules expressions 12-17
expressions or rules, using 16-6
extension nodes

presentation nodes 9-40
presentation nodes, creating 9-40
presentation nodes, making available 



WebLogic Portal Development Guide I-13

9-42
processor nodes 9-40
processor nodes, creating 9-41
processor nodes, making available 9-42

extension processor nodes 9-4
external content management system

additional classes for SPI 
implementation 8-43

document connection pool, modifying 
8-45

document connection pool, new 8-45
document manager, new 8-45
integrating 8-39
JAR files, make accessible for 8-48
minimum use requirements 8-41
publishing to reference implementation 

8-48
putting code into application 8-44
SPI implementation, writing 8-42

F
facilitating offline processing 15-21
File Realm 7-25
FileDocument class 8-43
fileRealm.properties 7-25
files

configuration for webflow 9-1
created by domain wizard 2-10
for new portlet 2-29
portal files and directory structure 1-5
XML schema, publishing to reference 

implementation 8-48
filter events

and servlet lifecycle 15-9
ClickThroughFilter 15-10

filter setting for bulkloader 8-4
filters setting for bulkloader 8-4
footers

adding to portlets 2-27
forEachInArray 8-32

G
generators

ClickContentEvent 15-11
disabling session generation 13-14
DisplayContentEvent 15-11
event generators 15-11

getAdvice method 12-6, 12-8
getAdvise method 12-11
getDynamicProperties 6-2
getEntityNames 6-3
getHomeName 6-3
getKey method for categories 14-22
getProfile 12-10
getProfile tag 8-31, 8-33, 8-35
getProperty 6-3, 14-18
getPropertyLocator 6-3
getResult method 12-9, 12-11
getterArgument attribute 14-19, 14-20, 14-21
getting started

roadmap for developing portals 1-6
steps 1-8

getTypes method 15-4
getUniqueId 6-3
globalDiscountCache 11-107, 11-108
graphics

making image ad clickable 13-3, 13-6
skins 10-4
thumbnails, creating for layouts 10-8

groupDN 7-4
guarantee, transport

confidential 7-25
integral 7-25

H
handleEvent method 15-4
headers

adding to portlets 2-27
help

links to administration tools 3-8
ShowDocServlet 8-24



WebLogic Portal Development Guide I-14

hidden setting for bulkloader 8-2
HomeName 6-3
host

remote, modifying sendmail script 13-17
SET HOST 13-17

hostname 2-20
hot-deploying

new portal 2-19
password and username 2-19

HTML
adding placeholders to HTML fragment 

10-7
and ShockWave 13-6
determining dimensions of Shockwave 

in relation to HTML page 13-9
htmlPat setting for bulkloader 8-3
HTTP_REQUEST attribute 12-8
HTTP_REQUEST constant 12-10
HTTP_SESSION constant 12-10
HTTPS

links accessed via 7-25
HttpServletRequest 15-10
HTTPSession 13-14

I
id attribute 8-27, 14-21
idt attribute 14-19
ignore setting for bulkloader 8-4
ignoreErrors setting for bulkloader 8-3
image documents

displaying 8-34
retrieving 8-34
surrounding  tag with scriptlet 8-36

image files
<alt> tag 13-8

image map 13-7
images, see also graphics
IMG HTML element 13-8
IMG tag, surrounding with scriptlet 8-36
inheritProps setting for bulkloader 8-3

InitialCapacity attribute 8-21
input processors

creating 9-37
creating using InputProcessorSupport 

class 9-39
creating using interface 9-38
CustomerProfileIP 6-52
definition 9-4
DeleteProductItemFromShoppingCartIP 

14-36
EmptyShoppingCartIP 14-37
InitShoppingCartIP 14-37
InputProcessor interface 9-38
LoginCustomerIP 6-54
UpdateShoppingCartQuantitiesIP 14-38
UpdateSkuIP 14-38

INTEGRAL 7-25
integral transport guarantee 7-25
interaction management

setting up in WebLogic Portal 12-1
interfaces

CategoryManager 14-46
EJB Advisor Home interface 12-8
EventListener 15-4
for personalized applications 12-7
InputProcessor 9-38
processor 9-41

InternalRequestDispatcher 13-14
InternalRequestDispatcher JSP 13-14
Internationalization

non-ASCII characters in content queries 
8-50

isolationLevel 8-23
isolation-level 6-13
isPooled 8-22
items

catalogs, displaying keys of all product 
items 14-24

displaying in JSP 14-18
events, see product events
item properties for display in JSPs 14-20



WebLogic Portal Development Guide I-15

see also catalogs
iterateByView attribute 14-22
iterateThroughView 14-18
iterateThroughView tag 14-23
iterateViewIterator 14-18
iterateViewIterator tag 14-21
iterator attribute 14-21
iterators

displaying all views in ViewIterator 
14-22

displaying category keys in ViewIterator 
14-22

displaying keys of all product items 
14-24

J
J2EE resources

configuring Web applications for 
document connection pools 
8-24

created by domain wizard 2-10
for document connection pools
for new portlet 2-29

JAR files
in enterprise application directory 

created by domain wizard 2-11
in root of enterprise application for UUP 

6-14
make accessible for external content 

management system 8-48
putting compiled custom EJB in your 

own JAR file 6-4
Java scriptlets 14-32
JavaBeans, see EJBs
JavaServer Page (JSP)

Advisor tags 12-3
JavaServer Page (JSP) templates

shoppingcart.jsp 14-25
JavaServer Page templates

login.jsp 6-33

newcctemplate.inc 6-38
newdemographictemplate.inc 6-37, 6-39
newuser.jsp 6-36
newusercreation.jsp 6-45
newuserforward.jsp 6-48
usercreationforward.jsp 6-50

JavaServer Pages, see JSPs
javax.sql.DataSource 8-8
JDBC

colname 8-23
docbase 8-23
DocumentConnectionPool MBean 

properties 8-22
isolationLevel 8-23
isPooled 8-22
schemaXML 8-23
tuning thread/connection parameters 

11-109
jdbc.isolationLevel 8-23
jdbc/docPool 8-8
JdbcHelper class 8-44
JNDI

and personalized applications 12-9
JNDI home, identifying for content 

management system 8-27
name for content management home 

interface 12-9
showing name for UUP 6-8

jndi-name 6-8
JSP tags

content selector tags, using 8-32
content-selector tag 8-27
for personalized emails in campaigns 

13-13
getPipelineProperty 14-31
overview of use in Portal 1-3
personalization 12-2
supporting content selectors 8-30

JSPs
accessing content selector cache on 

different JSP 8-37



WebLogic Portal Development Guide I-16

displaying catalogs in 14-18
for personalized emails in campaigns 

13-13, 13-14
overview of use in Portal 1-3
showing catalog in 14-18
tags for displaying catalogs in 14-18

K
KeyBootstrap class 3-7
keys

in ViewIterator for catalogs 14-22
listing in behavior tracking event 15-26

L
layouts

adding placeholder names 10-7
creating 10-6
making available 10-9
storing 10-8
thumbnails, creating 10-8

LDAP
configuration changes for UUP 6-5
configuring server 7-3
integrating security realm 7-3
security for portals 7-2
security, integrating with UUP 6-15
see also UUP
supported server templates 7-7
supported servers 7-2
wildcard searches 7-9

LdapPropertyManager 6-5
lifecycle

event sequences 15-5
servlet lifecycle 15-9

link events 9-6
links

accessed via HTTPS 7-25
target window for HTML 13-8
tracking when customers click, see 

content, events
listen ports, identifying 7-26
listeners

asynchronous 15-3
diagram of event functions 15-4
installing listener class in event service 

15-19
interface implemented 15-4
synchronous 15-3
writing custom event listener 15-16

loadads script 13-10
locations

for new portlet files 2-29
log file for catalog DBLoader 14-16
login

creating domains 2-6
customers and visitors, see also 

registration 15-8
customers�, tracking with events 15-8
for administration tools 2-21
for hot-deploying 2-19
for WebLogic Portal Server 2-11
for WebLogic Server 2-12
login events 15-10

login.jsp
about 6-33
events 6-35

LoginEvent session event A-2
LoginTimeoutt attribute 8-22
look and feel, see skins, layouts
Loop attribute 13-9

M
mailmanager script 13-17
mailmanager.bat 13-18, 13-19
mailmanager.sh 13-18
Map attribute 13-8
map, image 13-7
MapName attribute 13-7
mapping properties for UUP 6-6



WebLogic Portal Development Guide I-17

mapping recommendation requests for 
personalized applications 12-7

match setting for bulkloader 8-4
max attribute 8-28
MaxBufferSize property 15-49

SweepInterval property
SweepMaxTime property 15-20

MaxCachedContentSize 8-10, 8-15
MBeanName 8-8
Mbeans security, switching to 7-12
mdext setting for bulkloader 8-4
Menu attribute 13-10
meta HTML element 13-5
metadata

created by portal wizard 2-18
metadata for documents. See attributes for 

documents.
MetadataCacheName 8-10, 8-14
MetadataCaching 8-10, 8-14
metaparse setting for bulkloader 8-2
methods

and exceptions for 
EntityPropertyManager 6-2

creating UUP 6-3
EntityPropertyManager 6-2, 6-4
ProfileManager 6-4

Microsoft Customer Security Realm 
Template 7-8

MimeTypeHelper class 8-44
module tag 6-13
multiple authentication providers 7-22
Multiple, Restricted event property 15-40
Multiple, Unrestricted event property 15-41

N
name parameter 9-42
name property 9-15
namespace 15-33
namespace parameter 9-42
namespaces

newuser.jsp 6-37
newuserforward.jsp 6-49
usercreationforward.jsp 6-51

navigation
portals 9-1
see also webflow
tracking customer navigation events, see 

rules events
Netscape Customer Security Realm 

Template 7-7
newaddresstemplate.inc

about 6-38
getValidatedValue JSP tag 6-38

newcctemplate.inc
getValidatedValid JSP tag 6-39

newdemographictemplate.inc
getValidatedValid JSP tag 6-40

NewPortalWebApp 2-15
newuser.jsp

about 6-36
default Webflow 6-37
events 6-41
form field specification 6-41
namespace 6-37
newaddresstemplate.inc 6-38
newcctemplate.inc 6-38
newdemographictemplate.inc 6-39
parameters 6-41

newusercreation.jsp
default Webflow 6-47
events 6-48

newuserforward.jsp
default Webflow 6-49
events 6-49
namespace 6-49

nodes
adding to webflow 9-14
begin node 9-16
destination 9-3
elbows in transition lines 9-21
extension processor 9-4



WebLogic Portal Development Guide I-18

moving connection port 9-20
moving transition to other node 9-21
origin 9-3
pipelines, creating and adding to 

webflow 9-22
presentation 9-3
presentation nodes, creating 9-40
presentation nodes, extension 9-40
presentation nodes, making available 

9-42
processor 9-4
processor nodes, creating 9-41
processor nodes, extension 9-40
processor nodes, making available 9-42
transitions between 9-17
wildcard 9-5

Novell Customer Security Realm Template 
7-8

NT Security Realm 7-24

O
object attribute 14-19
OBJECT HTML element 13-8
offline processing for custom events 15-21
online help

links to administration tools 3-8
ShowDocServlet 8-24

OpenLDAP Security Realm Template 7-9
operator class 16-10
operators, comparison in queries 8-51
Optimizer 16-16
orders

customers�, tracking with events 15-9
events

see also events, carts, buy
see also commerce
see also transactions

origin nodes 9-3
overview

of portals 1-2

of WebLogic Portal features 1-2

P
package, expression 16-1
page-name property 9-16
page-relative-path property 9-15
pages

appearance
see also skins, layouts

events, see content
overview 1-2
specifying for portlet 2-26

Parent-child Relationships 16-13
passwords

creating a domain 2-6
for administration tools 2-21
for hot-deploying 2-19
for WebLogic Portal Server 2-11
for WebLogic Server 2-12

payments
payment service, integrating with Portal 

commerce services 14-5
payment services, adding to existing 

domain 3-9
security and payment services 14-6

PaymentServiceClient element 14-6
PaymentWebServiceWSDL attribute 14-6
performance tuning

behavior tracking 15-49
bulkloader tips 8-5
caches and content management 8-28
caching 11-103
discount service 11-107
events and buffer 15-49
group membership TTL in caching 

realm 11-108
persistToDatabase property 15-32
personalization

classifying users 12-4
content selectors 12-19



WebLogic Portal Development Guide I-19

definition 1-6
EJB Advisor Home interface 12-8
emails, personalized for campaigns

creating 13-11
JSPs 13-13
setting up 13-11
user property names 13-12

examples 16-2
JSP tags used 12-2
mapping recommendation requests 12-7
matching content to users 12-5
matching content to users with Advisor 

session bean 12-10
overview 1-2
personalized applications 12-6
personalizing using Advisor 12-2
rules, using rules framework 12-17
segments 12-23
segments and content selectors 12-23
selecting content 12-4
setting up in WebLogic Portal 12-1
turning content on or off 12-4

Personalization Console 3-7
Pipeline components

AddToCartTrackerPC 14-43
DeleteProductItemFromSavedListPC 

14-40
MoveProductItemToSavedListPC 14-41
MoveProductItemToShippingCartPC 

14-41
PriceShoppingCartPC 14-43
RefreshSavedListPC 14-42
RemoveFromCartTrackerPC 14-44

pipeline components 6-55
EncryptCreditCardPC 6-56
RegisterUserPC 6-55

pipelines
adding to webflow 9-34
creating 9-26
creating and adding to webflow 9-22
definition 9-4

overview of webflow 9-2
pipeline editor 9-23
synchronizing webflow to application 

9-36
placeholders

ad placeholders, HTML document 
attributes 13-5

adding placeholder names to layouts 
10-7

event for ad presented A-11
getting content from content 

management system 13-2
interaction with scenarios 13-2
loadAds script 13-10
loading ads into content management 

13-4
pop-up windows 13-8
query priorities 13-6
restrictions for ad attributes 13-4

Play attribute 13-9
Pluggable Authentication Module 7-24
plug-ins 13-8
pools, see connection pools
pop-up windows in campaigns 13-8
port 2-20
Portal Administration Tools, see 

administration tools
portal architecture

files and directories 1-5
Portal RDBMS repository 6-10, 6-15
Portal server

starting 2-11
portal Web applications

creating new 2-15
portal wizard

files created by 2-18
metadata and J2EE resources created by 

2-18
overview 1-6
using 2-14, 3-3

portalApp project 2-9



WebLogic Portal Development Guide I-20

portals 7-1
appearance

see also skins, layouts
content management, see also content 

management
content management, setting up 8-1
creating

keeping or replacing existing 
domain 3-2

requirements before creating for 
existing domain 3-1

steps to complete 1-7
creating layouts 10-6
creating new 2-11
creating new portal in existing domain 

3-1
creating new portal in new domain 2-1
creating skins 10-2
customer visits, tracking A-2
definition 1-6
file locations and structures 1-5
group portals overview 1-2
groups

see also group portals
hot-deploying new portal 2-19
included skins 10-4
integrating with business transaction 

services 14-1
making layouts available 10-9
making skins available 10-5
navigation 9-1
new window for creating in EBCC 2-13
overview 1-2
security 7-1
security with LDAP 7-2
security with RDBMS 7-2
see also portlets, pages
selecting template 2-16
storing layouts 10-8
storing skins 10-4
viewing newly created in administration 

tools 2-22
webflow 9-1
what you can accomplish 1-2

portlets
adding components 2-27
appearance

see also skins, layouts
components, definition 1-6
content type 2-28
creating 2-25
creating layouts 10-6
creating skins 10-2
definition 1-6
editing 2-33
included skins 10-4
location for new J2EE resources 2-29
making available for use 2-31
making layouts available 10-9
making skins available 10-5
making visible 2-31
Portlet wizard
specifying page for 2-26
storing layouts 10-8
storing skins 10-4

ports
listen ports, identifying 7-26
moving connection port 9-20
SET PORT 13-17

presentation nodes 9-3
button events 9-6
extension, creating 9-40
extension, making available 9-42
link events 9-6

presentation nodes, extension 9-40
principal LDAP realm attribute 7-4
priorities, query 13-6
privileges

UNIX and catalogs 14-16
procedures

creating new portal in existing domain 
3-1



WebLogic Portal Development Guide I-21

creating new portal in new domain 2-1
creating portals 1-6
for developing portals 1-6
see also wizards
steps for getting started 1-8

processing offline for custom events 15-21
Processor interface 9-41
processor nodes 9-4

extension, creating 9-41
extension, making available 9-42

processor nodes, extension 9-40
product catalog

see also catalogs
supporting in WebLogic Portal

products
catalogs, displaying keys of all product 

items 14-24
customer interest, tracking with events 

15-8
displaying in JSP 14-18
event sequence diagram 15-6
events A-4
properties for display in JSPs 14-20
see also items

ProfileManager 6-4
configuring and deploying new 6-10
deployment configuration, modifying 

6-4
using new instead of 

UserProfileManager 6-4
profiles

custom user profiles, registering 6-18
events 6-18
integrating LDAP security with UUP 

6-15
users

Unified User Profile (UUP), 
creating 6-1

ProfileType 6-4
project files

definition 1-6

opening 2-12
properties

caching data for UUPs via EJBs 6-3
data and time values 6-27
mapping for UUP 6-6
mapping specific names to custom 

EntityPropertyManager 6-9
see also property sets
with multiple values 6-25
with single or boolean value and single 

default 6-22
Properties attribute 8-21
properties for documents. See attributes for 

documents.
properties setting for bulkloader 8-3
property caching in a clustered environment 

11-106
Property reference implementation properties 

8-22
Property Set Name field 13-12
property sets

creating definition 6-18
PropertyCase 8-8, 8-10, 8-14
PropertyLocator 6-3
propertyName attribute 14-19
PropertySetManager 8-9
PropertySetManager EJB deployment 

descriptor 8-9
publishing to reference implementation 8-48
PurchaseCartEvent A-8
purchases

customers�, tracking with events 15-9
events

see also events, carts, buy
see also commerce
see also transactions

pz contentQuery tag 12-3, 12-4
pz contentSelector tag 8-25, 8-34, 8-35, 12-3, 

12-5
pz div tag 12-3, 12-4



WebLogic Portal Development Guide I-22

Q
Quality attribute 13-9
queries

comparison operators 8-51
constructing 8-49
constructing in Java 8-53
content management, attributes for 

AdviceRequest object 12-9
defining array that contains query results 

for content management 8-27
for content management with Advisor 

session bean 12-9
query priorities 13-6
query priorities for ad placeholders 13-6
searching for documents 13-4
structuring 8-49

R
RDBMS

repository 6-10, 6-15
security for portals 7-2

realms
group membership TTL in caching 

realm 11-108
LDAP security realm for portals 7-2
LDAP, integrating security realm 7-3
new or existing in existing domain 3-7
other supported security realms 7-24
RDBMS security realm for portals 7-2
see also UUP

recommendation requests, mapping for 
personalized applications 12-7

recurse setting for bulkloader 8-2
reference implementation

properties for document connection 
pools 8-22

publishing to 8-48
reference-descriptor 6-8, 6-12
registration

customers�, tracking with events 15-8

event sequence diagram 15-6
of custom events 15-39, 15-41
registering custom user profiles for 

events 6-18
registering extension presentation node 

9-43
registering extension processor node 

9-43
updating for registered custom event

registered custom event, updating 
6-29

user registration events A-3
when to register custom events 15-39

relative pathnames, resolving 13-9
remote host

email from remote host or clustered 
environment 13-16

modifying sendmail script 13-17
removeEntity 6-3
RemoveFromCartEvent A-7
removeProperties 6-3
remover entries 6-7
repository (WebLogic Portal RDBMS 

repository) 6-10
REQUEST behavior tracking attribute 15-27
request parameter 9-42
requestContext parameter 9-42
requirements for a campaign event 15-16
retrieving image documents 8-34
retrieving Pipeline session attributes

shopping cart 14-32
retrieving text documents 8-33
returnType attribute 14-19, 14-22
roadmap for developing portals 1-6
RuleEvent A-10
rules

enabling firing in custom behavior 
tracking event 15-29

event sequence diagram 15-7
events A-10
fired by customer actions, tracking with 



WebLogic Portal Development Guide I-23

events 15-9
how events work in campaigns 15-2
rules engine error handling and reporting 

12-18
using rules framework 12-17
validating all expressions 12-17

rules manager example 16-9
rules.engine.expression.validation property 

12-17
rules.engine.ignorable.exceptions parameter 

12-18
rules.engine.throw.expression.exceptions 

parameter 12-18
rules.properties file 12-17
RULES_RULENAME_TO_FIRE attribute 

12-8, 12-9
RULES_RULENAME_TO_FIRE constant 

12-11

S
SAlign attribute 13-9
samples

sample portal, enabling behavior 
tracking in 15-32

sample portal, installing listener class in 
event service 15-19

tax and payment services 3-9
Scale attribute 13-9
scenarioId parameter 13-13
scenarioName parameter 13-13
scenarios

definition 13-2
effect on ad placeholders 13-2
event for one or more true scenario 

actions A-11
how events work in campaigns 15-2
priority for ad queries 13-6
services scenarios can use 13-2
when to register events 15-39

schema

custom events and behavior tracking 
15-26

loading your product catalog data into 
14-9

properties in, accessing using EJBs 6-2
SchemaManager 15-40
XSD 15-24

SchemaManager 15-40
schemaName setting for bulkloader 8-3
schemas

methods
implementing for external content 

management system 8-44
schema setting for bulkloader 8-3
XML files, publishing to reference 

implementation 8-48
XML-XSD 15-22
XSD 15-26

schemaXML 8-23
scriptlet In heading.inc 8-26
scriptlets, Java 14-32
search methods

implementing for external content 
management system 8-44

returning metadata about document 8-44
searching

using wildcards in LDAP searches 7-9
Secure Sockets Layer Security

see SSL
security 7-1

configuring servers for LDAP security 
7-3

integrating LDAP with UUP 6-15
other supported realms 7-24
payment services 14-6
SSL, see SSL
supported LDAP server templates 7-7
supported LDAP servers 7-2

segments
classifier rules as 12-4
content selectors and personalization 



WebLogic Portal Development Guide I-24

12-23
see also customer segments

selecting content
with Advisor session bean 12-9

Selection mode for event property 15-40
selectors

content selectors and personalization
see also content selectors

sendmail script
modifying for clustered environment 

13-17
modifying for remote host 13-17

sequences
event sequence diagram 15-6
how event sequences work
see also event sequences

servers
configuring for LDAP security 7-3
starting for newly created domain 2-11
supported for LDAP security 7-2
supported templates for LDAP security 

7-7
WebLogic Portal Server, logging in 2-11
WebLogic Server, logging in 2-12

service, event, see event service
services

configuring behavior tracking service 
15-48

event, debugging 15-38
installing listener class in event service 

15-19
integrating services with catalog cache 

14-45
payment, integrating with commerce 

services 14-5
see also campaigns
see also taxes, payments, transactions
taxation, integrating with commerce 

services 14-2
servlet, document 8-54
ServletAuthentication 15-10

servlets
lifecycle 15-9

session bean, Advisor
classifying user 12-8
selecting content 12-9

session beans
see also EJBs, Advisor

session entry in config.xml for 
DocumentManager 8-45

session events
see also events

SESSION_ID behavior tracking attribute 
15-27

SESSION_ID key 15-35
SessionBeginEvent A-2
SessionEndEvent A-2
SessionLoginEvent A-2
sessions

event sequence diagram 15-6
session events A-1
session generating, disabling 13-14

SET DATABASE property 14-15
SET HOST variable 13-17
SET PORT variable 13-17
set-environment 14-15
setProperty 6-3
sets

see also property sets
Shockwave file 13-3
Shockwave files 13-6, 13-9
shopping carts

customers� additions to, tracking with 
events 15-9

see also carts
see also commerce

ShowDocServlet 8-24
Single, Restricted event property 15-40
Single, Unrestricted event property 15-40
skins

creating 10-2
included 10-4



WebLogic Portal Development Guide I-25

making available 10-5
storing 10-4
thumbnail graphics 10-4

sortBy attribute 8-28
SortCriteria class 8-44
SPI implementation, additional classes 8-43
SPI implementation, writing 8-42
SSL

config.xml requirements for 7-25
web.xml requirements for 7-26

standard events
using 15-8

starting Portal server 2-11
steps

see also procedures
structuring queries 8-49
support, technical xvii
supportsLikeEscape Clause 8-23
SweepInterval property 15-49
SweepMaxTime property 15-49
swfAlign attribute 13-9
swfBase attribute 13-9
swfBGColor attribute 13-9
swfLoop attribute 13-9
swfMenu attribute 13-10
swfPlay attribute 13-9
swfQuality attribute 13-9
swfSAlign attribute 13-9
swfScale attribute 13-9
switching

to WebLogic Server 7.0 security 7-12
synchronizing

DataSync Pool entry 3-5
new portlet and Portal Web application 

2-31
portlets 2-31
webflow to application 9-36

T
Target JSP tag 13-8

target window for HTML links 13-8
TargetContent attribute 13-7
TargetUrl attribute 13-7
taxes

tax services, adding to existing domain 
3-9

taxation service, integrating with Portal 
commerce services 14-2

templates
selecting for portal 2-16
server templates supported for LDAP 

security 7-7
TestEvent class 15-15
TestTrackingEvent 15-34
TestTrackingEvent constructor 15-29
text documents

displaying 8-33
retrieving 8-33

threads, tuning thread/connection parameters 
in JDBC 11-109

thumbnail.gif 10-9
thumbnails

creating for layouts 10-8
skin graphics 10-4

time and date values for properties 6-27
TIME_INSTANT attribute 12-8
TIME_INSTANT constant 12-10
Timestamp object 12-8, 12-10
TimeToLive 6-14
tools

logging in 2-21, 2-32
tracking event constructor 15-27
TrackingEvent constructor

attributes for tracking events 15-27
transaction-isolation 6-13
transactions

integrating with payment service 14-5
integrating with portal 14-1
integrating with taxation service 14-2

transitions
between nodes 9-17



WebLogic Portal Development Guide I-26

elbows in transition lines 9-21
event transitions 9-5, 9-17
exception transitions 9-5, 9-18
moving connection port 9-20
moving transition to other node 9-21
transition tools 9-20

transport guarantee
confidential 7-25
integral 7-25

troubleshooting
anonymous users and campaigns 13-1
catalog log file and error file 14-16
catalogs and DBLoader 14-16
domain decision-making 3-2
moving Web application components to 

new portal domain 3-3
rules engine error handling and reporting 

12-18
synchronizing webflow to application 

9-36
truncate setting for bulkloader 8-3
tuning performance, see performance tuning
type property 9-15

U
um getProfile tag 8-31, 8-33, 8-35
Unification Service 16-16
Unified User Profile, see UUP
Unifier 16-16
UniqueId 6-3
UNIX

and privileges regarding catalogs 14-16
UNIX Security Realm 7-24
UnsupportedOperationException 6-2, 6-3
updating

custom events 15-44, 15-45
upgrading

to WebLogic Server 7.0 security 7-12
uppercase or lowercase document 

management properties 8-8

url 8-22
URL attribute 8-21
URLDocument class 8-43
useCache 8-29
USER attribute 12-8
USER constant 12-10
user profiles

events 6-18
overview of use with UUP
registering custom 6-18
see also UUP
Unified User Profile (UUP), creating 6-1

USER_ID behavior tracking attribute 15-27
USER_ID key 15-35
USER_PROPERTY_ONE_KEY key 15-35
USER_PROPERTY_TWO_KEY key 15-35
usercreationforward.jsp

default Webflow 6-51
events 6-51
Java import statements 6-50
namespace 6-51

userDN 7-3
UserIdInCacheKey 8-10, 8-14
UserManager EJB deployment descriptor 6-4
UserManager EJB Section 6-11
usermgmt.jar 6-5, 6-8, 6-9, 6-14
username

for administration tools 2-21
UserProfileManager 6-4, 6-7

using new ProfileManager instead 6-4
UserRegistrationEvent 15-11, A-3
users

accessing data for UUP using 
EntityPropertyManager 6-2

anonymous users and campaigns 13-1
classifying

with Advisor session bean 12-8
classifying in personalization 12-4
matching content to users in 

personalization 12-5
matching content to users with Advisor 



WebLogic Portal Development Guide I-27

session bean 12-10
searching for with wildcards in LDAP 

7-9
selecting content for in personalization 

12-4
turning content on or off in 

personalization 12-4
Unified User Profile (UUP), creating 6-1
user activity event A-11
user registration

events A-3
using rules or expressions 16-6
UUP

accessing data for using 
EntityPropertyManager 6-2

deploying ProfileManager that can use 
new EntityPropertyManager 
6-4

EntityPropertyManager guidelines 6-2
finishing 6-10
integrating with LDAP security 6-15
JNDI name, showing 6-8
modifying ProfileManager deployment 

configuration 6-4
overview 1-3
registering custom user profile 6-19
Unified User Profile (UUP), creating 6-1
verifying EJB module deployed to 

enterprise application 6-9

V
validating all rules expressions 12-17
Validator 16-17
Value range for event property 15-40
Variable class 16-10
verbose setting for bulkloader 8-2
views

displaying all in ViewIterator 14-22
displaying category keys in ViewIterator 

14-22

displaying keys of all product items 
14-24

Visible
making layouts visible 10-9
making portlets visible 2-31
making skins visible 10-5
portlets 2-34

visitors
matching content to users in 

personalization 12-5
see also customers

visual attributes, see skins, layouts

W
Web applications

configuring for document connection 
pools 8-24

definition 1-5
see also enterprise applications, portal 

Web applications
web.xml

predefined links invoking JSPs, webflow 
7-25

requirements for SSL 7-26
webapp parameter 9-42
webflow

adding nodes 9-14
adding pipeline to 9-34
begin node 9-16
configuration files 9-1
creating 9-11
creating pipeline 9-26
creating pipeline and adding to 9-22
destination nodes 9-3
elbows in transition lines 9-21
extending through presentation and 

processor nodes 9-40
extension processor nodes 9-4
input processors

creating 9-37



WebLogic Portal Development Guide I-28

creating using 
InputProcessorSupport 
class 9-39

creating using interface 9-38
moving connection port 9-20
moving transition to other node 9-21
origin nodes 9-3
overview of components 9-2
pipeline editor 9-23
presentation nodes 9-3, 9-4
setting up for WebLogic Portal 9-1
synchronizing to application 9-36
transition tools 9-20
transitions 9-5
transitions between nodes 9-17
wildcard nodes 9-5

webflow editor 9-9
webflow-extensions.wfx file 9-44
WebLogic Portal

navigation 9-1
webflow 9-1

WebLogic Portal RDBMS repository 6-10, 
6-15

WebLogic Portal Server
logging in 2-11

WebLogic Server
configuring behavior tracking service in 

15-48
logging in 2-12

WebLogic Server 7.0 security, switching to 
7-12

weblogic-ejb-jar.xml 6-7, 6-12, 14-47
weblogic-enterprise-bean 6-8, 6-12, 8-47
WildCard class 8-44
wildcard nodes 9-5
wildcards in LDAP searches 7-9
WinClose attribute 13-8
Windows NT Security Realm 7-24
windows, pop-up 13-8
WinTarget attribute 13-8
wizards

domain wizard
starting 2-1

overview 1-6
portal wizard 2-14
Portlet Wizard 2-24

wlauth 7-24
wlcsSample.jar 14-6
WLPSDocs services 3-8
writing custom event triggers 15-36

X
XML

constructing for event representation 
15-34

converting behavior tracking events to 
15-33

creating document 15-35
creation of behavior tracking events 

15-33
instance document 15-34
instance document for event type 

schema 15-22
namespaces 15-26
schema files, publishing to reference 

implementation 8-48
turning behavior tracking event into 

15-22
webflow configuration files 9-1
XML-XSD schema 15-22

XML-XSD schema 15-22
XSD

behavior tracking requirements 15-27
schema and custom events 15-24
schema locations 15-26
XML-XSD schema 15-22


	Preface
	1 Introduction to WebLogic Portal Development
	A Developer’s Portal Primer
	Portal Features
	Personalization and Authorization
	Group Portals
	JSPs and JSP tags
	EJBs
	Unified User Profile
	Other Useful Features


	Portal Component File Locations
	Roadmap for Building a Portal
	How do I Build a Portal?
	How Can I Extend these Portals?

	How Do I Get Started?
	Part I Developing Portals – Tutorials

	2 Creating a New Portal in a New Domain
	Step 1: Create the New Domain
	Step 2: Create the New Portal
	Step 3: Add a Portlet
	Step 4: Make New Portlet Visible

	3 Adding Portal to an Existing Domain
	About Your Domain
	Before You Begin
	Preserve or Replace the Existing Domain
	Procedure A
	Procedure B

	Use or Replace Existing Database
	Procedure C
	Procedure D

	Locate or Install Enterprise Application
	Procedure E
	Procedure F



	4 Deploying Portals
	Hot Deploying With the Portal Wizard
	Deploying Without the Portal Wizard
	Deploying a Portal without Hot Deploy
	Manually Deploying a Portal Web Application
	Step 1: Move J2EE Resources
	Step 2: Synchronize Metadata
	Step 3: Deploy in the WebLogic Server Console


	Best Practice Guidelines for Deploying Your Portal
	Stage 1: Deploy to a Server on Your Own Machine
	Stage 2: Deploy From a Local Computer to a Staging Server
	Stage 3: Deploy From the Testing Environment to a Live Production Server

	Part II Extending Portals

	5 Building Custom Templates
	Introducing Templates
	Three Types of Templates
	The Domain Wizard Template
	The Portal Wizard Template
	The Group Portal Template

	Using Templates

	Creating a Domain Template
	Step 1: Instantiate a Portal Domain
	Step 2: Customize the Portal Domain
	Supporting Two-Phase Deployment
	Adding All Portal Services to Your Domain
	Adding an EJB to your WebLogic Portal Domain

	Step 3: Apply General Configuration
	Adding a Custom Layout to a Domain Template
	Adding a Custom Skin to a Domain Template

	Step 4: Package the New Domain as a Template
	Open the template.xml File
	Edit the config.xml file
	Edit the Application.xml file
	Check Shell Scripts for String Substitution
	Create the Archive


	Creating a Portal Template
	Instantiate a New Portal
	Customize the New Portal
	Apply Basic Configuration
	Package the New Portal as a Template
	Step 1: Make Staging Directory
	Step 2: Locate Source Directories
	Step 3: Move Portal Resources
	Step 4: Edit template.xml
	Step 5: Create a Thumbnail
	Step 6: Create Archive File
	Step 7: Make the Archive Available



	6 Implementing User Profiles
	Creating a Unified User Profile
	Create an EntityPropertyManager EJB to Represent External Data
	Recommended EJB Guidelines
	Deploy a ProfileManager That Can Use the New EntityPropertyManager
	Modifying the Existing ProfileManager Deployment Configuration
	Configuring and Deploying a New ProfileManager
	Retrieving User Profile Data from LDAP


	Creating a Property Set Definition
	Registering Custom User Profiles
	Properties with Boolean or a Single Value and Single Default
	Properties with Multiple Values and Single, Multiple, or All Defaults
	Properties with Date and Time Values

	Updating a Registered Custom Event

	Enabling Visitor Self-Registration
	Implementing Customer Profile JSPs
	login.jsp
	badlogin.jsp
	newuser.jsp

	newusercreation.jsp
	newuserforward.jsp
	usercreationforward.jsp
	Events

	Webflow Components Used in Visitor Self-Registration
	Input Processors
	Pipeline Components



	7 Adding Security to a Portal
	Implementing Portal Security
	Integrating with an LDAP Security Realm
	Supported LDAP Servers
	Integrating an LDAP Security Realm
	Configuring the LDAP Server for Integration
	Configuring LDAP-based Security Realms for WebLogic Server and Portal 7.0
	Supported Server Templates
	Using Wildcards for User Lookup in an LDAP Realm
	Adding User Profile Information to LDAP Users


	Switching to a WebLogic 7.0 Security Framework Security Realm
	Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 Security With RDBMS
	Core Groups required for WebLogic Portal
	Running the WLP Samples

	Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 Security with Embedded LDAP
	Upgrading a Portal from Compatibility Security to WebLogic Server 7.0 Security with a Commercial ...

	Multiple Authentication Providers Support in WebLogic Portal 7.0 SP4
	How WebLogic Portal 7.0 uses the WebLogic Server Security Framework
	Limited Support of Multiple Authentication Providers in WebLogic Portal 7.0 SP4
	What Is Not Supported for Multiple Authentication Providers in WebLogic Portal 7.0 SP4

	Other Supported Security Realms
	Enabling Secure Sockets Layer Security
	config.xml Requirements for SSL
	web.xml Requirements for SSL
	Enabling HTTPS_URL_PATTERNS

	Enabling Single Sign-On
	Setting the Cookie Name
	Setting the User Properties


	8 Portal Content Management
	Adding Content by Using the Bulk Loader
	BulkLoader Performance Tips

	Configuring the Content Manager
	Configuring the DocumentManager EJB Deployment Descriptor
	Configuring the PropertySetManager EJB Deployment Descriptor for Content Management
	Configuring DocumentManager MBeans
	Using the WebLogic Server Administration Console to Modify DocumentManager MBeans
	Disabling an MBean
	Restoring a Disabled MBean

	Setting Up Document Connection Pools
	Editing a DocumentConnectionPool MBean in the WebLogic Console
	Configuring the Web Application

	Using Content-Selector Tags and Associated JSP Tags
	Using the <pz:contentSelector> Tag
	Identify the Content Selector Definition
	Identify the JNDI Home for the Content Management System
	Define the Array That Contains Query Results
	Create and Configure the Cache to Improve Performance

	Associated Tags That Support Content Selectors
	Using Content Selector Tags and Associated Tags
	Retrieving and Displaying Text-Type Documents
	Retrieving and Displaying Image-Type Documents
	Retrieving and Displaying a List of Documents
	Accessing a Content Selector Cache on a Different JSP


	Integrating External Content Management Systems
	Integration Strategies
	Adding Content by Implementing a DocumentProvider Interface
	Step 1. Ensure that the CMS Meets the Minimum Use Requirements
	Step 2. Write the SPI Implementation
	Step 3. Place Code Into the Application
	Step 4. Make the .jar Accessible to the Application
	Step 5. Restart the Server
	Step 6. Apply the Portal

	Publishing to Reference Implementation

	Constructing Content Queries
	Structuring Queries
	Using Comparison Operators to Construct Queries
	Constructing Queries Using Java
	Using the Document Servlet
	Example 1: Usage in a JSP
	Example 2: Usage in a JSP



	9 Setting Up Portal Navigation
	Building a Webflow
	Understanding Webflow Components
	Nodes and Transitions
	Types of Nodes
	Types of Transitions
	Types of Events

	Encoding Webflow URLs
	Webflow Tools and Buttons
	Step 1. Create the Webflow
	Step 2. Add Nodes to the Webflow Canvas
	Step 3. Identify the Begin Node
	Step 4. Create Transitions Between Nodes
	Adding an Event Transition
	Adding an Exception Transition


	Creating a Pipeline and Adding it to a Webflow
	Understanding the Pipeline Editor
	Step 1: Create a New Pipeline Component
	Step 2: Add the New Pipeline Component to the Webflow

	Synchronizing the Webflow to the Application
	Creating a New Input Processor
	Creating an Input Processor with the InputProcessor Interface
	Naming an Input Processor
	Executing Business Logic with Input Processors

	Extending the InputProcessorSupport Class

	Extending Webflow by Creating Extension Presentation and Processor Nodes
	How to Create an Extension Presentation Node
	How to Create an Extension Processor Node
	Making Your Extension Presentation and Processor Nodes Available in the Webflow and Pipeline Editors
	Registering an Extension Presentation Node
	Registering an Extension Processor Node



	10 Creating a Look-and-Feel
	Portal Look-and-Feel Structure
	Using Skins
	Creating Skins
	Skins Provided by BEA
	Storing Skins
	Making Skins Available

	Using Layouts
	Creating Layouts
	Storing Layouts
	Making Layouts Available


	11 Extending Portlets
	Basic Portlet Customization
	Moving a Portlet Between Portal Web Applications
	Step 1: Copy J2EE Resources into New Web Application
	Step 2: Edit the Target Web Application Metadata
	Step 3: Synchronize the Project
	Step 4: Make the New Portlet Visible and Available

	Moving a Portlet Between Domains
	Creating Categories for Portlets
	Preparing to Work With Categories
	Creating Portlets and Categories
	Moving Portlets and Categories
	Adding Portlets to Existing Categories


	Portlets and the Framework
	Simple JSP Portlets
	The scriptDemo Portlet
	Calling ActiveX Components from a Portlet

	WebFlow Portlets
	Three Webflow Portlets
	How a Portlet Handles a Refresh Event
	Making a Portlet Respond to a Custom Event
	Sharing State from One Portlet to Another

	Web Service Portlets
	Using the Portlet Wizard to Create Web Services Portlets
	Creating a Simple Form-Driven Web Service Portlet
	Creating a Call-Generation Web Service Portlet
	Creating a Web Services Interface Portlet
	Deploying the Web Services Portlets
	Viewing the Web Services Portlets
	Calling Web Services Asynchronously
	Error Handling within Web Services Portlets


	Portalizing an Existing Web Application
	Getting Started
	Requirements
	Process Overview

	Step 1: Create a Portal Web Application
	Step 2: Build a 2-page WebFlow Portlet
	Step 3: Edit Portlet Code
	Replace Portlet JSPs
	Save Properties Fies for Internationalization

	Step 4: Load Content Resources
	Step 5: Test the application

	Performance Tuning
	Using Caches to Tune Performance
	Adjust Caching for Content Management
	Property Caching in a Clustered Environment
	Adjust Caching for the Discount Service
	Adjusting the discountCache
	Adjusting the globalDiscountCache
	Discount-Service Caches in Clustered and Non-Clustered Environments
	Adjust Group Membership TTL in the Caching Realm
	Tuning Thread / Connection Parameters in JDBC



	12 Setting Up Personalization and Interaction Management
	Using the Advisor to Personalize a Portal Application
	Creating a Personalized Portal Application with Advisor JSP Tags
	Classifying Users with the JSP <pz:div> Tag
	Selecting Content with the <pz:contentQuery> JSP Tag
	Matching Content to Users with the <pz:contentSelector> JSP Tag

	Creating Personalized Applications with the Advisor Session Bean
	Classifying Users with the Advisor Session Bean
	Querying a Content Management System with�the�Advisor Session Bean
	Matching Content to Users with the Advisor Session Bean

	Personalizing Applications with HTTP Request and Session Properties
	HTTP Request-Based Personalization
	HTTP Session-Based Personalization
	Special Considerations
	Triggering Campaign Actions with Session, Request, and Event Properties


	Working with the Rules Framework
	Validating Rules Expressions
	Rules Engine Error Handling and Reporting

	Personalization with Content Selectors
	Using an Edit .jsp to Personalize a Portlet
	Step 1. Create the Edit JSP
	Step 2. Enable Portlet Editing

	Personalizing a Portal or Portlet by Using Placeholders
	How Placeholders are Used
	Placeholder JSP Tag: <ph:placeholder>
	Example

	Implementing the Placeholder
	Creating Placeholder Files


	13 Setting Up Campaign Services
	What are Campaign Services?
	Building Placeholders for Campaigns
	Using Attributes to Specify Display and Clickthrough Behavior
	Loading Ads Into Your Content Management System
	Loading Ads into the Reference Content Management System
	Step 1. Set Up Attributes in HTML Documents
	Step 2. Set Up Attribute Files for Image and Shockwave Documents
	Step 3. Move Files Into the dmsBase/Ads Directory Tree
	Step 4. Run the loadads Script


	Creating Personalized E-mails for Campaigns
	Step 1. Configure the E-mail Properties
	Step 2. Find Names of User Properties
	Step 3. Create E-mail JSPs
	E-mail Parameters
	Disabling Session Generation
	Sample E-mail JSP
	Saving E-Mail JSPs


	Sending Bulk Mail
	Sending Mail from a Remote Host or in a Clustered Environment
	Modify the Send-Mail Script to Work from a Remote Host
	Modify the Send-Mail Script to Work in a Clustered Environment

	Sending Bulk E-mail
	Scheduling Bulk E-mail Delivery
	Deleting E-mail Batches


	14 Setting Up Commerce Services
	Integrating a Portal with Business Transaction Services
	Integrating with a Taxation Service
	If the Third-Party Vendor Hosts the Web Service
	If Your Organization Hosts the Web Service

	Integrating with a Payment Service
	If the Third-Party Vendor Hosts the Web Service
	Important Security Information
	If Your Organization Hosts the Web Service
	Guidelines for Modifying the Credit Card Web Service EJB


	Supporting a Product Catalog
	Loading Your Product Data Into the Product Catalog Database Schema
	Step 1: Prepare to Use DBLoader
	Step 2: Edit the databaseload.properties File
	Step 3: Load Data by Running the DBLoader Program
	Step 4: Troubleshoot Using the DBLoader Log Files

	Showing a Catalog in a JSP
	Using the <catalog:getProperty> Tag
	Using the <catalog:iterateViewIterator> Tag
	Using the <catalog:iterateThroughView> Tag

	Hooking Up a Catalog to a Shopping Cart
	Implementing shoppingcart.jsp
	How shoppingcart.jsp Works
	Description
	Location in Default Webflow
	Events
	How shoppingcart.jsp Displays Data
	shoppingcart.jsp Form Fields
	shoppingcart.jsp Input Processorss
	shoppingcart.jsp Pipeline Components
	UpdateShoppingCartQuantitiesTrackerPC

	Integrating Services With the Catalog Cache


	15 Event and Behavior Tracking
	How Events Work in Campaigns
	How the Event Service Works
	How Event Sequences Work

	How to Use Standard Events
	Servlet Lifecycle Events and Servlet Filter Events
	Generating Login and Creation Events
	Adding or Customizing Event Generators

	Creating Custom Events
	Writing the Custom Event Class
	Writing the Custom Event Listener
	Installing the Listener Class in the Event Service
	Writing a Behavior Tracking Event Class
	Configuring Events Buffer Sweeping
	Facilitating OffLine Processing
	Writing a TrackingEvent Base Class Constructor


	How to Enable Behavior Tracking
	Converting Behavior Tracking Events to XML
	Creating Custom Behavior Tracking Event Listeners
	Writing Custom Event Generators

	Debugging the Event Service
	Registering Custom Events
	When to Register an Event
	Event Properties
	Instructions for Registering a Custom Event
	Updating a Registered Custom Event

	Activating Behavior Tracking
	Procedure for Activating Behavior Tracking
	Configuring the Behavior Tracking Service in WebLogic Server
	Configuring a Data Source


	16 Using the Expression Package
	What Is the Expression Package?
	Using Rules or Expressions
	Expression Package Classes
	The Package Structure for the Expression Package

	Assembling and Managing Expressions
	Maintaining Parent-child Relationships
	Managing the Expression Cache

	Working with Expressions
	The Expression Factory
	Expression Package Services
	Unification Service
	Optimization Service
	Validation Service
	Evaluation Service
	Execution Service

	Code Examples
	Stateful Evaluation of a Simple Expression
	Stateful Evaluation of an Expression Containing Variables
	Stateless Validation and Evaluation of an Expression Containing Variables
	Stateful Validation and Evaluation of an Expression Containing Variables


	Configuring the Expression Package

	A Event Descriptions
	Session Events
	User Registration Event
	Product Events
	Content Events
	Cart Events
	Buy Event
	Rules Event
	Campaign Events
	Index


