
Performance Tuning Guide

V e r s i o n 4 . 1
D o c u m e n t D a t e : M a y 2 0 0 2

BEA WebLogic Portal™

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA Campaign Manager for WebLogic, BEA
WebLogic Portal, E-Business Control Center, BEA WebLogic Process Integrator, BEA WebLogic Collaborate,
BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Performance Tuning Guide

Document Edition Date Software Version

4.1 March 2002 WebLogic Portal 4.0

Strategies for Developing E-Business Web Sites iii

Contents

About This Document
What You Need to Know .. -vii
e-docs Web Site.. -viii
How to Print the Document.. -viii
Related Information.. -viii
Contact Us! ... -ix
Documentation Conventions .. -ix

1. Load Testing Your Installation
Rationale.. 1-1
Steps for Load Testing Your Installation .. 1-2

General Architecture .. 1-2
WebLogic Portal .. 1-3

2. Factors Affecting Performance
General Web Application Factors ... 2-1

Complex Page Layouts... 2-2
Image Content .. 2-2
Clustered Session Replication.. 2-2
Secure Sockets Layer (SSL)... 2-2

WebLogic Server Factors .. 2-3
Campaign Factors... 2-3

Referencing Events .. 2-3
Avoiding Firing Extraneous Events ... 2-3

WebLogic Commerce Services Factors .. 2-3
Cache Settings .. 2-4

Products... 2-4

iv Strategies for Developing E-Business Web Sites

Categories.. 2-4
Example of Calculating the Necessary RAM 2-5

Catalog Size.. 2-7
Catalog Update Frequency ... 2-7
Payment Settings .. 2-7
Pipeline Session Data ... 2-8
Deployment .. 2-8
Location of Java Virtual Machines (JVMs) ... 2-8

WebLogic Personalization Services Factors ... 2-9
Accessing the Database .. 2-9
Application Complexity ... 2-9

3. Estimating Baseline Capacity Requirements
Estimate the Maximum Number of Simultaneous Users 3-2
Estimate Per-User Memory Requirements .. 3-2
Estimate Application Throughput Requirements .. 3-2
Estimate Maximum Acceptable Response Times ... 3-3
Calculate a Baseline Estimate.. 3-3

Throughput Requirements .. 3-3
Memory Requirements ... 3-4
Latency Requirements .. 3-4

Adjusting Your Estimate ... 3-4

4. Using Caches
Overview of the Cache Framework... 4-2

Comparison of Configuring Caches ... 4-3
Caches in a Clustered Environment ... 4-3

Configuring Caches with MBeans... 4-5
Configuring Default Caches ... 4-5
Configuring Custom Caches... 4-8

Accessing Caches .. 4-9
Accessing a Cache.. 4-9
Putting and Getting Items in a Cache ... 4-10

Reconfiguring Active Caches .. 4-11
Monitoring and Managing Caches .. 4-11

Strategies for Developing E-Business Web Sites v

Monitoring a Cache.. 4-12
Viewing the Number of Items in a Cache... 4-12
Viewing the Hit Count .. 4-12
Viewing the Hit Rate... 4-13
Viewing the Miss Count ... 4-13
Example of Monitoring Caches .. 4-13

Disable a Cache.. 4-14
Flush or Invalidate Items in a Cache That Is Configured with MBeans .. 4-15

Flushing or Invalidating From the WebLogic Server Administration
Console .. 4-15

Clear or Remove Items from a Cache .. 4-17
Recommended Settings ... 4-18

Adjust Caching for Content Management.. 4-18
For More Information ... 4-21

Property Caching in a Clustered Environment... 4-21
For More Information ... 4-22

Adjust Caching for the Discount Service... 4-22
Adjusting the discountCache .. 4-23
Adjusting the globalDiscountCache.. 4-23
Discount-Service Caches in Clustered and Non-Clustered Environments

4-24
Adjust Group Membership TTL in the Caching Realm........................... 4-24

5. Tuning JSPs and Servlets
Precompile JSPs .. 5-2
Specifying a Java Compiler for a Web Application.. 5-4

Adjust the Intervals for Checking JSP and Servlet Modifications............. 5-5
About the Page-Check Intervals Properties ... 5-6

To Adjust the Intervals.. 5-6

6. Additional Tuning Recommendations
Adjust Database Connections Available at Startup... 6-2

For More Information... 6-3
Increase the Size of the Display-Count Buffer.. 6-4
Display Metadata, Sort and Query Explicit Metadata....................................... 6-6
Use LDAP for Authentication Only .. 6-6

vi Strategies for Developing E-Business Web Sites

Use the HotSpot Virtual Machine ... 6-7
Deactivating HotSpot .. 6-8

CHAPTER
About This Document

When you install BEA WebLogic Portal™, it is configured to support a development
environment.

When you are ready to make your Web site available to customers, refer to this
document for information about tuning WebLogic Portal performance for your testing
and production environments.

This document includes the following topics:

� Chapter 1, “Load Testing Your Installation.”

� Chapter 2, “Factors Affecting Performance.”

� Chapter 3, “Estimating Baseline Capacity Requirements.”

� Chapter 4, “Using Caches.”

� Chapter 5, “Tuning JSPs and Servlets.”

� Chapter 6, “Additional Tuning Recommendations.”

All of the recommendations in this document are in addition to the recommendations
in the BEA WebLogic Server Performance and Tuning guide.

What You Need to Know

This document is intended mainly for System Administrators and Database
Administrators who configure properties for WebLogic Server and WebLogic Portal.
It assumes a familiarity with WebLogic Portal, the WebLogic Server platform, J2EE
specifications, as well as the database management system that your organization uses.
Performance Tuning Guide vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Portal documentation
Home page on the e-docs Web site. A PDF version of this document is also available
in the documentation kit on the product CD. Or you can download the documentation
kit from the WebLogic Portal portion of the BEA Download site. You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the WebLogic Portal documentation Home page,
click the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following documents provide background and additional information that you
may need to deploy WebLogic Server and WebLogic Portal:

� Java™ 2 Platform Enterprise Edition Specification, v1.3

� BEA WebLogic Server Administration Guide

� Developing WebLogic Server Applications
viii Performance Tuning Guide

Contact Us!

Your feedback on the BEA WebLogic Portal documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Portal documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Portal Product Version: 4.0 release.

If you have any questions about this version of BEA WebLogic Portal, or if you have
problems installing and running BEA WebLogic Portal, contact BEA Customer
Support through BEA WebSUPPORT at www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
Performance Tuning Guide ix

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
x Performance Tuning Guide

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line
� That the statement omits additional optional arguments
� That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Performance Tuning Guide xi

xii Performance Tuning Guide

CHAPTER
1 Load Testing Your
Installation

This topic explains why load testing of the installation is important, and provides an
outline of the steps necessary to complete this testing.

This topic includes the following sections:

� Rationale

� Steps for Load Testing Your Installation

� General Architecture

� WebLogic Portal

Rationale

BEA recommends that you establish an environment where you can load test the
installation for the following reasons:

� Testing your prototype under load will help you validate design decisions that
may significantly alter the performance of your application, while it is still early
in the development cycle.

� Any tier within an n-tier architecture can dramatically affect application
performance (hardware, database, clustering environment, application tuning
parameters, and so on). Load testing your application whenever design changes
Performance Tuning Guide 1

1 Load Testing Your Installation
are made provides a way to narrow down performance problems to a particular
area.

� Testing early and often increases the likelihood that your site implementation
will be successful and scalable.

Steps for Load Testing Your Installation

The recommended approach for load testing is to start with the simplest aspect of the
installation and then move into areas of increased complexity. If you observe slow
behavior in any portion of this testing process, you should begin a more thorough
investigation into its causes.

General Architecture

First, perform the following steps to identify performance issues with your network,
database, or other software that is independent of the WebLogic Portal.

1. Test your database (independent of any Web components) to determine how well
your schema and SQL work. Note any areas where the schema or SQL may not be
optimized for performance. For more information about configuring database
connection pools, see “Connection Pools” at
http://e-docs.bea.com/wls/docs60/adminguide/jdbc.html

2. Test your network for sufficient bandwidth, and check that the TCP/IP
parameters on the server’s operating system can sufficiently handle the
application load you expect. It is quite possible that the network is the slowest
aspect of your deployment.

3. Test your Web server, ensuring that it has sufficient capacity to serve static
HTML pages when many concurrent threads are running.

4. Most large applications are clustered, but keep in mind that a clustering
environment requires resources to perform load-balancing tasks (that is, the
HTTPD proxy plug-in). Ensure that you have enough resources available to meet
2 Performance Tuning Guide

Steps for Load Testing Your Installation
application requirements. For more information, see “Configuring WebLogic
Servers and Clusters” at
http://e-docs.bea.com/wls/docs60/adminguide/config.html

5. Test your servlet engine by running a load test against a trivial servlet such as a
HelloWorld servlet. If this simple servlet does not perform and scale horizontally
(meaning that as you add Java Virtual Machines, performance increases
accordingly), the performance problems you encounter may be related to an
infrastructure or resource issue.

WebLogic Portal

Now, perform the following steps to identify performance issues with WebLogic
Portal:

1. Verify that your WebLogic Server database configuration is optimal. WebLogic
Portal makes extensive use of the database. Check that your connection pool is
large enough, and verify that your database handles connection failures in an
efficient manner. For example, you may want to increase the number of
connections at start up, the wait time before requesting new connections, whether
your pool can shrink, and so on.

2. Verify that each portlet is optimized for speed as follows:

a. Avoid using forms in a portlet that update the data within the portlet. This
causes the entire portal to refresh its data, which can be very time consuming.

b. Place items that require heavy processing in an edit page or a maximized URL.
If you do not, the portal must wait for the portlet to process, and this
considerably slows down the eventual rendering of the portal.

c. Avoid large amounts of data retrieval that can take significant time to process.

3. Test your application’s components, starting from the data access layer. Then
proceed toward the GUI one step at a time. Pay attention to performance and
scalability differences at each component and between each layer of your
application. Finally, do end-to-end testing from a browser-based load-testing tool.

4. Test the behavior and performance of your application under simulated,
real-world conditions. (Many tools are available to help you do this.) Be sure to
use both anonymous and logged-in users simultaneously.
Performance Tuning Guide 3

1 Load Testing Your Installation
4 Performance Tuning Guide

2 Factors Affecting
Performance

Application throughput is the amount of work processed by a system in a given period
of time. A typical measurement of application throughput is the number of transactions
(usually, requests) processed per second. This topic describes factors that can
influence how much system hardware capacity will be required to support throughput
requirements.

This topic includes the following sections:

� General Web Application Factors

� WebLogic Server Factors

� Campaign Factors

� WebLogic Commerce Services Factors

� WebLogic Personalization Services Factors

General Web Application Factors

The following paragraphs describe general factors that could impact your Web
application’s performance.
Performance Tuning Guide 1

2 Factors Affecting Performance
Complex Page Layouts

Intricate table layouts and other complex HTML can cause a perceived wait on the
client after the files are transmitted and the browser determines how to render the page.
Simple pages render more quickly.

Image Content

More images require more downloading from the server, lengthening the time it takes
for a Web page to complete rendering. The size of each image file is also a factor
affecting performance. Although there may only be a few, large image files can slow
down delivery of a Web page. Keep the number of images you use on a page to a
minimum, and be sure those you do use are a reasonable size. Additionally, the
location of those images from a network perspective is important. For instance, images
should not need to traverse firewalls before arriving at a user’s browser.

Clustered Session Replication

Presently, a conservative approach is used for failover of HTTP session data. All client
states are contained in the HTTP session, which provides a high degree of failover. In
other words, the failure of a server in a cluster will only abort the current transaction,
and the user session will be continued with no loss of data. (However, if the
HttpSession contains an attribute that is not serializable, then the replication will not
happen.)

Secure Sockets Layer (SSL)

The use of Secure Sockets Layer (SSL) in communication from a user’s Web browser
to a server or from server to server can affect overall throughput. SSL should be used
when encryption of sensitive data is required while in transit or when strong server
authentication is required. However, SSL should not be used unless it is absolutely
needed.
2 Performance Tuning Guide

WebLogic Server Factors
WebLogic Server Factors

Because the WebLogic Portal runs on the BEA WebLogic Server, it is expected that
factors impacting the performance of WLS will also impact the performance of
WebLogic Portal.

Campaign Factors

The following are factors affecting performance of campaigns and related items.

Referencing Events

Always make scenario rules dependent on a particular event. This allows optimizations
based on the event types referenced in the scenario rules.

Avoiding Firing Extraneous Events

Whenever possible, avoid firing any extraneous events. The campaign services must
listen to all events. Use events to signify important occurrences on the site.

WebLogic Commerce Services Factors

The following paragraphs describe the factors specific to the BEA WebLogic
Commerce Services that could potentially impact performance.
Performance Tuning Guide 3

2 Factors Affecting Performance
Cache Settings

The BEA WebLogic product catalog uses two in-memory caches for products and
categories. The settings assigned to these caches can greatly affect the performance of
an installation.

In general, most catalogs (except the largest) should cache all of the items and
categories that will be accessed with any degree of frequency. For the purposes of
capacity planning, the cache settings affect the amount of RAM allocated directly to
these cache instances.

Note: For more information about these settings, see “Improving Catalog
Performance by Optimizing the Catalog Cache” within “Catalog
Administration Tasks” at
http://edocs.bea.com/wlp/docs40/catalog/admin.htm.

Products

For exact product memory requirements, browse the WLCS_PRODUCT table in the
database to determine the average number of characters used by each field in the
database.

Then, multiply the result by the number of products in the database. The final result is
the number of bytes of RAM that are required to cache all of the products. For a
conservative estimate based on middle-of-the-road usage for every field in the schema,
use 3200 bytes per product. For an example of these calculations, see “Example of
Calculating the Necessary RAM”.

Note: Use four characters for dates and multiply character fields by two to account
for Unicode encoding used by Java.

Categories

The fields considered in the calculations of category memory requirements are located
in the category table in the database. However, the caching scheme for categories is
more complex. In addition to the category data, the category’s position in the hierarchy
is also cached. This makes it more important to cache categories than items.
Specifically, the following information is stored about each category and is cached:

� Products in the category
4 Performance Tuning Guide

WebLogic Commerce Services Factors
� Sibling categories (peers in the hierarchy)

� Subcategories

� Ancestor categories

� Parent category

Note: Only primary keys are cached.

To arrive at the RAM requirement for category caching, add the data associated with
the category as well as the space required by the hierarchy information (that is, the
number of entries multiplied by the size of the appropriate key). For an example of
these calculations, see “Example of Calculating the Necessary RAM”.

Example of Calculating the Necessary RAM

Suppose a site has 100,000 product items. The items are in a hierarchy with 15
top-level categories, 225 second-level categories (each category has 15 subcategories),
and 3375 third-level categories (again, each category has 15 subcategories) for a total
of 3615 categories. For simplicity, assume that the products are scattered evenly across
all 3615 categories, and that each product exists in two different categories (56
items/category). Further, assume that product keys and category keys are each 10
characters long and will therefore occupy 20 bytes of RAM each. Lastly, each
category’s database data occupies 1000 bytes, and each product item occupies 3000
bytes.

Product RAM Calculation

3000 bytes/item * 100000 items = 300 MB RAM

Therefore, 300 MB RAM is required to cache the whole catalog (which is
recommended if possible).

Category RAM Calculation

1000 bytes/category * 3615 categories = 3.6 MB RAM

Therefore, 3.6MB RAM is required to cache the data.
Performance Tuning Guide 5

2 Factors Affecting Performance
Category Hierarchy RAM Calculation

� Items: 4.0 MB
� 56 products/category * 20 bytes/key * 3615 categories =

4.0 MB

� Siblings: approximately 230 MB

� 15 categories * 14 siblings /category * 20 bytes/key = 4200

bytes (Top level)

� 225 categories * 224 siblings /category * 20 bytes/key =

1MB (2nd level)

� 3375 categories * 3374 siblings/category * 20 bytes/key =

229 MB (3rd level)

� Subcategories: 72,300 bytes

� 1 root category * 15 subcategories * 20 bytes/key = 300

bytes (Root level)

� 15 categories * 15 subcategories/category * 20 bytes/key =

4500 bytes (Top level)

� 225 categories * 15 subcategories/category * 20 bytes/key =

67,500 bytes (2nd level)

� Ancestors: 211,800 bytes

� 15 categories * 1 ancestor/category * 20 bytes/key = 300

bytes (Top level)

� 225 categories * 2 ancestors /category * 20 bytes/key =

9000 bytes (2nd level)

� 3375 categories * 3 ancestors/category * 20 bytes/key =

202,500 bytes (3rd level)

� Parents: 72,300 bytes
� 3615 categories * 20 bytes/key = 72,300 bytes

� Hierarchy Total: 233 MB.

RAM Totals

300 MB (product) + 3.6 MB (category data) + 233 MB (hierarchy) = 536.6 MB
6 Performance Tuning Guide

WebLogic Commerce Services Factors
Therefore, approximately 537 MB is required for catalog caching.

Catalog Size

The number of product items in the catalog tables and their corresponding attributes
can have a significant effect on response time, especially when querying the catalog
and making product recommendations. Because searching for and recommending
products are key aspects of the browsing experience, it is important to ensure that your
database is large enough to handle this product information; a slow database can limit
performance of the whole application.

Catalog Update Frequency

When updating the product catalog directly in the database, it is recommended that the
product item cache be disabled to prevent stale data. This is particularly true if category
information is being changed. Running a server with the catalog cache disabled will
place a greater burden on the commerce services database. This performance factor
should be measured and planned for, based on the frequency of category and product
updates. The cache can be left enabled if the updates are done through the server APIs,
but the performance of that approach should be tested with a fully populated catalog.

Payment Settings

Settlement of commerce transactions can be done either in real-time or in batch mode
(via the Administration Tools). The business model typically dictates which approach
is taken. The real-time (online) approach will result in longer response times because
the settlement process typically requires a network connection to a payment service.
However, this approach guarantees that customers only pay for goods received. Batch
settlement enables faster response to customers, but requires some back office
processing to perform settlement.
Performance Tuning Guide 7

2 Factors Affecting Performance
Pipeline Session Data

At some point, your application will probably require that objects be stored in a
Pipeline session. A large amount of data stored in the session (for example, search
results) may affect performance and reduce the overall scalability of the application for
clustered environments.

Deployment

In general, networked applications should be near (in a network sense) to the resources
they utilize. If possible, for example, the WebLogic Server instances should be on the
same network segment as the database.

Clustering your deployment is preferred, both for failover and for good performance.
There are, however, some factors that can heavily influence the effectiveness of a
clustered deployment. In particular, the location of the Web server’s proxy plugin
(relative to the cluster) is the most important factor.

In the preferred configuration, the Web servers between the external and internal
firewalls (the DMZ) proxy requests for dynamic content served by WLS from within
the internal network. The HTTP servers—not the application servers behind the
firewalls—serve static content (HTML, GIFs, and so on).

This deployment is the highest performing as well as the most secure configuration.
The network traffic between the proxy plugin is coarse-grained HTTP instead of the
fine-grained RMI traffic used by EJBs, so traffic across the firewall is minimized. The
fact that the plugin is running in the DMZ also minimizes the amount of logic
executing in this area, and makes the system more secure.

Note: Cluster configurations other than the one described here will work, but with
significant security and performance implications.

Location of Java Virtual Machines (JVMs)

Although clustered environments offer benefits in terms of both load balancing and
failover, it is important to consider the location of clustered nodes as they relate to
application scalability. If a single machine is assigned multiple IP addresses,
8 Performance Tuning Guide

WebLogic Personalization Services Factors
scalability is improved because replication of HTTP session data does not require
traversing the network. However, this obviously is less desirable where failover is
critical (for example, in situations where customers should never lose their shopping
cart). If you choose to run Java Virtual Machines (JVMs) on different machines to
ensure failover, the scalability of your application might be negatively affected.

WebLogic Personalization Services Factors

The following paragraphs describe the factors specific to the BEA WebLogic
Personalization Services that can have an impact on performance.

Accessing the Database

The number of times the database is accessed while generating a portlet or Web page
can have a significant effect on application performance. If this number is kept low,
performance might benefit. Alternatively, numerous queries to the database can hurt
performance.

Application Complexity

Complex applications have the potential to incur performance bottlenecks. For
example, an application that must access a database, two mainframes, an LDAP server
over SSL, and a secondary Web server is going to have more potential for degraded
performance than an application that simply queries a single, local database. Designers
of complex applications must carefully consider all potential bottlenecks and address
them with appropriate solutions, such as a data caching strategy.
Performance Tuning Guide 9

2 Factors Affecting Performance
10 Performance Tuning Guide

CHAPTER
3 Estimating Baseline
Capacity Requirements

This topic explains how you can use the information described in prior topics to obtain
a baseline environment that meets your specific needs.

This topic includes the following sections:

� Estimate the Maximum Number of Simultaneous Users

� Estimate Per-User Memory Requirements

� Estimate Application Throughput Requirements

� Estimate Maximum Acceptable Response Times

� Calculate a Baseline Estimate

� Throughput Requirements

� Memory Requirements

� Latency Requirements

� Adjusting Your Estimate
Performance Tuning Guide 1

3 Estimating Baseline Capacity Requirements
Estimate the Maximum Number of
Simultaneous Users

The first step in calculating a baseline environment for your application is to estimate
the maximum simultaneous user load that your application will be expected to handle.
This estimate depends on the nature of your application and on the behavior of your
customers. For example, your requirements may stipulate that your application be able
to support 1000 concurrent client connections.

Estimate Per-User Memory Requirements

Each simultaneous user connection requires memory to store information on a per-user
basis. For example, an online commerce site must store the contents of each user’s
shopping cart. Ideally, we would like to be able to store each shopping cart in memory
rather than in the database. Therefore, where possible, allocate enough memory so that
your application stores all concurrent client data in memory.

Estimate Application Throughput
Requirements

Next, determine the maximum rate at which clients will make requests to your
application. This estimate will depend on the nature of the content served by your
application and on the behavior of your users. In the case mentioned above, the
application must be able to support 1000 concurrent clients. Suppose you expect users
to make new requests every 25 seconds. In this case, the application must be able to
process 1000/25 = 40 transactions per second (TPS), on average. However, the peak
2 Performance Tuning Guide

Estimate Maximum Acceptable Response Times
application throughput requirements will be larger than this average figure. Assume
that peak workload is 150% of the average figure. This translates into a peak
throughput requirement of 60 TPS.

Estimate Maximum Acceptable Response
Times

Finally, an application response time goal should be associated with the application
throughput goal. This figure would typically be inclusive of wide area network latency,
implying a lower application response time goal.

Calculate a Baseline Estimate

The estimates of the maximum simultaneous users, per-user memory requirements,
application throughput requirements, and maximum response times can be used to
calculate a baseline environment for your specific needs as described in the following
sections.

Throughput Requirements

To satisfy the throughput requirements of your application, choose the appropriate
hardware deployment configuration such that:

Maximum throughput requirement = TPS1 + TPS2 + … + TBSn

where TPS1, TPS2, …TBSn can be estimated using the throughput observations found
in the results section of each test scenario. It is important to use the observations from
the scenarios and parameters that best mimic your application. If your application uses
Commerce and Personalization services and campaign features, it is best to use the
lower of the two TPS observations as a baseline estimate.
Performance Tuning Guide 3

3 Estimating Baseline Capacity Requirements
Memory Requirements

Use the following formula to determine the minimum amount of memory that must be
allocated to each of your n WebLogic Commerce and Personalization services
processes:

Server minimum + Per-user memory requirements * (Maximum number of users)/n

Latency Requirements

When trying to satisfy latency requirements, it is important to factor in the effect of the
network and deployment configurations on application latency. For example, it is
extremely important to optimize the network connection between your database
server(s) and your application server(s). Furthermore, the addition of firewalls and
proxy services (such as the cluster proxy plugin) can increase application latency.
System throughput tests that include response times can help you optimize your
physical architecture such that latency times are minimized.

Adjusting Your Estimate

The advice provided in this Guide should get you moving in the right direction for your
particular capacity planning efforts. However, you will need to perform tests in your
own environment and adjust these estimates according to your results before deploying
your application. Environment-specific testing is especially important in determining
exact scalability numbers. By performing your own tests, you can be confident that
your application will perform as well as it possibly can for your users.
4 Performance Tuning Guide

Performance Tuning Guide 4-1

CHAPTER

4 Using Caches

WebLogic Portal provides a single framework for configuring, accessing, monitoring,
and maintaining caches. If configured properly, the caches can reduce the time needed
to retrieve frequently used data.

Many WebLogic Portal services use preconfigured caches that you can tune to meet
your performance needs. Some services use internally configured caches that you
cannot configure or access. If you extend or create additional services, you can use the
cache framework to define and use your own set of caches.

This topic contains the following sections:

� Overview of the Cache Framework

� Configuring Caches with MBeans

� Accessing Caches

� Reconfiguring Active Caches

� Monitoring and Managing Caches

� Recommended Settings

All of the recommendations in this document are in addition to the recommendations
in the BEA WebLogic Server Performance and Tuning guide.

4 Using Caches

4-2 Performance Tuning Guide

Overview of the Cache Framework

The most basic components of the cache framework are the
com.bea.p13n.cache.CacheFactory and com.bea.p13n.cache.Cache classes.
These classes provide facilities for creating, accessing, and managing caches.

In addition to these components, WebLogic Portal provides a set of MBeans (Java
Beans for Management) that you can use to configure and administer the caches.
(MBeans are part of the specification for Java Management Extensions, or JMX.) See
Figure 4-1.

Figure 4-1 The Cache Framework

Overview of the Cache Framework

Performance Tuning Guide 4-3

Comparison of Configuring Caches

Using MBeans to configure caches is optional. This section compares configuring
caches with and without MBeans.

Using MBeans to configure caches provides the following advantages:

� A cache’s configuration persists when you restart a server instance.

� You can use the WebLogic Server Administration Console (or an API) to
dynamically modify a cache configuration.

� The configuration is available to all instances of the cache on all nodes of a
cluster. Any changes that you make to this configuration via the WebLogic
Server Administration Console are propagated to all instances of the cache on all
cluster nodes.

Instead of using MBeans to configure caches, you can use a default configuration that
is specified in com.bea.p13n.cache.CacheDefaults. You cannot use the
WebLogic Server Administration Console to modify the configuration of caches that
you create in this way. (Hence, any changes that you make to the configuration of such
a cache are not propagated across a cluster.)

Caches in a Clustered Environment

In a clustered environment, entries within caches are not replicated across nodes.

If you use MBeans to configure a cache, the CacheMBean on the Administration
Server propagates the cache configuration to all nodes in the cluster. If you modify the
configuration, the CacheMBean propagates the changes to all instances of the cache
throughout the cluster, thus maintaining a consistent view of the cache configuration
parameters. (See Figure 4-2.)

Note: If you want to dynamically reconfigure an active, single instance of a cache
without propagating the changes throughout a cluster, refer to “Reconfiguring
Active Caches” on page 4-11.

4 Using Caches

4-4 Performance Tuning Guide

Figure 4-2 Caches in a Cluster

In addition, for caches that are configured by MBeans, you can use the WebLogic
Server Administration Console to do the following:

� Flush (remove) all items from all instances of the cache throughout a cluster.

� Invalidate a single item in a cache and propagate the invalidation to all instances
of the cache throughout a cluster.

For example, a customer logs in to node A and receives a discount while shopping. The
Discount Service on node A uses the discount cache to store data. A different
customer logs in to node B and receives a discount while shopping. The Discount
Service on node B creates its own instance of the discount cache to store its data. In
the meantime, your supply of one of your discounted items unexpectedly runs low.
You use the E-Business Control Center to deactivate the discount for the item, and to

Configuring Caches with MBeans

Performance Tuning Guide 4-5

make sure that the discount is deactivated immediately (as opposed to waiting for the
cache TTL to time out), you use the WebLogic Server Administration Console to flush
the discount cache on all nodes in the cluster.

Configuring Caches with MBeans

Before you can access the cache MBeans, you must do the following:

� Assemble and deploy an enterprise application with a deployment descriptor that
declares the default cache MBeans. For information on setting up a deployment
descriptor for your enterprise application, refer to “Create Deployment
Descriptors” under “Assembling and Deploying Enterprise Applications” in the
Deployment Guide.

� Start the server instance onto which you deploy your enterprise application.

Configuring Default Caches

Many WebLogic Portal services use preconfigured caches that you can tune to meet
your performance needs.

If you want to re-configure these default caches, do the following:

1. Start the WebLogic Server Administration Console by entering the following URL
in a Web browser:

http://hostname:port-number/console

For example, you started a server on a host named bonnie and it uses port 7001
as a listen-on port. Enter the following URL:

http://bonnie:7001/console

2. The WebLogic Server Administration Console prompts you to log in with a user
account that has administrator privileges.

4 Using Caches

4-6 Performance Tuning Guide

3. After you log in, in the left pane, click Deployments → Applications →
MyApplication → Service Configuration → Caches.

4. Click the cache that you want to configure. (See Figure 4-3.)

Figure 4-3 Configuring a Cache MBean

Configuring Caches with MBeans

Performance Tuning Guide 4-7

5. On the Cache Service page, click the Configuration tab and modify any of the
following items:

6. Click Apply. Your modifications take effect immediately.

The WebLogic Server Administration Console saves these values to the
application-config.xml file, which is located in the META-INF directory of your
enterprise application.

Name Description

Enabled Determines whether the cache can be instantiated and accessed.
Clearing this check box also flushes the cache and causes the
fetch, add, and remove methods to do nothing.

Time to Live Determines the number of milliseconds that items in the cache
remain valid.
For information on setting TTL values for individual items in a
cache, refer to “Putting and Getting Items in a Cache” on page
4-10.

Maximum Number
of Entries

Determines the maximum number of items that the cache
maintains.
If a cache already contains the maximum number of entries and
a service tries to add an item, the cache does one of the
following:
If the item already exists, the cache replaces the entry.
If the item does not already exist, it is added to the cache and
the least recently used element is removed to accommodate the
new element.
Caches remove items to accommodate new ones only if the
cache is at capacity.

4 Using Caches

4-8 Performance Tuning Guide

Configuring Custom Caches

If you create a cache to support one of your extensions or additional services, you can
use MBeans to configure the cache. To use MBeans to configure a custom cache, do
the following:

1. In a text editor, open myApplication/META-INF/application-config.xml.

Note: Do not use the WebLogic Server Administration Console for your domain
while you are editing application-config.xml in the text editor. The
WebLogic Server Administration Console writes its changes to
application-config.xml.

2. In application-config.xml, within the <CacheManager> element, add the
following subelement:

<Cache
Name="cache-name"
TimeToLive="time-in-milliseconds"
MaxEntries="numerical value">

</Cache>

For example,

<Cache
Name="MyCache"
TimeToLive="360000"
MaxEntries="100">

</Cache>

3. Restart the server or redeploy your application.

To access this cache, use CacheFactory.getCache(cache-name).

Accessing Caches

Performance Tuning Guide 4-9

Accessing Caches

To access (instantiate and retrieve) a cache, you use CacheFactory.getCache().
This section contains the following subsections:

� Accessing a Cache

� Putting and Getting Items in a Cache

For information about the advantages of each configuration method, refer to
“Comparison of Configuring Caches” on page 4-3. For more information about
com.bea.p13n.cache.CacheFactory.getCache(), refer to the WebLogic Portal
Javadoc.

Accessing a Cache

Use the following syntax to access a cache:

CacheFactory.getCache(String cacheName)

With this command, getCache() does the following:

� Determines whether a cache identified by the cacheName value has already been
instantiated. If it has, then it retrieves the existing cache.

� If it has not, then CacheFactory looks for an instance of a CacheMBean with a
name attribute that matches cacheName. If it finds such an MBean, then it
creates a cache using the MBean configuration parameters.

� If CacheFactory does not find an CacheMBean that matches cacheName, then
getCache() configures the cache with default parameters from
com.bea.p13n.cache.CacheDefaults:
MaxEntries=100
TimeToLive=360000
Enabled=true

For example, the following command returns a cache named MyCache:

Cache cache = CacheFactory.getCache(“MyCache”);

4 Using Caches

4-10 Performance Tuning Guide

Putting and Getting Items in a Cache

After you retrieve a cache, you use the following methods to put and get items:

� Cache.put(Object key, Object value) to add items.

� Cache.put (Object key, Object value, long ttl) to add and specify a
time-to-live (in milliseconds) for an item. This item-specific TTL does not
persist and does not propagate to other instances of the cache in a cluster. The
TTL for other items in the cache is determined by the cache-wide TTL, which
you specify when you create the cache.

� Cache.get(Object key) to retrieve items.

For example, the following commands retrieve a cache named MyCache, add three
items that are identified as Element 1, Element 2, and Element 3, and then retrieves the
value for Element 2.

Cache cache = CacheFactory.getCache("MyCache");
cache.put("Element 1", "stream");
cache.put("Element 2", "mountain");
cache.put("Element 3", "stars");

String s = (String)cache.get("Element 2");

The following command specifies a TTL of 6000 milliseconds for the Element 2 item,

cache.put ("Element 2", "mountain", 6000);

For a description of all Cache API methods, refer to the WebLogic Portal Javadoc. for
com.bea.p13n.cache.Cache.

Reconfiguring Active Caches

Performance Tuning Guide 4-11

Reconfiguring Active Caches

If you configured a cache with MBeans, you can use the WebLogic Server
Administration Console to reconfigure the cache and all of its instances across a
cluster. For more information, refer to “Configuring Caches with MBeans” on page
4-5.

If you want to reconfigure a single instance of any currently active cache, invoke
Cache.set methods. These configuration changes do not use MBeans and are not
propagated to other instances the cache in a cluster.

For more information, refer to the WebLogic Portal Javadoc. for
com.bea.p13n.cache.CacheFactory.Cache.

Monitoring and Managing Caches

You can use the APIs to monitor cache activity and the WebLogic Server
Administration Console or APIs to perform management tasks such as removing
items.

This section contains the following subsections:

� Monitoring a Cache

� Flush or Invalidate Items in a Cache That Is Configured with MBeans

� Clear or Remove Items from a Cache

4 Using Caches

4-12 Performance Tuning Guide

Monitoring a Cache

Each cache object maintains and reports information about itself. The following
sections describe how to monitor an individual instance of a cache:

� Viewing the Number of Items in a Cache

� Viewing the Hit Count

� Viewing the Hit Rate

� Viewing the Miss Count

� Example of Monitoring Caches

Note: Cache statistics, such as hit count and hit rate, describe activity for individual
instances of the cache. You cannot view them from the WebLogic Server
Administration Console. Compare this to cache attributes, such as enabled,
which apply to all instances of a named cache in a cluster and are available to
view or modify from the WebLogic Server Administration Console.

Viewing the Number of Items in a Cache

To view the number of items in a cache, use the following API:

com.bea.p13n.cache.Cache.size()

For information about this method, refer to the documentation for
com.bea.p13n.cache.Cache in the WebLogic Portal Javadoc.

Viewing the Hit Count

To view the hit count, which is the number of Cache.get() calls that successfully
returned data, use the following API:

com.bea.p13n.cache.getHitCount()

For information about this method, refer to the documentation for
com.bea.p13n.cache.CacheStats in the WebLogic Portal Javadoc.

Monitoring and Managing Caches

Performance Tuning Guide 4-13

Viewing the Hit Rate

To view the hit rate, which is the percentage of Cache.get() calls that successfully
returned data, use the following API:

com.bea.p13n.cache.getHitRate()

For information about this method, refer to the documentation for
com.bea.p13n.cache.CacheStats in the WebLogic Portal Javadoc.

Viewing the Miss Count

To view the miss count, which is the number of Cache.get() calls that did not return
data, either because an entry has expired or was not in the cache, use the following API:

com.bea.p13n.cache.getMissCount()

For information about this method, refer to the documentation for
com.bea.p13n.cache.CacheStats in the WebLogic Portal Javadoc.

Example of Monitoring Caches

The following commands retrieve a cache named FooCache and return the statistics
that the cache object keeps. The final line resets the statistics:

Cache cache = CacheFactory.getCache(“FooCache”);
//do stuff; put, get items
int hitRate = cache.getHitRate();
int hitCount = cache.getHitCount();

int missCount = cache.getMissCount();

com.bea.p13n.cache.resetStats();

4 Using Caches

4-14 Performance Tuning Guide

Disable a Cache

If you want to make a cache unavailable for putting and getting items, you can disable
it. Disabling also flushes a cache and causes the fetch, add, and remove methods to do
nothing.

If you use the WebLogic Server Administration Console to configure a cache, do the
following to disable the cache:

1. Start the WebLogic Server Administration Console by entering the following URL
in a Web browser:

http://hostname:port-number/console

For example, you started a server on a host named bonnie and it uses port 7001
as a listen-on port. Enter the following URL:

http://bonnie:7001/console

2. The WebLogic Server Administration Console prompts you to log in with a user
account that has administrator privileges.

3. After you log in, in the left pane, click Deployments → Applications →
MyApplication → Service Configuration → Caches.

4. Click the cache that you want to disable. (See Figure 4-3.)

5. On the Cache Service page, click the Configuration tab.

6. Clear the Enabled check box and click Apply.

Note: The Cache.disable() API also disables caches, but we recommend that you
do not use this method for caches that are configured with MBeans.

If you do not use the WebLogic Server Administration Console and MBeans to
configure a cache, use Cache.setEnabled(false) to disable a cache.

Monitoring and Managing Caches

Performance Tuning Guide 4-15

Flush or Invalidate Items in a Cache That Is Configured
with MBeans

For any cache that is configured with MBeans, you can flush or invalidate items
cluster-wide. Flushing removes all items from all instances of the cache throughout a
cluster. Invalidating removes a single item from all instances of the cache throughout
a cluster.

Flushing or Invalidating From the WebLogic Server Administration Console

To flush or invalidate from the WebLogic Server Administration Console, do the
following:

1. Start the WebLogic Server Administration Console by entering the following URL
in a Web browser:

http://hostname:port-number/console

For example, you started a server on a host named bonnie and it uses port 7001
as a listen-on port. Enter the following URL:

http://bonnie:7001/console

2. The WebLogic Server Administration Console prompts you to log in with a user
account that has administrator privileges.

3. After you log in, in the left pane, click Deployments → Applications →
MyApplication → Service Configuration → Caches.

4. Click the cache that you want to flush or invalidate.

5. On the Cache Service page, click the Administration tab. (See Figure 4-4.)

4 Using Caches

4-16 Performance Tuning Guide

Figure 4-4 Cache Administration

6. To flush all items from a cache, select the Flush the Entire Cache check box.
Then click Flush.

To invalidate an item, enter the item’s key in the Invalidate a Specific Key box.
Then click Flush.

Monitoring and Managing Caches

Performance Tuning Guide 4-17

Clear or Remove Items from a Cache

For any cache that is currently active, you can clear or remove items. Clearing removes
all items from a cache; removing destroys only the items that you specify. Both of
these operations apply only to the current instance of a cache. They do not affect other
instances on other nodes of a cluster.

To clear all items from a cache, retrieve the cache and then use the cache.clear
method:

CacheFactory.getCache(String name);

cache.clear()

For example, the following two commands retrieve a cache named MyCache and clear
all items from it:

CacheFactory.getCache(“MyCache”);

cache.clear()

To remove items from a cache, retrieve the cache and then use the cache.remove
method:

CacheFactory.getCache(String name);
cache.remove(Object key)

For example, the following two commands retrieve a cache named MyCache and
remove an entry named Element 2:

Cache cache = CacheFactory.getCache(“MyCache”);
cache.remove(“Element 2”)

4 Using Caches

4-18 Performance Tuning Guide

Recommended Settings

To adjust caching for production Web site, complete the following tasks:

� Adjust Caching for Content Management

� Property Caching in a Clustered Environment

� Adjust Group Membership TTL in the Caching Realm

� Adjust Caching for the Discount Service

Adjust Caching for Content Management

To optimize content-management performance for your production Web site, the
Content Manager uses the caching framework to configure and manage the following
caches:

� documentContentCache

� documentMetadataCache

� documentIdCache

The content management JSP tags provide an additional set of caches, which you can
access by doing the following:

� For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, use the useCache attribute whenever possible.
Doing so avoids a call to DocumentManager and, in the case of
pz:ContentSelector, to the Rules Manager.

For information on using the useCache attribute, refer to “JSP Tag Library
Reference” in the Guide to Building Personalized Applications.

To clear cached content when user and/or document attributes change, use the
remove method of com.bea.p13n.content.ContentCache. For more
information, see the WebLogic Portal Javadoc. for
com.bea.p13n.content.ContentCache.

Recommended Settings

Performance Tuning Guide 4-19

� For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, set the cacheScope attribute to application
whenever possible. This application scope applies to the Web application, not
to the enterprise application.

For example:

<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"

max="10" cacheTimeout="300000" />

The application cache type is global instead of per-user and should speed up
queries by avoiding a call to the DocumentManager EJB.

Note: For pz:contentSelector, set the cacheScope attribute to application
only when you want to select shared content. For example, you create an
application that uses an application-scoped cache to select content for
non-authenticated users. Because it uses the application scope, all
non-authenticated users see the same content. For authenticated users, your
application provides personalized content by switching to a session scoped
cache.

4 Using Caches

4-20 Performance Tuning Guide

� Whenever you can predict the next document that users will view based on the
document that they are currently viewing, load the next document into the cache
before users request it. This “forward caching” will greatly improve the speed at
which WebLogic Portal responds to user requests (assuming that your prediction
is correct; forward caching a document that no one requests will only degrade
performance and scalability).

The following JSP fragment is an example of forward caching a document:
<%-- Get the first set of content --%>

<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"
max="10" cacheTimeout="300000" />

<%-- Generate a query from each content's relatedDocId --%>

<% String query = null; %>
<es:forEachInArray array="<%=myDocs%>" id="myDoc"
type="com.bea.p13n.content.Content">

<% String relId = (String)myDoc.getProperty("relatedDocId",
null); %>
<es:notNull item="<%=relId%>">

<%
if (query != null)
query += " || ";
else
query = "";
query += "identifier = '" +
ExpressionHelper.toStringLiteral(relId) + "'";

%>

</es:notNull>
</es:forEachInArray>

<%-- Load the related content into the cache via cm:select
--%>

<es:notNull item="<%=query%>">

<cm:select query="<%=query%>" id="foo" useCache="true"
cacheId="relatedDocs"
cacheScope="session" max="10" cacheTimeout="300000" />

</es:notNull>

Recommended Settings

Performance Tuning Guide 4-21

For More Information

For more information about content management, see “Creating and Managing
Content” in the Guide to Building Personalized Applications.

For more information about JSP tags for content management, see “JSP Tag Library
Reference” in the Guide to Building Personalized Applications.

Property Caching in a Clustered Environment

To decrease the amount of time needed to access user, group, and other properties data,
the WebLogic Server Configurable Entity and Entity Property Manager use the cache
framework to configure and manage the following caches:

� ldapGroupCache

� ldapUserCache

� entityPropertyCache

� entityIdCache

� unifiedProfiletypeCache

� propertyKeyIdCache

By default, these property caches are enabled.

With property caching enabled in a clustered environment, each server in a cluster
maintains its own cache; the cache is not replicated on other servers. In this
environment, when properties that are stored in the caches change on one server, they
may not change on another server in a timely fashion. In most cases, immediate or
quick access to properties on another server is not necessary: user sessions are pinned
to a single server, and even with caching enabled, users immediately see changes they
make to their own settings on the server.

4 Using Caches

4-22 Performance Tuning Guide

If a user and an administrator are pinned to different servers in the cluster and the
administrator changes a user's properties, the user may not see the changes during the
current session. You can mitigate this situation by specifying a small Time-To-Live
(TTL) setting. For information on adjusting the TTL setting for a cache, refer to
“Configuring Caches with MBeans” on page 4-5.

If you require multiple servers in a cluster to have immediate access to modified
properties, disable property caching. For information on disabling a cache, refer to
“Disable a Cache” on page 4-14.

For More Information

For more information about property sets, see “Creating and Managing Property Sets”
in the Guide to Building Personalized Applications.

For more information about JSP tags for managing property sets, see “JSP Tag Library
Reference” in the Guide to Building Personalized Applications.

Adjust Caching for the Discount Service

To reduce the amount of time the Order and Shopping Cart services need to calculate
order and price information that include discounts, the Discount Service uses the
caching framework to create and manage the following caches:

� discountCache, which contains data for campaign discounts. Campaign
discounts are targeted to specific customers or customer segments, and are
available only in the context of a campaign.

� globalDiscountCache, which contains data for global discounts. Global
discounts apply to all customers, regardless of customer properties or customer
segments.

When a customer adds an item to the shopping cart, removes an item from the
shopping cart, checks out, or confirms an order, the Pricing Service is responsible for
determining the price of the items in the cart. To calculate the effect of discounts on
the shopping cart, the Pricing Service requests the Discount Service to retrieve
information about all global discounts and about any campaign discounts that apply to
the current customer.

Recommended Settings

Performance Tuning Guide 4-23

The first request for information about discounts requires a separate call to the database
for each discount that applies. For example, if you have defined one global discount
and if a customer is eligible for two campaign-related discounts, the Discount Service
makes three calls to the database. To decrease the response time for any subsequent
requests, the Discount Service uses the caches.

This section contains the following subsections:

� Adjusting the discountCache

� Adjusting the globalDiscountCache

� Discount-Service Caches in Clustered and Non-Clustered Environments

Adjusting the discountCache

The discountCache contains data for campaign discounts. For maximum
performance, set the capacity to the number of campaign discounts that are currently
deployed. A larger capacity will potentially use more memory than a smaller capacity.

The Time-To-Live (TTL) property determines the number of milliseconds that the
Discount Service keeps the information in the cache. After the cache value times out,
the next request for the value requires the Discount Service to call the database to
retrieve the information and then cache the value. A longer TTL decreases the number
of database calls made over time when requesting cached objects. In a clustered
environment, the TTL is the maximum time required to guarantee that any changes to
global discounts are available on all servers.

Adjusting the globalDiscountCache

The Maximum Number of Entries property for global caches does not need to be
modified.

The time-to-live property determines the number of milliseconds that the Discount
Service keeps information in the global-discount cache. After the Time-To-Live (TTL)
expires, the next request for global discount information requires the Discount Service
to call the database to retrieve the information and then cache the value. A longer TTL
decreases the number of database calls made over time when requesting cached
objects. In a clustered environment, the TTL is the maximum time required to
guarantee that any changes to campaign discounts are available on all servers.

4 Using Caches

4-24 Performance Tuning Guide

Discount-Service Caches in Clustered and Non-Clustered Environments

In either environment (clustered or non-clustered), when you change a discount
priority, end date, or its active/inactive state, WebLogic Portal flushes the discount
from the appropriate cache. Changes to a campaign discount flush only the specific
discount from the campaign-discount cache. Changes to a global discount flush all
discounts from the global-discount cache.

For example, you log in to a WebLogic Portal host named bread and deactivate a
campaign discount named CampaignDiscount1. WebLogic Portal flushes the
CampaignDiscount1 from the campaign-discount cache on bread.

In a clustered environment, other machines in the cluster continue to use their cached
copy of the discount until the TTL for that discount expires.

Adjust Group Membership TTL in the Caching Realm

The WebLogic Server Caching realm stores the results of both successful and
unsuccessful realm lookups. It does not use the WebLogic Portal caching framework.

The Caching realm manages separate caches for Users, Groups, permissions, ACLs,
and authentication requests. It improves the performance of WebLogic Server by
caching lookups, thereby reducing the number of calls into other security realms.

WebLogic Portal enables the Caching realm by default. While all of the caches in the
Caching realm can improve performance, the Time-To-Live (TTL) value for the
Group Membership Cache in particular can affect the performance of WebLogic
Portal.

In addition, note that if you delete a user from the system without first removing the
user from a group, then the system continues to recognize the user until the TTL for
the Group Membership Cache expires.

For information on adjusting the Group Membership TTL, refer to “Configuring the
Caching Realm” under “Managing Security” in the WebLogic Server Administration
Guide.

Performance Tuning Guide 5-1

CHAPTER

5 Tuning JSPs and
Servlets

JSPs are the front end of your application. When a customer requests a page on your
e-business Web site, WebLogic Portal compiles the corresponding JSP into a servlet.
In addition to servlets that come from compiled JSPs, WebLogic Portal provides a set
of servlets for exchanging information between various components of the system.

For suggestions on tuning the compiling and updating for JSPs and servlets, refer to
the following sections:

� Precompile JSPs

� Specifying a Java Compiler for a Web Application

� Adjust the Intervals for Checking JSP and Servlet Modifications

All of the recommendations in this document are in addition to the recommendations
in the BEA WebLogic Server Performance and Tuning guide.

5 Tuning JSPs and Servlets

5-2 Performance Tuning Guide

Precompile JSPs

For each of your Web applications that you deploy, you can determine when
WebLogic Portal compiles JSPs:

� You can specify that the application server compiles (precompiles) all JSPs when
you start the server.

When you activate the precompile option, the server startup process checks for
new or modified JSPs in the Web application and compiles them. Activating the
precompile option can cause a significant delay in server startup if you have
modified or added JSPs but avoids delays when you access a new or modified
JSP for the first time.

� You can specify that the application server compiles JSPs only when they are
requested.

With this option deactivated, the server starts quickly but must compile each
new or modified JSP when you access it, causing a significant delay the first
time you request a new or modified JSP.

By default, the sample Web applications for WebLogic Portal deactivate the
JavaServer Page (JSP) precompile option.

To precompile JSPs for a Web application that is deployed as an expanded directory
hierarchy, do the following:

1. From the Web application’s WEB-INF directory, open the weblogic.xml file in
a text editor and find the following element:

<context-param>
<param-name>weblogic.jsp.precompile</param-name>
<param-value>false</param-value>

</context-param>

Note: web.xml was changed to weblogic.xml in this release.

Note: A patch for WebLogic Server 6.1 is required for this functionality to work.
The patches are included in 60sp2rp2, 60sp2rp1,and 61sp2.

2. In the <param-value> element, replace false with true. For example,
<param-value>true</param-value>

3. Save the file and restart the server.

Precompile JSPs

Performance Tuning Guide 5-3

For information, refer to “Starting and Shutting Down the Server” in the
Deployment Guide.

To precompile JSPs for a Web application that is deployed as a .war file do the
following:

1. Make a backup copy of the .war file.

2. Create a temporary directory and copy the.war file to the directory.

3. In the temporary directory, unjar the .war file by entering the following
command:

pathname\jar -xf WarFileName

For example:

c:\jdk1.3\bin\jar -xf tools.war

4. Under the temporary directory, open WEB-INF\web.xml in a text editor and find
the following element:

<context-param>
<param-name>weblogic.jsp.precompile</param-name>
<param-value>true</param-value>

</context-param>

5. In the <param-value> element, replace false with true. For example,
<param-value>true</param-value>

6. Save web.xml.

7. Under the temporary directory, if the WEB-INF directory contains a subdirectory
named _tmp_war, delete the _tmp_war directory. This directory contains
compiled JSPs and you must remove them before you re-jar the .war file to
ensure that WebLogic Portal recompile all JSPs the next time you start the server.

8. Remove the old .war file from the temporary directory.

9. Create a new .war file for the Web application by entering the following
command:

pathname\jar -cf WarFileName *.*

For example:

c:\jdk1.3\bin\jar -cf tools.war *.*

10. Move the new .war file back to its original directory.

5 Tuning JSPs and Servlets

5-4 Performance Tuning Guide

11. Remove any other files in the original directory that may have been left over
from previous .war extractions. For example, there may be a WEB-INF directory
remaining from the last time you ran the Web application from the .war file.

12. Restart the server.

For information on shutting down and starting the server, refer to “Starting and
Shutting Down the Server” in the Deployment Guide.

The server console logs a message for each file it compiles. Ignore any [JSP Enum]

no match messages. These are displayed for files that do not match the .jsp file
extension.

Specifying a Java Compiler for a Web
Application

The WebLogic Server Administration Console specifies a Java compiler for each
server configuration. All applications that you deploy on a server use this compiler
unless a Web application’s weblogic.xml file specifies a different compiler.

To review the current Java compiler for your server, in the left pane of the WebLogic
Server Administration Console, click a server. In the right pane, on the Configurations
tab, click the Compilers subtab.

To specify a Java compiler for a Web application, do the following:

1. Open Web application’s WEB-INF/weblogic.xml file in a text editor.

2. In weblogic.xml, find the following element:

<--
<jsp-param>

<param-name>compileCommand</param-name>
<param-value>java-compiler</param-value>

</jsp-param>

-->

3. Remove the <-- and --> comment tags.

Specifying a Java Compiler for a Web Application

Performance Tuning Guide 5-5

4. Change the <param-value> to specify the pathname of the Java compiler that
you want to use for the Web application.

5. To deploy any modifications to this file, you must restart the server.

Adjust the Intervals for Checking JSP and Servlet
Modifications

You can specify how frequently a server checks for modifications to JSPs and source
files for other servlets in a Web application.

The sample Web applications check for modified JSPs each time a Web browser
requests a JSP. Likewise, each time the server sends a request to a servlet in a sample
Web application, it checks for any modifications to the servlet class files.

For your production Web site, you can decrease the amount of time in which
WebLogic Portal serves JSPs and processes requests to servlets by increasing the
intervals at which the server checks for modifications.

Although the server performs faster with higher values for the modification-check
intervals, the higher values reduce sensitivity to changes in your source files. For
example, you can set the server to check for JSP modifications every 10 minutes. After
you change a JSP, it will take up to 10 minutes for the server to see the modifications.

This section includes the following topics:

� About the Page-Check Intervals Properties

� To Adjust the Intervals

5 Tuning JSPs and Servlets

5-6 Performance Tuning Guide

About the Page-Check Intervals Properties

The pageCheckSeconds attribute determines the interval at which a server checks to
see if JSP files in a Web application have changed and need recompiling. Each Web
application defines this property separately in its WEB-INF\weblogic.xml file. For
example, the e-commerce sample Web application defines this property in the
following file:
PORTAL_HOME\applications\wlcsApp\wlcs\WEB-INF\weblogic.xml

The following excerpt from the e-commerce sample Web application shows the
pageCheckSeconds attribute with the default value in boldface text:

<jsp-param>
<param-name>pageCheckSeconds</param-name>
<param-value>1</param-value>

</jsp-param>

Note: The page-check interval does not determine the frequency with which a server
checks for updated content that is stored in the database and in a content
management system. Instead, the TTL (time-to-live) settings for various caches
determine the refresh rate for content. For example, if you set the page-check
intervals to once a second, and you set the TTL for the content cache to 10
minutes, it can take up to 10 minutes for the server to see the new content, even
though it is checking for new JSP source code every second. For information
on setting TTL properties for caches, refer to Chapter 4, “Using Caches.”

To Adjust the Intervals

To determine the optimal page-check and reload-servlet intervals for your production
Web site do the following:

1. Establish performance baselines by testing WebLogic Portal performance with the
interval set to -1 (which specifies that the server never checks for modifications).

2. Test the performance with the interval set to various numbers of seconds. For
example, set the interval to 600 seconds (10 minutes) and test the performance.
Then set the interval to 900 seconds and test the performance.

3. Choose an interval that provides the best performance while checking for
modifications to JSP files and servlet classes at a satisfactory rate.

Performance Tuning Guide 6-1

CHAPTER

6 Additional Tuning
Recommendations

This chapter recommends configurations for miscellaneous services and components:

� Adjust Database Connections Available at Startup

� Increase the Size of the Display-Count Buffer

� Display Metadata, Sort and Query Explicit Metadata

� Use LDAP for Authentication Only

� Use the HotSpot Virtual Machine

For information on tuning the Behavior Tracking service, refer to “Persisting
Behavioral Tracking Data” in the Guide to Events and Behavior Tracking.

All of the recommendations in this document are in addition to the recommendations
in the BEA WebLogic Server Performance and Tuning guide.

6 Additional Tuning Recommendations

6-2 Performance Tuning Guide

Adjust Database Connections Available at
Startup

To optimize the database pool performance for your production Web site, do the
following:

1. Start the WebLogic Server Administration Console for your domain.

2. In the WebLogic Server Administration Console, under JDBC, click Connection
Pools.

3. On the JDBC Connection Pools page, in the Name column, click commercePool.

4. On the commercePool page, click the Connections tab and do the following (see
Figure 6-1):

a. Increase the value in Initial Capacity to match the value in Maximum Capacity.

b. Change Login Delay Seconds to 0.

c. Clear the Allow Shrinking check box.

d. Click Apply.

5. Click the Testing tab and clear the Test Reserve Connections check box.

6. Click Apply.

7. Restart the server.

Adjust Database Connections Available at Startup

Performance Tuning Guide 6-3

Figure 6-1 Change Values on the commercePool Tab

For More Information

For more information on database connection pools, refer to the WebLogic Server
Administration Console online help.

6 Additional Tuning Recommendations

6-4 Performance Tuning Guide

Increase the Size of the Display-Count
Buffer

The Campaign service uses display counts to determine whether a campaign has met
its end goals. Each time an ad placeholder finds an ad to display as a result of a scenario
action, the Campaign service updates the display count.

By default, the Campaign service does not update the display count in the database
until an ad placeholder has found 10 ads to display as a result of one or more scenario
actions. If the server crashes before the Campaign service flushes this display-count
buffer to the database, you can lose display-count updates, up to the number of display
counts that are in the buffer.

You can use the WebLogic Server Administration Console to determine the number of
display counts that are stored in memory before the Campaign service updates the
database:

1. Start the WebLogic Server Administration Console by entering the following URL
in a Web browser:

http://hostname:port-number/console

For example, you started a server on a host named bonnie and it uses port 7001
as a listen-on port. Enter the following URL:

http://bonnie:7001/console

2. The WebLogic Server Administration Console prompts you to log in with a user
account that has administrator privileges.

Increase the Size of the Display-Count Buffer

Performance Tuning Guide 6-5

3. After you log in, in the left pane, click Deployments → Applications →
MyApplication → Service Configuration → Ad Service.

4. In the Display Flush Size box, change the value. For sites with high traffic,
increase this number to a range of 50 to 100. (See Figure 6-2.)

Figure 6-2 Adjust the Ad Count

6 Additional Tuning Recommendations

6-6 Performance Tuning Guide

Display Metadata, Sort and Query Explicit
Metadata

If you used the BulkLoader to load document metadata into the reference
implementation document database, you can improve document management
performance when retrieving documents by doing the following:

� Display a document’s metadata instead of the full document.

� Sort on explicit (system-defined) metadata attributes instead of implicit
(user-defined) metadata attributes.

� Query on explicit metadata attributes instead of implicit metadata attributes.

For more information about content management, see “Creating and Managing
Content” in the Guide to Building Personalized Applications.

Use LDAP for Authentication Only

For improved performance, use LDAP for authentication only; do not use it to retrieve
user and group properties. Instead of retrieving properties from LDAP servers,
configure your system to use properties stored in the RDBMS by minimizing the
number of properties registered for retrieval from LDAP in the user management tools.

For more information about changing LDAP settings, see “Using Other Realms” under
“Creating and Managing Users” in the Guide to Building Personalized Applications.

Use the HotSpot Virtual Machine

Performance Tuning Guide 6-7

Use the HotSpot Virtual Machine

Hot Spot enhances JDK 1.3 performance. It provides several implementations, which
vary depending upon the operating system. HotSpot is an optimized VM with several
variations.

For Windows:

WebLogic Portal supports the Client VM.

Note: If WebLogic Portal is configured to use the default Cloudscape database, the
Classic VM is used. If WebLogic Portal is configured with any other database,
the default is the Client VM using the -hotspot implementation.

To change this setting to the -client implementation of Client VM:

1. Navigate to PORTAL_HOME\config\portalDomain.

2. Open the startPortal.bat file for edit.

Change:
SET JAVA_VM=-hotspot

To:
SET JAVA_VM=-client

For Linux or Solaris:

WebLogic Portal is certified for both the Server VM and the Client VM, but the Server
VM is the default setting.

To change the HotSpot VM:

1. Navigate to PORTAL_HOME/bin/unix.

2. Open the set-environment.sh file for edit.

6 Additional Tuning Recommendations

6-8 Performance Tuning Guide

For Linux change the following line under the LINUX|Linux heading of the
VM Options section (the following is an example entry):

JAVA_VM_OPTIONS=”-hotspot -Xms128m - Xmx128”

To:
JAVA_VM_OPTIONS="-ms160m -mx300m -XX:MaxNewSize=100m
-XX:NewSize=100m -XX:MaxPermSize=128m"

For HP-UX or AIX:

WebLogic Portal does not specify this setting, so it defaults to the Client VM. Both
Client and Server VMs are certified for WebLogic Portal.

The default startPortal startup script activates the HotSpot VM that is appropriate
for each platform type. This script is located at
PORTAL_HOME/config/portalDomain.

Deactivating HotSpot

To deactivate HotSpot, do the following:

For Windows:

1. Open the startPortal.bat file in PORTAL_HOME\config\portalDomain for
edit.

2. Change the value of the JAVA_VM variable to -classic.

3. Restart the server using a startup script that refers to the set-environment file
that you modified.

For UNIX:

1. Open the set-environment.sh file in PORTAL_HOME/bin/unix for edit.

2. Change the value of the JAVA_VM_OPTIONS variable to -classic.

3. Restart the server using a startup script that refers to the set-environment file
that you modified.

Deactivating HotSpot

Performance Tuning Guide 6-9

Note: For information on shutting down and starting the server, refer to "Starting and
Shutting Down the Server" in the Deployment Guide.

6 Additional Tuning Recommendations

6-10 Performance Tuning Guide

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Load Testing Your Installation
	Rationale
	Steps for Load Testing Your Installation
	General Architecture
	1. Test your database (independent of any Web components) to determine how well your schema and S...
	2. Test your network for sufficient bandwidth, and check that the TCP/IP parameters on the server...
	3. Test your Web server, ensuring that it has sufficient capacity to serve static HTML pages when...
	4. Most large applications are clustered, but keep in mind that a clustering environment requires...
	5. Test your servlet engine by running a load test against a trivial servlet such as a HelloWorld...

	WebLogic Portal
	1. Verify that your WebLogic Server database configuration is optimal. WebLogic Portal makes exte...
	2. Verify that each portlet is optimized for speed as follows:
	a. Avoid using forms in a portlet that update the data within the portlet. This causes the entire...
	b. Place items that require heavy processing in an edit page or a maximized URL. If you do not, t...
	c. Avoid large amounts of data retrieval that can take significant time to process.
	3. Test your application’s components, starting from the data access layer. Then proceed toward t...
	4. Test the behavior and performance of your application under simulated, real-world conditions. ...

	2 Factors Affecting Performance
	General Web Application Factors
	Complex Page Layouts
	Image Content
	Clustered Session Replication
	Secure Sockets Layer (SSL)

	WebLogic Server Factors
	Campaign Factors
	Referencing Events
	Avoiding Firing Extraneous Events

	WebLogic Commerce Services Factors
	Cache Settings
	Products
	Categories
	Example of Calculating the Necessary RAM
	Product RAM Calculation
	Category RAM Calculation
	Category Hierarchy RAM Calculation
	RAM Totals

	Catalog Size
	Catalog Update Frequency
	Payment Settings
	Pipeline Session Data
	Deployment
	Location of Java Virtual Machines (JVMs)

	WebLogic Personalization Services Factors
	Accessing the Database
	Application Complexity

	3 Estimating Baseline Capacity Requirements
	Estimate the Maximum Number of Simultaneous Users
	Estimate Per-User Memory Requirements
	Estimate Application Throughput Requirements
	Estimate Maximum Acceptable Response Times
	Calculate a Baseline Estimate
	Throughput Requirements
	Memory Requirements
	Server minimum + Per-user memory requirements * (Maximum number of users)/n

	Latency Requirements

	Adjusting Your Estimate

	4 Using Caches
	Overview of the Cache Framework
	Figure 4�1 The Cache Framework
	Comparison of Configuring Caches
	Caches in a Clustered Environment
	Figure 4�2 Caches in a Cluster

	Configuring Caches with MBeans
	Configuring Default Caches
	1. Start the WebLogic Server Administration Console by entering the following URL in a Web browser:
	2. The WebLogic Server Administration Console prompts you to log in with a user account that has ...
	3. After you log in, in the left pane, click Deployments Æ Applications Æ MyApplication Æ Service...
	4. Click the cache that you want to configure. (See Figure�4�3.)
	Figure 4�3 Configuring a Cache MBean
	5. On the Cache Service page, click the Configuration tab and modify any of the following items:
	6. Click Apply. Your modifications take effect immediately.

	Configuring Custom Caches
	1. In a text editor, open myApplication/META-INF/application-config.xml.
	2. In application-config.xml, within the <CacheManager> element, add the following subelement:
	3. Restart the server or redeploy your application.

	Accessing Caches
	Accessing a Cache
	Putting and Getting Items in a Cache

	Reconfiguring Active Caches
	Monitoring and Managing Caches
	Monitoring a Cache
	Viewing the Number of Items in a Cache
	Viewing the Hit Count
	Viewing the Hit Rate
	Viewing the Miss Count
	Example of Monitoring Caches

	Disable a Cache
	1. Start the WebLogic Server Administration Console by entering the following URL in a Web browser:
	2. The WebLogic Server Administration Console prompts you to log in with a user account that has ...
	3. After you log in, in the left pane, click Deployments Æ Applications Æ MyApplication Æ Service...
	4. Click the cache that you want to disable. (See Figure�4�3.)
	5. On the Cache Service page, click the Configuration tab.
	6. Clear the Enabled check box and click Apply.

	Flush or Invalidate Items in a Cache That Is Configured with MBeans
	Flushing or Invalidating From the WebLogic Server Administration Console
	1. Start the WebLogic Server Administration Console by entering the following URL in a Web browser:
	2. The WebLogic Server Administration Console prompts you to log in with a user account that has ...
	3. After you log in, in the left pane, click Deployments Æ Applications Æ MyApplication Æ Service...
	4. Click the cache that you want to flush or invalidate.
	5. On the Cache Service page, click the Administration tab. (See Figure�4�4.)
	Figure 4�4 Cache Administration
	6. To flush all items from a cache, select the Flush the Entire Cache check box. Then click Flush.

	Clear or Remove Items from a Cache

	Recommended Settings
	Adjust Caching for Content Management
	For More Information

	Property Caching in a Clustered Environment
	For More Information

	Adjust Caching for the Discount Service
	Adjusting the discountCache
	Adjusting the globalDiscountCache
	Discount-Service Caches in Clustered and Non-Clustered Environments

	Adjust Group Membership TTL in the Caching Realm

	5 Tuning JSPs and Servlets
	Precompile JSPs
	1. From the Web application’s WEB-INF directory, open the weblogic.xml file in a text editor and ...
	2. In the <param-value> element, replace false with true. For example, <param-value>true</param-v...
	3. Save the file and restart the server.
	1. Make a backup copy of the .war file.
	2. Create a temporary directory and copy the.war file to the directory.
	3. In the temporary directory, unjar the .war file by entering the following command:
	4. Under the temporary directory, open WEB-INF\web.xml in a text editor and find the following el...
	5. In the <param-value> element, replace false with true. For example, <param-value>true</param-v...
	6. Save web.xml.
	7. Under the temporary directory, if the WEB-INF directory contains a subdirectory named _tmp_war...
	8. Remove the old .war file from the temporary directory.
	9. Create a new .war file for the Web application by entering the following command:
	10. Move the new .war file back to its original directory.
	11. Remove any other files in the original directory that may have been left over from previous
	12. Restart the server.

	Specifying a Java Compiler for a Web Application
	1. Open Web application’s WEB-INF/weblogic.xml file in a text editor.
	2. In weblogic.xml, find the following element:
	3. Remove the <-- and --> comment tags.
	4. Change the <param-value> to specify the pathname of the Java compiler that you want to use for...
	5. To deploy any modifications to this file, you must restart the server.
	Adjust the Intervals for Checking JSP and Servlet Modifications
	About the Page-Check Intervals Properties
	To Adjust the Intervals
	1. Establish performance baselines by testing WebLogic Portal performance with the interval set t...
	2. Test the performance with the interval set to various numbers of seconds. For example, set the...
	3. Choose an interval that provides the best performance while checking for modifications to JSP ...

	6 Additional Tuning Recommendations
	Adjust Database Connections Available at Startup
	1. Start the WebLogic Server Administration Console for your domain.
	2. In the WebLogic Server Administration Console, under JDBC, click Connection Pools.
	3. On the JDBC Connection Pools page, in the Name column, click commercePool.
	4. On the commercePool page, click the Connections tab and do the following (see Figure�6�1):
	a. Increase the value in Initial Capacity to match the value in Maximum Capacity.
	b. Change Login Delay Seconds to 0.
	c. Clear the Allow Shrinking check box.
	d. Click Apply.
	5. Click the Testing tab and clear the Test Reserve Connections check box.
	6. Click Apply.
	7. Restart the server.
	Figure 6�1 Change Values on the commercePool Tab
	For More Information

	Increase the Size of the Display-Count Buffer
	1. Start the WebLogic Server Administration Console by entering the following URL in a Web browser:
	2. The WebLogic Server Administration Console prompts you to log in with a user account that has ...
	3. After you log in, in the left pane, click Deployments Æ Applications Æ MyApplication Æ Service...
	4. In the Display Flush Size box, change the value. For sites with high traffic, increase this nu...
	Figure 6�2 Adjust the Ad Count

	Display Metadata, Sort and Query Explicit Metadata
	Use LDAP for Authentication Only
	Use the HotSpot Virtual Machine
	For Windows:
	1. Navigate to PORTAL_HOME\config\portalDomain.
	2. Open the startPortal.bat file for edit.

	For Linux or Solaris:
	1. Navigate to PORTAL_HOME/bin/unix.
	2. Open the set-environment.sh file for edit.

	Deactivating HotSpot
	1. Open the startPortal.bat file in PORTAL_HOME\config\portalDomain for edit.
	2. Change the value of the JAVA_VM variable to -classic.
	3. Restart the server using a startup script that refers to the set-environment file that you mod...
	1. Open the set-environment.sh file in PORTAL_HOME/bin/unix for edit.
	2. Change the value of the JAVA_VM_OPTIONS variable to -classic.
	3. Restart the server using a startup script that refers to the set-environment file that you mod...

